gfortran.h (gfc_init_coarray_decl): Remove.
[gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* trans-types.c -- gfortran backend types */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
28 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
29 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
30 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
31 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
32 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
33 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
34 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE,
35 LONG_DOUBLE_TYPE_SIZE and LIBGCC2_HAS_TF_MODE. */
36 #include "tree.h"
37 #include "stor-layout.h"
38 #include "stringpool.h"
39 #include "langhooks.h" /* For iso-c-bindings.def. */
40 #include "target.h"
41 #include "ggc.h"
42 #include "diagnostic-core.h" /* For fatal_error. */
43 #include "toplev.h" /* For rest_of_decl_compilation. */
44 #include "gfortran.h"
45 #include "trans.h"
46 #include "trans-types.h"
47 #include "trans-const.h"
48 #include "flags.h"
49 #include "dwarf2out.h" /* For struct array_descr_info. */
50 \f
51
52 #if (GFC_MAX_DIMENSIONS < 10)
53 #define GFC_RANK_DIGITS 1
54 #define GFC_RANK_PRINTF_FORMAT "%01d"
55 #elif (GFC_MAX_DIMENSIONS < 100)
56 #define GFC_RANK_DIGITS 2
57 #define GFC_RANK_PRINTF_FORMAT "%02d"
58 #else
59 #error If you really need >99 dimensions, continue the sequence above...
60 #endif
61
62 /* array of structs so we don't have to worry about xmalloc or free */
63 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
64
65 tree gfc_array_index_type;
66 tree gfc_array_range_type;
67 tree gfc_character1_type_node;
68 tree pvoid_type_node;
69 tree prvoid_type_node;
70 tree ppvoid_type_node;
71 tree pchar_type_node;
72 tree pfunc_type_node;
73
74 tree gfc_charlen_type_node;
75
76 tree float128_type_node = NULL_TREE;
77 tree complex_float128_type_node = NULL_TREE;
78
79 bool gfc_real16_is_float128 = false;
80
81 static GTY(()) tree gfc_desc_dim_type;
82 static GTY(()) tree gfc_max_array_element_size;
83 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
84 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
85
86 /* Arrays for all integral and real kinds. We'll fill this in at runtime
87 after the target has a chance to process command-line options. */
88
89 #define MAX_INT_KINDS 5
90 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
91 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
92 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
93 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
94
95 #define MAX_REAL_KINDS 5
96 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
97 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
98 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
99
100 #define MAX_CHARACTER_KINDS 2
101 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
102 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
103 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
104
105 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
106
107 /* The integer kind to use for array indices. This will be set to the
108 proper value based on target information from the backend. */
109
110 int gfc_index_integer_kind;
111
112 /* The default kinds of the various types. */
113
114 int gfc_default_integer_kind;
115 int gfc_max_integer_kind;
116 int gfc_default_real_kind;
117 int gfc_default_double_kind;
118 int gfc_default_character_kind;
119 int gfc_default_logical_kind;
120 int gfc_default_complex_kind;
121 int gfc_c_int_kind;
122 int gfc_atomic_int_kind;
123 int gfc_atomic_logical_kind;
124
125 /* The kind size used for record offsets. If the target system supports
126 kind=8, this will be set to 8, otherwise it is set to 4. */
127 int gfc_intio_kind;
128
129 /* The integer kind used to store character lengths. */
130 int gfc_charlen_int_kind;
131
132 /* The size of the numeric storage unit and character storage unit. */
133 int gfc_numeric_storage_size;
134 int gfc_character_storage_size;
135
136
137 bool
138 gfc_check_any_c_kind (gfc_typespec *ts)
139 {
140 int i;
141
142 for (i = 0; i < ISOCBINDING_NUMBER; i++)
143 {
144 /* Check for any C interoperable kind for the given type/kind in ts.
145 This can be used after verify_c_interop to make sure that the
146 Fortran kind being used exists in at least some form for C. */
147 if (c_interop_kinds_table[i].f90_type == ts->type &&
148 c_interop_kinds_table[i].value == ts->kind)
149 return true;
150 }
151
152 return false;
153 }
154
155
156 static int
157 get_real_kind_from_node (tree type)
158 {
159 int i;
160
161 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
162 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
163 return gfc_real_kinds[i].kind;
164
165 return -4;
166 }
167
168 static int
169 get_int_kind_from_node (tree type)
170 {
171 int i;
172
173 if (!type)
174 return -2;
175
176 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
177 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
178 return gfc_integer_kinds[i].kind;
179
180 return -1;
181 }
182
183 /* Return a typenode for the "standard" C type with a given name. */
184 static tree
185 get_typenode_from_name (const char *name)
186 {
187 if (name == NULL || *name == '\0')
188 return NULL_TREE;
189
190 if (strcmp (name, "char") == 0)
191 return char_type_node;
192 if (strcmp (name, "unsigned char") == 0)
193 return unsigned_char_type_node;
194 if (strcmp (name, "signed char") == 0)
195 return signed_char_type_node;
196
197 if (strcmp (name, "short int") == 0)
198 return short_integer_type_node;
199 if (strcmp (name, "short unsigned int") == 0)
200 return short_unsigned_type_node;
201
202 if (strcmp (name, "int") == 0)
203 return integer_type_node;
204 if (strcmp (name, "unsigned int") == 0)
205 return unsigned_type_node;
206
207 if (strcmp (name, "long int") == 0)
208 return long_integer_type_node;
209 if (strcmp (name, "long unsigned int") == 0)
210 return long_unsigned_type_node;
211
212 if (strcmp (name, "long long int") == 0)
213 return long_long_integer_type_node;
214 if (strcmp (name, "long long unsigned int") == 0)
215 return long_long_unsigned_type_node;
216
217 gcc_unreachable ();
218 }
219
220 static int
221 get_int_kind_from_name (const char *name)
222 {
223 return get_int_kind_from_node (get_typenode_from_name (name));
224 }
225
226
227 /* Get the kind number corresponding to an integer of given size,
228 following the required return values for ISO_FORTRAN_ENV INT* constants:
229 -2 is returned if we support a kind of larger size, -1 otherwise. */
230 int
231 gfc_get_int_kind_from_width_isofortranenv (int size)
232 {
233 int i;
234
235 /* Look for a kind with matching storage size. */
236 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
237 if (gfc_integer_kinds[i].bit_size == size)
238 return gfc_integer_kinds[i].kind;
239
240 /* Look for a kind with larger storage size. */
241 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
242 if (gfc_integer_kinds[i].bit_size > size)
243 return -2;
244
245 return -1;
246 }
247
248 /* Get the kind number corresponding to a real of given storage size,
249 following the required return values for ISO_FORTRAN_ENV REAL* constants:
250 -2 is returned if we support a kind of larger size, -1 otherwise. */
251 int
252 gfc_get_real_kind_from_width_isofortranenv (int size)
253 {
254 int i;
255
256 size /= 8;
257
258 /* Look for a kind with matching storage size. */
259 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
260 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
261 return gfc_real_kinds[i].kind;
262
263 /* Look for a kind with larger storage size. */
264 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
265 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
266 return -2;
267
268 return -1;
269 }
270
271
272
273 static int
274 get_int_kind_from_width (int size)
275 {
276 int i;
277
278 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
279 if (gfc_integer_kinds[i].bit_size == size)
280 return gfc_integer_kinds[i].kind;
281
282 return -2;
283 }
284
285 static int
286 get_int_kind_from_minimal_width (int size)
287 {
288 int i;
289
290 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
291 if (gfc_integer_kinds[i].bit_size >= size)
292 return gfc_integer_kinds[i].kind;
293
294 return -2;
295 }
296
297
298 /* Generate the CInteropKind_t objects for the C interoperable
299 kinds. */
300
301 void
302 gfc_init_c_interop_kinds (void)
303 {
304 int i;
305
306 /* init all pointers in the list to NULL */
307 for (i = 0; i < ISOCBINDING_NUMBER; i++)
308 {
309 /* Initialize the name and value fields. */
310 c_interop_kinds_table[i].name[0] = '\0';
311 c_interop_kinds_table[i].value = -100;
312 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
313 }
314
315 #define NAMED_INTCST(a,b,c,d) \
316 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
317 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
318 c_interop_kinds_table[a].value = c;
319 #define NAMED_REALCST(a,b,c,d) \
320 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
321 c_interop_kinds_table[a].f90_type = BT_REAL; \
322 c_interop_kinds_table[a].value = c;
323 #define NAMED_CMPXCST(a,b,c,d) \
324 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
325 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
326 c_interop_kinds_table[a].value = c;
327 #define NAMED_LOGCST(a,b,c) \
328 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
329 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
330 c_interop_kinds_table[a].value = c;
331 #define NAMED_CHARKNDCST(a,b,c) \
332 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
334 c_interop_kinds_table[a].value = c;
335 #define NAMED_CHARCST(a,b,c) \
336 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
337 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
338 c_interop_kinds_table[a].value = c;
339 #define DERIVED_TYPE(a,b,c) \
340 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
341 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
342 c_interop_kinds_table[a].value = c;
343 #define NAMED_FUNCTION(a,b,c,d) \
344 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
345 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
346 c_interop_kinds_table[a].value = c;
347 #define NAMED_SUBROUTINE(a,b,c,d) \
348 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
349 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
350 c_interop_kinds_table[a].value = c;
351 #include "iso-c-binding.def"
352 }
353
354
355 /* Query the target to determine which machine modes are available for
356 computation. Choose KIND numbers for them. */
357
358 void
359 gfc_init_kinds (void)
360 {
361 unsigned int mode;
362 int i_index, r_index, kind;
363 bool saw_i4 = false, saw_i8 = false;
364 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
365
366 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
367 {
368 int kind, bitsize;
369
370 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
371 continue;
372
373 /* The middle end doesn't support constants larger than 2*HWI.
374 Perhaps the target hook shouldn't have accepted these either,
375 but just to be safe... */
376 bitsize = GET_MODE_BITSIZE ((enum machine_mode) mode);
377 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
378 continue;
379
380 gcc_assert (i_index != MAX_INT_KINDS);
381
382 /* Let the kind equal the bit size divided by 8. This insulates the
383 programmer from the underlying byte size. */
384 kind = bitsize / 8;
385
386 if (kind == 4)
387 saw_i4 = true;
388 if (kind == 8)
389 saw_i8 = true;
390
391 gfc_integer_kinds[i_index].kind = kind;
392 gfc_integer_kinds[i_index].radix = 2;
393 gfc_integer_kinds[i_index].digits = bitsize - 1;
394 gfc_integer_kinds[i_index].bit_size = bitsize;
395
396 gfc_logical_kinds[i_index].kind = kind;
397 gfc_logical_kinds[i_index].bit_size = bitsize;
398
399 i_index += 1;
400 }
401
402 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
403 used for large file access. */
404
405 if (saw_i8)
406 gfc_intio_kind = 8;
407 else
408 gfc_intio_kind = 4;
409
410 /* If we do not at least have kind = 4, everything is pointless. */
411 gcc_assert(saw_i4);
412
413 /* Set the maximum integer kind. Used with at least BOZ constants. */
414 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
415
416 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
417 {
418 const struct real_format *fmt =
419 REAL_MODE_FORMAT ((enum machine_mode) mode);
420 int kind;
421
422 if (fmt == NULL)
423 continue;
424 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
425 continue;
426
427 /* Only let float, double, long double and __float128 go through.
428 Runtime support for others is not provided, so they would be
429 useless. */
430 if (mode != TYPE_MODE (float_type_node)
431 && (mode != TYPE_MODE (double_type_node))
432 && (mode != TYPE_MODE (long_double_type_node))
433 #if defined(LIBGCC2_HAS_TF_MODE) && defined(ENABLE_LIBQUADMATH_SUPPORT)
434 && (mode != TFmode)
435 #endif
436 )
437 continue;
438
439 /* Let the kind equal the precision divided by 8, rounding up. Again,
440 this insulates the programmer from the underlying byte size.
441
442 Also, it effectively deals with IEEE extended formats. There, the
443 total size of the type may equal 16, but it's got 6 bytes of padding
444 and the increased size can get in the way of a real IEEE quad format
445 which may also be supported by the target.
446
447 We round up so as to handle IA-64 __floatreg (RFmode), which is an
448 82 bit type. Not to be confused with __float80 (XFmode), which is
449 an 80 bit type also supported by IA-64. So XFmode should come out
450 to be kind=10, and RFmode should come out to be kind=11. Egads. */
451
452 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
453
454 if (kind == 4)
455 saw_r4 = true;
456 if (kind == 8)
457 saw_r8 = true;
458 if (kind == 10)
459 saw_r10 = true;
460 if (kind == 16)
461 saw_r16 = true;
462
463 /* Careful we don't stumble a weird internal mode. */
464 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
465 /* Or have too many modes for the allocated space. */
466 gcc_assert (r_index != MAX_REAL_KINDS);
467
468 gfc_real_kinds[r_index].kind = kind;
469 gfc_real_kinds[r_index].radix = fmt->b;
470 gfc_real_kinds[r_index].digits = fmt->p;
471 gfc_real_kinds[r_index].min_exponent = fmt->emin;
472 gfc_real_kinds[r_index].max_exponent = fmt->emax;
473 if (fmt->pnan < fmt->p)
474 /* This is an IBM extended double format (or the MIPS variant)
475 made up of two IEEE doubles. The value of the long double is
476 the sum of the values of the two parts. The most significant
477 part is required to be the value of the long double rounded
478 to the nearest double. If we use emax of 1024 then we can't
479 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
480 rounding will make the most significant part overflow. */
481 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
482 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
483 r_index += 1;
484 }
485
486 /* Choose the default integer kind. We choose 4 unless the user directs us
487 otherwise. Even if the user specified that the default integer kind is 8,
488 the numeric storage size is not 64 bits. In this case, a warning will be
489 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
490
491 gfc_numeric_storage_size = 4 * 8;
492
493 if (gfc_option.flag_default_integer)
494 {
495 if (!saw_i8)
496 fatal_error ("INTEGER(KIND=8) is not available for -fdefault-integer-8 option");
497
498 gfc_default_integer_kind = 8;
499
500 }
501 else if (gfc_option.flag_integer4_kind == 8)
502 {
503 if (!saw_i8)
504 fatal_error ("INTEGER(KIND=8) is not available for -finteger-4-integer-8 option");
505
506 gfc_default_integer_kind = 8;
507 }
508 else if (saw_i4)
509 {
510 gfc_default_integer_kind = 4;
511 }
512 else
513 {
514 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
515 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
516 }
517
518 /* Choose the default real kind. Again, we choose 4 when possible. */
519 if (gfc_option.flag_default_real)
520 {
521 if (!saw_r8)
522 fatal_error ("REAL(KIND=8) is not available for -fdefault-real-8 option");
523
524 gfc_default_real_kind = 8;
525 }
526 else if (gfc_option.flag_real4_kind == 8)
527 {
528 if (!saw_r8)
529 fatal_error ("REAL(KIND=8) is not available for -freal-4-real-8 option");
530
531 gfc_default_real_kind = 8;
532 }
533 else if (gfc_option.flag_real4_kind == 10)
534 {
535 if (!saw_r10)
536 fatal_error ("REAL(KIND=10) is not available for -freal-4-real-10 option");
537
538 gfc_default_real_kind = 10;
539 }
540 else if (gfc_option.flag_real4_kind == 16)
541 {
542 if (!saw_r16)
543 fatal_error ("REAL(KIND=16) is not available for -freal-4-real-16 option");
544
545 gfc_default_real_kind = 16;
546 }
547 else if (saw_r4)
548 gfc_default_real_kind = 4;
549 else
550 gfc_default_real_kind = gfc_real_kinds[0].kind;
551
552 /* Choose the default double kind. If -fdefault-real and -fdefault-double
553 are specified, we use kind=8, if it's available. If -fdefault-real is
554 specified without -fdefault-double, we use kind=16, if it's available.
555 Otherwise we do not change anything. */
556 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
557 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
558
559 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
560 gfc_default_double_kind = 8;
561 else if (gfc_option.flag_default_real && saw_r16)
562 gfc_default_double_kind = 16;
563 else if (gfc_option.flag_real8_kind == 4)
564 {
565 if (!saw_r4)
566 fatal_error ("REAL(KIND=4) is not available for -freal-8-real-4 option");
567
568 gfc_default_double_kind = 4;
569 }
570 else if (gfc_option.flag_real8_kind == 10 )
571 {
572 if (!saw_r10)
573 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-10 option");
574
575 gfc_default_double_kind = 10;
576 }
577 else if (gfc_option.flag_real8_kind == 16 )
578 {
579 if (!saw_r16)
580 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-16 option");
581
582 gfc_default_double_kind = 16;
583 }
584 else if (saw_r4 && saw_r8)
585 gfc_default_double_kind = 8;
586 else
587 {
588 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
589 real ... occupies two contiguous numeric storage units.
590
591 Therefore we must be supplied a kind twice as large as we chose
592 for single precision. There are loopholes, in that double
593 precision must *occupy* two storage units, though it doesn't have
594 to *use* two storage units. Which means that you can make this
595 kind artificially wide by padding it. But at present there are
596 no GCC targets for which a two-word type does not exist, so we
597 just let gfc_validate_kind abort and tell us if something breaks. */
598
599 gfc_default_double_kind
600 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
601 }
602
603 /* The default logical kind is constrained to be the same as the
604 default integer kind. Similarly with complex and real. */
605 gfc_default_logical_kind = gfc_default_integer_kind;
606 gfc_default_complex_kind = gfc_default_real_kind;
607
608 /* We only have two character kinds: ASCII and UCS-4.
609 ASCII corresponds to a 8-bit integer type, if one is available.
610 UCS-4 corresponds to a 32-bit integer type, if one is available. */
611 i_index = 0;
612 if ((kind = get_int_kind_from_width (8)) > 0)
613 {
614 gfc_character_kinds[i_index].kind = kind;
615 gfc_character_kinds[i_index].bit_size = 8;
616 gfc_character_kinds[i_index].name = "ascii";
617 i_index++;
618 }
619 if ((kind = get_int_kind_from_width (32)) > 0)
620 {
621 gfc_character_kinds[i_index].kind = kind;
622 gfc_character_kinds[i_index].bit_size = 32;
623 gfc_character_kinds[i_index].name = "iso_10646";
624 i_index++;
625 }
626
627 /* Choose the smallest integer kind for our default character. */
628 gfc_default_character_kind = gfc_character_kinds[0].kind;
629 gfc_character_storage_size = gfc_default_character_kind * 8;
630
631 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
632
633 /* Pick a kind the same size as the C "int" type. */
634 gfc_c_int_kind = INT_TYPE_SIZE / 8;
635
636 /* Choose atomic kinds to match C's int. */
637 gfc_atomic_int_kind = gfc_c_int_kind;
638 gfc_atomic_logical_kind = gfc_c_int_kind;
639 }
640
641
642 /* Make sure that a valid kind is present. Returns an index into the
643 associated kinds array, -1 if the kind is not present. */
644
645 static int
646 validate_integer (int kind)
647 {
648 int i;
649
650 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
651 if (gfc_integer_kinds[i].kind == kind)
652 return i;
653
654 return -1;
655 }
656
657 static int
658 validate_real (int kind)
659 {
660 int i;
661
662 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
663 if (gfc_real_kinds[i].kind == kind)
664 return i;
665
666 return -1;
667 }
668
669 static int
670 validate_logical (int kind)
671 {
672 int i;
673
674 for (i = 0; gfc_logical_kinds[i].kind; i++)
675 if (gfc_logical_kinds[i].kind == kind)
676 return i;
677
678 return -1;
679 }
680
681 static int
682 validate_character (int kind)
683 {
684 int i;
685
686 for (i = 0; gfc_character_kinds[i].kind; i++)
687 if (gfc_character_kinds[i].kind == kind)
688 return i;
689
690 return -1;
691 }
692
693 /* Validate a kind given a basic type. The return value is the same
694 for the child functions, with -1 indicating nonexistence of the
695 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
696
697 int
698 gfc_validate_kind (bt type, int kind, bool may_fail)
699 {
700 int rc;
701
702 switch (type)
703 {
704 case BT_REAL: /* Fall through */
705 case BT_COMPLEX:
706 rc = validate_real (kind);
707 break;
708 case BT_INTEGER:
709 rc = validate_integer (kind);
710 break;
711 case BT_LOGICAL:
712 rc = validate_logical (kind);
713 break;
714 case BT_CHARACTER:
715 rc = validate_character (kind);
716 break;
717
718 default:
719 gfc_internal_error ("gfc_validate_kind(): Got bad type");
720 }
721
722 if (rc < 0 && !may_fail)
723 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
724
725 return rc;
726 }
727
728
729 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
730 Reuse common type nodes where possible. Recognize if the kind matches up
731 with a C type. This will be used later in determining which routines may
732 be scarfed from libm. */
733
734 static tree
735 gfc_build_int_type (gfc_integer_info *info)
736 {
737 int mode_precision = info->bit_size;
738
739 if (mode_precision == CHAR_TYPE_SIZE)
740 info->c_char = 1;
741 if (mode_precision == SHORT_TYPE_SIZE)
742 info->c_short = 1;
743 if (mode_precision == INT_TYPE_SIZE)
744 info->c_int = 1;
745 if (mode_precision == LONG_TYPE_SIZE)
746 info->c_long = 1;
747 if (mode_precision == LONG_LONG_TYPE_SIZE)
748 info->c_long_long = 1;
749
750 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
751 return intQI_type_node;
752 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
753 return intHI_type_node;
754 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
755 return intSI_type_node;
756 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
757 return intDI_type_node;
758 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
759 return intTI_type_node;
760
761 return make_signed_type (mode_precision);
762 }
763
764 tree
765 gfc_build_uint_type (int size)
766 {
767 if (size == CHAR_TYPE_SIZE)
768 return unsigned_char_type_node;
769 if (size == SHORT_TYPE_SIZE)
770 return short_unsigned_type_node;
771 if (size == INT_TYPE_SIZE)
772 return unsigned_type_node;
773 if (size == LONG_TYPE_SIZE)
774 return long_unsigned_type_node;
775 if (size == LONG_LONG_TYPE_SIZE)
776 return long_long_unsigned_type_node;
777
778 return make_unsigned_type (size);
779 }
780
781
782 static tree
783 gfc_build_real_type (gfc_real_info *info)
784 {
785 int mode_precision = info->mode_precision;
786 tree new_type;
787
788 if (mode_precision == FLOAT_TYPE_SIZE)
789 info->c_float = 1;
790 if (mode_precision == DOUBLE_TYPE_SIZE)
791 info->c_double = 1;
792 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
793 info->c_long_double = 1;
794 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
795 {
796 info->c_float128 = 1;
797 gfc_real16_is_float128 = true;
798 }
799
800 if (TYPE_PRECISION (float_type_node) == mode_precision)
801 return float_type_node;
802 if (TYPE_PRECISION (double_type_node) == mode_precision)
803 return double_type_node;
804 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
805 return long_double_type_node;
806
807 new_type = make_node (REAL_TYPE);
808 TYPE_PRECISION (new_type) = mode_precision;
809 layout_type (new_type);
810 return new_type;
811 }
812
813 static tree
814 gfc_build_complex_type (tree scalar_type)
815 {
816 tree new_type;
817
818 if (scalar_type == NULL)
819 return NULL;
820 if (scalar_type == float_type_node)
821 return complex_float_type_node;
822 if (scalar_type == double_type_node)
823 return complex_double_type_node;
824 if (scalar_type == long_double_type_node)
825 return complex_long_double_type_node;
826
827 new_type = make_node (COMPLEX_TYPE);
828 TREE_TYPE (new_type) = scalar_type;
829 layout_type (new_type);
830 return new_type;
831 }
832
833 static tree
834 gfc_build_logical_type (gfc_logical_info *info)
835 {
836 int bit_size = info->bit_size;
837 tree new_type;
838
839 if (bit_size == BOOL_TYPE_SIZE)
840 {
841 info->c_bool = 1;
842 return boolean_type_node;
843 }
844
845 new_type = make_unsigned_type (bit_size);
846 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
847 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
848 TYPE_PRECISION (new_type) = 1;
849
850 return new_type;
851 }
852
853
854 /* Create the backend type nodes. We map them to their
855 equivalent C type, at least for now. We also give
856 names to the types here, and we push them in the
857 global binding level context.*/
858
859 void
860 gfc_init_types (void)
861 {
862 char name_buf[18];
863 int index;
864 tree type;
865 unsigned n;
866 unsigned HOST_WIDE_INT hi;
867 unsigned HOST_WIDE_INT lo;
868
869 /* Create and name the types. */
870 #define PUSH_TYPE(name, node) \
871 pushdecl (build_decl (input_location, \
872 TYPE_DECL, get_identifier (name), node))
873
874 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
875 {
876 type = gfc_build_int_type (&gfc_integer_kinds[index]);
877 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
878 if (TYPE_STRING_FLAG (type))
879 type = make_signed_type (gfc_integer_kinds[index].bit_size);
880 gfc_integer_types[index] = type;
881 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
882 gfc_integer_kinds[index].kind);
883 PUSH_TYPE (name_buf, type);
884 }
885
886 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
887 {
888 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
889 gfc_logical_types[index] = type;
890 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
891 gfc_logical_kinds[index].kind);
892 PUSH_TYPE (name_buf, type);
893 }
894
895 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
896 {
897 type = gfc_build_real_type (&gfc_real_kinds[index]);
898 gfc_real_types[index] = type;
899 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
900 gfc_real_kinds[index].kind);
901 PUSH_TYPE (name_buf, type);
902
903 if (gfc_real_kinds[index].c_float128)
904 float128_type_node = type;
905
906 type = gfc_build_complex_type (type);
907 gfc_complex_types[index] = type;
908 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
909 gfc_real_kinds[index].kind);
910 PUSH_TYPE (name_buf, type);
911
912 if (gfc_real_kinds[index].c_float128)
913 complex_float128_type_node = type;
914 }
915
916 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
917 {
918 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
919 type = build_qualified_type (type, TYPE_UNQUALIFIED);
920 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
921 gfc_character_kinds[index].kind);
922 PUSH_TYPE (name_buf, type);
923 gfc_character_types[index] = type;
924 gfc_pcharacter_types[index] = build_pointer_type (type);
925 }
926 gfc_character1_type_node = gfc_character_types[0];
927
928 PUSH_TYPE ("byte", unsigned_char_type_node);
929 PUSH_TYPE ("void", void_type_node);
930
931 /* DBX debugging output gets upset if these aren't set. */
932 if (!TYPE_NAME (integer_type_node))
933 PUSH_TYPE ("c_integer", integer_type_node);
934 if (!TYPE_NAME (char_type_node))
935 PUSH_TYPE ("c_char", char_type_node);
936
937 #undef PUSH_TYPE
938
939 pvoid_type_node = build_pointer_type (void_type_node);
940 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
941 ppvoid_type_node = build_pointer_type (pvoid_type_node);
942 pchar_type_node = build_pointer_type (gfc_character1_type_node);
943 pfunc_type_node
944 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
945
946 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
947 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
948 since this function is called before gfc_init_constants. */
949 gfc_array_range_type
950 = build_range_type (gfc_array_index_type,
951 build_int_cst (gfc_array_index_type, 0),
952 NULL_TREE);
953
954 /* The maximum array element size that can be handled is determined
955 by the number of bits available to store this field in the array
956 descriptor. */
957
958 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
959 lo = ~ (unsigned HOST_WIDE_INT) 0;
960 if (n > HOST_BITS_PER_WIDE_INT)
961 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
962 else
963 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
964 gfc_max_array_element_size
965 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
966
967 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
968 boolean_true_node = build_int_cst (boolean_type_node, 1);
969 boolean_false_node = build_int_cst (boolean_type_node, 0);
970
971 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
972 gfc_charlen_int_kind = 4;
973 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
974 }
975
976 /* Get the type node for the given type and kind. */
977
978 tree
979 gfc_get_int_type (int kind)
980 {
981 int index = gfc_validate_kind (BT_INTEGER, kind, true);
982 return index < 0 ? 0 : gfc_integer_types[index];
983 }
984
985 tree
986 gfc_get_real_type (int kind)
987 {
988 int index = gfc_validate_kind (BT_REAL, kind, true);
989 return index < 0 ? 0 : gfc_real_types[index];
990 }
991
992 tree
993 gfc_get_complex_type (int kind)
994 {
995 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
996 return index < 0 ? 0 : gfc_complex_types[index];
997 }
998
999 tree
1000 gfc_get_logical_type (int kind)
1001 {
1002 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
1003 return index < 0 ? 0 : gfc_logical_types[index];
1004 }
1005
1006 tree
1007 gfc_get_char_type (int kind)
1008 {
1009 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1010 return index < 0 ? 0 : gfc_character_types[index];
1011 }
1012
1013 tree
1014 gfc_get_pchar_type (int kind)
1015 {
1016 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1017 return index < 0 ? 0 : gfc_pcharacter_types[index];
1018 }
1019
1020 \f
1021 /* Create a character type with the given kind and length. */
1022
1023 tree
1024 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1025 {
1026 tree bounds, type;
1027
1028 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1029 type = build_array_type (eltype, bounds);
1030 TYPE_STRING_FLAG (type) = 1;
1031
1032 return type;
1033 }
1034
1035 tree
1036 gfc_get_character_type_len (int kind, tree len)
1037 {
1038 gfc_validate_kind (BT_CHARACTER, kind, false);
1039 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1040 }
1041
1042
1043 /* Get a type node for a character kind. */
1044
1045 tree
1046 gfc_get_character_type (int kind, gfc_charlen * cl)
1047 {
1048 tree len;
1049
1050 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1051
1052 return gfc_get_character_type_len (kind, len);
1053 }
1054 \f
1055 /* Covert a basic type. This will be an array for character types. */
1056
1057 tree
1058 gfc_typenode_for_spec (gfc_typespec * spec)
1059 {
1060 tree basetype;
1061
1062 switch (spec->type)
1063 {
1064 case BT_UNKNOWN:
1065 gcc_unreachable ();
1066
1067 case BT_INTEGER:
1068 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1069 has been resolved. This is done so we can convert C_PTR and
1070 C_FUNPTR to simple variables that get translated to (void *). */
1071 if (spec->f90_type == BT_VOID)
1072 {
1073 if (spec->u.derived
1074 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1075 basetype = ptr_type_node;
1076 else
1077 basetype = pfunc_type_node;
1078 }
1079 else
1080 basetype = gfc_get_int_type (spec->kind);
1081 break;
1082
1083 case BT_REAL:
1084 basetype = gfc_get_real_type (spec->kind);
1085 break;
1086
1087 case BT_COMPLEX:
1088 basetype = gfc_get_complex_type (spec->kind);
1089 break;
1090
1091 case BT_LOGICAL:
1092 basetype = gfc_get_logical_type (spec->kind);
1093 break;
1094
1095 case BT_CHARACTER:
1096 #if 0
1097 if (spec->deferred)
1098 basetype = gfc_get_character_type (spec->kind, NULL);
1099 else
1100 #endif
1101 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1102 break;
1103
1104 case BT_HOLLERITH:
1105 /* Since this cannot be used, return a length one character. */
1106 basetype = gfc_get_character_type_len (gfc_default_character_kind,
1107 gfc_index_one_node);
1108 break;
1109
1110 case BT_DERIVED:
1111 case BT_CLASS:
1112 basetype = gfc_get_derived_type (spec->u.derived);
1113
1114 if (spec->type == BT_CLASS)
1115 GFC_CLASS_TYPE_P (basetype) = 1;
1116
1117 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1118 type and kind to fit a (void *) and the basetype returned was a
1119 ptr_type_node. We need to pass up this new information to the
1120 symbol that was declared of type C_PTR or C_FUNPTR. */
1121 if (spec->u.derived->ts.f90_type == BT_VOID)
1122 {
1123 spec->type = BT_INTEGER;
1124 spec->kind = gfc_index_integer_kind;
1125 spec->f90_type = BT_VOID;
1126 }
1127 break;
1128 case BT_VOID:
1129 case BT_ASSUMED:
1130 /* This is for the second arg to c_f_pointer and c_f_procpointer
1131 of the iso_c_binding module, to accept any ptr type. */
1132 basetype = ptr_type_node;
1133 if (spec->f90_type == BT_VOID)
1134 {
1135 if (spec->u.derived
1136 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1137 basetype = ptr_type_node;
1138 else
1139 basetype = pfunc_type_node;
1140 }
1141 break;
1142 default:
1143 gcc_unreachable ();
1144 }
1145 return basetype;
1146 }
1147 \f
1148 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1149
1150 static tree
1151 gfc_conv_array_bound (gfc_expr * expr)
1152 {
1153 /* If expr is an integer constant, return that. */
1154 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1155 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1156
1157 /* Otherwise return NULL. */
1158 return NULL_TREE;
1159 }
1160 \f
1161 tree
1162 gfc_get_element_type (tree type)
1163 {
1164 tree element;
1165
1166 if (GFC_ARRAY_TYPE_P (type))
1167 {
1168 if (TREE_CODE (type) == POINTER_TYPE)
1169 type = TREE_TYPE (type);
1170 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1171 {
1172 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1173 element = type;
1174 }
1175 else
1176 {
1177 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1178 element = TREE_TYPE (type);
1179 }
1180 }
1181 else
1182 {
1183 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1184 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1185
1186 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1187 element = TREE_TYPE (element);
1188
1189 /* For arrays, which are not scalar coarrays. */
1190 if (TREE_CODE (element) == ARRAY_TYPE && !TYPE_STRING_FLAG (element))
1191 element = TREE_TYPE (element);
1192 }
1193
1194 return element;
1195 }
1196 \f
1197 /* Build an array. This function is called from gfc_sym_type().
1198 Actually returns array descriptor type.
1199
1200 Format of array descriptors is as follows:
1201
1202 struct gfc_array_descriptor
1203 {
1204 array *data
1205 index offset;
1206 index dtype;
1207 struct descriptor_dimension dimension[N_DIM];
1208 }
1209
1210 struct descriptor_dimension
1211 {
1212 index stride;
1213 index lbound;
1214 index ubound;
1215 }
1216
1217 Translation code should use gfc_conv_descriptor_* rather than
1218 accessing the descriptor directly. Any changes to the array
1219 descriptor type will require changes in gfc_conv_descriptor_* and
1220 gfc_build_array_initializer.
1221
1222 This is represented internally as a RECORD_TYPE. The index nodes
1223 are gfc_array_index_type and the data node is a pointer to the
1224 data. See below for the handling of character types.
1225
1226 The dtype member is formatted as follows:
1227 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1228 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1229 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1230
1231 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1232 this generated poor code for assumed/deferred size arrays. These
1233 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1234 of the GENERIC grammar. Also, there is no way to explicitly set
1235 the array stride, so all data must be packed(1). I've tried to
1236 mark all the functions which would require modification with a GCC
1237 ARRAYS comment.
1238
1239 The data component points to the first element in the array. The
1240 offset field is the position of the origin of the array (i.e. element
1241 (0, 0 ...)). This may be outside the bounds of the array.
1242
1243 An element is accessed by
1244 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1245 This gives good performance as the computation does not involve the
1246 bounds of the array. For packed arrays, this is optimized further
1247 by substituting the known strides.
1248
1249 This system has one problem: all array bounds must be within 2^31
1250 elements of the origin (2^63 on 64-bit machines). For example
1251 integer, dimension (80000:90000, 80000:90000, 2) :: array
1252 may not work properly on 32-bit machines because 80000*80000 >
1253 2^31, so the calculation for stride2 would overflow. This may
1254 still work, but I haven't checked, and it relies on the overflow
1255 doing the right thing.
1256
1257 The way to fix this problem is to access elements as follows:
1258 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1259 Obviously this is much slower. I will make this a compile time
1260 option, something like -fsmall-array-offsets. Mixing code compiled
1261 with and without this switch will work.
1262
1263 (1) This can be worked around by modifying the upper bound of the
1264 previous dimension. This requires extra fields in the descriptor
1265 (both real_ubound and fake_ubound). */
1266
1267
1268 /* Returns true if the array sym does not require a descriptor. */
1269
1270 int
1271 gfc_is_nodesc_array (gfc_symbol * sym)
1272 {
1273 gcc_assert (sym->attr.dimension || sym->attr.codimension);
1274
1275 /* We only want local arrays. */
1276 if (sym->attr.pointer || sym->attr.allocatable)
1277 return 0;
1278
1279 /* We want a descriptor for associate-name arrays that do not have an
1280 explicitly known shape already. */
1281 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1282 return 0;
1283
1284 if (sym->attr.dummy)
1285 return sym->as->type != AS_ASSUMED_SHAPE
1286 && sym->as->type != AS_ASSUMED_RANK;
1287
1288 if (sym->attr.result || sym->attr.function)
1289 return 0;
1290
1291 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1292
1293 return 1;
1294 }
1295
1296
1297 /* Create an array descriptor type. */
1298
1299 static tree
1300 gfc_build_array_type (tree type, gfc_array_spec * as,
1301 enum gfc_array_kind akind, bool restricted,
1302 bool contiguous)
1303 {
1304 tree lbound[GFC_MAX_DIMENSIONS];
1305 tree ubound[GFC_MAX_DIMENSIONS];
1306 int n, corank;
1307
1308 /* Assumed-shape arrays do not have codimension information stored in the
1309 descriptor. */
1310 corank = as->corank;
1311 if (as->type == AS_ASSUMED_SHAPE ||
1312 (as->type == AS_ASSUMED_RANK && akind == GFC_ARRAY_ALLOCATABLE))
1313 corank = 0;
1314
1315 if (as->type == AS_ASSUMED_RANK)
1316 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1317 {
1318 lbound[n] = NULL_TREE;
1319 ubound[n] = NULL_TREE;
1320 }
1321
1322 for (n = 0; n < as->rank; n++)
1323 {
1324 /* Create expressions for the known bounds of the array. */
1325 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1326 lbound[n] = gfc_index_one_node;
1327 else
1328 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1329 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1330 }
1331
1332 for (n = as->rank; n < as->rank + corank; n++)
1333 {
1334 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1335 lbound[n] = gfc_index_one_node;
1336 else
1337 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1338
1339 if (n < as->rank + corank - 1)
1340 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1341 }
1342
1343 if (as->type == AS_ASSUMED_SHAPE)
1344 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1345 : GFC_ARRAY_ASSUMED_SHAPE;
1346 else if (as->type == AS_ASSUMED_RANK)
1347 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1348 : GFC_ARRAY_ASSUMED_RANK;
1349 return gfc_get_array_type_bounds (type, as->rank == -1
1350 ? GFC_MAX_DIMENSIONS : as->rank,
1351 corank, lbound,
1352 ubound, 0, akind, restricted);
1353 }
1354 \f
1355 /* Returns the struct descriptor_dimension type. */
1356
1357 static tree
1358 gfc_get_desc_dim_type (void)
1359 {
1360 tree type;
1361 tree decl, *chain = NULL;
1362
1363 if (gfc_desc_dim_type)
1364 return gfc_desc_dim_type;
1365
1366 /* Build the type node. */
1367 type = make_node (RECORD_TYPE);
1368
1369 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1370 TYPE_PACKED (type) = 1;
1371
1372 /* Consists of the stride, lbound and ubound members. */
1373 decl = gfc_add_field_to_struct_1 (type,
1374 get_identifier ("stride"),
1375 gfc_array_index_type, &chain);
1376 TREE_NO_WARNING (decl) = 1;
1377
1378 decl = gfc_add_field_to_struct_1 (type,
1379 get_identifier ("lbound"),
1380 gfc_array_index_type, &chain);
1381 TREE_NO_WARNING (decl) = 1;
1382
1383 decl = gfc_add_field_to_struct_1 (type,
1384 get_identifier ("ubound"),
1385 gfc_array_index_type, &chain);
1386 TREE_NO_WARNING (decl) = 1;
1387
1388 /* Finish off the type. */
1389 gfc_finish_type (type);
1390 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1391
1392 gfc_desc_dim_type = type;
1393 return type;
1394 }
1395
1396
1397 /* Return the DTYPE for an array. This describes the type and type parameters
1398 of the array. */
1399 /* TODO: Only call this when the value is actually used, and make all the
1400 unknown cases abort. */
1401
1402 tree
1403 gfc_get_dtype (tree type)
1404 {
1405 tree size;
1406 int n;
1407 HOST_WIDE_INT i;
1408 tree tmp;
1409 tree dtype;
1410 tree etype;
1411 int rank;
1412
1413 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1414
1415 if (GFC_TYPE_ARRAY_DTYPE (type))
1416 return GFC_TYPE_ARRAY_DTYPE (type);
1417
1418 rank = GFC_TYPE_ARRAY_RANK (type);
1419 etype = gfc_get_element_type (type);
1420
1421 switch (TREE_CODE (etype))
1422 {
1423 case INTEGER_TYPE:
1424 n = BT_INTEGER;
1425 break;
1426
1427 case BOOLEAN_TYPE:
1428 n = BT_LOGICAL;
1429 break;
1430
1431 case REAL_TYPE:
1432 n = BT_REAL;
1433 break;
1434
1435 case COMPLEX_TYPE:
1436 n = BT_COMPLEX;
1437 break;
1438
1439 /* We will never have arrays of arrays. */
1440 case RECORD_TYPE:
1441 n = BT_DERIVED;
1442 break;
1443
1444 case ARRAY_TYPE:
1445 n = BT_CHARACTER;
1446 break;
1447
1448 case POINTER_TYPE:
1449 n = BT_ASSUMED;
1450 break;
1451
1452 default:
1453 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1454 /* We can strange array types for temporary arrays. */
1455 return gfc_index_zero_node;
1456 }
1457
1458 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1459 size = TYPE_SIZE_UNIT (etype);
1460
1461 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1462 if (size && INTEGER_CST_P (size))
1463 {
1464 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1465 gfc_fatal_error ("Array element size too big at %C");
1466
1467 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1468 }
1469 dtype = build_int_cst (gfc_array_index_type, i);
1470
1471 if (size && !INTEGER_CST_P (size))
1472 {
1473 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1474 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1475 gfc_array_index_type,
1476 fold_convert (gfc_array_index_type, size), tmp);
1477 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1478 tmp, dtype);
1479 }
1480 /* If we don't know the size we leave it as zero. This should never happen
1481 for anything that is actually used. */
1482 /* TODO: Check this is actually true, particularly when repacking
1483 assumed size parameters. */
1484
1485 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1486 return dtype;
1487 }
1488
1489
1490 /* Build an array type for use without a descriptor, packed according
1491 to the value of PACKED. */
1492
1493 tree
1494 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1495 bool restricted)
1496 {
1497 tree range;
1498 tree type;
1499 tree tmp;
1500 int n;
1501 int known_stride;
1502 int known_offset;
1503 mpz_t offset;
1504 mpz_t stride;
1505 mpz_t delta;
1506 gfc_expr *expr;
1507
1508 mpz_init_set_ui (offset, 0);
1509 mpz_init_set_ui (stride, 1);
1510 mpz_init (delta);
1511
1512 /* We don't use build_array_type because this does not include include
1513 lang-specific information (i.e. the bounds of the array) when checking
1514 for duplicates. */
1515 if (as->rank)
1516 type = make_node (ARRAY_TYPE);
1517 else
1518 type = build_variant_type_copy (etype);
1519
1520 GFC_ARRAY_TYPE_P (type) = 1;
1521 TYPE_LANG_SPECIFIC (type)
1522 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1523
1524 known_stride = (packed != PACKED_NO);
1525 known_offset = 1;
1526 for (n = 0; n < as->rank; n++)
1527 {
1528 /* Fill in the stride and bound components of the type. */
1529 if (known_stride)
1530 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1531 else
1532 tmp = NULL_TREE;
1533 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1534
1535 expr = as->lower[n];
1536 if (expr->expr_type == EXPR_CONSTANT)
1537 {
1538 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1539 gfc_index_integer_kind);
1540 }
1541 else
1542 {
1543 known_stride = 0;
1544 tmp = NULL_TREE;
1545 }
1546 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1547
1548 if (known_stride)
1549 {
1550 /* Calculate the offset. */
1551 mpz_mul (delta, stride, as->lower[n]->value.integer);
1552 mpz_sub (offset, offset, delta);
1553 }
1554 else
1555 known_offset = 0;
1556
1557 expr = as->upper[n];
1558 if (expr && expr->expr_type == EXPR_CONSTANT)
1559 {
1560 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1561 gfc_index_integer_kind);
1562 }
1563 else
1564 {
1565 tmp = NULL_TREE;
1566 known_stride = 0;
1567 }
1568 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1569
1570 if (known_stride)
1571 {
1572 /* Calculate the stride. */
1573 mpz_sub (delta, as->upper[n]->value.integer,
1574 as->lower[n]->value.integer);
1575 mpz_add_ui (delta, delta, 1);
1576 mpz_mul (stride, stride, delta);
1577 }
1578
1579 /* Only the first stride is known for partial packed arrays. */
1580 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1581 known_stride = 0;
1582 }
1583 for (n = as->rank; n < as->rank + as->corank; n++)
1584 {
1585 expr = as->lower[n];
1586 if (expr->expr_type == EXPR_CONSTANT)
1587 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1588 gfc_index_integer_kind);
1589 else
1590 tmp = NULL_TREE;
1591 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1592
1593 expr = as->upper[n];
1594 if (expr && expr->expr_type == EXPR_CONSTANT)
1595 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1596 gfc_index_integer_kind);
1597 else
1598 tmp = NULL_TREE;
1599 if (n < as->rank + as->corank - 1)
1600 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1601 }
1602
1603 if (known_offset)
1604 {
1605 GFC_TYPE_ARRAY_OFFSET (type) =
1606 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1607 }
1608 else
1609 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1610
1611 if (known_stride)
1612 {
1613 GFC_TYPE_ARRAY_SIZE (type) =
1614 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1615 }
1616 else
1617 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1618
1619 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1620 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1621 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1622 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1623 NULL_TREE);
1624 /* TODO: use main type if it is unbounded. */
1625 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1626 build_pointer_type (build_array_type (etype, range));
1627 if (restricted)
1628 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1629 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1630 TYPE_QUAL_RESTRICT);
1631
1632 if (as->rank == 0)
1633 {
1634 if (packed != PACKED_STATIC || gfc_option.coarray == GFC_FCOARRAY_LIB)
1635 {
1636 type = build_pointer_type (type);
1637
1638 if (restricted)
1639 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1640
1641 GFC_ARRAY_TYPE_P (type) = 1;
1642 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1643 }
1644
1645 return type;
1646 }
1647
1648 if (known_stride)
1649 {
1650 mpz_sub_ui (stride, stride, 1);
1651 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1652 }
1653 else
1654 range = NULL_TREE;
1655
1656 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1657 TYPE_DOMAIN (type) = range;
1658
1659 build_pointer_type (etype);
1660 TREE_TYPE (type) = etype;
1661
1662 layout_type (type);
1663
1664 mpz_clear (offset);
1665 mpz_clear (stride);
1666 mpz_clear (delta);
1667
1668 /* Represent packed arrays as multi-dimensional if they have rank >
1669 1 and with proper bounds, instead of flat arrays. This makes for
1670 better debug info. */
1671 if (known_offset)
1672 {
1673 tree gtype = etype, rtype, type_decl;
1674
1675 for (n = as->rank - 1; n >= 0; n--)
1676 {
1677 rtype = build_range_type (gfc_array_index_type,
1678 GFC_TYPE_ARRAY_LBOUND (type, n),
1679 GFC_TYPE_ARRAY_UBOUND (type, n));
1680 gtype = build_array_type (gtype, rtype);
1681 }
1682 TYPE_NAME (type) = type_decl = build_decl (input_location,
1683 TYPE_DECL, NULL, gtype);
1684 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1685 }
1686
1687 if (packed != PACKED_STATIC || !known_stride
1688 || (as->corank && gfc_option.coarray == GFC_FCOARRAY_LIB))
1689 {
1690 /* For dummy arrays and automatic (heap allocated) arrays we
1691 want a pointer to the array. */
1692 type = build_pointer_type (type);
1693 if (restricted)
1694 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1695 GFC_ARRAY_TYPE_P (type) = 1;
1696 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1697 }
1698 return type;
1699 }
1700
1701
1702 /* Return or create the base type for an array descriptor. */
1703
1704 static tree
1705 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1706 enum gfc_array_kind akind)
1707 {
1708 tree fat_type, decl, arraytype, *chain = NULL;
1709 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1710 int idx;
1711
1712 /* Assumed-rank array. */
1713 if (dimen == -1)
1714 dimen = GFC_MAX_DIMENSIONS;
1715
1716 idx = 2 * (codimen + dimen) + restricted;
1717
1718 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1719
1720 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen)
1721 {
1722 if (gfc_array_descriptor_base_caf[idx])
1723 return gfc_array_descriptor_base_caf[idx];
1724 }
1725 else if (gfc_array_descriptor_base[idx])
1726 return gfc_array_descriptor_base[idx];
1727
1728 /* Build the type node. */
1729 fat_type = make_node (RECORD_TYPE);
1730
1731 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1732 TYPE_NAME (fat_type) = get_identifier (name);
1733 TYPE_NAMELESS (fat_type) = 1;
1734
1735 /* Add the data member as the first element of the descriptor. */
1736 decl = gfc_add_field_to_struct_1 (fat_type,
1737 get_identifier ("data"),
1738 (restricted
1739 ? prvoid_type_node
1740 : ptr_type_node), &chain);
1741
1742 /* Add the base component. */
1743 decl = gfc_add_field_to_struct_1 (fat_type,
1744 get_identifier ("offset"),
1745 gfc_array_index_type, &chain);
1746 TREE_NO_WARNING (decl) = 1;
1747
1748 /* Add the dtype component. */
1749 decl = gfc_add_field_to_struct_1 (fat_type,
1750 get_identifier ("dtype"),
1751 gfc_array_index_type, &chain);
1752 TREE_NO_WARNING (decl) = 1;
1753
1754 /* Build the array type for the stride and bound components. */
1755 if (dimen + codimen > 0)
1756 {
1757 arraytype =
1758 build_array_type (gfc_get_desc_dim_type (),
1759 build_range_type (gfc_array_index_type,
1760 gfc_index_zero_node,
1761 gfc_rank_cst[codimen + dimen - 1]));
1762
1763 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1764 arraytype, &chain);
1765 TREE_NO_WARNING (decl) = 1;
1766 }
1767
1768 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1769 && akind == GFC_ARRAY_ALLOCATABLE)
1770 {
1771 decl = gfc_add_field_to_struct_1 (fat_type,
1772 get_identifier ("token"),
1773 prvoid_type_node, &chain);
1774 TREE_NO_WARNING (decl) = 1;
1775 }
1776
1777 /* Finish off the type. */
1778 gfc_finish_type (fat_type);
1779 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1780
1781 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1782 && akind == GFC_ARRAY_ALLOCATABLE)
1783 gfc_array_descriptor_base_caf[idx] = fat_type;
1784 else
1785 gfc_array_descriptor_base[idx] = fat_type;
1786
1787 return fat_type;
1788 }
1789
1790
1791 /* Build an array (descriptor) type with given bounds. */
1792
1793 tree
1794 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1795 tree * ubound, int packed,
1796 enum gfc_array_kind akind, bool restricted)
1797 {
1798 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1799 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1800 const char *type_name;
1801 int n;
1802
1803 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1804 fat_type = build_distinct_type_copy (base_type);
1805 /* Make sure that nontarget and target array type have the same canonical
1806 type (and same stub decl for debug info). */
1807 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1808 TYPE_CANONICAL (fat_type) = base_type;
1809 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1810
1811 tmp = TYPE_NAME (etype);
1812 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1813 tmp = DECL_NAME (tmp);
1814 if (tmp)
1815 type_name = IDENTIFIER_POINTER (tmp);
1816 else
1817 type_name = "unknown";
1818 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1819 GFC_MAX_SYMBOL_LEN, type_name);
1820 TYPE_NAME (fat_type) = get_identifier (name);
1821 TYPE_NAMELESS (fat_type) = 1;
1822
1823 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1824 TYPE_LANG_SPECIFIC (fat_type)
1825 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1826
1827 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1828 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1829 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1830 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1831
1832 /* Build an array descriptor record type. */
1833 if (packed != 0)
1834 stride = gfc_index_one_node;
1835 else
1836 stride = NULL_TREE;
1837 for (n = 0; n < dimen + codimen; n++)
1838 {
1839 if (n < dimen)
1840 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1841
1842 if (lbound)
1843 lower = lbound[n];
1844 else
1845 lower = NULL_TREE;
1846
1847 if (lower != NULL_TREE)
1848 {
1849 if (INTEGER_CST_P (lower))
1850 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1851 else
1852 lower = NULL_TREE;
1853 }
1854
1855 if (codimen && n == dimen + codimen - 1)
1856 break;
1857
1858 upper = ubound[n];
1859 if (upper != NULL_TREE)
1860 {
1861 if (INTEGER_CST_P (upper))
1862 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1863 else
1864 upper = NULL_TREE;
1865 }
1866
1867 if (n >= dimen)
1868 continue;
1869
1870 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1871 {
1872 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1873 gfc_array_index_type, upper, lower);
1874 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1875 gfc_array_index_type, tmp,
1876 gfc_index_one_node);
1877 stride = fold_build2_loc (input_location, MULT_EXPR,
1878 gfc_array_index_type, tmp, stride);
1879 /* Check the folding worked. */
1880 gcc_assert (INTEGER_CST_P (stride));
1881 }
1882 else
1883 stride = NULL_TREE;
1884 }
1885 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1886
1887 /* TODO: known offsets for descriptors. */
1888 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1889
1890 if (dimen == 0)
1891 {
1892 arraytype = build_pointer_type (etype);
1893 if (restricted)
1894 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1895
1896 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1897 return fat_type;
1898 }
1899
1900 /* We define data as an array with the correct size if possible.
1901 Much better than doing pointer arithmetic. */
1902 if (stride)
1903 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1904 int_const_binop (MINUS_EXPR, stride,
1905 integer_one_node));
1906 else
1907 rtype = gfc_array_range_type;
1908 arraytype = build_array_type (etype, rtype);
1909 arraytype = build_pointer_type (arraytype);
1910 if (restricted)
1911 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1912 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1913
1914 /* This will generate the base declarations we need to emit debug
1915 information for this type. FIXME: there must be a better way to
1916 avoid divergence between compilations with and without debug
1917 information. */
1918 {
1919 struct array_descr_info info;
1920 gfc_get_array_descr_info (fat_type, &info);
1921 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1922 }
1923
1924 return fat_type;
1925 }
1926 \f
1927 /* Build a pointer type. This function is called from gfc_sym_type(). */
1928
1929 static tree
1930 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1931 {
1932 /* Array pointer types aren't actually pointers. */
1933 if (sym->attr.dimension)
1934 return type;
1935 else
1936 return build_pointer_type (type);
1937 }
1938
1939 static tree gfc_nonrestricted_type (tree t);
1940 /* Given two record or union type nodes TO and FROM, ensure
1941 that all fields in FROM have a corresponding field in TO,
1942 their type being nonrestrict variants. This accepts a TO
1943 node that already has a prefix of the fields in FROM. */
1944 static void
1945 mirror_fields (tree to, tree from)
1946 {
1947 tree fto, ffrom;
1948 tree *chain;
1949
1950 /* Forward to the end of TOs fields. */
1951 fto = TYPE_FIELDS (to);
1952 ffrom = TYPE_FIELDS (from);
1953 chain = &TYPE_FIELDS (to);
1954 while (fto)
1955 {
1956 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1957 chain = &DECL_CHAIN (fto);
1958 fto = DECL_CHAIN (fto);
1959 ffrom = DECL_CHAIN (ffrom);
1960 }
1961
1962 /* Now add all fields remaining in FROM (starting with ffrom). */
1963 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1964 {
1965 tree newfield = copy_node (ffrom);
1966 DECL_CONTEXT (newfield) = to;
1967 /* The store to DECL_CHAIN might seem redundant with the
1968 stores to *chain, but not clearing it here would mean
1969 leaving a chain into the old fields. If ever
1970 our called functions would look at them confusion
1971 will arise. */
1972 DECL_CHAIN (newfield) = NULL_TREE;
1973 *chain = newfield;
1974 chain = &DECL_CHAIN (newfield);
1975
1976 if (TREE_CODE (ffrom) == FIELD_DECL)
1977 {
1978 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
1979 TREE_TYPE (newfield) = elemtype;
1980 }
1981 }
1982 *chain = NULL_TREE;
1983 }
1984
1985 /* Given a type T, returns a different type of the same structure,
1986 except that all types it refers to (recursively) are always
1987 non-restrict qualified types. */
1988 static tree
1989 gfc_nonrestricted_type (tree t)
1990 {
1991 tree ret = t;
1992
1993 /* If the type isn't laid out yet, don't copy it. If something
1994 needs it for real it should wait until the type got finished. */
1995 if (!TYPE_SIZE (t))
1996 return t;
1997
1998 if (!TYPE_LANG_SPECIFIC (t))
1999 TYPE_LANG_SPECIFIC (t)
2000 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
2001 /* If we're dealing with this very node already further up
2002 the call chain (recursion via pointers and struct members)
2003 we haven't yet determined if we really need a new type node.
2004 Assume we don't, return T itself. */
2005 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
2006 return t;
2007
2008 /* If we have calculated this all already, just return it. */
2009 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
2010 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
2011
2012 /* Mark this type. */
2013 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2014
2015 switch (TREE_CODE (t))
2016 {
2017 default:
2018 break;
2019
2020 case POINTER_TYPE:
2021 case REFERENCE_TYPE:
2022 {
2023 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2024 if (totype == TREE_TYPE (t))
2025 ret = t;
2026 else if (TREE_CODE (t) == POINTER_TYPE)
2027 ret = build_pointer_type (totype);
2028 else
2029 ret = build_reference_type (totype);
2030 ret = build_qualified_type (ret,
2031 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2032 }
2033 break;
2034
2035 case ARRAY_TYPE:
2036 {
2037 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2038 if (elemtype == TREE_TYPE (t))
2039 ret = t;
2040 else
2041 {
2042 ret = build_variant_type_copy (t);
2043 TREE_TYPE (ret) = elemtype;
2044 if (TYPE_LANG_SPECIFIC (t)
2045 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2046 {
2047 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2048 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2049 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2050 {
2051 TYPE_LANG_SPECIFIC (ret)
2052 = ggc_alloc_cleared_lang_type (sizeof (struct
2053 lang_type));
2054 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2055 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2056 }
2057 }
2058 }
2059 }
2060 break;
2061
2062 case RECORD_TYPE:
2063 case UNION_TYPE:
2064 case QUAL_UNION_TYPE:
2065 {
2066 tree field;
2067 /* First determine if we need a new type at all.
2068 Careful, the two calls to gfc_nonrestricted_type per field
2069 might return different values. That happens exactly when
2070 one of the fields reaches back to this very record type
2071 (via pointers). The first calls will assume that we don't
2072 need to copy T (see the error_mark_node marking). If there
2073 are any reasons for copying T apart from having to copy T,
2074 we'll indeed copy it, and the second calls to
2075 gfc_nonrestricted_type will use that new node if they
2076 reach back to T. */
2077 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2078 if (TREE_CODE (field) == FIELD_DECL)
2079 {
2080 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2081 if (elemtype != TREE_TYPE (field))
2082 break;
2083 }
2084 if (!field)
2085 break;
2086 ret = build_variant_type_copy (t);
2087 TYPE_FIELDS (ret) = NULL_TREE;
2088
2089 /* Here we make sure that as soon as we know we have to copy
2090 T, that also fields reaching back to us will use the new
2091 copy. It's okay if that copy still contains the old fields,
2092 we won't look at them. */
2093 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2094 mirror_fields (ret, t);
2095 }
2096 break;
2097 }
2098
2099 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2100 return ret;
2101 }
2102
2103 \f
2104 /* Return the type for a symbol. Special handling is required for character
2105 types to get the correct level of indirection.
2106 For functions return the return type.
2107 For subroutines return void_type_node.
2108 Calling this multiple times for the same symbol should be avoided,
2109 especially for character and array types. */
2110
2111 tree
2112 gfc_sym_type (gfc_symbol * sym)
2113 {
2114 tree type;
2115 int byref;
2116 bool restricted;
2117
2118 /* Procedure Pointers inside COMMON blocks. */
2119 if (sym->attr.proc_pointer && sym->attr.in_common)
2120 {
2121 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2122 sym->attr.proc_pointer = 0;
2123 type = build_pointer_type (gfc_get_function_type (sym));
2124 sym->attr.proc_pointer = 1;
2125 return type;
2126 }
2127
2128 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2129 return void_type_node;
2130
2131 /* In the case of a function the fake result variable may have a
2132 type different from the function type, so don't return early in
2133 that case. */
2134 if (sym->backend_decl && !sym->attr.function)
2135 return TREE_TYPE (sym->backend_decl);
2136
2137 if (sym->ts.type == BT_CHARACTER
2138 && ((sym->attr.function && sym->attr.is_bind_c)
2139 || (sym->attr.result
2140 && sym->ns->proc_name
2141 && sym->ns->proc_name->attr.is_bind_c)))
2142 type = gfc_character1_type_node;
2143 else
2144 type = gfc_typenode_for_spec (&sym->ts);
2145
2146 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2147 byref = 1;
2148 else
2149 byref = 0;
2150
2151 restricted = !sym->attr.target && !sym->attr.pointer
2152 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2153 if (!restricted)
2154 type = gfc_nonrestricted_type (type);
2155
2156 if (sym->attr.dimension || sym->attr.codimension)
2157 {
2158 if (gfc_is_nodesc_array (sym))
2159 {
2160 /* If this is a character argument of unknown length, just use the
2161 base type. */
2162 if (sym->ts.type != BT_CHARACTER
2163 || !(sym->attr.dummy || sym->attr.function)
2164 || sym->ts.u.cl->backend_decl)
2165 {
2166 type = gfc_get_nodesc_array_type (type, sym->as,
2167 byref ? PACKED_FULL
2168 : PACKED_STATIC,
2169 restricted);
2170 byref = 0;
2171 }
2172
2173 if (sym->attr.cray_pointee)
2174 GFC_POINTER_TYPE_P (type) = 1;
2175 }
2176 else
2177 {
2178 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2179 if (sym->attr.pointer)
2180 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2181 : GFC_ARRAY_POINTER;
2182 else if (sym->attr.allocatable)
2183 akind = GFC_ARRAY_ALLOCATABLE;
2184 type = gfc_build_array_type (type, sym->as, akind, restricted,
2185 sym->attr.contiguous);
2186 }
2187 }
2188 else
2189 {
2190 if (sym->attr.allocatable || sym->attr.pointer
2191 || gfc_is_associate_pointer (sym))
2192 type = gfc_build_pointer_type (sym, type);
2193 if (sym->attr.pointer || sym->attr.cray_pointee)
2194 GFC_POINTER_TYPE_P (type) = 1;
2195 }
2196
2197 /* We currently pass all parameters by reference.
2198 See f95_get_function_decl. For dummy function parameters return the
2199 function type. */
2200 if (byref)
2201 {
2202 /* We must use pointer types for potentially absent variables. The
2203 optimizers assume a reference type argument is never NULL. */
2204 if (sym->attr.optional
2205 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2206 type = build_pointer_type (type);
2207 else
2208 {
2209 type = build_reference_type (type);
2210 if (restricted)
2211 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2212 }
2213 }
2214
2215 return (type);
2216 }
2217 \f
2218 /* Layout and output debug info for a record type. */
2219
2220 void
2221 gfc_finish_type (tree type)
2222 {
2223 tree decl;
2224
2225 decl = build_decl (input_location,
2226 TYPE_DECL, NULL_TREE, type);
2227 TYPE_STUB_DECL (type) = decl;
2228 layout_type (type);
2229 rest_of_type_compilation (type, 1);
2230 rest_of_decl_compilation (decl, 1, 0);
2231 }
2232 \f
2233 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2234 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2235 to the end of the field list pointed to by *CHAIN.
2236
2237 Returns a pointer to the new field. */
2238
2239 static tree
2240 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2241 {
2242 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2243
2244 DECL_CONTEXT (decl) = context;
2245 DECL_CHAIN (decl) = NULL_TREE;
2246 if (TYPE_FIELDS (context) == NULL_TREE)
2247 TYPE_FIELDS (context) = decl;
2248 if (chain != NULL)
2249 {
2250 if (*chain != NULL)
2251 **chain = decl;
2252 *chain = &DECL_CHAIN (decl);
2253 }
2254
2255 return decl;
2256 }
2257
2258 /* Like `gfc_add_field_to_struct_1', but adds alignment
2259 information. */
2260
2261 tree
2262 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2263 {
2264 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2265
2266 DECL_INITIAL (decl) = 0;
2267 DECL_ALIGN (decl) = 0;
2268 DECL_USER_ALIGN (decl) = 0;
2269
2270 return decl;
2271 }
2272
2273
2274 /* Copy the backend_decl and component backend_decls if
2275 the two derived type symbols are "equal", as described
2276 in 4.4.2 and resolved by gfc_compare_derived_types. */
2277
2278 int
2279 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2280 bool from_gsym)
2281 {
2282 gfc_component *to_cm;
2283 gfc_component *from_cm;
2284
2285 if (from == to)
2286 return 1;
2287
2288 if (from->backend_decl == NULL
2289 || !gfc_compare_derived_types (from, to))
2290 return 0;
2291
2292 to->backend_decl = from->backend_decl;
2293
2294 to_cm = to->components;
2295 from_cm = from->components;
2296
2297 /* Copy the component declarations. If a component is itself
2298 a derived type, we need a copy of its component declarations.
2299 This is done by recursing into gfc_get_derived_type and
2300 ensures that the component's component declarations have
2301 been built. If it is a character, we need the character
2302 length, as well. */
2303 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2304 {
2305 to_cm->backend_decl = from_cm->backend_decl;
2306 if (from_cm->ts.type == BT_DERIVED
2307 && (!from_cm->attr.pointer || from_gsym))
2308 gfc_get_derived_type (to_cm->ts.u.derived);
2309 else if (from_cm->ts.type == BT_CLASS
2310 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2311 gfc_get_derived_type (to_cm->ts.u.derived);
2312 else if (from_cm->ts.type == BT_CHARACTER)
2313 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2314 }
2315
2316 return 1;
2317 }
2318
2319
2320 /* Build a tree node for a procedure pointer component. */
2321
2322 tree
2323 gfc_get_ppc_type (gfc_component* c)
2324 {
2325 tree t;
2326
2327 /* Explicit interface. */
2328 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2329 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2330
2331 /* Implicit interface (only return value may be known). */
2332 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2333 t = gfc_typenode_for_spec (&c->ts);
2334 else
2335 t = void_type_node;
2336
2337 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2338 }
2339
2340
2341 /* Build a tree node for a derived type. If there are equal
2342 derived types, with different local names, these are built
2343 at the same time. If an equal derived type has been built
2344 in a parent namespace, this is used. */
2345
2346 tree
2347 gfc_get_derived_type (gfc_symbol * derived)
2348 {
2349 tree typenode = NULL, field = NULL, field_type = NULL;
2350 tree canonical = NULL_TREE;
2351 tree *chain = NULL;
2352 bool got_canonical = false;
2353 bool unlimited_entity = false;
2354 gfc_component *c;
2355 gfc_dt_list *dt;
2356 gfc_namespace *ns;
2357
2358 if (derived->attr.unlimited_polymorphic)
2359 return ptr_type_node;
2360
2361 if (derived && derived->attr.flavor == FL_PROCEDURE
2362 && derived->attr.generic)
2363 derived = gfc_find_dt_in_generic (derived);
2364
2365 /* See if it's one of the iso_c_binding derived types. */
2366 if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
2367 {
2368 if (derived->backend_decl)
2369 return derived->backend_decl;
2370
2371 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2372 derived->backend_decl = ptr_type_node;
2373 else
2374 derived->backend_decl = pfunc_type_node;
2375
2376 derived->ts.kind = gfc_index_integer_kind;
2377 derived->ts.type = BT_INTEGER;
2378 /* Set the f90_type to BT_VOID as a way to recognize something of type
2379 BT_INTEGER that needs to fit a void * for the purpose of the
2380 iso_c_binding derived types. */
2381 derived->ts.f90_type = BT_VOID;
2382
2383 return derived->backend_decl;
2384 }
2385
2386 /* If use associated, use the module type for this one. */
2387 if (derived->backend_decl == NULL
2388 && derived->attr.use_assoc
2389 && derived->module
2390 && gfc_get_module_backend_decl (derived))
2391 goto copy_derived_types;
2392
2393 /* The derived types from an earlier namespace can be used as the
2394 canonical type. */
2395 if (derived->backend_decl == NULL && !derived->attr.use_assoc
2396 && gfc_global_ns_list)
2397 {
2398 for (ns = gfc_global_ns_list;
2399 ns->translated && !got_canonical;
2400 ns = ns->sibling)
2401 {
2402 dt = ns->derived_types;
2403 for (; dt && !canonical; dt = dt->next)
2404 {
2405 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2406 if (derived->backend_decl)
2407 got_canonical = true;
2408 }
2409 }
2410 }
2411
2412 /* Store up the canonical type to be added to this one. */
2413 if (got_canonical)
2414 {
2415 if (TYPE_CANONICAL (derived->backend_decl))
2416 canonical = TYPE_CANONICAL (derived->backend_decl);
2417 else
2418 canonical = derived->backend_decl;
2419
2420 derived->backend_decl = NULL_TREE;
2421 }
2422
2423 /* derived->backend_decl != 0 means we saw it before, but its
2424 components' backend_decl may have not been built. */
2425 if (derived->backend_decl)
2426 {
2427 /* Its components' backend_decl have been built or we are
2428 seeing recursion through the formal arglist of a procedure
2429 pointer component. */
2430 if (TYPE_FIELDS (derived->backend_decl)
2431 || derived->attr.proc_pointer_comp)
2432 return derived->backend_decl;
2433 else
2434 typenode = derived->backend_decl;
2435 }
2436 else
2437 {
2438 /* We see this derived type first time, so build the type node. */
2439 typenode = make_node (RECORD_TYPE);
2440 TYPE_NAME (typenode) = get_identifier (derived->name);
2441 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2442 derived->backend_decl = typenode;
2443 }
2444
2445 if (derived->components
2446 && derived->components->ts.type == BT_DERIVED
2447 && strcmp (derived->components->name, "_data") == 0
2448 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2449 unlimited_entity = true;
2450
2451 /* Go through the derived type components, building them as
2452 necessary. The reason for doing this now is that it is
2453 possible to recurse back to this derived type through a
2454 pointer component (PR24092). If this happens, the fields
2455 will be built and so we can return the type. */
2456 for (c = derived->components; c; c = c->next)
2457 {
2458 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2459 continue;
2460
2461 if ((!c->attr.pointer && !c->attr.proc_pointer)
2462 || c->ts.u.derived->backend_decl == NULL)
2463 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2464
2465 if (c->ts.u.derived->attr.is_iso_c)
2466 {
2467 /* Need to copy the modified ts from the derived type. The
2468 typespec was modified because C_PTR/C_FUNPTR are translated
2469 into (void *) from derived types. */
2470 c->ts.type = c->ts.u.derived->ts.type;
2471 c->ts.kind = c->ts.u.derived->ts.kind;
2472 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2473 if (c->initializer)
2474 {
2475 c->initializer->ts.type = c->ts.type;
2476 c->initializer->ts.kind = c->ts.kind;
2477 c->initializer->ts.f90_type = c->ts.f90_type;
2478 c->initializer->expr_type = EXPR_NULL;
2479 }
2480 }
2481 }
2482
2483 if (TYPE_FIELDS (derived->backend_decl))
2484 return derived->backend_decl;
2485
2486 /* Build the type member list. Install the newly created RECORD_TYPE
2487 node as DECL_CONTEXT of each FIELD_DECL. */
2488 for (c = derived->components; c; c = c->next)
2489 {
2490 if (c->attr.proc_pointer)
2491 field_type = gfc_get_ppc_type (c);
2492 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2493 field_type = c->ts.u.derived->backend_decl;
2494 else
2495 {
2496 if (c->ts.type == BT_CHARACTER && !c->ts.deferred)
2497 {
2498 /* Evaluate the string length. */
2499 gfc_conv_const_charlen (c->ts.u.cl);
2500 gcc_assert (c->ts.u.cl->backend_decl);
2501 }
2502 else if (c->ts.type == BT_CHARACTER)
2503 c->ts.u.cl->backend_decl
2504 = build_int_cst (gfc_charlen_type_node, 0);
2505
2506 field_type = gfc_typenode_for_spec (&c->ts);
2507 }
2508
2509 /* This returns an array descriptor type. Initialization may be
2510 required. */
2511 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2512 {
2513 if (c->attr.pointer || c->attr.allocatable)
2514 {
2515 enum gfc_array_kind akind;
2516 if (c->attr.pointer)
2517 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2518 : GFC_ARRAY_POINTER;
2519 else
2520 akind = GFC_ARRAY_ALLOCATABLE;
2521 /* Pointers to arrays aren't actually pointer types. The
2522 descriptors are separate, but the data is common. */
2523 field_type = gfc_build_array_type (field_type, c->as, akind,
2524 !c->attr.target
2525 && !c->attr.pointer,
2526 c->attr.contiguous);
2527 }
2528 else
2529 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2530 PACKED_STATIC,
2531 !c->attr.target);
2532 }
2533 else if ((c->attr.pointer || c->attr.allocatable)
2534 && !c->attr.proc_pointer
2535 && !(unlimited_entity && c == derived->components))
2536 field_type = build_pointer_type (field_type);
2537
2538 if (c->attr.pointer)
2539 field_type = gfc_nonrestricted_type (field_type);
2540
2541 /* vtype fields can point to different types to the base type. */
2542 if (c->ts.type == BT_DERIVED
2543 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2544 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2545 ptr_mode, true);
2546
2547 /* Ensure that the CLASS language specific flag is set. */
2548 if (c->ts.type == BT_CLASS)
2549 {
2550 if (POINTER_TYPE_P (field_type))
2551 GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2552 else
2553 GFC_CLASS_TYPE_P (field_type) = 1;
2554 }
2555
2556 field = gfc_add_field_to_struct (typenode,
2557 get_identifier (c->name),
2558 field_type, &chain);
2559 if (c->loc.lb)
2560 gfc_set_decl_location (field, &c->loc);
2561 else if (derived->declared_at.lb)
2562 gfc_set_decl_location (field, &derived->declared_at);
2563
2564 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2565
2566 gcc_assert (field);
2567 if (!c->backend_decl)
2568 c->backend_decl = field;
2569 }
2570
2571 /* Now lay out the derived type, including the fields. */
2572 if (canonical)
2573 TYPE_CANONICAL (typenode) = canonical;
2574
2575 gfc_finish_type (typenode);
2576 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2577 if (derived->module && derived->ns->proc_name
2578 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2579 {
2580 if (derived->ns->proc_name->backend_decl
2581 && TREE_CODE (derived->ns->proc_name->backend_decl)
2582 == NAMESPACE_DECL)
2583 {
2584 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2585 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2586 = derived->ns->proc_name->backend_decl;
2587 }
2588 }
2589
2590 derived->backend_decl = typenode;
2591
2592 copy_derived_types:
2593
2594 for (dt = gfc_derived_types; dt; dt = dt->next)
2595 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2596
2597 return derived->backend_decl;
2598 }
2599
2600
2601 int
2602 gfc_return_by_reference (gfc_symbol * sym)
2603 {
2604 if (!sym->attr.function)
2605 return 0;
2606
2607 if (sym->attr.dimension)
2608 return 1;
2609
2610 if (sym->ts.type == BT_CHARACTER
2611 && !sym->attr.is_bind_c
2612 && (!sym->attr.result
2613 || !sym->ns->proc_name
2614 || !sym->ns->proc_name->attr.is_bind_c))
2615 return 1;
2616
2617 /* Possibly return complex numbers by reference for g77 compatibility.
2618 We don't do this for calls to intrinsics (as the library uses the
2619 -fno-f2c calling convention), nor for calls to functions which always
2620 require an explicit interface, as no compatibility problems can
2621 arise there. */
2622 if (gfc_option.flag_f2c
2623 && sym->ts.type == BT_COMPLEX
2624 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2625 return 1;
2626
2627 return 0;
2628 }
2629 \f
2630 static tree
2631 gfc_get_mixed_entry_union (gfc_namespace *ns)
2632 {
2633 tree type;
2634 tree *chain = NULL;
2635 char name[GFC_MAX_SYMBOL_LEN + 1];
2636 gfc_entry_list *el, *el2;
2637
2638 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2639 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2640
2641 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2642
2643 /* Build the type node. */
2644 type = make_node (UNION_TYPE);
2645
2646 TYPE_NAME (type) = get_identifier (name);
2647
2648 for (el = ns->entries; el; el = el->next)
2649 {
2650 /* Search for duplicates. */
2651 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2652 if (el2->sym->result == el->sym->result)
2653 break;
2654
2655 if (el == el2)
2656 gfc_add_field_to_struct_1 (type,
2657 get_identifier (el->sym->result->name),
2658 gfc_sym_type (el->sym->result), &chain);
2659 }
2660
2661 /* Finish off the type. */
2662 gfc_finish_type (type);
2663 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2664 return type;
2665 }
2666 \f
2667 /* Create a "fn spec" based on the formal arguments;
2668 cf. create_function_arglist. */
2669
2670 static tree
2671 create_fn_spec (gfc_symbol *sym, tree fntype)
2672 {
2673 char spec[150];
2674 size_t spec_len;
2675 gfc_formal_arglist *f;
2676 tree tmp;
2677
2678 memset (&spec, 0, sizeof (spec));
2679 spec[0] = '.';
2680 spec_len = 1;
2681
2682 if (sym->attr.entry_master)
2683 spec[spec_len++] = 'R';
2684 if (gfc_return_by_reference (sym))
2685 {
2686 gfc_symbol *result = sym->result ? sym->result : sym;
2687
2688 if (result->attr.pointer || sym->attr.proc_pointer)
2689 spec[spec_len++] = '.';
2690 else
2691 spec[spec_len++] = 'w';
2692 if (sym->ts.type == BT_CHARACTER)
2693 spec[spec_len++] = 'R';
2694 }
2695
2696 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2697 if (spec_len < sizeof (spec))
2698 {
2699 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2700 || f->sym->attr.external || f->sym->attr.cray_pointer
2701 || (f->sym->ts.type == BT_DERIVED
2702 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2703 || f->sym->ts.u.derived->attr.pointer_comp))
2704 || (f->sym->ts.type == BT_CLASS
2705 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2706 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2707 spec[spec_len++] = '.';
2708 else if (f->sym->attr.intent == INTENT_IN)
2709 spec[spec_len++] = 'r';
2710 else if (f->sym)
2711 spec[spec_len++] = 'w';
2712 }
2713
2714 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2715 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2716 return build_type_attribute_variant (fntype, tmp);
2717 }
2718
2719
2720 tree
2721 gfc_get_function_type (gfc_symbol * sym)
2722 {
2723 tree type;
2724 vec<tree, va_gc> *typelist = NULL;
2725 gfc_formal_arglist *f;
2726 gfc_symbol *arg;
2727 int alternate_return = 0;
2728 bool is_varargs = true;
2729
2730 /* Make sure this symbol is a function, a subroutine or the main
2731 program. */
2732 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2733 || sym->attr.flavor == FL_PROGRAM);
2734
2735 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2736 so that they can be detected here and handled further down. */
2737 if (sym->backend_decl == NULL)
2738 sym->backend_decl = error_mark_node;
2739 else if (sym->backend_decl == error_mark_node)
2740 goto arg_type_list_done;
2741 else if (sym->attr.proc_pointer)
2742 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
2743 else
2744 return TREE_TYPE (sym->backend_decl);
2745
2746 if (sym->attr.entry_master)
2747 /* Additional parameter for selecting an entry point. */
2748 vec_safe_push (typelist, gfc_array_index_type);
2749
2750 if (sym->result)
2751 arg = sym->result;
2752 else
2753 arg = sym;
2754
2755 if (arg->ts.type == BT_CHARACTER)
2756 gfc_conv_const_charlen (arg->ts.u.cl);
2757
2758 /* Some functions we use an extra parameter for the return value. */
2759 if (gfc_return_by_reference (sym))
2760 {
2761 type = gfc_sym_type (arg);
2762 if (arg->ts.type == BT_COMPLEX
2763 || arg->attr.dimension
2764 || arg->ts.type == BT_CHARACTER)
2765 type = build_reference_type (type);
2766
2767 vec_safe_push (typelist, type);
2768 if (arg->ts.type == BT_CHARACTER)
2769 {
2770 if (!arg->ts.deferred)
2771 /* Transfer by value. */
2772 vec_safe_push (typelist, gfc_charlen_type_node);
2773 else
2774 /* Deferred character lengths are transferred by reference
2775 so that the value can be returned. */
2776 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
2777 }
2778 }
2779
2780 /* Build the argument types for the function. */
2781 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2782 {
2783 arg = f->sym;
2784 if (arg)
2785 {
2786 /* Evaluate constant character lengths here so that they can be
2787 included in the type. */
2788 if (arg->ts.type == BT_CHARACTER)
2789 gfc_conv_const_charlen (arg->ts.u.cl);
2790
2791 if (arg->attr.flavor == FL_PROCEDURE)
2792 {
2793 type = gfc_get_function_type (arg);
2794 type = build_pointer_type (type);
2795 }
2796 else
2797 type = gfc_sym_type (arg);
2798
2799 /* Parameter Passing Convention
2800
2801 We currently pass all parameters by reference.
2802 Parameters with INTENT(IN) could be passed by value.
2803 The problem arises if a function is called via an implicit
2804 prototype. In this situation the INTENT is not known.
2805 For this reason all parameters to global functions must be
2806 passed by reference. Passing by value would potentially
2807 generate bad code. Worse there would be no way of telling that
2808 this code was bad, except that it would give incorrect results.
2809
2810 Contained procedures could pass by value as these are never
2811 used without an explicit interface, and cannot be passed as
2812 actual parameters for a dummy procedure. */
2813
2814 vec_safe_push (typelist, type);
2815 }
2816 else
2817 {
2818 if (sym->attr.subroutine)
2819 alternate_return = 1;
2820 }
2821 }
2822
2823 /* Add hidden string length parameters. */
2824 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2825 {
2826 arg = f->sym;
2827 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2828 {
2829 if (!arg->ts.deferred)
2830 /* Transfer by value. */
2831 type = gfc_charlen_type_node;
2832 else
2833 /* Deferred character lengths are transferred by reference
2834 so that the value can be returned. */
2835 type = build_pointer_type (gfc_charlen_type_node);
2836
2837 vec_safe_push (typelist, type);
2838 }
2839 }
2840
2841 if (!vec_safe_is_empty (typelist)
2842 || sym->attr.is_main_program
2843 || sym->attr.if_source != IFSRC_UNKNOWN)
2844 is_varargs = false;
2845
2846 if (sym->backend_decl == error_mark_node)
2847 sym->backend_decl = NULL_TREE;
2848
2849 arg_type_list_done:
2850
2851 if (alternate_return)
2852 type = integer_type_node;
2853 else if (!sym->attr.function || gfc_return_by_reference (sym))
2854 type = void_type_node;
2855 else if (sym->attr.mixed_entry_master)
2856 type = gfc_get_mixed_entry_union (sym->ns);
2857 else if (gfc_option.flag_f2c
2858 && sym->ts.type == BT_REAL
2859 && sym->ts.kind == gfc_default_real_kind
2860 && !sym->attr.always_explicit)
2861 {
2862 /* Special case: f2c calling conventions require that (scalar)
2863 default REAL functions return the C type double instead. f2c
2864 compatibility is only an issue with functions that don't
2865 require an explicit interface, as only these could be
2866 implemented in Fortran 77. */
2867 sym->ts.kind = gfc_default_double_kind;
2868 type = gfc_typenode_for_spec (&sym->ts);
2869 sym->ts.kind = gfc_default_real_kind;
2870 }
2871 else if (sym->result && sym->result->attr.proc_pointer)
2872 /* Procedure pointer return values. */
2873 {
2874 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2875 {
2876 /* Unset proc_pointer as gfc_get_function_type
2877 is called recursively. */
2878 sym->result->attr.proc_pointer = 0;
2879 type = build_pointer_type (gfc_get_function_type (sym->result));
2880 sym->result->attr.proc_pointer = 1;
2881 }
2882 else
2883 type = gfc_sym_type (sym->result);
2884 }
2885 else
2886 type = gfc_sym_type (sym);
2887
2888 if (is_varargs)
2889 type = build_varargs_function_type_vec (type, typelist);
2890 else
2891 type = build_function_type_vec (type, typelist);
2892 type = create_fn_spec (sym, type);
2893
2894 return type;
2895 }
2896 \f
2897 /* Language hooks for middle-end access to type nodes. */
2898
2899 /* Return an integer type with BITS bits of precision,
2900 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2901
2902 tree
2903 gfc_type_for_size (unsigned bits, int unsignedp)
2904 {
2905 if (!unsignedp)
2906 {
2907 int i;
2908 for (i = 0; i <= MAX_INT_KINDS; ++i)
2909 {
2910 tree type = gfc_integer_types[i];
2911 if (type && bits == TYPE_PRECISION (type))
2912 return type;
2913 }
2914
2915 /* Handle TImode as a special case because it is used by some backends
2916 (e.g. ARM) even though it is not available for normal use. */
2917 #if HOST_BITS_PER_WIDE_INT >= 64
2918 if (bits == TYPE_PRECISION (intTI_type_node))
2919 return intTI_type_node;
2920 #endif
2921
2922 if (bits <= TYPE_PRECISION (intQI_type_node))
2923 return intQI_type_node;
2924 if (bits <= TYPE_PRECISION (intHI_type_node))
2925 return intHI_type_node;
2926 if (bits <= TYPE_PRECISION (intSI_type_node))
2927 return intSI_type_node;
2928 if (bits <= TYPE_PRECISION (intDI_type_node))
2929 return intDI_type_node;
2930 if (bits <= TYPE_PRECISION (intTI_type_node))
2931 return intTI_type_node;
2932 }
2933 else
2934 {
2935 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2936 return unsigned_intQI_type_node;
2937 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2938 return unsigned_intHI_type_node;
2939 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2940 return unsigned_intSI_type_node;
2941 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2942 return unsigned_intDI_type_node;
2943 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2944 return unsigned_intTI_type_node;
2945 }
2946
2947 return NULL_TREE;
2948 }
2949
2950 /* Return a data type that has machine mode MODE. If the mode is an
2951 integer, then UNSIGNEDP selects between signed and unsigned types. */
2952
2953 tree
2954 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2955 {
2956 int i;
2957 tree *base;
2958
2959 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2960 base = gfc_real_types;
2961 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2962 base = gfc_complex_types;
2963 else if (SCALAR_INT_MODE_P (mode))
2964 {
2965 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2966 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
2967 }
2968 else if (VECTOR_MODE_P (mode))
2969 {
2970 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2971 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2972 if (inner_type != NULL_TREE)
2973 return build_vector_type_for_mode (inner_type, mode);
2974 return NULL_TREE;
2975 }
2976 else
2977 return NULL_TREE;
2978
2979 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2980 {
2981 tree type = base[i];
2982 if (type && mode == TYPE_MODE (type))
2983 return type;
2984 }
2985
2986 return NULL_TREE;
2987 }
2988
2989 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2990 in that case. */
2991
2992 bool
2993 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2994 {
2995 int rank, dim;
2996 bool indirect = false;
2997 tree etype, ptype, field, t, base_decl;
2998 tree data_off, dim_off, dim_size, elem_size;
2999 tree lower_suboff, upper_suboff, stride_suboff;
3000
3001 if (! GFC_DESCRIPTOR_TYPE_P (type))
3002 {
3003 if (! POINTER_TYPE_P (type))
3004 return false;
3005 type = TREE_TYPE (type);
3006 if (! GFC_DESCRIPTOR_TYPE_P (type))
3007 return false;
3008 indirect = true;
3009 }
3010
3011 rank = GFC_TYPE_ARRAY_RANK (type);
3012 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3013 return false;
3014
3015 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3016 gcc_assert (POINTER_TYPE_P (etype));
3017 etype = TREE_TYPE (etype);
3018
3019 /* If the type is not a scalar coarray. */
3020 if (TREE_CODE (etype) == ARRAY_TYPE)
3021 etype = TREE_TYPE (etype);
3022
3023 /* Can't handle variable sized elements yet. */
3024 if (int_size_in_bytes (etype) <= 0)
3025 return false;
3026 /* Nor non-constant lower bounds in assumed shape arrays. */
3027 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3028 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3029 {
3030 for (dim = 0; dim < rank; dim++)
3031 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3032 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3033 return false;
3034 }
3035
3036 memset (info, '\0', sizeof (*info));
3037 info->ndimensions = rank;
3038 info->element_type = etype;
3039 ptype = build_pointer_type (gfc_array_index_type);
3040 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3041 if (!base_decl)
3042 {
3043 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
3044 indirect ? build_pointer_type (ptype) : ptype);
3045 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3046 }
3047 info->base_decl = base_decl;
3048 if (indirect)
3049 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3050
3051 if (GFC_TYPE_ARRAY_SPAN (type))
3052 elem_size = GFC_TYPE_ARRAY_SPAN (type);
3053 else
3054 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
3055 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
3056 data_off = byte_position (field);
3057 field = DECL_CHAIN (field);
3058 field = DECL_CHAIN (field);
3059 field = DECL_CHAIN (field);
3060 dim_off = byte_position (field);
3061 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
3062 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
3063 stride_suboff = byte_position (field);
3064 field = DECL_CHAIN (field);
3065 lower_suboff = byte_position (field);
3066 field = DECL_CHAIN (field);
3067 upper_suboff = byte_position (field);
3068
3069 t = base_decl;
3070 if (!integer_zerop (data_off))
3071 t = fold_build_pointer_plus (t, data_off);
3072 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3073 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3074 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3075 info->allocated = build2 (NE_EXPR, boolean_type_node,
3076 info->data_location, null_pointer_node);
3077 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3078 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3079 info->associated = build2 (NE_EXPR, boolean_type_node,
3080 info->data_location, null_pointer_node);
3081
3082 for (dim = 0; dim < rank; dim++)
3083 {
3084 t = fold_build_pointer_plus (base_decl,
3085 size_binop (PLUS_EXPR,
3086 dim_off, lower_suboff));
3087 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3088 info->dimen[dim].lower_bound = t;
3089 t = fold_build_pointer_plus (base_decl,
3090 size_binop (PLUS_EXPR,
3091 dim_off, upper_suboff));
3092 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3093 info->dimen[dim].upper_bound = t;
3094 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3095 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3096 {
3097 /* Assumed shape arrays have known lower bounds. */
3098 info->dimen[dim].upper_bound
3099 = build2 (MINUS_EXPR, gfc_array_index_type,
3100 info->dimen[dim].upper_bound,
3101 info->dimen[dim].lower_bound);
3102 info->dimen[dim].lower_bound
3103 = fold_convert (gfc_array_index_type,
3104 GFC_TYPE_ARRAY_LBOUND (type, dim));
3105 info->dimen[dim].upper_bound
3106 = build2 (PLUS_EXPR, gfc_array_index_type,
3107 info->dimen[dim].lower_bound,
3108 info->dimen[dim].upper_bound);
3109 }
3110 t = fold_build_pointer_plus (base_decl,
3111 size_binop (PLUS_EXPR,
3112 dim_off, stride_suboff));
3113 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3114 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3115 info->dimen[dim].stride = t;
3116 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3117 }
3118
3119 return true;
3120 }
3121
3122 #include "gt-fortran-trans-types.h"