re PR fortran/33375 (ICE (segfault) gfortran.dg/common_6.f90)
[gcc.git] / gcc / fortran / symbol.c
1 /* Maintain binary trees of symbols.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Andy Vaught
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "flags.h"
26 #include "gfortran.h"
27 #include "parse.h"
28
29
30 /* Strings for all symbol attributes. We use these for dumping the
31 parse tree, in error messages, and also when reading and writing
32 modules. */
33
34 const mstring flavors[] =
35 {
36 minit ("UNKNOWN-FL", FL_UNKNOWN), minit ("PROGRAM", FL_PROGRAM),
37 minit ("BLOCK-DATA", FL_BLOCK_DATA), minit ("MODULE", FL_MODULE),
38 minit ("VARIABLE", FL_VARIABLE), minit ("PARAMETER", FL_PARAMETER),
39 minit ("LABEL", FL_LABEL), minit ("PROCEDURE", FL_PROCEDURE),
40 minit ("DERIVED", FL_DERIVED), minit ("NAMELIST", FL_NAMELIST),
41 minit (NULL, -1)
42 };
43
44 const mstring procedures[] =
45 {
46 minit ("UNKNOWN-PROC", PROC_UNKNOWN),
47 minit ("MODULE-PROC", PROC_MODULE),
48 minit ("INTERNAL-PROC", PROC_INTERNAL),
49 minit ("DUMMY-PROC", PROC_DUMMY),
50 minit ("INTRINSIC-PROC", PROC_INTRINSIC),
51 minit ("EXTERNAL-PROC", PROC_EXTERNAL),
52 minit ("STATEMENT-PROC", PROC_ST_FUNCTION),
53 minit (NULL, -1)
54 };
55
56 const mstring intents[] =
57 {
58 minit ("UNKNOWN-INTENT", INTENT_UNKNOWN),
59 minit ("IN", INTENT_IN),
60 minit ("OUT", INTENT_OUT),
61 minit ("INOUT", INTENT_INOUT),
62 minit (NULL, -1)
63 };
64
65 const mstring access_types[] =
66 {
67 minit ("UNKNOWN-ACCESS", ACCESS_UNKNOWN),
68 minit ("PUBLIC", ACCESS_PUBLIC),
69 minit ("PRIVATE", ACCESS_PRIVATE),
70 minit (NULL, -1)
71 };
72
73 const mstring ifsrc_types[] =
74 {
75 minit ("UNKNOWN", IFSRC_UNKNOWN),
76 minit ("DECL", IFSRC_DECL),
77 minit ("BODY", IFSRC_IFBODY),
78 minit ("USAGE", IFSRC_USAGE)
79 };
80
81 const mstring save_status[] =
82 {
83 minit ("UNKNOWN", SAVE_NONE),
84 minit ("EXPLICIT-SAVE", SAVE_EXPLICIT),
85 minit ("IMPLICIT-SAVE", SAVE_IMPLICIT),
86 };
87
88 /* This is to make sure the backend generates setup code in the correct
89 order. */
90
91 static int next_dummy_order = 1;
92
93
94 gfc_namespace *gfc_current_ns;
95
96 gfc_gsymbol *gfc_gsym_root = NULL;
97
98 static gfc_symbol *changed_syms = NULL;
99
100 gfc_dt_list *gfc_derived_types;
101
102
103 /*********** IMPLICIT NONE and IMPLICIT statement handlers ***********/
104
105 /* The following static variable indicates whether a particular element has
106 been explicitly set or not. */
107
108 static int new_flag[GFC_LETTERS];
109
110
111 /* Handle a correctly parsed IMPLICIT NONE. */
112
113 void
114 gfc_set_implicit_none (void)
115 {
116 int i;
117
118 if (gfc_current_ns->seen_implicit_none)
119 {
120 gfc_error ("Duplicate IMPLICIT NONE statement at %C");
121 return;
122 }
123
124 gfc_current_ns->seen_implicit_none = 1;
125
126 for (i = 0; i < GFC_LETTERS; i++)
127 {
128 gfc_clear_ts (&gfc_current_ns->default_type[i]);
129 gfc_current_ns->set_flag[i] = 1;
130 }
131 }
132
133
134 /* Reset the implicit range flags. */
135
136 void
137 gfc_clear_new_implicit (void)
138 {
139 int i;
140
141 for (i = 0; i < GFC_LETTERS; i++)
142 new_flag[i] = 0;
143 }
144
145
146 /* Prepare for a new implicit range. Sets flags in new_flag[]. */
147
148 try
149 gfc_add_new_implicit_range (int c1, int c2)
150 {
151 int i;
152
153 c1 -= 'a';
154 c2 -= 'a';
155
156 for (i = c1; i <= c2; i++)
157 {
158 if (new_flag[i])
159 {
160 gfc_error ("Letter '%c' already set in IMPLICIT statement at %C",
161 i + 'A');
162 return FAILURE;
163 }
164
165 new_flag[i] = 1;
166 }
167
168 return SUCCESS;
169 }
170
171
172 /* Add a matched implicit range for gfc_set_implicit(). Check if merging
173 the new implicit types back into the existing types will work. */
174
175 try
176 gfc_merge_new_implicit (gfc_typespec *ts)
177 {
178 int i;
179
180 if (gfc_current_ns->seen_implicit_none)
181 {
182 gfc_error ("Cannot specify IMPLICIT at %C after IMPLICIT NONE");
183 return FAILURE;
184 }
185
186 for (i = 0; i < GFC_LETTERS; i++)
187 {
188 if (new_flag[i])
189 {
190
191 if (gfc_current_ns->set_flag[i])
192 {
193 gfc_error ("Letter %c already has an IMPLICIT type at %C",
194 i + 'A');
195 return FAILURE;
196 }
197 gfc_current_ns->default_type[i] = *ts;
198 gfc_current_ns->set_flag[i] = 1;
199 }
200 }
201 return SUCCESS;
202 }
203
204
205 /* Given a symbol, return a pointer to the typespec for its default type. */
206
207 gfc_typespec *
208 gfc_get_default_type (gfc_symbol *sym, gfc_namespace *ns)
209 {
210 char letter;
211
212 letter = sym->name[0];
213
214 if (gfc_option.flag_allow_leading_underscore && letter == '_')
215 gfc_internal_error ("Option -fallow_leading_underscore is for use only by "
216 "gfortran developers, and should not be used for "
217 "implicitly typed variables");
218
219 if (letter < 'a' || letter > 'z')
220 gfc_internal_error ("gfc_get_default_type(): Bad symbol");
221
222 if (ns == NULL)
223 ns = gfc_current_ns;
224
225 return &ns->default_type[letter - 'a'];
226 }
227
228
229 /* Given a pointer to a symbol, set its type according to the first
230 letter of its name. Fails if the letter in question has no default
231 type. */
232
233 try
234 gfc_set_default_type (gfc_symbol *sym, int error_flag, gfc_namespace *ns)
235 {
236 gfc_typespec *ts;
237
238 if (sym->ts.type != BT_UNKNOWN)
239 gfc_internal_error ("gfc_set_default_type(): symbol already has a type");
240
241 ts = gfc_get_default_type (sym, ns);
242
243 if (ts->type == BT_UNKNOWN)
244 {
245 if (error_flag && !sym->attr.untyped)
246 {
247 gfc_error ("Symbol '%s' at %L has no IMPLICIT type",
248 sym->name, &sym->declared_at);
249 sym->attr.untyped = 1; /* Ensure we only give an error once. */
250 }
251
252 return FAILURE;
253 }
254
255 sym->ts = *ts;
256 sym->attr.implicit_type = 1;
257
258 if (sym->attr.is_bind_c == 1)
259 {
260 /* BIND(C) variables should not be implicitly declared. */
261 gfc_warning_now ("Implicitly declared BIND(C) variable '%s' at %L may "
262 "not be C interoperable", sym->name, &sym->declared_at);
263 sym->ts.f90_type = sym->ts.type;
264 }
265
266 if (sym->attr.dummy != 0)
267 {
268 if (sym->ns->proc_name != NULL
269 && (sym->ns->proc_name->attr.subroutine != 0
270 || sym->ns->proc_name->attr.function != 0)
271 && sym->ns->proc_name->attr.is_bind_c != 0)
272 {
273 /* Dummy args to a BIND(C) routine may not be interoperable if
274 they are implicitly typed. */
275 gfc_warning_now ("Implicity declared variable '%s' at %L may not "
276 "be C interoperable but it is a dummy argument to "
277 "the BIND(C) procedure '%s' at %L", sym->name,
278 &(sym->declared_at), sym->ns->proc_name->name,
279 &(sym->ns->proc_name->declared_at));
280 sym->ts.f90_type = sym->ts.type;
281 }
282 }
283
284 return SUCCESS;
285 }
286
287
288 /* This function is called from parse.c(parse_progunit) to check the
289 type of the function is not implicitly typed in the host namespace
290 and to implicitly type the function result, if necessary. */
291
292 void
293 gfc_check_function_type (gfc_namespace *ns)
294 {
295 gfc_symbol *proc = ns->proc_name;
296
297 if (!proc->attr.contained || proc->result->attr.implicit_type)
298 return;
299
300 if (proc->result->ts.type == BT_UNKNOWN)
301 {
302 if (gfc_set_default_type (proc->result, 0, gfc_current_ns)
303 == SUCCESS)
304 {
305 if (proc->result != proc)
306 {
307 proc->ts = proc->result->ts;
308 proc->as = gfc_copy_array_spec (proc->result->as);
309 proc->attr.dimension = proc->result->attr.dimension;
310 proc->attr.pointer = proc->result->attr.pointer;
311 proc->attr.allocatable = proc->result->attr.allocatable;
312 }
313 }
314 else
315 {
316 gfc_error ("Function result '%s' at %L has no IMPLICIT type",
317 proc->result->name, &proc->result->declared_at);
318 proc->result->attr.untyped = 1;
319 }
320 }
321 }
322
323
324 /******************** Symbol attribute stuff *********************/
325
326 /* This is a generic conflict-checker. We do this to avoid having a
327 single conflict in two places. */
328
329 #define conf(a, b) if (attr->a && attr->b) { a1 = a; a2 = b; goto conflict; }
330 #define conf2(a) if (attr->a) { a2 = a; goto conflict; }
331 #define conf_std(a, b, std) if (attr->a && attr->b)\
332 {\
333 a1 = a;\
334 a2 = b;\
335 standard = std;\
336 goto conflict_std;\
337 }
338
339 static try
340 check_conflict (symbol_attribute *attr, const char *name, locus *where)
341 {
342 static const char *dummy = "DUMMY", *save = "SAVE", *pointer = "POINTER",
343 *target = "TARGET", *external = "EXTERNAL", *intent = "INTENT",
344 *intent_in = "INTENT(IN)", *intrinsic = "INTRINSIC",
345 *intent_out = "INTENT(OUT)", *intent_inout = "INTENT(INOUT)",
346 *allocatable = "ALLOCATABLE", *elemental = "ELEMENTAL",
347 *private = "PRIVATE", *recursive = "RECURSIVE",
348 *in_common = "COMMON", *result = "RESULT", *in_namelist = "NAMELIST",
349 *public = "PUBLIC", *optional = "OPTIONAL", *entry = "ENTRY",
350 *function = "FUNCTION", *subroutine = "SUBROUTINE",
351 *dimension = "DIMENSION", *in_equivalence = "EQUIVALENCE",
352 *use_assoc = "USE ASSOCIATED", *cray_pointer = "CRAY POINTER",
353 *cray_pointee = "CRAY POINTEE", *data = "DATA", *value = "VALUE",
354 *volatile_ = "VOLATILE", *protected = "PROTECTED",
355 *is_bind_c = "BIND(C)", *procedure = "PROCEDURE";
356 static const char *threadprivate = "THREADPRIVATE";
357
358 const char *a1, *a2;
359 int standard;
360
361 if (where == NULL)
362 where = &gfc_current_locus;
363
364 if (attr->pointer && attr->intent != INTENT_UNKNOWN)
365 {
366 a1 = pointer;
367 a2 = intent;
368 standard = GFC_STD_F2003;
369 goto conflict_std;
370 }
371
372 /* Check for attributes not allowed in a BLOCK DATA. */
373 if (gfc_current_state () == COMP_BLOCK_DATA)
374 {
375 a1 = NULL;
376
377 if (attr->in_namelist)
378 a1 = in_namelist;
379 if (attr->allocatable)
380 a1 = allocatable;
381 if (attr->external)
382 a1 = external;
383 if (attr->optional)
384 a1 = optional;
385 if (attr->access == ACCESS_PRIVATE)
386 a1 = private;
387 if (attr->access == ACCESS_PUBLIC)
388 a1 = public;
389 if (attr->intent != INTENT_UNKNOWN)
390 a1 = intent;
391
392 if (a1 != NULL)
393 {
394 gfc_error
395 ("%s attribute not allowed in BLOCK DATA program unit at %L",
396 a1, where);
397 return FAILURE;
398 }
399 }
400
401 if (attr->save == SAVE_EXPLICIT)
402 {
403 conf (dummy, save);
404 conf (in_common, save);
405 conf (result, save);
406
407 switch (attr->flavor)
408 {
409 case FL_PROGRAM:
410 case FL_BLOCK_DATA:
411 case FL_MODULE:
412 case FL_LABEL:
413 case FL_PROCEDURE:
414 case FL_DERIVED:
415 case FL_PARAMETER:
416 a1 = gfc_code2string (flavors, attr->flavor);
417 a2 = save;
418 goto conflict;
419
420 case FL_VARIABLE:
421 case FL_NAMELIST:
422 default:
423 break;
424 }
425 }
426
427 conf (dummy, entry);
428 conf (dummy, intrinsic);
429 conf (dummy, threadprivate);
430 conf (pointer, target);
431 conf (pointer, intrinsic);
432 conf (pointer, elemental);
433 conf (allocatable, elemental);
434
435 conf (target, external);
436 conf (target, intrinsic);
437 conf (external, dimension); /* See Fortran 95's R504. */
438
439 conf (external, intrinsic);
440 conf (entry, intrinsic);
441
442 if ((attr->if_source && !attr->procedure) || attr->contained)
443 {
444 conf (external, subroutine);
445 conf (external, function);
446 }
447
448 conf (allocatable, pointer);
449 conf_std (allocatable, dummy, GFC_STD_F2003);
450 conf_std (allocatable, function, GFC_STD_F2003);
451 conf_std (allocatable, result, GFC_STD_F2003);
452 conf (elemental, recursive);
453
454 conf (in_common, dummy);
455 conf (in_common, allocatable);
456 conf (in_common, result);
457
458 conf (dummy, result);
459
460 conf (in_equivalence, use_assoc);
461 conf (in_equivalence, dummy);
462 conf (in_equivalence, target);
463 conf (in_equivalence, pointer);
464 conf (in_equivalence, function);
465 conf (in_equivalence, result);
466 conf (in_equivalence, entry);
467 conf (in_equivalence, allocatable);
468 conf (in_equivalence, threadprivate);
469
470 conf (in_namelist, pointer);
471 conf (in_namelist, allocatable);
472
473 conf (entry, result);
474
475 conf (function, subroutine);
476
477 if (!function && !subroutine)
478 conf (is_bind_c, dummy);
479
480 conf (is_bind_c, cray_pointer);
481 conf (is_bind_c, cray_pointee);
482 conf (is_bind_c, allocatable);
483 conf (is_bind_c, elemental);
484
485 /* Need to also get volatile attr, according to 5.1 of F2003 draft.
486 Parameter conflict caught below. Also, value cannot be specified
487 for a dummy procedure. */
488
489 /* Cray pointer/pointee conflicts. */
490 conf (cray_pointer, cray_pointee);
491 conf (cray_pointer, dimension);
492 conf (cray_pointer, pointer);
493 conf (cray_pointer, target);
494 conf (cray_pointer, allocatable);
495 conf (cray_pointer, external);
496 conf (cray_pointer, intrinsic);
497 conf (cray_pointer, in_namelist);
498 conf (cray_pointer, function);
499 conf (cray_pointer, subroutine);
500 conf (cray_pointer, entry);
501
502 conf (cray_pointee, allocatable);
503 conf (cray_pointee, intent);
504 conf (cray_pointee, optional);
505 conf (cray_pointee, dummy);
506 conf (cray_pointee, target);
507 conf (cray_pointee, intrinsic);
508 conf (cray_pointee, pointer);
509 conf (cray_pointee, entry);
510 conf (cray_pointee, in_common);
511 conf (cray_pointee, in_equivalence);
512 conf (cray_pointee, threadprivate);
513
514 conf (data, dummy);
515 conf (data, function);
516 conf (data, result);
517 conf (data, allocatable);
518 conf (data, use_assoc);
519
520 conf (value, pointer)
521 conf (value, allocatable)
522 conf (value, subroutine)
523 conf (value, function)
524 conf (value, volatile_)
525 conf (value, dimension)
526 conf (value, external)
527
528 if (attr->value
529 && (attr->intent == INTENT_OUT || attr->intent == INTENT_INOUT))
530 {
531 a1 = value;
532 a2 = attr->intent == INTENT_OUT ? intent_out : intent_inout;
533 goto conflict;
534 }
535
536 conf (protected, intrinsic)
537 conf (protected, external)
538 conf (protected, in_common)
539
540 conf (volatile_, intrinsic)
541 conf (volatile_, external)
542
543 if (attr->volatile_ && attr->intent == INTENT_IN)
544 {
545 a1 = volatile_;
546 a2 = intent_in;
547 goto conflict;
548 }
549
550 conf (procedure, allocatable)
551 conf (procedure, dimension)
552 conf (procedure, intrinsic)
553 conf (procedure, protected)
554 conf (procedure, target)
555 conf (procedure, value)
556 conf (procedure, volatile_)
557 conf (procedure, entry)
558 /* TODO: Implement procedure pointers. */
559 if (attr->procedure && attr->pointer)
560 {
561 gfc_error ("Fortran 2003: Procedure pointers at %L are "
562 "not yet implemented in gfortran", where);
563 return FAILURE;
564 }
565
566 a1 = gfc_code2string (flavors, attr->flavor);
567
568 if (attr->in_namelist
569 && attr->flavor != FL_VARIABLE
570 && attr->flavor != FL_PROCEDURE
571 && attr->flavor != FL_UNKNOWN)
572 {
573 a2 = in_namelist;
574 goto conflict;
575 }
576
577 switch (attr->flavor)
578 {
579 case FL_PROGRAM:
580 case FL_BLOCK_DATA:
581 case FL_MODULE:
582 case FL_LABEL:
583 conf2 (dimension);
584 conf2 (dummy);
585 conf2 (volatile_);
586 conf2 (pointer);
587 conf2 (protected);
588 conf2 (target);
589 conf2 (external);
590 conf2 (intrinsic);
591 conf2 (allocatable);
592 conf2 (result);
593 conf2 (in_namelist);
594 conf2 (optional);
595 conf2 (function);
596 conf2 (subroutine);
597 conf2 (threadprivate);
598 break;
599
600 case FL_VARIABLE:
601 case FL_NAMELIST:
602 break;
603
604 case FL_PROCEDURE:
605 conf2 (intent);
606
607 if (attr->subroutine)
608 {
609 conf2 (pointer);
610 conf2 (target);
611 conf2 (allocatable);
612 conf2 (result);
613 conf2 (in_namelist);
614 conf2 (dimension);
615 conf2 (function);
616 conf2 (threadprivate);
617 }
618
619 switch (attr->proc)
620 {
621 case PROC_ST_FUNCTION:
622 conf2 (in_common);
623 conf2 (dummy);
624 break;
625
626 case PROC_MODULE:
627 conf2 (dummy);
628 break;
629
630 case PROC_DUMMY:
631 conf2 (result);
632 conf2 (in_common);
633 conf2 (threadprivate);
634 break;
635
636 default:
637 break;
638 }
639
640 break;
641
642 case FL_DERIVED:
643 conf2 (dummy);
644 conf2 (pointer);
645 conf2 (target);
646 conf2 (external);
647 conf2 (intrinsic);
648 conf2 (allocatable);
649 conf2 (optional);
650 conf2 (entry);
651 conf2 (function);
652 conf2 (subroutine);
653 conf2 (threadprivate);
654
655 if (attr->intent != INTENT_UNKNOWN)
656 {
657 a2 = intent;
658 goto conflict;
659 }
660 break;
661
662 case FL_PARAMETER:
663 conf2 (external);
664 conf2 (intrinsic);
665 conf2 (optional);
666 conf2 (allocatable);
667 conf2 (function);
668 conf2 (subroutine);
669 conf2 (entry);
670 conf2 (pointer);
671 conf2 (protected);
672 conf2 (target);
673 conf2 (dummy);
674 conf2 (in_common);
675 conf2 (value);
676 conf2 (volatile_);
677 conf2 (threadprivate);
678 conf2 (value);
679 conf2 (is_bind_c);
680 break;
681
682 default:
683 break;
684 }
685
686 return SUCCESS;
687
688 conflict:
689 if (name == NULL)
690 gfc_error ("%s attribute conflicts with %s attribute at %L",
691 a1, a2, where);
692 else
693 gfc_error ("%s attribute conflicts with %s attribute in '%s' at %L",
694 a1, a2, name, where);
695
696 return FAILURE;
697
698 conflict_std:
699 if (name == NULL)
700 {
701 return gfc_notify_std (standard, "Fortran 2003: %s attribute "
702 "with %s attribute at %L", a1, a2,
703 where);
704 }
705 else
706 {
707 return gfc_notify_std (standard, "Fortran 2003: %s attribute "
708 "with %s attribute in '%s' at %L",
709 a1, a2, name, where);
710 }
711 }
712
713 #undef conf
714 #undef conf2
715 #undef conf_std
716
717
718 /* Mark a symbol as referenced. */
719
720 void
721 gfc_set_sym_referenced (gfc_symbol *sym)
722 {
723
724 if (sym->attr.referenced)
725 return;
726
727 sym->attr.referenced = 1;
728
729 /* Remember which order dummy variables are accessed in. */
730 if (sym->attr.dummy)
731 sym->dummy_order = next_dummy_order++;
732 }
733
734
735 /* Common subroutine called by attribute changing subroutines in order
736 to prevent them from changing a symbol that has been
737 use-associated. Returns zero if it is OK to change the symbol,
738 nonzero if not. */
739
740 static int
741 check_used (symbol_attribute *attr, const char *name, locus *where)
742 {
743
744 if (attr->use_assoc == 0)
745 return 0;
746
747 if (where == NULL)
748 where = &gfc_current_locus;
749
750 if (name == NULL)
751 gfc_error ("Cannot change attributes of USE-associated symbol at %L",
752 where);
753 else
754 gfc_error ("Cannot change attributes of USE-associated symbol %s at %L",
755 name, where);
756
757 return 1;
758 }
759
760
761 /* Generate an error because of a duplicate attribute. */
762
763 static void
764 duplicate_attr (const char *attr, locus *where)
765 {
766
767 if (where == NULL)
768 where = &gfc_current_locus;
769
770 gfc_error ("Duplicate %s attribute specified at %L", attr, where);
771 }
772
773
774 /* Called from decl.c (attr_decl1) to check attributes, when declared
775 separately. */
776
777 try
778 gfc_add_attribute (symbol_attribute *attr, locus *where)
779 {
780
781 if (check_used (attr, NULL, where))
782 return FAILURE;
783
784 return check_conflict (attr, NULL, where);
785 }
786
787 try
788 gfc_add_allocatable (symbol_attribute *attr, locus *where)
789 {
790
791 if (check_used (attr, NULL, where))
792 return FAILURE;
793
794 if (attr->allocatable)
795 {
796 duplicate_attr ("ALLOCATABLE", where);
797 return FAILURE;
798 }
799
800 attr->allocatable = 1;
801 return check_conflict (attr, NULL, where);
802 }
803
804
805 try
806 gfc_add_dimension (symbol_attribute *attr, const char *name, locus *where)
807 {
808
809 if (check_used (attr, name, where))
810 return FAILURE;
811
812 if (attr->dimension)
813 {
814 duplicate_attr ("DIMENSION", where);
815 return FAILURE;
816 }
817
818 attr->dimension = 1;
819 return check_conflict (attr, name, where);
820 }
821
822
823 try
824 gfc_add_external (symbol_attribute *attr, locus *where)
825 {
826
827 if (check_used (attr, NULL, where))
828 return FAILURE;
829
830 if (attr->external)
831 {
832 duplicate_attr ("EXTERNAL", where);
833 return FAILURE;
834 }
835
836 attr->external = 1;
837
838 return check_conflict (attr, NULL, where);
839 }
840
841
842 try
843 gfc_add_intrinsic (symbol_attribute *attr, locus *where)
844 {
845
846 if (check_used (attr, NULL, where))
847 return FAILURE;
848
849 if (attr->intrinsic)
850 {
851 duplicate_attr ("INTRINSIC", where);
852 return FAILURE;
853 }
854
855 attr->intrinsic = 1;
856
857 return check_conflict (attr, NULL, where);
858 }
859
860
861 try
862 gfc_add_optional (symbol_attribute *attr, locus *where)
863 {
864
865 if (check_used (attr, NULL, where))
866 return FAILURE;
867
868 if (attr->optional)
869 {
870 duplicate_attr ("OPTIONAL", where);
871 return FAILURE;
872 }
873
874 attr->optional = 1;
875 return check_conflict (attr, NULL, where);
876 }
877
878
879 try
880 gfc_add_pointer (symbol_attribute *attr, locus *where)
881 {
882
883 if (check_used (attr, NULL, where))
884 return FAILURE;
885
886 attr->pointer = 1;
887 return check_conflict (attr, NULL, where);
888 }
889
890
891 try
892 gfc_add_cray_pointer (symbol_attribute *attr, locus *where)
893 {
894
895 if (check_used (attr, NULL, where))
896 return FAILURE;
897
898 attr->cray_pointer = 1;
899 return check_conflict (attr, NULL, where);
900 }
901
902
903 try
904 gfc_add_cray_pointee (symbol_attribute *attr, locus *where)
905 {
906
907 if (check_used (attr, NULL, where))
908 return FAILURE;
909
910 if (attr->cray_pointee)
911 {
912 gfc_error ("Cray Pointee at %L appears in multiple pointer()"
913 " statements", where);
914 return FAILURE;
915 }
916
917 attr->cray_pointee = 1;
918 return check_conflict (attr, NULL, where);
919 }
920
921
922 try
923 gfc_add_protected (symbol_attribute *attr, const char *name, locus *where)
924 {
925 if (check_used (attr, name, where))
926 return FAILURE;
927
928 if (attr->protected)
929 {
930 if (gfc_notify_std (GFC_STD_LEGACY,
931 "Duplicate PROTECTED attribute specified at %L",
932 where)
933 == FAILURE)
934 return FAILURE;
935 }
936
937 attr->protected = 1;
938 return check_conflict (attr, name, where);
939 }
940
941
942 try
943 gfc_add_result (symbol_attribute *attr, const char *name, locus *where)
944 {
945
946 if (check_used (attr, name, where))
947 return FAILURE;
948
949 attr->result = 1;
950 return check_conflict (attr, name, where);
951 }
952
953
954 try
955 gfc_add_save (symbol_attribute *attr, const char *name, locus *where)
956 {
957
958 if (check_used (attr, name, where))
959 return FAILURE;
960
961 if (gfc_pure (NULL))
962 {
963 gfc_error
964 ("SAVE attribute at %L cannot be specified in a PURE procedure",
965 where);
966 return FAILURE;
967 }
968
969 if (attr->save == SAVE_EXPLICIT)
970 {
971 if (gfc_notify_std (GFC_STD_LEGACY,
972 "Duplicate SAVE attribute specified at %L",
973 where)
974 == FAILURE)
975 return FAILURE;
976 }
977
978 attr->save = SAVE_EXPLICIT;
979 return check_conflict (attr, name, where);
980 }
981
982
983 try
984 gfc_add_value (symbol_attribute *attr, const char *name, locus *where)
985 {
986
987 if (check_used (attr, name, where))
988 return FAILURE;
989
990 if (attr->value)
991 {
992 if (gfc_notify_std (GFC_STD_LEGACY,
993 "Duplicate VALUE attribute specified at %L",
994 where)
995 == FAILURE)
996 return FAILURE;
997 }
998
999 attr->value = 1;
1000 return check_conflict (attr, name, where);
1001 }
1002
1003
1004 try
1005 gfc_add_volatile (symbol_attribute *attr, const char *name, locus *where)
1006 {
1007 /* No check_used needed as 11.2.1 of the F2003 standard allows
1008 that the local identifier made accessible by a use statement can be
1009 given a VOLATILE attribute. */
1010
1011 if (attr->volatile_ && attr->volatile_ns == gfc_current_ns)
1012 if (gfc_notify_std (GFC_STD_LEGACY,
1013 "Duplicate VOLATILE attribute specified at %L", where)
1014 == FAILURE)
1015 return FAILURE;
1016
1017 attr->volatile_ = 1;
1018 attr->volatile_ns = gfc_current_ns;
1019 return check_conflict (attr, name, where);
1020 }
1021
1022
1023 try
1024 gfc_add_threadprivate (symbol_attribute *attr, const char *name, locus *where)
1025 {
1026
1027 if (check_used (attr, name, where))
1028 return FAILURE;
1029
1030 if (attr->threadprivate)
1031 {
1032 duplicate_attr ("THREADPRIVATE", where);
1033 return FAILURE;
1034 }
1035
1036 attr->threadprivate = 1;
1037 return check_conflict (attr, name, where);
1038 }
1039
1040
1041 try
1042 gfc_add_target (symbol_attribute *attr, locus *where)
1043 {
1044
1045 if (check_used (attr, NULL, where))
1046 return FAILURE;
1047
1048 if (attr->target)
1049 {
1050 duplicate_attr ("TARGET", where);
1051 return FAILURE;
1052 }
1053
1054 attr->target = 1;
1055 return check_conflict (attr, NULL, where);
1056 }
1057
1058
1059 try
1060 gfc_add_dummy (symbol_attribute *attr, const char *name, locus *where)
1061 {
1062
1063 if (check_used (attr, name, where))
1064 return FAILURE;
1065
1066 /* Duplicate dummy arguments are allowed due to ENTRY statements. */
1067 attr->dummy = 1;
1068 return check_conflict (attr, name, where);
1069 }
1070
1071
1072 try
1073 gfc_add_in_common (symbol_attribute *attr, const char *name, locus *where)
1074 {
1075
1076 if (check_used (attr, name, where))
1077 return FAILURE;
1078
1079 /* Duplicate attribute already checked for. */
1080 attr->in_common = 1;
1081 if (check_conflict (attr, name, where) == FAILURE)
1082 return FAILURE;
1083
1084 if (attr->flavor == FL_VARIABLE)
1085 return SUCCESS;
1086
1087 return gfc_add_flavor (attr, FL_VARIABLE, name, where);
1088 }
1089
1090
1091 try
1092 gfc_add_in_equivalence (symbol_attribute *attr, const char *name, locus *where)
1093 {
1094
1095 /* Duplicate attribute already checked for. */
1096 attr->in_equivalence = 1;
1097 if (check_conflict (attr, name, where) == FAILURE)
1098 return FAILURE;
1099
1100 if (attr->flavor == FL_VARIABLE)
1101 return SUCCESS;
1102
1103 return gfc_add_flavor (attr, FL_VARIABLE, name, where);
1104 }
1105
1106
1107 try
1108 gfc_add_data (symbol_attribute *attr, const char *name, locus *where)
1109 {
1110
1111 if (check_used (attr, name, where))
1112 return FAILURE;
1113
1114 attr->data = 1;
1115 return check_conflict (attr, name, where);
1116 }
1117
1118
1119 try
1120 gfc_add_in_namelist (symbol_attribute *attr, const char *name, locus *where)
1121 {
1122
1123 attr->in_namelist = 1;
1124 return check_conflict (attr, name, where);
1125 }
1126
1127
1128 try
1129 gfc_add_sequence (symbol_attribute *attr, const char *name, locus *where)
1130 {
1131
1132 if (check_used (attr, name, where))
1133 return FAILURE;
1134
1135 attr->sequence = 1;
1136 return check_conflict (attr, name, where);
1137 }
1138
1139
1140 try
1141 gfc_add_elemental (symbol_attribute *attr, locus *where)
1142 {
1143
1144 if (check_used (attr, NULL, where))
1145 return FAILURE;
1146
1147 if (attr->elemental)
1148 {
1149 duplicate_attr ("ELEMENTAL", where);
1150 return FAILURE;
1151 }
1152
1153 attr->elemental = 1;
1154 return check_conflict (attr, NULL, where);
1155 }
1156
1157
1158 try
1159 gfc_add_pure (symbol_attribute *attr, locus *where)
1160 {
1161
1162 if (check_used (attr, NULL, where))
1163 return FAILURE;
1164
1165 if (attr->pure)
1166 {
1167 duplicate_attr ("PURE", where);
1168 return FAILURE;
1169 }
1170
1171 attr->pure = 1;
1172 return check_conflict (attr, NULL, where);
1173 }
1174
1175
1176 try
1177 gfc_add_recursive (symbol_attribute *attr, locus *where)
1178 {
1179
1180 if (check_used (attr, NULL, where))
1181 return FAILURE;
1182
1183 if (attr->recursive)
1184 {
1185 duplicate_attr ("RECURSIVE", where);
1186 return FAILURE;
1187 }
1188
1189 attr->recursive = 1;
1190 return check_conflict (attr, NULL, where);
1191 }
1192
1193
1194 try
1195 gfc_add_entry (symbol_attribute *attr, const char *name, locus *where)
1196 {
1197
1198 if (check_used (attr, name, where))
1199 return FAILURE;
1200
1201 if (attr->entry)
1202 {
1203 duplicate_attr ("ENTRY", where);
1204 return FAILURE;
1205 }
1206
1207 attr->entry = 1;
1208 return check_conflict (attr, name, where);
1209 }
1210
1211
1212 try
1213 gfc_add_function (symbol_attribute *attr, const char *name, locus *where)
1214 {
1215
1216 if (attr->flavor != FL_PROCEDURE
1217 && gfc_add_flavor (attr, FL_PROCEDURE, name, where) == FAILURE)
1218 return FAILURE;
1219
1220 attr->function = 1;
1221 return check_conflict (attr, name, where);
1222 }
1223
1224
1225 try
1226 gfc_add_subroutine (symbol_attribute *attr, const char *name, locus *where)
1227 {
1228
1229 if (attr->flavor != FL_PROCEDURE
1230 && gfc_add_flavor (attr, FL_PROCEDURE, name, where) == FAILURE)
1231 return FAILURE;
1232
1233 attr->subroutine = 1;
1234 return check_conflict (attr, name, where);
1235 }
1236
1237
1238 try
1239 gfc_add_generic (symbol_attribute *attr, const char *name, locus *where)
1240 {
1241
1242 if (attr->flavor != FL_PROCEDURE
1243 && gfc_add_flavor (attr, FL_PROCEDURE, name, where) == FAILURE)
1244 return FAILURE;
1245
1246 attr->generic = 1;
1247 return check_conflict (attr, name, where);
1248 }
1249
1250
1251 try
1252 gfc_add_proc (symbol_attribute *attr, const char *name, locus *where)
1253 {
1254
1255 if (check_used (attr, NULL, where))
1256 return FAILURE;
1257
1258 if (attr->flavor != FL_PROCEDURE
1259 && gfc_add_flavor (attr, FL_PROCEDURE, name, where) == FAILURE)
1260 return FAILURE;
1261
1262 if (attr->procedure)
1263 {
1264 duplicate_attr ("PROCEDURE", where);
1265 return FAILURE;
1266 }
1267
1268 attr->procedure = 1;
1269
1270 return check_conflict (attr, NULL, where);
1271 }
1272
1273
1274 /* Flavors are special because some flavors are not what Fortran
1275 considers attributes and can be reaffirmed multiple times. */
1276
1277 try
1278 gfc_add_flavor (symbol_attribute *attr, sym_flavor f, const char *name,
1279 locus *where)
1280 {
1281
1282 if ((f == FL_PROGRAM || f == FL_BLOCK_DATA || f == FL_MODULE
1283 || f == FL_PARAMETER || f == FL_LABEL || f == FL_DERIVED
1284 || f == FL_NAMELIST) && check_used (attr, name, where))
1285 return FAILURE;
1286
1287 if (attr->flavor == f && f == FL_VARIABLE)
1288 return SUCCESS;
1289
1290 if (attr->flavor != FL_UNKNOWN)
1291 {
1292 if (where == NULL)
1293 where = &gfc_current_locus;
1294
1295 if (name)
1296 gfc_error ("%s attribute of '%s' conflicts with %s attribute at %L",
1297 gfc_code2string (flavors, attr->flavor), name,
1298 gfc_code2string (flavors, f), where);
1299 else
1300 gfc_error ("%s attribute conflicts with %s attribute at %L",
1301 gfc_code2string (flavors, attr->flavor),
1302 gfc_code2string (flavors, f), where);
1303
1304 return FAILURE;
1305 }
1306
1307 attr->flavor = f;
1308
1309 return check_conflict (attr, name, where);
1310 }
1311
1312
1313 try
1314 gfc_add_procedure (symbol_attribute *attr, procedure_type t,
1315 const char *name, locus *where)
1316 {
1317
1318 if (check_used (attr, name, where))
1319 return FAILURE;
1320
1321 if (attr->flavor != FL_PROCEDURE
1322 && gfc_add_flavor (attr, FL_PROCEDURE, name, where) == FAILURE)
1323 return FAILURE;
1324
1325 if (where == NULL)
1326 where = &gfc_current_locus;
1327
1328 if (attr->proc != PROC_UNKNOWN)
1329 {
1330 gfc_error ("%s procedure at %L is already declared as %s procedure",
1331 gfc_code2string (procedures, t), where,
1332 gfc_code2string (procedures, attr->proc));
1333
1334 return FAILURE;
1335 }
1336
1337 attr->proc = t;
1338
1339 /* Statement functions are always scalar and functions. */
1340 if (t == PROC_ST_FUNCTION
1341 && ((!attr->function && gfc_add_function (attr, name, where) == FAILURE)
1342 || attr->dimension))
1343 return FAILURE;
1344
1345 return check_conflict (attr, name, where);
1346 }
1347
1348
1349 try
1350 gfc_add_intent (symbol_attribute *attr, sym_intent intent, locus *where)
1351 {
1352
1353 if (check_used (attr, NULL, where))
1354 return FAILURE;
1355
1356 if (attr->intent == INTENT_UNKNOWN)
1357 {
1358 attr->intent = intent;
1359 return check_conflict (attr, NULL, where);
1360 }
1361
1362 if (where == NULL)
1363 where = &gfc_current_locus;
1364
1365 gfc_error ("INTENT (%s) conflicts with INTENT(%s) at %L",
1366 gfc_intent_string (attr->intent),
1367 gfc_intent_string (intent), where);
1368
1369 return FAILURE;
1370 }
1371
1372
1373 /* No checks for use-association in public and private statements. */
1374
1375 try
1376 gfc_add_access (symbol_attribute *attr, gfc_access access,
1377 const char *name, locus *where)
1378 {
1379
1380 if (attr->access == ACCESS_UNKNOWN)
1381 {
1382 attr->access = access;
1383 return check_conflict (attr, name, where);
1384 }
1385
1386 if (where == NULL)
1387 where = &gfc_current_locus;
1388 gfc_error ("ACCESS specification at %L was already specified", where);
1389
1390 return FAILURE;
1391 }
1392
1393
1394 /* Set the is_bind_c field for the given symbol_attribute. */
1395
1396 try
1397 gfc_add_is_bind_c (symbol_attribute *attr, const char *name, locus *where,
1398 int is_proc_lang_bind_spec)
1399 {
1400
1401 if (is_proc_lang_bind_spec == 0 && attr->flavor == FL_PROCEDURE)
1402 gfc_error_now ("BIND(C) attribute at %L can only be used for "
1403 "variables or common blocks", where);
1404 else if (attr->is_bind_c)
1405 gfc_error_now ("Duplicate BIND attribute specified at %L", where);
1406 else
1407 attr->is_bind_c = 1;
1408
1409 if (where == NULL)
1410 where = &gfc_current_locus;
1411
1412 if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: BIND(C) at %L", where)
1413 == FAILURE)
1414 return FAILURE;
1415
1416 return check_conflict (attr, name, where);
1417 }
1418
1419
1420 try
1421 gfc_add_explicit_interface (gfc_symbol *sym, ifsrc source,
1422 gfc_formal_arglist * formal, locus *where)
1423 {
1424
1425 if (check_used (&sym->attr, sym->name, where))
1426 return FAILURE;
1427
1428 if (where == NULL)
1429 where = &gfc_current_locus;
1430
1431 if (sym->attr.if_source != IFSRC_UNKNOWN
1432 && sym->attr.if_source != IFSRC_DECL)
1433 {
1434 gfc_error ("Symbol '%s' at %L already has an explicit interface",
1435 sym->name, where);
1436 return FAILURE;
1437 }
1438
1439 sym->formal = formal;
1440 sym->attr.if_source = source;
1441
1442 return SUCCESS;
1443 }
1444
1445
1446 /* Add a type to a symbol. */
1447
1448 try
1449 gfc_add_type (gfc_symbol *sym, gfc_typespec *ts, locus *where)
1450 {
1451 sym_flavor flavor;
1452
1453 if (where == NULL)
1454 where = &gfc_current_locus;
1455
1456 if (sym->ts.type != BT_UNKNOWN)
1457 {
1458 const char *msg = "Symbol '%s' at %L already has basic type of %s";
1459 if (!(sym->ts.type == ts->type
1460 && (sym->attr.flavor == FL_PROCEDURE || sym->attr.result))
1461 || gfc_notification_std (GFC_STD_GNU) == ERROR
1462 || pedantic)
1463 {
1464 gfc_error (msg, sym->name, where, gfc_basic_typename (sym->ts.type));
1465 return FAILURE;
1466 }
1467 else if (gfc_notify_std (GFC_STD_GNU, msg, sym->name, where,
1468 gfc_basic_typename (sym->ts.type)) == FAILURE)
1469 return FAILURE;
1470 }
1471
1472 flavor = sym->attr.flavor;
1473
1474 if (flavor == FL_PROGRAM || flavor == FL_BLOCK_DATA || flavor == FL_MODULE
1475 || flavor == FL_LABEL
1476 || (flavor == FL_PROCEDURE && sym->attr.subroutine)
1477 || flavor == FL_DERIVED || flavor == FL_NAMELIST)
1478 {
1479 gfc_error ("Symbol '%s' at %L cannot have a type", sym->name, where);
1480 return FAILURE;
1481 }
1482
1483 sym->ts = *ts;
1484 return SUCCESS;
1485 }
1486
1487
1488 /* Clears all attributes. */
1489
1490 void
1491 gfc_clear_attr (symbol_attribute *attr)
1492 {
1493 memset (attr, 0, sizeof (symbol_attribute));
1494 }
1495
1496
1497 /* Check for missing attributes in the new symbol. Currently does
1498 nothing, but it's not clear that it is unnecessary yet. */
1499
1500 try
1501 gfc_missing_attr (symbol_attribute *attr ATTRIBUTE_UNUSED,
1502 locus *where ATTRIBUTE_UNUSED)
1503 {
1504
1505 return SUCCESS;
1506 }
1507
1508
1509 /* Copy an attribute to a symbol attribute, bit by bit. Some
1510 attributes have a lot of side-effects but cannot be present given
1511 where we are called from, so we ignore some bits. */
1512
1513 try
1514 gfc_copy_attr (symbol_attribute *dest, symbol_attribute *src, locus *where)
1515 {
1516 int is_proc_lang_bind_spec;
1517
1518 if (src->allocatable && gfc_add_allocatable (dest, where) == FAILURE)
1519 goto fail;
1520
1521 if (src->dimension && gfc_add_dimension (dest, NULL, where) == FAILURE)
1522 goto fail;
1523 if (src->optional && gfc_add_optional (dest, where) == FAILURE)
1524 goto fail;
1525 if (src->pointer && gfc_add_pointer (dest, where) == FAILURE)
1526 goto fail;
1527 if (src->protected && gfc_add_protected (dest, NULL, where) == FAILURE)
1528 goto fail;
1529 if (src->save && gfc_add_save (dest, NULL, where) == FAILURE)
1530 goto fail;
1531 if (src->value && gfc_add_value (dest, NULL, where) == FAILURE)
1532 goto fail;
1533 if (src->volatile_ && gfc_add_volatile (dest, NULL, where) == FAILURE)
1534 goto fail;
1535 if (src->threadprivate
1536 && gfc_add_threadprivate (dest, NULL, where) == FAILURE)
1537 goto fail;
1538 if (src->target && gfc_add_target (dest, where) == FAILURE)
1539 goto fail;
1540 if (src->dummy && gfc_add_dummy (dest, NULL, where) == FAILURE)
1541 goto fail;
1542 if (src->result && gfc_add_result (dest, NULL, where) == FAILURE)
1543 goto fail;
1544 if (src->entry)
1545 dest->entry = 1;
1546
1547 if (src->in_namelist && gfc_add_in_namelist (dest, NULL, where) == FAILURE)
1548 goto fail;
1549
1550 if (src->in_common && gfc_add_in_common (dest, NULL, where) == FAILURE)
1551 goto fail;
1552
1553 if (src->generic && gfc_add_generic (dest, NULL, where) == FAILURE)
1554 goto fail;
1555 if (src->function && gfc_add_function (dest, NULL, where) == FAILURE)
1556 goto fail;
1557 if (src->subroutine && gfc_add_subroutine (dest, NULL, where) == FAILURE)
1558 goto fail;
1559
1560 if (src->sequence && gfc_add_sequence (dest, NULL, where) == FAILURE)
1561 goto fail;
1562 if (src->elemental && gfc_add_elemental (dest, where) == FAILURE)
1563 goto fail;
1564 if (src->pure && gfc_add_pure (dest, where) == FAILURE)
1565 goto fail;
1566 if (src->recursive && gfc_add_recursive (dest, where) == FAILURE)
1567 goto fail;
1568
1569 if (src->flavor != FL_UNKNOWN
1570 && gfc_add_flavor (dest, src->flavor, NULL, where) == FAILURE)
1571 goto fail;
1572
1573 if (src->intent != INTENT_UNKNOWN
1574 && gfc_add_intent (dest, src->intent, where) == FAILURE)
1575 goto fail;
1576
1577 if (src->access != ACCESS_UNKNOWN
1578 && gfc_add_access (dest, src->access, NULL, where) == FAILURE)
1579 goto fail;
1580
1581 if (gfc_missing_attr (dest, where) == FAILURE)
1582 goto fail;
1583
1584 if (src->cray_pointer && gfc_add_cray_pointer (dest, where) == FAILURE)
1585 goto fail;
1586 if (src->cray_pointee && gfc_add_cray_pointee (dest, where) == FAILURE)
1587 goto fail;
1588
1589 is_proc_lang_bind_spec = (src->flavor == FL_PROCEDURE ? 1 : 0);
1590 if (src->is_bind_c
1591 && gfc_add_is_bind_c (dest, NULL, where, is_proc_lang_bind_spec)
1592 != SUCCESS)
1593 return FAILURE;
1594
1595 if (src->is_c_interop)
1596 dest->is_c_interop = 1;
1597 if (src->is_iso_c)
1598 dest->is_iso_c = 1;
1599
1600 if (src->external && gfc_add_external (dest, where) == FAILURE)
1601 goto fail;
1602 if (src->intrinsic && gfc_add_intrinsic (dest, where) == FAILURE)
1603 goto fail;
1604
1605 return SUCCESS;
1606
1607 fail:
1608 return FAILURE;
1609 }
1610
1611
1612 /************** Component name management ************/
1613
1614 /* Component names of a derived type form their own little namespaces
1615 that are separate from all other spaces. The space is composed of
1616 a singly linked list of gfc_component structures whose head is
1617 located in the parent symbol. */
1618
1619
1620 /* Add a component name to a symbol. The call fails if the name is
1621 already present. On success, the component pointer is modified to
1622 point to the additional component structure. */
1623
1624 try
1625 gfc_add_component (gfc_symbol *sym, const char *name,
1626 gfc_component **component)
1627 {
1628 gfc_component *p, *tail;
1629
1630 tail = NULL;
1631
1632 for (p = sym->components; p; p = p->next)
1633 {
1634 if (strcmp (p->name, name) == 0)
1635 {
1636 gfc_error ("Component '%s' at %C already declared at %L",
1637 name, &p->loc);
1638 return FAILURE;
1639 }
1640
1641 tail = p;
1642 }
1643
1644 /* Allocate a new component. */
1645 p = gfc_get_component ();
1646
1647 if (tail == NULL)
1648 sym->components = p;
1649 else
1650 tail->next = p;
1651
1652 p->name = gfc_get_string (name);
1653 p->loc = gfc_current_locus;
1654
1655 *component = p;
1656 return SUCCESS;
1657 }
1658
1659
1660 /* Recursive function to switch derived types of all symbol in a
1661 namespace. */
1662
1663 static void
1664 switch_types (gfc_symtree *st, gfc_symbol *from, gfc_symbol *to)
1665 {
1666 gfc_symbol *sym;
1667
1668 if (st == NULL)
1669 return;
1670
1671 sym = st->n.sym;
1672 if (sym->ts.type == BT_DERIVED && sym->ts.derived == from)
1673 sym->ts.derived = to;
1674
1675 switch_types (st->left, from, to);
1676 switch_types (st->right, from, to);
1677 }
1678
1679
1680 /* This subroutine is called when a derived type is used in order to
1681 make the final determination about which version to use. The
1682 standard requires that a type be defined before it is 'used', but
1683 such types can appear in IMPLICIT statements before the actual
1684 definition. 'Using' in this context means declaring a variable to
1685 be that type or using the type constructor.
1686
1687 If a type is used and the components haven't been defined, then we
1688 have to have a derived type in a parent unit. We find the node in
1689 the other namespace and point the symtree node in this namespace to
1690 that node. Further reference to this name point to the correct
1691 node. If we can't find the node in a parent namespace, then we have
1692 an error.
1693
1694 This subroutine takes a pointer to a symbol node and returns a
1695 pointer to the translated node or NULL for an error. Usually there
1696 is no translation and we return the node we were passed. */
1697
1698 gfc_symbol *
1699 gfc_use_derived (gfc_symbol *sym)
1700 {
1701 gfc_symbol *s;
1702 gfc_typespec *t;
1703 gfc_symtree *st;
1704 int i;
1705
1706 if (sym->components != NULL || sym->attr.zero_comp)
1707 return sym; /* Already defined. */
1708
1709 if (sym->ns->parent == NULL)
1710 goto bad;
1711
1712 if (gfc_find_symbol (sym->name, sym->ns->parent, 1, &s))
1713 {
1714 gfc_error ("Symbol '%s' at %C is ambiguous", sym->name);
1715 return NULL;
1716 }
1717
1718 if (s == NULL || s->attr.flavor != FL_DERIVED)
1719 goto bad;
1720
1721 /* Get rid of symbol sym, translating all references to s. */
1722 for (i = 0; i < GFC_LETTERS; i++)
1723 {
1724 t = &sym->ns->default_type[i];
1725 if (t->derived == sym)
1726 t->derived = s;
1727 }
1728
1729 st = gfc_find_symtree (sym->ns->sym_root, sym->name);
1730 st->n.sym = s;
1731
1732 s->refs++;
1733
1734 /* Unlink from list of modified symbols. */
1735 gfc_commit_symbol (sym);
1736
1737 switch_types (sym->ns->sym_root, sym, s);
1738
1739 /* TODO: Also have to replace sym -> s in other lists like
1740 namelists, common lists and interface lists. */
1741 gfc_free_symbol (sym);
1742
1743 return s;
1744
1745 bad:
1746 gfc_error ("Derived type '%s' at %C is being used before it is defined",
1747 sym->name);
1748 return NULL;
1749 }
1750
1751
1752 /* Given a derived type node and a component name, try to locate the
1753 component structure. Returns the NULL pointer if the component is
1754 not found or the components are private. */
1755
1756 gfc_component *
1757 gfc_find_component (gfc_symbol *sym, const char *name)
1758 {
1759 gfc_component *p;
1760
1761 if (name == NULL)
1762 return NULL;
1763
1764 sym = gfc_use_derived (sym);
1765
1766 if (sym == NULL)
1767 return NULL;
1768
1769 for (p = sym->components; p; p = p->next)
1770 if (strcmp (p->name, name) == 0)
1771 break;
1772
1773 if (p == NULL)
1774 gfc_error ("'%s' at %C is not a member of the '%s' structure",
1775 name, sym->name);
1776 else
1777 {
1778 if (sym->attr.use_assoc && (sym->component_access == ACCESS_PRIVATE
1779 || p->access == ACCESS_PRIVATE))
1780 {
1781 gfc_error ("Component '%s' at %C is a PRIVATE component of '%s'",
1782 name, sym->name);
1783 p = NULL;
1784 }
1785 }
1786
1787 return p;
1788 }
1789
1790
1791 /* Given a symbol, free all of the component structures and everything
1792 they point to. */
1793
1794 static void
1795 free_components (gfc_component *p)
1796 {
1797 gfc_component *q;
1798
1799 for (; p; p = q)
1800 {
1801 q = p->next;
1802
1803 gfc_free_array_spec (p->as);
1804 gfc_free_expr (p->initializer);
1805
1806 gfc_free (p);
1807 }
1808 }
1809
1810
1811 /* Set component attributes from a standard symbol attribute structure. */
1812
1813 void
1814 gfc_set_component_attr (gfc_component *c, symbol_attribute *attr)
1815 {
1816
1817 c->dimension = attr->dimension;
1818 c->pointer = attr->pointer;
1819 c->allocatable = attr->allocatable;
1820 c->access = attr->access;
1821 }
1822
1823
1824 /* Get a standard symbol attribute structure given the component
1825 structure. */
1826
1827 void
1828 gfc_get_component_attr (symbol_attribute *attr, gfc_component *c)
1829 {
1830
1831 gfc_clear_attr (attr);
1832 attr->dimension = c->dimension;
1833 attr->pointer = c->pointer;
1834 attr->allocatable = c->allocatable;
1835 attr->access = c->access;
1836 }
1837
1838
1839 /******************** Statement label management ********************/
1840
1841 /* Comparison function for statement labels, used for managing the
1842 binary tree. */
1843
1844 static int
1845 compare_st_labels (void *a1, void *b1)
1846 {
1847 int a = ((gfc_st_label *) a1)->value;
1848 int b = ((gfc_st_label *) b1)->value;
1849
1850 return (b - a);
1851 }
1852
1853
1854 /* Free a single gfc_st_label structure, making sure the tree is not
1855 messed up. This function is called only when some parse error
1856 occurs. */
1857
1858 void
1859 gfc_free_st_label (gfc_st_label *label)
1860 {
1861
1862 if (label == NULL)
1863 return;
1864
1865 gfc_delete_bbt (&gfc_current_ns->st_labels, label, compare_st_labels);
1866
1867 if (label->format != NULL)
1868 gfc_free_expr (label->format);
1869
1870 gfc_free (label);
1871 }
1872
1873
1874 /* Free a whole tree of gfc_st_label structures. */
1875
1876 static void
1877 free_st_labels (gfc_st_label *label)
1878 {
1879
1880 if (label == NULL)
1881 return;
1882
1883 free_st_labels (label->left);
1884 free_st_labels (label->right);
1885
1886 if (label->format != NULL)
1887 gfc_free_expr (label->format);
1888 gfc_free (label);
1889 }
1890
1891
1892 /* Given a label number, search for and return a pointer to the label
1893 structure, creating it if it does not exist. */
1894
1895 gfc_st_label *
1896 gfc_get_st_label (int labelno)
1897 {
1898 gfc_st_label *lp;
1899
1900 /* First see if the label is already in this namespace. */
1901 lp = gfc_current_ns->st_labels;
1902 while (lp)
1903 {
1904 if (lp->value == labelno)
1905 return lp;
1906
1907 if (lp->value < labelno)
1908 lp = lp->left;
1909 else
1910 lp = lp->right;
1911 }
1912
1913 lp = gfc_getmem (sizeof (gfc_st_label));
1914
1915 lp->value = labelno;
1916 lp->defined = ST_LABEL_UNKNOWN;
1917 lp->referenced = ST_LABEL_UNKNOWN;
1918
1919 gfc_insert_bbt (&gfc_current_ns->st_labels, lp, compare_st_labels);
1920
1921 return lp;
1922 }
1923
1924
1925 /* Called when a statement with a statement label is about to be
1926 accepted. We add the label to the list of the current namespace,
1927 making sure it hasn't been defined previously and referenced
1928 correctly. */
1929
1930 void
1931 gfc_define_st_label (gfc_st_label *lp, gfc_sl_type type, locus *label_locus)
1932 {
1933 int labelno;
1934
1935 labelno = lp->value;
1936
1937 if (lp->defined != ST_LABEL_UNKNOWN)
1938 gfc_error ("Duplicate statement label %d at %L and %L", labelno,
1939 &lp->where, label_locus);
1940 else
1941 {
1942 lp->where = *label_locus;
1943
1944 switch (type)
1945 {
1946 case ST_LABEL_FORMAT:
1947 if (lp->referenced == ST_LABEL_TARGET)
1948 gfc_error ("Label %d at %C already referenced as branch target",
1949 labelno);
1950 else
1951 lp->defined = ST_LABEL_FORMAT;
1952
1953 break;
1954
1955 case ST_LABEL_TARGET:
1956 if (lp->referenced == ST_LABEL_FORMAT)
1957 gfc_error ("Label %d at %C already referenced as a format label",
1958 labelno);
1959 else
1960 lp->defined = ST_LABEL_TARGET;
1961
1962 break;
1963
1964 default:
1965 lp->defined = ST_LABEL_BAD_TARGET;
1966 lp->referenced = ST_LABEL_BAD_TARGET;
1967 }
1968 }
1969 }
1970
1971
1972 /* Reference a label. Given a label and its type, see if that
1973 reference is consistent with what is known about that label,
1974 updating the unknown state. Returns FAILURE if something goes
1975 wrong. */
1976
1977 try
1978 gfc_reference_st_label (gfc_st_label *lp, gfc_sl_type type)
1979 {
1980 gfc_sl_type label_type;
1981 int labelno;
1982 try rc;
1983
1984 if (lp == NULL)
1985 return SUCCESS;
1986
1987 labelno = lp->value;
1988
1989 if (lp->defined != ST_LABEL_UNKNOWN)
1990 label_type = lp->defined;
1991 else
1992 {
1993 label_type = lp->referenced;
1994 lp->where = gfc_current_locus;
1995 }
1996
1997 if (label_type == ST_LABEL_FORMAT && type == ST_LABEL_TARGET)
1998 {
1999 gfc_error ("Label %d at %C previously used as a FORMAT label", labelno);
2000 rc = FAILURE;
2001 goto done;
2002 }
2003
2004 if ((label_type == ST_LABEL_TARGET || label_type == ST_LABEL_BAD_TARGET)
2005 && type == ST_LABEL_FORMAT)
2006 {
2007 gfc_error ("Label %d at %C previously used as branch target", labelno);
2008 rc = FAILURE;
2009 goto done;
2010 }
2011
2012 lp->referenced = type;
2013 rc = SUCCESS;
2014
2015 done:
2016 return rc;
2017 }
2018
2019
2020 /*******A helper function for creating new expressions*************/
2021
2022
2023 gfc_expr *
2024 gfc_lval_expr_from_sym (gfc_symbol *sym)
2025 {
2026 gfc_expr *lval;
2027 lval = gfc_get_expr ();
2028 lval->expr_type = EXPR_VARIABLE;
2029 lval->where = sym->declared_at;
2030 lval->ts = sym->ts;
2031 lval->symtree = gfc_find_symtree (sym->ns->sym_root, sym->name);
2032
2033 /* It will always be a full array. */
2034 lval->rank = sym->as ? sym->as->rank : 0;
2035 if (lval->rank)
2036 {
2037 lval->ref = gfc_get_ref ();
2038 lval->ref->type = REF_ARRAY;
2039 lval->ref->u.ar.type = AR_FULL;
2040 lval->ref->u.ar.dimen = lval->rank;
2041 lval->ref->u.ar.where = sym->declared_at;
2042 lval->ref->u.ar.as = sym->as;
2043 }
2044
2045 return lval;
2046 }
2047
2048
2049 /************** Symbol table management subroutines ****************/
2050
2051 /* Basic details: Fortran 95 requires a potentially unlimited number
2052 of distinct namespaces when compiling a program unit. This case
2053 occurs during a compilation of internal subprograms because all of
2054 the internal subprograms must be read before we can start
2055 generating code for the host.
2056
2057 Given the tricky nature of the Fortran grammar, we must be able to
2058 undo changes made to a symbol table if the current interpretation
2059 of a statement is found to be incorrect. Whenever a symbol is
2060 looked up, we make a copy of it and link to it. All of these
2061 symbols are kept in a singly linked list so that we can commit or
2062 undo the changes at a later time.
2063
2064 A symtree may point to a symbol node outside of its namespace. In
2065 this case, that symbol has been used as a host associated variable
2066 at some previous time. */
2067
2068 /* Allocate a new namespace structure. Copies the implicit types from
2069 PARENT if PARENT_TYPES is set. */
2070
2071 gfc_namespace *
2072 gfc_get_namespace (gfc_namespace *parent, int parent_types)
2073 {
2074 gfc_namespace *ns;
2075 gfc_typespec *ts;
2076 gfc_intrinsic_op in;
2077 int i;
2078
2079 ns = gfc_getmem (sizeof (gfc_namespace));
2080 ns->sym_root = NULL;
2081 ns->uop_root = NULL;
2082 ns->default_access = ACCESS_UNKNOWN;
2083 ns->parent = parent;
2084
2085 for (in = GFC_INTRINSIC_BEGIN; in != GFC_INTRINSIC_END; in++)
2086 ns->operator_access[in] = ACCESS_UNKNOWN;
2087
2088 /* Initialize default implicit types. */
2089 for (i = 'a'; i <= 'z'; i++)
2090 {
2091 ns->set_flag[i - 'a'] = 0;
2092 ts = &ns->default_type[i - 'a'];
2093
2094 if (parent_types && ns->parent != NULL)
2095 {
2096 /* Copy parent settings. */
2097 *ts = ns->parent->default_type[i - 'a'];
2098 continue;
2099 }
2100
2101 if (gfc_option.flag_implicit_none != 0)
2102 {
2103 gfc_clear_ts (ts);
2104 continue;
2105 }
2106
2107 if ('i' <= i && i <= 'n')
2108 {
2109 ts->type = BT_INTEGER;
2110 ts->kind = gfc_default_integer_kind;
2111 }
2112 else
2113 {
2114 ts->type = BT_REAL;
2115 ts->kind = gfc_default_real_kind;
2116 }
2117 }
2118
2119 ns->refs = 1;
2120
2121 return ns;
2122 }
2123
2124
2125 /* Comparison function for symtree nodes. */
2126
2127 static int
2128 compare_symtree (void *_st1, void *_st2)
2129 {
2130 gfc_symtree *st1, *st2;
2131
2132 st1 = (gfc_symtree *) _st1;
2133 st2 = (gfc_symtree *) _st2;
2134
2135 return strcmp (st1->name, st2->name);
2136 }
2137
2138
2139 /* Allocate a new symtree node and associate it with the new symbol. */
2140
2141 gfc_symtree *
2142 gfc_new_symtree (gfc_symtree **root, const char *name)
2143 {
2144 gfc_symtree *st;
2145
2146 st = gfc_getmem (sizeof (gfc_symtree));
2147 st->name = gfc_get_string (name);
2148
2149 gfc_insert_bbt (root, st, compare_symtree);
2150 return st;
2151 }
2152
2153
2154 /* Delete a symbol from the tree. Does not free the symbol itself! */
2155
2156 static void
2157 delete_symtree (gfc_symtree **root, const char *name)
2158 {
2159 gfc_symtree st, *st0;
2160
2161 st0 = gfc_find_symtree (*root, name);
2162
2163 st.name = gfc_get_string (name);
2164 gfc_delete_bbt (root, &st, compare_symtree);
2165
2166 gfc_free (st0);
2167 }
2168
2169
2170 /* Given a root symtree node and a name, try to find the symbol within
2171 the namespace. Returns NULL if the symbol is not found. */
2172
2173 gfc_symtree *
2174 gfc_find_symtree (gfc_symtree *st, const char *name)
2175 {
2176 int c;
2177
2178 while (st != NULL)
2179 {
2180 c = strcmp (name, st->name);
2181 if (c == 0)
2182 return st;
2183
2184 st = (c < 0) ? st->left : st->right;
2185 }
2186
2187 return NULL;
2188 }
2189
2190
2191 /* Return a symtree node with a name that is guaranteed to be unique
2192 within the namespace and corresponds to an illegal fortran name. */
2193
2194 gfc_symtree *
2195 gfc_get_unique_symtree (gfc_namespace *ns)
2196 {
2197 char name[GFC_MAX_SYMBOL_LEN + 1];
2198 static int serial = 0;
2199
2200 sprintf (name, "@%d", serial++);
2201 return gfc_new_symtree (&ns->sym_root, name);
2202 }
2203
2204
2205 /* Given a name find a user operator node, creating it if it doesn't
2206 exist. These are much simpler than symbols because they can't be
2207 ambiguous with one another. */
2208
2209 gfc_user_op *
2210 gfc_get_uop (const char *name)
2211 {
2212 gfc_user_op *uop;
2213 gfc_symtree *st;
2214
2215 st = gfc_find_symtree (gfc_current_ns->uop_root, name);
2216 if (st != NULL)
2217 return st->n.uop;
2218
2219 st = gfc_new_symtree (&gfc_current_ns->uop_root, name);
2220
2221 uop = st->n.uop = gfc_getmem (sizeof (gfc_user_op));
2222 uop->name = gfc_get_string (name);
2223 uop->access = ACCESS_UNKNOWN;
2224 uop->ns = gfc_current_ns;
2225
2226 return uop;
2227 }
2228
2229
2230 /* Given a name find the user operator node. Returns NULL if it does
2231 not exist. */
2232
2233 gfc_user_op *
2234 gfc_find_uop (const char *name, gfc_namespace *ns)
2235 {
2236 gfc_symtree *st;
2237
2238 if (ns == NULL)
2239 ns = gfc_current_ns;
2240
2241 st = gfc_find_symtree (ns->uop_root, name);
2242 return (st == NULL) ? NULL : st->n.uop;
2243 }
2244
2245
2246 /* Remove a gfc_symbol structure and everything it points to. */
2247
2248 void
2249 gfc_free_symbol (gfc_symbol *sym)
2250 {
2251
2252 if (sym == NULL)
2253 return;
2254
2255 gfc_free_array_spec (sym->as);
2256
2257 free_components (sym->components);
2258
2259 gfc_free_expr (sym->value);
2260
2261 gfc_free_namelist (sym->namelist);
2262
2263 gfc_free_namespace (sym->formal_ns);
2264
2265 if (!sym->attr.generic_copy)
2266 gfc_free_interface (sym->generic);
2267
2268 gfc_free_formal_arglist (sym->formal);
2269
2270 gfc_free (sym);
2271 }
2272
2273
2274 /* Allocate and initialize a new symbol node. */
2275
2276 gfc_symbol *
2277 gfc_new_symbol (const char *name, gfc_namespace *ns)
2278 {
2279 gfc_symbol *p;
2280
2281 p = gfc_getmem (sizeof (gfc_symbol));
2282
2283 gfc_clear_ts (&p->ts);
2284 gfc_clear_attr (&p->attr);
2285 p->ns = ns;
2286
2287 p->declared_at = gfc_current_locus;
2288
2289 if (strlen (name) > GFC_MAX_SYMBOL_LEN)
2290 gfc_internal_error ("new_symbol(): Symbol name too long");
2291
2292 p->name = gfc_get_string (name);
2293
2294 /* Make sure flags for symbol being C bound are clear initially. */
2295 p->attr.is_bind_c = 0;
2296 p->attr.is_iso_c = 0;
2297 /* Make sure the binding label field has a Nul char to start. */
2298 p->binding_label[0] = '\0';
2299
2300 /* Clear the ptrs we may need. */
2301 p->common_block = NULL;
2302
2303 return p;
2304 }
2305
2306
2307 /* Generate an error if a symbol is ambiguous. */
2308
2309 static void
2310 ambiguous_symbol (const char *name, gfc_symtree *st)
2311 {
2312
2313 if (st->n.sym->module)
2314 gfc_error ("Name '%s' at %C is an ambiguous reference to '%s' "
2315 "from module '%s'", name, st->n.sym->name, st->n.sym->module);
2316 else
2317 gfc_error ("Name '%s' at %C is an ambiguous reference to '%s' "
2318 "from current program unit", name, st->n.sym->name);
2319 }
2320
2321
2322 /* Search for a symtree starting in the current namespace, resorting to
2323 any parent namespaces if requested by a nonzero parent_flag.
2324 Returns nonzero if the name is ambiguous. */
2325
2326 int
2327 gfc_find_sym_tree (const char *name, gfc_namespace *ns, int parent_flag,
2328 gfc_symtree **result)
2329 {
2330 gfc_symtree *st;
2331
2332 if (ns == NULL)
2333 ns = gfc_current_ns;
2334
2335 do
2336 {
2337 st = gfc_find_symtree (ns->sym_root, name);
2338 if (st != NULL)
2339 {
2340 *result = st;
2341 /* Ambiguous generic interfaces are permitted, as long
2342 as the specific interfaces are different. */
2343 if (st->ambiguous && !st->n.sym->attr.generic)
2344 {
2345 ambiguous_symbol (name, st);
2346 return 1;
2347 }
2348
2349 return 0;
2350 }
2351
2352 if (!parent_flag)
2353 break;
2354
2355 ns = ns->parent;
2356 }
2357 while (ns != NULL);
2358
2359 *result = NULL;
2360 return 0;
2361 }
2362
2363
2364 /* Same, but returns the symbol instead. */
2365
2366 int
2367 gfc_find_symbol (const char *name, gfc_namespace *ns, int parent_flag,
2368 gfc_symbol **result)
2369 {
2370 gfc_symtree *st;
2371 int i;
2372
2373 i = gfc_find_sym_tree (name, ns, parent_flag, &st);
2374
2375 if (st == NULL)
2376 *result = NULL;
2377 else
2378 *result = st->n.sym;
2379
2380 return i;
2381 }
2382
2383
2384 /* Save symbol with the information necessary to back it out. */
2385
2386 static void
2387 save_symbol_data (gfc_symbol *sym)
2388 {
2389
2390 if (sym->new || sym->old_symbol != NULL)
2391 return;
2392
2393 sym->old_symbol = gfc_getmem (sizeof (gfc_symbol));
2394 *(sym->old_symbol) = *sym;
2395
2396 sym->tlink = changed_syms;
2397 changed_syms = sym;
2398 }
2399
2400
2401 /* Given a name, find a symbol, or create it if it does not exist yet
2402 in the current namespace. If the symbol is found we make sure that
2403 it's OK.
2404
2405 The integer return code indicates
2406 0 All OK
2407 1 The symbol name was ambiguous
2408 2 The name meant to be established was already host associated.
2409
2410 So if the return value is nonzero, then an error was issued. */
2411
2412 int
2413 gfc_get_sym_tree (const char *name, gfc_namespace *ns, gfc_symtree **result)
2414 {
2415 gfc_symtree *st;
2416 gfc_symbol *p;
2417
2418 /* This doesn't usually happen during resolution. */
2419 if (ns == NULL)
2420 ns = gfc_current_ns;
2421
2422 /* Try to find the symbol in ns. */
2423 st = gfc_find_symtree (ns->sym_root, name);
2424
2425 if (st == NULL)
2426 {
2427 /* If not there, create a new symbol. */
2428 p = gfc_new_symbol (name, ns);
2429
2430 /* Add to the list of tentative symbols. */
2431 p->old_symbol = NULL;
2432 p->tlink = changed_syms;
2433 p->mark = 1;
2434 p->new = 1;
2435 changed_syms = p;
2436
2437 st = gfc_new_symtree (&ns->sym_root, name);
2438 st->n.sym = p;
2439 p->refs++;
2440
2441 }
2442 else
2443 {
2444 /* Make sure the existing symbol is OK. Ambiguous
2445 generic interfaces are permitted, as long as the
2446 specific interfaces are different. */
2447 if (st->ambiguous && !st->n.sym->attr.generic)
2448 {
2449 ambiguous_symbol (name, st);
2450 return 1;
2451 }
2452
2453 p = st->n.sym;
2454
2455 if (p->ns != ns && (!p->attr.function || ns->proc_name != p)
2456 && !(ns->proc_name
2457 && ns->proc_name->attr.if_source == IFSRC_IFBODY
2458 && (ns->has_import_set || p->attr.imported)))
2459 {
2460 /* Symbol is from another namespace. */
2461 gfc_error ("Symbol '%s' at %C has already been host associated",
2462 name);
2463 return 2;
2464 }
2465
2466 p->mark = 1;
2467
2468 /* Copy in case this symbol is changed. */
2469 save_symbol_data (p);
2470 }
2471
2472 *result = st;
2473 return 0;
2474 }
2475
2476
2477 int
2478 gfc_get_symbol (const char *name, gfc_namespace *ns, gfc_symbol **result)
2479 {
2480 gfc_symtree *st;
2481 int i;
2482
2483 i = gfc_get_sym_tree (name, ns, &st);
2484 if (i != 0)
2485 return i;
2486
2487 if (st)
2488 *result = st->n.sym;
2489 else
2490 *result = NULL;
2491 return i;
2492 }
2493
2494
2495 /* Subroutine that searches for a symbol, creating it if it doesn't
2496 exist, but tries to host-associate the symbol if possible. */
2497
2498 int
2499 gfc_get_ha_sym_tree (const char *name, gfc_symtree **result)
2500 {
2501 gfc_symtree *st;
2502 int i;
2503
2504 i = gfc_find_sym_tree (name, gfc_current_ns, 0, &st);
2505 if (st != NULL)
2506 {
2507 save_symbol_data (st->n.sym);
2508 *result = st;
2509 return i;
2510 }
2511
2512 if (gfc_current_ns->parent != NULL)
2513 {
2514 i = gfc_find_sym_tree (name, gfc_current_ns->parent, 1, &st);
2515 if (i)
2516 return i;
2517
2518 if (st != NULL)
2519 {
2520 *result = st;
2521 return 0;
2522 }
2523 }
2524
2525 return gfc_get_sym_tree (name, gfc_current_ns, result);
2526 }
2527
2528
2529 int
2530 gfc_get_ha_symbol (const char *name, gfc_symbol **result)
2531 {
2532 int i;
2533 gfc_symtree *st;
2534
2535 i = gfc_get_ha_sym_tree (name, &st);
2536
2537 if (st)
2538 *result = st->n.sym;
2539 else
2540 *result = NULL;
2541
2542 return i;
2543 }
2544
2545 /* Return true if both symbols could refer to the same data object. Does
2546 not take account of aliasing due to equivalence statements. */
2547
2548 int
2549 gfc_symbols_could_alias (gfc_symbol *lsym, gfc_symbol *rsym)
2550 {
2551 /* Aliasing isn't possible if the symbols have different base types. */
2552 if (gfc_compare_types (&lsym->ts, &rsym->ts) == 0)
2553 return 0;
2554
2555 /* Pointers can point to other pointers, target objects and allocatable
2556 objects. Two allocatable objects cannot share the same storage. */
2557 if (lsym->attr.pointer
2558 && (rsym->attr.pointer || rsym->attr.allocatable || rsym->attr.target))
2559 return 1;
2560 if (lsym->attr.target && rsym->attr.pointer)
2561 return 1;
2562 if (lsym->attr.allocatable && rsym->attr.pointer)
2563 return 1;
2564
2565 return 0;
2566 }
2567
2568
2569 /* Undoes all the changes made to symbols in the current statement.
2570 This subroutine is made simpler due to the fact that attributes are
2571 never removed once added. */
2572
2573 void
2574 gfc_undo_symbols (void)
2575 {
2576 gfc_symbol *p, *q, *old;
2577
2578 for (p = changed_syms; p; p = q)
2579 {
2580 q = p->tlink;
2581
2582 if (p->new)
2583 {
2584 /* Symbol was new. */
2585 delete_symtree (&p->ns->sym_root, p->name);
2586
2587 p->refs--;
2588 if (p->refs < 0)
2589 gfc_internal_error ("gfc_undo_symbols(): Negative refs");
2590 if (p->refs == 0)
2591 gfc_free_symbol (p);
2592 continue;
2593 }
2594
2595 /* Restore previous state of symbol. Just copy simple stuff. */
2596 p->mark = 0;
2597 old = p->old_symbol;
2598
2599 p->ts.type = old->ts.type;
2600 p->ts.kind = old->ts.kind;
2601
2602 p->attr = old->attr;
2603
2604 if (p->value != old->value)
2605 {
2606 gfc_free_expr (old->value);
2607 p->value = NULL;
2608 }
2609
2610 if (p->as != old->as)
2611 {
2612 if (p->as)
2613 gfc_free_array_spec (p->as);
2614 p->as = old->as;
2615 }
2616
2617 p->generic = old->generic;
2618 p->component_access = old->component_access;
2619
2620 if (p->namelist != NULL && old->namelist == NULL)
2621 {
2622 gfc_free_namelist (p->namelist);
2623 p->namelist = NULL;
2624 }
2625 else
2626 {
2627 if (p->namelist_tail != old->namelist_tail)
2628 {
2629 gfc_free_namelist (old->namelist_tail);
2630 old->namelist_tail->next = NULL;
2631 }
2632 }
2633
2634 p->namelist_tail = old->namelist_tail;
2635
2636 if (p->formal != old->formal)
2637 {
2638 gfc_free_formal_arglist (p->formal);
2639 p->formal = old->formal;
2640 }
2641
2642 gfc_free (p->old_symbol);
2643 p->old_symbol = NULL;
2644 p->tlink = NULL;
2645 }
2646
2647 changed_syms = NULL;
2648 }
2649
2650
2651 /* Free sym->old_symbol. sym->old_symbol is mostly a shallow copy of sym; the
2652 components of old_symbol that might need deallocation are the "allocatables"
2653 that are restored in gfc_undo_symbols(), with two exceptions: namelist and
2654 namelist_tail. In case these differ between old_symbol and sym, it's just
2655 because sym->namelist has gotten a few more items. */
2656
2657 static void
2658 free_old_symbol (gfc_symbol *sym)
2659 {
2660
2661 if (sym->old_symbol == NULL)
2662 return;
2663
2664 if (sym->old_symbol->as != sym->as)
2665 gfc_free_array_spec (sym->old_symbol->as);
2666
2667 if (sym->old_symbol->value != sym->value)
2668 gfc_free_expr (sym->old_symbol->value);
2669
2670 if (sym->old_symbol->formal != sym->formal)
2671 gfc_free_formal_arglist (sym->old_symbol->formal);
2672
2673 gfc_free (sym->old_symbol);
2674 sym->old_symbol = NULL;
2675 }
2676
2677
2678 /* Makes the changes made in the current statement permanent-- gets
2679 rid of undo information. */
2680
2681 void
2682 gfc_commit_symbols (void)
2683 {
2684 gfc_symbol *p, *q;
2685
2686 for (p = changed_syms; p; p = q)
2687 {
2688 q = p->tlink;
2689 p->tlink = NULL;
2690 p->mark = 0;
2691 p->new = 0;
2692 free_old_symbol (p);
2693 }
2694 changed_syms = NULL;
2695 }
2696
2697
2698 /* Makes the changes made in one symbol permanent -- gets rid of undo
2699 information. */
2700
2701 void
2702 gfc_commit_symbol (gfc_symbol *sym)
2703 {
2704 gfc_symbol *p;
2705
2706 if (changed_syms == sym)
2707 changed_syms = sym->tlink;
2708 else
2709 {
2710 for (p = changed_syms; p; p = p->tlink)
2711 if (p->tlink == sym)
2712 {
2713 p->tlink = sym->tlink;
2714 break;
2715 }
2716 }
2717
2718 sym->tlink = NULL;
2719 sym->mark = 0;
2720 sym->new = 0;
2721
2722 free_old_symbol (sym);
2723 }
2724
2725
2726 /* Recursive function that deletes an entire tree and all the common
2727 head structures it points to. */
2728
2729 void
2730 gfc_free_common_tree (gfc_symtree * common_tree)
2731 {
2732 if (common_tree == NULL)
2733 return;
2734
2735 gfc_free_common_tree (common_tree->left);
2736 gfc_free_common_tree (common_tree->right);
2737
2738 gfc_free (common_tree);
2739 }
2740
2741
2742 /* Recursive function that deletes an entire tree and all the user
2743 operator nodes that it contains. */
2744
2745 static void
2746 free_uop_tree (gfc_symtree *uop_tree)
2747 {
2748
2749 if (uop_tree == NULL)
2750 return;
2751
2752 free_uop_tree (uop_tree->left);
2753 free_uop_tree (uop_tree->right);
2754
2755 gfc_free_interface (uop_tree->n.uop->operator);
2756
2757 gfc_free (uop_tree->n.uop);
2758 gfc_free (uop_tree);
2759 }
2760
2761
2762 /* Recursive function that deletes an entire tree and all the symbols
2763 that it contains. */
2764
2765 static void
2766 free_sym_tree (gfc_symtree *sym_tree)
2767 {
2768 gfc_namespace *ns;
2769 gfc_symbol *sym;
2770
2771 if (sym_tree == NULL)
2772 return;
2773
2774 free_sym_tree (sym_tree->left);
2775 free_sym_tree (sym_tree->right);
2776
2777 sym = sym_tree->n.sym;
2778
2779 sym->refs--;
2780 if (sym->refs < 0)
2781 gfc_internal_error ("free_sym_tree(): Negative refs");
2782
2783 if (sym->formal_ns != NULL && sym->refs == 1)
2784 {
2785 /* As formal_ns contains a reference to sym, delete formal_ns just
2786 before the deletion of sym. */
2787 ns = sym->formal_ns;
2788 sym->formal_ns = NULL;
2789 gfc_free_namespace (ns);
2790 }
2791 else if (sym->refs == 0)
2792 {
2793 /* Go ahead and delete the symbol. */
2794 gfc_free_symbol (sym);
2795 }
2796
2797 gfc_free (sym_tree);
2798 }
2799
2800
2801 /* Free the derived type list. */
2802
2803 static void
2804 gfc_free_dt_list (void)
2805 {
2806 gfc_dt_list *dt, *n;
2807
2808 for (dt = gfc_derived_types; dt; dt = n)
2809 {
2810 n = dt->next;
2811 gfc_free (dt);
2812 }
2813
2814 gfc_derived_types = NULL;
2815 }
2816
2817
2818 /* Free the gfc_equiv_info's. */
2819
2820 static void
2821 gfc_free_equiv_infos (gfc_equiv_info *s)
2822 {
2823 if (s == NULL)
2824 return;
2825 gfc_free_equiv_infos (s->next);
2826 gfc_free (s);
2827 }
2828
2829
2830 /* Free the gfc_equiv_lists. */
2831
2832 static void
2833 gfc_free_equiv_lists (gfc_equiv_list *l)
2834 {
2835 if (l == NULL)
2836 return;
2837 gfc_free_equiv_lists (l->next);
2838 gfc_free_equiv_infos (l->equiv);
2839 gfc_free (l);
2840 }
2841
2842
2843 /* Free a namespace structure and everything below it. Interface
2844 lists associated with intrinsic operators are not freed. These are
2845 taken care of when a specific name is freed. */
2846
2847 void
2848 gfc_free_namespace (gfc_namespace *ns)
2849 {
2850 gfc_charlen *cl, *cl2;
2851 gfc_namespace *p, *q;
2852 gfc_intrinsic_op i;
2853
2854 if (ns == NULL)
2855 return;
2856
2857 ns->refs--;
2858 if (ns->refs > 0)
2859 return;
2860 gcc_assert (ns->refs == 0);
2861
2862 gfc_free_statements (ns->code);
2863
2864 free_sym_tree (ns->sym_root);
2865 free_uop_tree (ns->uop_root);
2866 gfc_free_common_tree (ns->common_root);
2867
2868 for (cl = ns->cl_list; cl; cl = cl2)
2869 {
2870 cl2 = cl->next;
2871 gfc_free_expr (cl->length);
2872 gfc_free (cl);
2873 }
2874
2875 free_st_labels (ns->st_labels);
2876
2877 gfc_free_equiv (ns->equiv);
2878 gfc_free_equiv_lists (ns->equiv_lists);
2879
2880 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
2881 gfc_free_interface (ns->operator[i]);
2882
2883 gfc_free_data (ns->data);
2884 p = ns->contained;
2885 gfc_free (ns);
2886
2887 /* Recursively free any contained namespaces. */
2888 while (p != NULL)
2889 {
2890 q = p;
2891 p = p->sibling;
2892 gfc_free_namespace (q);
2893 }
2894 }
2895
2896
2897 void
2898 gfc_symbol_init_2 (void)
2899 {
2900
2901 gfc_current_ns = gfc_get_namespace (NULL, 0);
2902 }
2903
2904
2905 void
2906 gfc_symbol_done_2 (void)
2907 {
2908
2909 gfc_free_namespace (gfc_current_ns);
2910 gfc_current_ns = NULL;
2911 gfc_free_dt_list ();
2912 }
2913
2914
2915 /* Clear mark bits from symbol nodes associated with a symtree node. */
2916
2917 static void
2918 clear_sym_mark (gfc_symtree *st)
2919 {
2920
2921 st->n.sym->mark = 0;
2922 }
2923
2924
2925 /* Recursively traverse the symtree nodes. */
2926
2927 void
2928 gfc_traverse_symtree (gfc_symtree *st, void (*func) (gfc_symtree *))
2929 {
2930 if (!st)
2931 return;
2932
2933 gfc_traverse_symtree (st->left, func);
2934 (*func) (st);
2935 gfc_traverse_symtree (st->right, func);
2936 }
2937
2938
2939 /* Recursive namespace traversal function. */
2940
2941 static void
2942 traverse_ns (gfc_symtree *st, void (*func) (gfc_symbol *))
2943 {
2944
2945 if (st == NULL)
2946 return;
2947
2948 traverse_ns (st->left, func);
2949
2950 if (st->n.sym->mark == 0)
2951 (*func) (st->n.sym);
2952 st->n.sym->mark = 1;
2953
2954 traverse_ns (st->right, func);
2955 }
2956
2957
2958 /* Call a given function for all symbols in the namespace. We take
2959 care that each gfc_symbol node is called exactly once. */
2960
2961 void
2962 gfc_traverse_ns (gfc_namespace *ns, void (*func) (gfc_symbol *))
2963 {
2964
2965 gfc_traverse_symtree (ns->sym_root, clear_sym_mark);
2966
2967 traverse_ns (ns->sym_root, func);
2968 }
2969
2970
2971 /* Return TRUE when name is the name of an intrinsic type. */
2972
2973 bool
2974 gfc_is_intrinsic_typename (const char *name)
2975 {
2976 if (strcmp (name, "integer") == 0
2977 || strcmp (name, "real") == 0
2978 || strcmp (name, "character") == 0
2979 || strcmp (name, "logical") == 0
2980 || strcmp (name, "complex") == 0
2981 || strcmp (name, "doubleprecision") == 0
2982 || strcmp (name, "doublecomplex") == 0)
2983 return true;
2984 else
2985 return false;
2986 }
2987
2988
2989 /* Return TRUE if the symbol is an automatic variable. */
2990
2991 static bool
2992 gfc_is_var_automatic (gfc_symbol *sym)
2993 {
2994 /* Pointer and allocatable variables are never automatic. */
2995 if (sym->attr.pointer || sym->attr.allocatable)
2996 return false;
2997 /* Check for arrays with non-constant size. */
2998 if (sym->attr.dimension && sym->as
2999 && !gfc_is_compile_time_shape (sym->as))
3000 return true;
3001 /* Check for non-constant length character variables. */
3002 if (sym->ts.type == BT_CHARACTER
3003 && sym->ts.cl
3004 && !gfc_is_constant_expr (sym->ts.cl->length))
3005 return true;
3006 return false;
3007 }
3008
3009 /* Given a symbol, mark it as SAVEd if it is allowed. */
3010
3011 static void
3012 save_symbol (gfc_symbol *sym)
3013 {
3014
3015 if (sym->attr.use_assoc)
3016 return;
3017
3018 if (sym->attr.in_common
3019 || sym->attr.dummy
3020 || sym->attr.flavor != FL_VARIABLE)
3021 return;
3022 /* Automatic objects are not saved. */
3023 if (gfc_is_var_automatic (sym))
3024 return;
3025 gfc_add_save (&sym->attr, sym->name, &sym->declared_at);
3026 }
3027
3028
3029 /* Mark those symbols which can be SAVEd as such. */
3030
3031 void
3032 gfc_save_all (gfc_namespace *ns)
3033 {
3034
3035 gfc_traverse_ns (ns, save_symbol);
3036 }
3037
3038
3039 #ifdef GFC_DEBUG
3040 /* Make sure that no changes to symbols are pending. */
3041
3042 void
3043 gfc_symbol_state(void) {
3044
3045 if (changed_syms != NULL)
3046 gfc_internal_error("Symbol changes still pending!");
3047 }
3048 #endif
3049
3050
3051 /************** Global symbol handling ************/
3052
3053
3054 /* Search a tree for the global symbol. */
3055
3056 gfc_gsymbol *
3057 gfc_find_gsymbol (gfc_gsymbol *symbol, const char *name)
3058 {
3059 int c;
3060
3061 if (symbol == NULL)
3062 return NULL;
3063
3064 while (symbol)
3065 {
3066 c = strcmp (name, symbol->name);
3067 if (!c)
3068 return symbol;
3069
3070 symbol = (c < 0) ? symbol->left : symbol->right;
3071 }
3072
3073 return NULL;
3074 }
3075
3076
3077 /* Compare two global symbols. Used for managing the BB tree. */
3078
3079 static int
3080 gsym_compare (void *_s1, void *_s2)
3081 {
3082 gfc_gsymbol *s1, *s2;
3083
3084 s1 = (gfc_gsymbol *) _s1;
3085 s2 = (gfc_gsymbol *) _s2;
3086 return strcmp (s1->name, s2->name);
3087 }
3088
3089
3090 /* Get a global symbol, creating it if it doesn't exist. */
3091
3092 gfc_gsymbol *
3093 gfc_get_gsymbol (const char *name)
3094 {
3095 gfc_gsymbol *s;
3096
3097 s = gfc_find_gsymbol (gfc_gsym_root, name);
3098 if (s != NULL)
3099 return s;
3100
3101 s = gfc_getmem (sizeof (gfc_gsymbol));
3102 s->type = GSYM_UNKNOWN;
3103 s->name = gfc_get_string (name);
3104
3105 gfc_insert_bbt (&gfc_gsym_root, s, gsym_compare);
3106
3107 return s;
3108 }
3109
3110
3111 static gfc_symbol *
3112 get_iso_c_binding_dt (int sym_id)
3113 {
3114 gfc_dt_list *dt_list;
3115
3116 dt_list = gfc_derived_types;
3117
3118 /* Loop through the derived types in the name list, searching for
3119 the desired symbol from iso_c_binding. Search the parent namespaces
3120 if necessary and requested to (parent_flag). */
3121 while (dt_list != NULL)
3122 {
3123 if (dt_list->derived->from_intmod != INTMOD_NONE
3124 && dt_list->derived->intmod_sym_id == sym_id)
3125 return dt_list->derived;
3126
3127 dt_list = dt_list->next;
3128 }
3129
3130 return NULL;
3131 }
3132
3133
3134 /* Verifies that the given derived type symbol, derived_sym, is interoperable
3135 with C. This is necessary for any derived type that is BIND(C) and for
3136 derived types that are parameters to functions that are BIND(C). All
3137 fields of the derived type are required to be interoperable, and are tested
3138 for such. If an error occurs, the errors are reported here, allowing for
3139 multiple errors to be handled for a single derived type. */
3140
3141 try
3142 verify_bind_c_derived_type (gfc_symbol *derived_sym)
3143 {
3144 gfc_component *curr_comp = NULL;
3145 try is_c_interop = FAILURE;
3146 try retval = SUCCESS;
3147
3148 if (derived_sym == NULL)
3149 gfc_internal_error ("verify_bind_c_derived_type(): Given symbol is "
3150 "unexpectedly NULL");
3151
3152 /* If we've already looked at this derived symbol, do not look at it again
3153 so we don't repeat warnings/errors. */
3154 if (derived_sym->ts.is_c_interop)
3155 return SUCCESS;
3156
3157 /* The derived type must have the BIND attribute to be interoperable
3158 J3/04-007, Section 15.2.3. */
3159 if (derived_sym->attr.is_bind_c != 1)
3160 {
3161 derived_sym->ts.is_c_interop = 0;
3162 gfc_error_now ("Derived type '%s' declared at %L must have the BIND "
3163 "attribute to be C interoperable", derived_sym->name,
3164 &(derived_sym->declared_at));
3165 retval = FAILURE;
3166 }
3167
3168 curr_comp = derived_sym->components;
3169
3170 /* TODO: is this really an error? */
3171 if (curr_comp == NULL)
3172 {
3173 gfc_error ("Derived type '%s' at %L is empty",
3174 derived_sym->name, &(derived_sym->declared_at));
3175 return FAILURE;
3176 }
3177
3178 /* Initialize the derived type as being C interoperable.
3179 If we find an error in the components, this will be set false. */
3180 derived_sym->ts.is_c_interop = 1;
3181
3182 /* Loop through the list of components to verify that the kind of
3183 each is a C interoperable type. */
3184 do
3185 {
3186 /* The components cannot be pointers (fortran sense).
3187 J3/04-007, Section 15.2.3, C1505. */
3188 if (curr_comp->pointer != 0)
3189 {
3190 gfc_error ("Component '%s' at %L cannot have the "
3191 "POINTER attribute because it is a member "
3192 "of the BIND(C) derived type '%s' at %L",
3193 curr_comp->name, &(curr_comp->loc),
3194 derived_sym->name, &(derived_sym->declared_at));
3195 retval = FAILURE;
3196 }
3197
3198 /* The components cannot be allocatable.
3199 J3/04-007, Section 15.2.3, C1505. */
3200 if (curr_comp->allocatable != 0)
3201 {
3202 gfc_error ("Component '%s' at %L cannot have the "
3203 "ALLOCATABLE attribute because it is a member "
3204 "of the BIND(C) derived type '%s' at %L",
3205 curr_comp->name, &(curr_comp->loc),
3206 derived_sym->name, &(derived_sym->declared_at));
3207 retval = FAILURE;
3208 }
3209
3210 /* BIND(C) derived types must have interoperable components. */
3211 if (curr_comp->ts.type == BT_DERIVED
3212 && curr_comp->ts.derived->ts.is_iso_c != 1
3213 && curr_comp->ts.derived != derived_sym)
3214 {
3215 /* This should be allowed; the draft says a derived-type can not
3216 have type parameters if it is has the BIND attribute. Type
3217 parameters seem to be for making parameterized derived types.
3218 There's no need to verify the type if it is c_ptr/c_funptr. */
3219 retval = verify_bind_c_derived_type (curr_comp->ts.derived);
3220 }
3221 else
3222 {
3223 /* Grab the typespec for the given component and test the kind. */
3224 is_c_interop = verify_c_interop (&(curr_comp->ts), curr_comp->name,
3225 &(curr_comp->loc));
3226
3227 if (is_c_interop != SUCCESS)
3228 {
3229 /* Report warning and continue since not fatal. The
3230 draft does specify a constraint that requires all fields
3231 to interoperate, but if the user says real(4), etc., it
3232 may interoperate with *something* in C, but the compiler
3233 most likely won't know exactly what. Further, it may not
3234 interoperate with the same data type(s) in C if the user
3235 recompiles with different flags (e.g., -m32 and -m64 on
3236 x86_64 and using integer(4) to claim interop with a
3237 C_LONG). */
3238 if (derived_sym->attr.is_bind_c == 1)
3239 /* If the derived type is bind(c), all fields must be
3240 interop. */
3241 gfc_warning ("Component '%s' in derived type '%s' at %L "
3242 "may not be C interoperable, even though "
3243 "derived type '%s' is BIND(C)",
3244 curr_comp->name, derived_sym->name,
3245 &(curr_comp->loc), derived_sym->name);
3246 else
3247 /* If derived type is param to bind(c) routine, or to one
3248 of the iso_c_binding procs, it must be interoperable, so
3249 all fields must interop too. */
3250 gfc_warning ("Component '%s' in derived type '%s' at %L "
3251 "may not be C interoperable",
3252 curr_comp->name, derived_sym->name,
3253 &(curr_comp->loc));
3254 }
3255 }
3256
3257 curr_comp = curr_comp->next;
3258 } while (curr_comp != NULL);
3259
3260
3261 /* Make sure we don't have conflicts with the attributes. */
3262 if (derived_sym->attr.access == ACCESS_PRIVATE)
3263 {
3264 gfc_error ("Derived type '%s' at %L cannot be declared with both "
3265 "PRIVATE and BIND(C) attributes", derived_sym->name,
3266 &(derived_sym->declared_at));
3267 retval = FAILURE;
3268 }
3269
3270 if (derived_sym->attr.sequence != 0)
3271 {
3272 gfc_error ("Derived type '%s' at %L cannot have the SEQUENCE "
3273 "attribute because it is BIND(C)", derived_sym->name,
3274 &(derived_sym->declared_at));
3275 retval = FAILURE;
3276 }
3277
3278 /* Mark the derived type as not being C interoperable if we found an
3279 error. If there were only warnings, proceed with the assumption
3280 it's interoperable. */
3281 if (retval == FAILURE)
3282 derived_sym->ts.is_c_interop = 0;
3283
3284 return retval;
3285 }
3286
3287
3288 /* Generate symbols for the named constants c_null_ptr and c_null_funptr. */
3289
3290 static try
3291 gen_special_c_interop_ptr (int ptr_id, const char *ptr_name,
3292 const char *module_name)
3293 {
3294 gfc_symtree *tmp_symtree;
3295 gfc_symbol *tmp_sym;
3296
3297 tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root, ptr_name);
3298
3299 if (tmp_symtree != NULL)
3300 tmp_sym = tmp_symtree->n.sym;
3301 else
3302 {
3303 tmp_sym = NULL;
3304 gfc_internal_error ("gen_special_c_interop_ptr(): Unable to "
3305 "create symbol for %s", ptr_name);
3306 }
3307
3308 /* Set up the symbol's important fields. Save attr required so we can
3309 initialize the ptr to NULL. */
3310 tmp_sym->attr.save = SAVE_EXPLICIT;
3311 tmp_sym->ts.is_c_interop = 1;
3312 tmp_sym->attr.is_c_interop = 1;
3313 tmp_sym->ts.is_iso_c = 1;
3314 tmp_sym->ts.type = BT_DERIVED;
3315
3316 /* The c_ptr and c_funptr derived types will provide the
3317 definition for c_null_ptr and c_null_funptr, respectively. */
3318 if (ptr_id == ISOCBINDING_NULL_PTR)
3319 tmp_sym->ts.derived = get_iso_c_binding_dt (ISOCBINDING_PTR);
3320 else
3321 tmp_sym->ts.derived = get_iso_c_binding_dt (ISOCBINDING_FUNPTR);
3322 if (tmp_sym->ts.derived == NULL)
3323 {
3324 /* This can occur if the user forgot to declare c_ptr or
3325 c_funptr and they're trying to use one of the procedures
3326 that has arg(s) of the missing type. In this case, a
3327 regular version of the thing should have been put in the
3328 current ns. */
3329 generate_isocbinding_symbol (module_name, ptr_id == ISOCBINDING_NULL_PTR
3330 ? ISOCBINDING_PTR : ISOCBINDING_FUNPTR,
3331 (const char *) (ptr_id == ISOCBINDING_NULL_PTR
3332 ? "_gfortran_iso_c_binding_c_ptr"
3333 : "_gfortran_iso_c_binding_c_funptr"));
3334
3335 tmp_sym->ts.derived =
3336 get_iso_c_binding_dt (ptr_id == ISOCBINDING_NULL_PTR
3337 ? ISOCBINDING_PTR : ISOCBINDING_FUNPTR);
3338 }
3339
3340 /* Module name is some mangled version of iso_c_binding. */
3341 tmp_sym->module = gfc_get_string (module_name);
3342
3343 /* Say it's from the iso_c_binding module. */
3344 tmp_sym->attr.is_iso_c = 1;
3345
3346 tmp_sym->attr.use_assoc = 1;
3347 tmp_sym->attr.is_bind_c = 1;
3348 /* Set the binding_label. */
3349 sprintf (tmp_sym->binding_label, "%s_%s", module_name, tmp_sym->name);
3350
3351 /* Set the c_address field of c_null_ptr and c_null_funptr to
3352 the value of NULL. */
3353 tmp_sym->value = gfc_get_expr ();
3354 tmp_sym->value->expr_type = EXPR_STRUCTURE;
3355 tmp_sym->value->ts.type = BT_DERIVED;
3356 tmp_sym->value->ts.derived = tmp_sym->ts.derived;
3357 /* Create a constructor with no expr, that way we can recognize if the user
3358 tries to call the structure constructor for one of the iso_c_binding
3359 derived types during resolution (resolve_structure_cons). */
3360 tmp_sym->value->value.constructor = gfc_get_constructor ();
3361 /* Must declare c_null_ptr and c_null_funptr as having the
3362 PARAMETER attribute so they can be used in init expressions. */
3363 tmp_sym->attr.flavor = FL_PARAMETER;
3364
3365 return SUCCESS;
3366 }
3367
3368
3369 /* Add a formal argument, gfc_formal_arglist, to the
3370 end of the given list of arguments. Set the reference to the
3371 provided symbol, param_sym, in the argument. */
3372
3373 static void
3374 add_formal_arg (gfc_formal_arglist **head,
3375 gfc_formal_arglist **tail,
3376 gfc_formal_arglist *formal_arg,
3377 gfc_symbol *param_sym)
3378 {
3379 /* Put in list, either as first arg or at the tail (curr arg). */
3380 if (*head == NULL)
3381 *head = *tail = formal_arg;
3382 else
3383 {
3384 (*tail)->next = formal_arg;
3385 (*tail) = formal_arg;
3386 }
3387
3388 (*tail)->sym = param_sym;
3389 (*tail)->next = NULL;
3390
3391 return;
3392 }
3393
3394
3395 /* Generates a symbol representing the CPTR argument to an
3396 iso_c_binding procedure. Also, create a gfc_formal_arglist for the
3397 CPTR and add it to the provided argument list. */
3398
3399 static void
3400 gen_cptr_param (gfc_formal_arglist **head,
3401 gfc_formal_arglist **tail,
3402 const char *module_name,
3403 gfc_namespace *ns, const char *c_ptr_name,
3404 int iso_c_sym_id)
3405 {
3406 gfc_symbol *param_sym = NULL;
3407 gfc_symbol *c_ptr_sym = NULL;
3408 gfc_symtree *param_symtree = NULL;
3409 gfc_formal_arglist *formal_arg = NULL;
3410 const char *c_ptr_in;
3411 const char *c_ptr_type = NULL;
3412
3413 if (iso_c_sym_id == ISOCBINDING_F_PROCPOINTER)
3414 c_ptr_type = "_gfortran_iso_c_binding_c_funptr";
3415 else
3416 c_ptr_type = "_gfortran_iso_c_binding_c_ptr";
3417
3418 if(c_ptr_name == NULL)
3419 c_ptr_in = "gfc_cptr__";
3420 else
3421 c_ptr_in = c_ptr_name;
3422 gfc_get_sym_tree (c_ptr_in, ns, &param_symtree);
3423 if (param_symtree != NULL)
3424 param_sym = param_symtree->n.sym;
3425 else
3426 gfc_internal_error ("gen_cptr_param(): Unable to "
3427 "create symbol for %s", c_ptr_in);
3428
3429 /* Set up the appropriate fields for the new c_ptr param sym. */
3430 param_sym->refs++;
3431 param_sym->attr.flavor = FL_DERIVED;
3432 param_sym->ts.type = BT_DERIVED;
3433 param_sym->attr.intent = INTENT_IN;
3434 param_sym->attr.dummy = 1;
3435
3436 /* This will pass the ptr to the iso_c routines as a (void *). */
3437 param_sym->attr.value = 1;
3438 param_sym->attr.use_assoc = 1;
3439
3440 /* Get the symbol for c_ptr or c_funptr, no matter what it's name is
3441 (user renamed). */
3442 if (iso_c_sym_id == ISOCBINDING_F_PROCPOINTER)
3443 c_ptr_sym = get_iso_c_binding_dt (ISOCBINDING_FUNPTR);
3444 else
3445 c_ptr_sym = get_iso_c_binding_dt (ISOCBINDING_PTR);
3446 if (c_ptr_sym == NULL)
3447 {
3448 /* This can happen if the user did not define c_ptr but they are
3449 trying to use one of the iso_c_binding functions that need it. */
3450 if (iso_c_sym_id == ISOCBINDING_F_PROCPOINTER)
3451 generate_isocbinding_symbol (module_name, ISOCBINDING_FUNPTR,
3452 (const char *)c_ptr_type);
3453 else
3454 generate_isocbinding_symbol (module_name, ISOCBINDING_PTR,
3455 (const char *)c_ptr_type);
3456
3457 gfc_get_ha_symbol (c_ptr_type, &(c_ptr_sym));
3458 }
3459
3460 param_sym->ts.derived = c_ptr_sym;
3461 param_sym->module = gfc_get_string (module_name);
3462
3463 /* Make new formal arg. */
3464 formal_arg = gfc_get_formal_arglist ();
3465 /* Add arg to list of formal args (the CPTR arg). */
3466 add_formal_arg (head, tail, formal_arg, param_sym);
3467 }
3468
3469
3470 /* Generates a symbol representing the FPTR argument to an
3471 iso_c_binding procedure. Also, create a gfc_formal_arglist for the
3472 FPTR and add it to the provided argument list. */
3473
3474 static void
3475 gen_fptr_param (gfc_formal_arglist **head,
3476 gfc_formal_arglist **tail,
3477 const char *module_name,
3478 gfc_namespace *ns, const char *f_ptr_name)
3479 {
3480 gfc_symbol *param_sym = NULL;
3481 gfc_symtree *param_symtree = NULL;
3482 gfc_formal_arglist *formal_arg = NULL;
3483 const char *f_ptr_out = "gfc_fptr__";
3484
3485 if (f_ptr_name != NULL)
3486 f_ptr_out = f_ptr_name;
3487
3488 gfc_get_sym_tree (f_ptr_out, ns, &param_symtree);
3489 if (param_symtree != NULL)
3490 param_sym = param_symtree->n.sym;
3491 else
3492 gfc_internal_error ("generateFPtrParam(): Unable to "
3493 "create symbol for %s", f_ptr_out);
3494
3495 /* Set up the necessary fields for the fptr output param sym. */
3496 param_sym->refs++;
3497 param_sym->attr.pointer = 1;
3498 param_sym->attr.dummy = 1;
3499 param_sym->attr.use_assoc = 1;
3500
3501 /* ISO C Binding type to allow any pointer type as actual param. */
3502 param_sym->ts.type = BT_VOID;
3503 param_sym->module = gfc_get_string (module_name);
3504
3505 /* Make the arg. */
3506 formal_arg = gfc_get_formal_arglist ();
3507 /* Add arg to list of formal args. */
3508 add_formal_arg (head, tail, formal_arg, param_sym);
3509 }
3510
3511
3512 /* Generates a symbol representing the optional SHAPE argument for the
3513 iso_c_binding c_f_pointer() procedure. Also, create a
3514 gfc_formal_arglist for the SHAPE and add it to the provided
3515 argument list. */
3516
3517 static void
3518 gen_shape_param (gfc_formal_arglist **head,
3519 gfc_formal_arglist **tail,
3520 const char *module_name,
3521 gfc_namespace *ns, const char *shape_param_name)
3522 {
3523 gfc_symbol *param_sym = NULL;
3524 gfc_symtree *param_symtree = NULL;
3525 gfc_formal_arglist *formal_arg = NULL;
3526 const char *shape_param = "gfc_shape_array__";
3527 int i;
3528
3529 if (shape_param_name != NULL)
3530 shape_param = shape_param_name;
3531
3532 gfc_get_sym_tree (shape_param, ns, &param_symtree);
3533 if (param_symtree != NULL)
3534 param_sym = param_symtree->n.sym;
3535 else
3536 gfc_internal_error ("generateShapeParam(): Unable to "
3537 "create symbol for %s", shape_param);
3538
3539 /* Set up the necessary fields for the shape input param sym. */
3540 param_sym->refs++;
3541 param_sym->attr.dummy = 1;
3542 param_sym->attr.use_assoc = 1;
3543
3544 /* Integer array, rank 1, describing the shape of the object. Make it's
3545 type BT_VOID initially so we can accept any type/kind combination of
3546 integer. During gfc_iso_c_sub_interface (resolve.c), we'll make it
3547 of BT_INTEGER type. */
3548 param_sym->ts.type = BT_VOID;
3549
3550 /* Initialize the kind to default integer. However, it will be overridden
3551 during resolution to match the kind of the SHAPE parameter given as
3552 the actual argument (to allow for any valid integer kind). */
3553 param_sym->ts.kind = gfc_default_integer_kind;
3554 param_sym->as = gfc_get_array_spec ();
3555
3556 /* Clear out the dimension info for the array. */
3557 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
3558 {
3559 param_sym->as->lower[i] = NULL;
3560 param_sym->as->upper[i] = NULL;
3561 }
3562 param_sym->as->rank = 1;
3563 param_sym->as->lower[0] = gfc_int_expr (1);
3564
3565 /* The extent is unknown until we get it. The length give us
3566 the rank the incoming pointer. */
3567 param_sym->as->type = AS_ASSUMED_SHAPE;
3568
3569 /* The arg is also optional; it is required iff the second arg
3570 (fptr) is to an array, otherwise, it's ignored. */
3571 param_sym->attr.optional = 1;
3572 param_sym->attr.intent = INTENT_IN;
3573 param_sym->attr.dimension = 1;
3574 param_sym->module = gfc_get_string (module_name);
3575
3576 /* Make the arg. */
3577 formal_arg = gfc_get_formal_arglist ();
3578 /* Add arg to list of formal args. */
3579 add_formal_arg (head, tail, formal_arg, param_sym);
3580 }
3581
3582 /* Add a procedure interface to the given symbol (i.e., store a
3583 reference to the list of formal arguments). */
3584
3585 static void
3586 add_proc_interface (gfc_symbol *sym, ifsrc source,
3587 gfc_formal_arglist *formal)
3588 {
3589
3590 sym->formal = formal;
3591 sym->attr.if_source = source;
3592 }
3593
3594 /* Copy the formal args from an existing symbol, src, into a new
3595 symbol, dest. New formal args are created, and the description of
3596 each arg is set according to the existing ones. This function is
3597 used when creating procedure declaration variables from a procedure
3598 declaration statement (see match_proc_decl()) to create the formal
3599 args based on the args of a given named interface. */
3600
3601 void copy_formal_args (gfc_symbol *dest, gfc_symbol *src)
3602 {
3603 gfc_formal_arglist *head = NULL;
3604 gfc_formal_arglist *tail = NULL;
3605 gfc_formal_arglist *formal_arg = NULL;
3606 gfc_formal_arglist *curr_arg = NULL;
3607 gfc_formal_arglist *formal_prev = NULL;
3608 /* Save current namespace so we can change it for formal args. */
3609 gfc_namespace *parent_ns = gfc_current_ns;
3610
3611 /* Create a new namespace, which will be the formal ns (namespace
3612 of the formal args). */
3613 gfc_current_ns = gfc_get_namespace (parent_ns, 0);
3614 gfc_current_ns->proc_name = dest;
3615
3616 for (curr_arg = src->formal; curr_arg; curr_arg = curr_arg->next)
3617 {
3618 formal_arg = gfc_get_formal_arglist ();
3619 gfc_get_symbol (curr_arg->sym->name, gfc_current_ns, &(formal_arg->sym));
3620
3621 /* May need to copy more info for the symbol. */
3622 formal_arg->sym->attr = curr_arg->sym->attr;
3623 formal_arg->sym->ts = curr_arg->sym->ts;
3624
3625 /* If this isn't the first arg, set up the next ptr. For the
3626 last arg built, the formal_arg->next will never get set to
3627 anything other than NULL. */
3628 if (formal_prev != NULL)
3629 formal_prev->next = formal_arg;
3630 else
3631 formal_arg->next = NULL;
3632
3633 formal_prev = formal_arg;
3634
3635 /* Add arg to list of formal args. */
3636 add_formal_arg (&head, &tail, formal_arg, formal_arg->sym);
3637 }
3638
3639 /* Add the interface to the symbol. */
3640 add_proc_interface (dest, IFSRC_DECL, head);
3641
3642 /* Store the formal namespace information. */
3643 if (dest->formal != NULL)
3644 /* The current ns should be that for the dest proc. */
3645 dest->formal_ns = gfc_current_ns;
3646 /* Restore the current namespace to what it was on entry. */
3647 gfc_current_ns = parent_ns;
3648 }
3649
3650 /* Builds the parameter list for the iso_c_binding procedure
3651 c_f_pointer or c_f_procpointer. The old_sym typically refers to a
3652 generic version of either the c_f_pointer or c_f_procpointer
3653 functions. The new_proc_sym represents a "resolved" version of the
3654 symbol. The functions are resolved to match the types of their
3655 parameters; for example, c_f_pointer(cptr, fptr) would resolve to
3656 something similar to c_f_pointer_i4 if the type of data object fptr
3657 pointed to was a default integer. The actual name of the resolved
3658 procedure symbol is further mangled with the module name, etc., but
3659 the idea holds true. */
3660
3661 static void
3662 build_formal_args (gfc_symbol *new_proc_sym,
3663 gfc_symbol *old_sym, int add_optional_arg)
3664 {
3665 gfc_formal_arglist *head = NULL, *tail = NULL;
3666 gfc_namespace *parent_ns = NULL;
3667
3668 parent_ns = gfc_current_ns;
3669 /* Create a new namespace, which will be the formal ns (namespace
3670 of the formal args). */
3671 gfc_current_ns = gfc_get_namespace(parent_ns, 0);
3672 gfc_current_ns->proc_name = new_proc_sym;
3673
3674 /* Generate the params. */
3675 if ((old_sym->intmod_sym_id == ISOCBINDING_F_POINTER) ||
3676 (old_sym->intmod_sym_id == ISOCBINDING_F_PROCPOINTER))
3677 {
3678 gen_cptr_param (&head, &tail, (const char *) new_proc_sym->module,
3679 gfc_current_ns, "cptr", old_sym->intmod_sym_id);
3680 gen_fptr_param (&head, &tail, (const char *) new_proc_sym->module,
3681 gfc_current_ns, "fptr");
3682
3683 /* If we're dealing with c_f_pointer, it has an optional third arg. */
3684 if (old_sym->intmod_sym_id == ISOCBINDING_F_POINTER)
3685 {
3686 gen_shape_param (&head, &tail,
3687 (const char *) new_proc_sym->module,
3688 gfc_current_ns, "shape");
3689 }
3690 }
3691 else if (old_sym->intmod_sym_id == ISOCBINDING_ASSOCIATED)
3692 {
3693 /* c_associated has one required arg and one optional; both
3694 are c_ptrs. */
3695 gen_cptr_param (&head, &tail, (const char *) new_proc_sym->module,
3696 gfc_current_ns, "c_ptr_1", ISOCBINDING_ASSOCIATED);
3697 if (add_optional_arg)
3698 {
3699 gen_cptr_param (&head, &tail, (const char *) new_proc_sym->module,
3700 gfc_current_ns, "c_ptr_2", ISOCBINDING_ASSOCIATED);
3701 /* The last param is optional so mark it as such. */
3702 tail->sym->attr.optional = 1;
3703 }
3704 }
3705
3706 /* Add the interface (store formal args to new_proc_sym). */
3707 add_proc_interface (new_proc_sym, IFSRC_DECL, head);
3708
3709 /* Set up the formal_ns pointer to the one created for the
3710 new procedure so it'll get cleaned up during gfc_free_symbol(). */
3711 new_proc_sym->formal_ns = gfc_current_ns;
3712
3713 gfc_current_ns = parent_ns;
3714 }
3715
3716
3717 /* Generate the given set of C interoperable kind objects, or all
3718 interoperable kinds. This function will only be given kind objects
3719 for valid iso_c_binding defined types because this is verified when
3720 the 'use' statement is parsed. If the user gives an 'only' clause,
3721 the specific kinds are looked up; if they don't exist, an error is
3722 reported. If the user does not give an 'only' clause, all
3723 iso_c_binding symbols are generated. If a list of specific kinds
3724 is given, it must have a NULL in the first empty spot to mark the
3725 end of the list. */
3726
3727
3728 void
3729 generate_isocbinding_symbol (const char *mod_name, iso_c_binding_symbol s,
3730 const char *local_name)
3731 {
3732 const char *const name = (local_name && local_name[0]) ? local_name
3733 : c_interop_kinds_table[s].name;
3734 gfc_symtree *tmp_symtree = NULL;
3735 gfc_symbol *tmp_sym = NULL;
3736 gfc_dt_list **dt_list_ptr = NULL;
3737 gfc_component *tmp_comp = NULL;
3738 char comp_name[(GFC_MAX_SYMBOL_LEN * 2) + 1];
3739 int index;
3740
3741 tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root, name);
3742
3743 /* Already exists in this scope so don't re-add it.
3744 TODO: we should probably check that it's really the same symbol. */
3745 if (tmp_symtree != NULL)
3746 return;
3747
3748 /* Create the sym tree in the current ns. */
3749 gfc_get_sym_tree (name, gfc_current_ns, &tmp_symtree);
3750 if (tmp_symtree)
3751 tmp_sym = tmp_symtree->n.sym;
3752 else
3753 gfc_internal_error ("generate_isocbinding_symbol(): Unable to "
3754 "create symbol");
3755
3756 /* Say what module this symbol belongs to. */
3757 tmp_sym->module = gfc_get_string (mod_name);
3758 tmp_sym->from_intmod = INTMOD_ISO_C_BINDING;
3759 tmp_sym->intmod_sym_id = s;
3760
3761 switch (s)
3762 {
3763
3764 #define NAMED_INTCST(a,b,c) case a :
3765 #define NAMED_REALCST(a,b,c) case a :
3766 #define NAMED_CMPXCST(a,b,c) case a :
3767 #define NAMED_LOGCST(a,b,c) case a :
3768 #define NAMED_CHARKNDCST(a,b,c) case a :
3769 #include "iso-c-binding.def"
3770
3771 tmp_sym->value = gfc_int_expr (c_interop_kinds_table[s].value);
3772
3773 /* Initialize an integer constant expression node. */
3774 tmp_sym->attr.flavor = FL_PARAMETER;
3775 tmp_sym->ts.type = BT_INTEGER;
3776 tmp_sym->ts.kind = gfc_default_integer_kind;
3777
3778 /* Mark this type as a C interoperable one. */
3779 tmp_sym->ts.is_c_interop = 1;
3780 tmp_sym->ts.is_iso_c = 1;
3781 tmp_sym->value->ts.is_c_interop = 1;
3782 tmp_sym->value->ts.is_iso_c = 1;
3783 tmp_sym->attr.is_c_interop = 1;
3784
3785 /* Tell what f90 type this c interop kind is valid. */
3786 tmp_sym->ts.f90_type = c_interop_kinds_table[s].f90_type;
3787
3788 /* Say it's from the iso_c_binding module. */
3789 tmp_sym->attr.is_iso_c = 1;
3790
3791 /* Make it use associated. */
3792 tmp_sym->attr.use_assoc = 1;
3793 break;
3794
3795
3796 #define NAMED_CHARCST(a,b,c) case a :
3797 #include "iso-c-binding.def"
3798
3799 /* Initialize an integer constant expression node for the
3800 length of the character. */
3801 tmp_sym->value = gfc_get_expr ();
3802 tmp_sym->value->expr_type = EXPR_CONSTANT;
3803 tmp_sym->value->ts.type = BT_CHARACTER;
3804 tmp_sym->value->ts.kind = gfc_default_character_kind;
3805 tmp_sym->value->where = gfc_current_locus;
3806 tmp_sym->value->ts.is_c_interop = 1;
3807 tmp_sym->value->ts.is_iso_c = 1;
3808 tmp_sym->value->value.character.length = 1;
3809 tmp_sym->value->value.character.string = gfc_getmem (2);
3810 tmp_sym->value->value.character.string[0]
3811 = (char) c_interop_kinds_table[s].value;
3812 tmp_sym->value->value.character.string[1] = '\0';
3813 tmp_sym->ts.cl = gfc_get_charlen ();
3814 tmp_sym->ts.cl->length = gfc_int_expr (1);
3815
3816 /* May not need this in both attr and ts, but do need in
3817 attr for writing module file. */
3818 tmp_sym->attr.is_c_interop = 1;
3819
3820 tmp_sym->attr.flavor = FL_PARAMETER;
3821 tmp_sym->ts.type = BT_CHARACTER;
3822
3823 /* Need to set it to the C_CHAR kind. */
3824 tmp_sym->ts.kind = gfc_default_character_kind;
3825
3826 /* Mark this type as a C interoperable one. */
3827 tmp_sym->ts.is_c_interop = 1;
3828 tmp_sym->ts.is_iso_c = 1;
3829
3830 /* Tell what f90 type this c interop kind is valid. */
3831 tmp_sym->ts.f90_type = BT_CHARACTER;
3832
3833 /* Say it's from the iso_c_binding module. */
3834 tmp_sym->attr.is_iso_c = 1;
3835
3836 /* Make it use associated. */
3837 tmp_sym->attr.use_assoc = 1;
3838 break;
3839
3840 case ISOCBINDING_PTR:
3841 case ISOCBINDING_FUNPTR:
3842
3843 /* Initialize an integer constant expression node. */
3844 tmp_sym->attr.flavor = FL_DERIVED;
3845 tmp_sym->ts.is_c_interop = 1;
3846 tmp_sym->attr.is_c_interop = 1;
3847 tmp_sym->attr.is_iso_c = 1;
3848 tmp_sym->ts.is_iso_c = 1;
3849 tmp_sym->ts.type = BT_DERIVED;
3850
3851 /* A derived type must have the bind attribute to be
3852 interoperable (J3/04-007, Section 15.2.3), even though
3853 the binding label is not used. */
3854 tmp_sym->attr.is_bind_c = 1;
3855
3856 tmp_sym->attr.referenced = 1;
3857
3858 tmp_sym->ts.derived = tmp_sym;
3859
3860 /* Add the symbol created for the derived type to the current ns. */
3861 dt_list_ptr = &(gfc_derived_types);
3862 while (*dt_list_ptr != NULL && (*dt_list_ptr)->next != NULL)
3863 dt_list_ptr = &((*dt_list_ptr)->next);
3864
3865 /* There is already at least one derived type in the list, so append
3866 the one we're currently building for c_ptr or c_funptr. */
3867 if (*dt_list_ptr != NULL)
3868 dt_list_ptr = &((*dt_list_ptr)->next);
3869 (*dt_list_ptr) = gfc_get_dt_list ();
3870 (*dt_list_ptr)->derived = tmp_sym;
3871 (*dt_list_ptr)->next = NULL;
3872
3873 /* Set up the component of the derived type, which will be
3874 an integer with kind equal to c_ptr_size. Mangle the name of
3875 the field for the c_address to prevent the curious user from
3876 trying to access it from Fortran. */
3877 sprintf (comp_name, "__%s_%s", tmp_sym->name, "c_address");
3878 gfc_add_component (tmp_sym, comp_name, &tmp_comp);
3879 if (tmp_comp == NULL)
3880 gfc_internal_error ("generate_isocbinding_symbol(): Unable to "
3881 "create component for c_address");
3882
3883 tmp_comp->ts.type = BT_INTEGER;
3884
3885 /* Set this because the module will need to read/write this field. */
3886 tmp_comp->ts.f90_type = BT_INTEGER;
3887
3888 /* The kinds for c_ptr and c_funptr are the same. */
3889 index = get_c_kind ("c_ptr", c_interop_kinds_table);
3890 tmp_comp->ts.kind = c_interop_kinds_table[index].value;
3891
3892 tmp_comp->pointer = 0;
3893 tmp_comp->dimension = 0;
3894
3895 /* Mark the component as C interoperable. */
3896 tmp_comp->ts.is_c_interop = 1;
3897
3898 /* Make it use associated (iso_c_binding module). */
3899 tmp_sym->attr.use_assoc = 1;
3900 break;
3901
3902 case ISOCBINDING_NULL_PTR:
3903 case ISOCBINDING_NULL_FUNPTR:
3904 gen_special_c_interop_ptr (s, name, mod_name);
3905 break;
3906
3907 case ISOCBINDING_F_POINTER:
3908 case ISOCBINDING_ASSOCIATED:
3909 case ISOCBINDING_LOC:
3910 case ISOCBINDING_FUNLOC:
3911 case ISOCBINDING_F_PROCPOINTER:
3912
3913 tmp_sym->attr.proc = PROC_MODULE;
3914
3915 /* Use the procedure's name as it is in the iso_c_binding module for
3916 setting the binding label in case the user renamed the symbol. */
3917 sprintf (tmp_sym->binding_label, "%s_%s", mod_name,
3918 c_interop_kinds_table[s].name);
3919 tmp_sym->attr.is_iso_c = 1;
3920 if (s == ISOCBINDING_F_POINTER || s == ISOCBINDING_F_PROCPOINTER)
3921 tmp_sym->attr.subroutine = 1;
3922 else
3923 {
3924 /* TODO! This needs to be finished more for the expr of the
3925 function or something!
3926 This may not need to be here, because trying to do c_loc
3927 as an external. */
3928 if (s == ISOCBINDING_ASSOCIATED)
3929 {
3930 tmp_sym->attr.function = 1;
3931 tmp_sym->ts.type = BT_LOGICAL;
3932 tmp_sym->ts.kind = gfc_default_logical_kind;
3933 tmp_sym->result = tmp_sym;
3934 }
3935 else
3936 {
3937 /* Here, we're taking the simple approach. We're defining
3938 c_loc as an external identifier so the compiler will put
3939 what we expect on the stack for the address we want the
3940 C address of. */
3941 tmp_sym->ts.type = BT_DERIVED;
3942 if (s == ISOCBINDING_LOC)
3943 tmp_sym->ts.derived =
3944 get_iso_c_binding_dt (ISOCBINDING_PTR);
3945 else
3946 tmp_sym->ts.derived =
3947 get_iso_c_binding_dt (ISOCBINDING_FUNPTR);
3948
3949 if (tmp_sym->ts.derived == NULL)
3950 {
3951 /* Create the necessary derived type so we can continue
3952 processing the file. */
3953 generate_isocbinding_symbol
3954 (mod_name, s == ISOCBINDING_FUNLOC
3955 ? ISOCBINDING_FUNPTR : ISOCBINDING_PTR,
3956 (const char *)(s == ISOCBINDING_FUNLOC
3957 ? "_gfortran_iso_c_binding_c_funptr"
3958 : "_gfortran_iso_c_binding_c_ptr"));
3959 tmp_sym->ts.derived =
3960 get_iso_c_binding_dt (s == ISOCBINDING_FUNLOC
3961 ? ISOCBINDING_FUNPTR
3962 : ISOCBINDING_PTR);
3963 }
3964
3965 /* The function result is itself (no result clause). */
3966 tmp_sym->result = tmp_sym;
3967 tmp_sym->attr.external = 1;
3968 tmp_sym->attr.use_assoc = 0;
3969 tmp_sym->attr.if_source = IFSRC_UNKNOWN;
3970 tmp_sym->attr.proc = PROC_UNKNOWN;
3971 }
3972 }
3973
3974 tmp_sym->attr.flavor = FL_PROCEDURE;
3975 tmp_sym->attr.contained = 0;
3976
3977 /* Try using this builder routine, with the new and old symbols
3978 both being the generic iso_c proc sym being created. This
3979 will create the formal args (and the new namespace for them).
3980 Don't build an arg list for c_loc because we're going to treat
3981 c_loc as an external procedure. */
3982 if (s != ISOCBINDING_LOC && s != ISOCBINDING_FUNLOC)
3983 /* The 1 says to add any optional args, if applicable. */
3984 build_formal_args (tmp_sym, tmp_sym, 1);
3985
3986 /* Set this after setting up the symbol, to prevent error messages. */
3987 tmp_sym->attr.use_assoc = 1;
3988
3989 /* This symbol will not be referenced directly. It will be
3990 resolved to the implementation for the given f90 kind. */
3991 tmp_sym->attr.referenced = 0;
3992
3993 break;
3994
3995 default:
3996 gcc_unreachable ();
3997 }
3998 }
3999
4000
4001 /* Creates a new symbol based off of an old iso_c symbol, with a new
4002 binding label. This function can be used to create a new,
4003 resolved, version of a procedure symbol for c_f_pointer or
4004 c_f_procpointer that is based on the generic symbols. A new
4005 parameter list is created for the new symbol using
4006 build_formal_args(). The add_optional_flag specifies whether the
4007 to add the optional SHAPE argument. The new symbol is
4008 returned. */
4009
4010 gfc_symbol *
4011 get_iso_c_sym (gfc_symbol *old_sym, char *new_name,
4012 char *new_binding_label, int add_optional_arg)
4013 {
4014 gfc_symtree *new_symtree = NULL;
4015
4016 /* See if we have a symbol by that name already available, looking
4017 through any parent namespaces. */
4018 gfc_find_sym_tree (new_name, gfc_current_ns, 1, &new_symtree);
4019 if (new_symtree != NULL)
4020 /* Return the existing symbol. */
4021 return new_symtree->n.sym;
4022
4023 /* Create the symtree/symbol, with attempted host association. */
4024 gfc_get_ha_sym_tree (new_name, &new_symtree);
4025 if (new_symtree == NULL)
4026 gfc_internal_error ("get_iso_c_sym(): Unable to create "
4027 "symtree for '%s'", new_name);
4028
4029 /* Now fill in the fields of the resolved symbol with the old sym. */
4030 strcpy (new_symtree->n.sym->binding_label, new_binding_label);
4031 new_symtree->n.sym->attr = old_sym->attr;
4032 new_symtree->n.sym->ts = old_sym->ts;
4033 new_symtree->n.sym->module = gfc_get_string (old_sym->module);
4034 new_symtree->n.sym->from_intmod = old_sym->from_intmod;
4035 new_symtree->n.sym->intmod_sym_id = old_sym->intmod_sym_id;
4036 /* Build the formal arg list. */
4037 build_formal_args (new_symtree->n.sym, old_sym, add_optional_arg);
4038
4039 gfc_commit_symbol (new_symtree->n.sym);
4040
4041 return new_symtree->n.sym;
4042 }
4043