re PR fortran/32550 (openmp: COPYPRIVATE of pointer variables fails)
[gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007 Free Software
3 Foundation, Inc.
4 Contributed by Paul Brook <paul@nowt.org>
5 and Steven Bosscher <s.bosscher@student.tudelft.nl>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA. */
23
24 /* trans-types.c -- gfortran backend types */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tree.h"
30 #include "langhooks.h"
31 #include "tm.h"
32 #include "target.h"
33 #include "ggc.h"
34 #include "toplev.h"
35 #include "gfortran.h"
36 #include "trans.h"
37 #include "trans-types.h"
38 #include "trans-const.h"
39 #include "real.h"
40 \f
41
42 #if (GFC_MAX_DIMENSIONS < 10)
43 #define GFC_RANK_DIGITS 1
44 #define GFC_RANK_PRINTF_FORMAT "%01d"
45 #elif (GFC_MAX_DIMENSIONS < 100)
46 #define GFC_RANK_DIGITS 2
47 #define GFC_RANK_PRINTF_FORMAT "%02d"
48 #else
49 #error If you really need >99 dimensions, continue the sequence above...
50 #endif
51
52 /* array of structs so we don't have to worry about xmalloc or free */
53 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
54
55 static tree gfc_get_derived_type (gfc_symbol * derived);
56
57 tree gfc_array_index_type;
58 tree gfc_array_range_type;
59 tree gfc_character1_type_node;
60 tree pvoid_type_node;
61 tree ppvoid_type_node;
62 tree pchar_type_node;
63
64 tree gfc_charlen_type_node;
65
66 static GTY(()) tree gfc_desc_dim_type;
67 static GTY(()) tree gfc_max_array_element_size;
68 static GTY(()) tree gfc_array_descriptor_base[GFC_MAX_DIMENSIONS];
69
70 /* Arrays for all integral and real kinds. We'll fill this in at runtime
71 after the target has a chance to process command-line options. */
72
73 #define MAX_INT_KINDS 5
74 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
75 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
76 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
77 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
78
79 #define MAX_REAL_KINDS 5
80 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
81 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
82 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
83
84
85 /* The integer kind to use for array indices. This will be set to the
86 proper value based on target information from the backend. */
87
88 int gfc_index_integer_kind;
89
90 /* The default kinds of the various types. */
91
92 int gfc_default_integer_kind;
93 int gfc_max_integer_kind;
94 int gfc_default_real_kind;
95 int gfc_default_double_kind;
96 int gfc_default_character_kind;
97 int gfc_default_logical_kind;
98 int gfc_default_complex_kind;
99 int gfc_c_int_kind;
100
101 /* The kind size used for record offsets. If the target system supports
102 kind=8, this will be set to 8, otherwise it is set to 4. */
103 int gfc_intio_kind;
104
105 /* The integer kind used to store character lengths. */
106 int gfc_charlen_int_kind;
107
108 /* The size of the numeric storage unit and character storage unit. */
109 int gfc_numeric_storage_size;
110 int gfc_character_storage_size;
111
112
113 /* Validate that the f90_type of the given gfc_typespec is valid for
114 the type it represents. The f90_type represents the Fortran types
115 this C kind can be used with. For example, c_int has a f90_type of
116 BT_INTEGER and c_float has a f90_type of BT_REAL. Returns FAILURE
117 if a mismatch occurs between ts->f90_type and ts->type; SUCCESS if
118 they match. */
119
120 try
121 gfc_validate_c_kind (gfc_typespec *ts)
122 {
123 return ((ts->type == ts->f90_type) ? SUCCESS : FAILURE);
124 }
125
126
127 try
128 gfc_check_any_c_kind (gfc_typespec *ts)
129 {
130 int i;
131
132 for (i = 0; i < ISOCBINDING_NUMBER; i++)
133 {
134 /* Check for any C interoperable kind for the given type/kind in ts.
135 This can be used after verify_c_interop to make sure that the
136 Fortran kind being used exists in at least some form for C. */
137 if (c_interop_kinds_table[i].f90_type == ts->type &&
138 c_interop_kinds_table[i].value == ts->kind)
139 return SUCCESS;
140 }
141
142 return FAILURE;
143 }
144
145
146 static int
147 get_real_kind_from_node (tree type)
148 {
149 int i;
150
151 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
152 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
153 return gfc_real_kinds[i].kind;
154
155 return -4;
156 }
157
158 static int
159 get_int_kind_from_node (tree type)
160 {
161 int i;
162
163 if (!type)
164 return -2;
165
166 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
167 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
168 return gfc_integer_kinds[i].kind;
169
170 return -1;
171 }
172
173 static int
174 get_int_kind_from_width (int size)
175 {
176 int i;
177
178 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
179 if (gfc_integer_kinds[i].bit_size == size)
180 return gfc_integer_kinds[i].kind;
181
182 return -2;
183 }
184
185 static int
186 get_int_kind_from_minimal_width (int size)
187 {
188 int i;
189
190 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
191 if (gfc_integer_kinds[i].bit_size >= size)
192 return gfc_integer_kinds[i].kind;
193
194 return -2;
195 }
196
197
198 /* Generate the CInteropKind_t objects for the C interoperable
199 kinds. */
200
201 static
202 void init_c_interop_kinds (void)
203 {
204 int i;
205 tree intmax_type_node = INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
206 integer_type_node :
207 (LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
208 long_integer_type_node :
209 long_long_integer_type_node);
210
211 /* init all pointers in the list to NULL */
212 for (i = 0; i < ISOCBINDING_NUMBER; i++)
213 {
214 /* Initialize the name and value fields. */
215 c_interop_kinds_table[i].name[0] = '\0';
216 c_interop_kinds_table[i].value = -100;
217 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
218 }
219
220 #define NAMED_INTCST(a,b,c) \
221 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
222 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
223 c_interop_kinds_table[a].value = c;
224 #define NAMED_REALCST(a,b,c) \
225 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
226 c_interop_kinds_table[a].f90_type = BT_REAL; \
227 c_interop_kinds_table[a].value = c;
228 #define NAMED_CMPXCST(a,b,c) \
229 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
230 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
231 c_interop_kinds_table[a].value = c;
232 #define NAMED_LOGCST(a,b,c) \
233 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
234 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
235 c_interop_kinds_table[a].value = c;
236 #define NAMED_CHARKNDCST(a,b,c) \
237 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
238 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
239 c_interop_kinds_table[a].value = c;
240 #define NAMED_CHARCST(a,b,c) \
241 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
242 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
243 c_interop_kinds_table[a].value = c;
244 #define DERIVED_TYPE(a,b,c) \
245 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
246 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
247 c_interop_kinds_table[a].value = c;
248 #define PROCEDURE(a,b) \
249 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
250 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
251 c_interop_kinds_table[a].value = 0;
252 #include "iso-c-binding.def"
253 }
254
255
256 /* Query the target to determine which machine modes are available for
257 computation. Choose KIND numbers for them. */
258
259 void
260 gfc_init_kinds (void)
261 {
262 enum machine_mode mode;
263 int i_index, r_index;
264 bool saw_i4 = false, saw_i8 = false;
265 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
266
267 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
268 {
269 int kind, bitsize;
270
271 if (!targetm.scalar_mode_supported_p (mode))
272 continue;
273
274 /* The middle end doesn't support constants larger than 2*HWI.
275 Perhaps the target hook shouldn't have accepted these either,
276 but just to be safe... */
277 bitsize = GET_MODE_BITSIZE (mode);
278 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
279 continue;
280
281 gcc_assert (i_index != MAX_INT_KINDS);
282
283 /* Let the kind equal the bit size divided by 8. This insulates the
284 programmer from the underlying byte size. */
285 kind = bitsize / 8;
286
287 if (kind == 4)
288 saw_i4 = true;
289 if (kind == 8)
290 saw_i8 = true;
291
292 gfc_integer_kinds[i_index].kind = kind;
293 gfc_integer_kinds[i_index].radix = 2;
294 gfc_integer_kinds[i_index].digits = bitsize - 1;
295 gfc_integer_kinds[i_index].bit_size = bitsize;
296
297 gfc_logical_kinds[i_index].kind = kind;
298 gfc_logical_kinds[i_index].bit_size = bitsize;
299
300 i_index += 1;
301 }
302
303 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
304 used for large file access. */
305
306 if (saw_i8)
307 gfc_intio_kind = 8;
308 else
309 gfc_intio_kind = 4;
310
311 /* If we do not at least have kind = 4, everything is pointless. */
312 gcc_assert(saw_i4);
313
314 /* Set the maximum integer kind. Used with at least BOZ constants. */
315 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
316
317 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
318 {
319 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
320 int kind;
321
322 if (fmt == NULL)
323 continue;
324 if (!targetm.scalar_mode_supported_p (mode))
325 continue;
326
327 /* Only let float/double/long double go through because the fortran
328 library assumes these are the only floating point types. */
329
330 if (mode != TYPE_MODE (float_type_node)
331 && (mode != TYPE_MODE (double_type_node))
332 && (mode != TYPE_MODE (long_double_type_node)))
333 continue;
334
335 /* Let the kind equal the precision divided by 8, rounding up. Again,
336 this insulates the programmer from the underlying byte size.
337
338 Also, it effectively deals with IEEE extended formats. There, the
339 total size of the type may equal 16, but it's got 6 bytes of padding
340 and the increased size can get in the way of a real IEEE quad format
341 which may also be supported by the target.
342
343 We round up so as to handle IA-64 __floatreg (RFmode), which is an
344 82 bit type. Not to be confused with __float80 (XFmode), which is
345 an 80 bit type also supported by IA-64. So XFmode should come out
346 to be kind=10, and RFmode should come out to be kind=11. Egads. */
347
348 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
349
350 if (kind == 4)
351 saw_r4 = true;
352 if (kind == 8)
353 saw_r8 = true;
354 if (kind == 16)
355 saw_r16 = true;
356
357 /* Careful we don't stumble a wierd internal mode. */
358 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
359 /* Or have too many modes for the allocated space. */
360 gcc_assert (r_index != MAX_REAL_KINDS);
361
362 gfc_real_kinds[r_index].kind = kind;
363 gfc_real_kinds[r_index].radix = fmt->b;
364 gfc_real_kinds[r_index].digits = fmt->p;
365 gfc_real_kinds[r_index].min_exponent = fmt->emin;
366 gfc_real_kinds[r_index].max_exponent = fmt->emax;
367 if (fmt->pnan < fmt->p)
368 /* This is an IBM extended double format (or the MIPS variant)
369 made up of two IEEE doubles. The value of the long double is
370 the sum of the values of the two parts. The most significant
371 part is required to be the value of the long double rounded
372 to the nearest double. If we use emax of 1024 then we can't
373 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
374 rounding will make the most significant part overflow. */
375 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
376 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
377 r_index += 1;
378 }
379
380 /* Choose the default integer kind. We choose 4 unless the user
381 directs us otherwise. */
382 if (gfc_option.flag_default_integer)
383 {
384 if (!saw_i8)
385 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
386 gfc_default_integer_kind = 8;
387
388 /* Even if the user specified that the default integer kind be 8,
389 the numerica storage size isn't 64. In this case, a warning will
390 be issued when NUMERIC_STORAGE_SIZE is used. */
391 gfc_numeric_storage_size = 4 * 8;
392 }
393 else if (saw_i4)
394 {
395 gfc_default_integer_kind = 4;
396 gfc_numeric_storage_size = 4 * 8;
397 }
398 else
399 {
400 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
401 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
402 }
403
404 /* Choose the default real kind. Again, we choose 4 when possible. */
405 if (gfc_option.flag_default_real)
406 {
407 if (!saw_r8)
408 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
409 gfc_default_real_kind = 8;
410 }
411 else if (saw_r4)
412 gfc_default_real_kind = 4;
413 else
414 gfc_default_real_kind = gfc_real_kinds[0].kind;
415
416 /* Choose the default double kind. If -fdefault-real and -fdefault-double
417 are specified, we use kind=8, if it's available. If -fdefault-real is
418 specified without -fdefault-double, we use kind=16, if it's available.
419 Otherwise we do not change anything. */
420 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
421 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
422
423 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
424 gfc_default_double_kind = 8;
425 else if (gfc_option.flag_default_real && saw_r16)
426 gfc_default_double_kind = 16;
427 else if (saw_r4 && saw_r8)
428 gfc_default_double_kind = 8;
429 else
430 {
431 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
432 real ... occupies two contiguous numeric storage units.
433
434 Therefore we must be supplied a kind twice as large as we chose
435 for single precision. There are loopholes, in that double
436 precision must *occupy* two storage units, though it doesn't have
437 to *use* two storage units. Which means that you can make this
438 kind artificially wide by padding it. But at present there are
439 no GCC targets for which a two-word type does not exist, so we
440 just let gfc_validate_kind abort and tell us if something breaks. */
441
442 gfc_default_double_kind
443 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
444 }
445
446 /* The default logical kind is constrained to be the same as the
447 default integer kind. Similarly with complex and real. */
448 gfc_default_logical_kind = gfc_default_integer_kind;
449 gfc_default_complex_kind = gfc_default_real_kind;
450
451 /* Choose the smallest integer kind for our default character. */
452 gfc_default_character_kind = gfc_integer_kinds[0].kind;
453 gfc_character_storage_size = gfc_default_character_kind * 8;
454
455 /* Choose the integer kind the same size as "void*" for our index kind. */
456 gfc_index_integer_kind = POINTER_SIZE / 8;
457 /* Pick a kind the same size as the C "int" type. */
458 gfc_c_int_kind = INT_TYPE_SIZE / 8;
459
460 /* initialize the C interoperable kinds */
461 init_c_interop_kinds();
462 }
463
464 /* Make sure that a valid kind is present. Returns an index into the
465 associated kinds array, -1 if the kind is not present. */
466
467 static int
468 validate_integer (int kind)
469 {
470 int i;
471
472 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
473 if (gfc_integer_kinds[i].kind == kind)
474 return i;
475
476 return -1;
477 }
478
479 static int
480 validate_real (int kind)
481 {
482 int i;
483
484 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
485 if (gfc_real_kinds[i].kind == kind)
486 return i;
487
488 return -1;
489 }
490
491 static int
492 validate_logical (int kind)
493 {
494 int i;
495
496 for (i = 0; gfc_logical_kinds[i].kind; i++)
497 if (gfc_logical_kinds[i].kind == kind)
498 return i;
499
500 return -1;
501 }
502
503 static int
504 validate_character (int kind)
505 {
506 return kind == gfc_default_character_kind ? 0 : -1;
507 }
508
509 /* Validate a kind given a basic type. The return value is the same
510 for the child functions, with -1 indicating nonexistence of the
511 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
512
513 int
514 gfc_validate_kind (bt type, int kind, bool may_fail)
515 {
516 int rc;
517
518 switch (type)
519 {
520 case BT_REAL: /* Fall through */
521 case BT_COMPLEX:
522 rc = validate_real (kind);
523 break;
524 case BT_INTEGER:
525 rc = validate_integer (kind);
526 break;
527 case BT_LOGICAL:
528 rc = validate_logical (kind);
529 break;
530 case BT_CHARACTER:
531 rc = validate_character (kind);
532 break;
533
534 default:
535 gfc_internal_error ("gfc_validate_kind(): Got bad type");
536 }
537
538 if (rc < 0 && !may_fail)
539 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
540
541 return rc;
542 }
543
544
545 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
546 Reuse common type nodes where possible. Recognize if the kind matches up
547 with a C type. This will be used later in determining which routines may
548 be scarfed from libm. */
549
550 static tree
551 gfc_build_int_type (gfc_integer_info *info)
552 {
553 int mode_precision = info->bit_size;
554
555 if (mode_precision == CHAR_TYPE_SIZE)
556 info->c_char = 1;
557 if (mode_precision == SHORT_TYPE_SIZE)
558 info->c_short = 1;
559 if (mode_precision == INT_TYPE_SIZE)
560 info->c_int = 1;
561 if (mode_precision == LONG_TYPE_SIZE)
562 info->c_long = 1;
563 if (mode_precision == LONG_LONG_TYPE_SIZE)
564 info->c_long_long = 1;
565
566 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
567 return intQI_type_node;
568 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
569 return intHI_type_node;
570 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
571 return intSI_type_node;
572 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
573 return intDI_type_node;
574 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
575 return intTI_type_node;
576
577 return make_signed_type (mode_precision);
578 }
579
580 static tree
581 gfc_build_real_type (gfc_real_info *info)
582 {
583 int mode_precision = info->mode_precision;
584 tree new_type;
585
586 if (mode_precision == FLOAT_TYPE_SIZE)
587 info->c_float = 1;
588 if (mode_precision == DOUBLE_TYPE_SIZE)
589 info->c_double = 1;
590 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
591 info->c_long_double = 1;
592
593 if (TYPE_PRECISION (float_type_node) == mode_precision)
594 return float_type_node;
595 if (TYPE_PRECISION (double_type_node) == mode_precision)
596 return double_type_node;
597 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
598 return long_double_type_node;
599
600 new_type = make_node (REAL_TYPE);
601 TYPE_PRECISION (new_type) = mode_precision;
602 layout_type (new_type);
603 return new_type;
604 }
605
606 static tree
607 gfc_build_complex_type (tree scalar_type)
608 {
609 tree new_type;
610
611 if (scalar_type == NULL)
612 return NULL;
613 if (scalar_type == float_type_node)
614 return complex_float_type_node;
615 if (scalar_type == double_type_node)
616 return complex_double_type_node;
617 if (scalar_type == long_double_type_node)
618 return complex_long_double_type_node;
619
620 new_type = make_node (COMPLEX_TYPE);
621 TREE_TYPE (new_type) = scalar_type;
622 layout_type (new_type);
623 return new_type;
624 }
625
626 static tree
627 gfc_build_logical_type (gfc_logical_info *info)
628 {
629 int bit_size = info->bit_size;
630 tree new_type;
631
632 if (bit_size == BOOL_TYPE_SIZE)
633 {
634 info->c_bool = 1;
635 return boolean_type_node;
636 }
637
638 new_type = make_unsigned_type (bit_size);
639 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
640 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
641 TYPE_PRECISION (new_type) = 1;
642
643 return new_type;
644 }
645
646 #if 0
647 /* Return the bit size of the C "size_t". */
648
649 static unsigned int
650 c_size_t_size (void)
651 {
652 #ifdef SIZE_TYPE
653 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
654 return INT_TYPE_SIZE;
655 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
656 return LONG_TYPE_SIZE;
657 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
658 return SHORT_TYPE_SIZE;
659 gcc_unreachable ();
660 #else
661 return LONG_TYPE_SIZE;
662 #endif
663 }
664 #endif
665
666 /* Create the backend type nodes. We map them to their
667 equivalent C type, at least for now. We also give
668 names to the types here, and we push them in the
669 global binding level context.*/
670
671 void
672 gfc_init_types (void)
673 {
674 char name_buf[16];
675 int index;
676 tree type;
677 unsigned n;
678 unsigned HOST_WIDE_INT hi;
679 unsigned HOST_WIDE_INT lo;
680
681 /* Create and name the types. */
682 #define PUSH_TYPE(name, node) \
683 pushdecl (build_decl (TYPE_DECL, get_identifier (name), node))
684
685 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
686 {
687 type = gfc_build_int_type (&gfc_integer_kinds[index]);
688 gfc_integer_types[index] = type;
689 snprintf (name_buf, sizeof(name_buf), "int%d",
690 gfc_integer_kinds[index].kind);
691 PUSH_TYPE (name_buf, type);
692 }
693
694 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
695 {
696 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
697 gfc_logical_types[index] = type;
698 snprintf (name_buf, sizeof(name_buf), "logical%d",
699 gfc_logical_kinds[index].kind);
700 PUSH_TYPE (name_buf, type);
701 }
702
703 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
704 {
705 type = gfc_build_real_type (&gfc_real_kinds[index]);
706 gfc_real_types[index] = type;
707 snprintf (name_buf, sizeof(name_buf), "real%d",
708 gfc_real_kinds[index].kind);
709 PUSH_TYPE (name_buf, type);
710
711 type = gfc_build_complex_type (type);
712 gfc_complex_types[index] = type;
713 snprintf (name_buf, sizeof(name_buf), "complex%d",
714 gfc_real_kinds[index].kind);
715 PUSH_TYPE (name_buf, type);
716 }
717
718 gfc_character1_type_node = build_type_variant (unsigned_char_type_node,
719 0, 0);
720 PUSH_TYPE ("char", gfc_character1_type_node);
721
722 PUSH_TYPE ("byte", unsigned_char_type_node);
723 PUSH_TYPE ("void", void_type_node);
724
725 /* DBX debugging output gets upset if these aren't set. */
726 if (!TYPE_NAME (integer_type_node))
727 PUSH_TYPE ("c_integer", integer_type_node);
728 if (!TYPE_NAME (char_type_node))
729 PUSH_TYPE ("c_char", char_type_node);
730
731 #undef PUSH_TYPE
732
733 pvoid_type_node = build_pointer_type (void_type_node);
734 ppvoid_type_node = build_pointer_type (pvoid_type_node);
735 pchar_type_node = build_pointer_type (gfc_character1_type_node);
736
737 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
738 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
739 since this function is called before gfc_init_constants. */
740 gfc_array_range_type
741 = build_range_type (gfc_array_index_type,
742 build_int_cst (gfc_array_index_type, 0),
743 NULL_TREE);
744
745 /* The maximum array element size that can be handled is determined
746 by the number of bits available to store this field in the array
747 descriptor. */
748
749 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
750 lo = ~ (unsigned HOST_WIDE_INT) 0;
751 if (n > HOST_BITS_PER_WIDE_INT)
752 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
753 else
754 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
755 gfc_max_array_element_size
756 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
757
758 size_type_node = gfc_array_index_type;
759
760 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
761 boolean_true_node = build_int_cst (boolean_type_node, 1);
762 boolean_false_node = build_int_cst (boolean_type_node, 0);
763
764 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
765 gfc_charlen_int_kind = 4;
766 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
767 }
768
769 /* Get the type node for the given type and kind. */
770
771 tree
772 gfc_get_int_type (int kind)
773 {
774 int index = gfc_validate_kind (BT_INTEGER, kind, true);
775 return index < 0 ? 0 : gfc_integer_types[index];
776 }
777
778 tree
779 gfc_get_real_type (int kind)
780 {
781 int index = gfc_validate_kind (BT_REAL, kind, true);
782 return index < 0 ? 0 : gfc_real_types[index];
783 }
784
785 tree
786 gfc_get_complex_type (int kind)
787 {
788 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
789 return index < 0 ? 0 : gfc_complex_types[index];
790 }
791
792 tree
793 gfc_get_logical_type (int kind)
794 {
795 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
796 return index < 0 ? 0 : gfc_logical_types[index];
797 }
798 \f
799 /* Create a character type with the given kind and length. */
800
801 tree
802 gfc_get_character_type_len (int kind, tree len)
803 {
804 tree bounds, type;
805
806 gfc_validate_kind (BT_CHARACTER, kind, false);
807
808 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
809 type = build_array_type (gfc_character1_type_node, bounds);
810 TYPE_STRING_FLAG (type) = 1;
811
812 return type;
813 }
814
815
816 /* Get a type node for a character kind. */
817
818 tree
819 gfc_get_character_type (int kind, gfc_charlen * cl)
820 {
821 tree len;
822
823 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
824
825 return gfc_get_character_type_len (kind, len);
826 }
827 \f
828 /* Covert a basic type. This will be an array for character types. */
829
830 tree
831 gfc_typenode_for_spec (gfc_typespec * spec)
832 {
833 tree basetype;
834
835 switch (spec->type)
836 {
837 case BT_UNKNOWN:
838 gcc_unreachable ();
839
840 case BT_INTEGER:
841 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
842 has been resolved. This is done so we can convert C_PTR and
843 C_FUNPTR to simple variables that get translated to (void *). */
844 if (spec->f90_type == BT_VOID)
845 basetype = ptr_type_node;
846 else
847 basetype = gfc_get_int_type (spec->kind);
848 break;
849
850 case BT_REAL:
851 basetype = gfc_get_real_type (spec->kind);
852 break;
853
854 case BT_COMPLEX:
855 basetype = gfc_get_complex_type (spec->kind);
856 break;
857
858 case BT_LOGICAL:
859 basetype = gfc_get_logical_type (spec->kind);
860 break;
861
862 case BT_CHARACTER:
863 basetype = gfc_get_character_type (spec->kind, spec->cl);
864 break;
865
866 case BT_DERIVED:
867 basetype = gfc_get_derived_type (spec->derived);
868
869 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
870 type and kind to fit a (void *) and the basetype returned was a
871 ptr_type_node. We need to pass up this new information to the
872 symbol that was declared of type C_PTR or C_FUNPTR. */
873 if (spec->derived->attr.is_iso_c)
874 {
875 spec->type = spec->derived->ts.type;
876 spec->kind = spec->derived->ts.kind;
877 spec->f90_type = spec->derived->ts.f90_type;
878 }
879 break;
880 case BT_VOID:
881 /* This is for the second arg to c_f_pointer and c_f_procpointer
882 of the iso_c_binding module, to accept any ptr type. */
883 basetype = ptr_type_node;
884 break;
885 default:
886 gcc_unreachable ();
887 }
888 return basetype;
889 }
890 \f
891 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
892
893 static tree
894 gfc_conv_array_bound (gfc_expr * expr)
895 {
896 /* If expr is an integer constant, return that. */
897 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
898 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
899
900 /* Otherwise return NULL. */
901 return NULL_TREE;
902 }
903 \f
904 tree
905 gfc_get_element_type (tree type)
906 {
907 tree element;
908
909 if (GFC_ARRAY_TYPE_P (type))
910 {
911 if (TREE_CODE (type) == POINTER_TYPE)
912 type = TREE_TYPE (type);
913 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
914 element = TREE_TYPE (type);
915 }
916 else
917 {
918 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
919 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
920
921 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
922 element = TREE_TYPE (element);
923
924 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
925 element = TREE_TYPE (element);
926 }
927
928 return element;
929 }
930 \f
931 /* Build an array. This function is called from gfc_sym_type().
932 Actually returns array descriptor type.
933
934 Format of array descriptors is as follows:
935
936 struct gfc_array_descriptor
937 {
938 array *data
939 index offset;
940 index dtype;
941 struct descriptor_dimension dimension[N_DIM];
942 }
943
944 struct descriptor_dimension
945 {
946 index stride;
947 index lbound;
948 index ubound;
949 }
950
951 Translation code should use gfc_conv_descriptor_* rather than
952 accessing the descriptor directly. Any changes to the array
953 descriptor type will require changes in gfc_conv_descriptor_* and
954 gfc_build_array_initializer.
955
956 This is represented internally as a RECORD_TYPE. The index nodes
957 are gfc_array_index_type and the data node is a pointer to the
958 data. See below for the handling of character types.
959
960 The dtype member is formatted as follows:
961 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
962 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
963 size = dtype >> GFC_DTYPE_SIZE_SHIFT
964
965 I originally used nested ARRAY_TYPE nodes to represent arrays, but
966 this generated poor code for assumed/deferred size arrays. These
967 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
968 of the GENERIC grammar. Also, there is no way to explicitly set
969 the array stride, so all data must be packed(1). I've tried to
970 mark all the functions which would require modification with a GCC
971 ARRAYS comment.
972
973 The data component points to the first element in the array. The
974 offset field is the position of the origin of the array (ie element
975 (0, 0 ...)). This may be outsite the bounds of the array.
976
977 An element is accessed by
978 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
979 This gives good performance as the computation does not involve the
980 bounds of the array. For packed arrays, this is optimized further
981 by substituting the known strides.
982
983 This system has one problem: all array bounds must be within 2^31
984 elements of the origin (2^63 on 64-bit machines). For example
985 integer, dimension (80000:90000, 80000:90000, 2) :: array
986 may not work properly on 32-bit machines because 80000*80000 >
987 2^31, so the calculation for stride02 would overflow. This may
988 still work, but I haven't checked, and it relies on the overflow
989 doing the right thing.
990
991 The way to fix this problem is to access elements as follows:
992 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
993 Obviously this is much slower. I will make this a compile time
994 option, something like -fsmall-array-offsets. Mixing code compiled
995 with and without this switch will work.
996
997 (1) This can be worked around by modifying the upper bound of the
998 previous dimension. This requires extra fields in the descriptor
999 (both real_ubound and fake_ubound). */
1000
1001
1002 /* Returns true if the array sym does not require a descriptor. */
1003
1004 int
1005 gfc_is_nodesc_array (gfc_symbol * sym)
1006 {
1007 gcc_assert (sym->attr.dimension);
1008
1009 /* We only want local arrays. */
1010 if (sym->attr.pointer || sym->attr.allocatable)
1011 return 0;
1012
1013 if (sym->attr.dummy)
1014 {
1015 if (sym->as->type != AS_ASSUMED_SHAPE)
1016 return 1;
1017 else
1018 return 0;
1019 }
1020
1021 if (sym->attr.result || sym->attr.function)
1022 return 0;
1023
1024 gcc_assert (sym->as->type == AS_EXPLICIT);
1025
1026 return 1;
1027 }
1028
1029
1030 /* Create an array descriptor type. */
1031
1032 static tree
1033 gfc_build_array_type (tree type, gfc_array_spec * as)
1034 {
1035 tree lbound[GFC_MAX_DIMENSIONS];
1036 tree ubound[GFC_MAX_DIMENSIONS];
1037 int n;
1038
1039 for (n = 0; n < as->rank; n++)
1040 {
1041 /* Create expressions for the known bounds of the array. */
1042 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1043 lbound[n] = gfc_index_one_node;
1044 else
1045 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1046 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1047 }
1048
1049 return gfc_get_array_type_bounds (type, as->rank, lbound, ubound, 0);
1050 }
1051 \f
1052 /* Returns the struct descriptor_dimension type. */
1053
1054 static tree
1055 gfc_get_desc_dim_type (void)
1056 {
1057 tree type;
1058 tree decl;
1059 tree fieldlist;
1060
1061 if (gfc_desc_dim_type)
1062 return gfc_desc_dim_type;
1063
1064 /* Build the type node. */
1065 type = make_node (RECORD_TYPE);
1066
1067 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1068 TYPE_PACKED (type) = 1;
1069
1070 /* Consists of the stride, lbound and ubound members. */
1071 decl = build_decl (FIELD_DECL,
1072 get_identifier ("stride"), gfc_array_index_type);
1073 DECL_CONTEXT (decl) = type;
1074 fieldlist = decl;
1075
1076 decl = build_decl (FIELD_DECL,
1077 get_identifier ("lbound"), gfc_array_index_type);
1078 DECL_CONTEXT (decl) = type;
1079 fieldlist = chainon (fieldlist, decl);
1080
1081 decl = build_decl (FIELD_DECL,
1082 get_identifier ("ubound"), gfc_array_index_type);
1083 DECL_CONTEXT (decl) = type;
1084 fieldlist = chainon (fieldlist, decl);
1085
1086 /* Finish off the type. */
1087 TYPE_FIELDS (type) = fieldlist;
1088
1089 gfc_finish_type (type);
1090
1091 gfc_desc_dim_type = type;
1092 return type;
1093 }
1094
1095
1096 /* Return the DTYPE for an array. This describes the type and type parameters
1097 of the array. */
1098 /* TODO: Only call this when the value is actually used, and make all the
1099 unknown cases abort. */
1100
1101 tree
1102 gfc_get_dtype (tree type)
1103 {
1104 tree size;
1105 int n;
1106 HOST_WIDE_INT i;
1107 tree tmp;
1108 tree dtype;
1109 tree etype;
1110 int rank;
1111
1112 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1113
1114 if (GFC_TYPE_ARRAY_DTYPE (type))
1115 return GFC_TYPE_ARRAY_DTYPE (type);
1116
1117 rank = GFC_TYPE_ARRAY_RANK (type);
1118 etype = gfc_get_element_type (type);
1119
1120 switch (TREE_CODE (etype))
1121 {
1122 case INTEGER_TYPE:
1123 n = GFC_DTYPE_INTEGER;
1124 break;
1125
1126 case BOOLEAN_TYPE:
1127 n = GFC_DTYPE_LOGICAL;
1128 break;
1129
1130 case REAL_TYPE:
1131 n = GFC_DTYPE_REAL;
1132 break;
1133
1134 case COMPLEX_TYPE:
1135 n = GFC_DTYPE_COMPLEX;
1136 break;
1137
1138 /* We will never have arrays of arrays. */
1139 case RECORD_TYPE:
1140 n = GFC_DTYPE_DERIVED;
1141 break;
1142
1143 case ARRAY_TYPE:
1144 n = GFC_DTYPE_CHARACTER;
1145 break;
1146
1147 default:
1148 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1149 /* We can strange array types for temporary arrays. */
1150 return gfc_index_zero_node;
1151 }
1152
1153 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1154 size = TYPE_SIZE_UNIT (etype);
1155
1156 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1157 if (size && INTEGER_CST_P (size))
1158 {
1159 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1160 internal_error ("Array element size too big");
1161
1162 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1163 }
1164 dtype = build_int_cst (gfc_array_index_type, i);
1165
1166 if (size && !INTEGER_CST_P (size))
1167 {
1168 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1169 tmp = fold_build2 (LSHIFT_EXPR, gfc_array_index_type,
1170 fold_convert (gfc_array_index_type, size), tmp);
1171 dtype = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, dtype);
1172 }
1173 /* If we don't know the size we leave it as zero. This should never happen
1174 for anything that is actually used. */
1175 /* TODO: Check this is actually true, particularly when repacking
1176 assumed size parameters. */
1177
1178 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1179 return dtype;
1180 }
1181
1182
1183 /* Build an array type for use without a descriptor, packed according
1184 to the value of PACKED. */
1185
1186 tree
1187 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed)
1188 {
1189 tree range;
1190 tree type;
1191 tree tmp;
1192 int n;
1193 int known_stride;
1194 int known_offset;
1195 mpz_t offset;
1196 mpz_t stride;
1197 mpz_t delta;
1198 gfc_expr *expr;
1199
1200 mpz_init_set_ui (offset, 0);
1201 mpz_init_set_ui (stride, 1);
1202 mpz_init (delta);
1203
1204 /* We don't use build_array_type because this does not include include
1205 lang-specific information (i.e. the bounds of the array) when checking
1206 for duplicates. */
1207 type = make_node (ARRAY_TYPE);
1208
1209 GFC_ARRAY_TYPE_P (type) = 1;
1210 TYPE_LANG_SPECIFIC (type) = (struct lang_type *)
1211 ggc_alloc_cleared (sizeof (struct lang_type));
1212
1213 known_stride = (packed != PACKED_NO);
1214 known_offset = 1;
1215 for (n = 0; n < as->rank; n++)
1216 {
1217 /* Fill in the stride and bound components of the type. */
1218 if (known_stride)
1219 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1220 else
1221 tmp = NULL_TREE;
1222 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1223
1224 expr = as->lower[n];
1225 if (expr->expr_type == EXPR_CONSTANT)
1226 {
1227 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1228 gfc_index_integer_kind);
1229 }
1230 else
1231 {
1232 known_stride = 0;
1233 tmp = NULL_TREE;
1234 }
1235 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1236
1237 if (known_stride)
1238 {
1239 /* Calculate the offset. */
1240 mpz_mul (delta, stride, as->lower[n]->value.integer);
1241 mpz_sub (offset, offset, delta);
1242 }
1243 else
1244 known_offset = 0;
1245
1246 expr = as->upper[n];
1247 if (expr && expr->expr_type == EXPR_CONSTANT)
1248 {
1249 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1250 gfc_index_integer_kind);
1251 }
1252 else
1253 {
1254 tmp = NULL_TREE;
1255 known_stride = 0;
1256 }
1257 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1258
1259 if (known_stride)
1260 {
1261 /* Calculate the stride. */
1262 mpz_sub (delta, as->upper[n]->value.integer,
1263 as->lower[n]->value.integer);
1264 mpz_add_ui (delta, delta, 1);
1265 mpz_mul (stride, stride, delta);
1266 }
1267
1268 /* Only the first stride is known for partial packed arrays. */
1269 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1270 known_stride = 0;
1271 }
1272
1273 if (known_offset)
1274 {
1275 GFC_TYPE_ARRAY_OFFSET (type) =
1276 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1277 }
1278 else
1279 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1280
1281 if (known_stride)
1282 {
1283 GFC_TYPE_ARRAY_SIZE (type) =
1284 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1285 }
1286 else
1287 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1288
1289 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1290 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1291 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1292 NULL_TREE);
1293 /* TODO: use main type if it is unbounded. */
1294 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1295 build_pointer_type (build_array_type (etype, range));
1296
1297 if (known_stride)
1298 {
1299 mpz_sub_ui (stride, stride, 1);
1300 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1301 }
1302 else
1303 range = NULL_TREE;
1304
1305 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1306 TYPE_DOMAIN (type) = range;
1307
1308 build_pointer_type (etype);
1309 TREE_TYPE (type) = etype;
1310
1311 layout_type (type);
1312
1313 mpz_clear (offset);
1314 mpz_clear (stride);
1315 mpz_clear (delta);
1316
1317 if (packed != PACKED_STATIC || !known_stride)
1318 {
1319 /* For dummy arrays and automatic (heap allocated) arrays we
1320 want a pointer to the array. */
1321 type = build_pointer_type (type);
1322 GFC_ARRAY_TYPE_P (type) = 1;
1323 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1324 }
1325 return type;
1326 }
1327
1328 /* Return or create the base type for an array descriptor. */
1329
1330 static tree
1331 gfc_get_array_descriptor_base (int dimen)
1332 {
1333 tree fat_type, fieldlist, decl, arraytype;
1334 char name[16 + GFC_RANK_DIGITS + 1];
1335
1336 gcc_assert (dimen >= 1 && dimen <= GFC_MAX_DIMENSIONS);
1337 if (gfc_array_descriptor_base[dimen - 1])
1338 return gfc_array_descriptor_base[dimen - 1];
1339
1340 /* Build the type node. */
1341 fat_type = make_node (RECORD_TYPE);
1342
1343 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen);
1344 TYPE_NAME (fat_type) = get_identifier (name);
1345
1346 /* Add the data member as the first element of the descriptor. */
1347 decl = build_decl (FIELD_DECL, get_identifier ("data"), ptr_type_node);
1348
1349 DECL_CONTEXT (decl) = fat_type;
1350 fieldlist = decl;
1351
1352 /* Add the base component. */
1353 decl = build_decl (FIELD_DECL, get_identifier ("offset"),
1354 gfc_array_index_type);
1355 DECL_CONTEXT (decl) = fat_type;
1356 fieldlist = chainon (fieldlist, decl);
1357
1358 /* Add the dtype component. */
1359 decl = build_decl (FIELD_DECL, get_identifier ("dtype"),
1360 gfc_array_index_type);
1361 DECL_CONTEXT (decl) = fat_type;
1362 fieldlist = chainon (fieldlist, decl);
1363
1364 /* Build the array type for the stride and bound components. */
1365 arraytype =
1366 build_array_type (gfc_get_desc_dim_type (),
1367 build_range_type (gfc_array_index_type,
1368 gfc_index_zero_node,
1369 gfc_rank_cst[dimen - 1]));
1370
1371 decl = build_decl (FIELD_DECL, get_identifier ("dim"), arraytype);
1372 DECL_CONTEXT (decl) = fat_type;
1373 fieldlist = chainon (fieldlist, decl);
1374
1375 /* Finish off the type. */
1376 TYPE_FIELDS (fat_type) = fieldlist;
1377
1378 gfc_finish_type (fat_type);
1379
1380 gfc_array_descriptor_base[dimen - 1] = fat_type;
1381 return fat_type;
1382 }
1383
1384 /* Build an array (descriptor) type with given bounds. */
1385
1386 tree
1387 gfc_get_array_type_bounds (tree etype, int dimen, tree * lbound,
1388 tree * ubound, int packed)
1389 {
1390 char name[8 + GFC_RANK_DIGITS + GFC_MAX_SYMBOL_LEN];
1391 tree fat_type, base_type, arraytype, lower, upper, stride, tmp;
1392 const char *typename;
1393 int n;
1394
1395 base_type = gfc_get_array_descriptor_base (dimen);
1396 fat_type = build_variant_type_copy (base_type);
1397
1398 tmp = TYPE_NAME (etype);
1399 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1400 tmp = DECL_NAME (tmp);
1401 if (tmp)
1402 typename = IDENTIFIER_POINTER (tmp);
1403 else
1404 typename = "unknown";
1405 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen,
1406 GFC_MAX_SYMBOL_LEN, typename);
1407 TYPE_NAME (fat_type) = get_identifier (name);
1408
1409 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1410 TYPE_LANG_SPECIFIC (fat_type) = (struct lang_type *)
1411 ggc_alloc_cleared (sizeof (struct lang_type));
1412
1413 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1414 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1415
1416 /* Build an array descriptor record type. */
1417 if (packed != 0)
1418 stride = gfc_index_one_node;
1419 else
1420 stride = NULL_TREE;
1421 for (n = 0; n < dimen; n++)
1422 {
1423 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1424
1425 if (lbound)
1426 lower = lbound[n];
1427 else
1428 lower = NULL_TREE;
1429
1430 if (lower != NULL_TREE)
1431 {
1432 if (INTEGER_CST_P (lower))
1433 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1434 else
1435 lower = NULL_TREE;
1436 }
1437
1438 upper = ubound[n];
1439 if (upper != NULL_TREE)
1440 {
1441 if (INTEGER_CST_P (upper))
1442 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1443 else
1444 upper = NULL_TREE;
1445 }
1446
1447 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1448 {
1449 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
1450 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp,
1451 gfc_index_one_node);
1452 stride =
1453 fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, stride);
1454 /* Check the folding worked. */
1455 gcc_assert (INTEGER_CST_P (stride));
1456 }
1457 else
1458 stride = NULL_TREE;
1459 }
1460 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1461
1462 /* TODO: known offsets for descriptors. */
1463 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1464
1465 /* We define data as an unknown size array. Much better than doing
1466 pointer arithmetic. */
1467 arraytype =
1468 build_array_type (etype, gfc_array_range_type);
1469 arraytype = build_pointer_type (arraytype);
1470 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1471
1472 return fat_type;
1473 }
1474 \f
1475 /* Build a pointer type. This function is called from gfc_sym_type(). */
1476
1477 static tree
1478 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1479 {
1480 /* Array pointer types aren't actually pointers. */
1481 if (sym->attr.dimension)
1482 return type;
1483 else
1484 return build_pointer_type (type);
1485 }
1486 \f
1487 /* Return the type for a symbol. Special handling is required for character
1488 types to get the correct level of indirection.
1489 For functions return the return type.
1490 For subroutines return void_type_node.
1491 Calling this multiple times for the same symbol should be avoided,
1492 especially for character and array types. */
1493
1494 tree
1495 gfc_sym_type (gfc_symbol * sym)
1496 {
1497 tree type;
1498 int byref;
1499
1500 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1501 return void_type_node;
1502
1503 /* In the case of a function the fake result variable may have a
1504 type different from the function type, so don't return early in
1505 that case. */
1506 if (sym->backend_decl && !sym->attr.function)
1507 return TREE_TYPE (sym->backend_decl);
1508
1509 type = gfc_typenode_for_spec (&sym->ts);
1510
1511 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1512 byref = 1;
1513 else
1514 byref = 0;
1515
1516 if (sym->attr.dimension)
1517 {
1518 if (gfc_is_nodesc_array (sym))
1519 {
1520 /* If this is a character argument of unknown length, just use the
1521 base type. */
1522 if (sym->ts.type != BT_CHARACTER
1523 || !(sym->attr.dummy || sym->attr.function)
1524 || sym->ts.cl->backend_decl)
1525 {
1526 type = gfc_get_nodesc_array_type (type, sym->as,
1527 byref ? PACKED_FULL
1528 : PACKED_STATIC);
1529 byref = 0;
1530 }
1531 }
1532 else
1533 {
1534 type = gfc_build_array_type (type, sym->as);
1535 }
1536 }
1537 else
1538 {
1539 if (sym->attr.allocatable || sym->attr.pointer)
1540 type = gfc_build_pointer_type (sym, type);
1541 if (sym->attr.pointer)
1542 GFC_POINTER_TYPE_P (type) = 1;
1543 }
1544
1545 /* We currently pass all parameters by reference.
1546 See f95_get_function_decl. For dummy function parameters return the
1547 function type. */
1548 if (byref)
1549 {
1550 /* We must use pointer types for potentially absent variables. The
1551 optimizers assume a reference type argument is never NULL. */
1552 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
1553 type = build_pointer_type (type);
1554 else
1555 type = build_reference_type (type);
1556 }
1557
1558 return (type);
1559 }
1560 \f
1561 /* Layout and output debug info for a record type. */
1562
1563 void
1564 gfc_finish_type (tree type)
1565 {
1566 tree decl;
1567
1568 decl = build_decl (TYPE_DECL, NULL_TREE, type);
1569 TYPE_STUB_DECL (type) = decl;
1570 layout_type (type);
1571 rest_of_type_compilation (type, 1);
1572 rest_of_decl_compilation (decl, 1, 0);
1573 }
1574 \f
1575 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1576 or RECORD_TYPE pointed to by STYPE. The new field is chained
1577 to the fieldlist pointed to by FIELDLIST.
1578
1579 Returns a pointer to the new field. */
1580
1581 tree
1582 gfc_add_field_to_struct (tree *fieldlist, tree context,
1583 tree name, tree type)
1584 {
1585 tree decl;
1586
1587 decl = build_decl (FIELD_DECL, name, type);
1588
1589 DECL_CONTEXT (decl) = context;
1590 DECL_INITIAL (decl) = 0;
1591 DECL_ALIGN (decl) = 0;
1592 DECL_USER_ALIGN (decl) = 0;
1593 TREE_CHAIN (decl) = NULL_TREE;
1594 *fieldlist = chainon (*fieldlist, decl);
1595
1596 return decl;
1597 }
1598
1599
1600 /* Copy the backend_decl and component backend_decls if
1601 the two derived type symbols are "equal", as described
1602 in 4.4.2 and resolved by gfc_compare_derived_types. */
1603
1604 static int
1605 copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to)
1606 {
1607 gfc_component *to_cm;
1608 gfc_component *from_cm;
1609
1610 if (from->backend_decl == NULL
1611 || !gfc_compare_derived_types (from, to))
1612 return 0;
1613
1614 to->backend_decl = from->backend_decl;
1615
1616 to_cm = to->components;
1617 from_cm = from->components;
1618
1619 /* Copy the component declarations. If a component is itself
1620 a derived type, we need a copy of its component declarations.
1621 This is done by recursing into gfc_get_derived_type and
1622 ensures that the component's component declarations have
1623 been built. If it is a character, we need the character
1624 length, as well. */
1625 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
1626 {
1627 to_cm->backend_decl = from_cm->backend_decl;
1628 if (!from_cm->pointer && from_cm->ts.type == BT_DERIVED)
1629 gfc_get_derived_type (to_cm->ts.derived);
1630
1631 else if (from_cm->ts.type == BT_CHARACTER)
1632 to_cm->ts.cl->backend_decl = from_cm->ts.cl->backend_decl;
1633 }
1634
1635 return 1;
1636 }
1637
1638
1639 /* Build a tree node for a derived type. If there are equal
1640 derived types, with different local names, these are built
1641 at the same time. If an equal derived type has been built
1642 in a parent namespace, this is used. */
1643
1644 static tree
1645 gfc_get_derived_type (gfc_symbol * derived)
1646 {
1647 tree typenode = NULL, field = NULL, field_type = NULL, fieldlist = NULL;
1648 gfc_component *c;
1649 gfc_dt_list *dt;
1650
1651 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
1652
1653 /* See if it's one of the iso_c_binding derived types. */
1654 if (derived->attr.is_iso_c == 1)
1655 {
1656 derived->backend_decl = ptr_type_node;
1657 derived->ts.kind = gfc_index_integer_kind;
1658 derived->ts.type = BT_INTEGER;
1659 /* Set the f90_type to BT_VOID as a way to recognize something of type
1660 BT_INTEGER that needs to fit a void * for the purpose of the
1661 iso_c_binding derived types. */
1662 derived->ts.f90_type = BT_VOID;
1663 return derived->backend_decl;
1664 }
1665
1666 /* derived->backend_decl != 0 means we saw it before, but its
1667 components' backend_decl may have not been built. */
1668 if (derived->backend_decl)
1669 {
1670 /* Its components' backend_decl have been built. */
1671 if (TYPE_FIELDS (derived->backend_decl))
1672 return derived->backend_decl;
1673 else
1674 typenode = derived->backend_decl;
1675 }
1676 else
1677 {
1678
1679 /* We see this derived type first time, so build the type node. */
1680 typenode = make_node (RECORD_TYPE);
1681 TYPE_NAME (typenode) = get_identifier (derived->name);
1682 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
1683 derived->backend_decl = typenode;
1684 }
1685
1686 /* Go through the derived type components, building them as
1687 necessary. The reason for doing this now is that it is
1688 possible to recurse back to this derived type through a
1689 pointer component (PR24092). If this happens, the fields
1690 will be built and so we can return the type. */
1691 for (c = derived->components; c; c = c->next)
1692 {
1693 if (c->ts.type != BT_DERIVED)
1694 continue;
1695
1696 if (!c->pointer || c->ts.derived->backend_decl == NULL)
1697 c->ts.derived->backend_decl = gfc_get_derived_type (c->ts.derived);
1698
1699 if (c->ts.derived && c->ts.derived->attr.is_iso_c)
1700 {
1701 /* Need to copy the modified ts from the derived type. The
1702 typespec was modified because C_PTR/C_FUNPTR are translated
1703 into (void *) from derived types. */
1704 c->ts.type = c->ts.derived->ts.type;
1705 c->ts.kind = c->ts.derived->ts.kind;
1706 c->ts.f90_type = c->ts.derived->ts.f90_type;
1707 }
1708 }
1709
1710 if (TYPE_FIELDS (derived->backend_decl))
1711 return derived->backend_decl;
1712
1713 /* Build the type member list. Install the newly created RECORD_TYPE
1714 node as DECL_CONTEXT of each FIELD_DECL. */
1715 fieldlist = NULL_TREE;
1716 for (c = derived->components; c; c = c->next)
1717 {
1718 if (c->ts.type == BT_DERIVED)
1719 field_type = c->ts.derived->backend_decl;
1720 else
1721 {
1722 if (c->ts.type == BT_CHARACTER)
1723 {
1724 /* Evaluate the string length. */
1725 gfc_conv_const_charlen (c->ts.cl);
1726 gcc_assert (c->ts.cl->backend_decl);
1727 }
1728
1729 field_type = gfc_typenode_for_spec (&c->ts);
1730 }
1731
1732 /* This returns an array descriptor type. Initialization may be
1733 required. */
1734 if (c->dimension)
1735 {
1736 if (c->pointer || c->allocatable)
1737 {
1738 /* Pointers to arrays aren't actually pointer types. The
1739 descriptors are separate, but the data is common. */
1740 field_type = gfc_build_array_type (field_type, c->as);
1741 }
1742 else
1743 field_type = gfc_get_nodesc_array_type (field_type, c->as,
1744 PACKED_STATIC);
1745 }
1746 else if (c->pointer)
1747 field_type = build_pointer_type (field_type);
1748
1749 field = gfc_add_field_to_struct (&fieldlist, typenode,
1750 get_identifier (c->name),
1751 field_type);
1752
1753 DECL_PACKED (field) |= TYPE_PACKED (typenode);
1754
1755 gcc_assert (field);
1756 if (!c->backend_decl)
1757 c->backend_decl = field;
1758 }
1759
1760 /* Now we have the final fieldlist. Record it, then lay out the
1761 derived type, including the fields. */
1762 TYPE_FIELDS (typenode) = fieldlist;
1763
1764 gfc_finish_type (typenode);
1765
1766 derived->backend_decl = typenode;
1767
1768 /* Add this backend_decl to all the other, equal derived types. */
1769 for (dt = gfc_derived_types; dt; dt = dt->next)
1770 copy_dt_decls_ifequal (derived, dt->derived);
1771
1772 return derived->backend_decl;
1773 }
1774
1775
1776 int
1777 gfc_return_by_reference (gfc_symbol * sym)
1778 {
1779 if (!sym->attr.function)
1780 return 0;
1781
1782 if (sym->attr.dimension)
1783 return 1;
1784
1785 if (sym->ts.type == BT_CHARACTER)
1786 return 1;
1787
1788 /* Possibly return complex numbers by reference for g77 compatibility.
1789 We don't do this for calls to intrinsics (as the library uses the
1790 -fno-f2c calling convention), nor for calls to functions which always
1791 require an explicit interface, as no compatibility problems can
1792 arise there. */
1793 if (gfc_option.flag_f2c
1794 && sym->ts.type == BT_COMPLEX
1795 && !sym->attr.intrinsic && !sym->attr.always_explicit)
1796 return 1;
1797
1798 return 0;
1799 }
1800 \f
1801 static tree
1802 gfc_get_mixed_entry_union (gfc_namespace *ns)
1803 {
1804 tree type;
1805 tree decl;
1806 tree fieldlist;
1807 char name[GFC_MAX_SYMBOL_LEN + 1];
1808 gfc_entry_list *el, *el2;
1809
1810 gcc_assert (ns->proc_name->attr.mixed_entry_master);
1811 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
1812
1813 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
1814
1815 /* Build the type node. */
1816 type = make_node (UNION_TYPE);
1817
1818 TYPE_NAME (type) = get_identifier (name);
1819 fieldlist = NULL;
1820
1821 for (el = ns->entries; el; el = el->next)
1822 {
1823 /* Search for duplicates. */
1824 for (el2 = ns->entries; el2 != el; el2 = el2->next)
1825 if (el2->sym->result == el->sym->result)
1826 break;
1827
1828 if (el == el2)
1829 {
1830 decl = build_decl (FIELD_DECL,
1831 get_identifier (el->sym->result->name),
1832 gfc_sym_type (el->sym->result));
1833 DECL_CONTEXT (decl) = type;
1834 fieldlist = chainon (fieldlist, decl);
1835 }
1836 }
1837
1838 /* Finish off the type. */
1839 TYPE_FIELDS (type) = fieldlist;
1840
1841 gfc_finish_type (type);
1842 return type;
1843 }
1844 \f
1845 tree
1846 gfc_get_function_type (gfc_symbol * sym)
1847 {
1848 tree type;
1849 tree typelist;
1850 gfc_formal_arglist *f;
1851 gfc_symbol *arg;
1852 int nstr;
1853 int alternate_return;
1854
1855 /* Make sure this symbol is a function or a subroutine. */
1856 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
1857
1858 if (sym->backend_decl)
1859 return TREE_TYPE (sym->backend_decl);
1860
1861 nstr = 0;
1862 alternate_return = 0;
1863 typelist = NULL_TREE;
1864
1865 if (sym->attr.entry_master)
1866 {
1867 /* Additional parameter for selecting an entry point. */
1868 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
1869 }
1870
1871 /* Some functions we use an extra parameter for the return value. */
1872 if (gfc_return_by_reference (sym))
1873 {
1874 if (sym->result)
1875 arg = sym->result;
1876 else
1877 arg = sym;
1878
1879 if (arg->ts.type == BT_CHARACTER)
1880 gfc_conv_const_charlen (arg->ts.cl);
1881
1882 type = gfc_sym_type (arg);
1883 if (arg->ts.type == BT_COMPLEX
1884 || arg->attr.dimension
1885 || arg->ts.type == BT_CHARACTER)
1886 type = build_reference_type (type);
1887
1888 typelist = gfc_chainon_list (typelist, type);
1889 if (arg->ts.type == BT_CHARACTER)
1890 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
1891 }
1892
1893 /* Build the argument types for the function. */
1894 for (f = sym->formal; f; f = f->next)
1895 {
1896 arg = f->sym;
1897 if (arg)
1898 {
1899 /* Evaluate constant character lengths here so that they can be
1900 included in the type. */
1901 if (arg->ts.type == BT_CHARACTER)
1902 gfc_conv_const_charlen (arg->ts.cl);
1903
1904 if (arg->attr.flavor == FL_PROCEDURE)
1905 {
1906 type = gfc_get_function_type (arg);
1907 type = build_pointer_type (type);
1908 }
1909 else
1910 type = gfc_sym_type (arg);
1911
1912 /* Parameter Passing Convention
1913
1914 We currently pass all parameters by reference.
1915 Parameters with INTENT(IN) could be passed by value.
1916 The problem arises if a function is called via an implicit
1917 prototype. In this situation the INTENT is not known.
1918 For this reason all parameters to global functions must be
1919 passed by reference. Passing by value would potentially
1920 generate bad code. Worse there would be no way of telling that
1921 this code was bad, except that it would give incorrect results.
1922
1923 Contained procedures could pass by value as these are never
1924 used without an explicit interface, and cannot be passed as
1925 actual parameters for a dummy procedure. */
1926 if (arg->ts.type == BT_CHARACTER)
1927 nstr++;
1928 typelist = gfc_chainon_list (typelist, type);
1929 }
1930 else
1931 {
1932 if (sym->attr.subroutine)
1933 alternate_return = 1;
1934 }
1935 }
1936
1937 /* Add hidden string length parameters. */
1938 while (nstr--)
1939 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
1940
1941 if (typelist)
1942 typelist = gfc_chainon_list (typelist, void_type_node);
1943
1944 if (alternate_return)
1945 type = integer_type_node;
1946 else if (!sym->attr.function || gfc_return_by_reference (sym))
1947 type = void_type_node;
1948 else if (sym->attr.mixed_entry_master)
1949 type = gfc_get_mixed_entry_union (sym->ns);
1950 else if (gfc_option.flag_f2c
1951 && sym->ts.type == BT_REAL
1952 && sym->ts.kind == gfc_default_real_kind
1953 && !sym->attr.always_explicit)
1954 {
1955 /* Special case: f2c calling conventions require that (scalar)
1956 default REAL functions return the C type double instead. f2c
1957 compatibility is only an issue with functions that don't
1958 require an explicit interface, as only these could be
1959 implemented in Fortran 77. */
1960 sym->ts.kind = gfc_default_double_kind;
1961 type = gfc_typenode_for_spec (&sym->ts);
1962 sym->ts.kind = gfc_default_real_kind;
1963 }
1964 else
1965 type = gfc_sym_type (sym);
1966
1967 type = build_function_type (type, typelist);
1968
1969 return type;
1970 }
1971 \f
1972 /* Language hooks for middle-end access to type nodes. */
1973
1974 /* Return an integer type with BITS bits of precision,
1975 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
1976
1977 tree
1978 gfc_type_for_size (unsigned bits, int unsignedp)
1979 {
1980 if (!unsignedp)
1981 {
1982 int i;
1983 for (i = 0; i <= MAX_INT_KINDS; ++i)
1984 {
1985 tree type = gfc_integer_types[i];
1986 if (type && bits == TYPE_PRECISION (type))
1987 return type;
1988 }
1989
1990 /* Handle TImode as a special case because it is used by some backends
1991 (eg. ARM) even though it is not available for normal use. */
1992 #if HOST_BITS_PER_WIDE_INT >= 64
1993 if (bits == TYPE_PRECISION (intTI_type_node))
1994 return intTI_type_node;
1995 #endif
1996 }
1997 else
1998 {
1999 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2000 return unsigned_intQI_type_node;
2001 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2002 return unsigned_intHI_type_node;
2003 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2004 return unsigned_intSI_type_node;
2005 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2006 return unsigned_intDI_type_node;
2007 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2008 return unsigned_intTI_type_node;
2009 }
2010
2011 return NULL_TREE;
2012 }
2013
2014 /* Return a data type that has machine mode MODE. If the mode is an
2015 integer, then UNSIGNEDP selects between signed and unsigned types. */
2016
2017 tree
2018 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2019 {
2020 int i;
2021 tree *base;
2022
2023 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2024 base = gfc_real_types;
2025 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2026 base = gfc_complex_types;
2027 else if (SCALAR_INT_MODE_P (mode))
2028 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2029 else if (VECTOR_MODE_P (mode))
2030 {
2031 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2032 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2033 if (inner_type != NULL_TREE)
2034 return build_vector_type_for_mode (inner_type, mode);
2035 return NULL_TREE;
2036 }
2037 else
2038 return NULL_TREE;
2039
2040 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2041 {
2042 tree type = base[i];
2043 if (type && mode == TYPE_MODE (type))
2044 return type;
2045 }
2046
2047 return NULL_TREE;
2048 }
2049
2050 #include "gt-fortran-trans-types.h"