re PR fortran/31270 (print subscript value and array bounds when out-of-bounds error...
[gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007 Free Software
3 Foundation, Inc.
4 Contributed by Paul Brook <paul@nowt.org>
5 and Steven Bosscher <s.bosscher@student.tudelft.nl>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* trans-types.c -- gfortran backend types */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tree.h"
29 #include "langhooks.h"
30 #include "tm.h"
31 #include "target.h"
32 #include "ggc.h"
33 #include "toplev.h"
34 #include "gfortran.h"
35 #include "trans.h"
36 #include "trans-types.h"
37 #include "trans-const.h"
38 #include "real.h"
39 \f
40
41 #if (GFC_MAX_DIMENSIONS < 10)
42 #define GFC_RANK_DIGITS 1
43 #define GFC_RANK_PRINTF_FORMAT "%01d"
44 #elif (GFC_MAX_DIMENSIONS < 100)
45 #define GFC_RANK_DIGITS 2
46 #define GFC_RANK_PRINTF_FORMAT "%02d"
47 #else
48 #error If you really need >99 dimensions, continue the sequence above...
49 #endif
50
51 /* array of structs so we don't have to worry about xmalloc or free */
52 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
53
54 static tree gfc_get_derived_type (gfc_symbol * derived);
55
56 tree gfc_array_index_type;
57 tree gfc_array_range_type;
58 tree gfc_character1_type_node;
59 tree pvoid_type_node;
60 tree ppvoid_type_node;
61 tree pchar_type_node;
62 tree pfunc_type_node;
63
64 tree gfc_charlen_type_node;
65
66 static GTY(()) tree gfc_desc_dim_type;
67 static GTY(()) tree gfc_max_array_element_size;
68 static GTY(()) tree gfc_array_descriptor_base[GFC_MAX_DIMENSIONS];
69
70 /* Arrays for all integral and real kinds. We'll fill this in at runtime
71 after the target has a chance to process command-line options. */
72
73 #define MAX_INT_KINDS 5
74 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
75 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
76 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
77 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
78
79 #define MAX_REAL_KINDS 5
80 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
81 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
82 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
83
84
85 /* The integer kind to use for array indices. This will be set to the
86 proper value based on target information from the backend. */
87
88 int gfc_index_integer_kind;
89
90 /* The default kinds of the various types. */
91
92 int gfc_default_integer_kind;
93 int gfc_max_integer_kind;
94 int gfc_default_real_kind;
95 int gfc_default_double_kind;
96 int gfc_default_character_kind;
97 int gfc_default_logical_kind;
98 int gfc_default_complex_kind;
99 int gfc_c_int_kind;
100
101 /* The kind size used for record offsets. If the target system supports
102 kind=8, this will be set to 8, otherwise it is set to 4. */
103 int gfc_intio_kind;
104
105 /* The integer kind used to store character lengths. */
106 int gfc_charlen_int_kind;
107
108 /* The size of the numeric storage unit and character storage unit. */
109 int gfc_numeric_storage_size;
110 int gfc_character_storage_size;
111
112
113 /* Validate that the f90_type of the given gfc_typespec is valid for
114 the type it represents. The f90_type represents the Fortran types
115 this C kind can be used with. For example, c_int has a f90_type of
116 BT_INTEGER and c_float has a f90_type of BT_REAL. Returns FAILURE
117 if a mismatch occurs between ts->f90_type and ts->type; SUCCESS if
118 they match. */
119
120 try
121 gfc_validate_c_kind (gfc_typespec *ts)
122 {
123 return ((ts->type == ts->f90_type) ? SUCCESS : FAILURE);
124 }
125
126
127 try
128 gfc_check_any_c_kind (gfc_typespec *ts)
129 {
130 int i;
131
132 for (i = 0; i < ISOCBINDING_NUMBER; i++)
133 {
134 /* Check for any C interoperable kind for the given type/kind in ts.
135 This can be used after verify_c_interop to make sure that the
136 Fortran kind being used exists in at least some form for C. */
137 if (c_interop_kinds_table[i].f90_type == ts->type &&
138 c_interop_kinds_table[i].value == ts->kind)
139 return SUCCESS;
140 }
141
142 return FAILURE;
143 }
144
145
146 static int
147 get_real_kind_from_node (tree type)
148 {
149 int i;
150
151 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
152 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
153 return gfc_real_kinds[i].kind;
154
155 return -4;
156 }
157
158 static int
159 get_int_kind_from_node (tree type)
160 {
161 int i;
162
163 if (!type)
164 return -2;
165
166 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
167 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
168 return gfc_integer_kinds[i].kind;
169
170 return -1;
171 }
172
173 static int
174 get_int_kind_from_width (int size)
175 {
176 int i;
177
178 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
179 if (gfc_integer_kinds[i].bit_size == size)
180 return gfc_integer_kinds[i].kind;
181
182 return -2;
183 }
184
185 static int
186 get_int_kind_from_minimal_width (int size)
187 {
188 int i;
189
190 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
191 if (gfc_integer_kinds[i].bit_size >= size)
192 return gfc_integer_kinds[i].kind;
193
194 return -2;
195 }
196
197
198 /* Generate the CInteropKind_t objects for the C interoperable
199 kinds. */
200
201 static
202 void init_c_interop_kinds (void)
203 {
204 int i;
205 tree intmax_type_node = INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
206 integer_type_node :
207 (LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
208 long_integer_type_node :
209 long_long_integer_type_node);
210
211 /* init all pointers in the list to NULL */
212 for (i = 0; i < ISOCBINDING_NUMBER; i++)
213 {
214 /* Initialize the name and value fields. */
215 c_interop_kinds_table[i].name[0] = '\0';
216 c_interop_kinds_table[i].value = -100;
217 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
218 }
219
220 #define NAMED_INTCST(a,b,c) \
221 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
222 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
223 c_interop_kinds_table[a].value = c;
224 #define NAMED_REALCST(a,b,c) \
225 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
226 c_interop_kinds_table[a].f90_type = BT_REAL; \
227 c_interop_kinds_table[a].value = c;
228 #define NAMED_CMPXCST(a,b,c) \
229 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
230 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
231 c_interop_kinds_table[a].value = c;
232 #define NAMED_LOGCST(a,b,c) \
233 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
234 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
235 c_interop_kinds_table[a].value = c;
236 #define NAMED_CHARKNDCST(a,b,c) \
237 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
238 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
239 c_interop_kinds_table[a].value = c;
240 #define NAMED_CHARCST(a,b,c) \
241 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
242 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
243 c_interop_kinds_table[a].value = c;
244 #define DERIVED_TYPE(a,b,c) \
245 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
246 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
247 c_interop_kinds_table[a].value = c;
248 #define PROCEDURE(a,b) \
249 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
250 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
251 c_interop_kinds_table[a].value = 0;
252 #include "iso-c-binding.def"
253 }
254
255
256 /* Query the target to determine which machine modes are available for
257 computation. Choose KIND numbers for them. */
258
259 void
260 gfc_init_kinds (void)
261 {
262 enum machine_mode mode;
263 int i_index, r_index;
264 bool saw_i4 = false, saw_i8 = false;
265 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
266
267 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
268 {
269 int kind, bitsize;
270
271 if (!targetm.scalar_mode_supported_p (mode))
272 continue;
273
274 /* The middle end doesn't support constants larger than 2*HWI.
275 Perhaps the target hook shouldn't have accepted these either,
276 but just to be safe... */
277 bitsize = GET_MODE_BITSIZE (mode);
278 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
279 continue;
280
281 gcc_assert (i_index != MAX_INT_KINDS);
282
283 /* Let the kind equal the bit size divided by 8. This insulates the
284 programmer from the underlying byte size. */
285 kind = bitsize / 8;
286
287 if (kind == 4)
288 saw_i4 = true;
289 if (kind == 8)
290 saw_i8 = true;
291
292 gfc_integer_kinds[i_index].kind = kind;
293 gfc_integer_kinds[i_index].radix = 2;
294 gfc_integer_kinds[i_index].digits = bitsize - 1;
295 gfc_integer_kinds[i_index].bit_size = bitsize;
296
297 gfc_logical_kinds[i_index].kind = kind;
298 gfc_logical_kinds[i_index].bit_size = bitsize;
299
300 i_index += 1;
301 }
302
303 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
304 used for large file access. */
305
306 if (saw_i8)
307 gfc_intio_kind = 8;
308 else
309 gfc_intio_kind = 4;
310
311 /* If we do not at least have kind = 4, everything is pointless. */
312 gcc_assert(saw_i4);
313
314 /* Set the maximum integer kind. Used with at least BOZ constants. */
315 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
316
317 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
318 {
319 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
320 int kind;
321
322 if (fmt == NULL)
323 continue;
324 if (!targetm.scalar_mode_supported_p (mode))
325 continue;
326
327 /* Only let float/double/long double go through because the fortran
328 library assumes these are the only floating point types. */
329
330 if (mode != TYPE_MODE (float_type_node)
331 && (mode != TYPE_MODE (double_type_node))
332 && (mode != TYPE_MODE (long_double_type_node)))
333 continue;
334
335 /* Let the kind equal the precision divided by 8, rounding up. Again,
336 this insulates the programmer from the underlying byte size.
337
338 Also, it effectively deals with IEEE extended formats. There, the
339 total size of the type may equal 16, but it's got 6 bytes of padding
340 and the increased size can get in the way of a real IEEE quad format
341 which may also be supported by the target.
342
343 We round up so as to handle IA-64 __floatreg (RFmode), which is an
344 82 bit type. Not to be confused with __float80 (XFmode), which is
345 an 80 bit type also supported by IA-64. So XFmode should come out
346 to be kind=10, and RFmode should come out to be kind=11. Egads. */
347
348 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
349
350 if (kind == 4)
351 saw_r4 = true;
352 if (kind == 8)
353 saw_r8 = true;
354 if (kind == 16)
355 saw_r16 = true;
356
357 /* Careful we don't stumble a wierd internal mode. */
358 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
359 /* Or have too many modes for the allocated space. */
360 gcc_assert (r_index != MAX_REAL_KINDS);
361
362 gfc_real_kinds[r_index].kind = kind;
363 gfc_real_kinds[r_index].radix = fmt->b;
364 gfc_real_kinds[r_index].digits = fmt->p;
365 gfc_real_kinds[r_index].min_exponent = fmt->emin;
366 gfc_real_kinds[r_index].max_exponent = fmt->emax;
367 if (fmt->pnan < fmt->p)
368 /* This is an IBM extended double format (or the MIPS variant)
369 made up of two IEEE doubles. The value of the long double is
370 the sum of the values of the two parts. The most significant
371 part is required to be the value of the long double rounded
372 to the nearest double. If we use emax of 1024 then we can't
373 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
374 rounding will make the most significant part overflow. */
375 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
376 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
377 r_index += 1;
378 }
379
380 /* Choose the default integer kind. We choose 4 unless the user
381 directs us otherwise. */
382 if (gfc_option.flag_default_integer)
383 {
384 if (!saw_i8)
385 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
386 gfc_default_integer_kind = 8;
387
388 /* Even if the user specified that the default integer kind be 8,
389 the numerica storage size isn't 64. In this case, a warning will
390 be issued when NUMERIC_STORAGE_SIZE is used. */
391 gfc_numeric_storage_size = 4 * 8;
392 }
393 else if (saw_i4)
394 {
395 gfc_default_integer_kind = 4;
396 gfc_numeric_storage_size = 4 * 8;
397 }
398 else
399 {
400 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
401 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
402 }
403
404 /* Choose the default real kind. Again, we choose 4 when possible. */
405 if (gfc_option.flag_default_real)
406 {
407 if (!saw_r8)
408 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
409 gfc_default_real_kind = 8;
410 }
411 else if (saw_r4)
412 gfc_default_real_kind = 4;
413 else
414 gfc_default_real_kind = gfc_real_kinds[0].kind;
415
416 /* Choose the default double kind. If -fdefault-real and -fdefault-double
417 are specified, we use kind=8, if it's available. If -fdefault-real is
418 specified without -fdefault-double, we use kind=16, if it's available.
419 Otherwise we do not change anything. */
420 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
421 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
422
423 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
424 gfc_default_double_kind = 8;
425 else if (gfc_option.flag_default_real && saw_r16)
426 gfc_default_double_kind = 16;
427 else if (saw_r4 && saw_r8)
428 gfc_default_double_kind = 8;
429 else
430 {
431 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
432 real ... occupies two contiguous numeric storage units.
433
434 Therefore we must be supplied a kind twice as large as we chose
435 for single precision. There are loopholes, in that double
436 precision must *occupy* two storage units, though it doesn't have
437 to *use* two storage units. Which means that you can make this
438 kind artificially wide by padding it. But at present there are
439 no GCC targets for which a two-word type does not exist, so we
440 just let gfc_validate_kind abort and tell us if something breaks. */
441
442 gfc_default_double_kind
443 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
444 }
445
446 /* The default logical kind is constrained to be the same as the
447 default integer kind. Similarly with complex and real. */
448 gfc_default_logical_kind = gfc_default_integer_kind;
449 gfc_default_complex_kind = gfc_default_real_kind;
450
451 /* Choose the smallest integer kind for our default character. */
452 gfc_default_character_kind = gfc_integer_kinds[0].kind;
453 gfc_character_storage_size = gfc_default_character_kind * 8;
454
455 /* Choose the integer kind the same size as "void*" for our index kind. */
456 gfc_index_integer_kind = POINTER_SIZE / 8;
457 /* Pick a kind the same size as the C "int" type. */
458 gfc_c_int_kind = INT_TYPE_SIZE / 8;
459
460 /* initialize the C interoperable kinds */
461 init_c_interop_kinds();
462 }
463
464 /* Make sure that a valid kind is present. Returns an index into the
465 associated kinds array, -1 if the kind is not present. */
466
467 static int
468 validate_integer (int kind)
469 {
470 int i;
471
472 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
473 if (gfc_integer_kinds[i].kind == kind)
474 return i;
475
476 return -1;
477 }
478
479 static int
480 validate_real (int kind)
481 {
482 int i;
483
484 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
485 if (gfc_real_kinds[i].kind == kind)
486 return i;
487
488 return -1;
489 }
490
491 static int
492 validate_logical (int kind)
493 {
494 int i;
495
496 for (i = 0; gfc_logical_kinds[i].kind; i++)
497 if (gfc_logical_kinds[i].kind == kind)
498 return i;
499
500 return -1;
501 }
502
503 static int
504 validate_character (int kind)
505 {
506 return kind == gfc_default_character_kind ? 0 : -1;
507 }
508
509 /* Validate a kind given a basic type. The return value is the same
510 for the child functions, with -1 indicating nonexistence of the
511 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
512
513 int
514 gfc_validate_kind (bt type, int kind, bool may_fail)
515 {
516 int rc;
517
518 switch (type)
519 {
520 case BT_REAL: /* Fall through */
521 case BT_COMPLEX:
522 rc = validate_real (kind);
523 break;
524 case BT_INTEGER:
525 rc = validate_integer (kind);
526 break;
527 case BT_LOGICAL:
528 rc = validate_logical (kind);
529 break;
530 case BT_CHARACTER:
531 rc = validate_character (kind);
532 break;
533
534 default:
535 gfc_internal_error ("gfc_validate_kind(): Got bad type");
536 }
537
538 if (rc < 0 && !may_fail)
539 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
540
541 return rc;
542 }
543
544
545 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
546 Reuse common type nodes where possible. Recognize if the kind matches up
547 with a C type. This will be used later in determining which routines may
548 be scarfed from libm. */
549
550 static tree
551 gfc_build_int_type (gfc_integer_info *info)
552 {
553 int mode_precision = info->bit_size;
554
555 if (mode_precision == CHAR_TYPE_SIZE)
556 info->c_char = 1;
557 if (mode_precision == SHORT_TYPE_SIZE)
558 info->c_short = 1;
559 if (mode_precision == INT_TYPE_SIZE)
560 info->c_int = 1;
561 if (mode_precision == LONG_TYPE_SIZE)
562 info->c_long = 1;
563 if (mode_precision == LONG_LONG_TYPE_SIZE)
564 info->c_long_long = 1;
565
566 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
567 return intQI_type_node;
568 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
569 return intHI_type_node;
570 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
571 return intSI_type_node;
572 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
573 return intDI_type_node;
574 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
575 return intTI_type_node;
576
577 return make_signed_type (mode_precision);
578 }
579
580 static tree
581 gfc_build_real_type (gfc_real_info *info)
582 {
583 int mode_precision = info->mode_precision;
584 tree new_type;
585
586 if (mode_precision == FLOAT_TYPE_SIZE)
587 info->c_float = 1;
588 if (mode_precision == DOUBLE_TYPE_SIZE)
589 info->c_double = 1;
590 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
591 info->c_long_double = 1;
592
593 if (TYPE_PRECISION (float_type_node) == mode_precision)
594 return float_type_node;
595 if (TYPE_PRECISION (double_type_node) == mode_precision)
596 return double_type_node;
597 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
598 return long_double_type_node;
599
600 new_type = make_node (REAL_TYPE);
601 TYPE_PRECISION (new_type) = mode_precision;
602 layout_type (new_type);
603 return new_type;
604 }
605
606 static tree
607 gfc_build_complex_type (tree scalar_type)
608 {
609 tree new_type;
610
611 if (scalar_type == NULL)
612 return NULL;
613 if (scalar_type == float_type_node)
614 return complex_float_type_node;
615 if (scalar_type == double_type_node)
616 return complex_double_type_node;
617 if (scalar_type == long_double_type_node)
618 return complex_long_double_type_node;
619
620 new_type = make_node (COMPLEX_TYPE);
621 TREE_TYPE (new_type) = scalar_type;
622 layout_type (new_type);
623 return new_type;
624 }
625
626 static tree
627 gfc_build_logical_type (gfc_logical_info *info)
628 {
629 int bit_size = info->bit_size;
630 tree new_type;
631
632 if (bit_size == BOOL_TYPE_SIZE)
633 {
634 info->c_bool = 1;
635 return boolean_type_node;
636 }
637
638 new_type = make_unsigned_type (bit_size);
639 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
640 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
641 TYPE_PRECISION (new_type) = 1;
642
643 return new_type;
644 }
645
646 #if 0
647 /* Return the bit size of the C "size_t". */
648
649 static unsigned int
650 c_size_t_size (void)
651 {
652 #ifdef SIZE_TYPE
653 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
654 return INT_TYPE_SIZE;
655 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
656 return LONG_TYPE_SIZE;
657 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
658 return SHORT_TYPE_SIZE;
659 gcc_unreachable ();
660 #else
661 return LONG_TYPE_SIZE;
662 #endif
663 }
664 #endif
665
666 /* Create the backend type nodes. We map them to their
667 equivalent C type, at least for now. We also give
668 names to the types here, and we push them in the
669 global binding level context.*/
670
671 void
672 gfc_init_types (void)
673 {
674 char name_buf[16];
675 int index;
676 tree type;
677 unsigned n;
678 unsigned HOST_WIDE_INT hi;
679 unsigned HOST_WIDE_INT lo;
680
681 /* Create and name the types. */
682 #define PUSH_TYPE(name, node) \
683 pushdecl (build_decl (TYPE_DECL, get_identifier (name), node))
684
685 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
686 {
687 type = gfc_build_int_type (&gfc_integer_kinds[index]);
688 gfc_integer_types[index] = type;
689 snprintf (name_buf, sizeof(name_buf), "int%d",
690 gfc_integer_kinds[index].kind);
691 PUSH_TYPE (name_buf, type);
692 }
693
694 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
695 {
696 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
697 gfc_logical_types[index] = type;
698 snprintf (name_buf, sizeof(name_buf), "logical%d",
699 gfc_logical_kinds[index].kind);
700 PUSH_TYPE (name_buf, type);
701 }
702
703 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
704 {
705 type = gfc_build_real_type (&gfc_real_kinds[index]);
706 gfc_real_types[index] = type;
707 snprintf (name_buf, sizeof(name_buf), "real%d",
708 gfc_real_kinds[index].kind);
709 PUSH_TYPE (name_buf, type);
710
711 type = gfc_build_complex_type (type);
712 gfc_complex_types[index] = type;
713 snprintf (name_buf, sizeof(name_buf), "complex%d",
714 gfc_real_kinds[index].kind);
715 PUSH_TYPE (name_buf, type);
716 }
717
718 gfc_character1_type_node = build_type_variant (unsigned_char_type_node,
719 0, 0);
720 PUSH_TYPE ("char", gfc_character1_type_node);
721
722 PUSH_TYPE ("byte", unsigned_char_type_node);
723 PUSH_TYPE ("void", void_type_node);
724
725 /* DBX debugging output gets upset if these aren't set. */
726 if (!TYPE_NAME (integer_type_node))
727 PUSH_TYPE ("c_integer", integer_type_node);
728 if (!TYPE_NAME (char_type_node))
729 PUSH_TYPE ("c_char", char_type_node);
730
731 #undef PUSH_TYPE
732
733 pvoid_type_node = build_pointer_type (void_type_node);
734 ppvoid_type_node = build_pointer_type (pvoid_type_node);
735 pchar_type_node = build_pointer_type (gfc_character1_type_node);
736 pfunc_type_node
737 = build_pointer_type (build_function_type (void_type_node, NULL_TREE));
738
739 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
740 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
741 since this function is called before gfc_init_constants. */
742 gfc_array_range_type
743 = build_range_type (gfc_array_index_type,
744 build_int_cst (gfc_array_index_type, 0),
745 NULL_TREE);
746
747 /* The maximum array element size that can be handled is determined
748 by the number of bits available to store this field in the array
749 descriptor. */
750
751 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
752 lo = ~ (unsigned HOST_WIDE_INT) 0;
753 if (n > HOST_BITS_PER_WIDE_INT)
754 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
755 else
756 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
757 gfc_max_array_element_size
758 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
759
760 size_type_node = gfc_array_index_type;
761
762 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
763 boolean_true_node = build_int_cst (boolean_type_node, 1);
764 boolean_false_node = build_int_cst (boolean_type_node, 0);
765
766 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
767 gfc_charlen_int_kind = 4;
768 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
769 }
770
771 /* Get the type node for the given type and kind. */
772
773 tree
774 gfc_get_int_type (int kind)
775 {
776 int index = gfc_validate_kind (BT_INTEGER, kind, true);
777 return index < 0 ? 0 : gfc_integer_types[index];
778 }
779
780 tree
781 gfc_get_real_type (int kind)
782 {
783 int index = gfc_validate_kind (BT_REAL, kind, true);
784 return index < 0 ? 0 : gfc_real_types[index];
785 }
786
787 tree
788 gfc_get_complex_type (int kind)
789 {
790 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
791 return index < 0 ? 0 : gfc_complex_types[index];
792 }
793
794 tree
795 gfc_get_logical_type (int kind)
796 {
797 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
798 return index < 0 ? 0 : gfc_logical_types[index];
799 }
800 \f
801 /* Create a character type with the given kind and length. */
802
803 tree
804 gfc_get_character_type_len (int kind, tree len)
805 {
806 tree bounds, type;
807
808 gfc_validate_kind (BT_CHARACTER, kind, false);
809
810 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
811 type = build_array_type (gfc_character1_type_node, bounds);
812 TYPE_STRING_FLAG (type) = 1;
813
814 return type;
815 }
816
817
818 /* Get a type node for a character kind. */
819
820 tree
821 gfc_get_character_type (int kind, gfc_charlen * cl)
822 {
823 tree len;
824
825 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
826
827 return gfc_get_character_type_len (kind, len);
828 }
829 \f
830 /* Covert a basic type. This will be an array for character types. */
831
832 tree
833 gfc_typenode_for_spec (gfc_typespec * spec)
834 {
835 tree basetype;
836
837 switch (spec->type)
838 {
839 case BT_UNKNOWN:
840 gcc_unreachable ();
841
842 case BT_INTEGER:
843 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
844 has been resolved. This is done so we can convert C_PTR and
845 C_FUNPTR to simple variables that get translated to (void *). */
846 if (spec->f90_type == BT_VOID)
847 {
848 if (spec->derived
849 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
850 basetype = ptr_type_node;
851 else
852 basetype = pfunc_type_node;
853 }
854 else
855 basetype = gfc_get_int_type (spec->kind);
856 break;
857
858 case BT_REAL:
859 basetype = gfc_get_real_type (spec->kind);
860 break;
861
862 case BT_COMPLEX:
863 basetype = gfc_get_complex_type (spec->kind);
864 break;
865
866 case BT_LOGICAL:
867 basetype = gfc_get_logical_type (spec->kind);
868 break;
869
870 case BT_CHARACTER:
871 basetype = gfc_get_character_type (spec->kind, spec->cl);
872 break;
873
874 case BT_DERIVED:
875 basetype = gfc_get_derived_type (spec->derived);
876
877 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
878 type and kind to fit a (void *) and the basetype returned was a
879 ptr_type_node. We need to pass up this new information to the
880 symbol that was declared of type C_PTR or C_FUNPTR. */
881 if (spec->derived->attr.is_iso_c)
882 {
883 spec->type = spec->derived->ts.type;
884 spec->kind = spec->derived->ts.kind;
885 spec->f90_type = spec->derived->ts.f90_type;
886 }
887 break;
888 case BT_VOID:
889 /* This is for the second arg to c_f_pointer and c_f_procpointer
890 of the iso_c_binding module, to accept any ptr type. */
891 basetype = ptr_type_node;
892 if (spec->f90_type == BT_VOID)
893 {
894 if (spec->derived
895 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
896 basetype = ptr_type_node;
897 else
898 basetype = pfunc_type_node;
899 }
900 break;
901 default:
902 gcc_unreachable ();
903 }
904 return basetype;
905 }
906 \f
907 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
908
909 static tree
910 gfc_conv_array_bound (gfc_expr * expr)
911 {
912 /* If expr is an integer constant, return that. */
913 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
914 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
915
916 /* Otherwise return NULL. */
917 return NULL_TREE;
918 }
919 \f
920 tree
921 gfc_get_element_type (tree type)
922 {
923 tree element;
924
925 if (GFC_ARRAY_TYPE_P (type))
926 {
927 if (TREE_CODE (type) == POINTER_TYPE)
928 type = TREE_TYPE (type);
929 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
930 element = TREE_TYPE (type);
931 }
932 else
933 {
934 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
935 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
936
937 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
938 element = TREE_TYPE (element);
939
940 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
941 element = TREE_TYPE (element);
942 }
943
944 return element;
945 }
946 \f
947 /* Build an array. This function is called from gfc_sym_type().
948 Actually returns array descriptor type.
949
950 Format of array descriptors is as follows:
951
952 struct gfc_array_descriptor
953 {
954 array *data
955 index offset;
956 index dtype;
957 struct descriptor_dimension dimension[N_DIM];
958 }
959
960 struct descriptor_dimension
961 {
962 index stride;
963 index lbound;
964 index ubound;
965 }
966
967 Translation code should use gfc_conv_descriptor_* rather than
968 accessing the descriptor directly. Any changes to the array
969 descriptor type will require changes in gfc_conv_descriptor_* and
970 gfc_build_array_initializer.
971
972 This is represented internally as a RECORD_TYPE. The index nodes
973 are gfc_array_index_type and the data node is a pointer to the
974 data. See below for the handling of character types.
975
976 The dtype member is formatted as follows:
977 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
978 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
979 size = dtype >> GFC_DTYPE_SIZE_SHIFT
980
981 I originally used nested ARRAY_TYPE nodes to represent arrays, but
982 this generated poor code for assumed/deferred size arrays. These
983 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
984 of the GENERIC grammar. Also, there is no way to explicitly set
985 the array stride, so all data must be packed(1). I've tried to
986 mark all the functions which would require modification with a GCC
987 ARRAYS comment.
988
989 The data component points to the first element in the array. The
990 offset field is the position of the origin of the array (ie element
991 (0, 0 ...)). This may be outsite the bounds of the array.
992
993 An element is accessed by
994 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
995 This gives good performance as the computation does not involve the
996 bounds of the array. For packed arrays, this is optimized further
997 by substituting the known strides.
998
999 This system has one problem: all array bounds must be within 2^31
1000 elements of the origin (2^63 on 64-bit machines). For example
1001 integer, dimension (80000:90000, 80000:90000, 2) :: array
1002 may not work properly on 32-bit machines because 80000*80000 >
1003 2^31, so the calculation for stride02 would overflow. This may
1004 still work, but I haven't checked, and it relies on the overflow
1005 doing the right thing.
1006
1007 The way to fix this problem is to access elements as follows:
1008 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1009 Obviously this is much slower. I will make this a compile time
1010 option, something like -fsmall-array-offsets. Mixing code compiled
1011 with and without this switch will work.
1012
1013 (1) This can be worked around by modifying the upper bound of the
1014 previous dimension. This requires extra fields in the descriptor
1015 (both real_ubound and fake_ubound). */
1016
1017
1018 /* Returns true if the array sym does not require a descriptor. */
1019
1020 int
1021 gfc_is_nodesc_array (gfc_symbol * sym)
1022 {
1023 gcc_assert (sym->attr.dimension);
1024
1025 /* We only want local arrays. */
1026 if (sym->attr.pointer || sym->attr.allocatable)
1027 return 0;
1028
1029 if (sym->attr.dummy)
1030 {
1031 if (sym->as->type != AS_ASSUMED_SHAPE)
1032 return 1;
1033 else
1034 return 0;
1035 }
1036
1037 if (sym->attr.result || sym->attr.function)
1038 return 0;
1039
1040 gcc_assert (sym->as->type == AS_EXPLICIT);
1041
1042 return 1;
1043 }
1044
1045
1046 /* Create an array descriptor type. */
1047
1048 static tree
1049 gfc_build_array_type (tree type, gfc_array_spec * as)
1050 {
1051 tree lbound[GFC_MAX_DIMENSIONS];
1052 tree ubound[GFC_MAX_DIMENSIONS];
1053 int n;
1054
1055 for (n = 0; n < as->rank; n++)
1056 {
1057 /* Create expressions for the known bounds of the array. */
1058 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1059 lbound[n] = gfc_index_one_node;
1060 else
1061 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1062 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1063 }
1064
1065 return gfc_get_array_type_bounds (type, as->rank, lbound, ubound, 0);
1066 }
1067 \f
1068 /* Returns the struct descriptor_dimension type. */
1069
1070 static tree
1071 gfc_get_desc_dim_type (void)
1072 {
1073 tree type;
1074 tree decl;
1075 tree fieldlist;
1076
1077 if (gfc_desc_dim_type)
1078 return gfc_desc_dim_type;
1079
1080 /* Build the type node. */
1081 type = make_node (RECORD_TYPE);
1082
1083 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1084 TYPE_PACKED (type) = 1;
1085
1086 /* Consists of the stride, lbound and ubound members. */
1087 decl = build_decl (FIELD_DECL,
1088 get_identifier ("stride"), gfc_array_index_type);
1089 DECL_CONTEXT (decl) = type;
1090 fieldlist = decl;
1091
1092 decl = build_decl (FIELD_DECL,
1093 get_identifier ("lbound"), gfc_array_index_type);
1094 DECL_CONTEXT (decl) = type;
1095 fieldlist = chainon (fieldlist, decl);
1096
1097 decl = build_decl (FIELD_DECL,
1098 get_identifier ("ubound"), gfc_array_index_type);
1099 DECL_CONTEXT (decl) = type;
1100 fieldlist = chainon (fieldlist, decl);
1101
1102 /* Finish off the type. */
1103 TYPE_FIELDS (type) = fieldlist;
1104
1105 gfc_finish_type (type);
1106
1107 gfc_desc_dim_type = type;
1108 return type;
1109 }
1110
1111
1112 /* Return the DTYPE for an array. This describes the type and type parameters
1113 of the array. */
1114 /* TODO: Only call this when the value is actually used, and make all the
1115 unknown cases abort. */
1116
1117 tree
1118 gfc_get_dtype (tree type)
1119 {
1120 tree size;
1121 int n;
1122 HOST_WIDE_INT i;
1123 tree tmp;
1124 tree dtype;
1125 tree etype;
1126 int rank;
1127
1128 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1129
1130 if (GFC_TYPE_ARRAY_DTYPE (type))
1131 return GFC_TYPE_ARRAY_DTYPE (type);
1132
1133 rank = GFC_TYPE_ARRAY_RANK (type);
1134 etype = gfc_get_element_type (type);
1135
1136 switch (TREE_CODE (etype))
1137 {
1138 case INTEGER_TYPE:
1139 n = GFC_DTYPE_INTEGER;
1140 break;
1141
1142 case BOOLEAN_TYPE:
1143 n = GFC_DTYPE_LOGICAL;
1144 break;
1145
1146 case REAL_TYPE:
1147 n = GFC_DTYPE_REAL;
1148 break;
1149
1150 case COMPLEX_TYPE:
1151 n = GFC_DTYPE_COMPLEX;
1152 break;
1153
1154 /* We will never have arrays of arrays. */
1155 case RECORD_TYPE:
1156 n = GFC_DTYPE_DERIVED;
1157 break;
1158
1159 case ARRAY_TYPE:
1160 n = GFC_DTYPE_CHARACTER;
1161 break;
1162
1163 default:
1164 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1165 /* We can strange array types for temporary arrays. */
1166 return gfc_index_zero_node;
1167 }
1168
1169 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1170 size = TYPE_SIZE_UNIT (etype);
1171
1172 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1173 if (size && INTEGER_CST_P (size))
1174 {
1175 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1176 internal_error ("Array element size too big");
1177
1178 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1179 }
1180 dtype = build_int_cst (gfc_array_index_type, i);
1181
1182 if (size && !INTEGER_CST_P (size))
1183 {
1184 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1185 tmp = fold_build2 (LSHIFT_EXPR, gfc_array_index_type,
1186 fold_convert (gfc_array_index_type, size), tmp);
1187 dtype = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, dtype);
1188 }
1189 /* If we don't know the size we leave it as zero. This should never happen
1190 for anything that is actually used. */
1191 /* TODO: Check this is actually true, particularly when repacking
1192 assumed size parameters. */
1193
1194 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1195 return dtype;
1196 }
1197
1198
1199 /* Build an array type for use without a descriptor, packed according
1200 to the value of PACKED. */
1201
1202 tree
1203 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed)
1204 {
1205 tree range;
1206 tree type;
1207 tree tmp;
1208 int n;
1209 int known_stride;
1210 int known_offset;
1211 mpz_t offset;
1212 mpz_t stride;
1213 mpz_t delta;
1214 gfc_expr *expr;
1215
1216 mpz_init_set_ui (offset, 0);
1217 mpz_init_set_ui (stride, 1);
1218 mpz_init (delta);
1219
1220 /* We don't use build_array_type because this does not include include
1221 lang-specific information (i.e. the bounds of the array) when checking
1222 for duplicates. */
1223 type = make_node (ARRAY_TYPE);
1224
1225 GFC_ARRAY_TYPE_P (type) = 1;
1226 TYPE_LANG_SPECIFIC (type) = (struct lang_type *)
1227 ggc_alloc_cleared (sizeof (struct lang_type));
1228
1229 known_stride = (packed != PACKED_NO);
1230 known_offset = 1;
1231 for (n = 0; n < as->rank; n++)
1232 {
1233 /* Fill in the stride and bound components of the type. */
1234 if (known_stride)
1235 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1236 else
1237 tmp = NULL_TREE;
1238 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1239
1240 expr = as->lower[n];
1241 if (expr->expr_type == EXPR_CONSTANT)
1242 {
1243 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1244 gfc_index_integer_kind);
1245 }
1246 else
1247 {
1248 known_stride = 0;
1249 tmp = NULL_TREE;
1250 }
1251 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1252
1253 if (known_stride)
1254 {
1255 /* Calculate the offset. */
1256 mpz_mul (delta, stride, as->lower[n]->value.integer);
1257 mpz_sub (offset, offset, delta);
1258 }
1259 else
1260 known_offset = 0;
1261
1262 expr = as->upper[n];
1263 if (expr && expr->expr_type == EXPR_CONSTANT)
1264 {
1265 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1266 gfc_index_integer_kind);
1267 }
1268 else
1269 {
1270 tmp = NULL_TREE;
1271 known_stride = 0;
1272 }
1273 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1274
1275 if (known_stride)
1276 {
1277 /* Calculate the stride. */
1278 mpz_sub (delta, as->upper[n]->value.integer,
1279 as->lower[n]->value.integer);
1280 mpz_add_ui (delta, delta, 1);
1281 mpz_mul (stride, stride, delta);
1282 }
1283
1284 /* Only the first stride is known for partial packed arrays. */
1285 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1286 known_stride = 0;
1287 }
1288
1289 if (known_offset)
1290 {
1291 GFC_TYPE_ARRAY_OFFSET (type) =
1292 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1293 }
1294 else
1295 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1296
1297 if (known_stride)
1298 {
1299 GFC_TYPE_ARRAY_SIZE (type) =
1300 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1301 }
1302 else
1303 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1304
1305 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1306 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1307 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1308 NULL_TREE);
1309 /* TODO: use main type if it is unbounded. */
1310 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1311 build_pointer_type (build_array_type (etype, range));
1312
1313 if (known_stride)
1314 {
1315 mpz_sub_ui (stride, stride, 1);
1316 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1317 }
1318 else
1319 range = NULL_TREE;
1320
1321 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1322 TYPE_DOMAIN (type) = range;
1323
1324 build_pointer_type (etype);
1325 TREE_TYPE (type) = etype;
1326
1327 layout_type (type);
1328
1329 mpz_clear (offset);
1330 mpz_clear (stride);
1331 mpz_clear (delta);
1332
1333 if (packed != PACKED_STATIC || !known_stride)
1334 {
1335 /* For dummy arrays and automatic (heap allocated) arrays we
1336 want a pointer to the array. */
1337 type = build_pointer_type (type);
1338 GFC_ARRAY_TYPE_P (type) = 1;
1339 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1340 }
1341 return type;
1342 }
1343
1344 /* Return or create the base type for an array descriptor. */
1345
1346 static tree
1347 gfc_get_array_descriptor_base (int dimen)
1348 {
1349 tree fat_type, fieldlist, decl, arraytype;
1350 char name[16 + GFC_RANK_DIGITS + 1];
1351
1352 gcc_assert (dimen >= 1 && dimen <= GFC_MAX_DIMENSIONS);
1353 if (gfc_array_descriptor_base[dimen - 1])
1354 return gfc_array_descriptor_base[dimen - 1];
1355
1356 /* Build the type node. */
1357 fat_type = make_node (RECORD_TYPE);
1358
1359 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen);
1360 TYPE_NAME (fat_type) = get_identifier (name);
1361
1362 /* Add the data member as the first element of the descriptor. */
1363 decl = build_decl (FIELD_DECL, get_identifier ("data"), ptr_type_node);
1364
1365 DECL_CONTEXT (decl) = fat_type;
1366 fieldlist = decl;
1367
1368 /* Add the base component. */
1369 decl = build_decl (FIELD_DECL, get_identifier ("offset"),
1370 gfc_array_index_type);
1371 DECL_CONTEXT (decl) = fat_type;
1372 fieldlist = chainon (fieldlist, decl);
1373
1374 /* Add the dtype component. */
1375 decl = build_decl (FIELD_DECL, get_identifier ("dtype"),
1376 gfc_array_index_type);
1377 DECL_CONTEXT (decl) = fat_type;
1378 fieldlist = chainon (fieldlist, decl);
1379
1380 /* Build the array type for the stride and bound components. */
1381 arraytype =
1382 build_array_type (gfc_get_desc_dim_type (),
1383 build_range_type (gfc_array_index_type,
1384 gfc_index_zero_node,
1385 gfc_rank_cst[dimen - 1]));
1386
1387 decl = build_decl (FIELD_DECL, get_identifier ("dim"), arraytype);
1388 DECL_CONTEXT (decl) = fat_type;
1389 fieldlist = chainon (fieldlist, decl);
1390
1391 /* Finish off the type. */
1392 TYPE_FIELDS (fat_type) = fieldlist;
1393
1394 gfc_finish_type (fat_type);
1395
1396 gfc_array_descriptor_base[dimen - 1] = fat_type;
1397 return fat_type;
1398 }
1399
1400 /* Build an array (descriptor) type with given bounds. */
1401
1402 tree
1403 gfc_get_array_type_bounds (tree etype, int dimen, tree * lbound,
1404 tree * ubound, int packed)
1405 {
1406 char name[8 + GFC_RANK_DIGITS + GFC_MAX_SYMBOL_LEN];
1407 tree fat_type, base_type, arraytype, lower, upper, stride, tmp;
1408 const char *typename;
1409 int n;
1410
1411 base_type = gfc_get_array_descriptor_base (dimen);
1412 fat_type = build_variant_type_copy (base_type);
1413
1414 tmp = TYPE_NAME (etype);
1415 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1416 tmp = DECL_NAME (tmp);
1417 if (tmp)
1418 typename = IDENTIFIER_POINTER (tmp);
1419 else
1420 typename = "unknown";
1421 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen,
1422 GFC_MAX_SYMBOL_LEN, typename);
1423 TYPE_NAME (fat_type) = get_identifier (name);
1424
1425 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1426 TYPE_LANG_SPECIFIC (fat_type) = (struct lang_type *)
1427 ggc_alloc_cleared (sizeof (struct lang_type));
1428
1429 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1430 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1431
1432 /* Build an array descriptor record type. */
1433 if (packed != 0)
1434 stride = gfc_index_one_node;
1435 else
1436 stride = NULL_TREE;
1437 for (n = 0; n < dimen; n++)
1438 {
1439 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1440
1441 if (lbound)
1442 lower = lbound[n];
1443 else
1444 lower = NULL_TREE;
1445
1446 if (lower != NULL_TREE)
1447 {
1448 if (INTEGER_CST_P (lower))
1449 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1450 else
1451 lower = NULL_TREE;
1452 }
1453
1454 upper = ubound[n];
1455 if (upper != NULL_TREE)
1456 {
1457 if (INTEGER_CST_P (upper))
1458 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1459 else
1460 upper = NULL_TREE;
1461 }
1462
1463 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1464 {
1465 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
1466 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp,
1467 gfc_index_one_node);
1468 stride =
1469 fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, stride);
1470 /* Check the folding worked. */
1471 gcc_assert (INTEGER_CST_P (stride));
1472 }
1473 else
1474 stride = NULL_TREE;
1475 }
1476 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1477
1478 /* TODO: known offsets for descriptors. */
1479 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1480
1481 /* We define data as an unknown size array. Much better than doing
1482 pointer arithmetic. */
1483 arraytype =
1484 build_array_type (etype, gfc_array_range_type);
1485 arraytype = build_pointer_type (arraytype);
1486 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1487
1488 return fat_type;
1489 }
1490 \f
1491 /* Build a pointer type. This function is called from gfc_sym_type(). */
1492
1493 static tree
1494 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1495 {
1496 /* Array pointer types aren't actually pointers. */
1497 if (sym->attr.dimension)
1498 return type;
1499 else
1500 return build_pointer_type (type);
1501 }
1502 \f
1503 /* Return the type for a symbol. Special handling is required for character
1504 types to get the correct level of indirection.
1505 For functions return the return type.
1506 For subroutines return void_type_node.
1507 Calling this multiple times for the same symbol should be avoided,
1508 especially for character and array types. */
1509
1510 tree
1511 gfc_sym_type (gfc_symbol * sym)
1512 {
1513 tree type;
1514 int byref;
1515
1516 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1517 return void_type_node;
1518
1519 /* In the case of a function the fake result variable may have a
1520 type different from the function type, so don't return early in
1521 that case. */
1522 if (sym->backend_decl && !sym->attr.function)
1523 return TREE_TYPE (sym->backend_decl);
1524
1525 type = gfc_typenode_for_spec (&sym->ts);
1526
1527 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1528 byref = 1;
1529 else
1530 byref = 0;
1531
1532 if (sym->attr.dimension)
1533 {
1534 if (gfc_is_nodesc_array (sym))
1535 {
1536 /* If this is a character argument of unknown length, just use the
1537 base type. */
1538 if (sym->ts.type != BT_CHARACTER
1539 || !(sym->attr.dummy || sym->attr.function)
1540 || sym->ts.cl->backend_decl)
1541 {
1542 type = gfc_get_nodesc_array_type (type, sym->as,
1543 byref ? PACKED_FULL
1544 : PACKED_STATIC);
1545 byref = 0;
1546 }
1547 }
1548 else
1549 {
1550 type = gfc_build_array_type (type, sym->as);
1551 }
1552 }
1553 else
1554 {
1555 if (sym->attr.allocatable || sym->attr.pointer)
1556 type = gfc_build_pointer_type (sym, type);
1557 if (sym->attr.pointer)
1558 GFC_POINTER_TYPE_P (type) = 1;
1559 }
1560
1561 /* We currently pass all parameters by reference.
1562 See f95_get_function_decl. For dummy function parameters return the
1563 function type. */
1564 if (byref)
1565 {
1566 /* We must use pointer types for potentially absent variables. The
1567 optimizers assume a reference type argument is never NULL. */
1568 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
1569 type = build_pointer_type (type);
1570 else
1571 type = build_reference_type (type);
1572 }
1573
1574 return (type);
1575 }
1576 \f
1577 /* Layout and output debug info for a record type. */
1578
1579 void
1580 gfc_finish_type (tree type)
1581 {
1582 tree decl;
1583
1584 decl = build_decl (TYPE_DECL, NULL_TREE, type);
1585 TYPE_STUB_DECL (type) = decl;
1586 layout_type (type);
1587 rest_of_type_compilation (type, 1);
1588 rest_of_decl_compilation (decl, 1, 0);
1589 }
1590 \f
1591 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1592 or RECORD_TYPE pointed to by STYPE. The new field is chained
1593 to the fieldlist pointed to by FIELDLIST.
1594
1595 Returns a pointer to the new field. */
1596
1597 tree
1598 gfc_add_field_to_struct (tree *fieldlist, tree context,
1599 tree name, tree type)
1600 {
1601 tree decl;
1602
1603 decl = build_decl (FIELD_DECL, name, type);
1604
1605 DECL_CONTEXT (decl) = context;
1606 DECL_INITIAL (decl) = 0;
1607 DECL_ALIGN (decl) = 0;
1608 DECL_USER_ALIGN (decl) = 0;
1609 TREE_CHAIN (decl) = NULL_TREE;
1610 *fieldlist = chainon (*fieldlist, decl);
1611
1612 return decl;
1613 }
1614
1615
1616 /* Copy the backend_decl and component backend_decls if
1617 the two derived type symbols are "equal", as described
1618 in 4.4.2 and resolved by gfc_compare_derived_types. */
1619
1620 static int
1621 copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to)
1622 {
1623 gfc_component *to_cm;
1624 gfc_component *from_cm;
1625
1626 if (from->backend_decl == NULL
1627 || !gfc_compare_derived_types (from, to))
1628 return 0;
1629
1630 to->backend_decl = from->backend_decl;
1631
1632 to_cm = to->components;
1633 from_cm = from->components;
1634
1635 /* Copy the component declarations. If a component is itself
1636 a derived type, we need a copy of its component declarations.
1637 This is done by recursing into gfc_get_derived_type and
1638 ensures that the component's component declarations have
1639 been built. If it is a character, we need the character
1640 length, as well. */
1641 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
1642 {
1643 to_cm->backend_decl = from_cm->backend_decl;
1644 if (!from_cm->pointer && from_cm->ts.type == BT_DERIVED)
1645 gfc_get_derived_type (to_cm->ts.derived);
1646
1647 else if (from_cm->ts.type == BT_CHARACTER)
1648 to_cm->ts.cl->backend_decl = from_cm->ts.cl->backend_decl;
1649 }
1650
1651 return 1;
1652 }
1653
1654
1655 /* Build a tree node for a derived type. If there are equal
1656 derived types, with different local names, these are built
1657 at the same time. If an equal derived type has been built
1658 in a parent namespace, this is used. */
1659
1660 static tree
1661 gfc_get_derived_type (gfc_symbol * derived)
1662 {
1663 tree typenode = NULL, field = NULL, field_type = NULL, fieldlist = NULL;
1664 gfc_component *c;
1665 gfc_dt_list *dt;
1666
1667 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
1668
1669 /* See if it's one of the iso_c_binding derived types. */
1670 if (derived->attr.is_iso_c == 1)
1671 {
1672 if (derived->intmod_sym_id == ISOCBINDING_PTR)
1673 derived->backend_decl = ptr_type_node;
1674 else
1675 derived->backend_decl = pfunc_type_node;
1676 derived->ts.kind = gfc_index_integer_kind;
1677 derived->ts.type = BT_INTEGER;
1678 /* Set the f90_type to BT_VOID as a way to recognize something of type
1679 BT_INTEGER that needs to fit a void * for the purpose of the
1680 iso_c_binding derived types. */
1681 derived->ts.f90_type = BT_VOID;
1682 return derived->backend_decl;
1683 }
1684
1685 /* derived->backend_decl != 0 means we saw it before, but its
1686 components' backend_decl may have not been built. */
1687 if (derived->backend_decl)
1688 {
1689 /* Its components' backend_decl have been built. */
1690 if (TYPE_FIELDS (derived->backend_decl))
1691 return derived->backend_decl;
1692 else
1693 typenode = derived->backend_decl;
1694 }
1695 else
1696 {
1697
1698 /* We see this derived type first time, so build the type node. */
1699 typenode = make_node (RECORD_TYPE);
1700 TYPE_NAME (typenode) = get_identifier (derived->name);
1701 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
1702 derived->backend_decl = typenode;
1703 }
1704
1705 /* Go through the derived type components, building them as
1706 necessary. The reason for doing this now is that it is
1707 possible to recurse back to this derived type through a
1708 pointer component (PR24092). If this happens, the fields
1709 will be built and so we can return the type. */
1710 for (c = derived->components; c; c = c->next)
1711 {
1712 if (c->ts.type != BT_DERIVED)
1713 continue;
1714
1715 if (!c->pointer || c->ts.derived->backend_decl == NULL)
1716 c->ts.derived->backend_decl = gfc_get_derived_type (c->ts.derived);
1717
1718 if (c->ts.derived && c->ts.derived->attr.is_iso_c)
1719 {
1720 /* Need to copy the modified ts from the derived type. The
1721 typespec was modified because C_PTR/C_FUNPTR are translated
1722 into (void *) from derived types. */
1723 c->ts.type = c->ts.derived->ts.type;
1724 c->ts.kind = c->ts.derived->ts.kind;
1725 c->ts.f90_type = c->ts.derived->ts.f90_type;
1726 }
1727 }
1728
1729 if (TYPE_FIELDS (derived->backend_decl))
1730 return derived->backend_decl;
1731
1732 /* Build the type member list. Install the newly created RECORD_TYPE
1733 node as DECL_CONTEXT of each FIELD_DECL. */
1734 fieldlist = NULL_TREE;
1735 for (c = derived->components; c; c = c->next)
1736 {
1737 if (c->ts.type == BT_DERIVED)
1738 field_type = c->ts.derived->backend_decl;
1739 else
1740 {
1741 if (c->ts.type == BT_CHARACTER)
1742 {
1743 /* Evaluate the string length. */
1744 gfc_conv_const_charlen (c->ts.cl);
1745 gcc_assert (c->ts.cl->backend_decl);
1746 }
1747
1748 field_type = gfc_typenode_for_spec (&c->ts);
1749 }
1750
1751 /* This returns an array descriptor type. Initialization may be
1752 required. */
1753 if (c->dimension)
1754 {
1755 if (c->pointer || c->allocatable)
1756 {
1757 /* Pointers to arrays aren't actually pointer types. The
1758 descriptors are separate, but the data is common. */
1759 field_type = gfc_build_array_type (field_type, c->as);
1760 }
1761 else
1762 field_type = gfc_get_nodesc_array_type (field_type, c->as,
1763 PACKED_STATIC);
1764 }
1765 else if (c->pointer)
1766 field_type = build_pointer_type (field_type);
1767
1768 field = gfc_add_field_to_struct (&fieldlist, typenode,
1769 get_identifier (c->name),
1770 field_type);
1771
1772 DECL_PACKED (field) |= TYPE_PACKED (typenode);
1773
1774 gcc_assert (field);
1775 if (!c->backend_decl)
1776 c->backend_decl = field;
1777 }
1778
1779 /* Now we have the final fieldlist. Record it, then lay out the
1780 derived type, including the fields. */
1781 TYPE_FIELDS (typenode) = fieldlist;
1782
1783 gfc_finish_type (typenode);
1784
1785 derived->backend_decl = typenode;
1786
1787 /* Add this backend_decl to all the other, equal derived types. */
1788 for (dt = gfc_derived_types; dt; dt = dt->next)
1789 copy_dt_decls_ifequal (derived, dt->derived);
1790
1791 return derived->backend_decl;
1792 }
1793
1794
1795 int
1796 gfc_return_by_reference (gfc_symbol * sym)
1797 {
1798 if (!sym->attr.function)
1799 return 0;
1800
1801 if (sym->attr.dimension)
1802 return 1;
1803
1804 if (sym->ts.type == BT_CHARACTER)
1805 return 1;
1806
1807 /* Possibly return complex numbers by reference for g77 compatibility.
1808 We don't do this for calls to intrinsics (as the library uses the
1809 -fno-f2c calling convention), nor for calls to functions which always
1810 require an explicit interface, as no compatibility problems can
1811 arise there. */
1812 if (gfc_option.flag_f2c
1813 && sym->ts.type == BT_COMPLEX
1814 && !sym->attr.intrinsic && !sym->attr.always_explicit)
1815 return 1;
1816
1817 return 0;
1818 }
1819 \f
1820 static tree
1821 gfc_get_mixed_entry_union (gfc_namespace *ns)
1822 {
1823 tree type;
1824 tree decl;
1825 tree fieldlist;
1826 char name[GFC_MAX_SYMBOL_LEN + 1];
1827 gfc_entry_list *el, *el2;
1828
1829 gcc_assert (ns->proc_name->attr.mixed_entry_master);
1830 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
1831
1832 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
1833
1834 /* Build the type node. */
1835 type = make_node (UNION_TYPE);
1836
1837 TYPE_NAME (type) = get_identifier (name);
1838 fieldlist = NULL;
1839
1840 for (el = ns->entries; el; el = el->next)
1841 {
1842 /* Search for duplicates. */
1843 for (el2 = ns->entries; el2 != el; el2 = el2->next)
1844 if (el2->sym->result == el->sym->result)
1845 break;
1846
1847 if (el == el2)
1848 {
1849 decl = build_decl (FIELD_DECL,
1850 get_identifier (el->sym->result->name),
1851 gfc_sym_type (el->sym->result));
1852 DECL_CONTEXT (decl) = type;
1853 fieldlist = chainon (fieldlist, decl);
1854 }
1855 }
1856
1857 /* Finish off the type. */
1858 TYPE_FIELDS (type) = fieldlist;
1859
1860 gfc_finish_type (type);
1861 return type;
1862 }
1863 \f
1864 tree
1865 gfc_get_function_type (gfc_symbol * sym)
1866 {
1867 tree type;
1868 tree typelist;
1869 gfc_formal_arglist *f;
1870 gfc_symbol *arg;
1871 int nstr;
1872 int alternate_return;
1873
1874 /* Make sure this symbol is a function or a subroutine. */
1875 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
1876
1877 if (sym->backend_decl)
1878 return TREE_TYPE (sym->backend_decl);
1879
1880 nstr = 0;
1881 alternate_return = 0;
1882 typelist = NULL_TREE;
1883
1884 if (sym->attr.entry_master)
1885 {
1886 /* Additional parameter for selecting an entry point. */
1887 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
1888 }
1889
1890 /* Some functions we use an extra parameter for the return value. */
1891 if (gfc_return_by_reference (sym))
1892 {
1893 if (sym->result)
1894 arg = sym->result;
1895 else
1896 arg = sym;
1897
1898 if (arg->ts.type == BT_CHARACTER)
1899 gfc_conv_const_charlen (arg->ts.cl);
1900
1901 type = gfc_sym_type (arg);
1902 if (arg->ts.type == BT_COMPLEX
1903 || arg->attr.dimension
1904 || arg->ts.type == BT_CHARACTER)
1905 type = build_reference_type (type);
1906
1907 typelist = gfc_chainon_list (typelist, type);
1908 if (arg->ts.type == BT_CHARACTER)
1909 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
1910 }
1911
1912 /* Build the argument types for the function. */
1913 for (f = sym->formal; f; f = f->next)
1914 {
1915 arg = f->sym;
1916 if (arg)
1917 {
1918 /* Evaluate constant character lengths here so that they can be
1919 included in the type. */
1920 if (arg->ts.type == BT_CHARACTER)
1921 gfc_conv_const_charlen (arg->ts.cl);
1922
1923 if (arg->attr.flavor == FL_PROCEDURE)
1924 {
1925 type = gfc_get_function_type (arg);
1926 type = build_pointer_type (type);
1927 }
1928 else
1929 type = gfc_sym_type (arg);
1930
1931 /* Parameter Passing Convention
1932
1933 We currently pass all parameters by reference.
1934 Parameters with INTENT(IN) could be passed by value.
1935 The problem arises if a function is called via an implicit
1936 prototype. In this situation the INTENT is not known.
1937 For this reason all parameters to global functions must be
1938 passed by reference. Passing by value would potentially
1939 generate bad code. Worse there would be no way of telling that
1940 this code was bad, except that it would give incorrect results.
1941
1942 Contained procedures could pass by value as these are never
1943 used without an explicit interface, and cannot be passed as
1944 actual parameters for a dummy procedure. */
1945 if (arg->ts.type == BT_CHARACTER)
1946 nstr++;
1947 typelist = gfc_chainon_list (typelist, type);
1948 }
1949 else
1950 {
1951 if (sym->attr.subroutine)
1952 alternate_return = 1;
1953 }
1954 }
1955
1956 /* Add hidden string length parameters. */
1957 while (nstr--)
1958 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
1959
1960 if (typelist)
1961 typelist = gfc_chainon_list (typelist, void_type_node);
1962
1963 if (alternate_return)
1964 type = integer_type_node;
1965 else if (!sym->attr.function || gfc_return_by_reference (sym))
1966 type = void_type_node;
1967 else if (sym->attr.mixed_entry_master)
1968 type = gfc_get_mixed_entry_union (sym->ns);
1969 else if (gfc_option.flag_f2c
1970 && sym->ts.type == BT_REAL
1971 && sym->ts.kind == gfc_default_real_kind
1972 && !sym->attr.always_explicit)
1973 {
1974 /* Special case: f2c calling conventions require that (scalar)
1975 default REAL functions return the C type double instead. f2c
1976 compatibility is only an issue with functions that don't
1977 require an explicit interface, as only these could be
1978 implemented in Fortran 77. */
1979 sym->ts.kind = gfc_default_double_kind;
1980 type = gfc_typenode_for_spec (&sym->ts);
1981 sym->ts.kind = gfc_default_real_kind;
1982 }
1983 else
1984 type = gfc_sym_type (sym);
1985
1986 type = build_function_type (type, typelist);
1987
1988 return type;
1989 }
1990 \f
1991 /* Language hooks for middle-end access to type nodes. */
1992
1993 /* Return an integer type with BITS bits of precision,
1994 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
1995
1996 tree
1997 gfc_type_for_size (unsigned bits, int unsignedp)
1998 {
1999 if (!unsignedp)
2000 {
2001 int i;
2002 for (i = 0; i <= MAX_INT_KINDS; ++i)
2003 {
2004 tree type = gfc_integer_types[i];
2005 if (type && bits == TYPE_PRECISION (type))
2006 return type;
2007 }
2008
2009 /* Handle TImode as a special case because it is used by some backends
2010 (eg. ARM) even though it is not available for normal use. */
2011 #if HOST_BITS_PER_WIDE_INT >= 64
2012 if (bits == TYPE_PRECISION (intTI_type_node))
2013 return intTI_type_node;
2014 #endif
2015 }
2016 else
2017 {
2018 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2019 return unsigned_intQI_type_node;
2020 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2021 return unsigned_intHI_type_node;
2022 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2023 return unsigned_intSI_type_node;
2024 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2025 return unsigned_intDI_type_node;
2026 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2027 return unsigned_intTI_type_node;
2028 }
2029
2030 return NULL_TREE;
2031 }
2032
2033 /* Return a data type that has machine mode MODE. If the mode is an
2034 integer, then UNSIGNEDP selects between signed and unsigned types. */
2035
2036 tree
2037 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2038 {
2039 int i;
2040 tree *base;
2041
2042 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2043 base = gfc_real_types;
2044 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2045 base = gfc_complex_types;
2046 else if (SCALAR_INT_MODE_P (mode))
2047 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2048 else if (VECTOR_MODE_P (mode))
2049 {
2050 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2051 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2052 if (inner_type != NULL_TREE)
2053 return build_vector_type_for_mode (inner_type, mode);
2054 return NULL_TREE;
2055 }
2056 else
2057 return NULL_TREE;
2058
2059 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2060 {
2061 tree type = base[i];
2062 if (type && mode == TYPE_MODE (type))
2063 return type;
2064 }
2065
2066 return NULL_TREE;
2067 }
2068
2069 #include "gt-fortran-trans-types.h"