re PR fortran/41600 ([OOP] SELECT TYPE with associate-name => exp: Arrays not supported)
[gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Paul Brook <paul@nowt.org>
6 and Steven Bosscher <s.bosscher@student.tudelft.nl>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* trans-types.c -- gfortran backend types */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
30 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
31 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
32 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
33 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
34 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
35 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
36 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE,
37 LONG_DOUBLE_TYPE_SIZE and LIBGCC2_HAS_TF_MODE. */
38 #include "tree.h"
39 #include "langhooks.h" /* For iso-c-bindings.def. */
40 #include "target.h"
41 #include "ggc.h"
42 #include "diagnostic-core.h" /* For fatal_error. */
43 #include "toplev.h" /* For rest_of_decl_compilation. */
44 #include "gfortran.h"
45 #include "trans.h"
46 #include "trans-types.h"
47 #include "trans-const.h"
48 #include "flags.h"
49 #include "dwarf2out.h" /* For struct array_descr_info. */
50 \f
51
52 #if (GFC_MAX_DIMENSIONS < 10)
53 #define GFC_RANK_DIGITS 1
54 #define GFC_RANK_PRINTF_FORMAT "%01d"
55 #elif (GFC_MAX_DIMENSIONS < 100)
56 #define GFC_RANK_DIGITS 2
57 #define GFC_RANK_PRINTF_FORMAT "%02d"
58 #else
59 #error If you really need >99 dimensions, continue the sequence above...
60 #endif
61
62 /* array of structs so we don't have to worry about xmalloc or free */
63 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
64
65 tree gfc_array_index_type;
66 tree gfc_array_range_type;
67 tree gfc_character1_type_node;
68 tree pvoid_type_node;
69 tree prvoid_type_node;
70 tree ppvoid_type_node;
71 tree pchar_type_node;
72 tree pfunc_type_node;
73
74 tree gfc_charlen_type_node;
75
76 tree float128_type_node = NULL_TREE;
77 tree complex_float128_type_node = NULL_TREE;
78
79 bool gfc_real16_is_float128 = false;
80
81 static GTY(()) tree gfc_desc_dim_type;
82 static GTY(()) tree gfc_max_array_element_size;
83 static GTY(()) tree gfc_array_descriptor_base[2 * GFC_MAX_DIMENSIONS];
84 static GTY(()) tree gfc_array_descriptor_base_caf[2 * GFC_MAX_DIMENSIONS];
85
86 /* Arrays for all integral and real kinds. We'll fill this in at runtime
87 after the target has a chance to process command-line options. */
88
89 #define MAX_INT_KINDS 5
90 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
91 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
92 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
93 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
94
95 #define MAX_REAL_KINDS 5
96 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
97 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
98 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
99
100 #define MAX_CHARACTER_KINDS 2
101 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
102 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
103 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
104
105 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
106
107 /* The integer kind to use for array indices. This will be set to the
108 proper value based on target information from the backend. */
109
110 int gfc_index_integer_kind;
111
112 /* The default kinds of the various types. */
113
114 int gfc_default_integer_kind;
115 int gfc_max_integer_kind;
116 int gfc_default_real_kind;
117 int gfc_default_double_kind;
118 int gfc_default_character_kind;
119 int gfc_default_logical_kind;
120 int gfc_default_complex_kind;
121 int gfc_c_int_kind;
122 int gfc_atomic_int_kind;
123 int gfc_atomic_logical_kind;
124
125 /* The kind size used for record offsets. If the target system supports
126 kind=8, this will be set to 8, otherwise it is set to 4. */
127 int gfc_intio_kind;
128
129 /* The integer kind used to store character lengths. */
130 int gfc_charlen_int_kind;
131
132 /* The size of the numeric storage unit and character storage unit. */
133 int gfc_numeric_storage_size;
134 int gfc_character_storage_size;
135
136
137 gfc_try
138 gfc_check_any_c_kind (gfc_typespec *ts)
139 {
140 int i;
141
142 for (i = 0; i < ISOCBINDING_NUMBER; i++)
143 {
144 /* Check for any C interoperable kind for the given type/kind in ts.
145 This can be used after verify_c_interop to make sure that the
146 Fortran kind being used exists in at least some form for C. */
147 if (c_interop_kinds_table[i].f90_type == ts->type &&
148 c_interop_kinds_table[i].value == ts->kind)
149 return SUCCESS;
150 }
151
152 return FAILURE;
153 }
154
155
156 static int
157 get_real_kind_from_node (tree type)
158 {
159 int i;
160
161 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
162 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
163 return gfc_real_kinds[i].kind;
164
165 return -4;
166 }
167
168 static int
169 get_int_kind_from_node (tree type)
170 {
171 int i;
172
173 if (!type)
174 return -2;
175
176 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
177 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
178 return gfc_integer_kinds[i].kind;
179
180 return -1;
181 }
182
183 /* Return a typenode for the "standard" C type with a given name. */
184 static tree
185 get_typenode_from_name (const char *name)
186 {
187 if (name == NULL || *name == '\0')
188 return NULL_TREE;
189
190 if (strcmp (name, "char") == 0)
191 return char_type_node;
192 if (strcmp (name, "unsigned char") == 0)
193 return unsigned_char_type_node;
194 if (strcmp (name, "signed char") == 0)
195 return signed_char_type_node;
196
197 if (strcmp (name, "short int") == 0)
198 return short_integer_type_node;
199 if (strcmp (name, "short unsigned int") == 0)
200 return short_unsigned_type_node;
201
202 if (strcmp (name, "int") == 0)
203 return integer_type_node;
204 if (strcmp (name, "unsigned int") == 0)
205 return unsigned_type_node;
206
207 if (strcmp (name, "long int") == 0)
208 return long_integer_type_node;
209 if (strcmp (name, "long unsigned int") == 0)
210 return long_unsigned_type_node;
211
212 if (strcmp (name, "long long int") == 0)
213 return long_long_integer_type_node;
214 if (strcmp (name, "long long unsigned int") == 0)
215 return long_long_unsigned_type_node;
216
217 gcc_unreachable ();
218 }
219
220 static int
221 get_int_kind_from_name (const char *name)
222 {
223 return get_int_kind_from_node (get_typenode_from_name (name));
224 }
225
226
227 /* Get the kind number corresponding to an integer of given size,
228 following the required return values for ISO_FORTRAN_ENV INT* constants:
229 -2 is returned if we support a kind of larger size, -1 otherwise. */
230 int
231 gfc_get_int_kind_from_width_isofortranenv (int size)
232 {
233 int i;
234
235 /* Look for a kind with matching storage size. */
236 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
237 if (gfc_integer_kinds[i].bit_size == size)
238 return gfc_integer_kinds[i].kind;
239
240 /* Look for a kind with larger storage size. */
241 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
242 if (gfc_integer_kinds[i].bit_size > size)
243 return -2;
244
245 return -1;
246 }
247
248 /* Get the kind number corresponding to a real of given storage size,
249 following the required return values for ISO_FORTRAN_ENV REAL* constants:
250 -2 is returned if we support a kind of larger size, -1 otherwise. */
251 int
252 gfc_get_real_kind_from_width_isofortranenv (int size)
253 {
254 int i;
255
256 size /= 8;
257
258 /* Look for a kind with matching storage size. */
259 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
260 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
261 return gfc_real_kinds[i].kind;
262
263 /* Look for a kind with larger storage size. */
264 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
265 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
266 return -2;
267
268 return -1;
269 }
270
271
272
273 static int
274 get_int_kind_from_width (int size)
275 {
276 int i;
277
278 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
279 if (gfc_integer_kinds[i].bit_size == size)
280 return gfc_integer_kinds[i].kind;
281
282 return -2;
283 }
284
285 static int
286 get_int_kind_from_minimal_width (int size)
287 {
288 int i;
289
290 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
291 if (gfc_integer_kinds[i].bit_size >= size)
292 return gfc_integer_kinds[i].kind;
293
294 return -2;
295 }
296
297
298 /* Generate the CInteropKind_t objects for the C interoperable
299 kinds. */
300
301 void
302 gfc_init_c_interop_kinds (void)
303 {
304 int i;
305
306 /* init all pointers in the list to NULL */
307 for (i = 0; i < ISOCBINDING_NUMBER; i++)
308 {
309 /* Initialize the name and value fields. */
310 c_interop_kinds_table[i].name[0] = '\0';
311 c_interop_kinds_table[i].value = -100;
312 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
313 }
314
315 #define NAMED_INTCST(a,b,c,d) \
316 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
317 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
318 c_interop_kinds_table[a].value = c;
319 #define NAMED_REALCST(a,b,c,d) \
320 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
321 c_interop_kinds_table[a].f90_type = BT_REAL; \
322 c_interop_kinds_table[a].value = c;
323 #define NAMED_CMPXCST(a,b,c,d) \
324 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
325 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
326 c_interop_kinds_table[a].value = c;
327 #define NAMED_LOGCST(a,b,c) \
328 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
329 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
330 c_interop_kinds_table[a].value = c;
331 #define NAMED_CHARKNDCST(a,b,c) \
332 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
334 c_interop_kinds_table[a].value = c;
335 #define NAMED_CHARCST(a,b,c) \
336 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
337 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
338 c_interop_kinds_table[a].value = c;
339 #define DERIVED_TYPE(a,b,c) \
340 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
341 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
342 c_interop_kinds_table[a].value = c;
343 #define PROCEDURE(a,b) \
344 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
345 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
346 c_interop_kinds_table[a].value = 0;
347 #include "iso-c-binding.def"
348 #define NAMED_FUNCTION(a,b,c,d) \
349 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
350 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
351 c_interop_kinds_table[a].value = c;
352 #include "iso-c-binding.def"
353 }
354
355
356 /* Query the target to determine which machine modes are available for
357 computation. Choose KIND numbers for them. */
358
359 void
360 gfc_init_kinds (void)
361 {
362 unsigned int mode;
363 int i_index, r_index, kind;
364 bool saw_i4 = false, saw_i8 = false;
365 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
366
367 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
368 {
369 int kind, bitsize;
370
371 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
372 continue;
373
374 /* The middle end doesn't support constants larger than 2*HWI.
375 Perhaps the target hook shouldn't have accepted these either,
376 but just to be safe... */
377 bitsize = GET_MODE_BITSIZE (mode);
378 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
379 continue;
380
381 gcc_assert (i_index != MAX_INT_KINDS);
382
383 /* Let the kind equal the bit size divided by 8. This insulates the
384 programmer from the underlying byte size. */
385 kind = bitsize / 8;
386
387 if (kind == 4)
388 saw_i4 = true;
389 if (kind == 8)
390 saw_i8 = true;
391
392 gfc_integer_kinds[i_index].kind = kind;
393 gfc_integer_kinds[i_index].radix = 2;
394 gfc_integer_kinds[i_index].digits = bitsize - 1;
395 gfc_integer_kinds[i_index].bit_size = bitsize;
396
397 gfc_logical_kinds[i_index].kind = kind;
398 gfc_logical_kinds[i_index].bit_size = bitsize;
399
400 i_index += 1;
401 }
402
403 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
404 used for large file access. */
405
406 if (saw_i8)
407 gfc_intio_kind = 8;
408 else
409 gfc_intio_kind = 4;
410
411 /* If we do not at least have kind = 4, everything is pointless. */
412 gcc_assert(saw_i4);
413
414 /* Set the maximum integer kind. Used with at least BOZ constants. */
415 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
416
417 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
418 {
419 const struct real_format *fmt =
420 REAL_MODE_FORMAT ((enum machine_mode) mode);
421 int kind;
422
423 if (fmt == NULL)
424 continue;
425 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
426 continue;
427
428 /* Only let float, double, long double and __float128 go through.
429 Runtime support for others is not provided, so they would be
430 useless. */
431 if (mode != TYPE_MODE (float_type_node)
432 && (mode != TYPE_MODE (double_type_node))
433 && (mode != TYPE_MODE (long_double_type_node))
434 #if defined(LIBGCC2_HAS_TF_MODE) && defined(ENABLE_LIBQUADMATH_SUPPORT)
435 && (mode != TFmode)
436 #endif
437 )
438 continue;
439
440 /* Let the kind equal the precision divided by 8, rounding up. Again,
441 this insulates the programmer from the underlying byte size.
442
443 Also, it effectively deals with IEEE extended formats. There, the
444 total size of the type may equal 16, but it's got 6 bytes of padding
445 and the increased size can get in the way of a real IEEE quad format
446 which may also be supported by the target.
447
448 We round up so as to handle IA-64 __floatreg (RFmode), which is an
449 82 bit type. Not to be confused with __float80 (XFmode), which is
450 an 80 bit type also supported by IA-64. So XFmode should come out
451 to be kind=10, and RFmode should come out to be kind=11. Egads. */
452
453 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
454
455 if (kind == 4)
456 saw_r4 = true;
457 if (kind == 8)
458 saw_r8 = true;
459 if (kind == 10)
460 saw_r10 = true;
461 if (kind == 16)
462 saw_r16 = true;
463
464 /* Careful we don't stumble a weird internal mode. */
465 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
466 /* Or have too many modes for the allocated space. */
467 gcc_assert (r_index != MAX_REAL_KINDS);
468
469 gfc_real_kinds[r_index].kind = kind;
470 gfc_real_kinds[r_index].radix = fmt->b;
471 gfc_real_kinds[r_index].digits = fmt->p;
472 gfc_real_kinds[r_index].min_exponent = fmt->emin;
473 gfc_real_kinds[r_index].max_exponent = fmt->emax;
474 if (fmt->pnan < fmt->p)
475 /* This is an IBM extended double format (or the MIPS variant)
476 made up of two IEEE doubles. The value of the long double is
477 the sum of the values of the two parts. The most significant
478 part is required to be the value of the long double rounded
479 to the nearest double. If we use emax of 1024 then we can't
480 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
481 rounding will make the most significant part overflow. */
482 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
483 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
484 r_index += 1;
485 }
486
487 /* Choose the default integer kind. We choose 4 unless the user directs us
488 otherwise. Even if the user specified that the default integer kind is 8,
489 the numeric storage size is not 64 bits. In this case, a warning will be
490 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
491
492 gfc_numeric_storage_size = 4 * 8;
493
494 if (gfc_option.flag_default_integer)
495 {
496 if (!saw_i8)
497 fatal_error ("INTEGER(KIND=8) is not available for -fdefault-integer-8 option");
498
499 gfc_default_integer_kind = 8;
500
501 }
502 else if (gfc_option.flag_integer4_kind == 8)
503 {
504 if (!saw_i8)
505 fatal_error ("INTEGER(KIND=8) is not available for -finteger-4-integer-8 option");
506
507 gfc_default_integer_kind = 8;
508 }
509 else if (saw_i4)
510 {
511 gfc_default_integer_kind = 4;
512 }
513 else
514 {
515 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
516 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
517 }
518
519 /* Choose the default real kind. Again, we choose 4 when possible. */
520 if (gfc_option.flag_default_real)
521 {
522 if (!saw_r8)
523 fatal_error ("REAL(KIND=8) is not available for -fdefault-real-8 option");
524
525 gfc_default_real_kind = 8;
526 }
527 else if (gfc_option.flag_real4_kind == 8)
528 {
529 if (!saw_r8)
530 fatal_error ("REAL(KIND=8) is not available for -freal-4-real-8 option");
531
532 gfc_default_real_kind = 8;
533 }
534 else if (gfc_option.flag_real4_kind == 10)
535 {
536 if (!saw_r10)
537 fatal_error ("REAL(KIND=10) is not available for -freal-4-real-10 option");
538
539 gfc_default_real_kind = 10;
540 }
541 else if (gfc_option.flag_real4_kind == 16)
542 {
543 if (!saw_r16)
544 fatal_error ("REAL(KIND=16) is not available for -freal-4-real-16 option");
545
546 gfc_default_real_kind = 16;
547 }
548 else if (saw_r4)
549 gfc_default_real_kind = 4;
550 else
551 gfc_default_real_kind = gfc_real_kinds[0].kind;
552
553 /* Choose the default double kind. If -fdefault-real and -fdefault-double
554 are specified, we use kind=8, if it's available. If -fdefault-real is
555 specified without -fdefault-double, we use kind=16, if it's available.
556 Otherwise we do not change anything. */
557 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
558 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
559
560 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
561 gfc_default_double_kind = 8;
562 else if (gfc_option.flag_default_real && saw_r16)
563 gfc_default_double_kind = 16;
564 else if (gfc_option.flag_real8_kind == 4)
565 {
566 if (!saw_r4)
567 fatal_error ("REAL(KIND=4) is not available for -freal-8-real-4 option");
568
569 gfc_default_double_kind = 4;
570 }
571 else if (gfc_option.flag_real8_kind == 10 )
572 {
573 if (!saw_r10)
574 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-10 option");
575
576 gfc_default_double_kind = 10;
577 }
578 else if (gfc_option.flag_real8_kind == 16 )
579 {
580 if (!saw_r16)
581 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-16 option");
582
583 gfc_default_double_kind = 16;
584 }
585 else if (saw_r4 && saw_r8)
586 gfc_default_double_kind = 8;
587 else
588 {
589 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
590 real ... occupies two contiguous numeric storage units.
591
592 Therefore we must be supplied a kind twice as large as we chose
593 for single precision. There are loopholes, in that double
594 precision must *occupy* two storage units, though it doesn't have
595 to *use* two storage units. Which means that you can make this
596 kind artificially wide by padding it. But at present there are
597 no GCC targets for which a two-word type does not exist, so we
598 just let gfc_validate_kind abort and tell us if something breaks. */
599
600 gfc_default_double_kind
601 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
602 }
603
604 /* The default logical kind is constrained to be the same as the
605 default integer kind. Similarly with complex and real. */
606 gfc_default_logical_kind = gfc_default_integer_kind;
607 gfc_default_complex_kind = gfc_default_real_kind;
608
609 /* We only have two character kinds: ASCII and UCS-4.
610 ASCII corresponds to a 8-bit integer type, if one is available.
611 UCS-4 corresponds to a 32-bit integer type, if one is available. */
612 i_index = 0;
613 if ((kind = get_int_kind_from_width (8)) > 0)
614 {
615 gfc_character_kinds[i_index].kind = kind;
616 gfc_character_kinds[i_index].bit_size = 8;
617 gfc_character_kinds[i_index].name = "ascii";
618 i_index++;
619 }
620 if ((kind = get_int_kind_from_width (32)) > 0)
621 {
622 gfc_character_kinds[i_index].kind = kind;
623 gfc_character_kinds[i_index].bit_size = 32;
624 gfc_character_kinds[i_index].name = "iso_10646";
625 i_index++;
626 }
627
628 /* Choose the smallest integer kind for our default character. */
629 gfc_default_character_kind = gfc_character_kinds[0].kind;
630 gfc_character_storage_size = gfc_default_character_kind * 8;
631
632 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
633
634 /* Pick a kind the same size as the C "int" type. */
635 gfc_c_int_kind = INT_TYPE_SIZE / 8;
636
637 /* Choose atomic kinds to match C's int. */
638 gfc_atomic_int_kind = gfc_c_int_kind;
639 gfc_atomic_logical_kind = gfc_c_int_kind;
640 }
641
642
643 /* Make sure that a valid kind is present. Returns an index into the
644 associated kinds array, -1 if the kind is not present. */
645
646 static int
647 validate_integer (int kind)
648 {
649 int i;
650
651 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
652 if (gfc_integer_kinds[i].kind == kind)
653 return i;
654
655 return -1;
656 }
657
658 static int
659 validate_real (int kind)
660 {
661 int i;
662
663 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
664 if (gfc_real_kinds[i].kind == kind)
665 return i;
666
667 return -1;
668 }
669
670 static int
671 validate_logical (int kind)
672 {
673 int i;
674
675 for (i = 0; gfc_logical_kinds[i].kind; i++)
676 if (gfc_logical_kinds[i].kind == kind)
677 return i;
678
679 return -1;
680 }
681
682 static int
683 validate_character (int kind)
684 {
685 int i;
686
687 for (i = 0; gfc_character_kinds[i].kind; i++)
688 if (gfc_character_kinds[i].kind == kind)
689 return i;
690
691 return -1;
692 }
693
694 /* Validate a kind given a basic type. The return value is the same
695 for the child functions, with -1 indicating nonexistence of the
696 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
697
698 int
699 gfc_validate_kind (bt type, int kind, bool may_fail)
700 {
701 int rc;
702
703 switch (type)
704 {
705 case BT_REAL: /* Fall through */
706 case BT_COMPLEX:
707 rc = validate_real (kind);
708 break;
709 case BT_INTEGER:
710 rc = validate_integer (kind);
711 break;
712 case BT_LOGICAL:
713 rc = validate_logical (kind);
714 break;
715 case BT_CHARACTER:
716 rc = validate_character (kind);
717 break;
718
719 default:
720 gfc_internal_error ("gfc_validate_kind(): Got bad type");
721 }
722
723 if (rc < 0 && !may_fail)
724 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
725
726 return rc;
727 }
728
729
730 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
731 Reuse common type nodes where possible. Recognize if the kind matches up
732 with a C type. This will be used later in determining which routines may
733 be scarfed from libm. */
734
735 static tree
736 gfc_build_int_type (gfc_integer_info *info)
737 {
738 int mode_precision = info->bit_size;
739
740 if (mode_precision == CHAR_TYPE_SIZE)
741 info->c_char = 1;
742 if (mode_precision == SHORT_TYPE_SIZE)
743 info->c_short = 1;
744 if (mode_precision == INT_TYPE_SIZE)
745 info->c_int = 1;
746 if (mode_precision == LONG_TYPE_SIZE)
747 info->c_long = 1;
748 if (mode_precision == LONG_LONG_TYPE_SIZE)
749 info->c_long_long = 1;
750
751 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
752 return intQI_type_node;
753 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
754 return intHI_type_node;
755 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
756 return intSI_type_node;
757 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
758 return intDI_type_node;
759 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
760 return intTI_type_node;
761
762 return make_signed_type (mode_precision);
763 }
764
765 tree
766 gfc_build_uint_type (int size)
767 {
768 if (size == CHAR_TYPE_SIZE)
769 return unsigned_char_type_node;
770 if (size == SHORT_TYPE_SIZE)
771 return short_unsigned_type_node;
772 if (size == INT_TYPE_SIZE)
773 return unsigned_type_node;
774 if (size == LONG_TYPE_SIZE)
775 return long_unsigned_type_node;
776 if (size == LONG_LONG_TYPE_SIZE)
777 return long_long_unsigned_type_node;
778
779 return make_unsigned_type (size);
780 }
781
782
783 static tree
784 gfc_build_real_type (gfc_real_info *info)
785 {
786 int mode_precision = info->mode_precision;
787 tree new_type;
788
789 if (mode_precision == FLOAT_TYPE_SIZE)
790 info->c_float = 1;
791 if (mode_precision == DOUBLE_TYPE_SIZE)
792 info->c_double = 1;
793 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
794 info->c_long_double = 1;
795 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
796 {
797 info->c_float128 = 1;
798 gfc_real16_is_float128 = true;
799 }
800
801 if (TYPE_PRECISION (float_type_node) == mode_precision)
802 return float_type_node;
803 if (TYPE_PRECISION (double_type_node) == mode_precision)
804 return double_type_node;
805 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
806 return long_double_type_node;
807
808 new_type = make_node (REAL_TYPE);
809 TYPE_PRECISION (new_type) = mode_precision;
810 layout_type (new_type);
811 return new_type;
812 }
813
814 static tree
815 gfc_build_complex_type (tree scalar_type)
816 {
817 tree new_type;
818
819 if (scalar_type == NULL)
820 return NULL;
821 if (scalar_type == float_type_node)
822 return complex_float_type_node;
823 if (scalar_type == double_type_node)
824 return complex_double_type_node;
825 if (scalar_type == long_double_type_node)
826 return complex_long_double_type_node;
827
828 new_type = make_node (COMPLEX_TYPE);
829 TREE_TYPE (new_type) = scalar_type;
830 layout_type (new_type);
831 return new_type;
832 }
833
834 static tree
835 gfc_build_logical_type (gfc_logical_info *info)
836 {
837 int bit_size = info->bit_size;
838 tree new_type;
839
840 if (bit_size == BOOL_TYPE_SIZE)
841 {
842 info->c_bool = 1;
843 return boolean_type_node;
844 }
845
846 new_type = make_unsigned_type (bit_size);
847 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
848 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
849 TYPE_PRECISION (new_type) = 1;
850
851 return new_type;
852 }
853
854
855 /* Create the backend type nodes. We map them to their
856 equivalent C type, at least for now. We also give
857 names to the types here, and we push them in the
858 global binding level context.*/
859
860 void
861 gfc_init_types (void)
862 {
863 char name_buf[18];
864 int index;
865 tree type;
866 unsigned n;
867 unsigned HOST_WIDE_INT hi;
868 unsigned HOST_WIDE_INT lo;
869
870 /* Create and name the types. */
871 #define PUSH_TYPE(name, node) \
872 pushdecl (build_decl (input_location, \
873 TYPE_DECL, get_identifier (name), node))
874
875 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
876 {
877 type = gfc_build_int_type (&gfc_integer_kinds[index]);
878 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
879 if (TYPE_STRING_FLAG (type))
880 type = make_signed_type (gfc_integer_kinds[index].bit_size);
881 gfc_integer_types[index] = type;
882 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
883 gfc_integer_kinds[index].kind);
884 PUSH_TYPE (name_buf, type);
885 }
886
887 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
888 {
889 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
890 gfc_logical_types[index] = type;
891 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
892 gfc_logical_kinds[index].kind);
893 PUSH_TYPE (name_buf, type);
894 }
895
896 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
897 {
898 type = gfc_build_real_type (&gfc_real_kinds[index]);
899 gfc_real_types[index] = type;
900 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
901 gfc_real_kinds[index].kind);
902 PUSH_TYPE (name_buf, type);
903
904 if (gfc_real_kinds[index].c_float128)
905 float128_type_node = type;
906
907 type = gfc_build_complex_type (type);
908 gfc_complex_types[index] = type;
909 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
910 gfc_real_kinds[index].kind);
911 PUSH_TYPE (name_buf, type);
912
913 if (gfc_real_kinds[index].c_float128)
914 complex_float128_type_node = type;
915 }
916
917 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
918 {
919 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
920 type = build_qualified_type (type, TYPE_UNQUALIFIED);
921 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
922 gfc_character_kinds[index].kind);
923 PUSH_TYPE (name_buf, type);
924 gfc_character_types[index] = type;
925 gfc_pcharacter_types[index] = build_pointer_type (type);
926 }
927 gfc_character1_type_node = gfc_character_types[0];
928
929 PUSH_TYPE ("byte", unsigned_char_type_node);
930 PUSH_TYPE ("void", void_type_node);
931
932 /* DBX debugging output gets upset if these aren't set. */
933 if (!TYPE_NAME (integer_type_node))
934 PUSH_TYPE ("c_integer", integer_type_node);
935 if (!TYPE_NAME (char_type_node))
936 PUSH_TYPE ("c_char", char_type_node);
937
938 #undef PUSH_TYPE
939
940 pvoid_type_node = build_pointer_type (void_type_node);
941 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
942 ppvoid_type_node = build_pointer_type (pvoid_type_node);
943 pchar_type_node = build_pointer_type (gfc_character1_type_node);
944 pfunc_type_node
945 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
946
947 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
948 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
949 since this function is called before gfc_init_constants. */
950 gfc_array_range_type
951 = build_range_type (gfc_array_index_type,
952 build_int_cst (gfc_array_index_type, 0),
953 NULL_TREE);
954
955 /* The maximum array element size that can be handled is determined
956 by the number of bits available to store this field in the array
957 descriptor. */
958
959 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
960 lo = ~ (unsigned HOST_WIDE_INT) 0;
961 if (n > HOST_BITS_PER_WIDE_INT)
962 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
963 else
964 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
965 gfc_max_array_element_size
966 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
967
968 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
969 boolean_true_node = build_int_cst (boolean_type_node, 1);
970 boolean_false_node = build_int_cst (boolean_type_node, 0);
971
972 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
973 gfc_charlen_int_kind = 4;
974 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
975 }
976
977 /* Get the type node for the given type and kind. */
978
979 tree
980 gfc_get_int_type (int kind)
981 {
982 int index = gfc_validate_kind (BT_INTEGER, kind, true);
983 return index < 0 ? 0 : gfc_integer_types[index];
984 }
985
986 tree
987 gfc_get_real_type (int kind)
988 {
989 int index = gfc_validate_kind (BT_REAL, kind, true);
990 return index < 0 ? 0 : gfc_real_types[index];
991 }
992
993 tree
994 gfc_get_complex_type (int kind)
995 {
996 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
997 return index < 0 ? 0 : gfc_complex_types[index];
998 }
999
1000 tree
1001 gfc_get_logical_type (int kind)
1002 {
1003 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
1004 return index < 0 ? 0 : gfc_logical_types[index];
1005 }
1006
1007 tree
1008 gfc_get_char_type (int kind)
1009 {
1010 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1011 return index < 0 ? 0 : gfc_character_types[index];
1012 }
1013
1014 tree
1015 gfc_get_pchar_type (int kind)
1016 {
1017 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1018 return index < 0 ? 0 : gfc_pcharacter_types[index];
1019 }
1020
1021 \f
1022 /* Create a character type with the given kind and length. */
1023
1024 tree
1025 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1026 {
1027 tree bounds, type;
1028
1029 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1030 type = build_array_type (eltype, bounds);
1031 TYPE_STRING_FLAG (type) = 1;
1032
1033 return type;
1034 }
1035
1036 tree
1037 gfc_get_character_type_len (int kind, tree len)
1038 {
1039 gfc_validate_kind (BT_CHARACTER, kind, false);
1040 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1041 }
1042
1043
1044 /* Get a type node for a character kind. */
1045
1046 tree
1047 gfc_get_character_type (int kind, gfc_charlen * cl)
1048 {
1049 tree len;
1050
1051 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1052
1053 return gfc_get_character_type_len (kind, len);
1054 }
1055 \f
1056 /* Covert a basic type. This will be an array for character types. */
1057
1058 tree
1059 gfc_typenode_for_spec (gfc_typespec * spec)
1060 {
1061 tree basetype;
1062
1063 switch (spec->type)
1064 {
1065 case BT_UNKNOWN:
1066 gcc_unreachable ();
1067
1068 case BT_INTEGER:
1069 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1070 has been resolved. This is done so we can convert C_PTR and
1071 C_FUNPTR to simple variables that get translated to (void *). */
1072 if (spec->f90_type == BT_VOID)
1073 {
1074 if (spec->u.derived
1075 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1076 basetype = ptr_type_node;
1077 else
1078 basetype = pfunc_type_node;
1079 }
1080 else
1081 basetype = gfc_get_int_type (spec->kind);
1082 break;
1083
1084 case BT_REAL:
1085 basetype = gfc_get_real_type (spec->kind);
1086 break;
1087
1088 case BT_COMPLEX:
1089 basetype = gfc_get_complex_type (spec->kind);
1090 break;
1091
1092 case BT_LOGICAL:
1093 basetype = gfc_get_logical_type (spec->kind);
1094 break;
1095
1096 case BT_CHARACTER:
1097 #if 0
1098 if (spec->deferred)
1099 basetype = gfc_get_character_type (spec->kind, NULL);
1100 else
1101 #endif
1102 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1103 break;
1104
1105 case BT_DERIVED:
1106 case BT_CLASS:
1107 basetype = gfc_get_derived_type (spec->u.derived);
1108
1109 if (spec->type == BT_CLASS)
1110 GFC_CLASS_TYPE_P (basetype) = 1;
1111
1112 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1113 type and kind to fit a (void *) and the basetype returned was a
1114 ptr_type_node. We need to pass up this new information to the
1115 symbol that was declared of type C_PTR or C_FUNPTR. */
1116 if (spec->u.derived->attr.is_iso_c)
1117 {
1118 spec->type = spec->u.derived->ts.type;
1119 spec->kind = spec->u.derived->ts.kind;
1120 spec->f90_type = spec->u.derived->ts.f90_type;
1121 }
1122 break;
1123 case BT_VOID:
1124 case BT_ASSUMED:
1125 /* This is for the second arg to c_f_pointer and c_f_procpointer
1126 of the iso_c_binding module, to accept any ptr type. */
1127 basetype = ptr_type_node;
1128 if (spec->f90_type == BT_VOID)
1129 {
1130 if (spec->u.derived
1131 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1132 basetype = ptr_type_node;
1133 else
1134 basetype = pfunc_type_node;
1135 }
1136 break;
1137 default:
1138 gcc_unreachable ();
1139 }
1140 return basetype;
1141 }
1142 \f
1143 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1144
1145 static tree
1146 gfc_conv_array_bound (gfc_expr * expr)
1147 {
1148 /* If expr is an integer constant, return that. */
1149 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1150 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1151
1152 /* Otherwise return NULL. */
1153 return NULL_TREE;
1154 }
1155 \f
1156 tree
1157 gfc_get_element_type (tree type)
1158 {
1159 tree element;
1160
1161 if (GFC_ARRAY_TYPE_P (type))
1162 {
1163 if (TREE_CODE (type) == POINTER_TYPE)
1164 type = TREE_TYPE (type);
1165 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1166 {
1167 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1168 element = type;
1169 }
1170 else
1171 {
1172 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1173 element = TREE_TYPE (type);
1174 }
1175 }
1176 else
1177 {
1178 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1179 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1180
1181 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1182 element = TREE_TYPE (element);
1183
1184 /* For arrays, which are not scalar coarrays. */
1185 if (TREE_CODE (element) == ARRAY_TYPE)
1186 element = TREE_TYPE (element);
1187 }
1188
1189 return element;
1190 }
1191 \f
1192 /* Build an array. This function is called from gfc_sym_type().
1193 Actually returns array descriptor type.
1194
1195 Format of array descriptors is as follows:
1196
1197 struct gfc_array_descriptor
1198 {
1199 array *data
1200 index offset;
1201 index dtype;
1202 struct descriptor_dimension dimension[N_DIM];
1203 }
1204
1205 struct descriptor_dimension
1206 {
1207 index stride;
1208 index lbound;
1209 index ubound;
1210 }
1211
1212 Translation code should use gfc_conv_descriptor_* rather than
1213 accessing the descriptor directly. Any changes to the array
1214 descriptor type will require changes in gfc_conv_descriptor_* and
1215 gfc_build_array_initializer.
1216
1217 This is represented internally as a RECORD_TYPE. The index nodes
1218 are gfc_array_index_type and the data node is a pointer to the
1219 data. See below for the handling of character types.
1220
1221 The dtype member is formatted as follows:
1222 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1223 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1224 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1225
1226 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1227 this generated poor code for assumed/deferred size arrays. These
1228 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1229 of the GENERIC grammar. Also, there is no way to explicitly set
1230 the array stride, so all data must be packed(1). I've tried to
1231 mark all the functions which would require modification with a GCC
1232 ARRAYS comment.
1233
1234 The data component points to the first element in the array. The
1235 offset field is the position of the origin of the array (i.e. element
1236 (0, 0 ...)). This may be outside the bounds of the array.
1237
1238 An element is accessed by
1239 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1240 This gives good performance as the computation does not involve the
1241 bounds of the array. For packed arrays, this is optimized further
1242 by substituting the known strides.
1243
1244 This system has one problem: all array bounds must be within 2^31
1245 elements of the origin (2^63 on 64-bit machines). For example
1246 integer, dimension (80000:90000, 80000:90000, 2) :: array
1247 may not work properly on 32-bit machines because 80000*80000 >
1248 2^31, so the calculation for stride2 would overflow. This may
1249 still work, but I haven't checked, and it relies on the overflow
1250 doing the right thing.
1251
1252 The way to fix this problem is to access elements as follows:
1253 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1254 Obviously this is much slower. I will make this a compile time
1255 option, something like -fsmall-array-offsets. Mixing code compiled
1256 with and without this switch will work.
1257
1258 (1) This can be worked around by modifying the upper bound of the
1259 previous dimension. This requires extra fields in the descriptor
1260 (both real_ubound and fake_ubound). */
1261
1262
1263 /* Returns true if the array sym does not require a descriptor. */
1264
1265 int
1266 gfc_is_nodesc_array (gfc_symbol * sym)
1267 {
1268 gcc_assert (sym->attr.dimension || sym->attr.codimension);
1269
1270 /* We only want local arrays. */
1271 if (sym->attr.pointer || sym->attr.allocatable)
1272 return 0;
1273
1274 /* We want a descriptor for associate-name arrays that do not have an
1275 explicitely known shape already. */
1276 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1277 return 0;
1278
1279 if (sym->attr.dummy)
1280 return sym->as->type != AS_ASSUMED_SHAPE;
1281
1282 if (sym->attr.result || sym->attr.function)
1283 return 0;
1284
1285 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1286
1287 return 1;
1288 }
1289
1290
1291 /* Create an array descriptor type. */
1292
1293 static tree
1294 gfc_build_array_type (tree type, gfc_array_spec * as,
1295 enum gfc_array_kind akind, bool restricted,
1296 bool contiguous)
1297 {
1298 tree lbound[GFC_MAX_DIMENSIONS];
1299 tree ubound[GFC_MAX_DIMENSIONS];
1300 int n;
1301
1302 for (n = 0; n < as->rank; n++)
1303 {
1304 /* Create expressions for the known bounds of the array. */
1305 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1306 lbound[n] = gfc_index_one_node;
1307 else
1308 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1309 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1310 }
1311
1312 for (n = as->rank; n < as->rank + as->corank; n++)
1313 {
1314 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1315 lbound[n] = gfc_index_one_node;
1316 else
1317 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1318
1319 if (n < as->rank + as->corank - 1)
1320 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1321 }
1322
1323 if (as->type == AS_ASSUMED_SHAPE)
1324 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1325 : GFC_ARRAY_ASSUMED_SHAPE;
1326 return gfc_get_array_type_bounds (type, as->rank, as->corank, lbound,
1327 ubound, 0, akind, restricted);
1328 }
1329 \f
1330 /* Returns the struct descriptor_dimension type. */
1331
1332 static tree
1333 gfc_get_desc_dim_type (void)
1334 {
1335 tree type;
1336 tree decl, *chain = NULL;
1337
1338 if (gfc_desc_dim_type)
1339 return gfc_desc_dim_type;
1340
1341 /* Build the type node. */
1342 type = make_node (RECORD_TYPE);
1343
1344 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1345 TYPE_PACKED (type) = 1;
1346
1347 /* Consists of the stride, lbound and ubound members. */
1348 decl = gfc_add_field_to_struct_1 (type,
1349 get_identifier ("stride"),
1350 gfc_array_index_type, &chain);
1351 TREE_NO_WARNING (decl) = 1;
1352
1353 decl = gfc_add_field_to_struct_1 (type,
1354 get_identifier ("lbound"),
1355 gfc_array_index_type, &chain);
1356 TREE_NO_WARNING (decl) = 1;
1357
1358 decl = gfc_add_field_to_struct_1 (type,
1359 get_identifier ("ubound"),
1360 gfc_array_index_type, &chain);
1361 TREE_NO_WARNING (decl) = 1;
1362
1363 /* Finish off the type. */
1364 gfc_finish_type (type);
1365 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1366
1367 gfc_desc_dim_type = type;
1368 return type;
1369 }
1370
1371
1372 /* Return the DTYPE for an array. This describes the type and type parameters
1373 of the array. */
1374 /* TODO: Only call this when the value is actually used, and make all the
1375 unknown cases abort. */
1376
1377 tree
1378 gfc_get_dtype (tree type)
1379 {
1380 tree size;
1381 int n;
1382 HOST_WIDE_INT i;
1383 tree tmp;
1384 tree dtype;
1385 tree etype;
1386 int rank;
1387
1388 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1389
1390 if (GFC_TYPE_ARRAY_DTYPE (type))
1391 return GFC_TYPE_ARRAY_DTYPE (type);
1392
1393 rank = GFC_TYPE_ARRAY_RANK (type);
1394 etype = gfc_get_element_type (type);
1395
1396 switch (TREE_CODE (etype))
1397 {
1398 case INTEGER_TYPE:
1399 n = BT_INTEGER;
1400 break;
1401
1402 case BOOLEAN_TYPE:
1403 n = BT_LOGICAL;
1404 break;
1405
1406 case REAL_TYPE:
1407 n = BT_REAL;
1408 break;
1409
1410 case COMPLEX_TYPE:
1411 n = BT_COMPLEX;
1412 break;
1413
1414 /* We will never have arrays of arrays. */
1415 case RECORD_TYPE:
1416 n = BT_DERIVED;
1417 break;
1418
1419 case ARRAY_TYPE:
1420 n = BT_CHARACTER;
1421 break;
1422
1423 case POINTER_TYPE:
1424 n = BT_ASSUMED;
1425 break;
1426
1427 default:
1428 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1429 /* We can strange array types for temporary arrays. */
1430 return gfc_index_zero_node;
1431 }
1432
1433 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1434 size = TYPE_SIZE_UNIT (etype);
1435
1436 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1437 if (size && INTEGER_CST_P (size))
1438 {
1439 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1440 gfc_fatal_error ("Array element size too big at %C");
1441
1442 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1443 }
1444 dtype = build_int_cst (gfc_array_index_type, i);
1445
1446 if (size && !INTEGER_CST_P (size))
1447 {
1448 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1449 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1450 gfc_array_index_type,
1451 fold_convert (gfc_array_index_type, size), tmp);
1452 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1453 tmp, dtype);
1454 }
1455 /* If we don't know the size we leave it as zero. This should never happen
1456 for anything that is actually used. */
1457 /* TODO: Check this is actually true, particularly when repacking
1458 assumed size parameters. */
1459
1460 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1461 return dtype;
1462 }
1463
1464
1465 /* Build an array type for use without a descriptor, packed according
1466 to the value of PACKED. */
1467
1468 tree
1469 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1470 bool restricted)
1471 {
1472 tree range;
1473 tree type;
1474 tree tmp;
1475 int n;
1476 int known_stride;
1477 int known_offset;
1478 mpz_t offset;
1479 mpz_t stride;
1480 mpz_t delta;
1481 gfc_expr *expr;
1482
1483 mpz_init_set_ui (offset, 0);
1484 mpz_init_set_ui (stride, 1);
1485 mpz_init (delta);
1486
1487 /* We don't use build_array_type because this does not include include
1488 lang-specific information (i.e. the bounds of the array) when checking
1489 for duplicates. */
1490 if (as->rank)
1491 type = make_node (ARRAY_TYPE);
1492 else
1493 type = build_variant_type_copy (etype);
1494
1495 GFC_ARRAY_TYPE_P (type) = 1;
1496 TYPE_LANG_SPECIFIC (type)
1497 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1498
1499 known_stride = (packed != PACKED_NO);
1500 known_offset = 1;
1501 for (n = 0; n < as->rank; n++)
1502 {
1503 /* Fill in the stride and bound components of the type. */
1504 if (known_stride)
1505 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1506 else
1507 tmp = NULL_TREE;
1508 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1509
1510 expr = as->lower[n];
1511 if (expr->expr_type == EXPR_CONSTANT)
1512 {
1513 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1514 gfc_index_integer_kind);
1515 }
1516 else
1517 {
1518 known_stride = 0;
1519 tmp = NULL_TREE;
1520 }
1521 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1522
1523 if (known_stride)
1524 {
1525 /* Calculate the offset. */
1526 mpz_mul (delta, stride, as->lower[n]->value.integer);
1527 mpz_sub (offset, offset, delta);
1528 }
1529 else
1530 known_offset = 0;
1531
1532 expr = as->upper[n];
1533 if (expr && expr->expr_type == EXPR_CONSTANT)
1534 {
1535 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1536 gfc_index_integer_kind);
1537 }
1538 else
1539 {
1540 tmp = NULL_TREE;
1541 known_stride = 0;
1542 }
1543 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1544
1545 if (known_stride)
1546 {
1547 /* Calculate the stride. */
1548 mpz_sub (delta, as->upper[n]->value.integer,
1549 as->lower[n]->value.integer);
1550 mpz_add_ui (delta, delta, 1);
1551 mpz_mul (stride, stride, delta);
1552 }
1553
1554 /* Only the first stride is known for partial packed arrays. */
1555 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1556 known_stride = 0;
1557 }
1558 for (n = as->rank; n < as->rank + as->corank; n++)
1559 {
1560 expr = as->lower[n];
1561 if (expr->expr_type == EXPR_CONSTANT)
1562 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1563 gfc_index_integer_kind);
1564 else
1565 tmp = NULL_TREE;
1566 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1567
1568 expr = as->upper[n];
1569 if (expr && expr->expr_type == EXPR_CONSTANT)
1570 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1571 gfc_index_integer_kind);
1572 else
1573 tmp = NULL_TREE;
1574 if (n < as->rank + as->corank - 1)
1575 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1576 }
1577
1578 if (known_offset)
1579 {
1580 GFC_TYPE_ARRAY_OFFSET (type) =
1581 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1582 }
1583 else
1584 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1585
1586 if (known_stride)
1587 {
1588 GFC_TYPE_ARRAY_SIZE (type) =
1589 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1590 }
1591 else
1592 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1593
1594 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1595 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1596 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1597 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1598 NULL_TREE);
1599 /* TODO: use main type if it is unbounded. */
1600 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1601 build_pointer_type (build_array_type (etype, range));
1602 if (restricted)
1603 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1604 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1605 TYPE_QUAL_RESTRICT);
1606
1607 if (as->rank == 0)
1608 {
1609 if (packed != PACKED_STATIC || gfc_option.coarray == GFC_FCOARRAY_LIB)
1610 {
1611 type = build_pointer_type (type);
1612
1613 if (restricted)
1614 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1615
1616 GFC_ARRAY_TYPE_P (type) = 1;
1617 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1618 }
1619
1620 return type;
1621 }
1622
1623 if (known_stride)
1624 {
1625 mpz_sub_ui (stride, stride, 1);
1626 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1627 }
1628 else
1629 range = NULL_TREE;
1630
1631 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1632 TYPE_DOMAIN (type) = range;
1633
1634 build_pointer_type (etype);
1635 TREE_TYPE (type) = etype;
1636
1637 layout_type (type);
1638
1639 mpz_clear (offset);
1640 mpz_clear (stride);
1641 mpz_clear (delta);
1642
1643 /* Represent packed arrays as multi-dimensional if they have rank >
1644 1 and with proper bounds, instead of flat arrays. This makes for
1645 better debug info. */
1646 if (known_offset)
1647 {
1648 tree gtype = etype, rtype, type_decl;
1649
1650 for (n = as->rank - 1; n >= 0; n--)
1651 {
1652 rtype = build_range_type (gfc_array_index_type,
1653 GFC_TYPE_ARRAY_LBOUND (type, n),
1654 GFC_TYPE_ARRAY_UBOUND (type, n));
1655 gtype = build_array_type (gtype, rtype);
1656 }
1657 TYPE_NAME (type) = type_decl = build_decl (input_location,
1658 TYPE_DECL, NULL, gtype);
1659 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1660 }
1661
1662 if (packed != PACKED_STATIC || !known_stride
1663 || (as->corank && gfc_option.coarray == GFC_FCOARRAY_LIB))
1664 {
1665 /* For dummy arrays and automatic (heap allocated) arrays we
1666 want a pointer to the array. */
1667 type = build_pointer_type (type);
1668 if (restricted)
1669 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1670 GFC_ARRAY_TYPE_P (type) = 1;
1671 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1672 }
1673 return type;
1674 }
1675
1676
1677 /* Return or create the base type for an array descriptor. */
1678
1679 static tree
1680 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1681 enum gfc_array_kind akind)
1682 {
1683 tree fat_type, decl, arraytype, *chain = NULL;
1684 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1685 int idx = 2 * (codimen + dimen - 1) + restricted;
1686
1687 gcc_assert (codimen + dimen >= 1 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1688
1689 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen)
1690 {
1691 if (gfc_array_descriptor_base_caf[idx])
1692 return gfc_array_descriptor_base_caf[idx];
1693 }
1694 else if (gfc_array_descriptor_base[idx])
1695 return gfc_array_descriptor_base[idx];
1696
1697 /* Build the type node. */
1698 fat_type = make_node (RECORD_TYPE);
1699
1700 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1701 TYPE_NAME (fat_type) = get_identifier (name);
1702 TYPE_NAMELESS (fat_type) = 1;
1703
1704 /* Add the data member as the first element of the descriptor. */
1705 decl = gfc_add_field_to_struct_1 (fat_type,
1706 get_identifier ("data"),
1707 (restricted
1708 ? prvoid_type_node
1709 : ptr_type_node), &chain);
1710
1711 /* Add the base component. */
1712 decl = gfc_add_field_to_struct_1 (fat_type,
1713 get_identifier ("offset"),
1714 gfc_array_index_type, &chain);
1715 TREE_NO_WARNING (decl) = 1;
1716
1717 /* Add the dtype component. */
1718 decl = gfc_add_field_to_struct_1 (fat_type,
1719 get_identifier ("dtype"),
1720 gfc_array_index_type, &chain);
1721 TREE_NO_WARNING (decl) = 1;
1722
1723 /* Build the array type for the stride and bound components. */
1724 arraytype =
1725 build_array_type (gfc_get_desc_dim_type (),
1726 build_range_type (gfc_array_index_type,
1727 gfc_index_zero_node,
1728 gfc_rank_cst[codimen + dimen - 1]));
1729
1730 decl = gfc_add_field_to_struct_1 (fat_type,
1731 get_identifier ("dim"),
1732 arraytype, &chain);
1733 TREE_NO_WARNING (decl) = 1;
1734
1735 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1736 && akind == GFC_ARRAY_ALLOCATABLE)
1737 {
1738 decl = gfc_add_field_to_struct_1 (fat_type,
1739 get_identifier ("token"),
1740 prvoid_type_node, &chain);
1741 TREE_NO_WARNING (decl) = 1;
1742 }
1743
1744 /* Finish off the type. */
1745 gfc_finish_type (fat_type);
1746 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1747
1748 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1749 && akind == GFC_ARRAY_ALLOCATABLE)
1750 gfc_array_descriptor_base_caf[idx] = fat_type;
1751 else
1752 gfc_array_descriptor_base[idx] = fat_type;
1753
1754 return fat_type;
1755 }
1756
1757
1758 /* Build an array (descriptor) type with given bounds. */
1759
1760 tree
1761 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1762 tree * ubound, int packed,
1763 enum gfc_array_kind akind, bool restricted)
1764 {
1765 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1766 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1767 const char *type_name;
1768 int n;
1769
1770 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1771 fat_type = build_distinct_type_copy (base_type);
1772 /* Make sure that nontarget and target array type have the same canonical
1773 type (and same stub decl for debug info). */
1774 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1775 TYPE_CANONICAL (fat_type) = base_type;
1776 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1777
1778 tmp = TYPE_NAME (etype);
1779 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1780 tmp = DECL_NAME (tmp);
1781 if (tmp)
1782 type_name = IDENTIFIER_POINTER (tmp);
1783 else
1784 type_name = "unknown";
1785 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1786 GFC_MAX_SYMBOL_LEN, type_name);
1787 TYPE_NAME (fat_type) = get_identifier (name);
1788 TYPE_NAMELESS (fat_type) = 1;
1789
1790 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1791 TYPE_LANG_SPECIFIC (fat_type)
1792 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1793
1794 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1795 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1796 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1797 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1798
1799 /* Build an array descriptor record type. */
1800 if (packed != 0)
1801 stride = gfc_index_one_node;
1802 else
1803 stride = NULL_TREE;
1804 for (n = 0; n < dimen + codimen; n++)
1805 {
1806 if (n < dimen)
1807 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1808
1809 if (lbound)
1810 lower = lbound[n];
1811 else
1812 lower = NULL_TREE;
1813
1814 if (lower != NULL_TREE)
1815 {
1816 if (INTEGER_CST_P (lower))
1817 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1818 else
1819 lower = NULL_TREE;
1820 }
1821
1822 if (codimen && n == dimen + codimen - 1)
1823 break;
1824
1825 upper = ubound[n];
1826 if (upper != NULL_TREE)
1827 {
1828 if (INTEGER_CST_P (upper))
1829 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1830 else
1831 upper = NULL_TREE;
1832 }
1833
1834 if (n >= dimen)
1835 continue;
1836
1837 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1838 {
1839 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1840 gfc_array_index_type, upper, lower);
1841 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1842 gfc_array_index_type, tmp,
1843 gfc_index_one_node);
1844 stride = fold_build2_loc (input_location, MULT_EXPR,
1845 gfc_array_index_type, tmp, stride);
1846 /* Check the folding worked. */
1847 gcc_assert (INTEGER_CST_P (stride));
1848 }
1849 else
1850 stride = NULL_TREE;
1851 }
1852 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1853
1854 /* TODO: known offsets for descriptors. */
1855 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1856
1857 if (dimen == 0)
1858 {
1859 arraytype = build_pointer_type (etype);
1860 if (restricted)
1861 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1862
1863 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1864 return fat_type;
1865 }
1866
1867 /* We define data as an array with the correct size if possible.
1868 Much better than doing pointer arithmetic. */
1869 if (stride)
1870 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1871 int_const_binop (MINUS_EXPR, stride,
1872 integer_one_node));
1873 else
1874 rtype = gfc_array_range_type;
1875 arraytype = build_array_type (etype, rtype);
1876 arraytype = build_pointer_type (arraytype);
1877 if (restricted)
1878 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1879 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1880
1881 /* This will generate the base declarations we need to emit debug
1882 information for this type. FIXME: there must be a better way to
1883 avoid divergence between compilations with and without debug
1884 information. */
1885 {
1886 struct array_descr_info info;
1887 gfc_get_array_descr_info (fat_type, &info);
1888 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1889 }
1890
1891 return fat_type;
1892 }
1893 \f
1894 /* Build a pointer type. This function is called from gfc_sym_type(). */
1895
1896 static tree
1897 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1898 {
1899 /* Array pointer types aren't actually pointers. */
1900 if (sym->attr.dimension)
1901 return type;
1902 else
1903 return build_pointer_type (type);
1904 }
1905
1906 static tree gfc_nonrestricted_type (tree t);
1907 /* Given two record or union type nodes TO and FROM, ensure
1908 that all fields in FROM have a corresponding field in TO,
1909 their type being nonrestrict variants. This accepts a TO
1910 node that already has a prefix of the fields in FROM. */
1911 static void
1912 mirror_fields (tree to, tree from)
1913 {
1914 tree fto, ffrom;
1915 tree *chain;
1916
1917 /* Forward to the end of TOs fields. */
1918 fto = TYPE_FIELDS (to);
1919 ffrom = TYPE_FIELDS (from);
1920 chain = &TYPE_FIELDS (to);
1921 while (fto)
1922 {
1923 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1924 chain = &DECL_CHAIN (fto);
1925 fto = DECL_CHAIN (fto);
1926 ffrom = DECL_CHAIN (ffrom);
1927 }
1928
1929 /* Now add all fields remaining in FROM (starting with ffrom). */
1930 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1931 {
1932 tree newfield = copy_node (ffrom);
1933 DECL_CONTEXT (newfield) = to;
1934 /* The store to DECL_CHAIN might seem redundant with the
1935 stores to *chain, but not clearing it here would mean
1936 leaving a chain into the old fields. If ever
1937 our called functions would look at them confusion
1938 will arise. */
1939 DECL_CHAIN (newfield) = NULL_TREE;
1940 *chain = newfield;
1941 chain = &DECL_CHAIN (newfield);
1942
1943 if (TREE_CODE (ffrom) == FIELD_DECL)
1944 {
1945 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
1946 TREE_TYPE (newfield) = elemtype;
1947 }
1948 }
1949 *chain = NULL_TREE;
1950 }
1951
1952 /* Given a type T, returns a different type of the same structure,
1953 except that all types it refers to (recursively) are always
1954 non-restrict qualified types. */
1955 static tree
1956 gfc_nonrestricted_type (tree t)
1957 {
1958 tree ret = t;
1959
1960 /* If the type isn't layed out yet, don't copy it. If something
1961 needs it for real it should wait until the type got finished. */
1962 if (!TYPE_SIZE (t))
1963 return t;
1964
1965 if (!TYPE_LANG_SPECIFIC (t))
1966 TYPE_LANG_SPECIFIC (t)
1967 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1968 /* If we're dealing with this very node already further up
1969 the call chain (recursion via pointers and struct members)
1970 we haven't yet determined if we really need a new type node.
1971 Assume we don't, return T itself. */
1972 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
1973 return t;
1974
1975 /* If we have calculated this all already, just return it. */
1976 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
1977 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
1978
1979 /* Mark this type. */
1980 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
1981
1982 switch (TREE_CODE (t))
1983 {
1984 default:
1985 break;
1986
1987 case POINTER_TYPE:
1988 case REFERENCE_TYPE:
1989 {
1990 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
1991 if (totype == TREE_TYPE (t))
1992 ret = t;
1993 else if (TREE_CODE (t) == POINTER_TYPE)
1994 ret = build_pointer_type (totype);
1995 else
1996 ret = build_reference_type (totype);
1997 ret = build_qualified_type (ret,
1998 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
1999 }
2000 break;
2001
2002 case ARRAY_TYPE:
2003 {
2004 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2005 if (elemtype == TREE_TYPE (t))
2006 ret = t;
2007 else
2008 {
2009 ret = build_variant_type_copy (t);
2010 TREE_TYPE (ret) = elemtype;
2011 if (TYPE_LANG_SPECIFIC (t)
2012 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2013 {
2014 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2015 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2016 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2017 {
2018 TYPE_LANG_SPECIFIC (ret)
2019 = ggc_alloc_cleared_lang_type (sizeof (struct
2020 lang_type));
2021 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2022 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2023 }
2024 }
2025 }
2026 }
2027 break;
2028
2029 case RECORD_TYPE:
2030 case UNION_TYPE:
2031 case QUAL_UNION_TYPE:
2032 {
2033 tree field;
2034 /* First determine if we need a new type at all.
2035 Careful, the two calls to gfc_nonrestricted_type per field
2036 might return different values. That happens exactly when
2037 one of the fields reaches back to this very record type
2038 (via pointers). The first calls will assume that we don't
2039 need to copy T (see the error_mark_node marking). If there
2040 are any reasons for copying T apart from having to copy T,
2041 we'll indeed copy it, and the second calls to
2042 gfc_nonrestricted_type will use that new node if they
2043 reach back to T. */
2044 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2045 if (TREE_CODE (field) == FIELD_DECL)
2046 {
2047 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2048 if (elemtype != TREE_TYPE (field))
2049 break;
2050 }
2051 if (!field)
2052 break;
2053 ret = build_variant_type_copy (t);
2054 TYPE_FIELDS (ret) = NULL_TREE;
2055
2056 /* Here we make sure that as soon as we know we have to copy
2057 T, that also fields reaching back to us will use the new
2058 copy. It's okay if that copy still contains the old fields,
2059 we won't look at them. */
2060 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2061 mirror_fields (ret, t);
2062 }
2063 break;
2064 }
2065
2066 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2067 return ret;
2068 }
2069
2070 \f
2071 /* Return the type for a symbol. Special handling is required for character
2072 types to get the correct level of indirection.
2073 For functions return the return type.
2074 For subroutines return void_type_node.
2075 Calling this multiple times for the same symbol should be avoided,
2076 especially for character and array types. */
2077
2078 tree
2079 gfc_sym_type (gfc_symbol * sym)
2080 {
2081 tree type;
2082 int byref;
2083 bool restricted;
2084
2085 /* Procedure Pointers inside COMMON blocks. */
2086 if (sym->attr.proc_pointer && sym->attr.in_common)
2087 {
2088 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2089 sym->attr.proc_pointer = 0;
2090 type = build_pointer_type (gfc_get_function_type (sym));
2091 sym->attr.proc_pointer = 1;
2092 return type;
2093 }
2094
2095 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2096 return void_type_node;
2097
2098 /* In the case of a function the fake result variable may have a
2099 type different from the function type, so don't return early in
2100 that case. */
2101 if (sym->backend_decl && !sym->attr.function)
2102 return TREE_TYPE (sym->backend_decl);
2103
2104 if (sym->ts.type == BT_CHARACTER
2105 && ((sym->attr.function && sym->attr.is_bind_c)
2106 || (sym->attr.result
2107 && sym->ns->proc_name
2108 && sym->ns->proc_name->attr.is_bind_c)))
2109 type = gfc_character1_type_node;
2110 else
2111 type = gfc_typenode_for_spec (&sym->ts);
2112
2113 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2114 byref = 1;
2115 else
2116 byref = 0;
2117
2118 restricted = !sym->attr.target && !sym->attr.pointer
2119 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2120 if (!restricted)
2121 type = gfc_nonrestricted_type (type);
2122
2123 if (sym->attr.dimension || sym->attr.codimension)
2124 {
2125 if (gfc_is_nodesc_array (sym))
2126 {
2127 /* If this is a character argument of unknown length, just use the
2128 base type. */
2129 if (sym->ts.type != BT_CHARACTER
2130 || !(sym->attr.dummy || sym->attr.function)
2131 || sym->ts.u.cl->backend_decl)
2132 {
2133 type = gfc_get_nodesc_array_type (type, sym->as,
2134 byref ? PACKED_FULL
2135 : PACKED_STATIC,
2136 restricted);
2137 byref = 0;
2138 }
2139
2140 if (sym->attr.cray_pointee)
2141 GFC_POINTER_TYPE_P (type) = 1;
2142 }
2143 else
2144 {
2145 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2146 if (sym->attr.pointer)
2147 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2148 : GFC_ARRAY_POINTER;
2149 else if (sym->attr.allocatable)
2150 akind = GFC_ARRAY_ALLOCATABLE;
2151 type = gfc_build_array_type (type, sym->as, akind, restricted,
2152 sym->attr.contiguous);
2153 }
2154 }
2155 else
2156 {
2157 if (sym->attr.allocatable || sym->attr.pointer
2158 || gfc_is_associate_pointer (sym))
2159 type = gfc_build_pointer_type (sym, type);
2160 if (sym->attr.pointer || sym->attr.cray_pointee)
2161 GFC_POINTER_TYPE_P (type) = 1;
2162 }
2163
2164 /* We currently pass all parameters by reference.
2165 See f95_get_function_decl. For dummy function parameters return the
2166 function type. */
2167 if (byref)
2168 {
2169 /* We must use pointer types for potentially absent variables. The
2170 optimizers assume a reference type argument is never NULL. */
2171 if (sym->attr.optional
2172 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2173 type = build_pointer_type (type);
2174 else
2175 {
2176 type = build_reference_type (type);
2177 if (restricted)
2178 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2179 }
2180 }
2181
2182 return (type);
2183 }
2184 \f
2185 /* Layout and output debug info for a record type. */
2186
2187 void
2188 gfc_finish_type (tree type)
2189 {
2190 tree decl;
2191
2192 decl = build_decl (input_location,
2193 TYPE_DECL, NULL_TREE, type);
2194 TYPE_STUB_DECL (type) = decl;
2195 layout_type (type);
2196 rest_of_type_compilation (type, 1);
2197 rest_of_decl_compilation (decl, 1, 0);
2198 }
2199 \f
2200 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2201 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2202 to the end of the field list pointed to by *CHAIN.
2203
2204 Returns a pointer to the new field. */
2205
2206 static tree
2207 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2208 {
2209 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2210
2211 DECL_CONTEXT (decl) = context;
2212 DECL_CHAIN (decl) = NULL_TREE;
2213 if (TYPE_FIELDS (context) == NULL_TREE)
2214 TYPE_FIELDS (context) = decl;
2215 if (chain != NULL)
2216 {
2217 if (*chain != NULL)
2218 **chain = decl;
2219 *chain = &DECL_CHAIN (decl);
2220 }
2221
2222 return decl;
2223 }
2224
2225 /* Like `gfc_add_field_to_struct_1', but adds alignment
2226 information. */
2227
2228 tree
2229 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2230 {
2231 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2232
2233 DECL_INITIAL (decl) = 0;
2234 DECL_ALIGN (decl) = 0;
2235 DECL_USER_ALIGN (decl) = 0;
2236
2237 return decl;
2238 }
2239
2240
2241 /* Copy the backend_decl and component backend_decls if
2242 the two derived type symbols are "equal", as described
2243 in 4.4.2 and resolved by gfc_compare_derived_types. */
2244
2245 int
2246 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2247 bool from_gsym)
2248 {
2249 gfc_component *to_cm;
2250 gfc_component *from_cm;
2251
2252 if (from == to)
2253 return 1;
2254
2255 if (from->backend_decl == NULL
2256 || !gfc_compare_derived_types (from, to))
2257 return 0;
2258
2259 to->backend_decl = from->backend_decl;
2260
2261 to_cm = to->components;
2262 from_cm = from->components;
2263
2264 /* Copy the component declarations. If a component is itself
2265 a derived type, we need a copy of its component declarations.
2266 This is done by recursing into gfc_get_derived_type and
2267 ensures that the component's component declarations have
2268 been built. If it is a character, we need the character
2269 length, as well. */
2270 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2271 {
2272 to_cm->backend_decl = from_cm->backend_decl;
2273 if (from_cm->ts.type == BT_DERIVED
2274 && (!from_cm->attr.pointer || from_gsym))
2275 gfc_get_derived_type (to_cm->ts.u.derived);
2276 else if (from_cm->ts.type == BT_CLASS
2277 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2278 gfc_get_derived_type (to_cm->ts.u.derived);
2279 else if (from_cm->ts.type == BT_CHARACTER)
2280 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2281 }
2282
2283 return 1;
2284 }
2285
2286
2287 /* Build a tree node for a procedure pointer component. */
2288
2289 tree
2290 gfc_get_ppc_type (gfc_component* c)
2291 {
2292 tree t;
2293
2294 /* Explicit interface. */
2295 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2296 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2297
2298 /* Implicit interface (only return value may be known). */
2299 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2300 t = gfc_typenode_for_spec (&c->ts);
2301 else
2302 t = void_type_node;
2303
2304 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2305 }
2306
2307
2308 /* Build a tree node for a derived type. If there are equal
2309 derived types, with different local names, these are built
2310 at the same time. If an equal derived type has been built
2311 in a parent namespace, this is used. */
2312
2313 tree
2314 gfc_get_derived_type (gfc_symbol * derived)
2315 {
2316 tree typenode = NULL, field = NULL, field_type = NULL;
2317 tree canonical = NULL_TREE;
2318 tree *chain = NULL;
2319 bool got_canonical = false;
2320 gfc_component *c;
2321 gfc_dt_list *dt;
2322 gfc_namespace *ns;
2323
2324 if (derived && derived->attr.flavor == FL_PROCEDURE
2325 && derived->attr.generic)
2326 derived = gfc_find_dt_in_generic (derived);
2327
2328 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
2329
2330 /* See if it's one of the iso_c_binding derived types. */
2331 if (derived->attr.is_iso_c == 1)
2332 {
2333 if (derived->backend_decl)
2334 return derived->backend_decl;
2335
2336 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2337 derived->backend_decl = ptr_type_node;
2338 else
2339 derived->backend_decl = pfunc_type_node;
2340
2341 derived->ts.kind = gfc_index_integer_kind;
2342 derived->ts.type = BT_INTEGER;
2343 /* Set the f90_type to BT_VOID as a way to recognize something of type
2344 BT_INTEGER that needs to fit a void * for the purpose of the
2345 iso_c_binding derived types. */
2346 derived->ts.f90_type = BT_VOID;
2347
2348 return derived->backend_decl;
2349 }
2350
2351 /* If use associated, use the module type for this one. */
2352 if (gfc_option.flag_whole_file
2353 && derived->backend_decl == NULL
2354 && derived->attr.use_assoc
2355 && derived->module
2356 && gfc_get_module_backend_decl (derived))
2357 goto copy_derived_types;
2358
2359 /* If a whole file compilation, the derived types from an earlier
2360 namespace can be used as the canonical type. */
2361 if (gfc_option.flag_whole_file
2362 && derived->backend_decl == NULL
2363 && !derived->attr.use_assoc
2364 && gfc_global_ns_list)
2365 {
2366 for (ns = gfc_global_ns_list;
2367 ns->translated && !got_canonical;
2368 ns = ns->sibling)
2369 {
2370 dt = ns->derived_types;
2371 for (; dt && !canonical; dt = dt->next)
2372 {
2373 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2374 if (derived->backend_decl)
2375 got_canonical = true;
2376 }
2377 }
2378 }
2379
2380 /* Store up the canonical type to be added to this one. */
2381 if (got_canonical)
2382 {
2383 if (TYPE_CANONICAL (derived->backend_decl))
2384 canonical = TYPE_CANONICAL (derived->backend_decl);
2385 else
2386 canonical = derived->backend_decl;
2387
2388 derived->backend_decl = NULL_TREE;
2389 }
2390
2391 /* derived->backend_decl != 0 means we saw it before, but its
2392 components' backend_decl may have not been built. */
2393 if (derived->backend_decl)
2394 {
2395 /* Its components' backend_decl have been built or we are
2396 seeing recursion through the formal arglist of a procedure
2397 pointer component. */
2398 if (TYPE_FIELDS (derived->backend_decl)
2399 || derived->attr.proc_pointer_comp)
2400 return derived->backend_decl;
2401 else
2402 typenode = derived->backend_decl;
2403 }
2404 else
2405 {
2406 /* We see this derived type first time, so build the type node. */
2407 typenode = make_node (RECORD_TYPE);
2408 TYPE_NAME (typenode) = get_identifier (derived->name);
2409 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2410 derived->backend_decl = typenode;
2411 }
2412
2413 /* Go through the derived type components, building them as
2414 necessary. The reason for doing this now is that it is
2415 possible to recurse back to this derived type through a
2416 pointer component (PR24092). If this happens, the fields
2417 will be built and so we can return the type. */
2418 for (c = derived->components; c; c = c->next)
2419 {
2420 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2421 continue;
2422
2423 if ((!c->attr.pointer && !c->attr.proc_pointer)
2424 || c->ts.u.derived->backend_decl == NULL)
2425 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2426
2427 if (c->ts.u.derived && c->ts.u.derived->attr.is_iso_c)
2428 {
2429 /* Need to copy the modified ts from the derived type. The
2430 typespec was modified because C_PTR/C_FUNPTR are translated
2431 into (void *) from derived types. */
2432 c->ts.type = c->ts.u.derived->ts.type;
2433 c->ts.kind = c->ts.u.derived->ts.kind;
2434 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2435 if (c->initializer)
2436 {
2437 c->initializer->ts.type = c->ts.type;
2438 c->initializer->ts.kind = c->ts.kind;
2439 c->initializer->ts.f90_type = c->ts.f90_type;
2440 c->initializer->expr_type = EXPR_NULL;
2441 }
2442 }
2443 }
2444
2445 if (TYPE_FIELDS (derived->backend_decl))
2446 return derived->backend_decl;
2447
2448 /* Build the type member list. Install the newly created RECORD_TYPE
2449 node as DECL_CONTEXT of each FIELD_DECL. */
2450 for (c = derived->components; c; c = c->next)
2451 {
2452 if (c->attr.proc_pointer)
2453 field_type = gfc_get_ppc_type (c);
2454 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2455 field_type = c->ts.u.derived->backend_decl;
2456 else
2457 {
2458 if (c->ts.type == BT_CHARACTER)
2459 {
2460 /* Evaluate the string length. */
2461 gfc_conv_const_charlen (c->ts.u.cl);
2462 gcc_assert (c->ts.u.cl->backend_decl);
2463 }
2464
2465 field_type = gfc_typenode_for_spec (&c->ts);
2466 }
2467
2468 /* This returns an array descriptor type. Initialization may be
2469 required. */
2470 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2471 {
2472 if (c->attr.pointer || c->attr.allocatable)
2473 {
2474 enum gfc_array_kind akind;
2475 if (c->attr.pointer)
2476 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2477 : GFC_ARRAY_POINTER;
2478 else
2479 akind = GFC_ARRAY_ALLOCATABLE;
2480 /* Pointers to arrays aren't actually pointer types. The
2481 descriptors are separate, but the data is common. */
2482 field_type = gfc_build_array_type (field_type, c->as, akind,
2483 !c->attr.target
2484 && !c->attr.pointer,
2485 c->attr.contiguous);
2486 }
2487 else
2488 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2489 PACKED_STATIC,
2490 !c->attr.target);
2491 }
2492 else if ((c->attr.pointer || c->attr.allocatable)
2493 && !c->attr.proc_pointer)
2494 field_type = build_pointer_type (field_type);
2495
2496 if (c->attr.pointer)
2497 field_type = gfc_nonrestricted_type (field_type);
2498
2499 /* vtype fields can point to different types to the base type. */
2500 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.vtype)
2501 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2502 ptr_mode, true);
2503
2504 field = gfc_add_field_to_struct (typenode,
2505 get_identifier (c->name),
2506 field_type, &chain);
2507 if (c->loc.lb)
2508 gfc_set_decl_location (field, &c->loc);
2509 else if (derived->declared_at.lb)
2510 gfc_set_decl_location (field, &derived->declared_at);
2511
2512 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2513
2514 gcc_assert (field);
2515 if (!c->backend_decl)
2516 c->backend_decl = field;
2517 }
2518
2519 /* Now lay out the derived type, including the fields. */
2520 if (canonical)
2521 TYPE_CANONICAL (typenode) = canonical;
2522
2523 gfc_finish_type (typenode);
2524 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2525 if (derived->module && derived->ns->proc_name
2526 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2527 {
2528 if (derived->ns->proc_name->backend_decl
2529 && TREE_CODE (derived->ns->proc_name->backend_decl)
2530 == NAMESPACE_DECL)
2531 {
2532 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2533 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2534 = derived->ns->proc_name->backend_decl;
2535 }
2536 }
2537
2538 derived->backend_decl = typenode;
2539
2540 copy_derived_types:
2541
2542 for (dt = gfc_derived_types; dt; dt = dt->next)
2543 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2544
2545 return derived->backend_decl;
2546 }
2547
2548
2549 int
2550 gfc_return_by_reference (gfc_symbol * sym)
2551 {
2552 if (!sym->attr.function)
2553 return 0;
2554
2555 if (sym->attr.dimension)
2556 return 1;
2557
2558 if (sym->ts.type == BT_CHARACTER
2559 && !sym->attr.is_bind_c
2560 && (!sym->attr.result
2561 || !sym->ns->proc_name
2562 || !sym->ns->proc_name->attr.is_bind_c))
2563 return 1;
2564
2565 /* Possibly return complex numbers by reference for g77 compatibility.
2566 We don't do this for calls to intrinsics (as the library uses the
2567 -fno-f2c calling convention), nor for calls to functions which always
2568 require an explicit interface, as no compatibility problems can
2569 arise there. */
2570 if (gfc_option.flag_f2c
2571 && sym->ts.type == BT_COMPLEX
2572 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2573 return 1;
2574
2575 return 0;
2576 }
2577 \f
2578 static tree
2579 gfc_get_mixed_entry_union (gfc_namespace *ns)
2580 {
2581 tree type;
2582 tree *chain = NULL;
2583 char name[GFC_MAX_SYMBOL_LEN + 1];
2584 gfc_entry_list *el, *el2;
2585
2586 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2587 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2588
2589 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2590
2591 /* Build the type node. */
2592 type = make_node (UNION_TYPE);
2593
2594 TYPE_NAME (type) = get_identifier (name);
2595
2596 for (el = ns->entries; el; el = el->next)
2597 {
2598 /* Search for duplicates. */
2599 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2600 if (el2->sym->result == el->sym->result)
2601 break;
2602
2603 if (el == el2)
2604 gfc_add_field_to_struct_1 (type,
2605 get_identifier (el->sym->result->name),
2606 gfc_sym_type (el->sym->result), &chain);
2607 }
2608
2609 /* Finish off the type. */
2610 gfc_finish_type (type);
2611 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2612 return type;
2613 }
2614 \f
2615 /* Create a "fn spec" based on the formal arguments;
2616 cf. create_function_arglist. */
2617
2618 static tree
2619 create_fn_spec (gfc_symbol *sym, tree fntype)
2620 {
2621 char spec[150];
2622 size_t spec_len;
2623 gfc_formal_arglist *f;
2624 tree tmp;
2625
2626 memset (&spec, 0, sizeof (spec));
2627 spec[0] = '.';
2628 spec_len = 1;
2629
2630 if (sym->attr.entry_master)
2631 spec[spec_len++] = 'R';
2632 if (gfc_return_by_reference (sym))
2633 {
2634 gfc_symbol *result = sym->result ? sym->result : sym;
2635
2636 if (result->attr.pointer || sym->attr.proc_pointer)
2637 spec[spec_len++] = '.';
2638 else
2639 spec[spec_len++] = 'w';
2640 if (sym->ts.type == BT_CHARACTER)
2641 spec[spec_len++] = 'R';
2642 }
2643
2644 for (f = sym->formal; f; f = f->next)
2645 if (spec_len < sizeof (spec))
2646 {
2647 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2648 || f->sym->attr.external || f->sym->attr.cray_pointer
2649 || (f->sym->ts.type == BT_DERIVED
2650 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2651 || f->sym->ts.u.derived->attr.pointer_comp))
2652 || (f->sym->ts.type == BT_CLASS
2653 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2654 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2655 spec[spec_len++] = '.';
2656 else if (f->sym->attr.intent == INTENT_IN)
2657 spec[spec_len++] = 'r';
2658 else if (f->sym)
2659 spec[spec_len++] = 'w';
2660 }
2661
2662 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2663 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2664 return build_type_attribute_variant (fntype, tmp);
2665 }
2666
2667
2668 tree
2669 gfc_get_function_type (gfc_symbol * sym)
2670 {
2671 tree type;
2672 VEC(tree,gc) *typelist;
2673 gfc_formal_arglist *f;
2674 gfc_symbol *arg;
2675 int alternate_return;
2676 bool is_varargs = true;
2677
2678 /* Make sure this symbol is a function, a subroutine or the main
2679 program. */
2680 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2681 || sym->attr.flavor == FL_PROGRAM);
2682
2683 if (sym->backend_decl)
2684 {
2685 if (sym->attr.proc_pointer)
2686 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
2687 return TREE_TYPE (sym->backend_decl);
2688 }
2689
2690 alternate_return = 0;
2691 typelist = NULL;
2692
2693 if (sym->attr.entry_master)
2694 /* Additional parameter for selecting an entry point. */
2695 VEC_safe_push (tree, gc, typelist, gfc_array_index_type);
2696
2697 if (sym->result)
2698 arg = sym->result;
2699 else
2700 arg = sym;
2701
2702 if (arg->ts.type == BT_CHARACTER)
2703 gfc_conv_const_charlen (arg->ts.u.cl);
2704
2705 /* Some functions we use an extra parameter for the return value. */
2706 if (gfc_return_by_reference (sym))
2707 {
2708 type = gfc_sym_type (arg);
2709 if (arg->ts.type == BT_COMPLEX
2710 || arg->attr.dimension
2711 || arg->ts.type == BT_CHARACTER)
2712 type = build_reference_type (type);
2713
2714 VEC_safe_push (tree, gc, typelist, type);
2715 if (arg->ts.type == BT_CHARACTER)
2716 {
2717 if (!arg->ts.deferred)
2718 /* Transfer by value. */
2719 VEC_safe_push (tree, gc, typelist, gfc_charlen_type_node);
2720 else
2721 /* Deferred character lengths are transferred by reference
2722 so that the value can be returned. */
2723 VEC_safe_push (tree, gc, typelist,
2724 build_pointer_type (gfc_charlen_type_node));
2725 }
2726 }
2727
2728 /* Build the argument types for the function. */
2729 for (f = sym->formal; f; f = f->next)
2730 {
2731 arg = f->sym;
2732 if (arg)
2733 {
2734 /* Evaluate constant character lengths here so that they can be
2735 included in the type. */
2736 if (arg->ts.type == BT_CHARACTER)
2737 gfc_conv_const_charlen (arg->ts.u.cl);
2738
2739 if (arg->attr.flavor == FL_PROCEDURE)
2740 {
2741 type = gfc_get_function_type (arg);
2742 type = build_pointer_type (type);
2743 }
2744 else
2745 type = gfc_sym_type (arg);
2746
2747 /* Parameter Passing Convention
2748
2749 We currently pass all parameters by reference.
2750 Parameters with INTENT(IN) could be passed by value.
2751 The problem arises if a function is called via an implicit
2752 prototype. In this situation the INTENT is not known.
2753 For this reason all parameters to global functions must be
2754 passed by reference. Passing by value would potentially
2755 generate bad code. Worse there would be no way of telling that
2756 this code was bad, except that it would give incorrect results.
2757
2758 Contained procedures could pass by value as these are never
2759 used without an explicit interface, and cannot be passed as
2760 actual parameters for a dummy procedure. */
2761
2762 VEC_safe_push (tree, gc, typelist, type);
2763 }
2764 else
2765 {
2766 if (sym->attr.subroutine)
2767 alternate_return = 1;
2768 }
2769 }
2770
2771 /* Add hidden string length parameters. */
2772 for (f = sym->formal; f; f = f->next)
2773 {
2774 arg = f->sym;
2775 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2776 {
2777 if (!arg->ts.deferred)
2778 /* Transfer by value. */
2779 type = gfc_charlen_type_node;
2780 else
2781 /* Deferred character lengths are transferred by reference
2782 so that the value can be returned. */
2783 type = build_pointer_type (gfc_charlen_type_node);
2784
2785 VEC_safe_push (tree, gc, typelist, type);
2786 }
2787 }
2788
2789 if (!VEC_empty (tree, typelist)
2790 || sym->attr.is_main_program
2791 || sym->attr.if_source != IFSRC_UNKNOWN)
2792 is_varargs = false;
2793
2794 if (alternate_return)
2795 type = integer_type_node;
2796 else if (!sym->attr.function || gfc_return_by_reference (sym))
2797 type = void_type_node;
2798 else if (sym->attr.mixed_entry_master)
2799 type = gfc_get_mixed_entry_union (sym->ns);
2800 else if (gfc_option.flag_f2c
2801 && sym->ts.type == BT_REAL
2802 && sym->ts.kind == gfc_default_real_kind
2803 && !sym->attr.always_explicit)
2804 {
2805 /* Special case: f2c calling conventions require that (scalar)
2806 default REAL functions return the C type double instead. f2c
2807 compatibility is only an issue with functions that don't
2808 require an explicit interface, as only these could be
2809 implemented in Fortran 77. */
2810 sym->ts.kind = gfc_default_double_kind;
2811 type = gfc_typenode_for_spec (&sym->ts);
2812 sym->ts.kind = gfc_default_real_kind;
2813 }
2814 else if (sym->result && sym->result->attr.proc_pointer)
2815 /* Procedure pointer return values. */
2816 {
2817 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2818 {
2819 /* Unset proc_pointer as gfc_get_function_type
2820 is called recursively. */
2821 sym->result->attr.proc_pointer = 0;
2822 type = build_pointer_type (gfc_get_function_type (sym->result));
2823 sym->result->attr.proc_pointer = 1;
2824 }
2825 else
2826 type = gfc_sym_type (sym->result);
2827 }
2828 else
2829 type = gfc_sym_type (sym);
2830
2831 if (is_varargs)
2832 type = build_varargs_function_type_vec (type, typelist);
2833 else
2834 type = build_function_type_vec (type, typelist);
2835 type = create_fn_spec (sym, type);
2836
2837 return type;
2838 }
2839 \f
2840 /* Language hooks for middle-end access to type nodes. */
2841
2842 /* Return an integer type with BITS bits of precision,
2843 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2844
2845 tree
2846 gfc_type_for_size (unsigned bits, int unsignedp)
2847 {
2848 if (!unsignedp)
2849 {
2850 int i;
2851 for (i = 0; i <= MAX_INT_KINDS; ++i)
2852 {
2853 tree type = gfc_integer_types[i];
2854 if (type && bits == TYPE_PRECISION (type))
2855 return type;
2856 }
2857
2858 /* Handle TImode as a special case because it is used by some backends
2859 (e.g. ARM) even though it is not available for normal use. */
2860 #if HOST_BITS_PER_WIDE_INT >= 64
2861 if (bits == TYPE_PRECISION (intTI_type_node))
2862 return intTI_type_node;
2863 #endif
2864
2865 if (bits <= TYPE_PRECISION (intQI_type_node))
2866 return intQI_type_node;
2867 if (bits <= TYPE_PRECISION (intHI_type_node))
2868 return intHI_type_node;
2869 if (bits <= TYPE_PRECISION (intSI_type_node))
2870 return intSI_type_node;
2871 if (bits <= TYPE_PRECISION (intDI_type_node))
2872 return intDI_type_node;
2873 if (bits <= TYPE_PRECISION (intTI_type_node))
2874 return intTI_type_node;
2875 }
2876 else
2877 {
2878 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2879 return unsigned_intQI_type_node;
2880 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2881 return unsigned_intHI_type_node;
2882 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2883 return unsigned_intSI_type_node;
2884 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2885 return unsigned_intDI_type_node;
2886 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2887 return unsigned_intTI_type_node;
2888 }
2889
2890 return NULL_TREE;
2891 }
2892
2893 /* Return a data type that has machine mode MODE. If the mode is an
2894 integer, then UNSIGNEDP selects between signed and unsigned types. */
2895
2896 tree
2897 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2898 {
2899 int i;
2900 tree *base;
2901
2902 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2903 base = gfc_real_types;
2904 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2905 base = gfc_complex_types;
2906 else if (SCALAR_INT_MODE_P (mode))
2907 {
2908 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2909 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
2910 }
2911 else if (VECTOR_MODE_P (mode))
2912 {
2913 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2914 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2915 if (inner_type != NULL_TREE)
2916 return build_vector_type_for_mode (inner_type, mode);
2917 return NULL_TREE;
2918 }
2919 else
2920 return NULL_TREE;
2921
2922 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2923 {
2924 tree type = base[i];
2925 if (type && mode == TYPE_MODE (type))
2926 return type;
2927 }
2928
2929 return NULL_TREE;
2930 }
2931
2932 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2933 in that case. */
2934
2935 bool
2936 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2937 {
2938 int rank, dim;
2939 bool indirect = false;
2940 tree etype, ptype, field, t, base_decl;
2941 tree data_off, dim_off, dim_size, elem_size;
2942 tree lower_suboff, upper_suboff, stride_suboff;
2943
2944 if (! GFC_DESCRIPTOR_TYPE_P (type))
2945 {
2946 if (! POINTER_TYPE_P (type))
2947 return false;
2948 type = TREE_TYPE (type);
2949 if (! GFC_DESCRIPTOR_TYPE_P (type))
2950 return false;
2951 indirect = true;
2952 }
2953
2954 rank = GFC_TYPE_ARRAY_RANK (type);
2955 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2956 return false;
2957
2958 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2959 gcc_assert (POINTER_TYPE_P (etype));
2960 etype = TREE_TYPE (etype);
2961
2962 /* If the type is not a scalar coarray. */
2963 if (TREE_CODE (etype) == ARRAY_TYPE)
2964 etype = TREE_TYPE (etype);
2965
2966 /* Can't handle variable sized elements yet. */
2967 if (int_size_in_bytes (etype) <= 0)
2968 return false;
2969 /* Nor non-constant lower bounds in assumed shape arrays. */
2970 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
2971 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
2972 {
2973 for (dim = 0; dim < rank; dim++)
2974 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
2975 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
2976 return false;
2977 }
2978
2979 memset (info, '\0', sizeof (*info));
2980 info->ndimensions = rank;
2981 info->element_type = etype;
2982 ptype = build_pointer_type (gfc_array_index_type);
2983 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
2984 if (!base_decl)
2985 {
2986 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
2987 indirect ? build_pointer_type (ptype) : ptype);
2988 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
2989 }
2990 info->base_decl = base_decl;
2991 if (indirect)
2992 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
2993
2994 if (GFC_TYPE_ARRAY_SPAN (type))
2995 elem_size = GFC_TYPE_ARRAY_SPAN (type);
2996 else
2997 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
2998 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
2999 data_off = byte_position (field);
3000 field = DECL_CHAIN (field);
3001 field = DECL_CHAIN (field);
3002 field = DECL_CHAIN (field);
3003 dim_off = byte_position (field);
3004 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
3005 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
3006 stride_suboff = byte_position (field);
3007 field = DECL_CHAIN (field);
3008 lower_suboff = byte_position (field);
3009 field = DECL_CHAIN (field);
3010 upper_suboff = byte_position (field);
3011
3012 t = base_decl;
3013 if (!integer_zerop (data_off))
3014 t = fold_build_pointer_plus (t, data_off);
3015 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3016 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3017 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3018 info->allocated = build2 (NE_EXPR, boolean_type_node,
3019 info->data_location, null_pointer_node);
3020 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3021 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3022 info->associated = build2 (NE_EXPR, boolean_type_node,
3023 info->data_location, null_pointer_node);
3024
3025 for (dim = 0; dim < rank; dim++)
3026 {
3027 t = fold_build_pointer_plus (base_decl,
3028 size_binop (PLUS_EXPR,
3029 dim_off, lower_suboff));
3030 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3031 info->dimen[dim].lower_bound = t;
3032 t = fold_build_pointer_plus (base_decl,
3033 size_binop (PLUS_EXPR,
3034 dim_off, upper_suboff));
3035 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3036 info->dimen[dim].upper_bound = t;
3037 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3038 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3039 {
3040 /* Assumed shape arrays have known lower bounds. */
3041 info->dimen[dim].upper_bound
3042 = build2 (MINUS_EXPR, gfc_array_index_type,
3043 info->dimen[dim].upper_bound,
3044 info->dimen[dim].lower_bound);
3045 info->dimen[dim].lower_bound
3046 = fold_convert (gfc_array_index_type,
3047 GFC_TYPE_ARRAY_LBOUND (type, dim));
3048 info->dimen[dim].upper_bound
3049 = build2 (PLUS_EXPR, gfc_array_index_type,
3050 info->dimen[dim].lower_bound,
3051 info->dimen[dim].upper_bound);
3052 }
3053 t = fold_build_pointer_plus (base_decl,
3054 size_binop (PLUS_EXPR,
3055 dim_off, stride_suboff));
3056 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3057 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3058 info->dimen[dim].stride = t;
3059 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3060 }
3061
3062 return true;
3063 }
3064
3065 #include "gt-fortran-trans-types.h"