re PR target/18896 (addressing split complex parm)
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "tree-gimple.h"
63
64 #ifndef LOCAL_ALIGNMENT
65 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
66 #endif
67
68 #ifndef STACK_ALIGNMENT_NEEDED
69 #define STACK_ALIGNMENT_NEEDED 1
70 #endif
71
72 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73
74 /* Some systems use __main in a way incompatible with its use in gcc, in these
75 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
76 give the same symbol without quotes for an alternative entry point. You
77 must define both, or neither. */
78 #ifndef NAME__MAIN
79 #define NAME__MAIN "__main"
80 #endif
81
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90
91 /* Nonzero if function being compiled doesn't contain any calls
92 (ignoring the prologue and epilogue). This is set prior to
93 local register allocation and is valid for the remaining
94 compiler passes. */
95 int current_function_is_leaf;
96
97 /* Nonzero if function being compiled doesn't modify the stack pointer
98 (ignoring the prologue and epilogue). This is only valid after
99 life_analysis has run. */
100 int current_function_sp_is_unchanging;
101
102 /* Nonzero if the function being compiled is a leaf function which only
103 uses leaf registers. This is valid after reload (specifically after
104 sched2) and is useful only if the port defines LEAF_REGISTERS. */
105 int current_function_uses_only_leaf_regs;
106
107 /* Nonzero once virtual register instantiation has been done.
108 assign_stack_local uses frame_pointer_rtx when this is nonzero.
109 calls.c:emit_library_call_value_1 uses it to set up
110 post-instantiation libcalls. */
111 int virtuals_instantiated;
112
113 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
114 static GTY(()) int funcdef_no;
115
116 /* These variables hold pointers to functions to create and destroy
117 target specific, per-function data structures. */
118 struct machine_function * (*init_machine_status) (void);
119
120 /* The currently compiled function. */
121 struct function *cfun = 0;
122
123 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
124 static GTY(()) varray_type prologue;
125 static GTY(()) varray_type epilogue;
126
127 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
128 in this function. */
129 static GTY(()) varray_type sibcall_epilogue;
130 \f
131 /* In order to evaluate some expressions, such as function calls returning
132 structures in memory, we need to temporarily allocate stack locations.
133 We record each allocated temporary in the following structure.
134
135 Associated with each temporary slot is a nesting level. When we pop up
136 one level, all temporaries associated with the previous level are freed.
137 Normally, all temporaries are freed after the execution of the statement
138 in which they were created. However, if we are inside a ({...}) grouping,
139 the result may be in a temporary and hence must be preserved. If the
140 result could be in a temporary, we preserve it if we can determine which
141 one it is in. If we cannot determine which temporary may contain the
142 result, all temporaries are preserved. A temporary is preserved by
143 pretending it was allocated at the previous nesting level.
144
145 Automatic variables are also assigned temporary slots, at the nesting
146 level where they are defined. They are marked a "kept" so that
147 free_temp_slots will not free them. */
148
149 struct temp_slot GTY(())
150 {
151 /* Points to next temporary slot. */
152 struct temp_slot *next;
153 /* Points to previous temporary slot. */
154 struct temp_slot *prev;
155
156 /* The rtx to used to reference the slot. */
157 rtx slot;
158 /* The rtx used to represent the address if not the address of the
159 slot above. May be an EXPR_LIST if multiple addresses exist. */
160 rtx address;
161 /* The alignment (in bits) of the slot. */
162 unsigned int align;
163 /* The size, in units, of the slot. */
164 HOST_WIDE_INT size;
165 /* The type of the object in the slot, or zero if it doesn't correspond
166 to a type. We use this to determine whether a slot can be reused.
167 It can be reused if objects of the type of the new slot will always
168 conflict with objects of the type of the old slot. */
169 tree type;
170 /* Nonzero if this temporary is currently in use. */
171 char in_use;
172 /* Nonzero if this temporary has its address taken. */
173 char addr_taken;
174 /* Nesting level at which this slot is being used. */
175 int level;
176 /* Nonzero if this should survive a call to free_temp_slots. */
177 int keep;
178 /* The offset of the slot from the frame_pointer, including extra space
179 for alignment. This info is for combine_temp_slots. */
180 HOST_WIDE_INT base_offset;
181 /* The size of the slot, including extra space for alignment. This
182 info is for combine_temp_slots. */
183 HOST_WIDE_INT full_size;
184 };
185 \f
186 /* Forward declarations. */
187
188 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
189 struct function *);
190 static struct temp_slot *find_temp_slot_from_address (rtx);
191 static void instantiate_decls (tree, int);
192 static void instantiate_decls_1 (tree, int);
193 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
194 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
195 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
196 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
197 static void pad_below (struct args_size *, enum machine_mode, tree);
198 static void reorder_blocks_1 (rtx, tree, varray_type *);
199 static void reorder_fix_fragments (tree);
200 static int all_blocks (tree, tree *);
201 static tree *get_block_vector (tree, int *);
202 extern tree debug_find_var_in_block_tree (tree, tree);
203 /* We always define `record_insns' even if it's not used so that we
204 can always export `prologue_epilogue_contains'. */
205 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
206 static int contains (rtx, varray_type);
207 #ifdef HAVE_return
208 static void emit_return_into_block (basic_block, rtx);
209 #endif
210 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
211 static rtx keep_stack_depressed (rtx);
212 #endif
213 static void prepare_function_start (tree);
214 static void do_clobber_return_reg (rtx, void *);
215 static void do_use_return_reg (rtx, void *);
216 static void instantiate_virtual_regs_lossage (rtx);
217 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 \f
219 /* Pointer to chain of `struct function' for containing functions. */
220 struct function *outer_function_chain;
221
222 /* Given a function decl for a containing function,
223 return the `struct function' for it. */
224
225 struct function *
226 find_function_data (tree decl)
227 {
228 struct function *p;
229
230 for (p = outer_function_chain; p; p = p->outer)
231 if (p->decl == decl)
232 return p;
233
234 gcc_unreachable ();
235 }
236
237 /* Save the current context for compilation of a nested function.
238 This is called from language-specific code. The caller should use
239 the enter_nested langhook to save any language-specific state,
240 since this function knows only about language-independent
241 variables. */
242
243 void
244 push_function_context_to (tree context)
245 {
246 struct function *p;
247
248 if (context)
249 {
250 if (context == current_function_decl)
251 cfun->contains_functions = 1;
252 else
253 {
254 struct function *containing = find_function_data (context);
255 containing->contains_functions = 1;
256 }
257 }
258
259 if (cfun == 0)
260 init_dummy_function_start ();
261 p = cfun;
262
263 p->outer = outer_function_chain;
264 outer_function_chain = p;
265
266 lang_hooks.function.enter_nested (p);
267
268 cfun = 0;
269 }
270
271 void
272 push_function_context (void)
273 {
274 push_function_context_to (current_function_decl);
275 }
276
277 /* Restore the last saved context, at the end of a nested function.
278 This function is called from language-specific code. */
279
280 void
281 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
282 {
283 struct function *p = outer_function_chain;
284
285 cfun = p;
286 outer_function_chain = p->outer;
287
288 current_function_decl = p->decl;
289
290 lang_hooks.function.leave_nested (p);
291
292 /* Reset variables that have known state during rtx generation. */
293 virtuals_instantiated = 0;
294 generating_concat_p = 1;
295 }
296
297 void
298 pop_function_context (void)
299 {
300 pop_function_context_from (current_function_decl);
301 }
302
303 /* Clear out all parts of the state in F that can safely be discarded
304 after the function has been parsed, but not compiled, to let
305 garbage collection reclaim the memory. */
306
307 void
308 free_after_parsing (struct function *f)
309 {
310 /* f->expr->forced_labels is used by code generation. */
311 /* f->emit->regno_reg_rtx is used by code generation. */
312 /* f->varasm is used by code generation. */
313 /* f->eh->eh_return_stub_label is used by code generation. */
314
315 lang_hooks.function.final (f);
316 }
317
318 /* Clear out all parts of the state in F that can safely be discarded
319 after the function has been compiled, to let garbage collection
320 reclaim the memory. */
321
322 void
323 free_after_compilation (struct function *f)
324 {
325 f->eh = NULL;
326 f->expr = NULL;
327 f->emit = NULL;
328 f->varasm = NULL;
329 f->machine = NULL;
330
331 f->x_avail_temp_slots = NULL;
332 f->x_used_temp_slots = NULL;
333 f->arg_offset_rtx = NULL;
334 f->return_rtx = NULL;
335 f->internal_arg_pointer = NULL;
336 f->x_nonlocal_goto_handler_labels = NULL;
337 f->x_return_label = NULL;
338 f->x_naked_return_label = NULL;
339 f->x_stack_slot_list = NULL;
340 f->x_tail_recursion_reentry = NULL;
341 f->x_arg_pointer_save_area = NULL;
342 f->x_parm_birth_insn = NULL;
343 f->original_arg_vector = NULL;
344 f->original_decl_initial = NULL;
345 f->epilogue_delay_list = NULL;
346 }
347 \f
348 /* Allocate fixed slots in the stack frame of the current function. */
349
350 /* Return size needed for stack frame based on slots so far allocated in
351 function F.
352 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
353 the caller may have to do that. */
354
355 HOST_WIDE_INT
356 get_func_frame_size (struct function *f)
357 {
358 #ifdef FRAME_GROWS_DOWNWARD
359 return -f->x_frame_offset;
360 #else
361 return f->x_frame_offset;
362 #endif
363 }
364
365 /* Return size needed for stack frame based on slots so far allocated.
366 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
367 the caller may have to do that. */
368 HOST_WIDE_INT
369 get_frame_size (void)
370 {
371 return get_func_frame_size (cfun);
372 }
373
374 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
375 with machine mode MODE.
376
377 ALIGN controls the amount of alignment for the address of the slot:
378 0 means according to MODE,
379 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
380 -2 means use BITS_PER_UNIT,
381 positive specifies alignment boundary in bits.
382
383 We do not round to stack_boundary here.
384
385 FUNCTION specifies the function to allocate in. */
386
387 static rtx
388 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
389 struct function *function)
390 {
391 rtx x, addr;
392 int bigend_correction = 0;
393 unsigned int alignment;
394 int frame_off, frame_alignment, frame_phase;
395
396 if (align == 0)
397 {
398 tree type;
399
400 if (mode == BLKmode)
401 alignment = BIGGEST_ALIGNMENT;
402 else
403 alignment = GET_MODE_ALIGNMENT (mode);
404
405 /* Allow the target to (possibly) increase the alignment of this
406 stack slot. */
407 type = lang_hooks.types.type_for_mode (mode, 0);
408 if (type)
409 alignment = LOCAL_ALIGNMENT (type, alignment);
410
411 alignment /= BITS_PER_UNIT;
412 }
413 else if (align == -1)
414 {
415 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
416 size = CEIL_ROUND (size, alignment);
417 }
418 else if (align == -2)
419 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
420 else
421 alignment = align / BITS_PER_UNIT;
422
423 #ifdef FRAME_GROWS_DOWNWARD
424 function->x_frame_offset -= size;
425 #endif
426
427 /* Ignore alignment we can't do with expected alignment of the boundary. */
428 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
429 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
430
431 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
432 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
433
434 /* Calculate how many bytes the start of local variables is off from
435 stack alignment. */
436 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
437 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
438 frame_phase = frame_off ? frame_alignment - frame_off : 0;
439
440 /* Round the frame offset to the specified alignment. The default is
441 to always honor requests to align the stack but a port may choose to
442 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
443 if (STACK_ALIGNMENT_NEEDED
444 || mode != BLKmode
445 || size != 0)
446 {
447 /* We must be careful here, since FRAME_OFFSET might be negative and
448 division with a negative dividend isn't as well defined as we might
449 like. So we instead assume that ALIGNMENT is a power of two and
450 use logical operations which are unambiguous. */
451 #ifdef FRAME_GROWS_DOWNWARD
452 function->x_frame_offset
453 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
454 (unsigned HOST_WIDE_INT) alignment)
455 + frame_phase);
456 #else
457 function->x_frame_offset
458 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
459 (unsigned HOST_WIDE_INT) alignment)
460 + frame_phase);
461 #endif
462 }
463
464 /* On a big-endian machine, if we are allocating more space than we will use,
465 use the least significant bytes of those that are allocated. */
466 if (BYTES_BIG_ENDIAN && mode != BLKmode)
467 bigend_correction = size - GET_MODE_SIZE (mode);
468
469 /* If we have already instantiated virtual registers, return the actual
470 address relative to the frame pointer. */
471 if (function == cfun && virtuals_instantiated)
472 addr = plus_constant (frame_pointer_rtx,
473 trunc_int_for_mode
474 (frame_offset + bigend_correction
475 + STARTING_FRAME_OFFSET, Pmode));
476 else
477 addr = plus_constant (virtual_stack_vars_rtx,
478 trunc_int_for_mode
479 (function->x_frame_offset + bigend_correction,
480 Pmode));
481
482 #ifndef FRAME_GROWS_DOWNWARD
483 function->x_frame_offset += size;
484 #endif
485
486 x = gen_rtx_MEM (mode, addr);
487
488 function->x_stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
490
491 return x;
492 }
493
494 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
495 current function. */
496
497 rtx
498 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
499 {
500 return assign_stack_local_1 (mode, size, align, cfun);
501 }
502
503 \f
504 /* Removes temporary slot TEMP from LIST. */
505
506 static void
507 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
508 {
509 if (temp->next)
510 temp->next->prev = temp->prev;
511 if (temp->prev)
512 temp->prev->next = temp->next;
513 else
514 *list = temp->next;
515
516 temp->prev = temp->next = NULL;
517 }
518
519 /* Inserts temporary slot TEMP to LIST. */
520
521 static void
522 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
523 {
524 temp->next = *list;
525 if (*list)
526 (*list)->prev = temp;
527 temp->prev = NULL;
528 *list = temp;
529 }
530
531 /* Returns the list of used temp slots at LEVEL. */
532
533 static struct temp_slot **
534 temp_slots_at_level (int level)
535 {
536
537 if (!used_temp_slots)
538 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
539
540 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
541 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
542
543 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
544 }
545
546 /* Returns the maximal temporary slot level. */
547
548 static int
549 max_slot_level (void)
550 {
551 if (!used_temp_slots)
552 return -1;
553
554 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
555 }
556
557 /* Moves temporary slot TEMP to LEVEL. */
558
559 static void
560 move_slot_to_level (struct temp_slot *temp, int level)
561 {
562 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
563 insert_slot_to_list (temp, temp_slots_at_level (level));
564 temp->level = level;
565 }
566
567 /* Make temporary slot TEMP available. */
568
569 static void
570 make_slot_available (struct temp_slot *temp)
571 {
572 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
573 insert_slot_to_list (temp, &avail_temp_slots);
574 temp->in_use = 0;
575 temp->level = -1;
576 }
577 \f
578 /* Allocate a temporary stack slot and record it for possible later
579 reuse.
580
581 MODE is the machine mode to be given to the returned rtx.
582
583 SIZE is the size in units of the space required. We do no rounding here
584 since assign_stack_local will do any required rounding.
585
586 KEEP is 1 if this slot is to be retained after a call to
587 free_temp_slots. Automatic variables for a block are allocated
588 with this flag. KEEP values of 2 or 3 were needed respectively
589 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
590 or for SAVE_EXPRs, but they are now unused and will abort.
591
592 TYPE is the type that will be used for the stack slot. */
593
594 rtx
595 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
596 tree type)
597 {
598 unsigned int align;
599 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
600 rtx slot;
601
602 /* If SIZE is -1 it means that somebody tried to allocate a temporary
603 of a variable size. */
604 gcc_assert (size != -1);
605
606 /* These are now unused. */
607 gcc_assert (keep <= 1);
608
609 if (mode == BLKmode)
610 align = BIGGEST_ALIGNMENT;
611 else
612 align = GET_MODE_ALIGNMENT (mode);
613
614 if (! type)
615 type = lang_hooks.types.type_for_mode (mode, 0);
616
617 if (type)
618 align = LOCAL_ALIGNMENT (type, align);
619
620 /* Try to find an available, already-allocated temporary of the proper
621 mode which meets the size and alignment requirements. Choose the
622 smallest one with the closest alignment. */
623 for (p = avail_temp_slots; p; p = p->next)
624 {
625 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
626 && objects_must_conflict_p (p->type, type)
627 && (best_p == 0 || best_p->size > p->size
628 || (best_p->size == p->size && best_p->align > p->align)))
629 {
630 if (p->align == align && p->size == size)
631 {
632 selected = p;
633 cut_slot_from_list (selected, &avail_temp_slots);
634 best_p = 0;
635 break;
636 }
637 best_p = p;
638 }
639 }
640
641 /* Make our best, if any, the one to use. */
642 if (best_p)
643 {
644 selected = best_p;
645 cut_slot_from_list (selected, &avail_temp_slots);
646
647 /* If there are enough aligned bytes left over, make them into a new
648 temp_slot so that the extra bytes don't get wasted. Do this only
649 for BLKmode slots, so that we can be sure of the alignment. */
650 if (GET_MODE (best_p->slot) == BLKmode)
651 {
652 int alignment = best_p->align / BITS_PER_UNIT;
653 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
654
655 if (best_p->size - rounded_size >= alignment)
656 {
657 p = ggc_alloc (sizeof (struct temp_slot));
658 p->in_use = p->addr_taken = 0;
659 p->size = best_p->size - rounded_size;
660 p->base_offset = best_p->base_offset + rounded_size;
661 p->full_size = best_p->full_size - rounded_size;
662 p->slot = gen_rtx_MEM (BLKmode,
663 plus_constant (XEXP (best_p->slot, 0),
664 rounded_size));
665 p->align = best_p->align;
666 p->address = 0;
667 p->type = best_p->type;
668 insert_slot_to_list (p, &avail_temp_slots);
669
670 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
671 stack_slot_list);
672
673 best_p->size = rounded_size;
674 best_p->full_size = rounded_size;
675 }
676 }
677 }
678
679 /* If we still didn't find one, make a new temporary. */
680 if (selected == 0)
681 {
682 HOST_WIDE_INT frame_offset_old = frame_offset;
683
684 p = ggc_alloc (sizeof (struct temp_slot));
685
686 /* We are passing an explicit alignment request to assign_stack_local.
687 One side effect of that is assign_stack_local will not round SIZE
688 to ensure the frame offset remains suitably aligned.
689
690 So for requests which depended on the rounding of SIZE, we go ahead
691 and round it now. We also make sure ALIGNMENT is at least
692 BIGGEST_ALIGNMENT. */
693 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
694 p->slot = assign_stack_local (mode,
695 (mode == BLKmode
696 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
697 : size),
698 align);
699
700 p->align = align;
701
702 /* The following slot size computation is necessary because we don't
703 know the actual size of the temporary slot until assign_stack_local
704 has performed all the frame alignment and size rounding for the
705 requested temporary. Note that extra space added for alignment
706 can be either above or below this stack slot depending on which
707 way the frame grows. We include the extra space if and only if it
708 is above this slot. */
709 #ifdef FRAME_GROWS_DOWNWARD
710 p->size = frame_offset_old - frame_offset;
711 #else
712 p->size = size;
713 #endif
714
715 /* Now define the fields used by combine_temp_slots. */
716 #ifdef FRAME_GROWS_DOWNWARD
717 p->base_offset = frame_offset;
718 p->full_size = frame_offset_old - frame_offset;
719 #else
720 p->base_offset = frame_offset_old;
721 p->full_size = frame_offset - frame_offset_old;
722 #endif
723 p->address = 0;
724
725 selected = p;
726 }
727
728 p = selected;
729 p->in_use = 1;
730 p->addr_taken = 0;
731 p->type = type;
732 p->level = temp_slot_level;
733 p->keep = keep;
734
735 pp = temp_slots_at_level (p->level);
736 insert_slot_to_list (p, pp);
737
738 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
739 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
740 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
741
742 /* If we know the alias set for the memory that will be used, use
743 it. If there's no TYPE, then we don't know anything about the
744 alias set for the memory. */
745 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
746 set_mem_align (slot, align);
747
748 /* If a type is specified, set the relevant flags. */
749 if (type != 0)
750 {
751 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
752 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
753 }
754
755 return slot;
756 }
757
758 /* Allocate a temporary stack slot and record it for possible later
759 reuse. First three arguments are same as in preceding function. */
760
761 rtx
762 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
763 {
764 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
765 }
766 \f
767 /* Assign a temporary.
768 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
769 and so that should be used in error messages. In either case, we
770 allocate of the given type.
771 KEEP is as for assign_stack_temp.
772 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
773 it is 0 if a register is OK.
774 DONT_PROMOTE is 1 if we should not promote values in register
775 to wider modes. */
776
777 rtx
778 assign_temp (tree type_or_decl, int keep, int memory_required,
779 int dont_promote ATTRIBUTE_UNUSED)
780 {
781 tree type, decl;
782 enum machine_mode mode;
783 #ifdef PROMOTE_MODE
784 int unsignedp;
785 #endif
786
787 if (DECL_P (type_or_decl))
788 decl = type_or_decl, type = TREE_TYPE (decl);
789 else
790 decl = NULL, type = type_or_decl;
791
792 mode = TYPE_MODE (type);
793 #ifdef PROMOTE_MODE
794 unsignedp = TYPE_UNSIGNED (type);
795 #endif
796
797 if (mode == BLKmode || memory_required)
798 {
799 HOST_WIDE_INT size = int_size_in_bytes (type);
800 tree size_tree;
801 rtx tmp;
802
803 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
804 problems with allocating the stack space. */
805 if (size == 0)
806 size = 1;
807
808 /* Unfortunately, we don't yet know how to allocate variable-sized
809 temporaries. However, sometimes we have a fixed upper limit on
810 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
811 instead. This is the case for Chill variable-sized strings. */
812 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
813 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
814 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
815 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
816
817 /* If we still haven't been able to get a size, see if the language
818 can compute a maximum size. */
819 if (size == -1
820 && (size_tree = lang_hooks.types.max_size (type)) != 0
821 && host_integerp (size_tree, 1))
822 size = tree_low_cst (size_tree, 1);
823
824 /* The size of the temporary may be too large to fit into an integer. */
825 /* ??? Not sure this should happen except for user silliness, so limit
826 this to things that aren't compiler-generated temporaries. The
827 rest of the time we'll abort in assign_stack_temp_for_type. */
828 if (decl && size == -1
829 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
830 {
831 error ("%Jsize of variable %qD is too large", decl, decl);
832 size = 1;
833 }
834
835 tmp = assign_stack_temp_for_type (mode, size, keep, type);
836 return tmp;
837 }
838
839 #ifdef PROMOTE_MODE
840 if (! dont_promote)
841 mode = promote_mode (type, mode, &unsignedp, 0);
842 #endif
843
844 return gen_reg_rtx (mode);
845 }
846 \f
847 /* Combine temporary stack slots which are adjacent on the stack.
848
849 This allows for better use of already allocated stack space. This is only
850 done for BLKmode slots because we can be sure that we won't have alignment
851 problems in this case. */
852
853 static void
854 combine_temp_slots (void)
855 {
856 struct temp_slot *p, *q, *next, *next_q;
857 int num_slots;
858
859 /* We can't combine slots, because the information about which slot
860 is in which alias set will be lost. */
861 if (flag_strict_aliasing)
862 return;
863
864 /* If there are a lot of temp slots, don't do anything unless
865 high levels of optimization. */
866 if (! flag_expensive_optimizations)
867 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
868 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
869 return;
870
871 for (p = avail_temp_slots; p; p = next)
872 {
873 int delete_p = 0;
874
875 next = p->next;
876
877 if (GET_MODE (p->slot) != BLKmode)
878 continue;
879
880 for (q = p->next; q; q = next_q)
881 {
882 int delete_q = 0;
883
884 next_q = q->next;
885
886 if (GET_MODE (q->slot) != BLKmode)
887 continue;
888
889 if (p->base_offset + p->full_size == q->base_offset)
890 {
891 /* Q comes after P; combine Q into P. */
892 p->size += q->size;
893 p->full_size += q->full_size;
894 delete_q = 1;
895 }
896 else if (q->base_offset + q->full_size == p->base_offset)
897 {
898 /* P comes after Q; combine P into Q. */
899 q->size += p->size;
900 q->full_size += p->full_size;
901 delete_p = 1;
902 break;
903 }
904 if (delete_q)
905 cut_slot_from_list (q, &avail_temp_slots);
906 }
907
908 /* Either delete P or advance past it. */
909 if (delete_p)
910 cut_slot_from_list (p, &avail_temp_slots);
911 }
912 }
913 \f
914 /* Find the temp slot corresponding to the object at address X. */
915
916 static struct temp_slot *
917 find_temp_slot_from_address (rtx x)
918 {
919 struct temp_slot *p;
920 rtx next;
921 int i;
922
923 for (i = max_slot_level (); i >= 0; i--)
924 for (p = *temp_slots_at_level (i); p; p = p->next)
925 {
926 if (XEXP (p->slot, 0) == x
927 || p->address == x
928 || (GET_CODE (x) == PLUS
929 && XEXP (x, 0) == virtual_stack_vars_rtx
930 && GET_CODE (XEXP (x, 1)) == CONST_INT
931 && INTVAL (XEXP (x, 1)) >= p->base_offset
932 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
933 return p;
934
935 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
936 for (next = p->address; next; next = XEXP (next, 1))
937 if (XEXP (next, 0) == x)
938 return p;
939 }
940
941 /* If we have a sum involving a register, see if it points to a temp
942 slot. */
943 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
944 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
945 return p;
946 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
947 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
948 return p;
949
950 return 0;
951 }
952
953 /* Indicate that NEW is an alternate way of referring to the temp slot
954 that previously was known by OLD. */
955
956 void
957 update_temp_slot_address (rtx old, rtx new)
958 {
959 struct temp_slot *p;
960
961 if (rtx_equal_p (old, new))
962 return;
963
964 p = find_temp_slot_from_address (old);
965
966 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
967 is a register, see if one operand of the PLUS is a temporary
968 location. If so, NEW points into it. Otherwise, if both OLD and
969 NEW are a PLUS and if there is a register in common between them.
970 If so, try a recursive call on those values. */
971 if (p == 0)
972 {
973 if (GET_CODE (old) != PLUS)
974 return;
975
976 if (REG_P (new))
977 {
978 update_temp_slot_address (XEXP (old, 0), new);
979 update_temp_slot_address (XEXP (old, 1), new);
980 return;
981 }
982 else if (GET_CODE (new) != PLUS)
983 return;
984
985 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
986 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
987 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
988 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
989 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
990 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
991 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
992 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
993
994 return;
995 }
996
997 /* Otherwise add an alias for the temp's address. */
998 else if (p->address == 0)
999 p->address = new;
1000 else
1001 {
1002 if (GET_CODE (p->address) != EXPR_LIST)
1003 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1004
1005 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1006 }
1007 }
1008
1009 /* If X could be a reference to a temporary slot, mark the fact that its
1010 address was taken. */
1011
1012 void
1013 mark_temp_addr_taken (rtx x)
1014 {
1015 struct temp_slot *p;
1016
1017 if (x == 0)
1018 return;
1019
1020 /* If X is not in memory or is at a constant address, it cannot be in
1021 a temporary slot. */
1022 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1023 return;
1024
1025 p = find_temp_slot_from_address (XEXP (x, 0));
1026 if (p != 0)
1027 p->addr_taken = 1;
1028 }
1029
1030 /* If X could be a reference to a temporary slot, mark that slot as
1031 belonging to the to one level higher than the current level. If X
1032 matched one of our slots, just mark that one. Otherwise, we can't
1033 easily predict which it is, so upgrade all of them. Kept slots
1034 need not be touched.
1035
1036 This is called when an ({...}) construct occurs and a statement
1037 returns a value in memory. */
1038
1039 void
1040 preserve_temp_slots (rtx x)
1041 {
1042 struct temp_slot *p = 0, *next;
1043
1044 /* If there is no result, we still might have some objects whose address
1045 were taken, so we need to make sure they stay around. */
1046 if (x == 0)
1047 {
1048 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1049 {
1050 next = p->next;
1051
1052 if (p->addr_taken)
1053 move_slot_to_level (p, temp_slot_level - 1);
1054 }
1055
1056 return;
1057 }
1058
1059 /* If X is a register that is being used as a pointer, see if we have
1060 a temporary slot we know it points to. To be consistent with
1061 the code below, we really should preserve all non-kept slots
1062 if we can't find a match, but that seems to be much too costly. */
1063 if (REG_P (x) && REG_POINTER (x))
1064 p = find_temp_slot_from_address (x);
1065
1066 /* If X is not in memory or is at a constant address, it cannot be in
1067 a temporary slot, but it can contain something whose address was
1068 taken. */
1069 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1070 {
1071 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1072 {
1073 next = p->next;
1074
1075 if (p->addr_taken)
1076 move_slot_to_level (p, temp_slot_level - 1);
1077 }
1078
1079 return;
1080 }
1081
1082 /* First see if we can find a match. */
1083 if (p == 0)
1084 p = find_temp_slot_from_address (XEXP (x, 0));
1085
1086 if (p != 0)
1087 {
1088 /* Move everything at our level whose address was taken to our new
1089 level in case we used its address. */
1090 struct temp_slot *q;
1091
1092 if (p->level == temp_slot_level)
1093 {
1094 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1095 {
1096 next = q->next;
1097
1098 if (p != q && q->addr_taken)
1099 move_slot_to_level (q, temp_slot_level - 1);
1100 }
1101
1102 move_slot_to_level (p, temp_slot_level - 1);
1103 p->addr_taken = 0;
1104 }
1105 return;
1106 }
1107
1108 /* Otherwise, preserve all non-kept slots at this level. */
1109 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1110 {
1111 next = p->next;
1112
1113 if (!p->keep)
1114 move_slot_to_level (p, temp_slot_level - 1);
1115 }
1116 }
1117
1118 /* Free all temporaries used so far. This is normally called at the
1119 end of generating code for a statement. */
1120
1121 void
1122 free_temp_slots (void)
1123 {
1124 struct temp_slot *p, *next;
1125
1126 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1127 {
1128 next = p->next;
1129
1130 if (!p->keep)
1131 make_slot_available (p);
1132 }
1133
1134 combine_temp_slots ();
1135 }
1136
1137 /* Push deeper into the nesting level for stack temporaries. */
1138
1139 void
1140 push_temp_slots (void)
1141 {
1142 temp_slot_level++;
1143 }
1144
1145 /* Pop a temporary nesting level. All slots in use in the current level
1146 are freed. */
1147
1148 void
1149 pop_temp_slots (void)
1150 {
1151 struct temp_slot *p, *next;
1152
1153 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1154 {
1155 next = p->next;
1156 make_slot_available (p);
1157 }
1158
1159 combine_temp_slots ();
1160
1161 temp_slot_level--;
1162 }
1163
1164 /* Initialize temporary slots. */
1165
1166 void
1167 init_temp_slots (void)
1168 {
1169 /* We have not allocated any temporaries yet. */
1170 avail_temp_slots = 0;
1171 used_temp_slots = 0;
1172 temp_slot_level = 0;
1173 }
1174 \f
1175 /* These routines are responsible for converting virtual register references
1176 to the actual hard register references once RTL generation is complete.
1177
1178 The following four variables are used for communication between the
1179 routines. They contain the offsets of the virtual registers from their
1180 respective hard registers. */
1181
1182 static int in_arg_offset;
1183 static int var_offset;
1184 static int dynamic_offset;
1185 static int out_arg_offset;
1186 static int cfa_offset;
1187
1188 /* In most machines, the stack pointer register is equivalent to the bottom
1189 of the stack. */
1190
1191 #ifndef STACK_POINTER_OFFSET
1192 #define STACK_POINTER_OFFSET 0
1193 #endif
1194
1195 /* If not defined, pick an appropriate default for the offset of dynamically
1196 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1197 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1198
1199 #ifndef STACK_DYNAMIC_OFFSET
1200
1201 /* The bottom of the stack points to the actual arguments. If
1202 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1203 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1204 stack space for register parameters is not pushed by the caller, but
1205 rather part of the fixed stack areas and hence not included in
1206 `current_function_outgoing_args_size'. Nevertheless, we must allow
1207 for it when allocating stack dynamic objects. */
1208
1209 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1210 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1211 ((ACCUMULATE_OUTGOING_ARGS \
1212 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1213 + (STACK_POINTER_OFFSET)) \
1214
1215 #else
1216 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1217 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1218 + (STACK_POINTER_OFFSET))
1219 #endif
1220 #endif
1221
1222 /* On most machines, the CFA coincides with the first incoming parm. */
1223
1224 #ifndef ARG_POINTER_CFA_OFFSET
1225 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1226 #endif
1227
1228 \f
1229 /* Pass through the INSNS of function FNDECL and convert virtual register
1230 references to hard register references. */
1231
1232 void
1233 instantiate_virtual_regs (void)
1234 {
1235 rtx insn;
1236
1237 /* Compute the offsets to use for this function. */
1238 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1239 var_offset = STARTING_FRAME_OFFSET;
1240 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1241 out_arg_offset = STACK_POINTER_OFFSET;
1242 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1243
1244 /* Scan all variables and parameters of this function. For each that is
1245 in memory, instantiate all virtual registers if the result is a valid
1246 address. If not, we do it later. That will handle most uses of virtual
1247 regs on many machines. */
1248 instantiate_decls (current_function_decl, 1);
1249
1250 /* Initialize recognition, indicating that volatile is OK. */
1251 init_recog ();
1252
1253 /* Scan through all the insns, instantiating every virtual register still
1254 present. */
1255 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1256 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1257 || GET_CODE (insn) == CALL_INSN)
1258 {
1259 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1260 if (INSN_DELETED_P (insn))
1261 continue;
1262 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1263 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1264 if (GET_CODE (insn) == CALL_INSN)
1265 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1266 NULL_RTX, 0);
1267
1268 /* Past this point all ASM statements should match. Verify that
1269 to avoid failures later in the compilation process. */
1270 if (asm_noperands (PATTERN (insn)) >= 0
1271 && ! check_asm_operands (PATTERN (insn)))
1272 instantiate_virtual_regs_lossage (insn);
1273 }
1274
1275 /* Now instantiate the remaining register equivalences for debugging info.
1276 These will not be valid addresses. */
1277 instantiate_decls (current_function_decl, 0);
1278
1279 /* Indicate that, from now on, assign_stack_local should use
1280 frame_pointer_rtx. */
1281 virtuals_instantiated = 1;
1282 }
1283
1284 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1285 all virtual registers in their DECL_RTL's.
1286
1287 If VALID_ONLY, do this only if the resulting address is still valid.
1288 Otherwise, always do it. */
1289
1290 static void
1291 instantiate_decls (tree fndecl, int valid_only)
1292 {
1293 tree decl;
1294
1295 /* Process all parameters of the function. */
1296 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1297 {
1298 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1299 HOST_WIDE_INT size_rtl;
1300
1301 instantiate_decl (DECL_RTL (decl), size, valid_only);
1302
1303 /* If the parameter was promoted, then the incoming RTL mode may be
1304 larger than the declared type size. We must use the larger of
1305 the two sizes. */
1306 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1307 size = MAX (size_rtl, size);
1308 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1309 }
1310
1311 /* Now process all variables defined in the function or its subblocks. */
1312 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1313 }
1314
1315 /* Subroutine of instantiate_decls: Process all decls in the given
1316 BLOCK node and all its subblocks. */
1317
1318 static void
1319 instantiate_decls_1 (tree let, int valid_only)
1320 {
1321 tree t;
1322
1323 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1324 if (DECL_RTL_SET_P (t))
1325 instantiate_decl (DECL_RTL (t),
1326 int_size_in_bytes (TREE_TYPE (t)),
1327 valid_only);
1328
1329 /* Process all subblocks. */
1330 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1331 instantiate_decls_1 (t, valid_only);
1332 }
1333
1334 /* Subroutine of the preceding procedures: Given RTL representing a
1335 decl and the size of the object, do any instantiation required.
1336
1337 If VALID_ONLY is nonzero, it means that the RTL should only be
1338 changed if the new address is valid. */
1339
1340 static void
1341 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1342 {
1343 enum machine_mode mode;
1344 rtx addr;
1345
1346 if (x == 0)
1347 return;
1348
1349 /* If this is a CONCAT, recurse for the pieces. */
1350 if (GET_CODE (x) == CONCAT)
1351 {
1352 instantiate_decl (XEXP (x, 0), size / 2, valid_only);
1353 instantiate_decl (XEXP (x, 1), size / 2, valid_only);
1354 return;
1355 }
1356
1357 /* If this is not a MEM, no need to do anything. Similarly if the
1358 address is a constant or a register that is not a virtual register. */
1359 if (!MEM_P (x))
1360 return;
1361
1362 addr = XEXP (x, 0);
1363 if (CONSTANT_P (addr)
1364 || (REG_P (addr)
1365 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1366 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1367 return;
1368
1369 /* If we should only do this if the address is valid, copy the address.
1370 We need to do this so we can undo any changes that might make the
1371 address invalid. This copy is unfortunate, but probably can't be
1372 avoided. */
1373
1374 if (valid_only)
1375 addr = copy_rtx (addr);
1376
1377 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1378
1379 if (valid_only && size >= 0)
1380 {
1381 unsigned HOST_WIDE_INT decl_size = size;
1382
1383 /* Now verify that the resulting address is valid for every integer or
1384 floating-point mode up to and including SIZE bytes long. We do this
1385 since the object might be accessed in any mode and frame addresses
1386 are shared. */
1387
1388 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1389 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1390 mode = GET_MODE_WIDER_MODE (mode))
1391 if (! memory_address_p (mode, addr))
1392 return;
1393
1394 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1395 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1396 mode = GET_MODE_WIDER_MODE (mode))
1397 if (! memory_address_p (mode, addr))
1398 return;
1399 }
1400
1401 /* Put back the address now that we have updated it and we either know
1402 it is valid or we don't care whether it is valid. */
1403
1404 XEXP (x, 0) = addr;
1405 }
1406 \f
1407 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1408 is a virtual register, return the equivalent hard register and set the
1409 offset indirectly through the pointer. Otherwise, return 0. */
1410
1411 static rtx
1412 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1413 {
1414 rtx new;
1415 HOST_WIDE_INT offset;
1416
1417 if (x == virtual_incoming_args_rtx)
1418 new = arg_pointer_rtx, offset = in_arg_offset;
1419 else if (x == virtual_stack_vars_rtx)
1420 new = frame_pointer_rtx, offset = var_offset;
1421 else if (x == virtual_stack_dynamic_rtx)
1422 new = stack_pointer_rtx, offset = dynamic_offset;
1423 else if (x == virtual_outgoing_args_rtx)
1424 new = stack_pointer_rtx, offset = out_arg_offset;
1425 else if (x == virtual_cfa_rtx)
1426 new = arg_pointer_rtx, offset = cfa_offset;
1427 else
1428 return 0;
1429
1430 *poffset = offset;
1431 return new;
1432 }
1433 \f
1434
1435 /* Called when instantiate_virtual_regs has failed to update the instruction.
1436 Usually this means that non-matching instruction has been emit, however for
1437 asm statements it may be the problem in the constraints. */
1438 static void
1439 instantiate_virtual_regs_lossage (rtx insn)
1440 {
1441 gcc_assert (asm_noperands (PATTERN (insn)) >= 0);
1442 error_for_asm (insn, "impossible constraint in %<asm%>");
1443 delete_insn (insn);
1444 }
1445 /* Given a pointer to a piece of rtx and an optional pointer to the
1446 containing object, instantiate any virtual registers present in it.
1447
1448 If EXTRA_INSNS, we always do the replacement and generate
1449 any extra insns before OBJECT. If it zero, we do nothing if replacement
1450 is not valid.
1451
1452 Return 1 if we either had nothing to do or if we were able to do the
1453 needed replacement. Return 0 otherwise; we only return zero if
1454 EXTRA_INSNS is zero.
1455
1456 We first try some simple transformations to avoid the creation of extra
1457 pseudos. */
1458
1459 static int
1460 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1461 {
1462 rtx x;
1463 RTX_CODE code;
1464 rtx new = 0;
1465 HOST_WIDE_INT offset = 0;
1466 rtx temp;
1467 rtx seq;
1468 int i, j;
1469 const char *fmt;
1470
1471 /* Re-start here to avoid recursion in common cases. */
1472 restart:
1473
1474 x = *loc;
1475 if (x == 0)
1476 return 1;
1477
1478 /* We may have detected and deleted invalid asm statements. */
1479 if (object && INSN_P (object) && INSN_DELETED_P (object))
1480 return 1;
1481
1482 code = GET_CODE (x);
1483
1484 /* Check for some special cases. */
1485 switch (code)
1486 {
1487 case CONST_INT:
1488 case CONST_DOUBLE:
1489 case CONST_VECTOR:
1490 case CONST:
1491 case SYMBOL_REF:
1492 case CODE_LABEL:
1493 case PC:
1494 case CC0:
1495 case ASM_INPUT:
1496 case ADDR_VEC:
1497 case ADDR_DIFF_VEC:
1498 case RETURN:
1499 return 1;
1500
1501 case SET:
1502 /* We are allowed to set the virtual registers. This means that
1503 the actual register should receive the source minus the
1504 appropriate offset. This is used, for example, in the handling
1505 of non-local gotos. */
1506 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1507 {
1508 rtx src = SET_SRC (x);
1509
1510 /* We are setting the register, not using it, so the relevant
1511 offset is the negative of the offset to use were we using
1512 the register. */
1513 offset = - offset;
1514 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1515
1516 /* The only valid sources here are PLUS or REG. Just do
1517 the simplest possible thing to handle them. */
1518 if (!REG_P (src) && GET_CODE (src) != PLUS)
1519 {
1520 instantiate_virtual_regs_lossage (object);
1521 return 1;
1522 }
1523
1524 start_sequence ();
1525 if (!REG_P (src))
1526 temp = force_operand (src, NULL_RTX);
1527 else
1528 temp = src;
1529 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1530 seq = get_insns ();
1531 end_sequence ();
1532
1533 emit_insn_before (seq, object);
1534 SET_DEST (x) = new;
1535
1536 if (! validate_change (object, &SET_SRC (x), temp, 0)
1537 || ! extra_insns)
1538 instantiate_virtual_regs_lossage (object);
1539
1540 return 1;
1541 }
1542
1543 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1544 loc = &SET_SRC (x);
1545 goto restart;
1546
1547 case PLUS:
1548 /* Handle special case of virtual register plus constant. */
1549 if (CONSTANT_P (XEXP (x, 1)))
1550 {
1551 rtx old, new_offset;
1552
1553 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1554 if (GET_CODE (XEXP (x, 0)) == PLUS)
1555 {
1556 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1557 {
1558 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1559 extra_insns);
1560 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1561 }
1562 else
1563 {
1564 loc = &XEXP (x, 0);
1565 goto restart;
1566 }
1567 }
1568
1569 #ifdef POINTERS_EXTEND_UNSIGNED
1570 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1571 we can commute the PLUS and SUBREG because pointers into the
1572 frame are well-behaved. */
1573 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1574 && GET_CODE (XEXP (x, 1)) == CONST_INT
1575 && 0 != (new
1576 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1577 &offset))
1578 && validate_change (object, loc,
1579 plus_constant (gen_lowpart (ptr_mode,
1580 new),
1581 offset
1582 + INTVAL (XEXP (x, 1))),
1583 0))
1584 return 1;
1585 #endif
1586 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1587 {
1588 /* We know the second operand is a constant. Unless the
1589 first operand is a REG (which has been already checked),
1590 it needs to be checked. */
1591 if (!REG_P (XEXP (x, 0)))
1592 {
1593 loc = &XEXP (x, 0);
1594 goto restart;
1595 }
1596 return 1;
1597 }
1598
1599 new_offset = plus_constant (XEXP (x, 1), offset);
1600
1601 /* If the new constant is zero, try to replace the sum with just
1602 the register. */
1603 if (new_offset == const0_rtx
1604 && validate_change (object, loc, new, 0))
1605 return 1;
1606
1607 /* Next try to replace the register and new offset.
1608 There are two changes to validate here and we can't assume that
1609 in the case of old offset equals new just changing the register
1610 will yield a valid insn. In the interests of a little efficiency,
1611 however, we only call validate change once (we don't queue up the
1612 changes and then call apply_change_group). */
1613
1614 old = XEXP (x, 0);
1615 if (offset == 0
1616 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1617 : (XEXP (x, 0) = new,
1618 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1619 {
1620 if (! extra_insns)
1621 {
1622 XEXP (x, 0) = old;
1623 return 0;
1624 }
1625
1626 /* Otherwise copy the new constant into a register and replace
1627 constant with that register. */
1628 temp = gen_reg_rtx (Pmode);
1629 XEXP (x, 0) = new;
1630 if (validate_change (object, &XEXP (x, 1), temp, 0))
1631 emit_insn_before (gen_move_insn (temp, new_offset), object);
1632 else
1633 {
1634 /* If that didn't work, replace this expression with a
1635 register containing the sum. */
1636
1637 XEXP (x, 0) = old;
1638 new = gen_rtx_PLUS (Pmode, new, new_offset);
1639
1640 start_sequence ();
1641 temp = force_operand (new, NULL_RTX);
1642 seq = get_insns ();
1643 end_sequence ();
1644
1645 emit_insn_before (seq, object);
1646 if (! validate_change (object, loc, temp, 0)
1647 && ! validate_replace_rtx (x, temp, object))
1648 {
1649 instantiate_virtual_regs_lossage (object);
1650 return 1;
1651 }
1652 }
1653 }
1654
1655 return 1;
1656 }
1657
1658 /* Fall through to generic two-operand expression case. */
1659 case EXPR_LIST:
1660 case CALL:
1661 case COMPARE:
1662 case MINUS:
1663 case MULT:
1664 case DIV: case UDIV:
1665 case MOD: case UMOD:
1666 case AND: case IOR: case XOR:
1667 case ROTATERT: case ROTATE:
1668 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1669 case NE: case EQ:
1670 case GE: case GT: case GEU: case GTU:
1671 case LE: case LT: case LEU: case LTU:
1672 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1673 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1674 loc = &XEXP (x, 0);
1675 goto restart;
1676
1677 case MEM:
1678 /* Most cases of MEM that convert to valid addresses have already been
1679 handled by our scan of decls. The only special handling we
1680 need here is to make a copy of the rtx to ensure it isn't being
1681 shared if we have to change it to a pseudo.
1682
1683 If the rtx is a simple reference to an address via a virtual register,
1684 it can potentially be shared. In such cases, first try to make it
1685 a valid address, which can also be shared. Otherwise, copy it and
1686 proceed normally.
1687
1688 First check for common cases that need no processing. These are
1689 usually due to instantiation already being done on a previous instance
1690 of a shared rtx. */
1691
1692 temp = XEXP (x, 0);
1693 if (CONSTANT_ADDRESS_P (temp)
1694 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1695 || temp == arg_pointer_rtx
1696 #endif
1697 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1698 || temp == hard_frame_pointer_rtx
1699 #endif
1700 || temp == frame_pointer_rtx)
1701 return 1;
1702
1703 if (GET_CODE (temp) == PLUS
1704 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1705 && (XEXP (temp, 0) == frame_pointer_rtx
1706 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1707 || XEXP (temp, 0) == hard_frame_pointer_rtx
1708 #endif
1709 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1710 || XEXP (temp, 0) == arg_pointer_rtx
1711 #endif
1712 ))
1713 return 1;
1714
1715 if (temp == virtual_stack_vars_rtx
1716 || temp == virtual_incoming_args_rtx
1717 || (GET_CODE (temp) == PLUS
1718 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1719 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1720 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1721 {
1722 /* This MEM may be shared. If the substitution can be done without
1723 the need to generate new pseudos, we want to do it in place
1724 so all copies of the shared rtx benefit. The call below will
1725 only make substitutions if the resulting address is still
1726 valid.
1727
1728 Note that we cannot pass X as the object in the recursive call
1729 since the insn being processed may not allow all valid
1730 addresses. However, if we were not passed on object, we can
1731 only modify X without copying it if X will have a valid
1732 address.
1733
1734 ??? Also note that this can still lose if OBJECT is an insn that
1735 has less restrictions on an address that some other insn.
1736 In that case, we will modify the shared address. This case
1737 doesn't seem very likely, though. One case where this could
1738 happen is in the case of a USE or CLOBBER reference, but we
1739 take care of that below. */
1740
1741 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1742 object ? object : x, 0))
1743 return 1;
1744
1745 /* Otherwise make a copy and process that copy. We copy the entire
1746 RTL expression since it might be a PLUS which could also be
1747 shared. */
1748 *loc = x = copy_rtx (x);
1749 }
1750
1751 /* Fall through to generic unary operation case. */
1752 case PREFETCH:
1753 case SUBREG:
1754 case STRICT_LOW_PART:
1755 case NEG: case NOT:
1756 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1757 case SIGN_EXTEND: case ZERO_EXTEND:
1758 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1759 case FLOAT: case FIX:
1760 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1761 case ABS:
1762 case SQRT:
1763 case FFS:
1764 case CLZ: case CTZ:
1765 case POPCOUNT: case PARITY:
1766 /* These case either have just one operand or we know that we need not
1767 check the rest of the operands. */
1768 loc = &XEXP (x, 0);
1769 goto restart;
1770
1771 case USE:
1772 case CLOBBER:
1773 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1774 go ahead and make the invalid one, but do it to a copy. For a REG,
1775 just make the recursive call, since there's no chance of a problem. */
1776
1777 if ((MEM_P (XEXP (x, 0))
1778 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1779 0))
1780 || (REG_P (XEXP (x, 0))
1781 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1782 return 1;
1783
1784 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1785 loc = &XEXP (x, 0);
1786 goto restart;
1787
1788 case REG:
1789 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1790 in front of this insn and substitute the temporary. */
1791 if ((new = instantiate_new_reg (x, &offset)) != 0)
1792 {
1793 temp = plus_constant (new, offset);
1794 if (!validate_change (object, loc, temp, 0))
1795 {
1796 if (! extra_insns)
1797 return 0;
1798
1799 start_sequence ();
1800 temp = force_operand (temp, NULL_RTX);
1801 seq = get_insns ();
1802 end_sequence ();
1803
1804 emit_insn_before (seq, object);
1805 if (! validate_change (object, loc, temp, 0)
1806 && ! validate_replace_rtx (x, temp, object))
1807 instantiate_virtual_regs_lossage (object);
1808 }
1809 }
1810
1811 return 1;
1812
1813 default:
1814 break;
1815 }
1816
1817 /* Scan all subexpressions. */
1818 fmt = GET_RTX_FORMAT (code);
1819 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1820 if (*fmt == 'e')
1821 {
1822 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1823 return 0;
1824 }
1825 else if (*fmt == 'E')
1826 for (j = 0; j < XVECLEN (x, i); j++)
1827 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1828 extra_insns))
1829 return 0;
1830
1831 return 1;
1832 }
1833 \f
1834 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1835 This means a type for which function calls must pass an address to the
1836 function or get an address back from the function.
1837 EXP may be a type node or an expression (whose type is tested). */
1838
1839 int
1840 aggregate_value_p (tree exp, tree fntype)
1841 {
1842 int i, regno, nregs;
1843 rtx reg;
1844
1845 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1846
1847 if (fntype)
1848 switch (TREE_CODE (fntype))
1849 {
1850 case CALL_EXPR:
1851 fntype = get_callee_fndecl (fntype);
1852 fntype = fntype ? TREE_TYPE (fntype) : 0;
1853 break;
1854 case FUNCTION_DECL:
1855 fntype = TREE_TYPE (fntype);
1856 break;
1857 case FUNCTION_TYPE:
1858 case METHOD_TYPE:
1859 break;
1860 case IDENTIFIER_NODE:
1861 fntype = 0;
1862 break;
1863 default:
1864 /* We don't expect other rtl types here. */
1865 gcc_unreachable ();
1866 }
1867
1868 if (TREE_CODE (type) == VOID_TYPE)
1869 return 0;
1870 /* If the front end has decided that this needs to be passed by
1871 reference, do so. */
1872 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1873 && DECL_BY_REFERENCE (exp))
1874 return 1;
1875 if (targetm.calls.return_in_memory (type, fntype))
1876 return 1;
1877 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1878 and thus can't be returned in registers. */
1879 if (TREE_ADDRESSABLE (type))
1880 return 1;
1881 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1882 return 1;
1883 /* Make sure we have suitable call-clobbered regs to return
1884 the value in; if not, we must return it in memory. */
1885 reg = hard_function_value (type, 0, 0);
1886
1887 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1888 it is OK. */
1889 if (!REG_P (reg))
1890 return 0;
1891
1892 regno = REGNO (reg);
1893 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1894 for (i = 0; i < nregs; i++)
1895 if (! call_used_regs[regno + i])
1896 return 1;
1897 return 0;
1898 }
1899 \f
1900 /* Return true if we should assign DECL a pseudo register; false if it
1901 should live on the local stack. */
1902
1903 bool
1904 use_register_for_decl (tree decl)
1905 {
1906 /* Honor volatile. */
1907 if (TREE_SIDE_EFFECTS (decl))
1908 return false;
1909
1910 /* Honor addressability. */
1911 if (TREE_ADDRESSABLE (decl))
1912 return false;
1913
1914 /* Only register-like things go in registers. */
1915 if (DECL_MODE (decl) == BLKmode)
1916 return false;
1917
1918 /* If -ffloat-store specified, don't put explicit float variables
1919 into registers. */
1920 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1921 propagates values across these stores, and it probably shouldn't. */
1922 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1923 return false;
1924
1925 /* Compiler-generated temporaries can always go in registers. */
1926 if (DECL_ARTIFICIAL (decl))
1927 return true;
1928
1929 return (optimize || DECL_REGISTER (decl));
1930 }
1931
1932 /* Return true if TYPE should be passed by invisible reference. */
1933
1934 bool
1935 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1936 tree type, bool named_arg)
1937 {
1938 if (type)
1939 {
1940 /* If this type contains non-trivial constructors, then it is
1941 forbidden for the middle-end to create any new copies. */
1942 if (TREE_ADDRESSABLE (type))
1943 return true;
1944
1945 /* GCC post 3.4 passes *all* variable sized types by reference. */
1946 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1947 return true;
1948 }
1949
1950 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1951 }
1952
1953 /* Return true if TYPE, which is passed by reference, should be callee
1954 copied instead of caller copied. */
1955
1956 bool
1957 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1958 tree type, bool named_arg)
1959 {
1960 if (type && TREE_ADDRESSABLE (type))
1961 return false;
1962 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1963 }
1964
1965 /* Structures to communicate between the subroutines of assign_parms.
1966 The first holds data persistent across all parameters, the second
1967 is cleared out for each parameter. */
1968
1969 struct assign_parm_data_all
1970 {
1971 CUMULATIVE_ARGS args_so_far;
1972 struct args_size stack_args_size;
1973 tree function_result_decl;
1974 tree orig_fnargs;
1975 rtx conversion_insns;
1976 HOST_WIDE_INT pretend_args_size;
1977 HOST_WIDE_INT extra_pretend_bytes;
1978 int reg_parm_stack_space;
1979 };
1980
1981 struct assign_parm_data_one
1982 {
1983 tree nominal_type;
1984 tree passed_type;
1985 rtx entry_parm;
1986 rtx stack_parm;
1987 enum machine_mode nominal_mode;
1988 enum machine_mode passed_mode;
1989 enum machine_mode promoted_mode;
1990 struct locate_and_pad_arg_data locate;
1991 int partial;
1992 BOOL_BITFIELD named_arg : 1;
1993 BOOL_BITFIELD last_named : 1;
1994 BOOL_BITFIELD passed_pointer : 1;
1995 BOOL_BITFIELD on_stack : 1;
1996 BOOL_BITFIELD loaded_in_reg : 1;
1997 };
1998
1999 /* A subroutine of assign_parms. Initialize ALL. */
2000
2001 static void
2002 assign_parms_initialize_all (struct assign_parm_data_all *all)
2003 {
2004 tree fntype;
2005
2006 memset (all, 0, sizeof (*all));
2007
2008 fntype = TREE_TYPE (current_function_decl);
2009
2010 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2011 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2012 #else
2013 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2014 current_function_decl, -1);
2015 #endif
2016
2017 #ifdef REG_PARM_STACK_SPACE
2018 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2019 #endif
2020 }
2021
2022 /* If ARGS contains entries with complex types, split the entry into two
2023 entries of the component type. Return a new list of substitutions are
2024 needed, else the old list. */
2025
2026 static tree
2027 split_complex_args (tree args)
2028 {
2029 tree p;
2030
2031 /* Before allocating memory, check for the common case of no complex. */
2032 for (p = args; p; p = TREE_CHAIN (p))
2033 {
2034 tree type = TREE_TYPE (p);
2035 if (TREE_CODE (type) == COMPLEX_TYPE
2036 && targetm.calls.split_complex_arg (type))
2037 goto found;
2038 }
2039 return args;
2040
2041 found:
2042 args = copy_list (args);
2043
2044 for (p = args; p; p = TREE_CHAIN (p))
2045 {
2046 tree type = TREE_TYPE (p);
2047 if (TREE_CODE (type) == COMPLEX_TYPE
2048 && targetm.calls.split_complex_arg (type))
2049 {
2050 tree decl;
2051 tree subtype = TREE_TYPE (type);
2052 bool addressable = TREE_ADDRESSABLE (p);
2053
2054 /* Rewrite the PARM_DECL's type with its component. */
2055 TREE_TYPE (p) = subtype;
2056 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2057 DECL_MODE (p) = VOIDmode;
2058 DECL_SIZE (p) = NULL;
2059 DECL_SIZE_UNIT (p) = NULL;
2060 /* If this arg must go in memory, put it in a pseudo here.
2061 We can't allow it to go in memory as per normal parms,
2062 because the usual place might not have the imag part
2063 adjacent to the real part. */
2064 DECL_ARTIFICIAL (p) = addressable;
2065 DECL_IGNORED_P (p) = addressable;
2066 TREE_ADDRESSABLE (p) = 0;
2067 layout_decl (p, 0);
2068
2069 /* Build a second synthetic decl. */
2070 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2071 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2072 DECL_ARTIFICIAL (decl) = addressable;
2073 DECL_IGNORED_P (decl) = addressable;
2074 layout_decl (decl, 0);
2075
2076 /* Splice it in; skip the new decl. */
2077 TREE_CHAIN (decl) = TREE_CHAIN (p);
2078 TREE_CHAIN (p) = decl;
2079 p = decl;
2080 }
2081 }
2082
2083 return args;
2084 }
2085
2086 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2087 the hidden struct return argument, and (abi willing) complex args.
2088 Return the new parameter list. */
2089
2090 static tree
2091 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2092 {
2093 tree fndecl = current_function_decl;
2094 tree fntype = TREE_TYPE (fndecl);
2095 tree fnargs = DECL_ARGUMENTS (fndecl);
2096
2097 /* If struct value address is treated as the first argument, make it so. */
2098 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2099 && ! current_function_returns_pcc_struct
2100 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2101 {
2102 tree type = build_pointer_type (TREE_TYPE (fntype));
2103 tree decl;
2104
2105 decl = build_decl (PARM_DECL, NULL_TREE, type);
2106 DECL_ARG_TYPE (decl) = type;
2107 DECL_ARTIFICIAL (decl) = 1;
2108
2109 TREE_CHAIN (decl) = fnargs;
2110 fnargs = decl;
2111 all->function_result_decl = decl;
2112 }
2113
2114 all->orig_fnargs = fnargs;
2115
2116 /* If the target wants to split complex arguments into scalars, do so. */
2117 if (targetm.calls.split_complex_arg)
2118 fnargs = split_complex_args (fnargs);
2119
2120 return fnargs;
2121 }
2122
2123 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2124 data for the parameter. Incorporate ABI specifics such as pass-by-
2125 reference and type promotion. */
2126
2127 static void
2128 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2129 struct assign_parm_data_one *data)
2130 {
2131 tree nominal_type, passed_type;
2132 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2133
2134 memset (data, 0, sizeof (*data));
2135
2136 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2137 if (current_function_stdarg)
2138 {
2139 tree tem;
2140 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2141 if (DECL_NAME (tem))
2142 break;
2143 if (tem == 0)
2144 data->last_named = true;
2145 }
2146
2147 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2148 most machines, if this is a varargs/stdarg function, then we treat
2149 the last named arg as if it were anonymous too. */
2150 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2151 data->named_arg = 1;
2152 else
2153 data->named_arg = !data->last_named;
2154
2155 nominal_type = TREE_TYPE (parm);
2156 passed_type = DECL_ARG_TYPE (parm);
2157
2158 /* Look out for errors propagating this far. Also, if the parameter's
2159 type is void then its value doesn't matter. */
2160 if (TREE_TYPE (parm) == error_mark_node
2161 /* This can happen after weird syntax errors
2162 or if an enum type is defined among the parms. */
2163 || TREE_CODE (parm) != PARM_DECL
2164 || passed_type == NULL
2165 || VOID_TYPE_P (nominal_type))
2166 {
2167 nominal_type = passed_type = void_type_node;
2168 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2169 goto egress;
2170 }
2171
2172 /* Find mode of arg as it is passed, and mode of arg as it should be
2173 during execution of this function. */
2174 passed_mode = TYPE_MODE (passed_type);
2175 nominal_mode = TYPE_MODE (nominal_type);
2176
2177 /* If the parm is to be passed as a transparent union, use the type of
2178 the first field for the tests below. We have already verified that
2179 the modes are the same. */
2180 if (DECL_TRANSPARENT_UNION (parm)
2181 || (TREE_CODE (passed_type) == UNION_TYPE
2182 && TYPE_TRANSPARENT_UNION (passed_type)))
2183 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2184
2185 /* See if this arg was passed by invisible reference. */
2186 if (pass_by_reference (&all->args_so_far, passed_mode,
2187 passed_type, data->named_arg))
2188 {
2189 passed_type = nominal_type = build_pointer_type (passed_type);
2190 data->passed_pointer = true;
2191 passed_mode = nominal_mode = Pmode;
2192 }
2193
2194 /* Find mode as it is passed by the ABI. */
2195 promoted_mode = passed_mode;
2196 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2197 {
2198 int unsignedp = TYPE_UNSIGNED (passed_type);
2199 promoted_mode = promote_mode (passed_type, promoted_mode,
2200 &unsignedp, 1);
2201 }
2202
2203 egress:
2204 data->nominal_type = nominal_type;
2205 data->passed_type = passed_type;
2206 data->nominal_mode = nominal_mode;
2207 data->passed_mode = passed_mode;
2208 data->promoted_mode = promoted_mode;
2209 }
2210
2211 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2212
2213 static void
2214 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2215 struct assign_parm_data_one *data, bool no_rtl)
2216 {
2217 int varargs_pretend_bytes = 0;
2218
2219 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2220 data->promoted_mode,
2221 data->passed_type,
2222 &varargs_pretend_bytes, no_rtl);
2223
2224 /* If the back-end has requested extra stack space, record how much is
2225 needed. Do not change pretend_args_size otherwise since it may be
2226 nonzero from an earlier partial argument. */
2227 if (varargs_pretend_bytes > 0)
2228 all->pretend_args_size = varargs_pretend_bytes;
2229 }
2230
2231 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2232 the incoming location of the current parameter. */
2233
2234 static void
2235 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2236 struct assign_parm_data_one *data)
2237 {
2238 HOST_WIDE_INT pretend_bytes = 0;
2239 rtx entry_parm;
2240 bool in_regs;
2241
2242 if (data->promoted_mode == VOIDmode)
2243 {
2244 data->entry_parm = data->stack_parm = const0_rtx;
2245 return;
2246 }
2247
2248 #ifdef FUNCTION_INCOMING_ARG
2249 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2250 data->passed_type, data->named_arg);
2251 #else
2252 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2253 data->passed_type, data->named_arg);
2254 #endif
2255
2256 if (entry_parm == 0)
2257 data->promoted_mode = data->passed_mode;
2258
2259 /* Determine parm's home in the stack, in case it arrives in the stack
2260 or we should pretend it did. Compute the stack position and rtx where
2261 the argument arrives and its size.
2262
2263 There is one complexity here: If this was a parameter that would
2264 have been passed in registers, but wasn't only because it is
2265 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2266 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2267 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2268 as it was the previous time. */
2269 in_regs = entry_parm != 0;
2270 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2271 in_regs = true;
2272 #endif
2273 if (!in_regs && !data->named_arg)
2274 {
2275 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2276 {
2277 rtx tem;
2278 #ifdef FUNCTION_INCOMING_ARG
2279 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2280 data->passed_type, true);
2281 #else
2282 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2283 data->passed_type, true);
2284 #endif
2285 in_regs = tem != NULL;
2286 }
2287 }
2288
2289 /* If this parameter was passed both in registers and in the stack, use
2290 the copy on the stack. */
2291 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2292 data->passed_type))
2293 entry_parm = 0;
2294
2295 if (entry_parm)
2296 {
2297 int partial;
2298
2299 partial = FUNCTION_ARG_PARTIAL_NREGS (all->args_so_far,
2300 data->promoted_mode,
2301 data->passed_type,
2302 data->named_arg);
2303 data->partial = partial;
2304
2305 /* The caller might already have allocated stack space for the
2306 register parameters. */
2307 if (partial != 0 && all->reg_parm_stack_space == 0)
2308 {
2309 /* Part of this argument is passed in registers and part
2310 is passed on the stack. Ask the prologue code to extend
2311 the stack part so that we can recreate the full value.
2312
2313 PRETEND_BYTES is the size of the registers we need to store.
2314 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2315 stack space that the prologue should allocate.
2316
2317 Internally, gcc assumes that the argument pointer is aligned
2318 to STACK_BOUNDARY bits. This is used both for alignment
2319 optimizations (see init_emit) and to locate arguments that are
2320 aligned to more than PARM_BOUNDARY bits. We must preserve this
2321 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2322 a stack boundary. */
2323
2324 /* We assume at most one partial arg, and it must be the first
2325 argument on the stack. */
2326 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2327
2328 pretend_bytes = partial * UNITS_PER_WORD;
2329 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2330
2331 /* We want to align relative to the actual stack pointer, so
2332 don't include this in the stack size until later. */
2333 all->extra_pretend_bytes = all->pretend_args_size;
2334 }
2335 }
2336
2337 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2338 entry_parm ? data->partial : 0, current_function_decl,
2339 &all->stack_args_size, &data->locate);
2340
2341 /* Adjust offsets to include the pretend args. */
2342 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2343 data->locate.slot_offset.constant += pretend_bytes;
2344 data->locate.offset.constant += pretend_bytes;
2345
2346 data->entry_parm = entry_parm;
2347 }
2348
2349 /* A subroutine of assign_parms. If there is actually space on the stack
2350 for this parm, count it in stack_args_size and return true. */
2351
2352 static bool
2353 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2354 struct assign_parm_data_one *data)
2355 {
2356 /* Trivially true if we've no incoming register. */
2357 if (data->entry_parm == NULL)
2358 ;
2359 /* Also true if we're partially in registers and partially not,
2360 since we've arranged to drop the entire argument on the stack. */
2361 else if (data->partial != 0)
2362 ;
2363 /* Also true if the target says that it's passed in both registers
2364 and on the stack. */
2365 else if (GET_CODE (data->entry_parm) == PARALLEL
2366 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2367 ;
2368 /* Also true if the target says that there's stack allocated for
2369 all register parameters. */
2370 else if (all->reg_parm_stack_space > 0)
2371 ;
2372 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2373 else
2374 return false;
2375
2376 all->stack_args_size.constant += data->locate.size.constant;
2377 if (data->locate.size.var)
2378 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2379
2380 return true;
2381 }
2382
2383 /* A subroutine of assign_parms. Given that this parameter is allocated
2384 stack space by the ABI, find it. */
2385
2386 static void
2387 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2388 {
2389 rtx offset_rtx, stack_parm;
2390 unsigned int align, boundary;
2391
2392 /* If we're passing this arg using a reg, make its stack home the
2393 aligned stack slot. */
2394 if (data->entry_parm)
2395 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2396 else
2397 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2398
2399 stack_parm = current_function_internal_arg_pointer;
2400 if (offset_rtx != const0_rtx)
2401 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2402 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2403
2404 set_mem_attributes (stack_parm, parm, 1);
2405
2406 boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
2407 align = 0;
2408
2409 /* If we're padding upward, we know that the alignment of the slot
2410 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2411 intentionally forcing upward padding. Otherwise we have to come
2412 up with a guess at the alignment based on OFFSET_RTX. */
2413 if (data->locate.where_pad == upward || data->entry_parm)
2414 align = boundary;
2415 else if (GET_CODE (offset_rtx) == CONST_INT)
2416 {
2417 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2418 align = align & -align;
2419 }
2420 if (align > 0)
2421 set_mem_align (stack_parm, align);
2422
2423 if (data->entry_parm)
2424 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2425
2426 data->stack_parm = stack_parm;
2427 }
2428
2429 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2430 always valid and contiguous. */
2431
2432 static void
2433 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2434 {
2435 rtx entry_parm = data->entry_parm;
2436 rtx stack_parm = data->stack_parm;
2437
2438 /* If this parm was passed part in regs and part in memory, pretend it
2439 arrived entirely in memory by pushing the register-part onto the stack.
2440 In the special case of a DImode or DFmode that is split, we could put
2441 it together in a pseudoreg directly, but for now that's not worth
2442 bothering with. */
2443 if (data->partial != 0)
2444 {
2445 /* Handle calls that pass values in multiple non-contiguous
2446 locations. The Irix 6 ABI has examples of this. */
2447 if (GET_CODE (entry_parm) == PARALLEL)
2448 emit_group_store (validize_mem (stack_parm), entry_parm,
2449 data->passed_type,
2450 int_size_in_bytes (data->passed_type));
2451 else
2452 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2453 data->partial);
2454
2455 entry_parm = stack_parm;
2456 }
2457
2458 /* If we didn't decide this parm came in a register, by default it came
2459 on the stack. */
2460 else if (entry_parm == NULL)
2461 entry_parm = stack_parm;
2462
2463 /* When an argument is passed in multiple locations, we can't make use
2464 of this information, but we can save some copying if the whole argument
2465 is passed in a single register. */
2466 else if (GET_CODE (entry_parm) == PARALLEL
2467 && data->nominal_mode != BLKmode
2468 && data->passed_mode != BLKmode)
2469 {
2470 size_t i, len = XVECLEN (entry_parm, 0);
2471
2472 for (i = 0; i < len; i++)
2473 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2474 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2475 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2476 == data->passed_mode)
2477 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2478 {
2479 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2480 break;
2481 }
2482 }
2483
2484 data->entry_parm = entry_parm;
2485 }
2486
2487 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2488 always valid and properly aligned. */
2489
2490
2491 static void
2492 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2493 {
2494 rtx stack_parm = data->stack_parm;
2495
2496 /* If we can't trust the parm stack slot to be aligned enough for its
2497 ultimate type, don't use that slot after entry. We'll make another
2498 stack slot, if we need one. */
2499 if (STRICT_ALIGNMENT && stack_parm
2500 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2501 stack_parm = NULL;
2502
2503 /* If parm was passed in memory, and we need to convert it on entry,
2504 don't store it back in that same slot. */
2505 else if (data->entry_parm == stack_parm
2506 && data->nominal_mode != BLKmode
2507 && data->nominal_mode != data->passed_mode)
2508 stack_parm = NULL;
2509
2510 data->stack_parm = stack_parm;
2511 }
2512
2513 /* A subroutine of assign_parms. Return true if the current parameter
2514 should be stored as a BLKmode in the current frame. */
2515
2516 static bool
2517 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2518 {
2519 if (data->nominal_mode == BLKmode)
2520 return true;
2521 if (GET_CODE (data->entry_parm) == PARALLEL)
2522 return true;
2523
2524 #ifdef BLOCK_REG_PADDING
2525 /* Only assign_parm_setup_block knows how to deal with register arguments
2526 that are padded at the least significant end. */
2527 if (REG_P (data->entry_parm)
2528 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2529 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2530 == (BYTES_BIG_ENDIAN ? upward : downward)))
2531 return true;
2532 #endif
2533
2534 return false;
2535 }
2536
2537 /* A subroutine of assign_parms. Arrange for the parameter to be
2538 present and valid in DATA->STACK_RTL. */
2539
2540 static void
2541 assign_parm_setup_block (struct assign_parm_data_all *all,
2542 tree parm, struct assign_parm_data_one *data)
2543 {
2544 rtx entry_parm = data->entry_parm;
2545 rtx stack_parm = data->stack_parm;
2546
2547 if (GET_CODE (entry_parm) == PARALLEL)
2548 entry_parm = emit_group_move_into_temps (entry_parm);
2549
2550 /* If we've a non-block object that's nevertheless passed in parts,
2551 reconstitute it in register operations rather than on the stack. */
2552 if (GET_CODE (entry_parm) == PARALLEL
2553 && data->nominal_mode != BLKmode
2554 && XVECLEN (entry_parm, 0) > 1
2555 && use_register_for_decl (parm))
2556 {
2557 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2558
2559 push_to_sequence (all->conversion_insns);
2560
2561 /* For values returned in multiple registers, handle possible
2562 incompatible calls to emit_group_store.
2563
2564 For example, the following would be invalid, and would have to
2565 be fixed by the conditional below:
2566
2567 emit_group_store ((reg:SF), (parallel:DF))
2568 emit_group_store ((reg:SI), (parallel:DI))
2569
2570 An example of this are doubles in e500 v2:
2571 (parallel:DF (expr_list (reg:SI) (const_int 0))
2572 (expr_list (reg:SI) (const_int 4))). */
2573 if (data->nominal_mode != data->passed_mode)
2574 {
2575 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2576 emit_group_store (t, entry_parm, NULL_TREE,
2577 GET_MODE_SIZE (GET_MODE (entry_parm)));
2578 convert_move (parmreg, t, 0);
2579 }
2580 else
2581 emit_group_store (parmreg, entry_parm, data->nominal_type,
2582 int_size_in_bytes (data->nominal_type));
2583
2584 all->conversion_insns = get_insns ();
2585 end_sequence ();
2586
2587 SET_DECL_RTL (parm, parmreg);
2588 return;
2589 }
2590
2591 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2592 calls that pass values in multiple non-contiguous locations. */
2593 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2594 {
2595 HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
2596 HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2597 rtx mem;
2598
2599 /* Note that we will be storing an integral number of words.
2600 So we have to be careful to ensure that we allocate an
2601 integral number of words. We do this below in the
2602 assign_stack_local if space was not allocated in the argument
2603 list. If it was, this will not work if PARM_BOUNDARY is not
2604 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2605 if it becomes a problem. Exception is when BLKmode arrives
2606 with arguments not conforming to word_mode. */
2607
2608 if (stack_parm == 0)
2609 {
2610 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
2611 data->stack_parm = stack_parm;
2612 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2613 set_mem_attributes (stack_parm, parm, 1);
2614 }
2615 else if (GET_CODE (entry_parm) == PARALLEL)
2616 ;
2617 else
2618 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2619
2620 mem = validize_mem (stack_parm);
2621
2622 /* Handle values in multiple non-contiguous locations. */
2623 if (GET_CODE (entry_parm) == PARALLEL)
2624 {
2625 push_to_sequence (all->conversion_insns);
2626 emit_group_store (mem, entry_parm, data->passed_type, size);
2627 all->conversion_insns = get_insns ();
2628 end_sequence ();
2629 }
2630
2631 else if (size == 0)
2632 ;
2633
2634 /* If SIZE is that of a mode no bigger than a word, just use
2635 that mode's store operation. */
2636 else if (size <= UNITS_PER_WORD)
2637 {
2638 enum machine_mode mode
2639 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2640
2641 if (mode != BLKmode
2642 #ifdef BLOCK_REG_PADDING
2643 && (size == UNITS_PER_WORD
2644 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2645 != (BYTES_BIG_ENDIAN ? upward : downward)))
2646 #endif
2647 )
2648 {
2649 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2650 emit_move_insn (change_address (mem, mode, 0), reg);
2651 }
2652
2653 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2654 machine must be aligned to the left before storing
2655 to memory. Note that the previous test doesn't
2656 handle all cases (e.g. SIZE == 3). */
2657 else if (size != UNITS_PER_WORD
2658 #ifdef BLOCK_REG_PADDING
2659 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2660 == downward)
2661 #else
2662 && BYTES_BIG_ENDIAN
2663 #endif
2664 )
2665 {
2666 rtx tem, x;
2667 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2668 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2669
2670 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2671 build_int_cst (NULL_TREE, by),
2672 NULL_RTX, 1);
2673 tem = change_address (mem, word_mode, 0);
2674 emit_move_insn (tem, x);
2675 }
2676 else
2677 move_block_from_reg (REGNO (entry_parm), mem,
2678 size_stored / UNITS_PER_WORD);
2679 }
2680 else
2681 move_block_from_reg (REGNO (entry_parm), mem,
2682 size_stored / UNITS_PER_WORD);
2683 }
2684
2685 SET_DECL_RTL (parm, stack_parm);
2686 }
2687
2688 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2689 parameter. Get it there. Perform all ABI specified conversions. */
2690
2691 static void
2692 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2693 struct assign_parm_data_one *data)
2694 {
2695 rtx parmreg;
2696 enum machine_mode promoted_nominal_mode;
2697 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2698 bool did_conversion = false;
2699
2700 /* Store the parm in a pseudoregister during the function, but we may
2701 need to do it in a wider mode. */
2702
2703 promoted_nominal_mode
2704 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2705
2706 parmreg = gen_reg_rtx (promoted_nominal_mode);
2707
2708 if (!DECL_ARTIFICIAL (parm))
2709 mark_user_reg (parmreg);
2710
2711 /* If this was an item that we received a pointer to,
2712 set DECL_RTL appropriately. */
2713 if (data->passed_pointer)
2714 {
2715 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2716 set_mem_attributes (x, parm, 1);
2717 SET_DECL_RTL (parm, x);
2718 }
2719 else
2720 SET_DECL_RTL (parm, parmreg);
2721
2722 /* Copy the value into the register. */
2723 if (data->nominal_mode != data->passed_mode
2724 || promoted_nominal_mode != data->promoted_mode)
2725 {
2726 int save_tree_used;
2727
2728 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2729 mode, by the caller. We now have to convert it to
2730 NOMINAL_MODE, if different. However, PARMREG may be in
2731 a different mode than NOMINAL_MODE if it is being stored
2732 promoted.
2733
2734 If ENTRY_PARM is a hard register, it might be in a register
2735 not valid for operating in its mode (e.g., an odd-numbered
2736 register for a DFmode). In that case, moves are the only
2737 thing valid, so we can't do a convert from there. This
2738 occurs when the calling sequence allow such misaligned
2739 usages.
2740
2741 In addition, the conversion may involve a call, which could
2742 clobber parameters which haven't been copied to pseudo
2743 registers yet. Therefore, we must first copy the parm to
2744 a pseudo reg here, and save the conversion until after all
2745 parameters have been moved. */
2746
2747 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2748
2749 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2750
2751 push_to_sequence (all->conversion_insns);
2752 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2753
2754 if (GET_CODE (tempreg) == SUBREG
2755 && GET_MODE (tempreg) == data->nominal_mode
2756 && REG_P (SUBREG_REG (tempreg))
2757 && data->nominal_mode == data->passed_mode
2758 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2759 && GET_MODE_SIZE (GET_MODE (tempreg))
2760 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2761 {
2762 /* The argument is already sign/zero extended, so note it
2763 into the subreg. */
2764 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2765 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2766 }
2767
2768 /* TREE_USED gets set erroneously during expand_assignment. */
2769 save_tree_used = TREE_USED (parm);
2770 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2771 TREE_USED (parm) = save_tree_used;
2772 all->conversion_insns = get_insns ();
2773 end_sequence ();
2774
2775 did_conversion = true;
2776 }
2777 else
2778 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2779
2780 /* If we were passed a pointer but the actual value can safely live
2781 in a register, put it in one. */
2782 if (data->passed_pointer
2783 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2784 /* If by-reference argument was promoted, demote it. */
2785 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2786 || use_register_for_decl (parm)))
2787 {
2788 /* We can't use nominal_mode, because it will have been set to
2789 Pmode above. We must use the actual mode of the parm. */
2790 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2791 mark_user_reg (parmreg);
2792
2793 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2794 {
2795 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2796 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2797
2798 push_to_sequence (all->conversion_insns);
2799 emit_move_insn (tempreg, DECL_RTL (parm));
2800 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2801 emit_move_insn (parmreg, tempreg);
2802 all->conversion_insns = get_insns ();
2803 end_sequence ();
2804
2805 did_conversion = true;
2806 }
2807 else
2808 emit_move_insn (parmreg, DECL_RTL (parm));
2809
2810 SET_DECL_RTL (parm, parmreg);
2811
2812 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2813 now the parm. */
2814 data->stack_parm = NULL;
2815 }
2816
2817 /* Mark the register as eliminable if we did no conversion and it was
2818 copied from memory at a fixed offset, and the arg pointer was not
2819 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2820 offset formed an invalid address, such memory-equivalences as we
2821 make here would screw up life analysis for it. */
2822 if (data->nominal_mode == data->passed_mode
2823 && !did_conversion
2824 && data->stack_parm != 0
2825 && MEM_P (data->stack_parm)
2826 && data->locate.offset.var == 0
2827 && reg_mentioned_p (virtual_incoming_args_rtx,
2828 XEXP (data->stack_parm, 0)))
2829 {
2830 rtx linsn = get_last_insn ();
2831 rtx sinsn, set;
2832
2833 /* Mark complex types separately. */
2834 if (GET_CODE (parmreg) == CONCAT)
2835 {
2836 enum machine_mode submode
2837 = GET_MODE_INNER (GET_MODE (parmreg));
2838 int regnor = REGNO (XEXP (parmreg, 0));
2839 int regnoi = REGNO (XEXP (parmreg, 1));
2840 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2841 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2842 GET_MODE_SIZE (submode));
2843
2844 /* Scan backwards for the set of the real and
2845 imaginary parts. */
2846 for (sinsn = linsn; sinsn != 0;
2847 sinsn = prev_nonnote_insn (sinsn))
2848 {
2849 set = single_set (sinsn);
2850 if (set == 0)
2851 continue;
2852
2853 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2854 REG_NOTES (sinsn)
2855 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2856 REG_NOTES (sinsn));
2857 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2858 REG_NOTES (sinsn)
2859 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2860 REG_NOTES (sinsn));
2861 }
2862 }
2863 else if ((set = single_set (linsn)) != 0
2864 && SET_DEST (set) == parmreg)
2865 REG_NOTES (linsn)
2866 = gen_rtx_EXPR_LIST (REG_EQUIV,
2867 data->stack_parm, REG_NOTES (linsn));
2868 }
2869
2870 /* For pointer data type, suggest pointer register. */
2871 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2872 mark_reg_pointer (parmreg,
2873 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2874 }
2875
2876 /* A subroutine of assign_parms. Allocate stack space to hold the current
2877 parameter. Get it there. Perform all ABI specified conversions. */
2878
2879 static void
2880 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2881 struct assign_parm_data_one *data)
2882 {
2883 /* Value must be stored in the stack slot STACK_PARM during function
2884 execution. */
2885
2886 if (data->promoted_mode != data->nominal_mode)
2887 {
2888 /* Conversion is required. */
2889 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2890
2891 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2892
2893 push_to_sequence (all->conversion_insns);
2894 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2895 TYPE_UNSIGNED (TREE_TYPE (parm)));
2896
2897 if (data->stack_parm)
2898 /* ??? This may need a big-endian conversion on sparc64. */
2899 data->stack_parm
2900 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2901
2902 all->conversion_insns = get_insns ();
2903 end_sequence ();
2904 }
2905
2906 if (data->entry_parm != data->stack_parm)
2907 {
2908 if (data->stack_parm == 0)
2909 {
2910 data->stack_parm
2911 = assign_stack_local (GET_MODE (data->entry_parm),
2912 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2913 0);
2914 set_mem_attributes (data->stack_parm, parm, 1);
2915 }
2916
2917 if (data->promoted_mode != data->nominal_mode)
2918 {
2919 push_to_sequence (all->conversion_insns);
2920 emit_move_insn (validize_mem (data->stack_parm),
2921 validize_mem (data->entry_parm));
2922 all->conversion_insns = get_insns ();
2923 end_sequence ();
2924 }
2925 else
2926 emit_move_insn (validize_mem (data->stack_parm),
2927 validize_mem (data->entry_parm));
2928 }
2929
2930 SET_DECL_RTL (parm, data->stack_parm);
2931 }
2932
2933 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2934 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2935
2936 static void
2937 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2938 {
2939 tree parm;
2940 tree orig_fnargs = all->orig_fnargs;
2941
2942 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2943 {
2944 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2945 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2946 {
2947 rtx tmp, real, imag;
2948 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2949
2950 real = DECL_RTL (fnargs);
2951 imag = DECL_RTL (TREE_CHAIN (fnargs));
2952 if (inner != GET_MODE (real))
2953 {
2954 real = gen_lowpart_SUBREG (inner, real);
2955 imag = gen_lowpart_SUBREG (inner, imag);
2956 }
2957
2958 if (TREE_ADDRESSABLE (parm))
2959 {
2960 rtx rmem, imem;
2961 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2962
2963 /* split_complex_arg put the real and imag parts in
2964 pseudos. Move them to memory. */
2965 tmp = assign_stack_local (DECL_MODE (parm), size, 0);
2966 set_mem_attributes (tmp, parm, 1);
2967 rmem = adjust_address_nv (tmp, inner, 0);
2968 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2969 push_to_sequence (all->conversion_insns);
2970 emit_move_insn (rmem, real);
2971 emit_move_insn (imem, imag);
2972 all->conversion_insns = get_insns ();
2973 end_sequence ();
2974 }
2975 else
2976 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2977 SET_DECL_RTL (parm, tmp);
2978
2979 real = DECL_INCOMING_RTL (fnargs);
2980 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2981 if (inner != GET_MODE (real))
2982 {
2983 real = gen_lowpart_SUBREG (inner, real);
2984 imag = gen_lowpart_SUBREG (inner, imag);
2985 }
2986 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2987 set_decl_incoming_rtl (parm, tmp);
2988 fnargs = TREE_CHAIN (fnargs);
2989 }
2990 else
2991 {
2992 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2993 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2994
2995 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2996 instead of the copy of decl, i.e. FNARGS. */
2997 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2998 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2999 }
3000
3001 fnargs = TREE_CHAIN (fnargs);
3002 }
3003 }
3004
3005 /* Assign RTL expressions to the function's parameters. This may involve
3006 copying them into registers and using those registers as the DECL_RTL. */
3007
3008 static void
3009 assign_parms (tree fndecl)
3010 {
3011 struct assign_parm_data_all all;
3012 tree fnargs, parm;
3013 rtx internal_arg_pointer;
3014 int varargs_setup = 0;
3015
3016 /* If the reg that the virtual arg pointer will be translated into is
3017 not a fixed reg or is the stack pointer, make a copy of the virtual
3018 arg pointer, and address parms via the copy. The frame pointer is
3019 considered fixed even though it is not marked as such.
3020
3021 The second time through, simply use ap to avoid generating rtx. */
3022
3023 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3024 || ! (fixed_regs[ARG_POINTER_REGNUM]
3025 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3026 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3027 else
3028 internal_arg_pointer = virtual_incoming_args_rtx;
3029 current_function_internal_arg_pointer = internal_arg_pointer;
3030
3031 assign_parms_initialize_all (&all);
3032 fnargs = assign_parms_augmented_arg_list (&all);
3033
3034 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3035 {
3036 struct assign_parm_data_one data;
3037
3038 /* Extract the type of PARM; adjust it according to ABI. */
3039 assign_parm_find_data_types (&all, parm, &data);
3040
3041 /* Early out for errors and void parameters. */
3042 if (data.passed_mode == VOIDmode)
3043 {
3044 SET_DECL_RTL (parm, const0_rtx);
3045 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3046 continue;
3047 }
3048
3049 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3050 for the unnamed dummy argument following the last named argument.
3051 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3052 we only want to do this when we get to the actual last named
3053 argument, which will be the first time LAST_NAMED gets set. */
3054 if (data.last_named && !varargs_setup)
3055 {
3056 varargs_setup = true;
3057 assign_parms_setup_varargs (&all, &data, false);
3058 }
3059
3060 /* Find out where the parameter arrives in this function. */
3061 assign_parm_find_entry_rtl (&all, &data);
3062
3063 /* Find out where stack space for this parameter might be. */
3064 if (assign_parm_is_stack_parm (&all, &data))
3065 {
3066 assign_parm_find_stack_rtl (parm, &data);
3067 assign_parm_adjust_entry_rtl (&data);
3068 }
3069
3070 /* Record permanently how this parm was passed. */
3071 set_decl_incoming_rtl (parm, data.entry_parm);
3072
3073 /* Update info on where next arg arrives in registers. */
3074 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3075 data.passed_type, data.named_arg);
3076
3077 assign_parm_adjust_stack_rtl (&data);
3078
3079 if (assign_parm_setup_block_p (&data))
3080 assign_parm_setup_block (&all, parm, &data);
3081 else if (data.passed_pointer || use_register_for_decl (parm))
3082 assign_parm_setup_reg (&all, parm, &data);
3083 else
3084 assign_parm_setup_stack (&all, parm, &data);
3085 }
3086
3087 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3088 assign_parms_unsplit_complex (&all, fnargs);
3089
3090 /* Output all parameter conversion instructions (possibly including calls)
3091 now that all parameters have been copied out of hard registers. */
3092 emit_insn (all.conversion_insns);
3093
3094 /* If we are receiving a struct value address as the first argument, set up
3095 the RTL for the function result. As this might require code to convert
3096 the transmitted address to Pmode, we do this here to ensure that possible
3097 preliminary conversions of the address have been emitted already. */
3098 if (all.function_result_decl)
3099 {
3100 tree result = DECL_RESULT (current_function_decl);
3101 rtx addr = DECL_RTL (all.function_result_decl);
3102 rtx x;
3103
3104 if (DECL_BY_REFERENCE (result))
3105 x = addr;
3106 else
3107 {
3108 addr = convert_memory_address (Pmode, addr);
3109 x = gen_rtx_MEM (DECL_MODE (result), addr);
3110 set_mem_attributes (x, result, 1);
3111 }
3112 SET_DECL_RTL (result, x);
3113 }
3114
3115 /* We have aligned all the args, so add space for the pretend args. */
3116 current_function_pretend_args_size = all.pretend_args_size;
3117 all.stack_args_size.constant += all.extra_pretend_bytes;
3118 current_function_args_size = all.stack_args_size.constant;
3119
3120 /* Adjust function incoming argument size for alignment and
3121 minimum length. */
3122
3123 #ifdef REG_PARM_STACK_SPACE
3124 current_function_args_size = MAX (current_function_args_size,
3125 REG_PARM_STACK_SPACE (fndecl));
3126 #endif
3127
3128 current_function_args_size
3129 = ((current_function_args_size + STACK_BYTES - 1)
3130 / STACK_BYTES) * STACK_BYTES;
3131
3132 #ifdef ARGS_GROW_DOWNWARD
3133 current_function_arg_offset_rtx
3134 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3135 : expand_expr (size_diffop (all.stack_args_size.var,
3136 size_int (-all.stack_args_size.constant)),
3137 NULL_RTX, VOIDmode, 0));
3138 #else
3139 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3140 #endif
3141
3142 /* See how many bytes, if any, of its args a function should try to pop
3143 on return. */
3144
3145 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3146 current_function_args_size);
3147
3148 /* For stdarg.h function, save info about
3149 regs and stack space used by the named args. */
3150
3151 current_function_args_info = all.args_so_far;
3152
3153 /* Set the rtx used for the function return value. Put this in its
3154 own variable so any optimizers that need this information don't have
3155 to include tree.h. Do this here so it gets done when an inlined
3156 function gets output. */
3157
3158 current_function_return_rtx
3159 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3160 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3161
3162 /* If scalar return value was computed in a pseudo-reg, or was a named
3163 return value that got dumped to the stack, copy that to the hard
3164 return register. */
3165 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3166 {
3167 tree decl_result = DECL_RESULT (fndecl);
3168 rtx decl_rtl = DECL_RTL (decl_result);
3169
3170 if (REG_P (decl_rtl)
3171 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3172 : DECL_REGISTER (decl_result))
3173 {
3174 rtx real_decl_rtl;
3175
3176 #ifdef FUNCTION_OUTGOING_VALUE
3177 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3178 fndecl);
3179 #else
3180 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3181 fndecl);
3182 #endif
3183 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3184 /* The delay slot scheduler assumes that current_function_return_rtx
3185 holds the hard register containing the return value, not a
3186 temporary pseudo. */
3187 current_function_return_rtx = real_decl_rtl;
3188 }
3189 }
3190 }
3191
3192 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3193 For all seen types, gimplify their sizes. */
3194
3195 static tree
3196 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3197 {
3198 tree t = *tp;
3199
3200 *walk_subtrees = 0;
3201 if (TYPE_P (t))
3202 {
3203 if (POINTER_TYPE_P (t))
3204 *walk_subtrees = 1;
3205 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3206 && !TYPE_SIZES_GIMPLIFIED (t))
3207 {
3208 gimplify_type_sizes (t, (tree *) data);
3209 *walk_subtrees = 1;
3210 }
3211 }
3212
3213 return NULL;
3214 }
3215
3216 /* Gimplify the parameter list for current_function_decl. This involves
3217 evaluating SAVE_EXPRs of variable sized parameters and generating code
3218 to implement callee-copies reference parameters. Returns a list of
3219 statements to add to the beginning of the function, or NULL if nothing
3220 to do. */
3221
3222 tree
3223 gimplify_parameters (void)
3224 {
3225 struct assign_parm_data_all all;
3226 tree fnargs, parm, stmts = NULL;
3227
3228 assign_parms_initialize_all (&all);
3229 fnargs = assign_parms_augmented_arg_list (&all);
3230
3231 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3232 {
3233 struct assign_parm_data_one data;
3234
3235 /* Extract the type of PARM; adjust it according to ABI. */
3236 assign_parm_find_data_types (&all, parm, &data);
3237
3238 /* Early out for errors and void parameters. */
3239 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3240 continue;
3241
3242 /* Update info on where next arg arrives in registers. */
3243 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3244 data.passed_type, data.named_arg);
3245
3246 /* ??? Once upon a time variable_size stuffed parameter list
3247 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3248 turned out to be less than manageable in the gimple world.
3249 Now we have to hunt them down ourselves. */
3250 walk_tree_without_duplicates (&data.passed_type,
3251 gimplify_parm_type, &stmts);
3252
3253 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3254 {
3255 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3256 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3257 }
3258
3259 if (data.passed_pointer)
3260 {
3261 tree type = TREE_TYPE (data.passed_type);
3262 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3263 type, data.named_arg))
3264 {
3265 tree local, t;
3266
3267 /* For constant sized objects, this is trivial; for
3268 variable-sized objects, we have to play games. */
3269 if (TREE_CONSTANT (DECL_SIZE (parm)))
3270 {
3271 local = create_tmp_var (type, get_name (parm));
3272 DECL_IGNORED_P (local) = 0;
3273 }
3274 else
3275 {
3276 tree ptr_type, addr, args;
3277
3278 ptr_type = build_pointer_type (type);
3279 addr = create_tmp_var (ptr_type, get_name (parm));
3280 DECL_IGNORED_P (addr) = 0;
3281 local = build_fold_indirect_ref (addr);
3282
3283 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3284 t = built_in_decls[BUILT_IN_ALLOCA];
3285 t = build_function_call_expr (t, args);
3286 t = fold_convert (ptr_type, t);
3287 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3288 gimplify_and_add (t, &stmts);
3289 }
3290
3291 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3292 gimplify_and_add (t, &stmts);
3293
3294 DECL_VALUE_EXPR (parm) = local;
3295 }
3296 }
3297 }
3298
3299 return stmts;
3300 }
3301 \f
3302 /* Indicate whether REGNO is an incoming argument to the current function
3303 that was promoted to a wider mode. If so, return the RTX for the
3304 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3305 that REGNO is promoted from and whether the promotion was signed or
3306 unsigned. */
3307
3308 rtx
3309 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3310 {
3311 tree arg;
3312
3313 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3314 arg = TREE_CHAIN (arg))
3315 if (REG_P (DECL_INCOMING_RTL (arg))
3316 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3317 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3318 {
3319 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3320 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3321
3322 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3323 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3324 && mode != DECL_MODE (arg))
3325 {
3326 *pmode = DECL_MODE (arg);
3327 *punsignedp = unsignedp;
3328 return DECL_INCOMING_RTL (arg);
3329 }
3330 }
3331
3332 return 0;
3333 }
3334
3335 \f
3336 /* Compute the size and offset from the start of the stacked arguments for a
3337 parm passed in mode PASSED_MODE and with type TYPE.
3338
3339 INITIAL_OFFSET_PTR points to the current offset into the stacked
3340 arguments.
3341
3342 The starting offset and size for this parm are returned in
3343 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3344 nonzero, the offset is that of stack slot, which is returned in
3345 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3346 padding required from the initial offset ptr to the stack slot.
3347
3348 IN_REGS is nonzero if the argument will be passed in registers. It will
3349 never be set if REG_PARM_STACK_SPACE is not defined.
3350
3351 FNDECL is the function in which the argument was defined.
3352
3353 There are two types of rounding that are done. The first, controlled by
3354 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3355 list to be aligned to the specific boundary (in bits). This rounding
3356 affects the initial and starting offsets, but not the argument size.
3357
3358 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3359 optionally rounds the size of the parm to PARM_BOUNDARY. The
3360 initial offset is not affected by this rounding, while the size always
3361 is and the starting offset may be. */
3362
3363 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3364 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3365 callers pass in the total size of args so far as
3366 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3367
3368 void
3369 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3370 int partial, tree fndecl ATTRIBUTE_UNUSED,
3371 struct args_size *initial_offset_ptr,
3372 struct locate_and_pad_arg_data *locate)
3373 {
3374 tree sizetree;
3375 enum direction where_pad;
3376 int boundary;
3377 int reg_parm_stack_space = 0;
3378 int part_size_in_regs;
3379
3380 #ifdef REG_PARM_STACK_SPACE
3381 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3382
3383 /* If we have found a stack parm before we reach the end of the
3384 area reserved for registers, skip that area. */
3385 if (! in_regs)
3386 {
3387 if (reg_parm_stack_space > 0)
3388 {
3389 if (initial_offset_ptr->var)
3390 {
3391 initial_offset_ptr->var
3392 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3393 ssize_int (reg_parm_stack_space));
3394 initial_offset_ptr->constant = 0;
3395 }
3396 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3397 initial_offset_ptr->constant = reg_parm_stack_space;
3398 }
3399 }
3400 #endif /* REG_PARM_STACK_SPACE */
3401
3402 part_size_in_regs = 0;
3403 if (reg_parm_stack_space == 0)
3404 part_size_in_regs = ((partial * UNITS_PER_WORD)
3405 / (PARM_BOUNDARY / BITS_PER_UNIT)
3406 * (PARM_BOUNDARY / BITS_PER_UNIT));
3407
3408 sizetree
3409 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3410 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3411 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3412 locate->where_pad = where_pad;
3413
3414 #ifdef ARGS_GROW_DOWNWARD
3415 locate->slot_offset.constant = -initial_offset_ptr->constant;
3416 if (initial_offset_ptr->var)
3417 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3418 initial_offset_ptr->var);
3419
3420 {
3421 tree s2 = sizetree;
3422 if (where_pad != none
3423 && (!host_integerp (sizetree, 1)
3424 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3425 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3426 SUB_PARM_SIZE (locate->slot_offset, s2);
3427 }
3428
3429 locate->slot_offset.constant += part_size_in_regs;
3430
3431 if (!in_regs
3432 #ifdef REG_PARM_STACK_SPACE
3433 || REG_PARM_STACK_SPACE (fndecl) > 0
3434 #endif
3435 )
3436 pad_to_arg_alignment (&locate->slot_offset, boundary,
3437 &locate->alignment_pad);
3438
3439 locate->size.constant = (-initial_offset_ptr->constant
3440 - locate->slot_offset.constant);
3441 if (initial_offset_ptr->var)
3442 locate->size.var = size_binop (MINUS_EXPR,
3443 size_binop (MINUS_EXPR,
3444 ssize_int (0),
3445 initial_offset_ptr->var),
3446 locate->slot_offset.var);
3447
3448 /* Pad_below needs the pre-rounded size to know how much to pad
3449 below. */
3450 locate->offset = locate->slot_offset;
3451 if (where_pad == downward)
3452 pad_below (&locate->offset, passed_mode, sizetree);
3453
3454 #else /* !ARGS_GROW_DOWNWARD */
3455 if (!in_regs
3456 #ifdef REG_PARM_STACK_SPACE
3457 || REG_PARM_STACK_SPACE (fndecl) > 0
3458 #endif
3459 )
3460 pad_to_arg_alignment (initial_offset_ptr, boundary,
3461 &locate->alignment_pad);
3462 locate->slot_offset = *initial_offset_ptr;
3463
3464 #ifdef PUSH_ROUNDING
3465 if (passed_mode != BLKmode)
3466 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3467 #endif
3468
3469 /* Pad_below needs the pre-rounded size to know how much to pad below
3470 so this must be done before rounding up. */
3471 locate->offset = locate->slot_offset;
3472 if (where_pad == downward)
3473 pad_below (&locate->offset, passed_mode, sizetree);
3474
3475 if (where_pad != none
3476 && (!host_integerp (sizetree, 1)
3477 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3478 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3479
3480 ADD_PARM_SIZE (locate->size, sizetree);
3481
3482 locate->size.constant -= part_size_in_regs;
3483 #endif /* ARGS_GROW_DOWNWARD */
3484 }
3485
3486 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3487 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3488
3489 static void
3490 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3491 struct args_size *alignment_pad)
3492 {
3493 tree save_var = NULL_TREE;
3494 HOST_WIDE_INT save_constant = 0;
3495 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3496 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3497
3498 #ifdef SPARC_STACK_BOUNDARY_HACK
3499 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3500 higher than the real alignment of %sp. However, when it does this,
3501 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3502 This is a temporary hack while the sparc port is fixed. */
3503 if (SPARC_STACK_BOUNDARY_HACK)
3504 sp_offset = 0;
3505 #endif
3506
3507 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3508 {
3509 save_var = offset_ptr->var;
3510 save_constant = offset_ptr->constant;
3511 }
3512
3513 alignment_pad->var = NULL_TREE;
3514 alignment_pad->constant = 0;
3515
3516 if (boundary > BITS_PER_UNIT)
3517 {
3518 if (offset_ptr->var)
3519 {
3520 tree sp_offset_tree = ssize_int (sp_offset);
3521 tree offset = size_binop (PLUS_EXPR,
3522 ARGS_SIZE_TREE (*offset_ptr),
3523 sp_offset_tree);
3524 #ifdef ARGS_GROW_DOWNWARD
3525 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3526 #else
3527 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3528 #endif
3529
3530 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3531 /* ARGS_SIZE_TREE includes constant term. */
3532 offset_ptr->constant = 0;
3533 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3534 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3535 save_var);
3536 }
3537 else
3538 {
3539 offset_ptr->constant = -sp_offset +
3540 #ifdef ARGS_GROW_DOWNWARD
3541 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3542 #else
3543 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3544 #endif
3545 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3546 alignment_pad->constant = offset_ptr->constant - save_constant;
3547 }
3548 }
3549 }
3550
3551 static void
3552 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3553 {
3554 if (passed_mode != BLKmode)
3555 {
3556 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3557 offset_ptr->constant
3558 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3559 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3560 - GET_MODE_SIZE (passed_mode));
3561 }
3562 else
3563 {
3564 if (TREE_CODE (sizetree) != INTEGER_CST
3565 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3566 {
3567 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3568 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3569 /* Add it in. */
3570 ADD_PARM_SIZE (*offset_ptr, s2);
3571 SUB_PARM_SIZE (*offset_ptr, sizetree);
3572 }
3573 }
3574 }
3575 \f
3576 /* Walk the tree of blocks describing the binding levels within a function
3577 and warn about variables the might be killed by setjmp or vfork.
3578 This is done after calling flow_analysis and before global_alloc
3579 clobbers the pseudo-regs to hard regs. */
3580
3581 void
3582 setjmp_vars_warning (tree block)
3583 {
3584 tree decl, sub;
3585
3586 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3587 {
3588 if (TREE_CODE (decl) == VAR_DECL
3589 && DECL_RTL_SET_P (decl)
3590 && REG_P (DECL_RTL (decl))
3591 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3592 warning ("%Jvariable %qD might be clobbered by %<longjmp%>"
3593 " or %<vfork%>",
3594 decl, decl);
3595 }
3596
3597 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3598 setjmp_vars_warning (sub);
3599 }
3600
3601 /* Do the appropriate part of setjmp_vars_warning
3602 but for arguments instead of local variables. */
3603
3604 void
3605 setjmp_args_warning (void)
3606 {
3607 tree decl;
3608 for (decl = DECL_ARGUMENTS (current_function_decl);
3609 decl; decl = TREE_CHAIN (decl))
3610 if (DECL_RTL (decl) != 0
3611 && REG_P (DECL_RTL (decl))
3612 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3613 warning ("%Jargument %qD might be clobbered by %<longjmp%> or %<vfork%>",
3614 decl, decl);
3615 }
3616
3617 \f
3618 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3619 and create duplicate blocks. */
3620 /* ??? Need an option to either create block fragments or to create
3621 abstract origin duplicates of a source block. It really depends
3622 on what optimization has been performed. */
3623
3624 void
3625 reorder_blocks (void)
3626 {
3627 tree block = DECL_INITIAL (current_function_decl);
3628 varray_type block_stack;
3629
3630 if (block == NULL_TREE)
3631 return;
3632
3633 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3634
3635 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3636 clear_block_marks (block);
3637
3638 /* Prune the old trees away, so that they don't get in the way. */
3639 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3640 BLOCK_CHAIN (block) = NULL_TREE;
3641
3642 /* Recreate the block tree from the note nesting. */
3643 reorder_blocks_1 (get_insns (), block, &block_stack);
3644 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3645
3646 /* Remove deleted blocks from the block fragment chains. */
3647 reorder_fix_fragments (block);
3648 }
3649
3650 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3651
3652 void
3653 clear_block_marks (tree block)
3654 {
3655 while (block)
3656 {
3657 TREE_ASM_WRITTEN (block) = 0;
3658 clear_block_marks (BLOCK_SUBBLOCKS (block));
3659 block = BLOCK_CHAIN (block);
3660 }
3661 }
3662
3663 static void
3664 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3665 {
3666 rtx insn;
3667
3668 for (insn = insns; insn; insn = NEXT_INSN (insn))
3669 {
3670 if (NOTE_P (insn))
3671 {
3672 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3673 {
3674 tree block = NOTE_BLOCK (insn);
3675
3676 /* If we have seen this block before, that means it now
3677 spans multiple address regions. Create a new fragment. */
3678 if (TREE_ASM_WRITTEN (block))
3679 {
3680 tree new_block = copy_node (block);
3681 tree origin;
3682
3683 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3684 ? BLOCK_FRAGMENT_ORIGIN (block)
3685 : block);
3686 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3687 BLOCK_FRAGMENT_CHAIN (new_block)
3688 = BLOCK_FRAGMENT_CHAIN (origin);
3689 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3690
3691 NOTE_BLOCK (insn) = new_block;
3692 block = new_block;
3693 }
3694
3695 BLOCK_SUBBLOCKS (block) = 0;
3696 TREE_ASM_WRITTEN (block) = 1;
3697 /* When there's only one block for the entire function,
3698 current_block == block and we mustn't do this, it
3699 will cause infinite recursion. */
3700 if (block != current_block)
3701 {
3702 BLOCK_SUPERCONTEXT (block) = current_block;
3703 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3704 BLOCK_SUBBLOCKS (current_block) = block;
3705 current_block = block;
3706 }
3707 VARRAY_PUSH_TREE (*p_block_stack, block);
3708 }
3709 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3710 {
3711 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3712 VARRAY_POP (*p_block_stack);
3713 BLOCK_SUBBLOCKS (current_block)
3714 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3715 current_block = BLOCK_SUPERCONTEXT (current_block);
3716 }
3717 }
3718 }
3719 }
3720
3721 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3722 appears in the block tree, select one of the fragments to become
3723 the new origin block. */
3724
3725 static void
3726 reorder_fix_fragments (tree block)
3727 {
3728 while (block)
3729 {
3730 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3731 tree new_origin = NULL_TREE;
3732
3733 if (dup_origin)
3734 {
3735 if (! TREE_ASM_WRITTEN (dup_origin))
3736 {
3737 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3738
3739 /* Find the first of the remaining fragments. There must
3740 be at least one -- the current block. */
3741 while (! TREE_ASM_WRITTEN (new_origin))
3742 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3743 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3744 }
3745 }
3746 else if (! dup_origin)
3747 new_origin = block;
3748
3749 /* Re-root the rest of the fragments to the new origin. In the
3750 case that DUP_ORIGIN was null, that means BLOCK was the origin
3751 of a chain of fragments and we want to remove those fragments
3752 that didn't make it to the output. */
3753 if (new_origin)
3754 {
3755 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3756 tree chain = *pp;
3757
3758 while (chain)
3759 {
3760 if (TREE_ASM_WRITTEN (chain))
3761 {
3762 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3763 *pp = chain;
3764 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3765 }
3766 chain = BLOCK_FRAGMENT_CHAIN (chain);
3767 }
3768 *pp = NULL_TREE;
3769 }
3770
3771 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3772 block = BLOCK_CHAIN (block);
3773 }
3774 }
3775
3776 /* Reverse the order of elements in the chain T of blocks,
3777 and return the new head of the chain (old last element). */
3778
3779 tree
3780 blocks_nreverse (tree t)
3781 {
3782 tree prev = 0, decl, next;
3783 for (decl = t; decl; decl = next)
3784 {
3785 next = BLOCK_CHAIN (decl);
3786 BLOCK_CHAIN (decl) = prev;
3787 prev = decl;
3788 }
3789 return prev;
3790 }
3791
3792 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3793 non-NULL, list them all into VECTOR, in a depth-first preorder
3794 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3795 blocks. */
3796
3797 static int
3798 all_blocks (tree block, tree *vector)
3799 {
3800 int n_blocks = 0;
3801
3802 while (block)
3803 {
3804 TREE_ASM_WRITTEN (block) = 0;
3805
3806 /* Record this block. */
3807 if (vector)
3808 vector[n_blocks] = block;
3809
3810 ++n_blocks;
3811
3812 /* Record the subblocks, and their subblocks... */
3813 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3814 vector ? vector + n_blocks : 0);
3815 block = BLOCK_CHAIN (block);
3816 }
3817
3818 return n_blocks;
3819 }
3820
3821 /* Return a vector containing all the blocks rooted at BLOCK. The
3822 number of elements in the vector is stored in N_BLOCKS_P. The
3823 vector is dynamically allocated; it is the caller's responsibility
3824 to call `free' on the pointer returned. */
3825
3826 static tree *
3827 get_block_vector (tree block, int *n_blocks_p)
3828 {
3829 tree *block_vector;
3830
3831 *n_blocks_p = all_blocks (block, NULL);
3832 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3833 all_blocks (block, block_vector);
3834
3835 return block_vector;
3836 }
3837
3838 static GTY(()) int next_block_index = 2;
3839
3840 /* Set BLOCK_NUMBER for all the blocks in FN. */
3841
3842 void
3843 number_blocks (tree fn)
3844 {
3845 int i;
3846 int n_blocks;
3847 tree *block_vector;
3848
3849 /* For SDB and XCOFF debugging output, we start numbering the blocks
3850 from 1 within each function, rather than keeping a running
3851 count. */
3852 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3853 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3854 next_block_index = 1;
3855 #endif
3856
3857 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3858
3859 /* The top-level BLOCK isn't numbered at all. */
3860 for (i = 1; i < n_blocks; ++i)
3861 /* We number the blocks from two. */
3862 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3863
3864 free (block_vector);
3865
3866 return;
3867 }
3868
3869 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3870
3871 tree
3872 debug_find_var_in_block_tree (tree var, tree block)
3873 {
3874 tree t;
3875
3876 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3877 if (t == var)
3878 return block;
3879
3880 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3881 {
3882 tree ret = debug_find_var_in_block_tree (var, t);
3883 if (ret)
3884 return ret;
3885 }
3886
3887 return NULL_TREE;
3888 }
3889 \f
3890 /* Allocate a function structure for FNDECL and set its contents
3891 to the defaults. */
3892
3893 void
3894 allocate_struct_function (tree fndecl)
3895 {
3896 tree result;
3897 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3898
3899 cfun = ggc_alloc_cleared (sizeof (struct function));
3900
3901 cfun->stack_alignment_needed = STACK_BOUNDARY;
3902 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3903
3904 current_function_funcdef_no = funcdef_no++;
3905
3906 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3907
3908 init_eh_for_function ();
3909
3910 lang_hooks.function.init (cfun);
3911 if (init_machine_status)
3912 cfun->machine = (*init_machine_status) ();
3913
3914 if (fndecl == NULL)
3915 return;
3916
3917 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3918 cfun->decl = fndecl;
3919
3920 result = DECL_RESULT (fndecl);
3921 if (aggregate_value_p (result, fndecl))
3922 {
3923 #ifdef PCC_STATIC_STRUCT_RETURN
3924 current_function_returns_pcc_struct = 1;
3925 #endif
3926 current_function_returns_struct = 1;
3927 }
3928
3929 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3930
3931 current_function_stdarg
3932 = (fntype
3933 && TYPE_ARG_TYPES (fntype) != 0
3934 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3935 != void_type_node));
3936 }
3937
3938 /* Reset cfun, and other non-struct-function variables to defaults as
3939 appropriate for emitting rtl at the start of a function. */
3940
3941 static void
3942 prepare_function_start (tree fndecl)
3943 {
3944 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3945 cfun = DECL_STRUCT_FUNCTION (fndecl);
3946 else
3947 allocate_struct_function (fndecl);
3948 init_emit ();
3949 init_varasm_status (cfun);
3950 init_expr ();
3951
3952 cse_not_expected = ! optimize;
3953
3954 /* Caller save not needed yet. */
3955 caller_save_needed = 0;
3956
3957 /* We haven't done register allocation yet. */
3958 reg_renumber = 0;
3959
3960 /* Indicate that we have not instantiated virtual registers yet. */
3961 virtuals_instantiated = 0;
3962
3963 /* Indicate that we want CONCATs now. */
3964 generating_concat_p = 1;
3965
3966 /* Indicate we have no need of a frame pointer yet. */
3967 frame_pointer_needed = 0;
3968 }
3969
3970 /* Initialize the rtl expansion mechanism so that we can do simple things
3971 like generate sequences. This is used to provide a context during global
3972 initialization of some passes. */
3973 void
3974 init_dummy_function_start (void)
3975 {
3976 prepare_function_start (NULL);
3977 }
3978
3979 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3980 and initialize static variables for generating RTL for the statements
3981 of the function. */
3982
3983 void
3984 init_function_start (tree subr)
3985 {
3986 prepare_function_start (subr);
3987
3988 /* Prevent ever trying to delete the first instruction of a
3989 function. Also tell final how to output a linenum before the
3990 function prologue. Note linenums could be missing, e.g. when
3991 compiling a Java .class file. */
3992 if (! DECL_IS_BUILTIN (subr))
3993 emit_line_note (DECL_SOURCE_LOCATION (subr));
3994
3995 /* Make sure first insn is a note even if we don't want linenums.
3996 This makes sure the first insn will never be deleted.
3997 Also, final expects a note to appear there. */
3998 emit_note (NOTE_INSN_DELETED);
3999
4000 /* Warn if this value is an aggregate type,
4001 regardless of which calling convention we are using for it. */
4002 if (warn_aggregate_return
4003 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4004 warning ("function returns an aggregate");
4005 }
4006
4007 /* Make sure all values used by the optimization passes have sane
4008 defaults. */
4009 void
4010 init_function_for_compilation (void)
4011 {
4012 reg_renumber = 0;
4013
4014 /* No prologue/epilogue insns yet. */
4015 VARRAY_GROW (prologue, 0);
4016 VARRAY_GROW (epilogue, 0);
4017 VARRAY_GROW (sibcall_epilogue, 0);
4018 }
4019
4020 /* Expand a call to __main at the beginning of a possible main function. */
4021
4022 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
4023 #undef HAS_INIT_SECTION
4024 #define HAS_INIT_SECTION
4025 #endif
4026
4027 void
4028 expand_main_function (void)
4029 {
4030 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
4031 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
4032 {
4033 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
4034 rtx tmp, seq;
4035
4036 start_sequence ();
4037 /* Forcibly align the stack. */
4038 #ifdef STACK_GROWS_DOWNWARD
4039 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
4040 stack_pointer_rtx, 1, OPTAB_WIDEN);
4041 #else
4042 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
4043 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
4044 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
4045 stack_pointer_rtx, 1, OPTAB_WIDEN);
4046 #endif
4047 if (tmp != stack_pointer_rtx)
4048 emit_move_insn (stack_pointer_rtx, tmp);
4049
4050 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
4051 tmp = force_reg (Pmode, const0_rtx);
4052 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
4053 seq = get_insns ();
4054 end_sequence ();
4055
4056 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
4057 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
4058 break;
4059 if (tmp)
4060 emit_insn_before (seq, tmp);
4061 else
4062 emit_insn (seq);
4063 }
4064 #endif
4065
4066 #ifndef HAS_INIT_SECTION
4067 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4068 #endif
4069 }
4070 \f
4071 /* Start the RTL for a new function, and set variables used for
4072 emitting RTL.
4073 SUBR is the FUNCTION_DECL node.
4074 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4075 the function's parameters, which must be run at any return statement. */
4076
4077 void
4078 expand_function_start (tree subr)
4079 {
4080 /* Make sure volatile mem refs aren't considered
4081 valid operands of arithmetic insns. */
4082 init_recog_no_volatile ();
4083
4084 current_function_profile
4085 = (profile_flag
4086 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4087
4088 current_function_limit_stack
4089 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4090
4091 /* Make the label for return statements to jump to. Do not special
4092 case machines with special return instructions -- they will be
4093 handled later during jump, ifcvt, or epilogue creation. */
4094 return_label = gen_label_rtx ();
4095
4096 /* Initialize rtx used to return the value. */
4097 /* Do this before assign_parms so that we copy the struct value address
4098 before any library calls that assign parms might generate. */
4099
4100 /* Decide whether to return the value in memory or in a register. */
4101 if (aggregate_value_p (DECL_RESULT (subr), subr))
4102 {
4103 /* Returning something that won't go in a register. */
4104 rtx value_address = 0;
4105
4106 #ifdef PCC_STATIC_STRUCT_RETURN
4107 if (current_function_returns_pcc_struct)
4108 {
4109 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4110 value_address = assemble_static_space (size);
4111 }
4112 else
4113 #endif
4114 {
4115 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4116 /* Expect to be passed the address of a place to store the value.
4117 If it is passed as an argument, assign_parms will take care of
4118 it. */
4119 if (sv)
4120 {
4121 value_address = gen_reg_rtx (Pmode);
4122 emit_move_insn (value_address, sv);
4123 }
4124 }
4125 if (value_address)
4126 {
4127 rtx x = value_address;
4128 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4129 {
4130 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4131 set_mem_attributes (x, DECL_RESULT (subr), 1);
4132 }
4133 SET_DECL_RTL (DECL_RESULT (subr), x);
4134 }
4135 }
4136 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4137 /* If return mode is void, this decl rtl should not be used. */
4138 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4139 else
4140 {
4141 /* Compute the return values into a pseudo reg, which we will copy
4142 into the true return register after the cleanups are done. */
4143 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4144 if (TYPE_MODE (return_type) != BLKmode
4145 && targetm.calls.return_in_msb (return_type))
4146 /* expand_function_end will insert the appropriate padding in
4147 this case. Use the return value's natural (unpadded) mode
4148 within the function proper. */
4149 SET_DECL_RTL (DECL_RESULT (subr),
4150 gen_reg_rtx (TYPE_MODE (return_type)));
4151 else
4152 {
4153 /* In order to figure out what mode to use for the pseudo, we
4154 figure out what the mode of the eventual return register will
4155 actually be, and use that. */
4156 rtx hard_reg = hard_function_value (return_type, subr, 1);
4157
4158 /* Structures that are returned in registers are not
4159 aggregate_value_p, so we may see a PARALLEL or a REG. */
4160 if (REG_P (hard_reg))
4161 SET_DECL_RTL (DECL_RESULT (subr),
4162 gen_reg_rtx (GET_MODE (hard_reg)));
4163 else
4164 {
4165 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4166 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4167 }
4168 }
4169
4170 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4171 result to the real return register(s). */
4172 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4173 }
4174
4175 /* Initialize rtx for parameters and local variables.
4176 In some cases this requires emitting insns. */
4177 assign_parms (subr);
4178
4179 /* If function gets a static chain arg, store it. */
4180 if (cfun->static_chain_decl)
4181 {
4182 tree parm = cfun->static_chain_decl;
4183 rtx local = gen_reg_rtx (Pmode);
4184
4185 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4186 SET_DECL_RTL (parm, local);
4187 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4188
4189 emit_move_insn (local, static_chain_incoming_rtx);
4190 }
4191
4192 /* If the function receives a non-local goto, then store the
4193 bits we need to restore the frame pointer. */
4194 if (cfun->nonlocal_goto_save_area)
4195 {
4196 tree t_save;
4197 rtx r_save;
4198
4199 /* ??? We need to do this save early. Unfortunately here is
4200 before the frame variable gets declared. Help out... */
4201 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4202
4203 t_save = build4 (ARRAY_REF, ptr_type_node,
4204 cfun->nonlocal_goto_save_area,
4205 integer_zero_node, NULL_TREE, NULL_TREE);
4206 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4207 r_save = convert_memory_address (Pmode, r_save);
4208
4209 emit_move_insn (r_save, virtual_stack_vars_rtx);
4210 update_nonlocal_goto_save_area ();
4211 }
4212
4213 /* The following was moved from init_function_start.
4214 The move is supposed to make sdb output more accurate. */
4215 /* Indicate the beginning of the function body,
4216 as opposed to parm setup. */
4217 emit_note (NOTE_INSN_FUNCTION_BEG);
4218
4219 if (!NOTE_P (get_last_insn ()))
4220 emit_note (NOTE_INSN_DELETED);
4221 parm_birth_insn = get_last_insn ();
4222
4223 if (current_function_profile)
4224 {
4225 #ifdef PROFILE_HOOK
4226 PROFILE_HOOK (current_function_funcdef_no);
4227 #endif
4228 }
4229
4230 /* After the display initializations is where the tail-recursion label
4231 should go, if we end up needing one. Ensure we have a NOTE here
4232 since some things (like trampolines) get placed before this. */
4233 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4234
4235 /* Make sure there is a line number after the function entry setup code. */
4236 force_next_line_note ();
4237 }
4238 \f
4239 /* Undo the effects of init_dummy_function_start. */
4240 void
4241 expand_dummy_function_end (void)
4242 {
4243 /* End any sequences that failed to be closed due to syntax errors. */
4244 while (in_sequence_p ())
4245 end_sequence ();
4246
4247 /* Outside function body, can't compute type's actual size
4248 until next function's body starts. */
4249
4250 free_after_parsing (cfun);
4251 free_after_compilation (cfun);
4252 cfun = 0;
4253 }
4254
4255 /* Call DOIT for each hard register used as a return value from
4256 the current function. */
4257
4258 void
4259 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4260 {
4261 rtx outgoing = current_function_return_rtx;
4262
4263 if (! outgoing)
4264 return;
4265
4266 if (REG_P (outgoing))
4267 (*doit) (outgoing, arg);
4268 else if (GET_CODE (outgoing) == PARALLEL)
4269 {
4270 int i;
4271
4272 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4273 {
4274 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4275
4276 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4277 (*doit) (x, arg);
4278 }
4279 }
4280 }
4281
4282 static void
4283 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4284 {
4285 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4286 }
4287
4288 void
4289 clobber_return_register (void)
4290 {
4291 diddle_return_value (do_clobber_return_reg, NULL);
4292
4293 /* In case we do use pseudo to return value, clobber it too. */
4294 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4295 {
4296 tree decl_result = DECL_RESULT (current_function_decl);
4297 rtx decl_rtl = DECL_RTL (decl_result);
4298 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4299 {
4300 do_clobber_return_reg (decl_rtl, NULL);
4301 }
4302 }
4303 }
4304
4305 static void
4306 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4307 {
4308 emit_insn (gen_rtx_USE (VOIDmode, reg));
4309 }
4310
4311 void
4312 use_return_register (void)
4313 {
4314 diddle_return_value (do_use_return_reg, NULL);
4315 }
4316
4317 /* Possibly warn about unused parameters. */
4318 void
4319 do_warn_unused_parameter (tree fn)
4320 {
4321 tree decl;
4322
4323 for (decl = DECL_ARGUMENTS (fn);
4324 decl; decl = TREE_CHAIN (decl))
4325 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4326 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4327 warning ("%Junused parameter %qD", decl, decl);
4328 }
4329
4330 static GTY(()) rtx initial_trampoline;
4331
4332 /* Generate RTL for the end of the current function. */
4333
4334 void
4335 expand_function_end (void)
4336 {
4337 rtx clobber_after;
4338
4339 /* If arg_pointer_save_area was referenced only from a nested
4340 function, we will not have initialized it yet. Do that now. */
4341 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4342 get_arg_pointer_save_area (cfun);
4343
4344 /* If we are doing stack checking and this function makes calls,
4345 do a stack probe at the start of the function to ensure we have enough
4346 space for another stack frame. */
4347 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4348 {
4349 rtx insn, seq;
4350
4351 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4352 if (CALL_P (insn))
4353 {
4354 start_sequence ();
4355 probe_stack_range (STACK_CHECK_PROTECT,
4356 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4357 seq = get_insns ();
4358 end_sequence ();
4359 emit_insn_before (seq, tail_recursion_reentry);
4360 break;
4361 }
4362 }
4363
4364 /* Possibly warn about unused parameters.
4365 When frontend does unit-at-a-time, the warning is already
4366 issued at finalization time. */
4367 if (warn_unused_parameter
4368 && !lang_hooks.callgraph.expand_function)
4369 do_warn_unused_parameter (current_function_decl);
4370
4371 /* End any sequences that failed to be closed due to syntax errors. */
4372 while (in_sequence_p ())
4373 end_sequence ();
4374
4375 clear_pending_stack_adjust ();
4376 do_pending_stack_adjust ();
4377
4378 /* @@@ This is a kludge. We want to ensure that instructions that
4379 may trap are not moved into the epilogue by scheduling, because
4380 we don't always emit unwind information for the epilogue.
4381 However, not all machine descriptions define a blockage insn, so
4382 emit an ASM_INPUT to act as one. */
4383 if (flag_non_call_exceptions)
4384 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4385
4386 /* Mark the end of the function body.
4387 If control reaches this insn, the function can drop through
4388 without returning a value. */
4389 emit_note (NOTE_INSN_FUNCTION_END);
4390
4391 /* Must mark the last line number note in the function, so that the test
4392 coverage code can avoid counting the last line twice. This just tells
4393 the code to ignore the immediately following line note, since there
4394 already exists a copy of this note somewhere above. This line number
4395 note is still needed for debugging though, so we can't delete it. */
4396 if (flag_test_coverage)
4397 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4398
4399 /* Output a linenumber for the end of the function.
4400 SDB depends on this. */
4401 force_next_line_note ();
4402 emit_line_note (input_location);
4403
4404 /* Before the return label (if any), clobber the return
4405 registers so that they are not propagated live to the rest of
4406 the function. This can only happen with functions that drop
4407 through; if there had been a return statement, there would
4408 have either been a return rtx, or a jump to the return label.
4409
4410 We delay actual code generation after the current_function_value_rtx
4411 is computed. */
4412 clobber_after = get_last_insn ();
4413
4414 /* Output the label for the actual return from the function. */
4415 emit_label (return_label);
4416
4417 /* Let except.c know where it should emit the call to unregister
4418 the function context for sjlj exceptions. */
4419 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4420 sjlj_emit_function_exit_after (get_last_insn ());
4421
4422 /* If we had calls to alloca, and this machine needs
4423 an accurate stack pointer to exit the function,
4424 insert some code to save and restore the stack pointer. */
4425 if (! EXIT_IGNORE_STACK
4426 && current_function_calls_alloca)
4427 {
4428 rtx tem = 0;
4429
4430 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4431 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4432 }
4433
4434 /* If scalar return value was computed in a pseudo-reg, or was a named
4435 return value that got dumped to the stack, copy that to the hard
4436 return register. */
4437 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4438 {
4439 tree decl_result = DECL_RESULT (current_function_decl);
4440 rtx decl_rtl = DECL_RTL (decl_result);
4441
4442 if (REG_P (decl_rtl)
4443 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4444 : DECL_REGISTER (decl_result))
4445 {
4446 rtx real_decl_rtl = current_function_return_rtx;
4447
4448 /* This should be set in assign_parms. */
4449 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4450
4451 /* If this is a BLKmode structure being returned in registers,
4452 then use the mode computed in expand_return. Note that if
4453 decl_rtl is memory, then its mode may have been changed,
4454 but that current_function_return_rtx has not. */
4455 if (GET_MODE (real_decl_rtl) == BLKmode)
4456 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4457
4458 /* If a non-BLKmode return value should be padded at the least
4459 significant end of the register, shift it left by the appropriate
4460 amount. BLKmode results are handled using the group load/store
4461 machinery. */
4462 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4463 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4464 {
4465 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4466 REGNO (real_decl_rtl)),
4467 decl_rtl);
4468 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4469 }
4470 /* If a named return value dumped decl_return to memory, then
4471 we may need to re-do the PROMOTE_MODE signed/unsigned
4472 extension. */
4473 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4474 {
4475 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4476
4477 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4478 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4479 &unsignedp, 1);
4480
4481 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4482 }
4483 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4484 {
4485 /* If expand_function_start has created a PARALLEL for decl_rtl,
4486 move the result to the real return registers. Otherwise, do
4487 a group load from decl_rtl for a named return. */
4488 if (GET_CODE (decl_rtl) == PARALLEL)
4489 emit_group_move (real_decl_rtl, decl_rtl);
4490 else
4491 emit_group_load (real_decl_rtl, decl_rtl,
4492 TREE_TYPE (decl_result),
4493 int_size_in_bytes (TREE_TYPE (decl_result)));
4494 }
4495 else
4496 emit_move_insn (real_decl_rtl, decl_rtl);
4497 }
4498 }
4499
4500 /* If returning a structure, arrange to return the address of the value
4501 in a place where debuggers expect to find it.
4502
4503 If returning a structure PCC style,
4504 the caller also depends on this value.
4505 And current_function_returns_pcc_struct is not necessarily set. */
4506 if (current_function_returns_struct
4507 || current_function_returns_pcc_struct)
4508 {
4509 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4510 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4511 rtx outgoing;
4512
4513 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4514 type = TREE_TYPE (type);
4515 else
4516 value_address = XEXP (value_address, 0);
4517
4518 #ifdef FUNCTION_OUTGOING_VALUE
4519 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4520 current_function_decl);
4521 #else
4522 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4523 current_function_decl);
4524 #endif
4525
4526 /* Mark this as a function return value so integrate will delete the
4527 assignment and USE below when inlining this function. */
4528 REG_FUNCTION_VALUE_P (outgoing) = 1;
4529
4530 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4531 value_address = convert_memory_address (GET_MODE (outgoing),
4532 value_address);
4533
4534 emit_move_insn (outgoing, value_address);
4535
4536 /* Show return register used to hold result (in this case the address
4537 of the result. */
4538 current_function_return_rtx = outgoing;
4539 }
4540
4541 /* If this is an implementation of throw, do what's necessary to
4542 communicate between __builtin_eh_return and the epilogue. */
4543 expand_eh_return ();
4544
4545 /* Emit the actual code to clobber return register. */
4546 {
4547 rtx seq;
4548
4549 start_sequence ();
4550 clobber_return_register ();
4551 expand_naked_return ();
4552 seq = get_insns ();
4553 end_sequence ();
4554
4555 emit_insn_after (seq, clobber_after);
4556 }
4557
4558 /* Output the label for the naked return from the function. */
4559 emit_label (naked_return_label);
4560
4561 /* ??? This should no longer be necessary since stupid is no longer with
4562 us, but there are some parts of the compiler (eg reload_combine, and
4563 sh mach_dep_reorg) that still try and compute their own lifetime info
4564 instead of using the general framework. */
4565 use_return_register ();
4566 }
4567
4568 rtx
4569 get_arg_pointer_save_area (struct function *f)
4570 {
4571 rtx ret = f->x_arg_pointer_save_area;
4572
4573 if (! ret)
4574 {
4575 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4576 f->x_arg_pointer_save_area = ret;
4577 }
4578
4579 if (f == cfun && ! f->arg_pointer_save_area_init)
4580 {
4581 rtx seq;
4582
4583 /* Save the arg pointer at the beginning of the function. The
4584 generated stack slot may not be a valid memory address, so we
4585 have to check it and fix it if necessary. */
4586 start_sequence ();
4587 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4588 seq = get_insns ();
4589 end_sequence ();
4590
4591 push_topmost_sequence ();
4592 emit_insn_after (seq, get_insns ());
4593 pop_topmost_sequence ();
4594 }
4595
4596 return ret;
4597 }
4598 \f
4599 /* Extend a vector that records the INSN_UIDs of INSNS
4600 (a list of one or more insns). */
4601
4602 static void
4603 record_insns (rtx insns, varray_type *vecp)
4604 {
4605 int i, len;
4606 rtx tmp;
4607
4608 tmp = insns;
4609 len = 0;
4610 while (tmp != NULL_RTX)
4611 {
4612 len++;
4613 tmp = NEXT_INSN (tmp);
4614 }
4615
4616 i = VARRAY_SIZE (*vecp);
4617 VARRAY_GROW (*vecp, i + len);
4618 tmp = insns;
4619 while (tmp != NULL_RTX)
4620 {
4621 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4622 i++;
4623 tmp = NEXT_INSN (tmp);
4624 }
4625 }
4626
4627 /* Set the locator of the insn chain starting at INSN to LOC. */
4628 static void
4629 set_insn_locators (rtx insn, int loc)
4630 {
4631 while (insn != NULL_RTX)
4632 {
4633 if (INSN_P (insn))
4634 INSN_LOCATOR (insn) = loc;
4635 insn = NEXT_INSN (insn);
4636 }
4637 }
4638
4639 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4640 be running after reorg, SEQUENCE rtl is possible. */
4641
4642 static int
4643 contains (rtx insn, varray_type vec)
4644 {
4645 int i, j;
4646
4647 if (NONJUMP_INSN_P (insn)
4648 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4649 {
4650 int count = 0;
4651 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4652 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4653 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4654 count++;
4655 return count;
4656 }
4657 else
4658 {
4659 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4660 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4661 return 1;
4662 }
4663 return 0;
4664 }
4665
4666 int
4667 prologue_epilogue_contains (rtx insn)
4668 {
4669 if (contains (insn, prologue))
4670 return 1;
4671 if (contains (insn, epilogue))
4672 return 1;
4673 return 0;
4674 }
4675
4676 int
4677 sibcall_epilogue_contains (rtx insn)
4678 {
4679 if (sibcall_epilogue)
4680 return contains (insn, sibcall_epilogue);
4681 return 0;
4682 }
4683
4684 #ifdef HAVE_return
4685 /* Insert gen_return at the end of block BB. This also means updating
4686 block_for_insn appropriately. */
4687
4688 static void
4689 emit_return_into_block (basic_block bb, rtx line_note)
4690 {
4691 emit_jump_insn_after (gen_return (), BB_END (bb));
4692 if (line_note)
4693 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4694 }
4695 #endif /* HAVE_return */
4696
4697 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4698
4699 /* These functions convert the epilogue into a variant that does not modify the
4700 stack pointer. This is used in cases where a function returns an object
4701 whose size is not known until it is computed. The called function leaves the
4702 object on the stack, leaves the stack depressed, and returns a pointer to
4703 the object.
4704
4705 What we need to do is track all modifications and references to the stack
4706 pointer, deleting the modifications and changing the references to point to
4707 the location the stack pointer would have pointed to had the modifications
4708 taken place.
4709
4710 These functions need to be portable so we need to make as few assumptions
4711 about the epilogue as we can. However, the epilogue basically contains
4712 three things: instructions to reset the stack pointer, instructions to
4713 reload registers, possibly including the frame pointer, and an
4714 instruction to return to the caller.
4715
4716 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4717 We also make no attempt to validate the insns we make since if they are
4718 invalid, we probably can't do anything valid. The intent is that these
4719 routines get "smarter" as more and more machines start to use them and
4720 they try operating on different epilogues.
4721
4722 We use the following structure to track what the part of the epilogue that
4723 we've already processed has done. We keep two copies of the SP equivalence,
4724 one for use during the insn we are processing and one for use in the next
4725 insn. The difference is because one part of a PARALLEL may adjust SP
4726 and the other may use it. */
4727
4728 struct epi_info
4729 {
4730 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4731 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4732 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4733 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4734 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4735 should be set to once we no longer need
4736 its value. */
4737 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4738 for registers. */
4739 };
4740
4741 static void handle_epilogue_set (rtx, struct epi_info *);
4742 static void update_epilogue_consts (rtx, rtx, void *);
4743 static void emit_equiv_load (struct epi_info *);
4744
4745 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4746 no modifications to the stack pointer. Return the new list of insns. */
4747
4748 static rtx
4749 keep_stack_depressed (rtx insns)
4750 {
4751 int j;
4752 struct epi_info info;
4753 rtx insn, next;
4754
4755 /* If the epilogue is just a single instruction, it must be OK as is. */
4756 if (NEXT_INSN (insns) == NULL_RTX)
4757 return insns;
4758
4759 /* Otherwise, start a sequence, initialize the information we have, and
4760 process all the insns we were given. */
4761 start_sequence ();
4762
4763 info.sp_equiv_reg = stack_pointer_rtx;
4764 info.sp_offset = 0;
4765 info.equiv_reg_src = 0;
4766
4767 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4768 info.const_equiv[j] = 0;
4769
4770 insn = insns;
4771 next = NULL_RTX;
4772 while (insn != NULL_RTX)
4773 {
4774 next = NEXT_INSN (insn);
4775
4776 if (!INSN_P (insn))
4777 {
4778 add_insn (insn);
4779 insn = next;
4780 continue;
4781 }
4782
4783 /* If this insn references the register that SP is equivalent to and
4784 we have a pending load to that register, we must force out the load
4785 first and then indicate we no longer know what SP's equivalent is. */
4786 if (info.equiv_reg_src != 0
4787 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4788 {
4789 emit_equiv_load (&info);
4790 info.sp_equiv_reg = 0;
4791 }
4792
4793 info.new_sp_equiv_reg = info.sp_equiv_reg;
4794 info.new_sp_offset = info.sp_offset;
4795
4796 /* If this is a (RETURN) and the return address is on the stack,
4797 update the address and change to an indirect jump. */
4798 if (GET_CODE (PATTERN (insn)) == RETURN
4799 || (GET_CODE (PATTERN (insn)) == PARALLEL
4800 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4801 {
4802 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4803 rtx base = 0;
4804 HOST_WIDE_INT offset = 0;
4805 rtx jump_insn, jump_set;
4806
4807 /* If the return address is in a register, we can emit the insn
4808 unchanged. Otherwise, it must be a MEM and we see what the
4809 base register and offset are. In any case, we have to emit any
4810 pending load to the equivalent reg of SP, if any. */
4811 if (REG_P (retaddr))
4812 {
4813 emit_equiv_load (&info);
4814 add_insn (insn);
4815 insn = next;
4816 continue;
4817 }
4818 else
4819 {
4820 rtx ret_ptr;
4821 gcc_assert (MEM_P (retaddr));
4822
4823 ret_ptr = XEXP (retaddr, 0);
4824
4825 if (REG_P (ret_ptr))
4826 {
4827 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4828 offset = 0;
4829 }
4830 else
4831 {
4832 gcc_assert (GET_CODE (ret_ptr) == PLUS
4833 && REG_P (XEXP (ret_ptr, 0))
4834 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4835 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4836 offset = INTVAL (XEXP (ret_ptr, 1));
4837 }
4838 }
4839
4840 /* If the base of the location containing the return pointer
4841 is SP, we must update it with the replacement address. Otherwise,
4842 just build the necessary MEM. */
4843 retaddr = plus_constant (base, offset);
4844 if (base == stack_pointer_rtx)
4845 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4846 plus_constant (info.sp_equiv_reg,
4847 info.sp_offset));
4848
4849 retaddr = gen_rtx_MEM (Pmode, retaddr);
4850
4851 /* If there is a pending load to the equivalent register for SP
4852 and we reference that register, we must load our address into
4853 a scratch register and then do that load. */
4854 if (info.equiv_reg_src
4855 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4856 {
4857 unsigned int regno;
4858 rtx reg;
4859
4860 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4861 if (HARD_REGNO_MODE_OK (regno, Pmode)
4862 && !fixed_regs[regno]
4863 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4864 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4865 regno)
4866 && !refers_to_regno_p (regno,
4867 regno + hard_regno_nregs[regno]
4868 [Pmode],
4869 info.equiv_reg_src, NULL)
4870 && info.const_equiv[regno] == 0)
4871 break;
4872
4873 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4874
4875 reg = gen_rtx_REG (Pmode, regno);
4876 emit_move_insn (reg, retaddr);
4877 retaddr = reg;
4878 }
4879
4880 emit_equiv_load (&info);
4881 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4882
4883 /* Show the SET in the above insn is a RETURN. */
4884 jump_set = single_set (jump_insn);
4885 gcc_assert (jump_set);
4886 SET_IS_RETURN_P (jump_set) = 1;
4887 }
4888
4889 /* If SP is not mentioned in the pattern and its equivalent register, if
4890 any, is not modified, just emit it. Otherwise, if neither is set,
4891 replace the reference to SP and emit the insn. If none of those are
4892 true, handle each SET individually. */
4893 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4894 && (info.sp_equiv_reg == stack_pointer_rtx
4895 || !reg_set_p (info.sp_equiv_reg, insn)))
4896 add_insn (insn);
4897 else if (! reg_set_p (stack_pointer_rtx, insn)
4898 && (info.sp_equiv_reg == stack_pointer_rtx
4899 || !reg_set_p (info.sp_equiv_reg, insn)))
4900 {
4901 int changed;
4902
4903 changed = validate_replace_rtx (stack_pointer_rtx,
4904 plus_constant (info.sp_equiv_reg,
4905 info.sp_offset),
4906 insn);
4907 gcc_assert (changed);
4908
4909 add_insn (insn);
4910 }
4911 else if (GET_CODE (PATTERN (insn)) == SET)
4912 handle_epilogue_set (PATTERN (insn), &info);
4913 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4914 {
4915 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4916 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4917 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4918 }
4919 else
4920 add_insn (insn);
4921
4922 info.sp_equiv_reg = info.new_sp_equiv_reg;
4923 info.sp_offset = info.new_sp_offset;
4924
4925 /* Now update any constants this insn sets. */
4926 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4927 insn = next;
4928 }
4929
4930 insns = get_insns ();
4931 end_sequence ();
4932 return insns;
4933 }
4934
4935 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4936 structure that contains information about what we've seen so far. We
4937 process this SET by either updating that data or by emitting one or
4938 more insns. */
4939
4940 static void
4941 handle_epilogue_set (rtx set, struct epi_info *p)
4942 {
4943 /* First handle the case where we are setting SP. Record what it is being
4944 set from. If unknown, abort. */
4945 if (reg_set_p (stack_pointer_rtx, set))
4946 {
4947 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4948
4949 if (GET_CODE (SET_SRC (set)) == PLUS)
4950 {
4951 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4952 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4953 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4954 else
4955 {
4956 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4957 && (REGNO (XEXP (SET_SRC (set), 1))
4958 < FIRST_PSEUDO_REGISTER)
4959 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4960 p->new_sp_offset
4961 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4962 }
4963 }
4964 else
4965 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4966
4967 /* If we are adjusting SP, we adjust from the old data. */
4968 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4969 {
4970 p->new_sp_equiv_reg = p->sp_equiv_reg;
4971 p->new_sp_offset += p->sp_offset;
4972 }
4973
4974 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4975
4976 return;
4977 }
4978
4979 /* Next handle the case where we are setting SP's equivalent register.
4980 If we already have a value to set it to, abort. We could update, but
4981 there seems little point in handling that case. Note that we have
4982 to allow for the case where we are setting the register set in
4983 the previous part of a PARALLEL inside a single insn. But use the
4984 old offset for any updates within this insn. We must allow for the case
4985 where the register is being set in a different (usually wider) mode than
4986 Pmode). */
4987 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4988 {
4989 gcc_assert (!p->equiv_reg_src
4990 && REG_P (p->new_sp_equiv_reg)
4991 && REG_P (SET_DEST (set))
4992 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4993 <= BITS_PER_WORD)
4994 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4995 p->equiv_reg_src
4996 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4997 plus_constant (p->sp_equiv_reg,
4998 p->sp_offset));
4999 }
5000
5001 /* Otherwise, replace any references to SP in the insn to its new value
5002 and emit the insn. */
5003 else
5004 {
5005 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5006 plus_constant (p->sp_equiv_reg,
5007 p->sp_offset));
5008 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5009 plus_constant (p->sp_equiv_reg,
5010 p->sp_offset));
5011 emit_insn (set);
5012 }
5013 }
5014
5015 /* Update the tracking information for registers set to constants. */
5016
5017 static void
5018 update_epilogue_consts (rtx dest, rtx x, void *data)
5019 {
5020 struct epi_info *p = (struct epi_info *) data;
5021 rtx new;
5022
5023 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5024 return;
5025
5026 /* If we are either clobbering a register or doing a partial set,
5027 show we don't know the value. */
5028 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5029 p->const_equiv[REGNO (dest)] = 0;
5030
5031 /* If we are setting it to a constant, record that constant. */
5032 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5033 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5034
5035 /* If this is a binary operation between a register we have been tracking
5036 and a constant, see if we can compute a new constant value. */
5037 else if (ARITHMETIC_P (SET_SRC (x))
5038 && REG_P (XEXP (SET_SRC (x), 0))
5039 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5040 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5041 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5042 && 0 != (new = simplify_binary_operation
5043 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5044 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5045 XEXP (SET_SRC (x), 1)))
5046 && GET_CODE (new) == CONST_INT)
5047 p->const_equiv[REGNO (dest)] = new;
5048
5049 /* Otherwise, we can't do anything with this value. */
5050 else
5051 p->const_equiv[REGNO (dest)] = 0;
5052 }
5053
5054 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5055
5056 static void
5057 emit_equiv_load (struct epi_info *p)
5058 {
5059 if (p->equiv_reg_src != 0)
5060 {
5061 rtx dest = p->sp_equiv_reg;
5062
5063 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5064 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5065 REGNO (p->sp_equiv_reg));
5066
5067 emit_move_insn (dest, p->equiv_reg_src);
5068 p->equiv_reg_src = 0;
5069 }
5070 }
5071 #endif
5072
5073 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5074 this into place with notes indicating where the prologue ends and where
5075 the epilogue begins. Update the basic block information when possible. */
5076
5077 void
5078 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5079 {
5080 int inserted = 0;
5081 edge e;
5082 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5083 rtx seq;
5084 #endif
5085 #ifdef HAVE_prologue
5086 rtx prologue_end = NULL_RTX;
5087 #endif
5088 #if defined (HAVE_epilogue) || defined(HAVE_return)
5089 rtx epilogue_end = NULL_RTX;
5090 #endif
5091 edge_iterator ei;
5092
5093 #ifdef HAVE_prologue
5094 if (HAVE_prologue)
5095 {
5096 start_sequence ();
5097 seq = gen_prologue ();
5098 emit_insn (seq);
5099
5100 /* Retain a map of the prologue insns. */
5101 record_insns (seq, &prologue);
5102 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5103
5104 seq = get_insns ();
5105 end_sequence ();
5106 set_insn_locators (seq, prologue_locator);
5107
5108 /* Can't deal with multiple successors of the entry block
5109 at the moment. Function should always have at least one
5110 entry point. */
5111 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
5112
5113 insert_insn_on_edge (seq, EDGE_SUCC (ENTRY_BLOCK_PTR, 0));
5114 inserted = 1;
5115 }
5116 #endif
5117
5118 /* If the exit block has no non-fake predecessors, we don't need
5119 an epilogue. */
5120 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5121 if ((e->flags & EDGE_FAKE) == 0)
5122 break;
5123 if (e == NULL)
5124 goto epilogue_done;
5125
5126 #ifdef HAVE_return
5127 if (optimize && HAVE_return)
5128 {
5129 /* If we're allowed to generate a simple return instruction,
5130 then by definition we don't need a full epilogue. Examine
5131 the block that falls through to EXIT. If it does not
5132 contain any code, examine its predecessors and try to
5133 emit (conditional) return instructions. */
5134
5135 basic_block last;
5136 rtx label;
5137
5138 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5139 if (e->flags & EDGE_FALLTHRU)
5140 break;
5141 if (e == NULL)
5142 goto epilogue_done;
5143 last = e->src;
5144
5145 /* Verify that there are no active instructions in the last block. */
5146 label = BB_END (last);
5147 while (label && !LABEL_P (label))
5148 {
5149 if (active_insn_p (label))
5150 break;
5151 label = PREV_INSN (label);
5152 }
5153
5154 if (BB_HEAD (last) == label && LABEL_P (label))
5155 {
5156 edge_iterator ei2;
5157 rtx epilogue_line_note = NULL_RTX;
5158
5159 /* Locate the line number associated with the closing brace,
5160 if we can find one. */
5161 for (seq = get_last_insn ();
5162 seq && ! active_insn_p (seq);
5163 seq = PREV_INSN (seq))
5164 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5165 {
5166 epilogue_line_note = seq;
5167 break;
5168 }
5169
5170 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5171 {
5172 basic_block bb = e->src;
5173 rtx jump;
5174
5175 if (bb == ENTRY_BLOCK_PTR)
5176 {
5177 ei_next (&ei2);
5178 continue;
5179 }
5180
5181 jump = BB_END (bb);
5182 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5183 {
5184 ei_next (&ei2);
5185 continue;
5186 }
5187
5188 /* If we have an unconditional jump, we can replace that
5189 with a simple return instruction. */
5190 if (simplejump_p (jump))
5191 {
5192 emit_return_into_block (bb, epilogue_line_note);
5193 delete_insn (jump);
5194 }
5195
5196 /* If we have a conditional jump, we can try to replace
5197 that with a conditional return instruction. */
5198 else if (condjump_p (jump))
5199 {
5200 if (! redirect_jump (jump, 0, 0))
5201 {
5202 ei_next (&ei2);
5203 continue;
5204 }
5205
5206 /* If this block has only one successor, it both jumps
5207 and falls through to the fallthru block, so we can't
5208 delete the edge. */
5209 if (EDGE_COUNT (bb->succs) == 1)
5210 {
5211 ei_next (&ei2);
5212 continue;
5213 }
5214 }
5215 else
5216 {
5217 ei_next (&ei2);
5218 continue;
5219 }
5220
5221 /* Fix up the CFG for the successful change we just made. */
5222 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5223 }
5224
5225 /* Emit a return insn for the exit fallthru block. Whether
5226 this is still reachable will be determined later. */
5227
5228 emit_barrier_after (BB_END (last));
5229 emit_return_into_block (last, epilogue_line_note);
5230 epilogue_end = BB_END (last);
5231 EDGE_SUCC (last, 0)->flags &= ~EDGE_FALLTHRU;
5232 goto epilogue_done;
5233 }
5234 }
5235 #endif
5236 /* Find the edge that falls through to EXIT. Other edges may exist
5237 due to RETURN instructions, but those don't need epilogues.
5238 There really shouldn't be a mixture -- either all should have
5239 been converted or none, however... */
5240
5241 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5242 if (e->flags & EDGE_FALLTHRU)
5243 break;
5244 if (e == NULL)
5245 goto epilogue_done;
5246
5247 #ifdef HAVE_epilogue
5248 if (HAVE_epilogue)
5249 {
5250 start_sequence ();
5251 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5252
5253 seq = gen_epilogue ();
5254
5255 #ifdef INCOMING_RETURN_ADDR_RTX
5256 /* If this function returns with the stack depressed and we can support
5257 it, massage the epilogue to actually do that. */
5258 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5259 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5260 seq = keep_stack_depressed (seq);
5261 #endif
5262
5263 emit_jump_insn (seq);
5264
5265 /* Retain a map of the epilogue insns. */
5266 record_insns (seq, &epilogue);
5267 set_insn_locators (seq, epilogue_locator);
5268
5269 seq = get_insns ();
5270 end_sequence ();
5271
5272 insert_insn_on_edge (seq, e);
5273 inserted = 1;
5274 }
5275 else
5276 #endif
5277 {
5278 basic_block cur_bb;
5279
5280 if (! next_active_insn (BB_END (e->src)))
5281 goto epilogue_done;
5282 /* We have a fall-through edge to the exit block, the source is not
5283 at the end of the function, and there will be an assembler epilogue
5284 at the end of the function.
5285 We can't use force_nonfallthru here, because that would try to
5286 use return. Inserting a jump 'by hand' is extremely messy, so
5287 we take advantage of cfg_layout_finalize using
5288 fixup_fallthru_exit_predecessor. */
5289 cfg_layout_initialize (0);
5290 FOR_EACH_BB (cur_bb)
5291 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5292 cur_bb->rbi->next = cur_bb->next_bb;
5293 cfg_layout_finalize ();
5294 }
5295 epilogue_done:
5296
5297 if (inserted)
5298 commit_edge_insertions ();
5299
5300 #ifdef HAVE_sibcall_epilogue
5301 /* Emit sibling epilogues before any sibling call sites. */
5302 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5303 {
5304 basic_block bb = e->src;
5305 rtx insn = BB_END (bb);
5306 rtx i;
5307 rtx newinsn;
5308
5309 if (!CALL_P (insn)
5310 || ! SIBLING_CALL_P (insn))
5311 {
5312 ei_next (&ei);
5313 continue;
5314 }
5315
5316 start_sequence ();
5317 emit_insn (gen_sibcall_epilogue ());
5318 seq = get_insns ();
5319 end_sequence ();
5320
5321 /* Retain a map of the epilogue insns. Used in life analysis to
5322 avoid getting rid of sibcall epilogue insns. Do this before we
5323 actually emit the sequence. */
5324 record_insns (seq, &sibcall_epilogue);
5325 set_insn_locators (seq, epilogue_locator);
5326
5327 i = PREV_INSN (insn);
5328 newinsn = emit_insn_before (seq, insn);
5329 ei_next (&ei);
5330 }
5331 #endif
5332
5333 #ifdef HAVE_prologue
5334 /* This is probably all useless now that we use locators. */
5335 if (prologue_end)
5336 {
5337 rtx insn, prev;
5338
5339 /* GDB handles `break f' by setting a breakpoint on the first
5340 line note after the prologue. Which means (1) that if
5341 there are line number notes before where we inserted the
5342 prologue we should move them, and (2) we should generate a
5343 note before the end of the first basic block, if there isn't
5344 one already there.
5345
5346 ??? This behavior is completely broken when dealing with
5347 multiple entry functions. We simply place the note always
5348 into first basic block and let alternate entry points
5349 to be missed.
5350 */
5351
5352 for (insn = prologue_end; insn; insn = prev)
5353 {
5354 prev = PREV_INSN (insn);
5355 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5356 {
5357 /* Note that we cannot reorder the first insn in the
5358 chain, since rest_of_compilation relies on that
5359 remaining constant. */
5360 if (prev == NULL)
5361 break;
5362 reorder_insns (insn, insn, prologue_end);
5363 }
5364 }
5365
5366 /* Find the last line number note in the first block. */
5367 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5368 insn != prologue_end && insn;
5369 insn = PREV_INSN (insn))
5370 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5371 break;
5372
5373 /* If we didn't find one, make a copy of the first line number
5374 we run across. */
5375 if (! insn)
5376 {
5377 for (insn = next_active_insn (prologue_end);
5378 insn;
5379 insn = PREV_INSN (insn))
5380 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5381 {
5382 emit_note_copy_after (insn, prologue_end);
5383 break;
5384 }
5385 }
5386 }
5387 #endif
5388 #ifdef HAVE_epilogue
5389 if (epilogue_end)
5390 {
5391 rtx insn, next;
5392
5393 /* Similarly, move any line notes that appear after the epilogue.
5394 There is no need, however, to be quite so anal about the existence
5395 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5396 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5397 info generation. */
5398 for (insn = epilogue_end; insn; insn = next)
5399 {
5400 next = NEXT_INSN (insn);
5401 if (NOTE_P (insn)
5402 && (NOTE_LINE_NUMBER (insn) > 0
5403 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5404 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5405 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5406 }
5407 }
5408 #endif
5409 }
5410
5411 /* Reposition the prologue-end and epilogue-begin notes after instruction
5412 scheduling and delayed branch scheduling. */
5413
5414 void
5415 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5416 {
5417 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5418 rtx insn, last, note;
5419 int len;
5420
5421 if ((len = VARRAY_SIZE (prologue)) > 0)
5422 {
5423 last = 0, note = 0;
5424
5425 /* Scan from the beginning until we reach the last prologue insn.
5426 We apparently can't depend on basic_block_{head,end} after
5427 reorg has run. */
5428 for (insn = f; insn; insn = NEXT_INSN (insn))
5429 {
5430 if (NOTE_P (insn))
5431 {
5432 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5433 note = insn;
5434 }
5435 else if (contains (insn, prologue))
5436 {
5437 last = insn;
5438 if (--len == 0)
5439 break;
5440 }
5441 }
5442
5443 if (last)
5444 {
5445 /* Find the prologue-end note if we haven't already, and
5446 move it to just after the last prologue insn. */
5447 if (note == 0)
5448 {
5449 for (note = last; (note = NEXT_INSN (note));)
5450 if (NOTE_P (note)
5451 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5452 break;
5453 }
5454
5455 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5456 if (LABEL_P (last))
5457 last = NEXT_INSN (last);
5458 reorder_insns (note, note, last);
5459 }
5460 }
5461
5462 if ((len = VARRAY_SIZE (epilogue)) > 0)
5463 {
5464 last = 0, note = 0;
5465
5466 /* Scan from the end until we reach the first epilogue insn.
5467 We apparently can't depend on basic_block_{head,end} after
5468 reorg has run. */
5469 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5470 {
5471 if (NOTE_P (insn))
5472 {
5473 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5474 note = insn;
5475 }
5476 else if (contains (insn, epilogue))
5477 {
5478 last = insn;
5479 if (--len == 0)
5480 break;
5481 }
5482 }
5483
5484 if (last)
5485 {
5486 /* Find the epilogue-begin note if we haven't already, and
5487 move it to just before the first epilogue insn. */
5488 if (note == 0)
5489 {
5490 for (note = insn; (note = PREV_INSN (note));)
5491 if (NOTE_P (note)
5492 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5493 break;
5494 }
5495
5496 if (PREV_INSN (last) != note)
5497 reorder_insns (note, note, PREV_INSN (last));
5498 }
5499 }
5500 #endif /* HAVE_prologue or HAVE_epilogue */
5501 }
5502
5503 /* Called once, at initialization, to initialize function.c. */
5504
5505 void
5506 init_function_once (void)
5507 {
5508 VARRAY_INT_INIT (prologue, 0, "prologue");
5509 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5510 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5511 }
5512
5513 /* Resets insn_block_boundaries array. */
5514
5515 void
5516 reset_block_changes (void)
5517 {
5518 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5519 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5520 }
5521
5522 /* Record the boundary for BLOCK. */
5523 void
5524 record_block_change (tree block)
5525 {
5526 int i, n;
5527 tree last_block;
5528
5529 if (!block)
5530 return;
5531
5532 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5533 VARRAY_POP (cfun->ib_boundaries_block);
5534 n = get_max_uid ();
5535 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5536 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5537
5538 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5539 }
5540
5541 /* Finishes record of boundaries. */
5542 void finalize_block_changes (void)
5543 {
5544 record_block_change (DECL_INITIAL (current_function_decl));
5545 }
5546
5547 /* For INSN return the BLOCK it belongs to. */
5548 void
5549 check_block_change (rtx insn, tree *block)
5550 {
5551 unsigned uid = INSN_UID (insn);
5552
5553 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5554 return;
5555
5556 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5557 }
5558
5559 /* Releases the ib_boundaries_block records. */
5560 void
5561 free_block_changes (void)
5562 {
5563 cfun->ib_boundaries_block = NULL;
5564 }
5565
5566 /* Returns the name of the current function. */
5567 const char *
5568 current_function_name (void)
5569 {
5570 return lang_hooks.decl_printable_name (cfun->decl, 2);
5571 }
5572
5573 #include "gt-function.h"