trans-decl.c: Include diagnostic-core.h besides toplev.h.
[gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010
4 Free Software Foundation, Inc.
5 Contributed by Paul Brook <paul@nowt.org>
6 and Steven Bosscher <s.bosscher@student.tudelft.nl>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* trans-types.c -- gfortran backend types */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tree.h"
30 #include "langhooks.h" /* For iso-c-bindings.def. */
31 #include "target.h"
32 #include "ggc.h"
33 #include "diagnostic-core.h" /* For fatal_error. */
34 #include "toplev.h" /* For rest_of_decl_compilation. */
35 #include "gfortran.h"
36 #include "trans.h"
37 #include "trans-types.h"
38 #include "trans-const.h"
39 #include "flags.h"
40 #include "dwarf2out.h" /* For struct array_descr_info. */
41 \f
42
43 #if (GFC_MAX_DIMENSIONS < 10)
44 #define GFC_RANK_DIGITS 1
45 #define GFC_RANK_PRINTF_FORMAT "%01d"
46 #elif (GFC_MAX_DIMENSIONS < 100)
47 #define GFC_RANK_DIGITS 2
48 #define GFC_RANK_PRINTF_FORMAT "%02d"
49 #else
50 #error If you really need >99 dimensions, continue the sequence above...
51 #endif
52
53 /* array of structs so we don't have to worry about xmalloc or free */
54 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
55
56 tree gfc_array_index_type;
57 tree gfc_array_range_type;
58 tree gfc_character1_type_node;
59 tree pvoid_type_node;
60 tree prvoid_type_node;
61 tree ppvoid_type_node;
62 tree pchar_type_node;
63 tree pfunc_type_node;
64
65 tree gfc_charlen_type_node;
66
67 static GTY(()) tree gfc_desc_dim_type;
68 static GTY(()) tree gfc_max_array_element_size;
69 static GTY(()) tree gfc_array_descriptor_base[2 * GFC_MAX_DIMENSIONS];
70
71 /* Arrays for all integral and real kinds. We'll fill this in at runtime
72 after the target has a chance to process command-line options. */
73
74 #define MAX_INT_KINDS 5
75 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
76 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
77 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
78 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
79
80 #define MAX_REAL_KINDS 5
81 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
82 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
83 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
84
85 #define MAX_CHARACTER_KINDS 2
86 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
87 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
88 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
89
90 static tree gfc_add_field_to_struct_1 (tree *, tree, tree, tree, tree **);
91
92 /* The integer kind to use for array indices. This will be set to the
93 proper value based on target information from the backend. */
94
95 int gfc_index_integer_kind;
96
97 /* The default kinds of the various types. */
98
99 int gfc_default_integer_kind;
100 int gfc_max_integer_kind;
101 int gfc_default_real_kind;
102 int gfc_default_double_kind;
103 int gfc_default_character_kind;
104 int gfc_default_logical_kind;
105 int gfc_default_complex_kind;
106 int gfc_c_int_kind;
107
108 /* The kind size used for record offsets. If the target system supports
109 kind=8, this will be set to 8, otherwise it is set to 4. */
110 int gfc_intio_kind;
111
112 /* The integer kind used to store character lengths. */
113 int gfc_charlen_int_kind;
114
115 /* The size of the numeric storage unit and character storage unit. */
116 int gfc_numeric_storage_size;
117 int gfc_character_storage_size;
118
119
120 gfc_try
121 gfc_check_any_c_kind (gfc_typespec *ts)
122 {
123 int i;
124
125 for (i = 0; i < ISOCBINDING_NUMBER; i++)
126 {
127 /* Check for any C interoperable kind for the given type/kind in ts.
128 This can be used after verify_c_interop to make sure that the
129 Fortran kind being used exists in at least some form for C. */
130 if (c_interop_kinds_table[i].f90_type == ts->type &&
131 c_interop_kinds_table[i].value == ts->kind)
132 return SUCCESS;
133 }
134
135 return FAILURE;
136 }
137
138
139 static int
140 get_real_kind_from_node (tree type)
141 {
142 int i;
143
144 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
145 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
146 return gfc_real_kinds[i].kind;
147
148 return -4;
149 }
150
151 static int
152 get_int_kind_from_node (tree type)
153 {
154 int i;
155
156 if (!type)
157 return -2;
158
159 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
160 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
161 return gfc_integer_kinds[i].kind;
162
163 return -1;
164 }
165
166 /* Return a typenode for the "standard" C type with a given name. */
167 static tree
168 get_typenode_from_name (const char *name)
169 {
170 if (name == NULL || *name == '\0')
171 return NULL_TREE;
172
173 if (strcmp (name, "char") == 0)
174 return char_type_node;
175 if (strcmp (name, "unsigned char") == 0)
176 return unsigned_char_type_node;
177 if (strcmp (name, "signed char") == 0)
178 return signed_char_type_node;
179
180 if (strcmp (name, "short int") == 0)
181 return short_integer_type_node;
182 if (strcmp (name, "short unsigned int") == 0)
183 return short_unsigned_type_node;
184
185 if (strcmp (name, "int") == 0)
186 return integer_type_node;
187 if (strcmp (name, "unsigned int") == 0)
188 return unsigned_type_node;
189
190 if (strcmp (name, "long int") == 0)
191 return long_integer_type_node;
192 if (strcmp (name, "long unsigned int") == 0)
193 return long_unsigned_type_node;
194
195 if (strcmp (name, "long long int") == 0)
196 return long_long_integer_type_node;
197 if (strcmp (name, "long long unsigned int") == 0)
198 return long_long_unsigned_type_node;
199
200 gcc_unreachable ();
201 }
202
203 static int
204 get_int_kind_from_name (const char *name)
205 {
206 return get_int_kind_from_node (get_typenode_from_name (name));
207 }
208
209
210 /* Get the kind number corresponding to an integer of given size,
211 following the required return values for ISO_FORTRAN_ENV INT* constants:
212 -2 is returned if we support a kind of larger size, -1 otherwise. */
213 int
214 gfc_get_int_kind_from_width_isofortranenv (int size)
215 {
216 int i;
217
218 /* Look for a kind with matching storage size. */
219 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
220 if (gfc_integer_kinds[i].bit_size == size)
221 return gfc_integer_kinds[i].kind;
222
223 /* Look for a kind with larger storage size. */
224 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
225 if (gfc_integer_kinds[i].bit_size > size)
226 return -2;
227
228 return -1;
229 }
230
231 /* Get the kind number corresponding to a real of given storage size,
232 following the required return values for ISO_FORTRAN_ENV REAL* constants:
233 -2 is returned if we support a kind of larger size, -1 otherwise. */
234 int
235 gfc_get_real_kind_from_width_isofortranenv (int size)
236 {
237 int i;
238
239 size /= 8;
240
241 /* Look for a kind with matching storage size. */
242 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
243 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
244 return gfc_real_kinds[i].kind;
245
246 /* Look for a kind with larger storage size. */
247 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
248 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
249 return -2;
250
251 return -1;
252 }
253
254
255
256 static int
257 get_int_kind_from_width (int size)
258 {
259 int i;
260
261 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
262 if (gfc_integer_kinds[i].bit_size == size)
263 return gfc_integer_kinds[i].kind;
264
265 return -2;
266 }
267
268 static int
269 get_int_kind_from_minimal_width (int size)
270 {
271 int i;
272
273 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
274 if (gfc_integer_kinds[i].bit_size >= size)
275 return gfc_integer_kinds[i].kind;
276
277 return -2;
278 }
279
280
281 /* Generate the CInteropKind_t objects for the C interoperable
282 kinds. */
283
284 static
285 void init_c_interop_kinds (void)
286 {
287 int i;
288
289 /* init all pointers in the list to NULL */
290 for (i = 0; i < ISOCBINDING_NUMBER; i++)
291 {
292 /* Initialize the name and value fields. */
293 c_interop_kinds_table[i].name[0] = '\0';
294 c_interop_kinds_table[i].value = -100;
295 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
296 }
297
298 #define NAMED_INTCST(a,b,c,d) \
299 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
300 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
301 c_interop_kinds_table[a].value = c;
302 #define NAMED_REALCST(a,b,c) \
303 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
304 c_interop_kinds_table[a].f90_type = BT_REAL; \
305 c_interop_kinds_table[a].value = c;
306 #define NAMED_CMPXCST(a,b,c) \
307 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
308 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
309 c_interop_kinds_table[a].value = c;
310 #define NAMED_LOGCST(a,b,c) \
311 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
312 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
313 c_interop_kinds_table[a].value = c;
314 #define NAMED_CHARKNDCST(a,b,c) \
315 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
316 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
317 c_interop_kinds_table[a].value = c;
318 #define NAMED_CHARCST(a,b,c) \
319 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
320 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
321 c_interop_kinds_table[a].value = c;
322 #define DERIVED_TYPE(a,b,c) \
323 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
324 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
325 c_interop_kinds_table[a].value = c;
326 #define PROCEDURE(a,b) \
327 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
328 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
329 c_interop_kinds_table[a].value = 0;
330 #include "iso-c-binding.def"
331 }
332
333
334 /* Query the target to determine which machine modes are available for
335 computation. Choose KIND numbers for them. */
336
337 void
338 gfc_init_kinds (void)
339 {
340 unsigned int mode;
341 int i_index, r_index, kind;
342 bool saw_i4 = false, saw_i8 = false;
343 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
344
345 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
346 {
347 int kind, bitsize;
348
349 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
350 continue;
351
352 /* The middle end doesn't support constants larger than 2*HWI.
353 Perhaps the target hook shouldn't have accepted these either,
354 but just to be safe... */
355 bitsize = GET_MODE_BITSIZE (mode);
356 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
357 continue;
358
359 gcc_assert (i_index != MAX_INT_KINDS);
360
361 /* Let the kind equal the bit size divided by 8. This insulates the
362 programmer from the underlying byte size. */
363 kind = bitsize / 8;
364
365 if (kind == 4)
366 saw_i4 = true;
367 if (kind == 8)
368 saw_i8 = true;
369
370 gfc_integer_kinds[i_index].kind = kind;
371 gfc_integer_kinds[i_index].radix = 2;
372 gfc_integer_kinds[i_index].digits = bitsize - 1;
373 gfc_integer_kinds[i_index].bit_size = bitsize;
374
375 gfc_logical_kinds[i_index].kind = kind;
376 gfc_logical_kinds[i_index].bit_size = bitsize;
377
378 i_index += 1;
379 }
380
381 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
382 used for large file access. */
383
384 if (saw_i8)
385 gfc_intio_kind = 8;
386 else
387 gfc_intio_kind = 4;
388
389 /* If we do not at least have kind = 4, everything is pointless. */
390 gcc_assert(saw_i4);
391
392 /* Set the maximum integer kind. Used with at least BOZ constants. */
393 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
394
395 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
396 {
397 const struct real_format *fmt =
398 REAL_MODE_FORMAT ((enum machine_mode) mode);
399 int kind;
400
401 if (fmt == NULL)
402 continue;
403 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
404 continue;
405
406 /* Only let float/double/long double go through because the fortran
407 library assumes these are the only floating point types. */
408
409 if (mode != TYPE_MODE (float_type_node)
410 && (mode != TYPE_MODE (double_type_node))
411 && (mode != TYPE_MODE (long_double_type_node)))
412 continue;
413
414 /* Let the kind equal the precision divided by 8, rounding up. Again,
415 this insulates the programmer from the underlying byte size.
416
417 Also, it effectively deals with IEEE extended formats. There, the
418 total size of the type may equal 16, but it's got 6 bytes of padding
419 and the increased size can get in the way of a real IEEE quad format
420 which may also be supported by the target.
421
422 We round up so as to handle IA-64 __floatreg (RFmode), which is an
423 82 bit type. Not to be confused with __float80 (XFmode), which is
424 an 80 bit type also supported by IA-64. So XFmode should come out
425 to be kind=10, and RFmode should come out to be kind=11. Egads. */
426
427 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
428
429 if (kind == 4)
430 saw_r4 = true;
431 if (kind == 8)
432 saw_r8 = true;
433 if (kind == 16)
434 saw_r16 = true;
435
436 /* Careful we don't stumble a weird internal mode. */
437 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
438 /* Or have too many modes for the allocated space. */
439 gcc_assert (r_index != MAX_REAL_KINDS);
440
441 gfc_real_kinds[r_index].kind = kind;
442 gfc_real_kinds[r_index].radix = fmt->b;
443 gfc_real_kinds[r_index].digits = fmt->p;
444 gfc_real_kinds[r_index].min_exponent = fmt->emin;
445 gfc_real_kinds[r_index].max_exponent = fmt->emax;
446 if (fmt->pnan < fmt->p)
447 /* This is an IBM extended double format (or the MIPS variant)
448 made up of two IEEE doubles. The value of the long double is
449 the sum of the values of the two parts. The most significant
450 part is required to be the value of the long double rounded
451 to the nearest double. If we use emax of 1024 then we can't
452 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
453 rounding will make the most significant part overflow. */
454 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
455 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
456 r_index += 1;
457 }
458
459 /* Choose the default integer kind. We choose 4 unless the user
460 directs us otherwise. */
461 if (gfc_option.flag_default_integer)
462 {
463 if (!saw_i8)
464 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
465 gfc_default_integer_kind = 8;
466
467 /* Even if the user specified that the default integer kind be 8,
468 the numeric storage size isn't 64. In this case, a warning will
469 be issued when NUMERIC_STORAGE_SIZE is used. */
470 gfc_numeric_storage_size = 4 * 8;
471 }
472 else if (saw_i4)
473 {
474 gfc_default_integer_kind = 4;
475 gfc_numeric_storage_size = 4 * 8;
476 }
477 else
478 {
479 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
480 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
481 }
482
483 /* Choose the default real kind. Again, we choose 4 when possible. */
484 if (gfc_option.flag_default_real)
485 {
486 if (!saw_r8)
487 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
488 gfc_default_real_kind = 8;
489 }
490 else if (saw_r4)
491 gfc_default_real_kind = 4;
492 else
493 gfc_default_real_kind = gfc_real_kinds[0].kind;
494
495 /* Choose the default double kind. If -fdefault-real and -fdefault-double
496 are specified, we use kind=8, if it's available. If -fdefault-real is
497 specified without -fdefault-double, we use kind=16, if it's available.
498 Otherwise we do not change anything. */
499 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
500 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
501
502 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
503 gfc_default_double_kind = 8;
504 else if (gfc_option.flag_default_real && saw_r16)
505 gfc_default_double_kind = 16;
506 else if (saw_r4 && saw_r8)
507 gfc_default_double_kind = 8;
508 else
509 {
510 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
511 real ... occupies two contiguous numeric storage units.
512
513 Therefore we must be supplied a kind twice as large as we chose
514 for single precision. There are loopholes, in that double
515 precision must *occupy* two storage units, though it doesn't have
516 to *use* two storage units. Which means that you can make this
517 kind artificially wide by padding it. But at present there are
518 no GCC targets for which a two-word type does not exist, so we
519 just let gfc_validate_kind abort and tell us if something breaks. */
520
521 gfc_default_double_kind
522 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
523 }
524
525 /* The default logical kind is constrained to be the same as the
526 default integer kind. Similarly with complex and real. */
527 gfc_default_logical_kind = gfc_default_integer_kind;
528 gfc_default_complex_kind = gfc_default_real_kind;
529
530 /* We only have two character kinds: ASCII and UCS-4.
531 ASCII corresponds to a 8-bit integer type, if one is available.
532 UCS-4 corresponds to a 32-bit integer type, if one is available. */
533 i_index = 0;
534 if ((kind = get_int_kind_from_width (8)) > 0)
535 {
536 gfc_character_kinds[i_index].kind = kind;
537 gfc_character_kinds[i_index].bit_size = 8;
538 gfc_character_kinds[i_index].name = "ascii";
539 i_index++;
540 }
541 if ((kind = get_int_kind_from_width (32)) > 0)
542 {
543 gfc_character_kinds[i_index].kind = kind;
544 gfc_character_kinds[i_index].bit_size = 32;
545 gfc_character_kinds[i_index].name = "iso_10646";
546 i_index++;
547 }
548
549 /* Choose the smallest integer kind for our default character. */
550 gfc_default_character_kind = gfc_character_kinds[0].kind;
551 gfc_character_storage_size = gfc_default_character_kind * 8;
552
553 /* Choose the integer kind the same size as "void*" for our index kind. */
554 gfc_index_integer_kind = POINTER_SIZE / 8;
555 /* Pick a kind the same size as the C "int" type. */
556 gfc_c_int_kind = INT_TYPE_SIZE / 8;
557
558 /* initialize the C interoperable kinds */
559 init_c_interop_kinds();
560 }
561
562 /* Make sure that a valid kind is present. Returns an index into the
563 associated kinds array, -1 if the kind is not present. */
564
565 static int
566 validate_integer (int kind)
567 {
568 int i;
569
570 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
571 if (gfc_integer_kinds[i].kind == kind)
572 return i;
573
574 return -1;
575 }
576
577 static int
578 validate_real (int kind)
579 {
580 int i;
581
582 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
583 if (gfc_real_kinds[i].kind == kind)
584 return i;
585
586 return -1;
587 }
588
589 static int
590 validate_logical (int kind)
591 {
592 int i;
593
594 for (i = 0; gfc_logical_kinds[i].kind; i++)
595 if (gfc_logical_kinds[i].kind == kind)
596 return i;
597
598 return -1;
599 }
600
601 static int
602 validate_character (int kind)
603 {
604 int i;
605
606 for (i = 0; gfc_character_kinds[i].kind; i++)
607 if (gfc_character_kinds[i].kind == kind)
608 return i;
609
610 return -1;
611 }
612
613 /* Validate a kind given a basic type. The return value is the same
614 for the child functions, with -1 indicating nonexistence of the
615 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
616
617 int
618 gfc_validate_kind (bt type, int kind, bool may_fail)
619 {
620 int rc;
621
622 switch (type)
623 {
624 case BT_REAL: /* Fall through */
625 case BT_COMPLEX:
626 rc = validate_real (kind);
627 break;
628 case BT_INTEGER:
629 rc = validate_integer (kind);
630 break;
631 case BT_LOGICAL:
632 rc = validate_logical (kind);
633 break;
634 case BT_CHARACTER:
635 rc = validate_character (kind);
636 break;
637
638 default:
639 gfc_internal_error ("gfc_validate_kind(): Got bad type");
640 }
641
642 if (rc < 0 && !may_fail)
643 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
644
645 return rc;
646 }
647
648
649 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
650 Reuse common type nodes where possible. Recognize if the kind matches up
651 with a C type. This will be used later in determining which routines may
652 be scarfed from libm. */
653
654 static tree
655 gfc_build_int_type (gfc_integer_info *info)
656 {
657 int mode_precision = info->bit_size;
658
659 if (mode_precision == CHAR_TYPE_SIZE)
660 info->c_char = 1;
661 if (mode_precision == SHORT_TYPE_SIZE)
662 info->c_short = 1;
663 if (mode_precision == INT_TYPE_SIZE)
664 info->c_int = 1;
665 if (mode_precision == LONG_TYPE_SIZE)
666 info->c_long = 1;
667 if (mode_precision == LONG_LONG_TYPE_SIZE)
668 info->c_long_long = 1;
669
670 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
671 return intQI_type_node;
672 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
673 return intHI_type_node;
674 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
675 return intSI_type_node;
676 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
677 return intDI_type_node;
678 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
679 return intTI_type_node;
680
681 return make_signed_type (mode_precision);
682 }
683
684 tree
685 gfc_build_uint_type (int size)
686 {
687 if (size == CHAR_TYPE_SIZE)
688 return unsigned_char_type_node;
689 if (size == SHORT_TYPE_SIZE)
690 return short_unsigned_type_node;
691 if (size == INT_TYPE_SIZE)
692 return unsigned_type_node;
693 if (size == LONG_TYPE_SIZE)
694 return long_unsigned_type_node;
695 if (size == LONG_LONG_TYPE_SIZE)
696 return long_long_unsigned_type_node;
697
698 return make_unsigned_type (size);
699 }
700
701
702 static tree
703 gfc_build_real_type (gfc_real_info *info)
704 {
705 int mode_precision = info->mode_precision;
706 tree new_type;
707
708 if (mode_precision == FLOAT_TYPE_SIZE)
709 info->c_float = 1;
710 if (mode_precision == DOUBLE_TYPE_SIZE)
711 info->c_double = 1;
712 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
713 info->c_long_double = 1;
714
715 if (TYPE_PRECISION (float_type_node) == mode_precision)
716 return float_type_node;
717 if (TYPE_PRECISION (double_type_node) == mode_precision)
718 return double_type_node;
719 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
720 return long_double_type_node;
721
722 new_type = make_node (REAL_TYPE);
723 TYPE_PRECISION (new_type) = mode_precision;
724 layout_type (new_type);
725 return new_type;
726 }
727
728 static tree
729 gfc_build_complex_type (tree scalar_type)
730 {
731 tree new_type;
732
733 if (scalar_type == NULL)
734 return NULL;
735 if (scalar_type == float_type_node)
736 return complex_float_type_node;
737 if (scalar_type == double_type_node)
738 return complex_double_type_node;
739 if (scalar_type == long_double_type_node)
740 return complex_long_double_type_node;
741
742 new_type = make_node (COMPLEX_TYPE);
743 TREE_TYPE (new_type) = scalar_type;
744 layout_type (new_type);
745 return new_type;
746 }
747
748 static tree
749 gfc_build_logical_type (gfc_logical_info *info)
750 {
751 int bit_size = info->bit_size;
752 tree new_type;
753
754 if (bit_size == BOOL_TYPE_SIZE)
755 {
756 info->c_bool = 1;
757 return boolean_type_node;
758 }
759
760 new_type = make_unsigned_type (bit_size);
761 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
762 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
763 TYPE_PRECISION (new_type) = 1;
764
765 return new_type;
766 }
767
768
769 #if 0
770 /* Return the bit size of the C "size_t". */
771
772 static unsigned int
773 c_size_t_size (void)
774 {
775 #ifdef SIZE_TYPE
776 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
777 return INT_TYPE_SIZE;
778 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
779 return LONG_TYPE_SIZE;
780 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
781 return SHORT_TYPE_SIZE;
782 gcc_unreachable ();
783 #else
784 return LONG_TYPE_SIZE;
785 #endif
786 }
787 #endif
788
789 /* Create the backend type nodes. We map them to their
790 equivalent C type, at least for now. We also give
791 names to the types here, and we push them in the
792 global binding level context.*/
793
794 void
795 gfc_init_types (void)
796 {
797 char name_buf[18];
798 int index;
799 tree type;
800 unsigned n;
801 unsigned HOST_WIDE_INT hi;
802 unsigned HOST_WIDE_INT lo;
803
804 /* Create and name the types. */
805 #define PUSH_TYPE(name, node) \
806 pushdecl (build_decl (input_location, \
807 TYPE_DECL, get_identifier (name), node))
808
809 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
810 {
811 type = gfc_build_int_type (&gfc_integer_kinds[index]);
812 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
813 if (TYPE_STRING_FLAG (type))
814 type = make_signed_type (gfc_integer_kinds[index].bit_size);
815 gfc_integer_types[index] = type;
816 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
817 gfc_integer_kinds[index].kind);
818 PUSH_TYPE (name_buf, type);
819 }
820
821 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
822 {
823 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
824 gfc_logical_types[index] = type;
825 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
826 gfc_logical_kinds[index].kind);
827 PUSH_TYPE (name_buf, type);
828 }
829
830 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
831 {
832 type = gfc_build_real_type (&gfc_real_kinds[index]);
833 gfc_real_types[index] = type;
834 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
835 gfc_real_kinds[index].kind);
836 PUSH_TYPE (name_buf, type);
837
838 type = gfc_build_complex_type (type);
839 gfc_complex_types[index] = type;
840 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
841 gfc_real_kinds[index].kind);
842 PUSH_TYPE (name_buf, type);
843 }
844
845 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
846 {
847 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
848 type = build_qualified_type (type, TYPE_UNQUALIFIED);
849 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
850 gfc_character_kinds[index].kind);
851 PUSH_TYPE (name_buf, type);
852 gfc_character_types[index] = type;
853 gfc_pcharacter_types[index] = build_pointer_type (type);
854 }
855 gfc_character1_type_node = gfc_character_types[0];
856
857 PUSH_TYPE ("byte", unsigned_char_type_node);
858 PUSH_TYPE ("void", void_type_node);
859
860 /* DBX debugging output gets upset if these aren't set. */
861 if (!TYPE_NAME (integer_type_node))
862 PUSH_TYPE ("c_integer", integer_type_node);
863 if (!TYPE_NAME (char_type_node))
864 PUSH_TYPE ("c_char", char_type_node);
865
866 #undef PUSH_TYPE
867
868 pvoid_type_node = build_pointer_type (void_type_node);
869 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
870 ppvoid_type_node = build_pointer_type (pvoid_type_node);
871 pchar_type_node = build_pointer_type (gfc_character1_type_node);
872 pfunc_type_node
873 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
874
875 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
876 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
877 since this function is called before gfc_init_constants. */
878 gfc_array_range_type
879 = build_range_type (gfc_array_index_type,
880 build_int_cst (gfc_array_index_type, 0),
881 NULL_TREE);
882
883 /* The maximum array element size that can be handled is determined
884 by the number of bits available to store this field in the array
885 descriptor. */
886
887 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
888 lo = ~ (unsigned HOST_WIDE_INT) 0;
889 if (n > HOST_BITS_PER_WIDE_INT)
890 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
891 else
892 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
893 gfc_max_array_element_size
894 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
895
896 size_type_node = gfc_array_index_type;
897
898 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
899 boolean_true_node = build_int_cst (boolean_type_node, 1);
900 boolean_false_node = build_int_cst (boolean_type_node, 0);
901
902 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
903 gfc_charlen_int_kind = 4;
904 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
905 }
906
907 /* Get the type node for the given type and kind. */
908
909 tree
910 gfc_get_int_type (int kind)
911 {
912 int index = gfc_validate_kind (BT_INTEGER, kind, true);
913 return index < 0 ? 0 : gfc_integer_types[index];
914 }
915
916 tree
917 gfc_get_real_type (int kind)
918 {
919 int index = gfc_validate_kind (BT_REAL, kind, true);
920 return index < 0 ? 0 : gfc_real_types[index];
921 }
922
923 tree
924 gfc_get_complex_type (int kind)
925 {
926 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
927 return index < 0 ? 0 : gfc_complex_types[index];
928 }
929
930 tree
931 gfc_get_logical_type (int kind)
932 {
933 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
934 return index < 0 ? 0 : gfc_logical_types[index];
935 }
936
937 tree
938 gfc_get_char_type (int kind)
939 {
940 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
941 return index < 0 ? 0 : gfc_character_types[index];
942 }
943
944 tree
945 gfc_get_pchar_type (int kind)
946 {
947 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
948 return index < 0 ? 0 : gfc_pcharacter_types[index];
949 }
950
951 \f
952 /* Create a character type with the given kind and length. */
953
954 tree
955 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
956 {
957 tree bounds, type;
958
959 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
960 type = build_array_type (eltype, bounds);
961 TYPE_STRING_FLAG (type) = 1;
962
963 return type;
964 }
965
966 tree
967 gfc_get_character_type_len (int kind, tree len)
968 {
969 gfc_validate_kind (BT_CHARACTER, kind, false);
970 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
971 }
972
973
974 /* Get a type node for a character kind. */
975
976 tree
977 gfc_get_character_type (int kind, gfc_charlen * cl)
978 {
979 tree len;
980
981 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
982
983 return gfc_get_character_type_len (kind, len);
984 }
985 \f
986 /* Covert a basic type. This will be an array for character types. */
987
988 tree
989 gfc_typenode_for_spec (gfc_typespec * spec)
990 {
991 tree basetype;
992
993 switch (spec->type)
994 {
995 case BT_UNKNOWN:
996 gcc_unreachable ();
997
998 case BT_INTEGER:
999 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1000 has been resolved. This is done so we can convert C_PTR and
1001 C_FUNPTR to simple variables that get translated to (void *). */
1002 if (spec->f90_type == BT_VOID)
1003 {
1004 if (spec->u.derived
1005 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1006 basetype = ptr_type_node;
1007 else
1008 basetype = pfunc_type_node;
1009 }
1010 else
1011 basetype = gfc_get_int_type (spec->kind);
1012 break;
1013
1014 case BT_REAL:
1015 basetype = gfc_get_real_type (spec->kind);
1016 break;
1017
1018 case BT_COMPLEX:
1019 basetype = gfc_get_complex_type (spec->kind);
1020 break;
1021
1022 case BT_LOGICAL:
1023 basetype = gfc_get_logical_type (spec->kind);
1024 break;
1025
1026 case BT_CHARACTER:
1027 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1028 break;
1029
1030 case BT_DERIVED:
1031 case BT_CLASS:
1032 basetype = gfc_get_derived_type (spec->u.derived);
1033
1034 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1035 type and kind to fit a (void *) and the basetype returned was a
1036 ptr_type_node. We need to pass up this new information to the
1037 symbol that was declared of type C_PTR or C_FUNPTR. */
1038 if (spec->u.derived->attr.is_iso_c)
1039 {
1040 spec->type = spec->u.derived->ts.type;
1041 spec->kind = spec->u.derived->ts.kind;
1042 spec->f90_type = spec->u.derived->ts.f90_type;
1043 }
1044 break;
1045 case BT_VOID:
1046 /* This is for the second arg to c_f_pointer and c_f_procpointer
1047 of the iso_c_binding module, to accept any ptr type. */
1048 basetype = ptr_type_node;
1049 if (spec->f90_type == BT_VOID)
1050 {
1051 if (spec->u.derived
1052 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1053 basetype = ptr_type_node;
1054 else
1055 basetype = pfunc_type_node;
1056 }
1057 break;
1058 default:
1059 gcc_unreachable ();
1060 }
1061 return basetype;
1062 }
1063 \f
1064 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1065
1066 static tree
1067 gfc_conv_array_bound (gfc_expr * expr)
1068 {
1069 /* If expr is an integer constant, return that. */
1070 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1071 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1072
1073 /* Otherwise return NULL. */
1074 return NULL_TREE;
1075 }
1076 \f
1077 tree
1078 gfc_get_element_type (tree type)
1079 {
1080 tree element;
1081
1082 if (GFC_ARRAY_TYPE_P (type))
1083 {
1084 if (TREE_CODE (type) == POINTER_TYPE)
1085 type = TREE_TYPE (type);
1086 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1087 element = TREE_TYPE (type);
1088 }
1089 else
1090 {
1091 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1092 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1093
1094 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1095 element = TREE_TYPE (element);
1096
1097 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
1098 element = TREE_TYPE (element);
1099 }
1100
1101 return element;
1102 }
1103 \f
1104 /* Build an array. This function is called from gfc_sym_type().
1105 Actually returns array descriptor type.
1106
1107 Format of array descriptors is as follows:
1108
1109 struct gfc_array_descriptor
1110 {
1111 array *data
1112 index offset;
1113 index dtype;
1114 struct descriptor_dimension dimension[N_DIM];
1115 }
1116
1117 struct descriptor_dimension
1118 {
1119 index stride;
1120 index lbound;
1121 index ubound;
1122 }
1123
1124 Translation code should use gfc_conv_descriptor_* rather than
1125 accessing the descriptor directly. Any changes to the array
1126 descriptor type will require changes in gfc_conv_descriptor_* and
1127 gfc_build_array_initializer.
1128
1129 This is represented internally as a RECORD_TYPE. The index nodes
1130 are gfc_array_index_type and the data node is a pointer to the
1131 data. See below for the handling of character types.
1132
1133 The dtype member is formatted as follows:
1134 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1135 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1136 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1137
1138 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1139 this generated poor code for assumed/deferred size arrays. These
1140 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1141 of the GENERIC grammar. Also, there is no way to explicitly set
1142 the array stride, so all data must be packed(1). I've tried to
1143 mark all the functions which would require modification with a GCC
1144 ARRAYS comment.
1145
1146 The data component points to the first element in the array. The
1147 offset field is the position of the origin of the array (i.e. element
1148 (0, 0 ...)). This may be outside the bounds of the array.
1149
1150 An element is accessed by
1151 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1152 This gives good performance as the computation does not involve the
1153 bounds of the array. For packed arrays, this is optimized further
1154 by substituting the known strides.
1155
1156 This system has one problem: all array bounds must be within 2^31
1157 elements of the origin (2^63 on 64-bit machines). For example
1158 integer, dimension (80000:90000, 80000:90000, 2) :: array
1159 may not work properly on 32-bit machines because 80000*80000 >
1160 2^31, so the calculation for stride2 would overflow. This may
1161 still work, but I haven't checked, and it relies on the overflow
1162 doing the right thing.
1163
1164 The way to fix this problem is to access elements as follows:
1165 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1166 Obviously this is much slower. I will make this a compile time
1167 option, something like -fsmall-array-offsets. Mixing code compiled
1168 with and without this switch will work.
1169
1170 (1) This can be worked around by modifying the upper bound of the
1171 previous dimension. This requires extra fields in the descriptor
1172 (both real_ubound and fake_ubound). */
1173
1174
1175 /* Returns true if the array sym does not require a descriptor. */
1176
1177 int
1178 gfc_is_nodesc_array (gfc_symbol * sym)
1179 {
1180 gcc_assert (sym->attr.dimension);
1181
1182 /* We only want local arrays. */
1183 if (sym->attr.pointer || sym->attr.allocatable)
1184 return 0;
1185
1186 if (sym->attr.dummy)
1187 {
1188 if (sym->as->type != AS_ASSUMED_SHAPE)
1189 return 1;
1190 else
1191 return 0;
1192 }
1193
1194 if (sym->attr.result || sym->attr.function)
1195 return 0;
1196
1197 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1198
1199 return 1;
1200 }
1201
1202
1203 /* Create an array descriptor type. */
1204
1205 static tree
1206 gfc_build_array_type (tree type, gfc_array_spec * as,
1207 enum gfc_array_kind akind, bool restricted,
1208 bool contiguous)
1209 {
1210 tree lbound[GFC_MAX_DIMENSIONS];
1211 tree ubound[GFC_MAX_DIMENSIONS];
1212 int n;
1213
1214 for (n = 0; n < as->rank; n++)
1215 {
1216 /* Create expressions for the known bounds of the array. */
1217 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1218 lbound[n] = gfc_index_one_node;
1219 else
1220 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1221 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1222 }
1223
1224 if (as->type == AS_ASSUMED_SHAPE)
1225 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1226 : GFC_ARRAY_ASSUMED_SHAPE;
1227 return gfc_get_array_type_bounds (type, as->rank, as->corank, lbound,
1228 ubound, 0, akind, restricted);
1229 }
1230 \f
1231 /* Returns the struct descriptor_dimension type. */
1232
1233 static tree
1234 gfc_get_desc_dim_type (void)
1235 {
1236 tree type;
1237 tree fieldlist = NULL_TREE, decl, *chain = NULL;
1238
1239 if (gfc_desc_dim_type)
1240 return gfc_desc_dim_type;
1241
1242 /* Build the type node. */
1243 type = make_node (RECORD_TYPE);
1244
1245 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1246 TYPE_PACKED (type) = 1;
1247
1248 /* Consists of the stride, lbound and ubound members. */
1249 decl = gfc_add_field_to_struct_1 (&fieldlist, type,
1250 get_identifier ("stride"),
1251 gfc_array_index_type, &chain);
1252 TREE_NO_WARNING (decl) = 1;
1253
1254 decl = gfc_add_field_to_struct_1 (&fieldlist, type,
1255 get_identifier ("lbound"),
1256 gfc_array_index_type, &chain);
1257 TREE_NO_WARNING (decl) = 1;
1258
1259 decl = gfc_add_field_to_struct_1 (&fieldlist, type,
1260 get_identifier ("ubound"),
1261 gfc_array_index_type, &chain);
1262 TREE_NO_WARNING (decl) = 1;
1263
1264 /* Finish off the type. */
1265 TYPE_FIELDS (type) = fieldlist;
1266
1267 gfc_finish_type (type);
1268 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1269
1270 gfc_desc_dim_type = type;
1271 return type;
1272 }
1273
1274
1275 /* Return the DTYPE for an array. This describes the type and type parameters
1276 of the array. */
1277 /* TODO: Only call this when the value is actually used, and make all the
1278 unknown cases abort. */
1279
1280 tree
1281 gfc_get_dtype (tree type)
1282 {
1283 tree size;
1284 int n;
1285 HOST_WIDE_INT i;
1286 tree tmp;
1287 tree dtype;
1288 tree etype;
1289 int rank;
1290
1291 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1292
1293 if (GFC_TYPE_ARRAY_DTYPE (type))
1294 return GFC_TYPE_ARRAY_DTYPE (type);
1295
1296 rank = GFC_TYPE_ARRAY_RANK (type);
1297 etype = gfc_get_element_type (type);
1298
1299 switch (TREE_CODE (etype))
1300 {
1301 case INTEGER_TYPE:
1302 n = GFC_DTYPE_INTEGER;
1303 break;
1304
1305 case BOOLEAN_TYPE:
1306 n = GFC_DTYPE_LOGICAL;
1307 break;
1308
1309 case REAL_TYPE:
1310 n = GFC_DTYPE_REAL;
1311 break;
1312
1313 case COMPLEX_TYPE:
1314 n = GFC_DTYPE_COMPLEX;
1315 break;
1316
1317 /* We will never have arrays of arrays. */
1318 case RECORD_TYPE:
1319 n = GFC_DTYPE_DERIVED;
1320 break;
1321
1322 case ARRAY_TYPE:
1323 n = GFC_DTYPE_CHARACTER;
1324 break;
1325
1326 default:
1327 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1328 /* We can strange array types for temporary arrays. */
1329 return gfc_index_zero_node;
1330 }
1331
1332 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1333 size = TYPE_SIZE_UNIT (etype);
1334
1335 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1336 if (size && INTEGER_CST_P (size))
1337 {
1338 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1339 internal_error ("Array element size too big");
1340
1341 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1342 }
1343 dtype = build_int_cst (gfc_array_index_type, i);
1344
1345 if (size && !INTEGER_CST_P (size))
1346 {
1347 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1348 tmp = fold_build2 (LSHIFT_EXPR, gfc_array_index_type,
1349 fold_convert (gfc_array_index_type, size), tmp);
1350 dtype = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, dtype);
1351 }
1352 /* If we don't know the size we leave it as zero. This should never happen
1353 for anything that is actually used. */
1354 /* TODO: Check this is actually true, particularly when repacking
1355 assumed size parameters. */
1356
1357 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1358 return dtype;
1359 }
1360
1361
1362 /* Build an array type for use without a descriptor, packed according
1363 to the value of PACKED. */
1364
1365 tree
1366 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1367 bool restricted)
1368 {
1369 tree range;
1370 tree type;
1371 tree tmp;
1372 int n;
1373 int known_stride;
1374 int known_offset;
1375 mpz_t offset;
1376 mpz_t stride;
1377 mpz_t delta;
1378 gfc_expr *expr;
1379
1380 mpz_init_set_ui (offset, 0);
1381 mpz_init_set_ui (stride, 1);
1382 mpz_init (delta);
1383
1384 /* We don't use build_array_type because this does not include include
1385 lang-specific information (i.e. the bounds of the array) when checking
1386 for duplicates. */
1387 type = make_node (ARRAY_TYPE);
1388
1389 GFC_ARRAY_TYPE_P (type) = 1;
1390 TYPE_LANG_SPECIFIC (type)
1391 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1392
1393 known_stride = (packed != PACKED_NO);
1394 known_offset = 1;
1395 for (n = 0; n < as->rank; n++)
1396 {
1397 /* Fill in the stride and bound components of the type. */
1398 if (known_stride)
1399 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1400 else
1401 tmp = NULL_TREE;
1402 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1403
1404 expr = as->lower[n];
1405 if (expr->expr_type == EXPR_CONSTANT)
1406 {
1407 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1408 gfc_index_integer_kind);
1409 }
1410 else
1411 {
1412 known_stride = 0;
1413 tmp = NULL_TREE;
1414 }
1415 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1416
1417 if (known_stride)
1418 {
1419 /* Calculate the offset. */
1420 mpz_mul (delta, stride, as->lower[n]->value.integer);
1421 mpz_sub (offset, offset, delta);
1422 }
1423 else
1424 known_offset = 0;
1425
1426 expr = as->upper[n];
1427 if (expr && expr->expr_type == EXPR_CONSTANT)
1428 {
1429 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1430 gfc_index_integer_kind);
1431 }
1432 else
1433 {
1434 tmp = NULL_TREE;
1435 known_stride = 0;
1436 }
1437 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1438
1439 if (known_stride)
1440 {
1441 /* Calculate the stride. */
1442 mpz_sub (delta, as->upper[n]->value.integer,
1443 as->lower[n]->value.integer);
1444 mpz_add_ui (delta, delta, 1);
1445 mpz_mul (stride, stride, delta);
1446 }
1447
1448 /* Only the first stride is known for partial packed arrays. */
1449 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1450 known_stride = 0;
1451 }
1452
1453 if (known_offset)
1454 {
1455 GFC_TYPE_ARRAY_OFFSET (type) =
1456 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1457 }
1458 else
1459 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1460
1461 if (known_stride)
1462 {
1463 GFC_TYPE_ARRAY_SIZE (type) =
1464 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1465 }
1466 else
1467 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1468
1469 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1470 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1471 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1472 NULL_TREE);
1473 /* TODO: use main type if it is unbounded. */
1474 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1475 build_pointer_type (build_array_type (etype, range));
1476 if (restricted)
1477 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1478 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1479 TYPE_QUAL_RESTRICT);
1480
1481 if (known_stride)
1482 {
1483 mpz_sub_ui (stride, stride, 1);
1484 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1485 }
1486 else
1487 range = NULL_TREE;
1488
1489 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1490 TYPE_DOMAIN (type) = range;
1491
1492 build_pointer_type (etype);
1493 TREE_TYPE (type) = etype;
1494
1495 layout_type (type);
1496
1497 mpz_clear (offset);
1498 mpz_clear (stride);
1499 mpz_clear (delta);
1500
1501 /* Represent packed arrays as multi-dimensional if they have rank >
1502 1 and with proper bounds, instead of flat arrays. This makes for
1503 better debug info. */
1504 if (known_offset)
1505 {
1506 tree gtype = etype, rtype, type_decl;
1507
1508 for (n = as->rank - 1; n >= 0; n--)
1509 {
1510 rtype = build_range_type (gfc_array_index_type,
1511 GFC_TYPE_ARRAY_LBOUND (type, n),
1512 GFC_TYPE_ARRAY_UBOUND (type, n));
1513 gtype = build_array_type (gtype, rtype);
1514 }
1515 TYPE_NAME (type) = type_decl = build_decl (input_location,
1516 TYPE_DECL, NULL, gtype);
1517 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1518 }
1519
1520 if (packed != PACKED_STATIC || !known_stride)
1521 {
1522 /* For dummy arrays and automatic (heap allocated) arrays we
1523 want a pointer to the array. */
1524 type = build_pointer_type (type);
1525 if (restricted)
1526 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1527 GFC_ARRAY_TYPE_P (type) = 1;
1528 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1529 }
1530 return type;
1531 }
1532
1533 /* Return or create the base type for an array descriptor. */
1534
1535 static tree
1536 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted)
1537 {
1538 tree fat_type, fieldlist = NULL_TREE, decl, arraytype, *chain = NULL;
1539 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1540 int idx = 2 * (codimen + dimen - 1) + restricted;
1541
1542 gcc_assert (dimen >= 1 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1543 if (gfc_array_descriptor_base[idx])
1544 return gfc_array_descriptor_base[idx];
1545
1546 /* Build the type node. */
1547 fat_type = make_node (RECORD_TYPE);
1548
1549 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1550 TYPE_NAME (fat_type) = get_identifier (name);
1551
1552 /* Add the data member as the first element of the descriptor. */
1553 decl = gfc_add_field_to_struct_1 (&fieldlist, fat_type,
1554 get_identifier ("data"),
1555 (restricted
1556 ? prvoid_type_node
1557 : ptr_type_node), &chain);
1558
1559 /* Add the base component. */
1560 decl = gfc_add_field_to_struct_1 (&fieldlist, fat_type,
1561 get_identifier ("offset"),
1562 gfc_array_index_type, &chain);
1563 TREE_NO_WARNING (decl) = 1;
1564
1565 /* Add the dtype component. */
1566 decl = gfc_add_field_to_struct_1 (&fieldlist, fat_type,
1567 get_identifier ("dtype"),
1568 gfc_array_index_type, &chain);
1569 TREE_NO_WARNING (decl) = 1;
1570
1571 /* Build the array type for the stride and bound components. */
1572 arraytype =
1573 build_array_type (gfc_get_desc_dim_type (),
1574 build_range_type (gfc_array_index_type,
1575 gfc_index_zero_node,
1576 gfc_rank_cst[codimen + dimen - 1]));
1577
1578 decl = gfc_add_field_to_struct_1 (&fieldlist, fat_type,
1579 get_identifier ("dim"),
1580 arraytype, &chain);
1581 TREE_NO_WARNING (decl) = 1;
1582
1583 /* Finish off the type. */
1584 TYPE_FIELDS (fat_type) = fieldlist;
1585
1586 gfc_finish_type (fat_type);
1587 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1588
1589 gfc_array_descriptor_base[idx] = fat_type;
1590 return fat_type;
1591 }
1592
1593 /* Build an array (descriptor) type with given bounds. */
1594
1595 tree
1596 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1597 tree * ubound, int packed,
1598 enum gfc_array_kind akind, bool restricted)
1599 {
1600 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1601 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1602 const char *type_name;
1603 int n;
1604
1605 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted);
1606 fat_type = build_distinct_type_copy (base_type);
1607 /* Make sure that nontarget and target array type have the same canonical
1608 type (and same stub decl for debug info). */
1609 base_type = gfc_get_array_descriptor_base (dimen, codimen, false);
1610 TYPE_CANONICAL (fat_type) = base_type;
1611 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1612
1613 tmp = TYPE_NAME (etype);
1614 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1615 tmp = DECL_NAME (tmp);
1616 if (tmp)
1617 type_name = IDENTIFIER_POINTER (tmp);
1618 else
1619 type_name = "unknown";
1620 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1621 GFC_MAX_SYMBOL_LEN, type_name);
1622 TYPE_NAME (fat_type) = get_identifier (name);
1623
1624 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1625 TYPE_LANG_SPECIFIC (fat_type)
1626 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1627
1628 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1629 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1630 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1631
1632 /* Build an array descriptor record type. */
1633 if (packed != 0)
1634 stride = gfc_index_one_node;
1635 else
1636 stride = NULL_TREE;
1637 for (n = 0; n < dimen; n++)
1638 {
1639 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1640
1641 if (lbound)
1642 lower = lbound[n];
1643 else
1644 lower = NULL_TREE;
1645
1646 if (lower != NULL_TREE)
1647 {
1648 if (INTEGER_CST_P (lower))
1649 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1650 else
1651 lower = NULL_TREE;
1652 }
1653
1654 upper = ubound[n];
1655 if (upper != NULL_TREE)
1656 {
1657 if (INTEGER_CST_P (upper))
1658 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1659 else
1660 upper = NULL_TREE;
1661 }
1662
1663 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1664 {
1665 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
1666 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp,
1667 gfc_index_one_node);
1668 stride =
1669 fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, stride);
1670 /* Check the folding worked. */
1671 gcc_assert (INTEGER_CST_P (stride));
1672 }
1673 else
1674 stride = NULL_TREE;
1675 }
1676 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1677
1678 /* TODO: known offsets for descriptors. */
1679 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1680
1681 /* We define data as an array with the correct size if possible.
1682 Much better than doing pointer arithmetic. */
1683 if (stride)
1684 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1685 int_const_binop (MINUS_EXPR, stride,
1686 integer_one_node, 0));
1687 else
1688 rtype = gfc_array_range_type;
1689 arraytype = build_array_type (etype, rtype);
1690 arraytype = build_pointer_type (arraytype);
1691 if (restricted)
1692 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1693 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1694
1695 /* This will generate the base declarations we need to emit debug
1696 information for this type. FIXME: there must be a better way to
1697 avoid divergence between compilations with and without debug
1698 information. */
1699 {
1700 struct array_descr_info info;
1701 gfc_get_array_descr_info (fat_type, &info);
1702 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1703 }
1704
1705 return fat_type;
1706 }
1707 \f
1708 /* Build a pointer type. This function is called from gfc_sym_type(). */
1709
1710 static tree
1711 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1712 {
1713 /* Array pointer types aren't actually pointers. */
1714 if (sym->attr.dimension)
1715 return type;
1716 else
1717 return build_pointer_type (type);
1718 }
1719 \f
1720 /* Return the type for a symbol. Special handling is required for character
1721 types to get the correct level of indirection.
1722 For functions return the return type.
1723 For subroutines return void_type_node.
1724 Calling this multiple times for the same symbol should be avoided,
1725 especially for character and array types. */
1726
1727 tree
1728 gfc_sym_type (gfc_symbol * sym)
1729 {
1730 tree type;
1731 int byref;
1732 bool restricted;
1733
1734 /* Procedure Pointers inside COMMON blocks. */
1735 if (sym->attr.proc_pointer && sym->attr.in_common)
1736 {
1737 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
1738 sym->attr.proc_pointer = 0;
1739 type = build_pointer_type (gfc_get_function_type (sym));
1740 sym->attr.proc_pointer = 1;
1741 return type;
1742 }
1743
1744 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1745 return void_type_node;
1746
1747 /* In the case of a function the fake result variable may have a
1748 type different from the function type, so don't return early in
1749 that case. */
1750 if (sym->backend_decl && !sym->attr.function)
1751 return TREE_TYPE (sym->backend_decl);
1752
1753 if (sym->ts.type == BT_CHARACTER
1754 && ((sym->attr.function && sym->attr.is_bind_c)
1755 || (sym->attr.result
1756 && sym->ns->proc_name
1757 && sym->ns->proc_name->attr.is_bind_c)))
1758 type = gfc_character1_type_node;
1759 else
1760 type = gfc_typenode_for_spec (&sym->ts);
1761
1762 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1763 byref = 1;
1764 else
1765 byref = 0;
1766
1767 restricted = !sym->attr.target && !sym->attr.pointer
1768 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
1769 if (sym->attr.dimension)
1770 {
1771 if (gfc_is_nodesc_array (sym))
1772 {
1773 /* If this is a character argument of unknown length, just use the
1774 base type. */
1775 if (sym->ts.type != BT_CHARACTER
1776 || !(sym->attr.dummy || sym->attr.function)
1777 || sym->ts.u.cl->backend_decl)
1778 {
1779 type = gfc_get_nodesc_array_type (type, sym->as,
1780 byref ? PACKED_FULL
1781 : PACKED_STATIC,
1782 restricted);
1783 byref = 0;
1784 }
1785
1786 if (sym->attr.cray_pointee)
1787 GFC_POINTER_TYPE_P (type) = 1;
1788 }
1789 else
1790 {
1791 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
1792 if (sym->attr.pointer)
1793 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
1794 : GFC_ARRAY_POINTER;
1795 else if (sym->attr.allocatable)
1796 akind = GFC_ARRAY_ALLOCATABLE;
1797 type = gfc_build_array_type (type, sym->as, akind, restricted,
1798 sym->attr.contiguous);
1799 }
1800 }
1801 else
1802 {
1803 if (sym->attr.allocatable || sym->attr.pointer)
1804 type = gfc_build_pointer_type (sym, type);
1805 if (sym->attr.pointer || sym->attr.cray_pointee)
1806 GFC_POINTER_TYPE_P (type) = 1;
1807 }
1808
1809 /* We currently pass all parameters by reference.
1810 See f95_get_function_decl. For dummy function parameters return the
1811 function type. */
1812 if (byref)
1813 {
1814 /* We must use pointer types for potentially absent variables. The
1815 optimizers assume a reference type argument is never NULL. */
1816 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
1817 type = build_pointer_type (type);
1818 else
1819 {
1820 type = build_reference_type (type);
1821 if (restricted)
1822 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1823 }
1824 }
1825
1826 return (type);
1827 }
1828 \f
1829 /* Layout and output debug info for a record type. */
1830
1831 void
1832 gfc_finish_type (tree type)
1833 {
1834 tree decl;
1835
1836 decl = build_decl (input_location,
1837 TYPE_DECL, NULL_TREE, type);
1838 TYPE_STUB_DECL (type) = decl;
1839 layout_type (type);
1840 rest_of_type_compilation (type, 1);
1841 rest_of_decl_compilation (decl, 1, 0);
1842 }
1843 \f
1844 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1845 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
1846 to the fieldlist pointed to by FIELDLIST through *CHAIN.
1847
1848 Returns a pointer to the new field. */
1849
1850 static tree
1851 gfc_add_field_to_struct_1 (tree *fieldlist, tree context,
1852 tree name, tree type, tree **chain)
1853 {
1854 tree decl = build_decl (input_location, FIELD_DECL, name, type);
1855
1856 DECL_CONTEXT (decl) = context;
1857 TREE_CHAIN (decl) = NULL_TREE;
1858 if (*fieldlist == NULL_TREE)
1859 *fieldlist = decl;
1860 if (chain != NULL)
1861 {
1862 if (*chain != NULL)
1863 **chain = decl;
1864 *chain = &TREE_CHAIN (decl);
1865 }
1866
1867 return decl;
1868 }
1869
1870 /* Like `gfc_add_field_to_struct_1', but adds alignment
1871 information. */
1872
1873 tree
1874 gfc_add_field_to_struct (tree *fieldlist, tree context,
1875 tree name, tree type, tree **chain)
1876 {
1877 tree decl = gfc_add_field_to_struct_1 (fieldlist, context,
1878 name, type, chain);
1879
1880 DECL_INITIAL (decl) = 0;
1881 DECL_ALIGN (decl) = 0;
1882 DECL_USER_ALIGN (decl) = 0;
1883
1884 return decl;
1885 }
1886
1887
1888 /* Copy the backend_decl and component backend_decls if
1889 the two derived type symbols are "equal", as described
1890 in 4.4.2 and resolved by gfc_compare_derived_types. */
1891
1892 static int
1893 copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
1894 bool from_gsym)
1895 {
1896 gfc_component *to_cm;
1897 gfc_component *from_cm;
1898
1899 if (from->backend_decl == NULL
1900 || !gfc_compare_derived_types (from, to))
1901 return 0;
1902
1903 to->backend_decl = from->backend_decl;
1904
1905 to_cm = to->components;
1906 from_cm = from->components;
1907
1908 /* Copy the component declarations. If a component is itself
1909 a derived type, we need a copy of its component declarations.
1910 This is done by recursing into gfc_get_derived_type and
1911 ensures that the component's component declarations have
1912 been built. If it is a character, we need the character
1913 length, as well. */
1914 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
1915 {
1916 to_cm->backend_decl = from_cm->backend_decl;
1917 if ((!from_cm->attr.pointer || from_gsym)
1918 && from_cm->ts.type == BT_DERIVED)
1919 gfc_get_derived_type (to_cm->ts.u.derived);
1920
1921 else if (from_cm->ts.type == BT_CHARACTER)
1922 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
1923 }
1924
1925 return 1;
1926 }
1927
1928
1929 /* Build a tree node for a procedure pointer component. */
1930
1931 tree
1932 gfc_get_ppc_type (gfc_component* c)
1933 {
1934 tree t;
1935
1936 /* Explicit interface. */
1937 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
1938 return build_pointer_type (gfc_get_function_type (c->ts.interface));
1939
1940 /* Implicit interface (only return value may be known). */
1941 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
1942 t = gfc_typenode_for_spec (&c->ts);
1943 else
1944 t = void_type_node;
1945
1946 return build_pointer_type (build_function_type_list (t, NULL_TREE));
1947 }
1948
1949
1950 /* Build a tree node for a derived type. If there are equal
1951 derived types, with different local names, these are built
1952 at the same time. If an equal derived type has been built
1953 in a parent namespace, this is used. */
1954
1955 tree
1956 gfc_get_derived_type (gfc_symbol * derived)
1957 {
1958 tree typenode = NULL, field = NULL, field_type = NULL, fieldlist = NULL;
1959 tree canonical = NULL_TREE;
1960 tree *chain = NULL;
1961 bool got_canonical = false;
1962 gfc_component *c;
1963 gfc_dt_list *dt;
1964 gfc_namespace *ns;
1965 gfc_gsymbol *gsym;
1966
1967 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
1968
1969 /* See if it's one of the iso_c_binding derived types. */
1970 if (derived->attr.is_iso_c == 1)
1971 {
1972 if (derived->backend_decl)
1973 return derived->backend_decl;
1974
1975 if (derived->intmod_sym_id == ISOCBINDING_PTR)
1976 derived->backend_decl = ptr_type_node;
1977 else
1978 derived->backend_decl = pfunc_type_node;
1979
1980 /* Create a backend_decl for the __c_ptr_c_address field. */
1981 derived->components->backend_decl =
1982 gfc_add_field_to_struct (&(derived->backend_decl->type.values),
1983 derived->backend_decl,
1984 get_identifier (derived->components->name),
1985 gfc_typenode_for_spec (
1986 &(derived->components->ts)), NULL);
1987
1988 derived->ts.kind = gfc_index_integer_kind;
1989 derived->ts.type = BT_INTEGER;
1990 /* Set the f90_type to BT_VOID as a way to recognize something of type
1991 BT_INTEGER that needs to fit a void * for the purpose of the
1992 iso_c_binding derived types. */
1993 derived->ts.f90_type = BT_VOID;
1994
1995 return derived->backend_decl;
1996 }
1997
1998 /* If use associated, use the module type for this one. */
1999 if (gfc_option.flag_whole_file
2000 && derived->backend_decl == NULL
2001 && derived->attr.use_assoc
2002 && derived->module)
2003 {
2004 gsym = gfc_find_gsymbol (gfc_gsym_root, derived->module);
2005 if (gsym && gsym->ns && gsym->type == GSYM_MODULE)
2006 {
2007 gfc_symbol *s;
2008 s = NULL;
2009 gfc_find_symbol (derived->name, gsym->ns, 0, &s);
2010 if (s && s->backend_decl)
2011 {
2012 copy_dt_decls_ifequal (s, derived, true);
2013 goto copy_derived_types;
2014 }
2015 }
2016 }
2017
2018 /* If a whole file compilation, the derived types from an earlier
2019 namespace can be used as the the canonical type. */
2020 if (gfc_option.flag_whole_file
2021 && derived->backend_decl == NULL
2022 && !derived->attr.use_assoc
2023 && gfc_global_ns_list)
2024 {
2025 for (ns = gfc_global_ns_list;
2026 ns->translated && !got_canonical;
2027 ns = ns->sibling)
2028 {
2029 dt = ns->derived_types;
2030 for (; dt && !canonical; dt = dt->next)
2031 {
2032 copy_dt_decls_ifequal (dt->derived, derived, true);
2033 if (derived->backend_decl)
2034 got_canonical = true;
2035 }
2036 }
2037 }
2038
2039 /* Store up the canonical type to be added to this one. */
2040 if (got_canonical)
2041 {
2042 if (TYPE_CANONICAL (derived->backend_decl))
2043 canonical = TYPE_CANONICAL (derived->backend_decl);
2044 else
2045 canonical = derived->backend_decl;
2046
2047 derived->backend_decl = NULL_TREE;
2048 }
2049
2050 /* derived->backend_decl != 0 means we saw it before, but its
2051 components' backend_decl may have not been built. */
2052 if (derived->backend_decl)
2053 {
2054 /* Its components' backend_decl have been built or we are
2055 seeing recursion through the formal arglist of a procedure
2056 pointer component. */
2057 if (TYPE_FIELDS (derived->backend_decl)
2058 || derived->attr.proc_pointer_comp)
2059 return derived->backend_decl;
2060 else
2061 typenode = derived->backend_decl;
2062 }
2063 else
2064 {
2065 /* We see this derived type first time, so build the type node. */
2066 typenode = make_node (RECORD_TYPE);
2067 TYPE_NAME (typenode) = get_identifier (derived->name);
2068 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2069 derived->backend_decl = typenode;
2070 }
2071
2072 /* Go through the derived type components, building them as
2073 necessary. The reason for doing this now is that it is
2074 possible to recurse back to this derived type through a
2075 pointer component (PR24092). If this happens, the fields
2076 will be built and so we can return the type. */
2077 for (c = derived->components; c; c = c->next)
2078 {
2079 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2080 continue;
2081
2082 if ((!c->attr.pointer && !c->attr.proc_pointer)
2083 || c->ts.u.derived->backend_decl == NULL)
2084 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2085
2086 if (c->ts.u.derived && c->ts.u.derived->attr.is_iso_c)
2087 {
2088 /* Need to copy the modified ts from the derived type. The
2089 typespec was modified because C_PTR/C_FUNPTR are translated
2090 into (void *) from derived types. */
2091 c->ts.type = c->ts.u.derived->ts.type;
2092 c->ts.kind = c->ts.u.derived->ts.kind;
2093 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2094 if (c->initializer)
2095 {
2096 c->initializer->ts.type = c->ts.type;
2097 c->initializer->ts.kind = c->ts.kind;
2098 c->initializer->ts.f90_type = c->ts.f90_type;
2099 c->initializer->expr_type = EXPR_NULL;
2100 }
2101 }
2102 }
2103
2104 if (TYPE_FIELDS (derived->backend_decl))
2105 return derived->backend_decl;
2106
2107 /* Build the type member list. Install the newly created RECORD_TYPE
2108 node as DECL_CONTEXT of each FIELD_DECL. */
2109 fieldlist = NULL_TREE;
2110 for (c = derived->components; c; c = c->next)
2111 {
2112 if (c->attr.proc_pointer)
2113 field_type = gfc_get_ppc_type (c);
2114 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2115 field_type = c->ts.u.derived->backend_decl;
2116 else
2117 {
2118 if (c->ts.type == BT_CHARACTER)
2119 {
2120 /* Evaluate the string length. */
2121 gfc_conv_const_charlen (c->ts.u.cl);
2122 gcc_assert (c->ts.u.cl->backend_decl);
2123 }
2124
2125 field_type = gfc_typenode_for_spec (&c->ts);
2126 }
2127
2128 /* This returns an array descriptor type. Initialization may be
2129 required. */
2130 if (c->attr.dimension && !c->attr.proc_pointer)
2131 {
2132 if (c->attr.pointer || c->attr.allocatable)
2133 {
2134 enum gfc_array_kind akind;
2135 if (c->attr.pointer)
2136 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2137 : GFC_ARRAY_POINTER;
2138 else
2139 akind = GFC_ARRAY_ALLOCATABLE;
2140 /* Pointers to arrays aren't actually pointer types. The
2141 descriptors are separate, but the data is common. */
2142 field_type = gfc_build_array_type (field_type, c->as, akind,
2143 !c->attr.target
2144 && !c->attr.pointer,
2145 c->attr.contiguous);
2146 }
2147 else
2148 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2149 PACKED_STATIC,
2150 !c->attr.target);
2151 }
2152 else if ((c->attr.pointer || c->attr.allocatable)
2153 && !c->attr.proc_pointer)
2154 field_type = build_pointer_type (field_type);
2155
2156 /* vtype fields can point to different types to the base type. */
2157 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.vtype)
2158 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2159 ptr_mode, true);
2160
2161 field = gfc_add_field_to_struct (&fieldlist, typenode,
2162 get_identifier (c->name),
2163 field_type, &chain);
2164 if (c->loc.lb)
2165 gfc_set_decl_location (field, &c->loc);
2166 else if (derived->declared_at.lb)
2167 gfc_set_decl_location (field, &derived->declared_at);
2168
2169 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2170
2171 gcc_assert (field);
2172 if (!c->backend_decl)
2173 c->backend_decl = field;
2174 }
2175
2176 /* Now we have the final fieldlist. Record it, then lay out the
2177 derived type, including the fields. */
2178 TYPE_FIELDS (typenode) = fieldlist;
2179 if (canonical)
2180 TYPE_CANONICAL (typenode) = canonical;
2181
2182 gfc_finish_type (typenode);
2183 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2184 if (derived->module && derived->ns->proc_name
2185 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2186 {
2187 if (derived->ns->proc_name->backend_decl
2188 && TREE_CODE (derived->ns->proc_name->backend_decl)
2189 == NAMESPACE_DECL)
2190 {
2191 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2192 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2193 = derived->ns->proc_name->backend_decl;
2194 }
2195 }
2196
2197 derived->backend_decl = typenode;
2198
2199 copy_derived_types:
2200
2201 for (dt = gfc_derived_types; dt; dt = dt->next)
2202 copy_dt_decls_ifequal (derived, dt->derived, false);
2203
2204 return derived->backend_decl;
2205 }
2206
2207
2208 int
2209 gfc_return_by_reference (gfc_symbol * sym)
2210 {
2211 if (!sym->attr.function)
2212 return 0;
2213
2214 if (sym->attr.dimension)
2215 return 1;
2216
2217 if (sym->ts.type == BT_CHARACTER
2218 && !sym->attr.is_bind_c
2219 && (!sym->attr.result
2220 || !sym->ns->proc_name
2221 || !sym->ns->proc_name->attr.is_bind_c))
2222 return 1;
2223
2224 /* Possibly return complex numbers by reference for g77 compatibility.
2225 We don't do this for calls to intrinsics (as the library uses the
2226 -fno-f2c calling convention), nor for calls to functions which always
2227 require an explicit interface, as no compatibility problems can
2228 arise there. */
2229 if (gfc_option.flag_f2c
2230 && sym->ts.type == BT_COMPLEX
2231 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2232 return 1;
2233
2234 return 0;
2235 }
2236 \f
2237 static tree
2238 gfc_get_mixed_entry_union (gfc_namespace *ns)
2239 {
2240 tree type;
2241 tree fieldlist;
2242 tree *chain = NULL;
2243 char name[GFC_MAX_SYMBOL_LEN + 1];
2244 gfc_entry_list *el, *el2;
2245
2246 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2247 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2248
2249 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2250
2251 /* Build the type node. */
2252 type = make_node (UNION_TYPE);
2253
2254 TYPE_NAME (type) = get_identifier (name);
2255 fieldlist = NULL;
2256
2257 for (el = ns->entries; el; el = el->next)
2258 {
2259 /* Search for duplicates. */
2260 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2261 if (el2->sym->result == el->sym->result)
2262 break;
2263
2264 if (el == el2)
2265 gfc_add_field_to_struct_1 (&fieldlist, type,
2266 get_identifier (el->sym->result->name),
2267 gfc_sym_type (el->sym->result), &chain);
2268 }
2269
2270 /* Finish off the type. */
2271 TYPE_FIELDS (type) = fieldlist;
2272
2273 gfc_finish_type (type);
2274 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2275 return type;
2276 }
2277 \f
2278 tree
2279 gfc_get_function_type (gfc_symbol * sym)
2280 {
2281 tree type;
2282 tree typelist;
2283 gfc_formal_arglist *f;
2284 gfc_symbol *arg;
2285 int nstr;
2286 int alternate_return;
2287
2288 /* Make sure this symbol is a function, a subroutine or the main
2289 program. */
2290 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2291 || sym->attr.flavor == FL_PROGRAM);
2292
2293 if (sym->backend_decl)
2294 return TREE_TYPE (sym->backend_decl);
2295
2296 nstr = 0;
2297 alternate_return = 0;
2298 typelist = NULL_TREE;
2299
2300 if (sym->attr.entry_master)
2301 {
2302 /* Additional parameter for selecting an entry point. */
2303 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
2304 }
2305
2306 if (sym->result)
2307 arg = sym->result;
2308 else
2309 arg = sym;
2310
2311 if (arg->ts.type == BT_CHARACTER)
2312 gfc_conv_const_charlen (arg->ts.u.cl);
2313
2314 /* Some functions we use an extra parameter for the return value. */
2315 if (gfc_return_by_reference (sym))
2316 {
2317 type = gfc_sym_type (arg);
2318 if (arg->ts.type == BT_COMPLEX
2319 || arg->attr.dimension
2320 || arg->ts.type == BT_CHARACTER)
2321 type = build_reference_type (type);
2322
2323 typelist = gfc_chainon_list (typelist, type);
2324 if (arg->ts.type == BT_CHARACTER)
2325 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2326 }
2327
2328 /* Build the argument types for the function. */
2329 for (f = sym->formal; f; f = f->next)
2330 {
2331 arg = f->sym;
2332 if (arg)
2333 {
2334 /* Evaluate constant character lengths here so that they can be
2335 included in the type. */
2336 if (arg->ts.type == BT_CHARACTER)
2337 gfc_conv_const_charlen (arg->ts.u.cl);
2338
2339 if (arg->attr.flavor == FL_PROCEDURE)
2340 {
2341 type = gfc_get_function_type (arg);
2342 type = build_pointer_type (type);
2343 }
2344 else
2345 type = gfc_sym_type (arg);
2346
2347 /* Parameter Passing Convention
2348
2349 We currently pass all parameters by reference.
2350 Parameters with INTENT(IN) could be passed by value.
2351 The problem arises if a function is called via an implicit
2352 prototype. In this situation the INTENT is not known.
2353 For this reason all parameters to global functions must be
2354 passed by reference. Passing by value would potentially
2355 generate bad code. Worse there would be no way of telling that
2356 this code was bad, except that it would give incorrect results.
2357
2358 Contained procedures could pass by value as these are never
2359 used without an explicit interface, and cannot be passed as
2360 actual parameters for a dummy procedure. */
2361 if (arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2362 nstr++;
2363 typelist = gfc_chainon_list (typelist, type);
2364 }
2365 else
2366 {
2367 if (sym->attr.subroutine)
2368 alternate_return = 1;
2369 }
2370 }
2371
2372 /* Add hidden string length parameters. */
2373 while (nstr--)
2374 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2375
2376 if (typelist)
2377 typelist = gfc_chainon_list (typelist, void_type_node);
2378
2379 if (alternate_return)
2380 type = integer_type_node;
2381 else if (!sym->attr.function || gfc_return_by_reference (sym))
2382 type = void_type_node;
2383 else if (sym->attr.mixed_entry_master)
2384 type = gfc_get_mixed_entry_union (sym->ns);
2385 else if (gfc_option.flag_f2c
2386 && sym->ts.type == BT_REAL
2387 && sym->ts.kind == gfc_default_real_kind
2388 && !sym->attr.always_explicit)
2389 {
2390 /* Special case: f2c calling conventions require that (scalar)
2391 default REAL functions return the C type double instead. f2c
2392 compatibility is only an issue with functions that don't
2393 require an explicit interface, as only these could be
2394 implemented in Fortran 77. */
2395 sym->ts.kind = gfc_default_double_kind;
2396 type = gfc_typenode_for_spec (&sym->ts);
2397 sym->ts.kind = gfc_default_real_kind;
2398 }
2399 else if (sym->result && sym->result->attr.proc_pointer)
2400 /* Procedure pointer return values. */
2401 {
2402 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2403 {
2404 /* Unset proc_pointer as gfc_get_function_type
2405 is called recursively. */
2406 sym->result->attr.proc_pointer = 0;
2407 type = build_pointer_type (gfc_get_function_type (sym->result));
2408 sym->result->attr.proc_pointer = 1;
2409 }
2410 else
2411 type = gfc_sym_type (sym->result);
2412 }
2413 else
2414 type = gfc_sym_type (sym);
2415
2416 type = build_function_type (type, typelist);
2417
2418 return type;
2419 }
2420 \f
2421 /* Language hooks for middle-end access to type nodes. */
2422
2423 /* Return an integer type with BITS bits of precision,
2424 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2425
2426 tree
2427 gfc_type_for_size (unsigned bits, int unsignedp)
2428 {
2429 if (!unsignedp)
2430 {
2431 int i;
2432 for (i = 0; i <= MAX_INT_KINDS; ++i)
2433 {
2434 tree type = gfc_integer_types[i];
2435 if (type && bits == TYPE_PRECISION (type))
2436 return type;
2437 }
2438
2439 /* Handle TImode as a special case because it is used by some backends
2440 (e.g. ARM) even though it is not available for normal use. */
2441 #if HOST_BITS_PER_WIDE_INT >= 64
2442 if (bits == TYPE_PRECISION (intTI_type_node))
2443 return intTI_type_node;
2444 #endif
2445 }
2446 else
2447 {
2448 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2449 return unsigned_intQI_type_node;
2450 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2451 return unsigned_intHI_type_node;
2452 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2453 return unsigned_intSI_type_node;
2454 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2455 return unsigned_intDI_type_node;
2456 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2457 return unsigned_intTI_type_node;
2458 }
2459
2460 return NULL_TREE;
2461 }
2462
2463 /* Return a data type that has machine mode MODE. If the mode is an
2464 integer, then UNSIGNEDP selects between signed and unsigned types. */
2465
2466 tree
2467 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2468 {
2469 int i;
2470 tree *base;
2471
2472 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2473 base = gfc_real_types;
2474 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2475 base = gfc_complex_types;
2476 else if (SCALAR_INT_MODE_P (mode))
2477 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2478 else if (VECTOR_MODE_P (mode))
2479 {
2480 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2481 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2482 if (inner_type != NULL_TREE)
2483 return build_vector_type_for_mode (inner_type, mode);
2484 return NULL_TREE;
2485 }
2486 else
2487 return NULL_TREE;
2488
2489 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2490 {
2491 tree type = base[i];
2492 if (type && mode == TYPE_MODE (type))
2493 return type;
2494 }
2495
2496 return NULL_TREE;
2497 }
2498
2499 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2500 in that case. */
2501
2502 bool
2503 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2504 {
2505 int rank, dim;
2506 bool indirect = false;
2507 tree etype, ptype, field, t, base_decl;
2508 tree data_off, dim_off, dim_size, elem_size;
2509 tree lower_suboff, upper_suboff, stride_suboff;
2510
2511 if (! GFC_DESCRIPTOR_TYPE_P (type))
2512 {
2513 if (! POINTER_TYPE_P (type))
2514 return false;
2515 type = TREE_TYPE (type);
2516 if (! GFC_DESCRIPTOR_TYPE_P (type))
2517 return false;
2518 indirect = true;
2519 }
2520
2521 rank = GFC_TYPE_ARRAY_RANK (type);
2522 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2523 return false;
2524
2525 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2526 gcc_assert (POINTER_TYPE_P (etype));
2527 etype = TREE_TYPE (etype);
2528 gcc_assert (TREE_CODE (etype) == ARRAY_TYPE);
2529 etype = TREE_TYPE (etype);
2530 /* Can't handle variable sized elements yet. */
2531 if (int_size_in_bytes (etype) <= 0)
2532 return false;
2533 /* Nor non-constant lower bounds in assumed shape arrays. */
2534 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
2535 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
2536 {
2537 for (dim = 0; dim < rank; dim++)
2538 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
2539 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
2540 return false;
2541 }
2542
2543 memset (info, '\0', sizeof (*info));
2544 info->ndimensions = rank;
2545 info->element_type = etype;
2546 ptype = build_pointer_type (gfc_array_index_type);
2547 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
2548 if (!base_decl)
2549 {
2550 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
2551 indirect ? build_pointer_type (ptype) : ptype);
2552 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
2553 }
2554 info->base_decl = base_decl;
2555 if (indirect)
2556 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
2557
2558 if (GFC_TYPE_ARRAY_SPAN (type))
2559 elem_size = GFC_TYPE_ARRAY_SPAN (type);
2560 else
2561 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
2562 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
2563 data_off = byte_position (field);
2564 field = TREE_CHAIN (field);
2565 field = TREE_CHAIN (field);
2566 field = TREE_CHAIN (field);
2567 dim_off = byte_position (field);
2568 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
2569 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
2570 stride_suboff = byte_position (field);
2571 field = TREE_CHAIN (field);
2572 lower_suboff = byte_position (field);
2573 field = TREE_CHAIN (field);
2574 upper_suboff = byte_position (field);
2575
2576 t = base_decl;
2577 if (!integer_zerop (data_off))
2578 t = build2 (POINTER_PLUS_EXPR, ptype, t, data_off);
2579 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
2580 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
2581 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
2582 info->allocated = build2 (NE_EXPR, boolean_type_node,
2583 info->data_location, null_pointer_node);
2584 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
2585 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
2586 info->associated = build2 (NE_EXPR, boolean_type_node,
2587 info->data_location, null_pointer_node);
2588
2589 for (dim = 0; dim < rank; dim++)
2590 {
2591 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2592 size_binop (PLUS_EXPR, dim_off, lower_suboff));
2593 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2594 info->dimen[dim].lower_bound = t;
2595 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2596 size_binop (PLUS_EXPR, dim_off, upper_suboff));
2597 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2598 info->dimen[dim].upper_bound = t;
2599 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
2600 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
2601 {
2602 /* Assumed shape arrays have known lower bounds. */
2603 info->dimen[dim].upper_bound
2604 = build2 (MINUS_EXPR, gfc_array_index_type,
2605 info->dimen[dim].upper_bound,
2606 info->dimen[dim].lower_bound);
2607 info->dimen[dim].lower_bound
2608 = fold_convert (gfc_array_index_type,
2609 GFC_TYPE_ARRAY_LBOUND (type, dim));
2610 info->dimen[dim].upper_bound
2611 = build2 (PLUS_EXPR, gfc_array_index_type,
2612 info->dimen[dim].lower_bound,
2613 info->dimen[dim].upper_bound);
2614 }
2615 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2616 size_binop (PLUS_EXPR, dim_off, stride_suboff));
2617 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2618 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
2619 info->dimen[dim].stride = t;
2620 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
2621 }
2622
2623 return true;
2624 }
2625
2626 #include "gt-fortran-trans-types.h"