trans-types.c (gfc_init_types): Ensure gfc_integer_types doesn't contain TYPE_STRING_...
[gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Paul Brook <paul@nowt.org>
5 and Steven Bosscher <s.bosscher@student.tudelft.nl>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* trans-types.c -- gfortran backend types */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tree.h"
29 #include "langhooks.h"
30 #include "tm.h"
31 #include "target.h"
32 #include "ggc.h"
33 #include "toplev.h"
34 #include "gfortran.h"
35 #include "trans.h"
36 #include "trans-types.h"
37 #include "trans-const.h"
38 #include "real.h"
39 #include "flags.h"
40 #include "dwarf2out.h"
41 \f
42
43 #if (GFC_MAX_DIMENSIONS < 10)
44 #define GFC_RANK_DIGITS 1
45 #define GFC_RANK_PRINTF_FORMAT "%01d"
46 #elif (GFC_MAX_DIMENSIONS < 100)
47 #define GFC_RANK_DIGITS 2
48 #define GFC_RANK_PRINTF_FORMAT "%02d"
49 #else
50 #error If you really need >99 dimensions, continue the sequence above...
51 #endif
52
53 /* array of structs so we don't have to worry about xmalloc or free */
54 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
55
56 static tree gfc_get_derived_type (gfc_symbol * derived);
57
58 tree gfc_array_index_type;
59 tree gfc_array_range_type;
60 tree gfc_character1_type_node;
61 tree pvoid_type_node;
62 tree ppvoid_type_node;
63 tree pchar_type_node;
64 tree pfunc_type_node;
65
66 tree gfc_charlen_type_node;
67
68 static GTY(()) tree gfc_desc_dim_type;
69 static GTY(()) tree gfc_max_array_element_size;
70 static GTY(()) tree gfc_array_descriptor_base[GFC_MAX_DIMENSIONS];
71
72 /* Arrays for all integral and real kinds. We'll fill this in at runtime
73 after the target has a chance to process command-line options. */
74
75 #define MAX_INT_KINDS 5
76 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
77 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
78 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
79 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
80
81 #define MAX_REAL_KINDS 5
82 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
83 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
84 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
85
86 #define MAX_CHARACTER_KINDS 2
87 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
88 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
89 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
90
91
92 /* The integer kind to use for array indices. This will be set to the
93 proper value based on target information from the backend. */
94
95 int gfc_index_integer_kind;
96
97 /* The default kinds of the various types. */
98
99 int gfc_default_integer_kind;
100 int gfc_max_integer_kind;
101 int gfc_default_real_kind;
102 int gfc_default_double_kind;
103 int gfc_default_character_kind;
104 int gfc_default_logical_kind;
105 int gfc_default_complex_kind;
106 int gfc_c_int_kind;
107
108 /* The kind size used for record offsets. If the target system supports
109 kind=8, this will be set to 8, otherwise it is set to 4. */
110 int gfc_intio_kind;
111
112 /* The integer kind used to store character lengths. */
113 int gfc_charlen_int_kind;
114
115 /* The size of the numeric storage unit and character storage unit. */
116 int gfc_numeric_storage_size;
117 int gfc_character_storage_size;
118
119
120 gfc_try
121 gfc_check_any_c_kind (gfc_typespec *ts)
122 {
123 int i;
124
125 for (i = 0; i < ISOCBINDING_NUMBER; i++)
126 {
127 /* Check for any C interoperable kind for the given type/kind in ts.
128 This can be used after verify_c_interop to make sure that the
129 Fortran kind being used exists in at least some form for C. */
130 if (c_interop_kinds_table[i].f90_type == ts->type &&
131 c_interop_kinds_table[i].value == ts->kind)
132 return SUCCESS;
133 }
134
135 return FAILURE;
136 }
137
138
139 static int
140 get_real_kind_from_node (tree type)
141 {
142 int i;
143
144 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
145 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
146 return gfc_real_kinds[i].kind;
147
148 return -4;
149 }
150
151 static int
152 get_int_kind_from_node (tree type)
153 {
154 int i;
155
156 if (!type)
157 return -2;
158
159 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
160 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
161 return gfc_integer_kinds[i].kind;
162
163 return -1;
164 }
165
166 static int
167 get_int_kind_from_width (int size)
168 {
169 int i;
170
171 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
172 if (gfc_integer_kinds[i].bit_size == size)
173 return gfc_integer_kinds[i].kind;
174
175 return -2;
176 }
177
178 static int
179 get_int_kind_from_minimal_width (int size)
180 {
181 int i;
182
183 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
184 if (gfc_integer_kinds[i].bit_size >= size)
185 return gfc_integer_kinds[i].kind;
186
187 return -2;
188 }
189
190
191 /* Generate the CInteropKind_t objects for the C interoperable
192 kinds. */
193
194 static
195 void init_c_interop_kinds (void)
196 {
197 int i;
198 tree intmax_type_node = INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
199 integer_type_node :
200 (LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
201 long_integer_type_node :
202 long_long_integer_type_node);
203
204 /* init all pointers in the list to NULL */
205 for (i = 0; i < ISOCBINDING_NUMBER; i++)
206 {
207 /* Initialize the name and value fields. */
208 c_interop_kinds_table[i].name[0] = '\0';
209 c_interop_kinds_table[i].value = -100;
210 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
211 }
212
213 #define NAMED_INTCST(a,b,c,d) \
214 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
215 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
216 c_interop_kinds_table[a].value = c;
217 #define NAMED_REALCST(a,b,c) \
218 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
219 c_interop_kinds_table[a].f90_type = BT_REAL; \
220 c_interop_kinds_table[a].value = c;
221 #define NAMED_CMPXCST(a,b,c) \
222 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
223 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
224 c_interop_kinds_table[a].value = c;
225 #define NAMED_LOGCST(a,b,c) \
226 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
227 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
228 c_interop_kinds_table[a].value = c;
229 #define NAMED_CHARKNDCST(a,b,c) \
230 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
231 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
232 c_interop_kinds_table[a].value = c;
233 #define NAMED_CHARCST(a,b,c) \
234 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
235 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
236 c_interop_kinds_table[a].value = c;
237 #define DERIVED_TYPE(a,b,c) \
238 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
239 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
240 c_interop_kinds_table[a].value = c;
241 #define PROCEDURE(a,b) \
242 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
243 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
244 c_interop_kinds_table[a].value = 0;
245 #include "iso-c-binding.def"
246 }
247
248
249 /* Query the target to determine which machine modes are available for
250 computation. Choose KIND numbers for them. */
251
252 void
253 gfc_init_kinds (void)
254 {
255 enum machine_mode mode;
256 int i_index, r_index, kind;
257 bool saw_i4 = false, saw_i8 = false;
258 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
259
260 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
261 {
262 int kind, bitsize;
263
264 if (!targetm.scalar_mode_supported_p (mode))
265 continue;
266
267 /* The middle end doesn't support constants larger than 2*HWI.
268 Perhaps the target hook shouldn't have accepted these either,
269 but just to be safe... */
270 bitsize = GET_MODE_BITSIZE (mode);
271 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
272 continue;
273
274 gcc_assert (i_index != MAX_INT_KINDS);
275
276 /* Let the kind equal the bit size divided by 8. This insulates the
277 programmer from the underlying byte size. */
278 kind = bitsize / 8;
279
280 if (kind == 4)
281 saw_i4 = true;
282 if (kind == 8)
283 saw_i8 = true;
284
285 gfc_integer_kinds[i_index].kind = kind;
286 gfc_integer_kinds[i_index].radix = 2;
287 gfc_integer_kinds[i_index].digits = bitsize - 1;
288 gfc_integer_kinds[i_index].bit_size = bitsize;
289
290 gfc_logical_kinds[i_index].kind = kind;
291 gfc_logical_kinds[i_index].bit_size = bitsize;
292
293 i_index += 1;
294 }
295
296 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
297 used for large file access. */
298
299 if (saw_i8)
300 gfc_intio_kind = 8;
301 else
302 gfc_intio_kind = 4;
303
304 /* If we do not at least have kind = 4, everything is pointless. */
305 gcc_assert(saw_i4);
306
307 /* Set the maximum integer kind. Used with at least BOZ constants. */
308 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
309
310 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
311 {
312 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
313 int kind;
314
315 if (fmt == NULL)
316 continue;
317 if (!targetm.scalar_mode_supported_p (mode))
318 continue;
319
320 /* Only let float/double/long double go through because the fortran
321 library assumes these are the only floating point types. */
322
323 if (mode != TYPE_MODE (float_type_node)
324 && (mode != TYPE_MODE (double_type_node))
325 && (mode != TYPE_MODE (long_double_type_node)))
326 continue;
327
328 /* Let the kind equal the precision divided by 8, rounding up. Again,
329 this insulates the programmer from the underlying byte size.
330
331 Also, it effectively deals with IEEE extended formats. There, the
332 total size of the type may equal 16, but it's got 6 bytes of padding
333 and the increased size can get in the way of a real IEEE quad format
334 which may also be supported by the target.
335
336 We round up so as to handle IA-64 __floatreg (RFmode), which is an
337 82 bit type. Not to be confused with __float80 (XFmode), which is
338 an 80 bit type also supported by IA-64. So XFmode should come out
339 to be kind=10, and RFmode should come out to be kind=11. Egads. */
340
341 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
342
343 if (kind == 4)
344 saw_r4 = true;
345 if (kind == 8)
346 saw_r8 = true;
347 if (kind == 16)
348 saw_r16 = true;
349
350 /* Careful we don't stumble a weird internal mode. */
351 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
352 /* Or have too many modes for the allocated space. */
353 gcc_assert (r_index != MAX_REAL_KINDS);
354
355 gfc_real_kinds[r_index].kind = kind;
356 gfc_real_kinds[r_index].radix = fmt->b;
357 gfc_real_kinds[r_index].digits = fmt->p;
358 gfc_real_kinds[r_index].min_exponent = fmt->emin;
359 gfc_real_kinds[r_index].max_exponent = fmt->emax;
360 if (fmt->pnan < fmt->p)
361 /* This is an IBM extended double format (or the MIPS variant)
362 made up of two IEEE doubles. The value of the long double is
363 the sum of the values of the two parts. The most significant
364 part is required to be the value of the long double rounded
365 to the nearest double. If we use emax of 1024 then we can't
366 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
367 rounding will make the most significant part overflow. */
368 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
369 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
370 r_index += 1;
371 }
372
373 /* Choose the default integer kind. We choose 4 unless the user
374 directs us otherwise. */
375 if (gfc_option.flag_default_integer)
376 {
377 if (!saw_i8)
378 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
379 gfc_default_integer_kind = 8;
380
381 /* Even if the user specified that the default integer kind be 8,
382 the numeric storage size isn't 64. In this case, a warning will
383 be issued when NUMERIC_STORAGE_SIZE is used. */
384 gfc_numeric_storage_size = 4 * 8;
385 }
386 else if (saw_i4)
387 {
388 gfc_default_integer_kind = 4;
389 gfc_numeric_storage_size = 4 * 8;
390 }
391 else
392 {
393 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
394 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
395 }
396
397 /* Choose the default real kind. Again, we choose 4 when possible. */
398 if (gfc_option.flag_default_real)
399 {
400 if (!saw_r8)
401 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
402 gfc_default_real_kind = 8;
403 }
404 else if (saw_r4)
405 gfc_default_real_kind = 4;
406 else
407 gfc_default_real_kind = gfc_real_kinds[0].kind;
408
409 /* Choose the default double kind. If -fdefault-real and -fdefault-double
410 are specified, we use kind=8, if it's available. If -fdefault-real is
411 specified without -fdefault-double, we use kind=16, if it's available.
412 Otherwise we do not change anything. */
413 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
414 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
415
416 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
417 gfc_default_double_kind = 8;
418 else if (gfc_option.flag_default_real && saw_r16)
419 gfc_default_double_kind = 16;
420 else if (saw_r4 && saw_r8)
421 gfc_default_double_kind = 8;
422 else
423 {
424 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
425 real ... occupies two contiguous numeric storage units.
426
427 Therefore we must be supplied a kind twice as large as we chose
428 for single precision. There are loopholes, in that double
429 precision must *occupy* two storage units, though it doesn't have
430 to *use* two storage units. Which means that you can make this
431 kind artificially wide by padding it. But at present there are
432 no GCC targets for which a two-word type does not exist, so we
433 just let gfc_validate_kind abort and tell us if something breaks. */
434
435 gfc_default_double_kind
436 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
437 }
438
439 /* The default logical kind is constrained to be the same as the
440 default integer kind. Similarly with complex and real. */
441 gfc_default_logical_kind = gfc_default_integer_kind;
442 gfc_default_complex_kind = gfc_default_real_kind;
443
444 /* We only have two character kinds: ASCII and UCS-4.
445 ASCII corresponds to a 8-bit integer type, if one is available.
446 UCS-4 corresponds to a 32-bit integer type, if one is available. */
447 i_index = 0;
448 if ((kind = get_int_kind_from_width (8)) > 0)
449 {
450 gfc_character_kinds[i_index].kind = kind;
451 gfc_character_kinds[i_index].bit_size = 8;
452 gfc_character_kinds[i_index].name = "ascii";
453 i_index++;
454 }
455 if ((kind = get_int_kind_from_width (32)) > 0)
456 {
457 gfc_character_kinds[i_index].kind = kind;
458 gfc_character_kinds[i_index].bit_size = 32;
459 gfc_character_kinds[i_index].name = "iso_10646";
460 i_index++;
461 }
462
463 /* Choose the smallest integer kind for our default character. */
464 gfc_default_character_kind = gfc_character_kinds[0].kind;
465 gfc_character_storage_size = gfc_default_character_kind * 8;
466
467 /* Choose the integer kind the same size as "void*" for our index kind. */
468 gfc_index_integer_kind = POINTER_SIZE / 8;
469 /* Pick a kind the same size as the C "int" type. */
470 gfc_c_int_kind = INT_TYPE_SIZE / 8;
471
472 /* initialize the C interoperable kinds */
473 init_c_interop_kinds();
474 }
475
476 /* Make sure that a valid kind is present. Returns an index into the
477 associated kinds array, -1 if the kind is not present. */
478
479 static int
480 validate_integer (int kind)
481 {
482 int i;
483
484 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
485 if (gfc_integer_kinds[i].kind == kind)
486 return i;
487
488 return -1;
489 }
490
491 static int
492 validate_real (int kind)
493 {
494 int i;
495
496 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
497 if (gfc_real_kinds[i].kind == kind)
498 return i;
499
500 return -1;
501 }
502
503 static int
504 validate_logical (int kind)
505 {
506 int i;
507
508 for (i = 0; gfc_logical_kinds[i].kind; i++)
509 if (gfc_logical_kinds[i].kind == kind)
510 return i;
511
512 return -1;
513 }
514
515 static int
516 validate_character (int kind)
517 {
518 int i;
519
520 for (i = 0; gfc_character_kinds[i].kind; i++)
521 if (gfc_character_kinds[i].kind == kind)
522 return i;
523
524 return -1;
525 }
526
527 /* Validate a kind given a basic type. The return value is the same
528 for the child functions, with -1 indicating nonexistence of the
529 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
530
531 int
532 gfc_validate_kind (bt type, int kind, bool may_fail)
533 {
534 int rc;
535
536 switch (type)
537 {
538 case BT_REAL: /* Fall through */
539 case BT_COMPLEX:
540 rc = validate_real (kind);
541 break;
542 case BT_INTEGER:
543 rc = validate_integer (kind);
544 break;
545 case BT_LOGICAL:
546 rc = validate_logical (kind);
547 break;
548 case BT_CHARACTER:
549 rc = validate_character (kind);
550 break;
551
552 default:
553 gfc_internal_error ("gfc_validate_kind(): Got bad type");
554 }
555
556 if (rc < 0 && !may_fail)
557 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
558
559 return rc;
560 }
561
562
563 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
564 Reuse common type nodes where possible. Recognize if the kind matches up
565 with a C type. This will be used later in determining which routines may
566 be scarfed from libm. */
567
568 static tree
569 gfc_build_int_type (gfc_integer_info *info)
570 {
571 int mode_precision = info->bit_size;
572
573 if (mode_precision == CHAR_TYPE_SIZE)
574 info->c_char = 1;
575 if (mode_precision == SHORT_TYPE_SIZE)
576 info->c_short = 1;
577 if (mode_precision == INT_TYPE_SIZE)
578 info->c_int = 1;
579 if (mode_precision == LONG_TYPE_SIZE)
580 info->c_long = 1;
581 if (mode_precision == LONG_LONG_TYPE_SIZE)
582 info->c_long_long = 1;
583
584 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
585 return intQI_type_node;
586 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
587 return intHI_type_node;
588 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
589 return intSI_type_node;
590 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
591 return intDI_type_node;
592 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
593 return intTI_type_node;
594
595 return make_signed_type (mode_precision);
596 }
597
598 static tree
599 gfc_build_uint_type (int size)
600 {
601 if (size == CHAR_TYPE_SIZE)
602 return unsigned_char_type_node;
603 if (size == SHORT_TYPE_SIZE)
604 return short_unsigned_type_node;
605 if (size == INT_TYPE_SIZE)
606 return unsigned_type_node;
607 if (size == LONG_TYPE_SIZE)
608 return long_unsigned_type_node;
609 if (size == LONG_LONG_TYPE_SIZE)
610 return long_long_unsigned_type_node;
611
612 return make_unsigned_type (size);
613 }
614
615
616 static tree
617 gfc_build_real_type (gfc_real_info *info)
618 {
619 int mode_precision = info->mode_precision;
620 tree new_type;
621
622 if (mode_precision == FLOAT_TYPE_SIZE)
623 info->c_float = 1;
624 if (mode_precision == DOUBLE_TYPE_SIZE)
625 info->c_double = 1;
626 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
627 info->c_long_double = 1;
628
629 if (TYPE_PRECISION (float_type_node) == mode_precision)
630 return float_type_node;
631 if (TYPE_PRECISION (double_type_node) == mode_precision)
632 return double_type_node;
633 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
634 return long_double_type_node;
635
636 new_type = make_node (REAL_TYPE);
637 TYPE_PRECISION (new_type) = mode_precision;
638 layout_type (new_type);
639 return new_type;
640 }
641
642 static tree
643 gfc_build_complex_type (tree scalar_type)
644 {
645 tree new_type;
646
647 if (scalar_type == NULL)
648 return NULL;
649 if (scalar_type == float_type_node)
650 return complex_float_type_node;
651 if (scalar_type == double_type_node)
652 return complex_double_type_node;
653 if (scalar_type == long_double_type_node)
654 return complex_long_double_type_node;
655
656 new_type = make_node (COMPLEX_TYPE);
657 TREE_TYPE (new_type) = scalar_type;
658 layout_type (new_type);
659 return new_type;
660 }
661
662 static tree
663 gfc_build_logical_type (gfc_logical_info *info)
664 {
665 int bit_size = info->bit_size;
666 tree new_type;
667
668 if (bit_size == BOOL_TYPE_SIZE)
669 {
670 info->c_bool = 1;
671 return boolean_type_node;
672 }
673
674 new_type = make_unsigned_type (bit_size);
675 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
676 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
677 TYPE_PRECISION (new_type) = 1;
678
679 return new_type;
680 }
681
682 #if 0
683 /* Return the bit size of the C "size_t". */
684
685 static unsigned int
686 c_size_t_size (void)
687 {
688 #ifdef SIZE_TYPE
689 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
690 return INT_TYPE_SIZE;
691 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
692 return LONG_TYPE_SIZE;
693 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
694 return SHORT_TYPE_SIZE;
695 gcc_unreachable ();
696 #else
697 return LONG_TYPE_SIZE;
698 #endif
699 }
700 #endif
701
702 /* Create the backend type nodes. We map them to their
703 equivalent C type, at least for now. We also give
704 names to the types here, and we push them in the
705 global binding level context.*/
706
707 void
708 gfc_init_types (void)
709 {
710 char name_buf[18];
711 int index;
712 tree type;
713 unsigned n;
714 unsigned HOST_WIDE_INT hi;
715 unsigned HOST_WIDE_INT lo;
716
717 /* Create and name the types. */
718 #define PUSH_TYPE(name, node) \
719 pushdecl (build_decl (TYPE_DECL, get_identifier (name), node))
720
721 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
722 {
723 type = gfc_build_int_type (&gfc_integer_kinds[index]);
724 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
725 if (TYPE_STRING_FLAG (type))
726 type = make_signed_type (gfc_integer_kinds[index].bit_size);
727 gfc_integer_types[index] = type;
728 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
729 gfc_integer_kinds[index].kind);
730 PUSH_TYPE (name_buf, type);
731 }
732
733 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
734 {
735 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
736 gfc_logical_types[index] = type;
737 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
738 gfc_logical_kinds[index].kind);
739 PUSH_TYPE (name_buf, type);
740 }
741
742 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
743 {
744 type = gfc_build_real_type (&gfc_real_kinds[index]);
745 gfc_real_types[index] = type;
746 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
747 gfc_real_kinds[index].kind);
748 PUSH_TYPE (name_buf, type);
749
750 type = gfc_build_complex_type (type);
751 gfc_complex_types[index] = type;
752 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
753 gfc_real_kinds[index].kind);
754 PUSH_TYPE (name_buf, type);
755 }
756
757 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
758 {
759 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
760 type = build_qualified_type (type, TYPE_UNQUALIFIED);
761 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
762 gfc_character_kinds[index].kind);
763 PUSH_TYPE (name_buf, type);
764 gfc_character_types[index] = type;
765 gfc_pcharacter_types[index] = build_pointer_type (type);
766 }
767 gfc_character1_type_node = gfc_character_types[0];
768
769 PUSH_TYPE ("byte", unsigned_char_type_node);
770 PUSH_TYPE ("void", void_type_node);
771
772 /* DBX debugging output gets upset if these aren't set. */
773 if (!TYPE_NAME (integer_type_node))
774 PUSH_TYPE ("c_integer", integer_type_node);
775 if (!TYPE_NAME (char_type_node))
776 PUSH_TYPE ("c_char", char_type_node);
777
778 #undef PUSH_TYPE
779
780 pvoid_type_node = build_pointer_type (void_type_node);
781 ppvoid_type_node = build_pointer_type (pvoid_type_node);
782 pchar_type_node = build_pointer_type (gfc_character1_type_node);
783 pfunc_type_node
784 = build_pointer_type (build_function_type (void_type_node, NULL_TREE));
785
786 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
787 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
788 since this function is called before gfc_init_constants. */
789 gfc_array_range_type
790 = build_range_type (gfc_array_index_type,
791 build_int_cst (gfc_array_index_type, 0),
792 NULL_TREE);
793
794 /* The maximum array element size that can be handled is determined
795 by the number of bits available to store this field in the array
796 descriptor. */
797
798 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
799 lo = ~ (unsigned HOST_WIDE_INT) 0;
800 if (n > HOST_BITS_PER_WIDE_INT)
801 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
802 else
803 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
804 gfc_max_array_element_size
805 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
806
807 size_type_node = gfc_array_index_type;
808
809 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
810 boolean_true_node = build_int_cst (boolean_type_node, 1);
811 boolean_false_node = build_int_cst (boolean_type_node, 0);
812
813 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
814 gfc_charlen_int_kind = 4;
815 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
816 }
817
818 /* Get the type node for the given type and kind. */
819
820 tree
821 gfc_get_int_type (int kind)
822 {
823 int index = gfc_validate_kind (BT_INTEGER, kind, true);
824 return index < 0 ? 0 : gfc_integer_types[index];
825 }
826
827 tree
828 gfc_get_real_type (int kind)
829 {
830 int index = gfc_validate_kind (BT_REAL, kind, true);
831 return index < 0 ? 0 : gfc_real_types[index];
832 }
833
834 tree
835 gfc_get_complex_type (int kind)
836 {
837 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
838 return index < 0 ? 0 : gfc_complex_types[index];
839 }
840
841 tree
842 gfc_get_logical_type (int kind)
843 {
844 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
845 return index < 0 ? 0 : gfc_logical_types[index];
846 }
847
848 tree
849 gfc_get_char_type (int kind)
850 {
851 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
852 return index < 0 ? 0 : gfc_character_types[index];
853 }
854
855 tree
856 gfc_get_pchar_type (int kind)
857 {
858 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
859 return index < 0 ? 0 : gfc_pcharacter_types[index];
860 }
861
862 \f
863 /* Create a character type with the given kind and length. */
864
865 tree
866 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
867 {
868 tree bounds, type;
869
870 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
871 type = build_array_type (eltype, bounds);
872 TYPE_STRING_FLAG (type) = 1;
873
874 return type;
875 }
876
877 tree
878 gfc_get_character_type_len (int kind, tree len)
879 {
880 gfc_validate_kind (BT_CHARACTER, kind, false);
881 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
882 }
883
884
885 /* Get a type node for a character kind. */
886
887 tree
888 gfc_get_character_type (int kind, gfc_charlen * cl)
889 {
890 tree len;
891
892 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
893
894 return gfc_get_character_type_len (kind, len);
895 }
896 \f
897 /* Covert a basic type. This will be an array for character types. */
898
899 tree
900 gfc_typenode_for_spec (gfc_typespec * spec)
901 {
902 tree basetype;
903
904 switch (spec->type)
905 {
906 case BT_UNKNOWN:
907 gcc_unreachable ();
908
909 case BT_INTEGER:
910 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
911 has been resolved. This is done so we can convert C_PTR and
912 C_FUNPTR to simple variables that get translated to (void *). */
913 if (spec->f90_type == BT_VOID)
914 {
915 if (spec->derived
916 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
917 basetype = ptr_type_node;
918 else
919 basetype = pfunc_type_node;
920 }
921 else
922 basetype = gfc_get_int_type (spec->kind);
923 break;
924
925 case BT_REAL:
926 basetype = gfc_get_real_type (spec->kind);
927 break;
928
929 case BT_COMPLEX:
930 basetype = gfc_get_complex_type (spec->kind);
931 break;
932
933 case BT_LOGICAL:
934 basetype = gfc_get_logical_type (spec->kind);
935 break;
936
937 case BT_CHARACTER:
938 basetype = gfc_get_character_type (spec->kind, spec->cl);
939 break;
940
941 case BT_DERIVED:
942 basetype = gfc_get_derived_type (spec->derived);
943
944 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
945 type and kind to fit a (void *) and the basetype returned was a
946 ptr_type_node. We need to pass up this new information to the
947 symbol that was declared of type C_PTR or C_FUNPTR. */
948 if (spec->derived->attr.is_iso_c)
949 {
950 spec->type = spec->derived->ts.type;
951 spec->kind = spec->derived->ts.kind;
952 spec->f90_type = spec->derived->ts.f90_type;
953 }
954 break;
955 case BT_VOID:
956 /* This is for the second arg to c_f_pointer and c_f_procpointer
957 of the iso_c_binding module, to accept any ptr type. */
958 basetype = ptr_type_node;
959 if (spec->f90_type == BT_VOID)
960 {
961 if (spec->derived
962 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
963 basetype = ptr_type_node;
964 else
965 basetype = pfunc_type_node;
966 }
967 break;
968 default:
969 gcc_unreachable ();
970 }
971 return basetype;
972 }
973 \f
974 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
975
976 static tree
977 gfc_conv_array_bound (gfc_expr * expr)
978 {
979 /* If expr is an integer constant, return that. */
980 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
981 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
982
983 /* Otherwise return NULL. */
984 return NULL_TREE;
985 }
986 \f
987 tree
988 gfc_get_element_type (tree type)
989 {
990 tree element;
991
992 if (GFC_ARRAY_TYPE_P (type))
993 {
994 if (TREE_CODE (type) == POINTER_TYPE)
995 type = TREE_TYPE (type);
996 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
997 element = TREE_TYPE (type);
998 }
999 else
1000 {
1001 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1002 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1003
1004 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1005 element = TREE_TYPE (element);
1006
1007 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
1008 element = TREE_TYPE (element);
1009 }
1010
1011 return element;
1012 }
1013 \f
1014 /* Build an array. This function is called from gfc_sym_type().
1015 Actually returns array descriptor type.
1016
1017 Format of array descriptors is as follows:
1018
1019 struct gfc_array_descriptor
1020 {
1021 array *data
1022 index offset;
1023 index dtype;
1024 struct descriptor_dimension dimension[N_DIM];
1025 }
1026
1027 struct descriptor_dimension
1028 {
1029 index stride;
1030 index lbound;
1031 index ubound;
1032 }
1033
1034 Translation code should use gfc_conv_descriptor_* rather than
1035 accessing the descriptor directly. Any changes to the array
1036 descriptor type will require changes in gfc_conv_descriptor_* and
1037 gfc_build_array_initializer.
1038
1039 This is represented internally as a RECORD_TYPE. The index nodes
1040 are gfc_array_index_type and the data node is a pointer to the
1041 data. See below for the handling of character types.
1042
1043 The dtype member is formatted as follows:
1044 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1045 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1046 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1047
1048 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1049 this generated poor code for assumed/deferred size arrays. These
1050 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1051 of the GENERIC grammar. Also, there is no way to explicitly set
1052 the array stride, so all data must be packed(1). I've tried to
1053 mark all the functions which would require modification with a GCC
1054 ARRAYS comment.
1055
1056 The data component points to the first element in the array. The
1057 offset field is the position of the origin of the array (i.e. element
1058 (0, 0 ...)). This may be outside the bounds of the array.
1059
1060 An element is accessed by
1061 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1062 This gives good performance as the computation does not involve the
1063 bounds of the array. For packed arrays, this is optimized further
1064 by substituting the known strides.
1065
1066 This system has one problem: all array bounds must be within 2^31
1067 elements of the origin (2^63 on 64-bit machines). For example
1068 integer, dimension (80000:90000, 80000:90000, 2) :: array
1069 may not work properly on 32-bit machines because 80000*80000 >
1070 2^31, so the calculation for stride2 would overflow. This may
1071 still work, but I haven't checked, and it relies on the overflow
1072 doing the right thing.
1073
1074 The way to fix this problem is to access elements as follows:
1075 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1076 Obviously this is much slower. I will make this a compile time
1077 option, something like -fsmall-array-offsets. Mixing code compiled
1078 with and without this switch will work.
1079
1080 (1) This can be worked around by modifying the upper bound of the
1081 previous dimension. This requires extra fields in the descriptor
1082 (both real_ubound and fake_ubound). */
1083
1084
1085 /* Returns true if the array sym does not require a descriptor. */
1086
1087 int
1088 gfc_is_nodesc_array (gfc_symbol * sym)
1089 {
1090 gcc_assert (sym->attr.dimension);
1091
1092 /* We only want local arrays. */
1093 if (sym->attr.pointer || sym->attr.allocatable)
1094 return 0;
1095
1096 if (sym->attr.dummy)
1097 {
1098 if (sym->as->type != AS_ASSUMED_SHAPE)
1099 return 1;
1100 else
1101 return 0;
1102 }
1103
1104 if (sym->attr.result || sym->attr.function)
1105 return 0;
1106
1107 gcc_assert (sym->as->type == AS_EXPLICIT);
1108
1109 return 1;
1110 }
1111
1112
1113 /* Create an array descriptor type. */
1114
1115 static tree
1116 gfc_build_array_type (tree type, gfc_array_spec * as,
1117 enum gfc_array_kind akind)
1118 {
1119 tree lbound[GFC_MAX_DIMENSIONS];
1120 tree ubound[GFC_MAX_DIMENSIONS];
1121 int n;
1122
1123 for (n = 0; n < as->rank; n++)
1124 {
1125 /* Create expressions for the known bounds of the array. */
1126 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1127 lbound[n] = gfc_index_one_node;
1128 else
1129 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1130 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1131 }
1132
1133 if (as->type == AS_ASSUMED_SHAPE)
1134 akind = GFC_ARRAY_ASSUMED_SHAPE;
1135 return gfc_get_array_type_bounds (type, as->rank, lbound, ubound, 0, akind);
1136 }
1137 \f
1138 /* Returns the struct descriptor_dimension type. */
1139
1140 static tree
1141 gfc_get_desc_dim_type (void)
1142 {
1143 tree type;
1144 tree decl;
1145 tree fieldlist;
1146
1147 if (gfc_desc_dim_type)
1148 return gfc_desc_dim_type;
1149
1150 /* Build the type node. */
1151 type = make_node (RECORD_TYPE);
1152
1153 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1154 TYPE_PACKED (type) = 1;
1155
1156 /* Consists of the stride, lbound and ubound members. */
1157 decl = build_decl (FIELD_DECL,
1158 get_identifier ("stride"), gfc_array_index_type);
1159 DECL_CONTEXT (decl) = type;
1160 TREE_NO_WARNING (decl) = 1;
1161 fieldlist = decl;
1162
1163 decl = build_decl (FIELD_DECL,
1164 get_identifier ("lbound"), gfc_array_index_type);
1165 DECL_CONTEXT (decl) = type;
1166 TREE_NO_WARNING (decl) = 1;
1167 fieldlist = chainon (fieldlist, decl);
1168
1169 decl = build_decl (FIELD_DECL,
1170 get_identifier ("ubound"), gfc_array_index_type);
1171 DECL_CONTEXT (decl) = type;
1172 TREE_NO_WARNING (decl) = 1;
1173 fieldlist = chainon (fieldlist, decl);
1174
1175 /* Finish off the type. */
1176 TYPE_FIELDS (type) = fieldlist;
1177
1178 gfc_finish_type (type);
1179 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1180
1181 gfc_desc_dim_type = type;
1182 return type;
1183 }
1184
1185
1186 /* Return the DTYPE for an array. This describes the type and type parameters
1187 of the array. */
1188 /* TODO: Only call this when the value is actually used, and make all the
1189 unknown cases abort. */
1190
1191 tree
1192 gfc_get_dtype (tree type)
1193 {
1194 tree size;
1195 int n;
1196 HOST_WIDE_INT i;
1197 tree tmp;
1198 tree dtype;
1199 tree etype;
1200 int rank;
1201
1202 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1203
1204 if (GFC_TYPE_ARRAY_DTYPE (type))
1205 return GFC_TYPE_ARRAY_DTYPE (type);
1206
1207 rank = GFC_TYPE_ARRAY_RANK (type);
1208 etype = gfc_get_element_type (type);
1209
1210 switch (TREE_CODE (etype))
1211 {
1212 case INTEGER_TYPE:
1213 n = GFC_DTYPE_INTEGER;
1214 break;
1215
1216 case BOOLEAN_TYPE:
1217 n = GFC_DTYPE_LOGICAL;
1218 break;
1219
1220 case REAL_TYPE:
1221 n = GFC_DTYPE_REAL;
1222 break;
1223
1224 case COMPLEX_TYPE:
1225 n = GFC_DTYPE_COMPLEX;
1226 break;
1227
1228 /* We will never have arrays of arrays. */
1229 case RECORD_TYPE:
1230 n = GFC_DTYPE_DERIVED;
1231 break;
1232
1233 case ARRAY_TYPE:
1234 n = GFC_DTYPE_CHARACTER;
1235 break;
1236
1237 default:
1238 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1239 /* We can strange array types for temporary arrays. */
1240 return gfc_index_zero_node;
1241 }
1242
1243 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1244 size = TYPE_SIZE_UNIT (etype);
1245
1246 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1247 if (size && INTEGER_CST_P (size))
1248 {
1249 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1250 internal_error ("Array element size too big");
1251
1252 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1253 }
1254 dtype = build_int_cst (gfc_array_index_type, i);
1255
1256 if (size && !INTEGER_CST_P (size))
1257 {
1258 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1259 tmp = fold_build2 (LSHIFT_EXPR, gfc_array_index_type,
1260 fold_convert (gfc_array_index_type, size), tmp);
1261 dtype = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, dtype);
1262 }
1263 /* If we don't know the size we leave it as zero. This should never happen
1264 for anything that is actually used. */
1265 /* TODO: Check this is actually true, particularly when repacking
1266 assumed size parameters. */
1267
1268 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1269 return dtype;
1270 }
1271
1272
1273 /* Build an array type for use without a descriptor, packed according
1274 to the value of PACKED. */
1275
1276 tree
1277 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed)
1278 {
1279 tree range;
1280 tree type;
1281 tree tmp;
1282 int n;
1283 int known_stride;
1284 int known_offset;
1285 mpz_t offset;
1286 mpz_t stride;
1287 mpz_t delta;
1288 gfc_expr *expr;
1289
1290 mpz_init_set_ui (offset, 0);
1291 mpz_init_set_ui (stride, 1);
1292 mpz_init (delta);
1293
1294 /* We don't use build_array_type because this does not include include
1295 lang-specific information (i.e. the bounds of the array) when checking
1296 for duplicates. */
1297 type = make_node (ARRAY_TYPE);
1298
1299 GFC_ARRAY_TYPE_P (type) = 1;
1300 TYPE_LANG_SPECIFIC (type) = (struct lang_type *)
1301 ggc_alloc_cleared (sizeof (struct lang_type));
1302
1303 known_stride = (packed != PACKED_NO);
1304 known_offset = 1;
1305 for (n = 0; n < as->rank; n++)
1306 {
1307 /* Fill in the stride and bound components of the type. */
1308 if (known_stride)
1309 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1310 else
1311 tmp = NULL_TREE;
1312 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1313
1314 expr = as->lower[n];
1315 if (expr->expr_type == EXPR_CONSTANT)
1316 {
1317 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1318 gfc_index_integer_kind);
1319 }
1320 else
1321 {
1322 known_stride = 0;
1323 tmp = NULL_TREE;
1324 }
1325 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1326
1327 if (known_stride)
1328 {
1329 /* Calculate the offset. */
1330 mpz_mul (delta, stride, as->lower[n]->value.integer);
1331 mpz_sub (offset, offset, delta);
1332 }
1333 else
1334 known_offset = 0;
1335
1336 expr = as->upper[n];
1337 if (expr && expr->expr_type == EXPR_CONSTANT)
1338 {
1339 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1340 gfc_index_integer_kind);
1341 }
1342 else
1343 {
1344 tmp = NULL_TREE;
1345 known_stride = 0;
1346 }
1347 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1348
1349 if (known_stride)
1350 {
1351 /* Calculate the stride. */
1352 mpz_sub (delta, as->upper[n]->value.integer,
1353 as->lower[n]->value.integer);
1354 mpz_add_ui (delta, delta, 1);
1355 mpz_mul (stride, stride, delta);
1356 }
1357
1358 /* Only the first stride is known for partial packed arrays. */
1359 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1360 known_stride = 0;
1361 }
1362
1363 if (known_offset)
1364 {
1365 GFC_TYPE_ARRAY_OFFSET (type) =
1366 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1367 }
1368 else
1369 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1370
1371 if (known_stride)
1372 {
1373 GFC_TYPE_ARRAY_SIZE (type) =
1374 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1375 }
1376 else
1377 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1378
1379 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1380 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1381 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1382 NULL_TREE);
1383 /* TODO: use main type if it is unbounded. */
1384 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1385 build_pointer_type (build_array_type (etype, range));
1386
1387 if (known_stride)
1388 {
1389 mpz_sub_ui (stride, stride, 1);
1390 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1391 }
1392 else
1393 range = NULL_TREE;
1394
1395 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1396 TYPE_DOMAIN (type) = range;
1397
1398 build_pointer_type (etype);
1399 TREE_TYPE (type) = etype;
1400
1401 layout_type (type);
1402
1403 mpz_clear (offset);
1404 mpz_clear (stride);
1405 mpz_clear (delta);
1406
1407 /* Represent packed arrays as multi-dimensional if they have rank >
1408 1 and with proper bounds, instead of flat arrays. This makes for
1409 better debug info. */
1410 if (known_offset)
1411 {
1412 tree gtype = etype, rtype, type_decl;
1413
1414 for (n = as->rank - 1; n >= 0; n--)
1415 {
1416 rtype = build_range_type (gfc_array_index_type,
1417 GFC_TYPE_ARRAY_LBOUND (type, n),
1418 GFC_TYPE_ARRAY_UBOUND (type, n));
1419 gtype = build_array_type (gtype, rtype);
1420 }
1421 TYPE_NAME (type) = type_decl = build_decl (TYPE_DECL, NULL, gtype);
1422 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1423 }
1424
1425 if (packed != PACKED_STATIC || !known_stride)
1426 {
1427 /* For dummy arrays and automatic (heap allocated) arrays we
1428 want a pointer to the array. */
1429 type = build_pointer_type (type);
1430 GFC_ARRAY_TYPE_P (type) = 1;
1431 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1432 }
1433 return type;
1434 }
1435
1436 /* Return or create the base type for an array descriptor. */
1437
1438 static tree
1439 gfc_get_array_descriptor_base (int dimen)
1440 {
1441 tree fat_type, fieldlist, decl, arraytype;
1442 char name[16 + GFC_RANK_DIGITS + 1];
1443
1444 gcc_assert (dimen >= 1 && dimen <= GFC_MAX_DIMENSIONS);
1445 if (gfc_array_descriptor_base[dimen - 1])
1446 return gfc_array_descriptor_base[dimen - 1];
1447
1448 /* Build the type node. */
1449 fat_type = make_node (RECORD_TYPE);
1450
1451 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen);
1452 TYPE_NAME (fat_type) = get_identifier (name);
1453
1454 /* Add the data member as the first element of the descriptor. */
1455 decl = build_decl (FIELD_DECL, get_identifier ("data"), ptr_type_node);
1456
1457 DECL_CONTEXT (decl) = fat_type;
1458 fieldlist = decl;
1459
1460 /* Add the base component. */
1461 decl = build_decl (FIELD_DECL, get_identifier ("offset"),
1462 gfc_array_index_type);
1463 DECL_CONTEXT (decl) = fat_type;
1464 TREE_NO_WARNING (decl) = 1;
1465 fieldlist = chainon (fieldlist, decl);
1466
1467 /* Add the dtype component. */
1468 decl = build_decl (FIELD_DECL, get_identifier ("dtype"),
1469 gfc_array_index_type);
1470 DECL_CONTEXT (decl) = fat_type;
1471 TREE_NO_WARNING (decl) = 1;
1472 fieldlist = chainon (fieldlist, decl);
1473
1474 /* Build the array type for the stride and bound components. */
1475 arraytype =
1476 build_array_type (gfc_get_desc_dim_type (),
1477 build_range_type (gfc_array_index_type,
1478 gfc_index_zero_node,
1479 gfc_rank_cst[dimen - 1]));
1480
1481 decl = build_decl (FIELD_DECL, get_identifier ("dim"), arraytype);
1482 DECL_CONTEXT (decl) = fat_type;
1483 TREE_NO_WARNING (decl) = 1;
1484 fieldlist = chainon (fieldlist, decl);
1485
1486 /* Finish off the type. */
1487 TYPE_FIELDS (fat_type) = fieldlist;
1488
1489 gfc_finish_type (fat_type);
1490 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1491
1492 gfc_array_descriptor_base[dimen - 1] = fat_type;
1493 return fat_type;
1494 }
1495
1496 /* Build an array (descriptor) type with given bounds. */
1497
1498 tree
1499 gfc_get_array_type_bounds (tree etype, int dimen, tree * lbound,
1500 tree * ubound, int packed,
1501 enum gfc_array_kind akind)
1502 {
1503 char name[8 + GFC_RANK_DIGITS + GFC_MAX_SYMBOL_LEN];
1504 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1505 const char *type_name;
1506 int n;
1507
1508 base_type = gfc_get_array_descriptor_base (dimen);
1509 fat_type = build_variant_type_copy (base_type);
1510
1511 tmp = TYPE_NAME (etype);
1512 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1513 tmp = DECL_NAME (tmp);
1514 if (tmp)
1515 type_name = IDENTIFIER_POINTER (tmp);
1516 else
1517 type_name = "unknown";
1518 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen,
1519 GFC_MAX_SYMBOL_LEN, type_name);
1520 TYPE_NAME (fat_type) = get_identifier (name);
1521
1522 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1523 TYPE_LANG_SPECIFIC (fat_type) = (struct lang_type *)
1524 ggc_alloc_cleared (sizeof (struct lang_type));
1525
1526 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1527 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1528 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1529
1530 /* Build an array descriptor record type. */
1531 if (packed != 0)
1532 stride = gfc_index_one_node;
1533 else
1534 stride = NULL_TREE;
1535 for (n = 0; n < dimen; n++)
1536 {
1537 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1538
1539 if (lbound)
1540 lower = lbound[n];
1541 else
1542 lower = NULL_TREE;
1543
1544 if (lower != NULL_TREE)
1545 {
1546 if (INTEGER_CST_P (lower))
1547 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1548 else
1549 lower = NULL_TREE;
1550 }
1551
1552 upper = ubound[n];
1553 if (upper != NULL_TREE)
1554 {
1555 if (INTEGER_CST_P (upper))
1556 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1557 else
1558 upper = NULL_TREE;
1559 }
1560
1561 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1562 {
1563 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
1564 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp,
1565 gfc_index_one_node);
1566 stride =
1567 fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, stride);
1568 /* Check the folding worked. */
1569 gcc_assert (INTEGER_CST_P (stride));
1570 }
1571 else
1572 stride = NULL_TREE;
1573 }
1574 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1575
1576 /* TODO: known offsets for descriptors. */
1577 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1578
1579 /* We define data as an array with the correct size if possible.
1580 Much better than doing pointer arithmetic. */
1581 if (stride)
1582 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1583 int_const_binop (MINUS_EXPR, stride,
1584 integer_one_node, 0));
1585 else
1586 rtype = gfc_array_range_type;
1587 arraytype = build_array_type (etype, rtype);
1588 arraytype = build_pointer_type (arraytype);
1589 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1590
1591 return fat_type;
1592 }
1593 \f
1594 /* Build a pointer type. This function is called from gfc_sym_type(). */
1595
1596 static tree
1597 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1598 {
1599 /* Array pointer types aren't actually pointers. */
1600 if (sym->attr.dimension)
1601 return type;
1602 else
1603 return build_pointer_type (type);
1604 }
1605 \f
1606 /* Return the type for a symbol. Special handling is required for character
1607 types to get the correct level of indirection.
1608 For functions return the return type.
1609 For subroutines return void_type_node.
1610 Calling this multiple times for the same symbol should be avoided,
1611 especially for character and array types. */
1612
1613 tree
1614 gfc_sym_type (gfc_symbol * sym)
1615 {
1616 tree type;
1617 int byref;
1618
1619 /* Procedure Pointers inside COMMON blocks or as function result. */
1620 if (sym->attr.proc_pointer && (sym->attr.in_common || sym->attr.result))
1621 {
1622 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
1623 sym->attr.proc_pointer = 0;
1624 type = build_pointer_type (gfc_get_function_type (sym));
1625 sym->attr.proc_pointer = 1;
1626 return type;
1627 }
1628
1629 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1630 return void_type_node;
1631
1632 /* In the case of a function the fake result variable may have a
1633 type different from the function type, so don't return early in
1634 that case. */
1635 if (sym->backend_decl && !sym->attr.function)
1636 return TREE_TYPE (sym->backend_decl);
1637
1638 if (sym->ts.type == BT_CHARACTER
1639 && ((sym->attr.function && sym->attr.is_bind_c)
1640 || (sym->attr.result
1641 && sym->ns->proc_name
1642 && sym->ns->proc_name->attr.is_bind_c)))
1643 type = gfc_character1_type_node;
1644 else
1645 type = gfc_typenode_for_spec (&sym->ts);
1646
1647 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1648 byref = 1;
1649 else
1650 byref = 0;
1651
1652 if (sym->attr.dimension)
1653 {
1654 if (gfc_is_nodesc_array (sym))
1655 {
1656 /* If this is a character argument of unknown length, just use the
1657 base type. */
1658 if (sym->ts.type != BT_CHARACTER
1659 || !(sym->attr.dummy || sym->attr.function)
1660 || sym->ts.cl->backend_decl)
1661 {
1662 type = gfc_get_nodesc_array_type (type, sym->as,
1663 byref ? PACKED_FULL
1664 : PACKED_STATIC);
1665 byref = 0;
1666 }
1667 }
1668 else
1669 {
1670 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
1671 if (sym->attr.pointer)
1672 akind = GFC_ARRAY_POINTER;
1673 else if (sym->attr.allocatable)
1674 akind = GFC_ARRAY_ALLOCATABLE;
1675 type = gfc_build_array_type (type, sym->as, akind);
1676 }
1677 }
1678 else
1679 {
1680 if (sym->attr.allocatable || sym->attr.pointer)
1681 type = gfc_build_pointer_type (sym, type);
1682 if (sym->attr.pointer)
1683 GFC_POINTER_TYPE_P (type) = 1;
1684 }
1685
1686 /* We currently pass all parameters by reference.
1687 See f95_get_function_decl. For dummy function parameters return the
1688 function type. */
1689 if (byref)
1690 {
1691 /* We must use pointer types for potentially absent variables. The
1692 optimizers assume a reference type argument is never NULL. */
1693 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
1694 type = build_pointer_type (type);
1695 else
1696 type = build_reference_type (type);
1697 }
1698
1699 return (type);
1700 }
1701 \f
1702 /* Layout and output debug info for a record type. */
1703
1704 void
1705 gfc_finish_type (tree type)
1706 {
1707 tree decl;
1708
1709 decl = build_decl (TYPE_DECL, NULL_TREE, type);
1710 TYPE_STUB_DECL (type) = decl;
1711 layout_type (type);
1712 rest_of_type_compilation (type, 1);
1713 rest_of_decl_compilation (decl, 1, 0);
1714 }
1715 \f
1716 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1717 or RECORD_TYPE pointed to by STYPE. The new field is chained
1718 to the fieldlist pointed to by FIELDLIST.
1719
1720 Returns a pointer to the new field. */
1721
1722 tree
1723 gfc_add_field_to_struct (tree *fieldlist, tree context,
1724 tree name, tree type)
1725 {
1726 tree decl;
1727
1728 decl = build_decl (FIELD_DECL, name, type);
1729
1730 DECL_CONTEXT (decl) = context;
1731 DECL_INITIAL (decl) = 0;
1732 DECL_ALIGN (decl) = 0;
1733 DECL_USER_ALIGN (decl) = 0;
1734 TREE_CHAIN (decl) = NULL_TREE;
1735 *fieldlist = chainon (*fieldlist, decl);
1736
1737 return decl;
1738 }
1739
1740
1741 /* Copy the backend_decl and component backend_decls if
1742 the two derived type symbols are "equal", as described
1743 in 4.4.2 and resolved by gfc_compare_derived_types. */
1744
1745 static int
1746 copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to)
1747 {
1748 gfc_component *to_cm;
1749 gfc_component *from_cm;
1750
1751 if (from->backend_decl == NULL
1752 || !gfc_compare_derived_types (from, to))
1753 return 0;
1754
1755 to->backend_decl = from->backend_decl;
1756
1757 to_cm = to->components;
1758 from_cm = from->components;
1759
1760 /* Copy the component declarations. If a component is itself
1761 a derived type, we need a copy of its component declarations.
1762 This is done by recursing into gfc_get_derived_type and
1763 ensures that the component's component declarations have
1764 been built. If it is a character, we need the character
1765 length, as well. */
1766 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
1767 {
1768 to_cm->backend_decl = from_cm->backend_decl;
1769 if (!from_cm->attr.pointer && from_cm->ts.type == BT_DERIVED)
1770 gfc_get_derived_type (to_cm->ts.derived);
1771
1772 else if (from_cm->ts.type == BT_CHARACTER)
1773 to_cm->ts.cl->backend_decl = from_cm->ts.cl->backend_decl;
1774 }
1775
1776 return 1;
1777 }
1778
1779
1780 /* Build a tree node for a derived type. If there are equal
1781 derived types, with different local names, these are built
1782 at the same time. If an equal derived type has been built
1783 in a parent namespace, this is used. */
1784
1785 static tree
1786 gfc_get_derived_type (gfc_symbol * derived)
1787 {
1788 tree typenode = NULL, field = NULL, field_type = NULL, fieldlist = NULL;
1789 gfc_component *c;
1790 gfc_dt_list *dt;
1791
1792 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
1793
1794 /* See if it's one of the iso_c_binding derived types. */
1795 if (derived->attr.is_iso_c == 1)
1796 {
1797 if (derived->backend_decl)
1798 return derived->backend_decl;
1799
1800 if (derived->intmod_sym_id == ISOCBINDING_PTR)
1801 derived->backend_decl = ptr_type_node;
1802 else
1803 derived->backend_decl = pfunc_type_node;
1804
1805 /* Create a backend_decl for the __c_ptr_c_address field. */
1806 derived->components->backend_decl =
1807 gfc_add_field_to_struct (&(derived->backend_decl->type.values),
1808 derived->backend_decl,
1809 get_identifier (derived->components->name),
1810 gfc_typenode_for_spec (
1811 &(derived->components->ts)));
1812
1813 derived->ts.kind = gfc_index_integer_kind;
1814 derived->ts.type = BT_INTEGER;
1815 /* Set the f90_type to BT_VOID as a way to recognize something of type
1816 BT_INTEGER that needs to fit a void * for the purpose of the
1817 iso_c_binding derived types. */
1818 derived->ts.f90_type = BT_VOID;
1819
1820 return derived->backend_decl;
1821 }
1822
1823 /* derived->backend_decl != 0 means we saw it before, but its
1824 components' backend_decl may have not been built. */
1825 if (derived->backend_decl)
1826 {
1827 /* Its components' backend_decl have been built. */
1828 if (TYPE_FIELDS (derived->backend_decl))
1829 return derived->backend_decl;
1830 else
1831 typenode = derived->backend_decl;
1832 }
1833 else
1834 {
1835
1836 /* We see this derived type first time, so build the type node. */
1837 typenode = make_node (RECORD_TYPE);
1838 TYPE_NAME (typenode) = get_identifier (derived->name);
1839 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
1840 derived->backend_decl = typenode;
1841 }
1842
1843 /* Go through the derived type components, building them as
1844 necessary. The reason for doing this now is that it is
1845 possible to recurse back to this derived type through a
1846 pointer component (PR24092). If this happens, the fields
1847 will be built and so we can return the type. */
1848 for (c = derived->components; c; c = c->next)
1849 {
1850 if (c->ts.type != BT_DERIVED)
1851 continue;
1852
1853 if (!c->attr.pointer || c->ts.derived->backend_decl == NULL)
1854 c->ts.derived->backend_decl = gfc_get_derived_type (c->ts.derived);
1855
1856 if (c->ts.derived && c->ts.derived->attr.is_iso_c)
1857 {
1858 /* Need to copy the modified ts from the derived type. The
1859 typespec was modified because C_PTR/C_FUNPTR are translated
1860 into (void *) from derived types. */
1861 c->ts.type = c->ts.derived->ts.type;
1862 c->ts.kind = c->ts.derived->ts.kind;
1863 c->ts.f90_type = c->ts.derived->ts.f90_type;
1864 if (c->initializer)
1865 {
1866 c->initializer->ts.type = c->ts.type;
1867 c->initializer->ts.kind = c->ts.kind;
1868 c->initializer->ts.f90_type = c->ts.f90_type;
1869 c->initializer->expr_type = EXPR_NULL;
1870 }
1871 }
1872 }
1873
1874 if (TYPE_FIELDS (derived->backend_decl))
1875 return derived->backend_decl;
1876
1877 /* Build the type member list. Install the newly created RECORD_TYPE
1878 node as DECL_CONTEXT of each FIELD_DECL. */
1879 fieldlist = NULL_TREE;
1880 for (c = derived->components; c; c = c->next)
1881 {
1882 if (c->ts.type == BT_DERIVED)
1883 field_type = c->ts.derived->backend_decl;
1884 else
1885 {
1886 if (c->ts.type == BT_CHARACTER)
1887 {
1888 /* Evaluate the string length. */
1889 gfc_conv_const_charlen (c->ts.cl);
1890 gcc_assert (c->ts.cl->backend_decl);
1891 }
1892
1893 field_type = gfc_typenode_for_spec (&c->ts);
1894 }
1895
1896 /* This returns an array descriptor type. Initialization may be
1897 required. */
1898 if (c->attr.dimension)
1899 {
1900 if (c->attr.pointer || c->attr.allocatable)
1901 {
1902 enum gfc_array_kind akind;
1903 if (c->attr.pointer)
1904 akind = GFC_ARRAY_POINTER;
1905 else
1906 akind = GFC_ARRAY_ALLOCATABLE;
1907 /* Pointers to arrays aren't actually pointer types. The
1908 descriptors are separate, but the data is common. */
1909 field_type = gfc_build_array_type (field_type, c->as, akind);
1910 }
1911 else
1912 field_type = gfc_get_nodesc_array_type (field_type, c->as,
1913 PACKED_STATIC);
1914 }
1915 else if (c->attr.pointer)
1916 field_type = build_pointer_type (field_type);
1917
1918 field = gfc_add_field_to_struct (&fieldlist, typenode,
1919 get_identifier (c->name),
1920 field_type);
1921 if (c->loc.lb)
1922 gfc_set_decl_location (field, &c->loc);
1923 else if (derived->declared_at.lb)
1924 gfc_set_decl_location (field, &derived->declared_at);
1925
1926 DECL_PACKED (field) |= TYPE_PACKED (typenode);
1927
1928 gcc_assert (field);
1929 if (!c->backend_decl)
1930 c->backend_decl = field;
1931 }
1932
1933 /* Now we have the final fieldlist. Record it, then lay out the
1934 derived type, including the fields. */
1935 TYPE_FIELDS (typenode) = fieldlist;
1936
1937 gfc_finish_type (typenode);
1938 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
1939 if (derived->module && derived->ns->proc_name
1940 && derived->ns->proc_name->attr.flavor == FL_MODULE)
1941 {
1942 if (derived->ns->proc_name->backend_decl
1943 && TREE_CODE (derived->ns->proc_name->backend_decl)
1944 == NAMESPACE_DECL)
1945 {
1946 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
1947 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
1948 = derived->ns->proc_name->backend_decl;
1949 }
1950 }
1951
1952 derived->backend_decl = typenode;
1953
1954 /* Add this backend_decl to all the other, equal derived types. */
1955 for (dt = gfc_derived_types; dt; dt = dt->next)
1956 copy_dt_decls_ifequal (derived, dt->derived);
1957
1958 return derived->backend_decl;
1959 }
1960
1961
1962 int
1963 gfc_return_by_reference (gfc_symbol * sym)
1964 {
1965 if (!sym->attr.function)
1966 return 0;
1967
1968 if (sym->attr.dimension)
1969 return 1;
1970
1971 if (sym->ts.type == BT_CHARACTER
1972 && !sym->attr.is_bind_c
1973 && (!sym->attr.result
1974 || !sym->ns->proc_name
1975 || !sym->ns->proc_name->attr.is_bind_c))
1976 return 1;
1977
1978 /* Possibly return complex numbers by reference for g77 compatibility.
1979 We don't do this for calls to intrinsics (as the library uses the
1980 -fno-f2c calling convention), nor for calls to functions which always
1981 require an explicit interface, as no compatibility problems can
1982 arise there. */
1983 if (gfc_option.flag_f2c
1984 && sym->ts.type == BT_COMPLEX
1985 && !sym->attr.intrinsic && !sym->attr.always_explicit)
1986 return 1;
1987
1988 return 0;
1989 }
1990 \f
1991 static tree
1992 gfc_get_mixed_entry_union (gfc_namespace *ns)
1993 {
1994 tree type;
1995 tree decl;
1996 tree fieldlist;
1997 char name[GFC_MAX_SYMBOL_LEN + 1];
1998 gfc_entry_list *el, *el2;
1999
2000 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2001 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2002
2003 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2004
2005 /* Build the type node. */
2006 type = make_node (UNION_TYPE);
2007
2008 TYPE_NAME (type) = get_identifier (name);
2009 fieldlist = NULL;
2010
2011 for (el = ns->entries; el; el = el->next)
2012 {
2013 /* Search for duplicates. */
2014 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2015 if (el2->sym->result == el->sym->result)
2016 break;
2017
2018 if (el == el2)
2019 {
2020 decl = build_decl (FIELD_DECL,
2021 get_identifier (el->sym->result->name),
2022 gfc_sym_type (el->sym->result));
2023 DECL_CONTEXT (decl) = type;
2024 fieldlist = chainon (fieldlist, decl);
2025 }
2026 }
2027
2028 /* Finish off the type. */
2029 TYPE_FIELDS (type) = fieldlist;
2030
2031 gfc_finish_type (type);
2032 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2033 return type;
2034 }
2035 \f
2036 tree
2037 gfc_get_function_type (gfc_symbol * sym)
2038 {
2039 tree type;
2040 tree typelist;
2041 gfc_formal_arglist *f;
2042 gfc_symbol *arg;
2043 int nstr;
2044 int alternate_return;
2045
2046 /* Make sure this symbol is a function, a subroutine or the main
2047 program. */
2048 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2049 || sym->attr.flavor == FL_PROGRAM);
2050
2051 if (sym->backend_decl)
2052 return TREE_TYPE (sym->backend_decl);
2053
2054 nstr = 0;
2055 alternate_return = 0;
2056 typelist = NULL_TREE;
2057
2058 if (sym->attr.entry_master)
2059 {
2060 /* Additional parameter for selecting an entry point. */
2061 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
2062 }
2063
2064 if (sym->result)
2065 arg = sym->result;
2066 else
2067 arg = sym;
2068
2069 if (arg->ts.type == BT_CHARACTER)
2070 gfc_conv_const_charlen (arg->ts.cl);
2071
2072 /* Some functions we use an extra parameter for the return value. */
2073 if (gfc_return_by_reference (sym))
2074 {
2075 type = gfc_sym_type (arg);
2076 if (arg->ts.type == BT_COMPLEX
2077 || arg->attr.dimension
2078 || arg->ts.type == BT_CHARACTER)
2079 type = build_reference_type (type);
2080
2081 typelist = gfc_chainon_list (typelist, type);
2082 if (arg->ts.type == BT_CHARACTER)
2083 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2084 }
2085
2086 /* Build the argument types for the function. */
2087 for (f = sym->formal; f; f = f->next)
2088 {
2089 arg = f->sym;
2090 if (arg)
2091 {
2092 /* Evaluate constant character lengths here so that they can be
2093 included in the type. */
2094 if (arg->ts.type == BT_CHARACTER)
2095 gfc_conv_const_charlen (arg->ts.cl);
2096
2097 if (arg->attr.flavor == FL_PROCEDURE)
2098 {
2099 type = gfc_get_function_type (arg);
2100 type = build_pointer_type (type);
2101 }
2102 else
2103 type = gfc_sym_type (arg);
2104
2105 /* Parameter Passing Convention
2106
2107 We currently pass all parameters by reference.
2108 Parameters with INTENT(IN) could be passed by value.
2109 The problem arises if a function is called via an implicit
2110 prototype. In this situation the INTENT is not known.
2111 For this reason all parameters to global functions must be
2112 passed by reference. Passing by value would potentially
2113 generate bad code. Worse there would be no way of telling that
2114 this code was bad, except that it would give incorrect results.
2115
2116 Contained procedures could pass by value as these are never
2117 used without an explicit interface, and cannot be passed as
2118 actual parameters for a dummy procedure. */
2119 if (arg->ts.type == BT_CHARACTER)
2120 nstr++;
2121 typelist = gfc_chainon_list (typelist, type);
2122 }
2123 else
2124 {
2125 if (sym->attr.subroutine)
2126 alternate_return = 1;
2127 }
2128 }
2129
2130 /* Add hidden string length parameters. */
2131 while (nstr--)
2132 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2133
2134 if (typelist)
2135 typelist = gfc_chainon_list (typelist, void_type_node);
2136
2137 if (alternate_return)
2138 type = integer_type_node;
2139 else if (!sym->attr.function || gfc_return_by_reference (sym))
2140 type = void_type_node;
2141 else if (sym->attr.mixed_entry_master)
2142 type = gfc_get_mixed_entry_union (sym->ns);
2143 else if (gfc_option.flag_f2c
2144 && sym->ts.type == BT_REAL
2145 && sym->ts.kind == gfc_default_real_kind
2146 && !sym->attr.always_explicit)
2147 {
2148 /* Special case: f2c calling conventions require that (scalar)
2149 default REAL functions return the C type double instead. f2c
2150 compatibility is only an issue with functions that don't
2151 require an explicit interface, as only these could be
2152 implemented in Fortran 77. */
2153 sym->ts.kind = gfc_default_double_kind;
2154 type = gfc_typenode_for_spec (&sym->ts);
2155 sym->ts.kind = gfc_default_real_kind;
2156 }
2157 else if (sym->result && sym->result->attr.proc_pointer)
2158 /* Procedure pointer return values. */
2159 type = gfc_sym_type (sym->result);
2160 else
2161 type = gfc_sym_type (sym);
2162
2163 type = build_function_type (type, typelist);
2164
2165 return type;
2166 }
2167 \f
2168 /* Language hooks for middle-end access to type nodes. */
2169
2170 /* Return an integer type with BITS bits of precision,
2171 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2172
2173 tree
2174 gfc_type_for_size (unsigned bits, int unsignedp)
2175 {
2176 if (!unsignedp)
2177 {
2178 int i;
2179 for (i = 0; i <= MAX_INT_KINDS; ++i)
2180 {
2181 tree type = gfc_integer_types[i];
2182 if (type && bits == TYPE_PRECISION (type))
2183 return type;
2184 }
2185
2186 /* Handle TImode as a special case because it is used by some backends
2187 (e.g. ARM) even though it is not available for normal use. */
2188 #if HOST_BITS_PER_WIDE_INT >= 64
2189 if (bits == TYPE_PRECISION (intTI_type_node))
2190 return intTI_type_node;
2191 #endif
2192 }
2193 else
2194 {
2195 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2196 return unsigned_intQI_type_node;
2197 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2198 return unsigned_intHI_type_node;
2199 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2200 return unsigned_intSI_type_node;
2201 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2202 return unsigned_intDI_type_node;
2203 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2204 return unsigned_intTI_type_node;
2205 }
2206
2207 return NULL_TREE;
2208 }
2209
2210 /* Return a data type that has machine mode MODE. If the mode is an
2211 integer, then UNSIGNEDP selects between signed and unsigned types. */
2212
2213 tree
2214 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2215 {
2216 int i;
2217 tree *base;
2218
2219 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2220 base = gfc_real_types;
2221 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2222 base = gfc_complex_types;
2223 else if (SCALAR_INT_MODE_P (mode))
2224 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2225 else if (VECTOR_MODE_P (mode))
2226 {
2227 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2228 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2229 if (inner_type != NULL_TREE)
2230 return build_vector_type_for_mode (inner_type, mode);
2231 return NULL_TREE;
2232 }
2233 else
2234 return NULL_TREE;
2235
2236 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2237 {
2238 tree type = base[i];
2239 if (type && mode == TYPE_MODE (type))
2240 return type;
2241 }
2242
2243 return NULL_TREE;
2244 }
2245
2246 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2247 in that case. */
2248
2249 bool
2250 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2251 {
2252 int rank, dim;
2253 bool indirect = false;
2254 tree etype, ptype, field, t, base_decl;
2255 tree data_off, offset_off, dim_off, dim_size, elem_size;
2256 tree lower_suboff, upper_suboff, stride_suboff;
2257
2258 if (! GFC_DESCRIPTOR_TYPE_P (type))
2259 {
2260 if (! POINTER_TYPE_P (type))
2261 return false;
2262 type = TREE_TYPE (type);
2263 if (! GFC_DESCRIPTOR_TYPE_P (type))
2264 return false;
2265 indirect = true;
2266 }
2267
2268 rank = GFC_TYPE_ARRAY_RANK (type);
2269 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2270 return false;
2271
2272 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2273 gcc_assert (POINTER_TYPE_P (etype));
2274 etype = TREE_TYPE (etype);
2275 gcc_assert (TREE_CODE (etype) == ARRAY_TYPE);
2276 etype = TREE_TYPE (etype);
2277 /* Can't handle variable sized elements yet. */
2278 if (int_size_in_bytes (etype) <= 0)
2279 return false;
2280 /* Nor non-constant lower bounds in assumed shape arrays. */
2281 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2282 {
2283 for (dim = 0; dim < rank; dim++)
2284 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
2285 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
2286 return false;
2287 }
2288
2289 memset (info, '\0', sizeof (*info));
2290 info->ndimensions = rank;
2291 info->element_type = etype;
2292 ptype = build_pointer_type (gfc_array_index_type);
2293 if (indirect)
2294 {
2295 info->base_decl = build_decl (VAR_DECL, NULL_TREE,
2296 build_pointer_type (ptype));
2297 base_decl = build1 (INDIRECT_REF, ptype, info->base_decl);
2298 }
2299 else
2300 info->base_decl = base_decl = build_decl (VAR_DECL, NULL_TREE, ptype);
2301
2302 if (GFC_TYPE_ARRAY_SPAN (type))
2303 elem_size = GFC_TYPE_ARRAY_SPAN (type);
2304 else
2305 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
2306 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
2307 data_off = byte_position (field);
2308 field = TREE_CHAIN (field);
2309 offset_off = byte_position (field);
2310 field = TREE_CHAIN (field);
2311 field = TREE_CHAIN (field);
2312 dim_off = byte_position (field);
2313 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
2314 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
2315 stride_suboff = byte_position (field);
2316 field = TREE_CHAIN (field);
2317 lower_suboff = byte_position (field);
2318 field = TREE_CHAIN (field);
2319 upper_suboff = byte_position (field);
2320
2321 t = base_decl;
2322 if (!integer_zerop (data_off))
2323 t = build2 (POINTER_PLUS_EXPR, ptype, t, data_off);
2324 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
2325 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
2326 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
2327 info->allocated = build2 (NE_EXPR, boolean_type_node,
2328 info->data_location, null_pointer_node);
2329 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER)
2330 info->associated = build2 (NE_EXPR, boolean_type_node,
2331 info->data_location, null_pointer_node);
2332
2333 for (dim = 0; dim < rank; dim++)
2334 {
2335 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2336 size_binop (PLUS_EXPR, dim_off, lower_suboff));
2337 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2338 info->dimen[dim].lower_bound = t;
2339 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2340 size_binop (PLUS_EXPR, dim_off, upper_suboff));
2341 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2342 info->dimen[dim].upper_bound = t;
2343 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2344 {
2345 /* Assumed shape arrays have known lower bounds. */
2346 info->dimen[dim].upper_bound
2347 = build2 (MINUS_EXPR, gfc_array_index_type,
2348 info->dimen[dim].upper_bound,
2349 info->dimen[dim].lower_bound);
2350 info->dimen[dim].lower_bound
2351 = fold_convert (gfc_array_index_type,
2352 GFC_TYPE_ARRAY_LBOUND (type, dim));
2353 info->dimen[dim].upper_bound
2354 = build2 (PLUS_EXPR, gfc_array_index_type,
2355 info->dimen[dim].lower_bound,
2356 info->dimen[dim].upper_bound);
2357 }
2358 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2359 size_binop (PLUS_EXPR, dim_off, stride_suboff));
2360 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2361 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
2362 info->dimen[dim].stride = t;
2363 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
2364 }
2365
2366 return true;
2367 }
2368
2369 #include "gt-fortran-trans-types.h"