tree.h (int_const_binop): Remove notrunc argument.
[gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Paul Brook <paul@nowt.org>
6 and Steven Bosscher <s.bosscher@student.tudelft.nl>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* trans-types.c -- gfortran backend types */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tree.h"
30 #include "langhooks.h" /* For iso-c-bindings.def. */
31 #include "target.h"
32 #include "ggc.h"
33 #include "diagnostic-core.h" /* For fatal_error. */
34 #include "toplev.h" /* For rest_of_decl_compilation. */
35 #include "gfortran.h"
36 #include "trans.h"
37 #include "trans-types.h"
38 #include "trans-const.h"
39 #include "flags.h"
40 #include "dwarf2out.h" /* For struct array_descr_info. */
41 \f
42
43 #if (GFC_MAX_DIMENSIONS < 10)
44 #define GFC_RANK_DIGITS 1
45 #define GFC_RANK_PRINTF_FORMAT "%01d"
46 #elif (GFC_MAX_DIMENSIONS < 100)
47 #define GFC_RANK_DIGITS 2
48 #define GFC_RANK_PRINTF_FORMAT "%02d"
49 #else
50 #error If you really need >99 dimensions, continue the sequence above...
51 #endif
52
53 /* array of structs so we don't have to worry about xmalloc or free */
54 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
55
56 tree gfc_array_index_type;
57 tree gfc_array_range_type;
58 tree gfc_character1_type_node;
59 tree pvoid_type_node;
60 tree prvoid_type_node;
61 tree ppvoid_type_node;
62 tree pchar_type_node;
63 tree pfunc_type_node;
64
65 tree gfc_charlen_type_node;
66
67 tree float128_type_node = NULL_TREE;
68 tree complex_float128_type_node = NULL_TREE;
69
70 bool gfc_real16_is_float128 = false;
71
72 static GTY(()) tree gfc_desc_dim_type;
73 static GTY(()) tree gfc_max_array_element_size;
74 static GTY(()) tree gfc_array_descriptor_base[2 * GFC_MAX_DIMENSIONS];
75
76 /* Arrays for all integral and real kinds. We'll fill this in at runtime
77 after the target has a chance to process command-line options. */
78
79 #define MAX_INT_KINDS 5
80 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
81 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
82 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
83 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
84
85 #define MAX_REAL_KINDS 5
86 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
87 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
88 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
89
90 #define MAX_CHARACTER_KINDS 2
91 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
92 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
93 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
94
95 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
96
97 /* The integer kind to use for array indices. This will be set to the
98 proper value based on target information from the backend. */
99
100 int gfc_index_integer_kind;
101
102 /* The default kinds of the various types. */
103
104 int gfc_default_integer_kind;
105 int gfc_max_integer_kind;
106 int gfc_default_real_kind;
107 int gfc_default_double_kind;
108 int gfc_default_character_kind;
109 int gfc_default_logical_kind;
110 int gfc_default_complex_kind;
111 int gfc_c_int_kind;
112
113 /* The kind size used for record offsets. If the target system supports
114 kind=8, this will be set to 8, otherwise it is set to 4. */
115 int gfc_intio_kind;
116
117 /* The integer kind used to store character lengths. */
118 int gfc_charlen_int_kind;
119
120 /* The size of the numeric storage unit and character storage unit. */
121 int gfc_numeric_storage_size;
122 int gfc_character_storage_size;
123
124
125 gfc_try
126 gfc_check_any_c_kind (gfc_typespec *ts)
127 {
128 int i;
129
130 for (i = 0; i < ISOCBINDING_NUMBER; i++)
131 {
132 /* Check for any C interoperable kind for the given type/kind in ts.
133 This can be used after verify_c_interop to make sure that the
134 Fortran kind being used exists in at least some form for C. */
135 if (c_interop_kinds_table[i].f90_type == ts->type &&
136 c_interop_kinds_table[i].value == ts->kind)
137 return SUCCESS;
138 }
139
140 return FAILURE;
141 }
142
143
144 static int
145 get_real_kind_from_node (tree type)
146 {
147 int i;
148
149 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
150 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
151 return gfc_real_kinds[i].kind;
152
153 return -4;
154 }
155
156 static int
157 get_int_kind_from_node (tree type)
158 {
159 int i;
160
161 if (!type)
162 return -2;
163
164 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
165 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
166 return gfc_integer_kinds[i].kind;
167
168 return -1;
169 }
170
171 /* Return a typenode for the "standard" C type with a given name. */
172 static tree
173 get_typenode_from_name (const char *name)
174 {
175 if (name == NULL || *name == '\0')
176 return NULL_TREE;
177
178 if (strcmp (name, "char") == 0)
179 return char_type_node;
180 if (strcmp (name, "unsigned char") == 0)
181 return unsigned_char_type_node;
182 if (strcmp (name, "signed char") == 0)
183 return signed_char_type_node;
184
185 if (strcmp (name, "short int") == 0)
186 return short_integer_type_node;
187 if (strcmp (name, "short unsigned int") == 0)
188 return short_unsigned_type_node;
189
190 if (strcmp (name, "int") == 0)
191 return integer_type_node;
192 if (strcmp (name, "unsigned int") == 0)
193 return unsigned_type_node;
194
195 if (strcmp (name, "long int") == 0)
196 return long_integer_type_node;
197 if (strcmp (name, "long unsigned int") == 0)
198 return long_unsigned_type_node;
199
200 if (strcmp (name, "long long int") == 0)
201 return long_long_integer_type_node;
202 if (strcmp (name, "long long unsigned int") == 0)
203 return long_long_unsigned_type_node;
204
205 gcc_unreachable ();
206 }
207
208 static int
209 get_int_kind_from_name (const char *name)
210 {
211 return get_int_kind_from_node (get_typenode_from_name (name));
212 }
213
214
215 /* Get the kind number corresponding to an integer of given size,
216 following the required return values for ISO_FORTRAN_ENV INT* constants:
217 -2 is returned if we support a kind of larger size, -1 otherwise. */
218 int
219 gfc_get_int_kind_from_width_isofortranenv (int size)
220 {
221 int i;
222
223 /* Look for a kind with matching storage size. */
224 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
225 if (gfc_integer_kinds[i].bit_size == size)
226 return gfc_integer_kinds[i].kind;
227
228 /* Look for a kind with larger storage size. */
229 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
230 if (gfc_integer_kinds[i].bit_size > size)
231 return -2;
232
233 return -1;
234 }
235
236 /* Get the kind number corresponding to a real of given storage size,
237 following the required return values for ISO_FORTRAN_ENV REAL* constants:
238 -2 is returned if we support a kind of larger size, -1 otherwise. */
239 int
240 gfc_get_real_kind_from_width_isofortranenv (int size)
241 {
242 int i;
243
244 size /= 8;
245
246 /* Look for a kind with matching storage size. */
247 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
248 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
249 return gfc_real_kinds[i].kind;
250
251 /* Look for a kind with larger storage size. */
252 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
253 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
254 return -2;
255
256 return -1;
257 }
258
259
260
261 static int
262 get_int_kind_from_width (int size)
263 {
264 int i;
265
266 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
267 if (gfc_integer_kinds[i].bit_size == size)
268 return gfc_integer_kinds[i].kind;
269
270 return -2;
271 }
272
273 static int
274 get_int_kind_from_minimal_width (int size)
275 {
276 int i;
277
278 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
279 if (gfc_integer_kinds[i].bit_size >= size)
280 return gfc_integer_kinds[i].kind;
281
282 return -2;
283 }
284
285
286 /* Generate the CInteropKind_t objects for the C interoperable
287 kinds. */
288
289 static
290 void init_c_interop_kinds (void)
291 {
292 int i;
293
294 /* init all pointers in the list to NULL */
295 for (i = 0; i < ISOCBINDING_NUMBER; i++)
296 {
297 /* Initialize the name and value fields. */
298 c_interop_kinds_table[i].name[0] = '\0';
299 c_interop_kinds_table[i].value = -100;
300 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
301 }
302
303 #define NAMED_INTCST(a,b,c,d) \
304 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
305 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
306 c_interop_kinds_table[a].value = c;
307 #define NAMED_REALCST(a,b,c) \
308 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
309 c_interop_kinds_table[a].f90_type = BT_REAL; \
310 c_interop_kinds_table[a].value = c;
311 #define NAMED_CMPXCST(a,b,c) \
312 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
313 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
314 c_interop_kinds_table[a].value = c;
315 #define NAMED_LOGCST(a,b,c) \
316 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
317 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
318 c_interop_kinds_table[a].value = c;
319 #define NAMED_CHARKNDCST(a,b,c) \
320 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
321 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
322 c_interop_kinds_table[a].value = c;
323 #define NAMED_CHARCST(a,b,c) \
324 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
325 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
326 c_interop_kinds_table[a].value = c;
327 #define DERIVED_TYPE(a,b,c) \
328 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
329 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
330 c_interop_kinds_table[a].value = c;
331 #define PROCEDURE(a,b) \
332 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
334 c_interop_kinds_table[a].value = 0;
335 #include "iso-c-binding.def"
336 #define NAMED_FUNCTION(a,b,c,d) \
337 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
338 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
339 c_interop_kinds_table[a].value = c;
340 #include "iso-c-binding.def"
341 }
342
343
344 /* Query the target to determine which machine modes are available for
345 computation. Choose KIND numbers for them. */
346
347 void
348 gfc_init_kinds (void)
349 {
350 unsigned int mode;
351 int i_index, r_index, kind;
352 bool saw_i4 = false, saw_i8 = false;
353 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
354
355 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
356 {
357 int kind, bitsize;
358
359 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
360 continue;
361
362 /* The middle end doesn't support constants larger than 2*HWI.
363 Perhaps the target hook shouldn't have accepted these either,
364 but just to be safe... */
365 bitsize = GET_MODE_BITSIZE (mode);
366 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
367 continue;
368
369 gcc_assert (i_index != MAX_INT_KINDS);
370
371 /* Let the kind equal the bit size divided by 8. This insulates the
372 programmer from the underlying byte size. */
373 kind = bitsize / 8;
374
375 if (kind == 4)
376 saw_i4 = true;
377 if (kind == 8)
378 saw_i8 = true;
379
380 gfc_integer_kinds[i_index].kind = kind;
381 gfc_integer_kinds[i_index].radix = 2;
382 gfc_integer_kinds[i_index].digits = bitsize - 1;
383 gfc_integer_kinds[i_index].bit_size = bitsize;
384
385 gfc_logical_kinds[i_index].kind = kind;
386 gfc_logical_kinds[i_index].bit_size = bitsize;
387
388 i_index += 1;
389 }
390
391 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
392 used for large file access. */
393
394 if (saw_i8)
395 gfc_intio_kind = 8;
396 else
397 gfc_intio_kind = 4;
398
399 /* If we do not at least have kind = 4, everything is pointless. */
400 gcc_assert(saw_i4);
401
402 /* Set the maximum integer kind. Used with at least BOZ constants. */
403 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
404
405 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
406 {
407 const struct real_format *fmt =
408 REAL_MODE_FORMAT ((enum machine_mode) mode);
409 int kind;
410
411 if (fmt == NULL)
412 continue;
413 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
414 continue;
415
416 /* Only let float, double, long double and __float128 go through.
417 Runtime support for others is not provided, so they would be
418 useless. */
419 if (mode != TYPE_MODE (float_type_node)
420 && (mode != TYPE_MODE (double_type_node))
421 && (mode != TYPE_MODE (long_double_type_node))
422 #if defined(LIBGCC2_HAS_TF_MODE) && defined(ENABLE_LIBQUADMATH_SUPPORT)
423 && (mode != TFmode)
424 #endif
425 )
426 continue;
427
428 /* Let the kind equal the precision divided by 8, rounding up. Again,
429 this insulates the programmer from the underlying byte size.
430
431 Also, it effectively deals with IEEE extended formats. There, the
432 total size of the type may equal 16, but it's got 6 bytes of padding
433 and the increased size can get in the way of a real IEEE quad format
434 which may also be supported by the target.
435
436 We round up so as to handle IA-64 __floatreg (RFmode), which is an
437 82 bit type. Not to be confused with __float80 (XFmode), which is
438 an 80 bit type also supported by IA-64. So XFmode should come out
439 to be kind=10, and RFmode should come out to be kind=11. Egads. */
440
441 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
442
443 if (kind == 4)
444 saw_r4 = true;
445 if (kind == 8)
446 saw_r8 = true;
447 if (kind == 16)
448 saw_r16 = true;
449
450 /* Careful we don't stumble a weird internal mode. */
451 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
452 /* Or have too many modes for the allocated space. */
453 gcc_assert (r_index != MAX_REAL_KINDS);
454
455 gfc_real_kinds[r_index].kind = kind;
456 gfc_real_kinds[r_index].radix = fmt->b;
457 gfc_real_kinds[r_index].digits = fmt->p;
458 gfc_real_kinds[r_index].min_exponent = fmt->emin;
459 gfc_real_kinds[r_index].max_exponent = fmt->emax;
460 if (fmt->pnan < fmt->p)
461 /* This is an IBM extended double format (or the MIPS variant)
462 made up of two IEEE doubles. The value of the long double is
463 the sum of the values of the two parts. The most significant
464 part is required to be the value of the long double rounded
465 to the nearest double. If we use emax of 1024 then we can't
466 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
467 rounding will make the most significant part overflow. */
468 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
469 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
470 r_index += 1;
471 }
472
473 /* Choose the default integer kind. We choose 4 unless the user
474 directs us otherwise. */
475 if (gfc_option.flag_default_integer)
476 {
477 if (!saw_i8)
478 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
479 gfc_default_integer_kind = 8;
480
481 /* Even if the user specified that the default integer kind be 8,
482 the numeric storage size isn't 64. In this case, a warning will
483 be issued when NUMERIC_STORAGE_SIZE is used. */
484 gfc_numeric_storage_size = 4 * 8;
485 }
486 else if (saw_i4)
487 {
488 gfc_default_integer_kind = 4;
489 gfc_numeric_storage_size = 4 * 8;
490 }
491 else
492 {
493 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
494 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
495 }
496
497 /* Choose the default real kind. Again, we choose 4 when possible. */
498 if (gfc_option.flag_default_real)
499 {
500 if (!saw_r8)
501 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
502 gfc_default_real_kind = 8;
503 }
504 else if (saw_r4)
505 gfc_default_real_kind = 4;
506 else
507 gfc_default_real_kind = gfc_real_kinds[0].kind;
508
509 /* Choose the default double kind. If -fdefault-real and -fdefault-double
510 are specified, we use kind=8, if it's available. If -fdefault-real is
511 specified without -fdefault-double, we use kind=16, if it's available.
512 Otherwise we do not change anything. */
513 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
514 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
515
516 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
517 gfc_default_double_kind = 8;
518 else if (gfc_option.flag_default_real && saw_r16)
519 gfc_default_double_kind = 16;
520 else if (saw_r4 && saw_r8)
521 gfc_default_double_kind = 8;
522 else
523 {
524 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
525 real ... occupies two contiguous numeric storage units.
526
527 Therefore we must be supplied a kind twice as large as we chose
528 for single precision. There are loopholes, in that double
529 precision must *occupy* two storage units, though it doesn't have
530 to *use* two storage units. Which means that you can make this
531 kind artificially wide by padding it. But at present there are
532 no GCC targets for which a two-word type does not exist, so we
533 just let gfc_validate_kind abort and tell us if something breaks. */
534
535 gfc_default_double_kind
536 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
537 }
538
539 /* The default logical kind is constrained to be the same as the
540 default integer kind. Similarly with complex and real. */
541 gfc_default_logical_kind = gfc_default_integer_kind;
542 gfc_default_complex_kind = gfc_default_real_kind;
543
544 /* We only have two character kinds: ASCII and UCS-4.
545 ASCII corresponds to a 8-bit integer type, if one is available.
546 UCS-4 corresponds to a 32-bit integer type, if one is available. */
547 i_index = 0;
548 if ((kind = get_int_kind_from_width (8)) > 0)
549 {
550 gfc_character_kinds[i_index].kind = kind;
551 gfc_character_kinds[i_index].bit_size = 8;
552 gfc_character_kinds[i_index].name = "ascii";
553 i_index++;
554 }
555 if ((kind = get_int_kind_from_width (32)) > 0)
556 {
557 gfc_character_kinds[i_index].kind = kind;
558 gfc_character_kinds[i_index].bit_size = 32;
559 gfc_character_kinds[i_index].name = "iso_10646";
560 i_index++;
561 }
562
563 /* Choose the smallest integer kind for our default character. */
564 gfc_default_character_kind = gfc_character_kinds[0].kind;
565 gfc_character_storage_size = gfc_default_character_kind * 8;
566
567 /* Choose the integer kind the same size as "void*" for our index kind. */
568 gfc_index_integer_kind = POINTER_SIZE / 8;
569 /* Pick a kind the same size as the C "int" type. */
570 gfc_c_int_kind = INT_TYPE_SIZE / 8;
571
572 /* initialize the C interoperable kinds */
573 init_c_interop_kinds();
574 }
575
576 /* Make sure that a valid kind is present. Returns an index into the
577 associated kinds array, -1 if the kind is not present. */
578
579 static int
580 validate_integer (int kind)
581 {
582 int i;
583
584 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
585 if (gfc_integer_kinds[i].kind == kind)
586 return i;
587
588 return -1;
589 }
590
591 static int
592 validate_real (int kind)
593 {
594 int i;
595
596 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
597 if (gfc_real_kinds[i].kind == kind)
598 return i;
599
600 return -1;
601 }
602
603 static int
604 validate_logical (int kind)
605 {
606 int i;
607
608 for (i = 0; gfc_logical_kinds[i].kind; i++)
609 if (gfc_logical_kinds[i].kind == kind)
610 return i;
611
612 return -1;
613 }
614
615 static int
616 validate_character (int kind)
617 {
618 int i;
619
620 for (i = 0; gfc_character_kinds[i].kind; i++)
621 if (gfc_character_kinds[i].kind == kind)
622 return i;
623
624 return -1;
625 }
626
627 /* Validate a kind given a basic type. The return value is the same
628 for the child functions, with -1 indicating nonexistence of the
629 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
630
631 int
632 gfc_validate_kind (bt type, int kind, bool may_fail)
633 {
634 int rc;
635
636 switch (type)
637 {
638 case BT_REAL: /* Fall through */
639 case BT_COMPLEX:
640 rc = validate_real (kind);
641 break;
642 case BT_INTEGER:
643 rc = validate_integer (kind);
644 break;
645 case BT_LOGICAL:
646 rc = validate_logical (kind);
647 break;
648 case BT_CHARACTER:
649 rc = validate_character (kind);
650 break;
651
652 default:
653 gfc_internal_error ("gfc_validate_kind(): Got bad type");
654 }
655
656 if (rc < 0 && !may_fail)
657 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
658
659 return rc;
660 }
661
662
663 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
664 Reuse common type nodes where possible. Recognize if the kind matches up
665 with a C type. This will be used later in determining which routines may
666 be scarfed from libm. */
667
668 static tree
669 gfc_build_int_type (gfc_integer_info *info)
670 {
671 int mode_precision = info->bit_size;
672
673 if (mode_precision == CHAR_TYPE_SIZE)
674 info->c_char = 1;
675 if (mode_precision == SHORT_TYPE_SIZE)
676 info->c_short = 1;
677 if (mode_precision == INT_TYPE_SIZE)
678 info->c_int = 1;
679 if (mode_precision == LONG_TYPE_SIZE)
680 info->c_long = 1;
681 if (mode_precision == LONG_LONG_TYPE_SIZE)
682 info->c_long_long = 1;
683
684 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
685 return intQI_type_node;
686 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
687 return intHI_type_node;
688 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
689 return intSI_type_node;
690 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
691 return intDI_type_node;
692 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
693 return intTI_type_node;
694
695 return make_signed_type (mode_precision);
696 }
697
698 tree
699 gfc_build_uint_type (int size)
700 {
701 if (size == CHAR_TYPE_SIZE)
702 return unsigned_char_type_node;
703 if (size == SHORT_TYPE_SIZE)
704 return short_unsigned_type_node;
705 if (size == INT_TYPE_SIZE)
706 return unsigned_type_node;
707 if (size == LONG_TYPE_SIZE)
708 return long_unsigned_type_node;
709 if (size == LONG_LONG_TYPE_SIZE)
710 return long_long_unsigned_type_node;
711
712 return make_unsigned_type (size);
713 }
714
715
716 static tree
717 gfc_build_real_type (gfc_real_info *info)
718 {
719 int mode_precision = info->mode_precision;
720 tree new_type;
721
722 if (mode_precision == FLOAT_TYPE_SIZE)
723 info->c_float = 1;
724 if (mode_precision == DOUBLE_TYPE_SIZE)
725 info->c_double = 1;
726 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
727 info->c_long_double = 1;
728 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
729 {
730 info->c_float128 = 1;
731 gfc_real16_is_float128 = true;
732 }
733
734 if (TYPE_PRECISION (float_type_node) == mode_precision)
735 return float_type_node;
736 if (TYPE_PRECISION (double_type_node) == mode_precision)
737 return double_type_node;
738 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
739 return long_double_type_node;
740
741 new_type = make_node (REAL_TYPE);
742 TYPE_PRECISION (new_type) = mode_precision;
743 layout_type (new_type);
744 return new_type;
745 }
746
747 static tree
748 gfc_build_complex_type (tree scalar_type)
749 {
750 tree new_type;
751
752 if (scalar_type == NULL)
753 return NULL;
754 if (scalar_type == float_type_node)
755 return complex_float_type_node;
756 if (scalar_type == double_type_node)
757 return complex_double_type_node;
758 if (scalar_type == long_double_type_node)
759 return complex_long_double_type_node;
760
761 new_type = make_node (COMPLEX_TYPE);
762 TREE_TYPE (new_type) = scalar_type;
763 layout_type (new_type);
764 return new_type;
765 }
766
767 static tree
768 gfc_build_logical_type (gfc_logical_info *info)
769 {
770 int bit_size = info->bit_size;
771 tree new_type;
772
773 if (bit_size == BOOL_TYPE_SIZE)
774 {
775 info->c_bool = 1;
776 return boolean_type_node;
777 }
778
779 new_type = make_unsigned_type (bit_size);
780 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
781 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
782 TYPE_PRECISION (new_type) = 1;
783
784 return new_type;
785 }
786
787
788 #if 0
789 /* Return the bit size of the C "size_t". */
790
791 static unsigned int
792 c_size_t_size (void)
793 {
794 #ifdef SIZE_TYPE
795 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
796 return INT_TYPE_SIZE;
797 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
798 return LONG_TYPE_SIZE;
799 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
800 return SHORT_TYPE_SIZE;
801 gcc_unreachable ();
802 #else
803 return LONG_TYPE_SIZE;
804 #endif
805 }
806 #endif
807
808 /* Create the backend type nodes. We map them to their
809 equivalent C type, at least for now. We also give
810 names to the types here, and we push them in the
811 global binding level context.*/
812
813 void
814 gfc_init_types (void)
815 {
816 char name_buf[18];
817 int index;
818 tree type;
819 unsigned n;
820 unsigned HOST_WIDE_INT hi;
821 unsigned HOST_WIDE_INT lo;
822
823 /* Create and name the types. */
824 #define PUSH_TYPE(name, node) \
825 pushdecl (build_decl (input_location, \
826 TYPE_DECL, get_identifier (name), node))
827
828 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
829 {
830 type = gfc_build_int_type (&gfc_integer_kinds[index]);
831 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
832 if (TYPE_STRING_FLAG (type))
833 type = make_signed_type (gfc_integer_kinds[index].bit_size);
834 gfc_integer_types[index] = type;
835 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
836 gfc_integer_kinds[index].kind);
837 PUSH_TYPE (name_buf, type);
838 }
839
840 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
841 {
842 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
843 gfc_logical_types[index] = type;
844 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
845 gfc_logical_kinds[index].kind);
846 PUSH_TYPE (name_buf, type);
847 }
848
849 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
850 {
851 type = gfc_build_real_type (&gfc_real_kinds[index]);
852 gfc_real_types[index] = type;
853 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
854 gfc_real_kinds[index].kind);
855 PUSH_TYPE (name_buf, type);
856
857 if (gfc_real_kinds[index].c_float128)
858 float128_type_node = type;
859
860 type = gfc_build_complex_type (type);
861 gfc_complex_types[index] = type;
862 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
863 gfc_real_kinds[index].kind);
864 PUSH_TYPE (name_buf, type);
865
866 if (gfc_real_kinds[index].c_float128)
867 complex_float128_type_node = type;
868 }
869
870 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
871 {
872 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
873 type = build_qualified_type (type, TYPE_UNQUALIFIED);
874 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
875 gfc_character_kinds[index].kind);
876 PUSH_TYPE (name_buf, type);
877 gfc_character_types[index] = type;
878 gfc_pcharacter_types[index] = build_pointer_type (type);
879 }
880 gfc_character1_type_node = gfc_character_types[0];
881
882 PUSH_TYPE ("byte", unsigned_char_type_node);
883 PUSH_TYPE ("void", void_type_node);
884
885 /* DBX debugging output gets upset if these aren't set. */
886 if (!TYPE_NAME (integer_type_node))
887 PUSH_TYPE ("c_integer", integer_type_node);
888 if (!TYPE_NAME (char_type_node))
889 PUSH_TYPE ("c_char", char_type_node);
890
891 #undef PUSH_TYPE
892
893 pvoid_type_node = build_pointer_type (void_type_node);
894 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
895 ppvoid_type_node = build_pointer_type (pvoid_type_node);
896 pchar_type_node = build_pointer_type (gfc_character1_type_node);
897 pfunc_type_node
898 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
899
900 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
901 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
902 since this function is called before gfc_init_constants. */
903 gfc_array_range_type
904 = build_range_type (gfc_array_index_type,
905 build_int_cst (gfc_array_index_type, 0),
906 NULL_TREE);
907
908 /* The maximum array element size that can be handled is determined
909 by the number of bits available to store this field in the array
910 descriptor. */
911
912 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
913 lo = ~ (unsigned HOST_WIDE_INT) 0;
914 if (n > HOST_BITS_PER_WIDE_INT)
915 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
916 else
917 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
918 gfc_max_array_element_size
919 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
920
921 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
922 boolean_true_node = build_int_cst (boolean_type_node, 1);
923 boolean_false_node = build_int_cst (boolean_type_node, 0);
924
925 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
926 gfc_charlen_int_kind = 4;
927 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
928 }
929
930 /* Get the type node for the given type and kind. */
931
932 tree
933 gfc_get_int_type (int kind)
934 {
935 int index = gfc_validate_kind (BT_INTEGER, kind, true);
936 return index < 0 ? 0 : gfc_integer_types[index];
937 }
938
939 tree
940 gfc_get_real_type (int kind)
941 {
942 int index = gfc_validate_kind (BT_REAL, kind, true);
943 return index < 0 ? 0 : gfc_real_types[index];
944 }
945
946 tree
947 gfc_get_complex_type (int kind)
948 {
949 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
950 return index < 0 ? 0 : gfc_complex_types[index];
951 }
952
953 tree
954 gfc_get_logical_type (int kind)
955 {
956 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
957 return index < 0 ? 0 : gfc_logical_types[index];
958 }
959
960 tree
961 gfc_get_char_type (int kind)
962 {
963 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
964 return index < 0 ? 0 : gfc_character_types[index];
965 }
966
967 tree
968 gfc_get_pchar_type (int kind)
969 {
970 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
971 return index < 0 ? 0 : gfc_pcharacter_types[index];
972 }
973
974 \f
975 /* Create a character type with the given kind and length. */
976
977 tree
978 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
979 {
980 tree bounds, type;
981
982 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
983 type = build_array_type (eltype, bounds);
984 TYPE_STRING_FLAG (type) = 1;
985
986 return type;
987 }
988
989 tree
990 gfc_get_character_type_len (int kind, tree len)
991 {
992 gfc_validate_kind (BT_CHARACTER, kind, false);
993 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
994 }
995
996
997 /* Get a type node for a character kind. */
998
999 tree
1000 gfc_get_character_type (int kind, gfc_charlen * cl)
1001 {
1002 tree len;
1003
1004 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1005
1006 return gfc_get_character_type_len (kind, len);
1007 }
1008 \f
1009 /* Covert a basic type. This will be an array for character types. */
1010
1011 tree
1012 gfc_typenode_for_spec (gfc_typespec * spec)
1013 {
1014 tree basetype;
1015
1016 switch (spec->type)
1017 {
1018 case BT_UNKNOWN:
1019 gcc_unreachable ();
1020
1021 case BT_INTEGER:
1022 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1023 has been resolved. This is done so we can convert C_PTR and
1024 C_FUNPTR to simple variables that get translated to (void *). */
1025 if (spec->f90_type == BT_VOID)
1026 {
1027 if (spec->u.derived
1028 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1029 basetype = ptr_type_node;
1030 else
1031 basetype = pfunc_type_node;
1032 }
1033 else
1034 basetype = gfc_get_int_type (spec->kind);
1035 break;
1036
1037 case BT_REAL:
1038 basetype = gfc_get_real_type (spec->kind);
1039 break;
1040
1041 case BT_COMPLEX:
1042 basetype = gfc_get_complex_type (spec->kind);
1043 break;
1044
1045 case BT_LOGICAL:
1046 basetype = gfc_get_logical_type (spec->kind);
1047 break;
1048
1049 case BT_CHARACTER:
1050 #if 0
1051 if (spec->deferred)
1052 basetype = gfc_get_character_type (spec->kind, NULL);
1053 else
1054 #endif
1055 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1056 break;
1057
1058 case BT_DERIVED:
1059 case BT_CLASS:
1060 basetype = gfc_get_derived_type (spec->u.derived);
1061
1062 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1063 type and kind to fit a (void *) and the basetype returned was a
1064 ptr_type_node. We need to pass up this new information to the
1065 symbol that was declared of type C_PTR or C_FUNPTR. */
1066 if (spec->u.derived->attr.is_iso_c)
1067 {
1068 spec->type = spec->u.derived->ts.type;
1069 spec->kind = spec->u.derived->ts.kind;
1070 spec->f90_type = spec->u.derived->ts.f90_type;
1071 }
1072 break;
1073 case BT_VOID:
1074 /* This is for the second arg to c_f_pointer and c_f_procpointer
1075 of the iso_c_binding module, to accept any ptr type. */
1076 basetype = ptr_type_node;
1077 if (spec->f90_type == BT_VOID)
1078 {
1079 if (spec->u.derived
1080 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1081 basetype = ptr_type_node;
1082 else
1083 basetype = pfunc_type_node;
1084 }
1085 break;
1086 default:
1087 gcc_unreachable ();
1088 }
1089 return basetype;
1090 }
1091 \f
1092 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1093
1094 static tree
1095 gfc_conv_array_bound (gfc_expr * expr)
1096 {
1097 /* If expr is an integer constant, return that. */
1098 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1099 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1100
1101 /* Otherwise return NULL. */
1102 return NULL_TREE;
1103 }
1104 \f
1105 tree
1106 gfc_get_element_type (tree type)
1107 {
1108 tree element;
1109
1110 if (GFC_ARRAY_TYPE_P (type))
1111 {
1112 if (TREE_CODE (type) == POINTER_TYPE)
1113 type = TREE_TYPE (type);
1114 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1115 element = TREE_TYPE (type);
1116 }
1117 else
1118 {
1119 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1120 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1121
1122 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1123 element = TREE_TYPE (element);
1124
1125 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
1126 element = TREE_TYPE (element);
1127 }
1128
1129 return element;
1130 }
1131 \f
1132 /* Build an array. This function is called from gfc_sym_type().
1133 Actually returns array descriptor type.
1134
1135 Format of array descriptors is as follows:
1136
1137 struct gfc_array_descriptor
1138 {
1139 array *data
1140 index offset;
1141 index dtype;
1142 struct descriptor_dimension dimension[N_DIM];
1143 }
1144
1145 struct descriptor_dimension
1146 {
1147 index stride;
1148 index lbound;
1149 index ubound;
1150 }
1151
1152 Translation code should use gfc_conv_descriptor_* rather than
1153 accessing the descriptor directly. Any changes to the array
1154 descriptor type will require changes in gfc_conv_descriptor_* and
1155 gfc_build_array_initializer.
1156
1157 This is represented internally as a RECORD_TYPE. The index nodes
1158 are gfc_array_index_type and the data node is a pointer to the
1159 data. See below for the handling of character types.
1160
1161 The dtype member is formatted as follows:
1162 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1163 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1164 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1165
1166 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1167 this generated poor code for assumed/deferred size arrays. These
1168 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1169 of the GENERIC grammar. Also, there is no way to explicitly set
1170 the array stride, so all data must be packed(1). I've tried to
1171 mark all the functions which would require modification with a GCC
1172 ARRAYS comment.
1173
1174 The data component points to the first element in the array. The
1175 offset field is the position of the origin of the array (i.e. element
1176 (0, 0 ...)). This may be outside the bounds of the array.
1177
1178 An element is accessed by
1179 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1180 This gives good performance as the computation does not involve the
1181 bounds of the array. For packed arrays, this is optimized further
1182 by substituting the known strides.
1183
1184 This system has one problem: all array bounds must be within 2^31
1185 elements of the origin (2^63 on 64-bit machines). For example
1186 integer, dimension (80000:90000, 80000:90000, 2) :: array
1187 may not work properly on 32-bit machines because 80000*80000 >
1188 2^31, so the calculation for stride2 would overflow. This may
1189 still work, but I haven't checked, and it relies on the overflow
1190 doing the right thing.
1191
1192 The way to fix this problem is to access elements as follows:
1193 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1194 Obviously this is much slower. I will make this a compile time
1195 option, something like -fsmall-array-offsets. Mixing code compiled
1196 with and without this switch will work.
1197
1198 (1) This can be worked around by modifying the upper bound of the
1199 previous dimension. This requires extra fields in the descriptor
1200 (both real_ubound and fake_ubound). */
1201
1202
1203 /* Returns true if the array sym does not require a descriptor. */
1204
1205 int
1206 gfc_is_nodesc_array (gfc_symbol * sym)
1207 {
1208 gcc_assert (sym->attr.dimension);
1209
1210 /* We only want local arrays. */
1211 if (sym->attr.pointer || sym->attr.allocatable)
1212 return 0;
1213
1214 /* We want a descriptor for associate-name arrays that do not have an
1215 explicitely known shape already. */
1216 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1217 return 0;
1218
1219 if (sym->attr.dummy)
1220 return sym->as->type != AS_ASSUMED_SHAPE;
1221
1222 if (sym->attr.result || sym->attr.function)
1223 return 0;
1224
1225 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1226
1227 return 1;
1228 }
1229
1230
1231 /* Create an array descriptor type. */
1232
1233 static tree
1234 gfc_build_array_type (tree type, gfc_array_spec * as,
1235 enum gfc_array_kind akind, bool restricted,
1236 bool contiguous)
1237 {
1238 tree lbound[GFC_MAX_DIMENSIONS];
1239 tree ubound[GFC_MAX_DIMENSIONS];
1240 int n;
1241
1242 for (n = 0; n < as->rank; n++)
1243 {
1244 /* Create expressions for the known bounds of the array. */
1245 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1246 lbound[n] = gfc_index_one_node;
1247 else
1248 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1249 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1250 }
1251
1252 for (n = as->rank; n < as->rank + as->corank; n++)
1253 {
1254 if (as->lower[n] == NULL)
1255 lbound[n] = gfc_index_one_node;
1256 else
1257 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1258
1259 if (n < as->rank + as->corank - 1)
1260 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1261 }
1262
1263 if (as->type == AS_ASSUMED_SHAPE)
1264 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1265 : GFC_ARRAY_ASSUMED_SHAPE;
1266 return gfc_get_array_type_bounds (type, as->rank, as->corank, lbound,
1267 ubound, 0, akind, restricted);
1268 }
1269 \f
1270 /* Returns the struct descriptor_dimension type. */
1271
1272 static tree
1273 gfc_get_desc_dim_type (void)
1274 {
1275 tree type;
1276 tree decl, *chain = NULL;
1277
1278 if (gfc_desc_dim_type)
1279 return gfc_desc_dim_type;
1280
1281 /* Build the type node. */
1282 type = make_node (RECORD_TYPE);
1283
1284 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1285 TYPE_PACKED (type) = 1;
1286
1287 /* Consists of the stride, lbound and ubound members. */
1288 decl = gfc_add_field_to_struct_1 (type,
1289 get_identifier ("stride"),
1290 gfc_array_index_type, &chain);
1291 TREE_NO_WARNING (decl) = 1;
1292
1293 decl = gfc_add_field_to_struct_1 (type,
1294 get_identifier ("lbound"),
1295 gfc_array_index_type, &chain);
1296 TREE_NO_WARNING (decl) = 1;
1297
1298 decl = gfc_add_field_to_struct_1 (type,
1299 get_identifier ("ubound"),
1300 gfc_array_index_type, &chain);
1301 TREE_NO_WARNING (decl) = 1;
1302
1303 /* Finish off the type. */
1304 gfc_finish_type (type);
1305 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1306
1307 gfc_desc_dim_type = type;
1308 return type;
1309 }
1310
1311
1312 /* Return the DTYPE for an array. This describes the type and type parameters
1313 of the array. */
1314 /* TODO: Only call this when the value is actually used, and make all the
1315 unknown cases abort. */
1316
1317 tree
1318 gfc_get_dtype (tree type)
1319 {
1320 tree size;
1321 int n;
1322 HOST_WIDE_INT i;
1323 tree tmp;
1324 tree dtype;
1325 tree etype;
1326 int rank;
1327
1328 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1329
1330 if (GFC_TYPE_ARRAY_DTYPE (type))
1331 return GFC_TYPE_ARRAY_DTYPE (type);
1332
1333 rank = GFC_TYPE_ARRAY_RANK (type);
1334 etype = gfc_get_element_type (type);
1335
1336 switch (TREE_CODE (etype))
1337 {
1338 case INTEGER_TYPE:
1339 n = BT_INTEGER;
1340 break;
1341
1342 case BOOLEAN_TYPE:
1343 n = BT_LOGICAL;
1344 break;
1345
1346 case REAL_TYPE:
1347 n = BT_REAL;
1348 break;
1349
1350 case COMPLEX_TYPE:
1351 n = BT_COMPLEX;
1352 break;
1353
1354 /* We will never have arrays of arrays. */
1355 case RECORD_TYPE:
1356 n = BT_DERIVED;
1357 break;
1358
1359 case ARRAY_TYPE:
1360 n = BT_CHARACTER;
1361 break;
1362
1363 default:
1364 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1365 /* We can strange array types for temporary arrays. */
1366 return gfc_index_zero_node;
1367 }
1368
1369 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1370 size = TYPE_SIZE_UNIT (etype);
1371
1372 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1373 if (size && INTEGER_CST_P (size))
1374 {
1375 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1376 internal_error ("Array element size too big");
1377
1378 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1379 }
1380 dtype = build_int_cst (gfc_array_index_type, i);
1381
1382 if (size && !INTEGER_CST_P (size))
1383 {
1384 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1385 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1386 gfc_array_index_type,
1387 fold_convert (gfc_array_index_type, size), tmp);
1388 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1389 tmp, dtype);
1390 }
1391 /* If we don't know the size we leave it as zero. This should never happen
1392 for anything that is actually used. */
1393 /* TODO: Check this is actually true, particularly when repacking
1394 assumed size parameters. */
1395
1396 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1397 return dtype;
1398 }
1399
1400
1401 /* Build an array type for use without a descriptor, packed according
1402 to the value of PACKED. */
1403
1404 tree
1405 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1406 bool restricted)
1407 {
1408 tree range;
1409 tree type;
1410 tree tmp;
1411 int n;
1412 int known_stride;
1413 int known_offset;
1414 mpz_t offset;
1415 mpz_t stride;
1416 mpz_t delta;
1417 gfc_expr *expr;
1418
1419 mpz_init_set_ui (offset, 0);
1420 mpz_init_set_ui (stride, 1);
1421 mpz_init (delta);
1422
1423 /* We don't use build_array_type because this does not include include
1424 lang-specific information (i.e. the bounds of the array) when checking
1425 for duplicates. */
1426 type = make_node (ARRAY_TYPE);
1427
1428 GFC_ARRAY_TYPE_P (type) = 1;
1429 TYPE_LANG_SPECIFIC (type)
1430 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1431
1432 known_stride = (packed != PACKED_NO);
1433 known_offset = 1;
1434 for (n = 0; n < as->rank; n++)
1435 {
1436 /* Fill in the stride and bound components of the type. */
1437 if (known_stride)
1438 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1439 else
1440 tmp = NULL_TREE;
1441 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1442
1443 expr = as->lower[n];
1444 if (expr->expr_type == EXPR_CONSTANT)
1445 {
1446 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1447 gfc_index_integer_kind);
1448 }
1449 else
1450 {
1451 known_stride = 0;
1452 tmp = NULL_TREE;
1453 }
1454 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1455
1456 if (known_stride)
1457 {
1458 /* Calculate the offset. */
1459 mpz_mul (delta, stride, as->lower[n]->value.integer);
1460 mpz_sub (offset, offset, delta);
1461 }
1462 else
1463 known_offset = 0;
1464
1465 expr = as->upper[n];
1466 if (expr && expr->expr_type == EXPR_CONSTANT)
1467 {
1468 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1469 gfc_index_integer_kind);
1470 }
1471 else
1472 {
1473 tmp = NULL_TREE;
1474 known_stride = 0;
1475 }
1476 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1477
1478 if (known_stride)
1479 {
1480 /* Calculate the stride. */
1481 mpz_sub (delta, as->upper[n]->value.integer,
1482 as->lower[n]->value.integer);
1483 mpz_add_ui (delta, delta, 1);
1484 mpz_mul (stride, stride, delta);
1485 }
1486
1487 /* Only the first stride is known for partial packed arrays. */
1488 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1489 known_stride = 0;
1490 }
1491 for (n = as->rank; n < as->rank + as->corank; n++)
1492 {
1493 expr = as->lower[n];
1494 if (expr->expr_type == EXPR_CONSTANT)
1495 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1496 gfc_index_integer_kind);
1497 else
1498 tmp = NULL_TREE;
1499 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1500
1501 expr = as->upper[n];
1502 if (expr && expr->expr_type == EXPR_CONSTANT)
1503 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1504 gfc_index_integer_kind);
1505 else
1506 tmp = NULL_TREE;
1507 if (n < as->rank + as->corank - 1)
1508 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1509 }
1510
1511 if (known_offset)
1512 {
1513 GFC_TYPE_ARRAY_OFFSET (type) =
1514 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1515 }
1516 else
1517 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1518
1519 if (known_stride)
1520 {
1521 GFC_TYPE_ARRAY_SIZE (type) =
1522 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1523 }
1524 else
1525 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1526
1527 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1528 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1529 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1530 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1531 NULL_TREE);
1532 /* TODO: use main type if it is unbounded. */
1533 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1534 build_pointer_type (build_array_type (etype, range));
1535 if (restricted)
1536 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1537 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1538 TYPE_QUAL_RESTRICT);
1539
1540 if (known_stride)
1541 {
1542 mpz_sub_ui (stride, stride, 1);
1543 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1544 }
1545 else
1546 range = NULL_TREE;
1547
1548 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1549 TYPE_DOMAIN (type) = range;
1550
1551 build_pointer_type (etype);
1552 TREE_TYPE (type) = etype;
1553
1554 layout_type (type);
1555
1556 mpz_clear (offset);
1557 mpz_clear (stride);
1558 mpz_clear (delta);
1559
1560 /* Represent packed arrays as multi-dimensional if they have rank >
1561 1 and with proper bounds, instead of flat arrays. This makes for
1562 better debug info. */
1563 if (known_offset)
1564 {
1565 tree gtype = etype, rtype, type_decl;
1566
1567 for (n = as->rank - 1; n >= 0; n--)
1568 {
1569 rtype = build_range_type (gfc_array_index_type,
1570 GFC_TYPE_ARRAY_LBOUND (type, n),
1571 GFC_TYPE_ARRAY_UBOUND (type, n));
1572 gtype = build_array_type (gtype, rtype);
1573 }
1574 TYPE_NAME (type) = type_decl = build_decl (input_location,
1575 TYPE_DECL, NULL, gtype);
1576 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1577 }
1578
1579 if (packed != PACKED_STATIC || !known_stride)
1580 {
1581 /* For dummy arrays and automatic (heap allocated) arrays we
1582 want a pointer to the array. */
1583 type = build_pointer_type (type);
1584 if (restricted)
1585 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1586 GFC_ARRAY_TYPE_P (type) = 1;
1587 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1588 }
1589 return type;
1590 }
1591
1592 /* Return or create the base type for an array descriptor. */
1593
1594 static tree
1595 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted)
1596 {
1597 tree fat_type, decl, arraytype, *chain = NULL;
1598 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1599 int idx = 2 * (codimen + dimen - 1) + restricted;
1600
1601 gcc_assert (dimen >= 1 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1602 if (gfc_array_descriptor_base[idx])
1603 return gfc_array_descriptor_base[idx];
1604
1605 /* Build the type node. */
1606 fat_type = make_node (RECORD_TYPE);
1607
1608 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1609 TYPE_NAME (fat_type) = get_identifier (name);
1610 TYPE_NAMELESS (fat_type) = 1;
1611
1612 /* Add the data member as the first element of the descriptor. */
1613 decl = gfc_add_field_to_struct_1 (fat_type,
1614 get_identifier ("data"),
1615 (restricted
1616 ? prvoid_type_node
1617 : ptr_type_node), &chain);
1618
1619 /* Add the base component. */
1620 decl = gfc_add_field_to_struct_1 (fat_type,
1621 get_identifier ("offset"),
1622 gfc_array_index_type, &chain);
1623 TREE_NO_WARNING (decl) = 1;
1624
1625 /* Add the dtype component. */
1626 decl = gfc_add_field_to_struct_1 (fat_type,
1627 get_identifier ("dtype"),
1628 gfc_array_index_type, &chain);
1629 TREE_NO_WARNING (decl) = 1;
1630
1631 /* Build the array type for the stride and bound components. */
1632 arraytype =
1633 build_array_type (gfc_get_desc_dim_type (),
1634 build_range_type (gfc_array_index_type,
1635 gfc_index_zero_node,
1636 gfc_rank_cst[codimen + dimen - 1]));
1637
1638 decl = gfc_add_field_to_struct_1 (fat_type,
1639 get_identifier ("dim"),
1640 arraytype, &chain);
1641 TREE_NO_WARNING (decl) = 1;
1642
1643 /* Finish off the type. */
1644 gfc_finish_type (fat_type);
1645 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1646
1647 gfc_array_descriptor_base[idx] = fat_type;
1648 return fat_type;
1649 }
1650
1651 /* Build an array (descriptor) type with given bounds. */
1652
1653 tree
1654 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1655 tree * ubound, int packed,
1656 enum gfc_array_kind akind, bool restricted)
1657 {
1658 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1659 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1660 const char *type_name;
1661 int n;
1662
1663 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted);
1664 fat_type = build_distinct_type_copy (base_type);
1665 /* Make sure that nontarget and target array type have the same canonical
1666 type (and same stub decl for debug info). */
1667 base_type = gfc_get_array_descriptor_base (dimen, codimen, false);
1668 TYPE_CANONICAL (fat_type) = base_type;
1669 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1670
1671 tmp = TYPE_NAME (etype);
1672 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1673 tmp = DECL_NAME (tmp);
1674 if (tmp)
1675 type_name = IDENTIFIER_POINTER (tmp);
1676 else
1677 type_name = "unknown";
1678 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1679 GFC_MAX_SYMBOL_LEN, type_name);
1680 TYPE_NAME (fat_type) = get_identifier (name);
1681 TYPE_NAMELESS (fat_type) = 1;
1682
1683 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1684 TYPE_LANG_SPECIFIC (fat_type)
1685 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1686
1687 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1688 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1689 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1690 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1691
1692 /* Build an array descriptor record type. */
1693 if (packed != 0)
1694 stride = gfc_index_one_node;
1695 else
1696 stride = NULL_TREE;
1697 for (n = 0; n < dimen; n++)
1698 {
1699 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1700
1701 if (lbound)
1702 lower = lbound[n];
1703 else
1704 lower = NULL_TREE;
1705
1706 if (lower != NULL_TREE)
1707 {
1708 if (INTEGER_CST_P (lower))
1709 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1710 else
1711 lower = NULL_TREE;
1712 }
1713
1714 upper = ubound[n];
1715 if (upper != NULL_TREE)
1716 {
1717 if (INTEGER_CST_P (upper))
1718 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1719 else
1720 upper = NULL_TREE;
1721 }
1722
1723 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1724 {
1725 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1726 gfc_array_index_type, upper, lower);
1727 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1728 gfc_array_index_type, tmp,
1729 gfc_index_one_node);
1730 stride = fold_build2_loc (input_location, MULT_EXPR,
1731 gfc_array_index_type, tmp, stride);
1732 /* Check the folding worked. */
1733 gcc_assert (INTEGER_CST_P (stride));
1734 }
1735 else
1736 stride = NULL_TREE;
1737 }
1738 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1739
1740 /* TODO: known offsets for descriptors. */
1741 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1742
1743 /* We define data as an array with the correct size if possible.
1744 Much better than doing pointer arithmetic. */
1745 if (stride)
1746 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1747 int_const_binop (MINUS_EXPR, stride,
1748 integer_one_node));
1749 else
1750 rtype = gfc_array_range_type;
1751 arraytype = build_array_type (etype, rtype);
1752 arraytype = build_pointer_type (arraytype);
1753 if (restricted)
1754 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1755 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1756
1757 /* This will generate the base declarations we need to emit debug
1758 information for this type. FIXME: there must be a better way to
1759 avoid divergence between compilations with and without debug
1760 information. */
1761 {
1762 struct array_descr_info info;
1763 gfc_get_array_descr_info (fat_type, &info);
1764 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1765 }
1766
1767 return fat_type;
1768 }
1769 \f
1770 /* Build a pointer type. This function is called from gfc_sym_type(). */
1771
1772 static tree
1773 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1774 {
1775 /* Array pointer types aren't actually pointers. */
1776 if (sym->attr.dimension)
1777 return type;
1778 else
1779 return build_pointer_type (type);
1780 }
1781
1782 static tree gfc_nonrestricted_type (tree t);
1783 /* Given two record or union type nodes TO and FROM, ensure
1784 that all fields in FROM have a corresponding field in TO,
1785 their type being nonrestrict variants. This accepts a TO
1786 node that already has a prefix of the fields in FROM. */
1787 static void
1788 mirror_fields (tree to, tree from)
1789 {
1790 tree fto, ffrom;
1791 tree *chain;
1792
1793 /* Forward to the end of TOs fields. */
1794 fto = TYPE_FIELDS (to);
1795 ffrom = TYPE_FIELDS (from);
1796 chain = &TYPE_FIELDS (to);
1797 while (fto)
1798 {
1799 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1800 chain = &DECL_CHAIN (fto);
1801 fto = DECL_CHAIN (fto);
1802 ffrom = DECL_CHAIN (ffrom);
1803 }
1804
1805 /* Now add all fields remaining in FROM (starting with ffrom). */
1806 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1807 {
1808 tree newfield = copy_node (ffrom);
1809 DECL_CONTEXT (newfield) = to;
1810 /* The store to DECL_CHAIN might seem redundant with the
1811 stores to *chain, but not clearing it here would mean
1812 leaving a chain into the old fields. If ever
1813 our called functions would look at them confusion
1814 will arise. */
1815 DECL_CHAIN (newfield) = NULL_TREE;
1816 *chain = newfield;
1817 chain = &DECL_CHAIN (newfield);
1818
1819 if (TREE_CODE (ffrom) == FIELD_DECL)
1820 {
1821 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
1822 TREE_TYPE (newfield) = elemtype;
1823 }
1824 }
1825 *chain = NULL_TREE;
1826 }
1827
1828 /* Given a type T, returns a different type of the same structure,
1829 except that all types it refers to (recursively) are always
1830 non-restrict qualified types. */
1831 static tree
1832 gfc_nonrestricted_type (tree t)
1833 {
1834 tree ret = t;
1835
1836 /* If the type isn't layed out yet, don't copy it. If something
1837 needs it for real it should wait until the type got finished. */
1838 if (!TYPE_SIZE (t))
1839 return t;
1840
1841 if (!TYPE_LANG_SPECIFIC (t))
1842 TYPE_LANG_SPECIFIC (t)
1843 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1844 /* If we're dealing with this very node already further up
1845 the call chain (recursion via pointers and struct members)
1846 we haven't yet determined if we really need a new type node.
1847 Assume we don't, return T itself. */
1848 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
1849 return t;
1850
1851 /* If we have calculated this all already, just return it. */
1852 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
1853 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
1854
1855 /* Mark this type. */
1856 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
1857
1858 switch (TREE_CODE (t))
1859 {
1860 default:
1861 break;
1862
1863 case POINTER_TYPE:
1864 case REFERENCE_TYPE:
1865 {
1866 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
1867 if (totype == TREE_TYPE (t))
1868 ret = t;
1869 else if (TREE_CODE (t) == POINTER_TYPE)
1870 ret = build_pointer_type (totype);
1871 else
1872 ret = build_reference_type (totype);
1873 ret = build_qualified_type (ret,
1874 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
1875 }
1876 break;
1877
1878 case ARRAY_TYPE:
1879 {
1880 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
1881 if (elemtype == TREE_TYPE (t))
1882 ret = t;
1883 else
1884 {
1885 ret = build_variant_type_copy (t);
1886 TREE_TYPE (ret) = elemtype;
1887 if (TYPE_LANG_SPECIFIC (t)
1888 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
1889 {
1890 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
1891 dataptr_type = gfc_nonrestricted_type (dataptr_type);
1892 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
1893 {
1894 TYPE_LANG_SPECIFIC (ret)
1895 = ggc_alloc_cleared_lang_type (sizeof (struct
1896 lang_type));
1897 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
1898 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
1899 }
1900 }
1901 }
1902 }
1903 break;
1904
1905 case RECORD_TYPE:
1906 case UNION_TYPE:
1907 case QUAL_UNION_TYPE:
1908 {
1909 tree field;
1910 /* First determine if we need a new type at all.
1911 Careful, the two calls to gfc_nonrestricted_type per field
1912 might return different values. That happens exactly when
1913 one of the fields reaches back to this very record type
1914 (via pointers). The first calls will assume that we don't
1915 need to copy T (see the error_mark_node marking). If there
1916 are any reasons for copying T apart from having to copy T,
1917 we'll indeed copy it, and the second calls to
1918 gfc_nonrestricted_type will use that new node if they
1919 reach back to T. */
1920 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1921 if (TREE_CODE (field) == FIELD_DECL)
1922 {
1923 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
1924 if (elemtype != TREE_TYPE (field))
1925 break;
1926 }
1927 if (!field)
1928 break;
1929 ret = build_variant_type_copy (t);
1930 TYPE_FIELDS (ret) = NULL_TREE;
1931
1932 /* Here we make sure that as soon as we know we have to copy
1933 T, that also fields reaching back to us will use the new
1934 copy. It's okay if that copy still contains the old fields,
1935 we won't look at them. */
1936 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
1937 mirror_fields (ret, t);
1938 }
1939 break;
1940 }
1941
1942 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
1943 return ret;
1944 }
1945
1946 \f
1947 /* Return the type for a symbol. Special handling is required for character
1948 types to get the correct level of indirection.
1949 For functions return the return type.
1950 For subroutines return void_type_node.
1951 Calling this multiple times for the same symbol should be avoided,
1952 especially for character and array types. */
1953
1954 tree
1955 gfc_sym_type (gfc_symbol * sym)
1956 {
1957 tree type;
1958 int byref;
1959 bool restricted;
1960
1961 /* Procedure Pointers inside COMMON blocks. */
1962 if (sym->attr.proc_pointer && sym->attr.in_common)
1963 {
1964 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
1965 sym->attr.proc_pointer = 0;
1966 type = build_pointer_type (gfc_get_function_type (sym));
1967 sym->attr.proc_pointer = 1;
1968 return type;
1969 }
1970
1971 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1972 return void_type_node;
1973
1974 /* In the case of a function the fake result variable may have a
1975 type different from the function type, so don't return early in
1976 that case. */
1977 if (sym->backend_decl && !sym->attr.function)
1978 return TREE_TYPE (sym->backend_decl);
1979
1980 if (sym->ts.type == BT_CHARACTER
1981 && ((sym->attr.function && sym->attr.is_bind_c)
1982 || (sym->attr.result
1983 && sym->ns->proc_name
1984 && sym->ns->proc_name->attr.is_bind_c)))
1985 type = gfc_character1_type_node;
1986 else
1987 type = gfc_typenode_for_spec (&sym->ts);
1988
1989 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1990 byref = 1;
1991 else
1992 byref = 0;
1993
1994 restricted = !sym->attr.target && !sym->attr.pointer
1995 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
1996 if (!restricted)
1997 type = gfc_nonrestricted_type (type);
1998
1999 if (sym->attr.dimension)
2000 {
2001 if (gfc_is_nodesc_array (sym))
2002 {
2003 /* If this is a character argument of unknown length, just use the
2004 base type. */
2005 if (sym->ts.type != BT_CHARACTER
2006 || !(sym->attr.dummy || sym->attr.function)
2007 || sym->ts.u.cl->backend_decl)
2008 {
2009 type = gfc_get_nodesc_array_type (type, sym->as,
2010 byref ? PACKED_FULL
2011 : PACKED_STATIC,
2012 restricted);
2013 byref = 0;
2014 }
2015
2016 if (sym->attr.cray_pointee)
2017 GFC_POINTER_TYPE_P (type) = 1;
2018 }
2019 else
2020 {
2021 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2022 if (sym->attr.pointer)
2023 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2024 : GFC_ARRAY_POINTER;
2025 else if (sym->attr.allocatable)
2026 akind = GFC_ARRAY_ALLOCATABLE;
2027 type = gfc_build_array_type (type, sym->as, akind, restricted,
2028 sym->attr.contiguous);
2029 }
2030 }
2031 else
2032 {
2033 if (sym->attr.allocatable || sym->attr.pointer
2034 || gfc_is_associate_pointer (sym))
2035 type = gfc_build_pointer_type (sym, type);
2036 if (sym->attr.pointer || sym->attr.cray_pointee)
2037 GFC_POINTER_TYPE_P (type) = 1;
2038 }
2039
2040 /* We currently pass all parameters by reference.
2041 See f95_get_function_decl. For dummy function parameters return the
2042 function type. */
2043 if (byref)
2044 {
2045 /* We must use pointer types for potentially absent variables. The
2046 optimizers assume a reference type argument is never NULL. */
2047 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
2048 type = build_pointer_type (type);
2049 else
2050 {
2051 type = build_reference_type (type);
2052 if (restricted)
2053 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2054 }
2055 }
2056
2057 return (type);
2058 }
2059 \f
2060 /* Layout and output debug info for a record type. */
2061
2062 void
2063 gfc_finish_type (tree type)
2064 {
2065 tree decl;
2066
2067 decl = build_decl (input_location,
2068 TYPE_DECL, NULL_TREE, type);
2069 TYPE_STUB_DECL (type) = decl;
2070 layout_type (type);
2071 rest_of_type_compilation (type, 1);
2072 rest_of_decl_compilation (decl, 1, 0);
2073 }
2074 \f
2075 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2076 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2077 to the end of the field list pointed to by *CHAIN.
2078
2079 Returns a pointer to the new field. */
2080
2081 static tree
2082 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2083 {
2084 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2085
2086 DECL_CONTEXT (decl) = context;
2087 DECL_CHAIN (decl) = NULL_TREE;
2088 if (TYPE_FIELDS (context) == NULL_TREE)
2089 TYPE_FIELDS (context) = decl;
2090 if (chain != NULL)
2091 {
2092 if (*chain != NULL)
2093 **chain = decl;
2094 *chain = &DECL_CHAIN (decl);
2095 }
2096
2097 return decl;
2098 }
2099
2100 /* Like `gfc_add_field_to_struct_1', but adds alignment
2101 information. */
2102
2103 tree
2104 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2105 {
2106 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2107
2108 DECL_INITIAL (decl) = 0;
2109 DECL_ALIGN (decl) = 0;
2110 DECL_USER_ALIGN (decl) = 0;
2111
2112 return decl;
2113 }
2114
2115
2116 /* Copy the backend_decl and component backend_decls if
2117 the two derived type symbols are "equal", as described
2118 in 4.4.2 and resolved by gfc_compare_derived_types. */
2119
2120 int
2121 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2122 bool from_gsym)
2123 {
2124 gfc_component *to_cm;
2125 gfc_component *from_cm;
2126
2127 if (from->backend_decl == NULL
2128 || !gfc_compare_derived_types (from, to))
2129 return 0;
2130
2131 to->backend_decl = from->backend_decl;
2132
2133 to_cm = to->components;
2134 from_cm = from->components;
2135
2136 /* Copy the component declarations. If a component is itself
2137 a derived type, we need a copy of its component declarations.
2138 This is done by recursing into gfc_get_derived_type and
2139 ensures that the component's component declarations have
2140 been built. If it is a character, we need the character
2141 length, as well. */
2142 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2143 {
2144 to_cm->backend_decl = from_cm->backend_decl;
2145 if (from_cm->ts.type == BT_DERIVED
2146 && (!from_cm->attr.pointer || from_gsym))
2147 gfc_get_derived_type (to_cm->ts.u.derived);
2148 else if (from_cm->ts.type == BT_CLASS
2149 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2150 gfc_get_derived_type (to_cm->ts.u.derived);
2151 else if (from_cm->ts.type == BT_CHARACTER)
2152 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2153 }
2154
2155 return 1;
2156 }
2157
2158
2159 /* Build a tree node for a procedure pointer component. */
2160
2161 tree
2162 gfc_get_ppc_type (gfc_component* c)
2163 {
2164 tree t;
2165
2166 /* Explicit interface. */
2167 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2168 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2169
2170 /* Implicit interface (only return value may be known). */
2171 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2172 t = gfc_typenode_for_spec (&c->ts);
2173 else
2174 t = void_type_node;
2175
2176 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2177 }
2178
2179
2180 /* Build a tree node for a derived type. If there are equal
2181 derived types, with different local names, these are built
2182 at the same time. If an equal derived type has been built
2183 in a parent namespace, this is used. */
2184
2185 tree
2186 gfc_get_derived_type (gfc_symbol * derived)
2187 {
2188 tree typenode = NULL, field = NULL, field_type = NULL;
2189 tree canonical = NULL_TREE;
2190 tree *chain = NULL;
2191 bool got_canonical = false;
2192 gfc_component *c;
2193 gfc_dt_list *dt;
2194 gfc_namespace *ns;
2195
2196 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
2197
2198 /* See if it's one of the iso_c_binding derived types. */
2199 if (derived->attr.is_iso_c == 1)
2200 {
2201 if (derived->backend_decl)
2202 return derived->backend_decl;
2203
2204 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2205 derived->backend_decl = ptr_type_node;
2206 else
2207 derived->backend_decl = pfunc_type_node;
2208
2209 derived->ts.kind = gfc_index_integer_kind;
2210 derived->ts.type = BT_INTEGER;
2211 /* Set the f90_type to BT_VOID as a way to recognize something of type
2212 BT_INTEGER that needs to fit a void * for the purpose of the
2213 iso_c_binding derived types. */
2214 derived->ts.f90_type = BT_VOID;
2215
2216 return derived->backend_decl;
2217 }
2218
2219 /* If use associated, use the module type for this one. */
2220 if (gfc_option.flag_whole_file
2221 && derived->backend_decl == NULL
2222 && derived->attr.use_assoc
2223 && derived->module
2224 && gfc_get_module_backend_decl (derived))
2225 goto copy_derived_types;
2226
2227 /* If a whole file compilation, the derived types from an earlier
2228 namespace can be used as the canonical type. */
2229 if (gfc_option.flag_whole_file
2230 && derived->backend_decl == NULL
2231 && !derived->attr.use_assoc
2232 && gfc_global_ns_list)
2233 {
2234 for (ns = gfc_global_ns_list;
2235 ns->translated && !got_canonical;
2236 ns = ns->sibling)
2237 {
2238 dt = ns->derived_types;
2239 for (; dt && !canonical; dt = dt->next)
2240 {
2241 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2242 if (derived->backend_decl)
2243 got_canonical = true;
2244 }
2245 }
2246 }
2247
2248 /* Store up the canonical type to be added to this one. */
2249 if (got_canonical)
2250 {
2251 if (TYPE_CANONICAL (derived->backend_decl))
2252 canonical = TYPE_CANONICAL (derived->backend_decl);
2253 else
2254 canonical = derived->backend_decl;
2255
2256 derived->backend_decl = NULL_TREE;
2257 }
2258
2259 /* derived->backend_decl != 0 means we saw it before, but its
2260 components' backend_decl may have not been built. */
2261 if (derived->backend_decl)
2262 {
2263 /* Its components' backend_decl have been built or we are
2264 seeing recursion through the formal arglist of a procedure
2265 pointer component. */
2266 if (TYPE_FIELDS (derived->backend_decl)
2267 || derived->attr.proc_pointer_comp)
2268 return derived->backend_decl;
2269 else
2270 typenode = derived->backend_decl;
2271 }
2272 else
2273 {
2274 /* We see this derived type first time, so build the type node. */
2275 typenode = make_node (RECORD_TYPE);
2276 TYPE_NAME (typenode) = get_identifier (derived->name);
2277 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2278 derived->backend_decl = typenode;
2279 }
2280
2281 /* Go through the derived type components, building them as
2282 necessary. The reason for doing this now is that it is
2283 possible to recurse back to this derived type through a
2284 pointer component (PR24092). If this happens, the fields
2285 will be built and so we can return the type. */
2286 for (c = derived->components; c; c = c->next)
2287 {
2288 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2289 continue;
2290
2291 if ((!c->attr.pointer && !c->attr.proc_pointer)
2292 || c->ts.u.derived->backend_decl == NULL)
2293 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2294
2295 if (c->ts.u.derived && c->ts.u.derived->attr.is_iso_c)
2296 {
2297 /* Need to copy the modified ts from the derived type. The
2298 typespec was modified because C_PTR/C_FUNPTR are translated
2299 into (void *) from derived types. */
2300 c->ts.type = c->ts.u.derived->ts.type;
2301 c->ts.kind = c->ts.u.derived->ts.kind;
2302 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2303 if (c->initializer)
2304 {
2305 c->initializer->ts.type = c->ts.type;
2306 c->initializer->ts.kind = c->ts.kind;
2307 c->initializer->ts.f90_type = c->ts.f90_type;
2308 c->initializer->expr_type = EXPR_NULL;
2309 }
2310 }
2311 }
2312
2313 if (TYPE_FIELDS (derived->backend_decl))
2314 return derived->backend_decl;
2315
2316 /* Build the type member list. Install the newly created RECORD_TYPE
2317 node as DECL_CONTEXT of each FIELD_DECL. */
2318 for (c = derived->components; c; c = c->next)
2319 {
2320 if (c->attr.proc_pointer)
2321 field_type = gfc_get_ppc_type (c);
2322 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2323 field_type = c->ts.u.derived->backend_decl;
2324 else
2325 {
2326 if (c->ts.type == BT_CHARACTER)
2327 {
2328 /* Evaluate the string length. */
2329 gfc_conv_const_charlen (c->ts.u.cl);
2330 gcc_assert (c->ts.u.cl->backend_decl);
2331 }
2332
2333 field_type = gfc_typenode_for_spec (&c->ts);
2334 }
2335
2336 /* This returns an array descriptor type. Initialization may be
2337 required. */
2338 if (c->attr.dimension && !c->attr.proc_pointer)
2339 {
2340 if (c->attr.pointer || c->attr.allocatable)
2341 {
2342 enum gfc_array_kind akind;
2343 if (c->attr.pointer)
2344 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2345 : GFC_ARRAY_POINTER;
2346 else
2347 akind = GFC_ARRAY_ALLOCATABLE;
2348 /* Pointers to arrays aren't actually pointer types. The
2349 descriptors are separate, but the data is common. */
2350 field_type = gfc_build_array_type (field_type, c->as, akind,
2351 !c->attr.target
2352 && !c->attr.pointer,
2353 c->attr.contiguous);
2354 }
2355 else
2356 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2357 PACKED_STATIC,
2358 !c->attr.target);
2359 }
2360 else if ((c->attr.pointer || c->attr.allocatable)
2361 && !c->attr.proc_pointer)
2362 field_type = build_pointer_type (field_type);
2363
2364 /* vtype fields can point to different types to the base type. */
2365 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.vtype)
2366 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2367 ptr_mode, true);
2368
2369 field = gfc_add_field_to_struct (typenode,
2370 get_identifier (c->name),
2371 field_type, &chain);
2372 if (c->loc.lb)
2373 gfc_set_decl_location (field, &c->loc);
2374 else if (derived->declared_at.lb)
2375 gfc_set_decl_location (field, &derived->declared_at);
2376
2377 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2378
2379 gcc_assert (field);
2380 if (!c->backend_decl)
2381 c->backend_decl = field;
2382 }
2383
2384 /* Now lay out the derived type, including the fields. */
2385 if (canonical)
2386 TYPE_CANONICAL (typenode) = canonical;
2387
2388 gfc_finish_type (typenode);
2389 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2390 if (derived->module && derived->ns->proc_name
2391 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2392 {
2393 if (derived->ns->proc_name->backend_decl
2394 && TREE_CODE (derived->ns->proc_name->backend_decl)
2395 == NAMESPACE_DECL)
2396 {
2397 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2398 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2399 = derived->ns->proc_name->backend_decl;
2400 }
2401 }
2402
2403 derived->backend_decl = typenode;
2404
2405 copy_derived_types:
2406
2407 for (dt = gfc_derived_types; dt; dt = dt->next)
2408 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2409
2410 return derived->backend_decl;
2411 }
2412
2413
2414 int
2415 gfc_return_by_reference (gfc_symbol * sym)
2416 {
2417 if (!sym->attr.function)
2418 return 0;
2419
2420 if (sym->attr.dimension)
2421 return 1;
2422
2423 if (sym->ts.type == BT_CHARACTER
2424 && !sym->attr.is_bind_c
2425 && (!sym->attr.result
2426 || !sym->ns->proc_name
2427 || !sym->ns->proc_name->attr.is_bind_c))
2428 return 1;
2429
2430 /* Possibly return complex numbers by reference for g77 compatibility.
2431 We don't do this for calls to intrinsics (as the library uses the
2432 -fno-f2c calling convention), nor for calls to functions which always
2433 require an explicit interface, as no compatibility problems can
2434 arise there. */
2435 if (gfc_option.flag_f2c
2436 && sym->ts.type == BT_COMPLEX
2437 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2438 return 1;
2439
2440 return 0;
2441 }
2442 \f
2443 static tree
2444 gfc_get_mixed_entry_union (gfc_namespace *ns)
2445 {
2446 tree type;
2447 tree *chain = NULL;
2448 char name[GFC_MAX_SYMBOL_LEN + 1];
2449 gfc_entry_list *el, *el2;
2450
2451 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2452 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2453
2454 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2455
2456 /* Build the type node. */
2457 type = make_node (UNION_TYPE);
2458
2459 TYPE_NAME (type) = get_identifier (name);
2460
2461 for (el = ns->entries; el; el = el->next)
2462 {
2463 /* Search for duplicates. */
2464 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2465 if (el2->sym->result == el->sym->result)
2466 break;
2467
2468 if (el == el2)
2469 gfc_add_field_to_struct_1 (type,
2470 get_identifier (el->sym->result->name),
2471 gfc_sym_type (el->sym->result), &chain);
2472 }
2473
2474 /* Finish off the type. */
2475 gfc_finish_type (type);
2476 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2477 return type;
2478 }
2479 \f
2480 /* Create a "fn spec" based on the formal arguments;
2481 cf. create_function_arglist. */
2482
2483 static tree
2484 create_fn_spec (gfc_symbol *sym, tree fntype)
2485 {
2486 char spec[150];
2487 size_t spec_len;
2488 gfc_formal_arglist *f;
2489 tree tmp;
2490
2491 memset (&spec, 0, sizeof (spec));
2492 spec[0] = '.';
2493 spec_len = 1;
2494
2495 if (sym->attr.entry_master)
2496 spec[spec_len++] = 'R';
2497 if (gfc_return_by_reference (sym))
2498 {
2499 gfc_symbol *result = sym->result ? sym->result : sym;
2500
2501 if (result->attr.pointer || sym->attr.proc_pointer)
2502 spec[spec_len++] = '.';
2503 else
2504 spec[spec_len++] = 'w';
2505 if (sym->ts.type == BT_CHARACTER)
2506 spec[spec_len++] = 'R';
2507 }
2508
2509 for (f = sym->formal; f; f = f->next)
2510 if (spec_len < sizeof (spec))
2511 {
2512 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2513 || f->sym->attr.external || f->sym->attr.cray_pointer
2514 || (f->sym->ts.type == BT_DERIVED
2515 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2516 || f->sym->ts.u.derived->attr.pointer_comp))
2517 || (f->sym->ts.type == BT_CLASS
2518 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2519 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2520 spec[spec_len++] = '.';
2521 else if (f->sym->attr.intent == INTENT_IN)
2522 spec[spec_len++] = 'r';
2523 else if (f->sym)
2524 spec[spec_len++] = 'w';
2525 }
2526
2527 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2528 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2529 return build_type_attribute_variant (fntype, tmp);
2530 }
2531
2532
2533 tree
2534 gfc_get_function_type (gfc_symbol * sym)
2535 {
2536 tree type;
2537 tree typelist;
2538 gfc_formal_arglist *f;
2539 gfc_symbol *arg;
2540 int alternate_return;
2541
2542 /* Make sure this symbol is a function, a subroutine or the main
2543 program. */
2544 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2545 || sym->attr.flavor == FL_PROGRAM);
2546
2547 if (sym->backend_decl)
2548 return TREE_TYPE (sym->backend_decl);
2549
2550 alternate_return = 0;
2551 typelist = NULL_TREE;
2552
2553 if (sym->attr.entry_master)
2554 {
2555 /* Additional parameter for selecting an entry point. */
2556 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
2557 }
2558
2559 if (sym->result)
2560 arg = sym->result;
2561 else
2562 arg = sym;
2563
2564 if (arg->ts.type == BT_CHARACTER)
2565 gfc_conv_const_charlen (arg->ts.u.cl);
2566
2567 /* Some functions we use an extra parameter for the return value. */
2568 if (gfc_return_by_reference (sym))
2569 {
2570 type = gfc_sym_type (arg);
2571 if (arg->ts.type == BT_COMPLEX
2572 || arg->attr.dimension
2573 || arg->ts.type == BT_CHARACTER)
2574 type = build_reference_type (type);
2575
2576 typelist = gfc_chainon_list (typelist, type);
2577 if (arg->ts.type == BT_CHARACTER)
2578 {
2579 if (!arg->ts.deferred)
2580 /* Transfer by value. */
2581 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2582 else
2583 /* Deferred character lengths are transferred by reference
2584 so that the value can be returned. */
2585 typelist = gfc_chainon_list (typelist,
2586 build_pointer_type (gfc_charlen_type_node));
2587 }
2588 }
2589
2590 /* Build the argument types for the function. */
2591 for (f = sym->formal; f; f = f->next)
2592 {
2593 arg = f->sym;
2594 if (arg)
2595 {
2596 /* Evaluate constant character lengths here so that they can be
2597 included in the type. */
2598 if (arg->ts.type == BT_CHARACTER)
2599 gfc_conv_const_charlen (arg->ts.u.cl);
2600
2601 if (arg->attr.flavor == FL_PROCEDURE)
2602 {
2603 type = gfc_get_function_type (arg);
2604 type = build_pointer_type (type);
2605 }
2606 else
2607 type = gfc_sym_type (arg);
2608
2609 /* Parameter Passing Convention
2610
2611 We currently pass all parameters by reference.
2612 Parameters with INTENT(IN) could be passed by value.
2613 The problem arises if a function is called via an implicit
2614 prototype. In this situation the INTENT is not known.
2615 For this reason all parameters to global functions must be
2616 passed by reference. Passing by value would potentially
2617 generate bad code. Worse there would be no way of telling that
2618 this code was bad, except that it would give incorrect results.
2619
2620 Contained procedures could pass by value as these are never
2621 used without an explicit interface, and cannot be passed as
2622 actual parameters for a dummy procedure. */
2623
2624 typelist = gfc_chainon_list (typelist, type);
2625 }
2626 else
2627 {
2628 if (sym->attr.subroutine)
2629 alternate_return = 1;
2630 }
2631 }
2632
2633 /* Add hidden string length parameters. */
2634 for (f = sym->formal; f; f = f->next)
2635 {
2636 arg = f->sym;
2637 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2638 {
2639 if (!arg->ts.deferred)
2640 /* Transfer by value. */
2641 type = gfc_charlen_type_node;
2642 else
2643 /* Deferred character lengths are transferred by reference
2644 so that the value can be returned. */
2645 type = build_pointer_type (gfc_charlen_type_node);
2646
2647 typelist = gfc_chainon_list (typelist, type);
2648 }
2649 }
2650
2651 if (typelist)
2652 typelist = chainon (typelist, void_list_node);
2653 else if (sym->attr.is_main_program || sym->attr.if_source != IFSRC_UNKNOWN)
2654 typelist = void_list_node;
2655
2656 if (alternate_return)
2657 type = integer_type_node;
2658 else if (!sym->attr.function || gfc_return_by_reference (sym))
2659 type = void_type_node;
2660 else if (sym->attr.mixed_entry_master)
2661 type = gfc_get_mixed_entry_union (sym->ns);
2662 else if (gfc_option.flag_f2c
2663 && sym->ts.type == BT_REAL
2664 && sym->ts.kind == gfc_default_real_kind
2665 && !sym->attr.always_explicit)
2666 {
2667 /* Special case: f2c calling conventions require that (scalar)
2668 default REAL functions return the C type double instead. f2c
2669 compatibility is only an issue with functions that don't
2670 require an explicit interface, as only these could be
2671 implemented in Fortran 77. */
2672 sym->ts.kind = gfc_default_double_kind;
2673 type = gfc_typenode_for_spec (&sym->ts);
2674 sym->ts.kind = gfc_default_real_kind;
2675 }
2676 else if (sym->result && sym->result->attr.proc_pointer)
2677 /* Procedure pointer return values. */
2678 {
2679 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2680 {
2681 /* Unset proc_pointer as gfc_get_function_type
2682 is called recursively. */
2683 sym->result->attr.proc_pointer = 0;
2684 type = build_pointer_type (gfc_get_function_type (sym->result));
2685 sym->result->attr.proc_pointer = 1;
2686 }
2687 else
2688 type = gfc_sym_type (sym->result);
2689 }
2690 else
2691 type = gfc_sym_type (sym);
2692
2693 type = build_function_type (type, typelist);
2694 type = create_fn_spec (sym, type);
2695
2696 return type;
2697 }
2698 \f
2699 /* Language hooks for middle-end access to type nodes. */
2700
2701 /* Return an integer type with BITS bits of precision,
2702 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2703
2704 tree
2705 gfc_type_for_size (unsigned bits, int unsignedp)
2706 {
2707 if (!unsignedp)
2708 {
2709 int i;
2710 for (i = 0; i <= MAX_INT_KINDS; ++i)
2711 {
2712 tree type = gfc_integer_types[i];
2713 if (type && bits == TYPE_PRECISION (type))
2714 return type;
2715 }
2716
2717 /* Handle TImode as a special case because it is used by some backends
2718 (e.g. ARM) even though it is not available for normal use. */
2719 #if HOST_BITS_PER_WIDE_INT >= 64
2720 if (bits == TYPE_PRECISION (intTI_type_node))
2721 return intTI_type_node;
2722 #endif
2723 }
2724 else
2725 {
2726 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2727 return unsigned_intQI_type_node;
2728 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2729 return unsigned_intHI_type_node;
2730 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2731 return unsigned_intSI_type_node;
2732 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2733 return unsigned_intDI_type_node;
2734 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2735 return unsigned_intTI_type_node;
2736 }
2737
2738 return NULL_TREE;
2739 }
2740
2741 /* Return a data type that has machine mode MODE. If the mode is an
2742 integer, then UNSIGNEDP selects between signed and unsigned types. */
2743
2744 tree
2745 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2746 {
2747 int i;
2748 tree *base;
2749
2750 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2751 base = gfc_real_types;
2752 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2753 base = gfc_complex_types;
2754 else if (SCALAR_INT_MODE_P (mode))
2755 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2756 else if (VECTOR_MODE_P (mode))
2757 {
2758 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2759 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2760 if (inner_type != NULL_TREE)
2761 return build_vector_type_for_mode (inner_type, mode);
2762 return NULL_TREE;
2763 }
2764 else
2765 return NULL_TREE;
2766
2767 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2768 {
2769 tree type = base[i];
2770 if (type && mode == TYPE_MODE (type))
2771 return type;
2772 }
2773
2774 return NULL_TREE;
2775 }
2776
2777 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2778 in that case. */
2779
2780 bool
2781 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2782 {
2783 int rank, dim;
2784 bool indirect = false;
2785 tree etype, ptype, field, t, base_decl;
2786 tree data_off, dim_off, dim_size, elem_size;
2787 tree lower_suboff, upper_suboff, stride_suboff;
2788
2789 if (! GFC_DESCRIPTOR_TYPE_P (type))
2790 {
2791 if (! POINTER_TYPE_P (type))
2792 return false;
2793 type = TREE_TYPE (type);
2794 if (! GFC_DESCRIPTOR_TYPE_P (type))
2795 return false;
2796 indirect = true;
2797 }
2798
2799 rank = GFC_TYPE_ARRAY_RANK (type);
2800 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2801 return false;
2802
2803 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2804 gcc_assert (POINTER_TYPE_P (etype));
2805 etype = TREE_TYPE (etype);
2806 gcc_assert (TREE_CODE (etype) == ARRAY_TYPE);
2807 etype = TREE_TYPE (etype);
2808 /* Can't handle variable sized elements yet. */
2809 if (int_size_in_bytes (etype) <= 0)
2810 return false;
2811 /* Nor non-constant lower bounds in assumed shape arrays. */
2812 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
2813 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
2814 {
2815 for (dim = 0; dim < rank; dim++)
2816 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
2817 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
2818 return false;
2819 }
2820
2821 memset (info, '\0', sizeof (*info));
2822 info->ndimensions = rank;
2823 info->element_type = etype;
2824 ptype = build_pointer_type (gfc_array_index_type);
2825 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
2826 if (!base_decl)
2827 {
2828 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
2829 indirect ? build_pointer_type (ptype) : ptype);
2830 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
2831 }
2832 info->base_decl = base_decl;
2833 if (indirect)
2834 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
2835
2836 if (GFC_TYPE_ARRAY_SPAN (type))
2837 elem_size = GFC_TYPE_ARRAY_SPAN (type);
2838 else
2839 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
2840 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
2841 data_off = byte_position (field);
2842 field = DECL_CHAIN (field);
2843 field = DECL_CHAIN (field);
2844 field = DECL_CHAIN (field);
2845 dim_off = byte_position (field);
2846 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
2847 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
2848 stride_suboff = byte_position (field);
2849 field = DECL_CHAIN (field);
2850 lower_suboff = byte_position (field);
2851 field = DECL_CHAIN (field);
2852 upper_suboff = byte_position (field);
2853
2854 t = base_decl;
2855 if (!integer_zerop (data_off))
2856 t = build2 (POINTER_PLUS_EXPR, ptype, t, data_off);
2857 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
2858 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
2859 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
2860 info->allocated = build2 (NE_EXPR, boolean_type_node,
2861 info->data_location, null_pointer_node);
2862 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
2863 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
2864 info->associated = build2 (NE_EXPR, boolean_type_node,
2865 info->data_location, null_pointer_node);
2866
2867 for (dim = 0; dim < rank; dim++)
2868 {
2869 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2870 size_binop (PLUS_EXPR, dim_off, lower_suboff));
2871 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2872 info->dimen[dim].lower_bound = t;
2873 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2874 size_binop (PLUS_EXPR, dim_off, upper_suboff));
2875 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2876 info->dimen[dim].upper_bound = t;
2877 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
2878 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
2879 {
2880 /* Assumed shape arrays have known lower bounds. */
2881 info->dimen[dim].upper_bound
2882 = build2 (MINUS_EXPR, gfc_array_index_type,
2883 info->dimen[dim].upper_bound,
2884 info->dimen[dim].lower_bound);
2885 info->dimen[dim].lower_bound
2886 = fold_convert (gfc_array_index_type,
2887 GFC_TYPE_ARRAY_LBOUND (type, dim));
2888 info->dimen[dim].upper_bound
2889 = build2 (PLUS_EXPR, gfc_array_index_type,
2890 info->dimen[dim].lower_bound,
2891 info->dimen[dim].upper_bound);
2892 }
2893 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2894 size_binop (PLUS_EXPR, dim_off, stride_suboff));
2895 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2896 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
2897 info->dimen[dim].stride = t;
2898 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
2899 }
2900
2901 return true;
2902 }
2903
2904 #include "gt-fortran-trans-types.h"