tree.h (DECL_CHAIN): Define.
[gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010
4 Free Software Foundation, Inc.
5 Contributed by Paul Brook <paul@nowt.org>
6 and Steven Bosscher <s.bosscher@student.tudelft.nl>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* trans-types.c -- gfortran backend types */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tree.h"
30 #include "langhooks.h" /* For iso-c-bindings.def. */
31 #include "target.h"
32 #include "ggc.h"
33 #include "diagnostic-core.h" /* For fatal_error. */
34 #include "toplev.h" /* For rest_of_decl_compilation. */
35 #include "gfortran.h"
36 #include "trans.h"
37 #include "trans-types.h"
38 #include "trans-const.h"
39 #include "flags.h"
40 #include "dwarf2out.h" /* For struct array_descr_info. */
41 \f
42
43 #if (GFC_MAX_DIMENSIONS < 10)
44 #define GFC_RANK_DIGITS 1
45 #define GFC_RANK_PRINTF_FORMAT "%01d"
46 #elif (GFC_MAX_DIMENSIONS < 100)
47 #define GFC_RANK_DIGITS 2
48 #define GFC_RANK_PRINTF_FORMAT "%02d"
49 #else
50 #error If you really need >99 dimensions, continue the sequence above...
51 #endif
52
53 /* array of structs so we don't have to worry about xmalloc or free */
54 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
55
56 tree gfc_array_index_type;
57 tree gfc_array_range_type;
58 tree gfc_character1_type_node;
59 tree pvoid_type_node;
60 tree prvoid_type_node;
61 tree ppvoid_type_node;
62 tree pchar_type_node;
63 tree pfunc_type_node;
64
65 tree gfc_charlen_type_node;
66
67 static GTY(()) tree gfc_desc_dim_type;
68 static GTY(()) tree gfc_max_array_element_size;
69 static GTY(()) tree gfc_array_descriptor_base[2 * GFC_MAX_DIMENSIONS];
70
71 /* Arrays for all integral and real kinds. We'll fill this in at runtime
72 after the target has a chance to process command-line options. */
73
74 #define MAX_INT_KINDS 5
75 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
76 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
77 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
78 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
79
80 #define MAX_REAL_KINDS 5
81 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
82 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
83 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
84
85 #define MAX_CHARACTER_KINDS 2
86 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
87 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
88 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
89
90 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
91
92 /* The integer kind to use for array indices. This will be set to the
93 proper value based on target information from the backend. */
94
95 int gfc_index_integer_kind;
96
97 /* The default kinds of the various types. */
98
99 int gfc_default_integer_kind;
100 int gfc_max_integer_kind;
101 int gfc_default_real_kind;
102 int gfc_default_double_kind;
103 int gfc_default_character_kind;
104 int gfc_default_logical_kind;
105 int gfc_default_complex_kind;
106 int gfc_c_int_kind;
107
108 /* The kind size used for record offsets. If the target system supports
109 kind=8, this will be set to 8, otherwise it is set to 4. */
110 int gfc_intio_kind;
111
112 /* The integer kind used to store character lengths. */
113 int gfc_charlen_int_kind;
114
115 /* The size of the numeric storage unit and character storage unit. */
116 int gfc_numeric_storage_size;
117 int gfc_character_storage_size;
118
119
120 gfc_try
121 gfc_check_any_c_kind (gfc_typespec *ts)
122 {
123 int i;
124
125 for (i = 0; i < ISOCBINDING_NUMBER; i++)
126 {
127 /* Check for any C interoperable kind for the given type/kind in ts.
128 This can be used after verify_c_interop to make sure that the
129 Fortran kind being used exists in at least some form for C. */
130 if (c_interop_kinds_table[i].f90_type == ts->type &&
131 c_interop_kinds_table[i].value == ts->kind)
132 return SUCCESS;
133 }
134
135 return FAILURE;
136 }
137
138
139 static int
140 get_real_kind_from_node (tree type)
141 {
142 int i;
143
144 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
145 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
146 return gfc_real_kinds[i].kind;
147
148 return -4;
149 }
150
151 static int
152 get_int_kind_from_node (tree type)
153 {
154 int i;
155
156 if (!type)
157 return -2;
158
159 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
160 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
161 return gfc_integer_kinds[i].kind;
162
163 return -1;
164 }
165
166 /* Return a typenode for the "standard" C type with a given name. */
167 static tree
168 get_typenode_from_name (const char *name)
169 {
170 if (name == NULL || *name == '\0')
171 return NULL_TREE;
172
173 if (strcmp (name, "char") == 0)
174 return char_type_node;
175 if (strcmp (name, "unsigned char") == 0)
176 return unsigned_char_type_node;
177 if (strcmp (name, "signed char") == 0)
178 return signed_char_type_node;
179
180 if (strcmp (name, "short int") == 0)
181 return short_integer_type_node;
182 if (strcmp (name, "short unsigned int") == 0)
183 return short_unsigned_type_node;
184
185 if (strcmp (name, "int") == 0)
186 return integer_type_node;
187 if (strcmp (name, "unsigned int") == 0)
188 return unsigned_type_node;
189
190 if (strcmp (name, "long int") == 0)
191 return long_integer_type_node;
192 if (strcmp (name, "long unsigned int") == 0)
193 return long_unsigned_type_node;
194
195 if (strcmp (name, "long long int") == 0)
196 return long_long_integer_type_node;
197 if (strcmp (name, "long long unsigned int") == 0)
198 return long_long_unsigned_type_node;
199
200 gcc_unreachable ();
201 }
202
203 static int
204 get_int_kind_from_name (const char *name)
205 {
206 return get_int_kind_from_node (get_typenode_from_name (name));
207 }
208
209
210 /* Get the kind number corresponding to an integer of given size,
211 following the required return values for ISO_FORTRAN_ENV INT* constants:
212 -2 is returned if we support a kind of larger size, -1 otherwise. */
213 int
214 gfc_get_int_kind_from_width_isofortranenv (int size)
215 {
216 int i;
217
218 /* Look for a kind with matching storage size. */
219 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
220 if (gfc_integer_kinds[i].bit_size == size)
221 return gfc_integer_kinds[i].kind;
222
223 /* Look for a kind with larger storage size. */
224 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
225 if (gfc_integer_kinds[i].bit_size > size)
226 return -2;
227
228 return -1;
229 }
230
231 /* Get the kind number corresponding to a real of given storage size,
232 following the required return values for ISO_FORTRAN_ENV REAL* constants:
233 -2 is returned if we support a kind of larger size, -1 otherwise. */
234 int
235 gfc_get_real_kind_from_width_isofortranenv (int size)
236 {
237 int i;
238
239 size /= 8;
240
241 /* Look for a kind with matching storage size. */
242 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
243 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
244 return gfc_real_kinds[i].kind;
245
246 /* Look for a kind with larger storage size. */
247 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
248 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
249 return -2;
250
251 return -1;
252 }
253
254
255
256 static int
257 get_int_kind_from_width (int size)
258 {
259 int i;
260
261 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
262 if (gfc_integer_kinds[i].bit_size == size)
263 return gfc_integer_kinds[i].kind;
264
265 return -2;
266 }
267
268 static int
269 get_int_kind_from_minimal_width (int size)
270 {
271 int i;
272
273 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
274 if (gfc_integer_kinds[i].bit_size >= size)
275 return gfc_integer_kinds[i].kind;
276
277 return -2;
278 }
279
280
281 /* Generate the CInteropKind_t objects for the C interoperable
282 kinds. */
283
284 static
285 void init_c_interop_kinds (void)
286 {
287 int i;
288
289 /* init all pointers in the list to NULL */
290 for (i = 0; i < ISOCBINDING_NUMBER; i++)
291 {
292 /* Initialize the name and value fields. */
293 c_interop_kinds_table[i].name[0] = '\0';
294 c_interop_kinds_table[i].value = -100;
295 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
296 }
297
298 #define NAMED_INTCST(a,b,c,d) \
299 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
300 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
301 c_interop_kinds_table[a].value = c;
302 #define NAMED_REALCST(a,b,c) \
303 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
304 c_interop_kinds_table[a].f90_type = BT_REAL; \
305 c_interop_kinds_table[a].value = c;
306 #define NAMED_CMPXCST(a,b,c) \
307 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
308 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
309 c_interop_kinds_table[a].value = c;
310 #define NAMED_LOGCST(a,b,c) \
311 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
312 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
313 c_interop_kinds_table[a].value = c;
314 #define NAMED_CHARKNDCST(a,b,c) \
315 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
316 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
317 c_interop_kinds_table[a].value = c;
318 #define NAMED_CHARCST(a,b,c) \
319 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
320 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
321 c_interop_kinds_table[a].value = c;
322 #define DERIVED_TYPE(a,b,c) \
323 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
324 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
325 c_interop_kinds_table[a].value = c;
326 #define PROCEDURE(a,b) \
327 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
328 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
329 c_interop_kinds_table[a].value = 0;
330 #include "iso-c-binding.def"
331 }
332
333
334 /* Query the target to determine which machine modes are available for
335 computation. Choose KIND numbers for them. */
336
337 void
338 gfc_init_kinds (void)
339 {
340 unsigned int mode;
341 int i_index, r_index, kind;
342 bool saw_i4 = false, saw_i8 = false;
343 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
344
345 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
346 {
347 int kind, bitsize;
348
349 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
350 continue;
351
352 /* The middle end doesn't support constants larger than 2*HWI.
353 Perhaps the target hook shouldn't have accepted these either,
354 but just to be safe... */
355 bitsize = GET_MODE_BITSIZE (mode);
356 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
357 continue;
358
359 gcc_assert (i_index != MAX_INT_KINDS);
360
361 /* Let the kind equal the bit size divided by 8. This insulates the
362 programmer from the underlying byte size. */
363 kind = bitsize / 8;
364
365 if (kind == 4)
366 saw_i4 = true;
367 if (kind == 8)
368 saw_i8 = true;
369
370 gfc_integer_kinds[i_index].kind = kind;
371 gfc_integer_kinds[i_index].radix = 2;
372 gfc_integer_kinds[i_index].digits = bitsize - 1;
373 gfc_integer_kinds[i_index].bit_size = bitsize;
374
375 gfc_logical_kinds[i_index].kind = kind;
376 gfc_logical_kinds[i_index].bit_size = bitsize;
377
378 i_index += 1;
379 }
380
381 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
382 used for large file access. */
383
384 if (saw_i8)
385 gfc_intio_kind = 8;
386 else
387 gfc_intio_kind = 4;
388
389 /* If we do not at least have kind = 4, everything is pointless. */
390 gcc_assert(saw_i4);
391
392 /* Set the maximum integer kind. Used with at least BOZ constants. */
393 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
394
395 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
396 {
397 const struct real_format *fmt =
398 REAL_MODE_FORMAT ((enum machine_mode) mode);
399 int kind;
400
401 if (fmt == NULL)
402 continue;
403 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
404 continue;
405
406 /* Only let float/double/long double go through because the fortran
407 library assumes these are the only floating point types. */
408
409 if (mode != TYPE_MODE (float_type_node)
410 && (mode != TYPE_MODE (double_type_node))
411 && (mode != TYPE_MODE (long_double_type_node)))
412 continue;
413
414 /* Let the kind equal the precision divided by 8, rounding up. Again,
415 this insulates the programmer from the underlying byte size.
416
417 Also, it effectively deals with IEEE extended formats. There, the
418 total size of the type may equal 16, but it's got 6 bytes of padding
419 and the increased size can get in the way of a real IEEE quad format
420 which may also be supported by the target.
421
422 We round up so as to handle IA-64 __floatreg (RFmode), which is an
423 82 bit type. Not to be confused with __float80 (XFmode), which is
424 an 80 bit type also supported by IA-64. So XFmode should come out
425 to be kind=10, and RFmode should come out to be kind=11. Egads. */
426
427 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
428
429 if (kind == 4)
430 saw_r4 = true;
431 if (kind == 8)
432 saw_r8 = true;
433 if (kind == 16)
434 saw_r16 = true;
435
436 /* Careful we don't stumble a weird internal mode. */
437 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
438 /* Or have too many modes for the allocated space. */
439 gcc_assert (r_index != MAX_REAL_KINDS);
440
441 gfc_real_kinds[r_index].kind = kind;
442 gfc_real_kinds[r_index].radix = fmt->b;
443 gfc_real_kinds[r_index].digits = fmt->p;
444 gfc_real_kinds[r_index].min_exponent = fmt->emin;
445 gfc_real_kinds[r_index].max_exponent = fmt->emax;
446 if (fmt->pnan < fmt->p)
447 /* This is an IBM extended double format (or the MIPS variant)
448 made up of two IEEE doubles. The value of the long double is
449 the sum of the values of the two parts. The most significant
450 part is required to be the value of the long double rounded
451 to the nearest double. If we use emax of 1024 then we can't
452 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
453 rounding will make the most significant part overflow. */
454 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
455 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
456 r_index += 1;
457 }
458
459 /* Choose the default integer kind. We choose 4 unless the user
460 directs us otherwise. */
461 if (gfc_option.flag_default_integer)
462 {
463 if (!saw_i8)
464 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
465 gfc_default_integer_kind = 8;
466
467 /* Even if the user specified that the default integer kind be 8,
468 the numeric storage size isn't 64. In this case, a warning will
469 be issued when NUMERIC_STORAGE_SIZE is used. */
470 gfc_numeric_storage_size = 4 * 8;
471 }
472 else if (saw_i4)
473 {
474 gfc_default_integer_kind = 4;
475 gfc_numeric_storage_size = 4 * 8;
476 }
477 else
478 {
479 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
480 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
481 }
482
483 /* Choose the default real kind. Again, we choose 4 when possible. */
484 if (gfc_option.flag_default_real)
485 {
486 if (!saw_r8)
487 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
488 gfc_default_real_kind = 8;
489 }
490 else if (saw_r4)
491 gfc_default_real_kind = 4;
492 else
493 gfc_default_real_kind = gfc_real_kinds[0].kind;
494
495 /* Choose the default double kind. If -fdefault-real and -fdefault-double
496 are specified, we use kind=8, if it's available. If -fdefault-real is
497 specified without -fdefault-double, we use kind=16, if it's available.
498 Otherwise we do not change anything. */
499 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
500 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
501
502 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
503 gfc_default_double_kind = 8;
504 else if (gfc_option.flag_default_real && saw_r16)
505 gfc_default_double_kind = 16;
506 else if (saw_r4 && saw_r8)
507 gfc_default_double_kind = 8;
508 else
509 {
510 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
511 real ... occupies two contiguous numeric storage units.
512
513 Therefore we must be supplied a kind twice as large as we chose
514 for single precision. There are loopholes, in that double
515 precision must *occupy* two storage units, though it doesn't have
516 to *use* two storage units. Which means that you can make this
517 kind artificially wide by padding it. But at present there are
518 no GCC targets for which a two-word type does not exist, so we
519 just let gfc_validate_kind abort and tell us if something breaks. */
520
521 gfc_default_double_kind
522 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
523 }
524
525 /* The default logical kind is constrained to be the same as the
526 default integer kind. Similarly with complex and real. */
527 gfc_default_logical_kind = gfc_default_integer_kind;
528 gfc_default_complex_kind = gfc_default_real_kind;
529
530 /* We only have two character kinds: ASCII and UCS-4.
531 ASCII corresponds to a 8-bit integer type, if one is available.
532 UCS-4 corresponds to a 32-bit integer type, if one is available. */
533 i_index = 0;
534 if ((kind = get_int_kind_from_width (8)) > 0)
535 {
536 gfc_character_kinds[i_index].kind = kind;
537 gfc_character_kinds[i_index].bit_size = 8;
538 gfc_character_kinds[i_index].name = "ascii";
539 i_index++;
540 }
541 if ((kind = get_int_kind_from_width (32)) > 0)
542 {
543 gfc_character_kinds[i_index].kind = kind;
544 gfc_character_kinds[i_index].bit_size = 32;
545 gfc_character_kinds[i_index].name = "iso_10646";
546 i_index++;
547 }
548
549 /* Choose the smallest integer kind for our default character. */
550 gfc_default_character_kind = gfc_character_kinds[0].kind;
551 gfc_character_storage_size = gfc_default_character_kind * 8;
552
553 /* Choose the integer kind the same size as "void*" for our index kind. */
554 gfc_index_integer_kind = POINTER_SIZE / 8;
555 /* Pick a kind the same size as the C "int" type. */
556 gfc_c_int_kind = INT_TYPE_SIZE / 8;
557
558 /* initialize the C interoperable kinds */
559 init_c_interop_kinds();
560 }
561
562 /* Make sure that a valid kind is present. Returns an index into the
563 associated kinds array, -1 if the kind is not present. */
564
565 static int
566 validate_integer (int kind)
567 {
568 int i;
569
570 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
571 if (gfc_integer_kinds[i].kind == kind)
572 return i;
573
574 return -1;
575 }
576
577 static int
578 validate_real (int kind)
579 {
580 int i;
581
582 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
583 if (gfc_real_kinds[i].kind == kind)
584 return i;
585
586 return -1;
587 }
588
589 static int
590 validate_logical (int kind)
591 {
592 int i;
593
594 for (i = 0; gfc_logical_kinds[i].kind; i++)
595 if (gfc_logical_kinds[i].kind == kind)
596 return i;
597
598 return -1;
599 }
600
601 static int
602 validate_character (int kind)
603 {
604 int i;
605
606 for (i = 0; gfc_character_kinds[i].kind; i++)
607 if (gfc_character_kinds[i].kind == kind)
608 return i;
609
610 return -1;
611 }
612
613 /* Validate a kind given a basic type. The return value is the same
614 for the child functions, with -1 indicating nonexistence of the
615 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
616
617 int
618 gfc_validate_kind (bt type, int kind, bool may_fail)
619 {
620 int rc;
621
622 switch (type)
623 {
624 case BT_REAL: /* Fall through */
625 case BT_COMPLEX:
626 rc = validate_real (kind);
627 break;
628 case BT_INTEGER:
629 rc = validate_integer (kind);
630 break;
631 case BT_LOGICAL:
632 rc = validate_logical (kind);
633 break;
634 case BT_CHARACTER:
635 rc = validate_character (kind);
636 break;
637
638 default:
639 gfc_internal_error ("gfc_validate_kind(): Got bad type");
640 }
641
642 if (rc < 0 && !may_fail)
643 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
644
645 return rc;
646 }
647
648
649 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
650 Reuse common type nodes where possible. Recognize if the kind matches up
651 with a C type. This will be used later in determining which routines may
652 be scarfed from libm. */
653
654 static tree
655 gfc_build_int_type (gfc_integer_info *info)
656 {
657 int mode_precision = info->bit_size;
658
659 if (mode_precision == CHAR_TYPE_SIZE)
660 info->c_char = 1;
661 if (mode_precision == SHORT_TYPE_SIZE)
662 info->c_short = 1;
663 if (mode_precision == INT_TYPE_SIZE)
664 info->c_int = 1;
665 if (mode_precision == LONG_TYPE_SIZE)
666 info->c_long = 1;
667 if (mode_precision == LONG_LONG_TYPE_SIZE)
668 info->c_long_long = 1;
669
670 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
671 return intQI_type_node;
672 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
673 return intHI_type_node;
674 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
675 return intSI_type_node;
676 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
677 return intDI_type_node;
678 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
679 return intTI_type_node;
680
681 return make_signed_type (mode_precision);
682 }
683
684 tree
685 gfc_build_uint_type (int size)
686 {
687 if (size == CHAR_TYPE_SIZE)
688 return unsigned_char_type_node;
689 if (size == SHORT_TYPE_SIZE)
690 return short_unsigned_type_node;
691 if (size == INT_TYPE_SIZE)
692 return unsigned_type_node;
693 if (size == LONG_TYPE_SIZE)
694 return long_unsigned_type_node;
695 if (size == LONG_LONG_TYPE_SIZE)
696 return long_long_unsigned_type_node;
697
698 return make_unsigned_type (size);
699 }
700
701
702 static tree
703 gfc_build_real_type (gfc_real_info *info)
704 {
705 int mode_precision = info->mode_precision;
706 tree new_type;
707
708 if (mode_precision == FLOAT_TYPE_SIZE)
709 info->c_float = 1;
710 if (mode_precision == DOUBLE_TYPE_SIZE)
711 info->c_double = 1;
712 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
713 info->c_long_double = 1;
714
715 if (TYPE_PRECISION (float_type_node) == mode_precision)
716 return float_type_node;
717 if (TYPE_PRECISION (double_type_node) == mode_precision)
718 return double_type_node;
719 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
720 return long_double_type_node;
721
722 new_type = make_node (REAL_TYPE);
723 TYPE_PRECISION (new_type) = mode_precision;
724 layout_type (new_type);
725 return new_type;
726 }
727
728 static tree
729 gfc_build_complex_type (tree scalar_type)
730 {
731 tree new_type;
732
733 if (scalar_type == NULL)
734 return NULL;
735 if (scalar_type == float_type_node)
736 return complex_float_type_node;
737 if (scalar_type == double_type_node)
738 return complex_double_type_node;
739 if (scalar_type == long_double_type_node)
740 return complex_long_double_type_node;
741
742 new_type = make_node (COMPLEX_TYPE);
743 TREE_TYPE (new_type) = scalar_type;
744 layout_type (new_type);
745 return new_type;
746 }
747
748 static tree
749 gfc_build_logical_type (gfc_logical_info *info)
750 {
751 int bit_size = info->bit_size;
752 tree new_type;
753
754 if (bit_size == BOOL_TYPE_SIZE)
755 {
756 info->c_bool = 1;
757 return boolean_type_node;
758 }
759
760 new_type = make_unsigned_type (bit_size);
761 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
762 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
763 TYPE_PRECISION (new_type) = 1;
764
765 return new_type;
766 }
767
768
769 #if 0
770 /* Return the bit size of the C "size_t". */
771
772 static unsigned int
773 c_size_t_size (void)
774 {
775 #ifdef SIZE_TYPE
776 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
777 return INT_TYPE_SIZE;
778 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
779 return LONG_TYPE_SIZE;
780 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
781 return SHORT_TYPE_SIZE;
782 gcc_unreachable ();
783 #else
784 return LONG_TYPE_SIZE;
785 #endif
786 }
787 #endif
788
789 /* Create the backend type nodes. We map them to their
790 equivalent C type, at least for now. We also give
791 names to the types here, and we push them in the
792 global binding level context.*/
793
794 void
795 gfc_init_types (void)
796 {
797 char name_buf[18];
798 int index;
799 tree type;
800 unsigned n;
801 unsigned HOST_WIDE_INT hi;
802 unsigned HOST_WIDE_INT lo;
803
804 /* Create and name the types. */
805 #define PUSH_TYPE(name, node) \
806 pushdecl (build_decl (input_location, \
807 TYPE_DECL, get_identifier (name), node))
808
809 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
810 {
811 type = gfc_build_int_type (&gfc_integer_kinds[index]);
812 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
813 if (TYPE_STRING_FLAG (type))
814 type = make_signed_type (gfc_integer_kinds[index].bit_size);
815 gfc_integer_types[index] = type;
816 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
817 gfc_integer_kinds[index].kind);
818 PUSH_TYPE (name_buf, type);
819 }
820
821 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
822 {
823 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
824 gfc_logical_types[index] = type;
825 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
826 gfc_logical_kinds[index].kind);
827 PUSH_TYPE (name_buf, type);
828 }
829
830 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
831 {
832 type = gfc_build_real_type (&gfc_real_kinds[index]);
833 gfc_real_types[index] = type;
834 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
835 gfc_real_kinds[index].kind);
836 PUSH_TYPE (name_buf, type);
837
838 type = gfc_build_complex_type (type);
839 gfc_complex_types[index] = type;
840 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
841 gfc_real_kinds[index].kind);
842 PUSH_TYPE (name_buf, type);
843 }
844
845 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
846 {
847 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
848 type = build_qualified_type (type, TYPE_UNQUALIFIED);
849 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
850 gfc_character_kinds[index].kind);
851 PUSH_TYPE (name_buf, type);
852 gfc_character_types[index] = type;
853 gfc_pcharacter_types[index] = build_pointer_type (type);
854 }
855 gfc_character1_type_node = gfc_character_types[0];
856
857 PUSH_TYPE ("byte", unsigned_char_type_node);
858 PUSH_TYPE ("void", void_type_node);
859
860 /* DBX debugging output gets upset if these aren't set. */
861 if (!TYPE_NAME (integer_type_node))
862 PUSH_TYPE ("c_integer", integer_type_node);
863 if (!TYPE_NAME (char_type_node))
864 PUSH_TYPE ("c_char", char_type_node);
865
866 #undef PUSH_TYPE
867
868 pvoid_type_node = build_pointer_type (void_type_node);
869 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
870 ppvoid_type_node = build_pointer_type (pvoid_type_node);
871 pchar_type_node = build_pointer_type (gfc_character1_type_node);
872 pfunc_type_node
873 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
874
875 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
876 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
877 since this function is called before gfc_init_constants. */
878 gfc_array_range_type
879 = build_range_type (gfc_array_index_type,
880 build_int_cst (gfc_array_index_type, 0),
881 NULL_TREE);
882
883 /* The maximum array element size that can be handled is determined
884 by the number of bits available to store this field in the array
885 descriptor. */
886
887 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
888 lo = ~ (unsigned HOST_WIDE_INT) 0;
889 if (n > HOST_BITS_PER_WIDE_INT)
890 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
891 else
892 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
893 gfc_max_array_element_size
894 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
895
896 size_type_node = gfc_array_index_type;
897
898 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
899 boolean_true_node = build_int_cst (boolean_type_node, 1);
900 boolean_false_node = build_int_cst (boolean_type_node, 0);
901
902 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
903 gfc_charlen_int_kind = 4;
904 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
905 }
906
907 /* Get the type node for the given type and kind. */
908
909 tree
910 gfc_get_int_type (int kind)
911 {
912 int index = gfc_validate_kind (BT_INTEGER, kind, true);
913 return index < 0 ? 0 : gfc_integer_types[index];
914 }
915
916 tree
917 gfc_get_real_type (int kind)
918 {
919 int index = gfc_validate_kind (BT_REAL, kind, true);
920 return index < 0 ? 0 : gfc_real_types[index];
921 }
922
923 tree
924 gfc_get_complex_type (int kind)
925 {
926 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
927 return index < 0 ? 0 : gfc_complex_types[index];
928 }
929
930 tree
931 gfc_get_logical_type (int kind)
932 {
933 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
934 return index < 0 ? 0 : gfc_logical_types[index];
935 }
936
937 tree
938 gfc_get_char_type (int kind)
939 {
940 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
941 return index < 0 ? 0 : gfc_character_types[index];
942 }
943
944 tree
945 gfc_get_pchar_type (int kind)
946 {
947 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
948 return index < 0 ? 0 : gfc_pcharacter_types[index];
949 }
950
951 \f
952 /* Create a character type with the given kind and length. */
953
954 tree
955 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
956 {
957 tree bounds, type;
958
959 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
960 type = build_array_type (eltype, bounds);
961 TYPE_STRING_FLAG (type) = 1;
962
963 return type;
964 }
965
966 tree
967 gfc_get_character_type_len (int kind, tree len)
968 {
969 gfc_validate_kind (BT_CHARACTER, kind, false);
970 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
971 }
972
973
974 /* Get a type node for a character kind. */
975
976 tree
977 gfc_get_character_type (int kind, gfc_charlen * cl)
978 {
979 tree len;
980
981 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
982
983 return gfc_get_character_type_len (kind, len);
984 }
985 \f
986 /* Covert a basic type. This will be an array for character types. */
987
988 tree
989 gfc_typenode_for_spec (gfc_typespec * spec)
990 {
991 tree basetype;
992
993 switch (spec->type)
994 {
995 case BT_UNKNOWN:
996 gcc_unreachable ();
997
998 case BT_INTEGER:
999 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1000 has been resolved. This is done so we can convert C_PTR and
1001 C_FUNPTR to simple variables that get translated to (void *). */
1002 if (spec->f90_type == BT_VOID)
1003 {
1004 if (spec->u.derived
1005 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1006 basetype = ptr_type_node;
1007 else
1008 basetype = pfunc_type_node;
1009 }
1010 else
1011 basetype = gfc_get_int_type (spec->kind);
1012 break;
1013
1014 case BT_REAL:
1015 basetype = gfc_get_real_type (spec->kind);
1016 break;
1017
1018 case BT_COMPLEX:
1019 basetype = gfc_get_complex_type (spec->kind);
1020 break;
1021
1022 case BT_LOGICAL:
1023 basetype = gfc_get_logical_type (spec->kind);
1024 break;
1025
1026 case BT_CHARACTER:
1027 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1028 break;
1029
1030 case BT_DERIVED:
1031 case BT_CLASS:
1032 basetype = gfc_get_derived_type (spec->u.derived);
1033
1034 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1035 type and kind to fit a (void *) and the basetype returned was a
1036 ptr_type_node. We need to pass up this new information to the
1037 symbol that was declared of type C_PTR or C_FUNPTR. */
1038 if (spec->u.derived->attr.is_iso_c)
1039 {
1040 spec->type = spec->u.derived->ts.type;
1041 spec->kind = spec->u.derived->ts.kind;
1042 spec->f90_type = spec->u.derived->ts.f90_type;
1043 }
1044 break;
1045 case BT_VOID:
1046 /* This is for the second arg to c_f_pointer and c_f_procpointer
1047 of the iso_c_binding module, to accept any ptr type. */
1048 basetype = ptr_type_node;
1049 if (spec->f90_type == BT_VOID)
1050 {
1051 if (spec->u.derived
1052 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1053 basetype = ptr_type_node;
1054 else
1055 basetype = pfunc_type_node;
1056 }
1057 break;
1058 default:
1059 gcc_unreachable ();
1060 }
1061 return basetype;
1062 }
1063 \f
1064 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1065
1066 static tree
1067 gfc_conv_array_bound (gfc_expr * expr)
1068 {
1069 /* If expr is an integer constant, return that. */
1070 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1071 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1072
1073 /* Otherwise return NULL. */
1074 return NULL_TREE;
1075 }
1076 \f
1077 tree
1078 gfc_get_element_type (tree type)
1079 {
1080 tree element;
1081
1082 if (GFC_ARRAY_TYPE_P (type))
1083 {
1084 if (TREE_CODE (type) == POINTER_TYPE)
1085 type = TREE_TYPE (type);
1086 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1087 element = TREE_TYPE (type);
1088 }
1089 else
1090 {
1091 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1092 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1093
1094 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1095 element = TREE_TYPE (element);
1096
1097 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
1098 element = TREE_TYPE (element);
1099 }
1100
1101 return element;
1102 }
1103 \f
1104 /* Build an array. This function is called from gfc_sym_type().
1105 Actually returns array descriptor type.
1106
1107 Format of array descriptors is as follows:
1108
1109 struct gfc_array_descriptor
1110 {
1111 array *data
1112 index offset;
1113 index dtype;
1114 struct descriptor_dimension dimension[N_DIM];
1115 }
1116
1117 struct descriptor_dimension
1118 {
1119 index stride;
1120 index lbound;
1121 index ubound;
1122 }
1123
1124 Translation code should use gfc_conv_descriptor_* rather than
1125 accessing the descriptor directly. Any changes to the array
1126 descriptor type will require changes in gfc_conv_descriptor_* and
1127 gfc_build_array_initializer.
1128
1129 This is represented internally as a RECORD_TYPE. The index nodes
1130 are gfc_array_index_type and the data node is a pointer to the
1131 data. See below for the handling of character types.
1132
1133 The dtype member is formatted as follows:
1134 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1135 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1136 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1137
1138 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1139 this generated poor code for assumed/deferred size arrays. These
1140 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1141 of the GENERIC grammar. Also, there is no way to explicitly set
1142 the array stride, so all data must be packed(1). I've tried to
1143 mark all the functions which would require modification with a GCC
1144 ARRAYS comment.
1145
1146 The data component points to the first element in the array. The
1147 offset field is the position of the origin of the array (i.e. element
1148 (0, 0 ...)). This may be outside the bounds of the array.
1149
1150 An element is accessed by
1151 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1152 This gives good performance as the computation does not involve the
1153 bounds of the array. For packed arrays, this is optimized further
1154 by substituting the known strides.
1155
1156 This system has one problem: all array bounds must be within 2^31
1157 elements of the origin (2^63 on 64-bit machines). For example
1158 integer, dimension (80000:90000, 80000:90000, 2) :: array
1159 may not work properly on 32-bit machines because 80000*80000 >
1160 2^31, so the calculation for stride2 would overflow. This may
1161 still work, but I haven't checked, and it relies on the overflow
1162 doing the right thing.
1163
1164 The way to fix this problem is to access elements as follows:
1165 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1166 Obviously this is much slower. I will make this a compile time
1167 option, something like -fsmall-array-offsets. Mixing code compiled
1168 with and without this switch will work.
1169
1170 (1) This can be worked around by modifying the upper bound of the
1171 previous dimension. This requires extra fields in the descriptor
1172 (both real_ubound and fake_ubound). */
1173
1174
1175 /* Returns true if the array sym does not require a descriptor. */
1176
1177 int
1178 gfc_is_nodesc_array (gfc_symbol * sym)
1179 {
1180 gcc_assert (sym->attr.dimension);
1181
1182 /* We only want local arrays. */
1183 if (sym->attr.pointer || sym->attr.allocatable)
1184 return 0;
1185
1186 if (sym->attr.dummy)
1187 {
1188 if (sym->as->type != AS_ASSUMED_SHAPE)
1189 return 1;
1190 else
1191 return 0;
1192 }
1193
1194 if (sym->attr.result || sym->attr.function)
1195 return 0;
1196
1197 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1198
1199 return 1;
1200 }
1201
1202
1203 /* Create an array descriptor type. */
1204
1205 static tree
1206 gfc_build_array_type (tree type, gfc_array_spec * as,
1207 enum gfc_array_kind akind, bool restricted,
1208 bool contiguous)
1209 {
1210 tree lbound[GFC_MAX_DIMENSIONS];
1211 tree ubound[GFC_MAX_DIMENSIONS];
1212 int n;
1213
1214 for (n = 0; n < as->rank; n++)
1215 {
1216 /* Create expressions for the known bounds of the array. */
1217 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1218 lbound[n] = gfc_index_one_node;
1219 else
1220 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1221 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1222 }
1223
1224 if (as->type == AS_ASSUMED_SHAPE)
1225 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1226 : GFC_ARRAY_ASSUMED_SHAPE;
1227 return gfc_get_array_type_bounds (type, as->rank, as->corank, lbound,
1228 ubound, 0, akind, restricted);
1229 }
1230 \f
1231 /* Returns the struct descriptor_dimension type. */
1232
1233 static tree
1234 gfc_get_desc_dim_type (void)
1235 {
1236 tree type;
1237 tree decl, *chain = NULL;
1238
1239 if (gfc_desc_dim_type)
1240 return gfc_desc_dim_type;
1241
1242 /* Build the type node. */
1243 type = make_node (RECORD_TYPE);
1244
1245 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1246 TYPE_PACKED (type) = 1;
1247
1248 /* Consists of the stride, lbound and ubound members. */
1249 decl = gfc_add_field_to_struct_1 (type,
1250 get_identifier ("stride"),
1251 gfc_array_index_type, &chain);
1252 TREE_NO_WARNING (decl) = 1;
1253
1254 decl = gfc_add_field_to_struct_1 (type,
1255 get_identifier ("lbound"),
1256 gfc_array_index_type, &chain);
1257 TREE_NO_WARNING (decl) = 1;
1258
1259 decl = gfc_add_field_to_struct_1 (type,
1260 get_identifier ("ubound"),
1261 gfc_array_index_type, &chain);
1262 TREE_NO_WARNING (decl) = 1;
1263
1264 /* Finish off the type. */
1265 gfc_finish_type (type);
1266 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1267
1268 gfc_desc_dim_type = type;
1269 return type;
1270 }
1271
1272
1273 /* Return the DTYPE for an array. This describes the type and type parameters
1274 of the array. */
1275 /* TODO: Only call this when the value is actually used, and make all the
1276 unknown cases abort. */
1277
1278 tree
1279 gfc_get_dtype (tree type)
1280 {
1281 tree size;
1282 int n;
1283 HOST_WIDE_INT i;
1284 tree tmp;
1285 tree dtype;
1286 tree etype;
1287 int rank;
1288
1289 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1290
1291 if (GFC_TYPE_ARRAY_DTYPE (type))
1292 return GFC_TYPE_ARRAY_DTYPE (type);
1293
1294 rank = GFC_TYPE_ARRAY_RANK (type);
1295 etype = gfc_get_element_type (type);
1296
1297 switch (TREE_CODE (etype))
1298 {
1299 case INTEGER_TYPE:
1300 n = GFC_DTYPE_INTEGER;
1301 break;
1302
1303 case BOOLEAN_TYPE:
1304 n = GFC_DTYPE_LOGICAL;
1305 break;
1306
1307 case REAL_TYPE:
1308 n = GFC_DTYPE_REAL;
1309 break;
1310
1311 case COMPLEX_TYPE:
1312 n = GFC_DTYPE_COMPLEX;
1313 break;
1314
1315 /* We will never have arrays of arrays. */
1316 case RECORD_TYPE:
1317 n = GFC_DTYPE_DERIVED;
1318 break;
1319
1320 case ARRAY_TYPE:
1321 n = GFC_DTYPE_CHARACTER;
1322 break;
1323
1324 default:
1325 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1326 /* We can strange array types for temporary arrays. */
1327 return gfc_index_zero_node;
1328 }
1329
1330 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1331 size = TYPE_SIZE_UNIT (etype);
1332
1333 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1334 if (size && INTEGER_CST_P (size))
1335 {
1336 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1337 internal_error ("Array element size too big");
1338
1339 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1340 }
1341 dtype = build_int_cst (gfc_array_index_type, i);
1342
1343 if (size && !INTEGER_CST_P (size))
1344 {
1345 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1346 tmp = fold_build2 (LSHIFT_EXPR, gfc_array_index_type,
1347 fold_convert (gfc_array_index_type, size), tmp);
1348 dtype = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, dtype);
1349 }
1350 /* If we don't know the size we leave it as zero. This should never happen
1351 for anything that is actually used. */
1352 /* TODO: Check this is actually true, particularly when repacking
1353 assumed size parameters. */
1354
1355 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1356 return dtype;
1357 }
1358
1359
1360 /* Build an array type for use without a descriptor, packed according
1361 to the value of PACKED. */
1362
1363 tree
1364 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1365 bool restricted)
1366 {
1367 tree range;
1368 tree type;
1369 tree tmp;
1370 int n;
1371 int known_stride;
1372 int known_offset;
1373 mpz_t offset;
1374 mpz_t stride;
1375 mpz_t delta;
1376 gfc_expr *expr;
1377
1378 mpz_init_set_ui (offset, 0);
1379 mpz_init_set_ui (stride, 1);
1380 mpz_init (delta);
1381
1382 /* We don't use build_array_type because this does not include include
1383 lang-specific information (i.e. the bounds of the array) when checking
1384 for duplicates. */
1385 type = make_node (ARRAY_TYPE);
1386
1387 GFC_ARRAY_TYPE_P (type) = 1;
1388 TYPE_LANG_SPECIFIC (type)
1389 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1390
1391 known_stride = (packed != PACKED_NO);
1392 known_offset = 1;
1393 for (n = 0; n < as->rank; n++)
1394 {
1395 /* Fill in the stride and bound components of the type. */
1396 if (known_stride)
1397 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1398 else
1399 tmp = NULL_TREE;
1400 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1401
1402 expr = as->lower[n];
1403 if (expr->expr_type == EXPR_CONSTANT)
1404 {
1405 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1406 gfc_index_integer_kind);
1407 }
1408 else
1409 {
1410 known_stride = 0;
1411 tmp = NULL_TREE;
1412 }
1413 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1414
1415 if (known_stride)
1416 {
1417 /* Calculate the offset. */
1418 mpz_mul (delta, stride, as->lower[n]->value.integer);
1419 mpz_sub (offset, offset, delta);
1420 }
1421 else
1422 known_offset = 0;
1423
1424 expr = as->upper[n];
1425 if (expr && expr->expr_type == EXPR_CONSTANT)
1426 {
1427 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1428 gfc_index_integer_kind);
1429 }
1430 else
1431 {
1432 tmp = NULL_TREE;
1433 known_stride = 0;
1434 }
1435 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1436
1437 if (known_stride)
1438 {
1439 /* Calculate the stride. */
1440 mpz_sub (delta, as->upper[n]->value.integer,
1441 as->lower[n]->value.integer);
1442 mpz_add_ui (delta, delta, 1);
1443 mpz_mul (stride, stride, delta);
1444 }
1445
1446 /* Only the first stride is known for partial packed arrays. */
1447 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1448 known_stride = 0;
1449 }
1450
1451 if (known_offset)
1452 {
1453 GFC_TYPE_ARRAY_OFFSET (type) =
1454 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1455 }
1456 else
1457 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1458
1459 if (known_stride)
1460 {
1461 GFC_TYPE_ARRAY_SIZE (type) =
1462 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1463 }
1464 else
1465 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1466
1467 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1468 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1469 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1470 NULL_TREE);
1471 /* TODO: use main type if it is unbounded. */
1472 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1473 build_pointer_type (build_array_type (etype, range));
1474 if (restricted)
1475 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1476 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1477 TYPE_QUAL_RESTRICT);
1478
1479 if (known_stride)
1480 {
1481 mpz_sub_ui (stride, stride, 1);
1482 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1483 }
1484 else
1485 range = NULL_TREE;
1486
1487 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1488 TYPE_DOMAIN (type) = range;
1489
1490 build_pointer_type (etype);
1491 TREE_TYPE (type) = etype;
1492
1493 layout_type (type);
1494
1495 mpz_clear (offset);
1496 mpz_clear (stride);
1497 mpz_clear (delta);
1498
1499 /* Represent packed arrays as multi-dimensional if they have rank >
1500 1 and with proper bounds, instead of flat arrays. This makes for
1501 better debug info. */
1502 if (known_offset)
1503 {
1504 tree gtype = etype, rtype, type_decl;
1505
1506 for (n = as->rank - 1; n >= 0; n--)
1507 {
1508 rtype = build_range_type (gfc_array_index_type,
1509 GFC_TYPE_ARRAY_LBOUND (type, n),
1510 GFC_TYPE_ARRAY_UBOUND (type, n));
1511 gtype = build_array_type (gtype, rtype);
1512 }
1513 TYPE_NAME (type) = type_decl = build_decl (input_location,
1514 TYPE_DECL, NULL, gtype);
1515 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1516 }
1517
1518 if (packed != PACKED_STATIC || !known_stride)
1519 {
1520 /* For dummy arrays and automatic (heap allocated) arrays we
1521 want a pointer to the array. */
1522 type = build_pointer_type (type);
1523 if (restricted)
1524 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1525 GFC_ARRAY_TYPE_P (type) = 1;
1526 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1527 }
1528 return type;
1529 }
1530
1531 /* Return or create the base type for an array descriptor. */
1532
1533 static tree
1534 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted)
1535 {
1536 tree fat_type, decl, arraytype, *chain = NULL;
1537 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1538 int idx = 2 * (codimen + dimen - 1) + restricted;
1539
1540 gcc_assert (dimen >= 1 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1541 if (gfc_array_descriptor_base[idx])
1542 return gfc_array_descriptor_base[idx];
1543
1544 /* Build the type node. */
1545 fat_type = make_node (RECORD_TYPE);
1546
1547 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1548 TYPE_NAME (fat_type) = get_identifier (name);
1549
1550 /* Add the data member as the first element of the descriptor. */
1551 decl = gfc_add_field_to_struct_1 (fat_type,
1552 get_identifier ("data"),
1553 (restricted
1554 ? prvoid_type_node
1555 : ptr_type_node), &chain);
1556
1557 /* Add the base component. */
1558 decl = gfc_add_field_to_struct_1 (fat_type,
1559 get_identifier ("offset"),
1560 gfc_array_index_type, &chain);
1561 TREE_NO_WARNING (decl) = 1;
1562
1563 /* Add the dtype component. */
1564 decl = gfc_add_field_to_struct_1 (fat_type,
1565 get_identifier ("dtype"),
1566 gfc_array_index_type, &chain);
1567 TREE_NO_WARNING (decl) = 1;
1568
1569 /* Build the array type for the stride and bound components. */
1570 arraytype =
1571 build_array_type (gfc_get_desc_dim_type (),
1572 build_range_type (gfc_array_index_type,
1573 gfc_index_zero_node,
1574 gfc_rank_cst[codimen + dimen - 1]));
1575
1576 decl = gfc_add_field_to_struct_1 (fat_type,
1577 get_identifier ("dim"),
1578 arraytype, &chain);
1579 TREE_NO_WARNING (decl) = 1;
1580
1581 /* Finish off the type. */
1582 gfc_finish_type (fat_type);
1583 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1584
1585 gfc_array_descriptor_base[idx] = fat_type;
1586 return fat_type;
1587 }
1588
1589 /* Build an array (descriptor) type with given bounds. */
1590
1591 tree
1592 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1593 tree * ubound, int packed,
1594 enum gfc_array_kind akind, bool restricted)
1595 {
1596 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1597 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1598 const char *type_name;
1599 int n;
1600
1601 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted);
1602 fat_type = build_distinct_type_copy (base_type);
1603 /* Make sure that nontarget and target array type have the same canonical
1604 type (and same stub decl for debug info). */
1605 base_type = gfc_get_array_descriptor_base (dimen, codimen, false);
1606 TYPE_CANONICAL (fat_type) = base_type;
1607 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1608
1609 tmp = TYPE_NAME (etype);
1610 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1611 tmp = DECL_NAME (tmp);
1612 if (tmp)
1613 type_name = IDENTIFIER_POINTER (tmp);
1614 else
1615 type_name = "unknown";
1616 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1617 GFC_MAX_SYMBOL_LEN, type_name);
1618 TYPE_NAME (fat_type) = get_identifier (name);
1619
1620 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1621 TYPE_LANG_SPECIFIC (fat_type)
1622 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1623
1624 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1625 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1626 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1627
1628 /* Build an array descriptor record type. */
1629 if (packed != 0)
1630 stride = gfc_index_one_node;
1631 else
1632 stride = NULL_TREE;
1633 for (n = 0; n < dimen; n++)
1634 {
1635 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1636
1637 if (lbound)
1638 lower = lbound[n];
1639 else
1640 lower = NULL_TREE;
1641
1642 if (lower != NULL_TREE)
1643 {
1644 if (INTEGER_CST_P (lower))
1645 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1646 else
1647 lower = NULL_TREE;
1648 }
1649
1650 upper = ubound[n];
1651 if (upper != NULL_TREE)
1652 {
1653 if (INTEGER_CST_P (upper))
1654 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1655 else
1656 upper = NULL_TREE;
1657 }
1658
1659 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1660 {
1661 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
1662 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp,
1663 gfc_index_one_node);
1664 stride =
1665 fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, stride);
1666 /* Check the folding worked. */
1667 gcc_assert (INTEGER_CST_P (stride));
1668 }
1669 else
1670 stride = NULL_TREE;
1671 }
1672 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1673
1674 /* TODO: known offsets for descriptors. */
1675 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1676
1677 /* We define data as an array with the correct size if possible.
1678 Much better than doing pointer arithmetic. */
1679 if (stride)
1680 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1681 int_const_binop (MINUS_EXPR, stride,
1682 integer_one_node, 0));
1683 else
1684 rtype = gfc_array_range_type;
1685 arraytype = build_array_type (etype, rtype);
1686 arraytype = build_pointer_type (arraytype);
1687 if (restricted)
1688 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1689 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1690
1691 /* This will generate the base declarations we need to emit debug
1692 information for this type. FIXME: there must be a better way to
1693 avoid divergence between compilations with and without debug
1694 information. */
1695 {
1696 struct array_descr_info info;
1697 gfc_get_array_descr_info (fat_type, &info);
1698 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1699 }
1700
1701 return fat_type;
1702 }
1703 \f
1704 /* Build a pointer type. This function is called from gfc_sym_type(). */
1705
1706 static tree
1707 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1708 {
1709 /* Array pointer types aren't actually pointers. */
1710 if (sym->attr.dimension)
1711 return type;
1712 else
1713 return build_pointer_type (type);
1714 }
1715 \f
1716 /* Return the type for a symbol. Special handling is required for character
1717 types to get the correct level of indirection.
1718 For functions return the return type.
1719 For subroutines return void_type_node.
1720 Calling this multiple times for the same symbol should be avoided,
1721 especially for character and array types. */
1722
1723 tree
1724 gfc_sym_type (gfc_symbol * sym)
1725 {
1726 tree type;
1727 int byref;
1728 bool restricted;
1729
1730 /* Procedure Pointers inside COMMON blocks. */
1731 if (sym->attr.proc_pointer && sym->attr.in_common)
1732 {
1733 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
1734 sym->attr.proc_pointer = 0;
1735 type = build_pointer_type (gfc_get_function_type (sym));
1736 sym->attr.proc_pointer = 1;
1737 return type;
1738 }
1739
1740 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1741 return void_type_node;
1742
1743 /* In the case of a function the fake result variable may have a
1744 type different from the function type, so don't return early in
1745 that case. */
1746 if (sym->backend_decl && !sym->attr.function)
1747 return TREE_TYPE (sym->backend_decl);
1748
1749 if (sym->ts.type == BT_CHARACTER
1750 && ((sym->attr.function && sym->attr.is_bind_c)
1751 || (sym->attr.result
1752 && sym->ns->proc_name
1753 && sym->ns->proc_name->attr.is_bind_c)))
1754 type = gfc_character1_type_node;
1755 else
1756 type = gfc_typenode_for_spec (&sym->ts);
1757
1758 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1759 byref = 1;
1760 else
1761 byref = 0;
1762
1763 restricted = !sym->attr.target && !sym->attr.pointer
1764 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
1765 if (sym->attr.dimension)
1766 {
1767 if (gfc_is_nodesc_array (sym))
1768 {
1769 /* If this is a character argument of unknown length, just use the
1770 base type. */
1771 if (sym->ts.type != BT_CHARACTER
1772 || !(sym->attr.dummy || sym->attr.function)
1773 || sym->ts.u.cl->backend_decl)
1774 {
1775 type = gfc_get_nodesc_array_type (type, sym->as,
1776 byref ? PACKED_FULL
1777 : PACKED_STATIC,
1778 restricted);
1779 byref = 0;
1780 }
1781
1782 if (sym->attr.cray_pointee)
1783 GFC_POINTER_TYPE_P (type) = 1;
1784 }
1785 else
1786 {
1787 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
1788 if (sym->attr.pointer)
1789 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
1790 : GFC_ARRAY_POINTER;
1791 else if (sym->attr.allocatable)
1792 akind = GFC_ARRAY_ALLOCATABLE;
1793 type = gfc_build_array_type (type, sym->as, akind, restricted,
1794 sym->attr.contiguous);
1795 }
1796 }
1797 else
1798 {
1799 if (sym->attr.allocatable || sym->attr.pointer)
1800 type = gfc_build_pointer_type (sym, type);
1801 if (sym->attr.pointer || sym->attr.cray_pointee)
1802 GFC_POINTER_TYPE_P (type) = 1;
1803 }
1804
1805 /* We currently pass all parameters by reference.
1806 See f95_get_function_decl. For dummy function parameters return the
1807 function type. */
1808 if (byref)
1809 {
1810 /* We must use pointer types for potentially absent variables. The
1811 optimizers assume a reference type argument is never NULL. */
1812 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
1813 type = build_pointer_type (type);
1814 else
1815 {
1816 type = build_reference_type (type);
1817 if (restricted)
1818 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1819 }
1820 }
1821
1822 return (type);
1823 }
1824 \f
1825 /* Layout and output debug info for a record type. */
1826
1827 void
1828 gfc_finish_type (tree type)
1829 {
1830 tree decl;
1831
1832 decl = build_decl (input_location,
1833 TYPE_DECL, NULL_TREE, type);
1834 TYPE_STUB_DECL (type) = decl;
1835 layout_type (type);
1836 rest_of_type_compilation (type, 1);
1837 rest_of_decl_compilation (decl, 1, 0);
1838 }
1839 \f
1840 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1841 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
1842 to the end of the field list pointed to by *CHAIN.
1843
1844 Returns a pointer to the new field. */
1845
1846 static tree
1847 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
1848 {
1849 tree decl = build_decl (input_location, FIELD_DECL, name, type);
1850
1851 DECL_CONTEXT (decl) = context;
1852 DECL_CHAIN (decl) = NULL_TREE;
1853 if (TYPE_FIELDS (context) == NULL_TREE)
1854 TYPE_FIELDS (context) = decl;
1855 if (chain != NULL)
1856 {
1857 if (*chain != NULL)
1858 **chain = decl;
1859 *chain = &DECL_CHAIN (decl);
1860 }
1861
1862 return decl;
1863 }
1864
1865 /* Like `gfc_add_field_to_struct_1', but adds alignment
1866 information. */
1867
1868 tree
1869 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
1870 {
1871 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
1872
1873 DECL_INITIAL (decl) = 0;
1874 DECL_ALIGN (decl) = 0;
1875 DECL_USER_ALIGN (decl) = 0;
1876
1877 return decl;
1878 }
1879
1880
1881 /* Copy the backend_decl and component backend_decls if
1882 the two derived type symbols are "equal", as described
1883 in 4.4.2 and resolved by gfc_compare_derived_types. */
1884
1885 static int
1886 copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
1887 bool from_gsym)
1888 {
1889 gfc_component *to_cm;
1890 gfc_component *from_cm;
1891
1892 if (from->backend_decl == NULL
1893 || !gfc_compare_derived_types (from, to))
1894 return 0;
1895
1896 to->backend_decl = from->backend_decl;
1897
1898 to_cm = to->components;
1899 from_cm = from->components;
1900
1901 /* Copy the component declarations. If a component is itself
1902 a derived type, we need a copy of its component declarations.
1903 This is done by recursing into gfc_get_derived_type and
1904 ensures that the component's component declarations have
1905 been built. If it is a character, we need the character
1906 length, as well. */
1907 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
1908 {
1909 to_cm->backend_decl = from_cm->backend_decl;
1910 if ((!from_cm->attr.pointer || from_gsym)
1911 && from_cm->ts.type == BT_DERIVED)
1912 gfc_get_derived_type (to_cm->ts.u.derived);
1913
1914 else if (from_cm->ts.type == BT_CHARACTER)
1915 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
1916 }
1917
1918 return 1;
1919 }
1920
1921
1922 /* Build a tree node for a procedure pointer component. */
1923
1924 tree
1925 gfc_get_ppc_type (gfc_component* c)
1926 {
1927 tree t;
1928
1929 /* Explicit interface. */
1930 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
1931 return build_pointer_type (gfc_get_function_type (c->ts.interface));
1932
1933 /* Implicit interface (only return value may be known). */
1934 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
1935 t = gfc_typenode_for_spec (&c->ts);
1936 else
1937 t = void_type_node;
1938
1939 return build_pointer_type (build_function_type_list (t, NULL_TREE));
1940 }
1941
1942
1943 /* Build a tree node for a derived type. If there are equal
1944 derived types, with different local names, these are built
1945 at the same time. If an equal derived type has been built
1946 in a parent namespace, this is used. */
1947
1948 tree
1949 gfc_get_derived_type (gfc_symbol * derived)
1950 {
1951 tree typenode = NULL, field = NULL, field_type = NULL;
1952 tree canonical = NULL_TREE;
1953 tree *chain = NULL;
1954 bool got_canonical = false;
1955 gfc_component *c;
1956 gfc_dt_list *dt;
1957 gfc_namespace *ns;
1958 gfc_gsymbol *gsym;
1959
1960 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
1961
1962 /* See if it's one of the iso_c_binding derived types. */
1963 if (derived->attr.is_iso_c == 1)
1964 {
1965 if (derived->backend_decl)
1966 return derived->backend_decl;
1967
1968 if (derived->intmod_sym_id == ISOCBINDING_PTR)
1969 derived->backend_decl = ptr_type_node;
1970 else
1971 derived->backend_decl = pfunc_type_node;
1972
1973 derived->ts.kind = gfc_index_integer_kind;
1974 derived->ts.type = BT_INTEGER;
1975 /* Set the f90_type to BT_VOID as a way to recognize something of type
1976 BT_INTEGER that needs to fit a void * for the purpose of the
1977 iso_c_binding derived types. */
1978 derived->ts.f90_type = BT_VOID;
1979
1980 return derived->backend_decl;
1981 }
1982
1983 /* If use associated, use the module type for this one. */
1984 if (gfc_option.flag_whole_file
1985 && derived->backend_decl == NULL
1986 && derived->attr.use_assoc
1987 && derived->module)
1988 {
1989 gsym = gfc_find_gsymbol (gfc_gsym_root, derived->module);
1990 if (gsym && gsym->ns && gsym->type == GSYM_MODULE)
1991 {
1992 gfc_symbol *s;
1993 s = NULL;
1994 gfc_find_symbol (derived->name, gsym->ns, 0, &s);
1995 if (s && s->backend_decl)
1996 {
1997 copy_dt_decls_ifequal (s, derived, true);
1998 goto copy_derived_types;
1999 }
2000 }
2001 }
2002
2003 /* If a whole file compilation, the derived types from an earlier
2004 namespace can be used as the the canonical type. */
2005 if (gfc_option.flag_whole_file
2006 && derived->backend_decl == NULL
2007 && !derived->attr.use_assoc
2008 && gfc_global_ns_list)
2009 {
2010 for (ns = gfc_global_ns_list;
2011 ns->translated && !got_canonical;
2012 ns = ns->sibling)
2013 {
2014 dt = ns->derived_types;
2015 for (; dt && !canonical; dt = dt->next)
2016 {
2017 copy_dt_decls_ifequal (dt->derived, derived, true);
2018 if (derived->backend_decl)
2019 got_canonical = true;
2020 }
2021 }
2022 }
2023
2024 /* Store up the canonical type to be added to this one. */
2025 if (got_canonical)
2026 {
2027 if (TYPE_CANONICAL (derived->backend_decl))
2028 canonical = TYPE_CANONICAL (derived->backend_decl);
2029 else
2030 canonical = derived->backend_decl;
2031
2032 derived->backend_decl = NULL_TREE;
2033 }
2034
2035 /* derived->backend_decl != 0 means we saw it before, but its
2036 components' backend_decl may have not been built. */
2037 if (derived->backend_decl)
2038 {
2039 /* Its components' backend_decl have been built or we are
2040 seeing recursion through the formal arglist of a procedure
2041 pointer component. */
2042 if (TYPE_FIELDS (derived->backend_decl)
2043 || derived->attr.proc_pointer_comp)
2044 return derived->backend_decl;
2045 else
2046 typenode = derived->backend_decl;
2047 }
2048 else
2049 {
2050 /* We see this derived type first time, so build the type node. */
2051 typenode = make_node (RECORD_TYPE);
2052 TYPE_NAME (typenode) = get_identifier (derived->name);
2053 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2054 derived->backend_decl = typenode;
2055 }
2056
2057 /* Go through the derived type components, building them as
2058 necessary. The reason for doing this now is that it is
2059 possible to recurse back to this derived type through a
2060 pointer component (PR24092). If this happens, the fields
2061 will be built and so we can return the type. */
2062 for (c = derived->components; c; c = c->next)
2063 {
2064 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2065 continue;
2066
2067 if ((!c->attr.pointer && !c->attr.proc_pointer)
2068 || c->ts.u.derived->backend_decl == NULL)
2069 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2070
2071 if (c->ts.u.derived && c->ts.u.derived->attr.is_iso_c)
2072 {
2073 /* Need to copy the modified ts from the derived type. The
2074 typespec was modified because C_PTR/C_FUNPTR are translated
2075 into (void *) from derived types. */
2076 c->ts.type = c->ts.u.derived->ts.type;
2077 c->ts.kind = c->ts.u.derived->ts.kind;
2078 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2079 if (c->initializer)
2080 {
2081 c->initializer->ts.type = c->ts.type;
2082 c->initializer->ts.kind = c->ts.kind;
2083 c->initializer->ts.f90_type = c->ts.f90_type;
2084 c->initializer->expr_type = EXPR_NULL;
2085 }
2086 }
2087 }
2088
2089 if (TYPE_FIELDS (derived->backend_decl))
2090 return derived->backend_decl;
2091
2092 /* Build the type member list. Install the newly created RECORD_TYPE
2093 node as DECL_CONTEXT of each FIELD_DECL. */
2094 for (c = derived->components; c; c = c->next)
2095 {
2096 if (c->attr.proc_pointer)
2097 field_type = gfc_get_ppc_type (c);
2098 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2099 field_type = c->ts.u.derived->backend_decl;
2100 else
2101 {
2102 if (c->ts.type == BT_CHARACTER)
2103 {
2104 /* Evaluate the string length. */
2105 gfc_conv_const_charlen (c->ts.u.cl);
2106 gcc_assert (c->ts.u.cl->backend_decl);
2107 }
2108
2109 field_type = gfc_typenode_for_spec (&c->ts);
2110 }
2111
2112 /* This returns an array descriptor type. Initialization may be
2113 required. */
2114 if (c->attr.dimension && !c->attr.proc_pointer)
2115 {
2116 if (c->attr.pointer || c->attr.allocatable)
2117 {
2118 enum gfc_array_kind akind;
2119 if (c->attr.pointer)
2120 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2121 : GFC_ARRAY_POINTER;
2122 else
2123 akind = GFC_ARRAY_ALLOCATABLE;
2124 /* Pointers to arrays aren't actually pointer types. The
2125 descriptors are separate, but the data is common. */
2126 field_type = gfc_build_array_type (field_type, c->as, akind,
2127 !c->attr.target
2128 && !c->attr.pointer,
2129 c->attr.contiguous);
2130 }
2131 else
2132 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2133 PACKED_STATIC,
2134 !c->attr.target);
2135 }
2136 else if ((c->attr.pointer || c->attr.allocatable)
2137 && !c->attr.proc_pointer)
2138 field_type = build_pointer_type (field_type);
2139
2140 /* vtype fields can point to different types to the base type. */
2141 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.vtype)
2142 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2143 ptr_mode, true);
2144
2145 field = gfc_add_field_to_struct (typenode,
2146 get_identifier (c->name),
2147 field_type, &chain);
2148 if (c->loc.lb)
2149 gfc_set_decl_location (field, &c->loc);
2150 else if (derived->declared_at.lb)
2151 gfc_set_decl_location (field, &derived->declared_at);
2152
2153 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2154
2155 gcc_assert (field);
2156 if (!c->backend_decl)
2157 c->backend_decl = field;
2158 }
2159
2160 /* Now lay out the derived type, including the fields. */
2161 if (canonical)
2162 TYPE_CANONICAL (typenode) = canonical;
2163
2164 gfc_finish_type (typenode);
2165 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2166 if (derived->module && derived->ns->proc_name
2167 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2168 {
2169 if (derived->ns->proc_name->backend_decl
2170 && TREE_CODE (derived->ns->proc_name->backend_decl)
2171 == NAMESPACE_DECL)
2172 {
2173 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2174 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2175 = derived->ns->proc_name->backend_decl;
2176 }
2177 }
2178
2179 derived->backend_decl = typenode;
2180
2181 copy_derived_types:
2182
2183 for (dt = gfc_derived_types; dt; dt = dt->next)
2184 copy_dt_decls_ifequal (derived, dt->derived, false);
2185
2186 return derived->backend_decl;
2187 }
2188
2189
2190 int
2191 gfc_return_by_reference (gfc_symbol * sym)
2192 {
2193 if (!sym->attr.function)
2194 return 0;
2195
2196 if (sym->attr.dimension)
2197 return 1;
2198
2199 if (sym->ts.type == BT_CHARACTER
2200 && !sym->attr.is_bind_c
2201 && (!sym->attr.result
2202 || !sym->ns->proc_name
2203 || !sym->ns->proc_name->attr.is_bind_c))
2204 return 1;
2205
2206 /* Possibly return complex numbers by reference for g77 compatibility.
2207 We don't do this for calls to intrinsics (as the library uses the
2208 -fno-f2c calling convention), nor for calls to functions which always
2209 require an explicit interface, as no compatibility problems can
2210 arise there. */
2211 if (gfc_option.flag_f2c
2212 && sym->ts.type == BT_COMPLEX
2213 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2214 return 1;
2215
2216 return 0;
2217 }
2218 \f
2219 static tree
2220 gfc_get_mixed_entry_union (gfc_namespace *ns)
2221 {
2222 tree type;
2223 tree *chain = NULL;
2224 char name[GFC_MAX_SYMBOL_LEN + 1];
2225 gfc_entry_list *el, *el2;
2226
2227 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2228 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2229
2230 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2231
2232 /* Build the type node. */
2233 type = make_node (UNION_TYPE);
2234
2235 TYPE_NAME (type) = get_identifier (name);
2236
2237 for (el = ns->entries; el; el = el->next)
2238 {
2239 /* Search for duplicates. */
2240 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2241 if (el2->sym->result == el->sym->result)
2242 break;
2243
2244 if (el == el2)
2245 gfc_add_field_to_struct_1 (type,
2246 get_identifier (el->sym->result->name),
2247 gfc_sym_type (el->sym->result), &chain);
2248 }
2249
2250 /* Finish off the type. */
2251 gfc_finish_type (type);
2252 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2253 return type;
2254 }
2255 \f
2256 tree
2257 gfc_get_function_type (gfc_symbol * sym)
2258 {
2259 tree type;
2260 tree typelist;
2261 gfc_formal_arglist *f;
2262 gfc_symbol *arg;
2263 int nstr;
2264 int alternate_return;
2265
2266 /* Make sure this symbol is a function, a subroutine or the main
2267 program. */
2268 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2269 || sym->attr.flavor == FL_PROGRAM);
2270
2271 if (sym->backend_decl)
2272 return TREE_TYPE (sym->backend_decl);
2273
2274 nstr = 0;
2275 alternate_return = 0;
2276 typelist = NULL_TREE;
2277
2278 if (sym->attr.entry_master)
2279 {
2280 /* Additional parameter for selecting an entry point. */
2281 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
2282 }
2283
2284 if (sym->result)
2285 arg = sym->result;
2286 else
2287 arg = sym;
2288
2289 if (arg->ts.type == BT_CHARACTER)
2290 gfc_conv_const_charlen (arg->ts.u.cl);
2291
2292 /* Some functions we use an extra parameter for the return value. */
2293 if (gfc_return_by_reference (sym))
2294 {
2295 type = gfc_sym_type (arg);
2296 if (arg->ts.type == BT_COMPLEX
2297 || arg->attr.dimension
2298 || arg->ts.type == BT_CHARACTER)
2299 type = build_reference_type (type);
2300
2301 typelist = gfc_chainon_list (typelist, type);
2302 if (arg->ts.type == BT_CHARACTER)
2303 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2304 }
2305
2306 /* Build the argument types for the function. */
2307 for (f = sym->formal; f; f = f->next)
2308 {
2309 arg = f->sym;
2310 if (arg)
2311 {
2312 /* Evaluate constant character lengths here so that they can be
2313 included in the type. */
2314 if (arg->ts.type == BT_CHARACTER)
2315 gfc_conv_const_charlen (arg->ts.u.cl);
2316
2317 if (arg->attr.flavor == FL_PROCEDURE)
2318 {
2319 type = gfc_get_function_type (arg);
2320 type = build_pointer_type (type);
2321 }
2322 else
2323 type = gfc_sym_type (arg);
2324
2325 /* Parameter Passing Convention
2326
2327 We currently pass all parameters by reference.
2328 Parameters with INTENT(IN) could be passed by value.
2329 The problem arises if a function is called via an implicit
2330 prototype. In this situation the INTENT is not known.
2331 For this reason all parameters to global functions must be
2332 passed by reference. Passing by value would potentially
2333 generate bad code. Worse there would be no way of telling that
2334 this code was bad, except that it would give incorrect results.
2335
2336 Contained procedures could pass by value as these are never
2337 used without an explicit interface, and cannot be passed as
2338 actual parameters for a dummy procedure. */
2339 if (arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2340 nstr++;
2341 typelist = gfc_chainon_list (typelist, type);
2342 }
2343 else
2344 {
2345 if (sym->attr.subroutine)
2346 alternate_return = 1;
2347 }
2348 }
2349
2350 /* Add hidden string length parameters. */
2351 while (nstr--)
2352 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2353
2354 if (typelist)
2355 typelist = gfc_chainon_list (typelist, void_type_node);
2356
2357 if (alternate_return)
2358 type = integer_type_node;
2359 else if (!sym->attr.function || gfc_return_by_reference (sym))
2360 type = void_type_node;
2361 else if (sym->attr.mixed_entry_master)
2362 type = gfc_get_mixed_entry_union (sym->ns);
2363 else if (gfc_option.flag_f2c
2364 && sym->ts.type == BT_REAL
2365 && sym->ts.kind == gfc_default_real_kind
2366 && !sym->attr.always_explicit)
2367 {
2368 /* Special case: f2c calling conventions require that (scalar)
2369 default REAL functions return the C type double instead. f2c
2370 compatibility is only an issue with functions that don't
2371 require an explicit interface, as only these could be
2372 implemented in Fortran 77. */
2373 sym->ts.kind = gfc_default_double_kind;
2374 type = gfc_typenode_for_spec (&sym->ts);
2375 sym->ts.kind = gfc_default_real_kind;
2376 }
2377 else if (sym->result && sym->result->attr.proc_pointer)
2378 /* Procedure pointer return values. */
2379 {
2380 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2381 {
2382 /* Unset proc_pointer as gfc_get_function_type
2383 is called recursively. */
2384 sym->result->attr.proc_pointer = 0;
2385 type = build_pointer_type (gfc_get_function_type (sym->result));
2386 sym->result->attr.proc_pointer = 1;
2387 }
2388 else
2389 type = gfc_sym_type (sym->result);
2390 }
2391 else
2392 type = gfc_sym_type (sym);
2393
2394 type = build_function_type (type, typelist);
2395
2396 return type;
2397 }
2398 \f
2399 /* Language hooks for middle-end access to type nodes. */
2400
2401 /* Return an integer type with BITS bits of precision,
2402 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2403
2404 tree
2405 gfc_type_for_size (unsigned bits, int unsignedp)
2406 {
2407 if (!unsignedp)
2408 {
2409 int i;
2410 for (i = 0; i <= MAX_INT_KINDS; ++i)
2411 {
2412 tree type = gfc_integer_types[i];
2413 if (type && bits == TYPE_PRECISION (type))
2414 return type;
2415 }
2416
2417 /* Handle TImode as a special case because it is used by some backends
2418 (e.g. ARM) even though it is not available for normal use. */
2419 #if HOST_BITS_PER_WIDE_INT >= 64
2420 if (bits == TYPE_PRECISION (intTI_type_node))
2421 return intTI_type_node;
2422 #endif
2423 }
2424 else
2425 {
2426 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2427 return unsigned_intQI_type_node;
2428 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2429 return unsigned_intHI_type_node;
2430 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2431 return unsigned_intSI_type_node;
2432 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2433 return unsigned_intDI_type_node;
2434 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2435 return unsigned_intTI_type_node;
2436 }
2437
2438 return NULL_TREE;
2439 }
2440
2441 /* Return a data type that has machine mode MODE. If the mode is an
2442 integer, then UNSIGNEDP selects between signed and unsigned types. */
2443
2444 tree
2445 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2446 {
2447 int i;
2448 tree *base;
2449
2450 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2451 base = gfc_real_types;
2452 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2453 base = gfc_complex_types;
2454 else if (SCALAR_INT_MODE_P (mode))
2455 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2456 else if (VECTOR_MODE_P (mode))
2457 {
2458 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2459 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2460 if (inner_type != NULL_TREE)
2461 return build_vector_type_for_mode (inner_type, mode);
2462 return NULL_TREE;
2463 }
2464 else
2465 return NULL_TREE;
2466
2467 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2468 {
2469 tree type = base[i];
2470 if (type && mode == TYPE_MODE (type))
2471 return type;
2472 }
2473
2474 return NULL_TREE;
2475 }
2476
2477 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2478 in that case. */
2479
2480 bool
2481 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2482 {
2483 int rank, dim;
2484 bool indirect = false;
2485 tree etype, ptype, field, t, base_decl;
2486 tree data_off, dim_off, dim_size, elem_size;
2487 tree lower_suboff, upper_suboff, stride_suboff;
2488
2489 if (! GFC_DESCRIPTOR_TYPE_P (type))
2490 {
2491 if (! POINTER_TYPE_P (type))
2492 return false;
2493 type = TREE_TYPE (type);
2494 if (! GFC_DESCRIPTOR_TYPE_P (type))
2495 return false;
2496 indirect = true;
2497 }
2498
2499 rank = GFC_TYPE_ARRAY_RANK (type);
2500 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2501 return false;
2502
2503 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2504 gcc_assert (POINTER_TYPE_P (etype));
2505 etype = TREE_TYPE (etype);
2506 gcc_assert (TREE_CODE (etype) == ARRAY_TYPE);
2507 etype = TREE_TYPE (etype);
2508 /* Can't handle variable sized elements yet. */
2509 if (int_size_in_bytes (etype) <= 0)
2510 return false;
2511 /* Nor non-constant lower bounds in assumed shape arrays. */
2512 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
2513 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
2514 {
2515 for (dim = 0; dim < rank; dim++)
2516 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
2517 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
2518 return false;
2519 }
2520
2521 memset (info, '\0', sizeof (*info));
2522 info->ndimensions = rank;
2523 info->element_type = etype;
2524 ptype = build_pointer_type (gfc_array_index_type);
2525 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
2526 if (!base_decl)
2527 {
2528 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
2529 indirect ? build_pointer_type (ptype) : ptype);
2530 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
2531 }
2532 info->base_decl = base_decl;
2533 if (indirect)
2534 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
2535
2536 if (GFC_TYPE_ARRAY_SPAN (type))
2537 elem_size = GFC_TYPE_ARRAY_SPAN (type);
2538 else
2539 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
2540 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
2541 data_off = byte_position (field);
2542 field = DECL_CHAIN (field);
2543 field = DECL_CHAIN (field);
2544 field = DECL_CHAIN (field);
2545 dim_off = byte_position (field);
2546 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
2547 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
2548 stride_suboff = byte_position (field);
2549 field = DECL_CHAIN (field);
2550 lower_suboff = byte_position (field);
2551 field = DECL_CHAIN (field);
2552 upper_suboff = byte_position (field);
2553
2554 t = base_decl;
2555 if (!integer_zerop (data_off))
2556 t = build2 (POINTER_PLUS_EXPR, ptype, t, data_off);
2557 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
2558 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
2559 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
2560 info->allocated = build2 (NE_EXPR, boolean_type_node,
2561 info->data_location, null_pointer_node);
2562 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
2563 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
2564 info->associated = build2 (NE_EXPR, boolean_type_node,
2565 info->data_location, null_pointer_node);
2566
2567 for (dim = 0; dim < rank; dim++)
2568 {
2569 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2570 size_binop (PLUS_EXPR, dim_off, lower_suboff));
2571 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2572 info->dimen[dim].lower_bound = t;
2573 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2574 size_binop (PLUS_EXPR, dim_off, upper_suboff));
2575 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2576 info->dimen[dim].upper_bound = t;
2577 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
2578 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
2579 {
2580 /* Assumed shape arrays have known lower bounds. */
2581 info->dimen[dim].upper_bound
2582 = build2 (MINUS_EXPR, gfc_array_index_type,
2583 info->dimen[dim].upper_bound,
2584 info->dimen[dim].lower_bound);
2585 info->dimen[dim].lower_bound
2586 = fold_convert (gfc_array_index_type,
2587 GFC_TYPE_ARRAY_LBOUND (type, dim));
2588 info->dimen[dim].upper_bound
2589 = build2 (PLUS_EXPR, gfc_array_index_type,
2590 info->dimen[dim].lower_bound,
2591 info->dimen[dim].upper_bound);
2592 }
2593 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2594 size_binop (PLUS_EXPR, dim_off, stride_suboff));
2595 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2596 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
2597 info->dimen[dim].stride = t;
2598 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
2599 }
2600
2601 return true;
2602 }
2603
2604 #include "gt-fortran-trans-types.h"