re PR fortran/85314 (gcc/fortran/resolve.c:9222: unreachable code ?)
[gcc.git] / gcc / fortran / resolve.c
1 /* Perform type resolution on the various structures.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "bitmap.h"
26 #include "gfortran.h"
27 #include "arith.h" /* For gfc_compare_expr(). */
28 #include "dependency.h"
29 #include "data.h"
30 #include "target-memory.h" /* for gfc_simplify_transfer */
31 #include "constructor.h"
32
33 /* Types used in equivalence statements. */
34
35 enum seq_type
36 {
37 SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
38 };
39
40 /* Stack to keep track of the nesting of blocks as we move through the
41 code. See resolve_branch() and gfc_resolve_code(). */
42
43 typedef struct code_stack
44 {
45 struct gfc_code *head, *current;
46 struct code_stack *prev;
47
48 /* This bitmap keeps track of the targets valid for a branch from
49 inside this block except for END {IF|SELECT}s of enclosing
50 blocks. */
51 bitmap reachable_labels;
52 }
53 code_stack;
54
55 static code_stack *cs_base = NULL;
56
57
58 /* Nonzero if we're inside a FORALL or DO CONCURRENT block. */
59
60 static int forall_flag;
61 int gfc_do_concurrent_flag;
62
63 /* True when we are resolving an expression that is an actual argument to
64 a procedure. */
65 static bool actual_arg = false;
66 /* True when we are resolving an expression that is the first actual argument
67 to a procedure. */
68 static bool first_actual_arg = false;
69
70
71 /* Nonzero if we're inside a OpenMP WORKSHARE or PARALLEL WORKSHARE block. */
72
73 static int omp_workshare_flag;
74
75 /* True if we are processing a formal arglist. The corresponding function
76 resets the flag each time that it is read. */
77 static bool formal_arg_flag = false;
78
79 /* True if we are resolving a specification expression. */
80 static bool specification_expr = false;
81
82 /* The id of the last entry seen. */
83 static int current_entry_id;
84
85 /* We use bitmaps to determine if a branch target is valid. */
86 static bitmap_obstack labels_obstack;
87
88 /* True when simplifying a EXPR_VARIABLE argument to an inquiry function. */
89 static bool inquiry_argument = false;
90
91
92 bool
93 gfc_is_formal_arg (void)
94 {
95 return formal_arg_flag;
96 }
97
98 /* Is the symbol host associated? */
99 static bool
100 is_sym_host_assoc (gfc_symbol *sym, gfc_namespace *ns)
101 {
102 for (ns = ns->parent; ns; ns = ns->parent)
103 {
104 if (sym->ns == ns)
105 return true;
106 }
107
108 return false;
109 }
110
111 /* Ensure a typespec used is valid; for instance, TYPE(t) is invalid if t is
112 an ABSTRACT derived-type. If where is not NULL, an error message with that
113 locus is printed, optionally using name. */
114
115 static bool
116 resolve_typespec_used (gfc_typespec* ts, locus* where, const char* name)
117 {
118 if (ts->type == BT_DERIVED && ts->u.derived->attr.abstract)
119 {
120 if (where)
121 {
122 if (name)
123 gfc_error ("%qs at %L is of the ABSTRACT type %qs",
124 name, where, ts->u.derived->name);
125 else
126 gfc_error ("ABSTRACT type %qs used at %L",
127 ts->u.derived->name, where);
128 }
129
130 return false;
131 }
132
133 return true;
134 }
135
136
137 static bool
138 check_proc_interface (gfc_symbol *ifc, locus *where)
139 {
140 /* Several checks for F08:C1216. */
141 if (ifc->attr.procedure)
142 {
143 gfc_error ("Interface %qs at %L is declared "
144 "in a later PROCEDURE statement", ifc->name, where);
145 return false;
146 }
147 if (ifc->generic)
148 {
149 /* For generic interfaces, check if there is
150 a specific procedure with the same name. */
151 gfc_interface *gen = ifc->generic;
152 while (gen && strcmp (gen->sym->name, ifc->name) != 0)
153 gen = gen->next;
154 if (!gen)
155 {
156 gfc_error ("Interface %qs at %L may not be generic",
157 ifc->name, where);
158 return false;
159 }
160 }
161 if (ifc->attr.proc == PROC_ST_FUNCTION)
162 {
163 gfc_error ("Interface %qs at %L may not be a statement function",
164 ifc->name, where);
165 return false;
166 }
167 if (gfc_is_intrinsic (ifc, 0, ifc->declared_at)
168 || gfc_is_intrinsic (ifc, 1, ifc->declared_at))
169 ifc->attr.intrinsic = 1;
170 if (ifc->attr.intrinsic && !gfc_intrinsic_actual_ok (ifc->name, 0))
171 {
172 gfc_error ("Intrinsic procedure %qs not allowed in "
173 "PROCEDURE statement at %L", ifc->name, where);
174 return false;
175 }
176 if (!ifc->attr.if_source && !ifc->attr.intrinsic && ifc->name[0] != '\0')
177 {
178 gfc_error ("Interface %qs at %L must be explicit", ifc->name, where);
179 return false;
180 }
181 return true;
182 }
183
184
185 static void resolve_symbol (gfc_symbol *sym);
186
187
188 /* Resolve the interface for a PROCEDURE declaration or procedure pointer. */
189
190 static bool
191 resolve_procedure_interface (gfc_symbol *sym)
192 {
193 gfc_symbol *ifc = sym->ts.interface;
194
195 if (!ifc)
196 return true;
197
198 if (ifc == sym)
199 {
200 gfc_error ("PROCEDURE %qs at %L may not be used as its own interface",
201 sym->name, &sym->declared_at);
202 return false;
203 }
204 if (!check_proc_interface (ifc, &sym->declared_at))
205 return false;
206
207 if (ifc->attr.if_source || ifc->attr.intrinsic)
208 {
209 /* Resolve interface and copy attributes. */
210 resolve_symbol (ifc);
211 if (ifc->attr.intrinsic)
212 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
213
214 if (ifc->result)
215 {
216 sym->ts = ifc->result->ts;
217 sym->attr.allocatable = ifc->result->attr.allocatable;
218 sym->attr.pointer = ifc->result->attr.pointer;
219 sym->attr.dimension = ifc->result->attr.dimension;
220 sym->attr.class_ok = ifc->result->attr.class_ok;
221 sym->as = gfc_copy_array_spec (ifc->result->as);
222 sym->result = sym;
223 }
224 else
225 {
226 sym->ts = ifc->ts;
227 sym->attr.allocatable = ifc->attr.allocatable;
228 sym->attr.pointer = ifc->attr.pointer;
229 sym->attr.dimension = ifc->attr.dimension;
230 sym->attr.class_ok = ifc->attr.class_ok;
231 sym->as = gfc_copy_array_spec (ifc->as);
232 }
233 sym->ts.interface = ifc;
234 sym->attr.function = ifc->attr.function;
235 sym->attr.subroutine = ifc->attr.subroutine;
236
237 sym->attr.pure = ifc->attr.pure;
238 sym->attr.elemental = ifc->attr.elemental;
239 sym->attr.contiguous = ifc->attr.contiguous;
240 sym->attr.recursive = ifc->attr.recursive;
241 sym->attr.always_explicit = ifc->attr.always_explicit;
242 sym->attr.ext_attr |= ifc->attr.ext_attr;
243 sym->attr.is_bind_c = ifc->attr.is_bind_c;
244 /* Copy char length. */
245 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
246 {
247 sym->ts.u.cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
248 if (sym->ts.u.cl->length && !sym->ts.u.cl->resolved
249 && !gfc_resolve_expr (sym->ts.u.cl->length))
250 return false;
251 }
252 }
253
254 return true;
255 }
256
257
258 /* Resolve types of formal argument lists. These have to be done early so that
259 the formal argument lists of module procedures can be copied to the
260 containing module before the individual procedures are resolved
261 individually. We also resolve argument lists of procedures in interface
262 blocks because they are self-contained scoping units.
263
264 Since a dummy argument cannot be a non-dummy procedure, the only
265 resort left for untyped names are the IMPLICIT types. */
266
267 static void
268 resolve_formal_arglist (gfc_symbol *proc)
269 {
270 gfc_formal_arglist *f;
271 gfc_symbol *sym;
272 bool saved_specification_expr;
273 int i;
274
275 if (proc->result != NULL)
276 sym = proc->result;
277 else
278 sym = proc;
279
280 if (gfc_elemental (proc)
281 || sym->attr.pointer || sym->attr.allocatable
282 || (sym->as && sym->as->rank != 0))
283 {
284 proc->attr.always_explicit = 1;
285 sym->attr.always_explicit = 1;
286 }
287
288 formal_arg_flag = true;
289
290 for (f = proc->formal; f; f = f->next)
291 {
292 gfc_array_spec *as;
293
294 sym = f->sym;
295
296 if (sym == NULL)
297 {
298 /* Alternate return placeholder. */
299 if (gfc_elemental (proc))
300 gfc_error ("Alternate return specifier in elemental subroutine "
301 "%qs at %L is not allowed", proc->name,
302 &proc->declared_at);
303 if (proc->attr.function)
304 gfc_error ("Alternate return specifier in function "
305 "%qs at %L is not allowed", proc->name,
306 &proc->declared_at);
307 continue;
308 }
309 else if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
310 && !resolve_procedure_interface (sym))
311 return;
312
313 if (strcmp (proc->name, sym->name) == 0)
314 {
315 gfc_error ("Self-referential argument "
316 "%qs at %L is not allowed", sym->name,
317 &proc->declared_at);
318 return;
319 }
320
321 if (sym->attr.if_source != IFSRC_UNKNOWN)
322 resolve_formal_arglist (sym);
323
324 if (sym->attr.subroutine || sym->attr.external)
325 {
326 if (sym->attr.flavor == FL_UNKNOWN)
327 gfc_add_flavor (&sym->attr, FL_PROCEDURE, sym->name, &sym->declared_at);
328 }
329 else
330 {
331 if (sym->ts.type == BT_UNKNOWN && !proc->attr.intrinsic
332 && (!sym->attr.function || sym->result == sym))
333 gfc_set_default_type (sym, 1, sym->ns);
334 }
335
336 as = sym->ts.type == BT_CLASS && sym->attr.class_ok
337 ? CLASS_DATA (sym)->as : sym->as;
338
339 saved_specification_expr = specification_expr;
340 specification_expr = true;
341 gfc_resolve_array_spec (as, 0);
342 specification_expr = saved_specification_expr;
343
344 /* We can't tell if an array with dimension (:) is assumed or deferred
345 shape until we know if it has the pointer or allocatable attributes.
346 */
347 if (as && as->rank > 0 && as->type == AS_DEFERRED
348 && ((sym->ts.type != BT_CLASS
349 && !(sym->attr.pointer || sym->attr.allocatable))
350 || (sym->ts.type == BT_CLASS
351 && !(CLASS_DATA (sym)->attr.class_pointer
352 || CLASS_DATA (sym)->attr.allocatable)))
353 && sym->attr.flavor != FL_PROCEDURE)
354 {
355 as->type = AS_ASSUMED_SHAPE;
356 for (i = 0; i < as->rank; i++)
357 as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
358 }
359
360 if ((as && as->rank > 0 && as->type == AS_ASSUMED_SHAPE)
361 || (as && as->type == AS_ASSUMED_RANK)
362 || sym->attr.pointer || sym->attr.allocatable || sym->attr.target
363 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
364 && (CLASS_DATA (sym)->attr.class_pointer
365 || CLASS_DATA (sym)->attr.allocatable
366 || CLASS_DATA (sym)->attr.target))
367 || sym->attr.optional)
368 {
369 proc->attr.always_explicit = 1;
370 if (proc->result)
371 proc->result->attr.always_explicit = 1;
372 }
373
374 /* If the flavor is unknown at this point, it has to be a variable.
375 A procedure specification would have already set the type. */
376
377 if (sym->attr.flavor == FL_UNKNOWN)
378 gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);
379
380 if (gfc_pure (proc))
381 {
382 if (sym->attr.flavor == FL_PROCEDURE)
383 {
384 /* F08:C1279. */
385 if (!gfc_pure (sym))
386 {
387 gfc_error ("Dummy procedure %qs of PURE procedure at %L must "
388 "also be PURE", sym->name, &sym->declared_at);
389 continue;
390 }
391 }
392 else if (!sym->attr.pointer)
393 {
394 if (proc->attr.function && sym->attr.intent != INTENT_IN)
395 {
396 if (sym->attr.value)
397 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
398 " of pure function %qs at %L with VALUE "
399 "attribute but without INTENT(IN)",
400 sym->name, proc->name, &sym->declared_at);
401 else
402 gfc_error ("Argument %qs of pure function %qs at %L must "
403 "be INTENT(IN) or VALUE", sym->name, proc->name,
404 &sym->declared_at);
405 }
406
407 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN)
408 {
409 if (sym->attr.value)
410 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
411 " of pure subroutine %qs at %L with VALUE "
412 "attribute but without INTENT", sym->name,
413 proc->name, &sym->declared_at);
414 else
415 gfc_error ("Argument %qs of pure subroutine %qs at %L "
416 "must have its INTENT specified or have the "
417 "VALUE attribute", sym->name, proc->name,
418 &sym->declared_at);
419 }
420 }
421
422 /* F08:C1278a. */
423 if (sym->ts.type == BT_CLASS && sym->attr.intent == INTENT_OUT)
424 {
425 gfc_error ("INTENT(OUT) argument %qs of pure procedure %qs at %L"
426 " may not be polymorphic", sym->name, proc->name,
427 &sym->declared_at);
428 continue;
429 }
430 }
431
432 if (proc->attr.implicit_pure)
433 {
434 if (sym->attr.flavor == FL_PROCEDURE)
435 {
436 if (!gfc_pure (sym))
437 proc->attr.implicit_pure = 0;
438 }
439 else if (!sym->attr.pointer)
440 {
441 if (proc->attr.function && sym->attr.intent != INTENT_IN
442 && !sym->value)
443 proc->attr.implicit_pure = 0;
444
445 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN
446 && !sym->value)
447 proc->attr.implicit_pure = 0;
448 }
449 }
450
451 if (gfc_elemental (proc))
452 {
453 /* F08:C1289. */
454 if (sym->attr.codimension
455 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
456 && CLASS_DATA (sym)->attr.codimension))
457 {
458 gfc_error ("Coarray dummy argument %qs at %L to elemental "
459 "procedure", sym->name, &sym->declared_at);
460 continue;
461 }
462
463 if (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
464 && CLASS_DATA (sym)->as))
465 {
466 gfc_error ("Argument %qs of elemental procedure at %L must "
467 "be scalar", sym->name, &sym->declared_at);
468 continue;
469 }
470
471 if (sym->attr.allocatable
472 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
473 && CLASS_DATA (sym)->attr.allocatable))
474 {
475 gfc_error ("Argument %qs of elemental procedure at %L cannot "
476 "have the ALLOCATABLE attribute", sym->name,
477 &sym->declared_at);
478 continue;
479 }
480
481 if (sym->attr.pointer
482 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
483 && CLASS_DATA (sym)->attr.class_pointer))
484 {
485 gfc_error ("Argument %qs of elemental procedure at %L cannot "
486 "have the POINTER attribute", sym->name,
487 &sym->declared_at);
488 continue;
489 }
490
491 if (sym->attr.flavor == FL_PROCEDURE)
492 {
493 gfc_error ("Dummy procedure %qs not allowed in elemental "
494 "procedure %qs at %L", sym->name, proc->name,
495 &sym->declared_at);
496 continue;
497 }
498
499 /* Fortran 2008 Corrigendum 1, C1290a. */
500 if (sym->attr.intent == INTENT_UNKNOWN && !sym->attr.value)
501 {
502 gfc_error ("Argument %qs of elemental procedure %qs at %L must "
503 "have its INTENT specified or have the VALUE "
504 "attribute", sym->name, proc->name,
505 &sym->declared_at);
506 continue;
507 }
508 }
509
510 /* Each dummy shall be specified to be scalar. */
511 if (proc->attr.proc == PROC_ST_FUNCTION)
512 {
513 if (sym->as != NULL)
514 {
515 /* F03:C1263 (R1238) The function-name and each dummy-arg-name
516 shall be specified, explicitly or implicitly, to be scalar. */
517 gfc_error ("Argument '%s' of statement function '%s' at %L "
518 "must be scalar", sym->name, proc->name,
519 &proc->declared_at);
520 continue;
521 }
522
523 if (sym->ts.type == BT_CHARACTER)
524 {
525 gfc_charlen *cl = sym->ts.u.cl;
526 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
527 {
528 gfc_error ("Character-valued argument %qs of statement "
529 "function at %L must have constant length",
530 sym->name, &sym->declared_at);
531 continue;
532 }
533 }
534 }
535 }
536 formal_arg_flag = false;
537 }
538
539
540 /* Work function called when searching for symbols that have argument lists
541 associated with them. */
542
543 static void
544 find_arglists (gfc_symbol *sym)
545 {
546 if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns
547 || gfc_fl_struct (sym->attr.flavor) || sym->attr.intrinsic)
548 return;
549
550 resolve_formal_arglist (sym);
551 }
552
553
554 /* Given a namespace, resolve all formal argument lists within the namespace.
555 */
556
557 static void
558 resolve_formal_arglists (gfc_namespace *ns)
559 {
560 if (ns == NULL)
561 return;
562
563 gfc_traverse_ns (ns, find_arglists);
564 }
565
566
567 static void
568 resolve_contained_fntype (gfc_symbol *sym, gfc_namespace *ns)
569 {
570 bool t;
571
572 if (sym && sym->attr.flavor == FL_PROCEDURE
573 && sym->ns->parent
574 && sym->ns->parent->proc_name
575 && sym->ns->parent->proc_name->attr.flavor == FL_PROCEDURE
576 && !strcmp (sym->name, sym->ns->parent->proc_name->name))
577 gfc_error ("Contained procedure %qs at %L has the same name as its "
578 "encompassing procedure", sym->name, &sym->declared_at);
579
580 /* If this namespace is not a function or an entry master function,
581 ignore it. */
582 if (! sym || !(sym->attr.function || sym->attr.flavor == FL_VARIABLE)
583 || sym->attr.entry_master)
584 return;
585
586 /* Try to find out of what the return type is. */
587 if (sym->result->ts.type == BT_UNKNOWN && sym->result->ts.interface == NULL)
588 {
589 t = gfc_set_default_type (sym->result, 0, ns);
590
591 if (!t && !sym->result->attr.untyped)
592 {
593 if (sym->result == sym)
594 gfc_error ("Contained function %qs at %L has no IMPLICIT type",
595 sym->name, &sym->declared_at);
596 else if (!sym->result->attr.proc_pointer)
597 gfc_error ("Result %qs of contained function %qs at %L has "
598 "no IMPLICIT type", sym->result->name, sym->name,
599 &sym->result->declared_at);
600 sym->result->attr.untyped = 1;
601 }
602 }
603
604 /* Fortran 2008 Draft Standard, page 535, C418, on type-param-value
605 type, lists the only ways a character length value of * can be used:
606 dummy arguments of procedures, named constants, function results and
607 in allocate statements if the allocate_object is an assumed length dummy
608 in external functions. Internal function results and results of module
609 procedures are not on this list, ergo, not permitted. */
610
611 if (sym->result->ts.type == BT_CHARACTER)
612 {
613 gfc_charlen *cl = sym->result->ts.u.cl;
614 if ((!cl || !cl->length) && !sym->result->ts.deferred)
615 {
616 /* See if this is a module-procedure and adapt error message
617 accordingly. */
618 bool module_proc;
619 gcc_assert (ns->parent && ns->parent->proc_name);
620 module_proc = (ns->parent->proc_name->attr.flavor == FL_MODULE);
621
622 gfc_error (module_proc
623 ? G_("Character-valued module procedure %qs at %L"
624 " must not be assumed length")
625 : G_("Character-valued internal function %qs at %L"
626 " must not be assumed length"),
627 sym->name, &sym->declared_at);
628 }
629 }
630 }
631
632
633 /* Add NEW_ARGS to the formal argument list of PROC, taking care not to
634 introduce duplicates. */
635
636 static void
637 merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
638 {
639 gfc_formal_arglist *f, *new_arglist;
640 gfc_symbol *new_sym;
641
642 for (; new_args != NULL; new_args = new_args->next)
643 {
644 new_sym = new_args->sym;
645 /* See if this arg is already in the formal argument list. */
646 for (f = proc->formal; f; f = f->next)
647 {
648 if (new_sym == f->sym)
649 break;
650 }
651
652 if (f)
653 continue;
654
655 /* Add a new argument. Argument order is not important. */
656 new_arglist = gfc_get_formal_arglist ();
657 new_arglist->sym = new_sym;
658 new_arglist->next = proc->formal;
659 proc->formal = new_arglist;
660 }
661 }
662
663
664 /* Flag the arguments that are not present in all entries. */
665
666 static void
667 check_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
668 {
669 gfc_formal_arglist *f, *head;
670 head = new_args;
671
672 for (f = proc->formal; f; f = f->next)
673 {
674 if (f->sym == NULL)
675 continue;
676
677 for (new_args = head; new_args; new_args = new_args->next)
678 {
679 if (new_args->sym == f->sym)
680 break;
681 }
682
683 if (new_args)
684 continue;
685
686 f->sym->attr.not_always_present = 1;
687 }
688 }
689
690
691 /* Resolve alternate entry points. If a symbol has multiple entry points we
692 create a new master symbol for the main routine, and turn the existing
693 symbol into an entry point. */
694
695 static void
696 resolve_entries (gfc_namespace *ns)
697 {
698 gfc_namespace *old_ns;
699 gfc_code *c;
700 gfc_symbol *proc;
701 gfc_entry_list *el;
702 char name[GFC_MAX_SYMBOL_LEN + 1];
703 static int master_count = 0;
704
705 if (ns->proc_name == NULL)
706 return;
707
708 /* No need to do anything if this procedure doesn't have alternate entry
709 points. */
710 if (!ns->entries)
711 return;
712
713 /* We may already have resolved alternate entry points. */
714 if (ns->proc_name->attr.entry_master)
715 return;
716
717 /* If this isn't a procedure something has gone horribly wrong. */
718 gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);
719
720 /* Remember the current namespace. */
721 old_ns = gfc_current_ns;
722
723 gfc_current_ns = ns;
724
725 /* Add the main entry point to the list of entry points. */
726 el = gfc_get_entry_list ();
727 el->sym = ns->proc_name;
728 el->id = 0;
729 el->next = ns->entries;
730 ns->entries = el;
731 ns->proc_name->attr.entry = 1;
732
733 /* If it is a module function, it needs to be in the right namespace
734 so that gfc_get_fake_result_decl can gather up the results. The
735 need for this arose in get_proc_name, where these beasts were
736 left in their own namespace, to keep prior references linked to
737 the entry declaration.*/
738 if (ns->proc_name->attr.function
739 && ns->parent && ns->parent->proc_name->attr.flavor == FL_MODULE)
740 el->sym->ns = ns;
741
742 /* Do the same for entries where the master is not a module
743 procedure. These are retained in the module namespace because
744 of the module procedure declaration. */
745 for (el = el->next; el; el = el->next)
746 if (el->sym->ns->proc_name->attr.flavor == FL_MODULE
747 && el->sym->attr.mod_proc)
748 el->sym->ns = ns;
749 el = ns->entries;
750
751 /* Add an entry statement for it. */
752 c = gfc_get_code (EXEC_ENTRY);
753 c->ext.entry = el;
754 c->next = ns->code;
755 ns->code = c;
756
757 /* Create a new symbol for the master function. */
758 /* Give the internal function a unique name (within this file).
759 Also include the function name so the user has some hope of figuring
760 out what is going on. */
761 snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
762 master_count++, ns->proc_name->name);
763 gfc_get_ha_symbol (name, &proc);
764 gcc_assert (proc != NULL);
765
766 gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
767 if (ns->proc_name->attr.subroutine)
768 gfc_add_subroutine (&proc->attr, proc->name, NULL);
769 else
770 {
771 gfc_symbol *sym;
772 gfc_typespec *ts, *fts;
773 gfc_array_spec *as, *fas;
774 gfc_add_function (&proc->attr, proc->name, NULL);
775 proc->result = proc;
776 fas = ns->entries->sym->as;
777 fas = fas ? fas : ns->entries->sym->result->as;
778 fts = &ns->entries->sym->result->ts;
779 if (fts->type == BT_UNKNOWN)
780 fts = gfc_get_default_type (ns->entries->sym->result->name, NULL);
781 for (el = ns->entries->next; el; el = el->next)
782 {
783 ts = &el->sym->result->ts;
784 as = el->sym->as;
785 as = as ? as : el->sym->result->as;
786 if (ts->type == BT_UNKNOWN)
787 ts = gfc_get_default_type (el->sym->result->name, NULL);
788
789 if (! gfc_compare_types (ts, fts)
790 || (el->sym->result->attr.dimension
791 != ns->entries->sym->result->attr.dimension)
792 || (el->sym->result->attr.pointer
793 != ns->entries->sym->result->attr.pointer))
794 break;
795 else if (as && fas && ns->entries->sym->result != el->sym->result
796 && gfc_compare_array_spec (as, fas) == 0)
797 gfc_error ("Function %s at %L has entries with mismatched "
798 "array specifications", ns->entries->sym->name,
799 &ns->entries->sym->declared_at);
800 /* The characteristics need to match and thus both need to have
801 the same string length, i.e. both len=*, or both len=4.
802 Having both len=<variable> is also possible, but difficult to
803 check at compile time. */
804 else if (ts->type == BT_CHARACTER && ts->u.cl && fts->u.cl
805 && (((ts->u.cl->length && !fts->u.cl->length)
806 ||(!ts->u.cl->length && fts->u.cl->length))
807 || (ts->u.cl->length
808 && ts->u.cl->length->expr_type
809 != fts->u.cl->length->expr_type)
810 || (ts->u.cl->length
811 && ts->u.cl->length->expr_type == EXPR_CONSTANT
812 && mpz_cmp (ts->u.cl->length->value.integer,
813 fts->u.cl->length->value.integer) != 0)))
814 gfc_notify_std (GFC_STD_GNU, "Function %s at %L with "
815 "entries returning variables of different "
816 "string lengths", ns->entries->sym->name,
817 &ns->entries->sym->declared_at);
818 }
819
820 if (el == NULL)
821 {
822 sym = ns->entries->sym->result;
823 /* All result types the same. */
824 proc->ts = *fts;
825 if (sym->attr.dimension)
826 gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
827 if (sym->attr.pointer)
828 gfc_add_pointer (&proc->attr, NULL);
829 }
830 else
831 {
832 /* Otherwise the result will be passed through a union by
833 reference. */
834 proc->attr.mixed_entry_master = 1;
835 for (el = ns->entries; el; el = el->next)
836 {
837 sym = el->sym->result;
838 if (sym->attr.dimension)
839 {
840 if (el == ns->entries)
841 gfc_error ("FUNCTION result %s can't be an array in "
842 "FUNCTION %s at %L", sym->name,
843 ns->entries->sym->name, &sym->declared_at);
844 else
845 gfc_error ("ENTRY result %s can't be an array in "
846 "FUNCTION %s at %L", sym->name,
847 ns->entries->sym->name, &sym->declared_at);
848 }
849 else if (sym->attr.pointer)
850 {
851 if (el == ns->entries)
852 gfc_error ("FUNCTION result %s can't be a POINTER in "
853 "FUNCTION %s at %L", sym->name,
854 ns->entries->sym->name, &sym->declared_at);
855 else
856 gfc_error ("ENTRY result %s can't be a POINTER in "
857 "FUNCTION %s at %L", sym->name,
858 ns->entries->sym->name, &sym->declared_at);
859 }
860 else
861 {
862 ts = &sym->ts;
863 if (ts->type == BT_UNKNOWN)
864 ts = gfc_get_default_type (sym->name, NULL);
865 switch (ts->type)
866 {
867 case BT_INTEGER:
868 if (ts->kind == gfc_default_integer_kind)
869 sym = NULL;
870 break;
871 case BT_REAL:
872 if (ts->kind == gfc_default_real_kind
873 || ts->kind == gfc_default_double_kind)
874 sym = NULL;
875 break;
876 case BT_COMPLEX:
877 if (ts->kind == gfc_default_complex_kind)
878 sym = NULL;
879 break;
880 case BT_LOGICAL:
881 if (ts->kind == gfc_default_logical_kind)
882 sym = NULL;
883 break;
884 case BT_UNKNOWN:
885 /* We will issue error elsewhere. */
886 sym = NULL;
887 break;
888 default:
889 break;
890 }
891 if (sym)
892 {
893 if (el == ns->entries)
894 gfc_error ("FUNCTION result %s can't be of type %s "
895 "in FUNCTION %s at %L", sym->name,
896 gfc_typename (ts), ns->entries->sym->name,
897 &sym->declared_at);
898 else
899 gfc_error ("ENTRY result %s can't be of type %s "
900 "in FUNCTION %s at %L", sym->name,
901 gfc_typename (ts), ns->entries->sym->name,
902 &sym->declared_at);
903 }
904 }
905 }
906 }
907 }
908 proc->attr.access = ACCESS_PRIVATE;
909 proc->attr.entry_master = 1;
910
911 /* Merge all the entry point arguments. */
912 for (el = ns->entries; el; el = el->next)
913 merge_argument_lists (proc, el->sym->formal);
914
915 /* Check the master formal arguments for any that are not
916 present in all entry points. */
917 for (el = ns->entries; el; el = el->next)
918 check_argument_lists (proc, el->sym->formal);
919
920 /* Use the master function for the function body. */
921 ns->proc_name = proc;
922
923 /* Finalize the new symbols. */
924 gfc_commit_symbols ();
925
926 /* Restore the original namespace. */
927 gfc_current_ns = old_ns;
928 }
929
930
931 /* Resolve common variables. */
932 static void
933 resolve_common_vars (gfc_common_head *common_block, bool named_common)
934 {
935 gfc_symbol *csym = common_block->head;
936
937 for (; csym; csym = csym->common_next)
938 {
939 /* gfc_add_in_common may have been called before, but the reported errors
940 have been ignored to continue parsing.
941 We do the checks again here. */
942 if (!csym->attr.use_assoc)
943 gfc_add_in_common (&csym->attr, csym->name, &common_block->where);
944
945 if (csym->value || csym->attr.data)
946 {
947 if (!csym->ns->is_block_data)
948 gfc_notify_std (GFC_STD_GNU, "Variable %qs at %L is in COMMON "
949 "but only in BLOCK DATA initialization is "
950 "allowed", csym->name, &csym->declared_at);
951 else if (!named_common)
952 gfc_notify_std (GFC_STD_GNU, "Initialized variable %qs at %L is "
953 "in a blank COMMON but initialization is only "
954 "allowed in named common blocks", csym->name,
955 &csym->declared_at);
956 }
957
958 if (UNLIMITED_POLY (csym))
959 gfc_error_now ("%qs in cannot appear in COMMON at %L "
960 "[F2008:C5100]", csym->name, &csym->declared_at);
961
962 if (csym->ts.type != BT_DERIVED)
963 continue;
964
965 if (!(csym->ts.u.derived->attr.sequence
966 || csym->ts.u.derived->attr.is_bind_c))
967 gfc_error_now ("Derived type variable %qs in COMMON at %L "
968 "has neither the SEQUENCE nor the BIND(C) "
969 "attribute", csym->name, &csym->declared_at);
970 if (csym->ts.u.derived->attr.alloc_comp)
971 gfc_error_now ("Derived type variable %qs in COMMON at %L "
972 "has an ultimate component that is "
973 "allocatable", csym->name, &csym->declared_at);
974 if (gfc_has_default_initializer (csym->ts.u.derived))
975 gfc_error_now ("Derived type variable %qs in COMMON at %L "
976 "may not have default initializer", csym->name,
977 &csym->declared_at);
978
979 if (csym->attr.flavor == FL_UNKNOWN && !csym->attr.proc_pointer)
980 gfc_add_flavor (&csym->attr, FL_VARIABLE, csym->name, &csym->declared_at);
981 }
982 }
983
984 /* Resolve common blocks. */
985 static void
986 resolve_common_blocks (gfc_symtree *common_root)
987 {
988 gfc_symbol *sym;
989 gfc_gsymbol * gsym;
990
991 if (common_root == NULL)
992 return;
993
994 if (common_root->left)
995 resolve_common_blocks (common_root->left);
996 if (common_root->right)
997 resolve_common_blocks (common_root->right);
998
999 resolve_common_vars (common_root->n.common, true);
1000
1001 if (!gfc_notify_std (GFC_STD_F2018_OBS, "COMMON block at %L",
1002 &common_root->n.common->where))
1003 return;
1004
1005 /* The common name is a global name - in Fortran 2003 also if it has a
1006 C binding name, since Fortran 2008 only the C binding name is a global
1007 identifier. */
1008 if (!common_root->n.common->binding_label
1009 || gfc_notification_std (GFC_STD_F2008))
1010 {
1011 gsym = gfc_find_gsymbol (gfc_gsym_root,
1012 common_root->n.common->name);
1013
1014 if (gsym && gfc_notification_std (GFC_STD_F2008)
1015 && gsym->type == GSYM_COMMON
1016 && ((common_root->n.common->binding_label
1017 && (!gsym->binding_label
1018 || strcmp (common_root->n.common->binding_label,
1019 gsym->binding_label) != 0))
1020 || (!common_root->n.common->binding_label
1021 && gsym->binding_label)))
1022 {
1023 gfc_error ("In Fortran 2003 COMMON %qs block at %L is a global "
1024 "identifier and must thus have the same binding name "
1025 "as the same-named COMMON block at %L: %s vs %s",
1026 common_root->n.common->name, &common_root->n.common->where,
1027 &gsym->where,
1028 common_root->n.common->binding_label
1029 ? common_root->n.common->binding_label : "(blank)",
1030 gsym->binding_label ? gsym->binding_label : "(blank)");
1031 return;
1032 }
1033
1034 if (gsym && gsym->type != GSYM_COMMON
1035 && !common_root->n.common->binding_label)
1036 {
1037 gfc_error ("COMMON block %qs at %L uses the same global identifier "
1038 "as entity at %L",
1039 common_root->n.common->name, &common_root->n.common->where,
1040 &gsym->where);
1041 return;
1042 }
1043 if (gsym && gsym->type != GSYM_COMMON)
1044 {
1045 gfc_error ("Fortran 2008: COMMON block %qs with binding label at "
1046 "%L sharing the identifier with global non-COMMON-block "
1047 "entity at %L", common_root->n.common->name,
1048 &common_root->n.common->where, &gsym->where);
1049 return;
1050 }
1051 if (!gsym)
1052 {
1053 gsym = gfc_get_gsymbol (common_root->n.common->name);
1054 gsym->type = GSYM_COMMON;
1055 gsym->where = common_root->n.common->where;
1056 gsym->defined = 1;
1057 }
1058 gsym->used = 1;
1059 }
1060
1061 if (common_root->n.common->binding_label)
1062 {
1063 gsym = gfc_find_gsymbol (gfc_gsym_root,
1064 common_root->n.common->binding_label);
1065 if (gsym && gsym->type != GSYM_COMMON)
1066 {
1067 gfc_error ("COMMON block at %L with binding label %qs uses the same "
1068 "global identifier as entity at %L",
1069 &common_root->n.common->where,
1070 common_root->n.common->binding_label, &gsym->where);
1071 return;
1072 }
1073 if (!gsym)
1074 {
1075 gsym = gfc_get_gsymbol (common_root->n.common->binding_label);
1076 gsym->type = GSYM_COMMON;
1077 gsym->where = common_root->n.common->where;
1078 gsym->defined = 1;
1079 }
1080 gsym->used = 1;
1081 }
1082
1083 gfc_find_symbol (common_root->name, gfc_current_ns, 0, &sym);
1084 if (sym == NULL)
1085 return;
1086
1087 if (sym->attr.flavor == FL_PARAMETER)
1088 gfc_error ("COMMON block %qs at %L is used as PARAMETER at %L",
1089 sym->name, &common_root->n.common->where, &sym->declared_at);
1090
1091 if (sym->attr.external)
1092 gfc_error ("COMMON block %qs at %L can not have the EXTERNAL attribute",
1093 sym->name, &common_root->n.common->where);
1094
1095 if (sym->attr.intrinsic)
1096 gfc_error ("COMMON block %qs at %L is also an intrinsic procedure",
1097 sym->name, &common_root->n.common->where);
1098 else if (sym->attr.result
1099 || gfc_is_function_return_value (sym, gfc_current_ns))
1100 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1101 "that is also a function result", sym->name,
1102 &common_root->n.common->where);
1103 else if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_INTERNAL
1104 && sym->attr.proc != PROC_ST_FUNCTION)
1105 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1106 "that is also a global procedure", sym->name,
1107 &common_root->n.common->where);
1108 }
1109
1110
1111 /* Resolve contained function types. Because contained functions can call one
1112 another, they have to be worked out before any of the contained procedures
1113 can be resolved.
1114
1115 The good news is that if a function doesn't already have a type, the only
1116 way it can get one is through an IMPLICIT type or a RESULT variable, because
1117 by definition contained functions are contained namespace they're contained
1118 in, not in a sibling or parent namespace. */
1119
1120 static void
1121 resolve_contained_functions (gfc_namespace *ns)
1122 {
1123 gfc_namespace *child;
1124 gfc_entry_list *el;
1125
1126 resolve_formal_arglists (ns);
1127
1128 for (child = ns->contained; child; child = child->sibling)
1129 {
1130 /* Resolve alternate entry points first. */
1131 resolve_entries (child);
1132
1133 /* Then check function return types. */
1134 resolve_contained_fntype (child->proc_name, child);
1135 for (el = child->entries; el; el = el->next)
1136 resolve_contained_fntype (el->sym, child);
1137 }
1138 }
1139
1140
1141
1142 /* A Parameterized Derived Type constructor must contain values for
1143 the PDT KIND parameters or they must have a default initializer.
1144 Go through the constructor picking out the KIND expressions,
1145 storing them in 'param_list' and then call gfc_get_pdt_instance
1146 to obtain the PDT instance. */
1147
1148 static gfc_actual_arglist *param_list, *param_tail, *param;
1149
1150 static bool
1151 get_pdt_spec_expr (gfc_component *c, gfc_expr *expr)
1152 {
1153 param = gfc_get_actual_arglist ();
1154 if (!param_list)
1155 param_list = param_tail = param;
1156 else
1157 {
1158 param_tail->next = param;
1159 param_tail = param_tail->next;
1160 }
1161
1162 param_tail->name = c->name;
1163 if (expr)
1164 param_tail->expr = gfc_copy_expr (expr);
1165 else if (c->initializer)
1166 param_tail->expr = gfc_copy_expr (c->initializer);
1167 else
1168 {
1169 param_tail->spec_type = SPEC_ASSUMED;
1170 if (c->attr.pdt_kind)
1171 {
1172 gfc_error ("The KIND parameter %qs in the PDT constructor "
1173 "at %C has no value", param->name);
1174 return false;
1175 }
1176 }
1177
1178 return true;
1179 }
1180
1181 static bool
1182 get_pdt_constructor (gfc_expr *expr, gfc_constructor **constr,
1183 gfc_symbol *derived)
1184 {
1185 gfc_constructor *cons = NULL;
1186 gfc_component *comp;
1187 bool t = true;
1188
1189 if (expr && expr->expr_type == EXPR_STRUCTURE)
1190 cons = gfc_constructor_first (expr->value.constructor);
1191 else if (constr)
1192 cons = *constr;
1193 gcc_assert (cons);
1194
1195 comp = derived->components;
1196
1197 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1198 {
1199 if (cons->expr
1200 && cons->expr->expr_type == EXPR_STRUCTURE
1201 && comp->ts.type == BT_DERIVED)
1202 {
1203 t = get_pdt_constructor (cons->expr, NULL, comp->ts.u.derived);
1204 if (!t)
1205 return t;
1206 }
1207 else if (comp->ts.type == BT_DERIVED)
1208 {
1209 t = get_pdt_constructor (NULL, &cons, comp->ts.u.derived);
1210 if (!t)
1211 return t;
1212 }
1213 else if ((comp->attr.pdt_kind || comp->attr.pdt_len)
1214 && derived->attr.pdt_template)
1215 {
1216 t = get_pdt_spec_expr (comp, cons->expr);
1217 if (!t)
1218 return t;
1219 }
1220 }
1221 return t;
1222 }
1223
1224
1225 static bool resolve_fl_derived0 (gfc_symbol *sym);
1226 static bool resolve_fl_struct (gfc_symbol *sym);
1227
1228
1229 /* Resolve all of the elements of a structure constructor and make sure that
1230 the types are correct. The 'init' flag indicates that the given
1231 constructor is an initializer. */
1232
1233 static bool
1234 resolve_structure_cons (gfc_expr *expr, int init)
1235 {
1236 gfc_constructor *cons;
1237 gfc_component *comp;
1238 bool t;
1239 symbol_attribute a;
1240
1241 t = true;
1242
1243 if (expr->ts.type == BT_DERIVED || expr->ts.type == BT_UNION)
1244 {
1245 if (expr->ts.u.derived->attr.flavor == FL_DERIVED)
1246 resolve_fl_derived0 (expr->ts.u.derived);
1247 else
1248 resolve_fl_struct (expr->ts.u.derived);
1249
1250 /* If this is a Parameterized Derived Type template, find the
1251 instance corresponding to the PDT kind parameters. */
1252 if (expr->ts.u.derived->attr.pdt_template)
1253 {
1254 param_list = NULL;
1255 t = get_pdt_constructor (expr, NULL, expr->ts.u.derived);
1256 if (!t)
1257 return t;
1258 gfc_get_pdt_instance (param_list, &expr->ts.u.derived, NULL);
1259
1260 expr->param_list = gfc_copy_actual_arglist (param_list);
1261
1262 if (param_list)
1263 gfc_free_actual_arglist (param_list);
1264
1265 if (!expr->ts.u.derived->attr.pdt_type)
1266 return false;
1267 }
1268 }
1269
1270 cons = gfc_constructor_first (expr->value.constructor);
1271
1272 /* A constructor may have references if it is the result of substituting a
1273 parameter variable. In this case we just pull out the component we
1274 want. */
1275 if (expr->ref)
1276 comp = expr->ref->u.c.sym->components;
1277 else
1278 comp = expr->ts.u.derived->components;
1279
1280 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1281 {
1282 int rank;
1283
1284 if (!cons->expr)
1285 continue;
1286
1287 /* Unions use an EXPR_NULL contrived expression to tell the translation
1288 phase to generate an initializer of the appropriate length.
1289 Ignore it here. */
1290 if (cons->expr->ts.type == BT_UNION && cons->expr->expr_type == EXPR_NULL)
1291 continue;
1292
1293 if (!gfc_resolve_expr (cons->expr))
1294 {
1295 t = false;
1296 continue;
1297 }
1298
1299 rank = comp->as ? comp->as->rank : 0;
1300 if (comp->ts.type == BT_CLASS
1301 && !comp->ts.u.derived->attr.unlimited_polymorphic
1302 && CLASS_DATA (comp)->as)
1303 rank = CLASS_DATA (comp)->as->rank;
1304
1305 if (cons->expr->expr_type != EXPR_NULL && rank != cons->expr->rank
1306 && (comp->attr.allocatable || cons->expr->rank))
1307 {
1308 gfc_error ("The rank of the element in the structure "
1309 "constructor at %L does not match that of the "
1310 "component (%d/%d)", &cons->expr->where,
1311 cons->expr->rank, rank);
1312 t = false;
1313 }
1314
1315 /* If we don't have the right type, try to convert it. */
1316
1317 if (!comp->attr.proc_pointer &&
1318 !gfc_compare_types (&cons->expr->ts, &comp->ts))
1319 {
1320 if (strcmp (comp->name, "_extends") == 0)
1321 {
1322 /* Can afford to be brutal with the _extends initializer.
1323 The derived type can get lost because it is PRIVATE
1324 but it is not usage constrained by the standard. */
1325 cons->expr->ts = comp->ts;
1326 }
1327 else if (comp->attr.pointer && cons->expr->ts.type != BT_UNKNOWN)
1328 {
1329 gfc_error ("The element in the structure constructor at %L, "
1330 "for pointer component %qs, is %s but should be %s",
1331 &cons->expr->where, comp->name,
1332 gfc_basic_typename (cons->expr->ts.type),
1333 gfc_basic_typename (comp->ts.type));
1334 t = false;
1335 }
1336 else
1337 {
1338 bool t2 = gfc_convert_type (cons->expr, &comp->ts, 1);
1339 if (t)
1340 t = t2;
1341 }
1342 }
1343
1344 /* For strings, the length of the constructor should be the same as
1345 the one of the structure, ensure this if the lengths are known at
1346 compile time and when we are dealing with PARAMETER or structure
1347 constructors. */
1348 if (cons->expr->ts.type == BT_CHARACTER && comp->ts.u.cl
1349 && comp->ts.u.cl->length
1350 && comp->ts.u.cl->length->expr_type == EXPR_CONSTANT
1351 && cons->expr->ts.u.cl && cons->expr->ts.u.cl->length
1352 && cons->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
1353 && cons->expr->rank != 0
1354 && mpz_cmp (cons->expr->ts.u.cl->length->value.integer,
1355 comp->ts.u.cl->length->value.integer) != 0)
1356 {
1357 if (cons->expr->expr_type == EXPR_VARIABLE
1358 && cons->expr->symtree->n.sym->attr.flavor == FL_PARAMETER)
1359 {
1360 /* Wrap the parameter in an array constructor (EXPR_ARRAY)
1361 to make use of the gfc_resolve_character_array_constructor
1362 machinery. The expression is later simplified away to
1363 an array of string literals. */
1364 gfc_expr *para = cons->expr;
1365 cons->expr = gfc_get_expr ();
1366 cons->expr->ts = para->ts;
1367 cons->expr->where = para->where;
1368 cons->expr->expr_type = EXPR_ARRAY;
1369 cons->expr->rank = para->rank;
1370 cons->expr->shape = gfc_copy_shape (para->shape, para->rank);
1371 gfc_constructor_append_expr (&cons->expr->value.constructor,
1372 para, &cons->expr->where);
1373 }
1374
1375 if (cons->expr->expr_type == EXPR_ARRAY)
1376 {
1377 /* Rely on the cleanup of the namespace to deal correctly with
1378 the old charlen. (There was a block here that attempted to
1379 remove the charlen but broke the chain in so doing.) */
1380 cons->expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1381 cons->expr->ts.u.cl->length_from_typespec = true;
1382 cons->expr->ts.u.cl->length = gfc_copy_expr (comp->ts.u.cl->length);
1383 gfc_resolve_character_array_constructor (cons->expr);
1384 }
1385 }
1386
1387 if (cons->expr->expr_type == EXPR_NULL
1388 && !(comp->attr.pointer || comp->attr.allocatable
1389 || comp->attr.proc_pointer || comp->ts.f90_type == BT_VOID
1390 || (comp->ts.type == BT_CLASS
1391 && (CLASS_DATA (comp)->attr.class_pointer
1392 || CLASS_DATA (comp)->attr.allocatable))))
1393 {
1394 t = false;
1395 gfc_error ("The NULL in the structure constructor at %L is "
1396 "being applied to component %qs, which is neither "
1397 "a POINTER nor ALLOCATABLE", &cons->expr->where,
1398 comp->name);
1399 }
1400
1401 if (comp->attr.proc_pointer && comp->ts.interface)
1402 {
1403 /* Check procedure pointer interface. */
1404 gfc_symbol *s2 = NULL;
1405 gfc_component *c2;
1406 const char *name;
1407 char err[200];
1408
1409 c2 = gfc_get_proc_ptr_comp (cons->expr);
1410 if (c2)
1411 {
1412 s2 = c2->ts.interface;
1413 name = c2->name;
1414 }
1415 else if (cons->expr->expr_type == EXPR_FUNCTION)
1416 {
1417 s2 = cons->expr->symtree->n.sym->result;
1418 name = cons->expr->symtree->n.sym->result->name;
1419 }
1420 else if (cons->expr->expr_type != EXPR_NULL)
1421 {
1422 s2 = cons->expr->symtree->n.sym;
1423 name = cons->expr->symtree->n.sym->name;
1424 }
1425
1426 if (s2 && !gfc_compare_interfaces (comp->ts.interface, s2, name, 0, 1,
1427 err, sizeof (err), NULL, NULL))
1428 {
1429 gfc_error_opt (OPT_Wargument_mismatch,
1430 "Interface mismatch for procedure-pointer "
1431 "component %qs in structure constructor at %L:"
1432 " %s", comp->name, &cons->expr->where, err);
1433 return false;
1434 }
1435 }
1436
1437 if (!comp->attr.pointer || comp->attr.proc_pointer
1438 || cons->expr->expr_type == EXPR_NULL)
1439 continue;
1440
1441 a = gfc_expr_attr (cons->expr);
1442
1443 if (!a.pointer && !a.target)
1444 {
1445 t = false;
1446 gfc_error ("The element in the structure constructor at %L, "
1447 "for pointer component %qs should be a POINTER or "
1448 "a TARGET", &cons->expr->where, comp->name);
1449 }
1450
1451 if (init)
1452 {
1453 /* F08:C461. Additional checks for pointer initialization. */
1454 if (a.allocatable)
1455 {
1456 t = false;
1457 gfc_error ("Pointer initialization target at %L "
1458 "must not be ALLOCATABLE", &cons->expr->where);
1459 }
1460 if (!a.save)
1461 {
1462 t = false;
1463 gfc_error ("Pointer initialization target at %L "
1464 "must have the SAVE attribute", &cons->expr->where);
1465 }
1466 }
1467
1468 /* F2003, C1272 (3). */
1469 bool impure = cons->expr->expr_type == EXPR_VARIABLE
1470 && (gfc_impure_variable (cons->expr->symtree->n.sym)
1471 || gfc_is_coindexed (cons->expr));
1472 if (impure && gfc_pure (NULL))
1473 {
1474 t = false;
1475 gfc_error ("Invalid expression in the structure constructor for "
1476 "pointer component %qs at %L in PURE procedure",
1477 comp->name, &cons->expr->where);
1478 }
1479
1480 if (impure)
1481 gfc_unset_implicit_pure (NULL);
1482 }
1483
1484 return t;
1485 }
1486
1487
1488 /****************** Expression name resolution ******************/
1489
1490 /* Returns 0 if a symbol was not declared with a type or
1491 attribute declaration statement, nonzero otherwise. */
1492
1493 static int
1494 was_declared (gfc_symbol *sym)
1495 {
1496 symbol_attribute a;
1497
1498 a = sym->attr;
1499
1500 if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
1501 return 1;
1502
1503 if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
1504 || a.optional || a.pointer || a.save || a.target || a.volatile_
1505 || a.value || a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN
1506 || a.asynchronous || a.codimension)
1507 return 1;
1508
1509 return 0;
1510 }
1511
1512
1513 /* Determine if a symbol is generic or not. */
1514
1515 static int
1516 generic_sym (gfc_symbol *sym)
1517 {
1518 gfc_symbol *s;
1519
1520 if (sym->attr.generic ||
1521 (sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
1522 return 1;
1523
1524 if (was_declared (sym) || sym->ns->parent == NULL)
1525 return 0;
1526
1527 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1528
1529 if (s != NULL)
1530 {
1531 if (s == sym)
1532 return 0;
1533 else
1534 return generic_sym (s);
1535 }
1536
1537 return 0;
1538 }
1539
1540
1541 /* Determine if a symbol is specific or not. */
1542
1543 static int
1544 specific_sym (gfc_symbol *sym)
1545 {
1546 gfc_symbol *s;
1547
1548 if (sym->attr.if_source == IFSRC_IFBODY
1549 || sym->attr.proc == PROC_MODULE
1550 || sym->attr.proc == PROC_INTERNAL
1551 || sym->attr.proc == PROC_ST_FUNCTION
1552 || (sym->attr.intrinsic && gfc_specific_intrinsic (sym->name))
1553 || sym->attr.external)
1554 return 1;
1555
1556 if (was_declared (sym) || sym->ns->parent == NULL)
1557 return 0;
1558
1559 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1560
1561 return (s == NULL) ? 0 : specific_sym (s);
1562 }
1563
1564
1565 /* Figure out if the procedure is specific, generic or unknown. */
1566
1567 enum proc_type
1568 { PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN };
1569
1570 static proc_type
1571 procedure_kind (gfc_symbol *sym)
1572 {
1573 if (generic_sym (sym))
1574 return PTYPE_GENERIC;
1575
1576 if (specific_sym (sym))
1577 return PTYPE_SPECIFIC;
1578
1579 return PTYPE_UNKNOWN;
1580 }
1581
1582 /* Check references to assumed size arrays. The flag need_full_assumed_size
1583 is nonzero when matching actual arguments. */
1584
1585 static int need_full_assumed_size = 0;
1586
1587 static bool
1588 check_assumed_size_reference (gfc_symbol *sym, gfc_expr *e)
1589 {
1590 if (need_full_assumed_size || !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
1591 return false;
1592
1593 /* FIXME: The comparison "e->ref->u.ar.type == AR_FULL" is wrong.
1594 What should it be? */
1595 if (e->ref && (e->ref->u.ar.end[e->ref->u.ar.as->rank - 1] == NULL)
1596 && (e->ref->u.ar.as->type == AS_ASSUMED_SIZE)
1597 && (e->ref->u.ar.type == AR_FULL))
1598 {
1599 gfc_error ("The upper bound in the last dimension must "
1600 "appear in the reference to the assumed size "
1601 "array %qs at %L", sym->name, &e->where);
1602 return true;
1603 }
1604 return false;
1605 }
1606
1607
1608 /* Look for bad assumed size array references in argument expressions
1609 of elemental and array valued intrinsic procedures. Since this is
1610 called from procedure resolution functions, it only recurses at
1611 operators. */
1612
1613 static bool
1614 resolve_assumed_size_actual (gfc_expr *e)
1615 {
1616 if (e == NULL)
1617 return false;
1618
1619 switch (e->expr_type)
1620 {
1621 case EXPR_VARIABLE:
1622 if (e->symtree && check_assumed_size_reference (e->symtree->n.sym, e))
1623 return true;
1624 break;
1625
1626 case EXPR_OP:
1627 if (resolve_assumed_size_actual (e->value.op.op1)
1628 || resolve_assumed_size_actual (e->value.op.op2))
1629 return true;
1630 break;
1631
1632 default:
1633 break;
1634 }
1635 return false;
1636 }
1637
1638
1639 /* Check a generic procedure, passed as an actual argument, to see if
1640 there is a matching specific name. If none, it is an error, and if
1641 more than one, the reference is ambiguous. */
1642 static int
1643 count_specific_procs (gfc_expr *e)
1644 {
1645 int n;
1646 gfc_interface *p;
1647 gfc_symbol *sym;
1648
1649 n = 0;
1650 sym = e->symtree->n.sym;
1651
1652 for (p = sym->generic; p; p = p->next)
1653 if (strcmp (sym->name, p->sym->name) == 0)
1654 {
1655 e->symtree = gfc_find_symtree (p->sym->ns->sym_root,
1656 sym->name);
1657 n++;
1658 }
1659
1660 if (n > 1)
1661 gfc_error ("%qs at %L is ambiguous", e->symtree->n.sym->name,
1662 &e->where);
1663
1664 if (n == 0)
1665 gfc_error ("GENERIC procedure %qs is not allowed as an actual "
1666 "argument at %L", sym->name, &e->where);
1667
1668 return n;
1669 }
1670
1671
1672 /* See if a call to sym could possibly be a not allowed RECURSION because of
1673 a missing RECURSIVE declaration. This means that either sym is the current
1674 context itself, or sym is the parent of a contained procedure calling its
1675 non-RECURSIVE containing procedure.
1676 This also works if sym is an ENTRY. */
1677
1678 static bool
1679 is_illegal_recursion (gfc_symbol* sym, gfc_namespace* context)
1680 {
1681 gfc_symbol* proc_sym;
1682 gfc_symbol* context_proc;
1683 gfc_namespace* real_context;
1684
1685 if (sym->attr.flavor == FL_PROGRAM
1686 || gfc_fl_struct (sym->attr.flavor))
1687 return false;
1688
1689 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
1690
1691 /* If we've got an ENTRY, find real procedure. */
1692 if (sym->attr.entry && sym->ns->entries)
1693 proc_sym = sym->ns->entries->sym;
1694 else
1695 proc_sym = sym;
1696
1697 /* If sym is RECURSIVE, all is well of course. */
1698 if (proc_sym->attr.recursive || flag_recursive)
1699 return false;
1700
1701 /* Find the context procedure's "real" symbol if it has entries.
1702 We look for a procedure symbol, so recurse on the parents if we don't
1703 find one (like in case of a BLOCK construct). */
1704 for (real_context = context; ; real_context = real_context->parent)
1705 {
1706 /* We should find something, eventually! */
1707 gcc_assert (real_context);
1708
1709 context_proc = (real_context->entries ? real_context->entries->sym
1710 : real_context->proc_name);
1711
1712 /* In some special cases, there may not be a proc_name, like for this
1713 invalid code:
1714 real(bad_kind()) function foo () ...
1715 when checking the call to bad_kind ().
1716 In these cases, we simply return here and assume that the
1717 call is ok. */
1718 if (!context_proc)
1719 return false;
1720
1721 if (context_proc->attr.flavor != FL_LABEL)
1722 break;
1723 }
1724
1725 /* A call from sym's body to itself is recursion, of course. */
1726 if (context_proc == proc_sym)
1727 return true;
1728
1729 /* The same is true if context is a contained procedure and sym the
1730 containing one. */
1731 if (context_proc->attr.contained)
1732 {
1733 gfc_symbol* parent_proc;
1734
1735 gcc_assert (context->parent);
1736 parent_proc = (context->parent->entries ? context->parent->entries->sym
1737 : context->parent->proc_name);
1738
1739 if (parent_proc == proc_sym)
1740 return true;
1741 }
1742
1743 return false;
1744 }
1745
1746
1747 /* Resolve an intrinsic procedure: Set its function/subroutine attribute,
1748 its typespec and formal argument list. */
1749
1750 bool
1751 gfc_resolve_intrinsic (gfc_symbol *sym, locus *loc)
1752 {
1753 gfc_intrinsic_sym* isym = NULL;
1754 const char* symstd;
1755
1756 if (sym->formal)
1757 return true;
1758
1759 /* Already resolved. */
1760 if (sym->from_intmod && sym->ts.type != BT_UNKNOWN)
1761 return true;
1762
1763 /* We already know this one is an intrinsic, so we don't call
1764 gfc_is_intrinsic for full checking but rather use gfc_find_function and
1765 gfc_find_subroutine directly to check whether it is a function or
1766 subroutine. */
1767
1768 if (sym->intmod_sym_id && sym->attr.subroutine)
1769 {
1770 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1771 isym = gfc_intrinsic_subroutine_by_id (id);
1772 }
1773 else if (sym->intmod_sym_id)
1774 {
1775 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1776 isym = gfc_intrinsic_function_by_id (id);
1777 }
1778 else if (!sym->attr.subroutine)
1779 isym = gfc_find_function (sym->name);
1780
1781 if (isym && !sym->attr.subroutine)
1782 {
1783 if (sym->ts.type != BT_UNKNOWN && warn_surprising
1784 && !sym->attr.implicit_type)
1785 gfc_warning (OPT_Wsurprising,
1786 "Type specified for intrinsic function %qs at %L is"
1787 " ignored", sym->name, &sym->declared_at);
1788
1789 if (!sym->attr.function &&
1790 !gfc_add_function(&sym->attr, sym->name, loc))
1791 return false;
1792
1793 sym->ts = isym->ts;
1794 }
1795 else if (isym || (isym = gfc_find_subroutine (sym->name)))
1796 {
1797 if (sym->ts.type != BT_UNKNOWN && !sym->attr.implicit_type)
1798 {
1799 gfc_error ("Intrinsic subroutine %qs at %L shall not have a type"
1800 " specifier", sym->name, &sym->declared_at);
1801 return false;
1802 }
1803
1804 if (!sym->attr.subroutine &&
1805 !gfc_add_subroutine(&sym->attr, sym->name, loc))
1806 return false;
1807 }
1808 else
1809 {
1810 gfc_error ("%qs declared INTRINSIC at %L does not exist", sym->name,
1811 &sym->declared_at);
1812 return false;
1813 }
1814
1815 gfc_copy_formal_args_intr (sym, isym, NULL);
1816
1817 sym->attr.pure = isym->pure;
1818 sym->attr.elemental = isym->elemental;
1819
1820 /* Check it is actually available in the standard settings. */
1821 if (!gfc_check_intrinsic_standard (isym, &symstd, false, sym->declared_at))
1822 {
1823 gfc_error ("The intrinsic %qs declared INTRINSIC at %L is not "
1824 "available in the current standard settings but %s. Use "
1825 "an appropriate %<-std=*%> option or enable "
1826 "%<-fall-intrinsics%> in order to use it.",
1827 sym->name, &sym->declared_at, symstd);
1828 return false;
1829 }
1830
1831 return true;
1832 }
1833
1834
1835 /* Resolve a procedure expression, like passing it to a called procedure or as
1836 RHS for a procedure pointer assignment. */
1837
1838 static bool
1839 resolve_procedure_expression (gfc_expr* expr)
1840 {
1841 gfc_symbol* sym;
1842
1843 if (expr->expr_type != EXPR_VARIABLE)
1844 return true;
1845 gcc_assert (expr->symtree);
1846
1847 sym = expr->symtree->n.sym;
1848
1849 if (sym->attr.intrinsic)
1850 gfc_resolve_intrinsic (sym, &expr->where);
1851
1852 if (sym->attr.flavor != FL_PROCEDURE
1853 || (sym->attr.function && sym->result == sym))
1854 return true;
1855
1856 /* A non-RECURSIVE procedure that is used as procedure expression within its
1857 own body is in danger of being called recursively. */
1858 if (is_illegal_recursion (sym, gfc_current_ns))
1859 gfc_warning (0, "Non-RECURSIVE procedure %qs at %L is possibly calling"
1860 " itself recursively. Declare it RECURSIVE or use"
1861 " %<-frecursive%>", sym->name, &expr->where);
1862
1863 return true;
1864 }
1865
1866
1867 /* Resolve an actual argument list. Most of the time, this is just
1868 resolving the expressions in the list.
1869 The exception is that we sometimes have to decide whether arguments
1870 that look like procedure arguments are really simple variable
1871 references. */
1872
1873 static bool
1874 resolve_actual_arglist (gfc_actual_arglist *arg, procedure_type ptype,
1875 bool no_formal_args)
1876 {
1877 gfc_symbol *sym;
1878 gfc_symtree *parent_st;
1879 gfc_expr *e;
1880 gfc_component *comp;
1881 int save_need_full_assumed_size;
1882 bool return_value = false;
1883 bool actual_arg_sav = actual_arg, first_actual_arg_sav = first_actual_arg;
1884
1885 actual_arg = true;
1886 first_actual_arg = true;
1887
1888 for (; arg; arg = arg->next)
1889 {
1890 e = arg->expr;
1891 if (e == NULL)
1892 {
1893 /* Check the label is a valid branching target. */
1894 if (arg->label)
1895 {
1896 if (arg->label->defined == ST_LABEL_UNKNOWN)
1897 {
1898 gfc_error ("Label %d referenced at %L is never defined",
1899 arg->label->value, &arg->label->where);
1900 goto cleanup;
1901 }
1902 }
1903 first_actual_arg = false;
1904 continue;
1905 }
1906
1907 if (e->expr_type == EXPR_VARIABLE
1908 && e->symtree->n.sym->attr.generic
1909 && no_formal_args
1910 && count_specific_procs (e) != 1)
1911 goto cleanup;
1912
1913 if (e->ts.type != BT_PROCEDURE)
1914 {
1915 save_need_full_assumed_size = need_full_assumed_size;
1916 if (e->expr_type != EXPR_VARIABLE)
1917 need_full_assumed_size = 0;
1918 if (!gfc_resolve_expr (e))
1919 goto cleanup;
1920 need_full_assumed_size = save_need_full_assumed_size;
1921 goto argument_list;
1922 }
1923
1924 /* See if the expression node should really be a variable reference. */
1925
1926 sym = e->symtree->n.sym;
1927
1928 if (sym->attr.flavor == FL_PROCEDURE
1929 || sym->attr.intrinsic
1930 || sym->attr.external)
1931 {
1932 int actual_ok;
1933
1934 /* If a procedure is not already determined to be something else
1935 check if it is intrinsic. */
1936 if (gfc_is_intrinsic (sym, sym->attr.subroutine, e->where))
1937 sym->attr.intrinsic = 1;
1938
1939 if (sym->attr.proc == PROC_ST_FUNCTION)
1940 {
1941 gfc_error ("Statement function %qs at %L is not allowed as an "
1942 "actual argument", sym->name, &e->where);
1943 }
1944
1945 actual_ok = gfc_intrinsic_actual_ok (sym->name,
1946 sym->attr.subroutine);
1947 if (sym->attr.intrinsic && actual_ok == 0)
1948 {
1949 gfc_error ("Intrinsic %qs at %L is not allowed as an "
1950 "actual argument", sym->name, &e->where);
1951 }
1952
1953 if (sym->attr.contained && !sym->attr.use_assoc
1954 && sym->ns->proc_name->attr.flavor != FL_MODULE)
1955 {
1956 if (!gfc_notify_std (GFC_STD_F2008, "Internal procedure %qs is"
1957 " used as actual argument at %L",
1958 sym->name, &e->where))
1959 goto cleanup;
1960 }
1961
1962 if (sym->attr.elemental && !sym->attr.intrinsic)
1963 {
1964 gfc_error ("ELEMENTAL non-INTRINSIC procedure %qs is not "
1965 "allowed as an actual argument at %L", sym->name,
1966 &e->where);
1967 }
1968
1969 /* Check if a generic interface has a specific procedure
1970 with the same name before emitting an error. */
1971 if (sym->attr.generic && count_specific_procs (e) != 1)
1972 goto cleanup;
1973
1974 /* Just in case a specific was found for the expression. */
1975 sym = e->symtree->n.sym;
1976
1977 /* If the symbol is the function that names the current (or
1978 parent) scope, then we really have a variable reference. */
1979
1980 if (gfc_is_function_return_value (sym, sym->ns))
1981 goto got_variable;
1982
1983 /* If all else fails, see if we have a specific intrinsic. */
1984 if (sym->ts.type == BT_UNKNOWN && sym->attr.intrinsic)
1985 {
1986 gfc_intrinsic_sym *isym;
1987
1988 isym = gfc_find_function (sym->name);
1989 if (isym == NULL || !isym->specific)
1990 {
1991 gfc_error ("Unable to find a specific INTRINSIC procedure "
1992 "for the reference %qs at %L", sym->name,
1993 &e->where);
1994 goto cleanup;
1995 }
1996 sym->ts = isym->ts;
1997 sym->attr.intrinsic = 1;
1998 sym->attr.function = 1;
1999 }
2000
2001 if (!gfc_resolve_expr (e))
2002 goto cleanup;
2003 goto argument_list;
2004 }
2005
2006 /* See if the name is a module procedure in a parent unit. */
2007
2008 if (was_declared (sym) || sym->ns->parent == NULL)
2009 goto got_variable;
2010
2011 if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
2012 {
2013 gfc_error ("Symbol %qs at %L is ambiguous", sym->name, &e->where);
2014 goto cleanup;
2015 }
2016
2017 if (parent_st == NULL)
2018 goto got_variable;
2019
2020 sym = parent_st->n.sym;
2021 e->symtree = parent_st; /* Point to the right thing. */
2022
2023 if (sym->attr.flavor == FL_PROCEDURE
2024 || sym->attr.intrinsic
2025 || sym->attr.external)
2026 {
2027 if (!gfc_resolve_expr (e))
2028 goto cleanup;
2029 goto argument_list;
2030 }
2031
2032 got_variable:
2033 e->expr_type = EXPR_VARIABLE;
2034 e->ts = sym->ts;
2035 if ((sym->as != NULL && sym->ts.type != BT_CLASS)
2036 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
2037 && CLASS_DATA (sym)->as))
2038 {
2039 e->rank = sym->ts.type == BT_CLASS
2040 ? CLASS_DATA (sym)->as->rank : sym->as->rank;
2041 e->ref = gfc_get_ref ();
2042 e->ref->type = REF_ARRAY;
2043 e->ref->u.ar.type = AR_FULL;
2044 e->ref->u.ar.as = sym->ts.type == BT_CLASS
2045 ? CLASS_DATA (sym)->as : sym->as;
2046 }
2047
2048 /* Expressions are assigned a default ts.type of BT_PROCEDURE in
2049 primary.c (match_actual_arg). If above code determines that it
2050 is a variable instead, it needs to be resolved as it was not
2051 done at the beginning of this function. */
2052 save_need_full_assumed_size = need_full_assumed_size;
2053 if (e->expr_type != EXPR_VARIABLE)
2054 need_full_assumed_size = 0;
2055 if (!gfc_resolve_expr (e))
2056 goto cleanup;
2057 need_full_assumed_size = save_need_full_assumed_size;
2058
2059 argument_list:
2060 /* Check argument list functions %VAL, %LOC and %REF. There is
2061 nothing to do for %REF. */
2062 if (arg->name && arg->name[0] == '%')
2063 {
2064 if (strcmp ("%VAL", arg->name) == 0)
2065 {
2066 if (e->ts.type == BT_CHARACTER || e->ts.type == BT_DERIVED)
2067 {
2068 gfc_error ("By-value argument at %L is not of numeric "
2069 "type", &e->where);
2070 goto cleanup;
2071 }
2072
2073 if (e->rank)
2074 {
2075 gfc_error ("By-value argument at %L cannot be an array or "
2076 "an array section", &e->where);
2077 goto cleanup;
2078 }
2079
2080 /* Intrinsics are still PROC_UNKNOWN here. However,
2081 since same file external procedures are not resolvable
2082 in gfortran, it is a good deal easier to leave them to
2083 intrinsic.c. */
2084 if (ptype != PROC_UNKNOWN
2085 && ptype != PROC_DUMMY
2086 && ptype != PROC_EXTERNAL
2087 && ptype != PROC_MODULE)
2088 {
2089 gfc_error ("By-value argument at %L is not allowed "
2090 "in this context", &e->where);
2091 goto cleanup;
2092 }
2093 }
2094
2095 /* Statement functions have already been excluded above. */
2096 else if (strcmp ("%LOC", arg->name) == 0
2097 && e->ts.type == BT_PROCEDURE)
2098 {
2099 if (e->symtree->n.sym->attr.proc == PROC_INTERNAL)
2100 {
2101 gfc_error ("Passing internal procedure at %L by location "
2102 "not allowed", &e->where);
2103 goto cleanup;
2104 }
2105 }
2106 }
2107
2108 comp = gfc_get_proc_ptr_comp(e);
2109 if (e->expr_type == EXPR_VARIABLE
2110 && comp && comp->attr.elemental)
2111 {
2112 gfc_error ("ELEMENTAL procedure pointer component %qs is not "
2113 "allowed as an actual argument at %L", comp->name,
2114 &e->where);
2115 }
2116
2117 /* Fortran 2008, C1237. */
2118 if (e->expr_type == EXPR_VARIABLE && gfc_is_coindexed (e)
2119 && gfc_has_ultimate_pointer (e))
2120 {
2121 gfc_error ("Coindexed actual argument at %L with ultimate pointer "
2122 "component", &e->where);
2123 goto cleanup;
2124 }
2125
2126 first_actual_arg = false;
2127 }
2128
2129 return_value = true;
2130
2131 cleanup:
2132 actual_arg = actual_arg_sav;
2133 first_actual_arg = first_actual_arg_sav;
2134
2135 return return_value;
2136 }
2137
2138
2139 /* Do the checks of the actual argument list that are specific to elemental
2140 procedures. If called with c == NULL, we have a function, otherwise if
2141 expr == NULL, we have a subroutine. */
2142
2143 static bool
2144 resolve_elemental_actual (gfc_expr *expr, gfc_code *c)
2145 {
2146 gfc_actual_arglist *arg0;
2147 gfc_actual_arglist *arg;
2148 gfc_symbol *esym = NULL;
2149 gfc_intrinsic_sym *isym = NULL;
2150 gfc_expr *e = NULL;
2151 gfc_intrinsic_arg *iformal = NULL;
2152 gfc_formal_arglist *eformal = NULL;
2153 bool formal_optional = false;
2154 bool set_by_optional = false;
2155 int i;
2156 int rank = 0;
2157
2158 /* Is this an elemental procedure? */
2159 if (expr && expr->value.function.actual != NULL)
2160 {
2161 if (expr->value.function.esym != NULL
2162 && expr->value.function.esym->attr.elemental)
2163 {
2164 arg0 = expr->value.function.actual;
2165 esym = expr->value.function.esym;
2166 }
2167 else if (expr->value.function.isym != NULL
2168 && expr->value.function.isym->elemental)
2169 {
2170 arg0 = expr->value.function.actual;
2171 isym = expr->value.function.isym;
2172 }
2173 else
2174 return true;
2175 }
2176 else if (c && c->ext.actual != NULL)
2177 {
2178 arg0 = c->ext.actual;
2179
2180 if (c->resolved_sym)
2181 esym = c->resolved_sym;
2182 else
2183 esym = c->symtree->n.sym;
2184 gcc_assert (esym);
2185
2186 if (!esym->attr.elemental)
2187 return true;
2188 }
2189 else
2190 return true;
2191
2192 /* The rank of an elemental is the rank of its array argument(s). */
2193 for (arg = arg0; arg; arg = arg->next)
2194 {
2195 if (arg->expr != NULL && arg->expr->rank != 0)
2196 {
2197 rank = arg->expr->rank;
2198 if (arg->expr->expr_type == EXPR_VARIABLE
2199 && arg->expr->symtree->n.sym->attr.optional)
2200 set_by_optional = true;
2201
2202 /* Function specific; set the result rank and shape. */
2203 if (expr)
2204 {
2205 expr->rank = rank;
2206 if (!expr->shape && arg->expr->shape)
2207 {
2208 expr->shape = gfc_get_shape (rank);
2209 for (i = 0; i < rank; i++)
2210 mpz_init_set (expr->shape[i], arg->expr->shape[i]);
2211 }
2212 }
2213 break;
2214 }
2215 }
2216
2217 /* If it is an array, it shall not be supplied as an actual argument
2218 to an elemental procedure unless an array of the same rank is supplied
2219 as an actual argument corresponding to a nonoptional dummy argument of
2220 that elemental procedure(12.4.1.5). */
2221 formal_optional = false;
2222 if (isym)
2223 iformal = isym->formal;
2224 else
2225 eformal = esym->formal;
2226
2227 for (arg = arg0; arg; arg = arg->next)
2228 {
2229 if (eformal)
2230 {
2231 if (eformal->sym && eformal->sym->attr.optional)
2232 formal_optional = true;
2233 eformal = eformal->next;
2234 }
2235 else if (isym && iformal)
2236 {
2237 if (iformal->optional)
2238 formal_optional = true;
2239 iformal = iformal->next;
2240 }
2241 else if (isym)
2242 formal_optional = true;
2243
2244 if (pedantic && arg->expr != NULL
2245 && arg->expr->expr_type == EXPR_VARIABLE
2246 && arg->expr->symtree->n.sym->attr.optional
2247 && formal_optional
2248 && arg->expr->rank
2249 && (set_by_optional || arg->expr->rank != rank)
2250 && !(isym && isym->id == GFC_ISYM_CONVERSION))
2251 {
2252 gfc_warning (OPT_Wpedantic,
2253 "%qs at %L is an array and OPTIONAL; IF IT IS "
2254 "MISSING, it cannot be the actual argument of an "
2255 "ELEMENTAL procedure unless there is a non-optional "
2256 "argument with the same rank (12.4.1.5)",
2257 arg->expr->symtree->n.sym->name, &arg->expr->where);
2258 }
2259 }
2260
2261 for (arg = arg0; arg; arg = arg->next)
2262 {
2263 if (arg->expr == NULL || arg->expr->rank == 0)
2264 continue;
2265
2266 /* Being elemental, the last upper bound of an assumed size array
2267 argument must be present. */
2268 if (resolve_assumed_size_actual (arg->expr))
2269 return false;
2270
2271 /* Elemental procedure's array actual arguments must conform. */
2272 if (e != NULL)
2273 {
2274 if (!gfc_check_conformance (arg->expr, e, "elemental procedure"))
2275 return false;
2276 }
2277 else
2278 e = arg->expr;
2279 }
2280
2281 /* INTENT(OUT) is only allowed for subroutines; if any actual argument
2282 is an array, the intent inout/out variable needs to be also an array. */
2283 if (rank > 0 && esym && expr == NULL)
2284 for (eformal = esym->formal, arg = arg0; arg && eformal;
2285 arg = arg->next, eformal = eformal->next)
2286 if ((eformal->sym->attr.intent == INTENT_OUT
2287 || eformal->sym->attr.intent == INTENT_INOUT)
2288 && arg->expr && arg->expr->rank == 0)
2289 {
2290 gfc_error ("Actual argument at %L for INTENT(%s) dummy %qs of "
2291 "ELEMENTAL subroutine %qs is a scalar, but another "
2292 "actual argument is an array", &arg->expr->where,
2293 (eformal->sym->attr.intent == INTENT_OUT) ? "OUT"
2294 : "INOUT", eformal->sym->name, esym->name);
2295 return false;
2296 }
2297 return true;
2298 }
2299
2300
2301 /* This function does the checking of references to global procedures
2302 as defined in sections 18.1 and 14.1, respectively, of the Fortran
2303 77 and 95 standards. It checks for a gsymbol for the name, making
2304 one if it does not already exist. If it already exists, then the
2305 reference being resolved must correspond to the type of gsymbol.
2306 Otherwise, the new symbol is equipped with the attributes of the
2307 reference. The corresponding code that is called in creating
2308 global entities is parse.c.
2309
2310 In addition, for all but -std=legacy, the gsymbols are used to
2311 check the interfaces of external procedures from the same file.
2312 The namespace of the gsymbol is resolved and then, once this is
2313 done the interface is checked. */
2314
2315
2316 static bool
2317 not_in_recursive (gfc_symbol *sym, gfc_namespace *gsym_ns)
2318 {
2319 if (!gsym_ns->proc_name->attr.recursive)
2320 return true;
2321
2322 if (sym->ns == gsym_ns)
2323 return false;
2324
2325 if (sym->ns->parent && sym->ns->parent == gsym_ns)
2326 return false;
2327
2328 return true;
2329 }
2330
2331 static bool
2332 not_entry_self_reference (gfc_symbol *sym, gfc_namespace *gsym_ns)
2333 {
2334 if (gsym_ns->entries)
2335 {
2336 gfc_entry_list *entry = gsym_ns->entries;
2337
2338 for (; entry; entry = entry->next)
2339 {
2340 if (strcmp (sym->name, entry->sym->name) == 0)
2341 {
2342 if (strcmp (gsym_ns->proc_name->name,
2343 sym->ns->proc_name->name) == 0)
2344 return false;
2345
2346 if (sym->ns->parent
2347 && strcmp (gsym_ns->proc_name->name,
2348 sym->ns->parent->proc_name->name) == 0)
2349 return false;
2350 }
2351 }
2352 }
2353 return true;
2354 }
2355
2356
2357 /* Check for the requirement of an explicit interface. F08:12.4.2.2. */
2358
2359 bool
2360 gfc_explicit_interface_required (gfc_symbol *sym, char *errmsg, int err_len)
2361 {
2362 gfc_formal_arglist *arg = gfc_sym_get_dummy_args (sym);
2363
2364 for ( ; arg; arg = arg->next)
2365 {
2366 if (!arg->sym)
2367 continue;
2368
2369 if (arg->sym->attr.allocatable) /* (2a) */
2370 {
2371 strncpy (errmsg, _("allocatable argument"), err_len);
2372 return true;
2373 }
2374 else if (arg->sym->attr.asynchronous)
2375 {
2376 strncpy (errmsg, _("asynchronous argument"), err_len);
2377 return true;
2378 }
2379 else if (arg->sym->attr.optional)
2380 {
2381 strncpy (errmsg, _("optional argument"), err_len);
2382 return true;
2383 }
2384 else if (arg->sym->attr.pointer)
2385 {
2386 strncpy (errmsg, _("pointer argument"), err_len);
2387 return true;
2388 }
2389 else if (arg->sym->attr.target)
2390 {
2391 strncpy (errmsg, _("target argument"), err_len);
2392 return true;
2393 }
2394 else if (arg->sym->attr.value)
2395 {
2396 strncpy (errmsg, _("value argument"), err_len);
2397 return true;
2398 }
2399 else if (arg->sym->attr.volatile_)
2400 {
2401 strncpy (errmsg, _("volatile argument"), err_len);
2402 return true;
2403 }
2404 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_SHAPE) /* (2b) */
2405 {
2406 strncpy (errmsg, _("assumed-shape argument"), err_len);
2407 return true;
2408 }
2409 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_RANK) /* TS 29113, 6.2. */
2410 {
2411 strncpy (errmsg, _("assumed-rank argument"), err_len);
2412 return true;
2413 }
2414 else if (arg->sym->attr.codimension) /* (2c) */
2415 {
2416 strncpy (errmsg, _("coarray argument"), err_len);
2417 return true;
2418 }
2419 else if (false) /* (2d) TODO: parametrized derived type */
2420 {
2421 strncpy (errmsg, _("parametrized derived type argument"), err_len);
2422 return true;
2423 }
2424 else if (arg->sym->ts.type == BT_CLASS) /* (2e) */
2425 {
2426 strncpy (errmsg, _("polymorphic argument"), err_len);
2427 return true;
2428 }
2429 else if (arg->sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2430 {
2431 strncpy (errmsg, _("NO_ARG_CHECK attribute"), err_len);
2432 return true;
2433 }
2434 else if (arg->sym->ts.type == BT_ASSUMED)
2435 {
2436 /* As assumed-type is unlimited polymorphic (cf. above).
2437 See also TS 29113, Note 6.1. */
2438 strncpy (errmsg, _("assumed-type argument"), err_len);
2439 return true;
2440 }
2441 }
2442
2443 if (sym->attr.function)
2444 {
2445 gfc_symbol *res = sym->result ? sym->result : sym;
2446
2447 if (res->attr.dimension) /* (3a) */
2448 {
2449 strncpy (errmsg, _("array result"), err_len);
2450 return true;
2451 }
2452 else if (res->attr.pointer || res->attr.allocatable) /* (3b) */
2453 {
2454 strncpy (errmsg, _("pointer or allocatable result"), err_len);
2455 return true;
2456 }
2457 else if (res->ts.type == BT_CHARACTER && res->ts.u.cl
2458 && res->ts.u.cl->length
2459 && res->ts.u.cl->length->expr_type != EXPR_CONSTANT) /* (3c) */
2460 {
2461 strncpy (errmsg, _("result with non-constant character length"), err_len);
2462 return true;
2463 }
2464 }
2465
2466 if (sym->attr.elemental && !sym->attr.intrinsic) /* (4) */
2467 {
2468 strncpy (errmsg, _("elemental procedure"), err_len);
2469 return true;
2470 }
2471 else if (sym->attr.is_bind_c) /* (5) */
2472 {
2473 strncpy (errmsg, _("bind(c) procedure"), err_len);
2474 return true;
2475 }
2476
2477 return false;
2478 }
2479
2480
2481 static void
2482 resolve_global_procedure (gfc_symbol *sym, locus *where,
2483 gfc_actual_arglist **actual, int sub)
2484 {
2485 gfc_gsymbol * gsym;
2486 gfc_namespace *ns;
2487 enum gfc_symbol_type type;
2488 char reason[200];
2489
2490 type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION;
2491
2492 gsym = gfc_get_gsymbol (sym->binding_label ? sym->binding_label : sym->name);
2493
2494 if ((gsym->type != GSYM_UNKNOWN && gsym->type != type))
2495 gfc_global_used (gsym, where);
2496
2497 if ((sym->attr.if_source == IFSRC_UNKNOWN
2498 || sym->attr.if_source == IFSRC_IFBODY)
2499 && gsym->type != GSYM_UNKNOWN
2500 && !gsym->binding_label
2501 && gsym->ns
2502 && gsym->ns->resolved != -1
2503 && gsym->ns->proc_name
2504 && not_in_recursive (sym, gsym->ns)
2505 && not_entry_self_reference (sym, gsym->ns))
2506 {
2507 gfc_symbol *def_sym;
2508
2509 /* Resolve the gsymbol namespace if needed. */
2510 if (!gsym->ns->resolved)
2511 {
2512 gfc_symbol *old_dt_list;
2513
2514 /* Stash away derived types so that the backend_decls do not
2515 get mixed up. */
2516 old_dt_list = gfc_derived_types;
2517 gfc_derived_types = NULL;
2518
2519 gfc_resolve (gsym->ns);
2520
2521 /* Store the new derived types with the global namespace. */
2522 if (gfc_derived_types)
2523 gsym->ns->derived_types = gfc_derived_types;
2524
2525 /* Restore the derived types of this namespace. */
2526 gfc_derived_types = old_dt_list;
2527 }
2528
2529 /* Make sure that translation for the gsymbol occurs before
2530 the procedure currently being resolved. */
2531 ns = gfc_global_ns_list;
2532 for (; ns && ns != gsym->ns; ns = ns->sibling)
2533 {
2534 if (ns->sibling == gsym->ns)
2535 {
2536 ns->sibling = gsym->ns->sibling;
2537 gsym->ns->sibling = gfc_global_ns_list;
2538 gfc_global_ns_list = gsym->ns;
2539 break;
2540 }
2541 }
2542
2543 def_sym = gsym->ns->proc_name;
2544
2545 /* This can happen if a binding name has been specified. */
2546 if (gsym->binding_label && gsym->sym_name != def_sym->name)
2547 gfc_find_symbol (gsym->sym_name, gsym->ns, 0, &def_sym);
2548
2549 if (def_sym->attr.entry_master)
2550 {
2551 gfc_entry_list *entry;
2552 for (entry = gsym->ns->entries; entry; entry = entry->next)
2553 if (strcmp (entry->sym->name, sym->name) == 0)
2554 {
2555 def_sym = entry->sym;
2556 break;
2557 }
2558 }
2559
2560 if (sym->attr.function && !gfc_compare_types (&sym->ts, &def_sym->ts))
2561 {
2562 gfc_error ("Return type mismatch of function %qs at %L (%s/%s)",
2563 sym->name, &sym->declared_at, gfc_typename (&sym->ts),
2564 gfc_typename (&def_sym->ts));
2565 goto done;
2566 }
2567
2568 if (sym->attr.if_source == IFSRC_UNKNOWN
2569 && gfc_explicit_interface_required (def_sym, reason, sizeof(reason)))
2570 {
2571 gfc_error ("Explicit interface required for %qs at %L: %s",
2572 sym->name, &sym->declared_at, reason);
2573 goto done;
2574 }
2575
2576 if (!pedantic && (gfc_option.allow_std & GFC_STD_GNU))
2577 /* Turn erros into warnings with -std=gnu and -std=legacy. */
2578 gfc_errors_to_warnings (true);
2579
2580 if (!gfc_compare_interfaces (sym, def_sym, sym->name, 0, 1,
2581 reason, sizeof(reason), NULL, NULL))
2582 {
2583 gfc_error_opt (OPT_Wargument_mismatch,
2584 "Interface mismatch in global procedure %qs at %L:"
2585 " %s", sym->name, &sym->declared_at, reason);
2586 goto done;
2587 }
2588
2589 if (!pedantic
2590 || ((gfc_option.warn_std & GFC_STD_LEGACY)
2591 && !(gfc_option.warn_std & GFC_STD_GNU)))
2592 gfc_errors_to_warnings (true);
2593
2594 if (sym->attr.if_source != IFSRC_IFBODY)
2595 gfc_procedure_use (def_sym, actual, where);
2596 }
2597
2598 done:
2599 gfc_errors_to_warnings (false);
2600
2601 if (gsym->type == GSYM_UNKNOWN)
2602 {
2603 gsym->type = type;
2604 gsym->where = *where;
2605 }
2606
2607 gsym->used = 1;
2608 }
2609
2610
2611 /************* Function resolution *************/
2612
2613 /* Resolve a function call known to be generic.
2614 Section 14.1.2.4.1. */
2615
2616 static match
2617 resolve_generic_f0 (gfc_expr *expr, gfc_symbol *sym)
2618 {
2619 gfc_symbol *s;
2620
2621 if (sym->attr.generic)
2622 {
2623 s = gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
2624 if (s != NULL)
2625 {
2626 expr->value.function.name = s->name;
2627 expr->value.function.esym = s;
2628
2629 if (s->ts.type != BT_UNKNOWN)
2630 expr->ts = s->ts;
2631 else if (s->result != NULL && s->result->ts.type != BT_UNKNOWN)
2632 expr->ts = s->result->ts;
2633
2634 if (s->as != NULL)
2635 expr->rank = s->as->rank;
2636 else if (s->result != NULL && s->result->as != NULL)
2637 expr->rank = s->result->as->rank;
2638
2639 gfc_set_sym_referenced (expr->value.function.esym);
2640
2641 return MATCH_YES;
2642 }
2643
2644 /* TODO: Need to search for elemental references in generic
2645 interface. */
2646 }
2647
2648 if (sym->attr.intrinsic)
2649 return gfc_intrinsic_func_interface (expr, 0);
2650
2651 return MATCH_NO;
2652 }
2653
2654
2655 static bool
2656 resolve_generic_f (gfc_expr *expr)
2657 {
2658 gfc_symbol *sym;
2659 match m;
2660 gfc_interface *intr = NULL;
2661
2662 sym = expr->symtree->n.sym;
2663
2664 for (;;)
2665 {
2666 m = resolve_generic_f0 (expr, sym);
2667 if (m == MATCH_YES)
2668 return true;
2669 else if (m == MATCH_ERROR)
2670 return false;
2671
2672 generic:
2673 if (!intr)
2674 for (intr = sym->generic; intr; intr = intr->next)
2675 if (gfc_fl_struct (intr->sym->attr.flavor))
2676 break;
2677
2678 if (sym->ns->parent == NULL)
2679 break;
2680 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2681
2682 if (sym == NULL)
2683 break;
2684 if (!generic_sym (sym))
2685 goto generic;
2686 }
2687
2688 /* Last ditch attempt. See if the reference is to an intrinsic
2689 that possesses a matching interface. 14.1.2.4 */
2690 if (sym && !intr && !gfc_is_intrinsic (sym, 0, expr->where))
2691 {
2692 if (gfc_init_expr_flag)
2693 gfc_error ("Function %qs in initialization expression at %L "
2694 "must be an intrinsic function",
2695 expr->symtree->n.sym->name, &expr->where);
2696 else
2697 gfc_error ("There is no specific function for the generic %qs "
2698 "at %L", expr->symtree->n.sym->name, &expr->where);
2699 return false;
2700 }
2701
2702 if (intr)
2703 {
2704 if (!gfc_convert_to_structure_constructor (expr, intr->sym, NULL,
2705 NULL, false))
2706 return false;
2707 if (!gfc_use_derived (expr->ts.u.derived))
2708 return false;
2709 return resolve_structure_cons (expr, 0);
2710 }
2711
2712 m = gfc_intrinsic_func_interface (expr, 0);
2713 if (m == MATCH_YES)
2714 return true;
2715
2716 if (m == MATCH_NO)
2717 gfc_error ("Generic function %qs at %L is not consistent with a "
2718 "specific intrinsic interface", expr->symtree->n.sym->name,
2719 &expr->where);
2720
2721 return false;
2722 }
2723
2724
2725 /* Resolve a function call known to be specific. */
2726
2727 static match
2728 resolve_specific_f0 (gfc_symbol *sym, gfc_expr *expr)
2729 {
2730 match m;
2731
2732 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
2733 {
2734 if (sym->attr.dummy)
2735 {
2736 sym->attr.proc = PROC_DUMMY;
2737 goto found;
2738 }
2739
2740 sym->attr.proc = PROC_EXTERNAL;
2741 goto found;
2742 }
2743
2744 if (sym->attr.proc == PROC_MODULE
2745 || sym->attr.proc == PROC_ST_FUNCTION
2746 || sym->attr.proc == PROC_INTERNAL)
2747 goto found;
2748
2749 if (sym->attr.intrinsic)
2750 {
2751 m = gfc_intrinsic_func_interface (expr, 1);
2752 if (m == MATCH_YES)
2753 return MATCH_YES;
2754 if (m == MATCH_NO)
2755 gfc_error ("Function %qs at %L is INTRINSIC but is not compatible "
2756 "with an intrinsic", sym->name, &expr->where);
2757
2758 return MATCH_ERROR;
2759 }
2760
2761 return MATCH_NO;
2762
2763 found:
2764 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2765
2766 if (sym->result)
2767 expr->ts = sym->result->ts;
2768 else
2769 expr->ts = sym->ts;
2770 expr->value.function.name = sym->name;
2771 expr->value.function.esym = sym;
2772 /* Prevent crash when sym->ts.u.derived->components is not set due to previous
2773 error(s). */
2774 if (sym->ts.type == BT_CLASS && !CLASS_DATA (sym))
2775 return MATCH_ERROR;
2776 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
2777 expr->rank = CLASS_DATA (sym)->as->rank;
2778 else if (sym->as != NULL)
2779 expr->rank = sym->as->rank;
2780
2781 return MATCH_YES;
2782 }
2783
2784
2785 static bool
2786 resolve_specific_f (gfc_expr *expr)
2787 {
2788 gfc_symbol *sym;
2789 match m;
2790
2791 sym = expr->symtree->n.sym;
2792
2793 for (;;)
2794 {
2795 m = resolve_specific_f0 (sym, expr);
2796 if (m == MATCH_YES)
2797 return true;
2798 if (m == MATCH_ERROR)
2799 return false;
2800
2801 if (sym->ns->parent == NULL)
2802 break;
2803
2804 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2805
2806 if (sym == NULL)
2807 break;
2808 }
2809
2810 gfc_error ("Unable to resolve the specific function %qs at %L",
2811 expr->symtree->n.sym->name, &expr->where);
2812
2813 return true;
2814 }
2815
2816 /* Recursively append candidate SYM to CANDIDATES. Store the number of
2817 candidates in CANDIDATES_LEN. */
2818
2819 static void
2820 lookup_function_fuzzy_find_candidates (gfc_symtree *sym,
2821 char **&candidates,
2822 size_t &candidates_len)
2823 {
2824 gfc_symtree *p;
2825
2826 if (sym == NULL)
2827 return;
2828 if ((sym->n.sym->ts.type != BT_UNKNOWN || sym->n.sym->attr.external)
2829 && sym->n.sym->attr.flavor == FL_PROCEDURE)
2830 vec_push (candidates, candidates_len, sym->name);
2831
2832 p = sym->left;
2833 if (p)
2834 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2835
2836 p = sym->right;
2837 if (p)
2838 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2839 }
2840
2841
2842 /* Lookup function FN fuzzily, taking names in SYMROOT into account. */
2843
2844 const char*
2845 gfc_lookup_function_fuzzy (const char *fn, gfc_symtree *symroot)
2846 {
2847 char **candidates = NULL;
2848 size_t candidates_len = 0;
2849 lookup_function_fuzzy_find_candidates (symroot, candidates, candidates_len);
2850 return gfc_closest_fuzzy_match (fn, candidates);
2851 }
2852
2853
2854 /* Resolve a procedure call not known to be generic nor specific. */
2855
2856 static bool
2857 resolve_unknown_f (gfc_expr *expr)
2858 {
2859 gfc_symbol *sym;
2860 gfc_typespec *ts;
2861
2862 sym = expr->symtree->n.sym;
2863
2864 if (sym->attr.dummy)
2865 {
2866 sym->attr.proc = PROC_DUMMY;
2867 expr->value.function.name = sym->name;
2868 goto set_type;
2869 }
2870
2871 /* See if we have an intrinsic function reference. */
2872
2873 if (gfc_is_intrinsic (sym, 0, expr->where))
2874 {
2875 if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
2876 return true;
2877 return false;
2878 }
2879
2880 /* The reference is to an external name. */
2881
2882 sym->attr.proc = PROC_EXTERNAL;
2883 expr->value.function.name = sym->name;
2884 expr->value.function.esym = expr->symtree->n.sym;
2885
2886 if (sym->as != NULL)
2887 expr->rank = sym->as->rank;
2888
2889 /* Type of the expression is either the type of the symbol or the
2890 default type of the symbol. */
2891
2892 set_type:
2893 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2894
2895 if (sym->ts.type != BT_UNKNOWN)
2896 expr->ts = sym->ts;
2897 else
2898 {
2899 ts = gfc_get_default_type (sym->name, sym->ns);
2900
2901 if (ts->type == BT_UNKNOWN)
2902 {
2903 const char *guessed
2904 = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
2905 if (guessed)
2906 gfc_error ("Function %qs at %L has no IMPLICIT type"
2907 "; did you mean %qs?",
2908 sym->name, &expr->where, guessed);
2909 else
2910 gfc_error ("Function %qs at %L has no IMPLICIT type",
2911 sym->name, &expr->where);
2912 return false;
2913 }
2914 else
2915 expr->ts = *ts;
2916 }
2917
2918 return true;
2919 }
2920
2921
2922 /* Return true, if the symbol is an external procedure. */
2923 static bool
2924 is_external_proc (gfc_symbol *sym)
2925 {
2926 if (!sym->attr.dummy && !sym->attr.contained
2927 && !gfc_is_intrinsic (sym, sym->attr.subroutine, sym->declared_at)
2928 && sym->attr.proc != PROC_ST_FUNCTION
2929 && !sym->attr.proc_pointer
2930 && !sym->attr.use_assoc
2931 && sym->name)
2932 return true;
2933
2934 return false;
2935 }
2936
2937
2938 /* Figure out if a function reference is pure or not. Also set the name
2939 of the function for a potential error message. Return nonzero if the
2940 function is PURE, zero if not. */
2941 static int
2942 pure_stmt_function (gfc_expr *, gfc_symbol *);
2943
2944 int
2945 gfc_pure_function (gfc_expr *e, const char **name)
2946 {
2947 int pure;
2948 gfc_component *comp;
2949
2950 *name = NULL;
2951
2952 if (e->symtree != NULL
2953 && e->symtree->n.sym != NULL
2954 && e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2955 return pure_stmt_function (e, e->symtree->n.sym);
2956
2957 comp = gfc_get_proc_ptr_comp (e);
2958 if (comp)
2959 {
2960 pure = gfc_pure (comp->ts.interface);
2961 *name = comp->name;
2962 }
2963 else if (e->value.function.esym)
2964 {
2965 pure = gfc_pure (e->value.function.esym);
2966 *name = e->value.function.esym->name;
2967 }
2968 else if (e->value.function.isym)
2969 {
2970 pure = e->value.function.isym->pure
2971 || e->value.function.isym->elemental;
2972 *name = e->value.function.isym->name;
2973 }
2974 else
2975 {
2976 /* Implicit functions are not pure. */
2977 pure = 0;
2978 *name = e->value.function.name;
2979 }
2980
2981 return pure;
2982 }
2983
2984
2985 /* Check if the expression is a reference to an implicitly pure function. */
2986
2987 int
2988 gfc_implicit_pure_function (gfc_expr *e)
2989 {
2990 gfc_component *comp = gfc_get_proc_ptr_comp (e);
2991 if (comp)
2992 return gfc_implicit_pure (comp->ts.interface);
2993 else if (e->value.function.esym)
2994 return gfc_implicit_pure (e->value.function.esym);
2995 else
2996 return 0;
2997 }
2998
2999
3000 static bool
3001 impure_stmt_fcn (gfc_expr *e, gfc_symbol *sym,
3002 int *f ATTRIBUTE_UNUSED)
3003 {
3004 const char *name;
3005
3006 /* Don't bother recursing into other statement functions
3007 since they will be checked individually for purity. */
3008 if (e->expr_type != EXPR_FUNCTION
3009 || !e->symtree
3010 || e->symtree->n.sym == sym
3011 || e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
3012 return false;
3013
3014 return gfc_pure_function (e, &name) ? false : true;
3015 }
3016
3017
3018 static int
3019 pure_stmt_function (gfc_expr *e, gfc_symbol *sym)
3020 {
3021 return gfc_traverse_expr (e, sym, impure_stmt_fcn, 0) ? 0 : 1;
3022 }
3023
3024
3025 /* Check if an impure function is allowed in the current context. */
3026
3027 static bool check_pure_function (gfc_expr *e)
3028 {
3029 const char *name = NULL;
3030 if (!gfc_pure_function (e, &name) && name)
3031 {
3032 if (forall_flag)
3033 {
3034 gfc_error ("Reference to impure function %qs at %L inside a "
3035 "FORALL %s", name, &e->where,
3036 forall_flag == 2 ? "mask" : "block");
3037 return false;
3038 }
3039 else if (gfc_do_concurrent_flag)
3040 {
3041 gfc_error ("Reference to impure function %qs at %L inside a "
3042 "DO CONCURRENT %s", name, &e->where,
3043 gfc_do_concurrent_flag == 2 ? "mask" : "block");
3044 return false;
3045 }
3046 else if (gfc_pure (NULL))
3047 {
3048 gfc_error ("Reference to impure function %qs at %L "
3049 "within a PURE procedure", name, &e->where);
3050 return false;
3051 }
3052 if (!gfc_implicit_pure_function (e))
3053 gfc_unset_implicit_pure (NULL);
3054 }
3055 return true;
3056 }
3057
3058
3059 /* Update current procedure's array_outer_dependency flag, considering
3060 a call to procedure SYM. */
3061
3062 static void
3063 update_current_proc_array_outer_dependency (gfc_symbol *sym)
3064 {
3065 /* Check to see if this is a sibling function that has not yet
3066 been resolved. */
3067 gfc_namespace *sibling = gfc_current_ns->sibling;
3068 for (; sibling; sibling = sibling->sibling)
3069 {
3070 if (sibling->proc_name == sym)
3071 {
3072 gfc_resolve (sibling);
3073 break;
3074 }
3075 }
3076
3077 /* If SYM has references to outer arrays, so has the procedure calling
3078 SYM. If SYM is a procedure pointer, we can assume the worst. */
3079 if ((sym->attr.array_outer_dependency || sym->attr.proc_pointer)
3080 && gfc_current_ns->proc_name)
3081 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3082 }
3083
3084
3085 /* Resolve a function call, which means resolving the arguments, then figuring
3086 out which entity the name refers to. */
3087
3088 static bool
3089 resolve_function (gfc_expr *expr)
3090 {
3091 gfc_actual_arglist *arg;
3092 gfc_symbol *sym;
3093 bool t;
3094 int temp;
3095 procedure_type p = PROC_INTRINSIC;
3096 bool no_formal_args;
3097
3098 sym = NULL;
3099 if (expr->symtree)
3100 sym = expr->symtree->n.sym;
3101
3102 /* If this is a procedure pointer component, it has already been resolved. */
3103 if (gfc_is_proc_ptr_comp (expr))
3104 return true;
3105
3106 /* Avoid re-resolving the arguments of caf_get, which can lead to inserting
3107 another caf_get. */
3108 if (sym && sym->attr.intrinsic
3109 && (sym->intmod_sym_id == GFC_ISYM_CAF_GET
3110 || sym->intmod_sym_id == GFC_ISYM_CAF_SEND))
3111 return true;
3112
3113 if (sym && sym->attr.intrinsic
3114 && !gfc_resolve_intrinsic (sym, &expr->where))
3115 return false;
3116
3117 if (sym && (sym->attr.flavor == FL_VARIABLE || sym->attr.subroutine))
3118 {
3119 gfc_error ("%qs at %L is not a function", sym->name, &expr->where);
3120 return false;
3121 }
3122
3123 /* If this is a deferred TBP with an abstract interface (which may
3124 of course be referenced), expr->value.function.esym will be set. */
3125 if (sym && sym->attr.abstract && !expr->value.function.esym)
3126 {
3127 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3128 sym->name, &expr->where);
3129 return false;
3130 }
3131
3132 /* If this is a deferred TBP with an abstract interface, its result
3133 cannot be an assumed length character (F2003: C418). */
3134 if (sym && sym->attr.abstract && sym->attr.function
3135 && sym->result->ts.u.cl
3136 && sym->result->ts.u.cl->length == NULL
3137 && !sym->result->ts.deferred)
3138 {
3139 gfc_error ("ABSTRACT INTERFACE %qs at %L must not have an assumed "
3140 "character length result (F2008: C418)", sym->name,
3141 &sym->declared_at);
3142 return false;
3143 }
3144
3145 /* Switch off assumed size checking and do this again for certain kinds
3146 of procedure, once the procedure itself is resolved. */
3147 need_full_assumed_size++;
3148
3149 if (expr->symtree && expr->symtree->n.sym)
3150 p = expr->symtree->n.sym->attr.proc;
3151
3152 if (expr->value.function.isym && expr->value.function.isym->inquiry)
3153 inquiry_argument = true;
3154 no_formal_args = sym && is_external_proc (sym)
3155 && gfc_sym_get_dummy_args (sym) == NULL;
3156
3157 if (!resolve_actual_arglist (expr->value.function.actual,
3158 p, no_formal_args))
3159 {
3160 inquiry_argument = false;
3161 return false;
3162 }
3163
3164 inquiry_argument = false;
3165
3166 /* Resume assumed_size checking. */
3167 need_full_assumed_size--;
3168
3169 /* If the procedure is external, check for usage. */
3170 if (sym && is_external_proc (sym))
3171 resolve_global_procedure (sym, &expr->where,
3172 &expr->value.function.actual, 0);
3173
3174 if (sym && sym->ts.type == BT_CHARACTER
3175 && sym->ts.u.cl
3176 && sym->ts.u.cl->length == NULL
3177 && !sym->attr.dummy
3178 && !sym->ts.deferred
3179 && expr->value.function.esym == NULL
3180 && !sym->attr.contained)
3181 {
3182 /* Internal procedures are taken care of in resolve_contained_fntype. */
3183 gfc_error ("Function %qs is declared CHARACTER(*) and cannot "
3184 "be used at %L since it is not a dummy argument",
3185 sym->name, &expr->where);
3186 return false;
3187 }
3188
3189 /* See if function is already resolved. */
3190
3191 if (expr->value.function.name != NULL
3192 || expr->value.function.isym != NULL)
3193 {
3194 if (expr->ts.type == BT_UNKNOWN)
3195 expr->ts = sym->ts;
3196 t = true;
3197 }
3198 else
3199 {
3200 /* Apply the rules of section 14.1.2. */
3201
3202 switch (procedure_kind (sym))
3203 {
3204 case PTYPE_GENERIC:
3205 t = resolve_generic_f (expr);
3206 break;
3207
3208 case PTYPE_SPECIFIC:
3209 t = resolve_specific_f (expr);
3210 break;
3211
3212 case PTYPE_UNKNOWN:
3213 t = resolve_unknown_f (expr);
3214 break;
3215
3216 default:
3217 gfc_internal_error ("resolve_function(): bad function type");
3218 }
3219 }
3220
3221 /* If the expression is still a function (it might have simplified),
3222 then we check to see if we are calling an elemental function. */
3223
3224 if (expr->expr_type != EXPR_FUNCTION)
3225 return t;
3226
3227 temp = need_full_assumed_size;
3228 need_full_assumed_size = 0;
3229
3230 if (!resolve_elemental_actual (expr, NULL))
3231 return false;
3232
3233 if (omp_workshare_flag
3234 && expr->value.function.esym
3235 && ! gfc_elemental (expr->value.function.esym))
3236 {
3237 gfc_error ("User defined non-ELEMENTAL function %qs at %L not allowed "
3238 "in WORKSHARE construct", expr->value.function.esym->name,
3239 &expr->where);
3240 t = false;
3241 }
3242
3243 #define GENERIC_ID expr->value.function.isym->id
3244 else if (expr->value.function.actual != NULL
3245 && expr->value.function.isym != NULL
3246 && GENERIC_ID != GFC_ISYM_LBOUND
3247 && GENERIC_ID != GFC_ISYM_LCOBOUND
3248 && GENERIC_ID != GFC_ISYM_UCOBOUND
3249 && GENERIC_ID != GFC_ISYM_LEN
3250 && GENERIC_ID != GFC_ISYM_LOC
3251 && GENERIC_ID != GFC_ISYM_C_LOC
3252 && GENERIC_ID != GFC_ISYM_PRESENT)
3253 {
3254 /* Array intrinsics must also have the last upper bound of an
3255 assumed size array argument. UBOUND and SIZE have to be
3256 excluded from the check if the second argument is anything
3257 than a constant. */
3258
3259 for (arg = expr->value.function.actual; arg; arg = arg->next)
3260 {
3261 if ((GENERIC_ID == GFC_ISYM_UBOUND || GENERIC_ID == GFC_ISYM_SIZE)
3262 && arg == expr->value.function.actual
3263 && arg->next != NULL && arg->next->expr)
3264 {
3265 if (arg->next->expr->expr_type != EXPR_CONSTANT)
3266 break;
3267
3268 if (arg->next->name && strcmp (arg->next->name, "kind") == 0)
3269 break;
3270
3271 if ((int)mpz_get_si (arg->next->expr->value.integer)
3272 < arg->expr->rank)
3273 break;
3274 }
3275
3276 if (arg->expr != NULL
3277 && arg->expr->rank > 0
3278 && resolve_assumed_size_actual (arg->expr))
3279 return false;
3280 }
3281 }
3282 #undef GENERIC_ID
3283
3284 need_full_assumed_size = temp;
3285
3286 if (!check_pure_function(expr))
3287 t = false;
3288
3289 /* Functions without the RECURSIVE attribution are not allowed to
3290 * call themselves. */
3291 if (expr->value.function.esym && !expr->value.function.esym->attr.recursive)
3292 {
3293 gfc_symbol *esym;
3294 esym = expr->value.function.esym;
3295
3296 if (is_illegal_recursion (esym, gfc_current_ns))
3297 {
3298 if (esym->attr.entry && esym->ns->entries)
3299 gfc_error ("ENTRY %qs at %L cannot be called recursively, as"
3300 " function %qs is not RECURSIVE",
3301 esym->name, &expr->where, esym->ns->entries->sym->name);
3302 else
3303 gfc_error ("Function %qs at %L cannot be called recursively, as it"
3304 " is not RECURSIVE", esym->name, &expr->where);
3305
3306 t = false;
3307 }
3308 }
3309
3310 /* Character lengths of use associated functions may contains references to
3311 symbols not referenced from the current program unit otherwise. Make sure
3312 those symbols are marked as referenced. */
3313
3314 if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
3315 && expr->value.function.esym->attr.use_assoc)
3316 {
3317 gfc_expr_set_symbols_referenced (expr->ts.u.cl->length);
3318 }
3319
3320 /* Make sure that the expression has a typespec that works. */
3321 if (expr->ts.type == BT_UNKNOWN)
3322 {
3323 if (expr->symtree->n.sym->result
3324 && expr->symtree->n.sym->result->ts.type != BT_UNKNOWN
3325 && !expr->symtree->n.sym->result->attr.proc_pointer)
3326 expr->ts = expr->symtree->n.sym->result->ts;
3327 }
3328
3329 if (!expr->ref && !expr->value.function.isym)
3330 {
3331 if (expr->value.function.esym)
3332 update_current_proc_array_outer_dependency (expr->value.function.esym);
3333 else
3334 update_current_proc_array_outer_dependency (sym);
3335 }
3336 else if (expr->ref)
3337 /* typebound procedure: Assume the worst. */
3338 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3339
3340 return t;
3341 }
3342
3343
3344 /************* Subroutine resolution *************/
3345
3346 static bool
3347 pure_subroutine (gfc_symbol *sym, const char *name, locus *loc)
3348 {
3349 if (gfc_pure (sym))
3350 return true;
3351
3352 if (forall_flag)
3353 {
3354 gfc_error ("Subroutine call to %qs in FORALL block at %L is not PURE",
3355 name, loc);
3356 return false;
3357 }
3358 else if (gfc_do_concurrent_flag)
3359 {
3360 gfc_error ("Subroutine call to %qs in DO CONCURRENT block at %L is not "
3361 "PURE", name, loc);
3362 return false;
3363 }
3364 else if (gfc_pure (NULL))
3365 {
3366 gfc_error ("Subroutine call to %qs at %L is not PURE", name, loc);
3367 return false;
3368 }
3369
3370 gfc_unset_implicit_pure (NULL);
3371 return true;
3372 }
3373
3374
3375 static match
3376 resolve_generic_s0 (gfc_code *c, gfc_symbol *sym)
3377 {
3378 gfc_symbol *s;
3379
3380 if (sym->attr.generic)
3381 {
3382 s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
3383 if (s != NULL)
3384 {
3385 c->resolved_sym = s;
3386 if (!pure_subroutine (s, s->name, &c->loc))
3387 return MATCH_ERROR;
3388 return MATCH_YES;
3389 }
3390
3391 /* TODO: Need to search for elemental references in generic interface. */
3392 }
3393
3394 if (sym->attr.intrinsic)
3395 return gfc_intrinsic_sub_interface (c, 0);
3396
3397 return MATCH_NO;
3398 }
3399
3400
3401 static bool
3402 resolve_generic_s (gfc_code *c)
3403 {
3404 gfc_symbol *sym;
3405 match m;
3406
3407 sym = c->symtree->n.sym;
3408
3409 for (;;)
3410 {
3411 m = resolve_generic_s0 (c, sym);
3412 if (m == MATCH_YES)
3413 return true;
3414 else if (m == MATCH_ERROR)
3415 return false;
3416
3417 generic:
3418 if (sym->ns->parent == NULL)
3419 break;
3420 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3421
3422 if (sym == NULL)
3423 break;
3424 if (!generic_sym (sym))
3425 goto generic;
3426 }
3427
3428 /* Last ditch attempt. See if the reference is to an intrinsic
3429 that possesses a matching interface. 14.1.2.4 */
3430 sym = c->symtree->n.sym;
3431
3432 if (!gfc_is_intrinsic (sym, 1, c->loc))
3433 {
3434 gfc_error ("There is no specific subroutine for the generic %qs at %L",
3435 sym->name, &c->loc);
3436 return false;
3437 }
3438
3439 m = gfc_intrinsic_sub_interface (c, 0);
3440 if (m == MATCH_YES)
3441 return true;
3442 if (m == MATCH_NO)
3443 gfc_error ("Generic subroutine %qs at %L is not consistent with an "
3444 "intrinsic subroutine interface", sym->name, &c->loc);
3445
3446 return false;
3447 }
3448
3449
3450 /* Resolve a subroutine call known to be specific. */
3451
3452 static match
3453 resolve_specific_s0 (gfc_code *c, gfc_symbol *sym)
3454 {
3455 match m;
3456
3457 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
3458 {
3459 if (sym->attr.dummy)
3460 {
3461 sym->attr.proc = PROC_DUMMY;
3462 goto found;
3463 }
3464
3465 sym->attr.proc = PROC_EXTERNAL;
3466 goto found;
3467 }
3468
3469 if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
3470 goto found;
3471
3472 if (sym->attr.intrinsic)
3473 {
3474 m = gfc_intrinsic_sub_interface (c, 1);
3475 if (m == MATCH_YES)
3476 return MATCH_YES;
3477 if (m == MATCH_NO)
3478 gfc_error ("Subroutine %qs at %L is INTRINSIC but is not compatible "
3479 "with an intrinsic", sym->name, &c->loc);
3480
3481 return MATCH_ERROR;
3482 }
3483
3484 return MATCH_NO;
3485
3486 found:
3487 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3488
3489 c->resolved_sym = sym;
3490 if (!pure_subroutine (sym, sym->name, &c->loc))
3491 return MATCH_ERROR;
3492
3493 return MATCH_YES;
3494 }
3495
3496
3497 static bool
3498 resolve_specific_s (gfc_code *c)
3499 {
3500 gfc_symbol *sym;
3501 match m;
3502
3503 sym = c->symtree->n.sym;
3504
3505 for (;;)
3506 {
3507 m = resolve_specific_s0 (c, sym);
3508 if (m == MATCH_YES)
3509 return true;
3510 if (m == MATCH_ERROR)
3511 return false;
3512
3513 if (sym->ns->parent == NULL)
3514 break;
3515
3516 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3517
3518 if (sym == NULL)
3519 break;
3520 }
3521
3522 sym = c->symtree->n.sym;
3523 gfc_error ("Unable to resolve the specific subroutine %qs at %L",
3524 sym->name, &c->loc);
3525
3526 return false;
3527 }
3528
3529
3530 /* Resolve a subroutine call not known to be generic nor specific. */
3531
3532 static bool
3533 resolve_unknown_s (gfc_code *c)
3534 {
3535 gfc_symbol *sym;
3536
3537 sym = c->symtree->n.sym;
3538
3539 if (sym->attr.dummy)
3540 {
3541 sym->attr.proc = PROC_DUMMY;
3542 goto found;
3543 }
3544
3545 /* See if we have an intrinsic function reference. */
3546
3547 if (gfc_is_intrinsic (sym, 1, c->loc))
3548 {
3549 if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
3550 return true;
3551 return false;
3552 }
3553
3554 /* The reference is to an external name. */
3555
3556 found:
3557 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3558
3559 c->resolved_sym = sym;
3560
3561 return pure_subroutine (sym, sym->name, &c->loc);
3562 }
3563
3564
3565 /* Resolve a subroutine call. Although it was tempting to use the same code
3566 for functions, subroutines and functions are stored differently and this
3567 makes things awkward. */
3568
3569 static bool
3570 resolve_call (gfc_code *c)
3571 {
3572 bool t;
3573 procedure_type ptype = PROC_INTRINSIC;
3574 gfc_symbol *csym, *sym;
3575 bool no_formal_args;
3576
3577 csym = c->symtree ? c->symtree->n.sym : NULL;
3578
3579 if (csym && csym->ts.type != BT_UNKNOWN)
3580 {
3581 gfc_error ("%qs at %L has a type, which is not consistent with "
3582 "the CALL at %L", csym->name, &csym->declared_at, &c->loc);
3583 return false;
3584 }
3585
3586 if (csym && gfc_current_ns->parent && csym->ns != gfc_current_ns)
3587 {
3588 gfc_symtree *st;
3589 gfc_find_sym_tree (c->symtree->name, gfc_current_ns, 1, &st);
3590 sym = st ? st->n.sym : NULL;
3591 if (sym && csym != sym
3592 && sym->ns == gfc_current_ns
3593 && sym->attr.flavor == FL_PROCEDURE
3594 && sym->attr.contained)
3595 {
3596 sym->refs++;
3597 if (csym->attr.generic)
3598 c->symtree->n.sym = sym;
3599 else
3600 c->symtree = st;
3601 csym = c->symtree->n.sym;
3602 }
3603 }
3604
3605 /* If this ia a deferred TBP, c->expr1 will be set. */
3606 if (!c->expr1 && csym)
3607 {
3608 if (csym->attr.abstract)
3609 {
3610 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3611 csym->name, &c->loc);
3612 return false;
3613 }
3614
3615 /* Subroutines without the RECURSIVE attribution are not allowed to
3616 call themselves. */
3617 if (is_illegal_recursion (csym, gfc_current_ns))
3618 {
3619 if (csym->attr.entry && csym->ns->entries)
3620 gfc_error ("ENTRY %qs at %L cannot be called recursively, "
3621 "as subroutine %qs is not RECURSIVE",
3622 csym->name, &c->loc, csym->ns->entries->sym->name);
3623 else
3624 gfc_error ("SUBROUTINE %qs at %L cannot be called recursively, "
3625 "as it is not RECURSIVE", csym->name, &c->loc);
3626
3627 t = false;
3628 }
3629 }
3630
3631 /* Switch off assumed size checking and do this again for certain kinds
3632 of procedure, once the procedure itself is resolved. */
3633 need_full_assumed_size++;
3634
3635 if (csym)
3636 ptype = csym->attr.proc;
3637
3638 no_formal_args = csym && is_external_proc (csym)
3639 && gfc_sym_get_dummy_args (csym) == NULL;
3640 if (!resolve_actual_arglist (c->ext.actual, ptype, no_formal_args))
3641 return false;
3642
3643 /* Resume assumed_size checking. */
3644 need_full_assumed_size--;
3645
3646 /* If external, check for usage. */
3647 if (csym && is_external_proc (csym))
3648 resolve_global_procedure (csym, &c->loc, &c->ext.actual, 1);
3649
3650 t = true;
3651 if (c->resolved_sym == NULL)
3652 {
3653 c->resolved_isym = NULL;
3654 switch (procedure_kind (csym))
3655 {
3656 case PTYPE_GENERIC:
3657 t = resolve_generic_s (c);
3658 break;
3659
3660 case PTYPE_SPECIFIC:
3661 t = resolve_specific_s (c);
3662 break;
3663
3664 case PTYPE_UNKNOWN:
3665 t = resolve_unknown_s (c);
3666 break;
3667
3668 default:
3669 gfc_internal_error ("resolve_subroutine(): bad function type");
3670 }
3671 }
3672
3673 /* Some checks of elemental subroutine actual arguments. */
3674 if (!resolve_elemental_actual (NULL, c))
3675 return false;
3676
3677 if (!c->expr1)
3678 update_current_proc_array_outer_dependency (csym);
3679 else
3680 /* Typebound procedure: Assume the worst. */
3681 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3682
3683 return t;
3684 }
3685
3686
3687 /* Compare the shapes of two arrays that have non-NULL shapes. If both
3688 op1->shape and op2->shape are non-NULL return true if their shapes
3689 match. If both op1->shape and op2->shape are non-NULL return false
3690 if their shapes do not match. If either op1->shape or op2->shape is
3691 NULL, return true. */
3692
3693 static bool
3694 compare_shapes (gfc_expr *op1, gfc_expr *op2)
3695 {
3696 bool t;
3697 int i;
3698
3699 t = true;
3700
3701 if (op1->shape != NULL && op2->shape != NULL)
3702 {
3703 for (i = 0; i < op1->rank; i++)
3704 {
3705 if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
3706 {
3707 gfc_error ("Shapes for operands at %L and %L are not conformable",
3708 &op1->where, &op2->where);
3709 t = false;
3710 break;
3711 }
3712 }
3713 }
3714
3715 return t;
3716 }
3717
3718 /* Convert a logical operator to the corresponding bitwise intrinsic call.
3719 For example A .AND. B becomes IAND(A, B). */
3720 static gfc_expr *
3721 logical_to_bitwise (gfc_expr *e)
3722 {
3723 gfc_expr *tmp, *op1, *op2;
3724 gfc_isym_id isym;
3725 gfc_actual_arglist *args = NULL;
3726
3727 gcc_assert (e->expr_type == EXPR_OP);
3728
3729 isym = GFC_ISYM_NONE;
3730 op1 = e->value.op.op1;
3731 op2 = e->value.op.op2;
3732
3733 switch (e->value.op.op)
3734 {
3735 case INTRINSIC_NOT:
3736 isym = GFC_ISYM_NOT;
3737 break;
3738 case INTRINSIC_AND:
3739 isym = GFC_ISYM_IAND;
3740 break;
3741 case INTRINSIC_OR:
3742 isym = GFC_ISYM_IOR;
3743 break;
3744 case INTRINSIC_NEQV:
3745 isym = GFC_ISYM_IEOR;
3746 break;
3747 case INTRINSIC_EQV:
3748 /* "Bitwise eqv" is just the complement of NEQV === IEOR.
3749 Change the old expression to NEQV, which will get replaced by IEOR,
3750 and wrap it in NOT. */
3751 tmp = gfc_copy_expr (e);
3752 tmp->value.op.op = INTRINSIC_NEQV;
3753 tmp = logical_to_bitwise (tmp);
3754 isym = GFC_ISYM_NOT;
3755 op1 = tmp;
3756 op2 = NULL;
3757 break;
3758 default:
3759 gfc_internal_error ("logical_to_bitwise(): Bad intrinsic");
3760 }
3761
3762 /* Inherit the original operation's operands as arguments. */
3763 args = gfc_get_actual_arglist ();
3764 args->expr = op1;
3765 if (op2)
3766 {
3767 args->next = gfc_get_actual_arglist ();
3768 args->next->expr = op2;
3769 }
3770
3771 /* Convert the expression to a function call. */
3772 e->expr_type = EXPR_FUNCTION;
3773 e->value.function.actual = args;
3774 e->value.function.isym = gfc_intrinsic_function_by_id (isym);
3775 e->value.function.name = e->value.function.isym->name;
3776 e->value.function.esym = NULL;
3777
3778 /* Make up a pre-resolved function call symtree if we need to. */
3779 if (!e->symtree || !e->symtree->n.sym)
3780 {
3781 gfc_symbol *sym;
3782 gfc_get_ha_sym_tree (e->value.function.isym->name, &e->symtree);
3783 sym = e->symtree->n.sym;
3784 sym->result = sym;
3785 sym->attr.flavor = FL_PROCEDURE;
3786 sym->attr.function = 1;
3787 sym->attr.elemental = 1;
3788 sym->attr.pure = 1;
3789 sym->attr.referenced = 1;
3790 gfc_intrinsic_symbol (sym);
3791 gfc_commit_symbol (sym);
3792 }
3793
3794 args->name = e->value.function.isym->formal->name;
3795 if (e->value.function.isym->formal->next)
3796 args->next->name = e->value.function.isym->formal->next->name;
3797
3798 return e;
3799 }
3800
3801 /* Recursively append candidate UOP to CANDIDATES. Store the number of
3802 candidates in CANDIDATES_LEN. */
3803 static void
3804 lookup_uop_fuzzy_find_candidates (gfc_symtree *uop,
3805 char **&candidates,
3806 size_t &candidates_len)
3807 {
3808 gfc_symtree *p;
3809
3810 if (uop == NULL)
3811 return;
3812
3813 /* Not sure how to properly filter here. Use all for a start.
3814 n.uop.op is NULL for empty interface operators (is that legal?) disregard
3815 these as i suppose they don't make terribly sense. */
3816
3817 if (uop->n.uop->op != NULL)
3818 vec_push (candidates, candidates_len, uop->name);
3819
3820 p = uop->left;
3821 if (p)
3822 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3823
3824 p = uop->right;
3825 if (p)
3826 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3827 }
3828
3829 /* Lookup user-operator OP fuzzily, taking names in UOP into account. */
3830
3831 static const char*
3832 lookup_uop_fuzzy (const char *op, gfc_symtree *uop)
3833 {
3834 char **candidates = NULL;
3835 size_t candidates_len = 0;
3836 lookup_uop_fuzzy_find_candidates (uop, candidates, candidates_len);
3837 return gfc_closest_fuzzy_match (op, candidates);
3838 }
3839
3840
3841 /* Callback finding an impure function as an operand to an .and. or
3842 .or. expression. Remember the last function warned about to
3843 avoid double warnings when recursing. */
3844
3845 static int
3846 impure_function_callback (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
3847 void *data)
3848 {
3849 gfc_expr *f = *e;
3850 const char *name;
3851 static gfc_expr *last = NULL;
3852 bool *found = (bool *) data;
3853
3854 if (f->expr_type == EXPR_FUNCTION)
3855 {
3856 *found = 1;
3857 if (f != last && !gfc_pure_function (f, &name)
3858 && !gfc_implicit_pure_function (f))
3859 {
3860 if (name)
3861 gfc_warning (OPT_Wfunction_elimination,
3862 "Impure function %qs at %L might not be evaluated",
3863 name, &f->where);
3864 else
3865 gfc_warning (OPT_Wfunction_elimination,
3866 "Impure function at %L might not be evaluated",
3867 &f->where);
3868 }
3869 last = f;
3870 }
3871
3872 return 0;
3873 }
3874
3875
3876 /* Resolve an operator expression node. This can involve replacing the
3877 operation with a user defined function call. */
3878
3879 static bool
3880 resolve_operator (gfc_expr *e)
3881 {
3882 gfc_expr *op1, *op2;
3883 char msg[200];
3884 bool dual_locus_error;
3885 bool t;
3886
3887 /* Resolve all subnodes-- give them types. */
3888
3889 switch (e->value.op.op)
3890 {
3891 default:
3892 if (!gfc_resolve_expr (e->value.op.op2))
3893 return false;
3894
3895 /* Fall through. */
3896
3897 case INTRINSIC_NOT:
3898 case INTRINSIC_UPLUS:
3899 case INTRINSIC_UMINUS:
3900 case INTRINSIC_PARENTHESES:
3901 if (!gfc_resolve_expr (e->value.op.op1))
3902 return false;
3903 break;
3904 }
3905
3906 /* Typecheck the new node. */
3907
3908 op1 = e->value.op.op1;
3909 op2 = e->value.op.op2;
3910 dual_locus_error = false;
3911
3912 if ((op1 && op1->expr_type == EXPR_NULL)
3913 || (op2 && op2->expr_type == EXPR_NULL))
3914 {
3915 sprintf (msg, _("Invalid context for NULL() pointer at %%L"));
3916 goto bad_op;
3917 }
3918
3919 switch (e->value.op.op)
3920 {
3921 case INTRINSIC_UPLUS:
3922 case INTRINSIC_UMINUS:
3923 if (op1->ts.type == BT_INTEGER
3924 || op1->ts.type == BT_REAL
3925 || op1->ts.type == BT_COMPLEX)
3926 {
3927 e->ts = op1->ts;
3928 break;
3929 }
3930
3931 sprintf (msg, _("Operand of unary numeric operator %%<%s%%> at %%L is %s"),
3932 gfc_op2string (e->value.op.op), gfc_typename (&e->ts));
3933 goto bad_op;
3934
3935 case INTRINSIC_PLUS:
3936 case INTRINSIC_MINUS:
3937 case INTRINSIC_TIMES:
3938 case INTRINSIC_DIVIDE:
3939 case INTRINSIC_POWER:
3940 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3941 {
3942 gfc_type_convert_binary (e, 1);
3943 break;
3944 }
3945
3946 if (op1->ts.type == BT_DERIVED || op2->ts.type == BT_DERIVED)
3947 sprintf (msg,
3948 _("Unexpected derived-type entities in binary intrinsic "
3949 "numeric operator %%<%s%%> at %%L"),
3950 gfc_op2string (e->value.op.op));
3951 else
3952 sprintf (msg,
3953 _("Operands of binary numeric operator %%<%s%%> at %%L are %s/%s"),
3954 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3955 gfc_typename (&op2->ts));
3956 goto bad_op;
3957
3958 case INTRINSIC_CONCAT:
3959 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3960 && op1->ts.kind == op2->ts.kind)
3961 {
3962 e->ts.type = BT_CHARACTER;
3963 e->ts.kind = op1->ts.kind;
3964 break;
3965 }
3966
3967 sprintf (msg,
3968 _("Operands of string concatenation operator at %%L are %s/%s"),
3969 gfc_typename (&op1->ts), gfc_typename (&op2->ts));
3970 goto bad_op;
3971
3972 case INTRINSIC_AND:
3973 case INTRINSIC_OR:
3974 case INTRINSIC_EQV:
3975 case INTRINSIC_NEQV:
3976 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
3977 {
3978 e->ts.type = BT_LOGICAL;
3979 e->ts.kind = gfc_kind_max (op1, op2);
3980 if (op1->ts.kind < e->ts.kind)
3981 gfc_convert_type (op1, &e->ts, 2);
3982 else if (op2->ts.kind < e->ts.kind)
3983 gfc_convert_type (op2, &e->ts, 2);
3984
3985 if (flag_frontend_optimize &&
3986 (e->value.op.op == INTRINSIC_AND || e->value.op.op == INTRINSIC_OR))
3987 {
3988 /* Warn about short-circuiting
3989 with impure function as second operand. */
3990 bool op2_f = false;
3991 gfc_expr_walker (&op2, impure_function_callback, &op2_f);
3992 }
3993 break;
3994 }
3995
3996 /* Logical ops on integers become bitwise ops with -fdec. */
3997 else if (flag_dec
3998 && (op1->ts.type == BT_INTEGER || op2->ts.type == BT_INTEGER))
3999 {
4000 e->ts.type = BT_INTEGER;
4001 e->ts.kind = gfc_kind_max (op1, op2);
4002 if (op1->ts.type != e->ts.type || op1->ts.kind != e->ts.kind)
4003 gfc_convert_type (op1, &e->ts, 1);
4004 if (op2->ts.type != e->ts.type || op2->ts.kind != e->ts.kind)
4005 gfc_convert_type (op2, &e->ts, 1);
4006 e = logical_to_bitwise (e);
4007 break;
4008 }
4009
4010 sprintf (msg, _("Operands of logical operator %%<%s%%> at %%L are %s/%s"),
4011 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4012 gfc_typename (&op2->ts));
4013
4014 goto bad_op;
4015
4016 case INTRINSIC_NOT:
4017 /* Logical ops on integers become bitwise ops with -fdec. */
4018 if (flag_dec && op1->ts.type == BT_INTEGER)
4019 {
4020 e->ts.type = BT_INTEGER;
4021 e->ts.kind = op1->ts.kind;
4022 e = logical_to_bitwise (e);
4023 break;
4024 }
4025
4026 if (op1->ts.type == BT_LOGICAL)
4027 {
4028 e->ts.type = BT_LOGICAL;
4029 e->ts.kind = op1->ts.kind;
4030 break;
4031 }
4032
4033 sprintf (msg, _("Operand of .not. operator at %%L is %s"),
4034 gfc_typename (&op1->ts));
4035 goto bad_op;
4036
4037 case INTRINSIC_GT:
4038 case INTRINSIC_GT_OS:
4039 case INTRINSIC_GE:
4040 case INTRINSIC_GE_OS:
4041 case INTRINSIC_LT:
4042 case INTRINSIC_LT_OS:
4043 case INTRINSIC_LE:
4044 case INTRINSIC_LE_OS:
4045 if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
4046 {
4047 strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
4048 goto bad_op;
4049 }
4050
4051 /* Fall through. */
4052
4053 case INTRINSIC_EQ:
4054 case INTRINSIC_EQ_OS:
4055 case INTRINSIC_NE:
4056 case INTRINSIC_NE_OS:
4057 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
4058 && op1->ts.kind == op2->ts.kind)
4059 {
4060 e->ts.type = BT_LOGICAL;
4061 e->ts.kind = gfc_default_logical_kind;
4062 break;
4063 }
4064
4065 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
4066 {
4067 gfc_type_convert_binary (e, 1);
4068
4069 e->ts.type = BT_LOGICAL;
4070 e->ts.kind = gfc_default_logical_kind;
4071
4072 if (warn_compare_reals)
4073 {
4074 gfc_intrinsic_op op = e->value.op.op;
4075
4076 /* Type conversion has made sure that the types of op1 and op2
4077 agree, so it is only necessary to check the first one. */
4078 if ((op1->ts.type == BT_REAL || op1->ts.type == BT_COMPLEX)
4079 && (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS
4080 || op == INTRINSIC_NE || op == INTRINSIC_NE_OS))
4081 {
4082 const char *msg;
4083
4084 if (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS)
4085 msg = "Equality comparison for %s at %L";
4086 else
4087 msg = "Inequality comparison for %s at %L";
4088
4089 gfc_warning (OPT_Wcompare_reals, msg,
4090 gfc_typename (&op1->ts), &op1->where);
4091 }
4092 }
4093
4094 break;
4095 }
4096
4097 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
4098 sprintf (msg,
4099 _("Logicals at %%L must be compared with %s instead of %s"),
4100 (e->value.op.op == INTRINSIC_EQ
4101 || e->value.op.op == INTRINSIC_EQ_OS)
4102 ? ".eqv." : ".neqv.", gfc_op2string (e->value.op.op));
4103 else
4104 sprintf (msg,
4105 _("Operands of comparison operator %%<%s%%> at %%L are %s/%s"),
4106 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4107 gfc_typename (&op2->ts));
4108
4109 goto bad_op;
4110
4111 case INTRINSIC_USER:
4112 if (e->value.op.uop->op == NULL)
4113 {
4114 const char *name = e->value.op.uop->name;
4115 const char *guessed;
4116 guessed = lookup_uop_fuzzy (name, e->value.op.uop->ns->uop_root);
4117 if (guessed)
4118 sprintf (msg, _("Unknown operator %%<%s%%> at %%L; did you mean '%s'?"),
4119 name, guessed);
4120 else
4121 sprintf (msg, _("Unknown operator %%<%s%%> at %%L"), name);
4122 }
4123 else if (op2 == NULL)
4124 sprintf (msg, _("Operand of user operator %%<%s%%> at %%L is %s"),
4125 e->value.op.uop->name, gfc_typename (&op1->ts));
4126 else
4127 {
4128 sprintf (msg, _("Operands of user operator %%<%s%%> at %%L are %s/%s"),
4129 e->value.op.uop->name, gfc_typename (&op1->ts),
4130 gfc_typename (&op2->ts));
4131 e->value.op.uop->op->sym->attr.referenced = 1;
4132 }
4133
4134 goto bad_op;
4135
4136 case INTRINSIC_PARENTHESES:
4137 e->ts = op1->ts;
4138 if (e->ts.type == BT_CHARACTER)
4139 e->ts.u.cl = op1->ts.u.cl;
4140 break;
4141
4142 default:
4143 gfc_internal_error ("resolve_operator(): Bad intrinsic");
4144 }
4145
4146 /* Deal with arrayness of an operand through an operator. */
4147
4148 t = true;
4149
4150 switch (e->value.op.op)
4151 {
4152 case INTRINSIC_PLUS:
4153 case INTRINSIC_MINUS:
4154 case INTRINSIC_TIMES:
4155 case INTRINSIC_DIVIDE:
4156 case INTRINSIC_POWER:
4157 case INTRINSIC_CONCAT:
4158 case INTRINSIC_AND:
4159 case INTRINSIC_OR:
4160 case INTRINSIC_EQV:
4161 case INTRINSIC_NEQV:
4162 case INTRINSIC_EQ:
4163 case INTRINSIC_EQ_OS:
4164 case INTRINSIC_NE:
4165 case INTRINSIC_NE_OS:
4166 case INTRINSIC_GT:
4167 case INTRINSIC_GT_OS:
4168 case INTRINSIC_GE:
4169 case INTRINSIC_GE_OS:
4170 case INTRINSIC_LT:
4171 case INTRINSIC_LT_OS:
4172 case INTRINSIC_LE:
4173 case INTRINSIC_LE_OS:
4174
4175 if (op1->rank == 0 && op2->rank == 0)
4176 e->rank = 0;
4177
4178 if (op1->rank == 0 && op2->rank != 0)
4179 {
4180 e->rank = op2->rank;
4181
4182 if (e->shape == NULL)
4183 e->shape = gfc_copy_shape (op2->shape, op2->rank);
4184 }
4185
4186 if (op1->rank != 0 && op2->rank == 0)
4187 {
4188 e->rank = op1->rank;
4189
4190 if (e->shape == NULL)
4191 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4192 }
4193
4194 if (op1->rank != 0 && op2->rank != 0)
4195 {
4196 if (op1->rank == op2->rank)
4197 {
4198 e->rank = op1->rank;
4199 if (e->shape == NULL)
4200 {
4201 t = compare_shapes (op1, op2);
4202 if (!t)
4203 e->shape = NULL;
4204 else
4205 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4206 }
4207 }
4208 else
4209 {
4210 /* Allow higher level expressions to work. */
4211 e->rank = 0;
4212
4213 /* Try user-defined operators, and otherwise throw an error. */
4214 dual_locus_error = true;
4215 sprintf (msg,
4216 _("Inconsistent ranks for operator at %%L and %%L"));
4217 goto bad_op;
4218 }
4219 }
4220
4221 break;
4222
4223 case INTRINSIC_PARENTHESES:
4224 case INTRINSIC_NOT:
4225 case INTRINSIC_UPLUS:
4226 case INTRINSIC_UMINUS:
4227 /* Simply copy arrayness attribute */
4228 e->rank = op1->rank;
4229
4230 if (e->shape == NULL)
4231 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4232
4233 break;
4234
4235 default:
4236 break;
4237 }
4238
4239 /* Attempt to simplify the expression. */
4240 if (t)
4241 {
4242 t = gfc_simplify_expr (e, 0);
4243 /* Some calls do not succeed in simplification and return false
4244 even though there is no error; e.g. variable references to
4245 PARAMETER arrays. */
4246 if (!gfc_is_constant_expr (e))
4247 t = true;
4248 }
4249 return t;
4250
4251 bad_op:
4252
4253 {
4254 match m = gfc_extend_expr (e);
4255 if (m == MATCH_YES)
4256 return true;
4257 if (m == MATCH_ERROR)
4258 return false;
4259 }
4260
4261 if (dual_locus_error)
4262 gfc_error (msg, &op1->where, &op2->where);
4263 else
4264 gfc_error (msg, &e->where);
4265
4266 return false;
4267 }
4268
4269
4270 /************** Array resolution subroutines **************/
4271
4272 enum compare_result
4273 { CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN };
4274
4275 /* Compare two integer expressions. */
4276
4277 static compare_result
4278 compare_bound (gfc_expr *a, gfc_expr *b)
4279 {
4280 int i;
4281
4282 if (a == NULL || a->expr_type != EXPR_CONSTANT
4283 || b == NULL || b->expr_type != EXPR_CONSTANT)
4284 return CMP_UNKNOWN;
4285
4286 /* If either of the types isn't INTEGER, we must have
4287 raised an error earlier. */
4288
4289 if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
4290 return CMP_UNKNOWN;
4291
4292 i = mpz_cmp (a->value.integer, b->value.integer);
4293
4294 if (i < 0)
4295 return CMP_LT;
4296 if (i > 0)
4297 return CMP_GT;
4298 return CMP_EQ;
4299 }
4300
4301
4302 /* Compare an integer expression with an integer. */
4303
4304 static compare_result
4305 compare_bound_int (gfc_expr *a, int b)
4306 {
4307 int i;
4308
4309 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4310 return CMP_UNKNOWN;
4311
4312 if (a->ts.type != BT_INTEGER)
4313 gfc_internal_error ("compare_bound_int(): Bad expression");
4314
4315 i = mpz_cmp_si (a->value.integer, b);
4316
4317 if (i < 0)
4318 return CMP_LT;
4319 if (i > 0)
4320 return CMP_GT;
4321 return CMP_EQ;
4322 }
4323
4324
4325 /* Compare an integer expression with a mpz_t. */
4326
4327 static compare_result
4328 compare_bound_mpz_t (gfc_expr *a, mpz_t b)
4329 {
4330 int i;
4331
4332 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4333 return CMP_UNKNOWN;
4334
4335 if (a->ts.type != BT_INTEGER)
4336 gfc_internal_error ("compare_bound_int(): Bad expression");
4337
4338 i = mpz_cmp (a->value.integer, b);
4339
4340 if (i < 0)
4341 return CMP_LT;
4342 if (i > 0)
4343 return CMP_GT;
4344 return CMP_EQ;
4345 }
4346
4347
4348 /* Compute the last value of a sequence given by a triplet.
4349 Return 0 if it wasn't able to compute the last value, or if the
4350 sequence if empty, and 1 otherwise. */
4351
4352 static int
4353 compute_last_value_for_triplet (gfc_expr *start, gfc_expr *end,
4354 gfc_expr *stride, mpz_t last)
4355 {
4356 mpz_t rem;
4357
4358 if (start == NULL || start->expr_type != EXPR_CONSTANT
4359 || end == NULL || end->expr_type != EXPR_CONSTANT
4360 || (stride != NULL && stride->expr_type != EXPR_CONSTANT))
4361 return 0;
4362
4363 if (start->ts.type != BT_INTEGER || end->ts.type != BT_INTEGER
4364 || (stride != NULL && stride->ts.type != BT_INTEGER))
4365 return 0;
4366
4367 if (stride == NULL || compare_bound_int (stride, 1) == CMP_EQ)
4368 {
4369 if (compare_bound (start, end) == CMP_GT)
4370 return 0;
4371 mpz_set (last, end->value.integer);
4372 return 1;
4373 }
4374
4375 if (compare_bound_int (stride, 0) == CMP_GT)
4376 {
4377 /* Stride is positive */
4378 if (mpz_cmp (start->value.integer, end->value.integer) > 0)
4379 return 0;
4380 }
4381 else
4382 {
4383 /* Stride is negative */
4384 if (mpz_cmp (start->value.integer, end->value.integer) < 0)
4385 return 0;
4386 }
4387
4388 mpz_init (rem);
4389 mpz_sub (rem, end->value.integer, start->value.integer);
4390 mpz_tdiv_r (rem, rem, stride->value.integer);
4391 mpz_sub (last, end->value.integer, rem);
4392 mpz_clear (rem);
4393
4394 return 1;
4395 }
4396
4397
4398 /* Compare a single dimension of an array reference to the array
4399 specification. */
4400
4401 static bool
4402 check_dimension (int i, gfc_array_ref *ar, gfc_array_spec *as)
4403 {
4404 mpz_t last_value;
4405
4406 if (ar->dimen_type[i] == DIMEN_STAR)
4407 {
4408 gcc_assert (ar->stride[i] == NULL);
4409 /* This implies [*] as [*:] and [*:3] are not possible. */
4410 if (ar->start[i] == NULL)
4411 {
4412 gcc_assert (ar->end[i] == NULL);
4413 return true;
4414 }
4415 }
4416
4417 /* Given start, end and stride values, calculate the minimum and
4418 maximum referenced indexes. */
4419
4420 switch (ar->dimen_type[i])
4421 {
4422 case DIMEN_VECTOR:
4423 case DIMEN_THIS_IMAGE:
4424 break;
4425
4426 case DIMEN_STAR:
4427 case DIMEN_ELEMENT:
4428 if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
4429 {
4430 if (i < as->rank)
4431 gfc_warning (0, "Array reference at %L is out of bounds "
4432 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4433 mpz_get_si (ar->start[i]->value.integer),
4434 mpz_get_si (as->lower[i]->value.integer), i+1);
4435 else
4436 gfc_warning (0, "Array reference at %L is out of bounds "
4437 "(%ld < %ld) in codimension %d", &ar->c_where[i],
4438 mpz_get_si (ar->start[i]->value.integer),
4439 mpz_get_si (as->lower[i]->value.integer),
4440 i + 1 - as->rank);
4441 return true;
4442 }
4443 if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
4444 {
4445 if (i < as->rank)
4446 gfc_warning (0, "Array reference at %L is out of bounds "
4447 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4448 mpz_get_si (ar->start[i]->value.integer),
4449 mpz_get_si (as->upper[i]->value.integer), i+1);
4450 else
4451 gfc_warning (0, "Array reference at %L is out of bounds "
4452 "(%ld > %ld) in codimension %d", &ar->c_where[i],
4453 mpz_get_si (ar->start[i]->value.integer),
4454 mpz_get_si (as->upper[i]->value.integer),
4455 i + 1 - as->rank);
4456 return true;
4457 }
4458
4459 break;
4460
4461 case DIMEN_RANGE:
4462 {
4463 #define AR_START (ar->start[i] ? ar->start[i] : as->lower[i])
4464 #define AR_END (ar->end[i] ? ar->end[i] : as->upper[i])
4465
4466 compare_result comp_start_end = compare_bound (AR_START, AR_END);
4467
4468 /* Check for zero stride, which is not allowed. */
4469 if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
4470 {
4471 gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
4472 return false;
4473 }
4474
4475 /* if start == len || (stride > 0 && start < len)
4476 || (stride < 0 && start > len),
4477 then the array section contains at least one element. In this
4478 case, there is an out-of-bounds access if
4479 (start < lower || start > upper). */
4480 if (compare_bound (AR_START, AR_END) == CMP_EQ
4481 || ((compare_bound_int (ar->stride[i], 0) == CMP_GT
4482 || ar->stride[i] == NULL) && comp_start_end == CMP_LT)
4483 || (compare_bound_int (ar->stride[i], 0) == CMP_LT
4484 && comp_start_end == CMP_GT))
4485 {
4486 if (compare_bound (AR_START, as->lower[i]) == CMP_LT)
4487 {
4488 gfc_warning (0, "Lower array reference at %L is out of bounds "
4489 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4490 mpz_get_si (AR_START->value.integer),
4491 mpz_get_si (as->lower[i]->value.integer), i+1);
4492 return true;
4493 }
4494 if (compare_bound (AR_START, as->upper[i]) == CMP_GT)
4495 {
4496 gfc_warning (0, "Lower array reference at %L is out of bounds "
4497 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4498 mpz_get_si (AR_START->value.integer),
4499 mpz_get_si (as->upper[i]->value.integer), i+1);
4500 return true;
4501 }
4502 }
4503
4504 /* If we can compute the highest index of the array section,
4505 then it also has to be between lower and upper. */
4506 mpz_init (last_value);
4507 if (compute_last_value_for_triplet (AR_START, AR_END, ar->stride[i],
4508 last_value))
4509 {
4510 if (compare_bound_mpz_t (as->lower[i], last_value) == CMP_GT)
4511 {
4512 gfc_warning (0, "Upper array reference at %L is out of bounds "
4513 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4514 mpz_get_si (last_value),
4515 mpz_get_si (as->lower[i]->value.integer), i+1);
4516 mpz_clear (last_value);
4517 return true;
4518 }
4519 if (compare_bound_mpz_t (as->upper[i], last_value) == CMP_LT)
4520 {
4521 gfc_warning (0, "Upper array reference at %L is out of bounds "
4522 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4523 mpz_get_si (last_value),
4524 mpz_get_si (as->upper[i]->value.integer), i+1);
4525 mpz_clear (last_value);
4526 return true;
4527 }
4528 }
4529 mpz_clear (last_value);
4530
4531 #undef AR_START
4532 #undef AR_END
4533 }
4534 break;
4535
4536 default:
4537 gfc_internal_error ("check_dimension(): Bad array reference");
4538 }
4539
4540 return true;
4541 }
4542
4543
4544 /* Compare an array reference with an array specification. */
4545
4546 static bool
4547 compare_spec_to_ref (gfc_array_ref *ar)
4548 {
4549 gfc_array_spec *as;
4550 int i;
4551
4552 as = ar->as;
4553 i = as->rank - 1;
4554 /* TODO: Full array sections are only allowed as actual parameters. */
4555 if (as->type == AS_ASSUMED_SIZE
4556 && (/*ar->type == AR_FULL
4557 ||*/ (ar->type == AR_SECTION
4558 && ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
4559 {
4560 gfc_error ("Rightmost upper bound of assumed size array section "
4561 "not specified at %L", &ar->where);
4562 return false;
4563 }
4564
4565 if (ar->type == AR_FULL)
4566 return true;
4567
4568 if (as->rank != ar->dimen)
4569 {
4570 gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
4571 &ar->where, ar->dimen, as->rank);
4572 return false;
4573 }
4574
4575 /* ar->codimen == 0 is a local array. */
4576 if (as->corank != ar->codimen && ar->codimen != 0)
4577 {
4578 gfc_error ("Coindex rank mismatch in array reference at %L (%d/%d)",
4579 &ar->where, ar->codimen, as->corank);
4580 return false;
4581 }
4582
4583 for (i = 0; i < as->rank; i++)
4584 if (!check_dimension (i, ar, as))
4585 return false;
4586
4587 /* Local access has no coarray spec. */
4588 if (ar->codimen != 0)
4589 for (i = as->rank; i < as->rank + as->corank; i++)
4590 {
4591 if (ar->dimen_type[i] != DIMEN_ELEMENT && !ar->in_allocate
4592 && ar->dimen_type[i] != DIMEN_THIS_IMAGE)
4593 {
4594 gfc_error ("Coindex of codimension %d must be a scalar at %L",
4595 i + 1 - as->rank, &ar->where);
4596 return false;
4597 }
4598 if (!check_dimension (i, ar, as))
4599 return false;
4600 }
4601
4602 return true;
4603 }
4604
4605
4606 /* Resolve one part of an array index. */
4607
4608 static bool
4609 gfc_resolve_index_1 (gfc_expr *index, int check_scalar,
4610 int force_index_integer_kind)
4611 {
4612 gfc_typespec ts;
4613
4614 if (index == NULL)
4615 return true;
4616
4617 if (!gfc_resolve_expr (index))
4618 return false;
4619
4620 if (check_scalar && index->rank != 0)
4621 {
4622 gfc_error ("Array index at %L must be scalar", &index->where);
4623 return false;
4624 }
4625
4626 if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
4627 {
4628 gfc_error ("Array index at %L must be of INTEGER type, found %s",
4629 &index->where, gfc_basic_typename (index->ts.type));
4630 return false;
4631 }
4632
4633 if (index->ts.type == BT_REAL)
4634 if (!gfc_notify_std (GFC_STD_LEGACY, "REAL array index at %L",
4635 &index->where))
4636 return false;
4637
4638 if ((index->ts.kind != gfc_index_integer_kind
4639 && force_index_integer_kind)
4640 || index->ts.type != BT_INTEGER)
4641 {
4642 gfc_clear_ts (&ts);
4643 ts.type = BT_INTEGER;
4644 ts.kind = gfc_index_integer_kind;
4645
4646 gfc_convert_type_warn (index, &ts, 2, 0);
4647 }
4648
4649 return true;
4650 }
4651
4652 /* Resolve one part of an array index. */
4653
4654 bool
4655 gfc_resolve_index (gfc_expr *index, int check_scalar)
4656 {
4657 return gfc_resolve_index_1 (index, check_scalar, 1);
4658 }
4659
4660 /* Resolve a dim argument to an intrinsic function. */
4661
4662 bool
4663 gfc_resolve_dim_arg (gfc_expr *dim)
4664 {
4665 if (dim == NULL)
4666 return true;
4667
4668 if (!gfc_resolve_expr (dim))
4669 return false;
4670
4671 if (dim->rank != 0)
4672 {
4673 gfc_error ("Argument dim at %L must be scalar", &dim->where);
4674 return false;
4675
4676 }
4677
4678 if (dim->ts.type != BT_INTEGER)
4679 {
4680 gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
4681 return false;
4682 }
4683
4684 if (dim->ts.kind != gfc_index_integer_kind)
4685 {
4686 gfc_typespec ts;
4687
4688 gfc_clear_ts (&ts);
4689 ts.type = BT_INTEGER;
4690 ts.kind = gfc_index_integer_kind;
4691
4692 gfc_convert_type_warn (dim, &ts, 2, 0);
4693 }
4694
4695 return true;
4696 }
4697
4698 /* Given an expression that contains array references, update those array
4699 references to point to the right array specifications. While this is
4700 filled in during matching, this information is difficult to save and load
4701 in a module, so we take care of it here.
4702
4703 The idea here is that the original array reference comes from the
4704 base symbol. We traverse the list of reference structures, setting
4705 the stored reference to references. Component references can
4706 provide an additional array specification. */
4707
4708 static void
4709 find_array_spec (gfc_expr *e)
4710 {
4711 gfc_array_spec *as;
4712 gfc_component *c;
4713 gfc_ref *ref;
4714
4715 if (e->symtree->n.sym->ts.type == BT_CLASS)
4716 as = CLASS_DATA (e->symtree->n.sym)->as;
4717 else
4718 as = e->symtree->n.sym->as;
4719
4720 for (ref = e->ref; ref; ref = ref->next)
4721 switch (ref->type)
4722 {
4723 case REF_ARRAY:
4724 if (as == NULL)
4725 gfc_internal_error ("find_array_spec(): Missing spec");
4726
4727 ref->u.ar.as = as;
4728 as = NULL;
4729 break;
4730
4731 case REF_COMPONENT:
4732 c = ref->u.c.component;
4733 if (c->attr.dimension)
4734 {
4735 if (as != NULL)
4736 gfc_internal_error ("find_array_spec(): unused as(1)");
4737 as = c->as;
4738 }
4739
4740 break;
4741
4742 case REF_SUBSTRING:
4743 case REF_INQUIRY:
4744 break;
4745 }
4746
4747 if (as != NULL)
4748 gfc_internal_error ("find_array_spec(): unused as(2)");
4749 }
4750
4751
4752 /* Resolve an array reference. */
4753
4754 static bool
4755 resolve_array_ref (gfc_array_ref *ar)
4756 {
4757 int i, check_scalar;
4758 gfc_expr *e;
4759
4760 for (i = 0; i < ar->dimen + ar->codimen; i++)
4761 {
4762 check_scalar = ar->dimen_type[i] == DIMEN_RANGE;
4763
4764 /* Do not force gfc_index_integer_kind for the start. We can
4765 do fine with any integer kind. This avoids temporary arrays
4766 created for indexing with a vector. */
4767 if (!gfc_resolve_index_1 (ar->start[i], check_scalar, 0))
4768 return false;
4769 if (!gfc_resolve_index (ar->end[i], check_scalar))
4770 return false;
4771 if (!gfc_resolve_index (ar->stride[i], check_scalar))
4772 return false;
4773
4774 e = ar->start[i];
4775
4776 if (ar->dimen_type[i] == DIMEN_UNKNOWN)
4777 switch (e->rank)
4778 {
4779 case 0:
4780 ar->dimen_type[i] = DIMEN_ELEMENT;
4781 break;
4782
4783 case 1:
4784 ar->dimen_type[i] = DIMEN_VECTOR;
4785 if (e->expr_type == EXPR_VARIABLE
4786 && e->symtree->n.sym->ts.type == BT_DERIVED)
4787 ar->start[i] = gfc_get_parentheses (e);
4788 break;
4789
4790 default:
4791 gfc_error ("Array index at %L is an array of rank %d",
4792 &ar->c_where[i], e->rank);
4793 return false;
4794 }
4795
4796 /* Fill in the upper bound, which may be lower than the
4797 specified one for something like a(2:10:5), which is
4798 identical to a(2:7:5). Only relevant for strides not equal
4799 to one. Don't try a division by zero. */
4800 if (ar->dimen_type[i] == DIMEN_RANGE
4801 && ar->stride[i] != NULL && ar->stride[i]->expr_type == EXPR_CONSTANT
4802 && mpz_cmp_si (ar->stride[i]->value.integer, 1L) != 0
4803 && mpz_cmp_si (ar->stride[i]->value.integer, 0L) != 0)
4804 {
4805 mpz_t size, end;
4806
4807 if (gfc_ref_dimen_size (ar, i, &size, &end))
4808 {
4809 if (ar->end[i] == NULL)
4810 {
4811 ar->end[i] =
4812 gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
4813 &ar->where);
4814 mpz_set (ar->end[i]->value.integer, end);
4815 }
4816 else if (ar->end[i]->ts.type == BT_INTEGER
4817 && ar->end[i]->expr_type == EXPR_CONSTANT)
4818 {
4819 mpz_set (ar->end[i]->value.integer, end);
4820 }
4821 else
4822 gcc_unreachable ();
4823
4824 mpz_clear (size);
4825 mpz_clear (end);
4826 }
4827 }
4828 }
4829
4830 if (ar->type == AR_FULL)
4831 {
4832 if (ar->as->rank == 0)
4833 ar->type = AR_ELEMENT;
4834
4835 /* Make sure array is the same as array(:,:), this way
4836 we don't need to special case all the time. */
4837 ar->dimen = ar->as->rank;
4838 for (i = 0; i < ar->dimen; i++)
4839 {
4840 ar->dimen_type[i] = DIMEN_RANGE;
4841
4842 gcc_assert (ar->start[i] == NULL);
4843 gcc_assert (ar->end[i] == NULL);
4844 gcc_assert (ar->stride[i] == NULL);
4845 }
4846 }
4847
4848 /* If the reference type is unknown, figure out what kind it is. */
4849
4850 if (ar->type == AR_UNKNOWN)
4851 {
4852 ar->type = AR_ELEMENT;
4853 for (i = 0; i < ar->dimen; i++)
4854 if (ar->dimen_type[i] == DIMEN_RANGE
4855 || ar->dimen_type[i] == DIMEN_VECTOR)
4856 {
4857 ar->type = AR_SECTION;
4858 break;
4859 }
4860 }
4861
4862 if (!ar->as->cray_pointee && !compare_spec_to_ref (ar))
4863 return false;
4864
4865 if (ar->as->corank && ar->codimen == 0)
4866 {
4867 int n;
4868 ar->codimen = ar->as->corank;
4869 for (n = ar->dimen; n < ar->dimen + ar->codimen; n++)
4870 ar->dimen_type[n] = DIMEN_THIS_IMAGE;
4871 }
4872
4873 return true;
4874 }
4875
4876
4877 static bool
4878 resolve_substring (gfc_ref *ref)
4879 {
4880 int k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
4881
4882 if (ref->u.ss.start != NULL)
4883 {
4884 if (!gfc_resolve_expr (ref->u.ss.start))
4885 return false;
4886
4887 if (ref->u.ss.start->ts.type != BT_INTEGER)
4888 {
4889 gfc_error ("Substring start index at %L must be of type INTEGER",
4890 &ref->u.ss.start->where);
4891 return false;
4892 }
4893
4894 if (ref->u.ss.start->rank != 0)
4895 {
4896 gfc_error ("Substring start index at %L must be scalar",
4897 &ref->u.ss.start->where);
4898 return false;
4899 }
4900
4901 if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT
4902 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4903 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4904 {
4905 gfc_error ("Substring start index at %L is less than one",
4906 &ref->u.ss.start->where);
4907 return false;
4908 }
4909 }
4910
4911 if (ref->u.ss.end != NULL)
4912 {
4913 if (!gfc_resolve_expr (ref->u.ss.end))
4914 return false;
4915
4916 if (ref->u.ss.end->ts.type != BT_INTEGER)
4917 {
4918 gfc_error ("Substring end index at %L must be of type INTEGER",
4919 &ref->u.ss.end->where);
4920 return false;
4921 }
4922
4923 if (ref->u.ss.end->rank != 0)
4924 {
4925 gfc_error ("Substring end index at %L must be scalar",
4926 &ref->u.ss.end->where);
4927 return false;
4928 }
4929
4930 if (ref->u.ss.length != NULL
4931 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT
4932 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4933 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4934 {
4935 gfc_error ("Substring end index at %L exceeds the string length",
4936 &ref->u.ss.start->where);
4937 return false;
4938 }
4939
4940 if (compare_bound_mpz_t (ref->u.ss.end,
4941 gfc_integer_kinds[k].huge) == CMP_GT
4942 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4943 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4944 {
4945 gfc_error ("Substring end index at %L is too large",
4946 &ref->u.ss.end->where);
4947 return false;
4948 }
4949 }
4950
4951 return true;
4952 }
4953
4954
4955 /* This function supplies missing substring charlens. */
4956
4957 void
4958 gfc_resolve_substring_charlen (gfc_expr *e)
4959 {
4960 gfc_ref *char_ref;
4961 gfc_expr *start, *end;
4962 gfc_typespec *ts = NULL;
4963
4964 for (char_ref = e->ref; char_ref; char_ref = char_ref->next)
4965 {
4966 if (char_ref->type == REF_SUBSTRING || char_ref->type == REF_INQUIRY)
4967 break;
4968 if (char_ref->type == REF_COMPONENT)
4969 ts = &char_ref->u.c.component->ts;
4970 }
4971
4972 if (!char_ref || char_ref->type == REF_INQUIRY)
4973 return;
4974
4975 gcc_assert (char_ref->next == NULL);
4976
4977 if (e->ts.u.cl)
4978 {
4979 if (e->ts.u.cl->length)
4980 gfc_free_expr (e->ts.u.cl->length);
4981 else if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.dummy)
4982 return;
4983 }
4984
4985 e->ts.type = BT_CHARACTER;
4986 e->ts.kind = gfc_default_character_kind;
4987
4988 if (!e->ts.u.cl)
4989 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
4990
4991 if (char_ref->u.ss.start)
4992 start = gfc_copy_expr (char_ref->u.ss.start);
4993 else
4994 start = gfc_get_int_expr (gfc_charlen_int_kind, NULL, 1);
4995
4996 if (char_ref->u.ss.end)
4997 end = gfc_copy_expr (char_ref->u.ss.end);
4998 else if (e->expr_type == EXPR_VARIABLE)
4999 {
5000 if (!ts)
5001 ts = &e->symtree->n.sym->ts;
5002 end = gfc_copy_expr (ts->u.cl->length);
5003 }
5004 else
5005 end = NULL;
5006
5007 if (!start || !end)
5008 {
5009 gfc_free_expr (start);
5010 gfc_free_expr (end);
5011 return;
5012 }
5013
5014 /* Length = (end - start + 1). */
5015 e->ts.u.cl->length = gfc_subtract (end, start);
5016 e->ts.u.cl->length = gfc_add (e->ts.u.cl->length,
5017 gfc_get_int_expr (gfc_charlen_int_kind,
5018 NULL, 1));
5019
5020 /* F2008, 6.4.1: Both the starting point and the ending point shall
5021 be within the range 1, 2, ..., n unless the starting point exceeds
5022 the ending point, in which case the substring has length zero. */
5023
5024 if (mpz_cmp_si (e->ts.u.cl->length->value.integer, 0) < 0)
5025 mpz_set_si (e->ts.u.cl->length->value.integer, 0);
5026
5027 e->ts.u.cl->length->ts.type = BT_INTEGER;
5028 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5029
5030 /* Make sure that the length is simplified. */
5031 gfc_simplify_expr (e->ts.u.cl->length, 1);
5032 gfc_resolve_expr (e->ts.u.cl->length);
5033 }
5034
5035
5036 /* Resolve subtype references. */
5037
5038 static bool
5039 resolve_ref (gfc_expr *expr)
5040 {
5041 int current_part_dimension, n_components, seen_part_dimension;
5042 gfc_ref *ref;
5043
5044 for (ref = expr->ref; ref; ref = ref->next)
5045 if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
5046 {
5047 find_array_spec (expr);
5048 break;
5049 }
5050
5051 for (ref = expr->ref; ref; ref = ref->next)
5052 switch (ref->type)
5053 {
5054 case REF_ARRAY:
5055 if (!resolve_array_ref (&ref->u.ar))
5056 return false;
5057 break;
5058
5059 case REF_COMPONENT:
5060 case REF_INQUIRY:
5061 break;
5062
5063 case REF_SUBSTRING:
5064 if (!resolve_substring (ref))
5065 return false;
5066 break;
5067 }
5068
5069 /* Check constraints on part references. */
5070
5071 current_part_dimension = 0;
5072 seen_part_dimension = 0;
5073 n_components = 0;
5074
5075 for (ref = expr->ref; ref; ref = ref->next)
5076 {
5077 switch (ref->type)
5078 {
5079 case REF_ARRAY:
5080 switch (ref->u.ar.type)
5081 {
5082 case AR_FULL:
5083 /* Coarray scalar. */
5084 if (ref->u.ar.as->rank == 0)
5085 {
5086 current_part_dimension = 0;
5087 break;
5088 }
5089 /* Fall through. */
5090 case AR_SECTION:
5091 current_part_dimension = 1;
5092 break;
5093
5094 case AR_ELEMENT:
5095 current_part_dimension = 0;
5096 break;
5097
5098 case AR_UNKNOWN:
5099 gfc_internal_error ("resolve_ref(): Bad array reference");
5100 }
5101
5102 break;
5103
5104 case REF_COMPONENT:
5105 if (current_part_dimension || seen_part_dimension)
5106 {
5107 /* F03:C614. */
5108 if (ref->u.c.component->attr.pointer
5109 || ref->u.c.component->attr.proc_pointer
5110 || (ref->u.c.component->ts.type == BT_CLASS
5111 && CLASS_DATA (ref->u.c.component)->attr.pointer))
5112 {
5113 gfc_error ("Component to the right of a part reference "
5114 "with nonzero rank must not have the POINTER "
5115 "attribute at %L", &expr->where);
5116 return false;
5117 }
5118 else if (ref->u.c.component->attr.allocatable
5119 || (ref->u.c.component->ts.type == BT_CLASS
5120 && CLASS_DATA (ref->u.c.component)->attr.allocatable))
5121
5122 {
5123 gfc_error ("Component to the right of a part reference "
5124 "with nonzero rank must not have the ALLOCATABLE "
5125 "attribute at %L", &expr->where);
5126 return false;
5127 }
5128 }
5129
5130 n_components++;
5131 break;
5132
5133 case REF_SUBSTRING:
5134 case REF_INQUIRY:
5135 break;
5136 }
5137
5138 if (((ref->type == REF_COMPONENT && n_components > 1)
5139 || ref->next == NULL)
5140 && current_part_dimension
5141 && seen_part_dimension)
5142 {
5143 gfc_error ("Two or more part references with nonzero rank must "
5144 "not be specified at %L", &expr->where);
5145 return false;
5146 }
5147
5148 if (ref->type == REF_COMPONENT)
5149 {
5150 if (current_part_dimension)
5151 seen_part_dimension = 1;
5152
5153 /* reset to make sure */
5154 current_part_dimension = 0;
5155 }
5156 }
5157
5158 return true;
5159 }
5160
5161
5162 /* Given an expression, determine its shape. This is easier than it sounds.
5163 Leaves the shape array NULL if it is not possible to determine the shape. */
5164
5165 static void
5166 expression_shape (gfc_expr *e)
5167 {
5168 mpz_t array[GFC_MAX_DIMENSIONS];
5169 int i;
5170
5171 if (e->rank <= 0 || e->shape != NULL)
5172 return;
5173
5174 for (i = 0; i < e->rank; i++)
5175 if (!gfc_array_dimen_size (e, i, &array[i]))
5176 goto fail;
5177
5178 e->shape = gfc_get_shape (e->rank);
5179
5180 memcpy (e->shape, array, e->rank * sizeof (mpz_t));
5181
5182 return;
5183
5184 fail:
5185 for (i--; i >= 0; i--)
5186 mpz_clear (array[i]);
5187 }
5188
5189
5190 /* Given a variable expression node, compute the rank of the expression by
5191 examining the base symbol and any reference structures it may have. */
5192
5193 void
5194 expression_rank (gfc_expr *e)
5195 {
5196 gfc_ref *ref;
5197 int i, rank;
5198
5199 /* Just to make sure, because EXPR_COMPCALL's also have an e->ref and that
5200 could lead to serious confusion... */
5201 gcc_assert (e->expr_type != EXPR_COMPCALL);
5202
5203 if (e->ref == NULL)
5204 {
5205 if (e->expr_type == EXPR_ARRAY)
5206 goto done;
5207 /* Constructors can have a rank different from one via RESHAPE(). */
5208
5209 if (e->symtree == NULL)
5210 {
5211 e->rank = 0;
5212 goto done;
5213 }
5214
5215 e->rank = (e->symtree->n.sym->as == NULL)
5216 ? 0 : e->symtree->n.sym->as->rank;
5217 goto done;
5218 }
5219
5220 rank = 0;
5221
5222 for (ref = e->ref; ref; ref = ref->next)
5223 {
5224 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer
5225 && ref->u.c.component->attr.function && !ref->next)
5226 rank = ref->u.c.component->as ? ref->u.c.component->as->rank : 0;
5227
5228 if (ref->type != REF_ARRAY)
5229 continue;
5230
5231 if (ref->u.ar.type == AR_FULL)
5232 {
5233 rank = ref->u.ar.as->rank;
5234 break;
5235 }
5236
5237 if (ref->u.ar.type == AR_SECTION)
5238 {
5239 /* Figure out the rank of the section. */
5240 if (rank != 0)
5241 gfc_internal_error ("expression_rank(): Two array specs");
5242
5243 for (i = 0; i < ref->u.ar.dimen; i++)
5244 if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
5245 || ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5246 rank++;
5247
5248 break;
5249 }
5250 }
5251
5252 e->rank = rank;
5253
5254 done:
5255 expression_shape (e);
5256 }
5257
5258
5259 static void
5260 add_caf_get_intrinsic (gfc_expr *e)
5261 {
5262 gfc_expr *wrapper, *tmp_expr;
5263 gfc_ref *ref;
5264 int n;
5265
5266 for (ref = e->ref; ref; ref = ref->next)
5267 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5268 break;
5269 if (ref == NULL)
5270 return;
5271
5272 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
5273 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
5274 return;
5275
5276 tmp_expr = XCNEW (gfc_expr);
5277 *tmp_expr = *e;
5278 wrapper = gfc_build_intrinsic_call (gfc_current_ns, GFC_ISYM_CAF_GET,
5279 "caf_get", tmp_expr->where, 1, tmp_expr);
5280 wrapper->ts = e->ts;
5281 wrapper->rank = e->rank;
5282 if (e->rank)
5283 wrapper->shape = gfc_copy_shape (e->shape, e->rank);
5284 *e = *wrapper;
5285 free (wrapper);
5286 }
5287
5288
5289 static void
5290 remove_caf_get_intrinsic (gfc_expr *e)
5291 {
5292 gcc_assert (e->expr_type == EXPR_FUNCTION && e->value.function.isym
5293 && e->value.function.isym->id == GFC_ISYM_CAF_GET);
5294 gfc_expr *e2 = e->value.function.actual->expr;
5295 e->value.function.actual->expr = NULL;
5296 gfc_free_actual_arglist (e->value.function.actual);
5297 gfc_free_shape (&e->shape, e->rank);
5298 *e = *e2;
5299 free (e2);
5300 }
5301
5302
5303 /* Resolve a variable expression. */
5304
5305 static bool
5306 resolve_variable (gfc_expr *e)
5307 {
5308 gfc_symbol *sym;
5309 bool t;
5310
5311 t = true;
5312
5313 if (e->symtree == NULL)
5314 return false;
5315 sym = e->symtree->n.sym;
5316
5317 /* Use same check as for TYPE(*) below; this check has to be before TYPE(*)
5318 as ts.type is set to BT_ASSUMED in resolve_symbol. */
5319 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
5320 {
5321 if (!actual_arg || inquiry_argument)
5322 {
5323 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may only "
5324 "be used as actual argument", sym->name, &e->where);
5325 return false;
5326 }
5327 }
5328 /* TS 29113, 407b. */
5329 else if (e->ts.type == BT_ASSUMED)
5330 {
5331 if (!actual_arg)
5332 {
5333 gfc_error ("Assumed-type variable %s at %L may only be used "
5334 "as actual argument", sym->name, &e->where);
5335 return false;
5336 }
5337 else if (inquiry_argument && !first_actual_arg)
5338 {
5339 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5340 for all inquiry functions in resolve_function; the reason is
5341 that the function-name resolution happens too late in that
5342 function. */
5343 gfc_error ("Assumed-type variable %s at %L as actual argument to "
5344 "an inquiry function shall be the first argument",
5345 sym->name, &e->where);
5346 return false;
5347 }
5348 }
5349 /* TS 29113, C535b. */
5350 else if ((sym->ts.type == BT_CLASS && sym->attr.class_ok
5351 && CLASS_DATA (sym)->as
5352 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5353 || (sym->ts.type != BT_CLASS && sym->as
5354 && sym->as->type == AS_ASSUMED_RANK))
5355 {
5356 if (!actual_arg)
5357 {
5358 gfc_error ("Assumed-rank variable %s at %L may only be used as "
5359 "actual argument", sym->name, &e->where);
5360 return false;
5361 }
5362 else if (inquiry_argument && !first_actual_arg)
5363 {
5364 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5365 for all inquiry functions in resolve_function; the reason is
5366 that the function-name resolution happens too late in that
5367 function. */
5368 gfc_error ("Assumed-rank variable %s at %L as actual argument "
5369 "to an inquiry function shall be the first argument",
5370 sym->name, &e->where);
5371 return false;
5372 }
5373 }
5374
5375 if ((sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) && e->ref
5376 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5377 && e->ref->next == NULL))
5378 {
5379 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall not have "
5380 "a subobject reference", sym->name, &e->ref->u.ar.where);
5381 return false;
5382 }
5383 /* TS 29113, 407b. */
5384 else if (e->ts.type == BT_ASSUMED && e->ref
5385 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5386 && e->ref->next == NULL))
5387 {
5388 gfc_error ("Assumed-type variable %s at %L shall not have a subobject "
5389 "reference", sym->name, &e->ref->u.ar.where);
5390 return false;
5391 }
5392
5393 /* TS 29113, C535b. */
5394 if (((sym->ts.type == BT_CLASS && sym->attr.class_ok
5395 && CLASS_DATA (sym)->as
5396 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5397 || (sym->ts.type != BT_CLASS && sym->as
5398 && sym->as->type == AS_ASSUMED_RANK))
5399 && e->ref
5400 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5401 && e->ref->next == NULL))
5402 {
5403 gfc_error ("Assumed-rank variable %s at %L shall not have a subobject "
5404 "reference", sym->name, &e->ref->u.ar.where);
5405 return false;
5406 }
5407
5408 /* For variables that are used in an associate (target => object) where
5409 the object's basetype is array valued while the target is scalar,
5410 the ts' type of the component refs is still array valued, which
5411 can't be translated that way. */
5412 if (sym->assoc && e->rank == 0 && e->ref && sym->ts.type == BT_CLASS
5413 && sym->assoc->target && sym->assoc->target->ts.type == BT_CLASS
5414 && CLASS_DATA (sym->assoc->target)->as)
5415 {
5416 gfc_ref *ref = e->ref;
5417 while (ref)
5418 {
5419 switch (ref->type)
5420 {
5421 case REF_COMPONENT:
5422 ref->u.c.sym = sym->ts.u.derived;
5423 /* Stop the loop. */
5424 ref = NULL;
5425 break;
5426 default:
5427 ref = ref->next;
5428 break;
5429 }
5430 }
5431 }
5432
5433 /* If this is an associate-name, it may be parsed with an array reference
5434 in error even though the target is scalar. Fail directly in this case.
5435 TODO Understand why class scalar expressions must be excluded. */
5436 if (sym->assoc && !(sym->ts.type == BT_CLASS && e->rank == 0))
5437 {
5438 if (sym->ts.type == BT_CLASS)
5439 gfc_fix_class_refs (e);
5440 if (!sym->attr.dimension && e->ref && e->ref->type == REF_ARRAY)
5441 return false;
5442 else if (sym->attr.dimension && (!e->ref || e->ref->type != REF_ARRAY))
5443 {
5444 /* This can happen because the parser did not detect that the
5445 associate name is an array and the expression had no array
5446 part_ref. */
5447 gfc_ref *ref = gfc_get_ref ();
5448 ref->type = REF_ARRAY;
5449 ref->u.ar = *gfc_get_array_ref();
5450 ref->u.ar.type = AR_FULL;
5451 if (sym->as)
5452 {
5453 ref->u.ar.as = sym->as;
5454 ref->u.ar.dimen = sym->as->rank;
5455 }
5456 ref->next = e->ref;
5457 e->ref = ref;
5458
5459 }
5460 }
5461
5462 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.generic)
5463 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
5464
5465 /* On the other hand, the parser may not have known this is an array;
5466 in this case, we have to add a FULL reference. */
5467 if (sym->assoc && sym->attr.dimension && !e->ref)
5468 {
5469 e->ref = gfc_get_ref ();
5470 e->ref->type = REF_ARRAY;
5471 e->ref->u.ar.type = AR_FULL;
5472 e->ref->u.ar.dimen = 0;
5473 }
5474
5475 /* Like above, but for class types, where the checking whether an array
5476 ref is present is more complicated. Furthermore make sure not to add
5477 the full array ref to _vptr or _len refs. */
5478 if (sym->assoc && sym->ts.type == BT_CLASS
5479 && CLASS_DATA (sym)->attr.dimension
5480 && (e->ts.type != BT_DERIVED || !e->ts.u.derived->attr.vtype))
5481 {
5482 gfc_ref *ref, *newref;
5483
5484 newref = gfc_get_ref ();
5485 newref->type = REF_ARRAY;
5486 newref->u.ar.type = AR_FULL;
5487 newref->u.ar.dimen = 0;
5488 /* Because this is an associate var and the first ref either is a ref to
5489 the _data component or not, no traversal of the ref chain is
5490 needed. The array ref needs to be inserted after the _data ref,
5491 or when that is not present, which may happend for polymorphic
5492 types, then at the first position. */
5493 ref = e->ref;
5494 if (!ref)
5495 e->ref = newref;
5496 else if (ref->type == REF_COMPONENT
5497 && strcmp ("_data", ref->u.c.component->name) == 0)
5498 {
5499 if (!ref->next || ref->next->type != REF_ARRAY)
5500 {
5501 newref->next = ref->next;
5502 ref->next = newref;
5503 }
5504 else
5505 /* Array ref present already. */
5506 gfc_free_ref_list (newref);
5507 }
5508 else if (ref->type == REF_ARRAY)
5509 /* Array ref present already. */
5510 gfc_free_ref_list (newref);
5511 else
5512 {
5513 newref->next = ref;
5514 e->ref = newref;
5515 }
5516 }
5517
5518 if (e->ref && !resolve_ref (e))
5519 return false;
5520
5521 if (sym->attr.flavor == FL_PROCEDURE
5522 && (!sym->attr.function
5523 || (sym->attr.function && sym->result
5524 && sym->result->attr.proc_pointer
5525 && !sym->result->attr.function)))
5526 {
5527 e->ts.type = BT_PROCEDURE;
5528 goto resolve_procedure;
5529 }
5530
5531 if (sym->ts.type != BT_UNKNOWN)
5532 gfc_variable_attr (e, &e->ts);
5533 else if (sym->attr.flavor == FL_PROCEDURE
5534 && sym->attr.function && sym->result
5535 && sym->result->ts.type != BT_UNKNOWN
5536 && sym->result->attr.proc_pointer)
5537 e->ts = sym->result->ts;
5538 else
5539 {
5540 /* Must be a simple variable reference. */
5541 if (!gfc_set_default_type (sym, 1, sym->ns))
5542 return false;
5543 e->ts = sym->ts;
5544 }
5545
5546 if (check_assumed_size_reference (sym, e))
5547 return false;
5548
5549 /* Deal with forward references to entries during gfc_resolve_code, to
5550 satisfy, at least partially, 12.5.2.5. */
5551 if (gfc_current_ns->entries
5552 && current_entry_id == sym->entry_id
5553 && cs_base
5554 && cs_base->current
5555 && cs_base->current->op != EXEC_ENTRY)
5556 {
5557 gfc_entry_list *entry;
5558 gfc_formal_arglist *formal;
5559 int n;
5560 bool seen, saved_specification_expr;
5561
5562 /* If the symbol is a dummy... */
5563 if (sym->attr.dummy && sym->ns == gfc_current_ns)
5564 {
5565 entry = gfc_current_ns->entries;
5566 seen = false;
5567
5568 /* ...test if the symbol is a parameter of previous entries. */
5569 for (; entry && entry->id <= current_entry_id; entry = entry->next)
5570 for (formal = entry->sym->formal; formal; formal = formal->next)
5571 {
5572 if (formal->sym && sym->name == formal->sym->name)
5573 {
5574 seen = true;
5575 break;
5576 }
5577 }
5578
5579 /* If it has not been seen as a dummy, this is an error. */
5580 if (!seen)
5581 {
5582 if (specification_expr)
5583 gfc_error ("Variable %qs, used in a specification expression"
5584 ", is referenced at %L before the ENTRY statement "
5585 "in which it is a parameter",
5586 sym->name, &cs_base->current->loc);
5587 else
5588 gfc_error ("Variable %qs is used at %L before the ENTRY "
5589 "statement in which it is a parameter",
5590 sym->name, &cs_base->current->loc);
5591 t = false;
5592 }
5593 }
5594
5595 /* Now do the same check on the specification expressions. */
5596 saved_specification_expr = specification_expr;
5597 specification_expr = true;
5598 if (sym->ts.type == BT_CHARACTER
5599 && !gfc_resolve_expr (sym->ts.u.cl->length))
5600 t = false;
5601
5602 if (sym->as)
5603 for (n = 0; n < sym->as->rank; n++)
5604 {
5605 if (!gfc_resolve_expr (sym->as->lower[n]))
5606 t = false;
5607 if (!gfc_resolve_expr (sym->as->upper[n]))
5608 t = false;
5609 }
5610 specification_expr = saved_specification_expr;
5611
5612 if (t)
5613 /* Update the symbol's entry level. */
5614 sym->entry_id = current_entry_id + 1;
5615 }
5616
5617 /* If a symbol has been host_associated mark it. This is used latter,
5618 to identify if aliasing is possible via host association. */
5619 if (sym->attr.flavor == FL_VARIABLE
5620 && gfc_current_ns->parent
5621 && (gfc_current_ns->parent == sym->ns
5622 || (gfc_current_ns->parent->parent
5623 && gfc_current_ns->parent->parent == sym->ns)))
5624 sym->attr.host_assoc = 1;
5625
5626 if (gfc_current_ns->proc_name
5627 && sym->attr.dimension
5628 && (sym->ns != gfc_current_ns
5629 || sym->attr.use_assoc
5630 || sym->attr.in_common))
5631 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
5632
5633 resolve_procedure:
5634 if (t && !resolve_procedure_expression (e))
5635 t = false;
5636
5637 /* F2008, C617 and C1229. */
5638 if (!inquiry_argument && (e->ts.type == BT_CLASS || e->ts.type == BT_DERIVED)
5639 && gfc_is_coindexed (e))
5640 {
5641 gfc_ref *ref, *ref2 = NULL;
5642
5643 for (ref = e->ref; ref; ref = ref->next)
5644 {
5645 if (ref->type == REF_COMPONENT)
5646 ref2 = ref;
5647 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5648 break;
5649 }
5650
5651 for ( ; ref; ref = ref->next)
5652 if (ref->type == REF_COMPONENT)
5653 break;
5654
5655 /* Expression itself is not coindexed object. */
5656 if (ref && e->ts.type == BT_CLASS)
5657 {
5658 gfc_error ("Polymorphic subobject of coindexed object at %L",
5659 &e->where);
5660 t = false;
5661 }
5662
5663 /* Expression itself is coindexed object. */
5664 if (ref == NULL)
5665 {
5666 gfc_component *c;
5667 c = ref2 ? ref2->u.c.component : e->symtree->n.sym->components;
5668 for ( ; c; c = c->next)
5669 if (c->attr.allocatable && c->ts.type == BT_CLASS)
5670 {
5671 gfc_error ("Coindexed object with polymorphic allocatable "
5672 "subcomponent at %L", &e->where);
5673 t = false;
5674 break;
5675 }
5676 }
5677 }
5678
5679 if (t)
5680 expression_rank (e);
5681
5682 if (t && flag_coarray == GFC_FCOARRAY_LIB && gfc_is_coindexed (e))
5683 add_caf_get_intrinsic (e);
5684
5685 /* Simplify cases where access to a parameter array results in a
5686 single constant. Suppress errors since those will have been
5687 issued before, as warnings. */
5688 if (e->rank == 0 && sym->as && sym->attr.flavor == FL_PARAMETER)
5689 {
5690 gfc_push_suppress_errors ();
5691 gfc_simplify_expr (e, 1);
5692 gfc_pop_suppress_errors ();
5693 }
5694
5695 return t;
5696 }
5697
5698
5699 /* Checks to see that the correct symbol has been host associated.
5700 The only situation where this arises is that in which a twice
5701 contained function is parsed after the host association is made.
5702 Therefore, on detecting this, change the symbol in the expression
5703 and convert the array reference into an actual arglist if the old
5704 symbol is a variable. */
5705 static bool
5706 check_host_association (gfc_expr *e)
5707 {
5708 gfc_symbol *sym, *old_sym;
5709 gfc_symtree *st;
5710 int n;
5711 gfc_ref *ref;
5712 gfc_actual_arglist *arg, *tail = NULL;
5713 bool retval = e->expr_type == EXPR_FUNCTION;
5714
5715 /* If the expression is the result of substitution in
5716 interface.c(gfc_extend_expr) because there is no way in
5717 which the host association can be wrong. */
5718 if (e->symtree == NULL
5719 || e->symtree->n.sym == NULL
5720 || e->user_operator)
5721 return retval;
5722
5723 old_sym = e->symtree->n.sym;
5724
5725 if (gfc_current_ns->parent
5726 && old_sym->ns != gfc_current_ns)
5727 {
5728 /* Use the 'USE' name so that renamed module symbols are
5729 correctly handled. */
5730 gfc_find_symbol (e->symtree->name, gfc_current_ns, 1, &sym);
5731
5732 if (sym && old_sym != sym
5733 && sym->ts.type == old_sym->ts.type
5734 && sym->attr.flavor == FL_PROCEDURE
5735 && sym->attr.contained)
5736 {
5737 /* Clear the shape, since it might not be valid. */
5738 gfc_free_shape (&e->shape, e->rank);
5739
5740 /* Give the expression the right symtree! */
5741 gfc_find_sym_tree (e->symtree->name, NULL, 1, &st);
5742 gcc_assert (st != NULL);
5743
5744 if (old_sym->attr.flavor == FL_PROCEDURE
5745 || e->expr_type == EXPR_FUNCTION)
5746 {
5747 /* Original was function so point to the new symbol, since
5748 the actual argument list is already attached to the
5749 expression. */
5750 e->value.function.esym = NULL;
5751 e->symtree = st;
5752 }
5753 else
5754 {
5755 /* Original was variable so convert array references into
5756 an actual arglist. This does not need any checking now
5757 since resolve_function will take care of it. */
5758 e->value.function.actual = NULL;
5759 e->expr_type = EXPR_FUNCTION;
5760 e->symtree = st;
5761
5762 /* Ambiguity will not arise if the array reference is not
5763 the last reference. */
5764 for (ref = e->ref; ref; ref = ref->next)
5765 if (ref->type == REF_ARRAY && ref->next == NULL)
5766 break;
5767
5768 gcc_assert (ref->type == REF_ARRAY);
5769
5770 /* Grab the start expressions from the array ref and
5771 copy them into actual arguments. */
5772 for (n = 0; n < ref->u.ar.dimen; n++)
5773 {
5774 arg = gfc_get_actual_arglist ();
5775 arg->expr = gfc_copy_expr (ref->u.ar.start[n]);
5776 if (e->value.function.actual == NULL)
5777 tail = e->value.function.actual = arg;
5778 else
5779 {
5780 tail->next = arg;
5781 tail = arg;
5782 }
5783 }
5784
5785 /* Dump the reference list and set the rank. */
5786 gfc_free_ref_list (e->ref);
5787 e->ref = NULL;
5788 e->rank = sym->as ? sym->as->rank : 0;
5789 }
5790
5791 gfc_resolve_expr (e);
5792 sym->refs++;
5793 }
5794 }
5795 /* This might have changed! */
5796 return e->expr_type == EXPR_FUNCTION;
5797 }
5798
5799
5800 static void
5801 gfc_resolve_character_operator (gfc_expr *e)
5802 {
5803 gfc_expr *op1 = e->value.op.op1;
5804 gfc_expr *op2 = e->value.op.op2;
5805 gfc_expr *e1 = NULL;
5806 gfc_expr *e2 = NULL;
5807
5808 gcc_assert (e->value.op.op == INTRINSIC_CONCAT);
5809
5810 if (op1->ts.u.cl && op1->ts.u.cl->length)
5811 e1 = gfc_copy_expr (op1->ts.u.cl->length);
5812 else if (op1->expr_type == EXPR_CONSTANT)
5813 e1 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5814 op1->value.character.length);
5815
5816 if (op2->ts.u.cl && op2->ts.u.cl->length)
5817 e2 = gfc_copy_expr (op2->ts.u.cl->length);
5818 else if (op2->expr_type == EXPR_CONSTANT)
5819 e2 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5820 op2->value.character.length);
5821
5822 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5823
5824 if (!e1 || !e2)
5825 {
5826 gfc_free_expr (e1);
5827 gfc_free_expr (e2);
5828
5829 return;
5830 }
5831
5832 e->ts.u.cl->length = gfc_add (e1, e2);
5833 e->ts.u.cl->length->ts.type = BT_INTEGER;
5834 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5835 gfc_simplify_expr (e->ts.u.cl->length, 0);
5836 gfc_resolve_expr (e->ts.u.cl->length);
5837
5838 return;
5839 }
5840
5841
5842 /* Ensure that an character expression has a charlen and, if possible, a
5843 length expression. */
5844
5845 static void
5846 fixup_charlen (gfc_expr *e)
5847 {
5848 /* The cases fall through so that changes in expression type and the need
5849 for multiple fixes are picked up. In all circumstances, a charlen should
5850 be available for the middle end to hang a backend_decl on. */
5851 switch (e->expr_type)
5852 {
5853 case EXPR_OP:
5854 gfc_resolve_character_operator (e);
5855 /* FALLTHRU */
5856
5857 case EXPR_ARRAY:
5858 if (e->expr_type == EXPR_ARRAY)
5859 gfc_resolve_character_array_constructor (e);
5860 /* FALLTHRU */
5861
5862 case EXPR_SUBSTRING:
5863 if (!e->ts.u.cl && e->ref)
5864 gfc_resolve_substring_charlen (e);
5865 /* FALLTHRU */
5866
5867 default:
5868 if (!e->ts.u.cl)
5869 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5870
5871 break;
5872 }
5873 }
5874
5875
5876 /* Update an actual argument to include the passed-object for type-bound
5877 procedures at the right position. */
5878
5879 static gfc_actual_arglist*
5880 update_arglist_pass (gfc_actual_arglist* lst, gfc_expr* po, unsigned argpos,
5881 const char *name)
5882 {
5883 gcc_assert (argpos > 0);
5884
5885 if (argpos == 1)
5886 {
5887 gfc_actual_arglist* result;
5888
5889 result = gfc_get_actual_arglist ();
5890 result->expr = po;
5891 result->next = lst;
5892 if (name)
5893 result->name = name;
5894
5895 return result;
5896 }
5897
5898 if (lst)
5899 lst->next = update_arglist_pass (lst->next, po, argpos - 1, name);
5900 else
5901 lst = update_arglist_pass (NULL, po, argpos - 1, name);
5902 return lst;
5903 }
5904
5905
5906 /* Extract the passed-object from an EXPR_COMPCALL (a copy of it). */
5907
5908 static gfc_expr*
5909 extract_compcall_passed_object (gfc_expr* e)
5910 {
5911 gfc_expr* po;
5912
5913 gcc_assert (e->expr_type == EXPR_COMPCALL);
5914
5915 if (e->value.compcall.base_object)
5916 po = gfc_copy_expr (e->value.compcall.base_object);
5917 else
5918 {
5919 po = gfc_get_expr ();
5920 po->expr_type = EXPR_VARIABLE;
5921 po->symtree = e->symtree;
5922 po->ref = gfc_copy_ref (e->ref);
5923 po->where = e->where;
5924 }
5925
5926 if (!gfc_resolve_expr (po))
5927 return NULL;
5928
5929 return po;
5930 }
5931
5932
5933 /* Update the arglist of an EXPR_COMPCALL expression to include the
5934 passed-object. */
5935
5936 static bool
5937 update_compcall_arglist (gfc_expr* e)
5938 {
5939 gfc_expr* po;
5940 gfc_typebound_proc* tbp;
5941
5942 tbp = e->value.compcall.tbp;
5943
5944 if (tbp->error)
5945 return false;
5946
5947 po = extract_compcall_passed_object (e);
5948 if (!po)
5949 return false;
5950
5951 if (tbp->nopass || e->value.compcall.ignore_pass)
5952 {
5953 gfc_free_expr (po);
5954 return true;
5955 }
5956
5957 if (tbp->pass_arg_num <= 0)
5958 return false;
5959
5960 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
5961 tbp->pass_arg_num,
5962 tbp->pass_arg);
5963
5964 return true;
5965 }
5966
5967
5968 /* Extract the passed object from a PPC call (a copy of it). */
5969
5970 static gfc_expr*
5971 extract_ppc_passed_object (gfc_expr *e)
5972 {
5973 gfc_expr *po;
5974 gfc_ref **ref;
5975
5976 po = gfc_get_expr ();
5977 po->expr_type = EXPR_VARIABLE;
5978 po->symtree = e->symtree;
5979 po->ref = gfc_copy_ref (e->ref);
5980 po->where = e->where;
5981
5982 /* Remove PPC reference. */
5983 ref = &po->ref;
5984 while ((*ref)->next)
5985 ref = &(*ref)->next;
5986 gfc_free_ref_list (*ref);
5987 *ref = NULL;
5988
5989 if (!gfc_resolve_expr (po))
5990 return NULL;
5991
5992 return po;
5993 }
5994
5995
5996 /* Update the actual arglist of a procedure pointer component to include the
5997 passed-object. */
5998
5999 static bool
6000 update_ppc_arglist (gfc_expr* e)
6001 {
6002 gfc_expr* po;
6003 gfc_component *ppc;
6004 gfc_typebound_proc* tb;
6005
6006 ppc = gfc_get_proc_ptr_comp (e);
6007 if (!ppc)
6008 return false;
6009
6010 tb = ppc->tb;
6011
6012 if (tb->error)
6013 return false;
6014 else if (tb->nopass)
6015 return true;
6016
6017 po = extract_ppc_passed_object (e);
6018 if (!po)
6019 return false;
6020
6021 /* F08:R739. */
6022 if (po->rank != 0)
6023 {
6024 gfc_error ("Passed-object at %L must be scalar", &e->where);
6025 return false;
6026 }
6027
6028 /* F08:C611. */
6029 if (po->ts.type == BT_DERIVED && po->ts.u.derived->attr.abstract)
6030 {
6031 gfc_error ("Base object for procedure-pointer component call at %L is of"
6032 " ABSTRACT type %qs", &e->where, po->ts.u.derived->name);
6033 return false;
6034 }
6035
6036 gcc_assert (tb->pass_arg_num > 0);
6037 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
6038 tb->pass_arg_num,
6039 tb->pass_arg);
6040
6041 return true;
6042 }
6043
6044
6045 /* Check that the object a TBP is called on is valid, i.e. it must not be
6046 of ABSTRACT type (as in subobject%abstract_parent%tbp()). */
6047
6048 static bool
6049 check_typebound_baseobject (gfc_expr* e)
6050 {
6051 gfc_expr* base;
6052 bool return_value = false;
6053
6054 base = extract_compcall_passed_object (e);
6055 if (!base)
6056 return false;
6057
6058 gcc_assert (base->ts.type == BT_DERIVED || base->ts.type == BT_CLASS);
6059
6060 if (base->ts.type == BT_CLASS && !gfc_expr_attr (base).class_ok)
6061 return false;
6062
6063 /* F08:C611. */
6064 if (base->ts.type == BT_DERIVED && base->ts.u.derived->attr.abstract)
6065 {
6066 gfc_error ("Base object for type-bound procedure call at %L is of"
6067 " ABSTRACT type %qs", &e->where, base->ts.u.derived->name);
6068 goto cleanup;
6069 }
6070
6071 /* F08:C1230. If the procedure called is NOPASS,
6072 the base object must be scalar. */
6073 if (e->value.compcall.tbp->nopass && base->rank != 0)
6074 {
6075 gfc_error ("Base object for NOPASS type-bound procedure call at %L must"
6076 " be scalar", &e->where);
6077 goto cleanup;
6078 }
6079
6080 return_value = true;
6081
6082 cleanup:
6083 gfc_free_expr (base);
6084 return return_value;
6085 }
6086
6087
6088 /* Resolve a call to a type-bound procedure, either function or subroutine,
6089 statically from the data in an EXPR_COMPCALL expression. The adapted
6090 arglist and the target-procedure symtree are returned. */
6091
6092 static bool
6093 resolve_typebound_static (gfc_expr* e, gfc_symtree** target,
6094 gfc_actual_arglist** actual)
6095 {
6096 gcc_assert (e->expr_type == EXPR_COMPCALL);
6097 gcc_assert (!e->value.compcall.tbp->is_generic);
6098
6099 /* Update the actual arglist for PASS. */
6100 if (!update_compcall_arglist (e))
6101 return false;
6102
6103 *actual = e->value.compcall.actual;
6104 *target = e->value.compcall.tbp->u.specific;
6105
6106 gfc_free_ref_list (e->ref);
6107 e->ref = NULL;
6108 e->value.compcall.actual = NULL;
6109
6110 /* If we find a deferred typebound procedure, check for derived types
6111 that an overriding typebound procedure has not been missed. */
6112 if (e->value.compcall.name
6113 && !e->value.compcall.tbp->non_overridable
6114 && e->value.compcall.base_object
6115 && e->value.compcall.base_object->ts.type == BT_DERIVED)
6116 {
6117 gfc_symtree *st;
6118 gfc_symbol *derived;
6119
6120 /* Use the derived type of the base_object. */
6121 derived = e->value.compcall.base_object->ts.u.derived;
6122 st = NULL;
6123
6124 /* If necessary, go through the inheritance chain. */
6125 while (!st && derived)
6126 {
6127 /* Look for the typebound procedure 'name'. */
6128 if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
6129 st = gfc_find_symtree (derived->f2k_derived->tb_sym_root,
6130 e->value.compcall.name);
6131 if (!st)
6132 derived = gfc_get_derived_super_type (derived);
6133 }
6134
6135 /* Now find the specific name in the derived type namespace. */
6136 if (st && st->n.tb && st->n.tb->u.specific)
6137 gfc_find_sym_tree (st->n.tb->u.specific->name,
6138 derived->ns, 1, &st);
6139 if (st)
6140 *target = st;
6141 }
6142 return true;
6143 }
6144
6145
6146 /* Get the ultimate declared type from an expression. In addition,
6147 return the last class/derived type reference and the copy of the
6148 reference list. If check_types is set true, derived types are
6149 identified as well as class references. */
6150 static gfc_symbol*
6151 get_declared_from_expr (gfc_ref **class_ref, gfc_ref **new_ref,
6152 gfc_expr *e, bool check_types)
6153 {
6154 gfc_symbol *declared;
6155 gfc_ref *ref;
6156
6157 declared = NULL;
6158 if (class_ref)
6159 *class_ref = NULL;
6160 if (new_ref)
6161 *new_ref = gfc_copy_ref (e->ref);
6162
6163 for (ref = e->ref; ref; ref = ref->next)
6164 {
6165 if (ref->type != REF_COMPONENT)
6166 continue;
6167
6168 if ((ref->u.c.component->ts.type == BT_CLASS
6169 || (check_types && gfc_bt_struct (ref->u.c.component->ts.type)))
6170 && ref->u.c.component->attr.flavor != FL_PROCEDURE)
6171 {
6172 declared = ref->u.c.component->ts.u.derived;
6173 if (class_ref)
6174 *class_ref = ref;
6175 }
6176 }
6177
6178 if (declared == NULL)
6179 declared = e->symtree->n.sym->ts.u.derived;
6180
6181 return declared;
6182 }
6183
6184
6185 /* Given an EXPR_COMPCALL calling a GENERIC typebound procedure, figure out
6186 which of the specific bindings (if any) matches the arglist and transform
6187 the expression into a call of that binding. */
6188
6189 static bool
6190 resolve_typebound_generic_call (gfc_expr* e, const char **name)
6191 {
6192 gfc_typebound_proc* genproc;
6193 const char* genname;
6194 gfc_symtree *st;
6195 gfc_symbol *derived;
6196
6197 gcc_assert (e->expr_type == EXPR_COMPCALL);
6198 genname = e->value.compcall.name;
6199 genproc = e->value.compcall.tbp;
6200
6201 if (!genproc->is_generic)
6202 return true;
6203
6204 /* Try the bindings on this type and in the inheritance hierarchy. */
6205 for (; genproc; genproc = genproc->overridden)
6206 {
6207 gfc_tbp_generic* g;
6208
6209 gcc_assert (genproc->is_generic);
6210 for (g = genproc->u.generic; g; g = g->next)
6211 {
6212 gfc_symbol* target;
6213 gfc_actual_arglist* args;
6214 bool matches;
6215
6216 gcc_assert (g->specific);
6217
6218 if (g->specific->error)
6219 continue;
6220
6221 target = g->specific->u.specific->n.sym;
6222
6223 /* Get the right arglist by handling PASS/NOPASS. */
6224 args = gfc_copy_actual_arglist (e->value.compcall.actual);
6225 if (!g->specific->nopass)
6226 {
6227 gfc_expr* po;
6228 po = extract_compcall_passed_object (e);
6229 if (!po)
6230 {
6231 gfc_free_actual_arglist (args);
6232 return false;
6233 }
6234
6235 gcc_assert (g->specific->pass_arg_num > 0);
6236 gcc_assert (!g->specific->error);
6237 args = update_arglist_pass (args, po, g->specific->pass_arg_num,
6238 g->specific->pass_arg);
6239 }
6240 resolve_actual_arglist (args, target->attr.proc,
6241 is_external_proc (target)
6242 && gfc_sym_get_dummy_args (target) == NULL);
6243
6244 /* Check if this arglist matches the formal. */
6245 matches = gfc_arglist_matches_symbol (&args, target);
6246
6247 /* Clean up and break out of the loop if we've found it. */
6248 gfc_free_actual_arglist (args);
6249 if (matches)
6250 {
6251 e->value.compcall.tbp = g->specific;
6252 genname = g->specific_st->name;
6253 /* Pass along the name for CLASS methods, where the vtab
6254 procedure pointer component has to be referenced. */
6255 if (name)
6256 *name = genname;
6257 goto success;
6258 }
6259 }
6260 }
6261
6262 /* Nothing matching found! */
6263 gfc_error ("Found no matching specific binding for the call to the GENERIC"
6264 " %qs at %L", genname, &e->where);
6265 return false;
6266
6267 success:
6268 /* Make sure that we have the right specific instance for the name. */
6269 derived = get_declared_from_expr (NULL, NULL, e, true);
6270
6271 st = gfc_find_typebound_proc (derived, NULL, genname, true, &e->where);
6272 if (st)
6273 e->value.compcall.tbp = st->n.tb;
6274
6275 return true;
6276 }
6277
6278
6279 /* Resolve a call to a type-bound subroutine. */
6280
6281 static bool
6282 resolve_typebound_call (gfc_code* c, const char **name, bool *overridable)
6283 {
6284 gfc_actual_arglist* newactual;
6285 gfc_symtree* target;
6286
6287 /* Check that's really a SUBROUTINE. */
6288 if (!c->expr1->value.compcall.tbp->subroutine)
6289 {
6290 if (!c->expr1->value.compcall.tbp->is_generic
6291 && c->expr1->value.compcall.tbp->u.specific
6292 && c->expr1->value.compcall.tbp->u.specific->n.sym
6293 && c->expr1->value.compcall.tbp->u.specific->n.sym->attr.subroutine)
6294 c->expr1->value.compcall.tbp->subroutine = 1;
6295 else
6296 {
6297 gfc_error ("%qs at %L should be a SUBROUTINE",
6298 c->expr1->value.compcall.name, &c->loc);
6299 return false;
6300 }
6301 }
6302
6303 if (!check_typebound_baseobject (c->expr1))
6304 return false;
6305
6306 /* Pass along the name for CLASS methods, where the vtab
6307 procedure pointer component has to be referenced. */
6308 if (name)
6309 *name = c->expr1->value.compcall.name;
6310
6311 if (!resolve_typebound_generic_call (c->expr1, name))
6312 return false;
6313
6314 /* Pass along the NON_OVERRIDABLE attribute of the specific TBP. */
6315 if (overridable)
6316 *overridable = !c->expr1->value.compcall.tbp->non_overridable;
6317
6318 /* Transform into an ordinary EXEC_CALL for now. */
6319
6320 if (!resolve_typebound_static (c->expr1, &target, &newactual))
6321 return false;
6322
6323 c->ext.actual = newactual;
6324 c->symtree = target;
6325 c->op = (c->expr1->value.compcall.assign ? EXEC_ASSIGN_CALL : EXEC_CALL);
6326
6327 gcc_assert (!c->expr1->ref && !c->expr1->value.compcall.actual);
6328
6329 gfc_free_expr (c->expr1);
6330 c->expr1 = gfc_get_expr ();
6331 c->expr1->expr_type = EXPR_FUNCTION;
6332 c->expr1->symtree = target;
6333 c->expr1->where = c->loc;
6334
6335 return resolve_call (c);
6336 }
6337
6338
6339 /* Resolve a component-call expression. */
6340 static bool
6341 resolve_compcall (gfc_expr* e, const char **name)
6342 {
6343 gfc_actual_arglist* newactual;
6344 gfc_symtree* target;
6345
6346 /* Check that's really a FUNCTION. */
6347 if (!e->value.compcall.tbp->function)
6348 {
6349 gfc_error ("%qs at %L should be a FUNCTION",
6350 e->value.compcall.name, &e->where);
6351 return false;
6352 }
6353
6354 /* These must not be assign-calls! */
6355 gcc_assert (!e->value.compcall.assign);
6356
6357 if (!check_typebound_baseobject (e))
6358 return false;
6359
6360 /* Pass along the name for CLASS methods, where the vtab
6361 procedure pointer component has to be referenced. */
6362 if (name)
6363 *name = e->value.compcall.name;
6364
6365 if (!resolve_typebound_generic_call (e, name))
6366 return false;
6367 gcc_assert (!e->value.compcall.tbp->is_generic);
6368
6369 /* Take the rank from the function's symbol. */
6370 if (e->value.compcall.tbp->u.specific->n.sym->as)
6371 e->rank = e->value.compcall.tbp->u.specific->n.sym->as->rank;
6372
6373 /* For now, we simply transform it into an EXPR_FUNCTION call with the same
6374 arglist to the TBP's binding target. */
6375
6376 if (!resolve_typebound_static (e, &target, &newactual))
6377 return false;
6378
6379 e->value.function.actual = newactual;
6380 e->value.function.name = NULL;
6381 e->value.function.esym = target->n.sym;
6382 e->value.function.isym = NULL;
6383 e->symtree = target;
6384 e->ts = target->n.sym->ts;
6385 e->expr_type = EXPR_FUNCTION;
6386
6387 /* Resolution is not necessary if this is a class subroutine; this
6388 function only has to identify the specific proc. Resolution of
6389 the call will be done next in resolve_typebound_call. */
6390 return gfc_resolve_expr (e);
6391 }
6392
6393
6394 static bool resolve_fl_derived (gfc_symbol *sym);
6395
6396
6397 /* Resolve a typebound function, or 'method'. First separate all
6398 the non-CLASS references by calling resolve_compcall directly. */
6399
6400 static bool
6401 resolve_typebound_function (gfc_expr* e)
6402 {
6403 gfc_symbol *declared;
6404 gfc_component *c;
6405 gfc_ref *new_ref;
6406 gfc_ref *class_ref;
6407 gfc_symtree *st;
6408 const char *name;
6409 gfc_typespec ts;
6410 gfc_expr *expr;
6411 bool overridable;
6412
6413 st = e->symtree;
6414
6415 /* Deal with typebound operators for CLASS objects. */
6416 expr = e->value.compcall.base_object;
6417 overridable = !e->value.compcall.tbp->non_overridable;
6418 if (expr && expr->ts.type == BT_CLASS && e->value.compcall.name)
6419 {
6420 /* If the base_object is not a variable, the corresponding actual
6421 argument expression must be stored in e->base_expression so
6422 that the corresponding tree temporary can be used as the base
6423 object in gfc_conv_procedure_call. */
6424 if (expr->expr_type != EXPR_VARIABLE)
6425 {
6426 gfc_actual_arglist *args;
6427
6428 for (args= e->value.function.actual; args; args = args->next)
6429 {
6430 if (expr == args->expr)
6431 expr = args->expr;
6432 }
6433 }
6434
6435 /* Since the typebound operators are generic, we have to ensure
6436 that any delays in resolution are corrected and that the vtab
6437 is present. */
6438 ts = expr->ts;
6439 declared = ts.u.derived;
6440 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6441 if (c->ts.u.derived == NULL)
6442 c->ts.u.derived = gfc_find_derived_vtab (declared);
6443
6444 if (!resolve_compcall (e, &name))
6445 return false;
6446
6447 /* Use the generic name if it is there. */
6448 name = name ? name : e->value.function.esym->name;
6449 e->symtree = expr->symtree;
6450 e->ref = gfc_copy_ref (expr->ref);
6451 get_declared_from_expr (&class_ref, NULL, e, false);
6452
6453 /* Trim away the extraneous references that emerge from nested
6454 use of interface.c (extend_expr). */
6455 if (class_ref && class_ref->next)
6456 {
6457 gfc_free_ref_list (class_ref->next);
6458 class_ref->next = NULL;
6459 }
6460 else if (e->ref && !class_ref && expr->ts.type != BT_CLASS)
6461 {
6462 gfc_free_ref_list (e->ref);
6463 e->ref = NULL;
6464 }
6465
6466 gfc_add_vptr_component (e);
6467 gfc_add_component_ref (e, name);
6468 e->value.function.esym = NULL;
6469 if (expr->expr_type != EXPR_VARIABLE)
6470 e->base_expr = expr;
6471 return true;
6472 }
6473
6474 if (st == NULL)
6475 return resolve_compcall (e, NULL);
6476
6477 if (!resolve_ref (e))
6478 return false;
6479
6480 /* Get the CLASS declared type. */
6481 declared = get_declared_from_expr (&class_ref, &new_ref, e, true);
6482
6483 if (!resolve_fl_derived (declared))
6484 return false;
6485
6486 /* Weed out cases of the ultimate component being a derived type. */
6487 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6488 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6489 {
6490 gfc_free_ref_list (new_ref);
6491 return resolve_compcall (e, NULL);
6492 }
6493
6494 c = gfc_find_component (declared, "_data", true, true, NULL);
6495 declared = c->ts.u.derived;
6496
6497 /* Treat the call as if it is a typebound procedure, in order to roll
6498 out the correct name for the specific function. */
6499 if (!resolve_compcall (e, &name))
6500 {
6501 gfc_free_ref_list (new_ref);
6502 return false;
6503 }
6504 ts = e->ts;
6505
6506 if (overridable)
6507 {
6508 /* Convert the expression to a procedure pointer component call. */
6509 e->value.function.esym = NULL;
6510 e->symtree = st;
6511
6512 if (new_ref)
6513 e->ref = new_ref;
6514
6515 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6516 gfc_add_vptr_component (e);
6517 gfc_add_component_ref (e, name);
6518
6519 /* Recover the typespec for the expression. This is really only
6520 necessary for generic procedures, where the additional call
6521 to gfc_add_component_ref seems to throw the collection of the
6522 correct typespec. */
6523 e->ts = ts;
6524 }
6525 else if (new_ref)
6526 gfc_free_ref_list (new_ref);
6527
6528 return true;
6529 }
6530
6531 /* Resolve a typebound subroutine, or 'method'. First separate all
6532 the non-CLASS references by calling resolve_typebound_call
6533 directly. */
6534
6535 static bool
6536 resolve_typebound_subroutine (gfc_code *code)
6537 {
6538 gfc_symbol *declared;
6539 gfc_component *c;
6540 gfc_ref *new_ref;
6541 gfc_ref *class_ref;
6542 gfc_symtree *st;
6543 const char *name;
6544 gfc_typespec ts;
6545 gfc_expr *expr;
6546 bool overridable;
6547
6548 st = code->expr1->symtree;
6549
6550 /* Deal with typebound operators for CLASS objects. */
6551 expr = code->expr1->value.compcall.base_object;
6552 overridable = !code->expr1->value.compcall.tbp->non_overridable;
6553 if (expr && expr->ts.type == BT_CLASS && code->expr1->value.compcall.name)
6554 {
6555 /* If the base_object is not a variable, the corresponding actual
6556 argument expression must be stored in e->base_expression so
6557 that the corresponding tree temporary can be used as the base
6558 object in gfc_conv_procedure_call. */
6559 if (expr->expr_type != EXPR_VARIABLE)
6560 {
6561 gfc_actual_arglist *args;
6562
6563 args= code->expr1->value.function.actual;
6564 for (; args; args = args->next)
6565 if (expr == args->expr)
6566 expr = args->expr;
6567 }
6568
6569 /* Since the typebound operators are generic, we have to ensure
6570 that any delays in resolution are corrected and that the vtab
6571 is present. */
6572 declared = expr->ts.u.derived;
6573 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6574 if (c->ts.u.derived == NULL)
6575 c->ts.u.derived = gfc_find_derived_vtab (declared);
6576
6577 if (!resolve_typebound_call (code, &name, NULL))
6578 return false;
6579
6580 /* Use the generic name if it is there. */
6581 name = name ? name : code->expr1->value.function.esym->name;
6582 code->expr1->symtree = expr->symtree;
6583 code->expr1->ref = gfc_copy_ref (expr->ref);
6584
6585 /* Trim away the extraneous references that emerge from nested
6586 use of interface.c (extend_expr). */
6587 get_declared_from_expr (&class_ref, NULL, code->expr1, false);
6588 if (class_ref && class_ref->next)
6589 {
6590 gfc_free_ref_list (class_ref->next);
6591 class_ref->next = NULL;
6592 }
6593 else if (code->expr1->ref && !class_ref)
6594 {
6595 gfc_free_ref_list (code->expr1->ref);
6596 code->expr1->ref = NULL;
6597 }
6598
6599 /* Now use the procedure in the vtable. */
6600 gfc_add_vptr_component (code->expr1);
6601 gfc_add_component_ref (code->expr1, name);
6602 code->expr1->value.function.esym = NULL;
6603 if (expr->expr_type != EXPR_VARIABLE)
6604 code->expr1->base_expr = expr;
6605 return true;
6606 }
6607
6608 if (st == NULL)
6609 return resolve_typebound_call (code, NULL, NULL);
6610
6611 if (!resolve_ref (code->expr1))
6612 return false;
6613
6614 /* Get the CLASS declared type. */
6615 get_declared_from_expr (&class_ref, &new_ref, code->expr1, true);
6616
6617 /* Weed out cases of the ultimate component being a derived type. */
6618 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6619 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6620 {
6621 gfc_free_ref_list (new_ref);
6622 return resolve_typebound_call (code, NULL, NULL);
6623 }
6624
6625 if (!resolve_typebound_call (code, &name, &overridable))
6626 {
6627 gfc_free_ref_list (new_ref);
6628 return false;
6629 }
6630 ts = code->expr1->ts;
6631
6632 if (overridable)
6633 {
6634 /* Convert the expression to a procedure pointer component call. */
6635 code->expr1->value.function.esym = NULL;
6636 code->expr1->symtree = st;
6637
6638 if (new_ref)
6639 code->expr1->ref = new_ref;
6640
6641 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6642 gfc_add_vptr_component (code->expr1);
6643 gfc_add_component_ref (code->expr1, name);
6644
6645 /* Recover the typespec for the expression. This is really only
6646 necessary for generic procedures, where the additional call
6647 to gfc_add_component_ref seems to throw the collection of the
6648 correct typespec. */
6649 code->expr1->ts = ts;
6650 }
6651 else if (new_ref)
6652 gfc_free_ref_list (new_ref);
6653
6654 return true;
6655 }
6656
6657
6658 /* Resolve a CALL to a Procedure Pointer Component (Subroutine). */
6659
6660 static bool
6661 resolve_ppc_call (gfc_code* c)
6662 {
6663 gfc_component *comp;
6664
6665 comp = gfc_get_proc_ptr_comp (c->expr1);
6666 gcc_assert (comp != NULL);
6667
6668 c->resolved_sym = c->expr1->symtree->n.sym;
6669 c->expr1->expr_type = EXPR_VARIABLE;
6670
6671 if (!comp->attr.subroutine)
6672 gfc_add_subroutine (&comp->attr, comp->name, &c->expr1->where);
6673
6674 if (!resolve_ref (c->expr1))
6675 return false;
6676
6677 if (!update_ppc_arglist (c->expr1))
6678 return false;
6679
6680 c->ext.actual = c->expr1->value.compcall.actual;
6681
6682 if (!resolve_actual_arglist (c->ext.actual, comp->attr.proc,
6683 !(comp->ts.interface
6684 && comp->ts.interface->formal)))
6685 return false;
6686
6687 if (!pure_subroutine (comp->ts.interface, comp->name, &c->expr1->where))
6688 return false;
6689
6690 gfc_ppc_use (comp, &c->expr1->value.compcall.actual, &c->expr1->where);
6691
6692 return true;
6693 }
6694
6695
6696 /* Resolve a Function Call to a Procedure Pointer Component (Function). */
6697
6698 static bool
6699 resolve_expr_ppc (gfc_expr* e)
6700 {
6701 gfc_component *comp;
6702
6703 comp = gfc_get_proc_ptr_comp (e);
6704 gcc_assert (comp != NULL);
6705
6706 /* Convert to EXPR_FUNCTION. */
6707 e->expr_type = EXPR_FUNCTION;
6708 e->value.function.isym = NULL;
6709 e->value.function.actual = e->value.compcall.actual;
6710 e->ts = comp->ts;
6711 if (comp->as != NULL)
6712 e->rank = comp->as->rank;
6713
6714 if (!comp->attr.function)
6715 gfc_add_function (&comp->attr, comp->name, &e->where);
6716
6717 if (!resolve_ref (e))
6718 return false;
6719
6720 if (!resolve_actual_arglist (e->value.function.actual, comp->attr.proc,
6721 !(comp->ts.interface
6722 && comp->ts.interface->formal)))
6723 return false;
6724
6725 if (!update_ppc_arglist (e))
6726 return false;
6727
6728 if (!check_pure_function(e))
6729 return false;
6730
6731 gfc_ppc_use (comp, &e->value.compcall.actual, &e->where);
6732
6733 return true;
6734 }
6735
6736
6737 static bool
6738 gfc_is_expandable_expr (gfc_expr *e)
6739 {
6740 gfc_constructor *con;
6741
6742 if (e->expr_type == EXPR_ARRAY)
6743 {
6744 /* Traverse the constructor looking for variables that are flavor
6745 parameter. Parameters must be expanded since they are fully used at
6746 compile time. */
6747 con = gfc_constructor_first (e->value.constructor);
6748 for (; con; con = gfc_constructor_next (con))
6749 {
6750 if (con->expr->expr_type == EXPR_VARIABLE
6751 && con->expr->symtree
6752 && (con->expr->symtree->n.sym->attr.flavor == FL_PARAMETER
6753 || con->expr->symtree->n.sym->attr.flavor == FL_VARIABLE))
6754 return true;
6755 if (con->expr->expr_type == EXPR_ARRAY
6756 && gfc_is_expandable_expr (con->expr))
6757 return true;
6758 }
6759 }
6760
6761 return false;
6762 }
6763
6764
6765 /* Sometimes variables in specification expressions of the result
6766 of module procedures in submodules wind up not being the 'real'
6767 dummy. Find this, if possible, in the namespace of the first
6768 formal argument. */
6769
6770 static void
6771 fixup_unique_dummy (gfc_expr *e)
6772 {
6773 gfc_symtree *st = NULL;
6774 gfc_symbol *s = NULL;
6775
6776 if (e->symtree->n.sym->ns->proc_name
6777 && e->symtree->n.sym->ns->proc_name->formal)
6778 s = e->symtree->n.sym->ns->proc_name->formal->sym;
6779
6780 if (s != NULL)
6781 st = gfc_find_symtree (s->ns->sym_root, e->symtree->n.sym->name);
6782
6783 if (st != NULL
6784 && st->n.sym != NULL
6785 && st->n.sym->attr.dummy)
6786 e->symtree = st;
6787 }
6788
6789 /* Resolve an expression. That is, make sure that types of operands agree
6790 with their operators, intrinsic operators are converted to function calls
6791 for overloaded types and unresolved function references are resolved. */
6792
6793 bool
6794 gfc_resolve_expr (gfc_expr *e)
6795 {
6796 bool t;
6797 bool inquiry_save, actual_arg_save, first_actual_arg_save;
6798
6799 if (e == NULL)
6800 return true;
6801
6802 /* inquiry_argument only applies to variables. */
6803 inquiry_save = inquiry_argument;
6804 actual_arg_save = actual_arg;
6805 first_actual_arg_save = first_actual_arg;
6806
6807 if (e->expr_type != EXPR_VARIABLE)
6808 {
6809 inquiry_argument = false;
6810 actual_arg = false;
6811 first_actual_arg = false;
6812 }
6813 else if (e->symtree != NULL
6814 && *e->symtree->name == '@'
6815 && e->symtree->n.sym->attr.dummy)
6816 {
6817 /* Deal with submodule specification expressions that are not
6818 found to be referenced in module.c(read_cleanup). */
6819 fixup_unique_dummy (e);
6820 }
6821
6822 switch (e->expr_type)
6823 {
6824 case EXPR_OP:
6825 t = resolve_operator (e);
6826 break;
6827
6828 case EXPR_FUNCTION:
6829 case EXPR_VARIABLE:
6830
6831 if (check_host_association (e))
6832 t = resolve_function (e);
6833 else
6834 t = resolve_variable (e);
6835
6836 if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL && e->ref
6837 && e->ref->type != REF_SUBSTRING)
6838 gfc_resolve_substring_charlen (e);
6839
6840 break;
6841
6842 case EXPR_COMPCALL:
6843 t = resolve_typebound_function (e);
6844 break;
6845
6846 case EXPR_SUBSTRING:
6847 t = resolve_ref (e);
6848 break;
6849
6850 case EXPR_CONSTANT:
6851 case EXPR_NULL:
6852 t = true;
6853 break;
6854
6855 case EXPR_PPC:
6856 t = resolve_expr_ppc (e);
6857 break;
6858
6859 case EXPR_ARRAY:
6860 t = false;
6861 if (!resolve_ref (e))
6862 break;
6863
6864 t = gfc_resolve_array_constructor (e);
6865 /* Also try to expand a constructor. */
6866 if (t)
6867 {
6868 expression_rank (e);
6869 if (gfc_is_constant_expr (e) || gfc_is_expandable_expr (e))
6870 gfc_expand_constructor (e, false);
6871 }
6872
6873 /* This provides the opportunity for the length of constructors with
6874 character valued function elements to propagate the string length
6875 to the expression. */
6876 if (t && e->ts.type == BT_CHARACTER)
6877 {
6878 /* For efficiency, we call gfc_expand_constructor for BT_CHARACTER
6879 here rather then add a duplicate test for it above. */
6880 gfc_expand_constructor (e, false);
6881 t = gfc_resolve_character_array_constructor (e);
6882 }
6883
6884 break;
6885
6886 case EXPR_STRUCTURE:
6887 t = resolve_ref (e);
6888 if (!t)
6889 break;
6890
6891 t = resolve_structure_cons (e, 0);
6892 if (!t)
6893 break;
6894
6895 t = gfc_simplify_expr (e, 0);
6896 break;
6897
6898 default:
6899 gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
6900 }
6901
6902 if (e->ts.type == BT_CHARACTER && t && !e->ts.u.cl)
6903 fixup_charlen (e);
6904
6905 inquiry_argument = inquiry_save;
6906 actual_arg = actual_arg_save;
6907 first_actual_arg = first_actual_arg_save;
6908
6909 return t;
6910 }
6911
6912
6913 /* Resolve an expression from an iterator. They must be scalar and have
6914 INTEGER or (optionally) REAL type. */
6915
6916 static bool
6917 gfc_resolve_iterator_expr (gfc_expr *expr, bool real_ok,
6918 const char *name_msgid)
6919 {
6920 if (!gfc_resolve_expr (expr))
6921 return false;
6922
6923 if (expr->rank != 0)
6924 {
6925 gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
6926 return false;
6927 }
6928
6929 if (expr->ts.type != BT_INTEGER)
6930 {
6931 if (expr->ts.type == BT_REAL)
6932 {
6933 if (real_ok)
6934 return gfc_notify_std (GFC_STD_F95_DEL,
6935 "%s at %L must be integer",
6936 _(name_msgid), &expr->where);
6937 else
6938 {
6939 gfc_error ("%s at %L must be INTEGER", _(name_msgid),
6940 &expr->where);
6941 return false;
6942 }
6943 }
6944 else
6945 {
6946 gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
6947 return false;
6948 }
6949 }
6950 return true;
6951 }
6952
6953
6954 /* Resolve the expressions in an iterator structure. If REAL_OK is
6955 false allow only INTEGER type iterators, otherwise allow REAL types.
6956 Set own_scope to true for ac-implied-do and data-implied-do as those
6957 have a separate scope such that, e.g., a INTENT(IN) doesn't apply. */
6958
6959 bool
6960 gfc_resolve_iterator (gfc_iterator *iter, bool real_ok, bool own_scope)
6961 {
6962 if (!gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable"))
6963 return false;
6964
6965 if (!gfc_check_vardef_context (iter->var, false, false, own_scope,
6966 _("iterator variable")))
6967 return false;
6968
6969 if (!gfc_resolve_iterator_expr (iter->start, real_ok,
6970 "Start expression in DO loop"))
6971 return false;
6972
6973 if (!gfc_resolve_iterator_expr (iter->end, real_ok,
6974 "End expression in DO loop"))
6975 return false;
6976
6977 if (!gfc_resolve_iterator_expr (iter->step, real_ok,
6978 "Step expression in DO loop"))
6979 return false;
6980
6981 if (iter->step->expr_type == EXPR_CONSTANT)
6982 {
6983 if ((iter->step->ts.type == BT_INTEGER
6984 && mpz_cmp_ui (iter->step->value.integer, 0) == 0)
6985 || (iter->step->ts.type == BT_REAL
6986 && mpfr_sgn (iter->step->value.real) == 0))
6987 {
6988 gfc_error ("Step expression in DO loop at %L cannot be zero",
6989 &iter->step->where);
6990 return false;
6991 }
6992 }
6993
6994 /* Convert start, end, and step to the same type as var. */
6995 if (iter->start->ts.kind != iter->var->ts.kind
6996 || iter->start->ts.type != iter->var->ts.type)
6997 gfc_convert_type (iter->start, &iter->var->ts, 1);
6998
6999 if (iter->end->ts.kind != iter->var->ts.kind
7000 || iter->end->ts.type != iter->var->ts.type)
7001 gfc_convert_type (iter->end, &iter->var->ts, 1);
7002
7003 if (iter->step->ts.kind != iter->var->ts.kind
7004 || iter->step->ts.type != iter->var->ts.type)
7005 gfc_convert_type (iter->step, &iter->var->ts, 1);
7006
7007 if (iter->start->expr_type == EXPR_CONSTANT
7008 && iter->end->expr_type == EXPR_CONSTANT
7009 && iter->step->expr_type == EXPR_CONSTANT)
7010 {
7011 int sgn, cmp;
7012 if (iter->start->ts.type == BT_INTEGER)
7013 {
7014 sgn = mpz_cmp_ui (iter->step->value.integer, 0);
7015 cmp = mpz_cmp (iter->end->value.integer, iter->start->value.integer);
7016 }
7017 else
7018 {
7019 sgn = mpfr_sgn (iter->step->value.real);
7020 cmp = mpfr_cmp (iter->end->value.real, iter->start->value.real);
7021 }
7022 if (warn_zerotrip && ((sgn > 0 && cmp < 0) || (sgn < 0 && cmp > 0)))
7023 gfc_warning (OPT_Wzerotrip,
7024 "DO loop at %L will be executed zero times",
7025 &iter->step->where);
7026 }
7027
7028 if (iter->end->expr_type == EXPR_CONSTANT
7029 && iter->end->ts.type == BT_INTEGER
7030 && iter->step->expr_type == EXPR_CONSTANT
7031 && iter->step->ts.type == BT_INTEGER
7032 && (mpz_cmp_si (iter->step->value.integer, -1L) == 0
7033 || mpz_cmp_si (iter->step->value.integer, 1L) == 0))
7034 {
7035 bool is_step_positive = mpz_cmp_ui (iter->step->value.integer, 1) == 0;
7036 int k = gfc_validate_kind (BT_INTEGER, iter->end->ts.kind, false);
7037
7038 if (is_step_positive
7039 && mpz_cmp (iter->end->value.integer, gfc_integer_kinds[k].huge) == 0)
7040 gfc_warning (OPT_Wundefined_do_loop,
7041 "DO loop at %L is undefined as it overflows",
7042 &iter->step->where);
7043 else if (!is_step_positive
7044 && mpz_cmp (iter->end->value.integer,
7045 gfc_integer_kinds[k].min_int) == 0)
7046 gfc_warning (OPT_Wundefined_do_loop,
7047 "DO loop at %L is undefined as it underflows",
7048 &iter->step->where);
7049 }
7050
7051 return true;
7052 }
7053
7054
7055 /* Traversal function for find_forall_index. f == 2 signals that
7056 that variable itself is not to be checked - only the references. */
7057
7058 static bool
7059 forall_index (gfc_expr *expr, gfc_symbol *sym, int *f)
7060 {
7061 if (expr->expr_type != EXPR_VARIABLE)
7062 return false;
7063
7064 /* A scalar assignment */
7065 if (!expr->ref || *f == 1)
7066 {
7067 if (expr->symtree->n.sym == sym)
7068 return true;
7069 else
7070 return false;
7071 }
7072
7073 if (*f == 2)
7074 *f = 1;
7075 return false;
7076 }
7077
7078
7079 /* Check whether the FORALL index appears in the expression or not.
7080 Returns true if SYM is found in EXPR. */
7081
7082 bool
7083 find_forall_index (gfc_expr *expr, gfc_symbol *sym, int f)
7084 {
7085 if (gfc_traverse_expr (expr, sym, forall_index, f))
7086 return true;
7087 else
7088 return false;
7089 }
7090
7091
7092 /* Resolve a list of FORALL iterators. The FORALL index-name is constrained
7093 to be a scalar INTEGER variable. The subscripts and stride are scalar
7094 INTEGERs, and if stride is a constant it must be nonzero.
7095 Furthermore "A subscript or stride in a forall-triplet-spec shall
7096 not contain a reference to any index-name in the
7097 forall-triplet-spec-list in which it appears." (7.5.4.1) */
7098
7099 static void
7100 resolve_forall_iterators (gfc_forall_iterator *it)
7101 {
7102 gfc_forall_iterator *iter, *iter2;
7103
7104 for (iter = it; iter; iter = iter->next)
7105 {
7106 if (gfc_resolve_expr (iter->var)
7107 && (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
7108 gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
7109 &iter->var->where);
7110
7111 if (gfc_resolve_expr (iter->start)
7112 && (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
7113 gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
7114 &iter->start->where);
7115 if (iter->var->ts.kind != iter->start->ts.kind)
7116 gfc_convert_type (iter->start, &iter->var->ts, 1);
7117
7118 if (gfc_resolve_expr (iter->end)
7119 && (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
7120 gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
7121 &iter->end->where);
7122 if (iter->var->ts.kind != iter->end->ts.kind)
7123 gfc_convert_type (iter->end, &iter->var->ts, 1);
7124
7125 if (gfc_resolve_expr (iter->stride))
7126 {
7127 if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
7128 gfc_error ("FORALL stride expression at %L must be a scalar %s",
7129 &iter->stride->where, "INTEGER");
7130
7131 if (iter->stride->expr_type == EXPR_CONSTANT
7132 && mpz_cmp_ui (iter->stride->value.integer, 0) == 0)
7133 gfc_error ("FORALL stride expression at %L cannot be zero",
7134 &iter->stride->where);
7135 }
7136 if (iter->var->ts.kind != iter->stride->ts.kind)
7137 gfc_convert_type (iter->stride, &iter->var->ts, 1);
7138 }
7139
7140 for (iter = it; iter; iter = iter->next)
7141 for (iter2 = iter; iter2; iter2 = iter2->next)
7142 {
7143 if (find_forall_index (iter2->start, iter->var->symtree->n.sym, 0)
7144 || find_forall_index (iter2->end, iter->var->symtree->n.sym, 0)
7145 || find_forall_index (iter2->stride, iter->var->symtree->n.sym, 0))
7146 gfc_error ("FORALL index %qs may not appear in triplet "
7147 "specification at %L", iter->var->symtree->name,
7148 &iter2->start->where);
7149 }
7150 }
7151
7152
7153 /* Given a pointer to a symbol that is a derived type, see if it's
7154 inaccessible, i.e. if it's defined in another module and the components are
7155 PRIVATE. The search is recursive if necessary. Returns zero if no
7156 inaccessible components are found, nonzero otherwise. */
7157
7158 static int
7159 derived_inaccessible (gfc_symbol *sym)
7160 {
7161 gfc_component *c;
7162
7163 if (sym->attr.use_assoc && sym->attr.private_comp)
7164 return 1;
7165
7166 for (c = sym->components; c; c = c->next)
7167 {
7168 /* Prevent an infinite loop through this function. */
7169 if (c->ts.type == BT_DERIVED && c->attr.pointer
7170 && sym == c->ts.u.derived)
7171 continue;
7172
7173 if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.u.derived))
7174 return 1;
7175 }
7176
7177 return 0;
7178 }
7179
7180
7181 /* Resolve the argument of a deallocate expression. The expression must be
7182 a pointer or a full array. */
7183
7184 static bool
7185 resolve_deallocate_expr (gfc_expr *e)
7186 {
7187 symbol_attribute attr;
7188 int allocatable, pointer;
7189 gfc_ref *ref;
7190 gfc_symbol *sym;
7191 gfc_component *c;
7192 bool unlimited;
7193
7194 if (!gfc_resolve_expr (e))
7195 return false;
7196
7197 if (e->expr_type != EXPR_VARIABLE)
7198 goto bad;
7199
7200 sym = e->symtree->n.sym;
7201 unlimited = UNLIMITED_POLY(sym);
7202
7203 if (sym->ts.type == BT_CLASS)
7204 {
7205 allocatable = CLASS_DATA (sym)->attr.allocatable;
7206 pointer = CLASS_DATA (sym)->attr.class_pointer;
7207 }
7208 else
7209 {
7210 allocatable = sym->attr.allocatable;
7211 pointer = sym->attr.pointer;
7212 }
7213 for (ref = e->ref; ref; ref = ref->next)
7214 {
7215 switch (ref->type)
7216 {
7217 case REF_ARRAY:
7218 if (ref->u.ar.type != AR_FULL
7219 && !(ref->u.ar.type == AR_ELEMENT && ref->u.ar.as->rank == 0
7220 && ref->u.ar.codimen && gfc_ref_this_image (ref)))
7221 allocatable = 0;
7222 break;
7223
7224 case REF_COMPONENT:
7225 c = ref->u.c.component;
7226 if (c->ts.type == BT_CLASS)
7227 {
7228 allocatable = CLASS_DATA (c)->attr.allocatable;
7229 pointer = CLASS_DATA (c)->attr.class_pointer;
7230 }
7231 else
7232 {
7233 allocatable = c->attr.allocatable;
7234 pointer = c->attr.pointer;
7235 }
7236 break;
7237
7238 case REF_SUBSTRING:
7239 case REF_INQUIRY:
7240 allocatable = 0;
7241 break;
7242 }
7243 }
7244
7245 attr = gfc_expr_attr (e);
7246
7247 if (allocatable == 0 && attr.pointer == 0 && !unlimited)
7248 {
7249 bad:
7250 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7251 &e->where);
7252 return false;
7253 }
7254
7255 /* F2008, C644. */
7256 if (gfc_is_coindexed (e))
7257 {
7258 gfc_error ("Coindexed allocatable object at %L", &e->where);
7259 return false;
7260 }
7261
7262 if (pointer
7263 && !gfc_check_vardef_context (e, true, true, false,
7264 _("DEALLOCATE object")))
7265 return false;
7266 if (!gfc_check_vardef_context (e, false, true, false,
7267 _("DEALLOCATE object")))
7268 return false;
7269
7270 return true;
7271 }
7272
7273
7274 /* Returns true if the expression e contains a reference to the symbol sym. */
7275 static bool
7276 sym_in_expr (gfc_expr *e, gfc_symbol *sym, int *f ATTRIBUTE_UNUSED)
7277 {
7278 if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym == sym)
7279 return true;
7280
7281 return false;
7282 }
7283
7284 bool
7285 gfc_find_sym_in_expr (gfc_symbol *sym, gfc_expr *e)
7286 {
7287 return gfc_traverse_expr (e, sym, sym_in_expr, 0);
7288 }
7289
7290
7291 /* Given the expression node e for an allocatable/pointer of derived type to be
7292 allocated, get the expression node to be initialized afterwards (needed for
7293 derived types with default initializers, and derived types with allocatable
7294 components that need nullification.) */
7295
7296 gfc_expr *
7297 gfc_expr_to_initialize (gfc_expr *e)
7298 {
7299 gfc_expr *result;
7300 gfc_ref *ref;
7301 int i;
7302
7303 result = gfc_copy_expr (e);
7304
7305 /* Change the last array reference from AR_ELEMENT to AR_FULL. */
7306 for (ref = result->ref; ref; ref = ref->next)
7307 if (ref->type == REF_ARRAY && ref->next == NULL)
7308 {
7309 ref->u.ar.type = AR_FULL;
7310
7311 for (i = 0; i < ref->u.ar.dimen; i++)
7312 ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;
7313
7314 break;
7315 }
7316
7317 gfc_free_shape (&result->shape, result->rank);
7318
7319 /* Recalculate rank, shape, etc. */
7320 gfc_resolve_expr (result);
7321 return result;
7322 }
7323
7324
7325 /* If the last ref of an expression is an array ref, return a copy of the
7326 expression with that one removed. Otherwise, a copy of the original
7327 expression. This is used for allocate-expressions and pointer assignment
7328 LHS, where there may be an array specification that needs to be stripped
7329 off when using gfc_check_vardef_context. */
7330
7331 static gfc_expr*
7332 remove_last_array_ref (gfc_expr* e)
7333 {
7334 gfc_expr* e2;
7335 gfc_ref** r;
7336
7337 e2 = gfc_copy_expr (e);
7338 for (r = &e2->ref; *r; r = &(*r)->next)
7339 if ((*r)->type == REF_ARRAY && !(*r)->next)
7340 {
7341 gfc_free_ref_list (*r);
7342 *r = NULL;
7343 break;
7344 }
7345
7346 return e2;
7347 }
7348
7349
7350 /* Used in resolve_allocate_expr to check that a allocation-object and
7351 a source-expr are conformable. This does not catch all possible
7352 cases; in particular a runtime checking is needed. */
7353
7354 static bool
7355 conformable_arrays (gfc_expr *e1, gfc_expr *e2)
7356 {
7357 gfc_ref *tail;
7358 for (tail = e2->ref; tail && tail->next; tail = tail->next);
7359
7360 /* First compare rank. */
7361 if ((tail && e1->rank != tail->u.ar.as->rank)
7362 || (!tail && e1->rank != e2->rank))
7363 {
7364 gfc_error ("Source-expr at %L must be scalar or have the "
7365 "same rank as the allocate-object at %L",
7366 &e1->where, &e2->where);
7367 return false;
7368 }
7369
7370 if (e1->shape)
7371 {
7372 int i;
7373 mpz_t s;
7374
7375 mpz_init (s);
7376
7377 for (i = 0; i < e1->rank; i++)
7378 {
7379 if (tail->u.ar.start[i] == NULL)
7380 break;
7381
7382 if (tail->u.ar.end[i])
7383 {
7384 mpz_set (s, tail->u.ar.end[i]->value.integer);
7385 mpz_sub (s, s, tail->u.ar.start[i]->value.integer);
7386 mpz_add_ui (s, s, 1);
7387 }
7388 else
7389 {
7390 mpz_set (s, tail->u.ar.start[i]->value.integer);
7391 }
7392
7393 if (mpz_cmp (e1->shape[i], s) != 0)
7394 {
7395 gfc_error ("Source-expr at %L and allocate-object at %L must "
7396 "have the same shape", &e1->where, &e2->where);
7397 mpz_clear (s);
7398 return false;
7399 }
7400 }
7401
7402 mpz_clear (s);
7403 }
7404
7405 return true;
7406 }
7407
7408
7409 /* Resolve the expression in an ALLOCATE statement, doing the additional
7410 checks to see whether the expression is OK or not. The expression must
7411 have a trailing array reference that gives the size of the array. */
7412
7413 static bool
7414 resolve_allocate_expr (gfc_expr *e, gfc_code *code, bool *array_alloc_wo_spec)
7415 {
7416 int i, pointer, allocatable, dimension, is_abstract;
7417 int codimension;
7418 bool coindexed;
7419 bool unlimited;
7420 symbol_attribute attr;
7421 gfc_ref *ref, *ref2;
7422 gfc_expr *e2;
7423 gfc_array_ref *ar;
7424 gfc_symbol *sym = NULL;
7425 gfc_alloc *a;
7426 gfc_component *c;
7427 bool t;
7428
7429 /* Mark the utmost array component as being in allocate to allow DIMEN_STAR
7430 checking of coarrays. */
7431 for (ref = e->ref; ref; ref = ref->next)
7432 if (ref->next == NULL)
7433 break;
7434
7435 if (ref && ref->type == REF_ARRAY)
7436 ref->u.ar.in_allocate = true;
7437
7438 if (!gfc_resolve_expr (e))
7439 goto failure;
7440
7441 /* Make sure the expression is allocatable or a pointer. If it is
7442 pointer, the next-to-last reference must be a pointer. */
7443
7444 ref2 = NULL;
7445 if (e->symtree)
7446 sym = e->symtree->n.sym;
7447
7448 /* Check whether ultimate component is abstract and CLASS. */
7449 is_abstract = 0;
7450
7451 /* Is the allocate-object unlimited polymorphic? */
7452 unlimited = UNLIMITED_POLY(e);
7453
7454 if (e->expr_type != EXPR_VARIABLE)
7455 {
7456 allocatable = 0;
7457 attr = gfc_expr_attr (e);
7458 pointer = attr.pointer;
7459 dimension = attr.dimension;
7460 codimension = attr.codimension;
7461 }
7462 else
7463 {
7464 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
7465 {
7466 allocatable = CLASS_DATA (sym)->attr.allocatable;
7467 pointer = CLASS_DATA (sym)->attr.class_pointer;
7468 dimension = CLASS_DATA (sym)->attr.dimension;
7469 codimension = CLASS_DATA (sym)->attr.codimension;
7470 is_abstract = CLASS_DATA (sym)->attr.abstract;
7471 }
7472 else
7473 {
7474 allocatable = sym->attr.allocatable;
7475 pointer = sym->attr.pointer;
7476 dimension = sym->attr.dimension;
7477 codimension = sym->attr.codimension;
7478 }
7479
7480 coindexed = false;
7481
7482 for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
7483 {
7484 switch (ref->type)
7485 {
7486 case REF_ARRAY:
7487 if (ref->u.ar.codimen > 0)
7488 {
7489 int n;
7490 for (n = ref->u.ar.dimen;
7491 n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
7492 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
7493 {
7494 coindexed = true;
7495 break;
7496 }
7497 }
7498
7499 if (ref->next != NULL)
7500 pointer = 0;
7501 break;
7502
7503 case REF_COMPONENT:
7504 /* F2008, C644. */
7505 if (coindexed)
7506 {
7507 gfc_error ("Coindexed allocatable object at %L",
7508 &e->where);
7509 goto failure;
7510 }
7511
7512 c = ref->u.c.component;
7513 if (c->ts.type == BT_CLASS)
7514 {
7515 allocatable = CLASS_DATA (c)->attr.allocatable;
7516 pointer = CLASS_DATA (c)->attr.class_pointer;
7517 dimension = CLASS_DATA (c)->attr.dimension;
7518 codimension = CLASS_DATA (c)->attr.codimension;
7519 is_abstract = CLASS_DATA (c)->attr.abstract;
7520 }
7521 else
7522 {
7523 allocatable = c->attr.allocatable;
7524 pointer = c->attr.pointer;
7525 dimension = c->attr.dimension;
7526 codimension = c->attr.codimension;
7527 is_abstract = c->attr.abstract;
7528 }
7529 break;
7530
7531 case REF_SUBSTRING:
7532 case REF_INQUIRY:
7533 allocatable = 0;
7534 pointer = 0;
7535 break;
7536 }
7537 }
7538 }
7539
7540 /* Check for F08:C628. */
7541 if (allocatable == 0 && pointer == 0 && !unlimited)
7542 {
7543 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7544 &e->where);
7545 goto failure;
7546 }
7547
7548 /* Some checks for the SOURCE tag. */
7549 if (code->expr3)
7550 {
7551 /* Check F03:C631. */
7552 if (!gfc_type_compatible (&e->ts, &code->expr3->ts))
7553 {
7554 gfc_error ("Type of entity at %L is type incompatible with "
7555 "source-expr at %L", &e->where, &code->expr3->where);
7556 goto failure;
7557 }
7558
7559 /* Check F03:C632 and restriction following Note 6.18. */
7560 if (code->expr3->rank > 0 && !conformable_arrays (code->expr3, e))
7561 goto failure;
7562
7563 /* Check F03:C633. */
7564 if (code->expr3->ts.kind != e->ts.kind && !unlimited)
7565 {
7566 gfc_error ("The allocate-object at %L and the source-expr at %L "
7567 "shall have the same kind type parameter",
7568 &e->where, &code->expr3->where);
7569 goto failure;
7570 }
7571
7572 /* Check F2008, C642. */
7573 if (code->expr3->ts.type == BT_DERIVED
7574 && ((codimension && gfc_expr_attr (code->expr3).lock_comp)
7575 || (code->expr3->ts.u.derived->from_intmod
7576 == INTMOD_ISO_FORTRAN_ENV
7577 && code->expr3->ts.u.derived->intmod_sym_id
7578 == ISOFORTRAN_LOCK_TYPE)))
7579 {
7580 gfc_error ("The source-expr at %L shall neither be of type "
7581 "LOCK_TYPE nor have a LOCK_TYPE component if "
7582 "allocate-object at %L is a coarray",
7583 &code->expr3->where, &e->where);
7584 goto failure;
7585 }
7586
7587 /* Check TS18508, C702/C703. */
7588 if (code->expr3->ts.type == BT_DERIVED
7589 && ((codimension && gfc_expr_attr (code->expr3).event_comp)
7590 || (code->expr3->ts.u.derived->from_intmod
7591 == INTMOD_ISO_FORTRAN_ENV
7592 && code->expr3->ts.u.derived->intmod_sym_id
7593 == ISOFORTRAN_EVENT_TYPE)))
7594 {
7595 gfc_error ("The source-expr at %L shall neither be of type "
7596 "EVENT_TYPE nor have a EVENT_TYPE component if "
7597 "allocate-object at %L is a coarray",
7598 &code->expr3->where, &e->where);
7599 goto failure;
7600 }
7601 }
7602
7603 /* Check F08:C629. */
7604 if (is_abstract && code->ext.alloc.ts.type == BT_UNKNOWN
7605 && !code->expr3)
7606 {
7607 gcc_assert (e->ts.type == BT_CLASS);
7608 gfc_error ("Allocating %s of ABSTRACT base type at %L requires a "
7609 "type-spec or source-expr", sym->name, &e->where);
7610 goto failure;
7611 }
7612
7613 /* Check F08:C632. */
7614 if (code->ext.alloc.ts.type == BT_CHARACTER && !e->ts.deferred
7615 && !UNLIMITED_POLY (e))
7616 {
7617 int cmp;
7618
7619 if (!e->ts.u.cl->length)
7620 goto failure;
7621
7622 cmp = gfc_dep_compare_expr (e->ts.u.cl->length,
7623 code->ext.alloc.ts.u.cl->length);
7624 if (cmp == 1 || cmp == -1 || cmp == -3)
7625 {
7626 gfc_error ("Allocating %s at %L with type-spec requires the same "
7627 "character-length parameter as in the declaration",
7628 sym->name, &e->where);
7629 goto failure;
7630 }
7631 }
7632
7633 /* In the variable definition context checks, gfc_expr_attr is used
7634 on the expression. This is fooled by the array specification
7635 present in e, thus we have to eliminate that one temporarily. */
7636 e2 = remove_last_array_ref (e);
7637 t = true;
7638 if (t && pointer)
7639 t = gfc_check_vardef_context (e2, true, true, false,
7640 _("ALLOCATE object"));
7641 if (t)
7642 t = gfc_check_vardef_context (e2, false, true, false,
7643 _("ALLOCATE object"));
7644 gfc_free_expr (e2);
7645 if (!t)
7646 goto failure;
7647
7648 if (e->ts.type == BT_CLASS && CLASS_DATA (e)->attr.dimension
7649 && !code->expr3 && code->ext.alloc.ts.type == BT_DERIVED)
7650 {
7651 /* For class arrays, the initialization with SOURCE is done
7652 using _copy and trans_call. It is convenient to exploit that
7653 when the allocated type is different from the declared type but
7654 no SOURCE exists by setting expr3. */
7655 code->expr3 = gfc_default_initializer (&code->ext.alloc.ts);
7656 }
7657 else if (flag_coarray != GFC_FCOARRAY_LIB && e->ts.type == BT_DERIVED
7658 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
7659 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
7660 {
7661 /* We have to zero initialize the integer variable. */
7662 code->expr3 = gfc_get_int_expr (gfc_default_integer_kind, &e->where, 0);
7663 }
7664
7665 if (e->ts.type == BT_CLASS && !unlimited && !UNLIMITED_POLY (code->expr3))
7666 {
7667 /* Make sure the vtab symbol is present when
7668 the module variables are generated. */
7669 gfc_typespec ts = e->ts;
7670 if (code->expr3)
7671 ts = code->expr3->ts;
7672 else if (code->ext.alloc.ts.type == BT_DERIVED)
7673 ts = code->ext.alloc.ts;
7674
7675 /* Finding the vtab also publishes the type's symbol. Therefore this
7676 statement is necessary. */
7677 gfc_find_derived_vtab (ts.u.derived);
7678 }
7679 else if (unlimited && !UNLIMITED_POLY (code->expr3))
7680 {
7681 /* Again, make sure the vtab symbol is present when
7682 the module variables are generated. */
7683 gfc_typespec *ts = NULL;
7684 if (code->expr3)
7685 ts = &code->expr3->ts;
7686 else
7687 ts = &code->ext.alloc.ts;
7688
7689 gcc_assert (ts);
7690
7691 /* Finding the vtab also publishes the type's symbol. Therefore this
7692 statement is necessary. */
7693 gfc_find_vtab (ts);
7694 }
7695
7696 if (dimension == 0 && codimension == 0)
7697 goto success;
7698
7699 /* Make sure the last reference node is an array specification. */
7700
7701 if (!ref2 || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL
7702 || (dimension && ref2->u.ar.dimen == 0))
7703 {
7704 /* F08:C633. */
7705 if (code->expr3)
7706 {
7707 if (!gfc_notify_std (GFC_STD_F2008, "Array specification required "
7708 "in ALLOCATE statement at %L", &e->where))
7709 goto failure;
7710 if (code->expr3->rank != 0)
7711 *array_alloc_wo_spec = true;
7712 else
7713 {
7714 gfc_error ("Array specification or array-valued SOURCE= "
7715 "expression required in ALLOCATE statement at %L",
7716 &e->where);
7717 goto failure;
7718 }
7719 }
7720 else
7721 {
7722 gfc_error ("Array specification required in ALLOCATE statement "
7723 "at %L", &e->where);
7724 goto failure;
7725 }
7726 }
7727
7728 /* Make sure that the array section reference makes sense in the
7729 context of an ALLOCATE specification. */
7730
7731 ar = &ref2->u.ar;
7732
7733 if (codimension)
7734 for (i = ar->dimen; i < ar->dimen + ar->codimen; i++)
7735 if (ar->dimen_type[i] == DIMEN_THIS_IMAGE)
7736 {
7737 gfc_error ("Coarray specification required in ALLOCATE statement "
7738 "at %L", &e->where);
7739 goto failure;
7740 }
7741
7742 for (i = 0; i < ar->dimen; i++)
7743 {
7744 if (ar->type == AR_ELEMENT || ar->type == AR_FULL)
7745 goto check_symbols;
7746
7747 switch (ar->dimen_type[i])
7748 {
7749 case DIMEN_ELEMENT:
7750 break;
7751
7752 case DIMEN_RANGE:
7753 if (ar->start[i] != NULL
7754 && ar->end[i] != NULL
7755 && ar->stride[i] == NULL)
7756 break;
7757
7758 /* Fall through. */
7759
7760 case DIMEN_UNKNOWN:
7761 case DIMEN_VECTOR:
7762 case DIMEN_STAR:
7763 case DIMEN_THIS_IMAGE:
7764 gfc_error ("Bad array specification in ALLOCATE statement at %L",
7765 &e->where);
7766 goto failure;
7767 }
7768
7769 check_symbols:
7770 for (a = code->ext.alloc.list; a; a = a->next)
7771 {
7772 sym = a->expr->symtree->n.sym;
7773
7774 /* TODO - check derived type components. */
7775 if (gfc_bt_struct (sym->ts.type) || sym->ts.type == BT_CLASS)
7776 continue;
7777
7778 if ((ar->start[i] != NULL
7779 && gfc_find_sym_in_expr (sym, ar->start[i]))
7780 || (ar->end[i] != NULL
7781 && gfc_find_sym_in_expr (sym, ar->end[i])))
7782 {
7783 gfc_error ("%qs must not appear in the array specification at "
7784 "%L in the same ALLOCATE statement where it is "
7785 "itself allocated", sym->name, &ar->where);
7786 goto failure;
7787 }
7788 }
7789 }
7790
7791 for (i = ar->dimen; i < ar->codimen + ar->dimen; i++)
7792 {
7793 if (ar->dimen_type[i] == DIMEN_ELEMENT
7794 || ar->dimen_type[i] == DIMEN_RANGE)
7795 {
7796 if (i == (ar->dimen + ar->codimen - 1))
7797 {
7798 gfc_error ("Expected '*' in coindex specification in ALLOCATE "
7799 "statement at %L", &e->where);
7800 goto failure;
7801 }
7802 continue;
7803 }
7804
7805 if (ar->dimen_type[i] == DIMEN_STAR && i == (ar->dimen + ar->codimen - 1)
7806 && ar->stride[i] == NULL)
7807 break;
7808
7809 gfc_error ("Bad coarray specification in ALLOCATE statement at %L",
7810 &e->where);
7811 goto failure;
7812 }
7813
7814 success:
7815 return true;
7816
7817 failure:
7818 return false;
7819 }
7820
7821
7822 static void
7823 resolve_allocate_deallocate (gfc_code *code, const char *fcn)
7824 {
7825 gfc_expr *stat, *errmsg, *pe, *qe;
7826 gfc_alloc *a, *p, *q;
7827
7828 stat = code->expr1;
7829 errmsg = code->expr2;
7830
7831 /* Check the stat variable. */
7832 if (stat)
7833 {
7834 gfc_check_vardef_context (stat, false, false, false,
7835 _("STAT variable"));
7836
7837 if ((stat->ts.type != BT_INTEGER
7838 && !(stat->ref && (stat->ref->type == REF_ARRAY
7839 || stat->ref->type == REF_COMPONENT)))
7840 || stat->rank > 0)
7841 gfc_error ("Stat-variable at %L must be a scalar INTEGER "
7842 "variable", &stat->where);
7843
7844 for (p = code->ext.alloc.list; p; p = p->next)
7845 if (p->expr->symtree->n.sym->name == stat->symtree->n.sym->name)
7846 {
7847 gfc_ref *ref1, *ref2;
7848 bool found = true;
7849
7850 for (ref1 = p->expr->ref, ref2 = stat->ref; ref1 && ref2;
7851 ref1 = ref1->next, ref2 = ref2->next)
7852 {
7853 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7854 continue;
7855 if (ref1->u.c.component->name != ref2->u.c.component->name)
7856 {
7857 found = false;
7858 break;
7859 }
7860 }
7861
7862 if (found)
7863 {
7864 gfc_error ("Stat-variable at %L shall not be %sd within "
7865 "the same %s statement", &stat->where, fcn, fcn);
7866 break;
7867 }
7868 }
7869 }
7870
7871 /* Check the errmsg variable. */
7872 if (errmsg)
7873 {
7874 if (!stat)
7875 gfc_warning (0, "ERRMSG at %L is useless without a STAT tag",
7876 &errmsg->where);
7877
7878 gfc_check_vardef_context (errmsg, false, false, false,
7879 _("ERRMSG variable"));
7880
7881 /* F18:R928 alloc-opt is ERRMSG = errmsg-variable
7882 F18:R930 errmsg-variable is scalar-default-char-variable
7883 F18:R906 default-char-variable is variable
7884 F18:C906 default-char-variable shall be default character. */
7885 if ((errmsg->ts.type != BT_CHARACTER
7886 && !(errmsg->ref
7887 && (errmsg->ref->type == REF_ARRAY
7888 || errmsg->ref->type == REF_COMPONENT)))
7889 || errmsg->rank > 0
7890 || errmsg->ts.kind != gfc_default_character_kind)
7891 gfc_error ("ERRMSG variable at %L shall be a scalar default CHARACTER "
7892 "variable", &errmsg->where);
7893
7894 for (p = code->ext.alloc.list; p; p = p->next)
7895 if (p->expr->symtree->n.sym->name == errmsg->symtree->n.sym->name)
7896 {
7897 gfc_ref *ref1, *ref2;
7898 bool found = true;
7899
7900 for (ref1 = p->expr->ref, ref2 = errmsg->ref; ref1 && ref2;
7901 ref1 = ref1->next, ref2 = ref2->next)
7902 {
7903 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7904 continue;
7905 if (ref1->u.c.component->name != ref2->u.c.component->name)
7906 {
7907 found = false;
7908 break;
7909 }
7910 }
7911
7912 if (found)
7913 {
7914 gfc_error ("Errmsg-variable at %L shall not be %sd within "
7915 "the same %s statement", &errmsg->where, fcn, fcn);
7916 break;
7917 }
7918 }
7919 }
7920
7921 /* Check that an allocate-object appears only once in the statement. */
7922
7923 for (p = code->ext.alloc.list; p; p = p->next)
7924 {
7925 pe = p->expr;
7926 for (q = p->next; q; q = q->next)
7927 {
7928 qe = q->expr;
7929 if (pe->symtree->n.sym->name == qe->symtree->n.sym->name)
7930 {
7931 /* This is a potential collision. */
7932 gfc_ref *pr = pe->ref;
7933 gfc_ref *qr = qe->ref;
7934
7935 /* Follow the references until
7936 a) They start to differ, in which case there is no error;
7937 you can deallocate a%b and a%c in a single statement
7938 b) Both of them stop, which is an error
7939 c) One of them stops, which is also an error. */
7940 while (1)
7941 {
7942 if (pr == NULL && qr == NULL)
7943 {
7944 gfc_error ("Allocate-object at %L also appears at %L",
7945 &pe->where, &qe->where);
7946 break;
7947 }
7948 else if (pr != NULL && qr == NULL)
7949 {
7950 gfc_error ("Allocate-object at %L is subobject of"
7951 " object at %L", &pe->where, &qe->where);
7952 break;
7953 }
7954 else if (pr == NULL && qr != NULL)
7955 {
7956 gfc_error ("Allocate-object at %L is subobject of"
7957 " object at %L", &qe->where, &pe->where);
7958 break;
7959 }
7960 /* Here, pr != NULL && qr != NULL */
7961 gcc_assert(pr->type == qr->type);
7962 if (pr->type == REF_ARRAY)
7963 {
7964 /* Handle cases like allocate(v(3)%x(3), v(2)%x(3)),
7965 which are legal. */
7966 gcc_assert (qr->type == REF_ARRAY);
7967
7968 if (pr->next && qr->next)
7969 {
7970 int i;
7971 gfc_array_ref *par = &(pr->u.ar);
7972 gfc_array_ref *qar = &(qr->u.ar);
7973
7974 for (i=0; i<par->dimen; i++)
7975 {
7976 if ((par->start[i] != NULL
7977 || qar->start[i] != NULL)
7978 && gfc_dep_compare_expr (par->start[i],
7979 qar->start[i]) != 0)
7980 goto break_label;
7981 }
7982 }
7983 }
7984 else
7985 {
7986 if (pr->u.c.component->name != qr->u.c.component->name)
7987 break;
7988 }
7989
7990 pr = pr->next;
7991 qr = qr->next;
7992 }
7993 break_label:
7994 ;
7995 }
7996 }
7997 }
7998
7999 if (strcmp (fcn, "ALLOCATE") == 0)
8000 {
8001 bool arr_alloc_wo_spec = false;
8002
8003 /* Resolving the expr3 in the loop over all objects to allocate would
8004 execute loop invariant code for each loop item. Therefore do it just
8005 once here. */
8006 if (code->expr3 && code->expr3->mold
8007 && code->expr3->ts.type == BT_DERIVED)
8008 {
8009 /* Default initialization via MOLD (non-polymorphic). */
8010 gfc_expr *rhs = gfc_default_initializer (&code->expr3->ts);
8011 if (rhs != NULL)
8012 {
8013 gfc_resolve_expr (rhs);
8014 gfc_free_expr (code->expr3);
8015 code->expr3 = rhs;
8016 }
8017 }
8018 for (a = code->ext.alloc.list; a; a = a->next)
8019 resolve_allocate_expr (a->expr, code, &arr_alloc_wo_spec);
8020
8021 if (arr_alloc_wo_spec && code->expr3)
8022 {
8023 /* Mark the allocate to have to take the array specification
8024 from the expr3. */
8025 code->ext.alloc.arr_spec_from_expr3 = 1;
8026 }
8027 }
8028 else
8029 {
8030 for (a = code->ext.alloc.list; a; a = a->next)
8031 resolve_deallocate_expr (a->expr);
8032 }
8033 }
8034
8035
8036 /************ SELECT CASE resolution subroutines ************/
8037
8038 /* Callback function for our mergesort variant. Determines interval
8039 overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
8040 op1 > op2. Assumes we're not dealing with the default case.
8041 We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
8042 There are nine situations to check. */
8043
8044 static int
8045 compare_cases (const gfc_case *op1, const gfc_case *op2)
8046 {
8047 int retval;
8048
8049 if (op1->low == NULL) /* op1 = (:L) */
8050 {
8051 /* op2 = (:N), so overlap. */
8052 retval = 0;
8053 /* op2 = (M:) or (M:N), L < M */
8054 if (op2->low != NULL
8055 && gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8056 retval = -1;
8057 }
8058 else if (op1->high == NULL) /* op1 = (K:) */
8059 {
8060 /* op2 = (M:), so overlap. */
8061 retval = 0;
8062 /* op2 = (:N) or (M:N), K > N */
8063 if (op2->high != NULL
8064 && gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8065 retval = 1;
8066 }
8067 else /* op1 = (K:L) */
8068 {
8069 if (op2->low == NULL) /* op2 = (:N), K > N */
8070 retval = (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8071 ? 1 : 0;
8072 else if (op2->high == NULL) /* op2 = (M:), L < M */
8073 retval = (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8074 ? -1 : 0;
8075 else /* op2 = (M:N) */
8076 {
8077 retval = 0;
8078 /* L < M */
8079 if (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
8080 retval = -1;
8081 /* K > N */
8082 else if (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
8083 retval = 1;
8084 }
8085 }
8086
8087 return retval;
8088 }
8089
8090
8091 /* Merge-sort a double linked case list, detecting overlap in the
8092 process. LIST is the head of the double linked case list before it
8093 is sorted. Returns the head of the sorted list if we don't see any
8094 overlap, or NULL otherwise. */
8095
8096 static gfc_case *
8097 check_case_overlap (gfc_case *list)
8098 {
8099 gfc_case *p, *q, *e, *tail;
8100 int insize, nmerges, psize, qsize, cmp, overlap_seen;
8101
8102 /* If the passed list was empty, return immediately. */
8103 if (!list)
8104 return NULL;
8105
8106 overlap_seen = 0;
8107 insize = 1;
8108
8109 /* Loop unconditionally. The only exit from this loop is a return
8110 statement, when we've finished sorting the case list. */
8111 for (;;)
8112 {
8113 p = list;
8114 list = NULL;
8115 tail = NULL;
8116
8117 /* Count the number of merges we do in this pass. */
8118 nmerges = 0;
8119
8120 /* Loop while there exists a merge to be done. */
8121 while (p)
8122 {
8123 int i;
8124
8125 /* Count this merge. */
8126 nmerges++;
8127
8128 /* Cut the list in two pieces by stepping INSIZE places
8129 forward in the list, starting from P. */
8130 psize = 0;
8131 q = p;
8132 for (i = 0; i < insize; i++)
8133 {
8134 psize++;
8135 q = q->right;
8136 if (!q)
8137 break;
8138 }
8139 qsize = insize;
8140
8141 /* Now we have two lists. Merge them! */
8142 while (psize > 0 || (qsize > 0 && q != NULL))
8143 {
8144 /* See from which the next case to merge comes from. */
8145 if (psize == 0)
8146 {
8147 /* P is empty so the next case must come from Q. */
8148 e = q;
8149 q = q->right;
8150 qsize--;
8151 }
8152 else if (qsize == 0 || q == NULL)
8153 {
8154 /* Q is empty. */
8155 e = p;
8156 p = p->right;
8157 psize--;
8158 }
8159 else
8160 {
8161 cmp = compare_cases (p, q);
8162 if (cmp < 0)
8163 {
8164 /* The whole case range for P is less than the
8165 one for Q. */
8166 e = p;
8167 p = p->right;
8168 psize--;
8169 }
8170 else if (cmp > 0)
8171 {
8172 /* The whole case range for Q is greater than
8173 the case range for P. */
8174 e = q;
8175 q = q->right;
8176 qsize--;
8177 }
8178 else
8179 {
8180 /* The cases overlap, or they are the same
8181 element in the list. Either way, we must
8182 issue an error and get the next case from P. */
8183 /* FIXME: Sort P and Q by line number. */
8184 gfc_error ("CASE label at %L overlaps with CASE "
8185 "label at %L", &p->where, &q->where);
8186 overlap_seen = 1;
8187 e = p;
8188 p = p->right;
8189 psize--;
8190 }
8191 }
8192
8193 /* Add the next element to the merged list. */
8194 if (tail)
8195 tail->right = e;
8196 else
8197 list = e;
8198 e->left = tail;
8199 tail = e;
8200 }
8201
8202 /* P has now stepped INSIZE places along, and so has Q. So
8203 they're the same. */
8204 p = q;
8205 }
8206 tail->right = NULL;
8207
8208 /* If we have done only one merge or none at all, we've
8209 finished sorting the cases. */
8210 if (nmerges <= 1)
8211 {
8212 if (!overlap_seen)
8213 return list;
8214 else
8215 return NULL;
8216 }
8217
8218 /* Otherwise repeat, merging lists twice the size. */
8219 insize *= 2;
8220 }
8221 }
8222
8223
8224 /* Check to see if an expression is suitable for use in a CASE statement.
8225 Makes sure that all case expressions are scalar constants of the same
8226 type. Return false if anything is wrong. */
8227
8228 static bool
8229 validate_case_label_expr (gfc_expr *e, gfc_expr *case_expr)
8230 {
8231 if (e == NULL) return true;
8232
8233 if (e->ts.type != case_expr->ts.type)
8234 {
8235 gfc_error ("Expression in CASE statement at %L must be of type %s",
8236 &e->where, gfc_basic_typename (case_expr->ts.type));
8237 return false;
8238 }
8239
8240 /* C805 (R808) For a given case-construct, each case-value shall be of
8241 the same type as case-expr. For character type, length differences
8242 are allowed, but the kind type parameters shall be the same. */
8243
8244 if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
8245 {
8246 gfc_error ("Expression in CASE statement at %L must be of kind %d",
8247 &e->where, case_expr->ts.kind);
8248 return false;
8249 }
8250
8251 /* Convert the case value kind to that of case expression kind,
8252 if needed */
8253
8254 if (e->ts.kind != case_expr->ts.kind)
8255 gfc_convert_type_warn (e, &case_expr->ts, 2, 0);
8256
8257 if (e->rank != 0)
8258 {
8259 gfc_error ("Expression in CASE statement at %L must be scalar",
8260 &e->where);
8261 return false;
8262 }
8263
8264 return true;
8265 }
8266
8267
8268 /* Given a completely parsed select statement, we:
8269
8270 - Validate all expressions and code within the SELECT.
8271 - Make sure that the selection expression is not of the wrong type.
8272 - Make sure that no case ranges overlap.
8273 - Eliminate unreachable cases and unreachable code resulting from
8274 removing case labels.
8275
8276 The standard does allow unreachable cases, e.g. CASE (5:3). But
8277 they are a hassle for code generation, and to prevent that, we just
8278 cut them out here. This is not necessary for overlapping cases
8279 because they are illegal and we never even try to generate code.
8280
8281 We have the additional caveat that a SELECT construct could have
8282 been a computed GOTO in the source code. Fortunately we can fairly
8283 easily work around that here: The case_expr for a "real" SELECT CASE
8284 is in code->expr1, but for a computed GOTO it is in code->expr2. All
8285 we have to do is make sure that the case_expr is a scalar integer
8286 expression. */
8287
8288 static void
8289 resolve_select (gfc_code *code, bool select_type)
8290 {
8291 gfc_code *body;
8292 gfc_expr *case_expr;
8293 gfc_case *cp, *default_case, *tail, *head;
8294 int seen_unreachable;
8295 int seen_logical;
8296 int ncases;
8297 bt type;
8298 bool t;
8299
8300 if (code->expr1 == NULL)
8301 {
8302 /* This was actually a computed GOTO statement. */
8303 case_expr = code->expr2;
8304 if (case_expr->ts.type != BT_INTEGER|| case_expr->rank != 0)
8305 gfc_error ("Selection expression in computed GOTO statement "
8306 "at %L must be a scalar integer expression",
8307 &case_expr->where);
8308
8309 /* Further checking is not necessary because this SELECT was built
8310 by the compiler, so it should always be OK. Just move the
8311 case_expr from expr2 to expr so that we can handle computed
8312 GOTOs as normal SELECTs from here on. */
8313 code->expr1 = code->expr2;
8314 code->expr2 = NULL;
8315 return;
8316 }
8317
8318 case_expr = code->expr1;
8319 type = case_expr->ts.type;
8320
8321 /* F08:C830. */
8322 if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
8323 {
8324 gfc_error ("Argument of SELECT statement at %L cannot be %s",
8325 &case_expr->where, gfc_typename (&case_expr->ts));
8326
8327 /* Punt. Going on here just produce more garbage error messages. */
8328 return;
8329 }
8330
8331 /* F08:R842. */
8332 if (!select_type && case_expr->rank != 0)
8333 {
8334 gfc_error ("Argument of SELECT statement at %L must be a scalar "
8335 "expression", &case_expr->where);
8336
8337 /* Punt. */
8338 return;
8339 }
8340
8341 /* Raise a warning if an INTEGER case value exceeds the range of
8342 the case-expr. Later, all expressions will be promoted to the
8343 largest kind of all case-labels. */
8344
8345 if (type == BT_INTEGER)
8346 for (body = code->block; body; body = body->block)
8347 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8348 {
8349 if (cp->low
8350 && gfc_check_integer_range (cp->low->value.integer,
8351 case_expr->ts.kind) != ARITH_OK)
8352 gfc_warning (0, "Expression in CASE statement at %L is "
8353 "not in the range of %s", &cp->low->where,
8354 gfc_typename (&case_expr->ts));
8355
8356 if (cp->high
8357 && cp->low != cp->high
8358 && gfc_check_integer_range (cp->high->value.integer,
8359 case_expr->ts.kind) != ARITH_OK)
8360 gfc_warning (0, "Expression in CASE statement at %L is "
8361 "not in the range of %s", &cp->high->where,
8362 gfc_typename (&case_expr->ts));
8363 }
8364
8365 /* PR 19168 has a long discussion concerning a mismatch of the kinds
8366 of the SELECT CASE expression and its CASE values. Walk the lists
8367 of case values, and if we find a mismatch, promote case_expr to
8368 the appropriate kind. */
8369
8370 if (type == BT_LOGICAL || type == BT_INTEGER)
8371 {
8372 for (body = code->block; body; body = body->block)
8373 {
8374 /* Walk the case label list. */
8375 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8376 {
8377 /* Intercept the DEFAULT case. It does not have a kind. */
8378 if (cp->low == NULL && cp->high == NULL)
8379 continue;
8380
8381 /* Unreachable case ranges are discarded, so ignore. */
8382 if (cp->low != NULL && cp->high != NULL
8383 && cp->low != cp->high
8384 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8385 continue;
8386
8387 if (cp->low != NULL
8388 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
8389 gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);
8390
8391 if (cp->high != NULL
8392 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
8393 gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
8394 }
8395 }
8396 }
8397
8398 /* Assume there is no DEFAULT case. */
8399 default_case = NULL;
8400 head = tail = NULL;
8401 ncases = 0;
8402 seen_logical = 0;
8403
8404 for (body = code->block; body; body = body->block)
8405 {
8406 /* Assume the CASE list is OK, and all CASE labels can be matched. */
8407 t = true;
8408 seen_unreachable = 0;
8409
8410 /* Walk the case label list, making sure that all case labels
8411 are legal. */
8412 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8413 {
8414 /* Count the number of cases in the whole construct. */
8415 ncases++;
8416
8417 /* Intercept the DEFAULT case. */
8418 if (cp->low == NULL && cp->high == NULL)
8419 {
8420 if (default_case != NULL)
8421 {
8422 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8423 "by a second DEFAULT CASE at %L",
8424 &default_case->where, &cp->where);
8425 t = false;
8426 break;
8427 }
8428 else
8429 {
8430 default_case = cp;
8431 continue;
8432 }
8433 }
8434
8435 /* Deal with single value cases and case ranges. Errors are
8436 issued from the validation function. */
8437 if (!validate_case_label_expr (cp->low, case_expr)
8438 || !validate_case_label_expr (cp->high, case_expr))
8439 {
8440 t = false;
8441 break;
8442 }
8443
8444 if (type == BT_LOGICAL
8445 && ((cp->low == NULL || cp->high == NULL)
8446 || cp->low != cp->high))
8447 {
8448 gfc_error ("Logical range in CASE statement at %L is not "
8449 "allowed", &cp->low->where);
8450 t = false;
8451 break;
8452 }
8453
8454 if (type == BT_LOGICAL && cp->low->expr_type == EXPR_CONSTANT)
8455 {
8456 int value;
8457 value = cp->low->value.logical == 0 ? 2 : 1;
8458 if (value & seen_logical)
8459 {
8460 gfc_error ("Constant logical value in CASE statement "
8461 "is repeated at %L",
8462 &cp->low->where);
8463 t = false;
8464 break;
8465 }
8466 seen_logical |= value;
8467 }
8468
8469 if (cp->low != NULL && cp->high != NULL
8470 && cp->low != cp->high
8471 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8472 {
8473 if (warn_surprising)
8474 gfc_warning (OPT_Wsurprising,
8475 "Range specification at %L can never be matched",
8476 &cp->where);
8477
8478 cp->unreachable = 1;
8479 seen_unreachable = 1;
8480 }
8481 else
8482 {
8483 /* If the case range can be matched, it can also overlap with
8484 other cases. To make sure it does not, we put it in a
8485 double linked list here. We sort that with a merge sort
8486 later on to detect any overlapping cases. */
8487 if (!head)
8488 {
8489 head = tail = cp;
8490 head->right = head->left = NULL;
8491 }
8492 else
8493 {
8494 tail->right = cp;
8495 tail->right->left = tail;
8496 tail = tail->right;
8497 tail->right = NULL;
8498 }
8499 }
8500 }
8501
8502 /* It there was a failure in the previous case label, give up
8503 for this case label list. Continue with the next block. */
8504 if (!t)
8505 continue;
8506
8507 /* See if any case labels that are unreachable have been seen.
8508 If so, we eliminate them. This is a bit of a kludge because
8509 the case lists for a single case statement (label) is a
8510 single forward linked lists. */
8511 if (seen_unreachable)
8512 {
8513 /* Advance until the first case in the list is reachable. */
8514 while (body->ext.block.case_list != NULL
8515 && body->ext.block.case_list->unreachable)
8516 {
8517 gfc_case *n = body->ext.block.case_list;
8518 body->ext.block.case_list = body->ext.block.case_list->next;
8519 n->next = NULL;
8520 gfc_free_case_list (n);
8521 }
8522
8523 /* Strip all other unreachable cases. */
8524 if (body->ext.block.case_list)
8525 {
8526 for (cp = body->ext.block.case_list; cp && cp->next; cp = cp->next)
8527 {
8528 if (cp->next->unreachable)
8529 {
8530 gfc_case *n = cp->next;
8531 cp->next = cp->next->next;
8532 n->next = NULL;
8533 gfc_free_case_list (n);
8534 }
8535 }
8536 }
8537 }
8538 }
8539
8540 /* See if there were overlapping cases. If the check returns NULL,
8541 there was overlap. In that case we don't do anything. If head
8542 is non-NULL, we prepend the DEFAULT case. The sorted list can
8543 then used during code generation for SELECT CASE constructs with
8544 a case expression of a CHARACTER type. */
8545 if (head)
8546 {
8547 head = check_case_overlap (head);
8548
8549 /* Prepend the default_case if it is there. */
8550 if (head != NULL && default_case)
8551 {
8552 default_case->left = NULL;
8553 default_case->right = head;
8554 head->left = default_case;
8555 }
8556 }
8557
8558 /* Eliminate dead blocks that may be the result if we've seen
8559 unreachable case labels for a block. */
8560 for (body = code; body && body->block; body = body->block)
8561 {
8562 if (body->block->ext.block.case_list == NULL)
8563 {
8564 /* Cut the unreachable block from the code chain. */
8565 gfc_code *c = body->block;
8566 body->block = c->block;
8567
8568 /* Kill the dead block, but not the blocks below it. */
8569 c->block = NULL;
8570 gfc_free_statements (c);
8571 }
8572 }
8573
8574 /* More than two cases is legal but insane for logical selects.
8575 Issue a warning for it. */
8576 if (warn_surprising && type == BT_LOGICAL && ncases > 2)
8577 gfc_warning (OPT_Wsurprising,
8578 "Logical SELECT CASE block at %L has more that two cases",
8579 &code->loc);
8580 }
8581
8582
8583 /* Check if a derived type is extensible. */
8584
8585 bool
8586 gfc_type_is_extensible (gfc_symbol *sym)
8587 {
8588 return !(sym->attr.is_bind_c || sym->attr.sequence
8589 || (sym->attr.is_class
8590 && sym->components->ts.u.derived->attr.unlimited_polymorphic));
8591 }
8592
8593
8594 static void
8595 resolve_types (gfc_namespace *ns);
8596
8597 /* Resolve an associate-name: Resolve target and ensure the type-spec is
8598 correct as well as possibly the array-spec. */
8599
8600 static void
8601 resolve_assoc_var (gfc_symbol* sym, bool resolve_target)
8602 {
8603 gfc_expr* target;
8604
8605 gcc_assert (sym->assoc);
8606 gcc_assert (sym->attr.flavor == FL_VARIABLE);
8607
8608 /* If this is for SELECT TYPE, the target may not yet be set. In that
8609 case, return. Resolution will be called later manually again when
8610 this is done. */
8611 target = sym->assoc->target;
8612 if (!target)
8613 return;
8614 gcc_assert (!sym->assoc->dangling);
8615
8616 if (resolve_target && !gfc_resolve_expr (target))
8617 return;
8618
8619 /* For variable targets, we get some attributes from the target. */
8620 if (target->expr_type == EXPR_VARIABLE)
8621 {
8622 gfc_symbol* tsym;
8623
8624 gcc_assert (target->symtree);
8625 tsym = target->symtree->n.sym;
8626
8627 sym->attr.asynchronous = tsym->attr.asynchronous;
8628 sym->attr.volatile_ = tsym->attr.volatile_;
8629
8630 sym->attr.target = tsym->attr.target
8631 || gfc_expr_attr (target).pointer;
8632 if (is_subref_array (target))
8633 sym->attr.subref_array_pointer = 1;
8634 }
8635
8636 if (target->expr_type == EXPR_NULL)
8637 {
8638 gfc_error ("Selector at %L cannot be NULL()", &target->where);
8639 return;
8640 }
8641 else if (target->ts.type == BT_UNKNOWN)
8642 {
8643 gfc_error ("Selector at %L has no type", &target->where);
8644 return;
8645 }
8646
8647 /* Get type if this was not already set. Note that it can be
8648 some other type than the target in case this is a SELECT TYPE
8649 selector! So we must not update when the type is already there. */
8650 if (sym->ts.type == BT_UNKNOWN)
8651 sym->ts = target->ts;
8652
8653 gcc_assert (sym->ts.type != BT_UNKNOWN);
8654
8655 /* See if this is a valid association-to-variable. */
8656 sym->assoc->variable = (target->expr_type == EXPR_VARIABLE
8657 && !gfc_has_vector_subscript (target));
8658
8659 /* Finally resolve if this is an array or not. */
8660 if (sym->attr.dimension && target->rank == 0)
8661 {
8662 /* primary.c makes the assumption that a reference to an associate
8663 name followed by a left parenthesis is an array reference. */
8664 if (sym->ts.type != BT_CHARACTER)
8665 gfc_error ("Associate-name %qs at %L is used as array",
8666 sym->name, &sym->declared_at);
8667 sym->attr.dimension = 0;
8668 return;
8669 }
8670
8671
8672 /* We cannot deal with class selectors that need temporaries. */
8673 if (target->ts.type == BT_CLASS
8674 && gfc_ref_needs_temporary_p (target->ref))
8675 {
8676 gfc_error ("CLASS selector at %L needs a temporary which is not "
8677 "yet implemented", &target->where);
8678 return;
8679 }
8680
8681 if (target->ts.type == BT_CLASS)
8682 gfc_fix_class_refs (target);
8683
8684 if (target->rank != 0)
8685 {
8686 gfc_array_spec *as;
8687 /* The rank may be incorrectly guessed at parsing, therefore make sure
8688 it is corrected now. */
8689 if (sym->ts.type != BT_CLASS && (!sym->as || sym->assoc->rankguessed))
8690 {
8691 if (!sym->as)
8692 sym->as = gfc_get_array_spec ();
8693 as = sym->as;
8694 as->rank = target->rank;
8695 as->type = AS_DEFERRED;
8696 as->corank = gfc_get_corank (target);
8697 sym->attr.dimension = 1;
8698 if (as->corank != 0)
8699 sym->attr.codimension = 1;
8700 }
8701 else if (sym->ts.type == BT_CLASS && (!CLASS_DATA (sym)->as || sym->assoc->rankguessed))
8702 {
8703 if (!CLASS_DATA (sym)->as)
8704 CLASS_DATA (sym)->as = gfc_get_array_spec ();
8705 as = CLASS_DATA (sym)->as;
8706 as->rank = target->rank;
8707 as->type = AS_DEFERRED;
8708 as->corank = gfc_get_corank (target);
8709 CLASS_DATA (sym)->attr.dimension = 1;
8710 if (as->corank != 0)
8711 CLASS_DATA (sym)->attr.codimension = 1;
8712 }
8713 }
8714 else
8715 {
8716 /* target's rank is 0, but the type of the sym is still array valued,
8717 which has to be corrected. */
8718 if (sym->ts.type == BT_CLASS
8719 && CLASS_DATA (sym) && CLASS_DATA (sym)->as)
8720 {
8721 gfc_array_spec *as;
8722 symbol_attribute attr;
8723 /* The associated variable's type is still the array type
8724 correct this now. */
8725 gfc_typespec *ts = &target->ts;
8726 gfc_ref *ref;
8727 gfc_component *c;
8728 for (ref = target->ref; ref != NULL; ref = ref->next)
8729 {
8730 switch (ref->type)
8731 {
8732 case REF_COMPONENT:
8733 ts = &ref->u.c.component->ts;
8734 break;
8735 case REF_ARRAY:
8736 if (ts->type == BT_CLASS)
8737 ts = &ts->u.derived->components->ts;
8738 break;
8739 default:
8740 break;
8741 }
8742 }
8743 /* Create a scalar instance of the current class type. Because the
8744 rank of a class array goes into its name, the type has to be
8745 rebuild. The alternative of (re-)setting just the attributes
8746 and as in the current type, destroys the type also in other
8747 places. */
8748 as = NULL;
8749 sym->ts = *ts;
8750 sym->ts.type = BT_CLASS;
8751 attr = CLASS_DATA (sym)->attr;
8752 attr.class_ok = 0;
8753 attr.associate_var = 1;
8754 attr.dimension = attr.codimension = 0;
8755 attr.class_pointer = 1;
8756 if (!gfc_build_class_symbol (&sym->ts, &attr, &as))
8757 gcc_unreachable ();
8758 /* Make sure the _vptr is set. */
8759 c = gfc_find_component (sym->ts.u.derived, "_vptr", true, true, NULL);
8760 if (c->ts.u.derived == NULL)
8761 c->ts.u.derived = gfc_find_derived_vtab (sym->ts.u.derived);
8762 CLASS_DATA (sym)->attr.pointer = 1;
8763 CLASS_DATA (sym)->attr.class_pointer = 1;
8764 gfc_set_sym_referenced (sym->ts.u.derived);
8765 gfc_commit_symbol (sym->ts.u.derived);
8766 /* _vptr now has the _vtab in it, change it to the _vtype. */
8767 if (c->ts.u.derived->attr.vtab)
8768 c->ts.u.derived = c->ts.u.derived->ts.u.derived;
8769 c->ts.u.derived->ns->types_resolved = 0;
8770 resolve_types (c->ts.u.derived->ns);
8771 }
8772 }
8773
8774 /* Mark this as an associate variable. */
8775 sym->attr.associate_var = 1;
8776
8777 /* Fix up the type-spec for CHARACTER types. */
8778 if (sym->ts.type == BT_CHARACTER && !sym->attr.select_type_temporary)
8779 {
8780 if (!sym->ts.u.cl)
8781 sym->ts.u.cl = target->ts.u.cl;
8782
8783 if (sym->ts.deferred && target->expr_type == EXPR_VARIABLE
8784 && target->symtree->n.sym->attr.dummy
8785 && sym->ts.u.cl == target->ts.u.cl)
8786 {
8787 sym->ts.u.cl = gfc_new_charlen (sym->ns, NULL);
8788 sym->ts.deferred = 1;
8789 }
8790
8791 if (!sym->ts.u.cl->length
8792 && !sym->ts.deferred
8793 && target->expr_type == EXPR_CONSTANT)
8794 {
8795 sym->ts.u.cl->length =
8796 gfc_get_int_expr (gfc_charlen_int_kind, NULL,
8797 target->value.character.length);
8798 }
8799 else if ((!sym->ts.u.cl->length
8800 || sym->ts.u.cl->length->expr_type != EXPR_CONSTANT)
8801 && target->expr_type != EXPR_VARIABLE)
8802 {
8803 sym->ts.u.cl = gfc_new_charlen (sym->ns, NULL);
8804 sym->ts.deferred = 1;
8805
8806 /* This is reset in trans-stmt.c after the assignment
8807 of the target expression to the associate name. */
8808 sym->attr.allocatable = 1;
8809 }
8810 }
8811
8812 /* If the target is a good class object, so is the associate variable. */
8813 if (sym->ts.type == BT_CLASS && gfc_expr_attr (target).class_ok)
8814 sym->attr.class_ok = 1;
8815 }
8816
8817
8818 /* Ensure that SELECT TYPE expressions have the correct rank and a full
8819 array reference, where necessary. The symbols are artificial and so
8820 the dimension attribute and arrayspec can also be set. In addition,
8821 sometimes the expr1 arrives as BT_DERIVED, when the symbol is BT_CLASS.
8822 This is corrected here as well.*/
8823
8824 static void
8825 fixup_array_ref (gfc_expr **expr1, gfc_expr *expr2,
8826 int rank, gfc_ref *ref)
8827 {
8828 gfc_ref *nref = (*expr1)->ref;
8829 gfc_symbol *sym1 = (*expr1)->symtree->n.sym;
8830 gfc_symbol *sym2 = expr2 ? expr2->symtree->n.sym : NULL;
8831 (*expr1)->rank = rank;
8832 if (sym1->ts.type == BT_CLASS)
8833 {
8834 if ((*expr1)->ts.type != BT_CLASS)
8835 (*expr1)->ts = sym1->ts;
8836
8837 CLASS_DATA (sym1)->attr.dimension = 1;
8838 if (CLASS_DATA (sym1)->as == NULL && sym2)
8839 CLASS_DATA (sym1)->as
8840 = gfc_copy_array_spec (CLASS_DATA (sym2)->as);
8841 }
8842 else
8843 {
8844 sym1->attr.dimension = 1;
8845 if (sym1->as == NULL && sym2)
8846 sym1->as = gfc_copy_array_spec (sym2->as);
8847 }
8848
8849 for (; nref; nref = nref->next)
8850 if (nref->next == NULL)
8851 break;
8852
8853 if (ref && nref && nref->type != REF_ARRAY)
8854 nref->next = gfc_copy_ref (ref);
8855 else if (ref && !nref)
8856 (*expr1)->ref = gfc_copy_ref (ref);
8857 }
8858
8859
8860 static gfc_expr *
8861 build_loc_call (gfc_expr *sym_expr)
8862 {
8863 gfc_expr *loc_call;
8864 loc_call = gfc_get_expr ();
8865 loc_call->expr_type = EXPR_FUNCTION;
8866 gfc_get_sym_tree ("_loc", gfc_current_ns, &loc_call->symtree, false);
8867 loc_call->symtree->n.sym->attr.flavor = FL_PROCEDURE;
8868 loc_call->symtree->n.sym->attr.intrinsic = 1;
8869 loc_call->symtree->n.sym->result = loc_call->symtree->n.sym;
8870 gfc_commit_symbol (loc_call->symtree->n.sym);
8871 loc_call->ts.type = BT_INTEGER;
8872 loc_call->ts.kind = gfc_index_integer_kind;
8873 loc_call->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_LOC);
8874 loc_call->value.function.actual = gfc_get_actual_arglist ();
8875 loc_call->value.function.actual->expr = sym_expr;
8876 loc_call->where = sym_expr->where;
8877 return loc_call;
8878 }
8879
8880 /* Resolve a SELECT TYPE statement. */
8881
8882 static void
8883 resolve_select_type (gfc_code *code, gfc_namespace *old_ns)
8884 {
8885 gfc_symbol *selector_type;
8886 gfc_code *body, *new_st, *if_st, *tail;
8887 gfc_code *class_is = NULL, *default_case = NULL;
8888 gfc_case *c;
8889 gfc_symtree *st;
8890 char name[GFC_MAX_SYMBOL_LEN];
8891 gfc_namespace *ns;
8892 int error = 0;
8893 int rank = 0;
8894 gfc_ref* ref = NULL;
8895 gfc_expr *selector_expr = NULL;
8896
8897 ns = code->ext.block.ns;
8898 gfc_resolve (ns);
8899
8900 /* Check for F03:C813. */
8901 if (code->expr1->ts.type != BT_CLASS
8902 && !(code->expr2 && code->expr2->ts.type == BT_CLASS))
8903 {
8904 gfc_error ("Selector shall be polymorphic in SELECT TYPE statement "
8905 "at %L", &code->loc);
8906 return;
8907 }
8908
8909 if (!code->expr1->symtree->n.sym->attr.class_ok)
8910 return;
8911
8912 if (code->expr2)
8913 {
8914 gfc_ref *ref2 = NULL;
8915 for (ref = code->expr2->ref; ref != NULL; ref = ref->next)
8916 if (ref->type == REF_COMPONENT
8917 && ref->u.c.component->ts.type == BT_CLASS)
8918 ref2 = ref;
8919
8920 if (ref2)
8921 {
8922 if (code->expr1->symtree->n.sym->attr.untyped)
8923 code->expr1->symtree->n.sym->ts = ref2->u.c.component->ts;
8924 selector_type = CLASS_DATA (ref2->u.c.component)->ts.u.derived;
8925 }
8926 else
8927 {
8928 if (code->expr1->symtree->n.sym->attr.untyped)
8929 code->expr1->symtree->n.sym->ts = code->expr2->ts;
8930 selector_type = CLASS_DATA (code->expr2)->ts.u.derived;
8931 }
8932
8933 if (code->expr2->rank && CLASS_DATA (code->expr1)->as)
8934 CLASS_DATA (code->expr1)->as->rank = code->expr2->rank;
8935
8936 /* F2008: C803 The selector expression must not be coindexed. */
8937 if (gfc_is_coindexed (code->expr2))
8938 {
8939 gfc_error ("Selector at %L must not be coindexed",
8940 &code->expr2->where);
8941 return;
8942 }
8943
8944 }
8945 else
8946 {
8947 selector_type = CLASS_DATA (code->expr1)->ts.u.derived;
8948
8949 if (gfc_is_coindexed (code->expr1))
8950 {
8951 gfc_error ("Selector at %L must not be coindexed",
8952 &code->expr1->where);
8953 return;
8954 }
8955 }
8956
8957 /* Loop over TYPE IS / CLASS IS cases. */
8958 for (body = code->block; body; body = body->block)
8959 {
8960 c = body->ext.block.case_list;
8961
8962 if (!error)
8963 {
8964 /* Check for repeated cases. */
8965 for (tail = code->block; tail; tail = tail->block)
8966 {
8967 gfc_case *d = tail->ext.block.case_list;
8968 if (tail == body)
8969 break;
8970
8971 if (c->ts.type == d->ts.type
8972 && ((c->ts.type == BT_DERIVED
8973 && c->ts.u.derived && d->ts.u.derived
8974 && !strcmp (c->ts.u.derived->name,
8975 d->ts.u.derived->name))
8976 || c->ts.type == BT_UNKNOWN
8977 || (!(c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8978 && c->ts.kind == d->ts.kind)))
8979 {
8980 gfc_error ("TYPE IS at %L overlaps with TYPE IS at %L",
8981 &c->where, &d->where);
8982 return;
8983 }
8984 }
8985 }
8986
8987 /* Check F03:C815. */
8988 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8989 && !selector_type->attr.unlimited_polymorphic
8990 && !gfc_type_is_extensible (c->ts.u.derived))
8991 {
8992 gfc_error ("Derived type %qs at %L must be extensible",
8993 c->ts.u.derived->name, &c->where);
8994 error++;
8995 continue;
8996 }
8997
8998 /* Check F03:C816. */
8999 if (c->ts.type != BT_UNKNOWN && !selector_type->attr.unlimited_polymorphic
9000 && ((c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
9001 || !gfc_type_is_extension_of (selector_type, c->ts.u.derived)))
9002 {
9003 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9004 gfc_error ("Derived type %qs at %L must be an extension of %qs",
9005 c->ts.u.derived->name, &c->where, selector_type->name);
9006 else
9007 gfc_error ("Unexpected intrinsic type %qs at %L",
9008 gfc_basic_typename (c->ts.type), &c->where);
9009 error++;
9010 continue;
9011 }
9012
9013 /* Check F03:C814. */
9014 if (c->ts.type == BT_CHARACTER
9015 && (c->ts.u.cl->length != NULL || c->ts.deferred))
9016 {
9017 gfc_error ("The type-spec at %L shall specify that each length "
9018 "type parameter is assumed", &c->where);
9019 error++;
9020 continue;
9021 }
9022
9023 /* Intercept the DEFAULT case. */
9024 if (c->ts.type == BT_UNKNOWN)
9025 {
9026 /* Check F03:C818. */
9027 if (default_case)
9028 {
9029 gfc_error ("The DEFAULT CASE at %L cannot be followed "
9030 "by a second DEFAULT CASE at %L",
9031 &default_case->ext.block.case_list->where, &c->where);
9032 error++;
9033 continue;
9034 }
9035
9036 default_case = body;
9037 }
9038 }
9039
9040 if (error > 0)
9041 return;
9042
9043 /* Transform SELECT TYPE statement to BLOCK and associate selector to
9044 target if present. If there are any EXIT statements referring to the
9045 SELECT TYPE construct, this is no problem because the gfc_code
9046 reference stays the same and EXIT is equally possible from the BLOCK
9047 it is changed to. */
9048 code->op = EXEC_BLOCK;
9049 if (code->expr2)
9050 {
9051 gfc_association_list* assoc;
9052
9053 assoc = gfc_get_association_list ();
9054 assoc->st = code->expr1->symtree;
9055 assoc->target = gfc_copy_expr (code->expr2);
9056 assoc->target->where = code->expr2->where;
9057 /* assoc->variable will be set by resolve_assoc_var. */
9058
9059 code->ext.block.assoc = assoc;
9060 code->expr1->symtree->n.sym->assoc = assoc;
9061
9062 resolve_assoc_var (code->expr1->symtree->n.sym, false);
9063 }
9064 else
9065 code->ext.block.assoc = NULL;
9066
9067 /* Ensure that the selector rank and arrayspec are available to
9068 correct expressions in which they might be missing. */
9069 if (code->expr2 && code->expr2->rank)
9070 {
9071 rank = code->expr2->rank;
9072 for (ref = code->expr2->ref; ref; ref = ref->next)
9073 if (ref->next == NULL)
9074 break;
9075 if (ref && ref->type == REF_ARRAY)
9076 ref = gfc_copy_ref (ref);
9077
9078 /* Fixup expr1 if necessary. */
9079 if (rank)
9080 fixup_array_ref (&code->expr1, code->expr2, rank, ref);
9081 }
9082 else if (code->expr1->rank)
9083 {
9084 rank = code->expr1->rank;
9085 for (ref = code->expr1->ref; ref; ref = ref->next)
9086 if (ref->next == NULL)
9087 break;
9088 if (ref && ref->type == REF_ARRAY)
9089 ref = gfc_copy_ref (ref);
9090 }
9091
9092 /* Add EXEC_SELECT to switch on type. */
9093 new_st = gfc_get_code (code->op);
9094 new_st->expr1 = code->expr1;
9095 new_st->expr2 = code->expr2;
9096 new_st->block = code->block;
9097 code->expr1 = code->expr2 = NULL;
9098 code->block = NULL;
9099 if (!ns->code)
9100 ns->code = new_st;
9101 else
9102 ns->code->next = new_st;
9103 code = new_st;
9104 code->op = EXEC_SELECT_TYPE;
9105
9106 /* Use the intrinsic LOC function to generate an integer expression
9107 for the vtable of the selector. Note that the rank of the selector
9108 expression has to be set to zero. */
9109 gfc_add_vptr_component (code->expr1);
9110 code->expr1->rank = 0;
9111 code->expr1 = build_loc_call (code->expr1);
9112 selector_expr = code->expr1->value.function.actual->expr;
9113
9114 /* Loop over TYPE IS / CLASS IS cases. */
9115 for (body = code->block; body; body = body->block)
9116 {
9117 gfc_symbol *vtab;
9118 gfc_expr *e;
9119 c = body->ext.block.case_list;
9120
9121 /* Generate an index integer expression for address of the
9122 TYPE/CLASS vtable and store it in c->low. The hash expression
9123 is stored in c->high and is used to resolve intrinsic cases. */
9124 if (c->ts.type != BT_UNKNOWN)
9125 {
9126 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9127 {
9128 vtab = gfc_find_derived_vtab (c->ts.u.derived);
9129 gcc_assert (vtab);
9130 c->high = gfc_get_int_expr (gfc_integer_4_kind, NULL,
9131 c->ts.u.derived->hash_value);
9132 }
9133 else
9134 {
9135 vtab = gfc_find_vtab (&c->ts);
9136 gcc_assert (vtab && CLASS_DATA (vtab)->initializer);
9137 e = CLASS_DATA (vtab)->initializer;
9138 c->high = gfc_copy_expr (e);
9139 if (c->high->ts.kind != gfc_integer_4_kind)
9140 {
9141 gfc_typespec ts;
9142 ts.kind = gfc_integer_4_kind;
9143 ts.type = BT_INTEGER;
9144 gfc_convert_type_warn (c->high, &ts, 2, 0);
9145 }
9146 }
9147
9148 e = gfc_lval_expr_from_sym (vtab);
9149 c->low = build_loc_call (e);
9150 }
9151 else
9152 continue;
9153
9154 /* Associate temporary to selector. This should only be done
9155 when this case is actually true, so build a new ASSOCIATE
9156 that does precisely this here (instead of using the
9157 'global' one). */
9158
9159 if (c->ts.type == BT_CLASS)
9160 sprintf (name, "__tmp_class_%s", c->ts.u.derived->name);
9161 else if (c->ts.type == BT_DERIVED)
9162 sprintf (name, "__tmp_type_%s", c->ts.u.derived->name);
9163 else if (c->ts.type == BT_CHARACTER)
9164 {
9165 HOST_WIDE_INT charlen = 0;
9166 if (c->ts.u.cl && c->ts.u.cl->length
9167 && c->ts.u.cl->length->expr_type == EXPR_CONSTANT)
9168 charlen = gfc_mpz_get_hwi (c->ts.u.cl->length->value.integer);
9169 snprintf (name, sizeof (name),
9170 "__tmp_%s_" HOST_WIDE_INT_PRINT_DEC "_%d",
9171 gfc_basic_typename (c->ts.type), charlen, c->ts.kind);
9172 }
9173 else
9174 sprintf (name, "__tmp_%s_%d", gfc_basic_typename (c->ts.type),
9175 c->ts.kind);
9176
9177 st = gfc_find_symtree (ns->sym_root, name);
9178 gcc_assert (st->n.sym->assoc);
9179 st->n.sym->assoc->target = gfc_get_variable_expr (selector_expr->symtree);
9180 st->n.sym->assoc->target->where = selector_expr->where;
9181 if (c->ts.type != BT_CLASS && c->ts.type != BT_UNKNOWN)
9182 {
9183 gfc_add_data_component (st->n.sym->assoc->target);
9184 /* Fixup the target expression if necessary. */
9185 if (rank)
9186 fixup_array_ref (&st->n.sym->assoc->target, NULL, rank, ref);
9187 }
9188
9189 new_st = gfc_get_code (EXEC_BLOCK);
9190 new_st->ext.block.ns = gfc_build_block_ns (ns);
9191 new_st->ext.block.ns->code = body->next;
9192 body->next = new_st;
9193
9194 /* Chain in the new list only if it is marked as dangling. Otherwise
9195 there is a CASE label overlap and this is already used. Just ignore,
9196 the error is diagnosed elsewhere. */
9197 if (st->n.sym->assoc->dangling)
9198 {
9199 new_st->ext.block.assoc = st->n.sym->assoc;
9200 st->n.sym->assoc->dangling = 0;
9201 }
9202
9203 resolve_assoc_var (st->n.sym, false);
9204 }
9205
9206 /* Take out CLASS IS cases for separate treatment. */
9207 body = code;
9208 while (body && body->block)
9209 {
9210 if (body->block->ext.block.case_list->ts.type == BT_CLASS)
9211 {
9212 /* Add to class_is list. */
9213 if (class_is == NULL)
9214 {
9215 class_is = body->block;
9216 tail = class_is;
9217 }
9218 else
9219 {
9220 for (tail = class_is; tail->block; tail = tail->block) ;
9221 tail->block = body->block;
9222 tail = tail->block;
9223 }
9224 /* Remove from EXEC_SELECT list. */
9225 body->block = body->block->block;
9226 tail->block = NULL;
9227 }
9228 else
9229 body = body->block;
9230 }
9231
9232 if (class_is)
9233 {
9234 gfc_symbol *vtab;
9235
9236 if (!default_case)
9237 {
9238 /* Add a default case to hold the CLASS IS cases. */
9239 for (tail = code; tail->block; tail = tail->block) ;
9240 tail->block = gfc_get_code (EXEC_SELECT_TYPE);
9241 tail = tail->block;
9242 tail->ext.block.case_list = gfc_get_case ();
9243 tail->ext.block.case_list->ts.type = BT_UNKNOWN;
9244 tail->next = NULL;
9245 default_case = tail;
9246 }
9247
9248 /* More than one CLASS IS block? */
9249 if (class_is->block)
9250 {
9251 gfc_code **c1,*c2;
9252 bool swapped;
9253 /* Sort CLASS IS blocks by extension level. */
9254 do
9255 {
9256 swapped = false;
9257 for (c1 = &class_is; (*c1) && (*c1)->block; c1 = &((*c1)->block))
9258 {
9259 c2 = (*c1)->block;
9260 /* F03:C817 (check for doubles). */
9261 if ((*c1)->ext.block.case_list->ts.u.derived->hash_value
9262 == c2->ext.block.case_list->ts.u.derived->hash_value)
9263 {
9264 gfc_error ("Double CLASS IS block in SELECT TYPE "
9265 "statement at %L",
9266 &c2->ext.block.case_list->where);
9267 return;
9268 }
9269 if ((*c1)->ext.block.case_list->ts.u.derived->attr.extension
9270 < c2->ext.block.case_list->ts.u.derived->attr.extension)
9271 {
9272 /* Swap. */
9273 (*c1)->block = c2->block;
9274 c2->block = *c1;
9275 *c1 = c2;
9276 swapped = true;
9277 }
9278 }
9279 }
9280 while (swapped);
9281 }
9282
9283 /* Generate IF chain. */
9284 if_st = gfc_get_code (EXEC_IF);
9285 new_st = if_st;
9286 for (body = class_is; body; body = body->block)
9287 {
9288 new_st->block = gfc_get_code (EXEC_IF);
9289 new_st = new_st->block;
9290 /* Set up IF condition: Call _gfortran_is_extension_of. */
9291 new_st->expr1 = gfc_get_expr ();
9292 new_st->expr1->expr_type = EXPR_FUNCTION;
9293 new_st->expr1->ts.type = BT_LOGICAL;
9294 new_st->expr1->ts.kind = 4;
9295 new_st->expr1->value.function.name = gfc_get_string (PREFIX ("is_extension_of"));
9296 new_st->expr1->value.function.isym = XCNEW (gfc_intrinsic_sym);
9297 new_st->expr1->value.function.isym->id = GFC_ISYM_EXTENDS_TYPE_OF;
9298 /* Set up arguments. */
9299 new_st->expr1->value.function.actual = gfc_get_actual_arglist ();
9300 new_st->expr1->value.function.actual->expr = gfc_get_variable_expr (selector_expr->symtree);
9301 new_st->expr1->value.function.actual->expr->where = code->loc;
9302 new_st->expr1->where = code->loc;
9303 gfc_add_vptr_component (new_st->expr1->value.function.actual->expr);
9304 vtab = gfc_find_derived_vtab (body->ext.block.case_list->ts.u.derived);
9305 st = gfc_find_symtree (vtab->ns->sym_root, vtab->name);
9306 new_st->expr1->value.function.actual->next = gfc_get_actual_arglist ();
9307 new_st->expr1->value.function.actual->next->expr = gfc_get_variable_expr (st);
9308 new_st->expr1->value.function.actual->next->expr->where = code->loc;
9309 new_st->next = body->next;
9310 }
9311 if (default_case->next)
9312 {
9313 new_st->block = gfc_get_code (EXEC_IF);
9314 new_st = new_st->block;
9315 new_st->next = default_case->next;
9316 }
9317
9318 /* Replace CLASS DEFAULT code by the IF chain. */
9319 default_case->next = if_st;
9320 }
9321
9322 /* Resolve the internal code. This can not be done earlier because
9323 it requires that the sym->assoc of selectors is set already. */
9324 gfc_current_ns = ns;
9325 gfc_resolve_blocks (code->block, gfc_current_ns);
9326 gfc_current_ns = old_ns;
9327
9328 if (ref)
9329 free (ref);
9330 }
9331
9332
9333 /* Resolve a transfer statement. This is making sure that:
9334 -- a derived type being transferred has only non-pointer components
9335 -- a derived type being transferred doesn't have private components, unless
9336 it's being transferred from the module where the type was defined
9337 -- we're not trying to transfer a whole assumed size array. */
9338
9339 static void
9340 resolve_transfer (gfc_code *code)
9341 {
9342 gfc_symbol *sym, *derived;
9343 gfc_ref *ref;
9344 gfc_expr *exp;
9345 bool write = false;
9346 bool formatted = false;
9347 gfc_dt *dt = code->ext.dt;
9348 gfc_symbol *dtio_sub = NULL;
9349
9350 exp = code->expr1;
9351
9352 while (exp != NULL && exp->expr_type == EXPR_OP
9353 && exp->value.op.op == INTRINSIC_PARENTHESES)
9354 exp = exp->value.op.op1;
9355
9356 if (exp && exp->expr_type == EXPR_NULL
9357 && code->ext.dt)
9358 {
9359 gfc_error ("Invalid context for NULL () intrinsic at %L",
9360 &exp->where);
9361 return;
9362 }
9363
9364 if (exp == NULL || (exp->expr_type != EXPR_VARIABLE
9365 && exp->expr_type != EXPR_FUNCTION
9366 && exp->expr_type != EXPR_STRUCTURE))
9367 return;
9368
9369 /* If we are reading, the variable will be changed. Note that
9370 code->ext.dt may be NULL if the TRANSFER is related to
9371 an INQUIRE statement -- but in this case, we are not reading, either. */
9372 if (dt && dt->dt_io_kind->value.iokind == M_READ
9373 && !gfc_check_vardef_context (exp, false, false, false,
9374 _("item in READ")))
9375 return;
9376
9377 const gfc_typespec *ts = exp->expr_type == EXPR_STRUCTURE
9378 || exp->expr_type == EXPR_FUNCTION
9379 ? &exp->ts : &exp->symtree->n.sym->ts;
9380
9381 /* Go to actual component transferred. */
9382 for (ref = exp->ref; ref; ref = ref->next)
9383 if (ref->type == REF_COMPONENT)
9384 ts = &ref->u.c.component->ts;
9385
9386 if (dt && dt->dt_io_kind->value.iokind != M_INQUIRE
9387 && (ts->type == BT_DERIVED || ts->type == BT_CLASS))
9388 {
9389 derived = ts->u.derived;
9390
9391 /* Determine when to use the formatted DTIO procedure. */
9392 if (dt && (dt->format_expr || dt->format_label))
9393 formatted = true;
9394
9395 write = dt->dt_io_kind->value.iokind == M_WRITE
9396 || dt->dt_io_kind->value.iokind == M_PRINT;
9397 dtio_sub = gfc_find_specific_dtio_proc (derived, write, formatted);
9398
9399 if (dtio_sub != NULL && exp->expr_type == EXPR_VARIABLE)
9400 {
9401 dt->udtio = exp;
9402 sym = exp->symtree->n.sym->ns->proc_name;
9403 /* Check to see if this is a nested DTIO call, with the
9404 dummy as the io-list object. */
9405 if (sym && sym == dtio_sub && sym->formal
9406 && sym->formal->sym == exp->symtree->n.sym
9407 && exp->ref == NULL)
9408 {
9409 if (!sym->attr.recursive)
9410 {
9411 gfc_error ("DTIO %s procedure at %L must be recursive",
9412 sym->name, &sym->declared_at);
9413 return;
9414 }
9415 }
9416 }
9417 }
9418
9419 if (ts->type == BT_CLASS && dtio_sub == NULL)
9420 {
9421 gfc_error ("Data transfer element at %L cannot be polymorphic unless "
9422 "it is processed by a defined input/output procedure",
9423 &code->loc);
9424 return;
9425 }
9426
9427 if (ts->type == BT_DERIVED)
9428 {
9429 /* Check that transferred derived type doesn't contain POINTER
9430 components unless it is processed by a defined input/output
9431 procedure". */
9432 if (ts->u.derived->attr.pointer_comp && dtio_sub == NULL)
9433 {
9434 gfc_error ("Data transfer element at %L cannot have POINTER "
9435 "components unless it is processed by a defined "
9436 "input/output procedure", &code->loc);
9437 return;
9438 }
9439
9440 /* F08:C935. */
9441 if (ts->u.derived->attr.proc_pointer_comp)
9442 {
9443 gfc_error ("Data transfer element at %L cannot have "
9444 "procedure pointer components", &code->loc);
9445 return;
9446 }
9447
9448 if (ts->u.derived->attr.alloc_comp && dtio_sub == NULL)
9449 {
9450 gfc_error ("Data transfer element at %L cannot have ALLOCATABLE "
9451 "components unless it is processed by a defined "
9452 "input/output procedure", &code->loc);
9453 return;
9454 }
9455
9456 /* C_PTR and C_FUNPTR have private components which means they can not
9457 be printed. However, if -std=gnu and not -pedantic, allow
9458 the component to be printed to help debugging. */
9459 if (ts->u.derived->ts.f90_type == BT_VOID)
9460 {
9461 if (!gfc_notify_std (GFC_STD_GNU, "Data transfer element at %L "
9462 "cannot have PRIVATE components", &code->loc))
9463 return;
9464 }
9465 else if (derived_inaccessible (ts->u.derived) && dtio_sub == NULL)
9466 {
9467 gfc_error ("Data transfer element at %L cannot have "
9468 "PRIVATE components unless it is processed by "
9469 "a defined input/output procedure", &code->loc);
9470 return;
9471 }
9472 }
9473
9474 if (exp->expr_type == EXPR_STRUCTURE)
9475 return;
9476
9477 sym = exp->symtree->n.sym;
9478
9479 if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE && exp->ref
9480 && exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
9481 {
9482 gfc_error ("Data transfer element at %L cannot be a full reference to "
9483 "an assumed-size array", &code->loc);
9484 return;
9485 }
9486
9487 if (async_io_dt && exp->expr_type == EXPR_VARIABLE)
9488 exp->symtree->n.sym->attr.asynchronous = 1;
9489 }
9490
9491
9492 /*********** Toplevel code resolution subroutines ***********/
9493
9494 /* Find the set of labels that are reachable from this block. We also
9495 record the last statement in each block. */
9496
9497 static void
9498 find_reachable_labels (gfc_code *block)
9499 {
9500 gfc_code *c;
9501
9502 if (!block)
9503 return;
9504
9505 cs_base->reachable_labels = bitmap_alloc (&labels_obstack);
9506
9507 /* Collect labels in this block. We don't keep those corresponding
9508 to END {IF|SELECT}, these are checked in resolve_branch by going
9509 up through the code_stack. */
9510 for (c = block; c; c = c->next)
9511 {
9512 if (c->here && c->op != EXEC_END_NESTED_BLOCK)
9513 bitmap_set_bit (cs_base->reachable_labels, c->here->value);
9514 }
9515
9516 /* Merge with labels from parent block. */
9517 if (cs_base->prev)
9518 {
9519 gcc_assert (cs_base->prev->reachable_labels);
9520 bitmap_ior_into (cs_base->reachable_labels,
9521 cs_base->prev->reachable_labels);
9522 }
9523 }
9524
9525
9526 static void
9527 resolve_lock_unlock_event (gfc_code *code)
9528 {
9529 if (code->expr1->expr_type == EXPR_FUNCTION
9530 && code->expr1->value.function.isym
9531 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
9532 remove_caf_get_intrinsic (code->expr1);
9533
9534 if ((code->op == EXEC_LOCK || code->op == EXEC_UNLOCK)
9535 && (code->expr1->ts.type != BT_DERIVED
9536 || code->expr1->expr_type != EXPR_VARIABLE
9537 || code->expr1->ts.u.derived->from_intmod != INTMOD_ISO_FORTRAN_ENV
9538 || code->expr1->ts.u.derived->intmod_sym_id != ISOFORTRAN_LOCK_TYPE
9539 || code->expr1->rank != 0
9540 || (!gfc_is_coarray (code->expr1) &&
9541 !gfc_is_coindexed (code->expr1))))
9542 gfc_error ("Lock variable at %L must be a scalar of type LOCK_TYPE",
9543 &code->expr1->where);
9544 else if ((code->op == EXEC_EVENT_POST || code->op == EXEC_EVENT_WAIT)
9545 && (code->expr1->ts.type != BT_DERIVED
9546 || code->expr1->expr_type != EXPR_VARIABLE
9547 || code->expr1->ts.u.derived->from_intmod
9548 != INTMOD_ISO_FORTRAN_ENV
9549 || code->expr1->ts.u.derived->intmod_sym_id
9550 != ISOFORTRAN_EVENT_TYPE
9551 || code->expr1->rank != 0))
9552 gfc_error ("Event variable at %L must be a scalar of type EVENT_TYPE",
9553 &code->expr1->where);
9554 else if (code->op == EXEC_EVENT_POST && !gfc_is_coarray (code->expr1)
9555 && !gfc_is_coindexed (code->expr1))
9556 gfc_error ("Event variable argument at %L must be a coarray or coindexed",
9557 &code->expr1->where);
9558 else if (code->op == EXEC_EVENT_WAIT && !gfc_is_coarray (code->expr1))
9559 gfc_error ("Event variable argument at %L must be a coarray but not "
9560 "coindexed", &code->expr1->where);
9561
9562 /* Check STAT. */
9563 if (code->expr2
9564 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9565 || code->expr2->expr_type != EXPR_VARIABLE))
9566 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9567 &code->expr2->where);
9568
9569 if (code->expr2
9570 && !gfc_check_vardef_context (code->expr2, false, false, false,
9571 _("STAT variable")))
9572 return;
9573
9574 /* Check ERRMSG. */
9575 if (code->expr3
9576 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9577 || code->expr3->expr_type != EXPR_VARIABLE))
9578 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9579 &code->expr3->where);
9580
9581 if (code->expr3
9582 && !gfc_check_vardef_context (code->expr3, false, false, false,
9583 _("ERRMSG variable")))
9584 return;
9585
9586 /* Check for LOCK the ACQUIRED_LOCK. */
9587 if (code->op != EXEC_EVENT_WAIT && code->expr4
9588 && (code->expr4->ts.type != BT_LOGICAL || code->expr4->rank != 0
9589 || code->expr4->expr_type != EXPR_VARIABLE))
9590 gfc_error ("ACQUIRED_LOCK= argument at %L must be a scalar LOGICAL "
9591 "variable", &code->expr4->where);
9592
9593 if (code->op != EXEC_EVENT_WAIT && code->expr4
9594 && !gfc_check_vardef_context (code->expr4, false, false, false,
9595 _("ACQUIRED_LOCK variable")))
9596 return;
9597
9598 /* Check for EVENT WAIT the UNTIL_COUNT. */
9599 if (code->op == EXEC_EVENT_WAIT && code->expr4)
9600 {
9601 if (!gfc_resolve_expr (code->expr4) || code->expr4->ts.type != BT_INTEGER
9602 || code->expr4->rank != 0)
9603 gfc_error ("UNTIL_COUNT= argument at %L must be a scalar INTEGER "
9604 "expression", &code->expr4->where);
9605 }
9606 }
9607
9608
9609 static void
9610 resolve_critical (gfc_code *code)
9611 {
9612 gfc_symtree *symtree;
9613 gfc_symbol *lock_type;
9614 char name[GFC_MAX_SYMBOL_LEN];
9615 static int serial = 0;
9616
9617 if (flag_coarray != GFC_FCOARRAY_LIB)
9618 return;
9619
9620 symtree = gfc_find_symtree (gfc_current_ns->sym_root,
9621 GFC_PREFIX ("lock_type"));
9622 if (symtree)
9623 lock_type = symtree->n.sym;
9624 else
9625 {
9626 if (gfc_get_sym_tree (GFC_PREFIX ("lock_type"), gfc_current_ns, &symtree,
9627 false) != 0)
9628 gcc_unreachable ();
9629 lock_type = symtree->n.sym;
9630 lock_type->attr.flavor = FL_DERIVED;
9631 lock_type->attr.zero_comp = 1;
9632 lock_type->from_intmod = INTMOD_ISO_FORTRAN_ENV;
9633 lock_type->intmod_sym_id = ISOFORTRAN_LOCK_TYPE;
9634 }
9635
9636 sprintf(name, GFC_PREFIX ("lock_var") "%d",serial++);
9637 if (gfc_get_sym_tree (name, gfc_current_ns, &symtree, false) != 0)
9638 gcc_unreachable ();
9639
9640 code->resolved_sym = symtree->n.sym;
9641 symtree->n.sym->attr.flavor = FL_VARIABLE;
9642 symtree->n.sym->attr.referenced = 1;
9643 symtree->n.sym->attr.artificial = 1;
9644 symtree->n.sym->attr.codimension = 1;
9645 symtree->n.sym->ts.type = BT_DERIVED;
9646 symtree->n.sym->ts.u.derived = lock_type;
9647 symtree->n.sym->as = gfc_get_array_spec ();
9648 symtree->n.sym->as->corank = 1;
9649 symtree->n.sym->as->type = AS_EXPLICIT;
9650 symtree->n.sym->as->cotype = AS_EXPLICIT;
9651 symtree->n.sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind,
9652 NULL, 1);
9653 gfc_commit_symbols();
9654 }
9655
9656
9657 static void
9658 resolve_sync (gfc_code *code)
9659 {
9660 /* Check imageset. The * case matches expr1 == NULL. */
9661 if (code->expr1)
9662 {
9663 if (code->expr1->ts.type != BT_INTEGER || code->expr1->rank > 1)
9664 gfc_error ("Imageset argument at %L must be a scalar or rank-1 "
9665 "INTEGER expression", &code->expr1->where);
9666 if (code->expr1->expr_type == EXPR_CONSTANT && code->expr1->rank == 0
9667 && mpz_cmp_si (code->expr1->value.integer, 1) < 0)
9668 gfc_error ("Imageset argument at %L must between 1 and num_images()",
9669 &code->expr1->where);
9670 else if (code->expr1->expr_type == EXPR_ARRAY
9671 && gfc_simplify_expr (code->expr1, 0))
9672 {
9673 gfc_constructor *cons;
9674 cons = gfc_constructor_first (code->expr1->value.constructor);
9675 for (; cons; cons = gfc_constructor_next (cons))
9676 if (cons->expr->expr_type == EXPR_CONSTANT
9677 && mpz_cmp_si (cons->expr->value.integer, 1) < 0)
9678 gfc_error ("Imageset argument at %L must between 1 and "
9679 "num_images()", &cons->expr->where);
9680 }
9681 }
9682
9683 /* Check STAT. */
9684 gfc_resolve_expr (code->expr2);
9685 if (code->expr2
9686 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9687 || code->expr2->expr_type != EXPR_VARIABLE))
9688 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9689 &code->expr2->where);
9690
9691 /* Check ERRMSG. */
9692 gfc_resolve_expr (code->expr3);
9693 if (code->expr3
9694 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9695 || code->expr3->expr_type != EXPR_VARIABLE))
9696 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9697 &code->expr3->where);
9698 }
9699
9700
9701 /* Given a branch to a label, see if the branch is conforming.
9702 The code node describes where the branch is located. */
9703
9704 static void
9705 resolve_branch (gfc_st_label *label, gfc_code *code)
9706 {
9707 code_stack *stack;
9708
9709 if (label == NULL)
9710 return;
9711
9712 /* Step one: is this a valid branching target? */
9713
9714 if (label->defined == ST_LABEL_UNKNOWN)
9715 {
9716 gfc_error ("Label %d referenced at %L is never defined", label->value,
9717 &code->loc);
9718 return;
9719 }
9720
9721 if (label->defined != ST_LABEL_TARGET && label->defined != ST_LABEL_DO_TARGET)
9722 {
9723 gfc_error ("Statement at %L is not a valid branch target statement "
9724 "for the branch statement at %L", &label->where, &code->loc);
9725 return;
9726 }
9727
9728 /* Step two: make sure this branch is not a branch to itself ;-) */
9729
9730 if (code->here == label)
9731 {
9732 gfc_warning (0,
9733 "Branch at %L may result in an infinite loop", &code->loc);
9734 return;
9735 }
9736
9737 /* Step three: See if the label is in the same block as the
9738 branching statement. The hard work has been done by setting up
9739 the bitmap reachable_labels. */
9740
9741 if (bitmap_bit_p (cs_base->reachable_labels, label->value))
9742 {
9743 /* Check now whether there is a CRITICAL construct; if so, check
9744 whether the label is still visible outside of the CRITICAL block,
9745 which is invalid. */
9746 for (stack = cs_base; stack; stack = stack->prev)
9747 {
9748 if (stack->current->op == EXEC_CRITICAL
9749 && bitmap_bit_p (stack->reachable_labels, label->value))
9750 gfc_error ("GOTO statement at %L leaves CRITICAL construct for "
9751 "label at %L", &code->loc, &label->where);
9752 else if (stack->current->op == EXEC_DO_CONCURRENT
9753 && bitmap_bit_p (stack->reachable_labels, label->value))
9754 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct "
9755 "for label at %L", &code->loc, &label->where);
9756 }
9757
9758 return;
9759 }
9760
9761 /* Step four: If we haven't found the label in the bitmap, it may
9762 still be the label of the END of the enclosing block, in which
9763 case we find it by going up the code_stack. */
9764
9765 for (stack = cs_base; stack; stack = stack->prev)
9766 {
9767 if (stack->current->next && stack->current->next->here == label)
9768 break;
9769 if (stack->current->op == EXEC_CRITICAL)
9770 {
9771 /* Note: A label at END CRITICAL does not leave the CRITICAL
9772 construct as END CRITICAL is still part of it. */
9773 gfc_error ("GOTO statement at %L leaves CRITICAL construct for label"
9774 " at %L", &code->loc, &label->where);
9775 return;
9776 }
9777 else if (stack->current->op == EXEC_DO_CONCURRENT)
9778 {
9779 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct for "
9780 "label at %L", &code->loc, &label->where);
9781 return;
9782 }
9783 }
9784
9785 if (stack)
9786 {
9787 gcc_assert (stack->current->next->op == EXEC_END_NESTED_BLOCK);
9788 return;
9789 }
9790
9791 /* The label is not in an enclosing block, so illegal. This was
9792 allowed in Fortran 66, so we allow it as extension. No
9793 further checks are necessary in this case. */
9794 gfc_notify_std (GFC_STD_LEGACY, "Label at %L is not in the same block "
9795 "as the GOTO statement at %L", &label->where,
9796 &code->loc);
9797 return;
9798 }
9799
9800
9801 /* Check whether EXPR1 has the same shape as EXPR2. */
9802
9803 static bool
9804 resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
9805 {
9806 mpz_t shape[GFC_MAX_DIMENSIONS];
9807 mpz_t shape2[GFC_MAX_DIMENSIONS];
9808 bool result = false;
9809 int i;
9810
9811 /* Compare the rank. */
9812 if (expr1->rank != expr2->rank)
9813 return result;
9814
9815 /* Compare the size of each dimension. */
9816 for (i=0; i<expr1->rank; i++)
9817 {
9818 if (!gfc_array_dimen_size (expr1, i, &shape[i]))
9819 goto ignore;
9820
9821 if (!gfc_array_dimen_size (expr2, i, &shape2[i]))
9822 goto ignore;
9823
9824 if (mpz_cmp (shape[i], shape2[i]))
9825 goto over;
9826 }
9827
9828 /* When either of the two expression is an assumed size array, we
9829 ignore the comparison of dimension sizes. */
9830 ignore:
9831 result = true;
9832
9833 over:
9834 gfc_clear_shape (shape, i);
9835 gfc_clear_shape (shape2, i);
9836 return result;
9837 }
9838
9839
9840 /* Check whether a WHERE assignment target or a WHERE mask expression
9841 has the same shape as the outmost WHERE mask expression. */
9842
9843 static void
9844 resolve_where (gfc_code *code, gfc_expr *mask)
9845 {
9846 gfc_code *cblock;
9847 gfc_code *cnext;
9848 gfc_expr *e = NULL;
9849
9850 cblock = code->block;
9851
9852 /* Store the first WHERE mask-expr of the WHERE statement or construct.
9853 In case of nested WHERE, only the outmost one is stored. */
9854 if (mask == NULL) /* outmost WHERE */
9855 e = cblock->expr1;
9856 else /* inner WHERE */
9857 e = mask;
9858
9859 while (cblock)
9860 {
9861 if (cblock->expr1)
9862 {
9863 /* Check if the mask-expr has a consistent shape with the
9864 outmost WHERE mask-expr. */
9865 if (!resolve_where_shape (cblock->expr1, e))
9866 gfc_error ("WHERE mask at %L has inconsistent shape",
9867 &cblock->expr1->where);
9868 }
9869
9870 /* the assignment statement of a WHERE statement, or the first
9871 statement in where-body-construct of a WHERE construct */
9872 cnext = cblock->next;
9873 while (cnext)
9874 {
9875 switch (cnext->op)
9876 {
9877 /* WHERE assignment statement */
9878 case EXEC_ASSIGN:
9879
9880 /* Check shape consistent for WHERE assignment target. */
9881 if (e && !resolve_where_shape (cnext->expr1, e))
9882 gfc_error ("WHERE assignment target at %L has "
9883 "inconsistent shape", &cnext->expr1->where);
9884 break;
9885
9886
9887 case EXEC_ASSIGN_CALL:
9888 resolve_call (cnext);
9889 if (!cnext->resolved_sym->attr.elemental)
9890 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9891 &cnext->ext.actual->expr->where);
9892 break;
9893
9894 /* WHERE or WHERE construct is part of a where-body-construct */
9895 case EXEC_WHERE:
9896 resolve_where (cnext, e);
9897 break;
9898
9899 default:
9900 gfc_error ("Unsupported statement inside WHERE at %L",
9901 &cnext->loc);
9902 }
9903 /* the next statement within the same where-body-construct */
9904 cnext = cnext->next;
9905 }
9906 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9907 cblock = cblock->block;
9908 }
9909 }
9910
9911
9912 /* Resolve assignment in FORALL construct.
9913 NVAR is the number of FORALL index variables, and VAR_EXPR records the
9914 FORALL index variables. */
9915
9916 static void
9917 gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
9918 {
9919 int n;
9920
9921 for (n = 0; n < nvar; n++)
9922 {
9923 gfc_symbol *forall_index;
9924
9925 forall_index = var_expr[n]->symtree->n.sym;
9926
9927 /* Check whether the assignment target is one of the FORALL index
9928 variable. */
9929 if ((code->expr1->expr_type == EXPR_VARIABLE)
9930 && (code->expr1->symtree->n.sym == forall_index))
9931 gfc_error ("Assignment to a FORALL index variable at %L",
9932 &code->expr1->where);
9933 else
9934 {
9935 /* If one of the FORALL index variables doesn't appear in the
9936 assignment variable, then there could be a many-to-one
9937 assignment. Emit a warning rather than an error because the
9938 mask could be resolving this problem. */
9939 if (!find_forall_index (code->expr1, forall_index, 0))
9940 gfc_warning (0, "The FORALL with index %qs is not used on the "
9941 "left side of the assignment at %L and so might "
9942 "cause multiple assignment to this object",
9943 var_expr[n]->symtree->name, &code->expr1->where);
9944 }
9945 }
9946 }
9947
9948
9949 /* Resolve WHERE statement in FORALL construct. */
9950
9951 static void
9952 gfc_resolve_where_code_in_forall (gfc_code *code, int nvar,
9953 gfc_expr **var_expr)
9954 {
9955 gfc_code *cblock;
9956 gfc_code *cnext;
9957
9958 cblock = code->block;
9959 while (cblock)
9960 {
9961 /* the assignment statement of a WHERE statement, or the first
9962 statement in where-body-construct of a WHERE construct */
9963 cnext = cblock->next;
9964 while (cnext)
9965 {
9966 switch (cnext->op)
9967 {
9968 /* WHERE assignment statement */
9969 case EXEC_ASSIGN:
9970 gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
9971 break;
9972
9973 /* WHERE operator assignment statement */
9974 case EXEC_ASSIGN_CALL:
9975 resolve_call (cnext);
9976 if (!cnext->resolved_sym->attr.elemental)
9977 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9978 &cnext->ext.actual->expr->where);
9979 break;
9980
9981 /* WHERE or WHERE construct is part of a where-body-construct */
9982 case EXEC_WHERE:
9983 gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
9984 break;
9985
9986 default:
9987 gfc_error ("Unsupported statement inside WHERE at %L",
9988 &cnext->loc);
9989 }
9990 /* the next statement within the same where-body-construct */
9991 cnext = cnext->next;
9992 }
9993 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9994 cblock = cblock->block;
9995 }
9996 }
9997
9998
9999 /* Traverse the FORALL body to check whether the following errors exist:
10000 1. For assignment, check if a many-to-one assignment happens.
10001 2. For WHERE statement, check the WHERE body to see if there is any
10002 many-to-one assignment. */
10003
10004 static void
10005 gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
10006 {
10007 gfc_code *c;
10008
10009 c = code->block->next;
10010 while (c)
10011 {
10012 switch (c->op)
10013 {
10014 case EXEC_ASSIGN:
10015 case EXEC_POINTER_ASSIGN:
10016 gfc_resolve_assign_in_forall (c, nvar, var_expr);
10017 break;
10018
10019 case EXEC_ASSIGN_CALL:
10020 resolve_call (c);
10021 break;
10022
10023 /* Because the gfc_resolve_blocks() will handle the nested FORALL,
10024 there is no need to handle it here. */
10025 case EXEC_FORALL:
10026 break;
10027 case EXEC_WHERE:
10028 gfc_resolve_where_code_in_forall(c, nvar, var_expr);
10029 break;
10030 default:
10031 break;
10032 }
10033 /* The next statement in the FORALL body. */
10034 c = c->next;
10035 }
10036 }
10037
10038
10039 /* Counts the number of iterators needed inside a forall construct, including
10040 nested forall constructs. This is used to allocate the needed memory
10041 in gfc_resolve_forall. */
10042
10043 static int
10044 gfc_count_forall_iterators (gfc_code *code)
10045 {
10046 int max_iters, sub_iters, current_iters;
10047 gfc_forall_iterator *fa;
10048
10049 gcc_assert(code->op == EXEC_FORALL);
10050 max_iters = 0;
10051 current_iters = 0;
10052
10053 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
10054 current_iters ++;
10055
10056 code = code->block->next;
10057
10058 while (code)
10059 {
10060 if (code->op == EXEC_FORALL)
10061 {
10062 sub_iters = gfc_count_forall_iterators (code);
10063 if (sub_iters > max_iters)
10064 max_iters = sub_iters;
10065 }
10066 code = code->next;
10067 }
10068
10069 return current_iters + max_iters;
10070 }
10071
10072
10073 /* Given a FORALL construct, first resolve the FORALL iterator, then call
10074 gfc_resolve_forall_body to resolve the FORALL body. */
10075
10076 static void
10077 gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
10078 {
10079 static gfc_expr **var_expr;
10080 static int total_var = 0;
10081 static int nvar = 0;
10082 int i, old_nvar, tmp;
10083 gfc_forall_iterator *fa;
10084
10085 old_nvar = nvar;
10086
10087 if (!gfc_notify_std (GFC_STD_F2018_OBS, "FORALL construct at %L", &code->loc))
10088 return;
10089
10090 /* Start to resolve a FORALL construct */
10091 if (forall_save == 0)
10092 {
10093 /* Count the total number of FORALL indices in the nested FORALL
10094 construct in order to allocate the VAR_EXPR with proper size. */
10095 total_var = gfc_count_forall_iterators (code);
10096
10097 /* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements. */
10098 var_expr = XCNEWVEC (gfc_expr *, total_var);
10099 }
10100
10101 /* The information about FORALL iterator, including FORALL indices start, end
10102 and stride. An outer FORALL indice cannot appear in start, end or stride. */
10103 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
10104 {
10105 /* Fortran 20008: C738 (R753). */
10106 if (fa->var->ref && fa->var->ref->type == REF_ARRAY)
10107 {
10108 gfc_error ("FORALL index-name at %L must be a scalar variable "
10109 "of type integer", &fa->var->where);
10110 continue;
10111 }
10112
10113 /* Check if any outer FORALL index name is the same as the current
10114 one. */
10115 for (i = 0; i < nvar; i++)
10116 {
10117 if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
10118 gfc_error ("An outer FORALL construct already has an index "
10119 "with this name %L", &fa->var->where);
10120 }
10121
10122 /* Record the current FORALL index. */
10123 var_expr[nvar] = gfc_copy_expr (fa->var);
10124
10125 nvar++;
10126
10127 /* No memory leak. */
10128 gcc_assert (nvar <= total_var);
10129 }
10130
10131 /* Resolve the FORALL body. */
10132 gfc_resolve_forall_body (code, nvar, var_expr);
10133
10134 /* May call gfc_resolve_forall to resolve the inner FORALL loop. */
10135 gfc_resolve_blocks (code->block, ns);
10136
10137 tmp = nvar;
10138 nvar = old_nvar;
10139 /* Free only the VAR_EXPRs allocated in this frame. */
10140 for (i = nvar; i < tmp; i++)
10141 gfc_free_expr (var_expr[i]);
10142
10143 if (nvar == 0)
10144 {
10145 /* We are in the outermost FORALL construct. */
10146 gcc_assert (forall_save == 0);
10147
10148 /* VAR_EXPR is not needed any more. */
10149 free (var_expr);
10150 total_var = 0;
10151 }
10152 }
10153
10154
10155 /* Resolve a BLOCK construct statement. */
10156
10157 static void
10158 resolve_block_construct (gfc_code* code)
10159 {
10160 /* Resolve the BLOCK's namespace. */
10161 gfc_resolve (code->ext.block.ns);
10162
10163 /* For an ASSOCIATE block, the associations (and their targets) are already
10164 resolved during resolve_symbol. */
10165 }
10166
10167
10168 /* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL, GOTO and
10169 DO code nodes. */
10170
10171 void
10172 gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
10173 {
10174 bool t;
10175
10176 for (; b; b = b->block)
10177 {
10178 t = gfc_resolve_expr (b->expr1);
10179 if (!gfc_resolve_expr (b->expr2))
10180 t = false;
10181
10182 switch (b->op)
10183 {
10184 case EXEC_IF:
10185 if (t && b->expr1 != NULL
10186 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank != 0))
10187 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
10188 &b->expr1->where);
10189 break;
10190
10191 case EXEC_WHERE:
10192 if (t
10193 && b->expr1 != NULL
10194 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank == 0))
10195 gfc_error ("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
10196 &b->expr1->where);
10197 break;
10198
10199 case EXEC_GOTO:
10200 resolve_branch (b->label1, b);
10201 break;
10202
10203 case EXEC_BLOCK:
10204 resolve_block_construct (b);
10205 break;
10206
10207 case EXEC_SELECT:
10208 case EXEC_SELECT_TYPE:
10209 case EXEC_FORALL:
10210 case EXEC_DO:
10211 case EXEC_DO_WHILE:
10212 case EXEC_DO_CONCURRENT:
10213 case EXEC_CRITICAL:
10214 case EXEC_READ:
10215 case EXEC_WRITE:
10216 case EXEC_IOLENGTH:
10217 case EXEC_WAIT:
10218 break;
10219
10220 case EXEC_OMP_ATOMIC:
10221 case EXEC_OACC_ATOMIC:
10222 {
10223 gfc_omp_atomic_op aop
10224 = (gfc_omp_atomic_op) (b->ext.omp_atomic & GFC_OMP_ATOMIC_MASK);
10225
10226 /* Verify this before calling gfc_resolve_code, which might
10227 change it. */
10228 gcc_assert (b->next && b->next->op == EXEC_ASSIGN);
10229 gcc_assert (((aop != GFC_OMP_ATOMIC_CAPTURE)
10230 && b->next->next == NULL)
10231 || ((aop == GFC_OMP_ATOMIC_CAPTURE)
10232 && b->next->next != NULL
10233 && b->next->next->op == EXEC_ASSIGN
10234 && b->next->next->next == NULL));
10235 }
10236 break;
10237
10238 case EXEC_OACC_PARALLEL_LOOP:
10239 case EXEC_OACC_PARALLEL:
10240 case EXEC_OACC_KERNELS_LOOP:
10241 case EXEC_OACC_KERNELS:
10242 case EXEC_OACC_DATA:
10243 case EXEC_OACC_HOST_DATA:
10244 case EXEC_OACC_LOOP:
10245 case EXEC_OACC_UPDATE:
10246 case EXEC_OACC_WAIT:
10247 case EXEC_OACC_CACHE:
10248 case EXEC_OACC_ENTER_DATA:
10249 case EXEC_OACC_EXIT_DATA:
10250 case EXEC_OACC_ROUTINE:
10251 case EXEC_OMP_CRITICAL:
10252 case EXEC_OMP_DISTRIBUTE:
10253 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
10254 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
10255 case EXEC_OMP_DISTRIBUTE_SIMD:
10256 case EXEC_OMP_DO:
10257 case EXEC_OMP_DO_SIMD:
10258 case EXEC_OMP_MASTER:
10259 case EXEC_OMP_ORDERED:
10260 case EXEC_OMP_PARALLEL:
10261 case EXEC_OMP_PARALLEL_DO:
10262 case EXEC_OMP_PARALLEL_DO_SIMD:
10263 case EXEC_OMP_PARALLEL_SECTIONS:
10264 case EXEC_OMP_PARALLEL_WORKSHARE:
10265 case EXEC_OMP_SECTIONS:
10266 case EXEC_OMP_SIMD:
10267 case EXEC_OMP_SINGLE:
10268 case EXEC_OMP_TARGET:
10269 case EXEC_OMP_TARGET_DATA:
10270 case EXEC_OMP_TARGET_ENTER_DATA:
10271 case EXEC_OMP_TARGET_EXIT_DATA:
10272 case EXEC_OMP_TARGET_PARALLEL:
10273 case EXEC_OMP_TARGET_PARALLEL_DO:
10274 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
10275 case EXEC_OMP_TARGET_SIMD:
10276 case EXEC_OMP_TARGET_TEAMS:
10277 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
10278 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
10279 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10280 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
10281 case EXEC_OMP_TARGET_UPDATE:
10282 case EXEC_OMP_TASK:
10283 case EXEC_OMP_TASKGROUP:
10284 case EXEC_OMP_TASKLOOP:
10285 case EXEC_OMP_TASKLOOP_SIMD:
10286 case EXEC_OMP_TASKWAIT:
10287 case EXEC_OMP_TASKYIELD:
10288 case EXEC_OMP_TEAMS:
10289 case EXEC_OMP_TEAMS_DISTRIBUTE:
10290 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
10291 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10292 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
10293 case EXEC_OMP_WORKSHARE:
10294 break;
10295
10296 default:
10297 gfc_internal_error ("gfc_resolve_blocks(): Bad block type");
10298 }
10299
10300 gfc_resolve_code (b->next, ns);
10301 }
10302 }
10303
10304
10305 /* Does everything to resolve an ordinary assignment. Returns true
10306 if this is an interface assignment. */
10307 static bool
10308 resolve_ordinary_assign (gfc_code *code, gfc_namespace *ns)
10309 {
10310 bool rval = false;
10311 gfc_expr *lhs;
10312 gfc_expr *rhs;
10313 int n;
10314 gfc_ref *ref;
10315 symbol_attribute attr;
10316
10317 if (gfc_extend_assign (code, ns))
10318 {
10319 gfc_expr** rhsptr;
10320
10321 if (code->op == EXEC_ASSIGN_CALL)
10322 {
10323 lhs = code->ext.actual->expr;
10324 rhsptr = &code->ext.actual->next->expr;
10325 }
10326 else
10327 {
10328 gfc_actual_arglist* args;
10329 gfc_typebound_proc* tbp;
10330
10331 gcc_assert (code->op == EXEC_COMPCALL);
10332
10333 args = code->expr1->value.compcall.actual;
10334 lhs = args->expr;
10335 rhsptr = &args->next->expr;
10336
10337 tbp = code->expr1->value.compcall.tbp;
10338 gcc_assert (!tbp->is_generic);
10339 }
10340
10341 /* Make a temporary rhs when there is a default initializer
10342 and rhs is the same symbol as the lhs. */
10343 if ((*rhsptr)->expr_type == EXPR_VARIABLE
10344 && (*rhsptr)->symtree->n.sym->ts.type == BT_DERIVED
10345 && gfc_has_default_initializer ((*rhsptr)->symtree->n.sym->ts.u.derived)
10346 && (lhs->symtree->n.sym == (*rhsptr)->symtree->n.sym))
10347 *rhsptr = gfc_get_parentheses (*rhsptr);
10348
10349 return true;
10350 }
10351
10352 lhs = code->expr1;
10353 rhs = code->expr2;
10354
10355 if (rhs->is_boz
10356 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
10357 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
10358 &code->loc))
10359 return false;
10360
10361 /* Handle the case of a BOZ literal on the RHS. */
10362 if (rhs->is_boz && lhs->ts.type != BT_INTEGER)
10363 {
10364 int rc;
10365 if (warn_surprising)
10366 gfc_warning (OPT_Wsurprising,
10367 "BOZ literal at %L is bitwise transferred "
10368 "non-integer symbol %qs", &code->loc,
10369 lhs->symtree->n.sym->name);
10370
10371 if (!gfc_convert_boz (rhs, &lhs->ts))
10372 return false;
10373 if ((rc = gfc_range_check (rhs)) != ARITH_OK)
10374 {
10375 if (rc == ARITH_UNDERFLOW)
10376 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
10377 ". This check can be disabled with the option "
10378 "%<-fno-range-check%>", &rhs->where);
10379 else if (rc == ARITH_OVERFLOW)
10380 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
10381 ". This check can be disabled with the option "
10382 "%<-fno-range-check%>", &rhs->where);
10383 else if (rc == ARITH_NAN)
10384 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
10385 ". This check can be disabled with the option "
10386 "%<-fno-range-check%>", &rhs->where);
10387 return false;
10388 }
10389 }
10390
10391 if (lhs->ts.type == BT_CHARACTER
10392 && warn_character_truncation)
10393 {
10394 HOST_WIDE_INT llen = 0, rlen = 0;
10395 if (lhs->ts.u.cl != NULL
10396 && lhs->ts.u.cl->length != NULL
10397 && lhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10398 llen = gfc_mpz_get_hwi (lhs->ts.u.cl->length->value.integer);
10399
10400 if (rhs->expr_type == EXPR_CONSTANT)
10401 rlen = rhs->value.character.length;
10402
10403 else if (rhs->ts.u.cl != NULL
10404 && rhs->ts.u.cl->length != NULL
10405 && rhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10406 rlen = gfc_mpz_get_hwi (rhs->ts.u.cl->length->value.integer);
10407
10408 if (rlen && llen && rlen > llen)
10409 gfc_warning_now (OPT_Wcharacter_truncation,
10410 "CHARACTER expression will be truncated "
10411 "in assignment (%ld/%ld) at %L",
10412 (long) llen, (long) rlen, &code->loc);
10413 }
10414
10415 /* Ensure that a vector index expression for the lvalue is evaluated
10416 to a temporary if the lvalue symbol is referenced in it. */
10417 if (lhs->rank)
10418 {
10419 for (ref = lhs->ref; ref; ref= ref->next)
10420 if (ref->type == REF_ARRAY)
10421 {
10422 for (n = 0; n < ref->u.ar.dimen; n++)
10423 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR
10424 && gfc_find_sym_in_expr (lhs->symtree->n.sym,
10425 ref->u.ar.start[n]))
10426 ref->u.ar.start[n]
10427 = gfc_get_parentheses (ref->u.ar.start[n]);
10428 }
10429 }
10430
10431 if (gfc_pure (NULL))
10432 {
10433 if (lhs->ts.type == BT_DERIVED
10434 && lhs->expr_type == EXPR_VARIABLE
10435 && lhs->ts.u.derived->attr.pointer_comp
10436 && rhs->expr_type == EXPR_VARIABLE
10437 && (gfc_impure_variable (rhs->symtree->n.sym)
10438 || gfc_is_coindexed (rhs)))
10439 {
10440 /* F2008, C1283. */
10441 if (gfc_is_coindexed (rhs))
10442 gfc_error ("Coindexed expression at %L is assigned to "
10443 "a derived type variable with a POINTER "
10444 "component in a PURE procedure",
10445 &rhs->where);
10446 else
10447 gfc_error ("The impure variable at %L is assigned to "
10448 "a derived type variable with a POINTER "
10449 "component in a PURE procedure (12.6)",
10450 &rhs->where);
10451 return rval;
10452 }
10453
10454 /* Fortran 2008, C1283. */
10455 if (gfc_is_coindexed (lhs))
10456 {
10457 gfc_error ("Assignment to coindexed variable at %L in a PURE "
10458 "procedure", &rhs->where);
10459 return rval;
10460 }
10461 }
10462
10463 if (gfc_implicit_pure (NULL))
10464 {
10465 if (lhs->expr_type == EXPR_VARIABLE
10466 && lhs->symtree->n.sym != gfc_current_ns->proc_name
10467 && lhs->symtree->n.sym->ns != gfc_current_ns)
10468 gfc_unset_implicit_pure (NULL);
10469
10470 if (lhs->ts.type == BT_DERIVED
10471 && lhs->expr_type == EXPR_VARIABLE
10472 && lhs->ts.u.derived->attr.pointer_comp
10473 && rhs->expr_type == EXPR_VARIABLE
10474 && (gfc_impure_variable (rhs->symtree->n.sym)
10475 || gfc_is_coindexed (rhs)))
10476 gfc_unset_implicit_pure (NULL);
10477
10478 /* Fortran 2008, C1283. */
10479 if (gfc_is_coindexed (lhs))
10480 gfc_unset_implicit_pure (NULL);
10481 }
10482
10483 /* F2008, 7.2.1.2. */
10484 attr = gfc_expr_attr (lhs);
10485 if (lhs->ts.type == BT_CLASS && attr.allocatable)
10486 {
10487 if (attr.codimension)
10488 {
10489 gfc_error ("Assignment to polymorphic coarray at %L is not "
10490 "permitted", &lhs->where);
10491 return false;
10492 }
10493 if (!gfc_notify_std (GFC_STD_F2008, "Assignment to an allocatable "
10494 "polymorphic variable at %L", &lhs->where))
10495 return false;
10496 if (!flag_realloc_lhs)
10497 {
10498 gfc_error ("Assignment to an allocatable polymorphic variable at %L "
10499 "requires %<-frealloc-lhs%>", &lhs->where);
10500 return false;
10501 }
10502 }
10503 else if (lhs->ts.type == BT_CLASS)
10504 {
10505 gfc_error ("Nonallocatable variable must not be polymorphic in intrinsic "
10506 "assignment at %L - check that there is a matching specific "
10507 "subroutine for '=' operator", &lhs->where);
10508 return false;
10509 }
10510
10511 bool lhs_coindexed = gfc_is_coindexed (lhs);
10512
10513 /* F2008, Section 7.2.1.2. */
10514 if (lhs_coindexed && gfc_has_ultimate_allocatable (lhs))
10515 {
10516 gfc_error ("Coindexed variable must not have an allocatable ultimate "
10517 "component in assignment at %L", &lhs->where);
10518 return false;
10519 }
10520
10521 /* Assign the 'data' of a class object to a derived type. */
10522 if (lhs->ts.type == BT_DERIVED
10523 && rhs->ts.type == BT_CLASS
10524 && rhs->expr_type != EXPR_ARRAY)
10525 gfc_add_data_component (rhs);
10526
10527 /* Make sure there is a vtable and, in particular, a _copy for the
10528 rhs type. */
10529 if (UNLIMITED_POLY (lhs) && lhs->rank && rhs->ts.type != BT_CLASS)
10530 gfc_find_vtab (&rhs->ts);
10531
10532 bool caf_convert_to_send = flag_coarray == GFC_FCOARRAY_LIB
10533 && (lhs_coindexed
10534 || (code->expr2->expr_type == EXPR_FUNCTION
10535 && code->expr2->value.function.isym
10536 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET
10537 && (code->expr1->rank == 0 || code->expr2->rank != 0)
10538 && !gfc_expr_attr (rhs).allocatable
10539 && !gfc_has_vector_subscript (rhs)));
10540
10541 gfc_check_assign (lhs, rhs, 1, !caf_convert_to_send);
10542
10543 /* Insert a GFC_ISYM_CAF_SEND intrinsic, when the LHS is a coindexed variable.
10544 Additionally, insert this code when the RHS is a CAF as we then use the
10545 GFC_ISYM_CAF_SEND intrinsic just to avoid a temporary; but do not do so if
10546 the LHS is (re)allocatable or has a vector subscript. If the LHS is a
10547 noncoindexed array and the RHS is a coindexed scalar, use the normal code
10548 path. */
10549 if (caf_convert_to_send)
10550 {
10551 if (code->expr2->expr_type == EXPR_FUNCTION
10552 && code->expr2->value.function.isym
10553 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET)
10554 remove_caf_get_intrinsic (code->expr2);
10555 code->op = EXEC_CALL;
10556 gfc_get_sym_tree (GFC_PREFIX ("caf_send"), ns, &code->symtree, true);
10557 code->resolved_sym = code->symtree->n.sym;
10558 code->resolved_sym->attr.flavor = FL_PROCEDURE;
10559 code->resolved_sym->attr.intrinsic = 1;
10560 code->resolved_sym->attr.subroutine = 1;
10561 code->resolved_isym = gfc_intrinsic_subroutine_by_id (GFC_ISYM_CAF_SEND);
10562 gfc_commit_symbol (code->resolved_sym);
10563 code->ext.actual = gfc_get_actual_arglist ();
10564 code->ext.actual->expr = lhs;
10565 code->ext.actual->next = gfc_get_actual_arglist ();
10566 code->ext.actual->next->expr = rhs;
10567 code->expr1 = NULL;
10568 code->expr2 = NULL;
10569 }
10570
10571 return false;
10572 }
10573
10574
10575 /* Add a component reference onto an expression. */
10576
10577 static void
10578 add_comp_ref (gfc_expr *e, gfc_component *c)
10579 {
10580 gfc_ref **ref;
10581 ref = &(e->ref);
10582 while (*ref)
10583 ref = &((*ref)->next);
10584 *ref = gfc_get_ref ();
10585 (*ref)->type = REF_COMPONENT;
10586 (*ref)->u.c.sym = e->ts.u.derived;
10587 (*ref)->u.c.component = c;
10588 e->ts = c->ts;
10589
10590 /* Add a full array ref, as necessary. */
10591 if (c->as)
10592 {
10593 gfc_add_full_array_ref (e, c->as);
10594 e->rank = c->as->rank;
10595 }
10596 }
10597
10598
10599 /* Build an assignment. Keep the argument 'op' for future use, so that
10600 pointer assignments can be made. */
10601
10602 static gfc_code *
10603 build_assignment (gfc_exec_op op, gfc_expr *expr1, gfc_expr *expr2,
10604 gfc_component *comp1, gfc_component *comp2, locus loc)
10605 {
10606 gfc_code *this_code;
10607
10608 this_code = gfc_get_code (op);
10609 this_code->next = NULL;
10610 this_code->expr1 = gfc_copy_expr (expr1);
10611 this_code->expr2 = gfc_copy_expr (expr2);
10612 this_code->loc = loc;
10613 if (comp1 && comp2)
10614 {
10615 add_comp_ref (this_code->expr1, comp1);
10616 add_comp_ref (this_code->expr2, comp2);
10617 }
10618
10619 return this_code;
10620 }
10621
10622
10623 /* Makes a temporary variable expression based on the characteristics of
10624 a given variable expression. */
10625
10626 static gfc_expr*
10627 get_temp_from_expr (gfc_expr *e, gfc_namespace *ns)
10628 {
10629 static int serial = 0;
10630 char name[GFC_MAX_SYMBOL_LEN];
10631 gfc_symtree *tmp;
10632 gfc_array_spec *as;
10633 gfc_array_ref *aref;
10634 gfc_ref *ref;
10635
10636 sprintf (name, GFC_PREFIX("DA%d"), serial++);
10637 gfc_get_sym_tree (name, ns, &tmp, false);
10638 gfc_add_type (tmp->n.sym, &e->ts, NULL);
10639
10640 as = NULL;
10641 ref = NULL;
10642 aref = NULL;
10643
10644 /* Obtain the arrayspec for the temporary. */
10645 if (e->rank && e->expr_type != EXPR_ARRAY
10646 && e->expr_type != EXPR_FUNCTION
10647 && e->expr_type != EXPR_OP)
10648 {
10649 aref = gfc_find_array_ref (e);
10650 if (e->expr_type == EXPR_VARIABLE
10651 && e->symtree->n.sym->as == aref->as)
10652 as = aref->as;
10653 else
10654 {
10655 for (ref = e->ref; ref; ref = ref->next)
10656 if (ref->type == REF_COMPONENT
10657 && ref->u.c.component->as == aref->as)
10658 {
10659 as = aref->as;
10660 break;
10661 }
10662 }
10663 }
10664
10665 /* Add the attributes and the arrayspec to the temporary. */
10666 tmp->n.sym->attr = gfc_expr_attr (e);
10667 tmp->n.sym->attr.function = 0;
10668 tmp->n.sym->attr.result = 0;
10669 tmp->n.sym->attr.flavor = FL_VARIABLE;
10670 tmp->n.sym->attr.dummy = 0;
10671 tmp->n.sym->attr.intent = INTENT_UNKNOWN;
10672
10673 if (as)
10674 {
10675 tmp->n.sym->as = gfc_copy_array_spec (as);
10676 if (!ref)
10677 ref = e->ref;
10678 if (as->type == AS_DEFERRED)
10679 tmp->n.sym->attr.allocatable = 1;
10680 }
10681 else if (e->rank && (e->expr_type == EXPR_ARRAY
10682 || e->expr_type == EXPR_FUNCTION
10683 || e->expr_type == EXPR_OP))
10684 {
10685 tmp->n.sym->as = gfc_get_array_spec ();
10686 tmp->n.sym->as->type = AS_DEFERRED;
10687 tmp->n.sym->as->rank = e->rank;
10688 tmp->n.sym->attr.allocatable = 1;
10689 tmp->n.sym->attr.dimension = 1;
10690 }
10691 else
10692 tmp->n.sym->attr.dimension = 0;
10693
10694 gfc_set_sym_referenced (tmp->n.sym);
10695 gfc_commit_symbol (tmp->n.sym);
10696 e = gfc_lval_expr_from_sym (tmp->n.sym);
10697
10698 /* Should the lhs be a section, use its array ref for the
10699 temporary expression. */
10700 if (aref && aref->type != AR_FULL)
10701 {
10702 gfc_free_ref_list (e->ref);
10703 e->ref = gfc_copy_ref (ref);
10704 }
10705 return e;
10706 }
10707
10708
10709 /* Add one line of code to the code chain, making sure that 'head' and
10710 'tail' are appropriately updated. */
10711
10712 static void
10713 add_code_to_chain (gfc_code **this_code, gfc_code **head, gfc_code **tail)
10714 {
10715 gcc_assert (this_code);
10716 if (*head == NULL)
10717 *head = *tail = *this_code;
10718 else
10719 *tail = gfc_append_code (*tail, *this_code);
10720 *this_code = NULL;
10721 }
10722
10723
10724 /* Counts the potential number of part array references that would
10725 result from resolution of typebound defined assignments. */
10726
10727 static int
10728 nonscalar_typebound_assign (gfc_symbol *derived, int depth)
10729 {
10730 gfc_component *c;
10731 int c_depth = 0, t_depth;
10732
10733 for (c= derived->components; c; c = c->next)
10734 {
10735 if ((!gfc_bt_struct (c->ts.type)
10736 || c->attr.pointer
10737 || c->attr.allocatable
10738 || c->attr.proc_pointer_comp
10739 || c->attr.class_pointer
10740 || c->attr.proc_pointer)
10741 && !c->attr.defined_assign_comp)
10742 continue;
10743
10744 if (c->as && c_depth == 0)
10745 c_depth = 1;
10746
10747 if (c->ts.u.derived->attr.defined_assign_comp)
10748 t_depth = nonscalar_typebound_assign (c->ts.u.derived,
10749 c->as ? 1 : 0);
10750 else
10751 t_depth = 0;
10752
10753 c_depth = t_depth > c_depth ? t_depth : c_depth;
10754 }
10755 return depth + c_depth;
10756 }
10757
10758
10759 /* Implement 7.2.1.3 of the F08 standard:
10760 "An intrinsic assignment where the variable is of derived type is
10761 performed as if each component of the variable were assigned from the
10762 corresponding component of expr using pointer assignment (7.2.2) for
10763 each pointer component, defined assignment for each nonpointer
10764 nonallocatable component of a type that has a type-bound defined
10765 assignment consistent with the component, intrinsic assignment for
10766 each other nonpointer nonallocatable component, ..."
10767
10768 The pointer assignments are taken care of by the intrinsic
10769 assignment of the structure itself. This function recursively adds
10770 defined assignments where required. The recursion is accomplished
10771 by calling gfc_resolve_code.
10772
10773 When the lhs in a defined assignment has intent INOUT, we need a
10774 temporary for the lhs. In pseudo-code:
10775
10776 ! Only call function lhs once.
10777 if (lhs is not a constant or an variable)
10778 temp_x = expr2
10779 expr2 => temp_x
10780 ! Do the intrinsic assignment
10781 expr1 = expr2
10782 ! Now do the defined assignments
10783 do over components with typebound defined assignment [%cmp]
10784 #if one component's assignment procedure is INOUT
10785 t1 = expr1
10786 #if expr2 non-variable
10787 temp_x = expr2
10788 expr2 => temp_x
10789 # endif
10790 expr1 = expr2
10791 # for each cmp
10792 t1%cmp {defined=} expr2%cmp
10793 expr1%cmp = t1%cmp
10794 #else
10795 expr1 = expr2
10796
10797 # for each cmp
10798 expr1%cmp {defined=} expr2%cmp
10799 #endif
10800 */
10801
10802 /* The temporary assignments have to be put on top of the additional
10803 code to avoid the result being changed by the intrinsic assignment.
10804 */
10805 static int component_assignment_level = 0;
10806 static gfc_code *tmp_head = NULL, *tmp_tail = NULL;
10807
10808 static void
10809 generate_component_assignments (gfc_code **code, gfc_namespace *ns)
10810 {
10811 gfc_component *comp1, *comp2;
10812 gfc_code *this_code = NULL, *head = NULL, *tail = NULL;
10813 gfc_expr *t1;
10814 int error_count, depth;
10815
10816 gfc_get_errors (NULL, &error_count);
10817
10818 /* Filter out continuing processing after an error. */
10819 if (error_count
10820 || (*code)->expr1->ts.type != BT_DERIVED
10821 || (*code)->expr2->ts.type != BT_DERIVED)
10822 return;
10823
10824 /* TODO: Handle more than one part array reference in assignments. */
10825 depth = nonscalar_typebound_assign ((*code)->expr1->ts.u.derived,
10826 (*code)->expr1->rank ? 1 : 0);
10827 if (depth > 1)
10828 {
10829 gfc_warning (0, "TODO: type-bound defined assignment(s) at %L not "
10830 "done because multiple part array references would "
10831 "occur in intermediate expressions.", &(*code)->loc);
10832 return;
10833 }
10834
10835 component_assignment_level++;
10836
10837 /* Create a temporary so that functions get called only once. */
10838 if ((*code)->expr2->expr_type != EXPR_VARIABLE
10839 && (*code)->expr2->expr_type != EXPR_CONSTANT)
10840 {
10841 gfc_expr *tmp_expr;
10842
10843 /* Assign the rhs to the temporary. */
10844 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
10845 this_code = build_assignment (EXEC_ASSIGN,
10846 tmp_expr, (*code)->expr2,
10847 NULL, NULL, (*code)->loc);
10848 /* Add the code and substitute the rhs expression. */
10849 add_code_to_chain (&this_code, &tmp_head, &tmp_tail);
10850 gfc_free_expr ((*code)->expr2);
10851 (*code)->expr2 = tmp_expr;
10852 }
10853
10854 /* Do the intrinsic assignment. This is not needed if the lhs is one
10855 of the temporaries generated here, since the intrinsic assignment
10856 to the final result already does this. */
10857 if ((*code)->expr1->symtree->n.sym->name[2] != '@')
10858 {
10859 this_code = build_assignment (EXEC_ASSIGN,
10860 (*code)->expr1, (*code)->expr2,
10861 NULL, NULL, (*code)->loc);
10862 add_code_to_chain (&this_code, &head, &tail);
10863 }
10864
10865 comp1 = (*code)->expr1->ts.u.derived->components;
10866 comp2 = (*code)->expr2->ts.u.derived->components;
10867
10868 t1 = NULL;
10869 for (; comp1; comp1 = comp1->next, comp2 = comp2->next)
10870 {
10871 bool inout = false;
10872
10873 /* The intrinsic assignment does the right thing for pointers
10874 of all kinds and allocatable components. */
10875 if (!gfc_bt_struct (comp1->ts.type)
10876 || comp1->attr.pointer
10877 || comp1->attr.allocatable
10878 || comp1->attr.proc_pointer_comp
10879 || comp1->attr.class_pointer
10880 || comp1->attr.proc_pointer)
10881 continue;
10882
10883 /* Make an assigment for this component. */
10884 this_code = build_assignment (EXEC_ASSIGN,
10885 (*code)->expr1, (*code)->expr2,
10886 comp1, comp2, (*code)->loc);
10887
10888 /* Convert the assignment if there is a defined assignment for
10889 this type. Otherwise, using the call from gfc_resolve_code,
10890 recurse into its components. */
10891 gfc_resolve_code (this_code, ns);
10892
10893 if (this_code->op == EXEC_ASSIGN_CALL)
10894 {
10895 gfc_formal_arglist *dummy_args;
10896 gfc_symbol *rsym;
10897 /* Check that there is a typebound defined assignment. If not,
10898 then this must be a module defined assignment. We cannot
10899 use the defined_assign_comp attribute here because it must
10900 be this derived type that has the defined assignment and not
10901 a parent type. */
10902 if (!(comp1->ts.u.derived->f2k_derived
10903 && comp1->ts.u.derived->f2k_derived
10904 ->tb_op[INTRINSIC_ASSIGN]))
10905 {
10906 gfc_free_statements (this_code);
10907 this_code = NULL;
10908 continue;
10909 }
10910
10911 /* If the first argument of the subroutine has intent INOUT
10912 a temporary must be generated and used instead. */
10913 rsym = this_code->resolved_sym;
10914 dummy_args = gfc_sym_get_dummy_args (rsym);
10915 if (dummy_args
10916 && dummy_args->sym->attr.intent == INTENT_INOUT)
10917 {
10918 gfc_code *temp_code;
10919 inout = true;
10920
10921 /* Build the temporary required for the assignment and put
10922 it at the head of the generated code. */
10923 if (!t1)
10924 {
10925 t1 = get_temp_from_expr ((*code)->expr1, ns);
10926 temp_code = build_assignment (EXEC_ASSIGN,
10927 t1, (*code)->expr1,
10928 NULL, NULL, (*code)->loc);
10929
10930 /* For allocatable LHS, check whether it is allocated. Note
10931 that allocatable components with defined assignment are
10932 not yet support. See PR 57696. */
10933 if ((*code)->expr1->symtree->n.sym->attr.allocatable)
10934 {
10935 gfc_code *block;
10936 gfc_expr *e =
10937 gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10938 block = gfc_get_code (EXEC_IF);
10939 block->block = gfc_get_code (EXEC_IF);
10940 block->block->expr1
10941 = gfc_build_intrinsic_call (ns,
10942 GFC_ISYM_ALLOCATED, "allocated",
10943 (*code)->loc, 1, e);
10944 block->block->next = temp_code;
10945 temp_code = block;
10946 }
10947 add_code_to_chain (&temp_code, &tmp_head, &tmp_tail);
10948 }
10949
10950 /* Replace the first actual arg with the component of the
10951 temporary. */
10952 gfc_free_expr (this_code->ext.actual->expr);
10953 this_code->ext.actual->expr = gfc_copy_expr (t1);
10954 add_comp_ref (this_code->ext.actual->expr, comp1);
10955
10956 /* If the LHS variable is allocatable and wasn't allocated and
10957 the temporary is allocatable, pointer assign the address of
10958 the freshly allocated LHS to the temporary. */
10959 if ((*code)->expr1->symtree->n.sym->attr.allocatable
10960 && gfc_expr_attr ((*code)->expr1).allocatable)
10961 {
10962 gfc_code *block;
10963 gfc_expr *cond;
10964
10965 cond = gfc_get_expr ();
10966 cond->ts.type = BT_LOGICAL;
10967 cond->ts.kind = gfc_default_logical_kind;
10968 cond->expr_type = EXPR_OP;
10969 cond->where = (*code)->loc;
10970 cond->value.op.op = INTRINSIC_NOT;
10971 cond->value.op.op1 = gfc_build_intrinsic_call (ns,
10972 GFC_ISYM_ALLOCATED, "allocated",
10973 (*code)->loc, 1, gfc_copy_expr (t1));
10974 block = gfc_get_code (EXEC_IF);
10975 block->block = gfc_get_code (EXEC_IF);
10976 block->block->expr1 = cond;
10977 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
10978 t1, (*code)->expr1,
10979 NULL, NULL, (*code)->loc);
10980 add_code_to_chain (&block, &head, &tail);
10981 }
10982 }
10983 }
10984 else if (this_code->op == EXEC_ASSIGN && !this_code->next)
10985 {
10986 /* Don't add intrinsic assignments since they are already
10987 effected by the intrinsic assignment of the structure. */
10988 gfc_free_statements (this_code);
10989 this_code = NULL;
10990 continue;
10991 }
10992
10993 add_code_to_chain (&this_code, &head, &tail);
10994
10995 if (t1 && inout)
10996 {
10997 /* Transfer the value to the final result. */
10998 this_code = build_assignment (EXEC_ASSIGN,
10999 (*code)->expr1, t1,
11000 comp1, comp2, (*code)->loc);
11001 add_code_to_chain (&this_code, &head, &tail);
11002 }
11003 }
11004
11005 /* Put the temporary assignments at the top of the generated code. */
11006 if (tmp_head && component_assignment_level == 1)
11007 {
11008 gfc_append_code (tmp_head, head);
11009 head = tmp_head;
11010 tmp_head = tmp_tail = NULL;
11011 }
11012
11013 // If we did a pointer assignment - thus, we need to ensure that the LHS is
11014 // not accidentally deallocated. Hence, nullify t1.
11015 if (t1 && (*code)->expr1->symtree->n.sym->attr.allocatable
11016 && gfc_expr_attr ((*code)->expr1).allocatable)
11017 {
11018 gfc_code *block;
11019 gfc_expr *cond;
11020 gfc_expr *e;
11021
11022 e = gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
11023 cond = gfc_build_intrinsic_call (ns, GFC_ISYM_ASSOCIATED, "associated",
11024 (*code)->loc, 2, gfc_copy_expr (t1), e);
11025 block = gfc_get_code (EXEC_IF);
11026 block->block = gfc_get_code (EXEC_IF);
11027 block->block->expr1 = cond;
11028 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
11029 t1, gfc_get_null_expr (&(*code)->loc),
11030 NULL, NULL, (*code)->loc);
11031 gfc_append_code (tail, block);
11032 tail = block;
11033 }
11034
11035 /* Now attach the remaining code chain to the input code. Step on
11036 to the end of the new code since resolution is complete. */
11037 gcc_assert ((*code)->op == EXEC_ASSIGN);
11038 tail->next = (*code)->next;
11039 /* Overwrite 'code' because this would place the intrinsic assignment
11040 before the temporary for the lhs is created. */
11041 gfc_free_expr ((*code)->expr1);
11042 gfc_free_expr ((*code)->expr2);
11043 **code = *head;
11044 if (head != tail)
11045 free (head);
11046 *code = tail;
11047
11048 component_assignment_level--;
11049 }
11050
11051
11052 /* F2008: Pointer function assignments are of the form:
11053 ptr_fcn (args) = expr
11054 This function breaks these assignments into two statements:
11055 temporary_pointer => ptr_fcn(args)
11056 temporary_pointer = expr */
11057
11058 static bool
11059 resolve_ptr_fcn_assign (gfc_code **code, gfc_namespace *ns)
11060 {
11061 gfc_expr *tmp_ptr_expr;
11062 gfc_code *this_code;
11063 gfc_component *comp;
11064 gfc_symbol *s;
11065
11066 if ((*code)->expr1->expr_type != EXPR_FUNCTION)
11067 return false;
11068
11069 /* Even if standard does not support this feature, continue to build
11070 the two statements to avoid upsetting frontend_passes.c. */
11071 gfc_notify_std (GFC_STD_F2008, "Pointer procedure assignment at "
11072 "%L", &(*code)->loc);
11073
11074 comp = gfc_get_proc_ptr_comp ((*code)->expr1);
11075
11076 if (comp)
11077 s = comp->ts.interface;
11078 else
11079 s = (*code)->expr1->symtree->n.sym;
11080
11081 if (s == NULL || !s->result->attr.pointer)
11082 {
11083 gfc_error ("The function result on the lhs of the assignment at "
11084 "%L must have the pointer attribute.",
11085 &(*code)->expr1->where);
11086 (*code)->op = EXEC_NOP;
11087 return false;
11088 }
11089
11090 tmp_ptr_expr = get_temp_from_expr ((*code)->expr2, ns);
11091
11092 /* get_temp_from_expression is set up for ordinary assignments. To that
11093 end, where array bounds are not known, arrays are made allocatable.
11094 Change the temporary to a pointer here. */
11095 tmp_ptr_expr->symtree->n.sym->attr.pointer = 1;
11096 tmp_ptr_expr->symtree->n.sym->attr.allocatable = 0;
11097 tmp_ptr_expr->where = (*code)->loc;
11098
11099 this_code = build_assignment (EXEC_ASSIGN,
11100 tmp_ptr_expr, (*code)->expr2,
11101 NULL, NULL, (*code)->loc);
11102 this_code->next = (*code)->next;
11103 (*code)->next = this_code;
11104 (*code)->op = EXEC_POINTER_ASSIGN;
11105 (*code)->expr2 = (*code)->expr1;
11106 (*code)->expr1 = tmp_ptr_expr;
11107
11108 return true;
11109 }
11110
11111
11112 /* Deferred character length assignments from an operator expression
11113 require a temporary because the character length of the lhs can
11114 change in the course of the assignment. */
11115
11116 static bool
11117 deferred_op_assign (gfc_code **code, gfc_namespace *ns)
11118 {
11119 gfc_expr *tmp_expr;
11120 gfc_code *this_code;
11121
11122 if (!((*code)->expr1->ts.type == BT_CHARACTER
11123 && (*code)->expr1->ts.deferred && (*code)->expr1->rank
11124 && (*code)->expr2->expr_type == EXPR_OP))
11125 return false;
11126
11127 if (!gfc_check_dependency ((*code)->expr1, (*code)->expr2, 1))
11128 return false;
11129
11130 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
11131 tmp_expr->where = (*code)->loc;
11132
11133 /* A new charlen is required to ensure that the variable string
11134 length is different to that of the original lhs. */
11135 tmp_expr->ts.u.cl = gfc_get_charlen();
11136 tmp_expr->symtree->n.sym->ts.u.cl = tmp_expr->ts.u.cl;
11137 tmp_expr->ts.u.cl->next = (*code)->expr2->ts.u.cl->next;
11138 (*code)->expr2->ts.u.cl->next = tmp_expr->ts.u.cl;
11139
11140 tmp_expr->symtree->n.sym->ts.deferred = 1;
11141
11142 this_code = build_assignment (EXEC_ASSIGN,
11143 (*code)->expr1,
11144 gfc_copy_expr (tmp_expr),
11145 NULL, NULL, (*code)->loc);
11146
11147 (*code)->expr1 = tmp_expr;
11148
11149 this_code->next = (*code)->next;
11150 (*code)->next = this_code;
11151
11152 return true;
11153 }
11154
11155
11156 /* Given a block of code, recursively resolve everything pointed to by this
11157 code block. */
11158
11159 void
11160 gfc_resolve_code (gfc_code *code, gfc_namespace *ns)
11161 {
11162 int omp_workshare_save;
11163 int forall_save, do_concurrent_save;
11164 code_stack frame;
11165 bool t;
11166
11167 frame.prev = cs_base;
11168 frame.head = code;
11169 cs_base = &frame;
11170
11171 find_reachable_labels (code);
11172
11173 for (; code; code = code->next)
11174 {
11175 frame.current = code;
11176 forall_save = forall_flag;
11177 do_concurrent_save = gfc_do_concurrent_flag;
11178
11179 if (code->op == EXEC_FORALL)
11180 {
11181 forall_flag = 1;
11182 gfc_resolve_forall (code, ns, forall_save);
11183 forall_flag = 2;
11184 }
11185 else if (code->block)
11186 {
11187 omp_workshare_save = -1;
11188 switch (code->op)
11189 {
11190 case EXEC_OACC_PARALLEL_LOOP:
11191 case EXEC_OACC_PARALLEL:
11192 case EXEC_OACC_KERNELS_LOOP:
11193 case EXEC_OACC_KERNELS:
11194 case EXEC_OACC_DATA:
11195 case EXEC_OACC_HOST_DATA:
11196 case EXEC_OACC_LOOP:
11197 gfc_resolve_oacc_blocks (code, ns);
11198 break;
11199 case EXEC_OMP_PARALLEL_WORKSHARE:
11200 omp_workshare_save = omp_workshare_flag;
11201 omp_workshare_flag = 1;
11202 gfc_resolve_omp_parallel_blocks (code, ns);
11203 break;
11204 case EXEC_OMP_PARALLEL:
11205 case EXEC_OMP_PARALLEL_DO:
11206 case EXEC_OMP_PARALLEL_DO_SIMD:
11207 case EXEC_OMP_PARALLEL_SECTIONS:
11208 case EXEC_OMP_TARGET_PARALLEL:
11209 case EXEC_OMP_TARGET_PARALLEL_DO:
11210 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11211 case EXEC_OMP_TARGET_TEAMS:
11212 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11213 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11214 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11215 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11216 case EXEC_OMP_TASK:
11217 case EXEC_OMP_TASKLOOP:
11218 case EXEC_OMP_TASKLOOP_SIMD:
11219 case EXEC_OMP_TEAMS:
11220 case EXEC_OMP_TEAMS_DISTRIBUTE:
11221 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11222 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11223 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11224 omp_workshare_save = omp_workshare_flag;
11225 omp_workshare_flag = 0;
11226 gfc_resolve_omp_parallel_blocks (code, ns);
11227 break;
11228 case EXEC_OMP_DISTRIBUTE:
11229 case EXEC_OMP_DISTRIBUTE_SIMD:
11230 case EXEC_OMP_DO:
11231 case EXEC_OMP_DO_SIMD:
11232 case EXEC_OMP_SIMD:
11233 case EXEC_OMP_TARGET_SIMD:
11234 gfc_resolve_omp_do_blocks (code, ns);
11235 break;
11236 case EXEC_SELECT_TYPE:
11237 /* Blocks are handled in resolve_select_type because we have
11238 to transform the SELECT TYPE into ASSOCIATE first. */
11239 break;
11240 case EXEC_DO_CONCURRENT:
11241 gfc_do_concurrent_flag = 1;
11242 gfc_resolve_blocks (code->block, ns);
11243 gfc_do_concurrent_flag = 2;
11244 break;
11245 case EXEC_OMP_WORKSHARE:
11246 omp_workshare_save = omp_workshare_flag;
11247 omp_workshare_flag = 1;
11248 /* FALL THROUGH */
11249 default:
11250 gfc_resolve_blocks (code->block, ns);
11251 break;
11252 }
11253
11254 if (omp_workshare_save != -1)
11255 omp_workshare_flag = omp_workshare_save;
11256 }
11257 start:
11258 t = true;
11259 if (code->op != EXEC_COMPCALL && code->op != EXEC_CALL_PPC)
11260 t = gfc_resolve_expr (code->expr1);
11261 forall_flag = forall_save;
11262 gfc_do_concurrent_flag = do_concurrent_save;
11263
11264 if (!gfc_resolve_expr (code->expr2))
11265 t = false;
11266
11267 if (code->op == EXEC_ALLOCATE
11268 && !gfc_resolve_expr (code->expr3))
11269 t = false;
11270
11271 switch (code->op)
11272 {
11273 case EXEC_NOP:
11274 case EXEC_END_BLOCK:
11275 case EXEC_END_NESTED_BLOCK:
11276 case EXEC_CYCLE:
11277 case EXEC_PAUSE:
11278 case EXEC_STOP:
11279 case EXEC_ERROR_STOP:
11280 case EXEC_EXIT:
11281 case EXEC_CONTINUE:
11282 case EXEC_DT_END:
11283 case EXEC_ASSIGN_CALL:
11284 break;
11285
11286 case EXEC_CRITICAL:
11287 resolve_critical (code);
11288 break;
11289
11290 case EXEC_SYNC_ALL:
11291 case EXEC_SYNC_IMAGES:
11292 case EXEC_SYNC_MEMORY:
11293 resolve_sync (code);
11294 break;
11295
11296 case EXEC_LOCK:
11297 case EXEC_UNLOCK:
11298 case EXEC_EVENT_POST:
11299 case EXEC_EVENT_WAIT:
11300 resolve_lock_unlock_event (code);
11301 break;
11302
11303 case EXEC_FAIL_IMAGE:
11304 case EXEC_FORM_TEAM:
11305 case EXEC_CHANGE_TEAM:
11306 case EXEC_END_TEAM:
11307 case EXEC_SYNC_TEAM:
11308 break;
11309
11310 case EXEC_ENTRY:
11311 /* Keep track of which entry we are up to. */
11312 current_entry_id = code->ext.entry->id;
11313 break;
11314
11315 case EXEC_WHERE:
11316 resolve_where (code, NULL);
11317 break;
11318
11319 case EXEC_GOTO:
11320 if (code->expr1 != NULL)
11321 {
11322 if (code->expr1->ts.type != BT_INTEGER)
11323 gfc_error ("ASSIGNED GOTO statement at %L requires an "
11324 "INTEGER variable", &code->expr1->where);
11325 else if (code->expr1->symtree->n.sym->attr.assign != 1)
11326 gfc_error ("Variable %qs has not been assigned a target "
11327 "label at %L", code->expr1->symtree->n.sym->name,
11328 &code->expr1->where);
11329 }
11330 else
11331 resolve_branch (code->label1, code);
11332 break;
11333
11334 case EXEC_RETURN:
11335 if (code->expr1 != NULL
11336 && (code->expr1->ts.type != BT_INTEGER || code->expr1->rank))
11337 gfc_error ("Alternate RETURN statement at %L requires a SCALAR-"
11338 "INTEGER return specifier", &code->expr1->where);
11339 break;
11340
11341 case EXEC_INIT_ASSIGN:
11342 case EXEC_END_PROCEDURE:
11343 break;
11344
11345 case EXEC_ASSIGN:
11346 if (!t)
11347 break;
11348
11349 /* Remove a GFC_ISYM_CAF_GET inserted for a coindexed variable on
11350 the LHS. */
11351 if (code->expr1->expr_type == EXPR_FUNCTION
11352 && code->expr1->value.function.isym
11353 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
11354 remove_caf_get_intrinsic (code->expr1);
11355
11356 /* If this is a pointer function in an lvalue variable context,
11357 the new code will have to be resolved afresh. This is also the
11358 case with an error, where the code is transformed into NOP to
11359 prevent ICEs downstream. */
11360 if (resolve_ptr_fcn_assign (&code, ns)
11361 || code->op == EXEC_NOP)
11362 goto start;
11363
11364 if (!gfc_check_vardef_context (code->expr1, false, false, false,
11365 _("assignment")))
11366 break;
11367
11368 if (resolve_ordinary_assign (code, ns))
11369 {
11370 if (code->op == EXEC_COMPCALL)
11371 goto compcall;
11372 else
11373 goto call;
11374 }
11375
11376 /* Check for dependencies in deferred character length array
11377 assignments and generate a temporary, if necessary. */
11378 if (code->op == EXEC_ASSIGN && deferred_op_assign (&code, ns))
11379 break;
11380
11381 /* F03 7.4.1.3 for non-allocatable, non-pointer components. */
11382 if (code->op != EXEC_CALL && code->expr1->ts.type == BT_DERIVED
11383 && code->expr1->ts.u.derived
11384 && code->expr1->ts.u.derived->attr.defined_assign_comp)
11385 generate_component_assignments (&code, ns);
11386
11387 break;
11388
11389 case EXEC_LABEL_ASSIGN:
11390 if (code->label1->defined == ST_LABEL_UNKNOWN)
11391 gfc_error ("Label %d referenced at %L is never defined",
11392 code->label1->value, &code->label1->where);
11393 if (t
11394 && (code->expr1->expr_type != EXPR_VARIABLE
11395 || code->expr1->symtree->n.sym->ts.type != BT_INTEGER
11396 || code->expr1->symtree->n.sym->ts.kind
11397 != gfc_default_integer_kind
11398 || code->expr1->symtree->n.sym->as != NULL))
11399 gfc_error ("ASSIGN statement at %L requires a scalar "
11400 "default INTEGER variable", &code->expr1->where);
11401 break;
11402
11403 case EXEC_POINTER_ASSIGN:
11404 {
11405 gfc_expr* e;
11406
11407 if (!t)
11408 break;
11409
11410 /* This is both a variable definition and pointer assignment
11411 context, so check both of them. For rank remapping, a final
11412 array ref may be present on the LHS and fool gfc_expr_attr
11413 used in gfc_check_vardef_context. Remove it. */
11414 e = remove_last_array_ref (code->expr1);
11415 t = gfc_check_vardef_context (e, true, false, false,
11416 _("pointer assignment"));
11417 if (t)
11418 t = gfc_check_vardef_context (e, false, false, false,
11419 _("pointer assignment"));
11420 gfc_free_expr (e);
11421
11422 t = gfc_check_pointer_assign (code->expr1, code->expr2, !t) && t;
11423
11424 if (!t)
11425 break;
11426
11427 /* Assigning a class object always is a regular assign. */
11428 if (code->expr2->ts.type == BT_CLASS
11429 && code->expr1->ts.type == BT_CLASS
11430 && !CLASS_DATA (code->expr2)->attr.dimension
11431 && !(gfc_expr_attr (code->expr1).proc_pointer
11432 && code->expr2->expr_type == EXPR_VARIABLE
11433 && code->expr2->symtree->n.sym->attr.flavor
11434 == FL_PROCEDURE))
11435 code->op = EXEC_ASSIGN;
11436 break;
11437 }
11438
11439 case EXEC_ARITHMETIC_IF:
11440 {
11441 gfc_expr *e = code->expr1;
11442
11443 gfc_resolve_expr (e);
11444 if (e->expr_type == EXPR_NULL)
11445 gfc_error ("Invalid NULL at %L", &e->where);
11446
11447 if (t && (e->rank > 0
11448 || !(e->ts.type == BT_REAL || e->ts.type == BT_INTEGER)))
11449 gfc_error ("Arithmetic IF statement at %L requires a scalar "
11450 "REAL or INTEGER expression", &e->where);
11451
11452 resolve_branch (code->label1, code);
11453 resolve_branch (code->label2, code);
11454 resolve_branch (code->label3, code);
11455 }
11456 break;
11457
11458 case EXEC_IF:
11459 if (t && code->expr1 != NULL
11460 && (code->expr1->ts.type != BT_LOGICAL
11461 || code->expr1->rank != 0))
11462 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
11463 &code->expr1->where);
11464 break;
11465
11466 case EXEC_CALL:
11467 call:
11468 resolve_call (code);
11469 break;
11470
11471 case EXEC_COMPCALL:
11472 compcall:
11473 resolve_typebound_subroutine (code);
11474 break;
11475
11476 case EXEC_CALL_PPC:
11477 resolve_ppc_call (code);
11478 break;
11479
11480 case EXEC_SELECT:
11481 /* Select is complicated. Also, a SELECT construct could be
11482 a transformed computed GOTO. */
11483 resolve_select (code, false);
11484 break;
11485
11486 case EXEC_SELECT_TYPE:
11487 resolve_select_type (code, ns);
11488 break;
11489
11490 case EXEC_BLOCK:
11491 resolve_block_construct (code);
11492 break;
11493
11494 case EXEC_DO:
11495 if (code->ext.iterator != NULL)
11496 {
11497 gfc_iterator *iter = code->ext.iterator;
11498 if (gfc_resolve_iterator (iter, true, false))
11499 gfc_resolve_do_iterator (code, iter->var->symtree->n.sym,
11500 true);
11501 }
11502 break;
11503
11504 case EXEC_DO_WHILE:
11505 if (code->expr1 == NULL)
11506 gfc_internal_error ("gfc_resolve_code(): No expression on "
11507 "DO WHILE");
11508 if (t
11509 && (code->expr1->rank != 0
11510 || code->expr1->ts.type != BT_LOGICAL))
11511 gfc_error ("Exit condition of DO WHILE loop at %L must be "
11512 "a scalar LOGICAL expression", &code->expr1->where);
11513 break;
11514
11515 case EXEC_ALLOCATE:
11516 if (t)
11517 resolve_allocate_deallocate (code, "ALLOCATE");
11518
11519 break;
11520
11521 case EXEC_DEALLOCATE:
11522 if (t)
11523 resolve_allocate_deallocate (code, "DEALLOCATE");
11524
11525 break;
11526
11527 case EXEC_OPEN:
11528 if (!gfc_resolve_open (code->ext.open))
11529 break;
11530
11531 resolve_branch (code->ext.open->err, code);
11532 break;
11533
11534 case EXEC_CLOSE:
11535 if (!gfc_resolve_close (code->ext.close))
11536 break;
11537
11538 resolve_branch (code->ext.close->err, code);
11539 break;
11540
11541 case EXEC_BACKSPACE:
11542 case EXEC_ENDFILE:
11543 case EXEC_REWIND:
11544 case EXEC_FLUSH:
11545 if (!gfc_resolve_filepos (code->ext.filepos, &code->loc))
11546 break;
11547
11548 resolve_branch (code->ext.filepos->err, code);
11549 break;
11550
11551 case EXEC_INQUIRE:
11552 if (!gfc_resolve_inquire (code->ext.inquire))
11553 break;
11554
11555 resolve_branch (code->ext.inquire->err, code);
11556 break;
11557
11558 case EXEC_IOLENGTH:
11559 gcc_assert (code->ext.inquire != NULL);
11560 if (!gfc_resolve_inquire (code->ext.inquire))
11561 break;
11562
11563 resolve_branch (code->ext.inquire->err, code);
11564 break;
11565
11566 case EXEC_WAIT:
11567 if (!gfc_resolve_wait (code->ext.wait))
11568 break;
11569
11570 resolve_branch (code->ext.wait->err, code);
11571 resolve_branch (code->ext.wait->end, code);
11572 resolve_branch (code->ext.wait->eor, code);
11573 break;
11574
11575 case EXEC_READ:
11576 case EXEC_WRITE:
11577 if (!gfc_resolve_dt (code->ext.dt, &code->loc))
11578 break;
11579
11580 resolve_branch (code->ext.dt->err, code);
11581 resolve_branch (code->ext.dt->end, code);
11582 resolve_branch (code->ext.dt->eor, code);
11583 break;
11584
11585 case EXEC_TRANSFER:
11586 resolve_transfer (code);
11587 break;
11588
11589 case EXEC_DO_CONCURRENT:
11590 case EXEC_FORALL:
11591 resolve_forall_iterators (code->ext.forall_iterator);
11592
11593 if (code->expr1 != NULL
11594 && (code->expr1->ts.type != BT_LOGICAL || code->expr1->rank))
11595 gfc_error ("FORALL mask clause at %L requires a scalar LOGICAL "
11596 "expression", &code->expr1->where);
11597 break;
11598
11599 case EXEC_OACC_PARALLEL_LOOP:
11600 case EXEC_OACC_PARALLEL:
11601 case EXEC_OACC_KERNELS_LOOP:
11602 case EXEC_OACC_KERNELS:
11603 case EXEC_OACC_DATA:
11604 case EXEC_OACC_HOST_DATA:
11605 case EXEC_OACC_LOOP:
11606 case EXEC_OACC_UPDATE:
11607 case EXEC_OACC_WAIT:
11608 case EXEC_OACC_CACHE:
11609 case EXEC_OACC_ENTER_DATA:
11610 case EXEC_OACC_EXIT_DATA:
11611 case EXEC_OACC_ATOMIC:
11612 case EXEC_OACC_DECLARE:
11613 gfc_resolve_oacc_directive (code, ns);
11614 break;
11615
11616 case EXEC_OMP_ATOMIC:
11617 case EXEC_OMP_BARRIER:
11618 case EXEC_OMP_CANCEL:
11619 case EXEC_OMP_CANCELLATION_POINT:
11620 case EXEC_OMP_CRITICAL:
11621 case EXEC_OMP_FLUSH:
11622 case EXEC_OMP_DISTRIBUTE:
11623 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
11624 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
11625 case EXEC_OMP_DISTRIBUTE_SIMD:
11626 case EXEC_OMP_DO:
11627 case EXEC_OMP_DO_SIMD:
11628 case EXEC_OMP_MASTER:
11629 case EXEC_OMP_ORDERED:
11630 case EXEC_OMP_SECTIONS:
11631 case EXEC_OMP_SIMD:
11632 case EXEC_OMP_SINGLE:
11633 case EXEC_OMP_TARGET:
11634 case EXEC_OMP_TARGET_DATA:
11635 case EXEC_OMP_TARGET_ENTER_DATA:
11636 case EXEC_OMP_TARGET_EXIT_DATA:
11637 case EXEC_OMP_TARGET_PARALLEL:
11638 case EXEC_OMP_TARGET_PARALLEL_DO:
11639 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11640 case EXEC_OMP_TARGET_SIMD:
11641 case EXEC_OMP_TARGET_TEAMS:
11642 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11643 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11644 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11645 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11646 case EXEC_OMP_TARGET_UPDATE:
11647 case EXEC_OMP_TASK:
11648 case EXEC_OMP_TASKGROUP:
11649 case EXEC_OMP_TASKLOOP:
11650 case EXEC_OMP_TASKLOOP_SIMD:
11651 case EXEC_OMP_TASKWAIT:
11652 case EXEC_OMP_TASKYIELD:
11653 case EXEC_OMP_TEAMS:
11654 case EXEC_OMP_TEAMS_DISTRIBUTE:
11655 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11656 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11657 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11658 case EXEC_OMP_WORKSHARE:
11659 gfc_resolve_omp_directive (code, ns);
11660 break;
11661
11662 case EXEC_OMP_PARALLEL:
11663 case EXEC_OMP_PARALLEL_DO:
11664 case EXEC_OMP_PARALLEL_DO_SIMD:
11665 case EXEC_OMP_PARALLEL_SECTIONS:
11666 case EXEC_OMP_PARALLEL_WORKSHARE:
11667 omp_workshare_save = omp_workshare_flag;
11668 omp_workshare_flag = 0;
11669 gfc_resolve_omp_directive (code, ns);
11670 omp_workshare_flag = omp_workshare_save;
11671 break;
11672
11673 default:
11674 gfc_internal_error ("gfc_resolve_code(): Bad statement code");
11675 }
11676 }
11677
11678 cs_base = frame.prev;
11679 }
11680
11681
11682 /* Resolve initial values and make sure they are compatible with
11683 the variable. */
11684
11685 static void
11686 resolve_values (gfc_symbol *sym)
11687 {
11688 bool t;
11689
11690 if (sym->value == NULL)
11691 return;
11692
11693 if (sym->value->expr_type == EXPR_STRUCTURE)
11694 t= resolve_structure_cons (sym->value, 1);
11695 else
11696 t = gfc_resolve_expr (sym->value);
11697
11698 if (!t)
11699 return;
11700
11701 gfc_check_assign_symbol (sym, NULL, sym->value);
11702 }
11703
11704
11705 /* Verify any BIND(C) derived types in the namespace so we can report errors
11706 for them once, rather than for each variable declared of that type. */
11707
11708 static void
11709 resolve_bind_c_derived_types (gfc_symbol *derived_sym)
11710 {
11711 if (derived_sym != NULL && derived_sym->attr.flavor == FL_DERIVED
11712 && derived_sym->attr.is_bind_c == 1)
11713 verify_bind_c_derived_type (derived_sym);
11714
11715 return;
11716 }
11717
11718
11719 /* Check the interfaces of DTIO procedures associated with derived
11720 type 'sym'. These procedures can either have typebound bindings or
11721 can appear in DTIO generic interfaces. */
11722
11723 static void
11724 gfc_verify_DTIO_procedures (gfc_symbol *sym)
11725 {
11726 if (!sym || sym->attr.flavor != FL_DERIVED)
11727 return;
11728
11729 gfc_check_dtio_interfaces (sym);
11730
11731 return;
11732 }
11733
11734 /* Verify that any binding labels used in a given namespace do not collide
11735 with the names or binding labels of any global symbols. Multiple INTERFACE
11736 for the same procedure are permitted. */
11737
11738 static void
11739 gfc_verify_binding_labels (gfc_symbol *sym)
11740 {
11741 gfc_gsymbol *gsym;
11742 const char *module;
11743
11744 if (!sym || !sym->attr.is_bind_c || sym->attr.is_iso_c
11745 || sym->attr.flavor == FL_DERIVED || !sym->binding_label)
11746 return;
11747
11748 gsym = gfc_find_case_gsymbol (gfc_gsym_root, sym->binding_label);
11749
11750 if (sym->module)
11751 module = sym->module;
11752 else if (sym->ns && sym->ns->proc_name
11753 && sym->ns->proc_name->attr.flavor == FL_MODULE)
11754 module = sym->ns->proc_name->name;
11755 else if (sym->ns && sym->ns->parent
11756 && sym->ns && sym->ns->parent->proc_name
11757 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
11758 module = sym->ns->parent->proc_name->name;
11759 else
11760 module = NULL;
11761
11762 if (!gsym
11763 || (!gsym->defined
11764 && (gsym->type == GSYM_FUNCTION || gsym->type == GSYM_SUBROUTINE)))
11765 {
11766 if (!gsym)
11767 gsym = gfc_get_gsymbol (sym->binding_label);
11768 gsym->where = sym->declared_at;
11769 gsym->sym_name = sym->name;
11770 gsym->binding_label = sym->binding_label;
11771 gsym->ns = sym->ns;
11772 gsym->mod_name = module;
11773 if (sym->attr.function)
11774 gsym->type = GSYM_FUNCTION;
11775 else if (sym->attr.subroutine)
11776 gsym->type = GSYM_SUBROUTINE;
11777 /* Mark as variable/procedure as defined, unless its an INTERFACE. */
11778 gsym->defined = sym->attr.if_source != IFSRC_IFBODY;
11779 return;
11780 }
11781
11782 if (sym->attr.flavor == FL_VARIABLE && gsym->type != GSYM_UNKNOWN)
11783 {
11784 gfc_error ("Variable %qs with binding label %qs at %L uses the same global "
11785 "identifier as entity at %L", sym->name,
11786 sym->binding_label, &sym->declared_at, &gsym->where);
11787 /* Clear the binding label to prevent checking multiple times. */
11788 sym->binding_label = NULL;
11789
11790 }
11791 else if (sym->attr.flavor == FL_VARIABLE && module
11792 && (strcmp (module, gsym->mod_name) != 0
11793 || strcmp (sym->name, gsym->sym_name) != 0))
11794 {
11795 /* This can only happen if the variable is defined in a module - if it
11796 isn't the same module, reject it. */
11797 gfc_error ("Variable %qs from module %qs with binding label %qs at %L "
11798 "uses the same global identifier as entity at %L from module %qs",
11799 sym->name, module, sym->binding_label,
11800 &sym->declared_at, &gsym->where, gsym->mod_name);
11801 sym->binding_label = NULL;
11802 }
11803 else if ((sym->attr.function || sym->attr.subroutine)
11804 && ((gsym->type != GSYM_SUBROUTINE && gsym->type != GSYM_FUNCTION)
11805 || (gsym->defined && sym->attr.if_source != IFSRC_IFBODY))
11806 && sym != gsym->ns->proc_name
11807 && (module != gsym->mod_name
11808 || strcmp (gsym->sym_name, sym->name) != 0
11809 || (module && strcmp (module, gsym->mod_name) != 0)))
11810 {
11811 /* Print an error if the procedure is defined multiple times; we have to
11812 exclude references to the same procedure via module association or
11813 multiple checks for the same procedure. */
11814 gfc_error ("Procedure %qs with binding label %qs at %L uses the same "
11815 "global identifier as entity at %L", sym->name,
11816 sym->binding_label, &sym->declared_at, &gsym->where);
11817 sym->binding_label = NULL;
11818 }
11819 }
11820
11821
11822 /* Resolve an index expression. */
11823
11824 static bool
11825 resolve_index_expr (gfc_expr *e)
11826 {
11827 if (!gfc_resolve_expr (e))
11828 return false;
11829
11830 if (!gfc_simplify_expr (e, 0))
11831 return false;
11832
11833 if (!gfc_specification_expr (e))
11834 return false;
11835
11836 return true;
11837 }
11838
11839
11840 /* Resolve a charlen structure. */
11841
11842 static bool
11843 resolve_charlen (gfc_charlen *cl)
11844 {
11845 int k;
11846 bool saved_specification_expr;
11847
11848 if (cl->resolved)
11849 return true;
11850
11851 cl->resolved = 1;
11852 saved_specification_expr = specification_expr;
11853 specification_expr = true;
11854
11855 if (cl->length_from_typespec)
11856 {
11857 if (!gfc_resolve_expr (cl->length))
11858 {
11859 specification_expr = saved_specification_expr;
11860 return false;
11861 }
11862
11863 if (!gfc_simplify_expr (cl->length, 0))
11864 {
11865 specification_expr = saved_specification_expr;
11866 return false;
11867 }
11868
11869 /* cl->length has been resolved. It should have an integer type. */
11870 if (cl->length->ts.type != BT_INTEGER)
11871 {
11872 gfc_error ("Scalar INTEGER expression expected at %L",
11873 &cl->length->where);
11874 return false;
11875 }
11876 }
11877 else
11878 {
11879 if (!resolve_index_expr (cl->length))
11880 {
11881 specification_expr = saved_specification_expr;
11882 return false;
11883 }
11884 }
11885
11886 /* F2008, 4.4.3.2: If the character length parameter value evaluates to
11887 a negative value, the length of character entities declared is zero. */
11888 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11889 && mpz_sgn (cl->length->value.integer) < 0)
11890 gfc_replace_expr (cl->length,
11891 gfc_get_int_expr (gfc_charlen_int_kind, NULL, 0));
11892
11893 /* Check that the character length is not too large. */
11894 k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
11895 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11896 && cl->length->ts.type == BT_INTEGER
11897 && mpz_cmp (cl->length->value.integer, gfc_integer_kinds[k].huge) > 0)
11898 {
11899 gfc_error ("String length at %L is too large", &cl->length->where);
11900 specification_expr = saved_specification_expr;
11901 return false;
11902 }
11903
11904 specification_expr = saved_specification_expr;
11905 return true;
11906 }
11907
11908
11909 /* Test for non-constant shape arrays. */
11910
11911 static bool
11912 is_non_constant_shape_array (gfc_symbol *sym)
11913 {
11914 gfc_expr *e;
11915 int i;
11916 bool not_constant;
11917
11918 not_constant = false;
11919 if (sym->as != NULL)
11920 {
11921 /* Unfortunately, !gfc_is_compile_time_shape hits a legal case that
11922 has not been simplified; parameter array references. Do the
11923 simplification now. */
11924 for (i = 0; i < sym->as->rank + sym->as->corank; i++)
11925 {
11926 e = sym->as->lower[i];
11927 if (e && (!resolve_index_expr(e)
11928 || !gfc_is_constant_expr (e)))
11929 not_constant = true;
11930 e = sym->as->upper[i];
11931 if (e && (!resolve_index_expr(e)
11932 || !gfc_is_constant_expr (e)))
11933 not_constant = true;
11934 }
11935 }
11936 return not_constant;
11937 }
11938
11939 /* Given a symbol and an initialization expression, add code to initialize
11940 the symbol to the function entry. */
11941 static void
11942 build_init_assign (gfc_symbol *sym, gfc_expr *init)
11943 {
11944 gfc_expr *lval;
11945 gfc_code *init_st;
11946 gfc_namespace *ns = sym->ns;
11947
11948 /* Search for the function namespace if this is a contained
11949 function without an explicit result. */
11950 if (sym->attr.function && sym == sym->result
11951 && sym->name != sym->ns->proc_name->name)
11952 {
11953 ns = ns->contained;
11954 for (;ns; ns = ns->sibling)
11955 if (strcmp (ns->proc_name->name, sym->name) == 0)
11956 break;
11957 }
11958
11959 if (ns == NULL)
11960 {
11961 gfc_free_expr (init);
11962 return;
11963 }
11964
11965 /* Build an l-value expression for the result. */
11966 lval = gfc_lval_expr_from_sym (sym);
11967
11968 /* Add the code at scope entry. */
11969 init_st = gfc_get_code (EXEC_INIT_ASSIGN);
11970 init_st->next = ns->code;
11971 ns->code = init_st;
11972
11973 /* Assign the default initializer to the l-value. */
11974 init_st->loc = sym->declared_at;
11975 init_st->expr1 = lval;
11976 init_st->expr2 = init;
11977 }
11978
11979
11980 /* Whether or not we can generate a default initializer for a symbol. */
11981
11982 static bool
11983 can_generate_init (gfc_symbol *sym)
11984 {
11985 symbol_attribute *a;
11986 if (!sym)
11987 return false;
11988 a = &sym->attr;
11989
11990 /* These symbols should never have a default initialization. */
11991 return !(
11992 a->allocatable
11993 || a->external
11994 || a->pointer
11995 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
11996 && (CLASS_DATA (sym)->attr.class_pointer
11997 || CLASS_DATA (sym)->attr.proc_pointer))
11998 || a->in_equivalence
11999 || a->in_common
12000 || a->data
12001 || sym->module
12002 || a->cray_pointee
12003 || a->cray_pointer
12004 || sym->assoc
12005 || (!a->referenced && !a->result)
12006 || (a->dummy && a->intent != INTENT_OUT)
12007 || (a->function && sym != sym->result)
12008 );
12009 }
12010
12011
12012 /* Assign the default initializer to a derived type variable or result. */
12013
12014 static void
12015 apply_default_init (gfc_symbol *sym)
12016 {
12017 gfc_expr *init = NULL;
12018
12019 if (sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
12020 return;
12021
12022 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived)
12023 init = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12024
12025 if (init == NULL && sym->ts.type != BT_CLASS)
12026 return;
12027
12028 build_init_assign (sym, init);
12029 sym->attr.referenced = 1;
12030 }
12031
12032
12033 /* Build an initializer for a local. Returns null if the symbol should not have
12034 a default initialization. */
12035
12036 static gfc_expr *
12037 build_default_init_expr (gfc_symbol *sym)
12038 {
12039 /* These symbols should never have a default initialization. */
12040 if (sym->attr.allocatable
12041 || sym->attr.external
12042 || sym->attr.dummy
12043 || sym->attr.pointer
12044 || sym->attr.in_equivalence
12045 || sym->attr.in_common
12046 || sym->attr.data
12047 || sym->module
12048 || sym->attr.cray_pointee
12049 || sym->attr.cray_pointer
12050 || sym->assoc)
12051 return NULL;
12052
12053 /* Get the appropriate init expression. */
12054 return gfc_build_default_init_expr (&sym->ts, &sym->declared_at);
12055 }
12056
12057 /* Add an initialization expression to a local variable. */
12058 static void
12059 apply_default_init_local (gfc_symbol *sym)
12060 {
12061 gfc_expr *init = NULL;
12062
12063 /* The symbol should be a variable or a function return value. */
12064 if ((sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
12065 || (sym->attr.function && sym->result != sym))
12066 return;
12067
12068 /* Try to build the initializer expression. If we can't initialize
12069 this symbol, then init will be NULL. */
12070 init = build_default_init_expr (sym);
12071 if (init == NULL)
12072 return;
12073
12074 /* For saved variables, we don't want to add an initializer at function
12075 entry, so we just add a static initializer. Note that automatic variables
12076 are stack allocated even with -fno-automatic; we have also to exclude
12077 result variable, which are also nonstatic. */
12078 if (!sym->attr.automatic
12079 && (sym->attr.save || sym->ns->save_all
12080 || (flag_max_stack_var_size == 0 && !sym->attr.result
12081 && (sym->ns->proc_name && !sym->ns->proc_name->attr.recursive)
12082 && (!sym->attr.dimension || !is_non_constant_shape_array (sym)))))
12083 {
12084 /* Don't clobber an existing initializer! */
12085 gcc_assert (sym->value == NULL);
12086 sym->value = init;
12087 return;
12088 }
12089
12090 build_init_assign (sym, init);
12091 }
12092
12093
12094 /* Resolution of common features of flavors variable and procedure. */
12095
12096 static bool
12097 resolve_fl_var_and_proc (gfc_symbol *sym, int mp_flag)
12098 {
12099 gfc_array_spec *as;
12100
12101 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12102 as = CLASS_DATA (sym)->as;
12103 else
12104 as = sym->as;
12105
12106 /* Constraints on deferred shape variable. */
12107 if (as == NULL || as->type != AS_DEFERRED)
12108 {
12109 bool pointer, allocatable, dimension;
12110
12111 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
12112 {
12113 pointer = CLASS_DATA (sym)->attr.class_pointer;
12114 allocatable = CLASS_DATA (sym)->attr.allocatable;
12115 dimension = CLASS_DATA (sym)->attr.dimension;
12116 }
12117 else
12118 {
12119 pointer = sym->attr.pointer && !sym->attr.select_type_temporary;
12120 allocatable = sym->attr.allocatable;
12121 dimension = sym->attr.dimension;
12122 }
12123
12124 if (allocatable)
12125 {
12126 if (dimension && as->type != AS_ASSUMED_RANK)
12127 {
12128 gfc_error ("Allocatable array %qs at %L must have a deferred "
12129 "shape or assumed rank", sym->name, &sym->declared_at);
12130 return false;
12131 }
12132 else if (!gfc_notify_std (GFC_STD_F2003, "Scalar object "
12133 "%qs at %L may not be ALLOCATABLE",
12134 sym->name, &sym->declared_at))
12135 return false;
12136 }
12137
12138 if (pointer && dimension && as->type != AS_ASSUMED_RANK)
12139 {
12140 gfc_error ("Array pointer %qs at %L must have a deferred shape or "
12141 "assumed rank", sym->name, &sym->declared_at);
12142 return false;
12143 }
12144 }
12145 else
12146 {
12147 if (!mp_flag && !sym->attr.allocatable && !sym->attr.pointer
12148 && sym->ts.type != BT_CLASS && !sym->assoc)
12149 {
12150 gfc_error ("Array %qs at %L cannot have a deferred shape",
12151 sym->name, &sym->declared_at);
12152 return false;
12153 }
12154 }
12155
12156 /* Constraints on polymorphic variables. */
12157 if (sym->ts.type == BT_CLASS && !(sym->result && sym->result != sym))
12158 {
12159 /* F03:C502. */
12160 if (sym->attr.class_ok
12161 && !sym->attr.select_type_temporary
12162 && !UNLIMITED_POLY (sym)
12163 && !gfc_type_is_extensible (CLASS_DATA (sym)->ts.u.derived))
12164 {
12165 gfc_error ("Type %qs of CLASS variable %qs at %L is not extensible",
12166 CLASS_DATA (sym)->ts.u.derived->name, sym->name,
12167 &sym->declared_at);
12168 return false;
12169 }
12170
12171 /* F03:C509. */
12172 /* Assume that use associated symbols were checked in the module ns.
12173 Class-variables that are associate-names are also something special
12174 and excepted from the test. */
12175 if (!sym->attr.class_ok && !sym->attr.use_assoc && !sym->assoc)
12176 {
12177 gfc_error ("CLASS variable %qs at %L must be dummy, allocatable "
12178 "or pointer", sym->name, &sym->declared_at);
12179 return false;
12180 }
12181 }
12182
12183 return true;
12184 }
12185
12186
12187 /* Additional checks for symbols with flavor variable and derived
12188 type. To be called from resolve_fl_variable. */
12189
12190 static bool
12191 resolve_fl_variable_derived (gfc_symbol *sym, int no_init_flag)
12192 {
12193 gcc_assert (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS);
12194
12195 /* Check to see if a derived type is blocked from being host
12196 associated by the presence of another class I symbol in the same
12197 namespace. 14.6.1.3 of the standard and the discussion on
12198 comp.lang.fortran. */
12199 if (sym->ns != sym->ts.u.derived->ns
12200 && !sym->ts.u.derived->attr.use_assoc
12201 && sym->ns->proc_name->attr.if_source != IFSRC_IFBODY)
12202 {
12203 gfc_symbol *s;
12204 gfc_find_symbol (sym->ts.u.derived->name, sym->ns, 0, &s);
12205 if (s && s->attr.generic)
12206 s = gfc_find_dt_in_generic (s);
12207 if (s && !gfc_fl_struct (s->attr.flavor))
12208 {
12209 gfc_error ("The type %qs cannot be host associated at %L "
12210 "because it is blocked by an incompatible object "
12211 "of the same name declared at %L",
12212 sym->ts.u.derived->name, &sym->declared_at,
12213 &s->declared_at);
12214 return false;
12215 }
12216 }
12217
12218 /* 4th constraint in section 11.3: "If an object of a type for which
12219 component-initialization is specified (R429) appears in the
12220 specification-part of a module and does not have the ALLOCATABLE
12221 or POINTER attribute, the object shall have the SAVE attribute."
12222
12223 The check for initializers is performed with
12224 gfc_has_default_initializer because gfc_default_initializer generates
12225 a hidden default for allocatable components. */
12226 if (!(sym->value || no_init_flag) && sym->ns->proc_name
12227 && sym->ns->proc_name->attr.flavor == FL_MODULE
12228 && !(sym->ns->save_all && !sym->attr.automatic) && !sym->attr.save
12229 && !sym->attr.pointer && !sym->attr.allocatable
12230 && gfc_has_default_initializer (sym->ts.u.derived)
12231 && !gfc_notify_std (GFC_STD_F2008, "Implied SAVE for module variable "
12232 "%qs at %L, needed due to the default "
12233 "initialization", sym->name, &sym->declared_at))
12234 return false;
12235
12236 /* Assign default initializer. */
12237 if (!(sym->value || sym->attr.pointer || sym->attr.allocatable)
12238 && (!no_init_flag || sym->attr.intent == INTENT_OUT))
12239 sym->value = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12240
12241 return true;
12242 }
12243
12244
12245 /* F2008, C402 (R401): A colon shall not be used as a type-param-value
12246 except in the declaration of an entity or component that has the POINTER
12247 or ALLOCATABLE attribute. */
12248
12249 static bool
12250 deferred_requirements (gfc_symbol *sym)
12251 {
12252 if (sym->ts.deferred
12253 && !(sym->attr.pointer
12254 || sym->attr.allocatable
12255 || sym->attr.associate_var
12256 || sym->attr.omp_udr_artificial_var))
12257 {
12258 gfc_error ("Entity %qs at %L has a deferred type parameter and "
12259 "requires either the POINTER or ALLOCATABLE attribute",
12260 sym->name, &sym->declared_at);
12261 return false;
12262 }
12263 return true;
12264 }
12265
12266
12267 /* Resolve symbols with flavor variable. */
12268
12269 static bool
12270 resolve_fl_variable (gfc_symbol *sym, int mp_flag)
12271 {
12272 int no_init_flag, automatic_flag;
12273 gfc_expr *e;
12274 const char *auto_save_msg;
12275 bool saved_specification_expr;
12276
12277 auto_save_msg = "Automatic object %qs at %L cannot have the "
12278 "SAVE attribute";
12279
12280 if (!resolve_fl_var_and_proc (sym, mp_flag))
12281 return false;
12282
12283 /* Set this flag to check that variables are parameters of all entries.
12284 This check is effected by the call to gfc_resolve_expr through
12285 is_non_constant_shape_array. */
12286 saved_specification_expr = specification_expr;
12287 specification_expr = true;
12288
12289 if (sym->ns->proc_name
12290 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12291 || sym->ns->proc_name->attr.is_main_program)
12292 && !sym->attr.use_assoc
12293 && !sym->attr.allocatable
12294 && !sym->attr.pointer
12295 && is_non_constant_shape_array (sym))
12296 {
12297 /* F08:C541. The shape of an array defined in a main program or module
12298 * needs to be constant. */
12299 gfc_error ("The module or main program array %qs at %L must "
12300 "have constant shape", sym->name, &sym->declared_at);
12301 specification_expr = saved_specification_expr;
12302 return false;
12303 }
12304
12305 /* Constraints on deferred type parameter. */
12306 if (!deferred_requirements (sym))
12307 return false;
12308
12309 if (sym->ts.type == BT_CHARACTER && !sym->attr.associate_var)
12310 {
12311 /* Make sure that character string variables with assumed length are
12312 dummy arguments. */
12313 e = sym->ts.u.cl->length;
12314 if (e == NULL && !sym->attr.dummy && !sym->attr.result
12315 && !sym->ts.deferred && !sym->attr.select_type_temporary
12316 && !sym->attr.omp_udr_artificial_var)
12317 {
12318 gfc_error ("Entity with assumed character length at %L must be a "
12319 "dummy argument or a PARAMETER", &sym->declared_at);
12320 specification_expr = saved_specification_expr;
12321 return false;
12322 }
12323
12324 if (e && sym->attr.save == SAVE_EXPLICIT && !gfc_is_constant_expr (e))
12325 {
12326 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12327 specification_expr = saved_specification_expr;
12328 return false;
12329 }
12330
12331 if (!gfc_is_constant_expr (e)
12332 && !(e->expr_type == EXPR_VARIABLE
12333 && e->symtree->n.sym->attr.flavor == FL_PARAMETER))
12334 {
12335 if (!sym->attr.use_assoc && sym->ns->proc_name
12336 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12337 || sym->ns->proc_name->attr.is_main_program))
12338 {
12339 gfc_error ("%qs at %L must have constant character length "
12340 "in this context", sym->name, &sym->declared_at);
12341 specification_expr = saved_specification_expr;
12342 return false;
12343 }
12344 if (sym->attr.in_common)
12345 {
12346 gfc_error ("COMMON variable %qs at %L must have constant "
12347 "character length", sym->name, &sym->declared_at);
12348 specification_expr = saved_specification_expr;
12349 return false;
12350 }
12351 }
12352 }
12353
12354 if (sym->value == NULL && sym->attr.referenced)
12355 apply_default_init_local (sym); /* Try to apply a default initialization. */
12356
12357 /* Determine if the symbol may not have an initializer. */
12358 no_init_flag = automatic_flag = 0;
12359 if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
12360 || sym->attr.intrinsic || sym->attr.result)
12361 no_init_flag = 1;
12362 else if ((sym->attr.dimension || sym->attr.codimension) && !sym->attr.pointer
12363 && is_non_constant_shape_array (sym))
12364 {
12365 no_init_flag = automatic_flag = 1;
12366
12367 /* Also, they must not have the SAVE attribute.
12368 SAVE_IMPLICIT is checked below. */
12369 if (sym->as && sym->attr.codimension)
12370 {
12371 int corank = sym->as->corank;
12372 sym->as->corank = 0;
12373 no_init_flag = automatic_flag = is_non_constant_shape_array (sym);
12374 sym->as->corank = corank;
12375 }
12376 if (automatic_flag && sym->attr.save == SAVE_EXPLICIT)
12377 {
12378 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12379 specification_expr = saved_specification_expr;
12380 return false;
12381 }
12382 }
12383
12384 /* Ensure that any initializer is simplified. */
12385 if (sym->value)
12386 gfc_simplify_expr (sym->value, 1);
12387
12388 /* Reject illegal initializers. */
12389 if (!sym->mark && sym->value)
12390 {
12391 if (sym->attr.allocatable || (sym->ts.type == BT_CLASS
12392 && CLASS_DATA (sym)->attr.allocatable))
12393 gfc_error ("Allocatable %qs at %L cannot have an initializer",
12394 sym->name, &sym->declared_at);
12395 else if (sym->attr.external)
12396 gfc_error ("External %qs at %L cannot have an initializer",
12397 sym->name, &sym->declared_at);
12398 else if (sym->attr.dummy
12399 && !(sym->ts.type == BT_DERIVED && sym->attr.intent == INTENT_OUT))
12400 gfc_error ("Dummy %qs at %L cannot have an initializer",
12401 sym->name, &sym->declared_at);
12402 else if (sym->attr.intrinsic)
12403 gfc_error ("Intrinsic %qs at %L cannot have an initializer",
12404 sym->name, &sym->declared_at);
12405 else if (sym->attr.result)
12406 gfc_error ("Function result %qs at %L cannot have an initializer",
12407 sym->name, &sym->declared_at);
12408 else if (automatic_flag)
12409 gfc_error ("Automatic array %qs at %L cannot have an initializer",
12410 sym->name, &sym->declared_at);
12411 else
12412 goto no_init_error;
12413 specification_expr = saved_specification_expr;
12414 return false;
12415 }
12416
12417 no_init_error:
12418 if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
12419 {
12420 bool res = resolve_fl_variable_derived (sym, no_init_flag);
12421 specification_expr = saved_specification_expr;
12422 return res;
12423 }
12424
12425 specification_expr = saved_specification_expr;
12426 return true;
12427 }
12428
12429
12430 /* Compare the dummy characteristics of a module procedure interface
12431 declaration with the corresponding declaration in a submodule. */
12432 static gfc_formal_arglist *new_formal;
12433 static char errmsg[200];
12434
12435 static void
12436 compare_fsyms (gfc_symbol *sym)
12437 {
12438 gfc_symbol *fsym;
12439
12440 if (sym == NULL || new_formal == NULL)
12441 return;
12442
12443 fsym = new_formal->sym;
12444
12445 if (sym == fsym)
12446 return;
12447
12448 if (strcmp (sym->name, fsym->name) == 0)
12449 {
12450 if (!gfc_check_dummy_characteristics (fsym, sym, true, errmsg, 200))
12451 gfc_error ("%s at %L", errmsg, &fsym->declared_at);
12452 }
12453 }
12454
12455
12456 /* Resolve a procedure. */
12457
12458 static bool
12459 resolve_fl_procedure (gfc_symbol *sym, int mp_flag)
12460 {
12461 gfc_formal_arglist *arg;
12462
12463 if (sym->attr.function
12464 && !resolve_fl_var_and_proc (sym, mp_flag))
12465 return false;
12466
12467 if (sym->ts.type == BT_CHARACTER)
12468 {
12469 gfc_charlen *cl = sym->ts.u.cl;
12470
12471 if (cl && cl->length && gfc_is_constant_expr (cl->length)
12472 && !resolve_charlen (cl))
12473 return false;
12474
12475 if ((!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
12476 && sym->attr.proc == PROC_ST_FUNCTION)
12477 {
12478 gfc_error ("Character-valued statement function %qs at %L must "
12479 "have constant length", sym->name, &sym->declared_at);
12480 return false;
12481 }
12482 }
12483
12484 /* Ensure that derived type for are not of a private type. Internal
12485 module procedures are excluded by 2.2.3.3 - i.e., they are not
12486 externally accessible and can access all the objects accessible in
12487 the host. */
12488 if (!(sym->ns->parent
12489 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
12490 && gfc_check_symbol_access (sym))
12491 {
12492 gfc_interface *iface;
12493
12494 for (arg = gfc_sym_get_dummy_args (sym); arg; arg = arg->next)
12495 {
12496 if (arg->sym
12497 && arg->sym->ts.type == BT_DERIVED
12498 && !arg->sym->ts.u.derived->attr.use_assoc
12499 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12500 && !gfc_notify_std (GFC_STD_F2003, "%qs is of a PRIVATE type "
12501 "and cannot be a dummy argument"
12502 " of %qs, which is PUBLIC at %L",
12503 arg->sym->name, sym->name,
12504 &sym->declared_at))
12505 {
12506 /* Stop this message from recurring. */
12507 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12508 return false;
12509 }
12510 }
12511
12512 /* PUBLIC interfaces may expose PRIVATE procedures that take types
12513 PRIVATE to the containing module. */
12514 for (iface = sym->generic; iface; iface = iface->next)
12515 {
12516 for (arg = gfc_sym_get_dummy_args (iface->sym); arg; arg = arg->next)
12517 {
12518 if (arg->sym
12519 && arg->sym->ts.type == BT_DERIVED
12520 && !arg->sym->ts.u.derived->attr.use_assoc
12521 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12522 && !gfc_notify_std (GFC_STD_F2003, "Procedure %qs in "
12523 "PUBLIC interface %qs at %L "
12524 "takes dummy arguments of %qs which "
12525 "is PRIVATE", iface->sym->name,
12526 sym->name, &iface->sym->declared_at,
12527 gfc_typename(&arg->sym->ts)))
12528 {
12529 /* Stop this message from recurring. */
12530 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12531 return false;
12532 }
12533 }
12534 }
12535 }
12536
12537 if (sym->attr.function && sym->value && sym->attr.proc != PROC_ST_FUNCTION
12538 && !sym->attr.proc_pointer)
12539 {
12540 gfc_error ("Function %qs at %L cannot have an initializer",
12541 sym->name, &sym->declared_at);
12542
12543 /* Make sure no second error is issued for this. */
12544 sym->value->error = 1;
12545 return false;
12546 }
12547
12548 /* An external symbol may not have an initializer because it is taken to be
12549 a procedure. Exception: Procedure Pointers. */
12550 if (sym->attr.external && sym->value && !sym->attr.proc_pointer)
12551 {
12552 gfc_error ("External object %qs at %L may not have an initializer",
12553 sym->name, &sym->declared_at);
12554 return false;
12555 }
12556
12557 /* An elemental function is required to return a scalar 12.7.1 */
12558 if (sym->attr.elemental && sym->attr.function
12559 && (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)))
12560 {
12561 gfc_error ("ELEMENTAL function %qs at %L must have a scalar "
12562 "result", sym->name, &sym->declared_at);
12563 /* Reset so that the error only occurs once. */
12564 sym->attr.elemental = 0;
12565 return false;
12566 }
12567
12568 if (sym->attr.proc == PROC_ST_FUNCTION
12569 && (sym->attr.allocatable || sym->attr.pointer))
12570 {
12571 gfc_error ("Statement function %qs at %L may not have pointer or "
12572 "allocatable attribute", sym->name, &sym->declared_at);
12573 return false;
12574 }
12575
12576 /* 5.1.1.5 of the Standard: A function name declared with an asterisk
12577 char-len-param shall not be array-valued, pointer-valued, recursive
12578 or pure. ....snip... A character value of * may only be used in the
12579 following ways: (i) Dummy arg of procedure - dummy associates with
12580 actual length; (ii) To declare a named constant; or (iii) External
12581 function - but length must be declared in calling scoping unit. */
12582 if (sym->attr.function
12583 && sym->ts.type == BT_CHARACTER && !sym->ts.deferred
12584 && sym->ts.u.cl && sym->ts.u.cl->length == NULL)
12585 {
12586 if ((sym->as && sym->as->rank) || (sym->attr.pointer)
12587 || (sym->attr.recursive) || (sym->attr.pure))
12588 {
12589 if (sym->as && sym->as->rank)
12590 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12591 "array-valued", sym->name, &sym->declared_at);
12592
12593 if (sym->attr.pointer)
12594 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12595 "pointer-valued", sym->name, &sym->declared_at);
12596
12597 if (sym->attr.pure)
12598 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12599 "pure", sym->name, &sym->declared_at);
12600
12601 if (sym->attr.recursive)
12602 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12603 "recursive", sym->name, &sym->declared_at);
12604
12605 return false;
12606 }
12607
12608 /* Appendix B.2 of the standard. Contained functions give an
12609 error anyway. Deferred character length is an F2003 feature.
12610 Don't warn on intrinsic conversion functions, which start
12611 with two underscores. */
12612 if (!sym->attr.contained && !sym->ts.deferred
12613 && (sym->name[0] != '_' || sym->name[1] != '_'))
12614 gfc_notify_std (GFC_STD_F95_OBS,
12615 "CHARACTER(*) function %qs at %L",
12616 sym->name, &sym->declared_at);
12617 }
12618
12619 /* F2008, C1218. */
12620 if (sym->attr.elemental)
12621 {
12622 if (sym->attr.proc_pointer)
12623 {
12624 gfc_error ("Procedure pointer %qs at %L shall not be elemental",
12625 sym->name, &sym->declared_at);
12626 return false;
12627 }
12628 if (sym->attr.dummy)
12629 {
12630 gfc_error ("Dummy procedure %qs at %L shall not be elemental",
12631 sym->name, &sym->declared_at);
12632 return false;
12633 }
12634 }
12635
12636 /* F2018, C15100: "The result of an elemental function shall be scalar,
12637 and shall not have the POINTER or ALLOCATABLE attribute." The scalar
12638 pointer is tested and caught elsewhere. */
12639 if (sym->attr.elemental && sym->result
12640 && (sym->result->attr.allocatable || sym->result->attr.pointer))
12641 {
12642 gfc_error ("Function result variable %qs at %L of elemental "
12643 "function %qs shall not have an ALLOCATABLE or POINTER "
12644 "attribute", sym->result->name,
12645 &sym->result->declared_at, sym->name);
12646 return false;
12647 }
12648
12649 if (sym->attr.is_bind_c && sym->attr.is_c_interop != 1)
12650 {
12651 gfc_formal_arglist *curr_arg;
12652 int has_non_interop_arg = 0;
12653
12654 if (!verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
12655 sym->common_block))
12656 {
12657 /* Clear these to prevent looking at them again if there was an
12658 error. */
12659 sym->attr.is_bind_c = 0;
12660 sym->attr.is_c_interop = 0;
12661 sym->ts.is_c_interop = 0;
12662 }
12663 else
12664 {
12665 /* So far, no errors have been found. */
12666 sym->attr.is_c_interop = 1;
12667 sym->ts.is_c_interop = 1;
12668 }
12669
12670 curr_arg = gfc_sym_get_dummy_args (sym);
12671 while (curr_arg != NULL)
12672 {
12673 /* Skip implicitly typed dummy args here. */
12674 if (curr_arg->sym && curr_arg->sym->attr.implicit_type == 0)
12675 if (!gfc_verify_c_interop_param (curr_arg->sym))
12676 /* If something is found to fail, record the fact so we
12677 can mark the symbol for the procedure as not being
12678 BIND(C) to try and prevent multiple errors being
12679 reported. */
12680 has_non_interop_arg = 1;
12681
12682 curr_arg = curr_arg->next;
12683 }
12684
12685 /* See if any of the arguments were not interoperable and if so, clear
12686 the procedure symbol to prevent duplicate error messages. */
12687 if (has_non_interop_arg != 0)
12688 {
12689 sym->attr.is_c_interop = 0;
12690 sym->ts.is_c_interop = 0;
12691 sym->attr.is_bind_c = 0;
12692 }
12693 }
12694
12695 if (!sym->attr.proc_pointer)
12696 {
12697 if (sym->attr.save == SAVE_EXPLICIT)
12698 {
12699 gfc_error ("PROCEDURE attribute conflicts with SAVE attribute "
12700 "in %qs at %L", sym->name, &sym->declared_at);
12701 return false;
12702 }
12703 if (sym->attr.intent)
12704 {
12705 gfc_error ("PROCEDURE attribute conflicts with INTENT attribute "
12706 "in %qs at %L", sym->name, &sym->declared_at);
12707 return false;
12708 }
12709 if (sym->attr.subroutine && sym->attr.result)
12710 {
12711 gfc_error ("PROCEDURE attribute conflicts with RESULT attribute "
12712 "in %qs at %L", sym->name, &sym->declared_at);
12713 return false;
12714 }
12715 if (sym->attr.external && sym->attr.function && !sym->attr.module_procedure
12716 && ((sym->attr.if_source == IFSRC_DECL && !sym->attr.procedure)
12717 || sym->attr.contained))
12718 {
12719 gfc_error ("EXTERNAL attribute conflicts with FUNCTION attribute "
12720 "in %qs at %L", sym->name, &sym->declared_at);
12721 return false;
12722 }
12723 if (strcmp ("ppr@", sym->name) == 0)
12724 {
12725 gfc_error ("Procedure pointer result %qs at %L "
12726 "is missing the pointer attribute",
12727 sym->ns->proc_name->name, &sym->declared_at);
12728 return false;
12729 }
12730 }
12731
12732 /* Assume that a procedure whose body is not known has references
12733 to external arrays. */
12734 if (sym->attr.if_source != IFSRC_DECL)
12735 sym->attr.array_outer_dependency = 1;
12736
12737 /* Compare the characteristics of a module procedure with the
12738 interface declaration. Ideally this would be done with
12739 gfc_compare_interfaces but, at present, the formal interface
12740 cannot be copied to the ts.interface. */
12741 if (sym->attr.module_procedure
12742 && sym->attr.if_source == IFSRC_DECL)
12743 {
12744 gfc_symbol *iface;
12745 char name[2*GFC_MAX_SYMBOL_LEN + 1];
12746 char *module_name;
12747 char *submodule_name;
12748 strcpy (name, sym->ns->proc_name->name);
12749 module_name = strtok (name, ".");
12750 submodule_name = strtok (NULL, ".");
12751
12752 iface = sym->tlink;
12753 sym->tlink = NULL;
12754
12755 /* Make sure that the result uses the correct charlen for deferred
12756 length results. */
12757 if (iface && sym->result
12758 && iface->ts.type == BT_CHARACTER
12759 && iface->ts.deferred)
12760 sym->result->ts.u.cl = iface->ts.u.cl;
12761
12762 if (iface == NULL)
12763 goto check_formal;
12764
12765 /* Check the procedure characteristics. */
12766 if (sym->attr.elemental != iface->attr.elemental)
12767 {
12768 gfc_error ("Mismatch in ELEMENTAL attribute between MODULE "
12769 "PROCEDURE at %L and its interface in %s",
12770 &sym->declared_at, module_name);
12771 return false;
12772 }
12773
12774 if (sym->attr.pure != iface->attr.pure)
12775 {
12776 gfc_error ("Mismatch in PURE attribute between MODULE "
12777 "PROCEDURE at %L and its interface in %s",
12778 &sym->declared_at, module_name);
12779 return false;
12780 }
12781
12782 if (sym->attr.recursive != iface->attr.recursive)
12783 {
12784 gfc_error ("Mismatch in RECURSIVE attribute between MODULE "
12785 "PROCEDURE at %L and its interface in %s",
12786 &sym->declared_at, module_name);
12787 return false;
12788 }
12789
12790 /* Check the result characteristics. */
12791 if (!gfc_check_result_characteristics (sym, iface, errmsg, 200))
12792 {
12793 gfc_error ("%s between the MODULE PROCEDURE declaration "
12794 "in MODULE %qs and the declaration at %L in "
12795 "(SUB)MODULE %qs",
12796 errmsg, module_name, &sym->declared_at,
12797 submodule_name ? submodule_name : module_name);
12798 return false;
12799 }
12800
12801 check_formal:
12802 /* Check the characteristics of the formal arguments. */
12803 if (sym->formal && sym->formal_ns)
12804 {
12805 for (arg = sym->formal; arg && arg->sym; arg = arg->next)
12806 {
12807 new_formal = arg;
12808 gfc_traverse_ns (sym->formal_ns, compare_fsyms);
12809 }
12810 }
12811 }
12812 return true;
12813 }
12814
12815
12816 /* Resolve a list of finalizer procedures. That is, after they have hopefully
12817 been defined and we now know their defined arguments, check that they fulfill
12818 the requirements of the standard for procedures used as finalizers. */
12819
12820 static bool
12821 gfc_resolve_finalizers (gfc_symbol* derived, bool *finalizable)
12822 {
12823 gfc_finalizer* list;
12824 gfc_finalizer** prev_link; /* For removing wrong entries from the list. */
12825 bool result = true;
12826 bool seen_scalar = false;
12827 gfc_symbol *vtab;
12828 gfc_component *c;
12829 gfc_symbol *parent = gfc_get_derived_super_type (derived);
12830
12831 if (parent)
12832 gfc_resolve_finalizers (parent, finalizable);
12833
12834 /* Ensure that derived-type components have a their finalizers resolved. */
12835 bool has_final = derived->f2k_derived && derived->f2k_derived->finalizers;
12836 for (c = derived->components; c; c = c->next)
12837 if (c->ts.type == BT_DERIVED
12838 && !c->attr.pointer && !c->attr.proc_pointer && !c->attr.allocatable)
12839 {
12840 bool has_final2 = false;
12841 if (!gfc_resolve_finalizers (c->ts.u.derived, &has_final2))
12842 return false; /* Error. */
12843 has_final = has_final || has_final2;
12844 }
12845 /* Return early if not finalizable. */
12846 if (!has_final)
12847 {
12848 if (finalizable)
12849 *finalizable = false;
12850 return true;
12851 }
12852
12853 /* Walk over the list of finalizer-procedures, check them, and if any one
12854 does not fit in with the standard's definition, print an error and remove
12855 it from the list. */
12856 prev_link = &derived->f2k_derived->finalizers;
12857 for (list = derived->f2k_derived->finalizers; list; list = *prev_link)
12858 {
12859 gfc_formal_arglist *dummy_args;
12860 gfc_symbol* arg;
12861 gfc_finalizer* i;
12862 int my_rank;
12863
12864 /* Skip this finalizer if we already resolved it. */
12865 if (list->proc_tree)
12866 {
12867 if (list->proc_tree->n.sym->formal->sym->as == NULL
12868 || list->proc_tree->n.sym->formal->sym->as->rank == 0)
12869 seen_scalar = true;
12870 prev_link = &(list->next);
12871 continue;
12872 }
12873
12874 /* Check this exists and is a SUBROUTINE. */
12875 if (!list->proc_sym->attr.subroutine)
12876 {
12877 gfc_error ("FINAL procedure %qs at %L is not a SUBROUTINE",
12878 list->proc_sym->name, &list->where);
12879 goto error;
12880 }
12881
12882 /* We should have exactly one argument. */
12883 dummy_args = gfc_sym_get_dummy_args (list->proc_sym);
12884 if (!dummy_args || dummy_args->next)
12885 {
12886 gfc_error ("FINAL procedure at %L must have exactly one argument",
12887 &list->where);
12888 goto error;
12889 }
12890 arg = dummy_args->sym;
12891
12892 /* This argument must be of our type. */
12893 if (arg->ts.type != BT_DERIVED || arg->ts.u.derived != derived)
12894 {
12895 gfc_error ("Argument of FINAL procedure at %L must be of type %qs",
12896 &arg->declared_at, derived->name);
12897 goto error;
12898 }
12899
12900 /* It must neither be a pointer nor allocatable nor optional. */
12901 if (arg->attr.pointer)
12902 {
12903 gfc_error ("Argument of FINAL procedure at %L must not be a POINTER",
12904 &arg->declared_at);
12905 goto error;
12906 }
12907 if (arg->attr.allocatable)
12908 {
12909 gfc_error ("Argument of FINAL procedure at %L must not be"
12910 " ALLOCATABLE", &arg->declared_at);
12911 goto error;
12912 }
12913 if (arg->attr.optional)
12914 {
12915 gfc_error ("Argument of FINAL procedure at %L must not be OPTIONAL",
12916 &arg->declared_at);
12917 goto error;
12918 }
12919
12920 /* It must not be INTENT(OUT). */
12921 if (arg->attr.intent == INTENT_OUT)
12922 {
12923 gfc_error ("Argument of FINAL procedure at %L must not be"
12924 " INTENT(OUT)", &arg->declared_at);
12925 goto error;
12926 }
12927
12928 /* Warn if the procedure is non-scalar and not assumed shape. */
12929 if (warn_surprising && arg->as && arg->as->rank != 0
12930 && arg->as->type != AS_ASSUMED_SHAPE)
12931 gfc_warning (OPT_Wsurprising,
12932 "Non-scalar FINAL procedure at %L should have assumed"
12933 " shape argument", &arg->declared_at);
12934
12935 /* Check that it does not match in kind and rank with a FINAL procedure
12936 defined earlier. To really loop over the *earlier* declarations,
12937 we need to walk the tail of the list as new ones were pushed at the
12938 front. */
12939 /* TODO: Handle kind parameters once they are implemented. */
12940 my_rank = (arg->as ? arg->as->rank : 0);
12941 for (i = list->next; i; i = i->next)
12942 {
12943 gfc_formal_arglist *dummy_args;
12944
12945 /* Argument list might be empty; that is an error signalled earlier,
12946 but we nevertheless continued resolving. */
12947 dummy_args = gfc_sym_get_dummy_args (i->proc_sym);
12948 if (dummy_args)
12949 {
12950 gfc_symbol* i_arg = dummy_args->sym;
12951 const int i_rank = (i_arg->as ? i_arg->as->rank : 0);
12952 if (i_rank == my_rank)
12953 {
12954 gfc_error ("FINAL procedure %qs declared at %L has the same"
12955 " rank (%d) as %qs",
12956 list->proc_sym->name, &list->where, my_rank,
12957 i->proc_sym->name);
12958 goto error;
12959 }
12960 }
12961 }
12962
12963 /* Is this the/a scalar finalizer procedure? */
12964 if (my_rank == 0)
12965 seen_scalar = true;
12966
12967 /* Find the symtree for this procedure. */
12968 gcc_assert (!list->proc_tree);
12969 list->proc_tree = gfc_find_sym_in_symtree (list->proc_sym);
12970
12971 prev_link = &list->next;
12972 continue;
12973
12974 /* Remove wrong nodes immediately from the list so we don't risk any
12975 troubles in the future when they might fail later expectations. */
12976 error:
12977 i = list;
12978 *prev_link = list->next;
12979 gfc_free_finalizer (i);
12980 result = false;
12981 }
12982
12983 if (result == false)
12984 return false;
12985
12986 /* Warn if we haven't seen a scalar finalizer procedure (but we know there
12987 were nodes in the list, must have been for arrays. It is surely a good
12988 idea to have a scalar version there if there's something to finalize. */
12989 if (warn_surprising && derived->f2k_derived->finalizers && !seen_scalar)
12990 gfc_warning (OPT_Wsurprising,
12991 "Only array FINAL procedures declared for derived type %qs"
12992 " defined at %L, suggest also scalar one",
12993 derived->name, &derived->declared_at);
12994
12995 vtab = gfc_find_derived_vtab (derived);
12996 c = vtab->ts.u.derived->components->next->next->next->next->next;
12997 gfc_set_sym_referenced (c->initializer->symtree->n.sym);
12998
12999 if (finalizable)
13000 *finalizable = true;
13001
13002 return true;
13003 }
13004
13005
13006 /* Check if two GENERIC targets are ambiguous and emit an error is they are. */
13007
13008 static bool
13009 check_generic_tbp_ambiguity (gfc_tbp_generic* t1, gfc_tbp_generic* t2,
13010 const char* generic_name, locus where)
13011 {
13012 gfc_symbol *sym1, *sym2;
13013 const char *pass1, *pass2;
13014 gfc_formal_arglist *dummy_args;
13015
13016 gcc_assert (t1->specific && t2->specific);
13017 gcc_assert (!t1->specific->is_generic);
13018 gcc_assert (!t2->specific->is_generic);
13019 gcc_assert (t1->is_operator == t2->is_operator);
13020
13021 sym1 = t1->specific->u.specific->n.sym;
13022 sym2 = t2->specific->u.specific->n.sym;
13023
13024 if (sym1 == sym2)
13025 return true;
13026
13027 /* Both must be SUBROUTINEs or both must be FUNCTIONs. */
13028 if (sym1->attr.subroutine != sym2->attr.subroutine
13029 || sym1->attr.function != sym2->attr.function)
13030 {
13031 gfc_error ("%qs and %qs can't be mixed FUNCTION/SUBROUTINE for"
13032 " GENERIC %qs at %L",
13033 sym1->name, sym2->name, generic_name, &where);
13034 return false;
13035 }
13036
13037 /* Determine PASS arguments. */
13038 if (t1->specific->nopass)
13039 pass1 = NULL;
13040 else if (t1->specific->pass_arg)
13041 pass1 = t1->specific->pass_arg;
13042 else
13043 {
13044 dummy_args = gfc_sym_get_dummy_args (t1->specific->u.specific->n.sym);
13045 if (dummy_args)
13046 pass1 = dummy_args->sym->name;
13047 else
13048 pass1 = NULL;
13049 }
13050 if (t2->specific->nopass)
13051 pass2 = NULL;
13052 else if (t2->specific->pass_arg)
13053 pass2 = t2->specific->pass_arg;
13054 else
13055 {
13056 dummy_args = gfc_sym_get_dummy_args (t2->specific->u.specific->n.sym);
13057 if (dummy_args)
13058 pass2 = dummy_args->sym->name;
13059 else
13060 pass2 = NULL;
13061 }
13062
13063 /* Compare the interfaces. */
13064 if (gfc_compare_interfaces (sym1, sym2, sym2->name, !t1->is_operator, 0,
13065 NULL, 0, pass1, pass2))
13066 {
13067 gfc_error ("%qs and %qs for GENERIC %qs at %L are ambiguous",
13068 sym1->name, sym2->name, generic_name, &where);
13069 return false;
13070 }
13071
13072 return true;
13073 }
13074
13075
13076 /* Worker function for resolving a generic procedure binding; this is used to
13077 resolve GENERIC as well as user and intrinsic OPERATOR typebound procedures.
13078
13079 The difference between those cases is finding possible inherited bindings
13080 that are overridden, as one has to look for them in tb_sym_root,
13081 tb_uop_root or tb_op, respectively. Thus the caller must already find
13082 the super-type and set p->overridden correctly. */
13083
13084 static bool
13085 resolve_tb_generic_targets (gfc_symbol* super_type,
13086 gfc_typebound_proc* p, const char* name)
13087 {
13088 gfc_tbp_generic* target;
13089 gfc_symtree* first_target;
13090 gfc_symtree* inherited;
13091
13092 gcc_assert (p && p->is_generic);
13093
13094 /* Try to find the specific bindings for the symtrees in our target-list. */
13095 gcc_assert (p->u.generic);
13096 for (target = p->u.generic; target; target = target->next)
13097 if (!target->specific)
13098 {
13099 gfc_typebound_proc* overridden_tbp;
13100 gfc_tbp_generic* g;
13101 const char* target_name;
13102
13103 target_name = target->specific_st->name;
13104
13105 /* Defined for this type directly. */
13106 if (target->specific_st->n.tb && !target->specific_st->n.tb->error)
13107 {
13108 target->specific = target->specific_st->n.tb;
13109 goto specific_found;
13110 }
13111
13112 /* Look for an inherited specific binding. */
13113 if (super_type)
13114 {
13115 inherited = gfc_find_typebound_proc (super_type, NULL, target_name,
13116 true, NULL);
13117
13118 if (inherited)
13119 {
13120 gcc_assert (inherited->n.tb);
13121 target->specific = inherited->n.tb;
13122 goto specific_found;
13123 }
13124 }
13125
13126 gfc_error ("Undefined specific binding %qs as target of GENERIC %qs"
13127 " at %L", target_name, name, &p->where);
13128 return false;
13129
13130 /* Once we've found the specific binding, check it is not ambiguous with
13131 other specifics already found or inherited for the same GENERIC. */
13132 specific_found:
13133 gcc_assert (target->specific);
13134
13135 /* This must really be a specific binding! */
13136 if (target->specific->is_generic)
13137 {
13138 gfc_error ("GENERIC %qs at %L must target a specific binding,"
13139 " %qs is GENERIC, too", name, &p->where, target_name);
13140 return false;
13141 }
13142
13143 /* Check those already resolved on this type directly. */
13144 for (g = p->u.generic; g; g = g->next)
13145 if (g != target && g->specific
13146 && !check_generic_tbp_ambiguity (target, g, name, p->where))
13147 return false;
13148
13149 /* Check for ambiguity with inherited specific targets. */
13150 for (overridden_tbp = p->overridden; overridden_tbp;
13151 overridden_tbp = overridden_tbp->overridden)
13152 if (overridden_tbp->is_generic)
13153 {
13154 for (g = overridden_tbp->u.generic; g; g = g->next)
13155 {
13156 gcc_assert (g->specific);
13157 if (!check_generic_tbp_ambiguity (target, g, name, p->where))
13158 return false;
13159 }
13160 }
13161 }
13162
13163 /* If we attempt to "overwrite" a specific binding, this is an error. */
13164 if (p->overridden && !p->overridden->is_generic)
13165 {
13166 gfc_error ("GENERIC %qs at %L can't overwrite specific binding with"
13167 " the same name", name, &p->where);
13168 return false;
13169 }
13170
13171 /* Take the SUBROUTINE/FUNCTION attributes of the first specific target, as
13172 all must have the same attributes here. */
13173 first_target = p->u.generic->specific->u.specific;
13174 gcc_assert (first_target);
13175 p->subroutine = first_target->n.sym->attr.subroutine;
13176 p->function = first_target->n.sym->attr.function;
13177
13178 return true;
13179 }
13180
13181
13182 /* Resolve a GENERIC procedure binding for a derived type. */
13183
13184 static bool
13185 resolve_typebound_generic (gfc_symbol* derived, gfc_symtree* st)
13186 {
13187 gfc_symbol* super_type;
13188
13189 /* Find the overridden binding if any. */
13190 st->n.tb->overridden = NULL;
13191 super_type = gfc_get_derived_super_type (derived);
13192 if (super_type)
13193 {
13194 gfc_symtree* overridden;
13195 overridden = gfc_find_typebound_proc (super_type, NULL, st->name,
13196 true, NULL);
13197
13198 if (overridden && overridden->n.tb)
13199 st->n.tb->overridden = overridden->n.tb;
13200 }
13201
13202 /* Resolve using worker function. */
13203 return resolve_tb_generic_targets (super_type, st->n.tb, st->name);
13204 }
13205
13206
13207 /* Retrieve the target-procedure of an operator binding and do some checks in
13208 common for intrinsic and user-defined type-bound operators. */
13209
13210 static gfc_symbol*
13211 get_checked_tb_operator_target (gfc_tbp_generic* target, locus where)
13212 {
13213 gfc_symbol* target_proc;
13214
13215 gcc_assert (target->specific && !target->specific->is_generic);
13216 target_proc = target->specific->u.specific->n.sym;
13217 gcc_assert (target_proc);
13218
13219 /* F08:C468. All operator bindings must have a passed-object dummy argument. */
13220 if (target->specific->nopass)
13221 {
13222 gfc_error ("Type-bound operator at %L can't be NOPASS", &where);
13223 return NULL;
13224 }
13225
13226 return target_proc;
13227 }
13228
13229
13230 /* Resolve a type-bound intrinsic operator. */
13231
13232 static bool
13233 resolve_typebound_intrinsic_op (gfc_symbol* derived, gfc_intrinsic_op op,
13234 gfc_typebound_proc* p)
13235 {
13236 gfc_symbol* super_type;
13237 gfc_tbp_generic* target;
13238
13239 /* If there's already an error here, do nothing (but don't fail again). */
13240 if (p->error)
13241 return true;
13242
13243 /* Operators should always be GENERIC bindings. */
13244 gcc_assert (p->is_generic);
13245
13246 /* Look for an overridden binding. */
13247 super_type = gfc_get_derived_super_type (derived);
13248 if (super_type && super_type->f2k_derived)
13249 p->overridden = gfc_find_typebound_intrinsic_op (super_type, NULL,
13250 op, true, NULL);
13251 else
13252 p->overridden = NULL;
13253
13254 /* Resolve general GENERIC properties using worker function. */
13255 if (!resolve_tb_generic_targets (super_type, p, gfc_op2string(op)))
13256 goto error;
13257
13258 /* Check the targets to be procedures of correct interface. */
13259 for (target = p->u.generic; target; target = target->next)
13260 {
13261 gfc_symbol* target_proc;
13262
13263 target_proc = get_checked_tb_operator_target (target, p->where);
13264 if (!target_proc)
13265 goto error;
13266
13267 if (!gfc_check_operator_interface (target_proc, op, p->where))
13268 goto error;
13269
13270 /* Add target to non-typebound operator list. */
13271 if (!target->specific->deferred && !derived->attr.use_assoc
13272 && p->access != ACCESS_PRIVATE && derived->ns == gfc_current_ns)
13273 {
13274 gfc_interface *head, *intr;
13275
13276 /* Preempt 'gfc_check_new_interface' for submodules, where the
13277 mechanism for handling module procedures winds up resolving
13278 operator interfaces twice and would otherwise cause an error. */
13279 for (intr = derived->ns->op[op]; intr; intr = intr->next)
13280 if (intr->sym == target_proc
13281 && target_proc->attr.used_in_submodule)
13282 return true;
13283
13284 if (!gfc_check_new_interface (derived->ns->op[op],
13285 target_proc, p->where))
13286 return false;
13287 head = derived->ns->op[op];
13288 intr = gfc_get_interface ();
13289 intr->sym = target_proc;
13290 intr->where = p->where;
13291 intr->next = head;
13292 derived->ns->op[op] = intr;
13293 }
13294 }
13295
13296 return true;
13297
13298 error:
13299 p->error = 1;
13300 return false;
13301 }
13302
13303
13304 /* Resolve a type-bound user operator (tree-walker callback). */
13305
13306 static gfc_symbol* resolve_bindings_derived;
13307 static bool resolve_bindings_result;
13308
13309 static bool check_uop_procedure (gfc_symbol* sym, locus where);
13310
13311 static void
13312 resolve_typebound_user_op (gfc_symtree* stree)
13313 {
13314 gfc_symbol* super_type;
13315 gfc_tbp_generic* target;
13316
13317 gcc_assert (stree && stree->n.tb);
13318
13319 if (stree->n.tb->error)
13320 return;
13321
13322 /* Operators should always be GENERIC bindings. */
13323 gcc_assert (stree->n.tb->is_generic);
13324
13325 /* Find overridden procedure, if any. */
13326 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13327 if (super_type && super_type->f2k_derived)
13328 {
13329 gfc_symtree* overridden;
13330 overridden = gfc_find_typebound_user_op (super_type, NULL,
13331 stree->name, true, NULL);
13332
13333 if (overridden && overridden->n.tb)
13334 stree->n.tb->overridden = overridden->n.tb;
13335 }
13336 else
13337 stree->n.tb->overridden = NULL;
13338
13339 /* Resolve basically using worker function. */
13340 if (!resolve_tb_generic_targets (super_type, stree->n.tb, stree->name))
13341 goto error;
13342
13343 /* Check the targets to be functions of correct interface. */
13344 for (target = stree->n.tb->u.generic; target; target = target->next)
13345 {
13346 gfc_symbol* target_proc;
13347
13348 target_proc = get_checked_tb_operator_target (target, stree->n.tb->where);
13349 if (!target_proc)
13350 goto error;
13351
13352 if (!check_uop_procedure (target_proc, stree->n.tb->where))
13353 goto error;
13354 }
13355
13356 return;
13357
13358 error:
13359 resolve_bindings_result = false;
13360 stree->n.tb->error = 1;
13361 }
13362
13363
13364 /* Resolve the type-bound procedures for a derived type. */
13365
13366 static void
13367 resolve_typebound_procedure (gfc_symtree* stree)
13368 {
13369 gfc_symbol* proc;
13370 locus where;
13371 gfc_symbol* me_arg;
13372 gfc_symbol* super_type;
13373 gfc_component* comp;
13374
13375 gcc_assert (stree);
13376
13377 /* Undefined specific symbol from GENERIC target definition. */
13378 if (!stree->n.tb)
13379 return;
13380
13381 if (stree->n.tb->error)
13382 return;
13383
13384 /* If this is a GENERIC binding, use that routine. */
13385 if (stree->n.tb->is_generic)
13386 {
13387 if (!resolve_typebound_generic (resolve_bindings_derived, stree))
13388 goto error;
13389 return;
13390 }
13391
13392 /* Get the target-procedure to check it. */
13393 gcc_assert (!stree->n.tb->is_generic);
13394 gcc_assert (stree->n.tb->u.specific);
13395 proc = stree->n.tb->u.specific->n.sym;
13396 where = stree->n.tb->where;
13397
13398 /* Default access should already be resolved from the parser. */
13399 gcc_assert (stree->n.tb->access != ACCESS_UNKNOWN);
13400
13401 if (stree->n.tb->deferred)
13402 {
13403 if (!check_proc_interface (proc, &where))
13404 goto error;
13405 }
13406 else
13407 {
13408 /* Check for F08:C465. */
13409 if ((!proc->attr.subroutine && !proc->attr.function)
13410 || (proc->attr.proc != PROC_MODULE
13411 && proc->attr.if_source != IFSRC_IFBODY)
13412 || proc->attr.abstract)
13413 {
13414 gfc_error ("%qs must be a module procedure or an external procedure with"
13415 " an explicit interface at %L", proc->name, &where);
13416 goto error;
13417 }
13418 }
13419
13420 stree->n.tb->subroutine = proc->attr.subroutine;
13421 stree->n.tb->function = proc->attr.function;
13422
13423 /* Find the super-type of the current derived type. We could do this once and
13424 store in a global if speed is needed, but as long as not I believe this is
13425 more readable and clearer. */
13426 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13427
13428 /* If PASS, resolve and check arguments if not already resolved / loaded
13429 from a .mod file. */
13430 if (!stree->n.tb->nopass && stree->n.tb->pass_arg_num == 0)
13431 {
13432 gfc_formal_arglist *dummy_args;
13433
13434 dummy_args = gfc_sym_get_dummy_args (proc);
13435 if (stree->n.tb->pass_arg)
13436 {
13437 gfc_formal_arglist *i;
13438
13439 /* If an explicit passing argument name is given, walk the arg-list
13440 and look for it. */
13441
13442 me_arg = NULL;
13443 stree->n.tb->pass_arg_num = 1;
13444 for (i = dummy_args; i; i = i->next)
13445 {
13446 if (!strcmp (i->sym->name, stree->n.tb->pass_arg))
13447 {
13448 me_arg = i->sym;
13449 break;
13450 }
13451 ++stree->n.tb->pass_arg_num;
13452 }
13453
13454 if (!me_arg)
13455 {
13456 gfc_error ("Procedure %qs with PASS(%s) at %L has no"
13457 " argument %qs",
13458 proc->name, stree->n.tb->pass_arg, &where,
13459 stree->n.tb->pass_arg);
13460 goto error;
13461 }
13462 }
13463 else
13464 {
13465 /* Otherwise, take the first one; there should in fact be at least
13466 one. */
13467 stree->n.tb->pass_arg_num = 1;
13468 if (!dummy_args)
13469 {
13470 gfc_error ("Procedure %qs with PASS at %L must have at"
13471 " least one argument", proc->name, &where);
13472 goto error;
13473 }
13474 me_arg = dummy_args->sym;
13475 }
13476
13477 /* Now check that the argument-type matches and the passed-object
13478 dummy argument is generally fine. */
13479
13480 gcc_assert (me_arg);
13481
13482 if (me_arg->ts.type != BT_CLASS)
13483 {
13484 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13485 " at %L", proc->name, &where);
13486 goto error;
13487 }
13488
13489 if (CLASS_DATA (me_arg)->ts.u.derived
13490 != resolve_bindings_derived)
13491 {
13492 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13493 " the derived-type %qs", me_arg->name, proc->name,
13494 me_arg->name, &where, resolve_bindings_derived->name);
13495 goto error;
13496 }
13497
13498 gcc_assert (me_arg->ts.type == BT_CLASS);
13499 if (CLASS_DATA (me_arg)->as && CLASS_DATA (me_arg)->as->rank != 0)
13500 {
13501 gfc_error ("Passed-object dummy argument of %qs at %L must be"
13502 " scalar", proc->name, &where);
13503 goto error;
13504 }
13505 if (CLASS_DATA (me_arg)->attr.allocatable)
13506 {
13507 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13508 " be ALLOCATABLE", proc->name, &where);
13509 goto error;
13510 }
13511 if (CLASS_DATA (me_arg)->attr.class_pointer)
13512 {
13513 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13514 " be POINTER", proc->name, &where);
13515 goto error;
13516 }
13517 }
13518
13519 /* If we are extending some type, check that we don't override a procedure
13520 flagged NON_OVERRIDABLE. */
13521 stree->n.tb->overridden = NULL;
13522 if (super_type)
13523 {
13524 gfc_symtree* overridden;
13525 overridden = gfc_find_typebound_proc (super_type, NULL,
13526 stree->name, true, NULL);
13527
13528 if (overridden)
13529 {
13530 if (overridden->n.tb)
13531 stree->n.tb->overridden = overridden->n.tb;
13532
13533 if (!gfc_check_typebound_override (stree, overridden))
13534 goto error;
13535 }
13536 }
13537
13538 /* See if there's a name collision with a component directly in this type. */
13539 for (comp = resolve_bindings_derived->components; comp; comp = comp->next)
13540 if (!strcmp (comp->name, stree->name))
13541 {
13542 gfc_error ("Procedure %qs at %L has the same name as a component of"
13543 " %qs",
13544 stree->name, &where, resolve_bindings_derived->name);
13545 goto error;
13546 }
13547
13548 /* Try to find a name collision with an inherited component. */
13549 if (super_type && gfc_find_component (super_type, stree->name, true, true,
13550 NULL))
13551 {
13552 gfc_error ("Procedure %qs at %L has the same name as an inherited"
13553 " component of %qs",
13554 stree->name, &where, resolve_bindings_derived->name);
13555 goto error;
13556 }
13557
13558 stree->n.tb->error = 0;
13559 return;
13560
13561 error:
13562 resolve_bindings_result = false;
13563 stree->n.tb->error = 1;
13564 }
13565
13566
13567 static bool
13568 resolve_typebound_procedures (gfc_symbol* derived)
13569 {
13570 int op;
13571 gfc_symbol* super_type;
13572
13573 if (!derived->f2k_derived || !derived->f2k_derived->tb_sym_root)
13574 return true;
13575
13576 super_type = gfc_get_derived_super_type (derived);
13577 if (super_type)
13578 resolve_symbol (super_type);
13579
13580 resolve_bindings_derived = derived;
13581 resolve_bindings_result = true;
13582
13583 if (derived->f2k_derived->tb_sym_root)
13584 gfc_traverse_symtree (derived->f2k_derived->tb_sym_root,
13585 &resolve_typebound_procedure);
13586
13587 if (derived->f2k_derived->tb_uop_root)
13588 gfc_traverse_symtree (derived->f2k_derived->tb_uop_root,
13589 &resolve_typebound_user_op);
13590
13591 for (op = 0; op != GFC_INTRINSIC_OPS; ++op)
13592 {
13593 gfc_typebound_proc* p = derived->f2k_derived->tb_op[op];
13594 if (p && !resolve_typebound_intrinsic_op (derived,
13595 (gfc_intrinsic_op)op, p))
13596 resolve_bindings_result = false;
13597 }
13598
13599 return resolve_bindings_result;
13600 }
13601
13602
13603 /* Add a derived type to the dt_list. The dt_list is used in trans-types.c
13604 to give all identical derived types the same backend_decl. */
13605 static void
13606 add_dt_to_dt_list (gfc_symbol *derived)
13607 {
13608 if (!derived->dt_next)
13609 {
13610 if (gfc_derived_types)
13611 {
13612 derived->dt_next = gfc_derived_types->dt_next;
13613 gfc_derived_types->dt_next = derived;
13614 }
13615 else
13616 {
13617 derived->dt_next = derived;
13618 }
13619 gfc_derived_types = derived;
13620 }
13621 }
13622
13623
13624 /* Ensure that a derived-type is really not abstract, meaning that every
13625 inherited DEFERRED binding is overridden by a non-DEFERRED one. */
13626
13627 static bool
13628 ensure_not_abstract_walker (gfc_symbol* sub, gfc_symtree* st)
13629 {
13630 if (!st)
13631 return true;
13632
13633 if (!ensure_not_abstract_walker (sub, st->left))
13634 return false;
13635 if (!ensure_not_abstract_walker (sub, st->right))
13636 return false;
13637
13638 if (st->n.tb && st->n.tb->deferred)
13639 {
13640 gfc_symtree* overriding;
13641 overriding = gfc_find_typebound_proc (sub, NULL, st->name, true, NULL);
13642 if (!overriding)
13643 return false;
13644 gcc_assert (overriding->n.tb);
13645 if (overriding->n.tb->deferred)
13646 {
13647 gfc_error ("Derived-type %qs declared at %L must be ABSTRACT because"
13648 " %qs is DEFERRED and not overridden",
13649 sub->name, &sub->declared_at, st->name);
13650 return false;
13651 }
13652 }
13653
13654 return true;
13655 }
13656
13657 static bool
13658 ensure_not_abstract (gfc_symbol* sub, gfc_symbol* ancestor)
13659 {
13660 /* The algorithm used here is to recursively travel up the ancestry of sub
13661 and for each ancestor-type, check all bindings. If any of them is
13662 DEFERRED, look it up starting from sub and see if the found (overriding)
13663 binding is not DEFERRED.
13664 This is not the most efficient way to do this, but it should be ok and is
13665 clearer than something sophisticated. */
13666
13667 gcc_assert (ancestor && !sub->attr.abstract);
13668
13669 if (!ancestor->attr.abstract)
13670 return true;
13671
13672 /* Walk bindings of this ancestor. */
13673 if (ancestor->f2k_derived)
13674 {
13675 bool t;
13676 t = ensure_not_abstract_walker (sub, ancestor->f2k_derived->tb_sym_root);
13677 if (!t)
13678 return false;
13679 }
13680
13681 /* Find next ancestor type and recurse on it. */
13682 ancestor = gfc_get_derived_super_type (ancestor);
13683 if (ancestor)
13684 return ensure_not_abstract (sub, ancestor);
13685
13686 return true;
13687 }
13688
13689
13690 /* This check for typebound defined assignments is done recursively
13691 since the order in which derived types are resolved is not always in
13692 order of the declarations. */
13693
13694 static void
13695 check_defined_assignments (gfc_symbol *derived)
13696 {
13697 gfc_component *c;
13698
13699 for (c = derived->components; c; c = c->next)
13700 {
13701 if (!gfc_bt_struct (c->ts.type)
13702 || c->attr.pointer
13703 || c->attr.allocatable
13704 || c->attr.proc_pointer_comp
13705 || c->attr.class_pointer
13706 || c->attr.proc_pointer)
13707 continue;
13708
13709 if (c->ts.u.derived->attr.defined_assign_comp
13710 || (c->ts.u.derived->f2k_derived
13711 && c->ts.u.derived->f2k_derived->tb_op[INTRINSIC_ASSIGN]))
13712 {
13713 derived->attr.defined_assign_comp = 1;
13714 return;
13715 }
13716
13717 check_defined_assignments (c->ts.u.derived);
13718 if (c->ts.u.derived->attr.defined_assign_comp)
13719 {
13720 derived->attr.defined_assign_comp = 1;
13721 return;
13722 }
13723 }
13724 }
13725
13726
13727 /* Resolve a single component of a derived type or structure. */
13728
13729 static bool
13730 resolve_component (gfc_component *c, gfc_symbol *sym)
13731 {
13732 gfc_symbol *super_type;
13733
13734 if (c->attr.artificial)
13735 return true;
13736
13737 /* Do not allow vtype components to be resolved in nameless namespaces
13738 such as block data because the procedure pointers will cause ICEs
13739 and vtables are not needed in these contexts. */
13740 if (sym->attr.vtype && sym->attr.use_assoc
13741 && sym->ns->proc_name == NULL)
13742 return true;
13743
13744 /* F2008, C442. */
13745 if ((!sym->attr.is_class || c != sym->components)
13746 && c->attr.codimension
13747 && (!c->attr.allocatable || (c->as && c->as->type != AS_DEFERRED)))
13748 {
13749 gfc_error ("Coarray component %qs at %L must be allocatable with "
13750 "deferred shape", c->name, &c->loc);
13751 return false;
13752 }
13753
13754 /* F2008, C443. */
13755 if (c->attr.codimension && c->ts.type == BT_DERIVED
13756 && c->ts.u.derived->ts.is_iso_c)
13757 {
13758 gfc_error ("Component %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
13759 "shall not be a coarray", c->name, &c->loc);
13760 return false;
13761 }
13762
13763 /* F2008, C444. */
13764 if (gfc_bt_struct (c->ts.type) && c->ts.u.derived->attr.coarray_comp
13765 && (c->attr.codimension || c->attr.pointer || c->attr.dimension
13766 || c->attr.allocatable))
13767 {
13768 gfc_error ("Component %qs at %L with coarray component "
13769 "shall be a nonpointer, nonallocatable scalar",
13770 c->name, &c->loc);
13771 return false;
13772 }
13773
13774 /* F2008, C448. */
13775 if (c->attr.contiguous && (!c->attr.dimension || !c->attr.pointer))
13776 {
13777 gfc_error ("Component %qs at %L has the CONTIGUOUS attribute but "
13778 "is not an array pointer", c->name, &c->loc);
13779 return false;
13780 }
13781
13782 /* F2003, 15.2.1 - length has to be one. */
13783 if (sym->attr.is_bind_c && c->ts.type == BT_CHARACTER
13784 && (c->ts.u.cl == NULL || c->ts.u.cl->length == NULL
13785 || !gfc_is_constant_expr (c->ts.u.cl->length)
13786 || mpz_cmp_si (c->ts.u.cl->length->value.integer, 1) != 0))
13787 {
13788 gfc_error ("Component %qs of BIND(C) type at %L must have length one",
13789 c->name, &c->loc);
13790 return false;
13791 }
13792
13793 if (c->attr.proc_pointer && c->ts.interface)
13794 {
13795 gfc_symbol *ifc = c->ts.interface;
13796
13797 if (!sym->attr.vtype && !check_proc_interface (ifc, &c->loc))
13798 {
13799 c->tb->error = 1;
13800 return false;
13801 }
13802
13803 if (ifc->attr.if_source || ifc->attr.intrinsic)
13804 {
13805 /* Resolve interface and copy attributes. */
13806 if (ifc->formal && !ifc->formal_ns)
13807 resolve_symbol (ifc);
13808 if (ifc->attr.intrinsic)
13809 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
13810
13811 if (ifc->result)
13812 {
13813 c->ts = ifc->result->ts;
13814 c->attr.allocatable = ifc->result->attr.allocatable;
13815 c->attr.pointer = ifc->result->attr.pointer;
13816 c->attr.dimension = ifc->result->attr.dimension;
13817 c->as = gfc_copy_array_spec (ifc->result->as);
13818 c->attr.class_ok = ifc->result->attr.class_ok;
13819 }
13820 else
13821 {
13822 c->ts = ifc->ts;
13823 c->attr.allocatable = ifc->attr.allocatable;
13824 c->attr.pointer = ifc->attr.pointer;
13825 c->attr.dimension = ifc->attr.dimension;
13826 c->as = gfc_copy_array_spec (ifc->as);
13827 c->attr.class_ok = ifc->attr.class_ok;
13828 }
13829 c->ts.interface = ifc;
13830 c->attr.function = ifc->attr.function;
13831 c->attr.subroutine = ifc->attr.subroutine;
13832
13833 c->attr.pure = ifc->attr.pure;
13834 c->attr.elemental = ifc->attr.elemental;
13835 c->attr.recursive = ifc->attr.recursive;
13836 c->attr.always_explicit = ifc->attr.always_explicit;
13837 c->attr.ext_attr |= ifc->attr.ext_attr;
13838 /* Copy char length. */
13839 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
13840 {
13841 gfc_charlen *cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
13842 if (cl->length && !cl->resolved
13843 && !gfc_resolve_expr (cl->length))
13844 {
13845 c->tb->error = 1;
13846 return false;
13847 }
13848 c->ts.u.cl = cl;
13849 }
13850 }
13851 }
13852 else if (c->attr.proc_pointer && c->ts.type == BT_UNKNOWN)
13853 {
13854 /* Since PPCs are not implicitly typed, a PPC without an explicit
13855 interface must be a subroutine. */
13856 gfc_add_subroutine (&c->attr, c->name, &c->loc);
13857 }
13858
13859 /* Procedure pointer components: Check PASS arg. */
13860 if (c->attr.proc_pointer && !c->tb->nopass && c->tb->pass_arg_num == 0
13861 && !sym->attr.vtype)
13862 {
13863 gfc_symbol* me_arg;
13864
13865 if (c->tb->pass_arg)
13866 {
13867 gfc_formal_arglist* i;
13868
13869 /* If an explicit passing argument name is given, walk the arg-list
13870 and look for it. */
13871
13872 me_arg = NULL;
13873 c->tb->pass_arg_num = 1;
13874 for (i = c->ts.interface->formal; i; i = i->next)
13875 {
13876 if (!strcmp (i->sym->name, c->tb->pass_arg))
13877 {
13878 me_arg = i->sym;
13879 break;
13880 }
13881 c->tb->pass_arg_num++;
13882 }
13883
13884 if (!me_arg)
13885 {
13886 gfc_error ("Procedure pointer component %qs with PASS(%s) "
13887 "at %L has no argument %qs", c->name,
13888 c->tb->pass_arg, &c->loc, c->tb->pass_arg);
13889 c->tb->error = 1;
13890 return false;
13891 }
13892 }
13893 else
13894 {
13895 /* Otherwise, take the first one; there should in fact be at least
13896 one. */
13897 c->tb->pass_arg_num = 1;
13898 if (!c->ts.interface->formal)
13899 {
13900 gfc_error ("Procedure pointer component %qs with PASS at %L "
13901 "must have at least one argument",
13902 c->name, &c->loc);
13903 c->tb->error = 1;
13904 return false;
13905 }
13906 me_arg = c->ts.interface->formal->sym;
13907 }
13908
13909 /* Now check that the argument-type matches. */
13910 gcc_assert (me_arg);
13911 if ((me_arg->ts.type != BT_DERIVED && me_arg->ts.type != BT_CLASS)
13912 || (me_arg->ts.type == BT_DERIVED && me_arg->ts.u.derived != sym)
13913 || (me_arg->ts.type == BT_CLASS
13914 && CLASS_DATA (me_arg)->ts.u.derived != sym))
13915 {
13916 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13917 " the derived type %qs", me_arg->name, c->name,
13918 me_arg->name, &c->loc, sym->name);
13919 c->tb->error = 1;
13920 return false;
13921 }
13922
13923 /* Check for F03:C453. */
13924 if (CLASS_DATA (me_arg)->attr.dimension)
13925 {
13926 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13927 "must be scalar", me_arg->name, c->name, me_arg->name,
13928 &c->loc);
13929 c->tb->error = 1;
13930 return false;
13931 }
13932
13933 if (CLASS_DATA (me_arg)->attr.class_pointer)
13934 {
13935 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13936 "may not have the POINTER attribute", me_arg->name,
13937 c->name, me_arg->name, &c->loc);
13938 c->tb->error = 1;
13939 return false;
13940 }
13941
13942 if (CLASS_DATA (me_arg)->attr.allocatable)
13943 {
13944 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13945 "may not be ALLOCATABLE", me_arg->name, c->name,
13946 me_arg->name, &c->loc);
13947 c->tb->error = 1;
13948 return false;
13949 }
13950
13951 if (gfc_type_is_extensible (sym) && me_arg->ts.type != BT_CLASS)
13952 {
13953 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13954 " at %L", c->name, &c->loc);
13955 return false;
13956 }
13957
13958 }
13959
13960 /* Check type-spec if this is not the parent-type component. */
13961 if (((sym->attr.is_class
13962 && (!sym->components->ts.u.derived->attr.extension
13963 || c != sym->components->ts.u.derived->components))
13964 || (!sym->attr.is_class
13965 && (!sym->attr.extension || c != sym->components)))
13966 && !sym->attr.vtype
13967 && !resolve_typespec_used (&c->ts, &c->loc, c->name))
13968 return false;
13969
13970 super_type = gfc_get_derived_super_type (sym);
13971
13972 /* If this type is an extension, set the accessibility of the parent
13973 component. */
13974 if (super_type
13975 && ((sym->attr.is_class
13976 && c == sym->components->ts.u.derived->components)
13977 || (!sym->attr.is_class && c == sym->components))
13978 && strcmp (super_type->name, c->name) == 0)
13979 c->attr.access = super_type->attr.access;
13980
13981 /* If this type is an extension, see if this component has the same name
13982 as an inherited type-bound procedure. */
13983 if (super_type && !sym->attr.is_class
13984 && gfc_find_typebound_proc (super_type, NULL, c->name, true, NULL))
13985 {
13986 gfc_error ("Component %qs of %qs at %L has the same name as an"
13987 " inherited type-bound procedure",
13988 c->name, sym->name, &c->loc);
13989 return false;
13990 }
13991
13992 if (c->ts.type == BT_CHARACTER && !c->attr.proc_pointer
13993 && !c->ts.deferred)
13994 {
13995 if (c->ts.u.cl->length == NULL
13996 || (!resolve_charlen(c->ts.u.cl))
13997 || !gfc_is_constant_expr (c->ts.u.cl->length))
13998 {
13999 gfc_error ("Character length of component %qs needs to "
14000 "be a constant specification expression at %L",
14001 c->name,
14002 c->ts.u.cl->length ? &c->ts.u.cl->length->where : &c->loc);
14003 return false;
14004 }
14005 }
14006
14007 if (c->ts.type == BT_CHARACTER && c->ts.deferred
14008 && !c->attr.pointer && !c->attr.allocatable)
14009 {
14010 gfc_error ("Character component %qs of %qs at %L with deferred "
14011 "length must be a POINTER or ALLOCATABLE",
14012 c->name, sym->name, &c->loc);
14013 return false;
14014 }
14015
14016 /* Add the hidden deferred length field. */
14017 if (c->ts.type == BT_CHARACTER
14018 && (c->ts.deferred || c->attr.pdt_string)
14019 && !c->attr.function
14020 && !sym->attr.is_class)
14021 {
14022 char name[GFC_MAX_SYMBOL_LEN+9];
14023 gfc_component *strlen;
14024 sprintf (name, "_%s_length", c->name);
14025 strlen = gfc_find_component (sym, name, true, true, NULL);
14026 if (strlen == NULL)
14027 {
14028 if (!gfc_add_component (sym, name, &strlen))
14029 return false;
14030 strlen->ts.type = BT_INTEGER;
14031 strlen->ts.kind = gfc_charlen_int_kind;
14032 strlen->attr.access = ACCESS_PRIVATE;
14033 strlen->attr.artificial = 1;
14034 }
14035 }
14036
14037 if (c->ts.type == BT_DERIVED
14038 && sym->component_access != ACCESS_PRIVATE
14039 && gfc_check_symbol_access (sym)
14040 && !is_sym_host_assoc (c->ts.u.derived, sym->ns)
14041 && !c->ts.u.derived->attr.use_assoc
14042 && !gfc_check_symbol_access (c->ts.u.derived)
14043 && !gfc_notify_std (GFC_STD_F2003, "the component %qs is a "
14044 "PRIVATE type and cannot be a component of "
14045 "%qs, which is PUBLIC at %L", c->name,
14046 sym->name, &sym->declared_at))
14047 return false;
14048
14049 if ((sym->attr.sequence || sym->attr.is_bind_c) && c->ts.type == BT_CLASS)
14050 {
14051 gfc_error ("Polymorphic component %s at %L in SEQUENCE or BIND(C) "
14052 "type %s", c->name, &c->loc, sym->name);
14053 return false;
14054 }
14055
14056 if (sym->attr.sequence)
14057 {
14058 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.sequence == 0)
14059 {
14060 gfc_error ("Component %s of SEQUENCE type declared at %L does "
14061 "not have the SEQUENCE attribute",
14062 c->ts.u.derived->name, &sym->declared_at);
14063 return false;
14064 }
14065 }
14066
14067 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.generic)
14068 c->ts.u.derived = gfc_find_dt_in_generic (c->ts.u.derived);
14069 else if (c->ts.type == BT_CLASS && c->attr.class_ok
14070 && CLASS_DATA (c)->ts.u.derived->attr.generic)
14071 CLASS_DATA (c)->ts.u.derived
14072 = gfc_find_dt_in_generic (CLASS_DATA (c)->ts.u.derived);
14073
14074 /* If an allocatable component derived type is of the same type as
14075 the enclosing derived type, we need a vtable generating so that
14076 the __deallocate procedure is created. */
14077 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
14078 && c->ts.u.derived == sym && c->attr.allocatable == 1)
14079 gfc_find_vtab (&c->ts);
14080
14081 /* Ensure that all the derived type components are put on the
14082 derived type list; even in formal namespaces, where derived type
14083 pointer components might not have been declared. */
14084 if (c->ts.type == BT_DERIVED
14085 && c->ts.u.derived
14086 && c->ts.u.derived->components
14087 && c->attr.pointer
14088 && sym != c->ts.u.derived)
14089 add_dt_to_dt_list (c->ts.u.derived);
14090
14091 if (!gfc_resolve_array_spec (c->as,
14092 !(c->attr.pointer || c->attr.proc_pointer
14093 || c->attr.allocatable)))
14094 return false;
14095
14096 if (c->initializer && !sym->attr.vtype
14097 && !c->attr.pdt_kind && !c->attr.pdt_len
14098 && !gfc_check_assign_symbol (sym, c, c->initializer))
14099 return false;
14100
14101 return true;
14102 }
14103
14104
14105 /* Be nice about the locus for a structure expression - show the locus of the
14106 first non-null sub-expression if we can. */
14107
14108 static locus *
14109 cons_where (gfc_expr *struct_expr)
14110 {
14111 gfc_constructor *cons;
14112
14113 gcc_assert (struct_expr && struct_expr->expr_type == EXPR_STRUCTURE);
14114
14115 cons = gfc_constructor_first (struct_expr->value.constructor);
14116 for (; cons; cons = gfc_constructor_next (cons))
14117 {
14118 if (cons->expr && cons->expr->expr_type != EXPR_NULL)
14119 return &cons->expr->where;
14120 }
14121
14122 return &struct_expr->where;
14123 }
14124
14125 /* Resolve the components of a structure type. Much less work than derived
14126 types. */
14127
14128 static bool
14129 resolve_fl_struct (gfc_symbol *sym)
14130 {
14131 gfc_component *c;
14132 gfc_expr *init = NULL;
14133 bool success;
14134
14135 /* Make sure UNIONs do not have overlapping initializers. */
14136 if (sym->attr.flavor == FL_UNION)
14137 {
14138 for (c = sym->components; c; c = c->next)
14139 {
14140 if (init && c->initializer)
14141 {
14142 gfc_error ("Conflicting initializers in union at %L and %L",
14143 cons_where (init), cons_where (c->initializer));
14144 gfc_free_expr (c->initializer);
14145 c->initializer = NULL;
14146 }
14147 if (init == NULL)
14148 init = c->initializer;
14149 }
14150 }
14151
14152 success = true;
14153 for (c = sym->components; c; c = c->next)
14154 if (!resolve_component (c, sym))
14155 success = false;
14156
14157 if (!success)
14158 return false;
14159
14160 if (sym->components)
14161 add_dt_to_dt_list (sym);
14162
14163 return true;
14164 }
14165
14166
14167 /* Resolve the components of a derived type. This does not have to wait until
14168 resolution stage, but can be done as soon as the dt declaration has been
14169 parsed. */
14170
14171 static bool
14172 resolve_fl_derived0 (gfc_symbol *sym)
14173 {
14174 gfc_symbol* super_type;
14175 gfc_component *c;
14176 gfc_formal_arglist *f;
14177 bool success;
14178
14179 if (sym->attr.unlimited_polymorphic)
14180 return true;
14181
14182 super_type = gfc_get_derived_super_type (sym);
14183
14184 /* F2008, C432. */
14185 if (super_type && sym->attr.coarray_comp && !super_type->attr.coarray_comp)
14186 {
14187 gfc_error ("As extending type %qs at %L has a coarray component, "
14188 "parent type %qs shall also have one", sym->name,
14189 &sym->declared_at, super_type->name);
14190 return false;
14191 }
14192
14193 /* Ensure the extended type gets resolved before we do. */
14194 if (super_type && !resolve_fl_derived0 (super_type))
14195 return false;
14196
14197 /* An ABSTRACT type must be extensible. */
14198 if (sym->attr.abstract && !gfc_type_is_extensible (sym))
14199 {
14200 gfc_error ("Non-extensible derived-type %qs at %L must not be ABSTRACT",
14201 sym->name, &sym->declared_at);
14202 return false;
14203 }
14204
14205 c = (sym->attr.is_class) ? sym->components->ts.u.derived->components
14206 : sym->components;
14207
14208 success = true;
14209 for ( ; c != NULL; c = c->next)
14210 if (!resolve_component (c, sym))
14211 success = false;
14212
14213 if (!success)
14214 return false;
14215
14216 /* Now add the caf token field, where needed. */
14217 if (flag_coarray != GFC_FCOARRAY_NONE
14218 && !sym->attr.is_class && !sym->attr.vtype)
14219 {
14220 for (c = sym->components; c; c = c->next)
14221 if (!c->attr.dimension && !c->attr.codimension
14222 && (c->attr.allocatable || c->attr.pointer))
14223 {
14224 char name[GFC_MAX_SYMBOL_LEN+9];
14225 gfc_component *token;
14226 sprintf (name, "_caf_%s", c->name);
14227 token = gfc_find_component (sym, name, true, true, NULL);
14228 if (token == NULL)
14229 {
14230 if (!gfc_add_component (sym, name, &token))
14231 return false;
14232 token->ts.type = BT_VOID;
14233 token->ts.kind = gfc_default_integer_kind;
14234 token->attr.access = ACCESS_PRIVATE;
14235 token->attr.artificial = 1;
14236 token->attr.caf_token = 1;
14237 }
14238 }
14239 }
14240
14241 check_defined_assignments (sym);
14242
14243 if (!sym->attr.defined_assign_comp && super_type)
14244 sym->attr.defined_assign_comp
14245 = super_type->attr.defined_assign_comp;
14246
14247 /* If this is a non-ABSTRACT type extending an ABSTRACT one, ensure that
14248 all DEFERRED bindings are overridden. */
14249 if (super_type && super_type->attr.abstract && !sym->attr.abstract
14250 && !sym->attr.is_class
14251 && !ensure_not_abstract (sym, super_type))
14252 return false;
14253
14254 /* Check that there is a component for every PDT parameter. */
14255 if (sym->attr.pdt_template)
14256 {
14257 for (f = sym->formal; f; f = f->next)
14258 {
14259 if (!f->sym)
14260 continue;
14261 c = gfc_find_component (sym, f->sym->name, true, true, NULL);
14262 if (c == NULL)
14263 {
14264 gfc_error ("Parameterized type %qs does not have a component "
14265 "corresponding to parameter %qs at %L", sym->name,
14266 f->sym->name, &sym->declared_at);
14267 break;
14268 }
14269 }
14270 }
14271
14272 /* Add derived type to the derived type list. */
14273 add_dt_to_dt_list (sym);
14274
14275 return true;
14276 }
14277
14278
14279 /* The following procedure does the full resolution of a derived type,
14280 including resolution of all type-bound procedures (if present). In contrast
14281 to 'resolve_fl_derived0' this can only be done after the module has been
14282 parsed completely. */
14283
14284 static bool
14285 resolve_fl_derived (gfc_symbol *sym)
14286 {
14287 gfc_symbol *gen_dt = NULL;
14288
14289 if (sym->attr.unlimited_polymorphic)
14290 return true;
14291
14292 if (!sym->attr.is_class)
14293 gfc_find_symbol (sym->name, sym->ns, 0, &gen_dt);
14294 if (gen_dt && gen_dt->generic && gen_dt->generic->next
14295 && (!gen_dt->generic->sym->attr.use_assoc
14296 || gen_dt->generic->sym->module != gen_dt->generic->next->sym->module)
14297 && !gfc_notify_std (GFC_STD_F2003, "Generic name %qs of function "
14298 "%qs at %L being the same name as derived "
14299 "type at %L", sym->name,
14300 gen_dt->generic->sym == sym
14301 ? gen_dt->generic->next->sym->name
14302 : gen_dt->generic->sym->name,
14303 gen_dt->generic->sym == sym
14304 ? &gen_dt->generic->next->sym->declared_at
14305 : &gen_dt->generic->sym->declared_at,
14306 &sym->declared_at))
14307 return false;
14308
14309 if (sym->components == NULL && !sym->attr.zero_comp && !sym->attr.use_assoc)
14310 {
14311 gfc_error ("Derived type %qs at %L has not been declared",
14312 sym->name, &sym->declared_at);
14313 return false;
14314 }
14315
14316 /* Resolve the finalizer procedures. */
14317 if (!gfc_resolve_finalizers (sym, NULL))
14318 return false;
14319
14320 if (sym->attr.is_class && sym->ts.u.derived == NULL)
14321 {
14322 /* Fix up incomplete CLASS symbols. */
14323 gfc_component *data = gfc_find_component (sym, "_data", true, true, NULL);
14324 gfc_component *vptr = gfc_find_component (sym, "_vptr", true, true, NULL);
14325
14326 /* Nothing more to do for unlimited polymorphic entities. */
14327 if (data->ts.u.derived->attr.unlimited_polymorphic)
14328 return true;
14329 else if (vptr->ts.u.derived == NULL)
14330 {
14331 gfc_symbol *vtab = gfc_find_derived_vtab (data->ts.u.derived);
14332 gcc_assert (vtab);
14333 vptr->ts.u.derived = vtab->ts.u.derived;
14334 if (!resolve_fl_derived0 (vptr->ts.u.derived))
14335 return false;
14336 }
14337 }
14338
14339 if (!resolve_fl_derived0 (sym))
14340 return false;
14341
14342 /* Resolve the type-bound procedures. */
14343 if (!resolve_typebound_procedures (sym))
14344 return false;
14345
14346 /* Generate module vtables subject to their accessibility and their not
14347 being vtables or pdt templates. If this is not done class declarations
14348 in external procedures wind up with their own version and so SELECT TYPE
14349 fails because the vptrs do not have the same address. */
14350 if (gfc_option.allow_std & GFC_STD_F2003
14351 && sym->ns->proc_name
14352 && sym->ns->proc_name->attr.flavor == FL_MODULE
14353 && sym->attr.access != ACCESS_PRIVATE
14354 && !(sym->attr.use_assoc || sym->attr.vtype || sym->attr.pdt_template))
14355 {
14356 gfc_symbol *vtab = gfc_find_derived_vtab (sym);
14357 gfc_set_sym_referenced (vtab);
14358 }
14359
14360 return true;
14361 }
14362
14363
14364 static bool
14365 resolve_fl_namelist (gfc_symbol *sym)
14366 {
14367 gfc_namelist *nl;
14368 gfc_symbol *nlsym;
14369
14370 for (nl = sym->namelist; nl; nl = nl->next)
14371 {
14372 /* Check again, the check in match only works if NAMELIST comes
14373 after the decl. */
14374 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SIZE)
14375 {
14376 gfc_error ("Assumed size array %qs in namelist %qs at %L is not "
14377 "allowed", nl->sym->name, sym->name, &sym->declared_at);
14378 return false;
14379 }
14380
14381 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SHAPE
14382 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14383 "with assumed shape in namelist %qs at %L",
14384 nl->sym->name, sym->name, &sym->declared_at))
14385 return false;
14386
14387 if (is_non_constant_shape_array (nl->sym)
14388 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14389 "with nonconstant shape in namelist %qs at %L",
14390 nl->sym->name, sym->name, &sym->declared_at))
14391 return false;
14392
14393 if (nl->sym->ts.type == BT_CHARACTER
14394 && (nl->sym->ts.u.cl->length == NULL
14395 || !gfc_is_constant_expr (nl->sym->ts.u.cl->length))
14396 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs with "
14397 "nonconstant character length in "
14398 "namelist %qs at %L", nl->sym->name,
14399 sym->name, &sym->declared_at))
14400 return false;
14401
14402 }
14403
14404 /* Reject PRIVATE objects in a PUBLIC namelist. */
14405 if (gfc_check_symbol_access (sym))
14406 {
14407 for (nl = sym->namelist; nl; nl = nl->next)
14408 {
14409 if (!nl->sym->attr.use_assoc
14410 && !is_sym_host_assoc (nl->sym, sym->ns)
14411 && !gfc_check_symbol_access (nl->sym))
14412 {
14413 gfc_error ("NAMELIST object %qs was declared PRIVATE and "
14414 "cannot be member of PUBLIC namelist %qs at %L",
14415 nl->sym->name, sym->name, &sym->declared_at);
14416 return false;
14417 }
14418
14419 if (nl->sym->ts.type == BT_DERIVED
14420 && (nl->sym->ts.u.derived->attr.alloc_comp
14421 || nl->sym->ts.u.derived->attr.pointer_comp))
14422 {
14423 if (!gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs in "
14424 "namelist %qs at %L with ALLOCATABLE "
14425 "or POINTER components", nl->sym->name,
14426 sym->name, &sym->declared_at))
14427 return false;
14428 return true;
14429 }
14430
14431 /* Types with private components that came here by USE-association. */
14432 if (nl->sym->ts.type == BT_DERIVED
14433 && derived_inaccessible (nl->sym->ts.u.derived))
14434 {
14435 gfc_error ("NAMELIST object %qs has use-associated PRIVATE "
14436 "components and cannot be member of namelist %qs at %L",
14437 nl->sym->name, sym->name, &sym->declared_at);
14438 return false;
14439 }
14440
14441 /* Types with private components that are defined in the same module. */
14442 if (nl->sym->ts.type == BT_DERIVED
14443 && !is_sym_host_assoc (nl->sym->ts.u.derived, sym->ns)
14444 && nl->sym->ts.u.derived->attr.private_comp)
14445 {
14446 gfc_error ("NAMELIST object %qs has PRIVATE components and "
14447 "cannot be a member of PUBLIC namelist %qs at %L",
14448 nl->sym->name, sym->name, &sym->declared_at);
14449 return false;
14450 }
14451 }
14452 }
14453
14454
14455 /* 14.1.2 A module or internal procedure represent local entities
14456 of the same type as a namelist member and so are not allowed. */
14457 for (nl = sym->namelist; nl; nl = nl->next)
14458 {
14459 if (nl->sym->ts.kind != 0 && nl->sym->attr.flavor == FL_VARIABLE)
14460 continue;
14461
14462 if (nl->sym->attr.function && nl->sym == nl->sym->result)
14463 if ((nl->sym == sym->ns->proc_name)
14464 ||
14465 (sym->ns->parent && nl->sym == sym->ns->parent->proc_name))
14466 continue;
14467
14468 nlsym = NULL;
14469 if (nl->sym->name)
14470 gfc_find_symbol (nl->sym->name, sym->ns, 1, &nlsym);
14471 if (nlsym && nlsym->attr.flavor == FL_PROCEDURE)
14472 {
14473 gfc_error ("PROCEDURE attribute conflicts with NAMELIST "
14474 "attribute in %qs at %L", nlsym->name,
14475 &sym->declared_at);
14476 return false;
14477 }
14478 }
14479
14480 if (async_io_dt)
14481 {
14482 for (nl = sym->namelist; nl; nl = nl->next)
14483 nl->sym->attr.asynchronous = 1;
14484 }
14485 return true;
14486 }
14487
14488
14489 static bool
14490 resolve_fl_parameter (gfc_symbol *sym)
14491 {
14492 /* A parameter array's shape needs to be constant. */
14493 if (sym->as != NULL
14494 && (sym->as->type == AS_DEFERRED
14495 || is_non_constant_shape_array (sym)))
14496 {
14497 gfc_error ("Parameter array %qs at %L cannot be automatic "
14498 "or of deferred shape", sym->name, &sym->declared_at);
14499 return false;
14500 }
14501
14502 /* Constraints on deferred type parameter. */
14503 if (!deferred_requirements (sym))
14504 return false;
14505
14506 /* Make sure a parameter that has been implicitly typed still
14507 matches the implicit type, since PARAMETER statements can precede
14508 IMPLICIT statements. */
14509 if (sym->attr.implicit_type
14510 && !gfc_compare_types (&sym->ts, gfc_get_default_type (sym->name,
14511 sym->ns)))
14512 {
14513 gfc_error ("Implicitly typed PARAMETER %qs at %L doesn't match a "
14514 "later IMPLICIT type", sym->name, &sym->declared_at);
14515 return false;
14516 }
14517
14518 /* Make sure the types of derived parameters are consistent. This
14519 type checking is deferred until resolution because the type may
14520 refer to a derived type from the host. */
14521 if (sym->ts.type == BT_DERIVED
14522 && !gfc_compare_types (&sym->ts, &sym->value->ts))
14523 {
14524 gfc_error ("Incompatible derived type in PARAMETER at %L",
14525 &sym->value->where);
14526 return false;
14527 }
14528
14529 /* F03:C509,C514. */
14530 if (sym->ts.type == BT_CLASS)
14531 {
14532 gfc_error ("CLASS variable %qs at %L cannot have the PARAMETER attribute",
14533 sym->name, &sym->declared_at);
14534 return false;
14535 }
14536
14537 return true;
14538 }
14539
14540
14541 /* Called by resolve_symbol to check PDTs. */
14542
14543 static void
14544 resolve_pdt (gfc_symbol* sym)
14545 {
14546 gfc_symbol *derived = NULL;
14547 gfc_actual_arglist *param;
14548 gfc_component *c;
14549 bool const_len_exprs = true;
14550 bool assumed_len_exprs = false;
14551 symbol_attribute *attr;
14552
14553 if (sym->ts.type == BT_DERIVED)
14554 {
14555 derived = sym->ts.u.derived;
14556 attr = &(sym->attr);
14557 }
14558 else if (sym->ts.type == BT_CLASS)
14559 {
14560 derived = CLASS_DATA (sym)->ts.u.derived;
14561 attr = &(CLASS_DATA (sym)->attr);
14562 }
14563 else
14564 gcc_unreachable ();
14565
14566 gcc_assert (derived->attr.pdt_type);
14567
14568 for (param = sym->param_list; param; param = param->next)
14569 {
14570 c = gfc_find_component (derived, param->name, false, true, NULL);
14571 gcc_assert (c);
14572 if (c->attr.pdt_kind)
14573 continue;
14574
14575 if (param->expr && !gfc_is_constant_expr (param->expr)
14576 && c->attr.pdt_len)
14577 const_len_exprs = false;
14578 else if (param->spec_type == SPEC_ASSUMED)
14579 assumed_len_exprs = true;
14580
14581 if (param->spec_type == SPEC_DEFERRED
14582 && !attr->allocatable && !attr->pointer)
14583 gfc_error ("The object %qs at %L has a deferred LEN "
14584 "parameter %qs and is neither allocatable "
14585 "nor a pointer", sym->name, &sym->declared_at,
14586 param->name);
14587
14588 }
14589
14590 if (!const_len_exprs
14591 && (sym->ns->proc_name->attr.is_main_program
14592 || sym->ns->proc_name->attr.flavor == FL_MODULE
14593 || sym->attr.save != SAVE_NONE))
14594 gfc_error ("The AUTOMATIC object %qs at %L must not have the "
14595 "SAVE attribute or be a variable declared in the "
14596 "main program, a module or a submodule(F08/C513)",
14597 sym->name, &sym->declared_at);
14598
14599 if (assumed_len_exprs && !(sym->attr.dummy
14600 || sym->attr.select_type_temporary || sym->attr.associate_var))
14601 gfc_error ("The object %qs at %L with ASSUMED type parameters "
14602 "must be a dummy or a SELECT TYPE selector(F08/4.2)",
14603 sym->name, &sym->declared_at);
14604 }
14605
14606
14607 /* Do anything necessary to resolve a symbol. Right now, we just
14608 assume that an otherwise unknown symbol is a variable. This sort
14609 of thing commonly happens for symbols in module. */
14610
14611 static void
14612 resolve_symbol (gfc_symbol *sym)
14613 {
14614 int check_constant, mp_flag;
14615 gfc_symtree *symtree;
14616 gfc_symtree *this_symtree;
14617 gfc_namespace *ns;
14618 gfc_component *c;
14619 symbol_attribute class_attr;
14620 gfc_array_spec *as;
14621 bool saved_specification_expr;
14622
14623 if (sym->resolved)
14624 return;
14625 sym->resolved = 1;
14626
14627 /* No symbol will ever have union type; only components can be unions.
14628 Union type declaration symbols have type BT_UNKNOWN but flavor FL_UNION
14629 (just like derived type declaration symbols have flavor FL_DERIVED). */
14630 gcc_assert (sym->ts.type != BT_UNION);
14631
14632 /* Coarrayed polymorphic objects with allocatable or pointer components are
14633 yet unsupported for -fcoarray=lib. */
14634 if (flag_coarray == GFC_FCOARRAY_LIB && sym->ts.type == BT_CLASS
14635 && sym->ts.u.derived && CLASS_DATA (sym)
14636 && CLASS_DATA (sym)->attr.codimension
14637 && (CLASS_DATA (sym)->ts.u.derived->attr.alloc_comp
14638 || CLASS_DATA (sym)->ts.u.derived->attr.pointer_comp))
14639 {
14640 gfc_error ("Sorry, allocatable/pointer components in polymorphic (CLASS) "
14641 "type coarrays at %L are unsupported", &sym->declared_at);
14642 return;
14643 }
14644
14645 if (sym->attr.artificial)
14646 return;
14647
14648 if (sym->attr.unlimited_polymorphic)
14649 return;
14650
14651 if (sym->attr.flavor == FL_UNKNOWN
14652 || (sym->attr.flavor == FL_PROCEDURE && !sym->attr.intrinsic
14653 && !sym->attr.generic && !sym->attr.external
14654 && sym->attr.if_source == IFSRC_UNKNOWN
14655 && sym->ts.type == BT_UNKNOWN))
14656 {
14657
14658 /* If we find that a flavorless symbol is an interface in one of the
14659 parent namespaces, find its symtree in this namespace, free the
14660 symbol and set the symtree to point to the interface symbol. */
14661 for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
14662 {
14663 symtree = gfc_find_symtree (ns->sym_root, sym->name);
14664 if (symtree && (symtree->n.sym->generic ||
14665 (symtree->n.sym->attr.flavor == FL_PROCEDURE
14666 && sym->ns->construct_entities)))
14667 {
14668 this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
14669 sym->name);
14670 if (this_symtree->n.sym == sym)
14671 {
14672 symtree->n.sym->refs++;
14673 gfc_release_symbol (sym);
14674 this_symtree->n.sym = symtree->n.sym;
14675 return;
14676 }
14677 }
14678 }
14679
14680 /* Otherwise give it a flavor according to such attributes as
14681 it has. */
14682 if (sym->attr.flavor == FL_UNKNOWN && sym->attr.external == 0
14683 && sym->attr.intrinsic == 0)
14684 sym->attr.flavor = FL_VARIABLE;
14685 else if (sym->attr.flavor == FL_UNKNOWN)
14686 {
14687 sym->attr.flavor = FL_PROCEDURE;
14688 if (sym->attr.dimension)
14689 sym->attr.function = 1;
14690 }
14691 }
14692
14693 if (sym->attr.external && sym->ts.type != BT_UNKNOWN && !sym->attr.function)
14694 gfc_add_function (&sym->attr, sym->name, &sym->declared_at);
14695
14696 if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
14697 && !resolve_procedure_interface (sym))
14698 return;
14699
14700 if (sym->attr.is_protected && !sym->attr.proc_pointer
14701 && (sym->attr.procedure || sym->attr.external))
14702 {
14703 if (sym->attr.external)
14704 gfc_error ("PROTECTED attribute conflicts with EXTERNAL attribute "
14705 "at %L", &sym->declared_at);
14706 else
14707 gfc_error ("PROCEDURE attribute conflicts with PROTECTED attribute "
14708 "at %L", &sym->declared_at);
14709
14710 return;
14711 }
14712
14713 if (sym->attr.flavor == FL_DERIVED && !resolve_fl_derived (sym))
14714 return;
14715
14716 else if ((sym->attr.flavor == FL_STRUCT || sym->attr.flavor == FL_UNION)
14717 && !resolve_fl_struct (sym))
14718 return;
14719
14720 /* Symbols that are module procedures with results (functions) have
14721 the types and array specification copied for type checking in
14722 procedures that call them, as well as for saving to a module
14723 file. These symbols can't stand the scrutiny that their results
14724 can. */
14725 mp_flag = (sym->result != NULL && sym->result != sym);
14726
14727 /* Make sure that the intrinsic is consistent with its internal
14728 representation. This needs to be done before assigning a default
14729 type to avoid spurious warnings. */
14730 if (sym->attr.flavor != FL_MODULE && sym->attr.intrinsic
14731 && !gfc_resolve_intrinsic (sym, &sym->declared_at))
14732 return;
14733
14734 /* Resolve associate names. */
14735 if (sym->assoc)
14736 resolve_assoc_var (sym, true);
14737
14738 /* Assign default type to symbols that need one and don't have one. */
14739 if (sym->ts.type == BT_UNKNOWN)
14740 {
14741 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
14742 {
14743 gfc_set_default_type (sym, 1, NULL);
14744 }
14745
14746 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external
14747 && !sym->attr.function && !sym->attr.subroutine
14748 && gfc_get_default_type (sym->name, sym->ns)->type == BT_UNKNOWN)
14749 gfc_add_subroutine (&sym->attr, sym->name, &sym->declared_at);
14750
14751 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14752 {
14753 /* The specific case of an external procedure should emit an error
14754 in the case that there is no implicit type. */
14755 if (!mp_flag)
14756 {
14757 if (!sym->attr.mixed_entry_master)
14758 gfc_set_default_type (sym, sym->attr.external, NULL);
14759 }
14760 else
14761 {
14762 /* Result may be in another namespace. */
14763 resolve_symbol (sym->result);
14764
14765 if (!sym->result->attr.proc_pointer)
14766 {
14767 sym->ts = sym->result->ts;
14768 sym->as = gfc_copy_array_spec (sym->result->as);
14769 sym->attr.dimension = sym->result->attr.dimension;
14770 sym->attr.pointer = sym->result->attr.pointer;
14771 sym->attr.allocatable = sym->result->attr.allocatable;
14772 sym->attr.contiguous = sym->result->attr.contiguous;
14773 }
14774 }
14775 }
14776 }
14777 else if (mp_flag && sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14778 {
14779 bool saved_specification_expr = specification_expr;
14780 specification_expr = true;
14781 gfc_resolve_array_spec (sym->result->as, false);
14782 specification_expr = saved_specification_expr;
14783 }
14784
14785 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
14786 {
14787 as = CLASS_DATA (sym)->as;
14788 class_attr = CLASS_DATA (sym)->attr;
14789 class_attr.pointer = class_attr.class_pointer;
14790 }
14791 else
14792 {
14793 class_attr = sym->attr;
14794 as = sym->as;
14795 }
14796
14797 /* F2008, C530. */
14798 if (sym->attr.contiguous
14799 && (!class_attr.dimension
14800 || (as->type != AS_ASSUMED_SHAPE && as->type != AS_ASSUMED_RANK
14801 && !class_attr.pointer)))
14802 {
14803 gfc_error ("%qs at %L has the CONTIGUOUS attribute but is not an "
14804 "array pointer or an assumed-shape or assumed-rank array",
14805 sym->name, &sym->declared_at);
14806 return;
14807 }
14808
14809 /* Assumed size arrays and assumed shape arrays must be dummy
14810 arguments. Array-spec's of implied-shape should have been resolved to
14811 AS_EXPLICIT already. */
14812
14813 if (as)
14814 {
14815 /* If AS_IMPLIED_SHAPE makes it to here, it must be a bad
14816 specification expression. */
14817 if (as->type == AS_IMPLIED_SHAPE)
14818 {
14819 int i;
14820 for (i=0; i<as->rank; i++)
14821 {
14822 if (as->lower[i] != NULL && as->upper[i] == NULL)
14823 {
14824 gfc_error ("Bad specification for assumed size array at %L",
14825 &as->lower[i]->where);
14826 return;
14827 }
14828 }
14829 gcc_unreachable();
14830 }
14831
14832 if (((as->type == AS_ASSUMED_SIZE && !as->cp_was_assumed)
14833 || as->type == AS_ASSUMED_SHAPE)
14834 && !sym->attr.dummy && !sym->attr.select_type_temporary)
14835 {
14836 if (as->type == AS_ASSUMED_SIZE)
14837 gfc_error ("Assumed size array at %L must be a dummy argument",
14838 &sym->declared_at);
14839 else
14840 gfc_error ("Assumed shape array at %L must be a dummy argument",
14841 &sym->declared_at);
14842 return;
14843 }
14844 /* TS 29113, C535a. */
14845 if (as->type == AS_ASSUMED_RANK && !sym->attr.dummy
14846 && !sym->attr.select_type_temporary)
14847 {
14848 gfc_error ("Assumed-rank array at %L must be a dummy argument",
14849 &sym->declared_at);
14850 return;
14851 }
14852 if (as->type == AS_ASSUMED_RANK
14853 && (sym->attr.codimension || sym->attr.value))
14854 {
14855 gfc_error ("Assumed-rank array at %L may not have the VALUE or "
14856 "CODIMENSION attribute", &sym->declared_at);
14857 return;
14858 }
14859 }
14860
14861 /* Make sure symbols with known intent or optional are really dummy
14862 variable. Because of ENTRY statement, this has to be deferred
14863 until resolution time. */
14864
14865 if (!sym->attr.dummy
14866 && (sym->attr.optional || sym->attr.intent != INTENT_UNKNOWN))
14867 {
14868 gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
14869 return;
14870 }
14871
14872 if (sym->attr.value && !sym->attr.dummy)
14873 {
14874 gfc_error ("%qs at %L cannot have the VALUE attribute because "
14875 "it is not a dummy argument", sym->name, &sym->declared_at);
14876 return;
14877 }
14878
14879 if (sym->attr.value && sym->ts.type == BT_CHARACTER)
14880 {
14881 gfc_charlen *cl = sym->ts.u.cl;
14882 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
14883 {
14884 gfc_error ("Character dummy variable %qs at %L with VALUE "
14885 "attribute must have constant length",
14886 sym->name, &sym->declared_at);
14887 return;
14888 }
14889
14890 if (sym->ts.is_c_interop
14891 && mpz_cmp_si (cl->length->value.integer, 1) != 0)
14892 {
14893 gfc_error ("C interoperable character dummy variable %qs at %L "
14894 "with VALUE attribute must have length one",
14895 sym->name, &sym->declared_at);
14896 return;
14897 }
14898 }
14899
14900 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
14901 && sym->ts.u.derived->attr.generic)
14902 {
14903 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
14904 if (!sym->ts.u.derived)
14905 {
14906 gfc_error ("The derived type %qs at %L is of type %qs, "
14907 "which has not been defined", sym->name,
14908 &sym->declared_at, sym->ts.u.derived->name);
14909 sym->ts.type = BT_UNKNOWN;
14910 return;
14911 }
14912 }
14913
14914 /* Use the same constraints as TYPE(*), except for the type check
14915 and that only scalars and assumed-size arrays are permitted. */
14916 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
14917 {
14918 if (!sym->attr.dummy)
14919 {
14920 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14921 "a dummy argument", sym->name, &sym->declared_at);
14922 return;
14923 }
14924
14925 if (sym->ts.type != BT_ASSUMED && sym->ts.type != BT_INTEGER
14926 && sym->ts.type != BT_REAL && sym->ts.type != BT_LOGICAL
14927 && sym->ts.type != BT_COMPLEX)
14928 {
14929 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14930 "of type TYPE(*) or of an numeric intrinsic type",
14931 sym->name, &sym->declared_at);
14932 return;
14933 }
14934
14935 if (sym->attr.allocatable || sym->attr.codimension
14936 || sym->attr.pointer || sym->attr.value)
14937 {
14938 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14939 "have the ALLOCATABLE, CODIMENSION, POINTER or VALUE "
14940 "attribute", sym->name, &sym->declared_at);
14941 return;
14942 }
14943
14944 if (sym->attr.intent == INTENT_OUT)
14945 {
14946 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14947 "have the INTENT(OUT) attribute",
14948 sym->name, &sym->declared_at);
14949 return;
14950 }
14951 if (sym->attr.dimension && sym->as->type != AS_ASSUMED_SIZE)
14952 {
14953 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall "
14954 "either be a scalar or an assumed-size array",
14955 sym->name, &sym->declared_at);
14956 return;
14957 }
14958
14959 /* Set the type to TYPE(*) and add a dimension(*) to ensure
14960 NO_ARG_CHECK is correctly handled in trans*.c, e.g. with
14961 packing. */
14962 sym->ts.type = BT_ASSUMED;
14963 sym->as = gfc_get_array_spec ();
14964 sym->as->type = AS_ASSUMED_SIZE;
14965 sym->as->rank = 1;
14966 sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
14967 }
14968 else if (sym->ts.type == BT_ASSUMED)
14969 {
14970 /* TS 29113, C407a. */
14971 if (!sym->attr.dummy)
14972 {
14973 gfc_error ("Assumed type of variable %s at %L is only permitted "
14974 "for dummy variables", sym->name, &sym->declared_at);
14975 return;
14976 }
14977 if (sym->attr.allocatable || sym->attr.codimension
14978 || sym->attr.pointer || sym->attr.value)
14979 {
14980 gfc_error ("Assumed-type variable %s at %L may not have the "
14981 "ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute",
14982 sym->name, &sym->declared_at);
14983 return;
14984 }
14985 if (sym->attr.intent == INTENT_OUT)
14986 {
14987 gfc_error ("Assumed-type variable %s at %L may not have the "
14988 "INTENT(OUT) attribute",
14989 sym->name, &sym->declared_at);
14990 return;
14991 }
14992 if (sym->attr.dimension && sym->as->type == AS_EXPLICIT)
14993 {
14994 gfc_error ("Assumed-type variable %s at %L shall not be an "
14995 "explicit-shape array", sym->name, &sym->declared_at);
14996 return;
14997 }
14998 }
14999
15000 /* If the symbol is marked as bind(c), that it is declared at module level
15001 scope and verify its type and kind. Do not do the latter for symbols
15002 that are implicitly typed because that is handled in
15003 gfc_set_default_type. Handle dummy arguments and procedure definitions
15004 separately. Also, anything that is use associated is not handled here
15005 but instead is handled in the module it is declared in. Finally, derived
15006 type definitions are allowed to be BIND(C) since that only implies that
15007 they're interoperable, and they are checked fully for interoperability
15008 when a variable is declared of that type. */
15009 if (sym->attr.is_bind_c && sym->attr.use_assoc == 0
15010 && sym->attr.dummy == 0 && sym->attr.flavor != FL_PROCEDURE
15011 && sym->attr.flavor != FL_DERIVED)
15012 {
15013 bool t = true;
15014
15015 /* First, make sure the variable is declared at the
15016 module-level scope (J3/04-007, Section 15.3). */
15017 if (sym->ns->proc_name->attr.flavor != FL_MODULE &&
15018 sym->attr.in_common == 0)
15019 {
15020 gfc_error ("Variable %qs at %L cannot be BIND(C) because it "
15021 "is neither a COMMON block nor declared at the "
15022 "module level scope", sym->name, &(sym->declared_at));
15023 t = false;
15024 }
15025 else if (sym->ts.type == BT_CHARACTER
15026 && (sym->ts.u.cl == NULL || sym->ts.u.cl->length == NULL
15027 || !gfc_is_constant_expr (sym->ts.u.cl->length)
15028 || mpz_cmp_si (sym->ts.u.cl->length->value.integer, 1) != 0))
15029 {
15030 gfc_error ("BIND(C) Variable %qs at %L must have length one",
15031 sym->name, &sym->declared_at);
15032 t = false;
15033 }
15034 else if (sym->common_head != NULL && sym->attr.implicit_type == 0)
15035 {
15036 t = verify_com_block_vars_c_interop (sym->common_head);
15037 }
15038 else if (sym->attr.implicit_type == 0)
15039 {
15040 /* If type() declaration, we need to verify that the components
15041 of the given type are all C interoperable, etc. */
15042 if (sym->ts.type == BT_DERIVED &&
15043 sym->ts.u.derived->attr.is_c_interop != 1)
15044 {
15045 /* Make sure the user marked the derived type as BIND(C). If
15046 not, call the verify routine. This could print an error
15047 for the derived type more than once if multiple variables
15048 of that type are declared. */
15049 if (sym->ts.u.derived->attr.is_bind_c != 1)
15050 verify_bind_c_derived_type (sym->ts.u.derived);
15051 t = false;
15052 }
15053
15054 /* Verify the variable itself as C interoperable if it
15055 is BIND(C). It is not possible for this to succeed if
15056 the verify_bind_c_derived_type failed, so don't have to handle
15057 any error returned by verify_bind_c_derived_type. */
15058 t = verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
15059 sym->common_block);
15060 }
15061
15062 if (!t)
15063 {
15064 /* clear the is_bind_c flag to prevent reporting errors more than
15065 once if something failed. */
15066 sym->attr.is_bind_c = 0;
15067 return;
15068 }
15069 }
15070
15071 /* If a derived type symbol has reached this point, without its
15072 type being declared, we have an error. Notice that most
15073 conditions that produce undefined derived types have already
15074 been dealt with. However, the likes of:
15075 implicit type(t) (t) ..... call foo (t) will get us here if
15076 the type is not declared in the scope of the implicit
15077 statement. Change the type to BT_UNKNOWN, both because it is so
15078 and to prevent an ICE. */
15079 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
15080 && sym->ts.u.derived->components == NULL
15081 && !sym->ts.u.derived->attr.zero_comp)
15082 {
15083 gfc_error ("The derived type %qs at %L is of type %qs, "
15084 "which has not been defined", sym->name,
15085 &sym->declared_at, sym->ts.u.derived->name);
15086 sym->ts.type = BT_UNKNOWN;
15087 return;
15088 }
15089
15090 /* Make sure that the derived type has been resolved and that the
15091 derived type is visible in the symbol's namespace, if it is a
15092 module function and is not PRIVATE. */
15093 if (sym->ts.type == BT_DERIVED
15094 && sym->ts.u.derived->attr.use_assoc
15095 && sym->ns->proc_name
15096 && sym->ns->proc_name->attr.flavor == FL_MODULE
15097 && !resolve_fl_derived (sym->ts.u.derived))
15098 return;
15099
15100 /* Unless the derived-type declaration is use associated, Fortran 95
15101 does not allow public entries of private derived types.
15102 See 4.4.1 (F95) and 4.5.1.1 (F2003); and related interpretation
15103 161 in 95-006r3. */
15104 if (sym->ts.type == BT_DERIVED
15105 && sym->ns->proc_name && sym->ns->proc_name->attr.flavor == FL_MODULE
15106 && !sym->ts.u.derived->attr.use_assoc
15107 && gfc_check_symbol_access (sym)
15108 && !gfc_check_symbol_access (sym->ts.u.derived)
15109 && !gfc_notify_std (GFC_STD_F2003, "PUBLIC %s %qs at %L of PRIVATE "
15110 "derived type %qs",
15111 (sym->attr.flavor == FL_PARAMETER)
15112 ? "parameter" : "variable",
15113 sym->name, &sym->declared_at,
15114 sym->ts.u.derived->name))
15115 return;
15116
15117 /* F2008, C1302. */
15118 if (sym->ts.type == BT_DERIVED
15119 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15120 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
15121 || sym->ts.u.derived->attr.lock_comp)
15122 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15123 {
15124 gfc_error ("Variable %s at %L of type LOCK_TYPE or with subcomponent of "
15125 "type LOCK_TYPE must be a coarray", sym->name,
15126 &sym->declared_at);
15127 return;
15128 }
15129
15130 /* TS18508, C702/C703. */
15131 if (sym->ts.type == BT_DERIVED
15132 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
15133 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
15134 || sym->ts.u.derived->attr.event_comp)
15135 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
15136 {
15137 gfc_error ("Variable %s at %L of type EVENT_TYPE or with subcomponent of "
15138 "type EVENT_TYPE must be a coarray", sym->name,
15139 &sym->declared_at);
15140 return;
15141 }
15142
15143 /* An assumed-size array with INTENT(OUT) shall not be of a type for which
15144 default initialization is defined (5.1.2.4.4). */
15145 if (sym->ts.type == BT_DERIVED
15146 && sym->attr.dummy
15147 && sym->attr.intent == INTENT_OUT
15148 && sym->as
15149 && sym->as->type == AS_ASSUMED_SIZE)
15150 {
15151 for (c = sym->ts.u.derived->components; c; c = c->next)
15152 {
15153 if (c->initializer)
15154 {
15155 gfc_error ("The INTENT(OUT) dummy argument %qs at %L is "
15156 "ASSUMED SIZE and so cannot have a default initializer",
15157 sym->name, &sym->declared_at);
15158 return;
15159 }
15160 }
15161 }
15162
15163 /* F2008, C542. */
15164 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15165 && sym->attr.intent == INTENT_OUT && sym->attr.lock_comp)
15166 {
15167 gfc_error ("Dummy argument %qs at %L of LOCK_TYPE shall not be "
15168 "INTENT(OUT)", sym->name, &sym->declared_at);
15169 return;
15170 }
15171
15172 /* TS18508. */
15173 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
15174 && sym->attr.intent == INTENT_OUT && sym->attr.event_comp)
15175 {
15176 gfc_error ("Dummy argument %qs at %L of EVENT_TYPE shall not be "
15177 "INTENT(OUT)", sym->name, &sym->declared_at);
15178 return;
15179 }
15180
15181 /* F2008, C525. */
15182 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15183 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15184 && CLASS_DATA (sym)->attr.coarray_comp))
15185 || class_attr.codimension)
15186 && (sym->attr.result || sym->result == sym))
15187 {
15188 gfc_error ("Function result %qs at %L shall not be a coarray or have "
15189 "a coarray component", sym->name, &sym->declared_at);
15190 return;
15191 }
15192
15193 /* F2008, C524. */
15194 if (sym->attr.codimension && sym->ts.type == BT_DERIVED
15195 && sym->ts.u.derived->ts.is_iso_c)
15196 {
15197 gfc_error ("Variable %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
15198 "shall not be a coarray", sym->name, &sym->declared_at);
15199 return;
15200 }
15201
15202 /* F2008, C525. */
15203 if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15204 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15205 && CLASS_DATA (sym)->attr.coarray_comp))
15206 && (class_attr.codimension || class_attr.pointer || class_attr.dimension
15207 || class_attr.allocatable))
15208 {
15209 gfc_error ("Variable %qs at %L with coarray component shall be a "
15210 "nonpointer, nonallocatable scalar, which is not a coarray",
15211 sym->name, &sym->declared_at);
15212 return;
15213 }
15214
15215 /* F2008, C526. The function-result case was handled above. */
15216 if (class_attr.codimension
15217 && !(class_attr.allocatable || sym->attr.dummy || sym->attr.save
15218 || sym->attr.select_type_temporary
15219 || sym->attr.associate_var
15220 || (sym->ns->save_all && !sym->attr.automatic)
15221 || sym->ns->proc_name->attr.flavor == FL_MODULE
15222 || sym->ns->proc_name->attr.is_main_program
15223 || sym->attr.function || sym->attr.result || sym->attr.use_assoc))
15224 {
15225 gfc_error ("Variable %qs at %L is a coarray and is not ALLOCATABLE, SAVE "
15226 "nor a dummy argument", sym->name, &sym->declared_at);
15227 return;
15228 }
15229 /* F2008, C528. */
15230 else if (class_attr.codimension && !sym->attr.select_type_temporary
15231 && !class_attr.allocatable && as && as->cotype == AS_DEFERRED)
15232 {
15233 gfc_error ("Coarray variable %qs at %L shall not have codimensions with "
15234 "deferred shape", sym->name, &sym->declared_at);
15235 return;
15236 }
15237 else if (class_attr.codimension && class_attr.allocatable && as
15238 && (as->cotype != AS_DEFERRED || as->type != AS_DEFERRED))
15239 {
15240 gfc_error ("Allocatable coarray variable %qs at %L must have "
15241 "deferred shape", sym->name, &sym->declared_at);
15242 return;
15243 }
15244
15245 /* F2008, C541. */
15246 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15247 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15248 && CLASS_DATA (sym)->attr.coarray_comp))
15249 || (class_attr.codimension && class_attr.allocatable))
15250 && sym->attr.dummy && sym->attr.intent == INTENT_OUT)
15251 {
15252 gfc_error ("Variable %qs at %L is INTENT(OUT) and can thus not be an "
15253 "allocatable coarray or have coarray components",
15254 sym->name, &sym->declared_at);
15255 return;
15256 }
15257
15258 if (class_attr.codimension && sym->attr.dummy
15259 && sym->ns->proc_name && sym->ns->proc_name->attr.is_bind_c)
15260 {
15261 gfc_error ("Coarray dummy variable %qs at %L not allowed in BIND(C) "
15262 "procedure %qs", sym->name, &sym->declared_at,
15263 sym->ns->proc_name->name);
15264 return;
15265 }
15266
15267 if (sym->ts.type == BT_LOGICAL
15268 && ((sym->attr.function && sym->attr.is_bind_c && sym->result == sym)
15269 || ((sym->attr.dummy || sym->attr.result) && sym->ns->proc_name
15270 && sym->ns->proc_name->attr.is_bind_c)))
15271 {
15272 int i;
15273 for (i = 0; gfc_logical_kinds[i].kind; i++)
15274 if (gfc_logical_kinds[i].kind == sym->ts.kind)
15275 break;
15276 if (!gfc_logical_kinds[i].c_bool && sym->attr.dummy
15277 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL dummy argument %qs at "
15278 "%L with non-C_Bool kind in BIND(C) procedure "
15279 "%qs", sym->name, &sym->declared_at,
15280 sym->ns->proc_name->name))
15281 return;
15282 else if (!gfc_logical_kinds[i].c_bool
15283 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL result variable "
15284 "%qs at %L with non-C_Bool kind in "
15285 "BIND(C) procedure %qs", sym->name,
15286 &sym->declared_at,
15287 sym->attr.function ? sym->name
15288 : sym->ns->proc_name->name))
15289 return;
15290 }
15291
15292 switch (sym->attr.flavor)
15293 {
15294 case FL_VARIABLE:
15295 if (!resolve_fl_variable (sym, mp_flag))
15296 return;
15297 break;
15298
15299 case FL_PROCEDURE:
15300 if (sym->formal && !sym->formal_ns)
15301 {
15302 /* Check that none of the arguments are a namelist. */
15303 gfc_formal_arglist *formal = sym->formal;
15304
15305 for (; formal; formal = formal->next)
15306 if (formal->sym && formal->sym->attr.flavor == FL_NAMELIST)
15307 {
15308 gfc_error ("Namelist %qs can not be an argument to "
15309 "subroutine or function at %L",
15310 formal->sym->name, &sym->declared_at);
15311 return;
15312 }
15313 }
15314
15315 if (!resolve_fl_procedure (sym, mp_flag))
15316 return;
15317 break;
15318
15319 case FL_NAMELIST:
15320 if (!resolve_fl_namelist (sym))
15321 return;
15322 break;
15323
15324 case FL_PARAMETER:
15325 if (!resolve_fl_parameter (sym))
15326 return;
15327 break;
15328
15329 default:
15330 break;
15331 }
15332
15333 /* Resolve array specifier. Check as well some constraints
15334 on COMMON blocks. */
15335
15336 check_constant = sym->attr.in_common && !sym->attr.pointer;
15337
15338 /* Set the formal_arg_flag so that check_conflict will not throw
15339 an error for host associated variables in the specification
15340 expression for an array_valued function. */
15341 if (sym->attr.function && sym->as)
15342 formal_arg_flag = true;
15343
15344 saved_specification_expr = specification_expr;
15345 specification_expr = true;
15346 gfc_resolve_array_spec (sym->as, check_constant);
15347 specification_expr = saved_specification_expr;
15348
15349 formal_arg_flag = false;
15350
15351 /* Resolve formal namespaces. */
15352 if (sym->formal_ns && sym->formal_ns != gfc_current_ns
15353 && !sym->attr.contained && !sym->attr.intrinsic)
15354 gfc_resolve (sym->formal_ns);
15355
15356 /* Make sure the formal namespace is present. */
15357 if (sym->formal && !sym->formal_ns)
15358 {
15359 gfc_formal_arglist *formal = sym->formal;
15360 while (formal && !formal->sym)
15361 formal = formal->next;
15362
15363 if (formal)
15364 {
15365 sym->formal_ns = formal->sym->ns;
15366 if (sym->ns != formal->sym->ns)
15367 sym->formal_ns->refs++;
15368 }
15369 }
15370
15371 /* Check threadprivate restrictions. */
15372 if (sym->attr.threadprivate && !sym->attr.save
15373 && !(sym->ns->save_all && !sym->attr.automatic)
15374 && (!sym->attr.in_common
15375 && sym->module == NULL
15376 && (sym->ns->proc_name == NULL
15377 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15378 gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);
15379
15380 /* Check omp declare target restrictions. */
15381 if (sym->attr.omp_declare_target
15382 && sym->attr.flavor == FL_VARIABLE
15383 && !sym->attr.save
15384 && !(sym->ns->save_all && !sym->attr.automatic)
15385 && (!sym->attr.in_common
15386 && sym->module == NULL
15387 && (sym->ns->proc_name == NULL
15388 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15389 gfc_error ("!$OMP DECLARE TARGET variable %qs at %L isn't SAVEd",
15390 sym->name, &sym->declared_at);
15391
15392 /* If we have come this far we can apply default-initializers, as
15393 described in 14.7.5, to those variables that have not already
15394 been assigned one. */
15395 if (sym->ts.type == BT_DERIVED
15396 && !sym->value
15397 && !sym->attr.allocatable
15398 && !sym->attr.alloc_comp)
15399 {
15400 symbol_attribute *a = &sym->attr;
15401
15402 if ((!a->save && !a->dummy && !a->pointer
15403 && !a->in_common && !a->use_assoc
15404 && a->referenced
15405 && !((a->function || a->result)
15406 && (!a->dimension
15407 || sym->ts.u.derived->attr.alloc_comp
15408 || sym->ts.u.derived->attr.pointer_comp))
15409 && !(a->function && sym != sym->result))
15410 || (a->dummy && a->intent == INTENT_OUT && !a->pointer))
15411 apply_default_init (sym);
15412 else if (a->function && sym->result && a->access != ACCESS_PRIVATE
15413 && (sym->ts.u.derived->attr.alloc_comp
15414 || sym->ts.u.derived->attr.pointer_comp))
15415 /* Mark the result symbol to be referenced, when it has allocatable
15416 components. */
15417 sym->result->attr.referenced = 1;
15418 }
15419
15420 if (sym->ts.type == BT_CLASS && sym->ns == gfc_current_ns
15421 && sym->attr.dummy && sym->attr.intent == INTENT_OUT
15422 && !CLASS_DATA (sym)->attr.class_pointer
15423 && !CLASS_DATA (sym)->attr.allocatable)
15424 apply_default_init (sym);
15425
15426 /* If this symbol has a type-spec, check it. */
15427 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER
15428 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.function))
15429 if (!resolve_typespec_used (&sym->ts, &sym->declared_at, sym->name))
15430 return;
15431
15432 if (sym->param_list)
15433 resolve_pdt (sym);
15434 }
15435
15436
15437 /************* Resolve DATA statements *************/
15438
15439 static struct
15440 {
15441 gfc_data_value *vnode;
15442 mpz_t left;
15443 }
15444 values;
15445
15446
15447 /* Advance the values structure to point to the next value in the data list. */
15448
15449 static bool
15450 next_data_value (void)
15451 {
15452 while (mpz_cmp_ui (values.left, 0) == 0)
15453 {
15454
15455 if (values.vnode->next == NULL)
15456 return false;
15457
15458 values.vnode = values.vnode->next;
15459 mpz_set (values.left, values.vnode->repeat);
15460 }
15461
15462 return true;
15463 }
15464
15465
15466 static bool
15467 check_data_variable (gfc_data_variable *var, locus *where)
15468 {
15469 gfc_expr *e;
15470 mpz_t size;
15471 mpz_t offset;
15472 bool t;
15473 ar_type mark = AR_UNKNOWN;
15474 int i;
15475 mpz_t section_index[GFC_MAX_DIMENSIONS];
15476 gfc_ref *ref;
15477 gfc_array_ref *ar;
15478 gfc_symbol *sym;
15479 int has_pointer;
15480
15481 if (!gfc_resolve_expr (var->expr))
15482 return false;
15483
15484 ar = NULL;
15485 mpz_init_set_si (offset, 0);
15486 e = var->expr;
15487
15488 if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
15489 && e->value.function.isym->id == GFC_ISYM_CAF_GET)
15490 e = e->value.function.actual->expr;
15491
15492 if (e->expr_type != EXPR_VARIABLE)
15493 {
15494 gfc_error ("Expecting definable entity near %L", where);
15495 return false;
15496 }
15497
15498 sym = e->symtree->n.sym;
15499
15500 if (sym->ns->is_block_data && !sym->attr.in_common)
15501 {
15502 gfc_error ("BLOCK DATA element %qs at %L must be in COMMON",
15503 sym->name, &sym->declared_at);
15504 return false;
15505 }
15506
15507 if (e->ref == NULL && sym->as)
15508 {
15509 gfc_error ("DATA array %qs at %L must be specified in a previous"
15510 " declaration", sym->name, where);
15511 return false;
15512 }
15513
15514 has_pointer = sym->attr.pointer;
15515
15516 if (gfc_is_coindexed (e))
15517 {
15518 gfc_error ("DATA element %qs at %L cannot have a coindex", sym->name,
15519 where);
15520 return false;
15521 }
15522
15523 for (ref = e->ref; ref; ref = ref->next)
15524 {
15525 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
15526 has_pointer = 1;
15527
15528 if (has_pointer
15529 && ref->type == REF_ARRAY
15530 && ref->u.ar.type != AR_FULL)
15531 {
15532 gfc_error ("DATA element %qs at %L is a pointer and so must "
15533 "be a full array", sym->name, where);
15534 return false;
15535 }
15536 }
15537
15538 if (e->rank == 0 || has_pointer)
15539 {
15540 mpz_init_set_ui (size, 1);
15541 ref = NULL;
15542 }
15543 else
15544 {
15545 ref = e->ref;
15546
15547 /* Find the array section reference. */
15548 for (ref = e->ref; ref; ref = ref->next)
15549 {
15550 if (ref->type != REF_ARRAY)
15551 continue;
15552 if (ref->u.ar.type == AR_ELEMENT)
15553 continue;
15554 break;
15555 }
15556 gcc_assert (ref);
15557
15558 /* Set marks according to the reference pattern. */
15559 switch (ref->u.ar.type)
15560 {
15561 case AR_FULL:
15562 mark = AR_FULL;
15563 break;
15564
15565 case AR_SECTION:
15566 ar = &ref->u.ar;
15567 /* Get the start position of array section. */
15568 gfc_get_section_index (ar, section_index, &offset);
15569 mark = AR_SECTION;
15570 break;
15571
15572 default:
15573 gcc_unreachable ();
15574 }
15575
15576 if (!gfc_array_size (e, &size))
15577 {
15578 gfc_error ("Nonconstant array section at %L in DATA statement",
15579 where);
15580 mpz_clear (offset);
15581 return false;
15582 }
15583 }
15584
15585 t = true;
15586
15587 while (mpz_cmp_ui (size, 0) > 0)
15588 {
15589 if (!next_data_value ())
15590 {
15591 gfc_error ("DATA statement at %L has more variables than values",
15592 where);
15593 t = false;
15594 break;
15595 }
15596
15597 t = gfc_check_assign (var->expr, values.vnode->expr, 0);
15598 if (!t)
15599 break;
15600
15601 /* If we have more than one element left in the repeat count,
15602 and we have more than one element left in the target variable,
15603 then create a range assignment. */
15604 /* FIXME: Only done for full arrays for now, since array sections
15605 seem tricky. */
15606 if (mark == AR_FULL && ref && ref->next == NULL
15607 && mpz_cmp_ui (values.left, 1) > 0 && mpz_cmp_ui (size, 1) > 0)
15608 {
15609 mpz_t range;
15610
15611 if (mpz_cmp (size, values.left) >= 0)
15612 {
15613 mpz_init_set (range, values.left);
15614 mpz_sub (size, size, values.left);
15615 mpz_set_ui (values.left, 0);
15616 }
15617 else
15618 {
15619 mpz_init_set (range, size);
15620 mpz_sub (values.left, values.left, size);
15621 mpz_set_ui (size, 0);
15622 }
15623
15624 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15625 offset, &range);
15626
15627 mpz_add (offset, offset, range);
15628 mpz_clear (range);
15629
15630 if (!t)
15631 break;
15632 }
15633
15634 /* Assign initial value to symbol. */
15635 else
15636 {
15637 mpz_sub_ui (values.left, values.left, 1);
15638 mpz_sub_ui (size, size, 1);
15639
15640 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15641 offset, NULL);
15642 if (!t)
15643 break;
15644
15645 if (mark == AR_FULL)
15646 mpz_add_ui (offset, offset, 1);
15647
15648 /* Modify the array section indexes and recalculate the offset
15649 for next element. */
15650 else if (mark == AR_SECTION)
15651 gfc_advance_section (section_index, ar, &offset);
15652 }
15653 }
15654
15655 if (mark == AR_SECTION)
15656 {
15657 for (i = 0; i < ar->dimen; i++)
15658 mpz_clear (section_index[i]);
15659 }
15660
15661 mpz_clear (size);
15662 mpz_clear (offset);
15663
15664 return t;
15665 }
15666
15667
15668 static bool traverse_data_var (gfc_data_variable *, locus *);
15669
15670 /* Iterate over a list of elements in a DATA statement. */
15671
15672 static bool
15673 traverse_data_list (gfc_data_variable *var, locus *where)
15674 {
15675 mpz_t trip;
15676 iterator_stack frame;
15677 gfc_expr *e, *start, *end, *step;
15678 bool retval = true;
15679
15680 mpz_init (frame.value);
15681 mpz_init (trip);
15682
15683 start = gfc_copy_expr (var->iter.start);
15684 end = gfc_copy_expr (var->iter.end);
15685 step = gfc_copy_expr (var->iter.step);
15686
15687 if (!gfc_simplify_expr (start, 1)
15688 || start->expr_type != EXPR_CONSTANT)
15689 {
15690 gfc_error ("start of implied-do loop at %L could not be "
15691 "simplified to a constant value", &start->where);
15692 retval = false;
15693 goto cleanup;
15694 }
15695 if (!gfc_simplify_expr (end, 1)
15696 || end->expr_type != EXPR_CONSTANT)
15697 {
15698 gfc_error ("end of implied-do loop at %L could not be "
15699 "simplified to a constant value", &start->where);
15700 retval = false;
15701 goto cleanup;
15702 }
15703 if (!gfc_simplify_expr (step, 1)
15704 || step->expr_type != EXPR_CONSTANT)
15705 {
15706 gfc_error ("step of implied-do loop at %L could not be "
15707 "simplified to a constant value", &start->where);
15708 retval = false;
15709 goto cleanup;
15710 }
15711
15712 mpz_set (trip, end->value.integer);
15713 mpz_sub (trip, trip, start->value.integer);
15714 mpz_add (trip, trip, step->value.integer);
15715
15716 mpz_div (trip, trip, step->value.integer);
15717
15718 mpz_set (frame.value, start->value.integer);
15719
15720 frame.prev = iter_stack;
15721 frame.variable = var->iter.var->symtree;
15722 iter_stack = &frame;
15723
15724 while (mpz_cmp_ui (trip, 0) > 0)
15725 {
15726 if (!traverse_data_var (var->list, where))
15727 {
15728 retval = false;
15729 goto cleanup;
15730 }
15731
15732 e = gfc_copy_expr (var->expr);
15733 if (!gfc_simplify_expr (e, 1))
15734 {
15735 gfc_free_expr (e);
15736 retval = false;
15737 goto cleanup;
15738 }
15739
15740 mpz_add (frame.value, frame.value, step->value.integer);
15741
15742 mpz_sub_ui (trip, trip, 1);
15743 }
15744
15745 cleanup:
15746 mpz_clear (frame.value);
15747 mpz_clear (trip);
15748
15749 gfc_free_expr (start);
15750 gfc_free_expr (end);
15751 gfc_free_expr (step);
15752
15753 iter_stack = frame.prev;
15754 return retval;
15755 }
15756
15757
15758 /* Type resolve variables in the variable list of a DATA statement. */
15759
15760 static bool
15761 traverse_data_var (gfc_data_variable *var, locus *where)
15762 {
15763 bool t;
15764
15765 for (; var; var = var->next)
15766 {
15767 if (var->expr == NULL)
15768 t = traverse_data_list (var, where);
15769 else
15770 t = check_data_variable (var, where);
15771
15772 if (!t)
15773 return false;
15774 }
15775
15776 return true;
15777 }
15778
15779
15780 /* Resolve the expressions and iterators associated with a data statement.
15781 This is separate from the assignment checking because data lists should
15782 only be resolved once. */
15783
15784 static bool
15785 resolve_data_variables (gfc_data_variable *d)
15786 {
15787 for (; d; d = d->next)
15788 {
15789 if (d->list == NULL)
15790 {
15791 if (!gfc_resolve_expr (d->expr))
15792 return false;
15793 }
15794 else
15795 {
15796 if (!gfc_resolve_iterator (&d->iter, false, true))
15797 return false;
15798
15799 if (!resolve_data_variables (d->list))
15800 return false;
15801 }
15802 }
15803
15804 return true;
15805 }
15806
15807
15808 /* Resolve a single DATA statement. We implement this by storing a pointer to
15809 the value list into static variables, and then recursively traversing the
15810 variables list, expanding iterators and such. */
15811
15812 static void
15813 resolve_data (gfc_data *d)
15814 {
15815
15816 if (!resolve_data_variables (d->var))
15817 return;
15818
15819 values.vnode = d->value;
15820 if (d->value == NULL)
15821 mpz_set_ui (values.left, 0);
15822 else
15823 mpz_set (values.left, d->value->repeat);
15824
15825 if (!traverse_data_var (d->var, &d->where))
15826 return;
15827
15828 /* At this point, we better not have any values left. */
15829
15830 if (next_data_value ())
15831 gfc_error ("DATA statement at %L has more values than variables",
15832 &d->where);
15833 }
15834
15835
15836 /* 12.6 Constraint: In a pure subprogram any variable which is in common or
15837 accessed by host or use association, is a dummy argument to a pure function,
15838 is a dummy argument with INTENT (IN) to a pure subroutine, or an object that
15839 is storage associated with any such variable, shall not be used in the
15840 following contexts: (clients of this function). */
15841
15842 /* Determines if a variable is not 'pure', i.e., not assignable within a pure
15843 procedure. Returns zero if assignment is OK, nonzero if there is a
15844 problem. */
15845 int
15846 gfc_impure_variable (gfc_symbol *sym)
15847 {
15848 gfc_symbol *proc;
15849 gfc_namespace *ns;
15850
15851 if (sym->attr.use_assoc || sym->attr.in_common)
15852 return 1;
15853
15854 /* Check if the symbol's ns is inside the pure procedure. */
15855 for (ns = gfc_current_ns; ns; ns = ns->parent)
15856 {
15857 if (ns == sym->ns)
15858 break;
15859 if (ns->proc_name->attr.flavor == FL_PROCEDURE && !sym->attr.function)
15860 return 1;
15861 }
15862
15863 proc = sym->ns->proc_name;
15864 if (sym->attr.dummy
15865 && ((proc->attr.subroutine && sym->attr.intent == INTENT_IN)
15866 || proc->attr.function))
15867 return 1;
15868
15869 /* TODO: Sort out what can be storage associated, if anything, and include
15870 it here. In principle equivalences should be scanned but it does not
15871 seem to be possible to storage associate an impure variable this way. */
15872 return 0;
15873 }
15874
15875
15876 /* Test whether a symbol is pure or not. For a NULL pointer, checks if the
15877 current namespace is inside a pure procedure. */
15878
15879 int
15880 gfc_pure (gfc_symbol *sym)
15881 {
15882 symbol_attribute attr;
15883 gfc_namespace *ns;
15884
15885 if (sym == NULL)
15886 {
15887 /* Check if the current namespace or one of its parents
15888 belongs to a pure procedure. */
15889 for (ns = gfc_current_ns; ns; ns = ns->parent)
15890 {
15891 sym = ns->proc_name;
15892 if (sym == NULL)
15893 return 0;
15894 attr = sym->attr;
15895 if (attr.flavor == FL_PROCEDURE && attr.pure)
15896 return 1;
15897 }
15898 return 0;
15899 }
15900
15901 attr = sym->attr;
15902
15903 return attr.flavor == FL_PROCEDURE && attr.pure;
15904 }
15905
15906
15907 /* Test whether a symbol is implicitly pure or not. For a NULL pointer,
15908 checks if the current namespace is implicitly pure. Note that this
15909 function returns false for a PURE procedure. */
15910
15911 int
15912 gfc_implicit_pure (gfc_symbol *sym)
15913 {
15914 gfc_namespace *ns;
15915
15916 if (sym == NULL)
15917 {
15918 /* Check if the current procedure is implicit_pure. Walk up
15919 the procedure list until we find a procedure. */
15920 for (ns = gfc_current_ns; ns; ns = ns->parent)
15921 {
15922 sym = ns->proc_name;
15923 if (sym == NULL)
15924 return 0;
15925
15926 if (sym->attr.flavor == FL_PROCEDURE)
15927 break;
15928 }
15929 }
15930
15931 return sym->attr.flavor == FL_PROCEDURE && sym->attr.implicit_pure
15932 && !sym->attr.pure;
15933 }
15934
15935
15936 void
15937 gfc_unset_implicit_pure (gfc_symbol *sym)
15938 {
15939 gfc_namespace *ns;
15940
15941 if (sym == NULL)
15942 {
15943 /* Check if the current procedure is implicit_pure. Walk up
15944 the procedure list until we find a procedure. */
15945 for (ns = gfc_current_ns; ns; ns = ns->parent)
15946 {
15947 sym = ns->proc_name;
15948 if (sym == NULL)
15949 return;
15950
15951 if (sym->attr.flavor == FL_PROCEDURE)
15952 break;
15953 }
15954 }
15955
15956 if (sym->attr.flavor == FL_PROCEDURE)
15957 sym->attr.implicit_pure = 0;
15958 else
15959 sym->attr.pure = 0;
15960 }
15961
15962
15963 /* Test whether the current procedure is elemental or not. */
15964
15965 int
15966 gfc_elemental (gfc_symbol *sym)
15967 {
15968 symbol_attribute attr;
15969
15970 if (sym == NULL)
15971 sym = gfc_current_ns->proc_name;
15972 if (sym == NULL)
15973 return 0;
15974 attr = sym->attr;
15975
15976 return attr.flavor == FL_PROCEDURE && attr.elemental;
15977 }
15978
15979
15980 /* Warn about unused labels. */
15981
15982 static void
15983 warn_unused_fortran_label (gfc_st_label *label)
15984 {
15985 if (label == NULL)
15986 return;
15987
15988 warn_unused_fortran_label (label->left);
15989
15990 if (label->defined == ST_LABEL_UNKNOWN)
15991 return;
15992
15993 switch (label->referenced)
15994 {
15995 case ST_LABEL_UNKNOWN:
15996 gfc_warning (OPT_Wunused_label, "Label %d at %L defined but not used",
15997 label->value, &label->where);
15998 break;
15999
16000 case ST_LABEL_BAD_TARGET:
16001 gfc_warning (OPT_Wunused_label,
16002 "Label %d at %L defined but cannot be used",
16003 label->value, &label->where);
16004 break;
16005
16006 default:
16007 break;
16008 }
16009
16010 warn_unused_fortran_label (label->right);
16011 }
16012
16013
16014 /* Returns the sequence type of a symbol or sequence. */
16015
16016 static seq_type
16017 sequence_type (gfc_typespec ts)
16018 {
16019 seq_type result;
16020 gfc_component *c;
16021
16022 switch (ts.type)
16023 {
16024 case BT_DERIVED:
16025
16026 if (ts.u.derived->components == NULL)
16027 return SEQ_NONDEFAULT;
16028
16029 result = sequence_type (ts.u.derived->components->ts);
16030 for (c = ts.u.derived->components->next; c; c = c->next)
16031 if (sequence_type (c->ts) != result)
16032 return SEQ_MIXED;
16033
16034 return result;
16035
16036 case BT_CHARACTER:
16037 if (ts.kind != gfc_default_character_kind)
16038 return SEQ_NONDEFAULT;
16039
16040 return SEQ_CHARACTER;
16041
16042 case BT_INTEGER:
16043 if (ts.kind != gfc_default_integer_kind)
16044 return SEQ_NONDEFAULT;
16045
16046 return SEQ_NUMERIC;
16047
16048 case BT_REAL:
16049 if (!(ts.kind == gfc_default_real_kind
16050 || ts.kind == gfc_default_double_kind))
16051 return SEQ_NONDEFAULT;
16052
16053 return SEQ_NUMERIC;
16054
16055 case BT_COMPLEX:
16056 if (ts.kind != gfc_default_complex_kind)
16057 return SEQ_NONDEFAULT;
16058
16059 return SEQ_NUMERIC;
16060
16061 case BT_LOGICAL:
16062 if (ts.kind != gfc_default_logical_kind)
16063 return SEQ_NONDEFAULT;
16064
16065 return SEQ_NUMERIC;
16066
16067 default:
16068 return SEQ_NONDEFAULT;
16069 }
16070 }
16071
16072
16073 /* Resolve derived type EQUIVALENCE object. */
16074
16075 static bool
16076 resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
16077 {
16078 gfc_component *c = derived->components;
16079
16080 if (!derived)
16081 return true;
16082
16083 /* Shall not be an object of nonsequence derived type. */
16084 if (!derived->attr.sequence)
16085 {
16086 gfc_error ("Derived type variable %qs at %L must have SEQUENCE "
16087 "attribute to be an EQUIVALENCE object", sym->name,
16088 &e->where);
16089 return false;
16090 }
16091
16092 /* Shall not have allocatable components. */
16093 if (derived->attr.alloc_comp)
16094 {
16095 gfc_error ("Derived type variable %qs at %L cannot have ALLOCATABLE "
16096 "components to be an EQUIVALENCE object",sym->name,
16097 &e->where);
16098 return false;
16099 }
16100
16101 if (sym->attr.in_common && gfc_has_default_initializer (sym->ts.u.derived))
16102 {
16103 gfc_error ("Derived type variable %qs at %L with default "
16104 "initialization cannot be in EQUIVALENCE with a variable "
16105 "in COMMON", sym->name, &e->where);
16106 return false;
16107 }
16108
16109 for (; c ; c = c->next)
16110 {
16111 if (gfc_bt_struct (c->ts.type)
16112 && (!resolve_equivalence_derived(c->ts.u.derived, sym, e)))
16113 return false;
16114
16115 /* Shall not be an object of sequence derived type containing a pointer
16116 in the structure. */
16117 if (c->attr.pointer)
16118 {
16119 gfc_error ("Derived type variable %qs at %L with pointer "
16120 "component(s) cannot be an EQUIVALENCE object",
16121 sym->name, &e->where);
16122 return false;
16123 }
16124 }
16125 return true;
16126 }
16127
16128
16129 /* Resolve equivalence object.
16130 An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
16131 an allocatable array, an object of nonsequence derived type, an object of
16132 sequence derived type containing a pointer at any level of component
16133 selection, an automatic object, a function name, an entry name, a result
16134 name, a named constant, a structure component, or a subobject of any of
16135 the preceding objects. A substring shall not have length zero. A
16136 derived type shall not have components with default initialization nor
16137 shall two objects of an equivalence group be initialized.
16138 Either all or none of the objects shall have an protected attribute.
16139 The simple constraints are done in symbol.c(check_conflict) and the rest
16140 are implemented here. */
16141
16142 static void
16143 resolve_equivalence (gfc_equiv *eq)
16144 {
16145 gfc_symbol *sym;
16146 gfc_symbol *first_sym;
16147 gfc_expr *e;
16148 gfc_ref *r;
16149 locus *last_where = NULL;
16150 seq_type eq_type, last_eq_type;
16151 gfc_typespec *last_ts;
16152 int object, cnt_protected;
16153 const char *msg;
16154
16155 last_ts = &eq->expr->symtree->n.sym->ts;
16156
16157 first_sym = eq->expr->symtree->n.sym;
16158
16159 cnt_protected = 0;
16160
16161 for (object = 1; eq; eq = eq->eq, object++)
16162 {
16163 e = eq->expr;
16164
16165 e->ts = e->symtree->n.sym->ts;
16166 /* match_varspec might not know yet if it is seeing
16167 array reference or substring reference, as it doesn't
16168 know the types. */
16169 if (e->ref && e->ref->type == REF_ARRAY)
16170 {
16171 gfc_ref *ref = e->ref;
16172 sym = e->symtree->n.sym;
16173
16174 if (sym->attr.dimension)
16175 {
16176 ref->u.ar.as = sym->as;
16177 ref = ref->next;
16178 }
16179
16180 /* For substrings, convert REF_ARRAY into REF_SUBSTRING. */
16181 if (e->ts.type == BT_CHARACTER
16182 && ref
16183 && ref->type == REF_ARRAY
16184 && ref->u.ar.dimen == 1
16185 && ref->u.ar.dimen_type[0] == DIMEN_RANGE
16186 && ref->u.ar.stride[0] == NULL)
16187 {
16188 gfc_expr *start = ref->u.ar.start[0];
16189 gfc_expr *end = ref->u.ar.end[0];
16190 void *mem = NULL;
16191
16192 /* Optimize away the (:) reference. */
16193 if (start == NULL && end == NULL)
16194 {
16195 if (e->ref == ref)
16196 e->ref = ref->next;
16197 else
16198 e->ref->next = ref->next;
16199 mem = ref;
16200 }
16201 else
16202 {
16203 ref->type = REF_SUBSTRING;
16204 if (start == NULL)
16205 start = gfc_get_int_expr (gfc_charlen_int_kind,
16206 NULL, 1);
16207 ref->u.ss.start = start;
16208 if (end == NULL && e->ts.u.cl)
16209 end = gfc_copy_expr (e->ts.u.cl->length);
16210 ref->u.ss.end = end;
16211 ref->u.ss.length = e->ts.u.cl;
16212 e->ts.u.cl = NULL;
16213 }
16214 ref = ref->next;
16215 free (mem);
16216 }
16217
16218 /* Any further ref is an error. */
16219 if (ref)
16220 {
16221 gcc_assert (ref->type == REF_ARRAY);
16222 gfc_error ("Syntax error in EQUIVALENCE statement at %L",
16223 &ref->u.ar.where);
16224 continue;
16225 }
16226 }
16227
16228 if (!gfc_resolve_expr (e))
16229 continue;
16230
16231 sym = e->symtree->n.sym;
16232
16233 if (sym->attr.is_protected)
16234 cnt_protected++;
16235 if (cnt_protected > 0 && cnt_protected != object)
16236 {
16237 gfc_error ("Either all or none of the objects in the "
16238 "EQUIVALENCE set at %L shall have the "
16239 "PROTECTED attribute",
16240 &e->where);
16241 break;
16242 }
16243
16244 /* Shall not equivalence common block variables in a PURE procedure. */
16245 if (sym->ns->proc_name
16246 && sym->ns->proc_name->attr.pure
16247 && sym->attr.in_common)
16248 {
16249 /* Need to check for symbols that may have entered the pure
16250 procedure via a USE statement. */
16251 bool saw_sym = false;
16252 if (sym->ns->use_stmts)
16253 {
16254 gfc_use_rename *r;
16255 for (r = sym->ns->use_stmts->rename; r; r = r->next)
16256 if (strcmp(r->use_name, sym->name) == 0) saw_sym = true;
16257 }
16258 else
16259 saw_sym = true;
16260
16261 if (saw_sym)
16262 gfc_error ("COMMON block member %qs at %L cannot be an "
16263 "EQUIVALENCE object in the pure procedure %qs",
16264 sym->name, &e->where, sym->ns->proc_name->name);
16265 break;
16266 }
16267
16268 /* Shall not be a named constant. */
16269 if (e->expr_type == EXPR_CONSTANT)
16270 {
16271 gfc_error ("Named constant %qs at %L cannot be an EQUIVALENCE "
16272 "object", sym->name, &e->where);
16273 continue;
16274 }
16275
16276 if (e->ts.type == BT_DERIVED
16277 && !resolve_equivalence_derived (e->ts.u.derived, sym, e))
16278 continue;
16279
16280 /* Check that the types correspond correctly:
16281 Note 5.28:
16282 A numeric sequence structure may be equivalenced to another sequence
16283 structure, an object of default integer type, default real type, double
16284 precision real type, default logical type such that components of the
16285 structure ultimately only become associated to objects of the same
16286 kind. A character sequence structure may be equivalenced to an object
16287 of default character kind or another character sequence structure.
16288 Other objects may be equivalenced only to objects of the same type and
16289 kind parameters. */
16290
16291 /* Identical types are unconditionally OK. */
16292 if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
16293 goto identical_types;
16294
16295 last_eq_type = sequence_type (*last_ts);
16296 eq_type = sequence_type (sym->ts);
16297
16298 /* Since the pair of objects is not of the same type, mixed or
16299 non-default sequences can be rejected. */
16300
16301 msg = "Sequence %s with mixed components in EQUIVALENCE "
16302 "statement at %L with different type objects";
16303 if ((object ==2
16304 && last_eq_type == SEQ_MIXED
16305 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16306 || (eq_type == SEQ_MIXED
16307 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16308 continue;
16309
16310 msg = "Non-default type object or sequence %s in EQUIVALENCE "
16311 "statement at %L with objects of different type";
16312 if ((object ==2
16313 && last_eq_type == SEQ_NONDEFAULT
16314 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16315 || (eq_type == SEQ_NONDEFAULT
16316 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16317 continue;
16318
16319 msg ="Non-CHARACTER object %qs in default CHARACTER "
16320 "EQUIVALENCE statement at %L";
16321 if (last_eq_type == SEQ_CHARACTER
16322 && eq_type != SEQ_CHARACTER
16323 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16324 continue;
16325
16326 msg ="Non-NUMERIC object %qs in default NUMERIC "
16327 "EQUIVALENCE statement at %L";
16328 if (last_eq_type == SEQ_NUMERIC
16329 && eq_type != SEQ_NUMERIC
16330 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16331 continue;
16332
16333 identical_types:
16334 last_ts =&sym->ts;
16335 last_where = &e->where;
16336
16337 if (!e->ref)
16338 continue;
16339
16340 /* Shall not be an automatic array. */
16341 if (e->ref->type == REF_ARRAY
16342 && !gfc_resolve_array_spec (e->ref->u.ar.as, 1))
16343 {
16344 gfc_error ("Array %qs at %L with non-constant bounds cannot be "
16345 "an EQUIVALENCE object", sym->name, &e->where);
16346 continue;
16347 }
16348
16349 r = e->ref;
16350 while (r)
16351 {
16352 /* Shall not be a structure component. */
16353 if (r->type == REF_COMPONENT)
16354 {
16355 gfc_error ("Structure component %qs at %L cannot be an "
16356 "EQUIVALENCE object",
16357 r->u.c.component->name, &e->where);
16358 break;
16359 }
16360
16361 /* A substring shall not have length zero. */
16362 if (r->type == REF_SUBSTRING)
16363 {
16364 if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
16365 {
16366 gfc_error ("Substring at %L has length zero",
16367 &r->u.ss.start->where);
16368 break;
16369 }
16370 }
16371 r = r->next;
16372 }
16373 }
16374 }
16375
16376
16377 /* Function called by resolve_fntype to flag other symbol used in the
16378 length type parameter specification of function resuls. */
16379
16380 static bool
16381 flag_fn_result_spec (gfc_expr *expr,
16382 gfc_symbol *sym,
16383 int *f ATTRIBUTE_UNUSED)
16384 {
16385 gfc_namespace *ns;
16386 gfc_symbol *s;
16387
16388 if (expr->expr_type == EXPR_VARIABLE)
16389 {
16390 s = expr->symtree->n.sym;
16391 for (ns = s->ns; ns; ns = ns->parent)
16392 if (!ns->parent)
16393 break;
16394
16395 if (sym == s)
16396 {
16397 gfc_error ("Self reference in character length expression "
16398 "for %qs at %L", sym->name, &expr->where);
16399 return true;
16400 }
16401
16402 if (!s->fn_result_spec
16403 && s->attr.flavor == FL_PARAMETER)
16404 {
16405 /* Function contained in a module.... */
16406 if (ns->proc_name && ns->proc_name->attr.flavor == FL_MODULE)
16407 {
16408 gfc_symtree *st;
16409 s->fn_result_spec = 1;
16410 /* Make sure that this symbol is translated as a module
16411 variable. */
16412 st = gfc_get_unique_symtree (ns);
16413 st->n.sym = s;
16414 s->refs++;
16415 }
16416 /* ... which is use associated and called. */
16417 else if (s->attr.use_assoc || s->attr.used_in_submodule
16418 ||
16419 /* External function matched with an interface. */
16420 (s->ns->proc_name
16421 && ((s->ns == ns
16422 && s->ns->proc_name->attr.if_source == IFSRC_DECL)
16423 || s->ns->proc_name->attr.if_source == IFSRC_IFBODY)
16424 && s->ns->proc_name->attr.function))
16425 s->fn_result_spec = 1;
16426 }
16427 }
16428 return false;
16429 }
16430
16431
16432 /* Resolve function and ENTRY types, issue diagnostics if needed. */
16433
16434 static void
16435 resolve_fntype (gfc_namespace *ns)
16436 {
16437 gfc_entry_list *el;
16438 gfc_symbol *sym;
16439
16440 if (ns->proc_name == NULL || !ns->proc_name->attr.function)
16441 return;
16442
16443 /* If there are any entries, ns->proc_name is the entry master
16444 synthetic symbol and ns->entries->sym actual FUNCTION symbol. */
16445 if (ns->entries)
16446 sym = ns->entries->sym;
16447 else
16448 sym = ns->proc_name;
16449 if (sym->result == sym
16450 && sym->ts.type == BT_UNKNOWN
16451 && !gfc_set_default_type (sym, 0, NULL)
16452 && !sym->attr.untyped)
16453 {
16454 gfc_error ("Function %qs at %L has no IMPLICIT type",
16455 sym->name, &sym->declared_at);
16456 sym->attr.untyped = 1;
16457 }
16458
16459 if (sym->ts.type == BT_DERIVED && !sym->ts.u.derived->attr.use_assoc
16460 && !sym->attr.contained
16461 && !gfc_check_symbol_access (sym->ts.u.derived)
16462 && gfc_check_symbol_access (sym))
16463 {
16464 gfc_notify_std (GFC_STD_F2003, "PUBLIC function %qs at "
16465 "%L of PRIVATE type %qs", sym->name,
16466 &sym->declared_at, sym->ts.u.derived->name);
16467 }
16468
16469 if (ns->entries)
16470 for (el = ns->entries->next; el; el = el->next)
16471 {
16472 if (el->sym->result == el->sym
16473 && el->sym->ts.type == BT_UNKNOWN
16474 && !gfc_set_default_type (el->sym, 0, NULL)
16475 && !el->sym->attr.untyped)
16476 {
16477 gfc_error ("ENTRY %qs at %L has no IMPLICIT type",
16478 el->sym->name, &el->sym->declared_at);
16479 el->sym->attr.untyped = 1;
16480 }
16481 }
16482
16483 if (sym->ts.type == BT_CHARACTER)
16484 gfc_traverse_expr (sym->ts.u.cl->length, sym, flag_fn_result_spec, 0);
16485 }
16486
16487
16488 /* 12.3.2.1.1 Defined operators. */
16489
16490 static bool
16491 check_uop_procedure (gfc_symbol *sym, locus where)
16492 {
16493 gfc_formal_arglist *formal;
16494
16495 if (!sym->attr.function)
16496 {
16497 gfc_error ("User operator procedure %qs at %L must be a FUNCTION",
16498 sym->name, &where);
16499 return false;
16500 }
16501
16502 if (sym->ts.type == BT_CHARACTER
16503 && !((sym->ts.u.cl && sym->ts.u.cl->length) || sym->ts.deferred)
16504 && !(sym->result && ((sym->result->ts.u.cl
16505 && sym->result->ts.u.cl->length) || sym->result->ts.deferred)))
16506 {
16507 gfc_error ("User operator procedure %qs at %L cannot be assumed "
16508 "character length", sym->name, &where);
16509 return false;
16510 }
16511
16512 formal = gfc_sym_get_dummy_args (sym);
16513 if (!formal || !formal->sym)
16514 {
16515 gfc_error ("User operator procedure %qs at %L must have at least "
16516 "one argument", sym->name, &where);
16517 return false;
16518 }
16519
16520 if (formal->sym->attr.intent != INTENT_IN)
16521 {
16522 gfc_error ("First argument of operator interface at %L must be "
16523 "INTENT(IN)", &where);
16524 return false;
16525 }
16526
16527 if (formal->sym->attr.optional)
16528 {
16529 gfc_error ("First argument of operator interface at %L cannot be "
16530 "optional", &where);
16531 return false;
16532 }
16533
16534 formal = formal->next;
16535 if (!formal || !formal->sym)
16536 return true;
16537
16538 if (formal->sym->attr.intent != INTENT_IN)
16539 {
16540 gfc_error ("Second argument of operator interface at %L must be "
16541 "INTENT(IN)", &where);
16542 return false;
16543 }
16544
16545 if (formal->sym->attr.optional)
16546 {
16547 gfc_error ("Second argument of operator interface at %L cannot be "
16548 "optional", &where);
16549 return false;
16550 }
16551
16552 if (formal->next)
16553 {
16554 gfc_error ("Operator interface at %L must have, at most, two "
16555 "arguments", &where);
16556 return false;
16557 }
16558
16559 return true;
16560 }
16561
16562 static void
16563 gfc_resolve_uops (gfc_symtree *symtree)
16564 {
16565 gfc_interface *itr;
16566
16567 if (symtree == NULL)
16568 return;
16569
16570 gfc_resolve_uops (symtree->left);
16571 gfc_resolve_uops (symtree->right);
16572
16573 for (itr = symtree->n.uop->op; itr; itr = itr->next)
16574 check_uop_procedure (itr->sym, itr->sym->declared_at);
16575 }
16576
16577
16578 /* Examine all of the expressions associated with a program unit,
16579 assign types to all intermediate expressions, make sure that all
16580 assignments are to compatible types and figure out which names
16581 refer to which functions or subroutines. It doesn't check code
16582 block, which is handled by gfc_resolve_code. */
16583
16584 static void
16585 resolve_types (gfc_namespace *ns)
16586 {
16587 gfc_namespace *n;
16588 gfc_charlen *cl;
16589 gfc_data *d;
16590 gfc_equiv *eq;
16591 gfc_namespace* old_ns = gfc_current_ns;
16592
16593 if (ns->types_resolved)
16594 return;
16595
16596 /* Check that all IMPLICIT types are ok. */
16597 if (!ns->seen_implicit_none)
16598 {
16599 unsigned letter;
16600 for (letter = 0; letter != GFC_LETTERS; ++letter)
16601 if (ns->set_flag[letter]
16602 && !resolve_typespec_used (&ns->default_type[letter],
16603 &ns->implicit_loc[letter], NULL))
16604 return;
16605 }
16606
16607 gfc_current_ns = ns;
16608
16609 resolve_entries (ns);
16610
16611 resolve_common_vars (&ns->blank_common, false);
16612 resolve_common_blocks (ns->common_root);
16613
16614 resolve_contained_functions (ns);
16615
16616 if (ns->proc_name && ns->proc_name->attr.flavor == FL_PROCEDURE
16617 && ns->proc_name->attr.if_source == IFSRC_IFBODY)
16618 resolve_formal_arglist (ns->proc_name);
16619
16620 gfc_traverse_ns (ns, resolve_bind_c_derived_types);
16621
16622 for (cl = ns->cl_list; cl; cl = cl->next)
16623 resolve_charlen (cl);
16624
16625 gfc_traverse_ns (ns, resolve_symbol);
16626
16627 resolve_fntype (ns);
16628
16629 for (n = ns->contained; n; n = n->sibling)
16630 {
16631 if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
16632 gfc_error ("Contained procedure %qs at %L of a PURE procedure must "
16633 "also be PURE", n->proc_name->name,
16634 &n->proc_name->declared_at);
16635
16636 resolve_types (n);
16637 }
16638
16639 forall_flag = 0;
16640 gfc_do_concurrent_flag = 0;
16641 gfc_check_interfaces (ns);
16642
16643 gfc_traverse_ns (ns, resolve_values);
16644
16645 if (ns->save_all)
16646 gfc_save_all (ns);
16647
16648 iter_stack = NULL;
16649 for (d = ns->data; d; d = d->next)
16650 resolve_data (d);
16651
16652 iter_stack = NULL;
16653 gfc_traverse_ns (ns, gfc_formalize_init_value);
16654
16655 gfc_traverse_ns (ns, gfc_verify_binding_labels);
16656
16657 for (eq = ns->equiv; eq; eq = eq->next)
16658 resolve_equivalence (eq);
16659
16660 /* Warn about unused labels. */
16661 if (warn_unused_label)
16662 warn_unused_fortran_label (ns->st_labels);
16663
16664 gfc_resolve_uops (ns->uop_root);
16665
16666 gfc_traverse_ns (ns, gfc_verify_DTIO_procedures);
16667
16668 gfc_resolve_omp_declare_simd (ns);
16669
16670 gfc_resolve_omp_udrs (ns->omp_udr_root);
16671
16672 ns->types_resolved = 1;
16673
16674 gfc_current_ns = old_ns;
16675 }
16676
16677
16678 /* Call gfc_resolve_code recursively. */
16679
16680 static void
16681 resolve_codes (gfc_namespace *ns)
16682 {
16683 gfc_namespace *n;
16684 bitmap_obstack old_obstack;
16685
16686 if (ns->resolved == 1)
16687 return;
16688
16689 for (n = ns->contained; n; n = n->sibling)
16690 resolve_codes (n);
16691
16692 gfc_current_ns = ns;
16693
16694 /* Don't clear 'cs_base' if this is the namespace of a BLOCK construct. */
16695 if (!(ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL))
16696 cs_base = NULL;
16697
16698 /* Set to an out of range value. */
16699 current_entry_id = -1;
16700
16701 old_obstack = labels_obstack;
16702 bitmap_obstack_initialize (&labels_obstack);
16703
16704 gfc_resolve_oacc_declare (ns);
16705 gfc_resolve_omp_local_vars (ns);
16706 gfc_resolve_code (ns->code, ns);
16707
16708 bitmap_obstack_release (&labels_obstack);
16709 labels_obstack = old_obstack;
16710 }
16711
16712
16713 /* This function is called after a complete program unit has been compiled.
16714 Its purpose is to examine all of the expressions associated with a program
16715 unit, assign types to all intermediate expressions, make sure that all
16716 assignments are to compatible types and figure out which names refer to
16717 which functions or subroutines. */
16718
16719 void
16720 gfc_resolve (gfc_namespace *ns)
16721 {
16722 gfc_namespace *old_ns;
16723 code_stack *old_cs_base;
16724 struct gfc_omp_saved_state old_omp_state;
16725
16726 if (ns->resolved)
16727 return;
16728
16729 ns->resolved = -1;
16730 old_ns = gfc_current_ns;
16731 old_cs_base = cs_base;
16732
16733 /* As gfc_resolve can be called during resolution of an OpenMP construct
16734 body, we should clear any state associated to it, so that say NS's
16735 DO loops are not interpreted as OpenMP loops. */
16736 if (!ns->construct_entities)
16737 gfc_omp_save_and_clear_state (&old_omp_state);
16738
16739 resolve_types (ns);
16740 component_assignment_level = 0;
16741 resolve_codes (ns);
16742
16743 gfc_current_ns = old_ns;
16744 cs_base = old_cs_base;
16745 ns->resolved = 1;
16746
16747 gfc_run_passes (ns);
16748
16749 if (!ns->construct_entities)
16750 gfc_omp_restore_state (&old_omp_state);
16751 }