re PR fortran/29635 (debug info of modules)
[gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Paul Brook <paul@nowt.org>
5 and Steven Bosscher <s.bosscher@student.tudelft.nl>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* trans-types.c -- gfortran backend types */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tree.h"
29 #include "langhooks.h"
30 #include "tm.h"
31 #include "target.h"
32 #include "ggc.h"
33 #include "toplev.h"
34 #include "gfortran.h"
35 #include "trans.h"
36 #include "trans-types.h"
37 #include "trans-const.h"
38 #include "real.h"
39 #include "flags.h"
40 #include "dwarf2out.h"
41 \f
42
43 #if (GFC_MAX_DIMENSIONS < 10)
44 #define GFC_RANK_DIGITS 1
45 #define GFC_RANK_PRINTF_FORMAT "%01d"
46 #elif (GFC_MAX_DIMENSIONS < 100)
47 #define GFC_RANK_DIGITS 2
48 #define GFC_RANK_PRINTF_FORMAT "%02d"
49 #else
50 #error If you really need >99 dimensions, continue the sequence above...
51 #endif
52
53 /* array of structs so we don't have to worry about xmalloc or free */
54 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
55
56 static tree gfc_get_derived_type (gfc_symbol * derived);
57
58 tree gfc_array_index_type;
59 tree gfc_array_range_type;
60 tree gfc_character1_type_node;
61 tree pvoid_type_node;
62 tree ppvoid_type_node;
63 tree pchar_type_node;
64 tree pfunc_type_node;
65
66 tree gfc_charlen_type_node;
67
68 static GTY(()) tree gfc_desc_dim_type;
69 static GTY(()) tree gfc_max_array_element_size;
70 static GTY(()) tree gfc_array_descriptor_base[GFC_MAX_DIMENSIONS];
71
72 /* Arrays for all integral and real kinds. We'll fill this in at runtime
73 after the target has a chance to process command-line options. */
74
75 #define MAX_INT_KINDS 5
76 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
77 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
78 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
79 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
80
81 #define MAX_REAL_KINDS 5
82 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
83 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
84 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
85
86 #define MAX_CHARACTER_KINDS 2
87 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
88 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
89 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
90
91
92 /* The integer kind to use for array indices. This will be set to the
93 proper value based on target information from the backend. */
94
95 int gfc_index_integer_kind;
96
97 /* The default kinds of the various types. */
98
99 int gfc_default_integer_kind;
100 int gfc_max_integer_kind;
101 int gfc_default_real_kind;
102 int gfc_default_double_kind;
103 int gfc_default_character_kind;
104 int gfc_default_logical_kind;
105 int gfc_default_complex_kind;
106 int gfc_c_int_kind;
107
108 /* The kind size used for record offsets. If the target system supports
109 kind=8, this will be set to 8, otherwise it is set to 4. */
110 int gfc_intio_kind;
111
112 /* The integer kind used to store character lengths. */
113 int gfc_charlen_int_kind;
114
115 /* The size of the numeric storage unit and character storage unit. */
116 int gfc_numeric_storage_size;
117 int gfc_character_storage_size;
118
119
120 /* Validate that the f90_type of the given gfc_typespec is valid for
121 the type it represents. The f90_type represents the Fortran types
122 this C kind can be used with. For example, c_int has a f90_type of
123 BT_INTEGER and c_float has a f90_type of BT_REAL. Returns FAILURE
124 if a mismatch occurs between ts->f90_type and ts->type; SUCCESS if
125 they match. */
126
127 gfc_try
128 gfc_validate_c_kind (gfc_typespec *ts)
129 {
130 return ((ts->type == ts->f90_type) ? SUCCESS : FAILURE);
131 }
132
133
134 gfc_try
135 gfc_check_any_c_kind (gfc_typespec *ts)
136 {
137 int i;
138
139 for (i = 0; i < ISOCBINDING_NUMBER; i++)
140 {
141 /* Check for any C interoperable kind for the given type/kind in ts.
142 This can be used after verify_c_interop to make sure that the
143 Fortran kind being used exists in at least some form for C. */
144 if (c_interop_kinds_table[i].f90_type == ts->type &&
145 c_interop_kinds_table[i].value == ts->kind)
146 return SUCCESS;
147 }
148
149 return FAILURE;
150 }
151
152
153 static int
154 get_real_kind_from_node (tree type)
155 {
156 int i;
157
158 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
159 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
160 return gfc_real_kinds[i].kind;
161
162 return -4;
163 }
164
165 static int
166 get_int_kind_from_node (tree type)
167 {
168 int i;
169
170 if (!type)
171 return -2;
172
173 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
174 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
175 return gfc_integer_kinds[i].kind;
176
177 return -1;
178 }
179
180 static int
181 get_int_kind_from_width (int size)
182 {
183 int i;
184
185 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
186 if (gfc_integer_kinds[i].bit_size == size)
187 return gfc_integer_kinds[i].kind;
188
189 return -2;
190 }
191
192 static int
193 get_int_kind_from_minimal_width (int size)
194 {
195 int i;
196
197 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
198 if (gfc_integer_kinds[i].bit_size >= size)
199 return gfc_integer_kinds[i].kind;
200
201 return -2;
202 }
203
204
205 /* Generate the CInteropKind_t objects for the C interoperable
206 kinds. */
207
208 static
209 void init_c_interop_kinds (void)
210 {
211 int i;
212 tree intmax_type_node = INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
213 integer_type_node :
214 (LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
215 long_integer_type_node :
216 long_long_integer_type_node);
217
218 /* init all pointers in the list to NULL */
219 for (i = 0; i < ISOCBINDING_NUMBER; i++)
220 {
221 /* Initialize the name and value fields. */
222 c_interop_kinds_table[i].name[0] = '\0';
223 c_interop_kinds_table[i].value = -100;
224 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
225 }
226
227 #define NAMED_INTCST(a,b,c,d) \
228 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
229 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
230 c_interop_kinds_table[a].value = c;
231 #define NAMED_REALCST(a,b,c) \
232 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
233 c_interop_kinds_table[a].f90_type = BT_REAL; \
234 c_interop_kinds_table[a].value = c;
235 #define NAMED_CMPXCST(a,b,c) \
236 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
237 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
238 c_interop_kinds_table[a].value = c;
239 #define NAMED_LOGCST(a,b,c) \
240 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
241 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
242 c_interop_kinds_table[a].value = c;
243 #define NAMED_CHARKNDCST(a,b,c) \
244 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
245 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
246 c_interop_kinds_table[a].value = c;
247 #define NAMED_CHARCST(a,b,c) \
248 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
249 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
250 c_interop_kinds_table[a].value = c;
251 #define DERIVED_TYPE(a,b,c) \
252 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
253 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
254 c_interop_kinds_table[a].value = c;
255 #define PROCEDURE(a,b) \
256 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
257 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
258 c_interop_kinds_table[a].value = 0;
259 #include "iso-c-binding.def"
260 }
261
262
263 /* Query the target to determine which machine modes are available for
264 computation. Choose KIND numbers for them. */
265
266 void
267 gfc_init_kinds (void)
268 {
269 enum machine_mode mode;
270 int i_index, r_index, kind;
271 bool saw_i4 = false, saw_i8 = false;
272 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
273
274 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
275 {
276 int kind, bitsize;
277
278 if (!targetm.scalar_mode_supported_p (mode))
279 continue;
280
281 /* The middle end doesn't support constants larger than 2*HWI.
282 Perhaps the target hook shouldn't have accepted these either,
283 but just to be safe... */
284 bitsize = GET_MODE_BITSIZE (mode);
285 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
286 continue;
287
288 gcc_assert (i_index != MAX_INT_KINDS);
289
290 /* Let the kind equal the bit size divided by 8. This insulates the
291 programmer from the underlying byte size. */
292 kind = bitsize / 8;
293
294 if (kind == 4)
295 saw_i4 = true;
296 if (kind == 8)
297 saw_i8 = true;
298
299 gfc_integer_kinds[i_index].kind = kind;
300 gfc_integer_kinds[i_index].radix = 2;
301 gfc_integer_kinds[i_index].digits = bitsize - 1;
302 gfc_integer_kinds[i_index].bit_size = bitsize;
303
304 gfc_logical_kinds[i_index].kind = kind;
305 gfc_logical_kinds[i_index].bit_size = bitsize;
306
307 i_index += 1;
308 }
309
310 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
311 used for large file access. */
312
313 if (saw_i8)
314 gfc_intio_kind = 8;
315 else
316 gfc_intio_kind = 4;
317
318 /* If we do not at least have kind = 4, everything is pointless. */
319 gcc_assert(saw_i4);
320
321 /* Set the maximum integer kind. Used with at least BOZ constants. */
322 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
323
324 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
325 {
326 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
327 int kind;
328
329 if (fmt == NULL)
330 continue;
331 if (!targetm.scalar_mode_supported_p (mode))
332 continue;
333
334 /* Only let float/double/long double go through because the fortran
335 library assumes these are the only floating point types. */
336
337 if (mode != TYPE_MODE (float_type_node)
338 && (mode != TYPE_MODE (double_type_node))
339 && (mode != TYPE_MODE (long_double_type_node)))
340 continue;
341
342 /* Let the kind equal the precision divided by 8, rounding up. Again,
343 this insulates the programmer from the underlying byte size.
344
345 Also, it effectively deals with IEEE extended formats. There, the
346 total size of the type may equal 16, but it's got 6 bytes of padding
347 and the increased size can get in the way of a real IEEE quad format
348 which may also be supported by the target.
349
350 We round up so as to handle IA-64 __floatreg (RFmode), which is an
351 82 bit type. Not to be confused with __float80 (XFmode), which is
352 an 80 bit type also supported by IA-64. So XFmode should come out
353 to be kind=10, and RFmode should come out to be kind=11. Egads. */
354
355 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
356
357 if (kind == 4)
358 saw_r4 = true;
359 if (kind == 8)
360 saw_r8 = true;
361 if (kind == 16)
362 saw_r16 = true;
363
364 /* Careful we don't stumble a weird internal mode. */
365 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
366 /* Or have too many modes for the allocated space. */
367 gcc_assert (r_index != MAX_REAL_KINDS);
368
369 gfc_real_kinds[r_index].kind = kind;
370 gfc_real_kinds[r_index].radix = fmt->b;
371 gfc_real_kinds[r_index].digits = fmt->p;
372 gfc_real_kinds[r_index].min_exponent = fmt->emin;
373 gfc_real_kinds[r_index].max_exponent = fmt->emax;
374 if (fmt->pnan < fmt->p)
375 /* This is an IBM extended double format (or the MIPS variant)
376 made up of two IEEE doubles. The value of the long double is
377 the sum of the values of the two parts. The most significant
378 part is required to be the value of the long double rounded
379 to the nearest double. If we use emax of 1024 then we can't
380 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
381 rounding will make the most significant part overflow. */
382 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
383 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
384 r_index += 1;
385 }
386
387 /* Choose the default integer kind. We choose 4 unless the user
388 directs us otherwise. */
389 if (gfc_option.flag_default_integer)
390 {
391 if (!saw_i8)
392 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
393 gfc_default_integer_kind = 8;
394
395 /* Even if the user specified that the default integer kind be 8,
396 the numeric storage size isn't 64. In this case, a warning will
397 be issued when NUMERIC_STORAGE_SIZE is used. */
398 gfc_numeric_storage_size = 4 * 8;
399 }
400 else if (saw_i4)
401 {
402 gfc_default_integer_kind = 4;
403 gfc_numeric_storage_size = 4 * 8;
404 }
405 else
406 {
407 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
408 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
409 }
410
411 /* Choose the default real kind. Again, we choose 4 when possible. */
412 if (gfc_option.flag_default_real)
413 {
414 if (!saw_r8)
415 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
416 gfc_default_real_kind = 8;
417 }
418 else if (saw_r4)
419 gfc_default_real_kind = 4;
420 else
421 gfc_default_real_kind = gfc_real_kinds[0].kind;
422
423 /* Choose the default double kind. If -fdefault-real and -fdefault-double
424 are specified, we use kind=8, if it's available. If -fdefault-real is
425 specified without -fdefault-double, we use kind=16, if it's available.
426 Otherwise we do not change anything. */
427 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
428 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
429
430 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
431 gfc_default_double_kind = 8;
432 else if (gfc_option.flag_default_real && saw_r16)
433 gfc_default_double_kind = 16;
434 else if (saw_r4 && saw_r8)
435 gfc_default_double_kind = 8;
436 else
437 {
438 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
439 real ... occupies two contiguous numeric storage units.
440
441 Therefore we must be supplied a kind twice as large as we chose
442 for single precision. There are loopholes, in that double
443 precision must *occupy* two storage units, though it doesn't have
444 to *use* two storage units. Which means that you can make this
445 kind artificially wide by padding it. But at present there are
446 no GCC targets for which a two-word type does not exist, so we
447 just let gfc_validate_kind abort and tell us if something breaks. */
448
449 gfc_default_double_kind
450 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
451 }
452
453 /* The default logical kind is constrained to be the same as the
454 default integer kind. Similarly with complex and real. */
455 gfc_default_logical_kind = gfc_default_integer_kind;
456 gfc_default_complex_kind = gfc_default_real_kind;
457
458 /* We only have two character kinds: ASCII and UCS-4.
459 ASCII corresponds to a 8-bit integer type, if one is available.
460 UCS-4 corresponds to a 32-bit integer type, if one is available. */
461 i_index = 0;
462 if ((kind = get_int_kind_from_width (8)) > 0)
463 {
464 gfc_character_kinds[i_index].kind = kind;
465 gfc_character_kinds[i_index].bit_size = 8;
466 gfc_character_kinds[i_index].name = "ascii";
467 i_index++;
468 }
469 if ((kind = get_int_kind_from_width (32)) > 0)
470 {
471 gfc_character_kinds[i_index].kind = kind;
472 gfc_character_kinds[i_index].bit_size = 32;
473 gfc_character_kinds[i_index].name = "iso_10646";
474 i_index++;
475 }
476
477 /* Choose the smallest integer kind for our default character. */
478 gfc_default_character_kind = gfc_character_kinds[0].kind;
479 gfc_character_storage_size = gfc_default_character_kind * 8;
480
481 /* Choose the integer kind the same size as "void*" for our index kind. */
482 gfc_index_integer_kind = POINTER_SIZE / 8;
483 /* Pick a kind the same size as the C "int" type. */
484 gfc_c_int_kind = INT_TYPE_SIZE / 8;
485
486 /* initialize the C interoperable kinds */
487 init_c_interop_kinds();
488 }
489
490 /* Make sure that a valid kind is present. Returns an index into the
491 associated kinds array, -1 if the kind is not present. */
492
493 static int
494 validate_integer (int kind)
495 {
496 int i;
497
498 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
499 if (gfc_integer_kinds[i].kind == kind)
500 return i;
501
502 return -1;
503 }
504
505 static int
506 validate_real (int kind)
507 {
508 int i;
509
510 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
511 if (gfc_real_kinds[i].kind == kind)
512 return i;
513
514 return -1;
515 }
516
517 static int
518 validate_logical (int kind)
519 {
520 int i;
521
522 for (i = 0; gfc_logical_kinds[i].kind; i++)
523 if (gfc_logical_kinds[i].kind == kind)
524 return i;
525
526 return -1;
527 }
528
529 static int
530 validate_character (int kind)
531 {
532 int i;
533
534 for (i = 0; gfc_character_kinds[i].kind; i++)
535 if (gfc_character_kinds[i].kind == kind)
536 return i;
537
538 return -1;
539 }
540
541 /* Validate a kind given a basic type. The return value is the same
542 for the child functions, with -1 indicating nonexistence of the
543 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
544
545 int
546 gfc_validate_kind (bt type, int kind, bool may_fail)
547 {
548 int rc;
549
550 switch (type)
551 {
552 case BT_REAL: /* Fall through */
553 case BT_COMPLEX:
554 rc = validate_real (kind);
555 break;
556 case BT_INTEGER:
557 rc = validate_integer (kind);
558 break;
559 case BT_LOGICAL:
560 rc = validate_logical (kind);
561 break;
562 case BT_CHARACTER:
563 rc = validate_character (kind);
564 break;
565
566 default:
567 gfc_internal_error ("gfc_validate_kind(): Got bad type");
568 }
569
570 if (rc < 0 && !may_fail)
571 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
572
573 return rc;
574 }
575
576
577 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
578 Reuse common type nodes where possible. Recognize if the kind matches up
579 with a C type. This will be used later in determining which routines may
580 be scarfed from libm. */
581
582 static tree
583 gfc_build_int_type (gfc_integer_info *info)
584 {
585 int mode_precision = info->bit_size;
586
587 if (mode_precision == CHAR_TYPE_SIZE)
588 info->c_char = 1;
589 if (mode_precision == SHORT_TYPE_SIZE)
590 info->c_short = 1;
591 if (mode_precision == INT_TYPE_SIZE)
592 info->c_int = 1;
593 if (mode_precision == LONG_TYPE_SIZE)
594 info->c_long = 1;
595 if (mode_precision == LONG_LONG_TYPE_SIZE)
596 info->c_long_long = 1;
597
598 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
599 return intQI_type_node;
600 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
601 return intHI_type_node;
602 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
603 return intSI_type_node;
604 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
605 return intDI_type_node;
606 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
607 return intTI_type_node;
608
609 return make_signed_type (mode_precision);
610 }
611
612 static tree
613 gfc_build_uint_type (int size)
614 {
615 if (size == CHAR_TYPE_SIZE)
616 return unsigned_char_type_node;
617 if (size == SHORT_TYPE_SIZE)
618 return short_unsigned_type_node;
619 if (size == INT_TYPE_SIZE)
620 return unsigned_type_node;
621 if (size == LONG_TYPE_SIZE)
622 return long_unsigned_type_node;
623 if (size == LONG_LONG_TYPE_SIZE)
624 return long_long_unsigned_type_node;
625
626 return make_unsigned_type (size);
627 }
628
629
630 static tree
631 gfc_build_real_type (gfc_real_info *info)
632 {
633 int mode_precision = info->mode_precision;
634 tree new_type;
635
636 if (mode_precision == FLOAT_TYPE_SIZE)
637 info->c_float = 1;
638 if (mode_precision == DOUBLE_TYPE_SIZE)
639 info->c_double = 1;
640 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
641 info->c_long_double = 1;
642
643 if (TYPE_PRECISION (float_type_node) == mode_precision)
644 return float_type_node;
645 if (TYPE_PRECISION (double_type_node) == mode_precision)
646 return double_type_node;
647 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
648 return long_double_type_node;
649
650 new_type = make_node (REAL_TYPE);
651 TYPE_PRECISION (new_type) = mode_precision;
652 layout_type (new_type);
653 return new_type;
654 }
655
656 static tree
657 gfc_build_complex_type (tree scalar_type)
658 {
659 tree new_type;
660
661 if (scalar_type == NULL)
662 return NULL;
663 if (scalar_type == float_type_node)
664 return complex_float_type_node;
665 if (scalar_type == double_type_node)
666 return complex_double_type_node;
667 if (scalar_type == long_double_type_node)
668 return complex_long_double_type_node;
669
670 new_type = make_node (COMPLEX_TYPE);
671 TREE_TYPE (new_type) = scalar_type;
672 layout_type (new_type);
673 return new_type;
674 }
675
676 static tree
677 gfc_build_logical_type (gfc_logical_info *info)
678 {
679 int bit_size = info->bit_size;
680 tree new_type;
681
682 if (bit_size == BOOL_TYPE_SIZE)
683 {
684 info->c_bool = 1;
685 return boolean_type_node;
686 }
687
688 new_type = make_unsigned_type (bit_size);
689 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
690 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
691 TYPE_PRECISION (new_type) = 1;
692
693 return new_type;
694 }
695
696 #if 0
697 /* Return the bit size of the C "size_t". */
698
699 static unsigned int
700 c_size_t_size (void)
701 {
702 #ifdef SIZE_TYPE
703 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
704 return INT_TYPE_SIZE;
705 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
706 return LONG_TYPE_SIZE;
707 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
708 return SHORT_TYPE_SIZE;
709 gcc_unreachable ();
710 #else
711 return LONG_TYPE_SIZE;
712 #endif
713 }
714 #endif
715
716 /* Create the backend type nodes. We map them to their
717 equivalent C type, at least for now. We also give
718 names to the types here, and we push them in the
719 global binding level context.*/
720
721 void
722 gfc_init_types (void)
723 {
724 char name_buf[18];
725 int index;
726 tree type;
727 unsigned n;
728 unsigned HOST_WIDE_INT hi;
729 unsigned HOST_WIDE_INT lo;
730
731 /* Create and name the types. */
732 #define PUSH_TYPE(name, node) \
733 pushdecl (build_decl (TYPE_DECL, get_identifier (name), node))
734
735 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
736 {
737 type = gfc_build_int_type (&gfc_integer_kinds[index]);
738 gfc_integer_types[index] = type;
739 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
740 gfc_integer_kinds[index].kind);
741 PUSH_TYPE (name_buf, type);
742 }
743
744 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
745 {
746 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
747 gfc_logical_types[index] = type;
748 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
749 gfc_logical_kinds[index].kind);
750 PUSH_TYPE (name_buf, type);
751 }
752
753 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
754 {
755 type = gfc_build_real_type (&gfc_real_kinds[index]);
756 gfc_real_types[index] = type;
757 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
758 gfc_real_kinds[index].kind);
759 PUSH_TYPE (name_buf, type);
760
761 type = gfc_build_complex_type (type);
762 gfc_complex_types[index] = type;
763 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
764 gfc_real_kinds[index].kind);
765 PUSH_TYPE (name_buf, type);
766 }
767
768 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
769 {
770 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
771 type = build_qualified_type (type, TYPE_UNQUALIFIED);
772 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
773 gfc_character_kinds[index].kind);
774 PUSH_TYPE (name_buf, type);
775 gfc_character_types[index] = type;
776 gfc_pcharacter_types[index] = build_pointer_type (type);
777 }
778 gfc_character1_type_node = gfc_character_types[0];
779
780 PUSH_TYPE ("byte", unsigned_char_type_node);
781 PUSH_TYPE ("void", void_type_node);
782
783 /* DBX debugging output gets upset if these aren't set. */
784 if (!TYPE_NAME (integer_type_node))
785 PUSH_TYPE ("c_integer", integer_type_node);
786 if (!TYPE_NAME (char_type_node))
787 PUSH_TYPE ("c_char", char_type_node);
788
789 #undef PUSH_TYPE
790
791 pvoid_type_node = build_pointer_type (void_type_node);
792 ppvoid_type_node = build_pointer_type (pvoid_type_node);
793 pchar_type_node = build_pointer_type (gfc_character1_type_node);
794 pfunc_type_node
795 = build_pointer_type (build_function_type (void_type_node, NULL_TREE));
796
797 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
798 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
799 since this function is called before gfc_init_constants. */
800 gfc_array_range_type
801 = build_range_type (gfc_array_index_type,
802 build_int_cst (gfc_array_index_type, 0),
803 NULL_TREE);
804
805 /* The maximum array element size that can be handled is determined
806 by the number of bits available to store this field in the array
807 descriptor. */
808
809 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
810 lo = ~ (unsigned HOST_WIDE_INT) 0;
811 if (n > HOST_BITS_PER_WIDE_INT)
812 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
813 else
814 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
815 gfc_max_array_element_size
816 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
817
818 size_type_node = gfc_array_index_type;
819
820 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
821 boolean_true_node = build_int_cst (boolean_type_node, 1);
822 boolean_false_node = build_int_cst (boolean_type_node, 0);
823
824 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
825 gfc_charlen_int_kind = 4;
826 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
827 }
828
829 /* Get the type node for the given type and kind. */
830
831 tree
832 gfc_get_int_type (int kind)
833 {
834 int index = gfc_validate_kind (BT_INTEGER, kind, true);
835 return index < 0 ? 0 : gfc_integer_types[index];
836 }
837
838 tree
839 gfc_get_real_type (int kind)
840 {
841 int index = gfc_validate_kind (BT_REAL, kind, true);
842 return index < 0 ? 0 : gfc_real_types[index];
843 }
844
845 tree
846 gfc_get_complex_type (int kind)
847 {
848 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
849 return index < 0 ? 0 : gfc_complex_types[index];
850 }
851
852 tree
853 gfc_get_logical_type (int kind)
854 {
855 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
856 return index < 0 ? 0 : gfc_logical_types[index];
857 }
858
859 tree
860 gfc_get_char_type (int kind)
861 {
862 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
863 return index < 0 ? 0 : gfc_character_types[index];
864 }
865
866 tree
867 gfc_get_pchar_type (int kind)
868 {
869 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
870 return index < 0 ? 0 : gfc_pcharacter_types[index];
871 }
872
873 \f
874 /* Create a character type with the given kind and length. */
875
876 tree
877 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
878 {
879 tree bounds, type;
880
881 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
882 type = build_array_type (eltype, bounds);
883 TYPE_STRING_FLAG (type) = 1;
884
885 return type;
886 }
887
888 tree
889 gfc_get_character_type_len (int kind, tree len)
890 {
891 gfc_validate_kind (BT_CHARACTER, kind, false);
892 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
893 }
894
895
896 /* Get a type node for a character kind. */
897
898 tree
899 gfc_get_character_type (int kind, gfc_charlen * cl)
900 {
901 tree len;
902
903 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
904
905 return gfc_get_character_type_len (kind, len);
906 }
907 \f
908 /* Covert a basic type. This will be an array for character types. */
909
910 tree
911 gfc_typenode_for_spec (gfc_typespec * spec)
912 {
913 tree basetype;
914
915 switch (spec->type)
916 {
917 case BT_UNKNOWN:
918 gcc_unreachable ();
919
920 case BT_INTEGER:
921 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
922 has been resolved. This is done so we can convert C_PTR and
923 C_FUNPTR to simple variables that get translated to (void *). */
924 if (spec->f90_type == BT_VOID)
925 {
926 if (spec->derived
927 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
928 basetype = ptr_type_node;
929 else
930 basetype = pfunc_type_node;
931 }
932 else
933 basetype = gfc_get_int_type (spec->kind);
934 break;
935
936 case BT_REAL:
937 basetype = gfc_get_real_type (spec->kind);
938 break;
939
940 case BT_COMPLEX:
941 basetype = gfc_get_complex_type (spec->kind);
942 break;
943
944 case BT_LOGICAL:
945 basetype = gfc_get_logical_type (spec->kind);
946 break;
947
948 case BT_CHARACTER:
949 basetype = gfc_get_character_type (spec->kind, spec->cl);
950 break;
951
952 case BT_DERIVED:
953 basetype = gfc_get_derived_type (spec->derived);
954
955 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
956 type and kind to fit a (void *) and the basetype returned was a
957 ptr_type_node. We need to pass up this new information to the
958 symbol that was declared of type C_PTR or C_FUNPTR. */
959 if (spec->derived->attr.is_iso_c)
960 {
961 spec->type = spec->derived->ts.type;
962 spec->kind = spec->derived->ts.kind;
963 spec->f90_type = spec->derived->ts.f90_type;
964 }
965 break;
966 case BT_VOID:
967 /* This is for the second arg to c_f_pointer and c_f_procpointer
968 of the iso_c_binding module, to accept any ptr type. */
969 basetype = ptr_type_node;
970 if (spec->f90_type == BT_VOID)
971 {
972 if (spec->derived
973 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
974 basetype = ptr_type_node;
975 else
976 basetype = pfunc_type_node;
977 }
978 break;
979 default:
980 gcc_unreachable ();
981 }
982 return basetype;
983 }
984 \f
985 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
986
987 static tree
988 gfc_conv_array_bound (gfc_expr * expr)
989 {
990 /* If expr is an integer constant, return that. */
991 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
992 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
993
994 /* Otherwise return NULL. */
995 return NULL_TREE;
996 }
997 \f
998 tree
999 gfc_get_element_type (tree type)
1000 {
1001 tree element;
1002
1003 if (GFC_ARRAY_TYPE_P (type))
1004 {
1005 if (TREE_CODE (type) == POINTER_TYPE)
1006 type = TREE_TYPE (type);
1007 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1008 element = TREE_TYPE (type);
1009 }
1010 else
1011 {
1012 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1013 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1014
1015 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1016 element = TREE_TYPE (element);
1017
1018 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
1019 element = TREE_TYPE (element);
1020 }
1021
1022 return element;
1023 }
1024 \f
1025 /* Build an array. This function is called from gfc_sym_type().
1026 Actually returns array descriptor type.
1027
1028 Format of array descriptors is as follows:
1029
1030 struct gfc_array_descriptor
1031 {
1032 array *data
1033 index offset;
1034 index dtype;
1035 struct descriptor_dimension dimension[N_DIM];
1036 }
1037
1038 struct descriptor_dimension
1039 {
1040 index stride;
1041 index lbound;
1042 index ubound;
1043 }
1044
1045 Translation code should use gfc_conv_descriptor_* rather than
1046 accessing the descriptor directly. Any changes to the array
1047 descriptor type will require changes in gfc_conv_descriptor_* and
1048 gfc_build_array_initializer.
1049
1050 This is represented internally as a RECORD_TYPE. The index nodes
1051 are gfc_array_index_type and the data node is a pointer to the
1052 data. See below for the handling of character types.
1053
1054 The dtype member is formatted as follows:
1055 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1056 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1057 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1058
1059 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1060 this generated poor code for assumed/deferred size arrays. These
1061 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1062 of the GENERIC grammar. Also, there is no way to explicitly set
1063 the array stride, so all data must be packed(1). I've tried to
1064 mark all the functions which would require modification with a GCC
1065 ARRAYS comment.
1066
1067 The data component points to the first element in the array. The
1068 offset field is the position of the origin of the array (i.e. element
1069 (0, 0 ...)). This may be outside the bounds of the array.
1070
1071 An element is accessed by
1072 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1073 This gives good performance as the computation does not involve the
1074 bounds of the array. For packed arrays, this is optimized further
1075 by substituting the known strides.
1076
1077 This system has one problem: all array bounds must be within 2^31
1078 elements of the origin (2^63 on 64-bit machines). For example
1079 integer, dimension (80000:90000, 80000:90000, 2) :: array
1080 may not work properly on 32-bit machines because 80000*80000 >
1081 2^31, so the calculation for stride2 would overflow. This may
1082 still work, but I haven't checked, and it relies on the overflow
1083 doing the right thing.
1084
1085 The way to fix this problem is to access elements as follows:
1086 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1087 Obviously this is much slower. I will make this a compile time
1088 option, something like -fsmall-array-offsets. Mixing code compiled
1089 with and without this switch will work.
1090
1091 (1) This can be worked around by modifying the upper bound of the
1092 previous dimension. This requires extra fields in the descriptor
1093 (both real_ubound and fake_ubound). */
1094
1095
1096 /* Returns true if the array sym does not require a descriptor. */
1097
1098 int
1099 gfc_is_nodesc_array (gfc_symbol * sym)
1100 {
1101 gcc_assert (sym->attr.dimension);
1102
1103 /* We only want local arrays. */
1104 if (sym->attr.pointer || sym->attr.allocatable)
1105 return 0;
1106
1107 if (sym->attr.dummy)
1108 {
1109 if (sym->as->type != AS_ASSUMED_SHAPE)
1110 return 1;
1111 else
1112 return 0;
1113 }
1114
1115 if (sym->attr.result || sym->attr.function)
1116 return 0;
1117
1118 gcc_assert (sym->as->type == AS_EXPLICIT);
1119
1120 return 1;
1121 }
1122
1123
1124 /* Create an array descriptor type. */
1125
1126 static tree
1127 gfc_build_array_type (tree type, gfc_array_spec * as,
1128 enum gfc_array_kind akind)
1129 {
1130 tree lbound[GFC_MAX_DIMENSIONS];
1131 tree ubound[GFC_MAX_DIMENSIONS];
1132 int n;
1133
1134 for (n = 0; n < as->rank; n++)
1135 {
1136 /* Create expressions for the known bounds of the array. */
1137 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1138 lbound[n] = gfc_index_one_node;
1139 else
1140 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1141 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1142 }
1143
1144 if (as->type == AS_ASSUMED_SHAPE)
1145 akind = GFC_ARRAY_ASSUMED_SHAPE;
1146 return gfc_get_array_type_bounds (type, as->rank, lbound, ubound, 0, akind);
1147 }
1148 \f
1149 /* Returns the struct descriptor_dimension type. */
1150
1151 static tree
1152 gfc_get_desc_dim_type (void)
1153 {
1154 tree type;
1155 tree decl;
1156 tree fieldlist;
1157
1158 if (gfc_desc_dim_type)
1159 return gfc_desc_dim_type;
1160
1161 /* Build the type node. */
1162 type = make_node (RECORD_TYPE);
1163
1164 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1165 TYPE_PACKED (type) = 1;
1166
1167 /* Consists of the stride, lbound and ubound members. */
1168 decl = build_decl (FIELD_DECL,
1169 get_identifier ("stride"), gfc_array_index_type);
1170 DECL_CONTEXT (decl) = type;
1171 TREE_NO_WARNING (decl) = 1;
1172 fieldlist = decl;
1173
1174 decl = build_decl (FIELD_DECL,
1175 get_identifier ("lbound"), gfc_array_index_type);
1176 DECL_CONTEXT (decl) = type;
1177 TREE_NO_WARNING (decl) = 1;
1178 fieldlist = chainon (fieldlist, decl);
1179
1180 decl = build_decl (FIELD_DECL,
1181 get_identifier ("ubound"), gfc_array_index_type);
1182 DECL_CONTEXT (decl) = type;
1183 TREE_NO_WARNING (decl) = 1;
1184 fieldlist = chainon (fieldlist, decl);
1185
1186 /* Finish off the type. */
1187 TYPE_FIELDS (type) = fieldlist;
1188
1189 gfc_finish_type (type);
1190 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1191
1192 gfc_desc_dim_type = type;
1193 return type;
1194 }
1195
1196
1197 /* Return the DTYPE for an array. This describes the type and type parameters
1198 of the array. */
1199 /* TODO: Only call this when the value is actually used, and make all the
1200 unknown cases abort. */
1201
1202 tree
1203 gfc_get_dtype (tree type)
1204 {
1205 tree size;
1206 int n;
1207 HOST_WIDE_INT i;
1208 tree tmp;
1209 tree dtype;
1210 tree etype;
1211 int rank;
1212
1213 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1214
1215 if (GFC_TYPE_ARRAY_DTYPE (type))
1216 return GFC_TYPE_ARRAY_DTYPE (type);
1217
1218 rank = GFC_TYPE_ARRAY_RANK (type);
1219 etype = gfc_get_element_type (type);
1220
1221 switch (TREE_CODE (etype))
1222 {
1223 case INTEGER_TYPE:
1224 n = GFC_DTYPE_INTEGER;
1225 break;
1226
1227 case BOOLEAN_TYPE:
1228 n = GFC_DTYPE_LOGICAL;
1229 break;
1230
1231 case REAL_TYPE:
1232 n = GFC_DTYPE_REAL;
1233 break;
1234
1235 case COMPLEX_TYPE:
1236 n = GFC_DTYPE_COMPLEX;
1237 break;
1238
1239 /* We will never have arrays of arrays. */
1240 case RECORD_TYPE:
1241 n = GFC_DTYPE_DERIVED;
1242 break;
1243
1244 case ARRAY_TYPE:
1245 n = GFC_DTYPE_CHARACTER;
1246 break;
1247
1248 default:
1249 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1250 /* We can strange array types for temporary arrays. */
1251 return gfc_index_zero_node;
1252 }
1253
1254 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1255 size = TYPE_SIZE_UNIT (etype);
1256
1257 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1258 if (size && INTEGER_CST_P (size))
1259 {
1260 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1261 internal_error ("Array element size too big");
1262
1263 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1264 }
1265 dtype = build_int_cst (gfc_array_index_type, i);
1266
1267 if (size && !INTEGER_CST_P (size))
1268 {
1269 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1270 tmp = fold_build2 (LSHIFT_EXPR, gfc_array_index_type,
1271 fold_convert (gfc_array_index_type, size), tmp);
1272 dtype = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, dtype);
1273 }
1274 /* If we don't know the size we leave it as zero. This should never happen
1275 for anything that is actually used. */
1276 /* TODO: Check this is actually true, particularly when repacking
1277 assumed size parameters. */
1278
1279 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1280 return dtype;
1281 }
1282
1283
1284 /* Build an array type for use without a descriptor, packed according
1285 to the value of PACKED. */
1286
1287 tree
1288 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed)
1289 {
1290 tree range;
1291 tree type;
1292 tree tmp;
1293 int n;
1294 int known_stride;
1295 int known_offset;
1296 mpz_t offset;
1297 mpz_t stride;
1298 mpz_t delta;
1299 gfc_expr *expr;
1300
1301 mpz_init_set_ui (offset, 0);
1302 mpz_init_set_ui (stride, 1);
1303 mpz_init (delta);
1304
1305 /* We don't use build_array_type because this does not include include
1306 lang-specific information (i.e. the bounds of the array) when checking
1307 for duplicates. */
1308 type = make_node (ARRAY_TYPE);
1309
1310 GFC_ARRAY_TYPE_P (type) = 1;
1311 TYPE_LANG_SPECIFIC (type) = (struct lang_type *)
1312 ggc_alloc_cleared (sizeof (struct lang_type));
1313
1314 known_stride = (packed != PACKED_NO);
1315 known_offset = 1;
1316 for (n = 0; n < as->rank; n++)
1317 {
1318 /* Fill in the stride and bound components of the type. */
1319 if (known_stride)
1320 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1321 else
1322 tmp = NULL_TREE;
1323 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1324
1325 expr = as->lower[n];
1326 if (expr->expr_type == EXPR_CONSTANT)
1327 {
1328 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1329 gfc_index_integer_kind);
1330 }
1331 else
1332 {
1333 known_stride = 0;
1334 tmp = NULL_TREE;
1335 }
1336 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1337
1338 if (known_stride)
1339 {
1340 /* Calculate the offset. */
1341 mpz_mul (delta, stride, as->lower[n]->value.integer);
1342 mpz_sub (offset, offset, delta);
1343 }
1344 else
1345 known_offset = 0;
1346
1347 expr = as->upper[n];
1348 if (expr && expr->expr_type == EXPR_CONSTANT)
1349 {
1350 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1351 gfc_index_integer_kind);
1352 }
1353 else
1354 {
1355 tmp = NULL_TREE;
1356 known_stride = 0;
1357 }
1358 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1359
1360 if (known_stride)
1361 {
1362 /* Calculate the stride. */
1363 mpz_sub (delta, as->upper[n]->value.integer,
1364 as->lower[n]->value.integer);
1365 mpz_add_ui (delta, delta, 1);
1366 mpz_mul (stride, stride, delta);
1367 }
1368
1369 /* Only the first stride is known for partial packed arrays. */
1370 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1371 known_stride = 0;
1372 }
1373
1374 if (known_offset)
1375 {
1376 GFC_TYPE_ARRAY_OFFSET (type) =
1377 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1378 }
1379 else
1380 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1381
1382 if (known_stride)
1383 {
1384 GFC_TYPE_ARRAY_SIZE (type) =
1385 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1386 }
1387 else
1388 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1389
1390 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1391 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1392 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1393 NULL_TREE);
1394 /* TODO: use main type if it is unbounded. */
1395 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1396 build_pointer_type (build_array_type (etype, range));
1397
1398 if (known_stride)
1399 {
1400 mpz_sub_ui (stride, stride, 1);
1401 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1402 }
1403 else
1404 range = NULL_TREE;
1405
1406 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1407 TYPE_DOMAIN (type) = range;
1408
1409 build_pointer_type (etype);
1410 TREE_TYPE (type) = etype;
1411
1412 layout_type (type);
1413
1414 mpz_clear (offset);
1415 mpz_clear (stride);
1416 mpz_clear (delta);
1417
1418 /* In debug info represent packed arrays as multi-dimensional
1419 if they have rank > 1 and with proper bounds, instead of flat
1420 arrays. */
1421 if (known_offset && write_symbols != NO_DEBUG)
1422 {
1423 tree gtype = etype, rtype, type_decl;
1424
1425 for (n = as->rank - 1; n >= 0; n--)
1426 {
1427 rtype = build_range_type (gfc_array_index_type,
1428 GFC_TYPE_ARRAY_LBOUND (type, n),
1429 GFC_TYPE_ARRAY_UBOUND (type, n));
1430 gtype = build_array_type (gtype, rtype);
1431 }
1432 TYPE_NAME (type) = type_decl = build_decl (TYPE_DECL, NULL, gtype);
1433 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1434 }
1435
1436 if (packed != PACKED_STATIC || !known_stride)
1437 {
1438 /* For dummy arrays and automatic (heap allocated) arrays we
1439 want a pointer to the array. */
1440 type = build_pointer_type (type);
1441 GFC_ARRAY_TYPE_P (type) = 1;
1442 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1443 }
1444 return type;
1445 }
1446
1447 /* Return or create the base type for an array descriptor. */
1448
1449 static tree
1450 gfc_get_array_descriptor_base (int dimen)
1451 {
1452 tree fat_type, fieldlist, decl, arraytype;
1453 char name[16 + GFC_RANK_DIGITS + 1];
1454
1455 gcc_assert (dimen >= 1 && dimen <= GFC_MAX_DIMENSIONS);
1456 if (gfc_array_descriptor_base[dimen - 1])
1457 return gfc_array_descriptor_base[dimen - 1];
1458
1459 /* Build the type node. */
1460 fat_type = make_node (RECORD_TYPE);
1461
1462 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen);
1463 TYPE_NAME (fat_type) = get_identifier (name);
1464
1465 /* Add the data member as the first element of the descriptor. */
1466 decl = build_decl (FIELD_DECL, get_identifier ("data"), ptr_type_node);
1467
1468 DECL_CONTEXT (decl) = fat_type;
1469 fieldlist = decl;
1470
1471 /* Add the base component. */
1472 decl = build_decl (FIELD_DECL, get_identifier ("offset"),
1473 gfc_array_index_type);
1474 DECL_CONTEXT (decl) = fat_type;
1475 TREE_NO_WARNING (decl) = 1;
1476 fieldlist = chainon (fieldlist, decl);
1477
1478 /* Add the dtype component. */
1479 decl = build_decl (FIELD_DECL, get_identifier ("dtype"),
1480 gfc_array_index_type);
1481 DECL_CONTEXT (decl) = fat_type;
1482 TREE_NO_WARNING (decl) = 1;
1483 fieldlist = chainon (fieldlist, decl);
1484
1485 /* Build the array type for the stride and bound components. */
1486 arraytype =
1487 build_array_type (gfc_get_desc_dim_type (),
1488 build_range_type (gfc_array_index_type,
1489 gfc_index_zero_node,
1490 gfc_rank_cst[dimen - 1]));
1491
1492 decl = build_decl (FIELD_DECL, get_identifier ("dim"), arraytype);
1493 DECL_CONTEXT (decl) = fat_type;
1494 TREE_NO_WARNING (decl) = 1;
1495 fieldlist = chainon (fieldlist, decl);
1496
1497 /* Finish off the type. */
1498 TYPE_FIELDS (fat_type) = fieldlist;
1499
1500 gfc_finish_type (fat_type);
1501 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1502
1503 gfc_array_descriptor_base[dimen - 1] = fat_type;
1504 return fat_type;
1505 }
1506
1507 /* Build an array (descriptor) type with given bounds. */
1508
1509 tree
1510 gfc_get_array_type_bounds (tree etype, int dimen, tree * lbound,
1511 tree * ubound, int packed,
1512 enum gfc_array_kind akind)
1513 {
1514 char name[8 + GFC_RANK_DIGITS + GFC_MAX_SYMBOL_LEN];
1515 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1516 const char *type_name;
1517 int n;
1518
1519 base_type = gfc_get_array_descriptor_base (dimen);
1520 fat_type = build_variant_type_copy (base_type);
1521
1522 tmp = TYPE_NAME (etype);
1523 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1524 tmp = DECL_NAME (tmp);
1525 if (tmp)
1526 type_name = IDENTIFIER_POINTER (tmp);
1527 else
1528 type_name = "unknown";
1529 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen,
1530 GFC_MAX_SYMBOL_LEN, type_name);
1531 TYPE_NAME (fat_type) = get_identifier (name);
1532
1533 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1534 TYPE_LANG_SPECIFIC (fat_type) = (struct lang_type *)
1535 ggc_alloc_cleared (sizeof (struct lang_type));
1536
1537 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1538 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1539 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1540
1541 /* Build an array descriptor record type. */
1542 if (packed != 0)
1543 stride = gfc_index_one_node;
1544 else
1545 stride = NULL_TREE;
1546 for (n = 0; n < dimen; n++)
1547 {
1548 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1549
1550 if (lbound)
1551 lower = lbound[n];
1552 else
1553 lower = NULL_TREE;
1554
1555 if (lower != NULL_TREE)
1556 {
1557 if (INTEGER_CST_P (lower))
1558 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1559 else
1560 lower = NULL_TREE;
1561 }
1562
1563 upper = ubound[n];
1564 if (upper != NULL_TREE)
1565 {
1566 if (INTEGER_CST_P (upper))
1567 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1568 else
1569 upper = NULL_TREE;
1570 }
1571
1572 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1573 {
1574 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
1575 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp,
1576 gfc_index_one_node);
1577 stride =
1578 fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, stride);
1579 /* Check the folding worked. */
1580 gcc_assert (INTEGER_CST_P (stride));
1581 }
1582 else
1583 stride = NULL_TREE;
1584 }
1585 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1586
1587 /* TODO: known offsets for descriptors. */
1588 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1589
1590 /* We define data as an array with the correct size if possible.
1591 Much better than doing pointer arithmetic. */
1592 if (stride)
1593 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1594 int_const_binop (MINUS_EXPR, stride,
1595 integer_one_node, 0));
1596 else
1597 rtype = gfc_array_range_type;
1598 arraytype = build_array_type (etype, rtype);
1599 arraytype = build_pointer_type (arraytype);
1600 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1601
1602 return fat_type;
1603 }
1604 \f
1605 /* Build a pointer type. This function is called from gfc_sym_type(). */
1606
1607 static tree
1608 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1609 {
1610 /* Array pointer types aren't actually pointers. */
1611 if (sym->attr.dimension)
1612 return type;
1613 else
1614 return build_pointer_type (type);
1615 }
1616 \f
1617 /* Return the type for a symbol. Special handling is required for character
1618 types to get the correct level of indirection.
1619 For functions return the return type.
1620 For subroutines return void_type_node.
1621 Calling this multiple times for the same symbol should be avoided,
1622 especially for character and array types. */
1623
1624 tree
1625 gfc_sym_type (gfc_symbol * sym)
1626 {
1627 tree type;
1628 int byref;
1629
1630 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1631 return void_type_node;
1632
1633 /* In the case of a function the fake result variable may have a
1634 type different from the function type, so don't return early in
1635 that case. */
1636 if (sym->backend_decl && !sym->attr.function)
1637 return TREE_TYPE (sym->backend_decl);
1638
1639 if (sym->ts.type == BT_CHARACTER && sym->attr.is_bind_c
1640 && (sym->attr.function || sym->attr.result))
1641 type = gfc_character1_type_node;
1642 else
1643 type = gfc_typenode_for_spec (&sym->ts);
1644
1645 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1646 byref = 1;
1647 else
1648 byref = 0;
1649
1650 if (sym->attr.dimension)
1651 {
1652 if (gfc_is_nodesc_array (sym))
1653 {
1654 /* If this is a character argument of unknown length, just use the
1655 base type. */
1656 if (sym->ts.type != BT_CHARACTER
1657 || !(sym->attr.dummy || sym->attr.function)
1658 || sym->ts.cl->backend_decl)
1659 {
1660 type = gfc_get_nodesc_array_type (type, sym->as,
1661 byref ? PACKED_FULL
1662 : PACKED_STATIC);
1663 byref = 0;
1664 }
1665 }
1666 else
1667 {
1668 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
1669 if (sym->attr.pointer)
1670 akind = GFC_ARRAY_POINTER;
1671 else if (sym->attr.allocatable)
1672 akind = GFC_ARRAY_ALLOCATABLE;
1673 type = gfc_build_array_type (type, sym->as, akind);
1674 }
1675 }
1676 else
1677 {
1678 if (sym->attr.allocatable || sym->attr.pointer)
1679 type = gfc_build_pointer_type (sym, type);
1680 if (sym->attr.pointer)
1681 GFC_POINTER_TYPE_P (type) = 1;
1682 }
1683
1684 /* We currently pass all parameters by reference.
1685 See f95_get_function_decl. For dummy function parameters return the
1686 function type. */
1687 if (byref)
1688 {
1689 /* We must use pointer types for potentially absent variables. The
1690 optimizers assume a reference type argument is never NULL. */
1691 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
1692 type = build_pointer_type (type);
1693 else
1694 type = build_reference_type (type);
1695 }
1696
1697 return (type);
1698 }
1699 \f
1700 /* Layout and output debug info for a record type. */
1701
1702 void
1703 gfc_finish_type (tree type)
1704 {
1705 tree decl;
1706
1707 decl = build_decl (TYPE_DECL, NULL_TREE, type);
1708 TYPE_STUB_DECL (type) = decl;
1709 layout_type (type);
1710 rest_of_type_compilation (type, 1);
1711 rest_of_decl_compilation (decl, 1, 0);
1712 }
1713 \f
1714 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1715 or RECORD_TYPE pointed to by STYPE. The new field is chained
1716 to the fieldlist pointed to by FIELDLIST.
1717
1718 Returns a pointer to the new field. */
1719
1720 tree
1721 gfc_add_field_to_struct (tree *fieldlist, tree context,
1722 tree name, tree type)
1723 {
1724 tree decl;
1725
1726 decl = build_decl (FIELD_DECL, name, type);
1727
1728 DECL_CONTEXT (decl) = context;
1729 DECL_INITIAL (decl) = 0;
1730 DECL_ALIGN (decl) = 0;
1731 DECL_USER_ALIGN (decl) = 0;
1732 TREE_CHAIN (decl) = NULL_TREE;
1733 *fieldlist = chainon (*fieldlist, decl);
1734
1735 return decl;
1736 }
1737
1738
1739 /* Copy the backend_decl and component backend_decls if
1740 the two derived type symbols are "equal", as described
1741 in 4.4.2 and resolved by gfc_compare_derived_types. */
1742
1743 static int
1744 copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to)
1745 {
1746 gfc_component *to_cm;
1747 gfc_component *from_cm;
1748
1749 if (from->backend_decl == NULL
1750 || !gfc_compare_derived_types (from, to))
1751 return 0;
1752
1753 to->backend_decl = from->backend_decl;
1754
1755 to_cm = to->components;
1756 from_cm = from->components;
1757
1758 /* Copy the component declarations. If a component is itself
1759 a derived type, we need a copy of its component declarations.
1760 This is done by recursing into gfc_get_derived_type and
1761 ensures that the component's component declarations have
1762 been built. If it is a character, we need the character
1763 length, as well. */
1764 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
1765 {
1766 to_cm->backend_decl = from_cm->backend_decl;
1767 if (!from_cm->attr.pointer && from_cm->ts.type == BT_DERIVED)
1768 gfc_get_derived_type (to_cm->ts.derived);
1769
1770 else if (from_cm->ts.type == BT_CHARACTER)
1771 to_cm->ts.cl->backend_decl = from_cm->ts.cl->backend_decl;
1772 }
1773
1774 return 1;
1775 }
1776
1777
1778 /* Build a tree node for a derived type. If there are equal
1779 derived types, with different local names, these are built
1780 at the same time. If an equal derived type has been built
1781 in a parent namespace, this is used. */
1782
1783 static tree
1784 gfc_get_derived_type (gfc_symbol * derived)
1785 {
1786 tree typenode = NULL, field = NULL, field_type = NULL, fieldlist = NULL;
1787 gfc_component *c;
1788 gfc_dt_list *dt;
1789
1790 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
1791
1792 /* See if it's one of the iso_c_binding derived types. */
1793 if (derived->attr.is_iso_c == 1)
1794 {
1795 if (derived->backend_decl)
1796 return derived->backend_decl;
1797
1798 if (derived->intmod_sym_id == ISOCBINDING_PTR)
1799 derived->backend_decl = ptr_type_node;
1800 else
1801 derived->backend_decl = pfunc_type_node;
1802
1803 /* Create a backend_decl for the __c_ptr_c_address field. */
1804 derived->components->backend_decl =
1805 gfc_add_field_to_struct (&(derived->backend_decl->type.values),
1806 derived->backend_decl,
1807 get_identifier (derived->components->name),
1808 gfc_typenode_for_spec (
1809 &(derived->components->ts)));
1810
1811 derived->ts.kind = gfc_index_integer_kind;
1812 derived->ts.type = BT_INTEGER;
1813 /* Set the f90_type to BT_VOID as a way to recognize something of type
1814 BT_INTEGER that needs to fit a void * for the purpose of the
1815 iso_c_binding derived types. */
1816 derived->ts.f90_type = BT_VOID;
1817
1818 return derived->backend_decl;
1819 }
1820
1821 /* derived->backend_decl != 0 means we saw it before, but its
1822 components' backend_decl may have not been built. */
1823 if (derived->backend_decl)
1824 {
1825 /* Its components' backend_decl have been built. */
1826 if (TYPE_FIELDS (derived->backend_decl))
1827 return derived->backend_decl;
1828 else
1829 typenode = derived->backend_decl;
1830 }
1831 else
1832 {
1833
1834 /* We see this derived type first time, so build the type node. */
1835 typenode = make_node (RECORD_TYPE);
1836 TYPE_NAME (typenode) = get_identifier (derived->name);
1837 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
1838 derived->backend_decl = typenode;
1839 }
1840
1841 /* Go through the derived type components, building them as
1842 necessary. The reason for doing this now is that it is
1843 possible to recurse back to this derived type through a
1844 pointer component (PR24092). If this happens, the fields
1845 will be built and so we can return the type. */
1846 for (c = derived->components; c; c = c->next)
1847 {
1848 if (c->ts.type != BT_DERIVED)
1849 continue;
1850
1851 if (!c->attr.pointer || c->ts.derived->backend_decl == NULL)
1852 c->ts.derived->backend_decl = gfc_get_derived_type (c->ts.derived);
1853
1854 if (c->ts.derived && c->ts.derived->attr.is_iso_c)
1855 {
1856 /* Need to copy the modified ts from the derived type. The
1857 typespec was modified because C_PTR/C_FUNPTR are translated
1858 into (void *) from derived types. */
1859 c->ts.type = c->ts.derived->ts.type;
1860 c->ts.kind = c->ts.derived->ts.kind;
1861 c->ts.f90_type = c->ts.derived->ts.f90_type;
1862 if (c->initializer)
1863 {
1864 c->initializer->ts.type = c->ts.type;
1865 c->initializer->ts.kind = c->ts.kind;
1866 c->initializer->ts.f90_type = c->ts.f90_type;
1867 c->initializer->expr_type = EXPR_NULL;
1868 }
1869 }
1870 }
1871
1872 if (TYPE_FIELDS (derived->backend_decl))
1873 return derived->backend_decl;
1874
1875 /* Build the type member list. Install the newly created RECORD_TYPE
1876 node as DECL_CONTEXT of each FIELD_DECL. */
1877 fieldlist = NULL_TREE;
1878 for (c = derived->components; c; c = c->next)
1879 {
1880 if (c->ts.type == BT_DERIVED)
1881 field_type = c->ts.derived->backend_decl;
1882 else
1883 {
1884 if (c->ts.type == BT_CHARACTER)
1885 {
1886 /* Evaluate the string length. */
1887 gfc_conv_const_charlen (c->ts.cl);
1888 gcc_assert (c->ts.cl->backend_decl);
1889 }
1890
1891 field_type = gfc_typenode_for_spec (&c->ts);
1892 }
1893
1894 /* This returns an array descriptor type. Initialization may be
1895 required. */
1896 if (c->attr.dimension)
1897 {
1898 if (c->attr.pointer || c->attr.allocatable)
1899 {
1900 enum gfc_array_kind akind;
1901 if (c->attr.pointer)
1902 akind = GFC_ARRAY_POINTER;
1903 else
1904 akind = GFC_ARRAY_ALLOCATABLE;
1905 /* Pointers to arrays aren't actually pointer types. The
1906 descriptors are separate, but the data is common. */
1907 field_type = gfc_build_array_type (field_type, c->as, akind);
1908 }
1909 else
1910 field_type = gfc_get_nodesc_array_type (field_type, c->as,
1911 PACKED_STATIC);
1912 }
1913 else if (c->attr.pointer)
1914 field_type = build_pointer_type (field_type);
1915
1916 field = gfc_add_field_to_struct (&fieldlist, typenode,
1917 get_identifier (c->name),
1918 field_type);
1919 if (c->loc.lb)
1920 gfc_set_decl_location (field, &c->loc);
1921 else if (derived->declared_at.lb)
1922 gfc_set_decl_location (field, &derived->declared_at);
1923
1924 DECL_PACKED (field) |= TYPE_PACKED (typenode);
1925
1926 gcc_assert (field);
1927 if (!c->backend_decl)
1928 c->backend_decl = field;
1929 }
1930
1931 /* Now we have the final fieldlist. Record it, then lay out the
1932 derived type, including the fields. */
1933 TYPE_FIELDS (typenode) = fieldlist;
1934
1935 gfc_finish_type (typenode);
1936 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
1937 if (derived->module && derived->ns->proc_name->attr.flavor == FL_MODULE)
1938 {
1939 if (derived->ns->proc_name->backend_decl
1940 && TREE_CODE (derived->ns->proc_name->backend_decl)
1941 == NAMESPACE_DECL)
1942 {
1943 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
1944 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
1945 = derived->ns->proc_name->backend_decl;
1946 }
1947 }
1948
1949 derived->backend_decl = typenode;
1950
1951 /* Add this backend_decl to all the other, equal derived types. */
1952 for (dt = gfc_derived_types; dt; dt = dt->next)
1953 copy_dt_decls_ifequal (derived, dt->derived);
1954
1955 return derived->backend_decl;
1956 }
1957
1958
1959 int
1960 gfc_return_by_reference (gfc_symbol * sym)
1961 {
1962 if (!sym->attr.function)
1963 return 0;
1964
1965 if (sym->attr.dimension)
1966 return 1;
1967
1968 if (sym->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
1969 return 1;
1970
1971 /* Possibly return complex numbers by reference for g77 compatibility.
1972 We don't do this for calls to intrinsics (as the library uses the
1973 -fno-f2c calling convention), nor for calls to functions which always
1974 require an explicit interface, as no compatibility problems can
1975 arise there. */
1976 if (gfc_option.flag_f2c
1977 && sym->ts.type == BT_COMPLEX
1978 && !sym->attr.intrinsic && !sym->attr.always_explicit)
1979 return 1;
1980
1981 return 0;
1982 }
1983 \f
1984 static tree
1985 gfc_get_mixed_entry_union (gfc_namespace *ns)
1986 {
1987 tree type;
1988 tree decl;
1989 tree fieldlist;
1990 char name[GFC_MAX_SYMBOL_LEN + 1];
1991 gfc_entry_list *el, *el2;
1992
1993 gcc_assert (ns->proc_name->attr.mixed_entry_master);
1994 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
1995
1996 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
1997
1998 /* Build the type node. */
1999 type = make_node (UNION_TYPE);
2000
2001 TYPE_NAME (type) = get_identifier (name);
2002 fieldlist = NULL;
2003
2004 for (el = ns->entries; el; el = el->next)
2005 {
2006 /* Search for duplicates. */
2007 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2008 if (el2->sym->result == el->sym->result)
2009 break;
2010
2011 if (el == el2)
2012 {
2013 decl = build_decl (FIELD_DECL,
2014 get_identifier (el->sym->result->name),
2015 gfc_sym_type (el->sym->result));
2016 DECL_CONTEXT (decl) = type;
2017 fieldlist = chainon (fieldlist, decl);
2018 }
2019 }
2020
2021 /* Finish off the type. */
2022 TYPE_FIELDS (type) = fieldlist;
2023
2024 gfc_finish_type (type);
2025 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2026 return type;
2027 }
2028 \f
2029 tree
2030 gfc_get_function_type (gfc_symbol * sym)
2031 {
2032 tree type;
2033 tree typelist;
2034 gfc_formal_arglist *f;
2035 gfc_symbol *arg;
2036 int nstr;
2037 int alternate_return;
2038
2039 /* Make sure this symbol is a function, a subroutine or the main
2040 program. */
2041 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2042 || sym->attr.flavor == FL_PROGRAM);
2043
2044 if (sym->backend_decl)
2045 return TREE_TYPE (sym->backend_decl);
2046
2047 nstr = 0;
2048 alternate_return = 0;
2049 typelist = NULL_TREE;
2050
2051 if (sym->attr.entry_master)
2052 {
2053 /* Additional parameter for selecting an entry point. */
2054 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
2055 }
2056
2057 if (sym->result)
2058 arg = sym->result;
2059 else
2060 arg = sym;
2061
2062 if (arg->ts.type == BT_CHARACTER)
2063 gfc_conv_const_charlen (arg->ts.cl);
2064
2065 /* Some functions we use an extra parameter for the return value. */
2066 if (gfc_return_by_reference (sym))
2067 {
2068 type = gfc_sym_type (arg);
2069 if (arg->ts.type == BT_COMPLEX
2070 || arg->attr.dimension
2071 || arg->ts.type == BT_CHARACTER)
2072 type = build_reference_type (type);
2073
2074 typelist = gfc_chainon_list (typelist, type);
2075 if (arg->ts.type == BT_CHARACTER)
2076 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2077 }
2078
2079 /* Build the argument types for the function. */
2080 for (f = sym->formal; f; f = f->next)
2081 {
2082 arg = f->sym;
2083 if (arg)
2084 {
2085 /* Evaluate constant character lengths here so that they can be
2086 included in the type. */
2087 if (arg->ts.type == BT_CHARACTER)
2088 gfc_conv_const_charlen (arg->ts.cl);
2089
2090 if (arg->attr.flavor == FL_PROCEDURE)
2091 {
2092 type = gfc_get_function_type (arg);
2093 type = build_pointer_type (type);
2094 }
2095 else
2096 type = gfc_sym_type (arg);
2097
2098 /* Parameter Passing Convention
2099
2100 We currently pass all parameters by reference.
2101 Parameters with INTENT(IN) could be passed by value.
2102 The problem arises if a function is called via an implicit
2103 prototype. In this situation the INTENT is not known.
2104 For this reason all parameters to global functions must be
2105 passed by reference. Passing by value would potentially
2106 generate bad code. Worse there would be no way of telling that
2107 this code was bad, except that it would give incorrect results.
2108
2109 Contained procedures could pass by value as these are never
2110 used without an explicit interface, and cannot be passed as
2111 actual parameters for a dummy procedure. */
2112 if (arg->ts.type == BT_CHARACTER)
2113 nstr++;
2114 typelist = gfc_chainon_list (typelist, type);
2115 }
2116 else
2117 {
2118 if (sym->attr.subroutine)
2119 alternate_return = 1;
2120 }
2121 }
2122
2123 /* Add hidden string length parameters. */
2124 while (nstr--)
2125 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2126
2127 if (typelist)
2128 typelist = gfc_chainon_list (typelist, void_type_node);
2129
2130 if (alternate_return)
2131 type = integer_type_node;
2132 else if (!sym->attr.function || gfc_return_by_reference (sym))
2133 type = void_type_node;
2134 else if (sym->attr.mixed_entry_master)
2135 type = gfc_get_mixed_entry_union (sym->ns);
2136 else if (gfc_option.flag_f2c
2137 && sym->ts.type == BT_REAL
2138 && sym->ts.kind == gfc_default_real_kind
2139 && !sym->attr.always_explicit)
2140 {
2141 /* Special case: f2c calling conventions require that (scalar)
2142 default REAL functions return the C type double instead. f2c
2143 compatibility is only an issue with functions that don't
2144 require an explicit interface, as only these could be
2145 implemented in Fortran 77. */
2146 sym->ts.kind = gfc_default_double_kind;
2147 type = gfc_typenode_for_spec (&sym->ts);
2148 sym->ts.kind = gfc_default_real_kind;
2149 }
2150 else
2151 type = gfc_sym_type (sym);
2152
2153 type = build_function_type (type, typelist);
2154
2155 return type;
2156 }
2157 \f
2158 /* Language hooks for middle-end access to type nodes. */
2159
2160 /* Return an integer type with BITS bits of precision,
2161 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2162
2163 tree
2164 gfc_type_for_size (unsigned bits, int unsignedp)
2165 {
2166 if (!unsignedp)
2167 {
2168 int i;
2169 for (i = 0; i <= MAX_INT_KINDS; ++i)
2170 {
2171 tree type = gfc_integer_types[i];
2172 if (type && bits == TYPE_PRECISION (type))
2173 return type;
2174 }
2175
2176 /* Handle TImode as a special case because it is used by some backends
2177 (e.g. ARM) even though it is not available for normal use. */
2178 #if HOST_BITS_PER_WIDE_INT >= 64
2179 if (bits == TYPE_PRECISION (intTI_type_node))
2180 return intTI_type_node;
2181 #endif
2182 }
2183 else
2184 {
2185 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2186 return unsigned_intQI_type_node;
2187 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2188 return unsigned_intHI_type_node;
2189 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2190 return unsigned_intSI_type_node;
2191 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2192 return unsigned_intDI_type_node;
2193 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2194 return unsigned_intTI_type_node;
2195 }
2196
2197 return NULL_TREE;
2198 }
2199
2200 /* Return a data type that has machine mode MODE. If the mode is an
2201 integer, then UNSIGNEDP selects between signed and unsigned types. */
2202
2203 tree
2204 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2205 {
2206 int i;
2207 tree *base;
2208
2209 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2210 base = gfc_real_types;
2211 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2212 base = gfc_complex_types;
2213 else if (SCALAR_INT_MODE_P (mode))
2214 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2215 else if (VECTOR_MODE_P (mode))
2216 {
2217 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2218 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2219 if (inner_type != NULL_TREE)
2220 return build_vector_type_for_mode (inner_type, mode);
2221 return NULL_TREE;
2222 }
2223 else
2224 return NULL_TREE;
2225
2226 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2227 {
2228 tree type = base[i];
2229 if (type && mode == TYPE_MODE (type))
2230 return type;
2231 }
2232
2233 return NULL_TREE;
2234 }
2235
2236 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2237 in that case. */
2238
2239 bool
2240 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2241 {
2242 int rank, dim;
2243 bool indirect = false;
2244 tree etype, ptype, field, t, base_decl;
2245 tree data_off, offset_off, dim_off, dim_size, elem_size;
2246 tree lower_suboff, upper_suboff, stride_suboff;
2247
2248 if (! GFC_DESCRIPTOR_TYPE_P (type))
2249 {
2250 if (! POINTER_TYPE_P (type))
2251 return false;
2252 type = TREE_TYPE (type);
2253 if (! GFC_DESCRIPTOR_TYPE_P (type))
2254 return false;
2255 indirect = true;
2256 }
2257
2258 rank = GFC_TYPE_ARRAY_RANK (type);
2259 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2260 return false;
2261
2262 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2263 gcc_assert (POINTER_TYPE_P (etype));
2264 etype = TREE_TYPE (etype);
2265 gcc_assert (TREE_CODE (etype) == ARRAY_TYPE);
2266 etype = TREE_TYPE (etype);
2267 /* Can't handle variable sized elements yet. */
2268 if (int_size_in_bytes (etype) <= 0)
2269 return false;
2270 /* Nor non-constant lower bounds in assumed shape arrays. */
2271 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2272 {
2273 for (dim = 0; dim < rank; dim++)
2274 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
2275 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
2276 return false;
2277 }
2278
2279 memset (info, '\0', sizeof (*info));
2280 info->ndimensions = rank;
2281 info->element_type = etype;
2282 ptype = build_pointer_type (gfc_array_index_type);
2283 if (indirect)
2284 {
2285 info->base_decl = build_decl (VAR_DECL, NULL_TREE,
2286 build_pointer_type (ptype));
2287 base_decl = build1 (INDIRECT_REF, ptype, info->base_decl);
2288 }
2289 else
2290 info->base_decl = base_decl = build_decl (VAR_DECL, NULL_TREE, ptype);
2291
2292 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
2293 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
2294 data_off = byte_position (field);
2295 field = TREE_CHAIN (field);
2296 offset_off = byte_position (field);
2297 field = TREE_CHAIN (field);
2298 field = TREE_CHAIN (field);
2299 dim_off = byte_position (field);
2300 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
2301 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
2302 stride_suboff = byte_position (field);
2303 field = TREE_CHAIN (field);
2304 lower_suboff = byte_position (field);
2305 field = TREE_CHAIN (field);
2306 upper_suboff = byte_position (field);
2307
2308 t = base_decl;
2309 if (!integer_zerop (data_off))
2310 t = build2 (POINTER_PLUS_EXPR, ptype, t, data_off);
2311 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
2312 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
2313 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
2314 info->allocated = build2 (NE_EXPR, boolean_type_node,
2315 info->data_location, null_pointer_node);
2316 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER)
2317 info->associated = build2 (NE_EXPR, boolean_type_node,
2318 info->data_location, null_pointer_node);
2319
2320 for (dim = 0; dim < rank; dim++)
2321 {
2322 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2323 size_binop (PLUS_EXPR, dim_off, lower_suboff));
2324 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2325 info->dimen[dim].lower_bound = t;
2326 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2327 size_binop (PLUS_EXPR, dim_off, upper_suboff));
2328 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2329 info->dimen[dim].upper_bound = t;
2330 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2331 {
2332 /* Assumed shape arrays have known lower bounds. */
2333 info->dimen[dim].upper_bound
2334 = build2 (MINUS_EXPR, gfc_array_index_type,
2335 info->dimen[dim].upper_bound,
2336 info->dimen[dim].lower_bound);
2337 info->dimen[dim].lower_bound
2338 = fold_convert (gfc_array_index_type,
2339 GFC_TYPE_ARRAY_LBOUND (type, dim));
2340 info->dimen[dim].upper_bound
2341 = build2 (PLUS_EXPR, gfc_array_index_type,
2342 info->dimen[dim].lower_bound,
2343 info->dimen[dim].upper_bound);
2344 }
2345 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2346 size_binop (PLUS_EXPR, dim_off, stride_suboff));
2347 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2348 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
2349 info->dimen[dim].stride = t;
2350 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
2351 }
2352
2353 return true;
2354 }
2355
2356 #include "gt-fortran-trans-types.h"