whatis.cc: New file.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "langhooks.h"
58 #include "target.h"
59 #include "common/common-target.h"
60 #include "gimple.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "vecprim.h"
65 #include "params.h"
66 #include "bb-reorder.h"
67
68 /* So we can assign to cfun in this file. */
69 #undef cfun
70
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
74
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
76
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
84
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
89
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
93
94 /* Nonzero once virtual register instantiation has been done.
95 assign_stack_local uses frame_pointer_rtx when this is nonzero.
96 calls.c:emit_library_call_value_1 uses it to set up
97 post-instantiation libcalls. */
98 int virtuals_instantiated;
99
100 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
101 static GTY(()) int funcdef_no;
102
103 /* These variables hold pointers to functions to create and destroy
104 target specific, per-function data structures. */
105 struct machine_function * (*init_machine_status) (void);
106
107 /* The currently compiled function. */
108 struct function *cfun = 0;
109
110 /* These hashes record the prologue and epilogue insns. */
111 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
112 htab_t prologue_insn_hash;
113 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
114 htab_t epilogue_insn_hash;
115 \f
116
117 htab_t types_used_by_vars_hash = NULL;
118 VEC(tree,gc) *types_used_by_cur_var_decl;
119
120 /* Forward declarations. */
121
122 static struct temp_slot *find_temp_slot_from_address (rtx);
123 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
124 static void pad_below (struct args_size *, enum machine_mode, tree);
125 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
126 static int all_blocks (tree, tree *);
127 static tree *get_block_vector (tree, int *);
128 extern tree debug_find_var_in_block_tree (tree, tree);
129 /* We always define `record_insns' even if it's not used so that we
130 can always export `prologue_epilogue_contains'. */
131 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
132 static bool contains (const_rtx, htab_t);
133 static void prepare_function_start (void);
134 static void do_clobber_return_reg (rtx, void *);
135 static void do_use_return_reg (rtx, void *);
136 static void set_insn_locations (rtx, int) ATTRIBUTE_UNUSED;
137 \f
138 /* Stack of nested functions. */
139 /* Keep track of the cfun stack. */
140
141 typedef struct function *function_p;
142
143 DEF_VEC_P(function_p);
144 DEF_VEC_ALLOC_P(function_p,heap);
145 static VEC(function_p,heap) *function_context_stack;
146
147 /* Save the current context for compilation of a nested function.
148 This is called from language-specific code. */
149
150 void
151 push_function_context (void)
152 {
153 if (cfun == 0)
154 allocate_struct_function (NULL, false);
155
156 VEC_safe_push (function_p, heap, function_context_stack, cfun);
157 set_cfun (NULL);
158 }
159
160 /* Restore the last saved context, at the end of a nested function.
161 This function is called from language-specific code. */
162
163 void
164 pop_function_context (void)
165 {
166 struct function *p = VEC_pop (function_p, function_context_stack);
167 set_cfun (p);
168 current_function_decl = p->decl;
169
170 /* Reset variables that have known state during rtx generation. */
171 virtuals_instantiated = 0;
172 generating_concat_p = 1;
173 }
174
175 /* Clear out all parts of the state in F that can safely be discarded
176 after the function has been parsed, but not compiled, to let
177 garbage collection reclaim the memory. */
178
179 void
180 free_after_parsing (struct function *f)
181 {
182 f->language = 0;
183 }
184
185 /* Clear out all parts of the state in F that can safely be discarded
186 after the function has been compiled, to let garbage collection
187 reclaim the memory. */
188
189 void
190 free_after_compilation (struct function *f)
191 {
192 prologue_insn_hash = NULL;
193 epilogue_insn_hash = NULL;
194
195 free (crtl->emit.regno_pointer_align);
196
197 memset (crtl, 0, sizeof (struct rtl_data));
198 f->eh = NULL;
199 f->machine = NULL;
200 f->cfg = NULL;
201
202 regno_reg_rtx = NULL;
203 }
204 \f
205 /* Return size needed for stack frame based on slots so far allocated.
206 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
207 the caller may have to do that. */
208
209 HOST_WIDE_INT
210 get_frame_size (void)
211 {
212 if (FRAME_GROWS_DOWNWARD)
213 return -frame_offset;
214 else
215 return frame_offset;
216 }
217
218 /* Issue an error message and return TRUE if frame OFFSET overflows in
219 the signed target pointer arithmetics for function FUNC. Otherwise
220 return FALSE. */
221
222 bool
223 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
224 {
225 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
226
227 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
228 /* Leave room for the fixed part of the frame. */
229 - 64 * UNITS_PER_WORD)
230 {
231 error_at (DECL_SOURCE_LOCATION (func),
232 "total size of local objects too large");
233 return TRUE;
234 }
235
236 return FALSE;
237 }
238
239 /* Return stack slot alignment in bits for TYPE and MODE. */
240
241 static unsigned int
242 get_stack_local_alignment (tree type, enum machine_mode mode)
243 {
244 unsigned int alignment;
245
246 if (mode == BLKmode)
247 alignment = BIGGEST_ALIGNMENT;
248 else
249 alignment = GET_MODE_ALIGNMENT (mode);
250
251 /* Allow the frond-end to (possibly) increase the alignment of this
252 stack slot. */
253 if (! type)
254 type = lang_hooks.types.type_for_mode (mode, 0);
255
256 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
257 }
258
259 /* Determine whether it is possible to fit a stack slot of size SIZE and
260 alignment ALIGNMENT into an area in the stack frame that starts at
261 frame offset START and has a length of LENGTH. If so, store the frame
262 offset to be used for the stack slot in *POFFSET and return true;
263 return false otherwise. This function will extend the frame size when
264 given a start/length pair that lies at the end of the frame. */
265
266 static bool
267 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
268 HOST_WIDE_INT size, unsigned int alignment,
269 HOST_WIDE_INT *poffset)
270 {
271 HOST_WIDE_INT this_frame_offset;
272 int frame_off, frame_alignment, frame_phase;
273
274 /* Calculate how many bytes the start of local variables is off from
275 stack alignment. */
276 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
277 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
278 frame_phase = frame_off ? frame_alignment - frame_off : 0;
279
280 /* Round the frame offset to the specified alignment. */
281
282 /* We must be careful here, since FRAME_OFFSET might be negative and
283 division with a negative dividend isn't as well defined as we might
284 like. So we instead assume that ALIGNMENT is a power of two and
285 use logical operations which are unambiguous. */
286 if (FRAME_GROWS_DOWNWARD)
287 this_frame_offset
288 = (FLOOR_ROUND (start + length - size - frame_phase,
289 (unsigned HOST_WIDE_INT) alignment)
290 + frame_phase);
291 else
292 this_frame_offset
293 = (CEIL_ROUND (start - frame_phase,
294 (unsigned HOST_WIDE_INT) alignment)
295 + frame_phase);
296
297 /* See if it fits. If this space is at the edge of the frame,
298 consider extending the frame to make it fit. Our caller relies on
299 this when allocating a new slot. */
300 if (frame_offset == start && this_frame_offset < frame_offset)
301 frame_offset = this_frame_offset;
302 else if (this_frame_offset < start)
303 return false;
304 else if (start + length == frame_offset
305 && this_frame_offset + size > start + length)
306 frame_offset = this_frame_offset + size;
307 else if (this_frame_offset + size > start + length)
308 return false;
309
310 *poffset = this_frame_offset;
311 return true;
312 }
313
314 /* Create a new frame_space structure describing free space in the stack
315 frame beginning at START and ending at END, and chain it into the
316 function's frame_space_list. */
317
318 static void
319 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
320 {
321 struct frame_space *space = ggc_alloc_frame_space ();
322 space->next = crtl->frame_space_list;
323 crtl->frame_space_list = space;
324 space->start = start;
325 space->length = end - start;
326 }
327
328 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
329 with machine mode MODE.
330
331 ALIGN controls the amount of alignment for the address of the slot:
332 0 means according to MODE,
333 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
334 -2 means use BITS_PER_UNIT,
335 positive specifies alignment boundary in bits.
336
337 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
338 alignment and ASLK_RECORD_PAD bit set if we should remember
339 extra space we allocated for alignment purposes. When we are
340 called from assign_stack_temp_for_type, it is not set so we don't
341 track the same stack slot in two independent lists.
342
343 We do not round to stack_boundary here. */
344
345 rtx
346 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
347 int align, int kind)
348 {
349 rtx x, addr;
350 int bigend_correction = 0;
351 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
352 unsigned int alignment, alignment_in_bits;
353
354 if (align == 0)
355 {
356 alignment = get_stack_local_alignment (NULL, mode);
357 alignment /= BITS_PER_UNIT;
358 }
359 else if (align == -1)
360 {
361 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
362 size = CEIL_ROUND (size, alignment);
363 }
364 else if (align == -2)
365 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
366 else
367 alignment = align / BITS_PER_UNIT;
368
369 alignment_in_bits = alignment * BITS_PER_UNIT;
370
371 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
372 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
373 {
374 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
375 alignment = alignment_in_bits / BITS_PER_UNIT;
376 }
377
378 if (SUPPORTS_STACK_ALIGNMENT)
379 {
380 if (crtl->stack_alignment_estimated < alignment_in_bits)
381 {
382 if (!crtl->stack_realign_processed)
383 crtl->stack_alignment_estimated = alignment_in_bits;
384 else
385 {
386 /* If stack is realigned and stack alignment value
387 hasn't been finalized, it is OK not to increase
388 stack_alignment_estimated. The bigger alignment
389 requirement is recorded in stack_alignment_needed
390 below. */
391 gcc_assert (!crtl->stack_realign_finalized);
392 if (!crtl->stack_realign_needed)
393 {
394 /* It is OK to reduce the alignment as long as the
395 requested size is 0 or the estimated stack
396 alignment >= mode alignment. */
397 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
398 || size == 0
399 || (crtl->stack_alignment_estimated
400 >= GET_MODE_ALIGNMENT (mode)));
401 alignment_in_bits = crtl->stack_alignment_estimated;
402 alignment = alignment_in_bits / BITS_PER_UNIT;
403 }
404 }
405 }
406 }
407
408 if (crtl->stack_alignment_needed < alignment_in_bits)
409 crtl->stack_alignment_needed = alignment_in_bits;
410 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
411 crtl->max_used_stack_slot_alignment = alignment_in_bits;
412
413 if (mode != BLKmode || size != 0)
414 {
415 if (kind & ASLK_RECORD_PAD)
416 {
417 struct frame_space **psp;
418
419 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
420 {
421 struct frame_space *space = *psp;
422 if (!try_fit_stack_local (space->start, space->length, size,
423 alignment, &slot_offset))
424 continue;
425 *psp = space->next;
426 if (slot_offset > space->start)
427 add_frame_space (space->start, slot_offset);
428 if (slot_offset + size < space->start + space->length)
429 add_frame_space (slot_offset + size,
430 space->start + space->length);
431 goto found_space;
432 }
433 }
434 }
435 else if (!STACK_ALIGNMENT_NEEDED)
436 {
437 slot_offset = frame_offset;
438 goto found_space;
439 }
440
441 old_frame_offset = frame_offset;
442
443 if (FRAME_GROWS_DOWNWARD)
444 {
445 frame_offset -= size;
446 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
447
448 if (kind & ASLK_RECORD_PAD)
449 {
450 if (slot_offset > frame_offset)
451 add_frame_space (frame_offset, slot_offset);
452 if (slot_offset + size < old_frame_offset)
453 add_frame_space (slot_offset + size, old_frame_offset);
454 }
455 }
456 else
457 {
458 frame_offset += size;
459 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
460
461 if (kind & ASLK_RECORD_PAD)
462 {
463 if (slot_offset > old_frame_offset)
464 add_frame_space (old_frame_offset, slot_offset);
465 if (slot_offset + size < frame_offset)
466 add_frame_space (slot_offset + size, frame_offset);
467 }
468 }
469
470 found_space:
471 /* On a big-endian machine, if we are allocating more space than we will use,
472 use the least significant bytes of those that are allocated. */
473 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
474 bigend_correction = size - GET_MODE_SIZE (mode);
475
476 /* If we have already instantiated virtual registers, return the actual
477 address relative to the frame pointer. */
478 if (virtuals_instantiated)
479 addr = plus_constant (Pmode, frame_pointer_rtx,
480 trunc_int_for_mode
481 (slot_offset + bigend_correction
482 + STARTING_FRAME_OFFSET, Pmode));
483 else
484 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
485 trunc_int_for_mode
486 (slot_offset + bigend_correction,
487 Pmode));
488
489 x = gen_rtx_MEM (mode, addr);
490 set_mem_align (x, alignment_in_bits);
491 MEM_NOTRAP_P (x) = 1;
492
493 stack_slot_list
494 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
495
496 if (frame_offset_overflow (frame_offset, current_function_decl))
497 frame_offset = 0;
498
499 return x;
500 }
501
502 /* Wrap up assign_stack_local_1 with last parameter as false. */
503
504 rtx
505 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
506 {
507 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
508 }
509 \f
510 /* In order to evaluate some expressions, such as function calls returning
511 structures in memory, we need to temporarily allocate stack locations.
512 We record each allocated temporary in the following structure.
513
514 Associated with each temporary slot is a nesting level. When we pop up
515 one level, all temporaries associated with the previous level are freed.
516 Normally, all temporaries are freed after the execution of the statement
517 in which they were created. However, if we are inside a ({...}) grouping,
518 the result may be in a temporary and hence must be preserved. If the
519 result could be in a temporary, we preserve it if we can determine which
520 one it is in. If we cannot determine which temporary may contain the
521 result, all temporaries are preserved. A temporary is preserved by
522 pretending it was allocated at the previous nesting level. */
523
524 struct GTY(()) temp_slot {
525 /* Points to next temporary slot. */
526 struct temp_slot *next;
527 /* Points to previous temporary slot. */
528 struct temp_slot *prev;
529 /* The rtx to used to reference the slot. */
530 rtx slot;
531 /* The size, in units, of the slot. */
532 HOST_WIDE_INT size;
533 /* The type of the object in the slot, or zero if it doesn't correspond
534 to a type. We use this to determine whether a slot can be reused.
535 It can be reused if objects of the type of the new slot will always
536 conflict with objects of the type of the old slot. */
537 tree type;
538 /* The alignment (in bits) of the slot. */
539 unsigned int align;
540 /* Nonzero if this temporary is currently in use. */
541 char in_use;
542 /* Nesting level at which this slot is being used. */
543 int level;
544 /* The offset of the slot from the frame_pointer, including extra space
545 for alignment. This info is for combine_temp_slots. */
546 HOST_WIDE_INT base_offset;
547 /* The size of the slot, including extra space for alignment. This
548 info is for combine_temp_slots. */
549 HOST_WIDE_INT full_size;
550 };
551
552 /* A table of addresses that represent a stack slot. The table is a mapping
553 from address RTXen to a temp slot. */
554 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
555 static size_t n_temp_slots_in_use;
556
557 /* Entry for the above hash table. */
558 struct GTY(()) temp_slot_address_entry {
559 hashval_t hash;
560 rtx address;
561 struct temp_slot *temp_slot;
562 };
563
564 /* Removes temporary slot TEMP from LIST. */
565
566 static void
567 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
568 {
569 if (temp->next)
570 temp->next->prev = temp->prev;
571 if (temp->prev)
572 temp->prev->next = temp->next;
573 else
574 *list = temp->next;
575
576 temp->prev = temp->next = NULL;
577 }
578
579 /* Inserts temporary slot TEMP to LIST. */
580
581 static void
582 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
583 {
584 temp->next = *list;
585 if (*list)
586 (*list)->prev = temp;
587 temp->prev = NULL;
588 *list = temp;
589 }
590
591 /* Returns the list of used temp slots at LEVEL. */
592
593 static struct temp_slot **
594 temp_slots_at_level (int level)
595 {
596 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
597 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
598
599 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
600 }
601
602 /* Returns the maximal temporary slot level. */
603
604 static int
605 max_slot_level (void)
606 {
607 if (!used_temp_slots)
608 return -1;
609
610 return VEC_length (temp_slot_p, used_temp_slots) - 1;
611 }
612
613 /* Moves temporary slot TEMP to LEVEL. */
614
615 static void
616 move_slot_to_level (struct temp_slot *temp, int level)
617 {
618 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
619 insert_slot_to_list (temp, temp_slots_at_level (level));
620 temp->level = level;
621 }
622
623 /* Make temporary slot TEMP available. */
624
625 static void
626 make_slot_available (struct temp_slot *temp)
627 {
628 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
629 insert_slot_to_list (temp, &avail_temp_slots);
630 temp->in_use = 0;
631 temp->level = -1;
632 n_temp_slots_in_use--;
633 }
634
635 /* Compute the hash value for an address -> temp slot mapping.
636 The value is cached on the mapping entry. */
637 static hashval_t
638 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
639 {
640 int do_not_record = 0;
641 return hash_rtx (t->address, GET_MODE (t->address),
642 &do_not_record, NULL, false);
643 }
644
645 /* Return the hash value for an address -> temp slot mapping. */
646 static hashval_t
647 temp_slot_address_hash (const void *p)
648 {
649 const struct temp_slot_address_entry *t;
650 t = (const struct temp_slot_address_entry *) p;
651 return t->hash;
652 }
653
654 /* Compare two address -> temp slot mapping entries. */
655 static int
656 temp_slot_address_eq (const void *p1, const void *p2)
657 {
658 const struct temp_slot_address_entry *t1, *t2;
659 t1 = (const struct temp_slot_address_entry *) p1;
660 t2 = (const struct temp_slot_address_entry *) p2;
661 return exp_equiv_p (t1->address, t2->address, 0, true);
662 }
663
664 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
665 static void
666 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
667 {
668 void **slot;
669 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
670 t->address = address;
671 t->temp_slot = temp_slot;
672 t->hash = temp_slot_address_compute_hash (t);
673 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
674 *slot = t;
675 }
676
677 /* Remove an address -> temp slot mapping entry if the temp slot is
678 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
679 static int
680 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
681 {
682 const struct temp_slot_address_entry *t;
683 t = (const struct temp_slot_address_entry *) *slot;
684 if (! t->temp_slot->in_use)
685 htab_clear_slot (temp_slot_address_table, slot);
686 return 1;
687 }
688
689 /* Remove all mappings of addresses to unused temp slots. */
690 static void
691 remove_unused_temp_slot_addresses (void)
692 {
693 /* Use quicker clearing if there aren't any active temp slots. */
694 if (n_temp_slots_in_use)
695 htab_traverse (temp_slot_address_table,
696 remove_unused_temp_slot_addresses_1,
697 NULL);
698 else
699 htab_empty (temp_slot_address_table);
700 }
701
702 /* Find the temp slot corresponding to the object at address X. */
703
704 static struct temp_slot *
705 find_temp_slot_from_address (rtx x)
706 {
707 struct temp_slot *p;
708 struct temp_slot_address_entry tmp, *t;
709
710 /* First try the easy way:
711 See if X exists in the address -> temp slot mapping. */
712 tmp.address = x;
713 tmp.temp_slot = NULL;
714 tmp.hash = temp_slot_address_compute_hash (&tmp);
715 t = (struct temp_slot_address_entry *)
716 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
717 if (t)
718 return t->temp_slot;
719
720 /* If we have a sum involving a register, see if it points to a temp
721 slot. */
722 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
723 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
724 return p;
725 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
726 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
727 return p;
728
729 /* Last resort: Address is a virtual stack var address. */
730 if (GET_CODE (x) == PLUS
731 && XEXP (x, 0) == virtual_stack_vars_rtx
732 && CONST_INT_P (XEXP (x, 1)))
733 {
734 int i;
735 for (i = max_slot_level (); i >= 0; i--)
736 for (p = *temp_slots_at_level (i); p; p = p->next)
737 {
738 if (INTVAL (XEXP (x, 1)) >= p->base_offset
739 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
740 return p;
741 }
742 }
743
744 return NULL;
745 }
746 \f
747 /* Allocate a temporary stack slot and record it for possible later
748 reuse.
749
750 MODE is the machine mode to be given to the returned rtx.
751
752 SIZE is the size in units of the space required. We do no rounding here
753 since assign_stack_local will do any required rounding.
754
755 TYPE is the type that will be used for the stack slot. */
756
757 rtx
758 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
759 tree type)
760 {
761 unsigned int align;
762 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
763 rtx slot;
764
765 /* If SIZE is -1 it means that somebody tried to allocate a temporary
766 of a variable size. */
767 gcc_assert (size != -1);
768
769 align = get_stack_local_alignment (type, mode);
770
771 /* Try to find an available, already-allocated temporary of the proper
772 mode which meets the size and alignment requirements. Choose the
773 smallest one with the closest alignment.
774
775 If assign_stack_temp is called outside of the tree->rtl expansion,
776 we cannot reuse the stack slots (that may still refer to
777 VIRTUAL_STACK_VARS_REGNUM). */
778 if (!virtuals_instantiated)
779 {
780 for (p = avail_temp_slots; p; p = p->next)
781 {
782 if (p->align >= align && p->size >= size
783 && GET_MODE (p->slot) == mode
784 && objects_must_conflict_p (p->type, type)
785 && (best_p == 0 || best_p->size > p->size
786 || (best_p->size == p->size && best_p->align > p->align)))
787 {
788 if (p->align == align && p->size == size)
789 {
790 selected = p;
791 cut_slot_from_list (selected, &avail_temp_slots);
792 best_p = 0;
793 break;
794 }
795 best_p = p;
796 }
797 }
798 }
799
800 /* Make our best, if any, the one to use. */
801 if (best_p)
802 {
803 selected = best_p;
804 cut_slot_from_list (selected, &avail_temp_slots);
805
806 /* If there are enough aligned bytes left over, make them into a new
807 temp_slot so that the extra bytes don't get wasted. Do this only
808 for BLKmode slots, so that we can be sure of the alignment. */
809 if (GET_MODE (best_p->slot) == BLKmode)
810 {
811 int alignment = best_p->align / BITS_PER_UNIT;
812 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
813
814 if (best_p->size - rounded_size >= alignment)
815 {
816 p = ggc_alloc_temp_slot ();
817 p->in_use = 0;
818 p->size = best_p->size - rounded_size;
819 p->base_offset = best_p->base_offset + rounded_size;
820 p->full_size = best_p->full_size - rounded_size;
821 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
822 p->align = best_p->align;
823 p->type = best_p->type;
824 insert_slot_to_list (p, &avail_temp_slots);
825
826 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
827 stack_slot_list);
828
829 best_p->size = rounded_size;
830 best_p->full_size = rounded_size;
831 }
832 }
833 }
834
835 /* If we still didn't find one, make a new temporary. */
836 if (selected == 0)
837 {
838 HOST_WIDE_INT frame_offset_old = frame_offset;
839
840 p = ggc_alloc_temp_slot ();
841
842 /* We are passing an explicit alignment request to assign_stack_local.
843 One side effect of that is assign_stack_local will not round SIZE
844 to ensure the frame offset remains suitably aligned.
845
846 So for requests which depended on the rounding of SIZE, we go ahead
847 and round it now. We also make sure ALIGNMENT is at least
848 BIGGEST_ALIGNMENT. */
849 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
850 p->slot = assign_stack_local_1 (mode,
851 (mode == BLKmode
852 ? CEIL_ROUND (size,
853 (int) align
854 / BITS_PER_UNIT)
855 : size),
856 align, 0);
857
858 p->align = align;
859
860 /* The following slot size computation is necessary because we don't
861 know the actual size of the temporary slot until assign_stack_local
862 has performed all the frame alignment and size rounding for the
863 requested temporary. Note that extra space added for alignment
864 can be either above or below this stack slot depending on which
865 way the frame grows. We include the extra space if and only if it
866 is above this slot. */
867 if (FRAME_GROWS_DOWNWARD)
868 p->size = frame_offset_old - frame_offset;
869 else
870 p->size = size;
871
872 /* Now define the fields used by combine_temp_slots. */
873 if (FRAME_GROWS_DOWNWARD)
874 {
875 p->base_offset = frame_offset;
876 p->full_size = frame_offset_old - frame_offset;
877 }
878 else
879 {
880 p->base_offset = frame_offset_old;
881 p->full_size = frame_offset - frame_offset_old;
882 }
883
884 selected = p;
885 }
886
887 p = selected;
888 p->in_use = 1;
889 p->type = type;
890 p->level = temp_slot_level;
891 n_temp_slots_in_use++;
892
893 pp = temp_slots_at_level (p->level);
894 insert_slot_to_list (p, pp);
895 insert_temp_slot_address (XEXP (p->slot, 0), p);
896
897 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
898 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
899 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
900
901 /* If we know the alias set for the memory that will be used, use
902 it. If there's no TYPE, then we don't know anything about the
903 alias set for the memory. */
904 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
905 set_mem_align (slot, align);
906
907 /* If a type is specified, set the relevant flags. */
908 if (type != 0)
909 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
910 MEM_NOTRAP_P (slot) = 1;
911
912 return slot;
913 }
914
915 /* Allocate a temporary stack slot and record it for possible later
916 reuse. First two arguments are same as in preceding function. */
917
918 rtx
919 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
920 {
921 return assign_stack_temp_for_type (mode, size, NULL_TREE);
922 }
923 \f
924 /* Assign a temporary.
925 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
926 and so that should be used in error messages. In either case, we
927 allocate of the given type.
928 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
929 it is 0 if a register is OK.
930 DONT_PROMOTE is 1 if we should not promote values in register
931 to wider modes. */
932
933 rtx
934 assign_temp (tree type_or_decl, int memory_required,
935 int dont_promote ATTRIBUTE_UNUSED)
936 {
937 tree type, decl;
938 enum machine_mode mode;
939 #ifdef PROMOTE_MODE
940 int unsignedp;
941 #endif
942
943 if (DECL_P (type_or_decl))
944 decl = type_or_decl, type = TREE_TYPE (decl);
945 else
946 decl = NULL, type = type_or_decl;
947
948 mode = TYPE_MODE (type);
949 #ifdef PROMOTE_MODE
950 unsignedp = TYPE_UNSIGNED (type);
951 #endif
952
953 if (mode == BLKmode || memory_required)
954 {
955 HOST_WIDE_INT size = int_size_in_bytes (type);
956 rtx tmp;
957
958 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
959 problems with allocating the stack space. */
960 if (size == 0)
961 size = 1;
962
963 /* Unfortunately, we don't yet know how to allocate variable-sized
964 temporaries. However, sometimes we can find a fixed upper limit on
965 the size, so try that instead. */
966 else if (size == -1)
967 size = max_int_size_in_bytes (type);
968
969 /* The size of the temporary may be too large to fit into an integer. */
970 /* ??? Not sure this should happen except for user silliness, so limit
971 this to things that aren't compiler-generated temporaries. The
972 rest of the time we'll die in assign_stack_temp_for_type. */
973 if (decl && size == -1
974 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
975 {
976 error ("size of variable %q+D is too large", decl);
977 size = 1;
978 }
979
980 tmp = assign_stack_temp_for_type (mode, size, type);
981 return tmp;
982 }
983
984 #ifdef PROMOTE_MODE
985 if (! dont_promote)
986 mode = promote_mode (type, mode, &unsignedp);
987 #endif
988
989 return gen_reg_rtx (mode);
990 }
991 \f
992 /* Combine temporary stack slots which are adjacent on the stack.
993
994 This allows for better use of already allocated stack space. This is only
995 done for BLKmode slots because we can be sure that we won't have alignment
996 problems in this case. */
997
998 static void
999 combine_temp_slots (void)
1000 {
1001 struct temp_slot *p, *q, *next, *next_q;
1002 int num_slots;
1003
1004 /* We can't combine slots, because the information about which slot
1005 is in which alias set will be lost. */
1006 if (flag_strict_aliasing)
1007 return;
1008
1009 /* If there are a lot of temp slots, don't do anything unless
1010 high levels of optimization. */
1011 if (! flag_expensive_optimizations)
1012 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1013 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1014 return;
1015
1016 for (p = avail_temp_slots; p; p = next)
1017 {
1018 int delete_p = 0;
1019
1020 next = p->next;
1021
1022 if (GET_MODE (p->slot) != BLKmode)
1023 continue;
1024
1025 for (q = p->next; q; q = next_q)
1026 {
1027 int delete_q = 0;
1028
1029 next_q = q->next;
1030
1031 if (GET_MODE (q->slot) != BLKmode)
1032 continue;
1033
1034 if (p->base_offset + p->full_size == q->base_offset)
1035 {
1036 /* Q comes after P; combine Q into P. */
1037 p->size += q->size;
1038 p->full_size += q->full_size;
1039 delete_q = 1;
1040 }
1041 else if (q->base_offset + q->full_size == p->base_offset)
1042 {
1043 /* P comes after Q; combine P into Q. */
1044 q->size += p->size;
1045 q->full_size += p->full_size;
1046 delete_p = 1;
1047 break;
1048 }
1049 if (delete_q)
1050 cut_slot_from_list (q, &avail_temp_slots);
1051 }
1052
1053 /* Either delete P or advance past it. */
1054 if (delete_p)
1055 cut_slot_from_list (p, &avail_temp_slots);
1056 }
1057 }
1058 \f
1059 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1060 slot that previously was known by OLD_RTX. */
1061
1062 void
1063 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1064 {
1065 struct temp_slot *p;
1066
1067 if (rtx_equal_p (old_rtx, new_rtx))
1068 return;
1069
1070 p = find_temp_slot_from_address (old_rtx);
1071
1072 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1073 NEW_RTX is a register, see if one operand of the PLUS is a
1074 temporary location. If so, NEW_RTX points into it. Otherwise,
1075 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1076 in common between them. If so, try a recursive call on those
1077 values. */
1078 if (p == 0)
1079 {
1080 if (GET_CODE (old_rtx) != PLUS)
1081 return;
1082
1083 if (REG_P (new_rtx))
1084 {
1085 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1086 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1087 return;
1088 }
1089 else if (GET_CODE (new_rtx) != PLUS)
1090 return;
1091
1092 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1093 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1094 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1095 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1096 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1097 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1098 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1099 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1100
1101 return;
1102 }
1103
1104 /* Otherwise add an alias for the temp's address. */
1105 insert_temp_slot_address (new_rtx, p);
1106 }
1107
1108 /* If X could be a reference to a temporary slot, mark that slot as
1109 belonging to the to one level higher than the current level. If X
1110 matched one of our slots, just mark that one. Otherwise, we can't
1111 easily predict which it is, so upgrade all of them.
1112
1113 This is called when an ({...}) construct occurs and a statement
1114 returns a value in memory. */
1115
1116 void
1117 preserve_temp_slots (rtx x)
1118 {
1119 struct temp_slot *p = 0, *next;
1120
1121 if (x == 0)
1122 return;
1123
1124 /* If X is a register that is being used as a pointer, see if we have
1125 a temporary slot we know it points to. */
1126 if (REG_P (x) && REG_POINTER (x))
1127 p = find_temp_slot_from_address (x);
1128
1129 /* If X is not in memory or is at a constant address, it cannot be in
1130 a temporary slot. */
1131 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1132 return;
1133
1134 /* First see if we can find a match. */
1135 if (p == 0)
1136 p = find_temp_slot_from_address (XEXP (x, 0));
1137
1138 if (p != 0)
1139 {
1140 if (p->level == temp_slot_level)
1141 move_slot_to_level (p, temp_slot_level - 1);
1142 return;
1143 }
1144
1145 /* Otherwise, preserve all non-kept slots at this level. */
1146 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1147 {
1148 next = p->next;
1149 move_slot_to_level (p, temp_slot_level - 1);
1150 }
1151 }
1152
1153 /* Free all temporaries used so far. This is normally called at the
1154 end of generating code for a statement. */
1155
1156 void
1157 free_temp_slots (void)
1158 {
1159 struct temp_slot *p, *next;
1160 bool some_available = false;
1161
1162 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1163 {
1164 next = p->next;
1165 make_slot_available (p);
1166 some_available = true;
1167 }
1168
1169 if (some_available)
1170 {
1171 remove_unused_temp_slot_addresses ();
1172 combine_temp_slots ();
1173 }
1174 }
1175
1176 /* Push deeper into the nesting level for stack temporaries. */
1177
1178 void
1179 push_temp_slots (void)
1180 {
1181 temp_slot_level++;
1182 }
1183
1184 /* Pop a temporary nesting level. All slots in use in the current level
1185 are freed. */
1186
1187 void
1188 pop_temp_slots (void)
1189 {
1190 free_temp_slots ();
1191 temp_slot_level--;
1192 }
1193
1194 /* Initialize temporary slots. */
1195
1196 void
1197 init_temp_slots (void)
1198 {
1199 /* We have not allocated any temporaries yet. */
1200 avail_temp_slots = 0;
1201 used_temp_slots = 0;
1202 temp_slot_level = 0;
1203 n_temp_slots_in_use = 0;
1204
1205 /* Set up the table to map addresses to temp slots. */
1206 if (! temp_slot_address_table)
1207 temp_slot_address_table = htab_create_ggc (32,
1208 temp_slot_address_hash,
1209 temp_slot_address_eq,
1210 NULL);
1211 else
1212 htab_empty (temp_slot_address_table);
1213 }
1214 \f
1215 /* Functions and data structures to keep track of the values hard regs
1216 had at the start of the function. */
1217
1218 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1219 and has_hard_reg_initial_val.. */
1220 typedef struct GTY(()) initial_value_pair {
1221 rtx hard_reg;
1222 rtx pseudo;
1223 } initial_value_pair;
1224 /* ??? This could be a VEC but there is currently no way to define an
1225 opaque VEC type. This could be worked around by defining struct
1226 initial_value_pair in function.h. */
1227 typedef struct GTY(()) initial_value_struct {
1228 int num_entries;
1229 int max_entries;
1230 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1231 } initial_value_struct;
1232
1233 /* If a pseudo represents an initial hard reg (or expression), return
1234 it, else return NULL_RTX. */
1235
1236 rtx
1237 get_hard_reg_initial_reg (rtx reg)
1238 {
1239 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1240 int i;
1241
1242 if (ivs == 0)
1243 return NULL_RTX;
1244
1245 for (i = 0; i < ivs->num_entries; i++)
1246 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1247 return ivs->entries[i].hard_reg;
1248
1249 return NULL_RTX;
1250 }
1251
1252 /* Make sure that there's a pseudo register of mode MODE that stores the
1253 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1254
1255 rtx
1256 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1257 {
1258 struct initial_value_struct *ivs;
1259 rtx rv;
1260
1261 rv = has_hard_reg_initial_val (mode, regno);
1262 if (rv)
1263 return rv;
1264
1265 ivs = crtl->hard_reg_initial_vals;
1266 if (ivs == 0)
1267 {
1268 ivs = ggc_alloc_initial_value_struct ();
1269 ivs->num_entries = 0;
1270 ivs->max_entries = 5;
1271 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1272 crtl->hard_reg_initial_vals = ivs;
1273 }
1274
1275 if (ivs->num_entries >= ivs->max_entries)
1276 {
1277 ivs->max_entries += 5;
1278 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1279 ivs->max_entries);
1280 }
1281
1282 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1283 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1284
1285 return ivs->entries[ivs->num_entries++].pseudo;
1286 }
1287
1288 /* See if get_hard_reg_initial_val has been used to create a pseudo
1289 for the initial value of hard register REGNO in mode MODE. Return
1290 the associated pseudo if so, otherwise return NULL. */
1291
1292 rtx
1293 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1294 {
1295 struct initial_value_struct *ivs;
1296 int i;
1297
1298 ivs = crtl->hard_reg_initial_vals;
1299 if (ivs != 0)
1300 for (i = 0; i < ivs->num_entries; i++)
1301 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1302 && REGNO (ivs->entries[i].hard_reg) == regno)
1303 return ivs->entries[i].pseudo;
1304
1305 return NULL_RTX;
1306 }
1307
1308 unsigned int
1309 emit_initial_value_sets (void)
1310 {
1311 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1312 int i;
1313 rtx seq;
1314
1315 if (ivs == 0)
1316 return 0;
1317
1318 start_sequence ();
1319 for (i = 0; i < ivs->num_entries; i++)
1320 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1321 seq = get_insns ();
1322 end_sequence ();
1323
1324 emit_insn_at_entry (seq);
1325 return 0;
1326 }
1327
1328 /* Return the hardreg-pseudoreg initial values pair entry I and
1329 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1330 bool
1331 initial_value_entry (int i, rtx *hreg, rtx *preg)
1332 {
1333 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1334 if (!ivs || i >= ivs->num_entries)
1335 return false;
1336
1337 *hreg = ivs->entries[i].hard_reg;
1338 *preg = ivs->entries[i].pseudo;
1339 return true;
1340 }
1341 \f
1342 /* These routines are responsible for converting virtual register references
1343 to the actual hard register references once RTL generation is complete.
1344
1345 The following four variables are used for communication between the
1346 routines. They contain the offsets of the virtual registers from their
1347 respective hard registers. */
1348
1349 static int in_arg_offset;
1350 static int var_offset;
1351 static int dynamic_offset;
1352 static int out_arg_offset;
1353 static int cfa_offset;
1354
1355 /* In most machines, the stack pointer register is equivalent to the bottom
1356 of the stack. */
1357
1358 #ifndef STACK_POINTER_OFFSET
1359 #define STACK_POINTER_OFFSET 0
1360 #endif
1361
1362 /* If not defined, pick an appropriate default for the offset of dynamically
1363 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1364 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1365
1366 #ifndef STACK_DYNAMIC_OFFSET
1367
1368 /* The bottom of the stack points to the actual arguments. If
1369 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1370 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1371 stack space for register parameters is not pushed by the caller, but
1372 rather part of the fixed stack areas and hence not included in
1373 `crtl->outgoing_args_size'. Nevertheless, we must allow
1374 for it when allocating stack dynamic objects. */
1375
1376 #if defined(REG_PARM_STACK_SPACE)
1377 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1378 ((ACCUMULATE_OUTGOING_ARGS \
1379 ? (crtl->outgoing_args_size \
1380 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1381 : REG_PARM_STACK_SPACE (FNDECL))) \
1382 : 0) + (STACK_POINTER_OFFSET))
1383 #else
1384 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1385 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1386 + (STACK_POINTER_OFFSET))
1387 #endif
1388 #endif
1389
1390 \f
1391 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1392 is a virtual register, return the equivalent hard register and set the
1393 offset indirectly through the pointer. Otherwise, return 0. */
1394
1395 static rtx
1396 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1397 {
1398 rtx new_rtx;
1399 HOST_WIDE_INT offset;
1400
1401 if (x == virtual_incoming_args_rtx)
1402 {
1403 if (stack_realign_drap)
1404 {
1405 /* Replace virtual_incoming_args_rtx with internal arg
1406 pointer if DRAP is used to realign stack. */
1407 new_rtx = crtl->args.internal_arg_pointer;
1408 offset = 0;
1409 }
1410 else
1411 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1412 }
1413 else if (x == virtual_stack_vars_rtx)
1414 new_rtx = frame_pointer_rtx, offset = var_offset;
1415 else if (x == virtual_stack_dynamic_rtx)
1416 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1417 else if (x == virtual_outgoing_args_rtx)
1418 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1419 else if (x == virtual_cfa_rtx)
1420 {
1421 #ifdef FRAME_POINTER_CFA_OFFSET
1422 new_rtx = frame_pointer_rtx;
1423 #else
1424 new_rtx = arg_pointer_rtx;
1425 #endif
1426 offset = cfa_offset;
1427 }
1428 else if (x == virtual_preferred_stack_boundary_rtx)
1429 {
1430 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1431 offset = 0;
1432 }
1433 else
1434 return NULL_RTX;
1435
1436 *poffset = offset;
1437 return new_rtx;
1438 }
1439
1440 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1441 Instantiate any virtual registers present inside of *LOC. The expression
1442 is simplified, as much as possible, but is not to be considered "valid"
1443 in any sense implied by the target. If any change is made, set CHANGED
1444 to true. */
1445
1446 static int
1447 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1448 {
1449 HOST_WIDE_INT offset;
1450 bool *changed = (bool *) data;
1451 rtx x, new_rtx;
1452
1453 x = *loc;
1454 if (x == 0)
1455 return 0;
1456
1457 switch (GET_CODE (x))
1458 {
1459 case REG:
1460 new_rtx = instantiate_new_reg (x, &offset);
1461 if (new_rtx)
1462 {
1463 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1464 if (changed)
1465 *changed = true;
1466 }
1467 return -1;
1468
1469 case PLUS:
1470 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1471 if (new_rtx)
1472 {
1473 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1474 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1475 if (changed)
1476 *changed = true;
1477 return -1;
1478 }
1479
1480 /* FIXME -- from old code */
1481 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1482 we can commute the PLUS and SUBREG because pointers into the
1483 frame are well-behaved. */
1484 break;
1485
1486 default:
1487 break;
1488 }
1489
1490 return 0;
1491 }
1492
1493 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1494 matches the predicate for insn CODE operand OPERAND. */
1495
1496 static int
1497 safe_insn_predicate (int code, int operand, rtx x)
1498 {
1499 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1500 }
1501
1502 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1503 registers present inside of insn. The result will be a valid insn. */
1504
1505 static void
1506 instantiate_virtual_regs_in_insn (rtx insn)
1507 {
1508 HOST_WIDE_INT offset;
1509 int insn_code, i;
1510 bool any_change = false;
1511 rtx set, new_rtx, x, seq;
1512
1513 /* There are some special cases to be handled first. */
1514 set = single_set (insn);
1515 if (set)
1516 {
1517 /* We're allowed to assign to a virtual register. This is interpreted
1518 to mean that the underlying register gets assigned the inverse
1519 transformation. This is used, for example, in the handling of
1520 non-local gotos. */
1521 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1522 if (new_rtx)
1523 {
1524 start_sequence ();
1525
1526 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1527 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1528 GEN_INT (-offset));
1529 x = force_operand (x, new_rtx);
1530 if (x != new_rtx)
1531 emit_move_insn (new_rtx, x);
1532
1533 seq = get_insns ();
1534 end_sequence ();
1535
1536 emit_insn_before (seq, insn);
1537 delete_insn (insn);
1538 return;
1539 }
1540
1541 /* Handle a straight copy from a virtual register by generating a
1542 new add insn. The difference between this and falling through
1543 to the generic case is avoiding a new pseudo and eliminating a
1544 move insn in the initial rtl stream. */
1545 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1546 if (new_rtx && offset != 0
1547 && REG_P (SET_DEST (set))
1548 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1549 {
1550 start_sequence ();
1551
1552 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1553 new_rtx, GEN_INT (offset), SET_DEST (set),
1554 1, OPTAB_LIB_WIDEN);
1555 if (x != SET_DEST (set))
1556 emit_move_insn (SET_DEST (set), x);
1557
1558 seq = get_insns ();
1559 end_sequence ();
1560
1561 emit_insn_before (seq, insn);
1562 delete_insn (insn);
1563 return;
1564 }
1565
1566 extract_insn (insn);
1567 insn_code = INSN_CODE (insn);
1568
1569 /* Handle a plus involving a virtual register by determining if the
1570 operands remain valid if they're modified in place. */
1571 if (GET_CODE (SET_SRC (set)) == PLUS
1572 && recog_data.n_operands >= 3
1573 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1574 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1575 && CONST_INT_P (recog_data.operand[2])
1576 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1577 {
1578 offset += INTVAL (recog_data.operand[2]);
1579
1580 /* If the sum is zero, then replace with a plain move. */
1581 if (offset == 0
1582 && REG_P (SET_DEST (set))
1583 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1584 {
1585 start_sequence ();
1586 emit_move_insn (SET_DEST (set), new_rtx);
1587 seq = get_insns ();
1588 end_sequence ();
1589
1590 emit_insn_before (seq, insn);
1591 delete_insn (insn);
1592 return;
1593 }
1594
1595 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1596
1597 /* Using validate_change and apply_change_group here leaves
1598 recog_data in an invalid state. Since we know exactly what
1599 we want to check, do those two by hand. */
1600 if (safe_insn_predicate (insn_code, 1, new_rtx)
1601 && safe_insn_predicate (insn_code, 2, x))
1602 {
1603 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1604 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1605 any_change = true;
1606
1607 /* Fall through into the regular operand fixup loop in
1608 order to take care of operands other than 1 and 2. */
1609 }
1610 }
1611 }
1612 else
1613 {
1614 extract_insn (insn);
1615 insn_code = INSN_CODE (insn);
1616 }
1617
1618 /* In the general case, we expect virtual registers to appear only in
1619 operands, and then only as either bare registers or inside memories. */
1620 for (i = 0; i < recog_data.n_operands; ++i)
1621 {
1622 x = recog_data.operand[i];
1623 switch (GET_CODE (x))
1624 {
1625 case MEM:
1626 {
1627 rtx addr = XEXP (x, 0);
1628 bool changed = false;
1629
1630 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1631 if (!changed)
1632 continue;
1633
1634 start_sequence ();
1635 x = replace_equiv_address (x, addr);
1636 /* It may happen that the address with the virtual reg
1637 was valid (e.g. based on the virtual stack reg, which might
1638 be acceptable to the predicates with all offsets), whereas
1639 the address now isn't anymore, for instance when the address
1640 is still offsetted, but the base reg isn't virtual-stack-reg
1641 anymore. Below we would do a force_reg on the whole operand,
1642 but this insn might actually only accept memory. Hence,
1643 before doing that last resort, try to reload the address into
1644 a register, so this operand stays a MEM. */
1645 if (!safe_insn_predicate (insn_code, i, x))
1646 {
1647 addr = force_reg (GET_MODE (addr), addr);
1648 x = replace_equiv_address (x, addr);
1649 }
1650 seq = get_insns ();
1651 end_sequence ();
1652 if (seq)
1653 emit_insn_before (seq, insn);
1654 }
1655 break;
1656
1657 case REG:
1658 new_rtx = instantiate_new_reg (x, &offset);
1659 if (new_rtx == NULL)
1660 continue;
1661 if (offset == 0)
1662 x = new_rtx;
1663 else
1664 {
1665 start_sequence ();
1666
1667 /* Careful, special mode predicates may have stuff in
1668 insn_data[insn_code].operand[i].mode that isn't useful
1669 to us for computing a new value. */
1670 /* ??? Recognize address_operand and/or "p" constraints
1671 to see if (plus new offset) is a valid before we put
1672 this through expand_simple_binop. */
1673 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1674 GEN_INT (offset), NULL_RTX,
1675 1, OPTAB_LIB_WIDEN);
1676 seq = get_insns ();
1677 end_sequence ();
1678 emit_insn_before (seq, insn);
1679 }
1680 break;
1681
1682 case SUBREG:
1683 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1684 if (new_rtx == NULL)
1685 continue;
1686 if (offset != 0)
1687 {
1688 start_sequence ();
1689 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1690 GEN_INT (offset), NULL_RTX,
1691 1, OPTAB_LIB_WIDEN);
1692 seq = get_insns ();
1693 end_sequence ();
1694 emit_insn_before (seq, insn);
1695 }
1696 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1697 GET_MODE (new_rtx), SUBREG_BYTE (x));
1698 gcc_assert (x);
1699 break;
1700
1701 default:
1702 continue;
1703 }
1704
1705 /* At this point, X contains the new value for the operand.
1706 Validate the new value vs the insn predicate. Note that
1707 asm insns will have insn_code -1 here. */
1708 if (!safe_insn_predicate (insn_code, i, x))
1709 {
1710 start_sequence ();
1711 if (REG_P (x))
1712 {
1713 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1714 x = copy_to_reg (x);
1715 }
1716 else
1717 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1718 seq = get_insns ();
1719 end_sequence ();
1720 if (seq)
1721 emit_insn_before (seq, insn);
1722 }
1723
1724 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1725 any_change = true;
1726 }
1727
1728 if (any_change)
1729 {
1730 /* Propagate operand changes into the duplicates. */
1731 for (i = 0; i < recog_data.n_dups; ++i)
1732 *recog_data.dup_loc[i]
1733 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1734
1735 /* Force re-recognition of the instruction for validation. */
1736 INSN_CODE (insn) = -1;
1737 }
1738
1739 if (asm_noperands (PATTERN (insn)) >= 0)
1740 {
1741 if (!check_asm_operands (PATTERN (insn)))
1742 {
1743 error_for_asm (insn, "impossible constraint in %<asm%>");
1744 delete_insn_and_edges (insn);
1745 }
1746 }
1747 else
1748 {
1749 if (recog_memoized (insn) < 0)
1750 fatal_insn_not_found (insn);
1751 }
1752 }
1753
1754 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1755 do any instantiation required. */
1756
1757 void
1758 instantiate_decl_rtl (rtx x)
1759 {
1760 rtx addr;
1761
1762 if (x == 0)
1763 return;
1764
1765 /* If this is a CONCAT, recurse for the pieces. */
1766 if (GET_CODE (x) == CONCAT)
1767 {
1768 instantiate_decl_rtl (XEXP (x, 0));
1769 instantiate_decl_rtl (XEXP (x, 1));
1770 return;
1771 }
1772
1773 /* If this is not a MEM, no need to do anything. Similarly if the
1774 address is a constant or a register that is not a virtual register. */
1775 if (!MEM_P (x))
1776 return;
1777
1778 addr = XEXP (x, 0);
1779 if (CONSTANT_P (addr)
1780 || (REG_P (addr)
1781 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1782 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1783 return;
1784
1785 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1786 }
1787
1788 /* Helper for instantiate_decls called via walk_tree: Process all decls
1789 in the given DECL_VALUE_EXPR. */
1790
1791 static tree
1792 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1793 {
1794 tree t = *tp;
1795 if (! EXPR_P (t))
1796 {
1797 *walk_subtrees = 0;
1798 if (DECL_P (t))
1799 {
1800 if (DECL_RTL_SET_P (t))
1801 instantiate_decl_rtl (DECL_RTL (t));
1802 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1803 && DECL_INCOMING_RTL (t))
1804 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1805 if ((TREE_CODE (t) == VAR_DECL
1806 || TREE_CODE (t) == RESULT_DECL)
1807 && DECL_HAS_VALUE_EXPR_P (t))
1808 {
1809 tree v = DECL_VALUE_EXPR (t);
1810 walk_tree (&v, instantiate_expr, NULL, NULL);
1811 }
1812 }
1813 }
1814 return NULL;
1815 }
1816
1817 /* Subroutine of instantiate_decls: Process all decls in the given
1818 BLOCK node and all its subblocks. */
1819
1820 static void
1821 instantiate_decls_1 (tree let)
1822 {
1823 tree t;
1824
1825 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1826 {
1827 if (DECL_RTL_SET_P (t))
1828 instantiate_decl_rtl (DECL_RTL (t));
1829 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1830 {
1831 tree v = DECL_VALUE_EXPR (t);
1832 walk_tree (&v, instantiate_expr, NULL, NULL);
1833 }
1834 }
1835
1836 /* Process all subblocks. */
1837 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1838 instantiate_decls_1 (t);
1839 }
1840
1841 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1842 all virtual registers in their DECL_RTL's. */
1843
1844 static void
1845 instantiate_decls (tree fndecl)
1846 {
1847 tree decl;
1848 unsigned ix;
1849
1850 /* Process all parameters of the function. */
1851 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1852 {
1853 instantiate_decl_rtl (DECL_RTL (decl));
1854 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1855 if (DECL_HAS_VALUE_EXPR_P (decl))
1856 {
1857 tree v = DECL_VALUE_EXPR (decl);
1858 walk_tree (&v, instantiate_expr, NULL, NULL);
1859 }
1860 }
1861
1862 if ((decl = DECL_RESULT (fndecl))
1863 && TREE_CODE (decl) == RESULT_DECL)
1864 {
1865 if (DECL_RTL_SET_P (decl))
1866 instantiate_decl_rtl (DECL_RTL (decl));
1867 if (DECL_HAS_VALUE_EXPR_P (decl))
1868 {
1869 tree v = DECL_VALUE_EXPR (decl);
1870 walk_tree (&v, instantiate_expr, NULL, NULL);
1871 }
1872 }
1873
1874 /* Now process all variables defined in the function or its subblocks. */
1875 instantiate_decls_1 (DECL_INITIAL (fndecl));
1876
1877 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1878 if (DECL_RTL_SET_P (decl))
1879 instantiate_decl_rtl (DECL_RTL (decl));
1880 VEC_free (tree, gc, cfun->local_decls);
1881 }
1882
1883 /* Pass through the INSNS of function FNDECL and convert virtual register
1884 references to hard register references. */
1885
1886 static unsigned int
1887 instantiate_virtual_regs (void)
1888 {
1889 rtx insn;
1890
1891 /* Compute the offsets to use for this function. */
1892 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1893 var_offset = STARTING_FRAME_OFFSET;
1894 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1895 out_arg_offset = STACK_POINTER_OFFSET;
1896 #ifdef FRAME_POINTER_CFA_OFFSET
1897 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1898 #else
1899 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1900 #endif
1901
1902 /* Initialize recognition, indicating that volatile is OK. */
1903 init_recog ();
1904
1905 /* Scan through all the insns, instantiating every virtual register still
1906 present. */
1907 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1908 if (INSN_P (insn))
1909 {
1910 /* These patterns in the instruction stream can never be recognized.
1911 Fortunately, they shouldn't contain virtual registers either. */
1912 if (GET_CODE (PATTERN (insn)) == USE
1913 || GET_CODE (PATTERN (insn)) == CLOBBER
1914 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1915 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1916 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1917 continue;
1918 else if (DEBUG_INSN_P (insn))
1919 for_each_rtx (&INSN_VAR_LOCATION (insn),
1920 instantiate_virtual_regs_in_rtx, NULL);
1921 else
1922 instantiate_virtual_regs_in_insn (insn);
1923
1924 if (INSN_DELETED_P (insn))
1925 continue;
1926
1927 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1928
1929 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1930 if (CALL_P (insn))
1931 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1932 instantiate_virtual_regs_in_rtx, NULL);
1933 }
1934
1935 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1936 instantiate_decls (current_function_decl);
1937
1938 targetm.instantiate_decls ();
1939
1940 /* Indicate that, from now on, assign_stack_local should use
1941 frame_pointer_rtx. */
1942 virtuals_instantiated = 1;
1943
1944 return 0;
1945 }
1946
1947 struct rtl_opt_pass pass_instantiate_virtual_regs =
1948 {
1949 {
1950 RTL_PASS,
1951 "vregs", /* name */
1952 OPTGROUP_NONE, /* optinfo_flags */
1953 NULL, /* gate */
1954 instantiate_virtual_regs, /* execute */
1955 NULL, /* sub */
1956 NULL, /* next */
1957 0, /* static_pass_number */
1958 TV_NONE, /* tv_id */
1959 0, /* properties_required */
1960 0, /* properties_provided */
1961 0, /* properties_destroyed */
1962 0, /* todo_flags_start */
1963 0 /* todo_flags_finish */
1964 }
1965 };
1966
1967 \f
1968 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1969 This means a type for which function calls must pass an address to the
1970 function or get an address back from the function.
1971 EXP may be a type node or an expression (whose type is tested). */
1972
1973 int
1974 aggregate_value_p (const_tree exp, const_tree fntype)
1975 {
1976 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1977 int i, regno, nregs;
1978 rtx reg;
1979
1980 if (fntype)
1981 switch (TREE_CODE (fntype))
1982 {
1983 case CALL_EXPR:
1984 {
1985 tree fndecl = get_callee_fndecl (fntype);
1986 fntype = (fndecl
1987 ? TREE_TYPE (fndecl)
1988 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1989 }
1990 break;
1991 case FUNCTION_DECL:
1992 fntype = TREE_TYPE (fntype);
1993 break;
1994 case FUNCTION_TYPE:
1995 case METHOD_TYPE:
1996 break;
1997 case IDENTIFIER_NODE:
1998 fntype = NULL_TREE;
1999 break;
2000 default:
2001 /* We don't expect other tree types here. */
2002 gcc_unreachable ();
2003 }
2004
2005 if (VOID_TYPE_P (type))
2006 return 0;
2007
2008 /* If a record should be passed the same as its first (and only) member
2009 don't pass it as an aggregate. */
2010 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2011 return aggregate_value_p (first_field (type), fntype);
2012
2013 /* If the front end has decided that this needs to be passed by
2014 reference, do so. */
2015 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2016 && DECL_BY_REFERENCE (exp))
2017 return 1;
2018
2019 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2020 if (fntype && TREE_ADDRESSABLE (fntype))
2021 return 1;
2022
2023 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2024 and thus can't be returned in registers. */
2025 if (TREE_ADDRESSABLE (type))
2026 return 1;
2027
2028 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2029 return 1;
2030
2031 if (targetm.calls.return_in_memory (type, fntype))
2032 return 1;
2033
2034 /* Make sure we have suitable call-clobbered regs to return
2035 the value in; if not, we must return it in memory. */
2036 reg = hard_function_value (type, 0, fntype, 0);
2037
2038 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2039 it is OK. */
2040 if (!REG_P (reg))
2041 return 0;
2042
2043 regno = REGNO (reg);
2044 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2045 for (i = 0; i < nregs; i++)
2046 if (! call_used_regs[regno + i])
2047 return 1;
2048
2049 return 0;
2050 }
2051 \f
2052 /* Return true if we should assign DECL a pseudo register; false if it
2053 should live on the local stack. */
2054
2055 bool
2056 use_register_for_decl (const_tree decl)
2057 {
2058 if (!targetm.calls.allocate_stack_slots_for_args())
2059 return true;
2060
2061 /* Honor volatile. */
2062 if (TREE_SIDE_EFFECTS (decl))
2063 return false;
2064
2065 /* Honor addressability. */
2066 if (TREE_ADDRESSABLE (decl))
2067 return false;
2068
2069 /* Only register-like things go in registers. */
2070 if (DECL_MODE (decl) == BLKmode)
2071 return false;
2072
2073 /* If -ffloat-store specified, don't put explicit float variables
2074 into registers. */
2075 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2076 propagates values across these stores, and it probably shouldn't. */
2077 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2078 return false;
2079
2080 /* If we're not interested in tracking debugging information for
2081 this decl, then we can certainly put it in a register. */
2082 if (DECL_IGNORED_P (decl))
2083 return true;
2084
2085 if (optimize)
2086 return true;
2087
2088 if (!DECL_REGISTER (decl))
2089 return false;
2090
2091 switch (TREE_CODE (TREE_TYPE (decl)))
2092 {
2093 case RECORD_TYPE:
2094 case UNION_TYPE:
2095 case QUAL_UNION_TYPE:
2096 /* When not optimizing, disregard register keyword for variables with
2097 types containing methods, otherwise the methods won't be callable
2098 from the debugger. */
2099 if (TYPE_METHODS (TREE_TYPE (decl)))
2100 return false;
2101 break;
2102 default:
2103 break;
2104 }
2105
2106 return true;
2107 }
2108
2109 /* Return true if TYPE should be passed by invisible reference. */
2110
2111 bool
2112 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2113 tree type, bool named_arg)
2114 {
2115 if (type)
2116 {
2117 /* If this type contains non-trivial constructors, then it is
2118 forbidden for the middle-end to create any new copies. */
2119 if (TREE_ADDRESSABLE (type))
2120 return true;
2121
2122 /* GCC post 3.4 passes *all* variable sized types by reference. */
2123 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2124 return true;
2125
2126 /* If a record type should be passed the same as its first (and only)
2127 member, use the type and mode of that member. */
2128 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2129 {
2130 type = TREE_TYPE (first_field (type));
2131 mode = TYPE_MODE (type);
2132 }
2133 }
2134
2135 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2136 type, named_arg);
2137 }
2138
2139 /* Return true if TYPE, which is passed by reference, should be callee
2140 copied instead of caller copied. */
2141
2142 bool
2143 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2144 tree type, bool named_arg)
2145 {
2146 if (type && TREE_ADDRESSABLE (type))
2147 return false;
2148 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2149 named_arg);
2150 }
2151
2152 /* Structures to communicate between the subroutines of assign_parms.
2153 The first holds data persistent across all parameters, the second
2154 is cleared out for each parameter. */
2155
2156 struct assign_parm_data_all
2157 {
2158 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2159 should become a job of the target or otherwise encapsulated. */
2160 CUMULATIVE_ARGS args_so_far_v;
2161 cumulative_args_t args_so_far;
2162 struct args_size stack_args_size;
2163 tree function_result_decl;
2164 tree orig_fnargs;
2165 rtx first_conversion_insn;
2166 rtx last_conversion_insn;
2167 HOST_WIDE_INT pretend_args_size;
2168 HOST_WIDE_INT extra_pretend_bytes;
2169 int reg_parm_stack_space;
2170 };
2171
2172 struct assign_parm_data_one
2173 {
2174 tree nominal_type;
2175 tree passed_type;
2176 rtx entry_parm;
2177 rtx stack_parm;
2178 enum machine_mode nominal_mode;
2179 enum machine_mode passed_mode;
2180 enum machine_mode promoted_mode;
2181 struct locate_and_pad_arg_data locate;
2182 int partial;
2183 BOOL_BITFIELD named_arg : 1;
2184 BOOL_BITFIELD passed_pointer : 1;
2185 BOOL_BITFIELD on_stack : 1;
2186 BOOL_BITFIELD loaded_in_reg : 1;
2187 };
2188
2189 /* A subroutine of assign_parms. Initialize ALL. */
2190
2191 static void
2192 assign_parms_initialize_all (struct assign_parm_data_all *all)
2193 {
2194 tree fntype ATTRIBUTE_UNUSED;
2195
2196 memset (all, 0, sizeof (*all));
2197
2198 fntype = TREE_TYPE (current_function_decl);
2199
2200 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2201 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2202 #else
2203 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2204 current_function_decl, -1);
2205 #endif
2206 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2207
2208 #ifdef REG_PARM_STACK_SPACE
2209 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2210 #endif
2211 }
2212
2213 /* If ARGS contains entries with complex types, split the entry into two
2214 entries of the component type. Return a new list of substitutions are
2215 needed, else the old list. */
2216
2217 static void
2218 split_complex_args (VEC(tree, heap) **args)
2219 {
2220 unsigned i;
2221 tree p;
2222
2223 FOR_EACH_VEC_ELT (tree, *args, i, p)
2224 {
2225 tree type = TREE_TYPE (p);
2226 if (TREE_CODE (type) == COMPLEX_TYPE
2227 && targetm.calls.split_complex_arg (type))
2228 {
2229 tree decl;
2230 tree subtype = TREE_TYPE (type);
2231 bool addressable = TREE_ADDRESSABLE (p);
2232
2233 /* Rewrite the PARM_DECL's type with its component. */
2234 p = copy_node (p);
2235 TREE_TYPE (p) = subtype;
2236 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2237 DECL_MODE (p) = VOIDmode;
2238 DECL_SIZE (p) = NULL;
2239 DECL_SIZE_UNIT (p) = NULL;
2240 /* If this arg must go in memory, put it in a pseudo here.
2241 We can't allow it to go in memory as per normal parms,
2242 because the usual place might not have the imag part
2243 adjacent to the real part. */
2244 DECL_ARTIFICIAL (p) = addressable;
2245 DECL_IGNORED_P (p) = addressable;
2246 TREE_ADDRESSABLE (p) = 0;
2247 layout_decl (p, 0);
2248 VEC_replace (tree, *args, i, p);
2249
2250 /* Build a second synthetic decl. */
2251 decl = build_decl (EXPR_LOCATION (p),
2252 PARM_DECL, NULL_TREE, subtype);
2253 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2254 DECL_ARTIFICIAL (decl) = addressable;
2255 DECL_IGNORED_P (decl) = addressable;
2256 layout_decl (decl, 0);
2257 VEC_safe_insert (tree, heap, *args, ++i, decl);
2258 }
2259 }
2260 }
2261
2262 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2263 the hidden struct return argument, and (abi willing) complex args.
2264 Return the new parameter list. */
2265
2266 static VEC(tree, heap) *
2267 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2268 {
2269 tree fndecl = current_function_decl;
2270 tree fntype = TREE_TYPE (fndecl);
2271 VEC(tree, heap) *fnargs = NULL;
2272 tree arg;
2273
2274 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2275 VEC_safe_push (tree, heap, fnargs, arg);
2276
2277 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2278
2279 /* If struct value address is treated as the first argument, make it so. */
2280 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2281 && ! cfun->returns_pcc_struct
2282 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2283 {
2284 tree type = build_pointer_type (TREE_TYPE (fntype));
2285 tree decl;
2286
2287 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2288 PARM_DECL, get_identifier (".result_ptr"), type);
2289 DECL_ARG_TYPE (decl) = type;
2290 DECL_ARTIFICIAL (decl) = 1;
2291 DECL_NAMELESS (decl) = 1;
2292 TREE_CONSTANT (decl) = 1;
2293
2294 DECL_CHAIN (decl) = all->orig_fnargs;
2295 all->orig_fnargs = decl;
2296 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2297
2298 all->function_result_decl = decl;
2299 }
2300
2301 /* If the target wants to split complex arguments into scalars, do so. */
2302 if (targetm.calls.split_complex_arg)
2303 split_complex_args (&fnargs);
2304
2305 return fnargs;
2306 }
2307
2308 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2309 data for the parameter. Incorporate ABI specifics such as pass-by-
2310 reference and type promotion. */
2311
2312 static void
2313 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2314 struct assign_parm_data_one *data)
2315 {
2316 tree nominal_type, passed_type;
2317 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2318 int unsignedp;
2319
2320 memset (data, 0, sizeof (*data));
2321
2322 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2323 if (!cfun->stdarg)
2324 data->named_arg = 1; /* No variadic parms. */
2325 else if (DECL_CHAIN (parm))
2326 data->named_arg = 1; /* Not the last non-variadic parm. */
2327 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2328 data->named_arg = 1; /* Only variadic ones are unnamed. */
2329 else
2330 data->named_arg = 0; /* Treat as variadic. */
2331
2332 nominal_type = TREE_TYPE (parm);
2333 passed_type = DECL_ARG_TYPE (parm);
2334
2335 /* Look out for errors propagating this far. Also, if the parameter's
2336 type is void then its value doesn't matter. */
2337 if (TREE_TYPE (parm) == error_mark_node
2338 /* This can happen after weird syntax errors
2339 or if an enum type is defined among the parms. */
2340 || TREE_CODE (parm) != PARM_DECL
2341 || passed_type == NULL
2342 || VOID_TYPE_P (nominal_type))
2343 {
2344 nominal_type = passed_type = void_type_node;
2345 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2346 goto egress;
2347 }
2348
2349 /* Find mode of arg as it is passed, and mode of arg as it should be
2350 during execution of this function. */
2351 passed_mode = TYPE_MODE (passed_type);
2352 nominal_mode = TYPE_MODE (nominal_type);
2353
2354 /* If the parm is to be passed as a transparent union or record, use the
2355 type of the first field for the tests below. We have already verified
2356 that the modes are the same. */
2357 if ((TREE_CODE (passed_type) == UNION_TYPE
2358 || TREE_CODE (passed_type) == RECORD_TYPE)
2359 && TYPE_TRANSPARENT_AGGR (passed_type))
2360 passed_type = TREE_TYPE (first_field (passed_type));
2361
2362 /* See if this arg was passed by invisible reference. */
2363 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2364 passed_type, data->named_arg))
2365 {
2366 passed_type = nominal_type = build_pointer_type (passed_type);
2367 data->passed_pointer = true;
2368 passed_mode = nominal_mode = Pmode;
2369 }
2370
2371 /* Find mode as it is passed by the ABI. */
2372 unsignedp = TYPE_UNSIGNED (passed_type);
2373 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2374 TREE_TYPE (current_function_decl), 0);
2375
2376 egress:
2377 data->nominal_type = nominal_type;
2378 data->passed_type = passed_type;
2379 data->nominal_mode = nominal_mode;
2380 data->passed_mode = passed_mode;
2381 data->promoted_mode = promoted_mode;
2382 }
2383
2384 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2385
2386 static void
2387 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2388 struct assign_parm_data_one *data, bool no_rtl)
2389 {
2390 int varargs_pretend_bytes = 0;
2391
2392 targetm.calls.setup_incoming_varargs (all->args_so_far,
2393 data->promoted_mode,
2394 data->passed_type,
2395 &varargs_pretend_bytes, no_rtl);
2396
2397 /* If the back-end has requested extra stack space, record how much is
2398 needed. Do not change pretend_args_size otherwise since it may be
2399 nonzero from an earlier partial argument. */
2400 if (varargs_pretend_bytes > 0)
2401 all->pretend_args_size = varargs_pretend_bytes;
2402 }
2403
2404 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2405 the incoming location of the current parameter. */
2406
2407 static void
2408 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2409 struct assign_parm_data_one *data)
2410 {
2411 HOST_WIDE_INT pretend_bytes = 0;
2412 rtx entry_parm;
2413 bool in_regs;
2414
2415 if (data->promoted_mode == VOIDmode)
2416 {
2417 data->entry_parm = data->stack_parm = const0_rtx;
2418 return;
2419 }
2420
2421 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2422 data->promoted_mode,
2423 data->passed_type,
2424 data->named_arg);
2425
2426 if (entry_parm == 0)
2427 data->promoted_mode = data->passed_mode;
2428
2429 /* Determine parm's home in the stack, in case it arrives in the stack
2430 or we should pretend it did. Compute the stack position and rtx where
2431 the argument arrives and its size.
2432
2433 There is one complexity here: If this was a parameter that would
2434 have been passed in registers, but wasn't only because it is
2435 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2436 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2437 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2438 as it was the previous time. */
2439 in_regs = entry_parm != 0;
2440 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2441 in_regs = true;
2442 #endif
2443 if (!in_regs && !data->named_arg)
2444 {
2445 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2446 {
2447 rtx tem;
2448 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2449 data->promoted_mode,
2450 data->passed_type, true);
2451 in_regs = tem != NULL;
2452 }
2453 }
2454
2455 /* If this parameter was passed both in registers and in the stack, use
2456 the copy on the stack. */
2457 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2458 data->passed_type))
2459 entry_parm = 0;
2460
2461 if (entry_parm)
2462 {
2463 int partial;
2464
2465 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2466 data->promoted_mode,
2467 data->passed_type,
2468 data->named_arg);
2469 data->partial = partial;
2470
2471 /* The caller might already have allocated stack space for the
2472 register parameters. */
2473 if (partial != 0 && all->reg_parm_stack_space == 0)
2474 {
2475 /* Part of this argument is passed in registers and part
2476 is passed on the stack. Ask the prologue code to extend
2477 the stack part so that we can recreate the full value.
2478
2479 PRETEND_BYTES is the size of the registers we need to store.
2480 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2481 stack space that the prologue should allocate.
2482
2483 Internally, gcc assumes that the argument pointer is aligned
2484 to STACK_BOUNDARY bits. This is used both for alignment
2485 optimizations (see init_emit) and to locate arguments that are
2486 aligned to more than PARM_BOUNDARY bits. We must preserve this
2487 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2488 a stack boundary. */
2489
2490 /* We assume at most one partial arg, and it must be the first
2491 argument on the stack. */
2492 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2493
2494 pretend_bytes = partial;
2495 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2496
2497 /* We want to align relative to the actual stack pointer, so
2498 don't include this in the stack size until later. */
2499 all->extra_pretend_bytes = all->pretend_args_size;
2500 }
2501 }
2502
2503 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2504 entry_parm ? data->partial : 0, current_function_decl,
2505 &all->stack_args_size, &data->locate);
2506
2507 /* Update parm_stack_boundary if this parameter is passed in the
2508 stack. */
2509 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2510 crtl->parm_stack_boundary = data->locate.boundary;
2511
2512 /* Adjust offsets to include the pretend args. */
2513 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2514 data->locate.slot_offset.constant += pretend_bytes;
2515 data->locate.offset.constant += pretend_bytes;
2516
2517 data->entry_parm = entry_parm;
2518 }
2519
2520 /* A subroutine of assign_parms. If there is actually space on the stack
2521 for this parm, count it in stack_args_size and return true. */
2522
2523 static bool
2524 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2525 struct assign_parm_data_one *data)
2526 {
2527 /* Trivially true if we've no incoming register. */
2528 if (data->entry_parm == NULL)
2529 ;
2530 /* Also true if we're partially in registers and partially not,
2531 since we've arranged to drop the entire argument on the stack. */
2532 else if (data->partial != 0)
2533 ;
2534 /* Also true if the target says that it's passed in both registers
2535 and on the stack. */
2536 else if (GET_CODE (data->entry_parm) == PARALLEL
2537 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2538 ;
2539 /* Also true if the target says that there's stack allocated for
2540 all register parameters. */
2541 else if (all->reg_parm_stack_space > 0)
2542 ;
2543 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2544 else
2545 return false;
2546
2547 all->stack_args_size.constant += data->locate.size.constant;
2548 if (data->locate.size.var)
2549 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2550
2551 return true;
2552 }
2553
2554 /* A subroutine of assign_parms. Given that this parameter is allocated
2555 stack space by the ABI, find it. */
2556
2557 static void
2558 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2559 {
2560 rtx offset_rtx, stack_parm;
2561 unsigned int align, boundary;
2562
2563 /* If we're passing this arg using a reg, make its stack home the
2564 aligned stack slot. */
2565 if (data->entry_parm)
2566 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2567 else
2568 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2569
2570 stack_parm = crtl->args.internal_arg_pointer;
2571 if (offset_rtx != const0_rtx)
2572 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2573 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2574
2575 if (!data->passed_pointer)
2576 {
2577 set_mem_attributes (stack_parm, parm, 1);
2578 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2579 while promoted mode's size is needed. */
2580 if (data->promoted_mode != BLKmode
2581 && data->promoted_mode != DECL_MODE (parm))
2582 {
2583 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2584 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2585 {
2586 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2587 data->promoted_mode);
2588 if (offset)
2589 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2590 }
2591 }
2592 }
2593
2594 boundary = data->locate.boundary;
2595 align = BITS_PER_UNIT;
2596
2597 /* If we're padding upward, we know that the alignment of the slot
2598 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2599 intentionally forcing upward padding. Otherwise we have to come
2600 up with a guess at the alignment based on OFFSET_RTX. */
2601 if (data->locate.where_pad != downward || data->entry_parm)
2602 align = boundary;
2603 else if (CONST_INT_P (offset_rtx))
2604 {
2605 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2606 align = align & -align;
2607 }
2608 set_mem_align (stack_parm, align);
2609
2610 if (data->entry_parm)
2611 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2612
2613 data->stack_parm = stack_parm;
2614 }
2615
2616 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2617 always valid and contiguous. */
2618
2619 static void
2620 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2621 {
2622 rtx entry_parm = data->entry_parm;
2623 rtx stack_parm = data->stack_parm;
2624
2625 /* If this parm was passed part in regs and part in memory, pretend it
2626 arrived entirely in memory by pushing the register-part onto the stack.
2627 In the special case of a DImode or DFmode that is split, we could put
2628 it together in a pseudoreg directly, but for now that's not worth
2629 bothering with. */
2630 if (data->partial != 0)
2631 {
2632 /* Handle calls that pass values in multiple non-contiguous
2633 locations. The Irix 6 ABI has examples of this. */
2634 if (GET_CODE (entry_parm) == PARALLEL)
2635 emit_group_store (validize_mem (stack_parm), entry_parm,
2636 data->passed_type,
2637 int_size_in_bytes (data->passed_type));
2638 else
2639 {
2640 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2641 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2642 data->partial / UNITS_PER_WORD);
2643 }
2644
2645 entry_parm = stack_parm;
2646 }
2647
2648 /* If we didn't decide this parm came in a register, by default it came
2649 on the stack. */
2650 else if (entry_parm == NULL)
2651 entry_parm = stack_parm;
2652
2653 /* When an argument is passed in multiple locations, we can't make use
2654 of this information, but we can save some copying if the whole argument
2655 is passed in a single register. */
2656 else if (GET_CODE (entry_parm) == PARALLEL
2657 && data->nominal_mode != BLKmode
2658 && data->passed_mode != BLKmode)
2659 {
2660 size_t i, len = XVECLEN (entry_parm, 0);
2661
2662 for (i = 0; i < len; i++)
2663 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2664 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2665 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2666 == data->passed_mode)
2667 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2668 {
2669 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2670 break;
2671 }
2672 }
2673
2674 data->entry_parm = entry_parm;
2675 }
2676
2677 /* A subroutine of assign_parms. Reconstitute any values which were
2678 passed in multiple registers and would fit in a single register. */
2679
2680 static void
2681 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2682 {
2683 rtx entry_parm = data->entry_parm;
2684
2685 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2686 This can be done with register operations rather than on the
2687 stack, even if we will store the reconstituted parameter on the
2688 stack later. */
2689 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2690 {
2691 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2692 emit_group_store (parmreg, entry_parm, data->passed_type,
2693 GET_MODE_SIZE (GET_MODE (entry_parm)));
2694 entry_parm = parmreg;
2695 }
2696
2697 data->entry_parm = entry_parm;
2698 }
2699
2700 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2701 always valid and properly aligned. */
2702
2703 static void
2704 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2705 {
2706 rtx stack_parm = data->stack_parm;
2707
2708 /* If we can't trust the parm stack slot to be aligned enough for its
2709 ultimate type, don't use that slot after entry. We'll make another
2710 stack slot, if we need one. */
2711 if (stack_parm
2712 && ((STRICT_ALIGNMENT
2713 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2714 || (data->nominal_type
2715 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2716 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2717 stack_parm = NULL;
2718
2719 /* If parm was passed in memory, and we need to convert it on entry,
2720 don't store it back in that same slot. */
2721 else if (data->entry_parm == stack_parm
2722 && data->nominal_mode != BLKmode
2723 && data->nominal_mode != data->passed_mode)
2724 stack_parm = NULL;
2725
2726 /* If stack protection is in effect for this function, don't leave any
2727 pointers in their passed stack slots. */
2728 else if (crtl->stack_protect_guard
2729 && (flag_stack_protect == 2
2730 || data->passed_pointer
2731 || POINTER_TYPE_P (data->nominal_type)))
2732 stack_parm = NULL;
2733
2734 data->stack_parm = stack_parm;
2735 }
2736
2737 /* A subroutine of assign_parms. Return true if the current parameter
2738 should be stored as a BLKmode in the current frame. */
2739
2740 static bool
2741 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2742 {
2743 if (data->nominal_mode == BLKmode)
2744 return true;
2745 if (GET_MODE (data->entry_parm) == BLKmode)
2746 return true;
2747
2748 #ifdef BLOCK_REG_PADDING
2749 /* Only assign_parm_setup_block knows how to deal with register arguments
2750 that are padded at the least significant end. */
2751 if (REG_P (data->entry_parm)
2752 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2753 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2754 == (BYTES_BIG_ENDIAN ? upward : downward)))
2755 return true;
2756 #endif
2757
2758 return false;
2759 }
2760
2761 /* A subroutine of assign_parms. Arrange for the parameter to be
2762 present and valid in DATA->STACK_RTL. */
2763
2764 static void
2765 assign_parm_setup_block (struct assign_parm_data_all *all,
2766 tree parm, struct assign_parm_data_one *data)
2767 {
2768 rtx entry_parm = data->entry_parm;
2769 rtx stack_parm = data->stack_parm;
2770 HOST_WIDE_INT size;
2771 HOST_WIDE_INT size_stored;
2772
2773 if (GET_CODE (entry_parm) == PARALLEL)
2774 entry_parm = emit_group_move_into_temps (entry_parm);
2775
2776 size = int_size_in_bytes (data->passed_type);
2777 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2778 if (stack_parm == 0)
2779 {
2780 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2781 stack_parm = assign_stack_local (BLKmode, size_stored,
2782 DECL_ALIGN (parm));
2783 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2784 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2785 set_mem_attributes (stack_parm, parm, 1);
2786 }
2787
2788 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2789 calls that pass values in multiple non-contiguous locations. */
2790 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2791 {
2792 rtx mem;
2793
2794 /* Note that we will be storing an integral number of words.
2795 So we have to be careful to ensure that we allocate an
2796 integral number of words. We do this above when we call
2797 assign_stack_local if space was not allocated in the argument
2798 list. If it was, this will not work if PARM_BOUNDARY is not
2799 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2800 if it becomes a problem. Exception is when BLKmode arrives
2801 with arguments not conforming to word_mode. */
2802
2803 if (data->stack_parm == 0)
2804 ;
2805 else if (GET_CODE (entry_parm) == PARALLEL)
2806 ;
2807 else
2808 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2809
2810 mem = validize_mem (stack_parm);
2811
2812 /* Handle values in multiple non-contiguous locations. */
2813 if (GET_CODE (entry_parm) == PARALLEL)
2814 {
2815 push_to_sequence2 (all->first_conversion_insn,
2816 all->last_conversion_insn);
2817 emit_group_store (mem, entry_parm, data->passed_type, size);
2818 all->first_conversion_insn = get_insns ();
2819 all->last_conversion_insn = get_last_insn ();
2820 end_sequence ();
2821 }
2822
2823 else if (size == 0)
2824 ;
2825
2826 /* If SIZE is that of a mode no bigger than a word, just use
2827 that mode's store operation. */
2828 else if (size <= UNITS_PER_WORD)
2829 {
2830 enum machine_mode mode
2831 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2832
2833 if (mode != BLKmode
2834 #ifdef BLOCK_REG_PADDING
2835 && (size == UNITS_PER_WORD
2836 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2837 != (BYTES_BIG_ENDIAN ? upward : downward)))
2838 #endif
2839 )
2840 {
2841 rtx reg;
2842
2843 /* We are really truncating a word_mode value containing
2844 SIZE bytes into a value of mode MODE. If such an
2845 operation requires no actual instructions, we can refer
2846 to the value directly in mode MODE, otherwise we must
2847 start with the register in word_mode and explicitly
2848 convert it. */
2849 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2850 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2851 else
2852 {
2853 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2854 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2855 }
2856 emit_move_insn (change_address (mem, mode, 0), reg);
2857 }
2858
2859 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2860 machine must be aligned to the left before storing
2861 to memory. Note that the previous test doesn't
2862 handle all cases (e.g. SIZE == 3). */
2863 else if (size != UNITS_PER_WORD
2864 #ifdef BLOCK_REG_PADDING
2865 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2866 == downward)
2867 #else
2868 && BYTES_BIG_ENDIAN
2869 #endif
2870 )
2871 {
2872 rtx tem, x;
2873 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2874 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2875
2876 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2877 tem = change_address (mem, word_mode, 0);
2878 emit_move_insn (tem, x);
2879 }
2880 else
2881 move_block_from_reg (REGNO (entry_parm), mem,
2882 size_stored / UNITS_PER_WORD);
2883 }
2884 else
2885 move_block_from_reg (REGNO (entry_parm), mem,
2886 size_stored / UNITS_PER_WORD);
2887 }
2888 else if (data->stack_parm == 0)
2889 {
2890 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2891 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2892 BLOCK_OP_NORMAL);
2893 all->first_conversion_insn = get_insns ();
2894 all->last_conversion_insn = get_last_insn ();
2895 end_sequence ();
2896 }
2897
2898 data->stack_parm = stack_parm;
2899 SET_DECL_RTL (parm, stack_parm);
2900 }
2901
2902 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2903 parameter. Get it there. Perform all ABI specified conversions. */
2904
2905 static void
2906 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2907 struct assign_parm_data_one *data)
2908 {
2909 rtx parmreg, validated_mem;
2910 rtx equiv_stack_parm;
2911 enum machine_mode promoted_nominal_mode;
2912 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2913 bool did_conversion = false;
2914 bool need_conversion, moved;
2915
2916 /* Store the parm in a pseudoregister during the function, but we may
2917 need to do it in a wider mode. Using 2 here makes the result
2918 consistent with promote_decl_mode and thus expand_expr_real_1. */
2919 promoted_nominal_mode
2920 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2921 TREE_TYPE (current_function_decl), 2);
2922
2923 parmreg = gen_reg_rtx (promoted_nominal_mode);
2924
2925 if (!DECL_ARTIFICIAL (parm))
2926 mark_user_reg (parmreg);
2927
2928 /* If this was an item that we received a pointer to,
2929 set DECL_RTL appropriately. */
2930 if (data->passed_pointer)
2931 {
2932 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2933 set_mem_attributes (x, parm, 1);
2934 SET_DECL_RTL (parm, x);
2935 }
2936 else
2937 SET_DECL_RTL (parm, parmreg);
2938
2939 assign_parm_remove_parallels (data);
2940
2941 /* Copy the value into the register, thus bridging between
2942 assign_parm_find_data_types and expand_expr_real_1. */
2943
2944 equiv_stack_parm = data->stack_parm;
2945 validated_mem = validize_mem (data->entry_parm);
2946
2947 need_conversion = (data->nominal_mode != data->passed_mode
2948 || promoted_nominal_mode != data->promoted_mode);
2949 moved = false;
2950
2951 if (need_conversion
2952 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2953 && data->nominal_mode == data->passed_mode
2954 && data->nominal_mode == GET_MODE (data->entry_parm))
2955 {
2956 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2957 mode, by the caller. We now have to convert it to
2958 NOMINAL_MODE, if different. However, PARMREG may be in
2959 a different mode than NOMINAL_MODE if it is being stored
2960 promoted.
2961
2962 If ENTRY_PARM is a hard register, it might be in a register
2963 not valid for operating in its mode (e.g., an odd-numbered
2964 register for a DFmode). In that case, moves are the only
2965 thing valid, so we can't do a convert from there. This
2966 occurs when the calling sequence allow such misaligned
2967 usages.
2968
2969 In addition, the conversion may involve a call, which could
2970 clobber parameters which haven't been copied to pseudo
2971 registers yet.
2972
2973 First, we try to emit an insn which performs the necessary
2974 conversion. We verify that this insn does not clobber any
2975 hard registers. */
2976
2977 enum insn_code icode;
2978 rtx op0, op1;
2979
2980 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2981 unsignedp);
2982
2983 op0 = parmreg;
2984 op1 = validated_mem;
2985 if (icode != CODE_FOR_nothing
2986 && insn_operand_matches (icode, 0, op0)
2987 && insn_operand_matches (icode, 1, op1))
2988 {
2989 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2990 rtx insn, insns, t = op1;
2991 HARD_REG_SET hardregs;
2992
2993 start_sequence ();
2994 /* If op1 is a hard register that is likely spilled, first
2995 force it into a pseudo, otherwise combiner might extend
2996 its lifetime too much. */
2997 if (GET_CODE (t) == SUBREG)
2998 t = SUBREG_REG (t);
2999 if (REG_P (t)
3000 && HARD_REGISTER_P (t)
3001 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3002 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3003 {
3004 t = gen_reg_rtx (GET_MODE (op1));
3005 emit_move_insn (t, op1);
3006 }
3007 else
3008 t = op1;
3009 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3010 data->passed_mode, unsignedp);
3011 emit_insn (insn);
3012 insns = get_insns ();
3013
3014 moved = true;
3015 CLEAR_HARD_REG_SET (hardregs);
3016 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3017 {
3018 if (INSN_P (insn))
3019 note_stores (PATTERN (insn), record_hard_reg_sets,
3020 &hardregs);
3021 if (!hard_reg_set_empty_p (hardregs))
3022 moved = false;
3023 }
3024
3025 end_sequence ();
3026
3027 if (moved)
3028 {
3029 emit_insn (insns);
3030 if (equiv_stack_parm != NULL_RTX)
3031 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3032 equiv_stack_parm);
3033 }
3034 }
3035 }
3036
3037 if (moved)
3038 /* Nothing to do. */
3039 ;
3040 else if (need_conversion)
3041 {
3042 /* We did not have an insn to convert directly, or the sequence
3043 generated appeared unsafe. We must first copy the parm to a
3044 pseudo reg, and save the conversion until after all
3045 parameters have been moved. */
3046
3047 int save_tree_used;
3048 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3049
3050 emit_move_insn (tempreg, validated_mem);
3051
3052 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3053 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3054
3055 if (GET_CODE (tempreg) == SUBREG
3056 && GET_MODE (tempreg) == data->nominal_mode
3057 && REG_P (SUBREG_REG (tempreg))
3058 && data->nominal_mode == data->passed_mode
3059 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3060 && GET_MODE_SIZE (GET_MODE (tempreg))
3061 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3062 {
3063 /* The argument is already sign/zero extended, so note it
3064 into the subreg. */
3065 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3066 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3067 }
3068
3069 /* TREE_USED gets set erroneously during expand_assignment. */
3070 save_tree_used = TREE_USED (parm);
3071 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3072 TREE_USED (parm) = save_tree_used;
3073 all->first_conversion_insn = get_insns ();
3074 all->last_conversion_insn = get_last_insn ();
3075 end_sequence ();
3076
3077 did_conversion = true;
3078 }
3079 else
3080 emit_move_insn (parmreg, validated_mem);
3081
3082 /* If we were passed a pointer but the actual value can safely live
3083 in a register, put it in one. */
3084 if (data->passed_pointer
3085 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3086 /* If by-reference argument was promoted, demote it. */
3087 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3088 || use_register_for_decl (parm)))
3089 {
3090 /* We can't use nominal_mode, because it will have been set to
3091 Pmode above. We must use the actual mode of the parm. */
3092 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3093 mark_user_reg (parmreg);
3094
3095 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3096 {
3097 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3098 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3099
3100 push_to_sequence2 (all->first_conversion_insn,
3101 all->last_conversion_insn);
3102 emit_move_insn (tempreg, DECL_RTL (parm));
3103 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3104 emit_move_insn (parmreg, tempreg);
3105 all->first_conversion_insn = get_insns ();
3106 all->last_conversion_insn = get_last_insn ();
3107 end_sequence ();
3108
3109 did_conversion = true;
3110 }
3111 else
3112 emit_move_insn (parmreg, DECL_RTL (parm));
3113
3114 SET_DECL_RTL (parm, parmreg);
3115
3116 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3117 now the parm. */
3118 data->stack_parm = NULL;
3119 }
3120
3121 /* Mark the register as eliminable if we did no conversion and it was
3122 copied from memory at a fixed offset, and the arg pointer was not
3123 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3124 offset formed an invalid address, such memory-equivalences as we
3125 make here would screw up life analysis for it. */
3126 if (data->nominal_mode == data->passed_mode
3127 && !did_conversion
3128 && data->stack_parm != 0
3129 && MEM_P (data->stack_parm)
3130 && data->locate.offset.var == 0
3131 && reg_mentioned_p (virtual_incoming_args_rtx,
3132 XEXP (data->stack_parm, 0)))
3133 {
3134 rtx linsn = get_last_insn ();
3135 rtx sinsn, set;
3136
3137 /* Mark complex types separately. */
3138 if (GET_CODE (parmreg) == CONCAT)
3139 {
3140 enum machine_mode submode
3141 = GET_MODE_INNER (GET_MODE (parmreg));
3142 int regnor = REGNO (XEXP (parmreg, 0));
3143 int regnoi = REGNO (XEXP (parmreg, 1));
3144 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3145 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3146 GET_MODE_SIZE (submode));
3147
3148 /* Scan backwards for the set of the real and
3149 imaginary parts. */
3150 for (sinsn = linsn; sinsn != 0;
3151 sinsn = prev_nonnote_insn (sinsn))
3152 {
3153 set = single_set (sinsn);
3154 if (set == 0)
3155 continue;
3156
3157 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3158 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3159 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3160 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3161 }
3162 }
3163 else
3164 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3165 }
3166
3167 /* For pointer data type, suggest pointer register. */
3168 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3169 mark_reg_pointer (parmreg,
3170 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3171 }
3172
3173 /* A subroutine of assign_parms. Allocate stack space to hold the current
3174 parameter. Get it there. Perform all ABI specified conversions. */
3175
3176 static void
3177 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3178 struct assign_parm_data_one *data)
3179 {
3180 /* Value must be stored in the stack slot STACK_PARM during function
3181 execution. */
3182 bool to_conversion = false;
3183
3184 assign_parm_remove_parallels (data);
3185
3186 if (data->promoted_mode != data->nominal_mode)
3187 {
3188 /* Conversion is required. */
3189 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3190
3191 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3192
3193 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3194 to_conversion = true;
3195
3196 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3197 TYPE_UNSIGNED (TREE_TYPE (parm)));
3198
3199 if (data->stack_parm)
3200 {
3201 int offset = subreg_lowpart_offset (data->nominal_mode,
3202 GET_MODE (data->stack_parm));
3203 /* ??? This may need a big-endian conversion on sparc64. */
3204 data->stack_parm
3205 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3206 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3207 set_mem_offset (data->stack_parm,
3208 MEM_OFFSET (data->stack_parm) + offset);
3209 }
3210 }
3211
3212 if (data->entry_parm != data->stack_parm)
3213 {
3214 rtx src, dest;
3215
3216 if (data->stack_parm == 0)
3217 {
3218 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3219 GET_MODE (data->entry_parm),
3220 TYPE_ALIGN (data->passed_type));
3221 data->stack_parm
3222 = assign_stack_local (GET_MODE (data->entry_parm),
3223 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3224 align);
3225 set_mem_attributes (data->stack_parm, parm, 1);
3226 }
3227
3228 dest = validize_mem (data->stack_parm);
3229 src = validize_mem (data->entry_parm);
3230
3231 if (MEM_P (src))
3232 {
3233 /* Use a block move to handle potentially misaligned entry_parm. */
3234 if (!to_conversion)
3235 push_to_sequence2 (all->first_conversion_insn,
3236 all->last_conversion_insn);
3237 to_conversion = true;
3238
3239 emit_block_move (dest, src,
3240 GEN_INT (int_size_in_bytes (data->passed_type)),
3241 BLOCK_OP_NORMAL);
3242 }
3243 else
3244 emit_move_insn (dest, src);
3245 }
3246
3247 if (to_conversion)
3248 {
3249 all->first_conversion_insn = get_insns ();
3250 all->last_conversion_insn = get_last_insn ();
3251 end_sequence ();
3252 }
3253
3254 SET_DECL_RTL (parm, data->stack_parm);
3255 }
3256
3257 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3258 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3259
3260 static void
3261 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3262 VEC(tree, heap) *fnargs)
3263 {
3264 tree parm;
3265 tree orig_fnargs = all->orig_fnargs;
3266 unsigned i = 0;
3267
3268 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3269 {
3270 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3271 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3272 {
3273 rtx tmp, real, imag;
3274 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3275
3276 real = DECL_RTL (VEC_index (tree, fnargs, i));
3277 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3278 if (inner != GET_MODE (real))
3279 {
3280 real = gen_lowpart_SUBREG (inner, real);
3281 imag = gen_lowpart_SUBREG (inner, imag);
3282 }
3283
3284 if (TREE_ADDRESSABLE (parm))
3285 {
3286 rtx rmem, imem;
3287 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3288 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3289 DECL_MODE (parm),
3290 TYPE_ALIGN (TREE_TYPE (parm)));
3291
3292 /* split_complex_arg put the real and imag parts in
3293 pseudos. Move them to memory. */
3294 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3295 set_mem_attributes (tmp, parm, 1);
3296 rmem = adjust_address_nv (tmp, inner, 0);
3297 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3298 push_to_sequence2 (all->first_conversion_insn,
3299 all->last_conversion_insn);
3300 emit_move_insn (rmem, real);
3301 emit_move_insn (imem, imag);
3302 all->first_conversion_insn = get_insns ();
3303 all->last_conversion_insn = get_last_insn ();
3304 end_sequence ();
3305 }
3306 else
3307 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3308 SET_DECL_RTL (parm, tmp);
3309
3310 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3311 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3312 if (inner != GET_MODE (real))
3313 {
3314 real = gen_lowpart_SUBREG (inner, real);
3315 imag = gen_lowpart_SUBREG (inner, imag);
3316 }
3317 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3318 set_decl_incoming_rtl (parm, tmp, false);
3319 i++;
3320 }
3321 }
3322 }
3323
3324 /* Assign RTL expressions to the function's parameters. This may involve
3325 copying them into registers and using those registers as the DECL_RTL. */
3326
3327 static void
3328 assign_parms (tree fndecl)
3329 {
3330 struct assign_parm_data_all all;
3331 tree parm;
3332 VEC(tree, heap) *fnargs;
3333 unsigned i;
3334
3335 crtl->args.internal_arg_pointer
3336 = targetm.calls.internal_arg_pointer ();
3337
3338 assign_parms_initialize_all (&all);
3339 fnargs = assign_parms_augmented_arg_list (&all);
3340
3341 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3342 {
3343 struct assign_parm_data_one data;
3344
3345 /* Extract the type of PARM; adjust it according to ABI. */
3346 assign_parm_find_data_types (&all, parm, &data);
3347
3348 /* Early out for errors and void parameters. */
3349 if (data.passed_mode == VOIDmode)
3350 {
3351 SET_DECL_RTL (parm, const0_rtx);
3352 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3353 continue;
3354 }
3355
3356 /* Estimate stack alignment from parameter alignment. */
3357 if (SUPPORTS_STACK_ALIGNMENT)
3358 {
3359 unsigned int align
3360 = targetm.calls.function_arg_boundary (data.promoted_mode,
3361 data.passed_type);
3362 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3363 align);
3364 if (TYPE_ALIGN (data.nominal_type) > align)
3365 align = MINIMUM_ALIGNMENT (data.nominal_type,
3366 TYPE_MODE (data.nominal_type),
3367 TYPE_ALIGN (data.nominal_type));
3368 if (crtl->stack_alignment_estimated < align)
3369 {
3370 gcc_assert (!crtl->stack_realign_processed);
3371 crtl->stack_alignment_estimated = align;
3372 }
3373 }
3374
3375 if (cfun->stdarg && !DECL_CHAIN (parm))
3376 assign_parms_setup_varargs (&all, &data, false);
3377
3378 /* Find out where the parameter arrives in this function. */
3379 assign_parm_find_entry_rtl (&all, &data);
3380
3381 /* Find out where stack space for this parameter might be. */
3382 if (assign_parm_is_stack_parm (&all, &data))
3383 {
3384 assign_parm_find_stack_rtl (parm, &data);
3385 assign_parm_adjust_entry_rtl (&data);
3386 }
3387
3388 /* Record permanently how this parm was passed. */
3389 if (data.passed_pointer)
3390 {
3391 rtx incoming_rtl
3392 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3393 data.entry_parm);
3394 set_decl_incoming_rtl (parm, incoming_rtl, true);
3395 }
3396 else
3397 set_decl_incoming_rtl (parm, data.entry_parm, false);
3398
3399 /* Update info on where next arg arrives in registers. */
3400 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3401 data.passed_type, data.named_arg);
3402
3403 assign_parm_adjust_stack_rtl (&data);
3404
3405 if (assign_parm_setup_block_p (&data))
3406 assign_parm_setup_block (&all, parm, &data);
3407 else if (data.passed_pointer || use_register_for_decl (parm))
3408 assign_parm_setup_reg (&all, parm, &data);
3409 else
3410 assign_parm_setup_stack (&all, parm, &data);
3411 }
3412
3413 if (targetm.calls.split_complex_arg)
3414 assign_parms_unsplit_complex (&all, fnargs);
3415
3416 VEC_free (tree, heap, fnargs);
3417
3418 /* Output all parameter conversion instructions (possibly including calls)
3419 now that all parameters have been copied out of hard registers. */
3420 emit_insn (all.first_conversion_insn);
3421
3422 /* Estimate reload stack alignment from scalar return mode. */
3423 if (SUPPORTS_STACK_ALIGNMENT)
3424 {
3425 if (DECL_RESULT (fndecl))
3426 {
3427 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3428 enum machine_mode mode = TYPE_MODE (type);
3429
3430 if (mode != BLKmode
3431 && mode != VOIDmode
3432 && !AGGREGATE_TYPE_P (type))
3433 {
3434 unsigned int align = GET_MODE_ALIGNMENT (mode);
3435 if (crtl->stack_alignment_estimated < align)
3436 {
3437 gcc_assert (!crtl->stack_realign_processed);
3438 crtl->stack_alignment_estimated = align;
3439 }
3440 }
3441 }
3442 }
3443
3444 /* If we are receiving a struct value address as the first argument, set up
3445 the RTL for the function result. As this might require code to convert
3446 the transmitted address to Pmode, we do this here to ensure that possible
3447 preliminary conversions of the address have been emitted already. */
3448 if (all.function_result_decl)
3449 {
3450 tree result = DECL_RESULT (current_function_decl);
3451 rtx addr = DECL_RTL (all.function_result_decl);
3452 rtx x;
3453
3454 if (DECL_BY_REFERENCE (result))
3455 {
3456 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3457 x = addr;
3458 }
3459 else
3460 {
3461 SET_DECL_VALUE_EXPR (result,
3462 build1 (INDIRECT_REF, TREE_TYPE (result),
3463 all.function_result_decl));
3464 addr = convert_memory_address (Pmode, addr);
3465 x = gen_rtx_MEM (DECL_MODE (result), addr);
3466 set_mem_attributes (x, result, 1);
3467 }
3468
3469 DECL_HAS_VALUE_EXPR_P (result) = 1;
3470
3471 SET_DECL_RTL (result, x);
3472 }
3473
3474 /* We have aligned all the args, so add space for the pretend args. */
3475 crtl->args.pretend_args_size = all.pretend_args_size;
3476 all.stack_args_size.constant += all.extra_pretend_bytes;
3477 crtl->args.size = all.stack_args_size.constant;
3478
3479 /* Adjust function incoming argument size for alignment and
3480 minimum length. */
3481
3482 #ifdef REG_PARM_STACK_SPACE
3483 crtl->args.size = MAX (crtl->args.size,
3484 REG_PARM_STACK_SPACE (fndecl));
3485 #endif
3486
3487 crtl->args.size = CEIL_ROUND (crtl->args.size,
3488 PARM_BOUNDARY / BITS_PER_UNIT);
3489
3490 #ifdef ARGS_GROW_DOWNWARD
3491 crtl->args.arg_offset_rtx
3492 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3493 : expand_expr (size_diffop (all.stack_args_size.var,
3494 size_int (-all.stack_args_size.constant)),
3495 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3496 #else
3497 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3498 #endif
3499
3500 /* See how many bytes, if any, of its args a function should try to pop
3501 on return. */
3502
3503 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3504 TREE_TYPE (fndecl),
3505 crtl->args.size);
3506
3507 /* For stdarg.h function, save info about
3508 regs and stack space used by the named args. */
3509
3510 crtl->args.info = all.args_so_far_v;
3511
3512 /* Set the rtx used for the function return value. Put this in its
3513 own variable so any optimizers that need this information don't have
3514 to include tree.h. Do this here so it gets done when an inlined
3515 function gets output. */
3516
3517 crtl->return_rtx
3518 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3519 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3520
3521 /* If scalar return value was computed in a pseudo-reg, or was a named
3522 return value that got dumped to the stack, copy that to the hard
3523 return register. */
3524 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3525 {
3526 tree decl_result = DECL_RESULT (fndecl);
3527 rtx decl_rtl = DECL_RTL (decl_result);
3528
3529 if (REG_P (decl_rtl)
3530 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3531 : DECL_REGISTER (decl_result))
3532 {
3533 rtx real_decl_rtl;
3534
3535 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3536 fndecl, true);
3537 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3538 /* The delay slot scheduler assumes that crtl->return_rtx
3539 holds the hard register containing the return value, not a
3540 temporary pseudo. */
3541 crtl->return_rtx = real_decl_rtl;
3542 }
3543 }
3544 }
3545
3546 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3547 For all seen types, gimplify their sizes. */
3548
3549 static tree
3550 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3551 {
3552 tree t = *tp;
3553
3554 *walk_subtrees = 0;
3555 if (TYPE_P (t))
3556 {
3557 if (POINTER_TYPE_P (t))
3558 *walk_subtrees = 1;
3559 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3560 && !TYPE_SIZES_GIMPLIFIED (t))
3561 {
3562 gimplify_type_sizes (t, (gimple_seq *) data);
3563 *walk_subtrees = 1;
3564 }
3565 }
3566
3567 return NULL;
3568 }
3569
3570 /* Gimplify the parameter list for current_function_decl. This involves
3571 evaluating SAVE_EXPRs of variable sized parameters and generating code
3572 to implement callee-copies reference parameters. Returns a sequence of
3573 statements to add to the beginning of the function. */
3574
3575 gimple_seq
3576 gimplify_parameters (void)
3577 {
3578 struct assign_parm_data_all all;
3579 tree parm;
3580 gimple_seq stmts = NULL;
3581 VEC(tree, heap) *fnargs;
3582 unsigned i;
3583
3584 assign_parms_initialize_all (&all);
3585 fnargs = assign_parms_augmented_arg_list (&all);
3586
3587 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3588 {
3589 struct assign_parm_data_one data;
3590
3591 /* Extract the type of PARM; adjust it according to ABI. */
3592 assign_parm_find_data_types (&all, parm, &data);
3593
3594 /* Early out for errors and void parameters. */
3595 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3596 continue;
3597
3598 /* Update info on where next arg arrives in registers. */
3599 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3600 data.passed_type, data.named_arg);
3601
3602 /* ??? Once upon a time variable_size stuffed parameter list
3603 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3604 turned out to be less than manageable in the gimple world.
3605 Now we have to hunt them down ourselves. */
3606 walk_tree_without_duplicates (&data.passed_type,
3607 gimplify_parm_type, &stmts);
3608
3609 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3610 {
3611 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3612 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3613 }
3614
3615 if (data.passed_pointer)
3616 {
3617 tree type = TREE_TYPE (data.passed_type);
3618 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3619 type, data.named_arg))
3620 {
3621 tree local, t;
3622
3623 /* For constant-sized objects, this is trivial; for
3624 variable-sized objects, we have to play games. */
3625 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3626 && !(flag_stack_check == GENERIC_STACK_CHECK
3627 && compare_tree_int (DECL_SIZE_UNIT (parm),
3628 STACK_CHECK_MAX_VAR_SIZE) > 0))
3629 {
3630 local = create_tmp_var (type, get_name (parm));
3631 DECL_IGNORED_P (local) = 0;
3632 /* If PARM was addressable, move that flag over
3633 to the local copy, as its address will be taken,
3634 not the PARMs. Keep the parms address taken
3635 as we'll query that flag during gimplification. */
3636 if (TREE_ADDRESSABLE (parm))
3637 TREE_ADDRESSABLE (local) = 1;
3638 else if (TREE_CODE (type) == COMPLEX_TYPE
3639 || TREE_CODE (type) == VECTOR_TYPE)
3640 DECL_GIMPLE_REG_P (local) = 1;
3641 }
3642 else
3643 {
3644 tree ptr_type, addr;
3645
3646 ptr_type = build_pointer_type (type);
3647 addr = create_tmp_reg (ptr_type, get_name (parm));
3648 DECL_IGNORED_P (addr) = 0;
3649 local = build_fold_indirect_ref (addr);
3650
3651 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3652 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3653 size_int (DECL_ALIGN (parm)));
3654
3655 /* The call has been built for a variable-sized object. */
3656 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3657 t = fold_convert (ptr_type, t);
3658 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3659 gimplify_and_add (t, &stmts);
3660 }
3661
3662 gimplify_assign (local, parm, &stmts);
3663
3664 SET_DECL_VALUE_EXPR (parm, local);
3665 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3666 }
3667 }
3668 }
3669
3670 VEC_free (tree, heap, fnargs);
3671
3672 return stmts;
3673 }
3674 \f
3675 /* Compute the size and offset from the start of the stacked arguments for a
3676 parm passed in mode PASSED_MODE and with type TYPE.
3677
3678 INITIAL_OFFSET_PTR points to the current offset into the stacked
3679 arguments.
3680
3681 The starting offset and size for this parm are returned in
3682 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3683 nonzero, the offset is that of stack slot, which is returned in
3684 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3685 padding required from the initial offset ptr to the stack slot.
3686
3687 IN_REGS is nonzero if the argument will be passed in registers. It will
3688 never be set if REG_PARM_STACK_SPACE is not defined.
3689
3690 FNDECL is the function in which the argument was defined.
3691
3692 There are two types of rounding that are done. The first, controlled by
3693 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3694 argument list to be aligned to the specific boundary (in bits). This
3695 rounding affects the initial and starting offsets, but not the argument
3696 size.
3697
3698 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3699 optionally rounds the size of the parm to PARM_BOUNDARY. The
3700 initial offset is not affected by this rounding, while the size always
3701 is and the starting offset may be. */
3702
3703 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3704 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3705 callers pass in the total size of args so far as
3706 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3707
3708 void
3709 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3710 int partial, tree fndecl ATTRIBUTE_UNUSED,
3711 struct args_size *initial_offset_ptr,
3712 struct locate_and_pad_arg_data *locate)
3713 {
3714 tree sizetree;
3715 enum direction where_pad;
3716 unsigned int boundary, round_boundary;
3717 int reg_parm_stack_space = 0;
3718 int part_size_in_regs;
3719
3720 #ifdef REG_PARM_STACK_SPACE
3721 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3722
3723 /* If we have found a stack parm before we reach the end of the
3724 area reserved for registers, skip that area. */
3725 if (! in_regs)
3726 {
3727 if (reg_parm_stack_space > 0)
3728 {
3729 if (initial_offset_ptr->var)
3730 {
3731 initial_offset_ptr->var
3732 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3733 ssize_int (reg_parm_stack_space));
3734 initial_offset_ptr->constant = 0;
3735 }
3736 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3737 initial_offset_ptr->constant = reg_parm_stack_space;
3738 }
3739 }
3740 #endif /* REG_PARM_STACK_SPACE */
3741
3742 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3743
3744 sizetree
3745 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3746 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3747 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3748 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3749 type);
3750 locate->where_pad = where_pad;
3751
3752 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3753 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3754 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3755
3756 locate->boundary = boundary;
3757
3758 if (SUPPORTS_STACK_ALIGNMENT)
3759 {
3760 /* stack_alignment_estimated can't change after stack has been
3761 realigned. */
3762 if (crtl->stack_alignment_estimated < boundary)
3763 {
3764 if (!crtl->stack_realign_processed)
3765 crtl->stack_alignment_estimated = boundary;
3766 else
3767 {
3768 /* If stack is realigned and stack alignment value
3769 hasn't been finalized, it is OK not to increase
3770 stack_alignment_estimated. The bigger alignment
3771 requirement is recorded in stack_alignment_needed
3772 below. */
3773 gcc_assert (!crtl->stack_realign_finalized
3774 && crtl->stack_realign_needed);
3775 }
3776 }
3777 }
3778
3779 /* Remember if the outgoing parameter requires extra alignment on the
3780 calling function side. */
3781 if (crtl->stack_alignment_needed < boundary)
3782 crtl->stack_alignment_needed = boundary;
3783 if (crtl->preferred_stack_boundary < boundary)
3784 crtl->preferred_stack_boundary = boundary;
3785
3786 #ifdef ARGS_GROW_DOWNWARD
3787 locate->slot_offset.constant = -initial_offset_ptr->constant;
3788 if (initial_offset_ptr->var)
3789 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3790 initial_offset_ptr->var);
3791
3792 {
3793 tree s2 = sizetree;
3794 if (where_pad != none
3795 && (!host_integerp (sizetree, 1)
3796 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3797 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3798 SUB_PARM_SIZE (locate->slot_offset, s2);
3799 }
3800
3801 locate->slot_offset.constant += part_size_in_regs;
3802
3803 if (!in_regs
3804 #ifdef REG_PARM_STACK_SPACE
3805 || REG_PARM_STACK_SPACE (fndecl) > 0
3806 #endif
3807 )
3808 pad_to_arg_alignment (&locate->slot_offset, boundary,
3809 &locate->alignment_pad);
3810
3811 locate->size.constant = (-initial_offset_ptr->constant
3812 - locate->slot_offset.constant);
3813 if (initial_offset_ptr->var)
3814 locate->size.var = size_binop (MINUS_EXPR,
3815 size_binop (MINUS_EXPR,
3816 ssize_int (0),
3817 initial_offset_ptr->var),
3818 locate->slot_offset.var);
3819
3820 /* Pad_below needs the pre-rounded size to know how much to pad
3821 below. */
3822 locate->offset = locate->slot_offset;
3823 if (where_pad == downward)
3824 pad_below (&locate->offset, passed_mode, sizetree);
3825
3826 #else /* !ARGS_GROW_DOWNWARD */
3827 if (!in_regs
3828 #ifdef REG_PARM_STACK_SPACE
3829 || REG_PARM_STACK_SPACE (fndecl) > 0
3830 #endif
3831 )
3832 pad_to_arg_alignment (initial_offset_ptr, boundary,
3833 &locate->alignment_pad);
3834 locate->slot_offset = *initial_offset_ptr;
3835
3836 #ifdef PUSH_ROUNDING
3837 if (passed_mode != BLKmode)
3838 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3839 #endif
3840
3841 /* Pad_below needs the pre-rounded size to know how much to pad below
3842 so this must be done before rounding up. */
3843 locate->offset = locate->slot_offset;
3844 if (where_pad == downward)
3845 pad_below (&locate->offset, passed_mode, sizetree);
3846
3847 if (where_pad != none
3848 && (!host_integerp (sizetree, 1)
3849 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3850 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3851
3852 ADD_PARM_SIZE (locate->size, sizetree);
3853
3854 locate->size.constant -= part_size_in_regs;
3855 #endif /* ARGS_GROW_DOWNWARD */
3856
3857 #ifdef FUNCTION_ARG_OFFSET
3858 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3859 #endif
3860 }
3861
3862 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3863 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3864
3865 static void
3866 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3867 struct args_size *alignment_pad)
3868 {
3869 tree save_var = NULL_TREE;
3870 HOST_WIDE_INT save_constant = 0;
3871 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3872 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3873
3874 #ifdef SPARC_STACK_BOUNDARY_HACK
3875 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3876 the real alignment of %sp. However, when it does this, the
3877 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3878 if (SPARC_STACK_BOUNDARY_HACK)
3879 sp_offset = 0;
3880 #endif
3881
3882 if (boundary > PARM_BOUNDARY)
3883 {
3884 save_var = offset_ptr->var;
3885 save_constant = offset_ptr->constant;
3886 }
3887
3888 alignment_pad->var = NULL_TREE;
3889 alignment_pad->constant = 0;
3890
3891 if (boundary > BITS_PER_UNIT)
3892 {
3893 if (offset_ptr->var)
3894 {
3895 tree sp_offset_tree = ssize_int (sp_offset);
3896 tree offset = size_binop (PLUS_EXPR,
3897 ARGS_SIZE_TREE (*offset_ptr),
3898 sp_offset_tree);
3899 #ifdef ARGS_GROW_DOWNWARD
3900 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3901 #else
3902 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3903 #endif
3904
3905 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3906 /* ARGS_SIZE_TREE includes constant term. */
3907 offset_ptr->constant = 0;
3908 if (boundary > PARM_BOUNDARY)
3909 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3910 save_var);
3911 }
3912 else
3913 {
3914 offset_ptr->constant = -sp_offset +
3915 #ifdef ARGS_GROW_DOWNWARD
3916 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3917 #else
3918 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3919 #endif
3920 if (boundary > PARM_BOUNDARY)
3921 alignment_pad->constant = offset_ptr->constant - save_constant;
3922 }
3923 }
3924 }
3925
3926 static void
3927 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3928 {
3929 if (passed_mode != BLKmode)
3930 {
3931 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3932 offset_ptr->constant
3933 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3934 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3935 - GET_MODE_SIZE (passed_mode));
3936 }
3937 else
3938 {
3939 if (TREE_CODE (sizetree) != INTEGER_CST
3940 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3941 {
3942 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3943 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3944 /* Add it in. */
3945 ADD_PARM_SIZE (*offset_ptr, s2);
3946 SUB_PARM_SIZE (*offset_ptr, sizetree);
3947 }
3948 }
3949 }
3950 \f
3951
3952 /* True if register REGNO was alive at a place where `setjmp' was
3953 called and was set more than once or is an argument. Such regs may
3954 be clobbered by `longjmp'. */
3955
3956 static bool
3957 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3958 {
3959 /* There appear to be cases where some local vars never reach the
3960 backend but have bogus regnos. */
3961 if (regno >= max_reg_num ())
3962 return false;
3963
3964 return ((REG_N_SETS (regno) > 1
3965 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3966 && REGNO_REG_SET_P (setjmp_crosses, regno));
3967 }
3968
3969 /* Walk the tree of blocks describing the binding levels within a
3970 function and warn about variables the might be killed by setjmp or
3971 vfork. This is done after calling flow_analysis before register
3972 allocation since that will clobber the pseudo-regs to hard
3973 regs. */
3974
3975 static void
3976 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3977 {
3978 tree decl, sub;
3979
3980 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3981 {
3982 if (TREE_CODE (decl) == VAR_DECL
3983 && DECL_RTL_SET_P (decl)
3984 && REG_P (DECL_RTL (decl))
3985 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3986 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3987 " %<longjmp%> or %<vfork%>", decl);
3988 }
3989
3990 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3991 setjmp_vars_warning (setjmp_crosses, sub);
3992 }
3993
3994 /* Do the appropriate part of setjmp_vars_warning
3995 but for arguments instead of local variables. */
3996
3997 static void
3998 setjmp_args_warning (bitmap setjmp_crosses)
3999 {
4000 tree decl;
4001 for (decl = DECL_ARGUMENTS (current_function_decl);
4002 decl; decl = DECL_CHAIN (decl))
4003 if (DECL_RTL (decl) != 0
4004 && REG_P (DECL_RTL (decl))
4005 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4006 warning (OPT_Wclobbered,
4007 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4008 decl);
4009 }
4010
4011 /* Generate warning messages for variables live across setjmp. */
4012
4013 void
4014 generate_setjmp_warnings (void)
4015 {
4016 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4017
4018 if (n_basic_blocks == NUM_FIXED_BLOCKS
4019 || bitmap_empty_p (setjmp_crosses))
4020 return;
4021
4022 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4023 setjmp_args_warning (setjmp_crosses);
4024 }
4025
4026 \f
4027 /* Reverse the order of elements in the fragment chain T of blocks,
4028 and return the new head of the chain (old last element).
4029 In addition to that clear BLOCK_SAME_RANGE flags when needed
4030 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4031 its super fragment origin. */
4032
4033 static tree
4034 block_fragments_nreverse (tree t)
4035 {
4036 tree prev = 0, block, next, prev_super = 0;
4037 tree super = BLOCK_SUPERCONTEXT (t);
4038 if (BLOCK_FRAGMENT_ORIGIN (super))
4039 super = BLOCK_FRAGMENT_ORIGIN (super);
4040 for (block = t; block; block = next)
4041 {
4042 next = BLOCK_FRAGMENT_CHAIN (block);
4043 BLOCK_FRAGMENT_CHAIN (block) = prev;
4044 if ((prev && !BLOCK_SAME_RANGE (prev))
4045 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4046 != prev_super))
4047 BLOCK_SAME_RANGE (block) = 0;
4048 prev_super = BLOCK_SUPERCONTEXT (block);
4049 BLOCK_SUPERCONTEXT (block) = super;
4050 prev = block;
4051 }
4052 t = BLOCK_FRAGMENT_ORIGIN (t);
4053 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4054 != prev_super)
4055 BLOCK_SAME_RANGE (t) = 0;
4056 BLOCK_SUPERCONTEXT (t) = super;
4057 return prev;
4058 }
4059
4060 /* Reverse the order of elements in the chain T of blocks,
4061 and return the new head of the chain (old last element).
4062 Also do the same on subblocks and reverse the order of elements
4063 in BLOCK_FRAGMENT_CHAIN as well. */
4064
4065 static tree
4066 blocks_nreverse_all (tree t)
4067 {
4068 tree prev = 0, block, next;
4069 for (block = t; block; block = next)
4070 {
4071 next = BLOCK_CHAIN (block);
4072 BLOCK_CHAIN (block) = prev;
4073 if (BLOCK_FRAGMENT_CHAIN (block)
4074 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4075 {
4076 BLOCK_FRAGMENT_CHAIN (block)
4077 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4078 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4079 BLOCK_SAME_RANGE (block) = 0;
4080 }
4081 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4082 prev = block;
4083 }
4084 return prev;
4085 }
4086
4087
4088 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4089 and create duplicate blocks. */
4090 /* ??? Need an option to either create block fragments or to create
4091 abstract origin duplicates of a source block. It really depends
4092 on what optimization has been performed. */
4093
4094 void
4095 reorder_blocks (void)
4096 {
4097 tree block = DECL_INITIAL (current_function_decl);
4098 VEC(tree,heap) *block_stack;
4099
4100 if (block == NULL_TREE)
4101 return;
4102
4103 block_stack = VEC_alloc (tree, heap, 10);
4104
4105 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4106 clear_block_marks (block);
4107
4108 /* Prune the old trees away, so that they don't get in the way. */
4109 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4110 BLOCK_CHAIN (block) = NULL_TREE;
4111
4112 /* Recreate the block tree from the note nesting. */
4113 reorder_blocks_1 (get_insns (), block, &block_stack);
4114 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4115
4116 VEC_free (tree, heap, block_stack);
4117 }
4118
4119 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4120
4121 void
4122 clear_block_marks (tree block)
4123 {
4124 while (block)
4125 {
4126 TREE_ASM_WRITTEN (block) = 0;
4127 clear_block_marks (BLOCK_SUBBLOCKS (block));
4128 block = BLOCK_CHAIN (block);
4129 }
4130 }
4131
4132 static void
4133 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
4134 {
4135 rtx insn;
4136 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4137
4138 for (insn = insns; insn; insn = NEXT_INSN (insn))
4139 {
4140 if (NOTE_P (insn))
4141 {
4142 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4143 {
4144 tree block = NOTE_BLOCK (insn);
4145 tree origin;
4146
4147 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4148 origin = block;
4149
4150 if (prev_end)
4151 BLOCK_SAME_RANGE (prev_end) = 0;
4152 prev_end = NULL_TREE;
4153
4154 /* If we have seen this block before, that means it now
4155 spans multiple address regions. Create a new fragment. */
4156 if (TREE_ASM_WRITTEN (block))
4157 {
4158 tree new_block = copy_node (block);
4159
4160 BLOCK_SAME_RANGE (new_block) = 0;
4161 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4162 BLOCK_FRAGMENT_CHAIN (new_block)
4163 = BLOCK_FRAGMENT_CHAIN (origin);
4164 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4165
4166 NOTE_BLOCK (insn) = new_block;
4167 block = new_block;
4168 }
4169
4170 if (prev_beg == current_block && prev_beg)
4171 BLOCK_SAME_RANGE (block) = 1;
4172
4173 prev_beg = origin;
4174
4175 BLOCK_SUBBLOCKS (block) = 0;
4176 TREE_ASM_WRITTEN (block) = 1;
4177 /* When there's only one block for the entire function,
4178 current_block == block and we mustn't do this, it
4179 will cause infinite recursion. */
4180 if (block != current_block)
4181 {
4182 tree super;
4183 if (block != origin)
4184 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4185 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4186 (origin))
4187 == current_block);
4188 if (VEC_empty (tree, *p_block_stack))
4189 super = current_block;
4190 else
4191 {
4192 super = VEC_last (tree, *p_block_stack);
4193 gcc_assert (super == current_block
4194 || BLOCK_FRAGMENT_ORIGIN (super)
4195 == current_block);
4196 }
4197 BLOCK_SUPERCONTEXT (block) = super;
4198 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4199 BLOCK_SUBBLOCKS (current_block) = block;
4200 current_block = origin;
4201 }
4202 VEC_safe_push (tree, heap, *p_block_stack, block);
4203 }
4204 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4205 {
4206 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
4207 current_block = BLOCK_SUPERCONTEXT (current_block);
4208 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4209 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4210 prev_beg = NULL_TREE;
4211 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4212 ? NOTE_BLOCK (insn) : NULL_TREE;
4213 }
4214 }
4215 else
4216 {
4217 prev_beg = NULL_TREE;
4218 if (prev_end)
4219 BLOCK_SAME_RANGE (prev_end) = 0;
4220 prev_end = NULL_TREE;
4221 }
4222 }
4223 }
4224
4225 /* Reverse the order of elements in the chain T of blocks,
4226 and return the new head of the chain (old last element). */
4227
4228 tree
4229 blocks_nreverse (tree t)
4230 {
4231 tree prev = 0, block, next;
4232 for (block = t; block; block = next)
4233 {
4234 next = BLOCK_CHAIN (block);
4235 BLOCK_CHAIN (block) = prev;
4236 prev = block;
4237 }
4238 return prev;
4239 }
4240
4241 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4242 by modifying the last node in chain 1 to point to chain 2. */
4243
4244 tree
4245 block_chainon (tree op1, tree op2)
4246 {
4247 tree t1;
4248
4249 if (!op1)
4250 return op2;
4251 if (!op2)
4252 return op1;
4253
4254 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4255 continue;
4256 BLOCK_CHAIN (t1) = op2;
4257
4258 #ifdef ENABLE_TREE_CHECKING
4259 {
4260 tree t2;
4261 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4262 gcc_assert (t2 != t1);
4263 }
4264 #endif
4265
4266 return op1;
4267 }
4268
4269 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4270 non-NULL, list them all into VECTOR, in a depth-first preorder
4271 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4272 blocks. */
4273
4274 static int
4275 all_blocks (tree block, tree *vector)
4276 {
4277 int n_blocks = 0;
4278
4279 while (block)
4280 {
4281 TREE_ASM_WRITTEN (block) = 0;
4282
4283 /* Record this block. */
4284 if (vector)
4285 vector[n_blocks] = block;
4286
4287 ++n_blocks;
4288
4289 /* Record the subblocks, and their subblocks... */
4290 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4291 vector ? vector + n_blocks : 0);
4292 block = BLOCK_CHAIN (block);
4293 }
4294
4295 return n_blocks;
4296 }
4297
4298 /* Return a vector containing all the blocks rooted at BLOCK. The
4299 number of elements in the vector is stored in N_BLOCKS_P. The
4300 vector is dynamically allocated; it is the caller's responsibility
4301 to call `free' on the pointer returned. */
4302
4303 static tree *
4304 get_block_vector (tree block, int *n_blocks_p)
4305 {
4306 tree *block_vector;
4307
4308 *n_blocks_p = all_blocks (block, NULL);
4309 block_vector = XNEWVEC (tree, *n_blocks_p);
4310 all_blocks (block, block_vector);
4311
4312 return block_vector;
4313 }
4314
4315 static GTY(()) int next_block_index = 2;
4316
4317 /* Set BLOCK_NUMBER for all the blocks in FN. */
4318
4319 void
4320 number_blocks (tree fn)
4321 {
4322 int i;
4323 int n_blocks;
4324 tree *block_vector;
4325
4326 /* For SDB and XCOFF debugging output, we start numbering the blocks
4327 from 1 within each function, rather than keeping a running
4328 count. */
4329 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4330 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4331 next_block_index = 1;
4332 #endif
4333
4334 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4335
4336 /* The top-level BLOCK isn't numbered at all. */
4337 for (i = 1; i < n_blocks; ++i)
4338 /* We number the blocks from two. */
4339 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4340
4341 free (block_vector);
4342
4343 return;
4344 }
4345
4346 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4347
4348 DEBUG_FUNCTION tree
4349 debug_find_var_in_block_tree (tree var, tree block)
4350 {
4351 tree t;
4352
4353 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4354 if (t == var)
4355 return block;
4356
4357 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4358 {
4359 tree ret = debug_find_var_in_block_tree (var, t);
4360 if (ret)
4361 return ret;
4362 }
4363
4364 return NULL_TREE;
4365 }
4366 \f
4367 /* Keep track of whether we're in a dummy function context. If we are,
4368 we don't want to invoke the set_current_function hook, because we'll
4369 get into trouble if the hook calls target_reinit () recursively or
4370 when the initial initialization is not yet complete. */
4371
4372 static bool in_dummy_function;
4373
4374 /* Invoke the target hook when setting cfun. Update the optimization options
4375 if the function uses different options than the default. */
4376
4377 static void
4378 invoke_set_current_function_hook (tree fndecl)
4379 {
4380 if (!in_dummy_function)
4381 {
4382 tree opts = ((fndecl)
4383 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4384 : optimization_default_node);
4385
4386 if (!opts)
4387 opts = optimization_default_node;
4388
4389 /* Change optimization options if needed. */
4390 if (optimization_current_node != opts)
4391 {
4392 optimization_current_node = opts;
4393 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4394 }
4395
4396 targetm.set_current_function (fndecl);
4397 }
4398 }
4399
4400 /* cfun should never be set directly; use this function. */
4401
4402 void
4403 set_cfun (struct function *new_cfun)
4404 {
4405 if (cfun != new_cfun)
4406 {
4407 cfun = new_cfun;
4408 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4409 }
4410 }
4411
4412 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4413
4414 static VEC(function_p,heap) *cfun_stack;
4415
4416 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4417 current_function_decl accordingly. */
4418
4419 void
4420 push_cfun (struct function *new_cfun)
4421 {
4422 gcc_assert ((!cfun && !current_function_decl)
4423 || (cfun && current_function_decl == cfun->decl));
4424 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4425 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4426 set_cfun (new_cfun);
4427 }
4428
4429 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4430
4431 void
4432 pop_cfun (void)
4433 {
4434 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4435 /* When in_dummy_function, we do have a cfun but current_function_decl is
4436 NULL. We also allow pushing NULL cfun and subsequently changing
4437 current_function_decl to something else and have both restored by
4438 pop_cfun. */
4439 gcc_checking_assert (in_dummy_function
4440 || !cfun
4441 || current_function_decl == cfun->decl);
4442 set_cfun (new_cfun);
4443 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4444 }
4445
4446 /* Return value of funcdef and increase it. */
4447 int
4448 get_next_funcdef_no (void)
4449 {
4450 return funcdef_no++;
4451 }
4452
4453 /* Return value of funcdef. */
4454 int
4455 get_last_funcdef_no (void)
4456 {
4457 return funcdef_no;
4458 }
4459
4460 /* Allocate a function structure for FNDECL and set its contents
4461 to the defaults. Set cfun to the newly-allocated object.
4462 Some of the helper functions invoked during initialization assume
4463 that cfun has already been set. Therefore, assign the new object
4464 directly into cfun and invoke the back end hook explicitly at the
4465 very end, rather than initializing a temporary and calling set_cfun
4466 on it.
4467
4468 ABSTRACT_P is true if this is a function that will never be seen by
4469 the middle-end. Such functions are front-end concepts (like C++
4470 function templates) that do not correspond directly to functions
4471 placed in object files. */
4472
4473 void
4474 allocate_struct_function (tree fndecl, bool abstract_p)
4475 {
4476 tree result;
4477 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4478
4479 cfun = ggc_alloc_cleared_function ();
4480
4481 init_eh_for_function ();
4482
4483 if (init_machine_status)
4484 cfun->machine = (*init_machine_status) ();
4485
4486 #ifdef OVERRIDE_ABI_FORMAT
4487 OVERRIDE_ABI_FORMAT (fndecl);
4488 #endif
4489
4490 if (fndecl != NULL_TREE)
4491 {
4492 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4493 cfun->decl = fndecl;
4494 current_function_funcdef_no = get_next_funcdef_no ();
4495
4496 result = DECL_RESULT (fndecl);
4497 if (!abstract_p && aggregate_value_p (result, fndecl))
4498 {
4499 #ifdef PCC_STATIC_STRUCT_RETURN
4500 cfun->returns_pcc_struct = 1;
4501 #endif
4502 cfun->returns_struct = 1;
4503 }
4504
4505 cfun->stdarg = stdarg_p (fntype);
4506
4507 /* Assume all registers in stdarg functions need to be saved. */
4508 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4509 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4510
4511 /* ??? This could be set on a per-function basis by the front-end
4512 but is this worth the hassle? */
4513 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4514 }
4515
4516 invoke_set_current_function_hook (fndecl);
4517 }
4518
4519 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4520 instead of just setting it. */
4521
4522 void
4523 push_struct_function (tree fndecl)
4524 {
4525 /* When in_dummy_function we might be in the middle of a pop_cfun and
4526 current_function_decl and cfun may not match. */
4527 gcc_assert (in_dummy_function
4528 || (!cfun && !current_function_decl)
4529 || (cfun && current_function_decl == cfun->decl));
4530 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4531 current_function_decl = fndecl;
4532 allocate_struct_function (fndecl, false);
4533 }
4534
4535 /* Reset crtl and other non-struct-function variables to defaults as
4536 appropriate for emitting rtl at the start of a function. */
4537
4538 static void
4539 prepare_function_start (void)
4540 {
4541 gcc_assert (!crtl->emit.x_last_insn);
4542 init_temp_slots ();
4543 init_emit ();
4544 init_varasm_status ();
4545 init_expr ();
4546 default_rtl_profile ();
4547
4548 if (flag_stack_usage_info)
4549 {
4550 cfun->su = ggc_alloc_cleared_stack_usage ();
4551 cfun->su->static_stack_size = -1;
4552 }
4553
4554 cse_not_expected = ! optimize;
4555
4556 /* Caller save not needed yet. */
4557 caller_save_needed = 0;
4558
4559 /* We haven't done register allocation yet. */
4560 reg_renumber = 0;
4561
4562 /* Indicate that we have not instantiated virtual registers yet. */
4563 virtuals_instantiated = 0;
4564
4565 /* Indicate that we want CONCATs now. */
4566 generating_concat_p = 1;
4567
4568 /* Indicate we have no need of a frame pointer yet. */
4569 frame_pointer_needed = 0;
4570 }
4571
4572 /* Initialize the rtl expansion mechanism so that we can do simple things
4573 like generate sequences. This is used to provide a context during global
4574 initialization of some passes. You must call expand_dummy_function_end
4575 to exit this context. */
4576
4577 void
4578 init_dummy_function_start (void)
4579 {
4580 gcc_assert (!in_dummy_function);
4581 in_dummy_function = true;
4582 push_struct_function (NULL_TREE);
4583 prepare_function_start ();
4584 }
4585
4586 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4587 and initialize static variables for generating RTL for the statements
4588 of the function. */
4589
4590 void
4591 init_function_start (tree subr)
4592 {
4593 if (subr && DECL_STRUCT_FUNCTION (subr))
4594 set_cfun (DECL_STRUCT_FUNCTION (subr));
4595 else
4596 allocate_struct_function (subr, false);
4597 prepare_function_start ();
4598 decide_function_section (subr);
4599
4600 /* Warn if this value is an aggregate type,
4601 regardless of which calling convention we are using for it. */
4602 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4603 warning (OPT_Waggregate_return, "function returns an aggregate");
4604 }
4605
4606
4607 void
4608 expand_main_function (void)
4609 {
4610 #if (defined(INVOKE__main) \
4611 || (!defined(HAS_INIT_SECTION) \
4612 && !defined(INIT_SECTION_ASM_OP) \
4613 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4614 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4615 #endif
4616 }
4617 \f
4618 /* Expand code to initialize the stack_protect_guard. This is invoked at
4619 the beginning of a function to be protected. */
4620
4621 #ifndef HAVE_stack_protect_set
4622 # define HAVE_stack_protect_set 0
4623 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4624 #endif
4625
4626 void
4627 stack_protect_prologue (void)
4628 {
4629 tree guard_decl = targetm.stack_protect_guard ();
4630 rtx x, y;
4631
4632 x = expand_normal (crtl->stack_protect_guard);
4633 y = expand_normal (guard_decl);
4634
4635 /* Allow the target to copy from Y to X without leaking Y into a
4636 register. */
4637 if (HAVE_stack_protect_set)
4638 {
4639 rtx insn = gen_stack_protect_set (x, y);
4640 if (insn)
4641 {
4642 emit_insn (insn);
4643 return;
4644 }
4645 }
4646
4647 /* Otherwise do a straight move. */
4648 emit_move_insn (x, y);
4649 }
4650
4651 /* Expand code to verify the stack_protect_guard. This is invoked at
4652 the end of a function to be protected. */
4653
4654 #ifndef HAVE_stack_protect_test
4655 # define HAVE_stack_protect_test 0
4656 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4657 #endif
4658
4659 void
4660 stack_protect_epilogue (void)
4661 {
4662 tree guard_decl = targetm.stack_protect_guard ();
4663 rtx label = gen_label_rtx ();
4664 rtx x, y, tmp;
4665
4666 x = expand_normal (crtl->stack_protect_guard);
4667 y = expand_normal (guard_decl);
4668
4669 /* Allow the target to compare Y with X without leaking either into
4670 a register. */
4671 switch (HAVE_stack_protect_test != 0)
4672 {
4673 case 1:
4674 tmp = gen_stack_protect_test (x, y, label);
4675 if (tmp)
4676 {
4677 emit_insn (tmp);
4678 break;
4679 }
4680 /* FALLTHRU */
4681
4682 default:
4683 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4684 break;
4685 }
4686
4687 /* The noreturn predictor has been moved to the tree level. The rtl-level
4688 predictors estimate this branch about 20%, which isn't enough to get
4689 things moved out of line. Since this is the only extant case of adding
4690 a noreturn function at the rtl level, it doesn't seem worth doing ought
4691 except adding the prediction by hand. */
4692 tmp = get_last_insn ();
4693 if (JUMP_P (tmp))
4694 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4695
4696 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4697 free_temp_slots ();
4698 emit_label (label);
4699 }
4700 \f
4701 /* Start the RTL for a new function, and set variables used for
4702 emitting RTL.
4703 SUBR is the FUNCTION_DECL node.
4704 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4705 the function's parameters, which must be run at any return statement. */
4706
4707 void
4708 expand_function_start (tree subr)
4709 {
4710 /* Make sure volatile mem refs aren't considered
4711 valid operands of arithmetic insns. */
4712 init_recog_no_volatile ();
4713
4714 crtl->profile
4715 = (profile_flag
4716 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4717
4718 crtl->limit_stack
4719 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4720
4721 /* Make the label for return statements to jump to. Do not special
4722 case machines with special return instructions -- they will be
4723 handled later during jump, ifcvt, or epilogue creation. */
4724 return_label = gen_label_rtx ();
4725
4726 /* Initialize rtx used to return the value. */
4727 /* Do this before assign_parms so that we copy the struct value address
4728 before any library calls that assign parms might generate. */
4729
4730 /* Decide whether to return the value in memory or in a register. */
4731 if (aggregate_value_p (DECL_RESULT (subr), subr))
4732 {
4733 /* Returning something that won't go in a register. */
4734 rtx value_address = 0;
4735
4736 #ifdef PCC_STATIC_STRUCT_RETURN
4737 if (cfun->returns_pcc_struct)
4738 {
4739 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4740 value_address = assemble_static_space (size);
4741 }
4742 else
4743 #endif
4744 {
4745 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4746 /* Expect to be passed the address of a place to store the value.
4747 If it is passed as an argument, assign_parms will take care of
4748 it. */
4749 if (sv)
4750 {
4751 value_address = gen_reg_rtx (Pmode);
4752 emit_move_insn (value_address, sv);
4753 }
4754 }
4755 if (value_address)
4756 {
4757 rtx x = value_address;
4758 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4759 {
4760 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4761 set_mem_attributes (x, DECL_RESULT (subr), 1);
4762 }
4763 SET_DECL_RTL (DECL_RESULT (subr), x);
4764 }
4765 }
4766 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4767 /* If return mode is void, this decl rtl should not be used. */
4768 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4769 else
4770 {
4771 /* Compute the return values into a pseudo reg, which we will copy
4772 into the true return register after the cleanups are done. */
4773 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4774 if (TYPE_MODE (return_type) != BLKmode
4775 && targetm.calls.return_in_msb (return_type))
4776 /* expand_function_end will insert the appropriate padding in
4777 this case. Use the return value's natural (unpadded) mode
4778 within the function proper. */
4779 SET_DECL_RTL (DECL_RESULT (subr),
4780 gen_reg_rtx (TYPE_MODE (return_type)));
4781 else
4782 {
4783 /* In order to figure out what mode to use for the pseudo, we
4784 figure out what the mode of the eventual return register will
4785 actually be, and use that. */
4786 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4787
4788 /* Structures that are returned in registers are not
4789 aggregate_value_p, so we may see a PARALLEL or a REG. */
4790 if (REG_P (hard_reg))
4791 SET_DECL_RTL (DECL_RESULT (subr),
4792 gen_reg_rtx (GET_MODE (hard_reg)));
4793 else
4794 {
4795 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4796 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4797 }
4798 }
4799
4800 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4801 result to the real return register(s). */
4802 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4803 }
4804
4805 /* Initialize rtx for parameters and local variables.
4806 In some cases this requires emitting insns. */
4807 assign_parms (subr);
4808
4809 /* If function gets a static chain arg, store it. */
4810 if (cfun->static_chain_decl)
4811 {
4812 tree parm = cfun->static_chain_decl;
4813 rtx local, chain, insn;
4814
4815 local = gen_reg_rtx (Pmode);
4816 chain = targetm.calls.static_chain (current_function_decl, true);
4817
4818 set_decl_incoming_rtl (parm, chain, false);
4819 SET_DECL_RTL (parm, local);
4820 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4821
4822 insn = emit_move_insn (local, chain);
4823
4824 /* Mark the register as eliminable, similar to parameters. */
4825 if (MEM_P (chain)
4826 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4827 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4828 }
4829
4830 /* If the function receives a non-local goto, then store the
4831 bits we need to restore the frame pointer. */
4832 if (cfun->nonlocal_goto_save_area)
4833 {
4834 tree t_save;
4835 rtx r_save;
4836
4837 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4838 gcc_assert (DECL_RTL_SET_P (var));
4839
4840 t_save = build4 (ARRAY_REF,
4841 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4842 cfun->nonlocal_goto_save_area,
4843 integer_zero_node, NULL_TREE, NULL_TREE);
4844 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4845 gcc_assert (GET_MODE (r_save) == Pmode);
4846
4847 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4848 update_nonlocal_goto_save_area ();
4849 }
4850
4851 /* The following was moved from init_function_start.
4852 The move is supposed to make sdb output more accurate. */
4853 /* Indicate the beginning of the function body,
4854 as opposed to parm setup. */
4855 emit_note (NOTE_INSN_FUNCTION_BEG);
4856
4857 gcc_assert (NOTE_P (get_last_insn ()));
4858
4859 parm_birth_insn = get_last_insn ();
4860
4861 if (crtl->profile)
4862 {
4863 #ifdef PROFILE_HOOK
4864 PROFILE_HOOK (current_function_funcdef_no);
4865 #endif
4866 }
4867
4868 /* If we are doing generic stack checking, the probe should go here. */
4869 if (flag_stack_check == GENERIC_STACK_CHECK)
4870 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4871 }
4872 \f
4873 /* Undo the effects of init_dummy_function_start. */
4874 void
4875 expand_dummy_function_end (void)
4876 {
4877 gcc_assert (in_dummy_function);
4878
4879 /* End any sequences that failed to be closed due to syntax errors. */
4880 while (in_sequence_p ())
4881 end_sequence ();
4882
4883 /* Outside function body, can't compute type's actual size
4884 until next function's body starts. */
4885
4886 free_after_parsing (cfun);
4887 free_after_compilation (cfun);
4888 pop_cfun ();
4889 in_dummy_function = false;
4890 }
4891
4892 /* Call DOIT for each hard register used as a return value from
4893 the current function. */
4894
4895 void
4896 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4897 {
4898 rtx outgoing = crtl->return_rtx;
4899
4900 if (! outgoing)
4901 return;
4902
4903 if (REG_P (outgoing))
4904 (*doit) (outgoing, arg);
4905 else if (GET_CODE (outgoing) == PARALLEL)
4906 {
4907 int i;
4908
4909 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4910 {
4911 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4912
4913 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4914 (*doit) (x, arg);
4915 }
4916 }
4917 }
4918
4919 static void
4920 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4921 {
4922 emit_clobber (reg);
4923 }
4924
4925 void
4926 clobber_return_register (void)
4927 {
4928 diddle_return_value (do_clobber_return_reg, NULL);
4929
4930 /* In case we do use pseudo to return value, clobber it too. */
4931 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4932 {
4933 tree decl_result = DECL_RESULT (current_function_decl);
4934 rtx decl_rtl = DECL_RTL (decl_result);
4935 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4936 {
4937 do_clobber_return_reg (decl_rtl, NULL);
4938 }
4939 }
4940 }
4941
4942 static void
4943 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4944 {
4945 emit_use (reg);
4946 }
4947
4948 static void
4949 use_return_register (void)
4950 {
4951 diddle_return_value (do_use_return_reg, NULL);
4952 }
4953
4954 /* Possibly warn about unused parameters. */
4955 void
4956 do_warn_unused_parameter (tree fn)
4957 {
4958 tree decl;
4959
4960 for (decl = DECL_ARGUMENTS (fn);
4961 decl; decl = DECL_CHAIN (decl))
4962 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4963 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4964 && !TREE_NO_WARNING (decl))
4965 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4966 }
4967
4968 static GTY(()) rtx initial_trampoline;
4969
4970 /* Generate RTL for the end of the current function. */
4971
4972 void
4973 expand_function_end (void)
4974 {
4975 rtx clobber_after;
4976
4977 /* If arg_pointer_save_area was referenced only from a nested
4978 function, we will not have initialized it yet. Do that now. */
4979 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4980 get_arg_pointer_save_area ();
4981
4982 /* If we are doing generic stack checking and this function makes calls,
4983 do a stack probe at the start of the function to ensure we have enough
4984 space for another stack frame. */
4985 if (flag_stack_check == GENERIC_STACK_CHECK)
4986 {
4987 rtx insn, seq;
4988
4989 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4990 if (CALL_P (insn))
4991 {
4992 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4993 start_sequence ();
4994 if (STACK_CHECK_MOVING_SP)
4995 anti_adjust_stack_and_probe (max_frame_size, true);
4996 else
4997 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4998 seq = get_insns ();
4999 end_sequence ();
5000 set_insn_locations (seq, prologue_location);
5001 emit_insn_before (seq, stack_check_probe_note);
5002 break;
5003 }
5004 }
5005
5006 /* End any sequences that failed to be closed due to syntax errors. */
5007 while (in_sequence_p ())
5008 end_sequence ();
5009
5010 clear_pending_stack_adjust ();
5011 do_pending_stack_adjust ();
5012
5013 /* Output a linenumber for the end of the function.
5014 SDB depends on this. */
5015 set_curr_insn_location (input_location);
5016
5017 /* Before the return label (if any), clobber the return
5018 registers so that they are not propagated live to the rest of
5019 the function. This can only happen with functions that drop
5020 through; if there had been a return statement, there would
5021 have either been a return rtx, or a jump to the return label.
5022
5023 We delay actual code generation after the current_function_value_rtx
5024 is computed. */
5025 clobber_after = get_last_insn ();
5026
5027 /* Output the label for the actual return from the function. */
5028 emit_label (return_label);
5029
5030 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5031 {
5032 /* Let except.c know where it should emit the call to unregister
5033 the function context for sjlj exceptions. */
5034 if (flag_exceptions)
5035 sjlj_emit_function_exit_after (get_last_insn ());
5036 }
5037 else
5038 {
5039 /* We want to ensure that instructions that may trap are not
5040 moved into the epilogue by scheduling, because we don't
5041 always emit unwind information for the epilogue. */
5042 if (cfun->can_throw_non_call_exceptions)
5043 emit_insn (gen_blockage ());
5044 }
5045
5046 /* If this is an implementation of throw, do what's necessary to
5047 communicate between __builtin_eh_return and the epilogue. */
5048 expand_eh_return ();
5049
5050 /* If scalar return value was computed in a pseudo-reg, or was a named
5051 return value that got dumped to the stack, copy that to the hard
5052 return register. */
5053 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5054 {
5055 tree decl_result = DECL_RESULT (current_function_decl);
5056 rtx decl_rtl = DECL_RTL (decl_result);
5057
5058 if (REG_P (decl_rtl)
5059 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5060 : DECL_REGISTER (decl_result))
5061 {
5062 rtx real_decl_rtl = crtl->return_rtx;
5063
5064 /* This should be set in assign_parms. */
5065 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5066
5067 /* If this is a BLKmode structure being returned in registers,
5068 then use the mode computed in expand_return. Note that if
5069 decl_rtl is memory, then its mode may have been changed,
5070 but that crtl->return_rtx has not. */
5071 if (GET_MODE (real_decl_rtl) == BLKmode)
5072 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5073
5074 /* If a non-BLKmode return value should be padded at the least
5075 significant end of the register, shift it left by the appropriate
5076 amount. BLKmode results are handled using the group load/store
5077 machinery. */
5078 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5079 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5080 {
5081 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5082 REGNO (real_decl_rtl)),
5083 decl_rtl);
5084 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5085 }
5086 /* If a named return value dumped decl_return to memory, then
5087 we may need to re-do the PROMOTE_MODE signed/unsigned
5088 extension. */
5089 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5090 {
5091 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5092 promote_function_mode (TREE_TYPE (decl_result),
5093 GET_MODE (decl_rtl), &unsignedp,
5094 TREE_TYPE (current_function_decl), 1);
5095
5096 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5097 }
5098 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5099 {
5100 /* If expand_function_start has created a PARALLEL for decl_rtl,
5101 move the result to the real return registers. Otherwise, do
5102 a group load from decl_rtl for a named return. */
5103 if (GET_CODE (decl_rtl) == PARALLEL)
5104 emit_group_move (real_decl_rtl, decl_rtl);
5105 else
5106 emit_group_load (real_decl_rtl, decl_rtl,
5107 TREE_TYPE (decl_result),
5108 int_size_in_bytes (TREE_TYPE (decl_result)));
5109 }
5110 /* In the case of complex integer modes smaller than a word, we'll
5111 need to generate some non-trivial bitfield insertions. Do that
5112 on a pseudo and not the hard register. */
5113 else if (GET_CODE (decl_rtl) == CONCAT
5114 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5115 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5116 {
5117 int old_generating_concat_p;
5118 rtx tmp;
5119
5120 old_generating_concat_p = generating_concat_p;
5121 generating_concat_p = 0;
5122 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5123 generating_concat_p = old_generating_concat_p;
5124
5125 emit_move_insn (tmp, decl_rtl);
5126 emit_move_insn (real_decl_rtl, tmp);
5127 }
5128 else
5129 emit_move_insn (real_decl_rtl, decl_rtl);
5130 }
5131 }
5132
5133 /* If returning a structure, arrange to return the address of the value
5134 in a place where debuggers expect to find it.
5135
5136 If returning a structure PCC style,
5137 the caller also depends on this value.
5138 And cfun->returns_pcc_struct is not necessarily set. */
5139 if (cfun->returns_struct
5140 || cfun->returns_pcc_struct)
5141 {
5142 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5143 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5144 rtx outgoing;
5145
5146 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5147 type = TREE_TYPE (type);
5148 else
5149 value_address = XEXP (value_address, 0);
5150
5151 outgoing = targetm.calls.function_value (build_pointer_type (type),
5152 current_function_decl, true);
5153
5154 /* Mark this as a function return value so integrate will delete the
5155 assignment and USE below when inlining this function. */
5156 REG_FUNCTION_VALUE_P (outgoing) = 1;
5157
5158 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5159 value_address = convert_memory_address (GET_MODE (outgoing),
5160 value_address);
5161
5162 emit_move_insn (outgoing, value_address);
5163
5164 /* Show return register used to hold result (in this case the address
5165 of the result. */
5166 crtl->return_rtx = outgoing;
5167 }
5168
5169 /* Emit the actual code to clobber return register. */
5170 {
5171 rtx seq;
5172
5173 start_sequence ();
5174 clobber_return_register ();
5175 seq = get_insns ();
5176 end_sequence ();
5177
5178 emit_insn_after (seq, clobber_after);
5179 }
5180
5181 /* Output the label for the naked return from the function. */
5182 if (naked_return_label)
5183 emit_label (naked_return_label);
5184
5185 /* @@@ This is a kludge. We want to ensure that instructions that
5186 may trap are not moved into the epilogue by scheduling, because
5187 we don't always emit unwind information for the epilogue. */
5188 if (cfun->can_throw_non_call_exceptions
5189 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5190 emit_insn (gen_blockage ());
5191
5192 /* If stack protection is enabled for this function, check the guard. */
5193 if (crtl->stack_protect_guard)
5194 stack_protect_epilogue ();
5195
5196 /* If we had calls to alloca, and this machine needs
5197 an accurate stack pointer to exit the function,
5198 insert some code to save and restore the stack pointer. */
5199 if (! EXIT_IGNORE_STACK
5200 && cfun->calls_alloca)
5201 {
5202 rtx tem = 0, seq;
5203
5204 start_sequence ();
5205 emit_stack_save (SAVE_FUNCTION, &tem);
5206 seq = get_insns ();
5207 end_sequence ();
5208 emit_insn_before (seq, parm_birth_insn);
5209
5210 emit_stack_restore (SAVE_FUNCTION, tem);
5211 }
5212
5213 /* ??? This should no longer be necessary since stupid is no longer with
5214 us, but there are some parts of the compiler (eg reload_combine, and
5215 sh mach_dep_reorg) that still try and compute their own lifetime info
5216 instead of using the general framework. */
5217 use_return_register ();
5218 }
5219
5220 rtx
5221 get_arg_pointer_save_area (void)
5222 {
5223 rtx ret = arg_pointer_save_area;
5224
5225 if (! ret)
5226 {
5227 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5228 arg_pointer_save_area = ret;
5229 }
5230
5231 if (! crtl->arg_pointer_save_area_init)
5232 {
5233 rtx seq;
5234
5235 /* Save the arg pointer at the beginning of the function. The
5236 generated stack slot may not be a valid memory address, so we
5237 have to check it and fix it if necessary. */
5238 start_sequence ();
5239 emit_move_insn (validize_mem (ret),
5240 crtl->args.internal_arg_pointer);
5241 seq = get_insns ();
5242 end_sequence ();
5243
5244 push_topmost_sequence ();
5245 emit_insn_after (seq, entry_of_function ());
5246 pop_topmost_sequence ();
5247
5248 crtl->arg_pointer_save_area_init = true;
5249 }
5250
5251 return ret;
5252 }
5253 \f
5254 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5255 for the first time. */
5256
5257 static void
5258 record_insns (rtx insns, rtx end, htab_t *hashp)
5259 {
5260 rtx tmp;
5261 htab_t hash = *hashp;
5262
5263 if (hash == NULL)
5264 *hashp = hash
5265 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5266
5267 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5268 {
5269 void **slot = htab_find_slot (hash, tmp, INSERT);
5270 gcc_assert (*slot == NULL);
5271 *slot = tmp;
5272 }
5273 }
5274
5275 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5276 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5277 insn, then record COPY as well. */
5278
5279 void
5280 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5281 {
5282 htab_t hash;
5283 void **slot;
5284
5285 hash = epilogue_insn_hash;
5286 if (!hash || !htab_find (hash, insn))
5287 {
5288 hash = prologue_insn_hash;
5289 if (!hash || !htab_find (hash, insn))
5290 return;
5291 }
5292
5293 slot = htab_find_slot (hash, copy, INSERT);
5294 gcc_assert (*slot == NULL);
5295 *slot = copy;
5296 }
5297
5298 /* Set the location of the insn chain starting at INSN to LOC. */
5299 static void
5300 set_insn_locations (rtx insn, int loc)
5301 {
5302 while (insn != NULL_RTX)
5303 {
5304 if (INSN_P (insn))
5305 INSN_LOCATION (insn) = loc;
5306 insn = NEXT_INSN (insn);
5307 }
5308 }
5309
5310 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5311 we can be running after reorg, SEQUENCE rtl is possible. */
5312
5313 static bool
5314 contains (const_rtx insn, htab_t hash)
5315 {
5316 if (hash == NULL)
5317 return false;
5318
5319 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5320 {
5321 int i;
5322 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5323 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5324 return true;
5325 return false;
5326 }
5327
5328 return htab_find (hash, insn) != NULL;
5329 }
5330
5331 int
5332 prologue_epilogue_contains (const_rtx insn)
5333 {
5334 if (contains (insn, prologue_insn_hash))
5335 return 1;
5336 if (contains (insn, epilogue_insn_hash))
5337 return 1;
5338 return 0;
5339 }
5340
5341 #ifdef HAVE_simple_return
5342
5343 /* Return true if INSN requires the stack frame to be set up.
5344 PROLOGUE_USED contains the hard registers used in the function
5345 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5346 prologue to set up for the function. */
5347 bool
5348 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5349 HARD_REG_SET set_up_by_prologue)
5350 {
5351 df_ref *df_rec;
5352 HARD_REG_SET hardregs;
5353 unsigned regno;
5354
5355 if (CALL_P (insn))
5356 return !SIBLING_CALL_P (insn);
5357
5358 /* We need a frame to get the unique CFA expected by the unwinder. */
5359 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5360 return true;
5361
5362 CLEAR_HARD_REG_SET (hardregs);
5363 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5364 {
5365 rtx dreg = DF_REF_REG (*df_rec);
5366
5367 if (!REG_P (dreg))
5368 continue;
5369
5370 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5371 REGNO (dreg));
5372 }
5373 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5374 return true;
5375 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5376 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5377 if (TEST_HARD_REG_BIT (hardregs, regno)
5378 && df_regs_ever_live_p (regno))
5379 return true;
5380
5381 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5382 {
5383 rtx reg = DF_REF_REG (*df_rec);
5384
5385 if (!REG_P (reg))
5386 continue;
5387
5388 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5389 REGNO (reg));
5390 }
5391 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5392 return true;
5393
5394 return false;
5395 }
5396
5397 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5398 and if BB is its only predecessor. Return that block if so,
5399 otherwise return null. */
5400
5401 static basic_block
5402 next_block_for_reg (basic_block bb, int regno, int end_regno)
5403 {
5404 edge e, live_edge;
5405 edge_iterator ei;
5406 bitmap live;
5407 int i;
5408
5409 live_edge = NULL;
5410 FOR_EACH_EDGE (e, ei, bb->succs)
5411 {
5412 live = df_get_live_in (e->dest);
5413 for (i = regno; i < end_regno; i++)
5414 if (REGNO_REG_SET_P (live, i))
5415 {
5416 if (live_edge && live_edge != e)
5417 return NULL;
5418 live_edge = e;
5419 }
5420 }
5421
5422 /* We can sometimes encounter dead code. Don't try to move it
5423 into the exit block. */
5424 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5425 return NULL;
5426
5427 /* Reject targets of abnormal edges. This is needed for correctness
5428 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5429 exception edges even though it is generally treated as call-saved
5430 for the majority of the compilation. Moving across abnormal edges
5431 isn't going to be interesting for shrink-wrap usage anyway. */
5432 if (live_edge->flags & EDGE_ABNORMAL)
5433 return NULL;
5434
5435 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5436 return NULL;
5437
5438 return live_edge->dest;
5439 }
5440
5441 /* Try to move INSN from BB to a successor. Return true on success.
5442 USES and DEFS are the set of registers that are used and defined
5443 after INSN in BB. */
5444
5445 static bool
5446 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5447 const HARD_REG_SET uses,
5448 const HARD_REG_SET defs)
5449 {
5450 rtx set, src, dest;
5451 bitmap live_out, live_in, bb_uses, bb_defs;
5452 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5453 basic_block next_block;
5454
5455 /* Look for a simple register copy. */
5456 set = single_set (insn);
5457 if (!set)
5458 return false;
5459 src = SET_SRC (set);
5460 dest = SET_DEST (set);
5461 if (!REG_P (dest) || !REG_P (src))
5462 return false;
5463
5464 /* Make sure that the source register isn't defined later in BB. */
5465 sregno = REGNO (src);
5466 end_sregno = END_REGNO (src);
5467 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5468 return false;
5469
5470 /* Make sure that the destination register isn't referenced later in BB. */
5471 dregno = REGNO (dest);
5472 end_dregno = END_REGNO (dest);
5473 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5474 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5475 return false;
5476
5477 /* See whether there is a successor block to which we could move INSN. */
5478 next_block = next_block_for_reg (bb, dregno, end_dregno);
5479 if (!next_block)
5480 return false;
5481
5482 /* At this point we are committed to moving INSN, but let's try to
5483 move it as far as we can. */
5484 do
5485 {
5486 live_out = df_get_live_out (bb);
5487 live_in = df_get_live_in (next_block);
5488 bb = next_block;
5489
5490 /* Check whether BB uses DEST or clobbers DEST. We need to add
5491 INSN to BB if so. Either way, DEST is no longer live on entry,
5492 except for any part that overlaps SRC (next loop). */
5493 bb_uses = &DF_LR_BB_INFO (bb)->use;
5494 bb_defs = &DF_LR_BB_INFO (bb)->def;
5495 for (i = dregno; i < end_dregno; i++)
5496 {
5497 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i))
5498 next_block = NULL;
5499 CLEAR_REGNO_REG_SET (live_out, i);
5500 CLEAR_REGNO_REG_SET (live_in, i);
5501 }
5502
5503 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5504 Either way, SRC is now live on entry. */
5505 for (i = sregno; i < end_sregno; i++)
5506 {
5507 if (REGNO_REG_SET_P (bb_defs, i))
5508 next_block = NULL;
5509 SET_REGNO_REG_SET (live_out, i);
5510 SET_REGNO_REG_SET (live_in, i);
5511 }
5512
5513 /* If we don't need to add the move to BB, look for a single
5514 successor block. */
5515 if (next_block)
5516 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5517 }
5518 while (next_block);
5519
5520 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5521 (next loop). */
5522 for (i = dregno; i < end_dregno; i++)
5523 {
5524 CLEAR_REGNO_REG_SET (bb_uses, i);
5525 SET_REGNO_REG_SET (bb_defs, i);
5526 }
5527
5528 /* BB now uses SRC. */
5529 for (i = sregno; i < end_sregno; i++)
5530 SET_REGNO_REG_SET (bb_uses, i);
5531
5532 emit_insn_after (PATTERN (insn), bb_note (bb));
5533 delete_insn (insn);
5534 return true;
5535 }
5536
5537 /* Look for register copies in the first block of the function, and move
5538 them down into successor blocks if the register is used only on one
5539 path. This exposes more opportunities for shrink-wrapping. These
5540 kinds of sets often occur when incoming argument registers are moved
5541 to call-saved registers because their values are live across one or
5542 more calls during the function. */
5543
5544 static void
5545 prepare_shrink_wrap (basic_block entry_block)
5546 {
5547 rtx insn, curr, x;
5548 HARD_REG_SET uses, defs;
5549 df_ref *ref;
5550
5551 CLEAR_HARD_REG_SET (uses);
5552 CLEAR_HARD_REG_SET (defs);
5553 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5554 if (NONDEBUG_INSN_P (insn)
5555 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5556 {
5557 /* Add all defined registers to DEFs. */
5558 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5559 {
5560 x = DF_REF_REG (*ref);
5561 if (REG_P (x) && HARD_REGISTER_P (x))
5562 SET_HARD_REG_BIT (defs, REGNO (x));
5563 }
5564
5565 /* Add all used registers to USESs. */
5566 for (ref = DF_INSN_USES (insn); *ref; ref++)
5567 {
5568 x = DF_REF_REG (*ref);
5569 if (REG_P (x) && HARD_REGISTER_P (x))
5570 SET_HARD_REG_BIT (uses, REGNO (x));
5571 }
5572 }
5573 }
5574
5575 #endif
5576
5577 #ifdef HAVE_return
5578 /* Insert use of return register before the end of BB. */
5579
5580 static void
5581 emit_use_return_register_into_block (basic_block bb)
5582 {
5583 rtx seq;
5584 start_sequence ();
5585 use_return_register ();
5586 seq = get_insns ();
5587 end_sequence ();
5588 emit_insn_before (seq, BB_END (bb));
5589 }
5590
5591
5592 /* Create a return pattern, either simple_return or return, depending on
5593 simple_p. */
5594
5595 static rtx
5596 gen_return_pattern (bool simple_p)
5597 {
5598 #ifdef HAVE_simple_return
5599 return simple_p ? gen_simple_return () : gen_return ();
5600 #else
5601 gcc_assert (!simple_p);
5602 return gen_return ();
5603 #endif
5604 }
5605
5606 /* Insert an appropriate return pattern at the end of block BB. This
5607 also means updating block_for_insn appropriately. SIMPLE_P is
5608 the same as in gen_return_pattern and passed to it. */
5609
5610 static void
5611 emit_return_into_block (bool simple_p, basic_block bb)
5612 {
5613 rtx jump, pat;
5614 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5615 pat = PATTERN (jump);
5616 if (GET_CODE (pat) == PARALLEL)
5617 pat = XVECEXP (pat, 0, 0);
5618 gcc_assert (ANY_RETURN_P (pat));
5619 JUMP_LABEL (jump) = pat;
5620 }
5621 #endif
5622
5623 /* Set JUMP_LABEL for a return insn. */
5624
5625 void
5626 set_return_jump_label (rtx returnjump)
5627 {
5628 rtx pat = PATTERN (returnjump);
5629 if (GET_CODE (pat) == PARALLEL)
5630 pat = XVECEXP (pat, 0, 0);
5631 if (ANY_RETURN_P (pat))
5632 JUMP_LABEL (returnjump) = pat;
5633 else
5634 JUMP_LABEL (returnjump) = ret_rtx;
5635 }
5636
5637 #ifdef HAVE_simple_return
5638 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5639 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5640 static void
5641 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5642 bitmap_head *need_prologue)
5643 {
5644 edge_iterator ei;
5645 edge e;
5646 rtx insn = BB_END (bb);
5647
5648 /* We know BB has a single successor, so there is no need to copy a
5649 simple jump at the end of BB. */
5650 if (simplejump_p (insn))
5651 insn = PREV_INSN (insn);
5652
5653 start_sequence ();
5654 duplicate_insn_chain (BB_HEAD (bb), insn);
5655 if (dump_file)
5656 {
5657 unsigned count = 0;
5658 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5659 if (active_insn_p (insn))
5660 ++count;
5661 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5662 bb->index, copy_bb->index, count);
5663 }
5664 insn = get_insns ();
5665 end_sequence ();
5666 emit_insn_before (insn, before);
5667
5668 /* Redirect all the paths that need no prologue into copy_bb. */
5669 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5670 if (!bitmap_bit_p (need_prologue, e->src->index))
5671 {
5672 int freq = EDGE_FREQUENCY (e);
5673 copy_bb->count += e->count;
5674 copy_bb->frequency += EDGE_FREQUENCY (e);
5675 e->dest->count -= e->count;
5676 if (e->dest->count < 0)
5677 e->dest->count = 0;
5678 e->dest->frequency -= freq;
5679 if (e->dest->frequency < 0)
5680 e->dest->frequency = 0;
5681 redirect_edge_and_branch_force (e, copy_bb);
5682 continue;
5683 }
5684 else
5685 ei_next (&ei);
5686 }
5687 #endif
5688
5689 #if defined (HAVE_return) || defined (HAVE_simple_return)
5690 /* Return true if there are any active insns between HEAD and TAIL. */
5691 static bool
5692 active_insn_between (rtx head, rtx tail)
5693 {
5694 while (tail)
5695 {
5696 if (active_insn_p (tail))
5697 return true;
5698 if (tail == head)
5699 return false;
5700 tail = PREV_INSN (tail);
5701 }
5702 return false;
5703 }
5704
5705 /* LAST_BB is a block that exits, and empty of active instructions.
5706 Examine its predecessors for jumps that can be converted to
5707 (conditional) returns. */
5708 static VEC (edge, heap) *
5709 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5710 VEC (edge, heap) *unconverted ATTRIBUTE_UNUSED)
5711 {
5712 int i;
5713 basic_block bb;
5714 rtx label;
5715 edge_iterator ei;
5716 edge e;
5717 VEC(basic_block,heap) *src_bbs;
5718
5719 src_bbs = VEC_alloc (basic_block, heap, EDGE_COUNT (last_bb->preds));
5720 FOR_EACH_EDGE (e, ei, last_bb->preds)
5721 if (e->src != ENTRY_BLOCK_PTR)
5722 VEC_quick_push (basic_block, src_bbs, e->src);
5723
5724 label = BB_HEAD (last_bb);
5725
5726 FOR_EACH_VEC_ELT (basic_block, src_bbs, i, bb)
5727 {
5728 rtx jump = BB_END (bb);
5729
5730 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5731 continue;
5732
5733 e = find_edge (bb, last_bb);
5734
5735 /* If we have an unconditional jump, we can replace that
5736 with a simple return instruction. */
5737 if (simplejump_p (jump))
5738 {
5739 /* The use of the return register might be present in the exit
5740 fallthru block. Either:
5741 - removing the use is safe, and we should remove the use in
5742 the exit fallthru block, or
5743 - removing the use is not safe, and we should add it here.
5744 For now, we conservatively choose the latter. Either of the
5745 2 helps in crossjumping. */
5746 emit_use_return_register_into_block (bb);
5747
5748 emit_return_into_block (simple_p, bb);
5749 delete_insn (jump);
5750 }
5751
5752 /* If we have a conditional jump branching to the last
5753 block, we can try to replace that with a conditional
5754 return instruction. */
5755 else if (condjump_p (jump))
5756 {
5757 rtx dest;
5758
5759 if (simple_p)
5760 dest = simple_return_rtx;
5761 else
5762 dest = ret_rtx;
5763 if (!redirect_jump (jump, dest, 0))
5764 {
5765 #ifdef HAVE_simple_return
5766 if (simple_p)
5767 {
5768 if (dump_file)
5769 fprintf (dump_file,
5770 "Failed to redirect bb %d branch.\n", bb->index);
5771 VEC_safe_push (edge, heap, unconverted, e);
5772 }
5773 #endif
5774 continue;
5775 }
5776
5777 /* See comment in simplejump_p case above. */
5778 emit_use_return_register_into_block (bb);
5779
5780 /* If this block has only one successor, it both jumps
5781 and falls through to the fallthru block, so we can't
5782 delete the edge. */
5783 if (single_succ_p (bb))
5784 continue;
5785 }
5786 else
5787 {
5788 #ifdef HAVE_simple_return
5789 if (simple_p)
5790 {
5791 if (dump_file)
5792 fprintf (dump_file,
5793 "Failed to redirect bb %d branch.\n", bb->index);
5794 VEC_safe_push (edge, heap, unconverted, e);
5795 }
5796 #endif
5797 continue;
5798 }
5799
5800 /* Fix up the CFG for the successful change we just made. */
5801 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5802 e->flags &= ~EDGE_CROSSING;
5803 }
5804 VEC_free (basic_block, heap, src_bbs);
5805 return unconverted;
5806 }
5807
5808 /* Emit a return insn for the exit fallthru block. */
5809 static basic_block
5810 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5811 {
5812 basic_block last_bb = exit_fallthru_edge->src;
5813
5814 if (JUMP_P (BB_END (last_bb)))
5815 {
5816 last_bb = split_edge (exit_fallthru_edge);
5817 exit_fallthru_edge = single_succ_edge (last_bb);
5818 }
5819 emit_barrier_after (BB_END (last_bb));
5820 emit_return_into_block (simple_p, last_bb);
5821 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5822 return last_bb;
5823 }
5824 #endif
5825
5826
5827 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5828 this into place with notes indicating where the prologue ends and where
5829 the epilogue begins. Update the basic block information when possible.
5830
5831 Notes on epilogue placement:
5832 There are several kinds of edges to the exit block:
5833 * a single fallthru edge from LAST_BB
5834 * possibly, edges from blocks containing sibcalls
5835 * possibly, fake edges from infinite loops
5836
5837 The epilogue is always emitted on the fallthru edge from the last basic
5838 block in the function, LAST_BB, into the exit block.
5839
5840 If LAST_BB is empty except for a label, it is the target of every
5841 other basic block in the function that ends in a return. If a
5842 target has a return or simple_return pattern (possibly with
5843 conditional variants), these basic blocks can be changed so that a
5844 return insn is emitted into them, and their target is adjusted to
5845 the real exit block.
5846
5847 Notes on shrink wrapping: We implement a fairly conservative
5848 version of shrink-wrapping rather than the textbook one. We only
5849 generate a single prologue and a single epilogue. This is
5850 sufficient to catch a number of interesting cases involving early
5851 exits.
5852
5853 First, we identify the blocks that require the prologue to occur before
5854 them. These are the ones that modify a call-saved register, or reference
5855 any of the stack or frame pointer registers. To simplify things, we then
5856 mark everything reachable from these blocks as also requiring a prologue.
5857 This takes care of loops automatically, and avoids the need to examine
5858 whether MEMs reference the frame, since it is sufficient to check for
5859 occurrences of the stack or frame pointer.
5860
5861 We then compute the set of blocks for which the need for a prologue
5862 is anticipatable (borrowing terminology from the shrink-wrapping
5863 description in Muchnick's book). These are the blocks which either
5864 require a prologue themselves, or those that have only successors
5865 where the prologue is anticipatable. The prologue needs to be
5866 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5867 is not. For the moment, we ensure that only one such edge exists.
5868
5869 The epilogue is placed as described above, but we make a
5870 distinction between inserting return and simple_return patterns
5871 when modifying other blocks that end in a return. Blocks that end
5872 in a sibcall omit the sibcall_epilogue if the block is not in
5873 ANTIC. */
5874
5875 static void
5876 thread_prologue_and_epilogue_insns (void)
5877 {
5878 bool inserted;
5879 #ifdef HAVE_simple_return
5880 VEC (edge, heap) *unconverted_simple_returns = NULL;
5881 bool nonempty_prologue;
5882 bitmap_head bb_flags;
5883 unsigned max_grow_size;
5884 #endif
5885 rtx returnjump;
5886 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5887 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5888 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5889 edge_iterator ei;
5890
5891 df_analyze ();
5892
5893 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5894
5895 inserted = false;
5896 seq = NULL_RTX;
5897 epilogue_end = NULL_RTX;
5898 returnjump = NULL_RTX;
5899
5900 /* Can't deal with multiple successors of the entry block at the
5901 moment. Function should always have at least one entry
5902 point. */
5903 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5904 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5905 orig_entry_edge = entry_edge;
5906
5907 split_prologue_seq = NULL_RTX;
5908 if (flag_split_stack
5909 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5910 == NULL))
5911 {
5912 #ifndef HAVE_split_stack_prologue
5913 gcc_unreachable ();
5914 #else
5915 gcc_assert (HAVE_split_stack_prologue);
5916
5917 start_sequence ();
5918 emit_insn (gen_split_stack_prologue ());
5919 split_prologue_seq = get_insns ();
5920 end_sequence ();
5921
5922 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5923 set_insn_locations (split_prologue_seq, prologue_location);
5924 #endif
5925 }
5926
5927 prologue_seq = NULL_RTX;
5928 #ifdef HAVE_prologue
5929 if (HAVE_prologue)
5930 {
5931 start_sequence ();
5932 seq = gen_prologue ();
5933 emit_insn (seq);
5934
5935 /* Insert an explicit USE for the frame pointer
5936 if the profiling is on and the frame pointer is required. */
5937 if (crtl->profile && frame_pointer_needed)
5938 emit_use (hard_frame_pointer_rtx);
5939
5940 /* Retain a map of the prologue insns. */
5941 record_insns (seq, NULL, &prologue_insn_hash);
5942 emit_note (NOTE_INSN_PROLOGUE_END);
5943
5944 /* Ensure that instructions are not moved into the prologue when
5945 profiling is on. The call to the profiling routine can be
5946 emitted within the live range of a call-clobbered register. */
5947 if (!targetm.profile_before_prologue () && crtl->profile)
5948 emit_insn (gen_blockage ());
5949
5950 prologue_seq = get_insns ();
5951 end_sequence ();
5952 set_insn_locations (prologue_seq, prologue_location);
5953 }
5954 #endif
5955
5956 #ifdef HAVE_simple_return
5957 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5958
5959 /* Try to perform a kind of shrink-wrapping, making sure the
5960 prologue/epilogue is emitted only around those parts of the
5961 function that require it. */
5962
5963 nonempty_prologue = false;
5964 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5965 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5966 {
5967 nonempty_prologue = true;
5968 break;
5969 }
5970
5971 if (flag_shrink_wrap && HAVE_simple_return
5972 && (targetm.profile_before_prologue () || !crtl->profile)
5973 && nonempty_prologue && !crtl->calls_eh_return)
5974 {
5975 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5976 struct hard_reg_set_container set_up_by_prologue;
5977 rtx p_insn;
5978 VEC(basic_block, heap) *vec;
5979 basic_block bb;
5980 bitmap_head bb_antic_flags;
5981 bitmap_head bb_on_list;
5982 bitmap_head bb_tail;
5983
5984 if (dump_file)
5985 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5986
5987 /* Compute the registers set and used in the prologue. */
5988 CLEAR_HARD_REG_SET (prologue_clobbered);
5989 CLEAR_HARD_REG_SET (prologue_used);
5990 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
5991 {
5992 HARD_REG_SET this_used;
5993 if (!NONDEBUG_INSN_P (p_insn))
5994 continue;
5995
5996 CLEAR_HARD_REG_SET (this_used);
5997 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
5998 &this_used);
5999 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6000 IOR_HARD_REG_SET (prologue_used, this_used);
6001 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6002 &prologue_clobbered);
6003 }
6004
6005 prepare_shrink_wrap (entry_edge->dest);
6006
6007 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6008 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6009 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6010
6011 /* Find the set of basic blocks that require a stack frame,
6012 and blocks that are too big to be duplicated. */
6013
6014 vec = VEC_alloc (basic_block, heap, n_basic_blocks);
6015
6016 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6017 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6018 STACK_POINTER_REGNUM);
6019 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6020 if (frame_pointer_needed)
6021 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6022 HARD_FRAME_POINTER_REGNUM);
6023 if (pic_offset_table_rtx)
6024 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6025 PIC_OFFSET_TABLE_REGNUM);
6026 if (stack_realign_drap && crtl->drap_reg)
6027 add_to_hard_reg_set (&set_up_by_prologue.set,
6028 GET_MODE (crtl->drap_reg),
6029 REGNO (crtl->drap_reg));
6030 if (targetm.set_up_by_prologue)
6031 targetm.set_up_by_prologue (&set_up_by_prologue);
6032
6033 /* We don't use a different max size depending on
6034 optimize_bb_for_speed_p because increasing shrink-wrapping
6035 opportunities by duplicating tail blocks can actually result
6036 in an overall decrease in code size. */
6037 max_grow_size = get_uncond_jump_length ();
6038 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6039
6040 FOR_EACH_BB (bb)
6041 {
6042 rtx insn;
6043 unsigned size = 0;
6044
6045 FOR_BB_INSNS (bb, insn)
6046 if (NONDEBUG_INSN_P (insn))
6047 {
6048 if (requires_stack_frame_p (insn, prologue_used,
6049 set_up_by_prologue.set))
6050 {
6051 if (bb == entry_edge->dest)
6052 goto fail_shrinkwrap;
6053 bitmap_set_bit (&bb_flags, bb->index);
6054 VEC_quick_push (basic_block, vec, bb);
6055 break;
6056 }
6057 else if (size <= max_grow_size)
6058 {
6059 size += get_attr_min_length (insn);
6060 if (size > max_grow_size)
6061 bitmap_set_bit (&bb_on_list, bb->index);
6062 }
6063 }
6064 }
6065
6066 /* Blocks that really need a prologue, or are too big for tails. */
6067 bitmap_ior_into (&bb_on_list, &bb_flags);
6068
6069 /* For every basic block that needs a prologue, mark all blocks
6070 reachable from it, so as to ensure they are also seen as
6071 requiring a prologue. */
6072 while (!VEC_empty (basic_block, vec))
6073 {
6074 basic_block tmp_bb = VEC_pop (basic_block, vec);
6075
6076 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6077 if (e->dest != EXIT_BLOCK_PTR
6078 && bitmap_set_bit (&bb_flags, e->dest->index))
6079 VEC_quick_push (basic_block, vec, e->dest);
6080 }
6081
6082 /* Find the set of basic blocks that need no prologue, have a
6083 single successor, can be duplicated, meet a max size
6084 requirement, and go to the exit via like blocks. */
6085 VEC_quick_push (basic_block, vec, EXIT_BLOCK_PTR);
6086 while (!VEC_empty (basic_block, vec))
6087 {
6088 basic_block tmp_bb = VEC_pop (basic_block, vec);
6089
6090 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6091 if (single_succ_p (e->src)
6092 && !bitmap_bit_p (&bb_on_list, e->src->index)
6093 && can_duplicate_block_p (e->src))
6094 {
6095 edge pe;
6096 edge_iterator pei;
6097
6098 /* If there is predecessor of e->src which doesn't
6099 need prologue and the edge is complex,
6100 we might not be able to redirect the branch
6101 to a copy of e->src. */
6102 FOR_EACH_EDGE (pe, pei, e->src->preds)
6103 if ((pe->flags & EDGE_COMPLEX) != 0
6104 && !bitmap_bit_p (&bb_flags, pe->src->index))
6105 break;
6106 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6107 VEC_quick_push (basic_block, vec, e->src);
6108 }
6109 }
6110
6111 /* Now walk backwards from every block that is marked as needing
6112 a prologue to compute the bb_antic_flags bitmap. Exclude
6113 tail blocks; They can be duplicated to be used on paths not
6114 needing a prologue. */
6115 bitmap_clear (&bb_on_list);
6116 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6117 FOR_EACH_BB (bb)
6118 {
6119 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6120 continue;
6121 FOR_EACH_EDGE (e, ei, bb->preds)
6122 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6123 && bitmap_set_bit (&bb_on_list, e->src->index))
6124 VEC_quick_push (basic_block, vec, e->src);
6125 }
6126 while (!VEC_empty (basic_block, vec))
6127 {
6128 basic_block tmp_bb = VEC_pop (basic_block, vec);
6129 bool all_set = true;
6130
6131 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6132 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6133 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6134 {
6135 all_set = false;
6136 break;
6137 }
6138
6139 if (all_set)
6140 {
6141 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6142 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6143 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6144 && bitmap_set_bit (&bb_on_list, e->src->index))
6145 VEC_quick_push (basic_block, vec, e->src);
6146 }
6147 }
6148 /* Find exactly one edge that leads to a block in ANTIC from
6149 a block that isn't. */
6150 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6151 FOR_EACH_BB (bb)
6152 {
6153 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6154 continue;
6155 FOR_EACH_EDGE (e, ei, bb->preds)
6156 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6157 {
6158 if (entry_edge != orig_entry_edge)
6159 {
6160 entry_edge = orig_entry_edge;
6161 if (dump_file)
6162 fprintf (dump_file, "More than one candidate edge.\n");
6163 goto fail_shrinkwrap;
6164 }
6165 if (dump_file)
6166 fprintf (dump_file, "Found candidate edge for "
6167 "shrink-wrapping, %d->%d.\n", e->src->index,
6168 e->dest->index);
6169 entry_edge = e;
6170 }
6171 }
6172
6173 if (entry_edge != orig_entry_edge)
6174 {
6175 /* Test whether the prologue is known to clobber any register
6176 (other than FP or SP) which are live on the edge. */
6177 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6178 if (frame_pointer_needed)
6179 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6180 REG_SET_TO_HARD_REG_SET (live_on_edge,
6181 df_get_live_in (entry_edge->dest));
6182 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6183 {
6184 entry_edge = orig_entry_edge;
6185 if (dump_file)
6186 fprintf (dump_file,
6187 "Shrink-wrapping aborted due to clobber.\n");
6188 }
6189 }
6190 if (entry_edge != orig_entry_edge)
6191 {
6192 crtl->shrink_wrapped = true;
6193 if (dump_file)
6194 fprintf (dump_file, "Performing shrink-wrapping.\n");
6195
6196 /* Find tail blocks reachable from both blocks needing a
6197 prologue and blocks not needing a prologue. */
6198 if (!bitmap_empty_p (&bb_tail))
6199 FOR_EACH_BB (bb)
6200 {
6201 bool some_pro, some_no_pro;
6202 if (!bitmap_bit_p (&bb_tail, bb->index))
6203 continue;
6204 some_pro = some_no_pro = false;
6205 FOR_EACH_EDGE (e, ei, bb->preds)
6206 {
6207 if (bitmap_bit_p (&bb_flags, e->src->index))
6208 some_pro = true;
6209 else
6210 some_no_pro = true;
6211 }
6212 if (some_pro && some_no_pro)
6213 VEC_quick_push (basic_block, vec, bb);
6214 else
6215 bitmap_clear_bit (&bb_tail, bb->index);
6216 }
6217 /* Find the head of each tail. */
6218 while (!VEC_empty (basic_block, vec))
6219 {
6220 basic_block tbb = VEC_pop (basic_block, vec);
6221
6222 if (!bitmap_bit_p (&bb_tail, tbb->index))
6223 continue;
6224
6225 while (single_succ_p (tbb))
6226 {
6227 tbb = single_succ (tbb);
6228 bitmap_clear_bit (&bb_tail, tbb->index);
6229 }
6230 }
6231 /* Now duplicate the tails. */
6232 if (!bitmap_empty_p (&bb_tail))
6233 FOR_EACH_BB_REVERSE (bb)
6234 {
6235 basic_block copy_bb, tbb;
6236 rtx insert_point;
6237 int eflags;
6238
6239 if (!bitmap_clear_bit (&bb_tail, bb->index))
6240 continue;
6241
6242 /* Create a copy of BB, instructions and all, for
6243 use on paths that don't need a prologue.
6244 Ideal placement of the copy is on a fall-thru edge
6245 or after a block that would jump to the copy. */
6246 FOR_EACH_EDGE (e, ei, bb->preds)
6247 if (!bitmap_bit_p (&bb_flags, e->src->index)
6248 && single_succ_p (e->src))
6249 break;
6250 if (e)
6251 {
6252 copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
6253 NULL_RTX, e->src);
6254 BB_COPY_PARTITION (copy_bb, e->src);
6255 }
6256 else
6257 {
6258 /* Otherwise put the copy at the end of the function. */
6259 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6260 EXIT_BLOCK_PTR->prev_bb);
6261 BB_COPY_PARTITION (copy_bb, bb);
6262 }
6263
6264 insert_point = emit_note_after (NOTE_INSN_DELETED,
6265 BB_END (copy_bb));
6266 emit_barrier_after (BB_END (copy_bb));
6267
6268 tbb = bb;
6269 while (1)
6270 {
6271 dup_block_and_redirect (tbb, copy_bb, insert_point,
6272 &bb_flags);
6273 tbb = single_succ (tbb);
6274 if (tbb == EXIT_BLOCK_PTR)
6275 break;
6276 e = split_block (copy_bb, PREV_INSN (insert_point));
6277 copy_bb = e->dest;
6278 }
6279
6280 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6281 We have yet to add a simple_return to the tails,
6282 as we'd like to first convert_jumps_to_returns in
6283 case the block is no longer used after that. */
6284 eflags = EDGE_FAKE;
6285 if (CALL_P (PREV_INSN (insert_point))
6286 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6287 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6288 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6289
6290 /* verify_flow_info doesn't like a note after a
6291 sibling call. */
6292 delete_insn (insert_point);
6293 if (bitmap_empty_p (&bb_tail))
6294 break;
6295 }
6296 }
6297
6298 fail_shrinkwrap:
6299 bitmap_clear (&bb_tail);
6300 bitmap_clear (&bb_antic_flags);
6301 bitmap_clear (&bb_on_list);
6302 VEC_free (basic_block, heap, vec);
6303 }
6304 #endif
6305
6306 if (split_prologue_seq != NULL_RTX)
6307 {
6308 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6309 inserted = true;
6310 }
6311 if (prologue_seq != NULL_RTX)
6312 {
6313 insert_insn_on_edge (prologue_seq, entry_edge);
6314 inserted = true;
6315 }
6316
6317 /* If the exit block has no non-fake predecessors, we don't need
6318 an epilogue. */
6319 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6320 if ((e->flags & EDGE_FAKE) == 0)
6321 break;
6322 if (e == NULL)
6323 goto epilogue_done;
6324
6325 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6326
6327 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6328
6329 /* If we're allowed to generate a simple return instruction, then by
6330 definition we don't need a full epilogue. If the last basic
6331 block before the exit block does not contain active instructions,
6332 examine its predecessors and try to emit (conditional) return
6333 instructions. */
6334 #ifdef HAVE_simple_return
6335 if (entry_edge != orig_entry_edge)
6336 {
6337 if (optimize)
6338 {
6339 unsigned i, last;
6340
6341 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6342 (but won't remove). Stop at end of current preds. */
6343 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6344 for (i = 0; i < last; i++)
6345 {
6346 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6347 if (LABEL_P (BB_HEAD (e->src))
6348 && !bitmap_bit_p (&bb_flags, e->src->index)
6349 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6350 unconverted_simple_returns
6351 = convert_jumps_to_returns (e->src, true,
6352 unconverted_simple_returns);
6353 }
6354 }
6355
6356 if (exit_fallthru_edge != NULL
6357 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6358 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6359 {
6360 basic_block last_bb;
6361
6362 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6363 returnjump = BB_END (last_bb);
6364 exit_fallthru_edge = NULL;
6365 }
6366 }
6367 #endif
6368 #ifdef HAVE_return
6369 if (HAVE_return)
6370 {
6371 if (exit_fallthru_edge == NULL)
6372 goto epilogue_done;
6373
6374 if (optimize)
6375 {
6376 basic_block last_bb = exit_fallthru_edge->src;
6377
6378 if (LABEL_P (BB_HEAD (last_bb))
6379 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6380 convert_jumps_to_returns (last_bb, false, NULL);
6381
6382 if (EDGE_COUNT (last_bb->preds) != 0
6383 && single_succ_p (last_bb))
6384 {
6385 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6386 epilogue_end = returnjump = BB_END (last_bb);
6387 #ifdef HAVE_simple_return
6388 /* Emitting the return may add a basic block.
6389 Fix bb_flags for the added block. */
6390 if (last_bb != exit_fallthru_edge->src)
6391 bitmap_set_bit (&bb_flags, last_bb->index);
6392 #endif
6393 goto epilogue_done;
6394 }
6395 }
6396 }
6397 #endif
6398
6399 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6400 this marker for the splits of EH_RETURN patterns, and nothing else
6401 uses the flag in the meantime. */
6402 epilogue_completed = 1;
6403
6404 #ifdef HAVE_eh_return
6405 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6406 some targets, these get split to a special version of the epilogue
6407 code. In order to be able to properly annotate these with unwind
6408 info, try to split them now. If we get a valid split, drop an
6409 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6410 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6411 {
6412 rtx prev, last, trial;
6413
6414 if (e->flags & EDGE_FALLTHRU)
6415 continue;
6416 last = BB_END (e->src);
6417 if (!eh_returnjump_p (last))
6418 continue;
6419
6420 prev = PREV_INSN (last);
6421 trial = try_split (PATTERN (last), last, 1);
6422 if (trial == last)
6423 continue;
6424
6425 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6426 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6427 }
6428 #endif
6429
6430 /* If nothing falls through into the exit block, we don't need an
6431 epilogue. */
6432
6433 if (exit_fallthru_edge == NULL)
6434 goto epilogue_done;
6435
6436 #ifdef HAVE_epilogue
6437 if (HAVE_epilogue)
6438 {
6439 start_sequence ();
6440 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6441 seq = gen_epilogue ();
6442 if (seq)
6443 emit_jump_insn (seq);
6444
6445 /* Retain a map of the epilogue insns. */
6446 record_insns (seq, NULL, &epilogue_insn_hash);
6447 set_insn_locations (seq, epilogue_location);
6448
6449 seq = get_insns ();
6450 returnjump = get_last_insn ();
6451 end_sequence ();
6452
6453 insert_insn_on_edge (seq, exit_fallthru_edge);
6454 inserted = true;
6455
6456 if (JUMP_P (returnjump))
6457 set_return_jump_label (returnjump);
6458 }
6459 else
6460 #endif
6461 {
6462 basic_block cur_bb;
6463
6464 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6465 goto epilogue_done;
6466 /* We have a fall-through edge to the exit block, the source is not
6467 at the end of the function, and there will be an assembler epilogue
6468 at the end of the function.
6469 We can't use force_nonfallthru here, because that would try to
6470 use return. Inserting a jump 'by hand' is extremely messy, so
6471 we take advantage of cfg_layout_finalize using
6472 fixup_fallthru_exit_predecessor. */
6473 cfg_layout_initialize (0);
6474 FOR_EACH_BB (cur_bb)
6475 if (cur_bb->index >= NUM_FIXED_BLOCKS
6476 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6477 cur_bb->aux = cur_bb->next_bb;
6478 cfg_layout_finalize ();
6479 }
6480
6481 epilogue_done:
6482
6483 default_rtl_profile ();
6484
6485 if (inserted)
6486 {
6487 sbitmap blocks;
6488
6489 commit_edge_insertions ();
6490
6491 /* Look for basic blocks within the prologue insns. */
6492 blocks = sbitmap_alloc (last_basic_block);
6493 bitmap_clear (blocks);
6494 bitmap_set_bit (blocks, entry_edge->dest->index);
6495 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6496 find_many_sub_basic_blocks (blocks);
6497 sbitmap_free (blocks);
6498
6499 /* The epilogue insns we inserted may cause the exit edge to no longer
6500 be fallthru. */
6501 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6502 {
6503 if (((e->flags & EDGE_FALLTHRU) != 0)
6504 && returnjump_p (BB_END (e->src)))
6505 e->flags &= ~EDGE_FALLTHRU;
6506 }
6507 }
6508
6509 #ifdef HAVE_simple_return
6510 /* If there were branches to an empty LAST_BB which we tried to
6511 convert to conditional simple_returns, but couldn't for some
6512 reason, create a block to hold a simple_return insn and redirect
6513 those remaining edges. */
6514 if (!VEC_empty (edge, unconverted_simple_returns))
6515 {
6516 basic_block simple_return_block_hot = NULL;
6517 basic_block simple_return_block_cold = NULL;
6518 edge pending_edge_hot = NULL;
6519 edge pending_edge_cold = NULL;
6520 basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
6521 int i;
6522
6523 gcc_assert (entry_edge != orig_entry_edge);
6524
6525 /* See if we can reuse the last insn that was emitted for the
6526 epilogue. */
6527 if (returnjump != NULL_RTX
6528 && JUMP_LABEL (returnjump) == simple_return_rtx)
6529 {
6530 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6531 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6532 simple_return_block_hot = e->dest;
6533 else
6534 simple_return_block_cold = e->dest;
6535 }
6536
6537 /* Also check returns we might need to add to tail blocks. */
6538 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6539 if (EDGE_COUNT (e->src->preds) != 0
6540 && (e->flags & EDGE_FAKE) != 0
6541 && !bitmap_bit_p (&bb_flags, e->src->index))
6542 {
6543 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6544 pending_edge_hot = e;
6545 else
6546 pending_edge_cold = e;
6547 }
6548
6549 FOR_EACH_VEC_ELT (edge, unconverted_simple_returns, i, e)
6550 {
6551 basic_block *pdest_bb;
6552 edge pending;
6553
6554 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6555 {
6556 pdest_bb = &simple_return_block_hot;
6557 pending = pending_edge_hot;
6558 }
6559 else
6560 {
6561 pdest_bb = &simple_return_block_cold;
6562 pending = pending_edge_cold;
6563 }
6564
6565 if (*pdest_bb == NULL && pending != NULL)
6566 {
6567 emit_return_into_block (true, pending->src);
6568 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6569 *pdest_bb = pending->src;
6570 }
6571 else if (*pdest_bb == NULL)
6572 {
6573 basic_block bb;
6574 rtx start;
6575
6576 bb = create_basic_block (NULL, NULL, exit_pred);
6577 BB_COPY_PARTITION (bb, e->src);
6578 start = emit_jump_insn_after (gen_simple_return (),
6579 BB_END (bb));
6580 JUMP_LABEL (start) = simple_return_rtx;
6581 emit_barrier_after (start);
6582
6583 *pdest_bb = bb;
6584 make_edge (bb, EXIT_BLOCK_PTR, 0);
6585 }
6586 redirect_edge_and_branch_force (e, *pdest_bb);
6587 }
6588 VEC_free (edge, heap, unconverted_simple_returns);
6589 }
6590
6591 if (entry_edge != orig_entry_edge)
6592 {
6593 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6594 if (EDGE_COUNT (e->src->preds) != 0
6595 && (e->flags & EDGE_FAKE) != 0
6596 && !bitmap_bit_p (&bb_flags, e->src->index))
6597 {
6598 emit_return_into_block (true, e->src);
6599 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6600 }
6601 }
6602 #endif
6603
6604 #ifdef HAVE_sibcall_epilogue
6605 /* Emit sibling epilogues before any sibling call sites. */
6606 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6607 {
6608 basic_block bb = e->src;
6609 rtx insn = BB_END (bb);
6610 rtx ep_seq;
6611
6612 if (!CALL_P (insn)
6613 || ! SIBLING_CALL_P (insn)
6614 #ifdef HAVE_simple_return
6615 || (entry_edge != orig_entry_edge
6616 && !bitmap_bit_p (&bb_flags, bb->index))
6617 #endif
6618 )
6619 {
6620 ei_next (&ei);
6621 continue;
6622 }
6623
6624 ep_seq = gen_sibcall_epilogue ();
6625 if (ep_seq)
6626 {
6627 start_sequence ();
6628 emit_note (NOTE_INSN_EPILOGUE_BEG);
6629 emit_insn (ep_seq);
6630 seq = get_insns ();
6631 end_sequence ();
6632
6633 /* Retain a map of the epilogue insns. Used in life analysis to
6634 avoid getting rid of sibcall epilogue insns. Do this before we
6635 actually emit the sequence. */
6636 record_insns (seq, NULL, &epilogue_insn_hash);
6637 set_insn_locations (seq, epilogue_location);
6638
6639 emit_insn_before (seq, insn);
6640 }
6641 ei_next (&ei);
6642 }
6643 #endif
6644
6645 #ifdef HAVE_epilogue
6646 if (epilogue_end)
6647 {
6648 rtx insn, next;
6649
6650 /* Similarly, move any line notes that appear after the epilogue.
6651 There is no need, however, to be quite so anal about the existence
6652 of such a note. Also possibly move
6653 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6654 info generation. */
6655 for (insn = epilogue_end; insn; insn = next)
6656 {
6657 next = NEXT_INSN (insn);
6658 if (NOTE_P (insn)
6659 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6660 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6661 }
6662 }
6663 #endif
6664
6665 #ifdef HAVE_simple_return
6666 bitmap_clear (&bb_flags);
6667 #endif
6668
6669 /* Threading the prologue and epilogue changes the artificial refs
6670 in the entry and exit blocks. */
6671 epilogue_completed = 1;
6672 df_update_entry_exit_and_calls ();
6673 }
6674
6675 /* Reposition the prologue-end and epilogue-begin notes after
6676 instruction scheduling. */
6677
6678 void
6679 reposition_prologue_and_epilogue_notes (void)
6680 {
6681 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6682 || defined (HAVE_sibcall_epilogue)
6683 /* Since the hash table is created on demand, the fact that it is
6684 non-null is a signal that it is non-empty. */
6685 if (prologue_insn_hash != NULL)
6686 {
6687 size_t len = htab_elements (prologue_insn_hash);
6688 rtx insn, last = NULL, note = NULL;
6689
6690 /* Scan from the beginning until we reach the last prologue insn. */
6691 /* ??? While we do have the CFG intact, there are two problems:
6692 (1) The prologue can contain loops (typically probing the stack),
6693 which means that the end of the prologue isn't in the first bb.
6694 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6695 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6696 {
6697 if (NOTE_P (insn))
6698 {
6699 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6700 note = insn;
6701 }
6702 else if (contains (insn, prologue_insn_hash))
6703 {
6704 last = insn;
6705 if (--len == 0)
6706 break;
6707 }
6708 }
6709
6710 if (last)
6711 {
6712 if (note == NULL)
6713 {
6714 /* Scan forward looking for the PROLOGUE_END note. It should
6715 be right at the beginning of the block, possibly with other
6716 insn notes that got moved there. */
6717 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6718 {
6719 if (NOTE_P (note)
6720 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6721 break;
6722 }
6723 }
6724
6725 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6726 if (LABEL_P (last))
6727 last = NEXT_INSN (last);
6728 reorder_insns (note, note, last);
6729 }
6730 }
6731
6732 if (epilogue_insn_hash != NULL)
6733 {
6734 edge_iterator ei;
6735 edge e;
6736
6737 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6738 {
6739 rtx insn, first = NULL, note = NULL;
6740 basic_block bb = e->src;
6741
6742 /* Scan from the beginning until we reach the first epilogue insn. */
6743 FOR_BB_INSNS (bb, insn)
6744 {
6745 if (NOTE_P (insn))
6746 {
6747 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6748 {
6749 note = insn;
6750 if (first != NULL)
6751 break;
6752 }
6753 }
6754 else if (first == NULL && contains (insn, epilogue_insn_hash))
6755 {
6756 first = insn;
6757 if (note != NULL)
6758 break;
6759 }
6760 }
6761
6762 if (note)
6763 {
6764 /* If the function has a single basic block, and no real
6765 epilogue insns (e.g. sibcall with no cleanup), the
6766 epilogue note can get scheduled before the prologue
6767 note. If we have frame related prologue insns, having
6768 them scanned during the epilogue will result in a crash.
6769 In this case re-order the epilogue note to just before
6770 the last insn in the block. */
6771 if (first == NULL)
6772 first = BB_END (bb);
6773
6774 if (PREV_INSN (first) != note)
6775 reorder_insns (note, note, PREV_INSN (first));
6776 }
6777 }
6778 }
6779 #endif /* HAVE_prologue or HAVE_epilogue */
6780 }
6781
6782 /* Returns the name of function declared by FNDECL. */
6783 const char *
6784 fndecl_name (tree fndecl)
6785 {
6786 if (fndecl == NULL)
6787 return "(nofn)";
6788 return lang_hooks.decl_printable_name (fndecl, 2);
6789 }
6790
6791 /* Returns the name of function FN. */
6792 const char *
6793 function_name (struct function *fn)
6794 {
6795 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6796 return fndecl_name (fndecl);
6797 }
6798
6799 /* Returns the name of the current function. */
6800 const char *
6801 current_function_name (void)
6802 {
6803 return function_name (cfun);
6804 }
6805 \f
6806
6807 static unsigned int
6808 rest_of_handle_check_leaf_regs (void)
6809 {
6810 #ifdef LEAF_REGISTERS
6811 crtl->uses_only_leaf_regs
6812 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6813 #endif
6814 return 0;
6815 }
6816
6817 /* Insert a TYPE into the used types hash table of CFUN. */
6818
6819 static void
6820 used_types_insert_helper (tree type, struct function *func)
6821 {
6822 if (type != NULL && func != NULL)
6823 {
6824 void **slot;
6825
6826 if (func->used_types_hash == NULL)
6827 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6828 htab_eq_pointer, NULL);
6829 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6830 if (*slot == NULL)
6831 *slot = type;
6832 }
6833 }
6834
6835 /* Given a type, insert it into the used hash table in cfun. */
6836 void
6837 used_types_insert (tree t)
6838 {
6839 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6840 if (TYPE_NAME (t))
6841 break;
6842 else
6843 t = TREE_TYPE (t);
6844 if (TREE_CODE (t) == ERROR_MARK)
6845 return;
6846 if (TYPE_NAME (t) == NULL_TREE
6847 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6848 t = TYPE_MAIN_VARIANT (t);
6849 if (debug_info_level > DINFO_LEVEL_NONE)
6850 {
6851 if (cfun)
6852 used_types_insert_helper (t, cfun);
6853 else
6854 /* So this might be a type referenced by a global variable.
6855 Record that type so that we can later decide to emit its debug
6856 information. */
6857 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
6858 }
6859 }
6860
6861 /* Helper to Hash a struct types_used_by_vars_entry. */
6862
6863 static hashval_t
6864 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6865 {
6866 gcc_assert (entry && entry->var_decl && entry->type);
6867
6868 return iterative_hash_object (entry->type,
6869 iterative_hash_object (entry->var_decl, 0));
6870 }
6871
6872 /* Hash function of the types_used_by_vars_entry hash table. */
6873
6874 hashval_t
6875 types_used_by_vars_do_hash (const void *x)
6876 {
6877 const struct types_used_by_vars_entry *entry =
6878 (const struct types_used_by_vars_entry *) x;
6879
6880 return hash_types_used_by_vars_entry (entry);
6881 }
6882
6883 /*Equality function of the types_used_by_vars_entry hash table. */
6884
6885 int
6886 types_used_by_vars_eq (const void *x1, const void *x2)
6887 {
6888 const struct types_used_by_vars_entry *e1 =
6889 (const struct types_used_by_vars_entry *) x1;
6890 const struct types_used_by_vars_entry *e2 =
6891 (const struct types_used_by_vars_entry *)x2;
6892
6893 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6894 }
6895
6896 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6897
6898 void
6899 types_used_by_var_decl_insert (tree type, tree var_decl)
6900 {
6901 if (type != NULL && var_decl != NULL)
6902 {
6903 void **slot;
6904 struct types_used_by_vars_entry e;
6905 e.var_decl = var_decl;
6906 e.type = type;
6907 if (types_used_by_vars_hash == NULL)
6908 types_used_by_vars_hash =
6909 htab_create_ggc (37, types_used_by_vars_do_hash,
6910 types_used_by_vars_eq, NULL);
6911 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6912 hash_types_used_by_vars_entry (&e), INSERT);
6913 if (*slot == NULL)
6914 {
6915 struct types_used_by_vars_entry *entry;
6916 entry = ggc_alloc_types_used_by_vars_entry ();
6917 entry->type = type;
6918 entry->var_decl = var_decl;
6919 *slot = entry;
6920 }
6921 }
6922 }
6923
6924 struct rtl_opt_pass pass_leaf_regs =
6925 {
6926 {
6927 RTL_PASS,
6928 "*leaf_regs", /* name */
6929 OPTGROUP_NONE, /* optinfo_flags */
6930 NULL, /* gate */
6931 rest_of_handle_check_leaf_regs, /* execute */
6932 NULL, /* sub */
6933 NULL, /* next */
6934 0, /* static_pass_number */
6935 TV_NONE, /* tv_id */
6936 0, /* properties_required */
6937 0, /* properties_provided */
6938 0, /* properties_destroyed */
6939 0, /* todo_flags_start */
6940 0 /* todo_flags_finish */
6941 }
6942 };
6943
6944 static unsigned int
6945 rest_of_handle_thread_prologue_and_epilogue (void)
6946 {
6947 if (optimize)
6948 cleanup_cfg (CLEANUP_EXPENSIVE);
6949
6950 /* On some machines, the prologue and epilogue code, or parts thereof,
6951 can be represented as RTL. Doing so lets us schedule insns between
6952 it and the rest of the code and also allows delayed branch
6953 scheduling to operate in the epilogue. */
6954 thread_prologue_and_epilogue_insns ();
6955
6956 /* The stack usage info is finalized during prologue expansion. */
6957 if (flag_stack_usage_info)
6958 output_stack_usage ();
6959
6960 return 0;
6961 }
6962
6963 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
6964 {
6965 {
6966 RTL_PASS,
6967 "pro_and_epilogue", /* name */
6968 OPTGROUP_NONE, /* optinfo_flags */
6969 NULL, /* gate */
6970 rest_of_handle_thread_prologue_and_epilogue, /* execute */
6971 NULL, /* sub */
6972 NULL, /* next */
6973 0, /* static_pass_number */
6974 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6975 0, /* properties_required */
6976 0, /* properties_provided */
6977 0, /* properties_destroyed */
6978 TODO_verify_flow, /* todo_flags_start */
6979 TODO_df_verify |
6980 TODO_df_finish | TODO_verify_rtl_sharing |
6981 TODO_ggc_collect /* todo_flags_finish */
6982 }
6983 };
6984 \f
6985
6986 /* This mini-pass fixes fall-out from SSA in asm statements that have
6987 in-out constraints. Say you start with
6988
6989 orig = inout;
6990 asm ("": "+mr" (inout));
6991 use (orig);
6992
6993 which is transformed very early to use explicit output and match operands:
6994
6995 orig = inout;
6996 asm ("": "=mr" (inout) : "0" (inout));
6997 use (orig);
6998
6999 Or, after SSA and copyprop,
7000
7001 asm ("": "=mr" (inout_2) : "0" (inout_1));
7002 use (inout_1);
7003
7004 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7005 they represent two separate values, so they will get different pseudo
7006 registers during expansion. Then, since the two operands need to match
7007 per the constraints, but use different pseudo registers, reload can
7008 only register a reload for these operands. But reloads can only be
7009 satisfied by hardregs, not by memory, so we need a register for this
7010 reload, just because we are presented with non-matching operands.
7011 So, even though we allow memory for this operand, no memory can be
7012 used for it, just because the two operands don't match. This can
7013 cause reload failures on register-starved targets.
7014
7015 So it's a symptom of reload not being able to use memory for reloads
7016 or, alternatively it's also a symptom of both operands not coming into
7017 reload as matching (in which case the pseudo could go to memory just
7018 fine, as the alternative allows it, and no reload would be necessary).
7019 We fix the latter problem here, by transforming
7020
7021 asm ("": "=mr" (inout_2) : "0" (inout_1));
7022
7023 back to
7024
7025 inout_2 = inout_1;
7026 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7027
7028 static void
7029 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7030 {
7031 int i;
7032 bool changed = false;
7033 rtx op = SET_SRC (p_sets[0]);
7034 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7035 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7036 bool *output_matched = XALLOCAVEC (bool, noutputs);
7037
7038 memset (output_matched, 0, noutputs * sizeof (bool));
7039 for (i = 0; i < ninputs; i++)
7040 {
7041 rtx input, output, insns;
7042 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7043 char *end;
7044 int match, j;
7045
7046 if (*constraint == '%')
7047 constraint++;
7048
7049 match = strtoul (constraint, &end, 10);
7050 if (end == constraint)
7051 continue;
7052
7053 gcc_assert (match < noutputs);
7054 output = SET_DEST (p_sets[match]);
7055 input = RTVEC_ELT (inputs, i);
7056 /* Only do the transformation for pseudos. */
7057 if (! REG_P (output)
7058 || rtx_equal_p (output, input)
7059 || (GET_MODE (input) != VOIDmode
7060 && GET_MODE (input) != GET_MODE (output)))
7061 continue;
7062
7063 /* We can't do anything if the output is also used as input,
7064 as we're going to overwrite it. */
7065 for (j = 0; j < ninputs; j++)
7066 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7067 break;
7068 if (j != ninputs)
7069 continue;
7070
7071 /* Avoid changing the same input several times. For
7072 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7073 only change in once (to out1), rather than changing it
7074 first to out1 and afterwards to out2. */
7075 if (i > 0)
7076 {
7077 for (j = 0; j < noutputs; j++)
7078 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7079 break;
7080 if (j != noutputs)
7081 continue;
7082 }
7083 output_matched[match] = true;
7084
7085 start_sequence ();
7086 emit_move_insn (output, input);
7087 insns = get_insns ();
7088 end_sequence ();
7089 emit_insn_before (insns, insn);
7090
7091 /* Now replace all mentions of the input with output. We can't
7092 just replace the occurrence in inputs[i], as the register might
7093 also be used in some other input (or even in an address of an
7094 output), which would mean possibly increasing the number of
7095 inputs by one (namely 'output' in addition), which might pose
7096 a too complicated problem for reload to solve. E.g. this situation:
7097
7098 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7099
7100 Here 'input' is used in two occurrences as input (once for the
7101 input operand, once for the address in the second output operand).
7102 If we would replace only the occurrence of the input operand (to
7103 make the matching) we would be left with this:
7104
7105 output = input
7106 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7107
7108 Now we suddenly have two different input values (containing the same
7109 value, but different pseudos) where we formerly had only one.
7110 With more complicated asms this might lead to reload failures
7111 which wouldn't have happen without this pass. So, iterate over
7112 all operands and replace all occurrences of the register used. */
7113 for (j = 0; j < noutputs; j++)
7114 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7115 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7116 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7117 input, output);
7118 for (j = 0; j < ninputs; j++)
7119 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7120 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7121 input, output);
7122
7123 changed = true;
7124 }
7125
7126 if (changed)
7127 df_insn_rescan (insn);
7128 }
7129
7130 static unsigned
7131 rest_of_match_asm_constraints (void)
7132 {
7133 basic_block bb;
7134 rtx insn, pat, *p_sets;
7135 int noutputs;
7136
7137 if (!crtl->has_asm_statement)
7138 return 0;
7139
7140 df_set_flags (DF_DEFER_INSN_RESCAN);
7141 FOR_EACH_BB (bb)
7142 {
7143 FOR_BB_INSNS (bb, insn)
7144 {
7145 if (!INSN_P (insn))
7146 continue;
7147
7148 pat = PATTERN (insn);
7149 if (GET_CODE (pat) == PARALLEL)
7150 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7151 else if (GET_CODE (pat) == SET)
7152 p_sets = &PATTERN (insn), noutputs = 1;
7153 else
7154 continue;
7155
7156 if (GET_CODE (*p_sets) == SET
7157 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7158 match_asm_constraints_1 (insn, p_sets, noutputs);
7159 }
7160 }
7161
7162 return TODO_df_finish;
7163 }
7164
7165 struct rtl_opt_pass pass_match_asm_constraints =
7166 {
7167 {
7168 RTL_PASS,
7169 "asmcons", /* name */
7170 OPTGROUP_NONE, /* optinfo_flags */
7171 NULL, /* gate */
7172 rest_of_match_asm_constraints, /* execute */
7173 NULL, /* sub */
7174 NULL, /* next */
7175 0, /* static_pass_number */
7176 TV_NONE, /* tv_id */
7177 0, /* properties_required */
7178 0, /* properties_provided */
7179 0, /* properties_destroyed */
7180 0, /* todo_flags_start */
7181 0 /* todo_flags_finish */
7182 }
7183 };
7184
7185
7186 #include "gt-function.h"