re PR fortran/35037 (VOLATILE attribute not being honored with common block variable)
[gcc.git] / gcc / fortran / trans-common.c
1 /* Common block and equivalence list handling
2 Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Canqun Yang <canqun@nudt.edu.cn>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* The core algorithm is based on Andy Vaught's g95 tree. Also the
23 way to build UNION_TYPE is borrowed from Richard Henderson.
24
25 Transform common blocks. An integral part of this is processing
26 equivalence variables. Equivalenced variables that are not in a
27 common block end up in a private block of their own.
28
29 Each common block or local equivalence list is declared as a union.
30 Variables within the block are represented as a field within the
31 block with the proper offset.
32
33 So if two variables are equivalenced, they just point to a common
34 area in memory.
35
36 Mathematically, laying out an equivalence block is equivalent to
37 solving a linear system of equations. The matrix is usually a
38 sparse matrix in which each row contains all zero elements except
39 for a +1 and a -1, a sort of a generalized Vandermonde matrix. The
40 matrix is usually block diagonal. The system can be
41 overdetermined, underdetermined or have a unique solution. If the
42 system is inconsistent, the program is not standard conforming.
43 The solution vector is integral, since all of the pivots are +1 or -1.
44
45 How we lay out an equivalence block is a little less complicated.
46 In an equivalence list with n elements, there are n-1 conditions to
47 be satisfied. The conditions partition the variables into what we
48 will call segments. If A and B are equivalenced then A and B are
49 in the same segment. If B and C are equivalenced as well, then A,
50 B and C are in a segment and so on. Each segment is a block of
51 memory that has one or more variables equivalenced in some way. A
52 common block is made up of a series of segments that are joined one
53 after the other. In the linear system, a segment is a block
54 diagonal.
55
56 To lay out a segment we first start with some variable and
57 determine its length. The first variable is assumed to start at
58 offset one and extends to however long it is. We then traverse the
59 list of equivalences to find an unused condition that involves at
60 least one of the variables currently in the segment.
61
62 Each equivalence condition amounts to the condition B+b=C+c where B
63 and C are the offsets of the B and C variables, and b and c are
64 constants which are nonzero for array elements, substrings or
65 structure components. So for
66
67 EQUIVALENCE(B(2), C(3))
68 we have
69 B + 2*size of B's elements = C + 3*size of C's elements.
70
71 If B and C are known we check to see if the condition already
72 holds. If B is known we can solve for C. Since we know the length
73 of C, we can see if the minimum and maximum extents of the segment
74 are affected. Eventually, we make a full pass through the
75 equivalence list without finding any new conditions and the segment
76 is fully specified.
77
78 At this point, the segment is added to the current common block.
79 Since we know the minimum extent of the segment, everything in the
80 segment is translated to its position in the common block. The
81 usual case here is that there are no equivalence statements and the
82 common block is series of segments with one variable each, which is
83 a diagonal matrix in the matrix formulation.
84
85 Each segment is described by a chain of segment_info structures. Each
86 segment_info structure describes the extents of a single variable within
87 the segment. This list is maintained in the order the elements are
88 positioned withing the segment. If two elements have the same starting
89 offset the smaller will come first. If they also have the same size their
90 ordering is undefined.
91
92 Once all common blocks have been created, the list of equivalences
93 is examined for still-unused equivalence conditions. We create a
94 block for each merged equivalence list. */
95
96 #include "config.h"
97 #include "system.h"
98 #include "coretypes.h"
99 #include "target.h"
100 #include "tree.h"
101 #include "toplev.h"
102 #include "tm.h"
103 #include "rtl.h"
104 #include "gfortran.h"
105 #include "trans.h"
106 #include "trans-types.h"
107 #include "trans-const.h"
108 #include "target-memory.h"
109
110
111 /* Holds a single variable in an equivalence set. */
112 typedef struct segment_info
113 {
114 gfc_symbol *sym;
115 HOST_WIDE_INT offset;
116 HOST_WIDE_INT length;
117 /* This will contain the field type until the field is created. */
118 tree field;
119 struct segment_info *next;
120 } segment_info;
121
122 static segment_info * current_segment;
123 static gfc_namespace *gfc_common_ns = NULL;
124
125
126 /* Make a segment_info based on a symbol. */
127
128 static segment_info *
129 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
130 {
131 segment_info *s;
132
133 /* Make sure we've got the character length. */
134 if (sym->ts.type == BT_CHARACTER)
135 gfc_conv_const_charlen (sym->ts.cl);
136
137 /* Create the segment_info and fill it in. */
138 s = (segment_info *) gfc_getmem (sizeof (segment_info));
139 s->sym = sym;
140 /* We will use this type when building the segment aggregate type. */
141 s->field = gfc_sym_type (sym);
142 s->length = int_size_in_bytes (s->field);
143 s->offset = offset;
144
145 return s;
146 }
147
148
149 /* Add a copy of a segment list to the namespace. This is specifically for
150 equivalence segments, so that dependency checking can be done on
151 equivalence group members. */
152
153 static void
154 copy_equiv_list_to_ns (segment_info *c)
155 {
156 segment_info *f;
157 gfc_equiv_info *s;
158 gfc_equiv_list *l;
159
160 l = (gfc_equiv_list *) gfc_getmem (sizeof (gfc_equiv_list));
161
162 l->next = c->sym->ns->equiv_lists;
163 c->sym->ns->equiv_lists = l;
164
165 for (f = c; f; f = f->next)
166 {
167 s = (gfc_equiv_info *) gfc_getmem (sizeof (gfc_equiv_info));
168 s->next = l->equiv;
169 l->equiv = s;
170 s->sym = f->sym;
171 s->offset = f->offset;
172 s->length = f->length;
173 }
174 }
175
176
177 /* Add combine segment V and segment LIST. */
178
179 static segment_info *
180 add_segments (segment_info *list, segment_info *v)
181 {
182 segment_info *s;
183 segment_info *p;
184 segment_info *next;
185
186 p = NULL;
187 s = list;
188
189 while (v)
190 {
191 /* Find the location of the new element. */
192 while (s)
193 {
194 if (v->offset < s->offset)
195 break;
196 if (v->offset == s->offset
197 && v->length <= s->length)
198 break;
199
200 p = s;
201 s = s->next;
202 }
203
204 /* Insert the new element in between p and s. */
205 next = v->next;
206 v->next = s;
207 if (p == NULL)
208 list = v;
209 else
210 p->next = v;
211
212 p = v;
213 v = next;
214 }
215
216 return list;
217 }
218
219
220 /* Construct mangled common block name from symbol name. */
221
222 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
223 name. There are few calls to this function, so few places that this
224 would need to be added. At the moment, there is only one call, in
225 build_common_decl(). We can't attempt to look up the common block
226 because we may be building it for the first time and therefore, it won't
227 be in the common_root. We also need the binding label, if it's bind(c).
228 Therefore, send in the pointer to the common block, so whatever info we
229 have so far can be used. All of the necessary info should be available
230 in the gfc_common_head by now, so it should be accurate to test the
231 isBindC flag and use the binding label given if it is bind(c).
232
233 We may NOT know yet if it's bind(c) or not, but we can try at least.
234 Will have to figure out what to do later if it's labeled bind(c)
235 after this is called. */
236
237 static tree
238 gfc_sym_mangled_common_id (gfc_common_head *com)
239 {
240 int has_underscore;
241 char mangled_name[GFC_MAX_MANGLED_SYMBOL_LEN + 1];
242 char name[GFC_MAX_SYMBOL_LEN + 1];
243
244 /* Get the name out of the common block pointer. */
245 strcpy (name, com->name);
246
247 /* If we're suppose to do a bind(c). */
248 if (com->is_bind_c == 1 && com->binding_label[0] != '\0')
249 return get_identifier (com->binding_label);
250
251 if (strcmp (name, BLANK_COMMON_NAME) == 0)
252 return get_identifier (name);
253
254 if (gfc_option.flag_underscoring)
255 {
256 has_underscore = strchr (name, '_') != 0;
257 if (gfc_option.flag_second_underscore && has_underscore)
258 snprintf (mangled_name, sizeof mangled_name, "%s__", name);
259 else
260 snprintf (mangled_name, sizeof mangled_name, "%s_", name);
261
262 return get_identifier (mangled_name);
263 }
264 else
265 return get_identifier (name);
266 }
267
268
269 /* Build a field declaration for a common variable or a local equivalence
270 object. */
271
272 static void
273 build_field (segment_info *h, tree union_type, record_layout_info rli)
274 {
275 tree field;
276 tree name;
277 HOST_WIDE_INT offset = h->offset;
278 unsigned HOST_WIDE_INT desired_align, known_align;
279
280 name = get_identifier (h->sym->name);
281 field = build_decl (FIELD_DECL, name, h->field);
282 gfc_set_decl_location (field, &h->sym->declared_at);
283 known_align = (offset & -offset) * BITS_PER_UNIT;
284 if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
285 known_align = BIGGEST_ALIGNMENT;
286
287 desired_align = update_alignment_for_field (rli, field, known_align);
288 if (desired_align > known_align)
289 DECL_PACKED (field) = 1;
290
291 DECL_FIELD_CONTEXT (field) = union_type;
292 DECL_FIELD_OFFSET (field) = size_int (offset);
293 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
294 SET_DECL_OFFSET_ALIGN (field, known_align);
295
296 rli->offset = size_binop (MAX_EXPR, rli->offset,
297 size_binop (PLUS_EXPR,
298 DECL_FIELD_OFFSET (field),
299 DECL_SIZE_UNIT (field)));
300 /* If this field is assigned to a label, we create another two variables.
301 One will hold the address of target label or format label. The other will
302 hold the length of format label string. */
303 if (h->sym->attr.assign)
304 {
305 tree len;
306 tree addr;
307
308 gfc_allocate_lang_decl (field);
309 GFC_DECL_ASSIGN (field) = 1;
310 len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
311 addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
312 TREE_STATIC (len) = 1;
313 TREE_STATIC (addr) = 1;
314 DECL_INITIAL (len) = build_int_cst (NULL_TREE, -2);
315 gfc_set_decl_location (len, &h->sym->declared_at);
316 gfc_set_decl_location (addr, &h->sym->declared_at);
317 GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
318 GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
319 }
320
321 /* If this field is volatile, mark it. */
322 if (h->sym->attr.volatile_)
323 {
324 tree new;
325 TREE_THIS_VOLATILE (field) = 1;
326 new = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE);
327 TREE_TYPE (field) = new;
328 }
329
330 h->field = field;
331 }
332
333
334 /* Get storage for local equivalence. */
335
336 static tree
337 build_equiv_decl (tree union_type, bool is_init, bool is_saved)
338 {
339 tree decl;
340 char name[15];
341 static int serial = 0;
342
343 if (is_init)
344 {
345 decl = gfc_create_var (union_type, "equiv");
346 TREE_STATIC (decl) = 1;
347 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
348 return decl;
349 }
350
351 snprintf (name, sizeof (name), "equiv.%d", serial++);
352 decl = build_decl (VAR_DECL, get_identifier (name), union_type);
353 DECL_ARTIFICIAL (decl) = 1;
354 DECL_IGNORED_P (decl) = 1;
355
356 if (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
357 || is_saved)
358 TREE_STATIC (decl) = 1;
359
360 TREE_ADDRESSABLE (decl) = 1;
361 TREE_USED (decl) = 1;
362 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
363
364 /* The source location has been lost, and doesn't really matter.
365 We need to set it to something though. */
366 gfc_set_decl_location (decl, &gfc_current_locus);
367
368 gfc_add_decl_to_function (decl);
369
370 return decl;
371 }
372
373
374 /* Get storage for common block. */
375
376 static tree
377 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
378 {
379 gfc_symbol *common_sym;
380 tree decl;
381
382 /* Create a namespace to store symbols for common blocks. */
383 if (gfc_common_ns == NULL)
384 gfc_common_ns = gfc_get_namespace (NULL, 0);
385
386 gfc_get_symbol (com->name, gfc_common_ns, &common_sym);
387 decl = common_sym->backend_decl;
388
389 /* Update the size of this common block as needed. */
390 if (decl != NULL_TREE)
391 {
392 tree size = TYPE_SIZE_UNIT (union_type);
393 if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
394 {
395 /* Named common blocks of the same name shall be of the same size
396 in all scoping units of a program in which they appear, but
397 blank common blocks may be of different sizes. */
398 if (strcmp (com->name, BLANK_COMMON_NAME))
399 gfc_warning ("Named COMMON block '%s' at %L shall be of the "
400 "same size", com->name, &com->where);
401 DECL_SIZE_UNIT (decl) = size;
402 TREE_TYPE (decl) = union_type;
403 }
404 }
405
406 /* If this common block has been declared in a previous program unit,
407 and either it is already initialized or there is no new initialization
408 for it, just return. */
409 if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
410 return decl;
411
412 /* If there is no backend_decl for the common block, build it. */
413 if (decl == NULL_TREE)
414 {
415 decl = build_decl (VAR_DECL, get_identifier (com->name), union_type);
416 SET_DECL_ASSEMBLER_NAME (decl, gfc_sym_mangled_common_id (com));
417 TREE_PUBLIC (decl) = 1;
418 TREE_STATIC (decl) = 1;
419 if (!com->is_bind_c)
420 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
421 else
422 {
423 /* Do not set the alignment for bind(c) common blocks to
424 BIGGEST_ALIGNMENT because that won't match what C does. Also,
425 for common blocks with one element, the alignment must be
426 that of the field within the common block in order to match
427 what C will do. */
428 tree field = NULL_TREE;
429 field = TYPE_FIELDS (TREE_TYPE (decl));
430 if (TREE_CHAIN (field) == NULL_TREE)
431 DECL_ALIGN (decl) = TYPE_ALIGN (TREE_TYPE (field));
432 }
433 DECL_USER_ALIGN (decl) = 0;
434 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
435
436 gfc_set_decl_location (decl, &com->where);
437
438 if (com->threadprivate)
439 DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
440
441 /* Place the back end declaration for this common block in
442 GLOBAL_BINDING_LEVEL. */
443 common_sym->backend_decl = pushdecl_top_level (decl);
444 }
445
446 /* Has no initial values. */
447 if (!is_init)
448 {
449 DECL_INITIAL (decl) = NULL_TREE;
450 DECL_COMMON (decl) = 1;
451 DECL_DEFER_OUTPUT (decl) = 1;
452 }
453 else
454 {
455 DECL_INITIAL (decl) = error_mark_node;
456 DECL_COMMON (decl) = 0;
457 DECL_DEFER_OUTPUT (decl) = 0;
458 }
459 return decl;
460 }
461
462
463 /* Return a field that is the size of the union, if an equivalence has
464 overlapping initializers. Merge the initializers into a single
465 initializer for this new field, then free the old ones. */
466
467 static tree
468 get_init_field (segment_info *head, tree union_type, tree *field_init,
469 record_layout_info rli)
470 {
471 segment_info *s;
472 HOST_WIDE_INT length = 0;
473 HOST_WIDE_INT offset = 0;
474 unsigned HOST_WIDE_INT known_align, desired_align;
475 bool overlap = false;
476 tree tmp, field;
477 tree init;
478 unsigned char *data, *chk;
479 VEC(constructor_elt,gc) *v = NULL;
480
481 tree type = unsigned_char_type_node;
482 int i;
483
484 /* Obtain the size of the union and check if there are any overlapping
485 initializers. */
486 for (s = head; s; s = s->next)
487 {
488 HOST_WIDE_INT slen = s->offset + s->length;
489 if (s->sym->value)
490 {
491 if (s->offset < offset)
492 overlap = true;
493 offset = slen;
494 }
495 length = length < slen ? slen : length;
496 }
497
498 if (!overlap)
499 return NULL_TREE;
500
501 /* Now absorb all the initializer data into a single vector,
502 whilst checking for overlapping, unequal values. */
503 data = (unsigned char*)gfc_getmem ((size_t)length);
504 chk = (unsigned char*)gfc_getmem ((size_t)length);
505
506 /* TODO - change this when default initialization is implemented. */
507 memset (data, '\0', (size_t)length);
508 memset (chk, '\0', (size_t)length);
509 for (s = head; s; s = s->next)
510 if (s->sym->value)
511 gfc_merge_initializers (s->sym->ts, s->sym->value,
512 &data[s->offset],
513 &chk[s->offset],
514 (size_t)s->length);
515
516 for (i = 0; i < length; i++)
517 CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
518
519 gfc_free (data);
520 gfc_free (chk);
521
522 /* Build a char[length] array to hold the initializers. Much of what
523 follows is borrowed from build_field, above. */
524
525 tmp = build_int_cst (gfc_array_index_type, length - 1);
526 tmp = build_range_type (gfc_array_index_type,
527 gfc_index_zero_node, tmp);
528 tmp = build_array_type (type, tmp);
529 field = build_decl (FIELD_DECL, NULL_TREE, tmp);
530 gfc_set_decl_location (field, &gfc_current_locus);
531
532 known_align = BIGGEST_ALIGNMENT;
533
534 desired_align = update_alignment_for_field (rli, field, known_align);
535 if (desired_align > known_align)
536 DECL_PACKED (field) = 1;
537
538 DECL_FIELD_CONTEXT (field) = union_type;
539 DECL_FIELD_OFFSET (field) = size_int (0);
540 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
541 SET_DECL_OFFSET_ALIGN (field, known_align);
542
543 rli->offset = size_binop (MAX_EXPR, rli->offset,
544 size_binop (PLUS_EXPR,
545 DECL_FIELD_OFFSET (field),
546 DECL_SIZE_UNIT (field)));
547
548 init = build_constructor (TREE_TYPE (field), v);
549 TREE_CONSTANT (init) = 1;
550 TREE_INVARIANT (init) = 1;
551
552 *field_init = init;
553
554 for (s = head; s; s = s->next)
555 {
556 if (s->sym->value == NULL)
557 continue;
558
559 gfc_free_expr (s->sym->value);
560 s->sym->value = NULL;
561 }
562
563 return field;
564 }
565
566
567 /* Declare memory for the common block or local equivalence, and create
568 backend declarations for all of the elements. */
569
570 static void
571 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
572 {
573 segment_info *s, *next_s;
574 tree union_type;
575 tree *field_link;
576 tree field;
577 tree field_init = NULL_TREE;
578 record_layout_info rli;
579 tree decl;
580 bool is_init = false;
581 bool is_saved = false;
582
583 /* Declare the variables inside the common block.
584 If the current common block contains any equivalence object, then
585 make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
586 alias analyzer work well when there is no address overlapping for
587 common variables in the current common block. */
588 if (saw_equiv)
589 union_type = make_node (UNION_TYPE);
590 else
591 union_type = make_node (RECORD_TYPE);
592
593 rli = start_record_layout (union_type);
594 field_link = &TYPE_FIELDS (union_type);
595
596 /* Check for overlapping initializers and replace them with a single,
597 artificial field that contains all the data. */
598 if (saw_equiv)
599 field = get_init_field (head, union_type, &field_init, rli);
600 else
601 field = NULL_TREE;
602
603 if (field != NULL_TREE)
604 {
605 is_init = true;
606 *field_link = field;
607 field_link = &TREE_CHAIN (field);
608 }
609
610 for (s = head; s; s = s->next)
611 {
612 build_field (s, union_type, rli);
613
614 /* Link the field into the type. */
615 *field_link = s->field;
616 field_link = &TREE_CHAIN (s->field);
617
618 /* Has initial value. */
619 if (s->sym->value)
620 is_init = true;
621
622 /* Has SAVE attribute. */
623 if (s->sym->attr.save)
624 is_saved = true;
625 }
626
627 finish_record_layout (rli, true);
628
629 if (com)
630 decl = build_common_decl (com, union_type, is_init);
631 else
632 decl = build_equiv_decl (union_type, is_init, is_saved);
633
634 if (is_init)
635 {
636 tree ctor, tmp;
637 HOST_WIDE_INT offset = 0;
638 VEC(constructor_elt,gc) *v = NULL;
639
640 if (field != NULL_TREE && field_init != NULL_TREE)
641 CONSTRUCTOR_APPEND_ELT (v, field, field_init);
642 else
643 for (s = head; s; s = s->next)
644 {
645 if (s->sym->value)
646 {
647 /* Add the initializer for this field. */
648 tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
649 TREE_TYPE (s->field), s->sym->attr.dimension,
650 s->sym->attr.pointer || s->sym->attr.allocatable);
651
652 CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
653 offset = s->offset + s->length;
654 }
655 }
656
657 gcc_assert (!VEC_empty (constructor_elt, v));
658 ctor = build_constructor (union_type, v);
659 TREE_CONSTANT (ctor) = 1;
660 TREE_INVARIANT (ctor) = 1;
661 TREE_STATIC (ctor) = 1;
662 DECL_INITIAL (decl) = ctor;
663
664 #ifdef ENABLE_CHECKING
665 {
666 tree field, value;
667 unsigned HOST_WIDE_INT idx;
668 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
669 gcc_assert (TREE_CODE (field) == FIELD_DECL);
670 }
671 #endif
672 }
673
674 /* Build component reference for each variable. */
675 for (s = head; s; s = next_s)
676 {
677 tree var_decl;
678
679 var_decl = build_decl (VAR_DECL, DECL_NAME (s->field),
680 TREE_TYPE (s->field));
681 gfc_set_decl_location (var_decl, &s->sym->declared_at);
682 TREE_PUBLIC (var_decl) = TREE_PUBLIC (decl);
683 TREE_STATIC (var_decl) = TREE_STATIC (decl);
684 TREE_USED (var_decl) = TREE_USED (decl);
685 if (s->sym->attr.target)
686 TREE_ADDRESSABLE (var_decl) = 1;
687 /* This is a fake variable just for debugging purposes. */
688 TREE_ASM_WRITTEN (var_decl) = 1;
689
690 if (com)
691 var_decl = pushdecl_top_level (var_decl);
692 else
693 gfc_add_decl_to_function (var_decl);
694
695 SET_DECL_VALUE_EXPR (var_decl,
696 build3 (COMPONENT_REF, TREE_TYPE (s->field),
697 decl, s->field, NULL_TREE));
698 DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
699 GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
700
701 if (s->sym->attr.assign)
702 {
703 gfc_allocate_lang_decl (var_decl);
704 GFC_DECL_ASSIGN (var_decl) = 1;
705 GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
706 GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
707 }
708
709 s->sym->backend_decl = var_decl;
710
711 next_s = s->next;
712 gfc_free (s);
713 }
714 }
715
716
717 /* Given a symbol, find it in the current segment list. Returns NULL if
718 not found. */
719
720 static segment_info *
721 find_segment_info (gfc_symbol *symbol)
722 {
723 segment_info *n;
724
725 for (n = current_segment; n; n = n->next)
726 {
727 if (n->sym == symbol)
728 return n;
729 }
730
731 return NULL;
732 }
733
734
735 /* Given an expression node, make sure it is a constant integer and return
736 the mpz_t value. */
737
738 static mpz_t *
739 get_mpz (gfc_expr *e)
740 {
741
742 if (e->expr_type != EXPR_CONSTANT)
743 gfc_internal_error ("get_mpz(): Not an integer constant");
744
745 return &e->value.integer;
746 }
747
748
749 /* Given an array specification and an array reference, figure out the
750 array element number (zero based). Bounds and elements are guaranteed
751 to be constants. If something goes wrong we generate an error and
752 return zero. */
753
754 static HOST_WIDE_INT
755 element_number (gfc_array_ref *ar)
756 {
757 mpz_t multiplier, offset, extent, n;
758 gfc_array_spec *as;
759 HOST_WIDE_INT i, rank;
760
761 as = ar->as;
762 rank = as->rank;
763 mpz_init_set_ui (multiplier, 1);
764 mpz_init_set_ui (offset, 0);
765 mpz_init (extent);
766 mpz_init (n);
767
768 for (i = 0; i < rank; i++)
769 {
770 if (ar->dimen_type[i] != DIMEN_ELEMENT)
771 gfc_internal_error ("element_number(): Bad dimension type");
772
773 mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
774
775 mpz_mul (n, n, multiplier);
776 mpz_add (offset, offset, n);
777
778 mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
779 mpz_add_ui (extent, extent, 1);
780
781 if (mpz_sgn (extent) < 0)
782 mpz_set_ui (extent, 0);
783
784 mpz_mul (multiplier, multiplier, extent);
785 }
786
787 i = mpz_get_ui (offset);
788
789 mpz_clear (multiplier);
790 mpz_clear (offset);
791 mpz_clear (extent);
792 mpz_clear (n);
793
794 return i;
795 }
796
797
798 /* Given a single element of an equivalence list, figure out the offset
799 from the base symbol. For simple variables or full arrays, this is
800 simply zero. For an array element we have to calculate the array
801 element number and multiply by the element size. For a substring we
802 have to calculate the further reference. */
803
804 static HOST_WIDE_INT
805 calculate_offset (gfc_expr *e)
806 {
807 HOST_WIDE_INT n, element_size, offset;
808 gfc_typespec *element_type;
809 gfc_ref *reference;
810
811 offset = 0;
812 element_type = &e->symtree->n.sym->ts;
813
814 for (reference = e->ref; reference; reference = reference->next)
815 switch (reference->type)
816 {
817 case REF_ARRAY:
818 switch (reference->u.ar.type)
819 {
820 case AR_FULL:
821 break;
822
823 case AR_ELEMENT:
824 n = element_number (&reference->u.ar);
825 if (element_type->type == BT_CHARACTER)
826 gfc_conv_const_charlen (element_type->cl);
827 element_size =
828 int_size_in_bytes (gfc_typenode_for_spec (element_type));
829 offset += n * element_size;
830 break;
831
832 default:
833 gfc_error ("Bad array reference at %L", &e->where);
834 }
835 break;
836 case REF_SUBSTRING:
837 if (reference->u.ss.start != NULL)
838 offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
839 break;
840 default:
841 gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
842 &e->where);
843 }
844 return offset;
845 }
846
847
848 /* Add a new segment_info structure to the current segment. eq1 is already
849 in the list, eq2 is not. */
850
851 static void
852 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
853 {
854 HOST_WIDE_INT offset1, offset2;
855 segment_info *a;
856
857 offset1 = calculate_offset (eq1->expr);
858 offset2 = calculate_offset (eq2->expr);
859
860 a = get_segment_info (eq2->expr->symtree->n.sym,
861 v->offset + offset1 - offset2);
862
863 current_segment = add_segments (current_segment, a);
864 }
865
866
867 /* Given two equivalence structures that are both already in the list, make
868 sure that this new condition is not violated, generating an error if it
869 is. */
870
871 static void
872 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
873 gfc_equiv *eq2)
874 {
875 HOST_WIDE_INT offset1, offset2;
876
877 offset1 = calculate_offset (eq1->expr);
878 offset2 = calculate_offset (eq2->expr);
879
880 if (s1->offset + offset1 != s2->offset + offset2)
881 gfc_error ("Inconsistent equivalence rules involving '%s' at %L and "
882 "'%s' at %L", s1->sym->name, &s1->sym->declared_at,
883 s2->sym->name, &s2->sym->declared_at);
884 }
885
886
887 /* Process a new equivalence condition. eq1 is know to be in segment f.
888 If eq2 is also present then confirm that the condition holds.
889 Otherwise add a new variable to the segment list. */
890
891 static void
892 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
893 {
894 segment_info *n;
895
896 n = find_segment_info (eq2->expr->symtree->n.sym);
897
898 if (n == NULL)
899 new_condition (f, eq1, eq2);
900 else
901 confirm_condition (f, eq1, n, eq2);
902 }
903
904
905 /* Given a segment element, search through the equivalence lists for unused
906 conditions that involve the symbol. Add these rules to the segment. */
907
908 static bool
909 find_equivalence (segment_info *n)
910 {
911 gfc_equiv *e1, *e2, *eq;
912 bool found;
913
914 found = FALSE;
915
916 for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
917 {
918 eq = NULL;
919
920 /* Search the equivalence list, including the root (first) element
921 for the symbol that owns the segment. */
922 for (e2 = e1; e2; e2 = e2->eq)
923 {
924 if (!e2->used && e2->expr->symtree->n.sym == n->sym)
925 {
926 eq = e2;
927 break;
928 }
929 }
930
931 /* Go to the next root element. */
932 if (eq == NULL)
933 continue;
934
935 eq->used = 1;
936
937 /* Now traverse the equivalence list matching the offsets. */
938 for (e2 = e1; e2; e2 = e2->eq)
939 {
940 if (!e2->used && e2 != eq)
941 {
942 add_condition (n, eq, e2);
943 e2->used = 1;
944 found = TRUE;
945 }
946 }
947 }
948 return found;
949 }
950
951
952 /* Add all symbols equivalenced within a segment. We need to scan the
953 segment list multiple times to include indirect equivalences. Since
954 a new segment_info can inserted at the beginning of the segment list,
955 depending on its offset, we have to force a final pass through the
956 loop by demanding that completion sees a pass with no matches; ie.
957 all symbols with equiv_built set and no new equivalences found. */
958
959 static void
960 add_equivalences (bool *saw_equiv)
961 {
962 segment_info *f;
963 bool seen_one, more;
964
965 seen_one = false;
966 more = TRUE;
967 while (more)
968 {
969 more = FALSE;
970 for (f = current_segment; f; f = f->next)
971 {
972 if (!f->sym->equiv_built)
973 {
974 f->sym->equiv_built = 1;
975 seen_one = find_equivalence (f);
976 if (seen_one)
977 {
978 *saw_equiv = true;
979 more = true;
980 }
981 }
982 }
983 }
984
985 /* Add a copy of this segment list to the namespace. */
986 copy_equiv_list_to_ns (current_segment);
987 }
988
989
990 /* Returns the offset necessary to properly align the current equivalence.
991 Sets *palign to the required alignment. */
992
993 static HOST_WIDE_INT
994 align_segment (unsigned HOST_WIDE_INT *palign)
995 {
996 segment_info *s;
997 unsigned HOST_WIDE_INT offset;
998 unsigned HOST_WIDE_INT max_align;
999 unsigned HOST_WIDE_INT this_align;
1000 unsigned HOST_WIDE_INT this_offset;
1001
1002 max_align = 1;
1003 offset = 0;
1004 for (s = current_segment; s; s = s->next)
1005 {
1006 this_align = TYPE_ALIGN_UNIT (s->field);
1007 if (s->offset & (this_align - 1))
1008 {
1009 /* Field is misaligned. */
1010 this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1011 if (this_offset & (max_align - 1))
1012 {
1013 /* Aligning this field would misalign a previous field. */
1014 gfc_error ("The equivalence set for variable '%s' "
1015 "declared at %L violates alignment requirements",
1016 s->sym->name, &s->sym->declared_at);
1017 }
1018 offset += this_offset;
1019 }
1020 max_align = this_align;
1021 }
1022 if (palign)
1023 *palign = max_align;
1024 return offset;
1025 }
1026
1027
1028 /* Adjust segment offsets by the given amount. */
1029
1030 static void
1031 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1032 {
1033 for (; s; s = s->next)
1034 s->offset += offset;
1035 }
1036
1037
1038 /* Lay out a symbol in a common block. If the symbol has already been seen
1039 then check the location is consistent. Otherwise create segments
1040 for that symbol and all the symbols equivalenced with it. */
1041
1042 /* Translate a single common block. */
1043
1044 static void
1045 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1046 {
1047 gfc_symbol *sym;
1048 segment_info *s;
1049 segment_info *common_segment;
1050 HOST_WIDE_INT offset;
1051 HOST_WIDE_INT current_offset;
1052 unsigned HOST_WIDE_INT align;
1053 unsigned HOST_WIDE_INT max_align;
1054 bool saw_equiv;
1055
1056 common_segment = NULL;
1057 current_offset = 0;
1058 max_align = 1;
1059 saw_equiv = false;
1060
1061 /* Add symbols to the segment. */
1062 for (sym = var_list; sym; sym = sym->common_next)
1063 {
1064 current_segment = common_segment;
1065 s = find_segment_info (sym);
1066
1067 /* Symbol has already been added via an equivalence. Multiple
1068 use associations of the same common block result in equiv_built
1069 being set but no information about the symbol in the segment. */
1070 if (s && sym->equiv_built)
1071 {
1072 /* Ensure the current location is properly aligned. */
1073 align = TYPE_ALIGN_UNIT (s->field);
1074 current_offset = (current_offset + align - 1) &~ (align - 1);
1075
1076 /* Verify that it ended up where we expect it. */
1077 if (s->offset != current_offset)
1078 {
1079 gfc_error ("Equivalence for '%s' does not match ordering of "
1080 "COMMON '%s' at %L", sym->name,
1081 common->name, &common->where);
1082 }
1083 }
1084 else
1085 {
1086 /* A symbol we haven't seen before. */
1087 s = current_segment = get_segment_info (sym, current_offset);
1088
1089 /* Add all objects directly or indirectly equivalenced with this
1090 symbol. */
1091 add_equivalences (&saw_equiv);
1092
1093 if (current_segment->offset < 0)
1094 gfc_error ("The equivalence set for '%s' cause an invalid "
1095 "extension to COMMON '%s' at %L", sym->name,
1096 common->name, &common->where);
1097
1098 offset = align_segment (&align);
1099
1100 if (offset & (max_align - 1))
1101 {
1102 /* The required offset conflicts with previous alignment
1103 requirements. Insert padding immediately before this
1104 segment. */
1105 gfc_warning ("Padding of %d bytes required before '%s' in "
1106 "COMMON '%s' at %L", (int)offset, s->sym->name,
1107 common->name, &common->where);
1108 }
1109 else
1110 {
1111 /* Offset the whole common block. */
1112 apply_segment_offset (common_segment, offset);
1113 }
1114
1115 /* Apply the offset to the new segments. */
1116 apply_segment_offset (current_segment, offset);
1117 current_offset += offset;
1118 if (max_align < align)
1119 max_align = align;
1120
1121 /* Add the new segments to the common block. */
1122 common_segment = add_segments (common_segment, current_segment);
1123 }
1124
1125 /* The offset of the next common variable. */
1126 current_offset += s->length;
1127 }
1128
1129 if (common_segment == NULL)
1130 {
1131 gfc_error ("COMMON '%s' at %L does not exist",
1132 common->name, &common->where);
1133 return;
1134 }
1135
1136 if (common_segment->offset != 0)
1137 {
1138 gfc_warning ("COMMON '%s' at %L requires %d bytes of padding at start",
1139 common->name, &common->where, (int)common_segment->offset);
1140 }
1141
1142 create_common (common, common_segment, saw_equiv);
1143 }
1144
1145
1146 /* Create a new block for each merged equivalence list. */
1147
1148 static void
1149 finish_equivalences (gfc_namespace *ns)
1150 {
1151 gfc_equiv *z, *y;
1152 gfc_symbol *sym;
1153 gfc_common_head * c;
1154 HOST_WIDE_INT offset;
1155 unsigned HOST_WIDE_INT align;
1156 bool dummy;
1157
1158 for (z = ns->equiv; z; z = z->next)
1159 for (y = z->eq; y; y = y->eq)
1160 {
1161 if (y->used)
1162 continue;
1163 sym = z->expr->symtree->n.sym;
1164 current_segment = get_segment_info (sym, 0);
1165
1166 /* All objects directly or indirectly equivalenced with this
1167 symbol. */
1168 add_equivalences (&dummy);
1169
1170 /* Align the block. */
1171 offset = align_segment (&align);
1172
1173 /* Ensure all offsets are positive. */
1174 offset -= current_segment->offset & ~(align - 1);
1175
1176 apply_segment_offset (current_segment, offset);
1177
1178 /* Create the decl. If this is a module equivalence, it has a
1179 unique name, pointed to by z->module. This is written to a
1180 gfc_common_header to push create_common into using
1181 build_common_decl, so that the equivalence appears as an
1182 external symbol. Otherwise, a local declaration is built using
1183 build_equiv_decl. */
1184 if (z->module)
1185 {
1186 c = gfc_get_common_head ();
1187 /* We've lost the real location, so use the location of the
1188 enclosing procedure. */
1189 c->where = ns->proc_name->declared_at;
1190 strcpy (c->name, z->module);
1191 }
1192 else
1193 c = NULL;
1194
1195 create_common (c, current_segment, true);
1196 break;
1197 }
1198 }
1199
1200
1201 /* Work function for translating a named common block. */
1202
1203 static void
1204 named_common (gfc_symtree *st)
1205 {
1206 translate_common (st->n.common, st->n.common->head);
1207 }
1208
1209
1210 /* Translate the common blocks in a namespace. Unlike other variables,
1211 these have to be created before code, because the backend_decl depends
1212 on the rest of the common block. */
1213
1214 void
1215 gfc_trans_common (gfc_namespace *ns)
1216 {
1217 gfc_common_head *c;
1218
1219 /* Translate the blank common block. */
1220 if (ns->blank_common.head != NULL)
1221 {
1222 c = gfc_get_common_head ();
1223
1224 /* We've lost the real location, so use the location of the
1225 enclosing procedure. */
1226 if (ns->proc_name != NULL)
1227 c->where = ns->proc_name->declared_at;
1228 else
1229 c->where = ns->blank_common.head->common_head->where;
1230
1231 strcpy (c->name, BLANK_COMMON_NAME);
1232 translate_common (c, ns->blank_common.head);
1233 }
1234
1235 /* Translate all named common blocks. */
1236 gfc_traverse_symtree (ns->common_root, named_common);
1237
1238 /* Translate local equivalence. */
1239 finish_equivalences (ns);
1240
1241 /* Commit the newly created symbols for common blocks and module
1242 equivalences. */
1243 gfc_commit_symbols ();
1244 }