re PR fortran/50408 (ICE in transfer_expr)
[gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Paul Brook <paul@nowt.org>
6 and Steven Bosscher <s.bosscher@student.tudelft.nl>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* trans-types.c -- gfortran backend types */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
30 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
31 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
32 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
33 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
34 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
35 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
36 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE,
37 LONG_DOUBLE_TYPE_SIZE and LIBGCC2_HAS_TF_MODE. */
38 #include "tree.h"
39 #include "langhooks.h" /* For iso-c-bindings.def. */
40 #include "target.h"
41 #include "ggc.h"
42 #include "diagnostic-core.h" /* For fatal_error. */
43 #include "toplev.h" /* For rest_of_decl_compilation. */
44 #include "gfortran.h"
45 #include "trans.h"
46 #include "trans-types.h"
47 #include "trans-const.h"
48 #include "flags.h"
49 #include "dwarf2out.h" /* For struct array_descr_info. */
50 \f
51
52 #if (GFC_MAX_DIMENSIONS < 10)
53 #define GFC_RANK_DIGITS 1
54 #define GFC_RANK_PRINTF_FORMAT "%01d"
55 #elif (GFC_MAX_DIMENSIONS < 100)
56 #define GFC_RANK_DIGITS 2
57 #define GFC_RANK_PRINTF_FORMAT "%02d"
58 #else
59 #error If you really need >99 dimensions, continue the sequence above...
60 #endif
61
62 /* array of structs so we don't have to worry about xmalloc or free */
63 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
64
65 tree gfc_array_index_type;
66 tree gfc_array_range_type;
67 tree gfc_character1_type_node;
68 tree pvoid_type_node;
69 tree prvoid_type_node;
70 tree ppvoid_type_node;
71 tree pchar_type_node;
72 tree pfunc_type_node;
73
74 tree gfc_charlen_type_node;
75
76 tree float128_type_node = NULL_TREE;
77 tree complex_float128_type_node = NULL_TREE;
78
79 bool gfc_real16_is_float128 = false;
80
81 static GTY(()) tree gfc_desc_dim_type;
82 static GTY(()) tree gfc_max_array_element_size;
83 static GTY(()) tree gfc_array_descriptor_base[2 * GFC_MAX_DIMENSIONS];
84 static GTY(()) tree gfc_array_descriptor_base_caf[2 * GFC_MAX_DIMENSIONS];
85
86 /* Arrays for all integral and real kinds. We'll fill this in at runtime
87 after the target has a chance to process command-line options. */
88
89 #define MAX_INT_KINDS 5
90 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
91 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
92 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
93 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
94
95 #define MAX_REAL_KINDS 5
96 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
97 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
98 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
99
100 #define MAX_CHARACTER_KINDS 2
101 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
102 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
103 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
104
105 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
106
107 /* The integer kind to use for array indices. This will be set to the
108 proper value based on target information from the backend. */
109
110 int gfc_index_integer_kind;
111
112 /* The default kinds of the various types. */
113
114 int gfc_default_integer_kind;
115 int gfc_max_integer_kind;
116 int gfc_default_real_kind;
117 int gfc_default_double_kind;
118 int gfc_default_character_kind;
119 int gfc_default_logical_kind;
120 int gfc_default_complex_kind;
121 int gfc_c_int_kind;
122 int gfc_atomic_int_kind;
123 int gfc_atomic_logical_kind;
124
125 /* The kind size used for record offsets. If the target system supports
126 kind=8, this will be set to 8, otherwise it is set to 4. */
127 int gfc_intio_kind;
128
129 /* The integer kind used to store character lengths. */
130 int gfc_charlen_int_kind;
131
132 /* The size of the numeric storage unit and character storage unit. */
133 int gfc_numeric_storage_size;
134 int gfc_character_storage_size;
135
136
137 gfc_try
138 gfc_check_any_c_kind (gfc_typespec *ts)
139 {
140 int i;
141
142 for (i = 0; i < ISOCBINDING_NUMBER; i++)
143 {
144 /* Check for any C interoperable kind for the given type/kind in ts.
145 This can be used after verify_c_interop to make sure that the
146 Fortran kind being used exists in at least some form for C. */
147 if (c_interop_kinds_table[i].f90_type == ts->type &&
148 c_interop_kinds_table[i].value == ts->kind)
149 return SUCCESS;
150 }
151
152 return FAILURE;
153 }
154
155
156 static int
157 get_real_kind_from_node (tree type)
158 {
159 int i;
160
161 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
162 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
163 return gfc_real_kinds[i].kind;
164
165 return -4;
166 }
167
168 static int
169 get_int_kind_from_node (tree type)
170 {
171 int i;
172
173 if (!type)
174 return -2;
175
176 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
177 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
178 return gfc_integer_kinds[i].kind;
179
180 return -1;
181 }
182
183 /* Return a typenode for the "standard" C type with a given name. */
184 static tree
185 get_typenode_from_name (const char *name)
186 {
187 if (name == NULL || *name == '\0')
188 return NULL_TREE;
189
190 if (strcmp (name, "char") == 0)
191 return char_type_node;
192 if (strcmp (name, "unsigned char") == 0)
193 return unsigned_char_type_node;
194 if (strcmp (name, "signed char") == 0)
195 return signed_char_type_node;
196
197 if (strcmp (name, "short int") == 0)
198 return short_integer_type_node;
199 if (strcmp (name, "short unsigned int") == 0)
200 return short_unsigned_type_node;
201
202 if (strcmp (name, "int") == 0)
203 return integer_type_node;
204 if (strcmp (name, "unsigned int") == 0)
205 return unsigned_type_node;
206
207 if (strcmp (name, "long int") == 0)
208 return long_integer_type_node;
209 if (strcmp (name, "long unsigned int") == 0)
210 return long_unsigned_type_node;
211
212 if (strcmp (name, "long long int") == 0)
213 return long_long_integer_type_node;
214 if (strcmp (name, "long long unsigned int") == 0)
215 return long_long_unsigned_type_node;
216
217 gcc_unreachable ();
218 }
219
220 static int
221 get_int_kind_from_name (const char *name)
222 {
223 return get_int_kind_from_node (get_typenode_from_name (name));
224 }
225
226
227 /* Get the kind number corresponding to an integer of given size,
228 following the required return values for ISO_FORTRAN_ENV INT* constants:
229 -2 is returned if we support a kind of larger size, -1 otherwise. */
230 int
231 gfc_get_int_kind_from_width_isofortranenv (int size)
232 {
233 int i;
234
235 /* Look for a kind with matching storage size. */
236 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
237 if (gfc_integer_kinds[i].bit_size == size)
238 return gfc_integer_kinds[i].kind;
239
240 /* Look for a kind with larger storage size. */
241 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
242 if (gfc_integer_kinds[i].bit_size > size)
243 return -2;
244
245 return -1;
246 }
247
248 /* Get the kind number corresponding to a real of given storage size,
249 following the required return values for ISO_FORTRAN_ENV REAL* constants:
250 -2 is returned if we support a kind of larger size, -1 otherwise. */
251 int
252 gfc_get_real_kind_from_width_isofortranenv (int size)
253 {
254 int i;
255
256 size /= 8;
257
258 /* Look for a kind with matching storage size. */
259 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
260 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
261 return gfc_real_kinds[i].kind;
262
263 /* Look for a kind with larger storage size. */
264 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
265 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
266 return -2;
267
268 return -1;
269 }
270
271
272
273 static int
274 get_int_kind_from_width (int size)
275 {
276 int i;
277
278 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
279 if (gfc_integer_kinds[i].bit_size == size)
280 return gfc_integer_kinds[i].kind;
281
282 return -2;
283 }
284
285 static int
286 get_int_kind_from_minimal_width (int size)
287 {
288 int i;
289
290 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
291 if (gfc_integer_kinds[i].bit_size >= size)
292 return gfc_integer_kinds[i].kind;
293
294 return -2;
295 }
296
297
298 /* Generate the CInteropKind_t objects for the C interoperable
299 kinds. */
300
301 void
302 gfc_init_c_interop_kinds (void)
303 {
304 int i;
305
306 /* init all pointers in the list to NULL */
307 for (i = 0; i < ISOCBINDING_NUMBER; i++)
308 {
309 /* Initialize the name and value fields. */
310 c_interop_kinds_table[i].name[0] = '\0';
311 c_interop_kinds_table[i].value = -100;
312 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
313 }
314
315 #define NAMED_INTCST(a,b,c,d) \
316 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
317 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
318 c_interop_kinds_table[a].value = c;
319 #define NAMED_REALCST(a,b,c,d) \
320 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
321 c_interop_kinds_table[a].f90_type = BT_REAL; \
322 c_interop_kinds_table[a].value = c;
323 #define NAMED_CMPXCST(a,b,c,d) \
324 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
325 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
326 c_interop_kinds_table[a].value = c;
327 #define NAMED_LOGCST(a,b,c) \
328 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
329 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
330 c_interop_kinds_table[a].value = c;
331 #define NAMED_CHARKNDCST(a,b,c) \
332 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
334 c_interop_kinds_table[a].value = c;
335 #define NAMED_CHARCST(a,b,c) \
336 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
337 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
338 c_interop_kinds_table[a].value = c;
339 #define DERIVED_TYPE(a,b,c) \
340 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
341 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
342 c_interop_kinds_table[a].value = c;
343 #define PROCEDURE(a,b) \
344 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
345 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
346 c_interop_kinds_table[a].value = 0;
347 #include "iso-c-binding.def"
348 #define NAMED_FUNCTION(a,b,c,d) \
349 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
350 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
351 c_interop_kinds_table[a].value = c;
352 #include "iso-c-binding.def"
353 }
354
355
356 /* Query the target to determine which machine modes are available for
357 computation. Choose KIND numbers for them. */
358
359 void
360 gfc_init_kinds (void)
361 {
362 unsigned int mode;
363 int i_index, r_index, kind;
364 bool saw_i4 = false, saw_i8 = false;
365 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
366
367 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
368 {
369 int kind, bitsize;
370
371 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
372 continue;
373
374 /* The middle end doesn't support constants larger than 2*HWI.
375 Perhaps the target hook shouldn't have accepted these either,
376 but just to be safe... */
377 bitsize = GET_MODE_BITSIZE (mode);
378 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
379 continue;
380
381 gcc_assert (i_index != MAX_INT_KINDS);
382
383 /* Let the kind equal the bit size divided by 8. This insulates the
384 programmer from the underlying byte size. */
385 kind = bitsize / 8;
386
387 if (kind == 4)
388 saw_i4 = true;
389 if (kind == 8)
390 saw_i8 = true;
391
392 gfc_integer_kinds[i_index].kind = kind;
393 gfc_integer_kinds[i_index].radix = 2;
394 gfc_integer_kinds[i_index].digits = bitsize - 1;
395 gfc_integer_kinds[i_index].bit_size = bitsize;
396
397 gfc_logical_kinds[i_index].kind = kind;
398 gfc_logical_kinds[i_index].bit_size = bitsize;
399
400 i_index += 1;
401 }
402
403 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
404 used for large file access. */
405
406 if (saw_i8)
407 gfc_intio_kind = 8;
408 else
409 gfc_intio_kind = 4;
410
411 /* If we do not at least have kind = 4, everything is pointless. */
412 gcc_assert(saw_i4);
413
414 /* Set the maximum integer kind. Used with at least BOZ constants. */
415 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
416
417 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
418 {
419 const struct real_format *fmt =
420 REAL_MODE_FORMAT ((enum machine_mode) mode);
421 int kind;
422
423 if (fmt == NULL)
424 continue;
425 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
426 continue;
427
428 /* Only let float, double, long double and __float128 go through.
429 Runtime support for others is not provided, so they would be
430 useless. */
431 if (mode != TYPE_MODE (float_type_node)
432 && (mode != TYPE_MODE (double_type_node))
433 && (mode != TYPE_MODE (long_double_type_node))
434 #if defined(LIBGCC2_HAS_TF_MODE) && defined(ENABLE_LIBQUADMATH_SUPPORT)
435 && (mode != TFmode)
436 #endif
437 )
438 continue;
439
440 /* Let the kind equal the precision divided by 8, rounding up. Again,
441 this insulates the programmer from the underlying byte size.
442
443 Also, it effectively deals with IEEE extended formats. There, the
444 total size of the type may equal 16, but it's got 6 bytes of padding
445 and the increased size can get in the way of a real IEEE quad format
446 which may also be supported by the target.
447
448 We round up so as to handle IA-64 __floatreg (RFmode), which is an
449 82 bit type. Not to be confused with __float80 (XFmode), which is
450 an 80 bit type also supported by IA-64. So XFmode should come out
451 to be kind=10, and RFmode should come out to be kind=11. Egads. */
452
453 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
454
455 if (kind == 4)
456 saw_r4 = true;
457 if (kind == 8)
458 saw_r8 = true;
459 if (kind == 16)
460 saw_r16 = true;
461
462 /* Careful we don't stumble a weird internal mode. */
463 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
464 /* Or have too many modes for the allocated space. */
465 gcc_assert (r_index != MAX_REAL_KINDS);
466
467 gfc_real_kinds[r_index].kind = kind;
468 gfc_real_kinds[r_index].radix = fmt->b;
469 gfc_real_kinds[r_index].digits = fmt->p;
470 gfc_real_kinds[r_index].min_exponent = fmt->emin;
471 gfc_real_kinds[r_index].max_exponent = fmt->emax;
472 if (fmt->pnan < fmt->p)
473 /* This is an IBM extended double format (or the MIPS variant)
474 made up of two IEEE doubles. The value of the long double is
475 the sum of the values of the two parts. The most significant
476 part is required to be the value of the long double rounded
477 to the nearest double. If we use emax of 1024 then we can't
478 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
479 rounding will make the most significant part overflow. */
480 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
481 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
482 r_index += 1;
483 }
484
485 /* Choose the default integer kind. We choose 4 unless the user
486 directs us otherwise. */
487 if (gfc_option.flag_default_integer)
488 {
489 if (!saw_i8)
490 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
491 gfc_default_integer_kind = 8;
492
493 /* Even if the user specified that the default integer kind be 8,
494 the numeric storage size isn't 64. In this case, a warning will
495 be issued when NUMERIC_STORAGE_SIZE is used. */
496 gfc_numeric_storage_size = 4 * 8;
497 }
498 else if (saw_i4)
499 {
500 gfc_default_integer_kind = 4;
501 gfc_numeric_storage_size = 4 * 8;
502 }
503 else
504 {
505 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
506 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
507 }
508
509 /* Choose the default real kind. Again, we choose 4 when possible. */
510 if (gfc_option.flag_default_real)
511 {
512 if (!saw_r8)
513 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
514 gfc_default_real_kind = 8;
515 }
516 else if (saw_r4)
517 gfc_default_real_kind = 4;
518 else
519 gfc_default_real_kind = gfc_real_kinds[0].kind;
520
521 /* Choose the default double kind. If -fdefault-real and -fdefault-double
522 are specified, we use kind=8, if it's available. If -fdefault-real is
523 specified without -fdefault-double, we use kind=16, if it's available.
524 Otherwise we do not change anything. */
525 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
526 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
527
528 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
529 gfc_default_double_kind = 8;
530 else if (gfc_option.flag_default_real && saw_r16)
531 gfc_default_double_kind = 16;
532 else if (saw_r4 && saw_r8)
533 gfc_default_double_kind = 8;
534 else
535 {
536 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
537 real ... occupies two contiguous numeric storage units.
538
539 Therefore we must be supplied a kind twice as large as we chose
540 for single precision. There are loopholes, in that double
541 precision must *occupy* two storage units, though it doesn't have
542 to *use* two storage units. Which means that you can make this
543 kind artificially wide by padding it. But at present there are
544 no GCC targets for which a two-word type does not exist, so we
545 just let gfc_validate_kind abort and tell us if something breaks. */
546
547 gfc_default_double_kind
548 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
549 }
550
551 /* The default logical kind is constrained to be the same as the
552 default integer kind. Similarly with complex and real. */
553 gfc_default_logical_kind = gfc_default_integer_kind;
554 gfc_default_complex_kind = gfc_default_real_kind;
555
556 /* We only have two character kinds: ASCII and UCS-4.
557 ASCII corresponds to a 8-bit integer type, if one is available.
558 UCS-4 corresponds to a 32-bit integer type, if one is available. */
559 i_index = 0;
560 if ((kind = get_int_kind_from_width (8)) > 0)
561 {
562 gfc_character_kinds[i_index].kind = kind;
563 gfc_character_kinds[i_index].bit_size = 8;
564 gfc_character_kinds[i_index].name = "ascii";
565 i_index++;
566 }
567 if ((kind = get_int_kind_from_width (32)) > 0)
568 {
569 gfc_character_kinds[i_index].kind = kind;
570 gfc_character_kinds[i_index].bit_size = 32;
571 gfc_character_kinds[i_index].name = "iso_10646";
572 i_index++;
573 }
574
575 /* Choose the smallest integer kind for our default character. */
576 gfc_default_character_kind = gfc_character_kinds[0].kind;
577 gfc_character_storage_size = gfc_default_character_kind * 8;
578
579 /* Choose the integer kind the same size as "void*" for our index kind. */
580 gfc_index_integer_kind = POINTER_SIZE / 8;
581 /* Pick a kind the same size as the C "int" type. */
582 gfc_c_int_kind = INT_TYPE_SIZE / 8;
583
584 /* Choose atomic kinds to match C's int. */
585 gfc_atomic_int_kind = gfc_c_int_kind;
586 gfc_atomic_logical_kind = gfc_c_int_kind;
587 }
588
589
590 /* Make sure that a valid kind is present. Returns an index into the
591 associated kinds array, -1 if the kind is not present. */
592
593 static int
594 validate_integer (int kind)
595 {
596 int i;
597
598 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
599 if (gfc_integer_kinds[i].kind == kind)
600 return i;
601
602 return -1;
603 }
604
605 static int
606 validate_real (int kind)
607 {
608 int i;
609
610 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
611 if (gfc_real_kinds[i].kind == kind)
612 return i;
613
614 return -1;
615 }
616
617 static int
618 validate_logical (int kind)
619 {
620 int i;
621
622 for (i = 0; gfc_logical_kinds[i].kind; i++)
623 if (gfc_logical_kinds[i].kind == kind)
624 return i;
625
626 return -1;
627 }
628
629 static int
630 validate_character (int kind)
631 {
632 int i;
633
634 for (i = 0; gfc_character_kinds[i].kind; i++)
635 if (gfc_character_kinds[i].kind == kind)
636 return i;
637
638 return -1;
639 }
640
641 /* Validate a kind given a basic type. The return value is the same
642 for the child functions, with -1 indicating nonexistence of the
643 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
644
645 int
646 gfc_validate_kind (bt type, int kind, bool may_fail)
647 {
648 int rc;
649
650 switch (type)
651 {
652 case BT_REAL: /* Fall through */
653 case BT_COMPLEX:
654 rc = validate_real (kind);
655 break;
656 case BT_INTEGER:
657 rc = validate_integer (kind);
658 break;
659 case BT_LOGICAL:
660 rc = validate_logical (kind);
661 break;
662 case BT_CHARACTER:
663 rc = validate_character (kind);
664 break;
665
666 default:
667 gfc_internal_error ("gfc_validate_kind(): Got bad type");
668 }
669
670 if (rc < 0 && !may_fail)
671 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
672
673 return rc;
674 }
675
676
677 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
678 Reuse common type nodes where possible. Recognize if the kind matches up
679 with a C type. This will be used later in determining which routines may
680 be scarfed from libm. */
681
682 static tree
683 gfc_build_int_type (gfc_integer_info *info)
684 {
685 int mode_precision = info->bit_size;
686
687 if (mode_precision == CHAR_TYPE_SIZE)
688 info->c_char = 1;
689 if (mode_precision == SHORT_TYPE_SIZE)
690 info->c_short = 1;
691 if (mode_precision == INT_TYPE_SIZE)
692 info->c_int = 1;
693 if (mode_precision == LONG_TYPE_SIZE)
694 info->c_long = 1;
695 if (mode_precision == LONG_LONG_TYPE_SIZE)
696 info->c_long_long = 1;
697
698 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
699 return intQI_type_node;
700 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
701 return intHI_type_node;
702 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
703 return intSI_type_node;
704 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
705 return intDI_type_node;
706 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
707 return intTI_type_node;
708
709 return make_signed_type (mode_precision);
710 }
711
712 tree
713 gfc_build_uint_type (int size)
714 {
715 if (size == CHAR_TYPE_SIZE)
716 return unsigned_char_type_node;
717 if (size == SHORT_TYPE_SIZE)
718 return short_unsigned_type_node;
719 if (size == INT_TYPE_SIZE)
720 return unsigned_type_node;
721 if (size == LONG_TYPE_SIZE)
722 return long_unsigned_type_node;
723 if (size == LONG_LONG_TYPE_SIZE)
724 return long_long_unsigned_type_node;
725
726 return make_unsigned_type (size);
727 }
728
729
730 static tree
731 gfc_build_real_type (gfc_real_info *info)
732 {
733 int mode_precision = info->mode_precision;
734 tree new_type;
735
736 if (mode_precision == FLOAT_TYPE_SIZE)
737 info->c_float = 1;
738 if (mode_precision == DOUBLE_TYPE_SIZE)
739 info->c_double = 1;
740 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
741 info->c_long_double = 1;
742 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
743 {
744 info->c_float128 = 1;
745 gfc_real16_is_float128 = true;
746 }
747
748 if (TYPE_PRECISION (float_type_node) == mode_precision)
749 return float_type_node;
750 if (TYPE_PRECISION (double_type_node) == mode_precision)
751 return double_type_node;
752 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
753 return long_double_type_node;
754
755 new_type = make_node (REAL_TYPE);
756 TYPE_PRECISION (new_type) = mode_precision;
757 layout_type (new_type);
758 return new_type;
759 }
760
761 static tree
762 gfc_build_complex_type (tree scalar_type)
763 {
764 tree new_type;
765
766 if (scalar_type == NULL)
767 return NULL;
768 if (scalar_type == float_type_node)
769 return complex_float_type_node;
770 if (scalar_type == double_type_node)
771 return complex_double_type_node;
772 if (scalar_type == long_double_type_node)
773 return complex_long_double_type_node;
774
775 new_type = make_node (COMPLEX_TYPE);
776 TREE_TYPE (new_type) = scalar_type;
777 layout_type (new_type);
778 return new_type;
779 }
780
781 static tree
782 gfc_build_logical_type (gfc_logical_info *info)
783 {
784 int bit_size = info->bit_size;
785 tree new_type;
786
787 if (bit_size == BOOL_TYPE_SIZE)
788 {
789 info->c_bool = 1;
790 return boolean_type_node;
791 }
792
793 new_type = make_unsigned_type (bit_size);
794 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
795 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
796 TYPE_PRECISION (new_type) = 1;
797
798 return new_type;
799 }
800
801
802 /* Create the backend type nodes. We map them to their
803 equivalent C type, at least for now. We also give
804 names to the types here, and we push them in the
805 global binding level context.*/
806
807 void
808 gfc_init_types (void)
809 {
810 char name_buf[18];
811 int index;
812 tree type;
813 unsigned n;
814 unsigned HOST_WIDE_INT hi;
815 unsigned HOST_WIDE_INT lo;
816
817 /* Create and name the types. */
818 #define PUSH_TYPE(name, node) \
819 pushdecl (build_decl (input_location, \
820 TYPE_DECL, get_identifier (name), node))
821
822 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
823 {
824 type = gfc_build_int_type (&gfc_integer_kinds[index]);
825 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
826 if (TYPE_STRING_FLAG (type))
827 type = make_signed_type (gfc_integer_kinds[index].bit_size);
828 gfc_integer_types[index] = type;
829 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
830 gfc_integer_kinds[index].kind);
831 PUSH_TYPE (name_buf, type);
832 }
833
834 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
835 {
836 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
837 gfc_logical_types[index] = type;
838 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
839 gfc_logical_kinds[index].kind);
840 PUSH_TYPE (name_buf, type);
841 }
842
843 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
844 {
845 type = gfc_build_real_type (&gfc_real_kinds[index]);
846 gfc_real_types[index] = type;
847 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
848 gfc_real_kinds[index].kind);
849 PUSH_TYPE (name_buf, type);
850
851 if (gfc_real_kinds[index].c_float128)
852 float128_type_node = type;
853
854 type = gfc_build_complex_type (type);
855 gfc_complex_types[index] = type;
856 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
857 gfc_real_kinds[index].kind);
858 PUSH_TYPE (name_buf, type);
859
860 if (gfc_real_kinds[index].c_float128)
861 complex_float128_type_node = type;
862 }
863
864 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
865 {
866 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
867 type = build_qualified_type (type, TYPE_UNQUALIFIED);
868 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
869 gfc_character_kinds[index].kind);
870 PUSH_TYPE (name_buf, type);
871 gfc_character_types[index] = type;
872 gfc_pcharacter_types[index] = build_pointer_type (type);
873 }
874 gfc_character1_type_node = gfc_character_types[0];
875
876 PUSH_TYPE ("byte", unsigned_char_type_node);
877 PUSH_TYPE ("void", void_type_node);
878
879 /* DBX debugging output gets upset if these aren't set. */
880 if (!TYPE_NAME (integer_type_node))
881 PUSH_TYPE ("c_integer", integer_type_node);
882 if (!TYPE_NAME (char_type_node))
883 PUSH_TYPE ("c_char", char_type_node);
884
885 #undef PUSH_TYPE
886
887 pvoid_type_node = build_pointer_type (void_type_node);
888 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
889 ppvoid_type_node = build_pointer_type (pvoid_type_node);
890 pchar_type_node = build_pointer_type (gfc_character1_type_node);
891 pfunc_type_node
892 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
893
894 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
895 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
896 since this function is called before gfc_init_constants. */
897 gfc_array_range_type
898 = build_range_type (gfc_array_index_type,
899 build_int_cst (gfc_array_index_type, 0),
900 NULL_TREE);
901
902 /* The maximum array element size that can be handled is determined
903 by the number of bits available to store this field in the array
904 descriptor. */
905
906 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
907 lo = ~ (unsigned HOST_WIDE_INT) 0;
908 if (n > HOST_BITS_PER_WIDE_INT)
909 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
910 else
911 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
912 gfc_max_array_element_size
913 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
914
915 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
916 boolean_true_node = build_int_cst (boolean_type_node, 1);
917 boolean_false_node = build_int_cst (boolean_type_node, 0);
918
919 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
920 gfc_charlen_int_kind = 4;
921 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
922 }
923
924 /* Get the type node for the given type and kind. */
925
926 tree
927 gfc_get_int_type (int kind)
928 {
929 int index = gfc_validate_kind (BT_INTEGER, kind, true);
930 return index < 0 ? 0 : gfc_integer_types[index];
931 }
932
933 tree
934 gfc_get_real_type (int kind)
935 {
936 int index = gfc_validate_kind (BT_REAL, kind, true);
937 return index < 0 ? 0 : gfc_real_types[index];
938 }
939
940 tree
941 gfc_get_complex_type (int kind)
942 {
943 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
944 return index < 0 ? 0 : gfc_complex_types[index];
945 }
946
947 tree
948 gfc_get_logical_type (int kind)
949 {
950 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
951 return index < 0 ? 0 : gfc_logical_types[index];
952 }
953
954 tree
955 gfc_get_char_type (int kind)
956 {
957 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
958 return index < 0 ? 0 : gfc_character_types[index];
959 }
960
961 tree
962 gfc_get_pchar_type (int kind)
963 {
964 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
965 return index < 0 ? 0 : gfc_pcharacter_types[index];
966 }
967
968 \f
969 /* Create a character type with the given kind and length. */
970
971 tree
972 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
973 {
974 tree bounds, type;
975
976 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
977 type = build_array_type (eltype, bounds);
978 TYPE_STRING_FLAG (type) = 1;
979
980 return type;
981 }
982
983 tree
984 gfc_get_character_type_len (int kind, tree len)
985 {
986 gfc_validate_kind (BT_CHARACTER, kind, false);
987 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
988 }
989
990
991 /* Get a type node for a character kind. */
992
993 tree
994 gfc_get_character_type (int kind, gfc_charlen * cl)
995 {
996 tree len;
997
998 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
999
1000 return gfc_get_character_type_len (kind, len);
1001 }
1002 \f
1003 /* Covert a basic type. This will be an array for character types. */
1004
1005 tree
1006 gfc_typenode_for_spec (gfc_typespec * spec)
1007 {
1008 tree basetype;
1009
1010 switch (spec->type)
1011 {
1012 case BT_UNKNOWN:
1013 gcc_unreachable ();
1014
1015 case BT_INTEGER:
1016 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1017 has been resolved. This is done so we can convert C_PTR and
1018 C_FUNPTR to simple variables that get translated to (void *). */
1019 if (spec->f90_type == BT_VOID)
1020 {
1021 if (spec->u.derived
1022 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1023 basetype = ptr_type_node;
1024 else
1025 basetype = pfunc_type_node;
1026 }
1027 else
1028 basetype = gfc_get_int_type (spec->kind);
1029 break;
1030
1031 case BT_REAL:
1032 basetype = gfc_get_real_type (spec->kind);
1033 break;
1034
1035 case BT_COMPLEX:
1036 basetype = gfc_get_complex_type (spec->kind);
1037 break;
1038
1039 case BT_LOGICAL:
1040 basetype = gfc_get_logical_type (spec->kind);
1041 break;
1042
1043 case BT_CHARACTER:
1044 #if 0
1045 if (spec->deferred)
1046 basetype = gfc_get_character_type (spec->kind, NULL);
1047 else
1048 #endif
1049 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1050 break;
1051
1052 case BT_DERIVED:
1053 case BT_CLASS:
1054 basetype = gfc_get_derived_type (spec->u.derived);
1055
1056 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1057 type and kind to fit a (void *) and the basetype returned was a
1058 ptr_type_node. We need to pass up this new information to the
1059 symbol that was declared of type C_PTR or C_FUNPTR. */
1060 if (spec->u.derived->attr.is_iso_c)
1061 {
1062 spec->type = spec->u.derived->ts.type;
1063 spec->kind = spec->u.derived->ts.kind;
1064 spec->f90_type = spec->u.derived->ts.f90_type;
1065 }
1066 break;
1067 case BT_VOID:
1068 /* This is for the second arg to c_f_pointer and c_f_procpointer
1069 of the iso_c_binding module, to accept any ptr type. */
1070 basetype = ptr_type_node;
1071 if (spec->f90_type == BT_VOID)
1072 {
1073 if (spec->u.derived
1074 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1075 basetype = ptr_type_node;
1076 else
1077 basetype = pfunc_type_node;
1078 }
1079 break;
1080 default:
1081 gcc_unreachable ();
1082 }
1083 return basetype;
1084 }
1085 \f
1086 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1087
1088 static tree
1089 gfc_conv_array_bound (gfc_expr * expr)
1090 {
1091 /* If expr is an integer constant, return that. */
1092 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1093 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1094
1095 /* Otherwise return NULL. */
1096 return NULL_TREE;
1097 }
1098 \f
1099 tree
1100 gfc_get_element_type (tree type)
1101 {
1102 tree element;
1103
1104 if (GFC_ARRAY_TYPE_P (type))
1105 {
1106 if (TREE_CODE (type) == POINTER_TYPE)
1107 type = TREE_TYPE (type);
1108 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1109 {
1110 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1111 element = type;
1112 }
1113 else
1114 {
1115 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1116 element = TREE_TYPE (type);
1117 }
1118 }
1119 else
1120 {
1121 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1122 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1123
1124 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1125 element = TREE_TYPE (element);
1126
1127 /* For arrays, which are not scalar coarrays. */
1128 if (TREE_CODE (element) == ARRAY_TYPE)
1129 element = TREE_TYPE (element);
1130 }
1131
1132 return element;
1133 }
1134 \f
1135 /* Build an array. This function is called from gfc_sym_type().
1136 Actually returns array descriptor type.
1137
1138 Format of array descriptors is as follows:
1139
1140 struct gfc_array_descriptor
1141 {
1142 array *data
1143 index offset;
1144 index dtype;
1145 struct descriptor_dimension dimension[N_DIM];
1146 }
1147
1148 struct descriptor_dimension
1149 {
1150 index stride;
1151 index lbound;
1152 index ubound;
1153 }
1154
1155 Translation code should use gfc_conv_descriptor_* rather than
1156 accessing the descriptor directly. Any changes to the array
1157 descriptor type will require changes in gfc_conv_descriptor_* and
1158 gfc_build_array_initializer.
1159
1160 This is represented internally as a RECORD_TYPE. The index nodes
1161 are gfc_array_index_type and the data node is a pointer to the
1162 data. See below for the handling of character types.
1163
1164 The dtype member is formatted as follows:
1165 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1166 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1167 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1168
1169 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1170 this generated poor code for assumed/deferred size arrays. These
1171 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1172 of the GENERIC grammar. Also, there is no way to explicitly set
1173 the array stride, so all data must be packed(1). I've tried to
1174 mark all the functions which would require modification with a GCC
1175 ARRAYS comment.
1176
1177 The data component points to the first element in the array. The
1178 offset field is the position of the origin of the array (i.e. element
1179 (0, 0 ...)). This may be outside the bounds of the array.
1180
1181 An element is accessed by
1182 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1183 This gives good performance as the computation does not involve the
1184 bounds of the array. For packed arrays, this is optimized further
1185 by substituting the known strides.
1186
1187 This system has one problem: all array bounds must be within 2^31
1188 elements of the origin (2^63 on 64-bit machines). For example
1189 integer, dimension (80000:90000, 80000:90000, 2) :: array
1190 may not work properly on 32-bit machines because 80000*80000 >
1191 2^31, so the calculation for stride2 would overflow. This may
1192 still work, but I haven't checked, and it relies on the overflow
1193 doing the right thing.
1194
1195 The way to fix this problem is to access elements as follows:
1196 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1197 Obviously this is much slower. I will make this a compile time
1198 option, something like -fsmall-array-offsets. Mixing code compiled
1199 with and without this switch will work.
1200
1201 (1) This can be worked around by modifying the upper bound of the
1202 previous dimension. This requires extra fields in the descriptor
1203 (both real_ubound and fake_ubound). */
1204
1205
1206 /* Returns true if the array sym does not require a descriptor. */
1207
1208 int
1209 gfc_is_nodesc_array (gfc_symbol * sym)
1210 {
1211 gcc_assert (sym->attr.dimension || sym->attr.codimension);
1212
1213 /* We only want local arrays. */
1214 if (sym->attr.pointer || sym->attr.allocatable)
1215 return 0;
1216
1217 /* We want a descriptor for associate-name arrays that do not have an
1218 explicitely known shape already. */
1219 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1220 return 0;
1221
1222 if (sym->attr.dummy)
1223 return sym->as->type != AS_ASSUMED_SHAPE;
1224
1225 if (sym->attr.result || sym->attr.function)
1226 return 0;
1227
1228 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1229
1230 return 1;
1231 }
1232
1233
1234 /* Create an array descriptor type. */
1235
1236 static tree
1237 gfc_build_array_type (tree type, gfc_array_spec * as,
1238 enum gfc_array_kind akind, bool restricted,
1239 bool contiguous)
1240 {
1241 tree lbound[GFC_MAX_DIMENSIONS];
1242 tree ubound[GFC_MAX_DIMENSIONS];
1243 int n;
1244
1245 for (n = 0; n < as->rank; n++)
1246 {
1247 /* Create expressions for the known bounds of the array. */
1248 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1249 lbound[n] = gfc_index_one_node;
1250 else
1251 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1252 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1253 }
1254
1255 for (n = as->rank; n < as->rank + as->corank; n++)
1256 {
1257 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1258 lbound[n] = gfc_index_one_node;
1259 else
1260 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1261
1262 if (n < as->rank + as->corank - 1)
1263 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1264 }
1265
1266 if (as->type == AS_ASSUMED_SHAPE)
1267 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1268 : GFC_ARRAY_ASSUMED_SHAPE;
1269 return gfc_get_array_type_bounds (type, as->rank, as->corank, lbound,
1270 ubound, 0, akind, restricted);
1271 }
1272 \f
1273 /* Returns the struct descriptor_dimension type. */
1274
1275 static tree
1276 gfc_get_desc_dim_type (void)
1277 {
1278 tree type;
1279 tree decl, *chain = NULL;
1280
1281 if (gfc_desc_dim_type)
1282 return gfc_desc_dim_type;
1283
1284 /* Build the type node. */
1285 type = make_node (RECORD_TYPE);
1286
1287 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1288 TYPE_PACKED (type) = 1;
1289
1290 /* Consists of the stride, lbound and ubound members. */
1291 decl = gfc_add_field_to_struct_1 (type,
1292 get_identifier ("stride"),
1293 gfc_array_index_type, &chain);
1294 TREE_NO_WARNING (decl) = 1;
1295
1296 decl = gfc_add_field_to_struct_1 (type,
1297 get_identifier ("lbound"),
1298 gfc_array_index_type, &chain);
1299 TREE_NO_WARNING (decl) = 1;
1300
1301 decl = gfc_add_field_to_struct_1 (type,
1302 get_identifier ("ubound"),
1303 gfc_array_index_type, &chain);
1304 TREE_NO_WARNING (decl) = 1;
1305
1306 /* Finish off the type. */
1307 gfc_finish_type (type);
1308 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1309
1310 gfc_desc_dim_type = type;
1311 return type;
1312 }
1313
1314
1315 /* Return the DTYPE for an array. This describes the type and type parameters
1316 of the array. */
1317 /* TODO: Only call this when the value is actually used, and make all the
1318 unknown cases abort. */
1319
1320 tree
1321 gfc_get_dtype (tree type)
1322 {
1323 tree size;
1324 int n;
1325 HOST_WIDE_INT i;
1326 tree tmp;
1327 tree dtype;
1328 tree etype;
1329 int rank;
1330
1331 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1332
1333 if (GFC_TYPE_ARRAY_DTYPE (type))
1334 return GFC_TYPE_ARRAY_DTYPE (type);
1335
1336 rank = GFC_TYPE_ARRAY_RANK (type);
1337 etype = gfc_get_element_type (type);
1338
1339 switch (TREE_CODE (etype))
1340 {
1341 case INTEGER_TYPE:
1342 n = BT_INTEGER;
1343 break;
1344
1345 case BOOLEAN_TYPE:
1346 n = BT_LOGICAL;
1347 break;
1348
1349 case REAL_TYPE:
1350 n = BT_REAL;
1351 break;
1352
1353 case COMPLEX_TYPE:
1354 n = BT_COMPLEX;
1355 break;
1356
1357 /* We will never have arrays of arrays. */
1358 case RECORD_TYPE:
1359 n = BT_DERIVED;
1360 break;
1361
1362 case ARRAY_TYPE:
1363 n = BT_CHARACTER;
1364 break;
1365
1366 default:
1367 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1368 /* We can strange array types for temporary arrays. */
1369 return gfc_index_zero_node;
1370 }
1371
1372 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1373 size = TYPE_SIZE_UNIT (etype);
1374
1375 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1376 if (size && INTEGER_CST_P (size))
1377 {
1378 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1379 gfc_fatal_error ("Array element size too big at %C");
1380
1381 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1382 }
1383 dtype = build_int_cst (gfc_array_index_type, i);
1384
1385 if (size && !INTEGER_CST_P (size))
1386 {
1387 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1388 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1389 gfc_array_index_type,
1390 fold_convert (gfc_array_index_type, size), tmp);
1391 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1392 tmp, dtype);
1393 }
1394 /* If we don't know the size we leave it as zero. This should never happen
1395 for anything that is actually used. */
1396 /* TODO: Check this is actually true, particularly when repacking
1397 assumed size parameters. */
1398
1399 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1400 return dtype;
1401 }
1402
1403
1404 /* Build an array type for use without a descriptor, packed according
1405 to the value of PACKED. */
1406
1407 tree
1408 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1409 bool restricted)
1410 {
1411 tree range;
1412 tree type;
1413 tree tmp;
1414 int n;
1415 int known_stride;
1416 int known_offset;
1417 mpz_t offset;
1418 mpz_t stride;
1419 mpz_t delta;
1420 gfc_expr *expr;
1421
1422 mpz_init_set_ui (offset, 0);
1423 mpz_init_set_ui (stride, 1);
1424 mpz_init (delta);
1425
1426 /* We don't use build_array_type because this does not include include
1427 lang-specific information (i.e. the bounds of the array) when checking
1428 for duplicates. */
1429 if (as->rank)
1430 type = make_node (ARRAY_TYPE);
1431 else
1432 type = build_variant_type_copy (etype);
1433
1434 GFC_ARRAY_TYPE_P (type) = 1;
1435 TYPE_LANG_SPECIFIC (type)
1436 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1437
1438 known_stride = (packed != PACKED_NO);
1439 known_offset = 1;
1440 for (n = 0; n < as->rank; n++)
1441 {
1442 /* Fill in the stride and bound components of the type. */
1443 if (known_stride)
1444 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1445 else
1446 tmp = NULL_TREE;
1447 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1448
1449 expr = as->lower[n];
1450 if (expr->expr_type == EXPR_CONSTANT)
1451 {
1452 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1453 gfc_index_integer_kind);
1454 }
1455 else
1456 {
1457 known_stride = 0;
1458 tmp = NULL_TREE;
1459 }
1460 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1461
1462 if (known_stride)
1463 {
1464 /* Calculate the offset. */
1465 mpz_mul (delta, stride, as->lower[n]->value.integer);
1466 mpz_sub (offset, offset, delta);
1467 }
1468 else
1469 known_offset = 0;
1470
1471 expr = as->upper[n];
1472 if (expr && expr->expr_type == EXPR_CONSTANT)
1473 {
1474 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1475 gfc_index_integer_kind);
1476 }
1477 else
1478 {
1479 tmp = NULL_TREE;
1480 known_stride = 0;
1481 }
1482 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1483
1484 if (known_stride)
1485 {
1486 /* Calculate the stride. */
1487 mpz_sub (delta, as->upper[n]->value.integer,
1488 as->lower[n]->value.integer);
1489 mpz_add_ui (delta, delta, 1);
1490 mpz_mul (stride, stride, delta);
1491 }
1492
1493 /* Only the first stride is known for partial packed arrays. */
1494 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1495 known_stride = 0;
1496 }
1497 for (n = as->rank; n < as->rank + as->corank; n++)
1498 {
1499 expr = as->lower[n];
1500 if (expr->expr_type == EXPR_CONSTANT)
1501 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1502 gfc_index_integer_kind);
1503 else
1504 tmp = NULL_TREE;
1505 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1506
1507 expr = as->upper[n];
1508 if (expr && expr->expr_type == EXPR_CONSTANT)
1509 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1510 gfc_index_integer_kind);
1511 else
1512 tmp = NULL_TREE;
1513 if (n < as->rank + as->corank - 1)
1514 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1515 }
1516
1517 if (known_offset)
1518 {
1519 GFC_TYPE_ARRAY_OFFSET (type) =
1520 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1521 }
1522 else
1523 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1524
1525 if (known_stride)
1526 {
1527 GFC_TYPE_ARRAY_SIZE (type) =
1528 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1529 }
1530 else
1531 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1532
1533 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1534 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1535 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1536 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1537 NULL_TREE);
1538 /* TODO: use main type if it is unbounded. */
1539 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1540 build_pointer_type (build_array_type (etype, range));
1541 if (restricted)
1542 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1543 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1544 TYPE_QUAL_RESTRICT);
1545
1546 if (as->rank == 0)
1547 {
1548 if (packed != PACKED_STATIC || gfc_option.coarray == GFC_FCOARRAY_LIB)
1549 {
1550 type = build_pointer_type (type);
1551
1552 if (restricted)
1553 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1554
1555 GFC_ARRAY_TYPE_P (type) = 1;
1556 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1557 }
1558
1559 return type;
1560 }
1561
1562 if (known_stride)
1563 {
1564 mpz_sub_ui (stride, stride, 1);
1565 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1566 }
1567 else
1568 range = NULL_TREE;
1569
1570 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1571 TYPE_DOMAIN (type) = range;
1572
1573 build_pointer_type (etype);
1574 TREE_TYPE (type) = etype;
1575
1576 layout_type (type);
1577
1578 mpz_clear (offset);
1579 mpz_clear (stride);
1580 mpz_clear (delta);
1581
1582 /* Represent packed arrays as multi-dimensional if they have rank >
1583 1 and with proper bounds, instead of flat arrays. This makes for
1584 better debug info. */
1585 if (known_offset)
1586 {
1587 tree gtype = etype, rtype, type_decl;
1588
1589 for (n = as->rank - 1; n >= 0; n--)
1590 {
1591 rtype = build_range_type (gfc_array_index_type,
1592 GFC_TYPE_ARRAY_LBOUND (type, n),
1593 GFC_TYPE_ARRAY_UBOUND (type, n));
1594 gtype = build_array_type (gtype, rtype);
1595 }
1596 TYPE_NAME (type) = type_decl = build_decl (input_location,
1597 TYPE_DECL, NULL, gtype);
1598 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1599 }
1600
1601 if (packed != PACKED_STATIC || !known_stride
1602 || (as->corank && gfc_option.coarray == GFC_FCOARRAY_LIB))
1603 {
1604 /* For dummy arrays and automatic (heap allocated) arrays we
1605 want a pointer to the array. */
1606 type = build_pointer_type (type);
1607 if (restricted)
1608 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1609 GFC_ARRAY_TYPE_P (type) = 1;
1610 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1611 }
1612 return type;
1613 }
1614
1615
1616 /* Return or create the base type for an array descriptor. */
1617
1618 static tree
1619 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1620 enum gfc_array_kind akind)
1621 {
1622 tree fat_type, decl, arraytype, *chain = NULL;
1623 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1624 int idx = 2 * (codimen + dimen - 1) + restricted;
1625
1626 gcc_assert (codimen + dimen >= 1 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1627
1628 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen)
1629 {
1630 if (gfc_array_descriptor_base_caf[idx])
1631 return gfc_array_descriptor_base_caf[idx];
1632 }
1633 else if (gfc_array_descriptor_base[idx])
1634 return gfc_array_descriptor_base[idx];
1635
1636 /* Build the type node. */
1637 fat_type = make_node (RECORD_TYPE);
1638
1639 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1640 TYPE_NAME (fat_type) = get_identifier (name);
1641 TYPE_NAMELESS (fat_type) = 1;
1642
1643 /* Add the data member as the first element of the descriptor. */
1644 decl = gfc_add_field_to_struct_1 (fat_type,
1645 get_identifier ("data"),
1646 (restricted
1647 ? prvoid_type_node
1648 : ptr_type_node), &chain);
1649
1650 /* Add the base component. */
1651 decl = gfc_add_field_to_struct_1 (fat_type,
1652 get_identifier ("offset"),
1653 gfc_array_index_type, &chain);
1654 TREE_NO_WARNING (decl) = 1;
1655
1656 /* Add the dtype component. */
1657 decl = gfc_add_field_to_struct_1 (fat_type,
1658 get_identifier ("dtype"),
1659 gfc_array_index_type, &chain);
1660 TREE_NO_WARNING (decl) = 1;
1661
1662 /* Build the array type for the stride and bound components. */
1663 arraytype =
1664 build_array_type (gfc_get_desc_dim_type (),
1665 build_range_type (gfc_array_index_type,
1666 gfc_index_zero_node,
1667 gfc_rank_cst[codimen + dimen - 1]));
1668
1669 decl = gfc_add_field_to_struct_1 (fat_type,
1670 get_identifier ("dim"),
1671 arraytype, &chain);
1672 TREE_NO_WARNING (decl) = 1;
1673
1674 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1675 && akind == GFC_ARRAY_ALLOCATABLE)
1676 {
1677 decl = gfc_add_field_to_struct_1 (fat_type,
1678 get_identifier ("token"),
1679 prvoid_type_node, &chain);
1680 TREE_NO_WARNING (decl) = 1;
1681 }
1682
1683 /* Finish off the type. */
1684 gfc_finish_type (fat_type);
1685 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1686
1687 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1688 && akind == GFC_ARRAY_ALLOCATABLE)
1689 gfc_array_descriptor_base_caf[idx] = fat_type;
1690 else
1691 gfc_array_descriptor_base[idx] = fat_type;
1692
1693 return fat_type;
1694 }
1695
1696
1697 /* Build an array (descriptor) type with given bounds. */
1698
1699 tree
1700 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1701 tree * ubound, int packed,
1702 enum gfc_array_kind akind, bool restricted)
1703 {
1704 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1705 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1706 const char *type_name;
1707 int n;
1708
1709 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1710 fat_type = build_distinct_type_copy (base_type);
1711 /* Make sure that nontarget and target array type have the same canonical
1712 type (and same stub decl for debug info). */
1713 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1714 TYPE_CANONICAL (fat_type) = base_type;
1715 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1716
1717 tmp = TYPE_NAME (etype);
1718 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1719 tmp = DECL_NAME (tmp);
1720 if (tmp)
1721 type_name = IDENTIFIER_POINTER (tmp);
1722 else
1723 type_name = "unknown";
1724 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1725 GFC_MAX_SYMBOL_LEN, type_name);
1726 TYPE_NAME (fat_type) = get_identifier (name);
1727 TYPE_NAMELESS (fat_type) = 1;
1728
1729 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1730 TYPE_LANG_SPECIFIC (fat_type)
1731 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1732
1733 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1734 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1735 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1736 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1737
1738 /* Build an array descriptor record type. */
1739 if (packed != 0)
1740 stride = gfc_index_one_node;
1741 else
1742 stride = NULL_TREE;
1743 for (n = 0; n < dimen + codimen; n++)
1744 {
1745 if (n < dimen)
1746 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1747
1748 if (lbound)
1749 lower = lbound[n];
1750 else
1751 lower = NULL_TREE;
1752
1753 if (lower != NULL_TREE)
1754 {
1755 if (INTEGER_CST_P (lower))
1756 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1757 else
1758 lower = NULL_TREE;
1759 }
1760
1761 if (codimen && n == dimen + codimen - 1)
1762 break;
1763
1764 upper = ubound[n];
1765 if (upper != NULL_TREE)
1766 {
1767 if (INTEGER_CST_P (upper))
1768 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1769 else
1770 upper = NULL_TREE;
1771 }
1772
1773 if (n >= dimen)
1774 continue;
1775
1776 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1777 {
1778 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1779 gfc_array_index_type, upper, lower);
1780 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1781 gfc_array_index_type, tmp,
1782 gfc_index_one_node);
1783 stride = fold_build2_loc (input_location, MULT_EXPR,
1784 gfc_array_index_type, tmp, stride);
1785 /* Check the folding worked. */
1786 gcc_assert (INTEGER_CST_P (stride));
1787 }
1788 else
1789 stride = NULL_TREE;
1790 }
1791 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1792
1793 /* TODO: known offsets for descriptors. */
1794 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1795
1796 if (dimen == 0)
1797 {
1798 arraytype = build_pointer_type (etype);
1799 if (restricted)
1800 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1801
1802 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1803 return fat_type;
1804 }
1805
1806 /* We define data as an array with the correct size if possible.
1807 Much better than doing pointer arithmetic. */
1808 if (stride)
1809 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1810 int_const_binop (MINUS_EXPR, stride,
1811 integer_one_node));
1812 else
1813 rtype = gfc_array_range_type;
1814 arraytype = build_array_type (etype, rtype);
1815 arraytype = build_pointer_type (arraytype);
1816 if (restricted)
1817 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1818 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1819
1820 /* This will generate the base declarations we need to emit debug
1821 information for this type. FIXME: there must be a better way to
1822 avoid divergence between compilations with and without debug
1823 information. */
1824 {
1825 struct array_descr_info info;
1826 gfc_get_array_descr_info (fat_type, &info);
1827 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1828 }
1829
1830 return fat_type;
1831 }
1832 \f
1833 /* Build a pointer type. This function is called from gfc_sym_type(). */
1834
1835 static tree
1836 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1837 {
1838 /* Array pointer types aren't actually pointers. */
1839 if (sym->attr.dimension)
1840 return type;
1841 else
1842 return build_pointer_type (type);
1843 }
1844
1845 static tree gfc_nonrestricted_type (tree t);
1846 /* Given two record or union type nodes TO and FROM, ensure
1847 that all fields in FROM have a corresponding field in TO,
1848 their type being nonrestrict variants. This accepts a TO
1849 node that already has a prefix of the fields in FROM. */
1850 static void
1851 mirror_fields (tree to, tree from)
1852 {
1853 tree fto, ffrom;
1854 tree *chain;
1855
1856 /* Forward to the end of TOs fields. */
1857 fto = TYPE_FIELDS (to);
1858 ffrom = TYPE_FIELDS (from);
1859 chain = &TYPE_FIELDS (to);
1860 while (fto)
1861 {
1862 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1863 chain = &DECL_CHAIN (fto);
1864 fto = DECL_CHAIN (fto);
1865 ffrom = DECL_CHAIN (ffrom);
1866 }
1867
1868 /* Now add all fields remaining in FROM (starting with ffrom). */
1869 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1870 {
1871 tree newfield = copy_node (ffrom);
1872 DECL_CONTEXT (newfield) = to;
1873 /* The store to DECL_CHAIN might seem redundant with the
1874 stores to *chain, but not clearing it here would mean
1875 leaving a chain into the old fields. If ever
1876 our called functions would look at them confusion
1877 will arise. */
1878 DECL_CHAIN (newfield) = NULL_TREE;
1879 *chain = newfield;
1880 chain = &DECL_CHAIN (newfield);
1881
1882 if (TREE_CODE (ffrom) == FIELD_DECL)
1883 {
1884 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
1885 TREE_TYPE (newfield) = elemtype;
1886 }
1887 }
1888 *chain = NULL_TREE;
1889 }
1890
1891 /* Given a type T, returns a different type of the same structure,
1892 except that all types it refers to (recursively) are always
1893 non-restrict qualified types. */
1894 static tree
1895 gfc_nonrestricted_type (tree t)
1896 {
1897 tree ret = t;
1898
1899 /* If the type isn't layed out yet, don't copy it. If something
1900 needs it for real it should wait until the type got finished. */
1901 if (!TYPE_SIZE (t))
1902 return t;
1903
1904 if (!TYPE_LANG_SPECIFIC (t))
1905 TYPE_LANG_SPECIFIC (t)
1906 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1907 /* If we're dealing with this very node already further up
1908 the call chain (recursion via pointers and struct members)
1909 we haven't yet determined if we really need a new type node.
1910 Assume we don't, return T itself. */
1911 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
1912 return t;
1913
1914 /* If we have calculated this all already, just return it. */
1915 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
1916 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
1917
1918 /* Mark this type. */
1919 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
1920
1921 switch (TREE_CODE (t))
1922 {
1923 default:
1924 break;
1925
1926 case POINTER_TYPE:
1927 case REFERENCE_TYPE:
1928 {
1929 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
1930 if (totype == TREE_TYPE (t))
1931 ret = t;
1932 else if (TREE_CODE (t) == POINTER_TYPE)
1933 ret = build_pointer_type (totype);
1934 else
1935 ret = build_reference_type (totype);
1936 ret = build_qualified_type (ret,
1937 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
1938 }
1939 break;
1940
1941 case ARRAY_TYPE:
1942 {
1943 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
1944 if (elemtype == TREE_TYPE (t))
1945 ret = t;
1946 else
1947 {
1948 ret = build_variant_type_copy (t);
1949 TREE_TYPE (ret) = elemtype;
1950 if (TYPE_LANG_SPECIFIC (t)
1951 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
1952 {
1953 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
1954 dataptr_type = gfc_nonrestricted_type (dataptr_type);
1955 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
1956 {
1957 TYPE_LANG_SPECIFIC (ret)
1958 = ggc_alloc_cleared_lang_type (sizeof (struct
1959 lang_type));
1960 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
1961 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
1962 }
1963 }
1964 }
1965 }
1966 break;
1967
1968 case RECORD_TYPE:
1969 case UNION_TYPE:
1970 case QUAL_UNION_TYPE:
1971 {
1972 tree field;
1973 /* First determine if we need a new type at all.
1974 Careful, the two calls to gfc_nonrestricted_type per field
1975 might return different values. That happens exactly when
1976 one of the fields reaches back to this very record type
1977 (via pointers). The first calls will assume that we don't
1978 need to copy T (see the error_mark_node marking). If there
1979 are any reasons for copying T apart from having to copy T,
1980 we'll indeed copy it, and the second calls to
1981 gfc_nonrestricted_type will use that new node if they
1982 reach back to T. */
1983 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1984 if (TREE_CODE (field) == FIELD_DECL)
1985 {
1986 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
1987 if (elemtype != TREE_TYPE (field))
1988 break;
1989 }
1990 if (!field)
1991 break;
1992 ret = build_variant_type_copy (t);
1993 TYPE_FIELDS (ret) = NULL_TREE;
1994
1995 /* Here we make sure that as soon as we know we have to copy
1996 T, that also fields reaching back to us will use the new
1997 copy. It's okay if that copy still contains the old fields,
1998 we won't look at them. */
1999 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2000 mirror_fields (ret, t);
2001 }
2002 break;
2003 }
2004
2005 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2006 return ret;
2007 }
2008
2009 \f
2010 /* Return the type for a symbol. Special handling is required for character
2011 types to get the correct level of indirection.
2012 For functions return the return type.
2013 For subroutines return void_type_node.
2014 Calling this multiple times for the same symbol should be avoided,
2015 especially for character and array types. */
2016
2017 tree
2018 gfc_sym_type (gfc_symbol * sym)
2019 {
2020 tree type;
2021 int byref;
2022 bool restricted;
2023
2024 /* Procedure Pointers inside COMMON blocks. */
2025 if (sym->attr.proc_pointer && sym->attr.in_common)
2026 {
2027 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2028 sym->attr.proc_pointer = 0;
2029 type = build_pointer_type (gfc_get_function_type (sym));
2030 sym->attr.proc_pointer = 1;
2031 return type;
2032 }
2033
2034 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2035 return void_type_node;
2036
2037 /* In the case of a function the fake result variable may have a
2038 type different from the function type, so don't return early in
2039 that case. */
2040 if (sym->backend_decl && !sym->attr.function)
2041 return TREE_TYPE (sym->backend_decl);
2042
2043 if (sym->ts.type == BT_CHARACTER
2044 && ((sym->attr.function && sym->attr.is_bind_c)
2045 || (sym->attr.result
2046 && sym->ns->proc_name
2047 && sym->ns->proc_name->attr.is_bind_c)))
2048 type = gfc_character1_type_node;
2049 else
2050 type = gfc_typenode_for_spec (&sym->ts);
2051
2052 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2053 byref = 1;
2054 else
2055 byref = 0;
2056
2057 restricted = !sym->attr.target && !sym->attr.pointer
2058 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2059 if (!restricted)
2060 type = gfc_nonrestricted_type (type);
2061
2062 if (sym->attr.dimension || sym->attr.codimension)
2063 {
2064 if (gfc_is_nodesc_array (sym))
2065 {
2066 /* If this is a character argument of unknown length, just use the
2067 base type. */
2068 if (sym->ts.type != BT_CHARACTER
2069 || !(sym->attr.dummy || sym->attr.function)
2070 || sym->ts.u.cl->backend_decl)
2071 {
2072 type = gfc_get_nodesc_array_type (type, sym->as,
2073 byref ? PACKED_FULL
2074 : PACKED_STATIC,
2075 restricted);
2076 byref = 0;
2077 }
2078
2079 if (sym->attr.cray_pointee)
2080 GFC_POINTER_TYPE_P (type) = 1;
2081 }
2082 else
2083 {
2084 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2085 if (sym->attr.pointer)
2086 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2087 : GFC_ARRAY_POINTER;
2088 else if (sym->attr.allocatable)
2089 akind = GFC_ARRAY_ALLOCATABLE;
2090 type = gfc_build_array_type (type, sym->as, akind, restricted,
2091 sym->attr.contiguous);
2092 }
2093 }
2094 else
2095 {
2096 if (sym->attr.allocatable || sym->attr.pointer
2097 || gfc_is_associate_pointer (sym))
2098 type = gfc_build_pointer_type (sym, type);
2099 if (sym->attr.pointer || sym->attr.cray_pointee)
2100 GFC_POINTER_TYPE_P (type) = 1;
2101 }
2102
2103 /* We currently pass all parameters by reference.
2104 See f95_get_function_decl. For dummy function parameters return the
2105 function type. */
2106 if (byref)
2107 {
2108 /* We must use pointer types for potentially absent variables. The
2109 optimizers assume a reference type argument is never NULL. */
2110 if (sym->attr.optional
2111 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2112 type = build_pointer_type (type);
2113 else
2114 {
2115 type = build_reference_type (type);
2116 if (restricted)
2117 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2118 }
2119 }
2120
2121 return (type);
2122 }
2123 \f
2124 /* Layout and output debug info for a record type. */
2125
2126 void
2127 gfc_finish_type (tree type)
2128 {
2129 tree decl;
2130
2131 decl = build_decl (input_location,
2132 TYPE_DECL, NULL_TREE, type);
2133 TYPE_STUB_DECL (type) = decl;
2134 layout_type (type);
2135 rest_of_type_compilation (type, 1);
2136 rest_of_decl_compilation (decl, 1, 0);
2137 }
2138 \f
2139 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2140 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2141 to the end of the field list pointed to by *CHAIN.
2142
2143 Returns a pointer to the new field. */
2144
2145 static tree
2146 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2147 {
2148 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2149
2150 DECL_CONTEXT (decl) = context;
2151 DECL_CHAIN (decl) = NULL_TREE;
2152 if (TYPE_FIELDS (context) == NULL_TREE)
2153 TYPE_FIELDS (context) = decl;
2154 if (chain != NULL)
2155 {
2156 if (*chain != NULL)
2157 **chain = decl;
2158 *chain = &DECL_CHAIN (decl);
2159 }
2160
2161 return decl;
2162 }
2163
2164 /* Like `gfc_add_field_to_struct_1', but adds alignment
2165 information. */
2166
2167 tree
2168 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2169 {
2170 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2171
2172 DECL_INITIAL (decl) = 0;
2173 DECL_ALIGN (decl) = 0;
2174 DECL_USER_ALIGN (decl) = 0;
2175
2176 return decl;
2177 }
2178
2179
2180 /* Copy the backend_decl and component backend_decls if
2181 the two derived type symbols are "equal", as described
2182 in 4.4.2 and resolved by gfc_compare_derived_types. */
2183
2184 int
2185 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2186 bool from_gsym)
2187 {
2188 gfc_component *to_cm;
2189 gfc_component *from_cm;
2190
2191 if (from == to)
2192 return 1;
2193
2194 if (from->backend_decl == NULL
2195 || !gfc_compare_derived_types (from, to))
2196 return 0;
2197
2198 to->backend_decl = from->backend_decl;
2199
2200 to_cm = to->components;
2201 from_cm = from->components;
2202
2203 /* Copy the component declarations. If a component is itself
2204 a derived type, we need a copy of its component declarations.
2205 This is done by recursing into gfc_get_derived_type and
2206 ensures that the component's component declarations have
2207 been built. If it is a character, we need the character
2208 length, as well. */
2209 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2210 {
2211 to_cm->backend_decl = from_cm->backend_decl;
2212 if (from_cm->ts.type == BT_DERIVED
2213 && (!from_cm->attr.pointer || from_gsym))
2214 gfc_get_derived_type (to_cm->ts.u.derived);
2215 else if (from_cm->ts.type == BT_CLASS
2216 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2217 gfc_get_derived_type (to_cm->ts.u.derived);
2218 else if (from_cm->ts.type == BT_CHARACTER)
2219 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2220 }
2221
2222 return 1;
2223 }
2224
2225
2226 /* Build a tree node for a procedure pointer component. */
2227
2228 tree
2229 gfc_get_ppc_type (gfc_component* c)
2230 {
2231 tree t;
2232
2233 /* Explicit interface. */
2234 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2235 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2236
2237 /* Implicit interface (only return value may be known). */
2238 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2239 t = gfc_typenode_for_spec (&c->ts);
2240 else
2241 t = void_type_node;
2242
2243 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2244 }
2245
2246
2247 /* Build a tree node for a derived type. If there are equal
2248 derived types, with different local names, these are built
2249 at the same time. If an equal derived type has been built
2250 in a parent namespace, this is used. */
2251
2252 tree
2253 gfc_get_derived_type (gfc_symbol * derived)
2254 {
2255 tree typenode = NULL, field = NULL, field_type = NULL;
2256 tree canonical = NULL_TREE;
2257 tree *chain = NULL;
2258 bool got_canonical = false;
2259 gfc_component *c;
2260 gfc_dt_list *dt;
2261 gfc_namespace *ns;
2262
2263 if (derived && derived->attr.flavor == FL_PROCEDURE
2264 && derived->attr.generic)
2265 derived = gfc_find_dt_in_generic (derived);
2266
2267 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
2268
2269 /* See if it's one of the iso_c_binding derived types. */
2270 if (derived->attr.is_iso_c == 1)
2271 {
2272 if (derived->backend_decl)
2273 return derived->backend_decl;
2274
2275 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2276 derived->backend_decl = ptr_type_node;
2277 else
2278 derived->backend_decl = pfunc_type_node;
2279
2280 derived->ts.kind = gfc_index_integer_kind;
2281 derived->ts.type = BT_INTEGER;
2282 /* Set the f90_type to BT_VOID as a way to recognize something of type
2283 BT_INTEGER that needs to fit a void * for the purpose of the
2284 iso_c_binding derived types. */
2285 derived->ts.f90_type = BT_VOID;
2286
2287 return derived->backend_decl;
2288 }
2289
2290 /* If use associated, use the module type for this one. */
2291 if (gfc_option.flag_whole_file
2292 && derived->backend_decl == NULL
2293 && derived->attr.use_assoc
2294 && derived->module
2295 && gfc_get_module_backend_decl (derived))
2296 goto copy_derived_types;
2297
2298 /* If a whole file compilation, the derived types from an earlier
2299 namespace can be used as the canonical type. */
2300 if (gfc_option.flag_whole_file
2301 && derived->backend_decl == NULL
2302 && !derived->attr.use_assoc
2303 && gfc_global_ns_list)
2304 {
2305 for (ns = gfc_global_ns_list;
2306 ns->translated && !got_canonical;
2307 ns = ns->sibling)
2308 {
2309 dt = ns->derived_types;
2310 for (; dt && !canonical; dt = dt->next)
2311 {
2312 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2313 if (derived->backend_decl)
2314 got_canonical = true;
2315 }
2316 }
2317 }
2318
2319 /* Store up the canonical type to be added to this one. */
2320 if (got_canonical)
2321 {
2322 if (TYPE_CANONICAL (derived->backend_decl))
2323 canonical = TYPE_CANONICAL (derived->backend_decl);
2324 else
2325 canonical = derived->backend_decl;
2326
2327 derived->backend_decl = NULL_TREE;
2328 }
2329
2330 /* derived->backend_decl != 0 means we saw it before, but its
2331 components' backend_decl may have not been built. */
2332 if (derived->backend_decl)
2333 {
2334 /* Its components' backend_decl have been built or we are
2335 seeing recursion through the formal arglist of a procedure
2336 pointer component. */
2337 if (TYPE_FIELDS (derived->backend_decl)
2338 || derived->attr.proc_pointer_comp)
2339 return derived->backend_decl;
2340 else
2341 typenode = derived->backend_decl;
2342 }
2343 else
2344 {
2345 /* We see this derived type first time, so build the type node. */
2346 typenode = make_node (RECORD_TYPE);
2347 TYPE_NAME (typenode) = get_identifier (derived->name);
2348 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2349 derived->backend_decl = typenode;
2350 }
2351
2352 /* Go through the derived type components, building them as
2353 necessary. The reason for doing this now is that it is
2354 possible to recurse back to this derived type through a
2355 pointer component (PR24092). If this happens, the fields
2356 will be built and so we can return the type. */
2357 for (c = derived->components; c; c = c->next)
2358 {
2359 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2360 continue;
2361
2362 if ((!c->attr.pointer && !c->attr.proc_pointer)
2363 || c->ts.u.derived->backend_decl == NULL)
2364 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2365
2366 if (c->ts.u.derived && c->ts.u.derived->attr.is_iso_c)
2367 {
2368 /* Need to copy the modified ts from the derived type. The
2369 typespec was modified because C_PTR/C_FUNPTR are translated
2370 into (void *) from derived types. */
2371 c->ts.type = c->ts.u.derived->ts.type;
2372 c->ts.kind = c->ts.u.derived->ts.kind;
2373 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2374 if (c->initializer)
2375 {
2376 c->initializer->ts.type = c->ts.type;
2377 c->initializer->ts.kind = c->ts.kind;
2378 c->initializer->ts.f90_type = c->ts.f90_type;
2379 c->initializer->expr_type = EXPR_NULL;
2380 }
2381 }
2382 }
2383
2384 if (TYPE_FIELDS (derived->backend_decl))
2385 return derived->backend_decl;
2386
2387 /* Build the type member list. Install the newly created RECORD_TYPE
2388 node as DECL_CONTEXT of each FIELD_DECL. */
2389 for (c = derived->components; c; c = c->next)
2390 {
2391 if (c->attr.proc_pointer)
2392 field_type = gfc_get_ppc_type (c);
2393 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2394 field_type = c->ts.u.derived->backend_decl;
2395 else
2396 {
2397 if (c->ts.type == BT_CHARACTER)
2398 {
2399 /* Evaluate the string length. */
2400 gfc_conv_const_charlen (c->ts.u.cl);
2401 gcc_assert (c->ts.u.cl->backend_decl);
2402 }
2403
2404 field_type = gfc_typenode_for_spec (&c->ts);
2405 }
2406
2407 /* This returns an array descriptor type. Initialization may be
2408 required. */
2409 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2410 {
2411 if (c->attr.pointer || c->attr.allocatable)
2412 {
2413 enum gfc_array_kind akind;
2414 if (c->attr.pointer)
2415 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2416 : GFC_ARRAY_POINTER;
2417 else
2418 akind = GFC_ARRAY_ALLOCATABLE;
2419 /* Pointers to arrays aren't actually pointer types. The
2420 descriptors are separate, but the data is common. */
2421 field_type = gfc_build_array_type (field_type, c->as, akind,
2422 !c->attr.target
2423 && !c->attr.pointer,
2424 c->attr.contiguous);
2425 }
2426 else
2427 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2428 PACKED_STATIC,
2429 !c->attr.target);
2430 }
2431 else if ((c->attr.pointer || c->attr.allocatable)
2432 && !c->attr.proc_pointer)
2433 field_type = build_pointer_type (field_type);
2434
2435 if (c->attr.pointer)
2436 field_type = gfc_nonrestricted_type (field_type);
2437
2438 /* vtype fields can point to different types to the base type. */
2439 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.vtype)
2440 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2441 ptr_mode, true);
2442
2443 field = gfc_add_field_to_struct (typenode,
2444 get_identifier (c->name),
2445 field_type, &chain);
2446 if (c->loc.lb)
2447 gfc_set_decl_location (field, &c->loc);
2448 else if (derived->declared_at.lb)
2449 gfc_set_decl_location (field, &derived->declared_at);
2450
2451 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2452
2453 gcc_assert (field);
2454 if (!c->backend_decl)
2455 c->backend_decl = field;
2456 }
2457
2458 /* Now lay out the derived type, including the fields. */
2459 if (canonical)
2460 TYPE_CANONICAL (typenode) = canonical;
2461
2462 gfc_finish_type (typenode);
2463 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2464 if (derived->module && derived->ns->proc_name
2465 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2466 {
2467 if (derived->ns->proc_name->backend_decl
2468 && TREE_CODE (derived->ns->proc_name->backend_decl)
2469 == NAMESPACE_DECL)
2470 {
2471 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2472 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2473 = derived->ns->proc_name->backend_decl;
2474 }
2475 }
2476
2477 derived->backend_decl = typenode;
2478
2479 copy_derived_types:
2480
2481 for (dt = gfc_derived_types; dt; dt = dt->next)
2482 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2483
2484 return derived->backend_decl;
2485 }
2486
2487
2488 int
2489 gfc_return_by_reference (gfc_symbol * sym)
2490 {
2491 if (!sym->attr.function)
2492 return 0;
2493
2494 if (sym->attr.dimension)
2495 return 1;
2496
2497 if (sym->ts.type == BT_CHARACTER
2498 && !sym->attr.is_bind_c
2499 && (!sym->attr.result
2500 || !sym->ns->proc_name
2501 || !sym->ns->proc_name->attr.is_bind_c))
2502 return 1;
2503
2504 /* Possibly return complex numbers by reference for g77 compatibility.
2505 We don't do this for calls to intrinsics (as the library uses the
2506 -fno-f2c calling convention), nor for calls to functions which always
2507 require an explicit interface, as no compatibility problems can
2508 arise there. */
2509 if (gfc_option.flag_f2c
2510 && sym->ts.type == BT_COMPLEX
2511 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2512 return 1;
2513
2514 return 0;
2515 }
2516 \f
2517 static tree
2518 gfc_get_mixed_entry_union (gfc_namespace *ns)
2519 {
2520 tree type;
2521 tree *chain = NULL;
2522 char name[GFC_MAX_SYMBOL_LEN + 1];
2523 gfc_entry_list *el, *el2;
2524
2525 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2526 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2527
2528 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2529
2530 /* Build the type node. */
2531 type = make_node (UNION_TYPE);
2532
2533 TYPE_NAME (type) = get_identifier (name);
2534
2535 for (el = ns->entries; el; el = el->next)
2536 {
2537 /* Search for duplicates. */
2538 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2539 if (el2->sym->result == el->sym->result)
2540 break;
2541
2542 if (el == el2)
2543 gfc_add_field_to_struct_1 (type,
2544 get_identifier (el->sym->result->name),
2545 gfc_sym_type (el->sym->result), &chain);
2546 }
2547
2548 /* Finish off the type. */
2549 gfc_finish_type (type);
2550 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2551 return type;
2552 }
2553 \f
2554 /* Create a "fn spec" based on the formal arguments;
2555 cf. create_function_arglist. */
2556
2557 static tree
2558 create_fn_spec (gfc_symbol *sym, tree fntype)
2559 {
2560 char spec[150];
2561 size_t spec_len;
2562 gfc_formal_arglist *f;
2563 tree tmp;
2564
2565 memset (&spec, 0, sizeof (spec));
2566 spec[0] = '.';
2567 spec_len = 1;
2568
2569 if (sym->attr.entry_master)
2570 spec[spec_len++] = 'R';
2571 if (gfc_return_by_reference (sym))
2572 {
2573 gfc_symbol *result = sym->result ? sym->result : sym;
2574
2575 if (result->attr.pointer || sym->attr.proc_pointer)
2576 spec[spec_len++] = '.';
2577 else
2578 spec[spec_len++] = 'w';
2579 if (sym->ts.type == BT_CHARACTER)
2580 spec[spec_len++] = 'R';
2581 }
2582
2583 for (f = sym->formal; f; f = f->next)
2584 if (spec_len < sizeof (spec))
2585 {
2586 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2587 || f->sym->attr.external || f->sym->attr.cray_pointer
2588 || (f->sym->ts.type == BT_DERIVED
2589 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2590 || f->sym->ts.u.derived->attr.pointer_comp))
2591 || (f->sym->ts.type == BT_CLASS
2592 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2593 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2594 spec[spec_len++] = '.';
2595 else if (f->sym->attr.intent == INTENT_IN)
2596 spec[spec_len++] = 'r';
2597 else if (f->sym)
2598 spec[spec_len++] = 'w';
2599 }
2600
2601 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2602 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2603 return build_type_attribute_variant (fntype, tmp);
2604 }
2605
2606
2607 tree
2608 gfc_get_function_type (gfc_symbol * sym)
2609 {
2610 tree type;
2611 VEC(tree,gc) *typelist;
2612 gfc_formal_arglist *f;
2613 gfc_symbol *arg;
2614 int alternate_return;
2615 bool is_varargs = true;
2616
2617 /* Make sure this symbol is a function, a subroutine or the main
2618 program. */
2619 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2620 || sym->attr.flavor == FL_PROGRAM);
2621
2622 if (sym->backend_decl)
2623 return TREE_TYPE (sym->backend_decl);
2624
2625 alternate_return = 0;
2626 typelist = NULL;
2627
2628 if (sym->attr.entry_master)
2629 /* Additional parameter for selecting an entry point. */
2630 VEC_safe_push (tree, gc, typelist, gfc_array_index_type);
2631
2632 if (sym->result)
2633 arg = sym->result;
2634 else
2635 arg = sym;
2636
2637 if (arg->ts.type == BT_CHARACTER)
2638 gfc_conv_const_charlen (arg->ts.u.cl);
2639
2640 /* Some functions we use an extra parameter for the return value. */
2641 if (gfc_return_by_reference (sym))
2642 {
2643 type = gfc_sym_type (arg);
2644 if (arg->ts.type == BT_COMPLEX
2645 || arg->attr.dimension
2646 || arg->ts.type == BT_CHARACTER)
2647 type = build_reference_type (type);
2648
2649 VEC_safe_push (tree, gc, typelist, type);
2650 if (arg->ts.type == BT_CHARACTER)
2651 {
2652 if (!arg->ts.deferred)
2653 /* Transfer by value. */
2654 VEC_safe_push (tree, gc, typelist, gfc_charlen_type_node);
2655 else
2656 /* Deferred character lengths are transferred by reference
2657 so that the value can be returned. */
2658 VEC_safe_push (tree, gc, typelist,
2659 build_pointer_type (gfc_charlen_type_node));
2660 }
2661 }
2662
2663 /* Build the argument types for the function. */
2664 for (f = sym->formal; f; f = f->next)
2665 {
2666 arg = f->sym;
2667 if (arg)
2668 {
2669 /* Evaluate constant character lengths here so that they can be
2670 included in the type. */
2671 if (arg->ts.type == BT_CHARACTER)
2672 gfc_conv_const_charlen (arg->ts.u.cl);
2673
2674 if (arg->attr.flavor == FL_PROCEDURE)
2675 {
2676 type = gfc_get_function_type (arg);
2677 type = build_pointer_type (type);
2678 }
2679 else
2680 type = gfc_sym_type (arg);
2681
2682 /* Parameter Passing Convention
2683
2684 We currently pass all parameters by reference.
2685 Parameters with INTENT(IN) could be passed by value.
2686 The problem arises if a function is called via an implicit
2687 prototype. In this situation the INTENT is not known.
2688 For this reason all parameters to global functions must be
2689 passed by reference. Passing by value would potentially
2690 generate bad code. Worse there would be no way of telling that
2691 this code was bad, except that it would give incorrect results.
2692
2693 Contained procedures could pass by value as these are never
2694 used without an explicit interface, and cannot be passed as
2695 actual parameters for a dummy procedure. */
2696
2697 VEC_safe_push (tree, gc, typelist, type);
2698 }
2699 else
2700 {
2701 if (sym->attr.subroutine)
2702 alternate_return = 1;
2703 }
2704 }
2705
2706 /* Add hidden string length parameters. */
2707 for (f = sym->formal; f; f = f->next)
2708 {
2709 arg = f->sym;
2710 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2711 {
2712 if (!arg->ts.deferred)
2713 /* Transfer by value. */
2714 type = gfc_charlen_type_node;
2715 else
2716 /* Deferred character lengths are transferred by reference
2717 so that the value can be returned. */
2718 type = build_pointer_type (gfc_charlen_type_node);
2719
2720 VEC_safe_push (tree, gc, typelist, type);
2721 }
2722 }
2723
2724 if (!VEC_empty (tree, typelist)
2725 || sym->attr.is_main_program
2726 || sym->attr.if_source != IFSRC_UNKNOWN)
2727 is_varargs = false;
2728
2729 if (alternate_return)
2730 type = integer_type_node;
2731 else if (!sym->attr.function || gfc_return_by_reference (sym))
2732 type = void_type_node;
2733 else if (sym->attr.mixed_entry_master)
2734 type = gfc_get_mixed_entry_union (sym->ns);
2735 else if (gfc_option.flag_f2c
2736 && sym->ts.type == BT_REAL
2737 && sym->ts.kind == gfc_default_real_kind
2738 && !sym->attr.always_explicit)
2739 {
2740 /* Special case: f2c calling conventions require that (scalar)
2741 default REAL functions return the C type double instead. f2c
2742 compatibility is only an issue with functions that don't
2743 require an explicit interface, as only these could be
2744 implemented in Fortran 77. */
2745 sym->ts.kind = gfc_default_double_kind;
2746 type = gfc_typenode_for_spec (&sym->ts);
2747 sym->ts.kind = gfc_default_real_kind;
2748 }
2749 else if (sym->result && sym->result->attr.proc_pointer)
2750 /* Procedure pointer return values. */
2751 {
2752 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2753 {
2754 /* Unset proc_pointer as gfc_get_function_type
2755 is called recursively. */
2756 sym->result->attr.proc_pointer = 0;
2757 type = build_pointer_type (gfc_get_function_type (sym->result));
2758 sym->result->attr.proc_pointer = 1;
2759 }
2760 else
2761 type = gfc_sym_type (sym->result);
2762 }
2763 else
2764 type = gfc_sym_type (sym);
2765
2766 if (is_varargs)
2767 type = build_varargs_function_type_vec (type, typelist);
2768 else
2769 type = build_function_type_vec (type, typelist);
2770 type = create_fn_spec (sym, type);
2771
2772 return type;
2773 }
2774 \f
2775 /* Language hooks for middle-end access to type nodes. */
2776
2777 /* Return an integer type with BITS bits of precision,
2778 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2779
2780 tree
2781 gfc_type_for_size (unsigned bits, int unsignedp)
2782 {
2783 if (!unsignedp)
2784 {
2785 int i;
2786 for (i = 0; i <= MAX_INT_KINDS; ++i)
2787 {
2788 tree type = gfc_integer_types[i];
2789 if (type && bits == TYPE_PRECISION (type))
2790 return type;
2791 }
2792
2793 /* Handle TImode as a special case because it is used by some backends
2794 (e.g. ARM) even though it is not available for normal use. */
2795 #if HOST_BITS_PER_WIDE_INT >= 64
2796 if (bits == TYPE_PRECISION (intTI_type_node))
2797 return intTI_type_node;
2798 #endif
2799
2800 if (bits <= TYPE_PRECISION (intQI_type_node))
2801 return intQI_type_node;
2802 if (bits <= TYPE_PRECISION (intHI_type_node))
2803 return intHI_type_node;
2804 if (bits <= TYPE_PRECISION (intSI_type_node))
2805 return intSI_type_node;
2806 if (bits <= TYPE_PRECISION (intDI_type_node))
2807 return intDI_type_node;
2808 if (bits <= TYPE_PRECISION (intTI_type_node))
2809 return intTI_type_node;
2810 }
2811 else
2812 {
2813 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2814 return unsigned_intQI_type_node;
2815 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2816 return unsigned_intHI_type_node;
2817 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2818 return unsigned_intSI_type_node;
2819 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2820 return unsigned_intDI_type_node;
2821 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2822 return unsigned_intTI_type_node;
2823 }
2824
2825 return NULL_TREE;
2826 }
2827
2828 /* Return a data type that has machine mode MODE. If the mode is an
2829 integer, then UNSIGNEDP selects between signed and unsigned types. */
2830
2831 tree
2832 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2833 {
2834 int i;
2835 tree *base;
2836
2837 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2838 base = gfc_real_types;
2839 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2840 base = gfc_complex_types;
2841 else if (SCALAR_INT_MODE_P (mode))
2842 {
2843 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2844 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
2845 }
2846 else if (VECTOR_MODE_P (mode))
2847 {
2848 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2849 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2850 if (inner_type != NULL_TREE)
2851 return build_vector_type_for_mode (inner_type, mode);
2852 return NULL_TREE;
2853 }
2854 else
2855 return NULL_TREE;
2856
2857 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2858 {
2859 tree type = base[i];
2860 if (type && mode == TYPE_MODE (type))
2861 return type;
2862 }
2863
2864 return NULL_TREE;
2865 }
2866
2867 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2868 in that case. */
2869
2870 bool
2871 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2872 {
2873 int rank, dim;
2874 bool indirect = false;
2875 tree etype, ptype, field, t, base_decl;
2876 tree data_off, dim_off, dim_size, elem_size;
2877 tree lower_suboff, upper_suboff, stride_suboff;
2878
2879 if (! GFC_DESCRIPTOR_TYPE_P (type))
2880 {
2881 if (! POINTER_TYPE_P (type))
2882 return false;
2883 type = TREE_TYPE (type);
2884 if (! GFC_DESCRIPTOR_TYPE_P (type))
2885 return false;
2886 indirect = true;
2887 }
2888
2889 rank = GFC_TYPE_ARRAY_RANK (type);
2890 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2891 return false;
2892
2893 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2894 gcc_assert (POINTER_TYPE_P (etype));
2895 etype = TREE_TYPE (etype);
2896
2897 /* If the type is not a scalar coarray. */
2898 if (TREE_CODE (etype) == ARRAY_TYPE)
2899 etype = TREE_TYPE (etype);
2900
2901 /* Can't handle variable sized elements yet. */
2902 if (int_size_in_bytes (etype) <= 0)
2903 return false;
2904 /* Nor non-constant lower bounds in assumed shape arrays. */
2905 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
2906 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
2907 {
2908 for (dim = 0; dim < rank; dim++)
2909 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
2910 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
2911 return false;
2912 }
2913
2914 memset (info, '\0', sizeof (*info));
2915 info->ndimensions = rank;
2916 info->element_type = etype;
2917 ptype = build_pointer_type (gfc_array_index_type);
2918 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
2919 if (!base_decl)
2920 {
2921 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
2922 indirect ? build_pointer_type (ptype) : ptype);
2923 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
2924 }
2925 info->base_decl = base_decl;
2926 if (indirect)
2927 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
2928
2929 if (GFC_TYPE_ARRAY_SPAN (type))
2930 elem_size = GFC_TYPE_ARRAY_SPAN (type);
2931 else
2932 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
2933 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
2934 data_off = byte_position (field);
2935 field = DECL_CHAIN (field);
2936 field = DECL_CHAIN (field);
2937 field = DECL_CHAIN (field);
2938 dim_off = byte_position (field);
2939 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
2940 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
2941 stride_suboff = byte_position (field);
2942 field = DECL_CHAIN (field);
2943 lower_suboff = byte_position (field);
2944 field = DECL_CHAIN (field);
2945 upper_suboff = byte_position (field);
2946
2947 t = base_decl;
2948 if (!integer_zerop (data_off))
2949 t = fold_build_pointer_plus (t, data_off);
2950 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
2951 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
2952 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
2953 info->allocated = build2 (NE_EXPR, boolean_type_node,
2954 info->data_location, null_pointer_node);
2955 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
2956 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
2957 info->associated = build2 (NE_EXPR, boolean_type_node,
2958 info->data_location, null_pointer_node);
2959
2960 for (dim = 0; dim < rank; dim++)
2961 {
2962 t = fold_build_pointer_plus (base_decl,
2963 size_binop (PLUS_EXPR,
2964 dim_off, lower_suboff));
2965 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2966 info->dimen[dim].lower_bound = t;
2967 t = fold_build_pointer_plus (base_decl,
2968 size_binop (PLUS_EXPR,
2969 dim_off, upper_suboff));
2970 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2971 info->dimen[dim].upper_bound = t;
2972 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
2973 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
2974 {
2975 /* Assumed shape arrays have known lower bounds. */
2976 info->dimen[dim].upper_bound
2977 = build2 (MINUS_EXPR, gfc_array_index_type,
2978 info->dimen[dim].upper_bound,
2979 info->dimen[dim].lower_bound);
2980 info->dimen[dim].lower_bound
2981 = fold_convert (gfc_array_index_type,
2982 GFC_TYPE_ARRAY_LBOUND (type, dim));
2983 info->dimen[dim].upper_bound
2984 = build2 (PLUS_EXPR, gfc_array_index_type,
2985 info->dimen[dim].lower_bound,
2986 info->dimen[dim].upper_bound);
2987 }
2988 t = fold_build_pointer_plus (base_decl,
2989 size_binop (PLUS_EXPR,
2990 dim_off, stride_suboff));
2991 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2992 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
2993 info->dimen[dim].stride = t;
2994 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
2995 }
2996
2997 return true;
2998 }
2999
3000 #include "gt-fortran-trans-types.h"