64cee0db5c102bb866f1a9dcb31a8c8837de048c
[gcc.git] / gcc / fortran / trans-common.c
1 /* Common block and equivalence list handling
2 Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Canqun Yang <canqun@nudt.edu.cn>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* The core algorithm is based on Andy Vaught's g95 tree. Also the
23 way to build UNION_TYPE is borrowed from Richard Henderson.
24
25 Transform common blocks. An integral part of this is processing
26 equivalence variables. Equivalenced variables that are not in a
27 common block end up in a private block of their own.
28
29 Each common block or local equivalence list is declared as a union.
30 Variables within the block are represented as a field within the
31 block with the proper offset.
32
33 So if two variables are equivalenced, they just point to a common
34 area in memory.
35
36 Mathematically, laying out an equivalence block is equivalent to
37 solving a linear system of equations. The matrix is usually a
38 sparse matrix in which each row contains all zero elements except
39 for a +1 and a -1, a sort of a generalized Vandermonde matrix. The
40 matrix is usually block diagonal. The system can be
41 overdetermined, underdetermined or have a unique solution. If the
42 system is inconsistent, the program is not standard conforming.
43 The solution vector is integral, since all of the pivots are +1 or -1.
44
45 How we lay out an equivalence block is a little less complicated.
46 In an equivalence list with n elements, there are n-1 conditions to
47 be satisfied. The conditions partition the variables into what we
48 will call segments. If A and B are equivalenced then A and B are
49 in the same segment. If B and C are equivalenced as well, then A,
50 B and C are in a segment and so on. Each segment is a block of
51 memory that has one or more variables equivalenced in some way. A
52 common block is made up of a series of segments that are joined one
53 after the other. In the linear system, a segment is a block
54 diagonal.
55
56 To lay out a segment we first start with some variable and
57 determine its length. The first variable is assumed to start at
58 offset one and extends to however long it is. We then traverse the
59 list of equivalences to find an unused condition that involves at
60 least one of the variables currently in the segment.
61
62 Each equivalence condition amounts to the condition B+b=C+c where B
63 and C are the offsets of the B and C variables, and b and c are
64 constants which are nonzero for array elements, substrings or
65 structure components. So for
66
67 EQUIVALENCE(B(2), C(3))
68 we have
69 B + 2*size of B's elements = C + 3*size of C's elements.
70
71 If B and C are known we check to see if the condition already
72 holds. If B is known we can solve for C. Since we know the length
73 of C, we can see if the minimum and maximum extents of the segment
74 are affected. Eventually, we make a full pass through the
75 equivalence list without finding any new conditions and the segment
76 is fully specified.
77
78 At this point, the segment is added to the current common block.
79 Since we know the minimum extent of the segment, everything in the
80 segment is translated to its position in the common block. The
81 usual case here is that there are no equivalence statements and the
82 common block is series of segments with one variable each, which is
83 a diagonal matrix in the matrix formulation.
84
85 Each segment is described by a chain of segment_info structures. Each
86 segment_info structure describes the extents of a single variable within
87 the segment. This list is maintained in the order the elements are
88 positioned withing the segment. If two elements have the same starting
89 offset the smaller will come first. If they also have the same size their
90 ordering is undefined.
91
92 Once all common blocks have been created, the list of equivalences
93 is examined for still-unused equivalence conditions. We create a
94 block for each merged equivalence list. */
95
96 #include "config.h"
97 #include "system.h"
98 #include "coretypes.h"
99 #include "target.h"
100 #include "tree.h"
101 #include "toplev.h"
102 #include "tm.h"
103 #include "rtl.h"
104 #include "gfortran.h"
105 #include "trans.h"
106 #include "trans-types.h"
107 #include "trans-const.h"
108 #include "target-memory.h"
109
110
111 /* Holds a single variable in an equivalence set. */
112 typedef struct segment_info
113 {
114 gfc_symbol *sym;
115 HOST_WIDE_INT offset;
116 HOST_WIDE_INT length;
117 /* This will contain the field type until the field is created. */
118 tree field;
119 struct segment_info *next;
120 } segment_info;
121
122 static segment_info * current_segment;
123 static gfc_namespace *gfc_common_ns = NULL;
124
125
126 /* Make a segment_info based on a symbol. */
127
128 static segment_info *
129 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
130 {
131 segment_info *s;
132
133 /* Make sure we've got the character length. */
134 if (sym->ts.type == BT_CHARACTER)
135 gfc_conv_const_charlen (sym->ts.cl);
136
137 /* Create the segment_info and fill it in. */
138 s = (segment_info *) gfc_getmem (sizeof (segment_info));
139 s->sym = sym;
140 /* We will use this type when building the segment aggregate type. */
141 s->field = gfc_sym_type (sym);
142 s->length = int_size_in_bytes (s->field);
143 s->offset = offset;
144
145 return s;
146 }
147
148
149 /* Add a copy of a segment list to the namespace. This is specifically for
150 equivalence segments, so that dependency checking can be done on
151 equivalence group members. */
152
153 static void
154 copy_equiv_list_to_ns (segment_info *c)
155 {
156 segment_info *f;
157 gfc_equiv_info *s;
158 gfc_equiv_list *l;
159
160 l = (gfc_equiv_list *) gfc_getmem (sizeof (gfc_equiv_list));
161
162 l->next = c->sym->ns->equiv_lists;
163 c->sym->ns->equiv_lists = l;
164
165 for (f = c; f; f = f->next)
166 {
167 s = (gfc_equiv_info *) gfc_getmem (sizeof (gfc_equiv_info));
168 s->next = l->equiv;
169 l->equiv = s;
170 s->sym = f->sym;
171 s->offset = f->offset;
172 s->length = f->length;
173 }
174 }
175
176
177 /* Add combine segment V and segment LIST. */
178
179 static segment_info *
180 add_segments (segment_info *list, segment_info *v)
181 {
182 segment_info *s;
183 segment_info *p;
184 segment_info *next;
185
186 p = NULL;
187 s = list;
188
189 while (v)
190 {
191 /* Find the location of the new element. */
192 while (s)
193 {
194 if (v->offset < s->offset)
195 break;
196 if (v->offset == s->offset
197 && v->length <= s->length)
198 break;
199
200 p = s;
201 s = s->next;
202 }
203
204 /* Insert the new element in between p and s. */
205 next = v->next;
206 v->next = s;
207 if (p == NULL)
208 list = v;
209 else
210 p->next = v;
211
212 p = v;
213 v = next;
214 }
215
216 return list;
217 }
218
219
220 /* Construct mangled common block name from symbol name. */
221
222 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
223 name. There are few calls to this function, so few places that this
224 would need to be added. At the moment, there is only one call, in
225 build_common_decl(). We can't attempt to look up the common block
226 because we may be building it for the first time and therefore, it won't
227 be in the common_root. We also need the binding label, if it's bind(c).
228 Therefore, send in the pointer to the common block, so whatever info we
229 have so far can be used. All of the necessary info should be available
230 in the gfc_common_head by now, so it should be accurate to test the
231 isBindC flag and use the binding label given if it is bind(c).
232
233 We may NOT know yet if it's bind(c) or not, but we can try at least.
234 Will have to figure out what to do later if it's labeled bind(c)
235 after this is called. */
236
237 static tree
238 gfc_sym_mangled_common_id (gfc_common_head *com)
239 {
240 int has_underscore;
241 char mangled_name[GFC_MAX_MANGLED_SYMBOL_LEN + 1];
242 char name[GFC_MAX_SYMBOL_LEN + 1];
243
244 /* Get the name out of the common block pointer. */
245 strcpy (name, com->name);
246
247 /* If we're suppose to do a bind(c). */
248 if (com->is_bind_c == 1 && com->binding_label[0] != '\0')
249 return get_identifier (com->binding_label);
250
251 if (strcmp (name, BLANK_COMMON_NAME) == 0)
252 return get_identifier (name);
253
254 if (gfc_option.flag_underscoring)
255 {
256 has_underscore = strchr (name, '_') != 0;
257 if (gfc_option.flag_second_underscore && has_underscore)
258 snprintf (mangled_name, sizeof mangled_name, "%s__", name);
259 else
260 snprintf (mangled_name, sizeof mangled_name, "%s_", name);
261
262 return get_identifier (mangled_name);
263 }
264 else
265 return get_identifier (name);
266 }
267
268
269 /* Build a field declaration for a common variable or a local equivalence
270 object. */
271
272 static void
273 build_field (segment_info *h, tree union_type, record_layout_info rli)
274 {
275 tree field;
276 tree name;
277 HOST_WIDE_INT offset = h->offset;
278 unsigned HOST_WIDE_INT desired_align, known_align;
279
280 name = get_identifier (h->sym->name);
281 field = build_decl (FIELD_DECL, name, h->field);
282 gfc_set_decl_location (field, &h->sym->declared_at);
283 known_align = (offset & -offset) * BITS_PER_UNIT;
284 if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
285 known_align = BIGGEST_ALIGNMENT;
286
287 desired_align = update_alignment_for_field (rli, field, known_align);
288 if (desired_align > known_align)
289 DECL_PACKED (field) = 1;
290
291 DECL_FIELD_CONTEXT (field) = union_type;
292 DECL_FIELD_OFFSET (field) = size_int (offset);
293 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
294 SET_DECL_OFFSET_ALIGN (field, known_align);
295
296 rli->offset = size_binop (MAX_EXPR, rli->offset,
297 size_binop (PLUS_EXPR,
298 DECL_FIELD_OFFSET (field),
299 DECL_SIZE_UNIT (field)));
300 /* If this field is assigned to a label, we create another two variables.
301 One will hold the address of target label or format label. The other will
302 hold the length of format label string. */
303 if (h->sym->attr.assign)
304 {
305 tree len;
306 tree addr;
307
308 gfc_allocate_lang_decl (field);
309 GFC_DECL_ASSIGN (field) = 1;
310 len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
311 addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
312 TREE_STATIC (len) = 1;
313 TREE_STATIC (addr) = 1;
314 DECL_INITIAL (len) = build_int_cst (NULL_TREE, -2);
315 gfc_set_decl_location (len, &h->sym->declared_at);
316 gfc_set_decl_location (addr, &h->sym->declared_at);
317 GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
318 GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
319 }
320
321 h->field = field;
322 }
323
324
325 /* Get storage for local equivalence. */
326
327 static tree
328 build_equiv_decl (tree union_type, bool is_init, bool is_saved)
329 {
330 tree decl;
331 char name[15];
332 static int serial = 0;
333
334 if (is_init)
335 {
336 decl = gfc_create_var (union_type, "equiv");
337 TREE_STATIC (decl) = 1;
338 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
339 return decl;
340 }
341
342 snprintf (name, sizeof (name), "equiv.%d", serial++);
343 decl = build_decl (VAR_DECL, get_identifier (name), union_type);
344 DECL_ARTIFICIAL (decl) = 1;
345 DECL_IGNORED_P (decl) = 1;
346
347 if (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
348 || is_saved)
349 TREE_STATIC (decl) = 1;
350
351 TREE_ADDRESSABLE (decl) = 1;
352 TREE_USED (decl) = 1;
353 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
354
355 /* The source location has been lost, and doesn't really matter.
356 We need to set it to something though. */
357 gfc_set_decl_location (decl, &gfc_current_locus);
358
359 gfc_add_decl_to_function (decl);
360
361 return decl;
362 }
363
364
365 /* Get storage for common block. */
366
367 static tree
368 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
369 {
370 gfc_symbol *common_sym;
371 tree decl;
372
373 /* Create a namespace to store symbols for common blocks. */
374 if (gfc_common_ns == NULL)
375 gfc_common_ns = gfc_get_namespace (NULL, 0);
376
377 gfc_get_symbol (com->name, gfc_common_ns, &common_sym);
378 decl = common_sym->backend_decl;
379
380 /* Update the size of this common block as needed. */
381 if (decl != NULL_TREE)
382 {
383 tree size = TYPE_SIZE_UNIT (union_type);
384 if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
385 {
386 /* Named common blocks of the same name shall be of the same size
387 in all scoping units of a program in which they appear, but
388 blank common blocks may be of different sizes. */
389 if (strcmp (com->name, BLANK_COMMON_NAME))
390 gfc_warning ("Named COMMON block '%s' at %L shall be of the "
391 "same size", com->name, &com->where);
392 DECL_SIZE_UNIT (decl) = size;
393 TREE_TYPE (decl) = union_type;
394 }
395 }
396
397 /* If this common block has been declared in a previous program unit,
398 and either it is already initialized or there is no new initialization
399 for it, just return. */
400 if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
401 return decl;
402
403 /* If there is no backend_decl for the common block, build it. */
404 if (decl == NULL_TREE)
405 {
406 decl = build_decl (VAR_DECL, get_identifier (com->name), union_type);
407 SET_DECL_ASSEMBLER_NAME (decl, gfc_sym_mangled_common_id (com));
408 TREE_PUBLIC (decl) = 1;
409 TREE_STATIC (decl) = 1;
410 if (!com->is_bind_c)
411 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
412 else
413 {
414 /* Do not set the alignment for bind(c) common blocks to
415 BIGGEST_ALIGNMENT because that won't match what C does. Also,
416 for common blocks with one element, the alignment must be
417 that of the field within the common block in order to match
418 what C will do. */
419 tree field = NULL_TREE;
420 field = TYPE_FIELDS (TREE_TYPE (decl));
421 if (TREE_CHAIN (field) == NULL_TREE)
422 DECL_ALIGN (decl) = TYPE_ALIGN (TREE_TYPE (field));
423 }
424 DECL_USER_ALIGN (decl) = 0;
425 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
426
427 gfc_set_decl_location (decl, &com->where);
428
429 if (com->threadprivate)
430 DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
431
432 /* Place the back end declaration for this common block in
433 GLOBAL_BINDING_LEVEL. */
434 common_sym->backend_decl = pushdecl_top_level (decl);
435 }
436
437 /* Has no initial values. */
438 if (!is_init)
439 {
440 DECL_INITIAL (decl) = NULL_TREE;
441 DECL_COMMON (decl) = 1;
442 DECL_DEFER_OUTPUT (decl) = 1;
443 }
444 else
445 {
446 DECL_INITIAL (decl) = error_mark_node;
447 DECL_COMMON (decl) = 0;
448 DECL_DEFER_OUTPUT (decl) = 0;
449 }
450 return decl;
451 }
452
453
454 /* Return a field that is the size of the union, if an equivalence has
455 overlapping initializers. Merge the initializers into a single
456 initializer for this new field, then free the old ones. */
457
458 static tree
459 get_init_field (segment_info *head, tree union_type, tree *field_init,
460 record_layout_info rli)
461 {
462 segment_info *s;
463 HOST_WIDE_INT length = 0;
464 HOST_WIDE_INT offset = 0;
465 unsigned HOST_WIDE_INT known_align, desired_align;
466 bool overlap = false;
467 tree tmp, field;
468 tree init;
469 unsigned char *data, *chk;
470 VEC(constructor_elt,gc) *v = NULL;
471
472 tree type = unsigned_char_type_node;
473 int i;
474
475 /* Obtain the size of the union and check if there are any overlapping
476 initializers. */
477 for (s = head; s; s = s->next)
478 {
479 HOST_WIDE_INT slen = s->offset + s->length;
480 if (s->sym->value)
481 {
482 if (s->offset < offset)
483 overlap = true;
484 offset = slen;
485 }
486 length = length < slen ? slen : length;
487 }
488
489 if (!overlap)
490 return NULL_TREE;
491
492 /* Now absorb all the initializer data into a single vector,
493 whilst checking for overlapping, unequal values. */
494 data = (unsigned char*)gfc_getmem ((size_t)length);
495 chk = (unsigned char*)gfc_getmem ((size_t)length);
496
497 /* TODO - change this when default initialization is implemented. */
498 memset (data, '\0', (size_t)length);
499 memset (chk, '\0', (size_t)length);
500 for (s = head; s; s = s->next)
501 if (s->sym->value)
502 gfc_merge_initializers (s->sym->ts, s->sym->value,
503 &data[s->offset],
504 &chk[s->offset],
505 (size_t)s->length);
506
507 for (i = 0; i < length; i++)
508 CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
509
510 gfc_free (data);
511 gfc_free (chk);
512
513 /* Build a char[length] array to hold the initializers. Much of what
514 follows is borrowed from build_field, above. */
515
516 tmp = build_int_cst (gfc_array_index_type, length - 1);
517 tmp = build_range_type (gfc_array_index_type,
518 gfc_index_zero_node, tmp);
519 tmp = build_array_type (type, tmp);
520 field = build_decl (FIELD_DECL, NULL_TREE, tmp);
521 gfc_set_decl_location (field, &gfc_current_locus);
522
523 known_align = BIGGEST_ALIGNMENT;
524
525 desired_align = update_alignment_for_field (rli, field, known_align);
526 if (desired_align > known_align)
527 DECL_PACKED (field) = 1;
528
529 DECL_FIELD_CONTEXT (field) = union_type;
530 DECL_FIELD_OFFSET (field) = size_int (0);
531 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
532 SET_DECL_OFFSET_ALIGN (field, known_align);
533
534 rli->offset = size_binop (MAX_EXPR, rli->offset,
535 size_binop (PLUS_EXPR,
536 DECL_FIELD_OFFSET (field),
537 DECL_SIZE_UNIT (field)));
538
539 init = build_constructor (TREE_TYPE (field), v);
540 TREE_CONSTANT (init) = 1;
541 TREE_INVARIANT (init) = 1;
542
543 *field_init = init;
544
545 for (s = head; s; s = s->next)
546 {
547 if (s->sym->value == NULL)
548 continue;
549
550 gfc_free_expr (s->sym->value);
551 s->sym->value = NULL;
552 }
553
554 return field;
555 }
556
557
558 /* Declare memory for the common block or local equivalence, and create
559 backend declarations for all of the elements. */
560
561 static void
562 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
563 {
564 segment_info *s, *next_s;
565 tree union_type;
566 tree *field_link;
567 tree field;
568 tree field_init = NULL_TREE;
569 record_layout_info rli;
570 tree decl;
571 bool is_init = false;
572 bool is_saved = false;
573
574 /* Declare the variables inside the common block.
575 If the current common block contains any equivalence object, then
576 make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
577 alias analyzer work well when there is no address overlapping for
578 common variables in the current common block. */
579 if (saw_equiv)
580 union_type = make_node (UNION_TYPE);
581 else
582 union_type = make_node (RECORD_TYPE);
583
584 rli = start_record_layout (union_type);
585 field_link = &TYPE_FIELDS (union_type);
586
587 /* Check for overlapping initializers and replace them with a single,
588 artificial field that contains all the data. */
589 if (saw_equiv)
590 field = get_init_field (head, union_type, &field_init, rli);
591 else
592 field = NULL_TREE;
593
594 if (field != NULL_TREE)
595 {
596 is_init = true;
597 *field_link = field;
598 field_link = &TREE_CHAIN (field);
599 }
600
601 for (s = head; s; s = s->next)
602 {
603 build_field (s, union_type, rli);
604
605 /* Link the field into the type. */
606 *field_link = s->field;
607 field_link = &TREE_CHAIN (s->field);
608
609 /* Has initial value. */
610 if (s->sym->value)
611 is_init = true;
612
613 /* Has SAVE attribute. */
614 if (s->sym->attr.save)
615 is_saved = true;
616 }
617
618 finish_record_layout (rli, true);
619
620 if (com)
621 decl = build_common_decl (com, union_type, is_init);
622 else
623 decl = build_equiv_decl (union_type, is_init, is_saved);
624
625 if (is_init)
626 {
627 tree ctor, tmp;
628 HOST_WIDE_INT offset = 0;
629 VEC(constructor_elt,gc) *v = NULL;
630
631 if (field != NULL_TREE && field_init != NULL_TREE)
632 CONSTRUCTOR_APPEND_ELT (v, field, field_init);
633 else
634 for (s = head; s; s = s->next)
635 {
636 if (s->sym->value)
637 {
638 /* Add the initializer for this field. */
639 tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
640 TREE_TYPE (s->field), s->sym->attr.dimension,
641 s->sym->attr.pointer || s->sym->attr.allocatable);
642
643 CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
644 offset = s->offset + s->length;
645 }
646 }
647
648 gcc_assert (!VEC_empty (constructor_elt, v));
649 ctor = build_constructor (union_type, v);
650 TREE_CONSTANT (ctor) = 1;
651 TREE_INVARIANT (ctor) = 1;
652 TREE_STATIC (ctor) = 1;
653 DECL_INITIAL (decl) = ctor;
654
655 #ifdef ENABLE_CHECKING
656 {
657 tree field, value;
658 unsigned HOST_WIDE_INT idx;
659 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
660 gcc_assert (TREE_CODE (field) == FIELD_DECL);
661 }
662 #endif
663 }
664
665 /* Build component reference for each variable. */
666 for (s = head; s; s = next_s)
667 {
668 tree var_decl;
669
670 var_decl = build_decl (VAR_DECL, DECL_NAME (s->field),
671 TREE_TYPE (s->field));
672 gfc_set_decl_location (var_decl, &s->sym->declared_at);
673 TREE_PUBLIC (var_decl) = TREE_PUBLIC (decl);
674 TREE_STATIC (var_decl) = TREE_STATIC (decl);
675 TREE_USED (var_decl) = TREE_USED (decl);
676 if (s->sym->attr.target)
677 TREE_ADDRESSABLE (var_decl) = 1;
678 /* This is a fake variable just for debugging purposes. */
679 TREE_ASM_WRITTEN (var_decl) = 1;
680
681 if (com)
682 var_decl = pushdecl_top_level (var_decl);
683 else
684 gfc_add_decl_to_function (var_decl);
685
686 SET_DECL_VALUE_EXPR (var_decl,
687 build3 (COMPONENT_REF, TREE_TYPE (s->field),
688 decl, s->field, NULL_TREE));
689 DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
690 GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
691
692 if (s->sym->attr.assign)
693 {
694 gfc_allocate_lang_decl (var_decl);
695 GFC_DECL_ASSIGN (var_decl) = 1;
696 GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
697 GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
698 }
699
700 s->sym->backend_decl = var_decl;
701
702 next_s = s->next;
703 gfc_free (s);
704 }
705 }
706
707
708 /* Given a symbol, find it in the current segment list. Returns NULL if
709 not found. */
710
711 static segment_info *
712 find_segment_info (gfc_symbol *symbol)
713 {
714 segment_info *n;
715
716 for (n = current_segment; n; n = n->next)
717 {
718 if (n->sym == symbol)
719 return n;
720 }
721
722 return NULL;
723 }
724
725
726 /* Given an expression node, make sure it is a constant integer and return
727 the mpz_t value. */
728
729 static mpz_t *
730 get_mpz (gfc_expr *e)
731 {
732
733 if (e->expr_type != EXPR_CONSTANT)
734 gfc_internal_error ("get_mpz(): Not an integer constant");
735
736 return &e->value.integer;
737 }
738
739
740 /* Given an array specification and an array reference, figure out the
741 array element number (zero based). Bounds and elements are guaranteed
742 to be constants. If something goes wrong we generate an error and
743 return zero. */
744
745 static HOST_WIDE_INT
746 element_number (gfc_array_ref *ar)
747 {
748 mpz_t multiplier, offset, extent, n;
749 gfc_array_spec *as;
750 HOST_WIDE_INT i, rank;
751
752 as = ar->as;
753 rank = as->rank;
754 mpz_init_set_ui (multiplier, 1);
755 mpz_init_set_ui (offset, 0);
756 mpz_init (extent);
757 mpz_init (n);
758
759 for (i = 0; i < rank; i++)
760 {
761 if (ar->dimen_type[i] != DIMEN_ELEMENT)
762 gfc_internal_error ("element_number(): Bad dimension type");
763
764 mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
765
766 mpz_mul (n, n, multiplier);
767 mpz_add (offset, offset, n);
768
769 mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
770 mpz_add_ui (extent, extent, 1);
771
772 if (mpz_sgn (extent) < 0)
773 mpz_set_ui (extent, 0);
774
775 mpz_mul (multiplier, multiplier, extent);
776 }
777
778 i = mpz_get_ui (offset);
779
780 mpz_clear (multiplier);
781 mpz_clear (offset);
782 mpz_clear (extent);
783 mpz_clear (n);
784
785 return i;
786 }
787
788
789 /* Given a single element of an equivalence list, figure out the offset
790 from the base symbol. For simple variables or full arrays, this is
791 simply zero. For an array element we have to calculate the array
792 element number and multiply by the element size. For a substring we
793 have to calculate the further reference. */
794
795 static HOST_WIDE_INT
796 calculate_offset (gfc_expr *e)
797 {
798 HOST_WIDE_INT n, element_size, offset;
799 gfc_typespec *element_type;
800 gfc_ref *reference;
801
802 offset = 0;
803 element_type = &e->symtree->n.sym->ts;
804
805 for (reference = e->ref; reference; reference = reference->next)
806 switch (reference->type)
807 {
808 case REF_ARRAY:
809 switch (reference->u.ar.type)
810 {
811 case AR_FULL:
812 break;
813
814 case AR_ELEMENT:
815 n = element_number (&reference->u.ar);
816 if (element_type->type == BT_CHARACTER)
817 gfc_conv_const_charlen (element_type->cl);
818 element_size =
819 int_size_in_bytes (gfc_typenode_for_spec (element_type));
820 offset += n * element_size;
821 break;
822
823 default:
824 gfc_error ("Bad array reference at %L", &e->where);
825 }
826 break;
827 case REF_SUBSTRING:
828 if (reference->u.ss.start != NULL)
829 offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
830 break;
831 default:
832 gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
833 &e->where);
834 }
835 return offset;
836 }
837
838
839 /* Add a new segment_info structure to the current segment. eq1 is already
840 in the list, eq2 is not. */
841
842 static void
843 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
844 {
845 HOST_WIDE_INT offset1, offset2;
846 segment_info *a;
847
848 offset1 = calculate_offset (eq1->expr);
849 offset2 = calculate_offset (eq2->expr);
850
851 a = get_segment_info (eq2->expr->symtree->n.sym,
852 v->offset + offset1 - offset2);
853
854 current_segment = add_segments (current_segment, a);
855 }
856
857
858 /* Given two equivalence structures that are both already in the list, make
859 sure that this new condition is not violated, generating an error if it
860 is. */
861
862 static void
863 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
864 gfc_equiv *eq2)
865 {
866 HOST_WIDE_INT offset1, offset2;
867
868 offset1 = calculate_offset (eq1->expr);
869 offset2 = calculate_offset (eq2->expr);
870
871 if (s1->offset + offset1 != s2->offset + offset2)
872 gfc_error ("Inconsistent equivalence rules involving '%s' at %L and "
873 "'%s' at %L", s1->sym->name, &s1->sym->declared_at,
874 s2->sym->name, &s2->sym->declared_at);
875 }
876
877
878 /* Process a new equivalence condition. eq1 is know to be in segment f.
879 If eq2 is also present then confirm that the condition holds.
880 Otherwise add a new variable to the segment list. */
881
882 static void
883 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
884 {
885 segment_info *n;
886
887 n = find_segment_info (eq2->expr->symtree->n.sym);
888
889 if (n == NULL)
890 new_condition (f, eq1, eq2);
891 else
892 confirm_condition (f, eq1, n, eq2);
893 }
894
895
896 /* Given a segment element, search through the equivalence lists for unused
897 conditions that involve the symbol. Add these rules to the segment. */
898
899 static bool
900 find_equivalence (segment_info *n)
901 {
902 gfc_equiv *e1, *e2, *eq;
903 bool found;
904
905 found = FALSE;
906
907 for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
908 {
909 eq = NULL;
910
911 /* Search the equivalence list, including the root (first) element
912 for the symbol that owns the segment. */
913 for (e2 = e1; e2; e2 = e2->eq)
914 {
915 if (!e2->used && e2->expr->symtree->n.sym == n->sym)
916 {
917 eq = e2;
918 break;
919 }
920 }
921
922 /* Go to the next root element. */
923 if (eq == NULL)
924 continue;
925
926 eq->used = 1;
927
928 /* Now traverse the equivalence list matching the offsets. */
929 for (e2 = e1; e2; e2 = e2->eq)
930 {
931 if (!e2->used && e2 != eq)
932 {
933 add_condition (n, eq, e2);
934 e2->used = 1;
935 found = TRUE;
936 }
937 }
938 }
939 return found;
940 }
941
942
943 /* Add all symbols equivalenced within a segment. We need to scan the
944 segment list multiple times to include indirect equivalences. Since
945 a new segment_info can inserted at the beginning of the segment list,
946 depending on its offset, we have to force a final pass through the
947 loop by demanding that completion sees a pass with no matches; ie.
948 all symbols with equiv_built set and no new equivalences found. */
949
950 static void
951 add_equivalences (bool *saw_equiv)
952 {
953 segment_info *f;
954 bool seen_one, more;
955
956 seen_one = false;
957 more = TRUE;
958 while (more)
959 {
960 more = FALSE;
961 for (f = current_segment; f; f = f->next)
962 {
963 if (!f->sym->equiv_built)
964 {
965 f->sym->equiv_built = 1;
966 seen_one = find_equivalence (f);
967 if (seen_one)
968 {
969 *saw_equiv = true;
970 more = true;
971 }
972 }
973 }
974 }
975
976 /* Add a copy of this segment list to the namespace. */
977 copy_equiv_list_to_ns (current_segment);
978 }
979
980
981 /* Returns the offset necessary to properly align the current equivalence.
982 Sets *palign to the required alignment. */
983
984 static HOST_WIDE_INT
985 align_segment (unsigned HOST_WIDE_INT *palign)
986 {
987 segment_info *s;
988 unsigned HOST_WIDE_INT offset;
989 unsigned HOST_WIDE_INT max_align;
990 unsigned HOST_WIDE_INT this_align;
991 unsigned HOST_WIDE_INT this_offset;
992
993 max_align = 1;
994 offset = 0;
995 for (s = current_segment; s; s = s->next)
996 {
997 this_align = TYPE_ALIGN_UNIT (s->field);
998 if (s->offset & (this_align - 1))
999 {
1000 /* Field is misaligned. */
1001 this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1002 if (this_offset & (max_align - 1))
1003 {
1004 /* Aligning this field would misalign a previous field. */
1005 gfc_error ("The equivalence set for variable '%s' "
1006 "declared at %L violates alignment requirements",
1007 s->sym->name, &s->sym->declared_at);
1008 }
1009 offset += this_offset;
1010 }
1011 max_align = this_align;
1012 }
1013 if (palign)
1014 *palign = max_align;
1015 return offset;
1016 }
1017
1018
1019 /* Adjust segment offsets by the given amount. */
1020
1021 static void
1022 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1023 {
1024 for (; s; s = s->next)
1025 s->offset += offset;
1026 }
1027
1028
1029 /* Lay out a symbol in a common block. If the symbol has already been seen
1030 then check the location is consistent. Otherwise create segments
1031 for that symbol and all the symbols equivalenced with it. */
1032
1033 /* Translate a single common block. */
1034
1035 static void
1036 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1037 {
1038 gfc_symbol *sym;
1039 segment_info *s;
1040 segment_info *common_segment;
1041 HOST_WIDE_INT offset;
1042 HOST_WIDE_INT current_offset;
1043 unsigned HOST_WIDE_INT align;
1044 unsigned HOST_WIDE_INT max_align;
1045 bool saw_equiv;
1046
1047 common_segment = NULL;
1048 current_offset = 0;
1049 max_align = 1;
1050 saw_equiv = false;
1051
1052 /* Add symbols to the segment. */
1053 for (sym = var_list; sym; sym = sym->common_next)
1054 {
1055 current_segment = common_segment;
1056 s = find_segment_info (sym);
1057
1058 /* Symbol has already been added via an equivalence. Multiple
1059 use associations of the same common block result in equiv_built
1060 being set but no information about the symbol in the segment. */
1061 if (s && sym->equiv_built)
1062 {
1063 /* Ensure the current location is properly aligned. */
1064 align = TYPE_ALIGN_UNIT (s->field);
1065 current_offset = (current_offset + align - 1) &~ (align - 1);
1066
1067 /* Verify that it ended up where we expect it. */
1068 if (s->offset != current_offset)
1069 {
1070 gfc_error ("Equivalence for '%s' does not match ordering of "
1071 "COMMON '%s' at %L", sym->name,
1072 common->name, &common->where);
1073 }
1074 }
1075 else
1076 {
1077 /* A symbol we haven't seen before. */
1078 s = current_segment = get_segment_info (sym, current_offset);
1079
1080 /* Add all objects directly or indirectly equivalenced with this
1081 symbol. */
1082 add_equivalences (&saw_equiv);
1083
1084 if (current_segment->offset < 0)
1085 gfc_error ("The equivalence set for '%s' cause an invalid "
1086 "extension to COMMON '%s' at %L", sym->name,
1087 common->name, &common->where);
1088
1089 offset = align_segment (&align);
1090
1091 if (offset & (max_align - 1))
1092 {
1093 /* The required offset conflicts with previous alignment
1094 requirements. Insert padding immediately before this
1095 segment. */
1096 gfc_warning ("Padding of %d bytes required before '%s' in "
1097 "COMMON '%s' at %L", (int)offset, s->sym->name,
1098 common->name, &common->where);
1099 }
1100 else
1101 {
1102 /* Offset the whole common block. */
1103 apply_segment_offset (common_segment, offset);
1104 }
1105
1106 /* Apply the offset to the new segments. */
1107 apply_segment_offset (current_segment, offset);
1108 current_offset += offset;
1109 if (max_align < align)
1110 max_align = align;
1111
1112 /* Add the new segments to the common block. */
1113 common_segment = add_segments (common_segment, current_segment);
1114 }
1115
1116 /* The offset of the next common variable. */
1117 current_offset += s->length;
1118 }
1119
1120 if (common_segment == NULL)
1121 {
1122 gfc_error ("COMMON '%s' at %L does not exist",
1123 common->name, &common->where);
1124 return;
1125 }
1126
1127 if (common_segment->offset != 0)
1128 {
1129 gfc_warning ("COMMON '%s' at %L requires %d bytes of padding at start",
1130 common->name, &common->where, (int)common_segment->offset);
1131 }
1132
1133 create_common (common, common_segment, saw_equiv);
1134 }
1135
1136
1137 /* Create a new block for each merged equivalence list. */
1138
1139 static void
1140 finish_equivalences (gfc_namespace *ns)
1141 {
1142 gfc_equiv *z, *y;
1143 gfc_symbol *sym;
1144 gfc_common_head * c;
1145 HOST_WIDE_INT offset;
1146 unsigned HOST_WIDE_INT align;
1147 bool dummy;
1148
1149 for (z = ns->equiv; z; z = z->next)
1150 for (y = z->eq; y; y = y->eq)
1151 {
1152 if (y->used)
1153 continue;
1154 sym = z->expr->symtree->n.sym;
1155 current_segment = get_segment_info (sym, 0);
1156
1157 /* All objects directly or indirectly equivalenced with this
1158 symbol. */
1159 add_equivalences (&dummy);
1160
1161 /* Align the block. */
1162 offset = align_segment (&align);
1163
1164 /* Ensure all offsets are positive. */
1165 offset -= current_segment->offset & ~(align - 1);
1166
1167 apply_segment_offset (current_segment, offset);
1168
1169 /* Create the decl. If this is a module equivalence, it has a
1170 unique name, pointed to by z->module. This is written to a
1171 gfc_common_header to push create_common into using
1172 build_common_decl, so that the equivalence appears as an
1173 external symbol. Otherwise, a local declaration is built using
1174 build_equiv_decl. */
1175 if (z->module)
1176 {
1177 c = gfc_get_common_head ();
1178 /* We've lost the real location, so use the location of the
1179 enclosing procedure. */
1180 c->where = ns->proc_name->declared_at;
1181 strcpy (c->name, z->module);
1182 }
1183 else
1184 c = NULL;
1185
1186 create_common (c, current_segment, true);
1187 break;
1188 }
1189 }
1190
1191
1192 /* Work function for translating a named common block. */
1193
1194 static void
1195 named_common (gfc_symtree *st)
1196 {
1197 translate_common (st->n.common, st->n.common->head);
1198 }
1199
1200
1201 /* Translate the common blocks in a namespace. Unlike other variables,
1202 these have to be created before code, because the backend_decl depends
1203 on the rest of the common block. */
1204
1205 void
1206 gfc_trans_common (gfc_namespace *ns)
1207 {
1208 gfc_common_head *c;
1209
1210 /* Translate the blank common block. */
1211 if (ns->blank_common.head != NULL)
1212 {
1213 c = gfc_get_common_head ();
1214
1215 /* We've lost the real location, so use the location of the
1216 enclosing procedure. */
1217 if (ns->proc_name != NULL)
1218 c->where = ns->proc_name->declared_at;
1219 else
1220 c->where = ns->blank_common.head->common_head->where;
1221
1222 strcpy (c->name, BLANK_COMMON_NAME);
1223 translate_common (c, ns->blank_common.head);
1224 }
1225
1226 /* Translate all named common blocks. */
1227 gfc_traverse_symtree (ns->common_root, named_common);
1228
1229 /* Translate local equivalence. */
1230 finish_equivalences (ns);
1231
1232 /* Commit the newly created symbols for common blocks and module
1233 equivalences. */
1234 gfc_commit_symbols ();
1235 }