re PR fortran/48820 (TR 29113: Implement parts needed for MPI 3)
[gcc.git] / gcc / fortran / trans-common.c
1 /* Common block and equivalence list handling
2 Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
3 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Canqun Yang <canqun@nudt.edu.cn>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* The core algorithm is based on Andy Vaught's g95 tree. Also the
24 way to build UNION_TYPE is borrowed from Richard Henderson.
25
26 Transform common blocks. An integral part of this is processing
27 equivalence variables. Equivalenced variables that are not in a
28 common block end up in a private block of their own.
29
30 Each common block or local equivalence list is declared as a union.
31 Variables within the block are represented as a field within the
32 block with the proper offset.
33
34 So if two variables are equivalenced, they just point to a common
35 area in memory.
36
37 Mathematically, laying out an equivalence block is equivalent to
38 solving a linear system of equations. The matrix is usually a
39 sparse matrix in which each row contains all zero elements except
40 for a +1 and a -1, a sort of a generalized Vandermonde matrix. The
41 matrix is usually block diagonal. The system can be
42 overdetermined, underdetermined or have a unique solution. If the
43 system is inconsistent, the program is not standard conforming.
44 The solution vector is integral, since all of the pivots are +1 or -1.
45
46 How we lay out an equivalence block is a little less complicated.
47 In an equivalence list with n elements, there are n-1 conditions to
48 be satisfied. The conditions partition the variables into what we
49 will call segments. If A and B are equivalenced then A and B are
50 in the same segment. If B and C are equivalenced as well, then A,
51 B and C are in a segment and so on. Each segment is a block of
52 memory that has one or more variables equivalenced in some way. A
53 common block is made up of a series of segments that are joined one
54 after the other. In the linear system, a segment is a block
55 diagonal.
56
57 To lay out a segment we first start with some variable and
58 determine its length. The first variable is assumed to start at
59 offset one and extends to however long it is. We then traverse the
60 list of equivalences to find an unused condition that involves at
61 least one of the variables currently in the segment.
62
63 Each equivalence condition amounts to the condition B+b=C+c where B
64 and C are the offsets of the B and C variables, and b and c are
65 constants which are nonzero for array elements, substrings or
66 structure components. So for
67
68 EQUIVALENCE(B(2), C(3))
69 we have
70 B + 2*size of B's elements = C + 3*size of C's elements.
71
72 If B and C are known we check to see if the condition already
73 holds. If B is known we can solve for C. Since we know the length
74 of C, we can see if the minimum and maximum extents of the segment
75 are affected. Eventually, we make a full pass through the
76 equivalence list without finding any new conditions and the segment
77 is fully specified.
78
79 At this point, the segment is added to the current common block.
80 Since we know the minimum extent of the segment, everything in the
81 segment is translated to its position in the common block. The
82 usual case here is that there are no equivalence statements and the
83 common block is series of segments with one variable each, which is
84 a diagonal matrix in the matrix formulation.
85
86 Each segment is described by a chain of segment_info structures. Each
87 segment_info structure describes the extents of a single variable within
88 the segment. This list is maintained in the order the elements are
89 positioned withing the segment. If two elements have the same starting
90 offset the smaller will come first. If they also have the same size their
91 ordering is undefined.
92
93 Once all common blocks have been created, the list of equivalences
94 is examined for still-unused equivalence conditions. We create a
95 block for each merged equivalence list. */
96
97 #include "config.h"
98 #include "system.h"
99 #include "coretypes.h"
100 #include "tm.h"
101 #include "tree.h"
102 #include "output.h" /* For decl_default_tls_model. */
103 #include "gfortran.h"
104 #include "trans.h"
105 #include "trans-types.h"
106 #include "trans-const.h"
107 #include "target-memory.h"
108
109
110 /* Holds a single variable in an equivalence set. */
111 typedef struct segment_info
112 {
113 gfc_symbol *sym;
114 HOST_WIDE_INT offset;
115 HOST_WIDE_INT length;
116 /* This will contain the field type until the field is created. */
117 tree field;
118 struct segment_info *next;
119 } segment_info;
120
121 static segment_info * current_segment;
122 static gfc_namespace *gfc_common_ns = NULL;
123
124
125 /* Make a segment_info based on a symbol. */
126
127 static segment_info *
128 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
129 {
130 segment_info *s;
131
132 /* Make sure we've got the character length. */
133 if (sym->ts.type == BT_CHARACTER)
134 gfc_conv_const_charlen (sym->ts.u.cl);
135
136 /* Create the segment_info and fill it in. */
137 s = XCNEW (segment_info);
138 s->sym = sym;
139 /* We will use this type when building the segment aggregate type. */
140 s->field = gfc_sym_type (sym);
141 s->length = int_size_in_bytes (s->field);
142 s->offset = offset;
143
144 return s;
145 }
146
147
148 /* Add a copy of a segment list to the namespace. This is specifically for
149 equivalence segments, so that dependency checking can be done on
150 equivalence group members. */
151
152 static void
153 copy_equiv_list_to_ns (segment_info *c)
154 {
155 segment_info *f;
156 gfc_equiv_info *s;
157 gfc_equiv_list *l;
158
159 l = XCNEW (gfc_equiv_list);
160
161 l->next = c->sym->ns->equiv_lists;
162 c->sym->ns->equiv_lists = l;
163
164 for (f = c; f; f = f->next)
165 {
166 s = XCNEW (gfc_equiv_info);
167 s->next = l->equiv;
168 l->equiv = s;
169 s->sym = f->sym;
170 s->offset = f->offset;
171 s->length = f->length;
172 }
173 }
174
175
176 /* Add combine segment V and segment LIST. */
177
178 static segment_info *
179 add_segments (segment_info *list, segment_info *v)
180 {
181 segment_info *s;
182 segment_info *p;
183 segment_info *next;
184
185 p = NULL;
186 s = list;
187
188 while (v)
189 {
190 /* Find the location of the new element. */
191 while (s)
192 {
193 if (v->offset < s->offset)
194 break;
195 if (v->offset == s->offset
196 && v->length <= s->length)
197 break;
198
199 p = s;
200 s = s->next;
201 }
202
203 /* Insert the new element in between p and s. */
204 next = v->next;
205 v->next = s;
206 if (p == NULL)
207 list = v;
208 else
209 p->next = v;
210
211 p = v;
212 v = next;
213 }
214
215 return list;
216 }
217
218
219 /* Construct mangled common block name from symbol name. */
220
221 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
222 name. There are few calls to this function, so few places that this
223 would need to be added. At the moment, there is only one call, in
224 build_common_decl(). We can't attempt to look up the common block
225 because we may be building it for the first time and therefore, it won't
226 be in the common_root. We also need the binding label, if it's bind(c).
227 Therefore, send in the pointer to the common block, so whatever info we
228 have so far can be used. All of the necessary info should be available
229 in the gfc_common_head by now, so it should be accurate to test the
230 isBindC flag and use the binding label given if it is bind(c).
231
232 We may NOT know yet if it's bind(c) or not, but we can try at least.
233 Will have to figure out what to do later if it's labeled bind(c)
234 after this is called. */
235
236 static tree
237 gfc_sym_mangled_common_id (gfc_common_head *com)
238 {
239 int has_underscore;
240 char mangled_name[GFC_MAX_MANGLED_SYMBOL_LEN + 1];
241 char name[GFC_MAX_SYMBOL_LEN + 1];
242
243 /* Get the name out of the common block pointer. */
244 strcpy (name, com->name);
245
246 /* If we're suppose to do a bind(c). */
247 if (com->is_bind_c == 1 && com->binding_label)
248 return get_identifier (com->binding_label);
249
250 if (strcmp (name, BLANK_COMMON_NAME) == 0)
251 return get_identifier (name);
252
253 if (gfc_option.flag_underscoring)
254 {
255 has_underscore = strchr (name, '_') != 0;
256 if (gfc_option.flag_second_underscore && has_underscore)
257 snprintf (mangled_name, sizeof mangled_name, "%s__", name);
258 else
259 snprintf (mangled_name, sizeof mangled_name, "%s_", name);
260
261 return get_identifier (mangled_name);
262 }
263 else
264 return get_identifier (name);
265 }
266
267
268 /* Build a field declaration for a common variable or a local equivalence
269 object. */
270
271 static void
272 build_field (segment_info *h, tree union_type, record_layout_info rli)
273 {
274 tree field;
275 tree name;
276 HOST_WIDE_INT offset = h->offset;
277 unsigned HOST_WIDE_INT desired_align, known_align;
278
279 name = get_identifier (h->sym->name);
280 field = build_decl (h->sym->declared_at.lb->location,
281 FIELD_DECL, name, h->field);
282 known_align = (offset & -offset) * BITS_PER_UNIT;
283 if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
284 known_align = BIGGEST_ALIGNMENT;
285
286 desired_align = update_alignment_for_field (rli, field, known_align);
287 if (desired_align > known_align)
288 DECL_PACKED (field) = 1;
289
290 DECL_FIELD_CONTEXT (field) = union_type;
291 DECL_FIELD_OFFSET (field) = size_int (offset);
292 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
293 SET_DECL_OFFSET_ALIGN (field, known_align);
294
295 rli->offset = size_binop (MAX_EXPR, rli->offset,
296 size_binop (PLUS_EXPR,
297 DECL_FIELD_OFFSET (field),
298 DECL_SIZE_UNIT (field)));
299 /* If this field is assigned to a label, we create another two variables.
300 One will hold the address of target label or format label. The other will
301 hold the length of format label string. */
302 if (h->sym->attr.assign)
303 {
304 tree len;
305 tree addr;
306
307 gfc_allocate_lang_decl (field);
308 GFC_DECL_ASSIGN (field) = 1;
309 len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
310 addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
311 TREE_STATIC (len) = 1;
312 TREE_STATIC (addr) = 1;
313 DECL_INITIAL (len) = build_int_cst (gfc_charlen_type_node, -2);
314 gfc_set_decl_location (len, &h->sym->declared_at);
315 gfc_set_decl_location (addr, &h->sym->declared_at);
316 GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
317 GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
318 }
319
320 /* If this field is volatile, mark it. */
321 if (h->sym->attr.volatile_)
322 {
323 tree new_type;
324 TREE_THIS_VOLATILE (field) = 1;
325 TREE_SIDE_EFFECTS (field) = 1;
326 new_type = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE);
327 TREE_TYPE (field) = new_type;
328 }
329
330 h->field = field;
331 }
332
333
334 /* Get storage for local equivalence. */
335
336 static tree
337 build_equiv_decl (tree union_type, bool is_init, bool is_saved)
338 {
339 tree decl;
340 char name[15];
341 static int serial = 0;
342
343 if (is_init)
344 {
345 decl = gfc_create_var (union_type, "equiv");
346 TREE_STATIC (decl) = 1;
347 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
348 return decl;
349 }
350
351 snprintf (name, sizeof (name), "equiv.%d", serial++);
352 decl = build_decl (input_location,
353 VAR_DECL, get_identifier (name), union_type);
354 DECL_ARTIFICIAL (decl) = 1;
355 DECL_IGNORED_P (decl) = 1;
356
357 if (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
358 || is_saved)
359 TREE_STATIC (decl) = 1;
360
361 TREE_ADDRESSABLE (decl) = 1;
362 TREE_USED (decl) = 1;
363 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
364
365 /* The source location has been lost, and doesn't really matter.
366 We need to set it to something though. */
367 gfc_set_decl_location (decl, &gfc_current_locus);
368
369 gfc_add_decl_to_function (decl);
370
371 return decl;
372 }
373
374
375 /* Get storage for common block. */
376
377 static tree
378 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
379 {
380 gfc_symbol *common_sym;
381 tree decl;
382
383 /* Create a namespace to store symbols for common blocks. */
384 if (gfc_common_ns == NULL)
385 gfc_common_ns = gfc_get_namespace (NULL, 0);
386
387 gfc_get_symbol (com->name, gfc_common_ns, &common_sym);
388 decl = common_sym->backend_decl;
389
390 /* Update the size of this common block as needed. */
391 if (decl != NULL_TREE)
392 {
393 tree size = TYPE_SIZE_UNIT (union_type);
394
395 /* Named common blocks of the same name shall be of the same size
396 in all scoping units of a program in which they appear, but
397 blank common blocks may be of different sizes. */
398 if (!tree_int_cst_equal (DECL_SIZE_UNIT (decl), size)
399 && strcmp (com->name, BLANK_COMMON_NAME))
400 gfc_warning ("Named COMMON block '%s' at %L shall be of the "
401 "same size as elsewhere (%lu vs %lu bytes)", com->name,
402 &com->where,
403 (unsigned long) TREE_INT_CST_LOW (size),
404 (unsigned long) TREE_INT_CST_LOW (DECL_SIZE_UNIT (decl)));
405
406 if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
407 {
408 DECL_SIZE (decl) = TYPE_SIZE (union_type);
409 DECL_SIZE_UNIT (decl) = size;
410 DECL_MODE (decl) = TYPE_MODE (union_type);
411 TREE_TYPE (decl) = union_type;
412 layout_decl (decl, 0);
413 }
414 }
415
416 /* If this common block has been declared in a previous program unit,
417 and either it is already initialized or there is no new initialization
418 for it, just return. */
419 if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
420 return decl;
421
422 /* If there is no backend_decl for the common block, build it. */
423 if (decl == NULL_TREE)
424 {
425 decl = build_decl (input_location,
426 VAR_DECL, get_identifier (com->name), union_type);
427 gfc_set_decl_assembler_name (decl, gfc_sym_mangled_common_id (com));
428 TREE_PUBLIC (decl) = 1;
429 TREE_STATIC (decl) = 1;
430 DECL_IGNORED_P (decl) = 1;
431 if (!com->is_bind_c)
432 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
433 else
434 {
435 /* Do not set the alignment for bind(c) common blocks to
436 BIGGEST_ALIGNMENT because that won't match what C does. Also,
437 for common blocks with one element, the alignment must be
438 that of the field within the common block in order to match
439 what C will do. */
440 tree field = NULL_TREE;
441 field = TYPE_FIELDS (TREE_TYPE (decl));
442 if (DECL_CHAIN (field) == NULL_TREE)
443 DECL_ALIGN (decl) = TYPE_ALIGN (TREE_TYPE (field));
444 }
445 DECL_USER_ALIGN (decl) = 0;
446 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
447
448 gfc_set_decl_location (decl, &com->where);
449
450 if (com->threadprivate)
451 DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
452
453 /* Place the back end declaration for this common block in
454 GLOBAL_BINDING_LEVEL. */
455 common_sym->backend_decl = pushdecl_top_level (decl);
456 }
457
458 /* Has no initial values. */
459 if (!is_init)
460 {
461 DECL_INITIAL (decl) = NULL_TREE;
462 DECL_COMMON (decl) = 1;
463 DECL_DEFER_OUTPUT (decl) = 1;
464 }
465 else
466 {
467 DECL_INITIAL (decl) = error_mark_node;
468 DECL_COMMON (decl) = 0;
469 DECL_DEFER_OUTPUT (decl) = 0;
470 }
471 return decl;
472 }
473
474
475 /* Return a field that is the size of the union, if an equivalence has
476 overlapping initializers. Merge the initializers into a single
477 initializer for this new field, then free the old ones. */
478
479 static tree
480 get_init_field (segment_info *head, tree union_type, tree *field_init,
481 record_layout_info rli)
482 {
483 segment_info *s;
484 HOST_WIDE_INT length = 0;
485 HOST_WIDE_INT offset = 0;
486 unsigned HOST_WIDE_INT known_align, desired_align;
487 bool overlap = false;
488 tree tmp, field;
489 tree init;
490 unsigned char *data, *chk;
491 VEC(constructor_elt,gc) *v = NULL;
492
493 tree type = unsigned_char_type_node;
494 int i;
495
496 /* Obtain the size of the union and check if there are any overlapping
497 initializers. */
498 for (s = head; s; s = s->next)
499 {
500 HOST_WIDE_INT slen = s->offset + s->length;
501 if (s->sym->value)
502 {
503 if (s->offset < offset)
504 overlap = true;
505 offset = slen;
506 }
507 length = length < slen ? slen : length;
508 }
509
510 if (!overlap)
511 return NULL_TREE;
512
513 /* Now absorb all the initializer data into a single vector,
514 whilst checking for overlapping, unequal values. */
515 data = XCNEWVEC (unsigned char, (size_t)length);
516 chk = XCNEWVEC (unsigned char, (size_t)length);
517
518 /* TODO - change this when default initialization is implemented. */
519 memset (data, '\0', (size_t)length);
520 memset (chk, '\0', (size_t)length);
521 for (s = head; s; s = s->next)
522 if (s->sym->value)
523 gfc_merge_initializers (s->sym->ts, s->sym->value,
524 &data[s->offset],
525 &chk[s->offset],
526 (size_t)s->length);
527
528 for (i = 0; i < length; i++)
529 CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
530
531 free (data);
532 free (chk);
533
534 /* Build a char[length] array to hold the initializers. Much of what
535 follows is borrowed from build_field, above. */
536
537 tmp = build_int_cst (gfc_array_index_type, length - 1);
538 tmp = build_range_type (gfc_array_index_type,
539 gfc_index_zero_node, tmp);
540 tmp = build_array_type (type, tmp);
541 field = build_decl (gfc_current_locus.lb->location,
542 FIELD_DECL, NULL_TREE, tmp);
543
544 known_align = BIGGEST_ALIGNMENT;
545
546 desired_align = update_alignment_for_field (rli, field, known_align);
547 if (desired_align > known_align)
548 DECL_PACKED (field) = 1;
549
550 DECL_FIELD_CONTEXT (field) = union_type;
551 DECL_FIELD_OFFSET (field) = size_int (0);
552 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
553 SET_DECL_OFFSET_ALIGN (field, known_align);
554
555 rli->offset = size_binop (MAX_EXPR, rli->offset,
556 size_binop (PLUS_EXPR,
557 DECL_FIELD_OFFSET (field),
558 DECL_SIZE_UNIT (field)));
559
560 init = build_constructor (TREE_TYPE (field), v);
561 TREE_CONSTANT (init) = 1;
562
563 *field_init = init;
564
565 for (s = head; s; s = s->next)
566 {
567 if (s->sym->value == NULL)
568 continue;
569
570 gfc_free_expr (s->sym->value);
571 s->sym->value = NULL;
572 }
573
574 return field;
575 }
576
577
578 /* Declare memory for the common block or local equivalence, and create
579 backend declarations for all of the elements. */
580
581 static void
582 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
583 {
584 segment_info *s, *next_s;
585 tree union_type;
586 tree *field_link;
587 tree field;
588 tree field_init = NULL_TREE;
589 record_layout_info rli;
590 tree decl;
591 bool is_init = false;
592 bool is_saved = false;
593
594 /* Declare the variables inside the common block.
595 If the current common block contains any equivalence object, then
596 make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
597 alias analyzer work well when there is no address overlapping for
598 common variables in the current common block. */
599 if (saw_equiv)
600 union_type = make_node (UNION_TYPE);
601 else
602 union_type = make_node (RECORD_TYPE);
603
604 rli = start_record_layout (union_type);
605 field_link = &TYPE_FIELDS (union_type);
606
607 /* Check for overlapping initializers and replace them with a single,
608 artificial field that contains all the data. */
609 if (saw_equiv)
610 field = get_init_field (head, union_type, &field_init, rli);
611 else
612 field = NULL_TREE;
613
614 if (field != NULL_TREE)
615 {
616 is_init = true;
617 *field_link = field;
618 field_link = &DECL_CHAIN (field);
619 }
620
621 for (s = head; s; s = s->next)
622 {
623 build_field (s, union_type, rli);
624
625 /* Link the field into the type. */
626 *field_link = s->field;
627 field_link = &DECL_CHAIN (s->field);
628
629 /* Has initial value. */
630 if (s->sym->value)
631 is_init = true;
632
633 /* Has SAVE attribute. */
634 if (s->sym->attr.save)
635 is_saved = true;
636 }
637
638 finish_record_layout (rli, true);
639
640 if (com)
641 decl = build_common_decl (com, union_type, is_init);
642 else
643 decl = build_equiv_decl (union_type, is_init, is_saved);
644
645 if (is_init)
646 {
647 tree ctor, tmp;
648 VEC(constructor_elt,gc) *v = NULL;
649
650 if (field != NULL_TREE && field_init != NULL_TREE)
651 CONSTRUCTOR_APPEND_ELT (v, field, field_init);
652 else
653 for (s = head; s; s = s->next)
654 {
655 if (s->sym->value)
656 {
657 /* Add the initializer for this field. */
658 tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
659 TREE_TYPE (s->field),
660 s->sym->attr.dimension,
661 s->sym->attr.pointer
662 || s->sym->attr.allocatable, false);
663
664 CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
665 }
666 }
667
668 gcc_assert (!VEC_empty (constructor_elt, v));
669 ctor = build_constructor (union_type, v);
670 TREE_CONSTANT (ctor) = 1;
671 TREE_STATIC (ctor) = 1;
672 DECL_INITIAL (decl) = ctor;
673
674 #ifdef ENABLE_CHECKING
675 {
676 tree field, value;
677 unsigned HOST_WIDE_INT idx;
678 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
679 gcc_assert (TREE_CODE (field) == FIELD_DECL);
680 }
681 #endif
682 }
683
684 /* Build component reference for each variable. */
685 for (s = head; s; s = next_s)
686 {
687 tree var_decl;
688
689 var_decl = build_decl (s->sym->declared_at.lb->location,
690 VAR_DECL, DECL_NAME (s->field),
691 TREE_TYPE (s->field));
692 TREE_STATIC (var_decl) = TREE_STATIC (decl);
693 /* Mark the variable as used in order to avoid warnings about
694 unused variables. */
695 TREE_USED (var_decl) = 1;
696 if (s->sym->attr.use_assoc)
697 DECL_IGNORED_P (var_decl) = 1;
698 if (s->sym->attr.target)
699 TREE_ADDRESSABLE (var_decl) = 1;
700 /* This is a fake variable just for debugging purposes. */
701 TREE_ASM_WRITTEN (var_decl) = 1;
702 /* Fake variables are not visible from other translation units. */
703 TREE_PUBLIC (var_decl) = 0;
704
705 /* To preserve identifier names in COMMON, chain to procedure
706 scope unless at top level in a module definition. */
707 if (com
708 && s->sym->ns->proc_name
709 && s->sym->ns->proc_name->attr.flavor == FL_MODULE)
710 var_decl = pushdecl_top_level (var_decl);
711 else
712 gfc_add_decl_to_function (var_decl);
713
714 SET_DECL_VALUE_EXPR (var_decl,
715 fold_build3_loc (input_location, COMPONENT_REF,
716 TREE_TYPE (s->field),
717 decl, s->field, NULL_TREE));
718 DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
719 GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
720
721 if (s->sym->attr.assign)
722 {
723 gfc_allocate_lang_decl (var_decl);
724 GFC_DECL_ASSIGN (var_decl) = 1;
725 GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
726 GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
727 }
728
729 s->sym->backend_decl = var_decl;
730
731 next_s = s->next;
732 free (s);
733 }
734 }
735
736
737 /* Given a symbol, find it in the current segment list. Returns NULL if
738 not found. */
739
740 static segment_info *
741 find_segment_info (gfc_symbol *symbol)
742 {
743 segment_info *n;
744
745 for (n = current_segment; n; n = n->next)
746 {
747 if (n->sym == symbol)
748 return n;
749 }
750
751 return NULL;
752 }
753
754
755 /* Given an expression node, make sure it is a constant integer and return
756 the mpz_t value. */
757
758 static mpz_t *
759 get_mpz (gfc_expr *e)
760 {
761
762 if (e->expr_type != EXPR_CONSTANT)
763 gfc_internal_error ("get_mpz(): Not an integer constant");
764
765 return &e->value.integer;
766 }
767
768
769 /* Given an array specification and an array reference, figure out the
770 array element number (zero based). Bounds and elements are guaranteed
771 to be constants. If something goes wrong we generate an error and
772 return zero. */
773
774 static HOST_WIDE_INT
775 element_number (gfc_array_ref *ar)
776 {
777 mpz_t multiplier, offset, extent, n;
778 gfc_array_spec *as;
779 HOST_WIDE_INT i, rank;
780
781 as = ar->as;
782 rank = as->rank;
783 mpz_init_set_ui (multiplier, 1);
784 mpz_init_set_ui (offset, 0);
785 mpz_init (extent);
786 mpz_init (n);
787
788 for (i = 0; i < rank; i++)
789 {
790 if (ar->dimen_type[i] != DIMEN_ELEMENT)
791 gfc_internal_error ("element_number(): Bad dimension type");
792
793 mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
794
795 mpz_mul (n, n, multiplier);
796 mpz_add (offset, offset, n);
797
798 mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
799 mpz_add_ui (extent, extent, 1);
800
801 if (mpz_sgn (extent) < 0)
802 mpz_set_ui (extent, 0);
803
804 mpz_mul (multiplier, multiplier, extent);
805 }
806
807 i = mpz_get_ui (offset);
808
809 mpz_clear (multiplier);
810 mpz_clear (offset);
811 mpz_clear (extent);
812 mpz_clear (n);
813
814 return i;
815 }
816
817
818 /* Given a single element of an equivalence list, figure out the offset
819 from the base symbol. For simple variables or full arrays, this is
820 simply zero. For an array element we have to calculate the array
821 element number and multiply by the element size. For a substring we
822 have to calculate the further reference. */
823
824 static HOST_WIDE_INT
825 calculate_offset (gfc_expr *e)
826 {
827 HOST_WIDE_INT n, element_size, offset;
828 gfc_typespec *element_type;
829 gfc_ref *reference;
830
831 offset = 0;
832 element_type = &e->symtree->n.sym->ts;
833
834 for (reference = e->ref; reference; reference = reference->next)
835 switch (reference->type)
836 {
837 case REF_ARRAY:
838 switch (reference->u.ar.type)
839 {
840 case AR_FULL:
841 break;
842
843 case AR_ELEMENT:
844 n = element_number (&reference->u.ar);
845 if (element_type->type == BT_CHARACTER)
846 gfc_conv_const_charlen (element_type->u.cl);
847 element_size =
848 int_size_in_bytes (gfc_typenode_for_spec (element_type));
849 offset += n * element_size;
850 break;
851
852 default:
853 gfc_error ("Bad array reference at %L", &e->where);
854 }
855 break;
856 case REF_SUBSTRING:
857 if (reference->u.ss.start != NULL)
858 offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
859 break;
860 default:
861 gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
862 &e->where);
863 }
864 return offset;
865 }
866
867
868 /* Add a new segment_info structure to the current segment. eq1 is already
869 in the list, eq2 is not. */
870
871 static void
872 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
873 {
874 HOST_WIDE_INT offset1, offset2;
875 segment_info *a;
876
877 offset1 = calculate_offset (eq1->expr);
878 offset2 = calculate_offset (eq2->expr);
879
880 a = get_segment_info (eq2->expr->symtree->n.sym,
881 v->offset + offset1 - offset2);
882
883 current_segment = add_segments (current_segment, a);
884 }
885
886
887 /* Given two equivalence structures that are both already in the list, make
888 sure that this new condition is not violated, generating an error if it
889 is. */
890
891 static void
892 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
893 gfc_equiv *eq2)
894 {
895 HOST_WIDE_INT offset1, offset2;
896
897 offset1 = calculate_offset (eq1->expr);
898 offset2 = calculate_offset (eq2->expr);
899
900 if (s1->offset + offset1 != s2->offset + offset2)
901 gfc_error ("Inconsistent equivalence rules involving '%s' at %L and "
902 "'%s' at %L", s1->sym->name, &s1->sym->declared_at,
903 s2->sym->name, &s2->sym->declared_at);
904 }
905
906
907 /* Process a new equivalence condition. eq1 is know to be in segment f.
908 If eq2 is also present then confirm that the condition holds.
909 Otherwise add a new variable to the segment list. */
910
911 static void
912 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
913 {
914 segment_info *n;
915
916 n = find_segment_info (eq2->expr->symtree->n.sym);
917
918 if (n == NULL)
919 new_condition (f, eq1, eq2);
920 else
921 confirm_condition (f, eq1, n, eq2);
922 }
923
924
925 /* Given a segment element, search through the equivalence lists for unused
926 conditions that involve the symbol. Add these rules to the segment. */
927
928 static bool
929 find_equivalence (segment_info *n)
930 {
931 gfc_equiv *e1, *e2, *eq;
932 bool found;
933
934 found = FALSE;
935
936 for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
937 {
938 eq = NULL;
939
940 /* Search the equivalence list, including the root (first) element
941 for the symbol that owns the segment. */
942 for (e2 = e1; e2; e2 = e2->eq)
943 {
944 if (!e2->used && e2->expr->symtree->n.sym == n->sym)
945 {
946 eq = e2;
947 break;
948 }
949 }
950
951 /* Go to the next root element. */
952 if (eq == NULL)
953 continue;
954
955 eq->used = 1;
956
957 /* Now traverse the equivalence list matching the offsets. */
958 for (e2 = e1; e2; e2 = e2->eq)
959 {
960 if (!e2->used && e2 != eq)
961 {
962 add_condition (n, eq, e2);
963 e2->used = 1;
964 found = TRUE;
965 }
966 }
967 }
968 return found;
969 }
970
971
972 /* Add all symbols equivalenced within a segment. We need to scan the
973 segment list multiple times to include indirect equivalences. Since
974 a new segment_info can inserted at the beginning of the segment list,
975 depending on its offset, we have to force a final pass through the
976 loop by demanding that completion sees a pass with no matches; i.e.,
977 all symbols with equiv_built set and no new equivalences found. */
978
979 static void
980 add_equivalences (bool *saw_equiv)
981 {
982 segment_info *f;
983 bool seen_one, more;
984
985 seen_one = false;
986 more = TRUE;
987 while (more)
988 {
989 more = FALSE;
990 for (f = current_segment; f; f = f->next)
991 {
992 if (!f->sym->equiv_built)
993 {
994 f->sym->equiv_built = 1;
995 seen_one = find_equivalence (f);
996 if (seen_one)
997 {
998 *saw_equiv = true;
999 more = true;
1000 }
1001 }
1002 }
1003 }
1004
1005 /* Add a copy of this segment list to the namespace. */
1006 copy_equiv_list_to_ns (current_segment);
1007 }
1008
1009
1010 /* Returns the offset necessary to properly align the current equivalence.
1011 Sets *palign to the required alignment. */
1012
1013 static HOST_WIDE_INT
1014 align_segment (unsigned HOST_WIDE_INT *palign)
1015 {
1016 segment_info *s;
1017 unsigned HOST_WIDE_INT offset;
1018 unsigned HOST_WIDE_INT max_align;
1019 unsigned HOST_WIDE_INT this_align;
1020 unsigned HOST_WIDE_INT this_offset;
1021
1022 max_align = 1;
1023 offset = 0;
1024 for (s = current_segment; s; s = s->next)
1025 {
1026 this_align = TYPE_ALIGN_UNIT (s->field);
1027 if (s->offset & (this_align - 1))
1028 {
1029 /* Field is misaligned. */
1030 this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1031 if (this_offset & (max_align - 1))
1032 {
1033 /* Aligning this field would misalign a previous field. */
1034 gfc_error ("The equivalence set for variable '%s' "
1035 "declared at %L violates alignment requirements",
1036 s->sym->name, &s->sym->declared_at);
1037 }
1038 offset += this_offset;
1039 }
1040 max_align = this_align;
1041 }
1042 if (palign)
1043 *palign = max_align;
1044 return offset;
1045 }
1046
1047
1048 /* Adjust segment offsets by the given amount. */
1049
1050 static void
1051 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1052 {
1053 for (; s; s = s->next)
1054 s->offset += offset;
1055 }
1056
1057
1058 /* Lay out a symbol in a common block. If the symbol has already been seen
1059 then check the location is consistent. Otherwise create segments
1060 for that symbol and all the symbols equivalenced with it. */
1061
1062 /* Translate a single common block. */
1063
1064 static void
1065 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1066 {
1067 gfc_symbol *sym;
1068 segment_info *s;
1069 segment_info *common_segment;
1070 HOST_WIDE_INT offset;
1071 HOST_WIDE_INT current_offset;
1072 unsigned HOST_WIDE_INT align;
1073 bool saw_equiv;
1074
1075 common_segment = NULL;
1076 offset = 0;
1077 current_offset = 0;
1078 align = 1;
1079 saw_equiv = false;
1080
1081 /* Add symbols to the segment. */
1082 for (sym = var_list; sym; sym = sym->common_next)
1083 {
1084 current_segment = common_segment;
1085 s = find_segment_info (sym);
1086
1087 /* Symbol has already been added via an equivalence. Multiple
1088 use associations of the same common block result in equiv_built
1089 being set but no information about the symbol in the segment. */
1090 if (s && sym->equiv_built)
1091 {
1092 /* Ensure the current location is properly aligned. */
1093 align = TYPE_ALIGN_UNIT (s->field);
1094 current_offset = (current_offset + align - 1) &~ (align - 1);
1095
1096 /* Verify that it ended up where we expect it. */
1097 if (s->offset != current_offset)
1098 {
1099 gfc_error ("Equivalence for '%s' does not match ordering of "
1100 "COMMON '%s' at %L", sym->name,
1101 common->name, &common->where);
1102 }
1103 }
1104 else
1105 {
1106 /* A symbol we haven't seen before. */
1107 s = current_segment = get_segment_info (sym, current_offset);
1108
1109 /* Add all objects directly or indirectly equivalenced with this
1110 symbol. */
1111 add_equivalences (&saw_equiv);
1112
1113 if (current_segment->offset < 0)
1114 gfc_error ("The equivalence set for '%s' cause an invalid "
1115 "extension to COMMON '%s' at %L", sym->name,
1116 common->name, &common->where);
1117
1118 if (gfc_option.flag_align_commons)
1119 offset = align_segment (&align);
1120
1121 if (offset)
1122 {
1123 /* The required offset conflicts with previous alignment
1124 requirements. Insert padding immediately before this
1125 segment. */
1126 if (gfc_option.warn_align_commons)
1127 {
1128 if (strcmp (common->name, BLANK_COMMON_NAME))
1129 gfc_warning ("Padding of %d bytes required before '%s' in "
1130 "COMMON '%s' at %L; reorder elements or use "
1131 "-fno-align-commons", (int)offset,
1132 s->sym->name, common->name, &common->where);
1133 else
1134 gfc_warning ("Padding of %d bytes required before '%s' in "
1135 "COMMON at %L; reorder elements or use "
1136 "-fno-align-commons", (int)offset,
1137 s->sym->name, &common->where);
1138 }
1139 }
1140
1141 /* Apply the offset to the new segments. */
1142 apply_segment_offset (current_segment, offset);
1143 current_offset += offset;
1144
1145 /* Add the new segments to the common block. */
1146 common_segment = add_segments (common_segment, current_segment);
1147 }
1148
1149 /* The offset of the next common variable. */
1150 current_offset += s->length;
1151 }
1152
1153 if (common_segment == NULL)
1154 {
1155 gfc_error ("COMMON '%s' at %L does not exist",
1156 common->name, &common->where);
1157 return;
1158 }
1159
1160 if (common_segment->offset != 0 && gfc_option.warn_align_commons)
1161 {
1162 if (strcmp (common->name, BLANK_COMMON_NAME))
1163 gfc_warning ("COMMON '%s' at %L requires %d bytes of padding; "
1164 "reorder elements or use -fno-align-commons",
1165 common->name, &common->where, (int)common_segment->offset);
1166 else
1167 gfc_warning ("COMMON at %L requires %d bytes of padding; "
1168 "reorder elements or use -fno-align-commons",
1169 &common->where, (int)common_segment->offset);
1170 }
1171
1172 create_common (common, common_segment, saw_equiv);
1173 }
1174
1175
1176 /* Create a new block for each merged equivalence list. */
1177
1178 static void
1179 finish_equivalences (gfc_namespace *ns)
1180 {
1181 gfc_equiv *z, *y;
1182 gfc_symbol *sym;
1183 gfc_common_head * c;
1184 HOST_WIDE_INT offset;
1185 unsigned HOST_WIDE_INT align;
1186 bool dummy;
1187
1188 for (z = ns->equiv; z; z = z->next)
1189 for (y = z->eq; y; y = y->eq)
1190 {
1191 if (y->used)
1192 continue;
1193 sym = z->expr->symtree->n.sym;
1194 current_segment = get_segment_info (sym, 0);
1195
1196 /* All objects directly or indirectly equivalenced with this
1197 symbol. */
1198 add_equivalences (&dummy);
1199
1200 /* Align the block. */
1201 offset = align_segment (&align);
1202
1203 /* Ensure all offsets are positive. */
1204 offset -= current_segment->offset & ~(align - 1);
1205
1206 apply_segment_offset (current_segment, offset);
1207
1208 /* Create the decl. If this is a module equivalence, it has a
1209 unique name, pointed to by z->module. This is written to a
1210 gfc_common_header to push create_common into using
1211 build_common_decl, so that the equivalence appears as an
1212 external symbol. Otherwise, a local declaration is built using
1213 build_equiv_decl. */
1214 if (z->module)
1215 {
1216 c = gfc_get_common_head ();
1217 /* We've lost the real location, so use the location of the
1218 enclosing procedure. */
1219 c->where = ns->proc_name->declared_at;
1220 strcpy (c->name, z->module);
1221 }
1222 else
1223 c = NULL;
1224
1225 create_common (c, current_segment, true);
1226 break;
1227 }
1228 }
1229
1230
1231 /* Work function for translating a named common block. */
1232
1233 static void
1234 named_common (gfc_symtree *st)
1235 {
1236 translate_common (st->n.common, st->n.common->head);
1237 }
1238
1239
1240 /* Translate the common blocks in a namespace. Unlike other variables,
1241 these have to be created before code, because the backend_decl depends
1242 on the rest of the common block. */
1243
1244 void
1245 gfc_trans_common (gfc_namespace *ns)
1246 {
1247 gfc_common_head *c;
1248
1249 /* Translate the blank common block. */
1250 if (ns->blank_common.head != NULL)
1251 {
1252 c = gfc_get_common_head ();
1253 c->where = ns->blank_common.head->common_head->where;
1254 strcpy (c->name, BLANK_COMMON_NAME);
1255 translate_common (c, ns->blank_common.head);
1256 }
1257
1258 /* Translate all named common blocks. */
1259 gfc_traverse_symtree (ns->common_root, named_common);
1260
1261 /* Translate local equivalence. */
1262 finish_equivalences (ns);
1263
1264 /* Commit the newly created symbols for common blocks and module
1265 equivalences. */
1266 gfc_commit_symbols ();
1267 }