array.c (resolve_array_list): Apply C4106.
[gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Paul Brook <paul@nowt.org>
6 and Steven Bosscher <s.bosscher@student.tudelft.nl>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* trans-types.c -- gfortran backend types */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
30 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
31 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
32 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
33 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
34 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
35 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
36 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE,
37 LONG_DOUBLE_TYPE_SIZE and LIBGCC2_HAS_TF_MODE. */
38 #include "tree.h"
39 #include "langhooks.h" /* For iso-c-bindings.def. */
40 #include "target.h"
41 #include "ggc.h"
42 #include "diagnostic-core.h" /* For fatal_error. */
43 #include "toplev.h" /* For rest_of_decl_compilation. */
44 #include "gfortran.h"
45 #include "trans.h"
46 #include "trans-types.h"
47 #include "trans-const.h"
48 #include "flags.h"
49 #include "dwarf2out.h" /* For struct array_descr_info. */
50 \f
51
52 #if (GFC_MAX_DIMENSIONS < 10)
53 #define GFC_RANK_DIGITS 1
54 #define GFC_RANK_PRINTF_FORMAT "%01d"
55 #elif (GFC_MAX_DIMENSIONS < 100)
56 #define GFC_RANK_DIGITS 2
57 #define GFC_RANK_PRINTF_FORMAT "%02d"
58 #else
59 #error If you really need >99 dimensions, continue the sequence above...
60 #endif
61
62 /* array of structs so we don't have to worry about xmalloc or free */
63 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
64
65 tree gfc_array_index_type;
66 tree gfc_array_range_type;
67 tree gfc_character1_type_node;
68 tree pvoid_type_node;
69 tree prvoid_type_node;
70 tree ppvoid_type_node;
71 tree pchar_type_node;
72 tree pfunc_type_node;
73
74 tree gfc_charlen_type_node;
75
76 tree float128_type_node = NULL_TREE;
77 tree complex_float128_type_node = NULL_TREE;
78
79 bool gfc_real16_is_float128 = false;
80
81 static GTY(()) tree gfc_desc_dim_type;
82 static GTY(()) tree gfc_max_array_element_size;
83 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
84 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
85
86 /* Arrays for all integral and real kinds. We'll fill this in at runtime
87 after the target has a chance to process command-line options. */
88
89 #define MAX_INT_KINDS 5
90 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
91 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
92 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
93 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
94
95 #define MAX_REAL_KINDS 5
96 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
97 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
98 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
99
100 #define MAX_CHARACTER_KINDS 2
101 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
102 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
103 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
104
105 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
106
107 /* The integer kind to use for array indices. This will be set to the
108 proper value based on target information from the backend. */
109
110 int gfc_index_integer_kind;
111
112 /* The default kinds of the various types. */
113
114 int gfc_default_integer_kind;
115 int gfc_max_integer_kind;
116 int gfc_default_real_kind;
117 int gfc_default_double_kind;
118 int gfc_default_character_kind;
119 int gfc_default_logical_kind;
120 int gfc_default_complex_kind;
121 int gfc_c_int_kind;
122 int gfc_atomic_int_kind;
123 int gfc_atomic_logical_kind;
124
125 /* The kind size used for record offsets. If the target system supports
126 kind=8, this will be set to 8, otherwise it is set to 4. */
127 int gfc_intio_kind;
128
129 /* The integer kind used to store character lengths. */
130 int gfc_charlen_int_kind;
131
132 /* The size of the numeric storage unit and character storage unit. */
133 int gfc_numeric_storage_size;
134 int gfc_character_storage_size;
135
136
137 gfc_try
138 gfc_check_any_c_kind (gfc_typespec *ts)
139 {
140 int i;
141
142 for (i = 0; i < ISOCBINDING_NUMBER; i++)
143 {
144 /* Check for any C interoperable kind for the given type/kind in ts.
145 This can be used after verify_c_interop to make sure that the
146 Fortran kind being used exists in at least some form for C. */
147 if (c_interop_kinds_table[i].f90_type == ts->type &&
148 c_interop_kinds_table[i].value == ts->kind)
149 return SUCCESS;
150 }
151
152 return FAILURE;
153 }
154
155
156 static int
157 get_real_kind_from_node (tree type)
158 {
159 int i;
160
161 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
162 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
163 return gfc_real_kinds[i].kind;
164
165 return -4;
166 }
167
168 static int
169 get_int_kind_from_node (tree type)
170 {
171 int i;
172
173 if (!type)
174 return -2;
175
176 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
177 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
178 return gfc_integer_kinds[i].kind;
179
180 return -1;
181 }
182
183 /* Return a typenode for the "standard" C type with a given name. */
184 static tree
185 get_typenode_from_name (const char *name)
186 {
187 if (name == NULL || *name == '\0')
188 return NULL_TREE;
189
190 if (strcmp (name, "char") == 0)
191 return char_type_node;
192 if (strcmp (name, "unsigned char") == 0)
193 return unsigned_char_type_node;
194 if (strcmp (name, "signed char") == 0)
195 return signed_char_type_node;
196
197 if (strcmp (name, "short int") == 0)
198 return short_integer_type_node;
199 if (strcmp (name, "short unsigned int") == 0)
200 return short_unsigned_type_node;
201
202 if (strcmp (name, "int") == 0)
203 return integer_type_node;
204 if (strcmp (name, "unsigned int") == 0)
205 return unsigned_type_node;
206
207 if (strcmp (name, "long int") == 0)
208 return long_integer_type_node;
209 if (strcmp (name, "long unsigned int") == 0)
210 return long_unsigned_type_node;
211
212 if (strcmp (name, "long long int") == 0)
213 return long_long_integer_type_node;
214 if (strcmp (name, "long long unsigned int") == 0)
215 return long_long_unsigned_type_node;
216
217 gcc_unreachable ();
218 }
219
220 static int
221 get_int_kind_from_name (const char *name)
222 {
223 return get_int_kind_from_node (get_typenode_from_name (name));
224 }
225
226
227 /* Get the kind number corresponding to an integer of given size,
228 following the required return values for ISO_FORTRAN_ENV INT* constants:
229 -2 is returned if we support a kind of larger size, -1 otherwise. */
230 int
231 gfc_get_int_kind_from_width_isofortranenv (int size)
232 {
233 int i;
234
235 /* Look for a kind with matching storage size. */
236 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
237 if (gfc_integer_kinds[i].bit_size == size)
238 return gfc_integer_kinds[i].kind;
239
240 /* Look for a kind with larger storage size. */
241 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
242 if (gfc_integer_kinds[i].bit_size > size)
243 return -2;
244
245 return -1;
246 }
247
248 /* Get the kind number corresponding to a real of given storage size,
249 following the required return values for ISO_FORTRAN_ENV REAL* constants:
250 -2 is returned if we support a kind of larger size, -1 otherwise. */
251 int
252 gfc_get_real_kind_from_width_isofortranenv (int size)
253 {
254 int i;
255
256 size /= 8;
257
258 /* Look for a kind with matching storage size. */
259 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
260 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
261 return gfc_real_kinds[i].kind;
262
263 /* Look for a kind with larger storage size. */
264 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
265 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
266 return -2;
267
268 return -1;
269 }
270
271
272
273 static int
274 get_int_kind_from_width (int size)
275 {
276 int i;
277
278 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
279 if (gfc_integer_kinds[i].bit_size == size)
280 return gfc_integer_kinds[i].kind;
281
282 return -2;
283 }
284
285 static int
286 get_int_kind_from_minimal_width (int size)
287 {
288 int i;
289
290 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
291 if (gfc_integer_kinds[i].bit_size >= size)
292 return gfc_integer_kinds[i].kind;
293
294 return -2;
295 }
296
297
298 /* Generate the CInteropKind_t objects for the C interoperable
299 kinds. */
300
301 void
302 gfc_init_c_interop_kinds (void)
303 {
304 int i;
305
306 /* init all pointers in the list to NULL */
307 for (i = 0; i < ISOCBINDING_NUMBER; i++)
308 {
309 /* Initialize the name and value fields. */
310 c_interop_kinds_table[i].name[0] = '\0';
311 c_interop_kinds_table[i].value = -100;
312 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
313 }
314
315 #define NAMED_INTCST(a,b,c,d) \
316 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
317 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
318 c_interop_kinds_table[a].value = c;
319 #define NAMED_REALCST(a,b,c,d) \
320 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
321 c_interop_kinds_table[a].f90_type = BT_REAL; \
322 c_interop_kinds_table[a].value = c;
323 #define NAMED_CMPXCST(a,b,c,d) \
324 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
325 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
326 c_interop_kinds_table[a].value = c;
327 #define NAMED_LOGCST(a,b,c) \
328 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
329 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
330 c_interop_kinds_table[a].value = c;
331 #define NAMED_CHARKNDCST(a,b,c) \
332 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
334 c_interop_kinds_table[a].value = c;
335 #define NAMED_CHARCST(a,b,c) \
336 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
337 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
338 c_interop_kinds_table[a].value = c;
339 #define DERIVED_TYPE(a,b,c) \
340 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
341 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
342 c_interop_kinds_table[a].value = c;
343 #define PROCEDURE(a,b) \
344 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
345 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
346 c_interop_kinds_table[a].value = 0;
347 #include "iso-c-binding.def"
348 #define NAMED_FUNCTION(a,b,c,d) \
349 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
350 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
351 c_interop_kinds_table[a].value = c;
352 #include "iso-c-binding.def"
353 }
354
355
356 /* Query the target to determine which machine modes are available for
357 computation. Choose KIND numbers for them. */
358
359 void
360 gfc_init_kinds (void)
361 {
362 unsigned int mode;
363 int i_index, r_index, kind;
364 bool saw_i4 = false, saw_i8 = false;
365 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
366
367 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
368 {
369 int kind, bitsize;
370
371 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
372 continue;
373
374 /* The middle end doesn't support constants larger than 2*HWI.
375 Perhaps the target hook shouldn't have accepted these either,
376 but just to be safe... */
377 bitsize = GET_MODE_BITSIZE (mode);
378 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
379 continue;
380
381 gcc_assert (i_index != MAX_INT_KINDS);
382
383 /* Let the kind equal the bit size divided by 8. This insulates the
384 programmer from the underlying byte size. */
385 kind = bitsize / 8;
386
387 if (kind == 4)
388 saw_i4 = true;
389 if (kind == 8)
390 saw_i8 = true;
391
392 gfc_integer_kinds[i_index].kind = kind;
393 gfc_integer_kinds[i_index].radix = 2;
394 gfc_integer_kinds[i_index].digits = bitsize - 1;
395 gfc_integer_kinds[i_index].bit_size = bitsize;
396
397 gfc_logical_kinds[i_index].kind = kind;
398 gfc_logical_kinds[i_index].bit_size = bitsize;
399
400 i_index += 1;
401 }
402
403 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
404 used for large file access. */
405
406 if (saw_i8)
407 gfc_intio_kind = 8;
408 else
409 gfc_intio_kind = 4;
410
411 /* If we do not at least have kind = 4, everything is pointless. */
412 gcc_assert(saw_i4);
413
414 /* Set the maximum integer kind. Used with at least BOZ constants. */
415 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
416
417 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
418 {
419 const struct real_format *fmt =
420 REAL_MODE_FORMAT ((enum machine_mode) mode);
421 int kind;
422
423 if (fmt == NULL)
424 continue;
425 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
426 continue;
427
428 /* Only let float, double, long double and __float128 go through.
429 Runtime support for others is not provided, so they would be
430 useless. */
431 if (mode != TYPE_MODE (float_type_node)
432 && (mode != TYPE_MODE (double_type_node))
433 && (mode != TYPE_MODE (long_double_type_node))
434 #if defined(LIBGCC2_HAS_TF_MODE) && defined(ENABLE_LIBQUADMATH_SUPPORT)
435 && (mode != TFmode)
436 #endif
437 )
438 continue;
439
440 /* Let the kind equal the precision divided by 8, rounding up. Again,
441 this insulates the programmer from the underlying byte size.
442
443 Also, it effectively deals with IEEE extended formats. There, the
444 total size of the type may equal 16, but it's got 6 bytes of padding
445 and the increased size can get in the way of a real IEEE quad format
446 which may also be supported by the target.
447
448 We round up so as to handle IA-64 __floatreg (RFmode), which is an
449 82 bit type. Not to be confused with __float80 (XFmode), which is
450 an 80 bit type also supported by IA-64. So XFmode should come out
451 to be kind=10, and RFmode should come out to be kind=11. Egads. */
452
453 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
454
455 if (kind == 4)
456 saw_r4 = true;
457 if (kind == 8)
458 saw_r8 = true;
459 if (kind == 10)
460 saw_r10 = true;
461 if (kind == 16)
462 saw_r16 = true;
463
464 /* Careful we don't stumble a weird internal mode. */
465 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
466 /* Or have too many modes for the allocated space. */
467 gcc_assert (r_index != MAX_REAL_KINDS);
468
469 gfc_real_kinds[r_index].kind = kind;
470 gfc_real_kinds[r_index].radix = fmt->b;
471 gfc_real_kinds[r_index].digits = fmt->p;
472 gfc_real_kinds[r_index].min_exponent = fmt->emin;
473 gfc_real_kinds[r_index].max_exponent = fmt->emax;
474 if (fmt->pnan < fmt->p)
475 /* This is an IBM extended double format (or the MIPS variant)
476 made up of two IEEE doubles. The value of the long double is
477 the sum of the values of the two parts. The most significant
478 part is required to be the value of the long double rounded
479 to the nearest double. If we use emax of 1024 then we can't
480 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
481 rounding will make the most significant part overflow. */
482 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
483 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
484 r_index += 1;
485 }
486
487 /* Choose the default integer kind. We choose 4 unless the user directs us
488 otherwise. Even if the user specified that the default integer kind is 8,
489 the numeric storage size is not 64 bits. In this case, a warning will be
490 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
491
492 gfc_numeric_storage_size = 4 * 8;
493
494 if (gfc_option.flag_default_integer)
495 {
496 if (!saw_i8)
497 fatal_error ("INTEGER(KIND=8) is not available for -fdefault-integer-8 option");
498
499 gfc_default_integer_kind = 8;
500
501 }
502 else if (gfc_option.flag_integer4_kind == 8)
503 {
504 if (!saw_i8)
505 fatal_error ("INTEGER(KIND=8) is not available for -finteger-4-integer-8 option");
506
507 gfc_default_integer_kind = 8;
508 }
509 else if (saw_i4)
510 {
511 gfc_default_integer_kind = 4;
512 }
513 else
514 {
515 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
516 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
517 }
518
519 /* Choose the default real kind. Again, we choose 4 when possible. */
520 if (gfc_option.flag_default_real)
521 {
522 if (!saw_r8)
523 fatal_error ("REAL(KIND=8) is not available for -fdefault-real-8 option");
524
525 gfc_default_real_kind = 8;
526 }
527 else if (gfc_option.flag_real4_kind == 8)
528 {
529 if (!saw_r8)
530 fatal_error ("REAL(KIND=8) is not available for -freal-4-real-8 option");
531
532 gfc_default_real_kind = 8;
533 }
534 else if (gfc_option.flag_real4_kind == 10)
535 {
536 if (!saw_r10)
537 fatal_error ("REAL(KIND=10) is not available for -freal-4-real-10 option");
538
539 gfc_default_real_kind = 10;
540 }
541 else if (gfc_option.flag_real4_kind == 16)
542 {
543 if (!saw_r16)
544 fatal_error ("REAL(KIND=16) is not available for -freal-4-real-16 option");
545
546 gfc_default_real_kind = 16;
547 }
548 else if (saw_r4)
549 gfc_default_real_kind = 4;
550 else
551 gfc_default_real_kind = gfc_real_kinds[0].kind;
552
553 /* Choose the default double kind. If -fdefault-real and -fdefault-double
554 are specified, we use kind=8, if it's available. If -fdefault-real is
555 specified without -fdefault-double, we use kind=16, if it's available.
556 Otherwise we do not change anything. */
557 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
558 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
559
560 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
561 gfc_default_double_kind = 8;
562 else if (gfc_option.flag_default_real && saw_r16)
563 gfc_default_double_kind = 16;
564 else if (gfc_option.flag_real8_kind == 4)
565 {
566 if (!saw_r4)
567 fatal_error ("REAL(KIND=4) is not available for -freal-8-real-4 option");
568
569 gfc_default_double_kind = 4;
570 }
571 else if (gfc_option.flag_real8_kind == 10 )
572 {
573 if (!saw_r10)
574 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-10 option");
575
576 gfc_default_double_kind = 10;
577 }
578 else if (gfc_option.flag_real8_kind == 16 )
579 {
580 if (!saw_r16)
581 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-16 option");
582
583 gfc_default_double_kind = 16;
584 }
585 else if (saw_r4 && saw_r8)
586 gfc_default_double_kind = 8;
587 else
588 {
589 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
590 real ... occupies two contiguous numeric storage units.
591
592 Therefore we must be supplied a kind twice as large as we chose
593 for single precision. There are loopholes, in that double
594 precision must *occupy* two storage units, though it doesn't have
595 to *use* two storage units. Which means that you can make this
596 kind artificially wide by padding it. But at present there are
597 no GCC targets for which a two-word type does not exist, so we
598 just let gfc_validate_kind abort and tell us if something breaks. */
599
600 gfc_default_double_kind
601 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
602 }
603
604 /* The default logical kind is constrained to be the same as the
605 default integer kind. Similarly with complex and real. */
606 gfc_default_logical_kind = gfc_default_integer_kind;
607 gfc_default_complex_kind = gfc_default_real_kind;
608
609 /* We only have two character kinds: ASCII and UCS-4.
610 ASCII corresponds to a 8-bit integer type, if one is available.
611 UCS-4 corresponds to a 32-bit integer type, if one is available. */
612 i_index = 0;
613 if ((kind = get_int_kind_from_width (8)) > 0)
614 {
615 gfc_character_kinds[i_index].kind = kind;
616 gfc_character_kinds[i_index].bit_size = 8;
617 gfc_character_kinds[i_index].name = "ascii";
618 i_index++;
619 }
620 if ((kind = get_int_kind_from_width (32)) > 0)
621 {
622 gfc_character_kinds[i_index].kind = kind;
623 gfc_character_kinds[i_index].bit_size = 32;
624 gfc_character_kinds[i_index].name = "iso_10646";
625 i_index++;
626 }
627
628 /* Choose the smallest integer kind for our default character. */
629 gfc_default_character_kind = gfc_character_kinds[0].kind;
630 gfc_character_storage_size = gfc_default_character_kind * 8;
631
632 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
633
634 /* Pick a kind the same size as the C "int" type. */
635 gfc_c_int_kind = INT_TYPE_SIZE / 8;
636
637 /* Choose atomic kinds to match C's int. */
638 gfc_atomic_int_kind = gfc_c_int_kind;
639 gfc_atomic_logical_kind = gfc_c_int_kind;
640 }
641
642
643 /* Make sure that a valid kind is present. Returns an index into the
644 associated kinds array, -1 if the kind is not present. */
645
646 static int
647 validate_integer (int kind)
648 {
649 int i;
650
651 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
652 if (gfc_integer_kinds[i].kind == kind)
653 return i;
654
655 return -1;
656 }
657
658 static int
659 validate_real (int kind)
660 {
661 int i;
662
663 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
664 if (gfc_real_kinds[i].kind == kind)
665 return i;
666
667 return -1;
668 }
669
670 static int
671 validate_logical (int kind)
672 {
673 int i;
674
675 for (i = 0; gfc_logical_kinds[i].kind; i++)
676 if (gfc_logical_kinds[i].kind == kind)
677 return i;
678
679 return -1;
680 }
681
682 static int
683 validate_character (int kind)
684 {
685 int i;
686
687 for (i = 0; gfc_character_kinds[i].kind; i++)
688 if (gfc_character_kinds[i].kind == kind)
689 return i;
690
691 return -1;
692 }
693
694 /* Validate a kind given a basic type. The return value is the same
695 for the child functions, with -1 indicating nonexistence of the
696 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
697
698 int
699 gfc_validate_kind (bt type, int kind, bool may_fail)
700 {
701 int rc;
702
703 switch (type)
704 {
705 case BT_REAL: /* Fall through */
706 case BT_COMPLEX:
707 rc = validate_real (kind);
708 break;
709 case BT_INTEGER:
710 rc = validate_integer (kind);
711 break;
712 case BT_LOGICAL:
713 rc = validate_logical (kind);
714 break;
715 case BT_CHARACTER:
716 rc = validate_character (kind);
717 break;
718
719 default:
720 gfc_internal_error ("gfc_validate_kind(): Got bad type");
721 }
722
723 if (rc < 0 && !may_fail)
724 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
725
726 return rc;
727 }
728
729
730 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
731 Reuse common type nodes where possible. Recognize if the kind matches up
732 with a C type. This will be used later in determining which routines may
733 be scarfed from libm. */
734
735 static tree
736 gfc_build_int_type (gfc_integer_info *info)
737 {
738 int mode_precision = info->bit_size;
739
740 if (mode_precision == CHAR_TYPE_SIZE)
741 info->c_char = 1;
742 if (mode_precision == SHORT_TYPE_SIZE)
743 info->c_short = 1;
744 if (mode_precision == INT_TYPE_SIZE)
745 info->c_int = 1;
746 if (mode_precision == LONG_TYPE_SIZE)
747 info->c_long = 1;
748 if (mode_precision == LONG_LONG_TYPE_SIZE)
749 info->c_long_long = 1;
750
751 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
752 return intQI_type_node;
753 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
754 return intHI_type_node;
755 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
756 return intSI_type_node;
757 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
758 return intDI_type_node;
759 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
760 return intTI_type_node;
761
762 return make_signed_type (mode_precision);
763 }
764
765 tree
766 gfc_build_uint_type (int size)
767 {
768 if (size == CHAR_TYPE_SIZE)
769 return unsigned_char_type_node;
770 if (size == SHORT_TYPE_SIZE)
771 return short_unsigned_type_node;
772 if (size == INT_TYPE_SIZE)
773 return unsigned_type_node;
774 if (size == LONG_TYPE_SIZE)
775 return long_unsigned_type_node;
776 if (size == LONG_LONG_TYPE_SIZE)
777 return long_long_unsigned_type_node;
778
779 return make_unsigned_type (size);
780 }
781
782
783 static tree
784 gfc_build_real_type (gfc_real_info *info)
785 {
786 int mode_precision = info->mode_precision;
787 tree new_type;
788
789 if (mode_precision == FLOAT_TYPE_SIZE)
790 info->c_float = 1;
791 if (mode_precision == DOUBLE_TYPE_SIZE)
792 info->c_double = 1;
793 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
794 info->c_long_double = 1;
795 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
796 {
797 info->c_float128 = 1;
798 gfc_real16_is_float128 = true;
799 }
800
801 if (TYPE_PRECISION (float_type_node) == mode_precision)
802 return float_type_node;
803 if (TYPE_PRECISION (double_type_node) == mode_precision)
804 return double_type_node;
805 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
806 return long_double_type_node;
807
808 new_type = make_node (REAL_TYPE);
809 TYPE_PRECISION (new_type) = mode_precision;
810 layout_type (new_type);
811 return new_type;
812 }
813
814 static tree
815 gfc_build_complex_type (tree scalar_type)
816 {
817 tree new_type;
818
819 if (scalar_type == NULL)
820 return NULL;
821 if (scalar_type == float_type_node)
822 return complex_float_type_node;
823 if (scalar_type == double_type_node)
824 return complex_double_type_node;
825 if (scalar_type == long_double_type_node)
826 return complex_long_double_type_node;
827
828 new_type = make_node (COMPLEX_TYPE);
829 TREE_TYPE (new_type) = scalar_type;
830 layout_type (new_type);
831 return new_type;
832 }
833
834 static tree
835 gfc_build_logical_type (gfc_logical_info *info)
836 {
837 int bit_size = info->bit_size;
838 tree new_type;
839
840 if (bit_size == BOOL_TYPE_SIZE)
841 {
842 info->c_bool = 1;
843 return boolean_type_node;
844 }
845
846 new_type = make_unsigned_type (bit_size);
847 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
848 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
849 TYPE_PRECISION (new_type) = 1;
850
851 return new_type;
852 }
853
854
855 /* Create the backend type nodes. We map them to their
856 equivalent C type, at least for now. We also give
857 names to the types here, and we push them in the
858 global binding level context.*/
859
860 void
861 gfc_init_types (void)
862 {
863 char name_buf[18];
864 int index;
865 tree type;
866 unsigned n;
867 unsigned HOST_WIDE_INT hi;
868 unsigned HOST_WIDE_INT lo;
869
870 /* Create and name the types. */
871 #define PUSH_TYPE(name, node) \
872 pushdecl (build_decl (input_location, \
873 TYPE_DECL, get_identifier (name), node))
874
875 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
876 {
877 type = gfc_build_int_type (&gfc_integer_kinds[index]);
878 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
879 if (TYPE_STRING_FLAG (type))
880 type = make_signed_type (gfc_integer_kinds[index].bit_size);
881 gfc_integer_types[index] = type;
882 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
883 gfc_integer_kinds[index].kind);
884 PUSH_TYPE (name_buf, type);
885 }
886
887 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
888 {
889 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
890 gfc_logical_types[index] = type;
891 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
892 gfc_logical_kinds[index].kind);
893 PUSH_TYPE (name_buf, type);
894 }
895
896 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
897 {
898 type = gfc_build_real_type (&gfc_real_kinds[index]);
899 gfc_real_types[index] = type;
900 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
901 gfc_real_kinds[index].kind);
902 PUSH_TYPE (name_buf, type);
903
904 if (gfc_real_kinds[index].c_float128)
905 float128_type_node = type;
906
907 type = gfc_build_complex_type (type);
908 gfc_complex_types[index] = type;
909 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
910 gfc_real_kinds[index].kind);
911 PUSH_TYPE (name_buf, type);
912
913 if (gfc_real_kinds[index].c_float128)
914 complex_float128_type_node = type;
915 }
916
917 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
918 {
919 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
920 type = build_qualified_type (type, TYPE_UNQUALIFIED);
921 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
922 gfc_character_kinds[index].kind);
923 PUSH_TYPE (name_buf, type);
924 gfc_character_types[index] = type;
925 gfc_pcharacter_types[index] = build_pointer_type (type);
926 }
927 gfc_character1_type_node = gfc_character_types[0];
928
929 PUSH_TYPE ("byte", unsigned_char_type_node);
930 PUSH_TYPE ("void", void_type_node);
931
932 /* DBX debugging output gets upset if these aren't set. */
933 if (!TYPE_NAME (integer_type_node))
934 PUSH_TYPE ("c_integer", integer_type_node);
935 if (!TYPE_NAME (char_type_node))
936 PUSH_TYPE ("c_char", char_type_node);
937
938 #undef PUSH_TYPE
939
940 pvoid_type_node = build_pointer_type (void_type_node);
941 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
942 ppvoid_type_node = build_pointer_type (pvoid_type_node);
943 pchar_type_node = build_pointer_type (gfc_character1_type_node);
944 pfunc_type_node
945 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
946
947 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
948 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
949 since this function is called before gfc_init_constants. */
950 gfc_array_range_type
951 = build_range_type (gfc_array_index_type,
952 build_int_cst (gfc_array_index_type, 0),
953 NULL_TREE);
954
955 /* The maximum array element size that can be handled is determined
956 by the number of bits available to store this field in the array
957 descriptor. */
958
959 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
960 lo = ~ (unsigned HOST_WIDE_INT) 0;
961 if (n > HOST_BITS_PER_WIDE_INT)
962 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
963 else
964 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
965 gfc_max_array_element_size
966 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
967
968 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
969 boolean_true_node = build_int_cst (boolean_type_node, 1);
970 boolean_false_node = build_int_cst (boolean_type_node, 0);
971
972 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
973 gfc_charlen_int_kind = 4;
974 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
975 }
976
977 /* Get the type node for the given type and kind. */
978
979 tree
980 gfc_get_int_type (int kind)
981 {
982 int index = gfc_validate_kind (BT_INTEGER, kind, true);
983 return index < 0 ? 0 : gfc_integer_types[index];
984 }
985
986 tree
987 gfc_get_real_type (int kind)
988 {
989 int index = gfc_validate_kind (BT_REAL, kind, true);
990 return index < 0 ? 0 : gfc_real_types[index];
991 }
992
993 tree
994 gfc_get_complex_type (int kind)
995 {
996 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
997 return index < 0 ? 0 : gfc_complex_types[index];
998 }
999
1000 tree
1001 gfc_get_logical_type (int kind)
1002 {
1003 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
1004 return index < 0 ? 0 : gfc_logical_types[index];
1005 }
1006
1007 tree
1008 gfc_get_char_type (int kind)
1009 {
1010 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1011 return index < 0 ? 0 : gfc_character_types[index];
1012 }
1013
1014 tree
1015 gfc_get_pchar_type (int kind)
1016 {
1017 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1018 return index < 0 ? 0 : gfc_pcharacter_types[index];
1019 }
1020
1021 \f
1022 /* Create a character type with the given kind and length. */
1023
1024 tree
1025 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1026 {
1027 tree bounds, type;
1028
1029 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1030 type = build_array_type (eltype, bounds);
1031 TYPE_STRING_FLAG (type) = 1;
1032
1033 return type;
1034 }
1035
1036 tree
1037 gfc_get_character_type_len (int kind, tree len)
1038 {
1039 gfc_validate_kind (BT_CHARACTER, kind, false);
1040 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1041 }
1042
1043
1044 /* Get a type node for a character kind. */
1045
1046 tree
1047 gfc_get_character_type (int kind, gfc_charlen * cl)
1048 {
1049 tree len;
1050
1051 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1052
1053 return gfc_get_character_type_len (kind, len);
1054 }
1055 \f
1056 /* Covert a basic type. This will be an array for character types. */
1057
1058 tree
1059 gfc_typenode_for_spec (gfc_typespec * spec)
1060 {
1061 tree basetype;
1062
1063 switch (spec->type)
1064 {
1065 case BT_UNKNOWN:
1066 gcc_unreachable ();
1067
1068 case BT_INTEGER:
1069 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1070 has been resolved. This is done so we can convert C_PTR and
1071 C_FUNPTR to simple variables that get translated to (void *). */
1072 if (spec->f90_type == BT_VOID)
1073 {
1074 if (spec->u.derived
1075 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1076 basetype = ptr_type_node;
1077 else
1078 basetype = pfunc_type_node;
1079 }
1080 else
1081 basetype = gfc_get_int_type (spec->kind);
1082 break;
1083
1084 case BT_REAL:
1085 basetype = gfc_get_real_type (spec->kind);
1086 break;
1087
1088 case BT_COMPLEX:
1089 basetype = gfc_get_complex_type (spec->kind);
1090 break;
1091
1092 case BT_LOGICAL:
1093 basetype = gfc_get_logical_type (spec->kind);
1094 break;
1095
1096 case BT_CHARACTER:
1097 #if 0
1098 if (spec->deferred)
1099 basetype = gfc_get_character_type (spec->kind, NULL);
1100 else
1101 #endif
1102 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1103 break;
1104
1105 case BT_DERIVED:
1106 case BT_CLASS:
1107 basetype = gfc_get_derived_type (spec->u.derived);
1108
1109 if (spec->type == BT_CLASS)
1110 GFC_CLASS_TYPE_P (basetype) = 1;
1111
1112 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1113 type and kind to fit a (void *) and the basetype returned was a
1114 ptr_type_node. We need to pass up this new information to the
1115 symbol that was declared of type C_PTR or C_FUNPTR. */
1116 if (spec->u.derived->attr.is_iso_c)
1117 {
1118 spec->type = spec->u.derived->ts.type;
1119 spec->kind = spec->u.derived->ts.kind;
1120 spec->f90_type = spec->u.derived->ts.f90_type;
1121 }
1122 break;
1123 case BT_VOID:
1124 case BT_ASSUMED:
1125 /* This is for the second arg to c_f_pointer and c_f_procpointer
1126 of the iso_c_binding module, to accept any ptr type. */
1127 basetype = ptr_type_node;
1128 if (spec->f90_type == BT_VOID)
1129 {
1130 if (spec->u.derived
1131 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1132 basetype = ptr_type_node;
1133 else
1134 basetype = pfunc_type_node;
1135 }
1136 break;
1137 default:
1138 gcc_unreachable ();
1139 }
1140 return basetype;
1141 }
1142 \f
1143 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1144
1145 static tree
1146 gfc_conv_array_bound (gfc_expr * expr)
1147 {
1148 /* If expr is an integer constant, return that. */
1149 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1150 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1151
1152 /* Otherwise return NULL. */
1153 return NULL_TREE;
1154 }
1155 \f
1156 tree
1157 gfc_get_element_type (tree type)
1158 {
1159 tree element;
1160
1161 if (GFC_ARRAY_TYPE_P (type))
1162 {
1163 if (TREE_CODE (type) == POINTER_TYPE)
1164 type = TREE_TYPE (type);
1165 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1166 {
1167 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1168 element = type;
1169 }
1170 else
1171 {
1172 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1173 element = TREE_TYPE (type);
1174 }
1175 }
1176 else
1177 {
1178 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1179 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1180
1181 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1182 element = TREE_TYPE (element);
1183
1184 /* For arrays, which are not scalar coarrays. */
1185 if (TREE_CODE (element) == ARRAY_TYPE)
1186 element = TREE_TYPE (element);
1187 }
1188
1189 return element;
1190 }
1191 \f
1192 /* Build an array. This function is called from gfc_sym_type().
1193 Actually returns array descriptor type.
1194
1195 Format of array descriptors is as follows:
1196
1197 struct gfc_array_descriptor
1198 {
1199 array *data
1200 index offset;
1201 index dtype;
1202 struct descriptor_dimension dimension[N_DIM];
1203 }
1204
1205 struct descriptor_dimension
1206 {
1207 index stride;
1208 index lbound;
1209 index ubound;
1210 }
1211
1212 Translation code should use gfc_conv_descriptor_* rather than
1213 accessing the descriptor directly. Any changes to the array
1214 descriptor type will require changes in gfc_conv_descriptor_* and
1215 gfc_build_array_initializer.
1216
1217 This is represented internally as a RECORD_TYPE. The index nodes
1218 are gfc_array_index_type and the data node is a pointer to the
1219 data. See below for the handling of character types.
1220
1221 The dtype member is formatted as follows:
1222 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1223 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1224 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1225
1226 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1227 this generated poor code for assumed/deferred size arrays. These
1228 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1229 of the GENERIC grammar. Also, there is no way to explicitly set
1230 the array stride, so all data must be packed(1). I've tried to
1231 mark all the functions which would require modification with a GCC
1232 ARRAYS comment.
1233
1234 The data component points to the first element in the array. The
1235 offset field is the position of the origin of the array (i.e. element
1236 (0, 0 ...)). This may be outside the bounds of the array.
1237
1238 An element is accessed by
1239 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1240 This gives good performance as the computation does not involve the
1241 bounds of the array. For packed arrays, this is optimized further
1242 by substituting the known strides.
1243
1244 This system has one problem: all array bounds must be within 2^31
1245 elements of the origin (2^63 on 64-bit machines). For example
1246 integer, dimension (80000:90000, 80000:90000, 2) :: array
1247 may not work properly on 32-bit machines because 80000*80000 >
1248 2^31, so the calculation for stride2 would overflow. This may
1249 still work, but I haven't checked, and it relies on the overflow
1250 doing the right thing.
1251
1252 The way to fix this problem is to access elements as follows:
1253 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1254 Obviously this is much slower. I will make this a compile time
1255 option, something like -fsmall-array-offsets. Mixing code compiled
1256 with and without this switch will work.
1257
1258 (1) This can be worked around by modifying the upper bound of the
1259 previous dimension. This requires extra fields in the descriptor
1260 (both real_ubound and fake_ubound). */
1261
1262
1263 /* Returns true if the array sym does not require a descriptor. */
1264
1265 int
1266 gfc_is_nodesc_array (gfc_symbol * sym)
1267 {
1268 gcc_assert (sym->attr.dimension || sym->attr.codimension);
1269
1270 /* We only want local arrays. */
1271 if (sym->attr.pointer || sym->attr.allocatable)
1272 return 0;
1273
1274 /* We want a descriptor for associate-name arrays that do not have an
1275 explicitly known shape already. */
1276 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1277 return 0;
1278
1279 if (sym->attr.dummy)
1280 return sym->as->type != AS_ASSUMED_SHAPE
1281 && sym->as->type != AS_ASSUMED_RANK;
1282
1283 if (sym->attr.result || sym->attr.function)
1284 return 0;
1285
1286 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1287
1288 return 1;
1289 }
1290
1291
1292 /* Create an array descriptor type. */
1293
1294 static tree
1295 gfc_build_array_type (tree type, gfc_array_spec * as,
1296 enum gfc_array_kind akind, bool restricted,
1297 bool contiguous)
1298 {
1299 tree lbound[GFC_MAX_DIMENSIONS];
1300 tree ubound[GFC_MAX_DIMENSIONS];
1301 int n;
1302
1303 if (as->type == AS_ASSUMED_RANK)
1304 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1305 {
1306 lbound[n] = NULL_TREE;
1307 ubound[n] = NULL_TREE;
1308 }
1309
1310 for (n = 0; n < as->rank; n++)
1311 {
1312 /* Create expressions for the known bounds of the array. */
1313 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1314 lbound[n] = gfc_index_one_node;
1315 else
1316 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1317 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1318 }
1319
1320 for (n = as->rank; n < as->rank + as->corank; n++)
1321 {
1322 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1323 lbound[n] = gfc_index_one_node;
1324 else
1325 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1326
1327 if (n < as->rank + as->corank - 1)
1328 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1329 }
1330
1331 if (as->type == AS_ASSUMED_SHAPE)
1332 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1333 : GFC_ARRAY_ASSUMED_SHAPE;
1334 else if (as->type == AS_ASSUMED_RANK)
1335 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1336 : GFC_ARRAY_ASSUMED_RANK;
1337 return gfc_get_array_type_bounds (type, as->rank == -1
1338 ? GFC_MAX_DIMENSIONS : as->rank,
1339 as->corank, lbound,
1340 ubound, 0, akind, restricted);
1341 }
1342 \f
1343 /* Returns the struct descriptor_dimension type. */
1344
1345 static tree
1346 gfc_get_desc_dim_type (void)
1347 {
1348 tree type;
1349 tree decl, *chain = NULL;
1350
1351 if (gfc_desc_dim_type)
1352 return gfc_desc_dim_type;
1353
1354 /* Build the type node. */
1355 type = make_node (RECORD_TYPE);
1356
1357 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1358 TYPE_PACKED (type) = 1;
1359
1360 /* Consists of the stride, lbound and ubound members. */
1361 decl = gfc_add_field_to_struct_1 (type,
1362 get_identifier ("stride"),
1363 gfc_array_index_type, &chain);
1364 TREE_NO_WARNING (decl) = 1;
1365
1366 decl = gfc_add_field_to_struct_1 (type,
1367 get_identifier ("lbound"),
1368 gfc_array_index_type, &chain);
1369 TREE_NO_WARNING (decl) = 1;
1370
1371 decl = gfc_add_field_to_struct_1 (type,
1372 get_identifier ("ubound"),
1373 gfc_array_index_type, &chain);
1374 TREE_NO_WARNING (decl) = 1;
1375
1376 /* Finish off the type. */
1377 gfc_finish_type (type);
1378 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1379
1380 gfc_desc_dim_type = type;
1381 return type;
1382 }
1383
1384
1385 /* Return the DTYPE for an array. This describes the type and type parameters
1386 of the array. */
1387 /* TODO: Only call this when the value is actually used, and make all the
1388 unknown cases abort. */
1389
1390 tree
1391 gfc_get_dtype (tree type)
1392 {
1393 tree size;
1394 int n;
1395 HOST_WIDE_INT i;
1396 tree tmp;
1397 tree dtype;
1398 tree etype;
1399 int rank;
1400
1401 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1402
1403 if (GFC_TYPE_ARRAY_DTYPE (type))
1404 return GFC_TYPE_ARRAY_DTYPE (type);
1405
1406 rank = GFC_TYPE_ARRAY_RANK (type);
1407 etype = gfc_get_element_type (type);
1408
1409 switch (TREE_CODE (etype))
1410 {
1411 case INTEGER_TYPE:
1412 n = BT_INTEGER;
1413 break;
1414
1415 case BOOLEAN_TYPE:
1416 n = BT_LOGICAL;
1417 break;
1418
1419 case REAL_TYPE:
1420 n = BT_REAL;
1421 break;
1422
1423 case COMPLEX_TYPE:
1424 n = BT_COMPLEX;
1425 break;
1426
1427 /* We will never have arrays of arrays. */
1428 case RECORD_TYPE:
1429 n = BT_DERIVED;
1430 break;
1431
1432 case ARRAY_TYPE:
1433 n = BT_CHARACTER;
1434 break;
1435
1436 case POINTER_TYPE:
1437 n = BT_ASSUMED;
1438 break;
1439
1440 default:
1441 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1442 /* We can strange array types for temporary arrays. */
1443 return gfc_index_zero_node;
1444 }
1445
1446 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1447 size = TYPE_SIZE_UNIT (etype);
1448
1449 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1450 if (size && INTEGER_CST_P (size))
1451 {
1452 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1453 gfc_fatal_error ("Array element size too big at %C");
1454
1455 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1456 }
1457 dtype = build_int_cst (gfc_array_index_type, i);
1458
1459 if (size && !INTEGER_CST_P (size))
1460 {
1461 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1462 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1463 gfc_array_index_type,
1464 fold_convert (gfc_array_index_type, size), tmp);
1465 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1466 tmp, dtype);
1467 }
1468 /* If we don't know the size we leave it as zero. This should never happen
1469 for anything that is actually used. */
1470 /* TODO: Check this is actually true, particularly when repacking
1471 assumed size parameters. */
1472
1473 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1474 return dtype;
1475 }
1476
1477
1478 /* Build an array type for use without a descriptor, packed according
1479 to the value of PACKED. */
1480
1481 tree
1482 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1483 bool restricted)
1484 {
1485 tree range;
1486 tree type;
1487 tree tmp;
1488 int n;
1489 int known_stride;
1490 int known_offset;
1491 mpz_t offset;
1492 mpz_t stride;
1493 mpz_t delta;
1494 gfc_expr *expr;
1495
1496 mpz_init_set_ui (offset, 0);
1497 mpz_init_set_ui (stride, 1);
1498 mpz_init (delta);
1499
1500 /* We don't use build_array_type because this does not include include
1501 lang-specific information (i.e. the bounds of the array) when checking
1502 for duplicates. */
1503 if (as->rank)
1504 type = make_node (ARRAY_TYPE);
1505 else
1506 type = build_variant_type_copy (etype);
1507
1508 GFC_ARRAY_TYPE_P (type) = 1;
1509 TYPE_LANG_SPECIFIC (type)
1510 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1511
1512 known_stride = (packed != PACKED_NO);
1513 known_offset = 1;
1514 for (n = 0; n < as->rank; n++)
1515 {
1516 /* Fill in the stride and bound components of the type. */
1517 if (known_stride)
1518 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1519 else
1520 tmp = NULL_TREE;
1521 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1522
1523 expr = as->lower[n];
1524 if (expr->expr_type == EXPR_CONSTANT)
1525 {
1526 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1527 gfc_index_integer_kind);
1528 }
1529 else
1530 {
1531 known_stride = 0;
1532 tmp = NULL_TREE;
1533 }
1534 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1535
1536 if (known_stride)
1537 {
1538 /* Calculate the offset. */
1539 mpz_mul (delta, stride, as->lower[n]->value.integer);
1540 mpz_sub (offset, offset, delta);
1541 }
1542 else
1543 known_offset = 0;
1544
1545 expr = as->upper[n];
1546 if (expr && expr->expr_type == EXPR_CONSTANT)
1547 {
1548 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1549 gfc_index_integer_kind);
1550 }
1551 else
1552 {
1553 tmp = NULL_TREE;
1554 known_stride = 0;
1555 }
1556 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1557
1558 if (known_stride)
1559 {
1560 /* Calculate the stride. */
1561 mpz_sub (delta, as->upper[n]->value.integer,
1562 as->lower[n]->value.integer);
1563 mpz_add_ui (delta, delta, 1);
1564 mpz_mul (stride, stride, delta);
1565 }
1566
1567 /* Only the first stride is known for partial packed arrays. */
1568 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1569 known_stride = 0;
1570 }
1571 for (n = as->rank; n < as->rank + as->corank; n++)
1572 {
1573 expr = as->lower[n];
1574 if (expr->expr_type == EXPR_CONSTANT)
1575 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1576 gfc_index_integer_kind);
1577 else
1578 tmp = NULL_TREE;
1579 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1580
1581 expr = as->upper[n];
1582 if (expr && expr->expr_type == EXPR_CONSTANT)
1583 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1584 gfc_index_integer_kind);
1585 else
1586 tmp = NULL_TREE;
1587 if (n < as->rank + as->corank - 1)
1588 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1589 }
1590
1591 if (known_offset)
1592 {
1593 GFC_TYPE_ARRAY_OFFSET (type) =
1594 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1595 }
1596 else
1597 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1598
1599 if (known_stride)
1600 {
1601 GFC_TYPE_ARRAY_SIZE (type) =
1602 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1603 }
1604 else
1605 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1606
1607 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1608 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1609 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1610 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1611 NULL_TREE);
1612 /* TODO: use main type if it is unbounded. */
1613 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1614 build_pointer_type (build_array_type (etype, range));
1615 if (restricted)
1616 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1617 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1618 TYPE_QUAL_RESTRICT);
1619
1620 if (as->rank == 0)
1621 {
1622 if (packed != PACKED_STATIC || gfc_option.coarray == GFC_FCOARRAY_LIB)
1623 {
1624 type = build_pointer_type (type);
1625
1626 if (restricted)
1627 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1628
1629 GFC_ARRAY_TYPE_P (type) = 1;
1630 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1631 }
1632
1633 return type;
1634 }
1635
1636 if (known_stride)
1637 {
1638 mpz_sub_ui (stride, stride, 1);
1639 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1640 }
1641 else
1642 range = NULL_TREE;
1643
1644 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1645 TYPE_DOMAIN (type) = range;
1646
1647 build_pointer_type (etype);
1648 TREE_TYPE (type) = etype;
1649
1650 layout_type (type);
1651
1652 mpz_clear (offset);
1653 mpz_clear (stride);
1654 mpz_clear (delta);
1655
1656 /* Represent packed arrays as multi-dimensional if they have rank >
1657 1 and with proper bounds, instead of flat arrays. This makes for
1658 better debug info. */
1659 if (known_offset)
1660 {
1661 tree gtype = etype, rtype, type_decl;
1662
1663 for (n = as->rank - 1; n >= 0; n--)
1664 {
1665 rtype = build_range_type (gfc_array_index_type,
1666 GFC_TYPE_ARRAY_LBOUND (type, n),
1667 GFC_TYPE_ARRAY_UBOUND (type, n));
1668 gtype = build_array_type (gtype, rtype);
1669 }
1670 TYPE_NAME (type) = type_decl = build_decl (input_location,
1671 TYPE_DECL, NULL, gtype);
1672 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1673 }
1674
1675 if (packed != PACKED_STATIC || !known_stride
1676 || (as->corank && gfc_option.coarray == GFC_FCOARRAY_LIB))
1677 {
1678 /* For dummy arrays and automatic (heap allocated) arrays we
1679 want a pointer to the array. */
1680 type = build_pointer_type (type);
1681 if (restricted)
1682 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1683 GFC_ARRAY_TYPE_P (type) = 1;
1684 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1685 }
1686 return type;
1687 }
1688
1689
1690 /* Return or create the base type for an array descriptor. */
1691
1692 static tree
1693 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1694 enum gfc_array_kind akind)
1695 {
1696 tree fat_type, decl, arraytype, *chain = NULL;
1697 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1698 int idx;
1699
1700 /* Assumed-rank array. */
1701 if (dimen == -1)
1702 dimen = GFC_MAX_DIMENSIONS;
1703
1704 idx = 2 * (codimen + dimen) + restricted;
1705
1706 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1707
1708 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen)
1709 {
1710 if (gfc_array_descriptor_base_caf[idx])
1711 return gfc_array_descriptor_base_caf[idx];
1712 }
1713 else if (gfc_array_descriptor_base[idx])
1714 return gfc_array_descriptor_base[idx];
1715
1716 /* Build the type node. */
1717 fat_type = make_node (RECORD_TYPE);
1718
1719 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1720 TYPE_NAME (fat_type) = get_identifier (name);
1721 TYPE_NAMELESS (fat_type) = 1;
1722
1723 /* Add the data member as the first element of the descriptor. */
1724 decl = gfc_add_field_to_struct_1 (fat_type,
1725 get_identifier ("data"),
1726 (restricted
1727 ? prvoid_type_node
1728 : ptr_type_node), &chain);
1729
1730 /* Add the base component. */
1731 decl = gfc_add_field_to_struct_1 (fat_type,
1732 get_identifier ("offset"),
1733 gfc_array_index_type, &chain);
1734 TREE_NO_WARNING (decl) = 1;
1735
1736 /* Add the dtype component. */
1737 decl = gfc_add_field_to_struct_1 (fat_type,
1738 get_identifier ("dtype"),
1739 gfc_array_index_type, &chain);
1740 TREE_NO_WARNING (decl) = 1;
1741
1742 /* Build the array type for the stride and bound components. */
1743 if (dimen + codimen > 0)
1744 {
1745 arraytype =
1746 build_array_type (gfc_get_desc_dim_type (),
1747 build_range_type (gfc_array_index_type,
1748 gfc_index_zero_node,
1749 gfc_rank_cst[codimen + dimen - 1]));
1750
1751 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1752 arraytype, &chain);
1753 TREE_NO_WARNING (decl) = 1;
1754 }
1755
1756 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1757 && akind == GFC_ARRAY_ALLOCATABLE)
1758 {
1759 decl = gfc_add_field_to_struct_1 (fat_type,
1760 get_identifier ("token"),
1761 prvoid_type_node, &chain);
1762 TREE_NO_WARNING (decl) = 1;
1763 }
1764
1765 /* Finish off the type. */
1766 gfc_finish_type (fat_type);
1767 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1768
1769 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1770 && akind == GFC_ARRAY_ALLOCATABLE)
1771 gfc_array_descriptor_base_caf[idx] = fat_type;
1772 else
1773 gfc_array_descriptor_base[idx] = fat_type;
1774
1775 return fat_type;
1776 }
1777
1778
1779 /* Build an array (descriptor) type with given bounds. */
1780
1781 tree
1782 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1783 tree * ubound, int packed,
1784 enum gfc_array_kind akind, bool restricted)
1785 {
1786 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1787 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1788 const char *type_name;
1789 int n;
1790
1791 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1792 fat_type = build_distinct_type_copy (base_type);
1793 /* Make sure that nontarget and target array type have the same canonical
1794 type (and same stub decl for debug info). */
1795 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1796 TYPE_CANONICAL (fat_type) = base_type;
1797 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1798
1799 tmp = TYPE_NAME (etype);
1800 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1801 tmp = DECL_NAME (tmp);
1802 if (tmp)
1803 type_name = IDENTIFIER_POINTER (tmp);
1804 else
1805 type_name = "unknown";
1806 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1807 GFC_MAX_SYMBOL_LEN, type_name);
1808 TYPE_NAME (fat_type) = get_identifier (name);
1809 TYPE_NAMELESS (fat_type) = 1;
1810
1811 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1812 TYPE_LANG_SPECIFIC (fat_type)
1813 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1814
1815 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1816 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1817 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1818 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1819
1820 /* Build an array descriptor record type. */
1821 if (packed != 0)
1822 stride = gfc_index_one_node;
1823 else
1824 stride = NULL_TREE;
1825 for (n = 0; n < dimen + codimen; n++)
1826 {
1827 if (n < dimen)
1828 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1829
1830 if (lbound)
1831 lower = lbound[n];
1832 else
1833 lower = NULL_TREE;
1834
1835 if (lower != NULL_TREE)
1836 {
1837 if (INTEGER_CST_P (lower))
1838 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1839 else
1840 lower = NULL_TREE;
1841 }
1842
1843 if (codimen && n == dimen + codimen - 1)
1844 break;
1845
1846 upper = ubound[n];
1847 if (upper != NULL_TREE)
1848 {
1849 if (INTEGER_CST_P (upper))
1850 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1851 else
1852 upper = NULL_TREE;
1853 }
1854
1855 if (n >= dimen)
1856 continue;
1857
1858 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1859 {
1860 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1861 gfc_array_index_type, upper, lower);
1862 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1863 gfc_array_index_type, tmp,
1864 gfc_index_one_node);
1865 stride = fold_build2_loc (input_location, MULT_EXPR,
1866 gfc_array_index_type, tmp, stride);
1867 /* Check the folding worked. */
1868 gcc_assert (INTEGER_CST_P (stride));
1869 }
1870 else
1871 stride = NULL_TREE;
1872 }
1873 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1874
1875 /* TODO: known offsets for descriptors. */
1876 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1877
1878 if (dimen == 0)
1879 {
1880 arraytype = build_pointer_type (etype);
1881 if (restricted)
1882 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1883
1884 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1885 return fat_type;
1886 }
1887
1888 /* We define data as an array with the correct size if possible.
1889 Much better than doing pointer arithmetic. */
1890 if (stride)
1891 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1892 int_const_binop (MINUS_EXPR, stride,
1893 integer_one_node));
1894 else
1895 rtype = gfc_array_range_type;
1896 arraytype = build_array_type (etype, rtype);
1897 arraytype = build_pointer_type (arraytype);
1898 if (restricted)
1899 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1900 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1901
1902 /* This will generate the base declarations we need to emit debug
1903 information for this type. FIXME: there must be a better way to
1904 avoid divergence between compilations with and without debug
1905 information. */
1906 {
1907 struct array_descr_info info;
1908 gfc_get_array_descr_info (fat_type, &info);
1909 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1910 }
1911
1912 return fat_type;
1913 }
1914 \f
1915 /* Build a pointer type. This function is called from gfc_sym_type(). */
1916
1917 static tree
1918 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1919 {
1920 /* Array pointer types aren't actually pointers. */
1921 if (sym->attr.dimension)
1922 return type;
1923 else
1924 return build_pointer_type (type);
1925 }
1926
1927 static tree gfc_nonrestricted_type (tree t);
1928 /* Given two record or union type nodes TO and FROM, ensure
1929 that all fields in FROM have a corresponding field in TO,
1930 their type being nonrestrict variants. This accepts a TO
1931 node that already has a prefix of the fields in FROM. */
1932 static void
1933 mirror_fields (tree to, tree from)
1934 {
1935 tree fto, ffrom;
1936 tree *chain;
1937
1938 /* Forward to the end of TOs fields. */
1939 fto = TYPE_FIELDS (to);
1940 ffrom = TYPE_FIELDS (from);
1941 chain = &TYPE_FIELDS (to);
1942 while (fto)
1943 {
1944 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1945 chain = &DECL_CHAIN (fto);
1946 fto = DECL_CHAIN (fto);
1947 ffrom = DECL_CHAIN (ffrom);
1948 }
1949
1950 /* Now add all fields remaining in FROM (starting with ffrom). */
1951 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1952 {
1953 tree newfield = copy_node (ffrom);
1954 DECL_CONTEXT (newfield) = to;
1955 /* The store to DECL_CHAIN might seem redundant with the
1956 stores to *chain, but not clearing it here would mean
1957 leaving a chain into the old fields. If ever
1958 our called functions would look at them confusion
1959 will arise. */
1960 DECL_CHAIN (newfield) = NULL_TREE;
1961 *chain = newfield;
1962 chain = &DECL_CHAIN (newfield);
1963
1964 if (TREE_CODE (ffrom) == FIELD_DECL)
1965 {
1966 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
1967 TREE_TYPE (newfield) = elemtype;
1968 }
1969 }
1970 *chain = NULL_TREE;
1971 }
1972
1973 /* Given a type T, returns a different type of the same structure,
1974 except that all types it refers to (recursively) are always
1975 non-restrict qualified types. */
1976 static tree
1977 gfc_nonrestricted_type (tree t)
1978 {
1979 tree ret = t;
1980
1981 /* If the type isn't laid out yet, don't copy it. If something
1982 needs it for real it should wait until the type got finished. */
1983 if (!TYPE_SIZE (t))
1984 return t;
1985
1986 if (!TYPE_LANG_SPECIFIC (t))
1987 TYPE_LANG_SPECIFIC (t)
1988 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1989 /* If we're dealing with this very node already further up
1990 the call chain (recursion via pointers and struct members)
1991 we haven't yet determined if we really need a new type node.
1992 Assume we don't, return T itself. */
1993 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
1994 return t;
1995
1996 /* If we have calculated this all already, just return it. */
1997 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
1998 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
1999
2000 /* Mark this type. */
2001 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2002
2003 switch (TREE_CODE (t))
2004 {
2005 default:
2006 break;
2007
2008 case POINTER_TYPE:
2009 case REFERENCE_TYPE:
2010 {
2011 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2012 if (totype == TREE_TYPE (t))
2013 ret = t;
2014 else if (TREE_CODE (t) == POINTER_TYPE)
2015 ret = build_pointer_type (totype);
2016 else
2017 ret = build_reference_type (totype);
2018 ret = build_qualified_type (ret,
2019 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2020 }
2021 break;
2022
2023 case ARRAY_TYPE:
2024 {
2025 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2026 if (elemtype == TREE_TYPE (t))
2027 ret = t;
2028 else
2029 {
2030 ret = build_variant_type_copy (t);
2031 TREE_TYPE (ret) = elemtype;
2032 if (TYPE_LANG_SPECIFIC (t)
2033 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2034 {
2035 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2036 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2037 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2038 {
2039 TYPE_LANG_SPECIFIC (ret)
2040 = ggc_alloc_cleared_lang_type (sizeof (struct
2041 lang_type));
2042 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2043 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2044 }
2045 }
2046 }
2047 }
2048 break;
2049
2050 case RECORD_TYPE:
2051 case UNION_TYPE:
2052 case QUAL_UNION_TYPE:
2053 {
2054 tree field;
2055 /* First determine if we need a new type at all.
2056 Careful, the two calls to gfc_nonrestricted_type per field
2057 might return different values. That happens exactly when
2058 one of the fields reaches back to this very record type
2059 (via pointers). The first calls will assume that we don't
2060 need to copy T (see the error_mark_node marking). If there
2061 are any reasons for copying T apart from having to copy T,
2062 we'll indeed copy it, and the second calls to
2063 gfc_nonrestricted_type will use that new node if they
2064 reach back to T. */
2065 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2066 if (TREE_CODE (field) == FIELD_DECL)
2067 {
2068 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2069 if (elemtype != TREE_TYPE (field))
2070 break;
2071 }
2072 if (!field)
2073 break;
2074 ret = build_variant_type_copy (t);
2075 TYPE_FIELDS (ret) = NULL_TREE;
2076
2077 /* Here we make sure that as soon as we know we have to copy
2078 T, that also fields reaching back to us will use the new
2079 copy. It's okay if that copy still contains the old fields,
2080 we won't look at them. */
2081 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2082 mirror_fields (ret, t);
2083 }
2084 break;
2085 }
2086
2087 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2088 return ret;
2089 }
2090
2091 \f
2092 /* Return the type for a symbol. Special handling is required for character
2093 types to get the correct level of indirection.
2094 For functions return the return type.
2095 For subroutines return void_type_node.
2096 Calling this multiple times for the same symbol should be avoided,
2097 especially for character and array types. */
2098
2099 tree
2100 gfc_sym_type (gfc_symbol * sym)
2101 {
2102 tree type;
2103 int byref;
2104 bool restricted;
2105
2106 /* Procedure Pointers inside COMMON blocks. */
2107 if (sym->attr.proc_pointer && sym->attr.in_common)
2108 {
2109 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2110 sym->attr.proc_pointer = 0;
2111 type = build_pointer_type (gfc_get_function_type (sym));
2112 sym->attr.proc_pointer = 1;
2113 return type;
2114 }
2115
2116 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2117 return void_type_node;
2118
2119 /* In the case of a function the fake result variable may have a
2120 type different from the function type, so don't return early in
2121 that case. */
2122 if (sym->backend_decl && !sym->attr.function)
2123 return TREE_TYPE (sym->backend_decl);
2124
2125 if (sym->ts.type == BT_CHARACTER
2126 && ((sym->attr.function && sym->attr.is_bind_c)
2127 || (sym->attr.result
2128 && sym->ns->proc_name
2129 && sym->ns->proc_name->attr.is_bind_c)))
2130 type = gfc_character1_type_node;
2131 else
2132 type = gfc_typenode_for_spec (&sym->ts);
2133
2134 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2135 byref = 1;
2136 else
2137 byref = 0;
2138
2139 restricted = !sym->attr.target && !sym->attr.pointer
2140 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2141 if (!restricted)
2142 type = gfc_nonrestricted_type (type);
2143
2144 if (sym->attr.dimension || sym->attr.codimension)
2145 {
2146 if (gfc_is_nodesc_array (sym))
2147 {
2148 /* If this is a character argument of unknown length, just use the
2149 base type. */
2150 if (sym->ts.type != BT_CHARACTER
2151 || !(sym->attr.dummy || sym->attr.function)
2152 || sym->ts.u.cl->backend_decl)
2153 {
2154 type = gfc_get_nodesc_array_type (type, sym->as,
2155 byref ? PACKED_FULL
2156 : PACKED_STATIC,
2157 restricted);
2158 byref = 0;
2159 }
2160
2161 if (sym->attr.cray_pointee)
2162 GFC_POINTER_TYPE_P (type) = 1;
2163 }
2164 else
2165 {
2166 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2167 if (sym->attr.pointer)
2168 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2169 : GFC_ARRAY_POINTER;
2170 else if (sym->attr.allocatable)
2171 akind = GFC_ARRAY_ALLOCATABLE;
2172 type = gfc_build_array_type (type, sym->as, akind, restricted,
2173 sym->attr.contiguous);
2174 }
2175 }
2176 else
2177 {
2178 if (sym->attr.allocatable || sym->attr.pointer
2179 || gfc_is_associate_pointer (sym))
2180 type = gfc_build_pointer_type (sym, type);
2181 if (sym->attr.pointer || sym->attr.cray_pointee)
2182 GFC_POINTER_TYPE_P (type) = 1;
2183 }
2184
2185 /* We currently pass all parameters by reference.
2186 See f95_get_function_decl. For dummy function parameters return the
2187 function type. */
2188 if (byref)
2189 {
2190 /* We must use pointer types for potentially absent variables. The
2191 optimizers assume a reference type argument is never NULL. */
2192 if (sym->attr.optional
2193 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2194 type = build_pointer_type (type);
2195 else
2196 {
2197 type = build_reference_type (type);
2198 if (restricted)
2199 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2200 }
2201 }
2202
2203 return (type);
2204 }
2205 \f
2206 /* Layout and output debug info for a record type. */
2207
2208 void
2209 gfc_finish_type (tree type)
2210 {
2211 tree decl;
2212
2213 decl = build_decl (input_location,
2214 TYPE_DECL, NULL_TREE, type);
2215 TYPE_STUB_DECL (type) = decl;
2216 layout_type (type);
2217 rest_of_type_compilation (type, 1);
2218 rest_of_decl_compilation (decl, 1, 0);
2219 }
2220 \f
2221 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2222 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2223 to the end of the field list pointed to by *CHAIN.
2224
2225 Returns a pointer to the new field. */
2226
2227 static tree
2228 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2229 {
2230 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2231
2232 DECL_CONTEXT (decl) = context;
2233 DECL_CHAIN (decl) = NULL_TREE;
2234 if (TYPE_FIELDS (context) == NULL_TREE)
2235 TYPE_FIELDS (context) = decl;
2236 if (chain != NULL)
2237 {
2238 if (*chain != NULL)
2239 **chain = decl;
2240 *chain = &DECL_CHAIN (decl);
2241 }
2242
2243 return decl;
2244 }
2245
2246 /* Like `gfc_add_field_to_struct_1', but adds alignment
2247 information. */
2248
2249 tree
2250 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2251 {
2252 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2253
2254 DECL_INITIAL (decl) = 0;
2255 DECL_ALIGN (decl) = 0;
2256 DECL_USER_ALIGN (decl) = 0;
2257
2258 return decl;
2259 }
2260
2261
2262 /* Copy the backend_decl and component backend_decls if
2263 the two derived type symbols are "equal", as described
2264 in 4.4.2 and resolved by gfc_compare_derived_types. */
2265
2266 int
2267 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2268 bool from_gsym)
2269 {
2270 gfc_component *to_cm;
2271 gfc_component *from_cm;
2272
2273 if (from == to)
2274 return 1;
2275
2276 if (from->backend_decl == NULL
2277 || !gfc_compare_derived_types (from, to))
2278 return 0;
2279
2280 to->backend_decl = from->backend_decl;
2281
2282 to_cm = to->components;
2283 from_cm = from->components;
2284
2285 /* Copy the component declarations. If a component is itself
2286 a derived type, we need a copy of its component declarations.
2287 This is done by recursing into gfc_get_derived_type and
2288 ensures that the component's component declarations have
2289 been built. If it is a character, we need the character
2290 length, as well. */
2291 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2292 {
2293 to_cm->backend_decl = from_cm->backend_decl;
2294 if (from_cm->ts.type == BT_DERIVED
2295 && (!from_cm->attr.pointer || from_gsym))
2296 gfc_get_derived_type (to_cm->ts.u.derived);
2297 else if (from_cm->ts.type == BT_CLASS
2298 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2299 gfc_get_derived_type (to_cm->ts.u.derived);
2300 else if (from_cm->ts.type == BT_CHARACTER)
2301 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2302 }
2303
2304 return 1;
2305 }
2306
2307
2308 /* Build a tree node for a procedure pointer component. */
2309
2310 tree
2311 gfc_get_ppc_type (gfc_component* c)
2312 {
2313 tree t;
2314
2315 /* Explicit interface. */
2316 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2317 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2318
2319 /* Implicit interface (only return value may be known). */
2320 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2321 t = gfc_typenode_for_spec (&c->ts);
2322 else
2323 t = void_type_node;
2324
2325 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2326 }
2327
2328
2329 /* Build a tree node for a derived type. If there are equal
2330 derived types, with different local names, these are built
2331 at the same time. If an equal derived type has been built
2332 in a parent namespace, this is used. */
2333
2334 tree
2335 gfc_get_derived_type (gfc_symbol * derived)
2336 {
2337 tree typenode = NULL, field = NULL, field_type = NULL;
2338 tree canonical = NULL_TREE;
2339 tree *chain = NULL;
2340 bool got_canonical = false;
2341 bool unlimited_entity = false;
2342 gfc_component *c;
2343 gfc_dt_list *dt;
2344 gfc_namespace *ns;
2345
2346 if (derived->attr.unlimited_polymorphic)
2347 return ptr_type_node;
2348
2349 if (derived && derived->attr.flavor == FL_PROCEDURE
2350 && derived->attr.generic)
2351 derived = gfc_find_dt_in_generic (derived);
2352
2353 /* See if it's one of the iso_c_binding derived types. */
2354 if (derived->attr.is_iso_c == 1)
2355 {
2356 if (derived->backend_decl)
2357 return derived->backend_decl;
2358
2359 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2360 derived->backend_decl = ptr_type_node;
2361 else
2362 derived->backend_decl = pfunc_type_node;
2363
2364 derived->ts.kind = gfc_index_integer_kind;
2365 derived->ts.type = BT_INTEGER;
2366 /* Set the f90_type to BT_VOID as a way to recognize something of type
2367 BT_INTEGER that needs to fit a void * for the purpose of the
2368 iso_c_binding derived types. */
2369 derived->ts.f90_type = BT_VOID;
2370
2371 return derived->backend_decl;
2372 }
2373
2374 /* If use associated, use the module type for this one. */
2375 if (gfc_option.flag_whole_file
2376 && derived->backend_decl == NULL
2377 && derived->attr.use_assoc
2378 && derived->module
2379 && gfc_get_module_backend_decl (derived))
2380 goto copy_derived_types;
2381
2382 /* If a whole file compilation, the derived types from an earlier
2383 namespace can be used as the canonical type. */
2384 if (gfc_option.flag_whole_file
2385 && derived->backend_decl == NULL
2386 && !derived->attr.use_assoc
2387 && gfc_global_ns_list)
2388 {
2389 for (ns = gfc_global_ns_list;
2390 ns->translated && !got_canonical;
2391 ns = ns->sibling)
2392 {
2393 dt = ns->derived_types;
2394 for (; dt && !canonical; dt = dt->next)
2395 {
2396 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2397 if (derived->backend_decl)
2398 got_canonical = true;
2399 }
2400 }
2401 }
2402
2403 /* Store up the canonical type to be added to this one. */
2404 if (got_canonical)
2405 {
2406 if (TYPE_CANONICAL (derived->backend_decl))
2407 canonical = TYPE_CANONICAL (derived->backend_decl);
2408 else
2409 canonical = derived->backend_decl;
2410
2411 derived->backend_decl = NULL_TREE;
2412 }
2413
2414 /* derived->backend_decl != 0 means we saw it before, but its
2415 components' backend_decl may have not been built. */
2416 if (derived->backend_decl)
2417 {
2418 /* Its components' backend_decl have been built or we are
2419 seeing recursion through the formal arglist of a procedure
2420 pointer component. */
2421 if (TYPE_FIELDS (derived->backend_decl)
2422 || derived->attr.proc_pointer_comp)
2423 return derived->backend_decl;
2424 else
2425 typenode = derived->backend_decl;
2426 }
2427 else
2428 {
2429 /* We see this derived type first time, so build the type node. */
2430 typenode = make_node (RECORD_TYPE);
2431 TYPE_NAME (typenode) = get_identifier (derived->name);
2432 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2433 derived->backend_decl = typenode;
2434 }
2435
2436 if (derived->components
2437 && derived->components->ts.type == BT_DERIVED
2438 && strcmp (derived->components->name, "_data") == 0
2439 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2440 unlimited_entity = true;
2441
2442 /* Go through the derived type components, building them as
2443 necessary. The reason for doing this now is that it is
2444 possible to recurse back to this derived type through a
2445 pointer component (PR24092). If this happens, the fields
2446 will be built and so we can return the type. */
2447 for (c = derived->components; c; c = c->next)
2448 {
2449 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2450 continue;
2451
2452 if ((!c->attr.pointer && !c->attr.proc_pointer)
2453 || c->ts.u.derived->backend_decl == NULL)
2454 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2455
2456 if (c->ts.u.derived->attr.is_iso_c)
2457 {
2458 /* Need to copy the modified ts from the derived type. The
2459 typespec was modified because C_PTR/C_FUNPTR are translated
2460 into (void *) from derived types. */
2461 c->ts.type = c->ts.u.derived->ts.type;
2462 c->ts.kind = c->ts.u.derived->ts.kind;
2463 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2464 if (c->initializer)
2465 {
2466 c->initializer->ts.type = c->ts.type;
2467 c->initializer->ts.kind = c->ts.kind;
2468 c->initializer->ts.f90_type = c->ts.f90_type;
2469 c->initializer->expr_type = EXPR_NULL;
2470 }
2471 }
2472 }
2473
2474 if (TYPE_FIELDS (derived->backend_decl))
2475 return derived->backend_decl;
2476
2477 /* Build the type member list. Install the newly created RECORD_TYPE
2478 node as DECL_CONTEXT of each FIELD_DECL. */
2479 for (c = derived->components; c; c = c->next)
2480 {
2481 if (c->attr.proc_pointer)
2482 field_type = gfc_get_ppc_type (c);
2483 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2484 field_type = c->ts.u.derived->backend_decl;
2485 else
2486 {
2487 if (c->ts.type == BT_CHARACTER)
2488 {
2489 /* Evaluate the string length. */
2490 gfc_conv_const_charlen (c->ts.u.cl);
2491 gcc_assert (c->ts.u.cl->backend_decl);
2492 }
2493
2494 field_type = gfc_typenode_for_spec (&c->ts);
2495 }
2496
2497 /* This returns an array descriptor type. Initialization may be
2498 required. */
2499 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2500 {
2501 if (c->attr.pointer || c->attr.allocatable)
2502 {
2503 enum gfc_array_kind akind;
2504 if (c->attr.pointer)
2505 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2506 : GFC_ARRAY_POINTER;
2507 else
2508 akind = GFC_ARRAY_ALLOCATABLE;
2509 /* Pointers to arrays aren't actually pointer types. The
2510 descriptors are separate, but the data is common. */
2511 field_type = gfc_build_array_type (field_type, c->as, akind,
2512 !c->attr.target
2513 && !c->attr.pointer,
2514 c->attr.contiguous);
2515 }
2516 else
2517 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2518 PACKED_STATIC,
2519 !c->attr.target);
2520 }
2521 else if ((c->attr.pointer || c->attr.allocatable)
2522 && !c->attr.proc_pointer
2523 && !(unlimited_entity && c == derived->components))
2524 field_type = build_pointer_type (field_type);
2525
2526 if (c->attr.pointer)
2527 field_type = gfc_nonrestricted_type (field_type);
2528
2529 /* vtype fields can point to different types to the base type. */
2530 if (c->ts.type == BT_DERIVED
2531 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2532 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2533 ptr_mode, true);
2534
2535 field = gfc_add_field_to_struct (typenode,
2536 get_identifier (c->name),
2537 field_type, &chain);
2538 if (c->loc.lb)
2539 gfc_set_decl_location (field, &c->loc);
2540 else if (derived->declared_at.lb)
2541 gfc_set_decl_location (field, &derived->declared_at);
2542
2543 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2544
2545 gcc_assert (field);
2546 if (!c->backend_decl)
2547 c->backend_decl = field;
2548 }
2549
2550 /* Now lay out the derived type, including the fields. */
2551 if (canonical)
2552 TYPE_CANONICAL (typenode) = canonical;
2553
2554 gfc_finish_type (typenode);
2555 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2556 if (derived->module && derived->ns->proc_name
2557 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2558 {
2559 if (derived->ns->proc_name->backend_decl
2560 && TREE_CODE (derived->ns->proc_name->backend_decl)
2561 == NAMESPACE_DECL)
2562 {
2563 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2564 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2565 = derived->ns->proc_name->backend_decl;
2566 }
2567 }
2568
2569 derived->backend_decl = typenode;
2570
2571 copy_derived_types:
2572
2573 for (dt = gfc_derived_types; dt; dt = dt->next)
2574 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2575
2576 return derived->backend_decl;
2577 }
2578
2579
2580 int
2581 gfc_return_by_reference (gfc_symbol * sym)
2582 {
2583 if (!sym->attr.function)
2584 return 0;
2585
2586 if (sym->attr.dimension)
2587 return 1;
2588
2589 if (sym->ts.type == BT_CHARACTER
2590 && !sym->attr.is_bind_c
2591 && (!sym->attr.result
2592 || !sym->ns->proc_name
2593 || !sym->ns->proc_name->attr.is_bind_c))
2594 return 1;
2595
2596 /* Possibly return complex numbers by reference for g77 compatibility.
2597 We don't do this for calls to intrinsics (as the library uses the
2598 -fno-f2c calling convention), nor for calls to functions which always
2599 require an explicit interface, as no compatibility problems can
2600 arise there. */
2601 if (gfc_option.flag_f2c
2602 && sym->ts.type == BT_COMPLEX
2603 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2604 return 1;
2605
2606 return 0;
2607 }
2608 \f
2609 static tree
2610 gfc_get_mixed_entry_union (gfc_namespace *ns)
2611 {
2612 tree type;
2613 tree *chain = NULL;
2614 char name[GFC_MAX_SYMBOL_LEN + 1];
2615 gfc_entry_list *el, *el2;
2616
2617 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2618 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2619
2620 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2621
2622 /* Build the type node. */
2623 type = make_node (UNION_TYPE);
2624
2625 TYPE_NAME (type) = get_identifier (name);
2626
2627 for (el = ns->entries; el; el = el->next)
2628 {
2629 /* Search for duplicates. */
2630 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2631 if (el2->sym->result == el->sym->result)
2632 break;
2633
2634 if (el == el2)
2635 gfc_add_field_to_struct_1 (type,
2636 get_identifier (el->sym->result->name),
2637 gfc_sym_type (el->sym->result), &chain);
2638 }
2639
2640 /* Finish off the type. */
2641 gfc_finish_type (type);
2642 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2643 return type;
2644 }
2645 \f
2646 /* Create a "fn spec" based on the formal arguments;
2647 cf. create_function_arglist. */
2648
2649 static tree
2650 create_fn_spec (gfc_symbol *sym, tree fntype)
2651 {
2652 char spec[150];
2653 size_t spec_len;
2654 gfc_formal_arglist *f;
2655 tree tmp;
2656
2657 memset (&spec, 0, sizeof (spec));
2658 spec[0] = '.';
2659 spec_len = 1;
2660
2661 if (sym->attr.entry_master)
2662 spec[spec_len++] = 'R';
2663 if (gfc_return_by_reference (sym))
2664 {
2665 gfc_symbol *result = sym->result ? sym->result : sym;
2666
2667 if (result->attr.pointer || sym->attr.proc_pointer)
2668 spec[spec_len++] = '.';
2669 else
2670 spec[spec_len++] = 'w';
2671 if (sym->ts.type == BT_CHARACTER)
2672 spec[spec_len++] = 'R';
2673 }
2674
2675 for (f = sym->formal; f; f = f->next)
2676 if (spec_len < sizeof (spec))
2677 {
2678 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2679 || f->sym->attr.external || f->sym->attr.cray_pointer
2680 || (f->sym->ts.type == BT_DERIVED
2681 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2682 || f->sym->ts.u.derived->attr.pointer_comp))
2683 || (f->sym->ts.type == BT_CLASS
2684 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2685 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2686 spec[spec_len++] = '.';
2687 else if (f->sym->attr.intent == INTENT_IN)
2688 spec[spec_len++] = 'r';
2689 else if (f->sym)
2690 spec[spec_len++] = 'w';
2691 }
2692
2693 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2694 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2695 return build_type_attribute_variant (fntype, tmp);
2696 }
2697
2698
2699 tree
2700 gfc_get_function_type (gfc_symbol * sym)
2701 {
2702 tree type;
2703 vec<tree, va_gc> *typelist;
2704 gfc_formal_arglist *f;
2705 gfc_symbol *arg;
2706 int alternate_return;
2707 bool is_varargs = true;
2708
2709 /* Make sure this symbol is a function, a subroutine or the main
2710 program. */
2711 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2712 || sym->attr.flavor == FL_PROGRAM);
2713
2714 if (sym->backend_decl)
2715 {
2716 if (sym->attr.proc_pointer)
2717 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
2718 return TREE_TYPE (sym->backend_decl);
2719 }
2720
2721 alternate_return = 0;
2722 typelist = NULL;
2723
2724 if (sym->attr.entry_master)
2725 /* Additional parameter for selecting an entry point. */
2726 vec_safe_push (typelist, gfc_array_index_type);
2727
2728 if (sym->result)
2729 arg = sym->result;
2730 else
2731 arg = sym;
2732
2733 if (arg->ts.type == BT_CHARACTER)
2734 gfc_conv_const_charlen (arg->ts.u.cl);
2735
2736 /* Some functions we use an extra parameter for the return value. */
2737 if (gfc_return_by_reference (sym))
2738 {
2739 type = gfc_sym_type (arg);
2740 if (arg->ts.type == BT_COMPLEX
2741 || arg->attr.dimension
2742 || arg->ts.type == BT_CHARACTER)
2743 type = build_reference_type (type);
2744
2745 vec_safe_push (typelist, type);
2746 if (arg->ts.type == BT_CHARACTER)
2747 {
2748 if (!arg->ts.deferred)
2749 /* Transfer by value. */
2750 vec_safe_push (typelist, gfc_charlen_type_node);
2751 else
2752 /* Deferred character lengths are transferred by reference
2753 so that the value can be returned. */
2754 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
2755 }
2756 }
2757
2758 /* Build the argument types for the function. */
2759 for (f = sym->formal; f; f = f->next)
2760 {
2761 arg = f->sym;
2762 if (arg)
2763 {
2764 /* Evaluate constant character lengths here so that they can be
2765 included in the type. */
2766 if (arg->ts.type == BT_CHARACTER)
2767 gfc_conv_const_charlen (arg->ts.u.cl);
2768
2769 if (arg->attr.flavor == FL_PROCEDURE)
2770 {
2771 type = gfc_get_function_type (arg);
2772 type = build_pointer_type (type);
2773 }
2774 else
2775 type = gfc_sym_type (arg);
2776
2777 /* Parameter Passing Convention
2778
2779 We currently pass all parameters by reference.
2780 Parameters with INTENT(IN) could be passed by value.
2781 The problem arises if a function is called via an implicit
2782 prototype. In this situation the INTENT is not known.
2783 For this reason all parameters to global functions must be
2784 passed by reference. Passing by value would potentially
2785 generate bad code. Worse there would be no way of telling that
2786 this code was bad, except that it would give incorrect results.
2787
2788 Contained procedures could pass by value as these are never
2789 used without an explicit interface, and cannot be passed as
2790 actual parameters for a dummy procedure. */
2791
2792 vec_safe_push (typelist, type);
2793 }
2794 else
2795 {
2796 if (sym->attr.subroutine)
2797 alternate_return = 1;
2798 }
2799 }
2800
2801 /* Add hidden string length parameters. */
2802 for (f = sym->formal; f; f = f->next)
2803 {
2804 arg = f->sym;
2805 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2806 {
2807 if (!arg->ts.deferred)
2808 /* Transfer by value. */
2809 type = gfc_charlen_type_node;
2810 else
2811 /* Deferred character lengths are transferred by reference
2812 so that the value can be returned. */
2813 type = build_pointer_type (gfc_charlen_type_node);
2814
2815 vec_safe_push (typelist, type);
2816 }
2817 }
2818
2819 if (!vec_safe_is_empty (typelist)
2820 || sym->attr.is_main_program
2821 || sym->attr.if_source != IFSRC_UNKNOWN)
2822 is_varargs = false;
2823
2824 if (alternate_return)
2825 type = integer_type_node;
2826 else if (!sym->attr.function || gfc_return_by_reference (sym))
2827 type = void_type_node;
2828 else if (sym->attr.mixed_entry_master)
2829 type = gfc_get_mixed_entry_union (sym->ns);
2830 else if (gfc_option.flag_f2c
2831 && sym->ts.type == BT_REAL
2832 && sym->ts.kind == gfc_default_real_kind
2833 && !sym->attr.always_explicit)
2834 {
2835 /* Special case: f2c calling conventions require that (scalar)
2836 default REAL functions return the C type double instead. f2c
2837 compatibility is only an issue with functions that don't
2838 require an explicit interface, as only these could be
2839 implemented in Fortran 77. */
2840 sym->ts.kind = gfc_default_double_kind;
2841 type = gfc_typenode_for_spec (&sym->ts);
2842 sym->ts.kind = gfc_default_real_kind;
2843 }
2844 else if (sym->result && sym->result->attr.proc_pointer)
2845 /* Procedure pointer return values. */
2846 {
2847 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2848 {
2849 /* Unset proc_pointer as gfc_get_function_type
2850 is called recursively. */
2851 sym->result->attr.proc_pointer = 0;
2852 type = build_pointer_type (gfc_get_function_type (sym->result));
2853 sym->result->attr.proc_pointer = 1;
2854 }
2855 else
2856 type = gfc_sym_type (sym->result);
2857 }
2858 else
2859 type = gfc_sym_type (sym);
2860
2861 if (is_varargs)
2862 type = build_varargs_function_type_vec (type, typelist);
2863 else
2864 type = build_function_type_vec (type, typelist);
2865 type = create_fn_spec (sym, type);
2866
2867 return type;
2868 }
2869 \f
2870 /* Language hooks for middle-end access to type nodes. */
2871
2872 /* Return an integer type with BITS bits of precision,
2873 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2874
2875 tree
2876 gfc_type_for_size (unsigned bits, int unsignedp)
2877 {
2878 if (!unsignedp)
2879 {
2880 int i;
2881 for (i = 0; i <= MAX_INT_KINDS; ++i)
2882 {
2883 tree type = gfc_integer_types[i];
2884 if (type && bits == TYPE_PRECISION (type))
2885 return type;
2886 }
2887
2888 /* Handle TImode as a special case because it is used by some backends
2889 (e.g. ARM) even though it is not available for normal use. */
2890 #if HOST_BITS_PER_WIDE_INT >= 64
2891 if (bits == TYPE_PRECISION (intTI_type_node))
2892 return intTI_type_node;
2893 #endif
2894
2895 if (bits <= TYPE_PRECISION (intQI_type_node))
2896 return intQI_type_node;
2897 if (bits <= TYPE_PRECISION (intHI_type_node))
2898 return intHI_type_node;
2899 if (bits <= TYPE_PRECISION (intSI_type_node))
2900 return intSI_type_node;
2901 if (bits <= TYPE_PRECISION (intDI_type_node))
2902 return intDI_type_node;
2903 if (bits <= TYPE_PRECISION (intTI_type_node))
2904 return intTI_type_node;
2905 }
2906 else
2907 {
2908 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2909 return unsigned_intQI_type_node;
2910 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2911 return unsigned_intHI_type_node;
2912 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2913 return unsigned_intSI_type_node;
2914 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2915 return unsigned_intDI_type_node;
2916 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2917 return unsigned_intTI_type_node;
2918 }
2919
2920 return NULL_TREE;
2921 }
2922
2923 /* Return a data type that has machine mode MODE. If the mode is an
2924 integer, then UNSIGNEDP selects between signed and unsigned types. */
2925
2926 tree
2927 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2928 {
2929 int i;
2930 tree *base;
2931
2932 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2933 base = gfc_real_types;
2934 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2935 base = gfc_complex_types;
2936 else if (SCALAR_INT_MODE_P (mode))
2937 {
2938 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2939 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
2940 }
2941 else if (VECTOR_MODE_P (mode))
2942 {
2943 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2944 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2945 if (inner_type != NULL_TREE)
2946 return build_vector_type_for_mode (inner_type, mode);
2947 return NULL_TREE;
2948 }
2949 else
2950 return NULL_TREE;
2951
2952 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2953 {
2954 tree type = base[i];
2955 if (type && mode == TYPE_MODE (type))
2956 return type;
2957 }
2958
2959 return NULL_TREE;
2960 }
2961
2962 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2963 in that case. */
2964
2965 bool
2966 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2967 {
2968 int rank, dim;
2969 bool indirect = false;
2970 tree etype, ptype, field, t, base_decl;
2971 tree data_off, dim_off, dim_size, elem_size;
2972 tree lower_suboff, upper_suboff, stride_suboff;
2973
2974 if (! GFC_DESCRIPTOR_TYPE_P (type))
2975 {
2976 if (! POINTER_TYPE_P (type))
2977 return false;
2978 type = TREE_TYPE (type);
2979 if (! GFC_DESCRIPTOR_TYPE_P (type))
2980 return false;
2981 indirect = true;
2982 }
2983
2984 rank = GFC_TYPE_ARRAY_RANK (type);
2985 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2986 return false;
2987
2988 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2989 gcc_assert (POINTER_TYPE_P (etype));
2990 etype = TREE_TYPE (etype);
2991
2992 /* If the type is not a scalar coarray. */
2993 if (TREE_CODE (etype) == ARRAY_TYPE)
2994 etype = TREE_TYPE (etype);
2995
2996 /* Can't handle variable sized elements yet. */
2997 if (int_size_in_bytes (etype) <= 0)
2998 return false;
2999 /* Nor non-constant lower bounds in assumed shape arrays. */
3000 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3001 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3002 {
3003 for (dim = 0; dim < rank; dim++)
3004 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3005 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3006 return false;
3007 }
3008
3009 memset (info, '\0', sizeof (*info));
3010 info->ndimensions = rank;
3011 info->element_type = etype;
3012 ptype = build_pointer_type (gfc_array_index_type);
3013 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3014 if (!base_decl)
3015 {
3016 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
3017 indirect ? build_pointer_type (ptype) : ptype);
3018 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3019 }
3020 info->base_decl = base_decl;
3021 if (indirect)
3022 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3023
3024 if (GFC_TYPE_ARRAY_SPAN (type))
3025 elem_size = GFC_TYPE_ARRAY_SPAN (type);
3026 else
3027 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
3028 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
3029 data_off = byte_position (field);
3030 field = DECL_CHAIN (field);
3031 field = DECL_CHAIN (field);
3032 field = DECL_CHAIN (field);
3033 dim_off = byte_position (field);
3034 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
3035 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
3036 stride_suboff = byte_position (field);
3037 field = DECL_CHAIN (field);
3038 lower_suboff = byte_position (field);
3039 field = DECL_CHAIN (field);
3040 upper_suboff = byte_position (field);
3041
3042 t = base_decl;
3043 if (!integer_zerop (data_off))
3044 t = fold_build_pointer_plus (t, data_off);
3045 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3046 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3047 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3048 info->allocated = build2 (NE_EXPR, boolean_type_node,
3049 info->data_location, null_pointer_node);
3050 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3051 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3052 info->associated = build2 (NE_EXPR, boolean_type_node,
3053 info->data_location, null_pointer_node);
3054
3055 for (dim = 0; dim < rank; dim++)
3056 {
3057 t = fold_build_pointer_plus (base_decl,
3058 size_binop (PLUS_EXPR,
3059 dim_off, lower_suboff));
3060 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3061 info->dimen[dim].lower_bound = t;
3062 t = fold_build_pointer_plus (base_decl,
3063 size_binop (PLUS_EXPR,
3064 dim_off, upper_suboff));
3065 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3066 info->dimen[dim].upper_bound = t;
3067 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3068 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3069 {
3070 /* Assumed shape arrays have known lower bounds. */
3071 info->dimen[dim].upper_bound
3072 = build2 (MINUS_EXPR, gfc_array_index_type,
3073 info->dimen[dim].upper_bound,
3074 info->dimen[dim].lower_bound);
3075 info->dimen[dim].lower_bound
3076 = fold_convert (gfc_array_index_type,
3077 GFC_TYPE_ARRAY_LBOUND (type, dim));
3078 info->dimen[dim].upper_bound
3079 = build2 (PLUS_EXPR, gfc_array_index_type,
3080 info->dimen[dim].lower_bound,
3081 info->dimen[dim].upper_bound);
3082 }
3083 t = fold_build_pointer_plus (base_decl,
3084 size_binop (PLUS_EXPR,
3085 dim_off, stride_suboff));
3086 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3087 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3088 info->dimen[dim].stride = t;
3089 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3090 }
3091
3092 return true;
3093 }
3094
3095 #include "gt-fortran-trans-types.h"