re PR ipa/58492 (ICE: verify_flow_info failed)
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "flags.h"
41 #include "except.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "optabs.h"
45 #include "libfuncs.h"
46 #include "regs.h"
47 #include "hard-reg-set.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "output.h"
51 #include "basic-block.h"
52 #include "hashtab.h"
53 #include "ggc.h"
54 #include "tm_p.h"
55 #include "langhooks.h"
56 #include "target.h"
57 #include "common/common-target.h"
58 #include "gimple.h"
59 #include "tree-pass.h"
60 #include "predict.h"
61 #include "df.h"
62 #include "params.h"
63 #include "bb-reorder.h"
64
65 /* So we can assign to cfun in this file. */
66 #undef cfun
67
68 #ifndef STACK_ALIGNMENT_NEEDED
69 #define STACK_ALIGNMENT_NEEDED 1
70 #endif
71
72 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73
74 /* Some systems use __main in a way incompatible with its use in gcc, in these
75 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
76 give the same symbol without quotes for an alternative entry point. You
77 must define both, or neither. */
78 #ifndef NAME__MAIN
79 #define NAME__MAIN "__main"
80 #endif
81
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90
91 /* Nonzero once virtual register instantiation has been done.
92 assign_stack_local uses frame_pointer_rtx when this is nonzero.
93 calls.c:emit_library_call_value_1 uses it to set up
94 post-instantiation libcalls. */
95 int virtuals_instantiated;
96
97 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
98 static GTY(()) int funcdef_no;
99
100 /* These variables hold pointers to functions to create and destroy
101 target specific, per-function data structures. */
102 struct machine_function * (*init_machine_status) (void);
103
104 /* The currently compiled function. */
105 struct function *cfun = 0;
106
107 /* These hashes record the prologue and epilogue insns. */
108 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
109 htab_t prologue_insn_hash;
110 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
111 htab_t epilogue_insn_hash;
112 \f
113
114 htab_t types_used_by_vars_hash = NULL;
115 vec<tree, va_gc> *types_used_by_cur_var_decl;
116
117 /* Forward declarations. */
118
119 static struct temp_slot *find_temp_slot_from_address (rtx);
120 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
121 static void pad_below (struct args_size *, enum machine_mode, tree);
122 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
123 static int all_blocks (tree, tree *);
124 static tree *get_block_vector (tree, int *);
125 extern tree debug_find_var_in_block_tree (tree, tree);
126 /* We always define `record_insns' even if it's not used so that we
127 can always export `prologue_epilogue_contains'. */
128 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
129 static bool contains (const_rtx, htab_t);
130 static void prepare_function_start (void);
131 static void do_clobber_return_reg (rtx, void *);
132 static void do_use_return_reg (rtx, void *);
133 static void set_insn_locations (rtx, int) ATTRIBUTE_UNUSED;
134 \f
135 /* Stack of nested functions. */
136 /* Keep track of the cfun stack. */
137
138 typedef struct function *function_p;
139
140 static vec<function_p> function_context_stack;
141
142 /* Save the current context for compilation of a nested function.
143 This is called from language-specific code. */
144
145 void
146 push_function_context (void)
147 {
148 if (cfun == 0)
149 allocate_struct_function (NULL, false);
150
151 function_context_stack.safe_push (cfun);
152 set_cfun (NULL);
153 }
154
155 /* Restore the last saved context, at the end of a nested function.
156 This function is called from language-specific code. */
157
158 void
159 pop_function_context (void)
160 {
161 struct function *p = function_context_stack.pop ();
162 set_cfun (p);
163 current_function_decl = p->decl;
164
165 /* Reset variables that have known state during rtx generation. */
166 virtuals_instantiated = 0;
167 generating_concat_p = 1;
168 }
169
170 /* Clear out all parts of the state in F that can safely be discarded
171 after the function has been parsed, but not compiled, to let
172 garbage collection reclaim the memory. */
173
174 void
175 free_after_parsing (struct function *f)
176 {
177 f->language = 0;
178 }
179
180 /* Clear out all parts of the state in F that can safely be discarded
181 after the function has been compiled, to let garbage collection
182 reclaim the memory. */
183
184 void
185 free_after_compilation (struct function *f)
186 {
187 prologue_insn_hash = NULL;
188 epilogue_insn_hash = NULL;
189
190 free (crtl->emit.regno_pointer_align);
191
192 memset (crtl, 0, sizeof (struct rtl_data));
193 f->eh = NULL;
194 f->machine = NULL;
195 f->cfg = NULL;
196
197 regno_reg_rtx = NULL;
198 }
199 \f
200 /* Return size needed for stack frame based on slots so far allocated.
201 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
202 the caller may have to do that. */
203
204 HOST_WIDE_INT
205 get_frame_size (void)
206 {
207 if (FRAME_GROWS_DOWNWARD)
208 return -frame_offset;
209 else
210 return frame_offset;
211 }
212
213 /* Issue an error message and return TRUE if frame OFFSET overflows in
214 the signed target pointer arithmetics for function FUNC. Otherwise
215 return FALSE. */
216
217 bool
218 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
219 {
220 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
221
222 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
223 /* Leave room for the fixed part of the frame. */
224 - 64 * UNITS_PER_WORD)
225 {
226 error_at (DECL_SOURCE_LOCATION (func),
227 "total size of local objects too large");
228 return TRUE;
229 }
230
231 return FALSE;
232 }
233
234 /* Return stack slot alignment in bits for TYPE and MODE. */
235
236 static unsigned int
237 get_stack_local_alignment (tree type, enum machine_mode mode)
238 {
239 unsigned int alignment;
240
241 if (mode == BLKmode)
242 alignment = BIGGEST_ALIGNMENT;
243 else
244 alignment = GET_MODE_ALIGNMENT (mode);
245
246 /* Allow the frond-end to (possibly) increase the alignment of this
247 stack slot. */
248 if (! type)
249 type = lang_hooks.types.type_for_mode (mode, 0);
250
251 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
252 }
253
254 /* Determine whether it is possible to fit a stack slot of size SIZE and
255 alignment ALIGNMENT into an area in the stack frame that starts at
256 frame offset START and has a length of LENGTH. If so, store the frame
257 offset to be used for the stack slot in *POFFSET and return true;
258 return false otherwise. This function will extend the frame size when
259 given a start/length pair that lies at the end of the frame. */
260
261 static bool
262 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
263 HOST_WIDE_INT size, unsigned int alignment,
264 HOST_WIDE_INT *poffset)
265 {
266 HOST_WIDE_INT this_frame_offset;
267 int frame_off, frame_alignment, frame_phase;
268
269 /* Calculate how many bytes the start of local variables is off from
270 stack alignment. */
271 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
272 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
273 frame_phase = frame_off ? frame_alignment - frame_off : 0;
274
275 /* Round the frame offset to the specified alignment. */
276
277 /* We must be careful here, since FRAME_OFFSET might be negative and
278 division with a negative dividend isn't as well defined as we might
279 like. So we instead assume that ALIGNMENT is a power of two and
280 use logical operations which are unambiguous. */
281 if (FRAME_GROWS_DOWNWARD)
282 this_frame_offset
283 = (FLOOR_ROUND (start + length - size - frame_phase,
284 (unsigned HOST_WIDE_INT) alignment)
285 + frame_phase);
286 else
287 this_frame_offset
288 = (CEIL_ROUND (start - frame_phase,
289 (unsigned HOST_WIDE_INT) alignment)
290 + frame_phase);
291
292 /* See if it fits. If this space is at the edge of the frame,
293 consider extending the frame to make it fit. Our caller relies on
294 this when allocating a new slot. */
295 if (frame_offset == start && this_frame_offset < frame_offset)
296 frame_offset = this_frame_offset;
297 else if (this_frame_offset < start)
298 return false;
299 else if (start + length == frame_offset
300 && this_frame_offset + size > start + length)
301 frame_offset = this_frame_offset + size;
302 else if (this_frame_offset + size > start + length)
303 return false;
304
305 *poffset = this_frame_offset;
306 return true;
307 }
308
309 /* Create a new frame_space structure describing free space in the stack
310 frame beginning at START and ending at END, and chain it into the
311 function's frame_space_list. */
312
313 static void
314 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
315 {
316 struct frame_space *space = ggc_alloc_frame_space ();
317 space->next = crtl->frame_space_list;
318 crtl->frame_space_list = space;
319 space->start = start;
320 space->length = end - start;
321 }
322
323 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
324 with machine mode MODE.
325
326 ALIGN controls the amount of alignment for the address of the slot:
327 0 means according to MODE,
328 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
329 -2 means use BITS_PER_UNIT,
330 positive specifies alignment boundary in bits.
331
332 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
333 alignment and ASLK_RECORD_PAD bit set if we should remember
334 extra space we allocated for alignment purposes. When we are
335 called from assign_stack_temp_for_type, it is not set so we don't
336 track the same stack slot in two independent lists.
337
338 We do not round to stack_boundary here. */
339
340 rtx
341 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
342 int align, int kind)
343 {
344 rtx x, addr;
345 int bigend_correction = 0;
346 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
347 unsigned int alignment, alignment_in_bits;
348
349 if (align == 0)
350 {
351 alignment = get_stack_local_alignment (NULL, mode);
352 alignment /= BITS_PER_UNIT;
353 }
354 else if (align == -1)
355 {
356 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
357 size = CEIL_ROUND (size, alignment);
358 }
359 else if (align == -2)
360 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
361 else
362 alignment = align / BITS_PER_UNIT;
363
364 alignment_in_bits = alignment * BITS_PER_UNIT;
365
366 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
367 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
368 {
369 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
370 alignment = alignment_in_bits / BITS_PER_UNIT;
371 }
372
373 if (SUPPORTS_STACK_ALIGNMENT)
374 {
375 if (crtl->stack_alignment_estimated < alignment_in_bits)
376 {
377 if (!crtl->stack_realign_processed)
378 crtl->stack_alignment_estimated = alignment_in_bits;
379 else
380 {
381 /* If stack is realigned and stack alignment value
382 hasn't been finalized, it is OK not to increase
383 stack_alignment_estimated. The bigger alignment
384 requirement is recorded in stack_alignment_needed
385 below. */
386 gcc_assert (!crtl->stack_realign_finalized);
387 if (!crtl->stack_realign_needed)
388 {
389 /* It is OK to reduce the alignment as long as the
390 requested size is 0 or the estimated stack
391 alignment >= mode alignment. */
392 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
393 || size == 0
394 || (crtl->stack_alignment_estimated
395 >= GET_MODE_ALIGNMENT (mode)));
396 alignment_in_bits = crtl->stack_alignment_estimated;
397 alignment = alignment_in_bits / BITS_PER_UNIT;
398 }
399 }
400 }
401 }
402
403 if (crtl->stack_alignment_needed < alignment_in_bits)
404 crtl->stack_alignment_needed = alignment_in_bits;
405 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
406 crtl->max_used_stack_slot_alignment = alignment_in_bits;
407
408 if (mode != BLKmode || size != 0)
409 {
410 if (kind & ASLK_RECORD_PAD)
411 {
412 struct frame_space **psp;
413
414 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
415 {
416 struct frame_space *space = *psp;
417 if (!try_fit_stack_local (space->start, space->length, size,
418 alignment, &slot_offset))
419 continue;
420 *psp = space->next;
421 if (slot_offset > space->start)
422 add_frame_space (space->start, slot_offset);
423 if (slot_offset + size < space->start + space->length)
424 add_frame_space (slot_offset + size,
425 space->start + space->length);
426 goto found_space;
427 }
428 }
429 }
430 else if (!STACK_ALIGNMENT_NEEDED)
431 {
432 slot_offset = frame_offset;
433 goto found_space;
434 }
435
436 old_frame_offset = frame_offset;
437
438 if (FRAME_GROWS_DOWNWARD)
439 {
440 frame_offset -= size;
441 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
442
443 if (kind & ASLK_RECORD_PAD)
444 {
445 if (slot_offset > frame_offset)
446 add_frame_space (frame_offset, slot_offset);
447 if (slot_offset + size < old_frame_offset)
448 add_frame_space (slot_offset + size, old_frame_offset);
449 }
450 }
451 else
452 {
453 frame_offset += size;
454 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
455
456 if (kind & ASLK_RECORD_PAD)
457 {
458 if (slot_offset > old_frame_offset)
459 add_frame_space (old_frame_offset, slot_offset);
460 if (slot_offset + size < frame_offset)
461 add_frame_space (slot_offset + size, frame_offset);
462 }
463 }
464
465 found_space:
466 /* On a big-endian machine, if we are allocating more space than we will use,
467 use the least significant bytes of those that are allocated. */
468 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
469 bigend_correction = size - GET_MODE_SIZE (mode);
470
471 /* If we have already instantiated virtual registers, return the actual
472 address relative to the frame pointer. */
473 if (virtuals_instantiated)
474 addr = plus_constant (Pmode, frame_pointer_rtx,
475 trunc_int_for_mode
476 (slot_offset + bigend_correction
477 + STARTING_FRAME_OFFSET, Pmode));
478 else
479 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
480 trunc_int_for_mode
481 (slot_offset + bigend_correction,
482 Pmode));
483
484 x = gen_rtx_MEM (mode, addr);
485 set_mem_align (x, alignment_in_bits);
486 MEM_NOTRAP_P (x) = 1;
487
488 stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
490
491 if (frame_offset_overflow (frame_offset, current_function_decl))
492 frame_offset = 0;
493
494 return x;
495 }
496
497 /* Wrap up assign_stack_local_1 with last parameter as false. */
498
499 rtx
500 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
501 {
502 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
503 }
504 \f
505 /* In order to evaluate some expressions, such as function calls returning
506 structures in memory, we need to temporarily allocate stack locations.
507 We record each allocated temporary in the following structure.
508
509 Associated with each temporary slot is a nesting level. When we pop up
510 one level, all temporaries associated with the previous level are freed.
511 Normally, all temporaries are freed after the execution of the statement
512 in which they were created. However, if we are inside a ({...}) grouping,
513 the result may be in a temporary and hence must be preserved. If the
514 result could be in a temporary, we preserve it if we can determine which
515 one it is in. If we cannot determine which temporary may contain the
516 result, all temporaries are preserved. A temporary is preserved by
517 pretending it was allocated at the previous nesting level. */
518
519 struct GTY(()) temp_slot {
520 /* Points to next temporary slot. */
521 struct temp_slot *next;
522 /* Points to previous temporary slot. */
523 struct temp_slot *prev;
524 /* The rtx to used to reference the slot. */
525 rtx slot;
526 /* The size, in units, of the slot. */
527 HOST_WIDE_INT size;
528 /* The type of the object in the slot, or zero if it doesn't correspond
529 to a type. We use this to determine whether a slot can be reused.
530 It can be reused if objects of the type of the new slot will always
531 conflict with objects of the type of the old slot. */
532 tree type;
533 /* The alignment (in bits) of the slot. */
534 unsigned int align;
535 /* Nonzero if this temporary is currently in use. */
536 char in_use;
537 /* Nesting level at which this slot is being used. */
538 int level;
539 /* The offset of the slot from the frame_pointer, including extra space
540 for alignment. This info is for combine_temp_slots. */
541 HOST_WIDE_INT base_offset;
542 /* The size of the slot, including extra space for alignment. This
543 info is for combine_temp_slots. */
544 HOST_WIDE_INT full_size;
545 };
546
547 /* A table of addresses that represent a stack slot. The table is a mapping
548 from address RTXen to a temp slot. */
549 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
550 static size_t n_temp_slots_in_use;
551
552 /* Entry for the above hash table. */
553 struct GTY(()) temp_slot_address_entry {
554 hashval_t hash;
555 rtx address;
556 struct temp_slot *temp_slot;
557 };
558
559 /* Removes temporary slot TEMP from LIST. */
560
561 static void
562 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
563 {
564 if (temp->next)
565 temp->next->prev = temp->prev;
566 if (temp->prev)
567 temp->prev->next = temp->next;
568 else
569 *list = temp->next;
570
571 temp->prev = temp->next = NULL;
572 }
573
574 /* Inserts temporary slot TEMP to LIST. */
575
576 static void
577 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
578 {
579 temp->next = *list;
580 if (*list)
581 (*list)->prev = temp;
582 temp->prev = NULL;
583 *list = temp;
584 }
585
586 /* Returns the list of used temp slots at LEVEL. */
587
588 static struct temp_slot **
589 temp_slots_at_level (int level)
590 {
591 if (level >= (int) vec_safe_length (used_temp_slots))
592 vec_safe_grow_cleared (used_temp_slots, level + 1);
593
594 return &(*used_temp_slots)[level];
595 }
596
597 /* Returns the maximal temporary slot level. */
598
599 static int
600 max_slot_level (void)
601 {
602 if (!used_temp_slots)
603 return -1;
604
605 return used_temp_slots->length () - 1;
606 }
607
608 /* Moves temporary slot TEMP to LEVEL. */
609
610 static void
611 move_slot_to_level (struct temp_slot *temp, int level)
612 {
613 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
614 insert_slot_to_list (temp, temp_slots_at_level (level));
615 temp->level = level;
616 }
617
618 /* Make temporary slot TEMP available. */
619
620 static void
621 make_slot_available (struct temp_slot *temp)
622 {
623 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
624 insert_slot_to_list (temp, &avail_temp_slots);
625 temp->in_use = 0;
626 temp->level = -1;
627 n_temp_slots_in_use--;
628 }
629
630 /* Compute the hash value for an address -> temp slot mapping.
631 The value is cached on the mapping entry. */
632 static hashval_t
633 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
634 {
635 int do_not_record = 0;
636 return hash_rtx (t->address, GET_MODE (t->address),
637 &do_not_record, NULL, false);
638 }
639
640 /* Return the hash value for an address -> temp slot mapping. */
641 static hashval_t
642 temp_slot_address_hash (const void *p)
643 {
644 const struct temp_slot_address_entry *t;
645 t = (const struct temp_slot_address_entry *) p;
646 return t->hash;
647 }
648
649 /* Compare two address -> temp slot mapping entries. */
650 static int
651 temp_slot_address_eq (const void *p1, const void *p2)
652 {
653 const struct temp_slot_address_entry *t1, *t2;
654 t1 = (const struct temp_slot_address_entry *) p1;
655 t2 = (const struct temp_slot_address_entry *) p2;
656 return exp_equiv_p (t1->address, t2->address, 0, true);
657 }
658
659 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
660 static void
661 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
662 {
663 void **slot;
664 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
665 t->address = address;
666 t->temp_slot = temp_slot;
667 t->hash = temp_slot_address_compute_hash (t);
668 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
669 *slot = t;
670 }
671
672 /* Remove an address -> temp slot mapping entry if the temp slot is
673 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
674 static int
675 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
676 {
677 const struct temp_slot_address_entry *t;
678 t = (const struct temp_slot_address_entry *) *slot;
679 if (! t->temp_slot->in_use)
680 htab_clear_slot (temp_slot_address_table, slot);
681 return 1;
682 }
683
684 /* Remove all mappings of addresses to unused temp slots. */
685 static void
686 remove_unused_temp_slot_addresses (void)
687 {
688 /* Use quicker clearing if there aren't any active temp slots. */
689 if (n_temp_slots_in_use)
690 htab_traverse (temp_slot_address_table,
691 remove_unused_temp_slot_addresses_1,
692 NULL);
693 else
694 htab_empty (temp_slot_address_table);
695 }
696
697 /* Find the temp slot corresponding to the object at address X. */
698
699 static struct temp_slot *
700 find_temp_slot_from_address (rtx x)
701 {
702 struct temp_slot *p;
703 struct temp_slot_address_entry tmp, *t;
704
705 /* First try the easy way:
706 See if X exists in the address -> temp slot mapping. */
707 tmp.address = x;
708 tmp.temp_slot = NULL;
709 tmp.hash = temp_slot_address_compute_hash (&tmp);
710 t = (struct temp_slot_address_entry *)
711 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
712 if (t)
713 return t->temp_slot;
714
715 /* If we have a sum involving a register, see if it points to a temp
716 slot. */
717 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
718 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
719 return p;
720 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
721 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
722 return p;
723
724 /* Last resort: Address is a virtual stack var address. */
725 if (GET_CODE (x) == PLUS
726 && XEXP (x, 0) == virtual_stack_vars_rtx
727 && CONST_INT_P (XEXP (x, 1)))
728 {
729 int i;
730 for (i = max_slot_level (); i >= 0; i--)
731 for (p = *temp_slots_at_level (i); p; p = p->next)
732 {
733 if (INTVAL (XEXP (x, 1)) >= p->base_offset
734 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
735 return p;
736 }
737 }
738
739 return NULL;
740 }
741 \f
742 /* Allocate a temporary stack slot and record it for possible later
743 reuse.
744
745 MODE is the machine mode to be given to the returned rtx.
746
747 SIZE is the size in units of the space required. We do no rounding here
748 since assign_stack_local will do any required rounding.
749
750 TYPE is the type that will be used for the stack slot. */
751
752 rtx
753 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
754 tree type)
755 {
756 unsigned int align;
757 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
758 rtx slot;
759
760 /* If SIZE is -1 it means that somebody tried to allocate a temporary
761 of a variable size. */
762 gcc_assert (size != -1);
763
764 align = get_stack_local_alignment (type, mode);
765
766 /* Try to find an available, already-allocated temporary of the proper
767 mode which meets the size and alignment requirements. Choose the
768 smallest one with the closest alignment.
769
770 If assign_stack_temp is called outside of the tree->rtl expansion,
771 we cannot reuse the stack slots (that may still refer to
772 VIRTUAL_STACK_VARS_REGNUM). */
773 if (!virtuals_instantiated)
774 {
775 for (p = avail_temp_slots; p; p = p->next)
776 {
777 if (p->align >= align && p->size >= size
778 && GET_MODE (p->slot) == mode
779 && objects_must_conflict_p (p->type, type)
780 && (best_p == 0 || best_p->size > p->size
781 || (best_p->size == p->size && best_p->align > p->align)))
782 {
783 if (p->align == align && p->size == size)
784 {
785 selected = p;
786 cut_slot_from_list (selected, &avail_temp_slots);
787 best_p = 0;
788 break;
789 }
790 best_p = p;
791 }
792 }
793 }
794
795 /* Make our best, if any, the one to use. */
796 if (best_p)
797 {
798 selected = best_p;
799 cut_slot_from_list (selected, &avail_temp_slots);
800
801 /* If there are enough aligned bytes left over, make them into a new
802 temp_slot so that the extra bytes don't get wasted. Do this only
803 for BLKmode slots, so that we can be sure of the alignment. */
804 if (GET_MODE (best_p->slot) == BLKmode)
805 {
806 int alignment = best_p->align / BITS_PER_UNIT;
807 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
808
809 if (best_p->size - rounded_size >= alignment)
810 {
811 p = ggc_alloc_temp_slot ();
812 p->in_use = 0;
813 p->size = best_p->size - rounded_size;
814 p->base_offset = best_p->base_offset + rounded_size;
815 p->full_size = best_p->full_size - rounded_size;
816 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
817 p->align = best_p->align;
818 p->type = best_p->type;
819 insert_slot_to_list (p, &avail_temp_slots);
820
821 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
822 stack_slot_list);
823
824 best_p->size = rounded_size;
825 best_p->full_size = rounded_size;
826 }
827 }
828 }
829
830 /* If we still didn't find one, make a new temporary. */
831 if (selected == 0)
832 {
833 HOST_WIDE_INT frame_offset_old = frame_offset;
834
835 p = ggc_alloc_temp_slot ();
836
837 /* We are passing an explicit alignment request to assign_stack_local.
838 One side effect of that is assign_stack_local will not round SIZE
839 to ensure the frame offset remains suitably aligned.
840
841 So for requests which depended on the rounding of SIZE, we go ahead
842 and round it now. We also make sure ALIGNMENT is at least
843 BIGGEST_ALIGNMENT. */
844 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
845 p->slot = assign_stack_local_1 (mode,
846 (mode == BLKmode
847 ? CEIL_ROUND (size,
848 (int) align
849 / BITS_PER_UNIT)
850 : size),
851 align, 0);
852
853 p->align = align;
854
855 /* The following slot size computation is necessary because we don't
856 know the actual size of the temporary slot until assign_stack_local
857 has performed all the frame alignment and size rounding for the
858 requested temporary. Note that extra space added for alignment
859 can be either above or below this stack slot depending on which
860 way the frame grows. We include the extra space if and only if it
861 is above this slot. */
862 if (FRAME_GROWS_DOWNWARD)
863 p->size = frame_offset_old - frame_offset;
864 else
865 p->size = size;
866
867 /* Now define the fields used by combine_temp_slots. */
868 if (FRAME_GROWS_DOWNWARD)
869 {
870 p->base_offset = frame_offset;
871 p->full_size = frame_offset_old - frame_offset;
872 }
873 else
874 {
875 p->base_offset = frame_offset_old;
876 p->full_size = frame_offset - frame_offset_old;
877 }
878
879 selected = p;
880 }
881
882 p = selected;
883 p->in_use = 1;
884 p->type = type;
885 p->level = temp_slot_level;
886 n_temp_slots_in_use++;
887
888 pp = temp_slots_at_level (p->level);
889 insert_slot_to_list (p, pp);
890 insert_temp_slot_address (XEXP (p->slot, 0), p);
891
892 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
893 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
894 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
895
896 /* If we know the alias set for the memory that will be used, use
897 it. If there's no TYPE, then we don't know anything about the
898 alias set for the memory. */
899 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
900 set_mem_align (slot, align);
901
902 /* If a type is specified, set the relevant flags. */
903 if (type != 0)
904 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
905 MEM_NOTRAP_P (slot) = 1;
906
907 return slot;
908 }
909
910 /* Allocate a temporary stack slot and record it for possible later
911 reuse. First two arguments are same as in preceding function. */
912
913 rtx
914 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
915 {
916 return assign_stack_temp_for_type (mode, size, NULL_TREE);
917 }
918 \f
919 /* Assign a temporary.
920 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
921 and so that should be used in error messages. In either case, we
922 allocate of the given type.
923 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
924 it is 0 if a register is OK.
925 DONT_PROMOTE is 1 if we should not promote values in register
926 to wider modes. */
927
928 rtx
929 assign_temp (tree type_or_decl, int memory_required,
930 int dont_promote ATTRIBUTE_UNUSED)
931 {
932 tree type, decl;
933 enum machine_mode mode;
934 #ifdef PROMOTE_MODE
935 int unsignedp;
936 #endif
937
938 if (DECL_P (type_or_decl))
939 decl = type_or_decl, type = TREE_TYPE (decl);
940 else
941 decl = NULL, type = type_or_decl;
942
943 mode = TYPE_MODE (type);
944 #ifdef PROMOTE_MODE
945 unsignedp = TYPE_UNSIGNED (type);
946 #endif
947
948 if (mode == BLKmode || memory_required)
949 {
950 HOST_WIDE_INT size = int_size_in_bytes (type);
951 rtx tmp;
952
953 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
954 problems with allocating the stack space. */
955 if (size == 0)
956 size = 1;
957
958 /* Unfortunately, we don't yet know how to allocate variable-sized
959 temporaries. However, sometimes we can find a fixed upper limit on
960 the size, so try that instead. */
961 else if (size == -1)
962 size = max_int_size_in_bytes (type);
963
964 /* The size of the temporary may be too large to fit into an integer. */
965 /* ??? Not sure this should happen except for user silliness, so limit
966 this to things that aren't compiler-generated temporaries. The
967 rest of the time we'll die in assign_stack_temp_for_type. */
968 if (decl && size == -1
969 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
970 {
971 error ("size of variable %q+D is too large", decl);
972 size = 1;
973 }
974
975 tmp = assign_stack_temp_for_type (mode, size, type);
976 return tmp;
977 }
978
979 #ifdef PROMOTE_MODE
980 if (! dont_promote)
981 mode = promote_mode (type, mode, &unsignedp);
982 #endif
983
984 return gen_reg_rtx (mode);
985 }
986 \f
987 /* Combine temporary stack slots which are adjacent on the stack.
988
989 This allows for better use of already allocated stack space. This is only
990 done for BLKmode slots because we can be sure that we won't have alignment
991 problems in this case. */
992
993 static void
994 combine_temp_slots (void)
995 {
996 struct temp_slot *p, *q, *next, *next_q;
997 int num_slots;
998
999 /* We can't combine slots, because the information about which slot
1000 is in which alias set will be lost. */
1001 if (flag_strict_aliasing)
1002 return;
1003
1004 /* If there are a lot of temp slots, don't do anything unless
1005 high levels of optimization. */
1006 if (! flag_expensive_optimizations)
1007 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1008 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1009 return;
1010
1011 for (p = avail_temp_slots; p; p = next)
1012 {
1013 int delete_p = 0;
1014
1015 next = p->next;
1016
1017 if (GET_MODE (p->slot) != BLKmode)
1018 continue;
1019
1020 for (q = p->next; q; q = next_q)
1021 {
1022 int delete_q = 0;
1023
1024 next_q = q->next;
1025
1026 if (GET_MODE (q->slot) != BLKmode)
1027 continue;
1028
1029 if (p->base_offset + p->full_size == q->base_offset)
1030 {
1031 /* Q comes after P; combine Q into P. */
1032 p->size += q->size;
1033 p->full_size += q->full_size;
1034 delete_q = 1;
1035 }
1036 else if (q->base_offset + q->full_size == p->base_offset)
1037 {
1038 /* P comes after Q; combine P into Q. */
1039 q->size += p->size;
1040 q->full_size += p->full_size;
1041 delete_p = 1;
1042 break;
1043 }
1044 if (delete_q)
1045 cut_slot_from_list (q, &avail_temp_slots);
1046 }
1047
1048 /* Either delete P or advance past it. */
1049 if (delete_p)
1050 cut_slot_from_list (p, &avail_temp_slots);
1051 }
1052 }
1053 \f
1054 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1055 slot that previously was known by OLD_RTX. */
1056
1057 void
1058 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1059 {
1060 struct temp_slot *p;
1061
1062 if (rtx_equal_p (old_rtx, new_rtx))
1063 return;
1064
1065 p = find_temp_slot_from_address (old_rtx);
1066
1067 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1068 NEW_RTX is a register, see if one operand of the PLUS is a
1069 temporary location. If so, NEW_RTX points into it. Otherwise,
1070 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1071 in common between them. If so, try a recursive call on those
1072 values. */
1073 if (p == 0)
1074 {
1075 if (GET_CODE (old_rtx) != PLUS)
1076 return;
1077
1078 if (REG_P (new_rtx))
1079 {
1080 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1081 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1082 return;
1083 }
1084 else if (GET_CODE (new_rtx) != PLUS)
1085 return;
1086
1087 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1088 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1089 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1090 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1091 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1092 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1093 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1094 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1095
1096 return;
1097 }
1098
1099 /* Otherwise add an alias for the temp's address. */
1100 insert_temp_slot_address (new_rtx, p);
1101 }
1102
1103 /* If X could be a reference to a temporary slot, mark that slot as
1104 belonging to the to one level higher than the current level. If X
1105 matched one of our slots, just mark that one. Otherwise, we can't
1106 easily predict which it is, so upgrade all of them.
1107
1108 This is called when an ({...}) construct occurs and a statement
1109 returns a value in memory. */
1110
1111 void
1112 preserve_temp_slots (rtx x)
1113 {
1114 struct temp_slot *p = 0, *next;
1115
1116 if (x == 0)
1117 return;
1118
1119 /* If X is a register that is being used as a pointer, see if we have
1120 a temporary slot we know it points to. */
1121 if (REG_P (x) && REG_POINTER (x))
1122 p = find_temp_slot_from_address (x);
1123
1124 /* If X is not in memory or is at a constant address, it cannot be in
1125 a temporary slot. */
1126 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1127 return;
1128
1129 /* First see if we can find a match. */
1130 if (p == 0)
1131 p = find_temp_slot_from_address (XEXP (x, 0));
1132
1133 if (p != 0)
1134 {
1135 if (p->level == temp_slot_level)
1136 move_slot_to_level (p, temp_slot_level - 1);
1137 return;
1138 }
1139
1140 /* Otherwise, preserve all non-kept slots at this level. */
1141 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1142 {
1143 next = p->next;
1144 move_slot_to_level (p, temp_slot_level - 1);
1145 }
1146 }
1147
1148 /* Free all temporaries used so far. This is normally called at the
1149 end of generating code for a statement. */
1150
1151 void
1152 free_temp_slots (void)
1153 {
1154 struct temp_slot *p, *next;
1155 bool some_available = false;
1156
1157 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1158 {
1159 next = p->next;
1160 make_slot_available (p);
1161 some_available = true;
1162 }
1163
1164 if (some_available)
1165 {
1166 remove_unused_temp_slot_addresses ();
1167 combine_temp_slots ();
1168 }
1169 }
1170
1171 /* Push deeper into the nesting level for stack temporaries. */
1172
1173 void
1174 push_temp_slots (void)
1175 {
1176 temp_slot_level++;
1177 }
1178
1179 /* Pop a temporary nesting level. All slots in use in the current level
1180 are freed. */
1181
1182 void
1183 pop_temp_slots (void)
1184 {
1185 free_temp_slots ();
1186 temp_slot_level--;
1187 }
1188
1189 /* Initialize temporary slots. */
1190
1191 void
1192 init_temp_slots (void)
1193 {
1194 /* We have not allocated any temporaries yet. */
1195 avail_temp_slots = 0;
1196 vec_alloc (used_temp_slots, 0);
1197 temp_slot_level = 0;
1198 n_temp_slots_in_use = 0;
1199
1200 /* Set up the table to map addresses to temp slots. */
1201 if (! temp_slot_address_table)
1202 temp_slot_address_table = htab_create_ggc (32,
1203 temp_slot_address_hash,
1204 temp_slot_address_eq,
1205 NULL);
1206 else
1207 htab_empty (temp_slot_address_table);
1208 }
1209 \f
1210 /* Functions and data structures to keep track of the values hard regs
1211 had at the start of the function. */
1212
1213 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1214 and has_hard_reg_initial_val.. */
1215 typedef struct GTY(()) initial_value_pair {
1216 rtx hard_reg;
1217 rtx pseudo;
1218 } initial_value_pair;
1219 /* ??? This could be a VEC but there is currently no way to define an
1220 opaque VEC type. This could be worked around by defining struct
1221 initial_value_pair in function.h. */
1222 typedef struct GTY(()) initial_value_struct {
1223 int num_entries;
1224 int max_entries;
1225 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1226 } initial_value_struct;
1227
1228 /* If a pseudo represents an initial hard reg (or expression), return
1229 it, else return NULL_RTX. */
1230
1231 rtx
1232 get_hard_reg_initial_reg (rtx reg)
1233 {
1234 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1235 int i;
1236
1237 if (ivs == 0)
1238 return NULL_RTX;
1239
1240 for (i = 0; i < ivs->num_entries; i++)
1241 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1242 return ivs->entries[i].hard_reg;
1243
1244 return NULL_RTX;
1245 }
1246
1247 /* Make sure that there's a pseudo register of mode MODE that stores the
1248 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1249
1250 rtx
1251 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1252 {
1253 struct initial_value_struct *ivs;
1254 rtx rv;
1255
1256 rv = has_hard_reg_initial_val (mode, regno);
1257 if (rv)
1258 return rv;
1259
1260 ivs = crtl->hard_reg_initial_vals;
1261 if (ivs == 0)
1262 {
1263 ivs = ggc_alloc_initial_value_struct ();
1264 ivs->num_entries = 0;
1265 ivs->max_entries = 5;
1266 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1267 crtl->hard_reg_initial_vals = ivs;
1268 }
1269
1270 if (ivs->num_entries >= ivs->max_entries)
1271 {
1272 ivs->max_entries += 5;
1273 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1274 ivs->max_entries);
1275 }
1276
1277 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1278 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1279
1280 return ivs->entries[ivs->num_entries++].pseudo;
1281 }
1282
1283 /* See if get_hard_reg_initial_val has been used to create a pseudo
1284 for the initial value of hard register REGNO in mode MODE. Return
1285 the associated pseudo if so, otherwise return NULL. */
1286
1287 rtx
1288 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1289 {
1290 struct initial_value_struct *ivs;
1291 int i;
1292
1293 ivs = crtl->hard_reg_initial_vals;
1294 if (ivs != 0)
1295 for (i = 0; i < ivs->num_entries; i++)
1296 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1297 && REGNO (ivs->entries[i].hard_reg) == regno)
1298 return ivs->entries[i].pseudo;
1299
1300 return NULL_RTX;
1301 }
1302
1303 unsigned int
1304 emit_initial_value_sets (void)
1305 {
1306 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1307 int i;
1308 rtx seq;
1309
1310 if (ivs == 0)
1311 return 0;
1312
1313 start_sequence ();
1314 for (i = 0; i < ivs->num_entries; i++)
1315 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1316 seq = get_insns ();
1317 end_sequence ();
1318
1319 emit_insn_at_entry (seq);
1320 return 0;
1321 }
1322
1323 /* Return the hardreg-pseudoreg initial values pair entry I and
1324 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1325 bool
1326 initial_value_entry (int i, rtx *hreg, rtx *preg)
1327 {
1328 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1329 if (!ivs || i >= ivs->num_entries)
1330 return false;
1331
1332 *hreg = ivs->entries[i].hard_reg;
1333 *preg = ivs->entries[i].pseudo;
1334 return true;
1335 }
1336 \f
1337 /* These routines are responsible for converting virtual register references
1338 to the actual hard register references once RTL generation is complete.
1339
1340 The following four variables are used for communication between the
1341 routines. They contain the offsets of the virtual registers from their
1342 respective hard registers. */
1343
1344 static int in_arg_offset;
1345 static int var_offset;
1346 static int dynamic_offset;
1347 static int out_arg_offset;
1348 static int cfa_offset;
1349
1350 /* In most machines, the stack pointer register is equivalent to the bottom
1351 of the stack. */
1352
1353 #ifndef STACK_POINTER_OFFSET
1354 #define STACK_POINTER_OFFSET 0
1355 #endif
1356
1357 /* If not defined, pick an appropriate default for the offset of dynamically
1358 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1359 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1360
1361 #ifndef STACK_DYNAMIC_OFFSET
1362
1363 /* The bottom of the stack points to the actual arguments. If
1364 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1365 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1366 stack space for register parameters is not pushed by the caller, but
1367 rather part of the fixed stack areas and hence not included in
1368 `crtl->outgoing_args_size'. Nevertheless, we must allow
1369 for it when allocating stack dynamic objects. */
1370
1371 #if defined(REG_PARM_STACK_SPACE)
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS \
1374 ? (crtl->outgoing_args_size \
1375 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1376 : REG_PARM_STACK_SPACE (FNDECL))) \
1377 : 0) + (STACK_POINTER_OFFSET))
1378 #else
1379 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1380 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1381 + (STACK_POINTER_OFFSET))
1382 #endif
1383 #endif
1384
1385 \f
1386 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1387 is a virtual register, return the equivalent hard register and set the
1388 offset indirectly through the pointer. Otherwise, return 0. */
1389
1390 static rtx
1391 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1392 {
1393 rtx new_rtx;
1394 HOST_WIDE_INT offset;
1395
1396 if (x == virtual_incoming_args_rtx)
1397 {
1398 if (stack_realign_drap)
1399 {
1400 /* Replace virtual_incoming_args_rtx with internal arg
1401 pointer if DRAP is used to realign stack. */
1402 new_rtx = crtl->args.internal_arg_pointer;
1403 offset = 0;
1404 }
1405 else
1406 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1407 }
1408 else if (x == virtual_stack_vars_rtx)
1409 new_rtx = frame_pointer_rtx, offset = var_offset;
1410 else if (x == virtual_stack_dynamic_rtx)
1411 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1412 else if (x == virtual_outgoing_args_rtx)
1413 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1414 else if (x == virtual_cfa_rtx)
1415 {
1416 #ifdef FRAME_POINTER_CFA_OFFSET
1417 new_rtx = frame_pointer_rtx;
1418 #else
1419 new_rtx = arg_pointer_rtx;
1420 #endif
1421 offset = cfa_offset;
1422 }
1423 else if (x == virtual_preferred_stack_boundary_rtx)
1424 {
1425 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1426 offset = 0;
1427 }
1428 else
1429 return NULL_RTX;
1430
1431 *poffset = offset;
1432 return new_rtx;
1433 }
1434
1435 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1436 Instantiate any virtual registers present inside of *LOC. The expression
1437 is simplified, as much as possible, but is not to be considered "valid"
1438 in any sense implied by the target. If any change is made, set CHANGED
1439 to true. */
1440
1441 static int
1442 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1443 {
1444 HOST_WIDE_INT offset;
1445 bool *changed = (bool *) data;
1446 rtx x, new_rtx;
1447
1448 x = *loc;
1449 if (x == 0)
1450 return 0;
1451
1452 switch (GET_CODE (x))
1453 {
1454 case REG:
1455 new_rtx = instantiate_new_reg (x, &offset);
1456 if (new_rtx)
1457 {
1458 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1459 if (changed)
1460 *changed = true;
1461 }
1462 return -1;
1463
1464 case PLUS:
1465 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1466 if (new_rtx)
1467 {
1468 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1469 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1470 if (changed)
1471 *changed = true;
1472 return -1;
1473 }
1474
1475 /* FIXME -- from old code */
1476 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1477 we can commute the PLUS and SUBREG because pointers into the
1478 frame are well-behaved. */
1479 break;
1480
1481 default:
1482 break;
1483 }
1484
1485 return 0;
1486 }
1487
1488 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1489 matches the predicate for insn CODE operand OPERAND. */
1490
1491 static int
1492 safe_insn_predicate (int code, int operand, rtx x)
1493 {
1494 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1495 }
1496
1497 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1498 registers present inside of insn. The result will be a valid insn. */
1499
1500 static void
1501 instantiate_virtual_regs_in_insn (rtx insn)
1502 {
1503 HOST_WIDE_INT offset;
1504 int insn_code, i;
1505 bool any_change = false;
1506 rtx set, new_rtx, x, seq;
1507
1508 /* There are some special cases to be handled first. */
1509 set = single_set (insn);
1510 if (set)
1511 {
1512 /* We're allowed to assign to a virtual register. This is interpreted
1513 to mean that the underlying register gets assigned the inverse
1514 transformation. This is used, for example, in the handling of
1515 non-local gotos. */
1516 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1517 if (new_rtx)
1518 {
1519 start_sequence ();
1520
1521 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1522 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1523 gen_int_mode (-offset, GET_MODE (new_rtx)));
1524 x = force_operand (x, new_rtx);
1525 if (x != new_rtx)
1526 emit_move_insn (new_rtx, x);
1527
1528 seq = get_insns ();
1529 end_sequence ();
1530
1531 emit_insn_before (seq, insn);
1532 delete_insn (insn);
1533 return;
1534 }
1535
1536 /* Handle a straight copy from a virtual register by generating a
1537 new add insn. The difference between this and falling through
1538 to the generic case is avoiding a new pseudo and eliminating a
1539 move insn in the initial rtl stream. */
1540 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1541 if (new_rtx && offset != 0
1542 && REG_P (SET_DEST (set))
1543 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1544 {
1545 start_sequence ();
1546
1547 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1548 gen_int_mode (offset,
1549 GET_MODE (SET_DEST (set))),
1550 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1551 if (x != SET_DEST (set))
1552 emit_move_insn (SET_DEST (set), x);
1553
1554 seq = get_insns ();
1555 end_sequence ();
1556
1557 emit_insn_before (seq, insn);
1558 delete_insn (insn);
1559 return;
1560 }
1561
1562 extract_insn (insn);
1563 insn_code = INSN_CODE (insn);
1564
1565 /* Handle a plus involving a virtual register by determining if the
1566 operands remain valid if they're modified in place. */
1567 if (GET_CODE (SET_SRC (set)) == PLUS
1568 && recog_data.n_operands >= 3
1569 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1570 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1571 && CONST_INT_P (recog_data.operand[2])
1572 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1573 {
1574 offset += INTVAL (recog_data.operand[2]);
1575
1576 /* If the sum is zero, then replace with a plain move. */
1577 if (offset == 0
1578 && REG_P (SET_DEST (set))
1579 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1580 {
1581 start_sequence ();
1582 emit_move_insn (SET_DEST (set), new_rtx);
1583 seq = get_insns ();
1584 end_sequence ();
1585
1586 emit_insn_before (seq, insn);
1587 delete_insn (insn);
1588 return;
1589 }
1590
1591 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1592
1593 /* Using validate_change and apply_change_group here leaves
1594 recog_data in an invalid state. Since we know exactly what
1595 we want to check, do those two by hand. */
1596 if (safe_insn_predicate (insn_code, 1, new_rtx)
1597 && safe_insn_predicate (insn_code, 2, x))
1598 {
1599 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1600 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1601 any_change = true;
1602
1603 /* Fall through into the regular operand fixup loop in
1604 order to take care of operands other than 1 and 2. */
1605 }
1606 }
1607 }
1608 else
1609 {
1610 extract_insn (insn);
1611 insn_code = INSN_CODE (insn);
1612 }
1613
1614 /* In the general case, we expect virtual registers to appear only in
1615 operands, and then only as either bare registers or inside memories. */
1616 for (i = 0; i < recog_data.n_operands; ++i)
1617 {
1618 x = recog_data.operand[i];
1619 switch (GET_CODE (x))
1620 {
1621 case MEM:
1622 {
1623 rtx addr = XEXP (x, 0);
1624 bool changed = false;
1625
1626 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1627 if (!changed)
1628 continue;
1629
1630 start_sequence ();
1631 x = replace_equiv_address (x, addr);
1632 /* It may happen that the address with the virtual reg
1633 was valid (e.g. based on the virtual stack reg, which might
1634 be acceptable to the predicates with all offsets), whereas
1635 the address now isn't anymore, for instance when the address
1636 is still offsetted, but the base reg isn't virtual-stack-reg
1637 anymore. Below we would do a force_reg on the whole operand,
1638 but this insn might actually only accept memory. Hence,
1639 before doing that last resort, try to reload the address into
1640 a register, so this operand stays a MEM. */
1641 if (!safe_insn_predicate (insn_code, i, x))
1642 {
1643 addr = force_reg (GET_MODE (addr), addr);
1644 x = replace_equiv_address (x, addr);
1645 }
1646 seq = get_insns ();
1647 end_sequence ();
1648 if (seq)
1649 emit_insn_before (seq, insn);
1650 }
1651 break;
1652
1653 case REG:
1654 new_rtx = instantiate_new_reg (x, &offset);
1655 if (new_rtx == NULL)
1656 continue;
1657 if (offset == 0)
1658 x = new_rtx;
1659 else
1660 {
1661 start_sequence ();
1662
1663 /* Careful, special mode predicates may have stuff in
1664 insn_data[insn_code].operand[i].mode that isn't useful
1665 to us for computing a new value. */
1666 /* ??? Recognize address_operand and/or "p" constraints
1667 to see if (plus new offset) is a valid before we put
1668 this through expand_simple_binop. */
1669 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1670 gen_int_mode (offset, GET_MODE (x)),
1671 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1672 seq = get_insns ();
1673 end_sequence ();
1674 emit_insn_before (seq, insn);
1675 }
1676 break;
1677
1678 case SUBREG:
1679 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1680 if (new_rtx == NULL)
1681 continue;
1682 if (offset != 0)
1683 {
1684 start_sequence ();
1685 new_rtx = expand_simple_binop
1686 (GET_MODE (new_rtx), PLUS, new_rtx,
1687 gen_int_mode (offset, GET_MODE (new_rtx)),
1688 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1689 seq = get_insns ();
1690 end_sequence ();
1691 emit_insn_before (seq, insn);
1692 }
1693 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1694 GET_MODE (new_rtx), SUBREG_BYTE (x));
1695 gcc_assert (x);
1696 break;
1697
1698 default:
1699 continue;
1700 }
1701
1702 /* At this point, X contains the new value for the operand.
1703 Validate the new value vs the insn predicate. Note that
1704 asm insns will have insn_code -1 here. */
1705 if (!safe_insn_predicate (insn_code, i, x))
1706 {
1707 start_sequence ();
1708 if (REG_P (x))
1709 {
1710 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1711 x = copy_to_reg (x);
1712 }
1713 else
1714 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1715 seq = get_insns ();
1716 end_sequence ();
1717 if (seq)
1718 emit_insn_before (seq, insn);
1719 }
1720
1721 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1722 any_change = true;
1723 }
1724
1725 if (any_change)
1726 {
1727 /* Propagate operand changes into the duplicates. */
1728 for (i = 0; i < recog_data.n_dups; ++i)
1729 *recog_data.dup_loc[i]
1730 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1731
1732 /* Force re-recognition of the instruction for validation. */
1733 INSN_CODE (insn) = -1;
1734 }
1735
1736 if (asm_noperands (PATTERN (insn)) >= 0)
1737 {
1738 if (!check_asm_operands (PATTERN (insn)))
1739 {
1740 error_for_asm (insn, "impossible constraint in %<asm%>");
1741 /* For asm goto, instead of fixing up all the edges
1742 just clear the template and clear input operands
1743 (asm goto doesn't have any output operands). */
1744 if (JUMP_P (insn))
1745 {
1746 rtx asm_op = extract_asm_operands (PATTERN (insn));
1747 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1748 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1749 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1750 }
1751 else
1752 delete_insn (insn);
1753 }
1754 }
1755 else
1756 {
1757 if (recog_memoized (insn) < 0)
1758 fatal_insn_not_found (insn);
1759 }
1760 }
1761
1762 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1763 do any instantiation required. */
1764
1765 void
1766 instantiate_decl_rtl (rtx x)
1767 {
1768 rtx addr;
1769
1770 if (x == 0)
1771 return;
1772
1773 /* If this is a CONCAT, recurse for the pieces. */
1774 if (GET_CODE (x) == CONCAT)
1775 {
1776 instantiate_decl_rtl (XEXP (x, 0));
1777 instantiate_decl_rtl (XEXP (x, 1));
1778 return;
1779 }
1780
1781 /* If this is not a MEM, no need to do anything. Similarly if the
1782 address is a constant or a register that is not a virtual register. */
1783 if (!MEM_P (x))
1784 return;
1785
1786 addr = XEXP (x, 0);
1787 if (CONSTANT_P (addr)
1788 || (REG_P (addr)
1789 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1790 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1791 return;
1792
1793 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1794 }
1795
1796 /* Helper for instantiate_decls called via walk_tree: Process all decls
1797 in the given DECL_VALUE_EXPR. */
1798
1799 static tree
1800 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1801 {
1802 tree t = *tp;
1803 if (! EXPR_P (t))
1804 {
1805 *walk_subtrees = 0;
1806 if (DECL_P (t))
1807 {
1808 if (DECL_RTL_SET_P (t))
1809 instantiate_decl_rtl (DECL_RTL (t));
1810 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1811 && DECL_INCOMING_RTL (t))
1812 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1813 if ((TREE_CODE (t) == VAR_DECL
1814 || TREE_CODE (t) == RESULT_DECL)
1815 && DECL_HAS_VALUE_EXPR_P (t))
1816 {
1817 tree v = DECL_VALUE_EXPR (t);
1818 walk_tree (&v, instantiate_expr, NULL, NULL);
1819 }
1820 }
1821 }
1822 return NULL;
1823 }
1824
1825 /* Subroutine of instantiate_decls: Process all decls in the given
1826 BLOCK node and all its subblocks. */
1827
1828 static void
1829 instantiate_decls_1 (tree let)
1830 {
1831 tree t;
1832
1833 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1834 {
1835 if (DECL_RTL_SET_P (t))
1836 instantiate_decl_rtl (DECL_RTL (t));
1837 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1838 {
1839 tree v = DECL_VALUE_EXPR (t);
1840 walk_tree (&v, instantiate_expr, NULL, NULL);
1841 }
1842 }
1843
1844 /* Process all subblocks. */
1845 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1846 instantiate_decls_1 (t);
1847 }
1848
1849 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1850 all virtual registers in their DECL_RTL's. */
1851
1852 static void
1853 instantiate_decls (tree fndecl)
1854 {
1855 tree decl;
1856 unsigned ix;
1857
1858 /* Process all parameters of the function. */
1859 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1860 {
1861 instantiate_decl_rtl (DECL_RTL (decl));
1862 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1863 if (DECL_HAS_VALUE_EXPR_P (decl))
1864 {
1865 tree v = DECL_VALUE_EXPR (decl);
1866 walk_tree (&v, instantiate_expr, NULL, NULL);
1867 }
1868 }
1869
1870 if ((decl = DECL_RESULT (fndecl))
1871 && TREE_CODE (decl) == RESULT_DECL)
1872 {
1873 if (DECL_RTL_SET_P (decl))
1874 instantiate_decl_rtl (DECL_RTL (decl));
1875 if (DECL_HAS_VALUE_EXPR_P (decl))
1876 {
1877 tree v = DECL_VALUE_EXPR (decl);
1878 walk_tree (&v, instantiate_expr, NULL, NULL);
1879 }
1880 }
1881
1882 /* Now process all variables defined in the function or its subblocks. */
1883 instantiate_decls_1 (DECL_INITIAL (fndecl));
1884
1885 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1886 if (DECL_RTL_SET_P (decl))
1887 instantiate_decl_rtl (DECL_RTL (decl));
1888 vec_free (cfun->local_decls);
1889 }
1890
1891 /* Pass through the INSNS of function FNDECL and convert virtual register
1892 references to hard register references. */
1893
1894 static unsigned int
1895 instantiate_virtual_regs (void)
1896 {
1897 rtx insn;
1898
1899 /* Compute the offsets to use for this function. */
1900 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1901 var_offset = STARTING_FRAME_OFFSET;
1902 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1903 out_arg_offset = STACK_POINTER_OFFSET;
1904 #ifdef FRAME_POINTER_CFA_OFFSET
1905 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1906 #else
1907 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1908 #endif
1909
1910 /* Initialize recognition, indicating that volatile is OK. */
1911 init_recog ();
1912
1913 /* Scan through all the insns, instantiating every virtual register still
1914 present. */
1915 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1916 if (INSN_P (insn))
1917 {
1918 /* These patterns in the instruction stream can never be recognized.
1919 Fortunately, they shouldn't contain virtual registers either. */
1920 if (GET_CODE (PATTERN (insn)) == USE
1921 || GET_CODE (PATTERN (insn)) == CLOBBER
1922 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1923 continue;
1924 else if (DEBUG_INSN_P (insn))
1925 for_each_rtx (&INSN_VAR_LOCATION (insn),
1926 instantiate_virtual_regs_in_rtx, NULL);
1927 else
1928 instantiate_virtual_regs_in_insn (insn);
1929
1930 if (INSN_DELETED_P (insn))
1931 continue;
1932
1933 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1934
1935 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1936 if (CALL_P (insn))
1937 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1938 instantiate_virtual_regs_in_rtx, NULL);
1939 }
1940
1941 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1942 instantiate_decls (current_function_decl);
1943
1944 targetm.instantiate_decls ();
1945
1946 /* Indicate that, from now on, assign_stack_local should use
1947 frame_pointer_rtx. */
1948 virtuals_instantiated = 1;
1949
1950 return 0;
1951 }
1952
1953 namespace {
1954
1955 const pass_data pass_data_instantiate_virtual_regs =
1956 {
1957 RTL_PASS, /* type */
1958 "vregs", /* name */
1959 OPTGROUP_NONE, /* optinfo_flags */
1960 false, /* has_gate */
1961 true, /* has_execute */
1962 TV_NONE, /* tv_id */
1963 0, /* properties_required */
1964 0, /* properties_provided */
1965 0, /* properties_destroyed */
1966 0, /* todo_flags_start */
1967 0, /* todo_flags_finish */
1968 };
1969
1970 class pass_instantiate_virtual_regs : public rtl_opt_pass
1971 {
1972 public:
1973 pass_instantiate_virtual_regs (gcc::context *ctxt)
1974 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1975 {}
1976
1977 /* opt_pass methods: */
1978 unsigned int execute () { return instantiate_virtual_regs (); }
1979
1980 }; // class pass_instantiate_virtual_regs
1981
1982 } // anon namespace
1983
1984 rtl_opt_pass *
1985 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1986 {
1987 return new pass_instantiate_virtual_regs (ctxt);
1988 }
1989
1990 \f
1991 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1992 This means a type for which function calls must pass an address to the
1993 function or get an address back from the function.
1994 EXP may be a type node or an expression (whose type is tested). */
1995
1996 int
1997 aggregate_value_p (const_tree exp, const_tree fntype)
1998 {
1999 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2000 int i, regno, nregs;
2001 rtx reg;
2002
2003 if (fntype)
2004 switch (TREE_CODE (fntype))
2005 {
2006 case CALL_EXPR:
2007 {
2008 tree fndecl = get_callee_fndecl (fntype);
2009 fntype = (fndecl
2010 ? TREE_TYPE (fndecl)
2011 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2012 }
2013 break;
2014 case FUNCTION_DECL:
2015 fntype = TREE_TYPE (fntype);
2016 break;
2017 case FUNCTION_TYPE:
2018 case METHOD_TYPE:
2019 break;
2020 case IDENTIFIER_NODE:
2021 fntype = NULL_TREE;
2022 break;
2023 default:
2024 /* We don't expect other tree types here. */
2025 gcc_unreachable ();
2026 }
2027
2028 if (VOID_TYPE_P (type))
2029 return 0;
2030
2031 /* If a record should be passed the same as its first (and only) member
2032 don't pass it as an aggregate. */
2033 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2034 return aggregate_value_p (first_field (type), fntype);
2035
2036 /* If the front end has decided that this needs to be passed by
2037 reference, do so. */
2038 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2039 && DECL_BY_REFERENCE (exp))
2040 return 1;
2041
2042 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2043 if (fntype && TREE_ADDRESSABLE (fntype))
2044 return 1;
2045
2046 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2047 and thus can't be returned in registers. */
2048 if (TREE_ADDRESSABLE (type))
2049 return 1;
2050
2051 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2052 return 1;
2053
2054 if (targetm.calls.return_in_memory (type, fntype))
2055 return 1;
2056
2057 /* Make sure we have suitable call-clobbered regs to return
2058 the value in; if not, we must return it in memory. */
2059 reg = hard_function_value (type, 0, fntype, 0);
2060
2061 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2062 it is OK. */
2063 if (!REG_P (reg))
2064 return 0;
2065
2066 regno = REGNO (reg);
2067 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2068 for (i = 0; i < nregs; i++)
2069 if (! call_used_regs[regno + i])
2070 return 1;
2071
2072 return 0;
2073 }
2074 \f
2075 /* Return true if we should assign DECL a pseudo register; false if it
2076 should live on the local stack. */
2077
2078 bool
2079 use_register_for_decl (const_tree decl)
2080 {
2081 if (!targetm.calls.allocate_stack_slots_for_args ())
2082 return true;
2083
2084 /* Honor volatile. */
2085 if (TREE_SIDE_EFFECTS (decl))
2086 return false;
2087
2088 /* Honor addressability. */
2089 if (TREE_ADDRESSABLE (decl))
2090 return false;
2091
2092 /* Only register-like things go in registers. */
2093 if (DECL_MODE (decl) == BLKmode)
2094 return false;
2095
2096 /* If -ffloat-store specified, don't put explicit float variables
2097 into registers. */
2098 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2099 propagates values across these stores, and it probably shouldn't. */
2100 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2101 return false;
2102
2103 /* If we're not interested in tracking debugging information for
2104 this decl, then we can certainly put it in a register. */
2105 if (DECL_IGNORED_P (decl))
2106 return true;
2107
2108 if (optimize)
2109 return true;
2110
2111 if (!DECL_REGISTER (decl))
2112 return false;
2113
2114 switch (TREE_CODE (TREE_TYPE (decl)))
2115 {
2116 case RECORD_TYPE:
2117 case UNION_TYPE:
2118 case QUAL_UNION_TYPE:
2119 /* When not optimizing, disregard register keyword for variables with
2120 types containing methods, otherwise the methods won't be callable
2121 from the debugger. */
2122 if (TYPE_METHODS (TREE_TYPE (decl)))
2123 return false;
2124 break;
2125 default:
2126 break;
2127 }
2128
2129 return true;
2130 }
2131
2132 /* Return true if TYPE should be passed by invisible reference. */
2133
2134 bool
2135 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2136 tree type, bool named_arg)
2137 {
2138 if (type)
2139 {
2140 /* If this type contains non-trivial constructors, then it is
2141 forbidden for the middle-end to create any new copies. */
2142 if (TREE_ADDRESSABLE (type))
2143 return true;
2144
2145 /* GCC post 3.4 passes *all* variable sized types by reference. */
2146 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2147 return true;
2148
2149 /* If a record type should be passed the same as its first (and only)
2150 member, use the type and mode of that member. */
2151 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2152 {
2153 type = TREE_TYPE (first_field (type));
2154 mode = TYPE_MODE (type);
2155 }
2156 }
2157
2158 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2159 type, named_arg);
2160 }
2161
2162 /* Return true if TYPE, which is passed by reference, should be callee
2163 copied instead of caller copied. */
2164
2165 bool
2166 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2167 tree type, bool named_arg)
2168 {
2169 if (type && TREE_ADDRESSABLE (type))
2170 return false;
2171 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2172 named_arg);
2173 }
2174
2175 /* Structures to communicate between the subroutines of assign_parms.
2176 The first holds data persistent across all parameters, the second
2177 is cleared out for each parameter. */
2178
2179 struct assign_parm_data_all
2180 {
2181 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2182 should become a job of the target or otherwise encapsulated. */
2183 CUMULATIVE_ARGS args_so_far_v;
2184 cumulative_args_t args_so_far;
2185 struct args_size stack_args_size;
2186 tree function_result_decl;
2187 tree orig_fnargs;
2188 rtx first_conversion_insn;
2189 rtx last_conversion_insn;
2190 HOST_WIDE_INT pretend_args_size;
2191 HOST_WIDE_INT extra_pretend_bytes;
2192 int reg_parm_stack_space;
2193 };
2194
2195 struct assign_parm_data_one
2196 {
2197 tree nominal_type;
2198 tree passed_type;
2199 rtx entry_parm;
2200 rtx stack_parm;
2201 enum machine_mode nominal_mode;
2202 enum machine_mode passed_mode;
2203 enum machine_mode promoted_mode;
2204 struct locate_and_pad_arg_data locate;
2205 int partial;
2206 BOOL_BITFIELD named_arg : 1;
2207 BOOL_BITFIELD passed_pointer : 1;
2208 BOOL_BITFIELD on_stack : 1;
2209 BOOL_BITFIELD loaded_in_reg : 1;
2210 };
2211
2212 /* A subroutine of assign_parms. Initialize ALL. */
2213
2214 static void
2215 assign_parms_initialize_all (struct assign_parm_data_all *all)
2216 {
2217 tree fntype ATTRIBUTE_UNUSED;
2218
2219 memset (all, 0, sizeof (*all));
2220
2221 fntype = TREE_TYPE (current_function_decl);
2222
2223 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2224 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2225 #else
2226 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2227 current_function_decl, -1);
2228 #endif
2229 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2230
2231 #ifdef REG_PARM_STACK_SPACE
2232 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2233 #endif
2234 }
2235
2236 /* If ARGS contains entries with complex types, split the entry into two
2237 entries of the component type. Return a new list of substitutions are
2238 needed, else the old list. */
2239
2240 static void
2241 split_complex_args (vec<tree> *args)
2242 {
2243 unsigned i;
2244 tree p;
2245
2246 FOR_EACH_VEC_ELT (*args, i, p)
2247 {
2248 tree type = TREE_TYPE (p);
2249 if (TREE_CODE (type) == COMPLEX_TYPE
2250 && targetm.calls.split_complex_arg (type))
2251 {
2252 tree decl;
2253 tree subtype = TREE_TYPE (type);
2254 bool addressable = TREE_ADDRESSABLE (p);
2255
2256 /* Rewrite the PARM_DECL's type with its component. */
2257 p = copy_node (p);
2258 TREE_TYPE (p) = subtype;
2259 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2260 DECL_MODE (p) = VOIDmode;
2261 DECL_SIZE (p) = NULL;
2262 DECL_SIZE_UNIT (p) = NULL;
2263 /* If this arg must go in memory, put it in a pseudo here.
2264 We can't allow it to go in memory as per normal parms,
2265 because the usual place might not have the imag part
2266 adjacent to the real part. */
2267 DECL_ARTIFICIAL (p) = addressable;
2268 DECL_IGNORED_P (p) = addressable;
2269 TREE_ADDRESSABLE (p) = 0;
2270 layout_decl (p, 0);
2271 (*args)[i] = p;
2272
2273 /* Build a second synthetic decl. */
2274 decl = build_decl (EXPR_LOCATION (p),
2275 PARM_DECL, NULL_TREE, subtype);
2276 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2277 DECL_ARTIFICIAL (decl) = addressable;
2278 DECL_IGNORED_P (decl) = addressable;
2279 layout_decl (decl, 0);
2280 args->safe_insert (++i, decl);
2281 }
2282 }
2283 }
2284
2285 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2286 the hidden struct return argument, and (abi willing) complex args.
2287 Return the new parameter list. */
2288
2289 static vec<tree>
2290 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2291 {
2292 tree fndecl = current_function_decl;
2293 tree fntype = TREE_TYPE (fndecl);
2294 vec<tree> fnargs = vNULL;
2295 tree arg;
2296
2297 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2298 fnargs.safe_push (arg);
2299
2300 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2301
2302 /* If struct value address is treated as the first argument, make it so. */
2303 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2304 && ! cfun->returns_pcc_struct
2305 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2306 {
2307 tree type = build_pointer_type (TREE_TYPE (fntype));
2308 tree decl;
2309
2310 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2311 PARM_DECL, get_identifier (".result_ptr"), type);
2312 DECL_ARG_TYPE (decl) = type;
2313 DECL_ARTIFICIAL (decl) = 1;
2314 DECL_NAMELESS (decl) = 1;
2315 TREE_CONSTANT (decl) = 1;
2316
2317 DECL_CHAIN (decl) = all->orig_fnargs;
2318 all->orig_fnargs = decl;
2319 fnargs.safe_insert (0, decl);
2320
2321 all->function_result_decl = decl;
2322 }
2323
2324 /* If the target wants to split complex arguments into scalars, do so. */
2325 if (targetm.calls.split_complex_arg)
2326 split_complex_args (&fnargs);
2327
2328 return fnargs;
2329 }
2330
2331 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2332 data for the parameter. Incorporate ABI specifics such as pass-by-
2333 reference and type promotion. */
2334
2335 static void
2336 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2337 struct assign_parm_data_one *data)
2338 {
2339 tree nominal_type, passed_type;
2340 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2341 int unsignedp;
2342
2343 memset (data, 0, sizeof (*data));
2344
2345 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2346 if (!cfun->stdarg)
2347 data->named_arg = 1; /* No variadic parms. */
2348 else if (DECL_CHAIN (parm))
2349 data->named_arg = 1; /* Not the last non-variadic parm. */
2350 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2351 data->named_arg = 1; /* Only variadic ones are unnamed. */
2352 else
2353 data->named_arg = 0; /* Treat as variadic. */
2354
2355 nominal_type = TREE_TYPE (parm);
2356 passed_type = DECL_ARG_TYPE (parm);
2357
2358 /* Look out for errors propagating this far. Also, if the parameter's
2359 type is void then its value doesn't matter. */
2360 if (TREE_TYPE (parm) == error_mark_node
2361 /* This can happen after weird syntax errors
2362 or if an enum type is defined among the parms. */
2363 || TREE_CODE (parm) != PARM_DECL
2364 || passed_type == NULL
2365 || VOID_TYPE_P (nominal_type))
2366 {
2367 nominal_type = passed_type = void_type_node;
2368 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2369 goto egress;
2370 }
2371
2372 /* Find mode of arg as it is passed, and mode of arg as it should be
2373 during execution of this function. */
2374 passed_mode = TYPE_MODE (passed_type);
2375 nominal_mode = TYPE_MODE (nominal_type);
2376
2377 /* If the parm is to be passed as a transparent union or record, use the
2378 type of the first field for the tests below. We have already verified
2379 that the modes are the same. */
2380 if ((TREE_CODE (passed_type) == UNION_TYPE
2381 || TREE_CODE (passed_type) == RECORD_TYPE)
2382 && TYPE_TRANSPARENT_AGGR (passed_type))
2383 passed_type = TREE_TYPE (first_field (passed_type));
2384
2385 /* See if this arg was passed by invisible reference. */
2386 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2387 passed_type, data->named_arg))
2388 {
2389 passed_type = nominal_type = build_pointer_type (passed_type);
2390 data->passed_pointer = true;
2391 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2392 }
2393
2394 /* Find mode as it is passed by the ABI. */
2395 unsignedp = TYPE_UNSIGNED (passed_type);
2396 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2397 TREE_TYPE (current_function_decl), 0);
2398
2399 egress:
2400 data->nominal_type = nominal_type;
2401 data->passed_type = passed_type;
2402 data->nominal_mode = nominal_mode;
2403 data->passed_mode = passed_mode;
2404 data->promoted_mode = promoted_mode;
2405 }
2406
2407 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2408
2409 static void
2410 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2411 struct assign_parm_data_one *data, bool no_rtl)
2412 {
2413 int varargs_pretend_bytes = 0;
2414
2415 targetm.calls.setup_incoming_varargs (all->args_so_far,
2416 data->promoted_mode,
2417 data->passed_type,
2418 &varargs_pretend_bytes, no_rtl);
2419
2420 /* If the back-end has requested extra stack space, record how much is
2421 needed. Do not change pretend_args_size otherwise since it may be
2422 nonzero from an earlier partial argument. */
2423 if (varargs_pretend_bytes > 0)
2424 all->pretend_args_size = varargs_pretend_bytes;
2425 }
2426
2427 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2428 the incoming location of the current parameter. */
2429
2430 static void
2431 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2432 struct assign_parm_data_one *data)
2433 {
2434 HOST_WIDE_INT pretend_bytes = 0;
2435 rtx entry_parm;
2436 bool in_regs;
2437
2438 if (data->promoted_mode == VOIDmode)
2439 {
2440 data->entry_parm = data->stack_parm = const0_rtx;
2441 return;
2442 }
2443
2444 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2445 data->promoted_mode,
2446 data->passed_type,
2447 data->named_arg);
2448
2449 if (entry_parm == 0)
2450 data->promoted_mode = data->passed_mode;
2451
2452 /* Determine parm's home in the stack, in case it arrives in the stack
2453 or we should pretend it did. Compute the stack position and rtx where
2454 the argument arrives and its size.
2455
2456 There is one complexity here: If this was a parameter that would
2457 have been passed in registers, but wasn't only because it is
2458 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2459 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2460 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2461 as it was the previous time. */
2462 in_regs = entry_parm != 0;
2463 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2464 in_regs = true;
2465 #endif
2466 if (!in_regs && !data->named_arg)
2467 {
2468 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2469 {
2470 rtx tem;
2471 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2472 data->promoted_mode,
2473 data->passed_type, true);
2474 in_regs = tem != NULL;
2475 }
2476 }
2477
2478 /* If this parameter was passed both in registers and in the stack, use
2479 the copy on the stack. */
2480 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2481 data->passed_type))
2482 entry_parm = 0;
2483
2484 if (entry_parm)
2485 {
2486 int partial;
2487
2488 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2489 data->promoted_mode,
2490 data->passed_type,
2491 data->named_arg);
2492 data->partial = partial;
2493
2494 /* The caller might already have allocated stack space for the
2495 register parameters. */
2496 if (partial != 0 && all->reg_parm_stack_space == 0)
2497 {
2498 /* Part of this argument is passed in registers and part
2499 is passed on the stack. Ask the prologue code to extend
2500 the stack part so that we can recreate the full value.
2501
2502 PRETEND_BYTES is the size of the registers we need to store.
2503 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2504 stack space that the prologue should allocate.
2505
2506 Internally, gcc assumes that the argument pointer is aligned
2507 to STACK_BOUNDARY bits. This is used both for alignment
2508 optimizations (see init_emit) and to locate arguments that are
2509 aligned to more than PARM_BOUNDARY bits. We must preserve this
2510 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2511 a stack boundary. */
2512
2513 /* We assume at most one partial arg, and it must be the first
2514 argument on the stack. */
2515 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2516
2517 pretend_bytes = partial;
2518 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2519
2520 /* We want to align relative to the actual stack pointer, so
2521 don't include this in the stack size until later. */
2522 all->extra_pretend_bytes = all->pretend_args_size;
2523 }
2524 }
2525
2526 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2527 entry_parm ? data->partial : 0, current_function_decl,
2528 &all->stack_args_size, &data->locate);
2529
2530 /* Update parm_stack_boundary if this parameter is passed in the
2531 stack. */
2532 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2533 crtl->parm_stack_boundary = data->locate.boundary;
2534
2535 /* Adjust offsets to include the pretend args. */
2536 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2537 data->locate.slot_offset.constant += pretend_bytes;
2538 data->locate.offset.constant += pretend_bytes;
2539
2540 data->entry_parm = entry_parm;
2541 }
2542
2543 /* A subroutine of assign_parms. If there is actually space on the stack
2544 for this parm, count it in stack_args_size and return true. */
2545
2546 static bool
2547 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2548 struct assign_parm_data_one *data)
2549 {
2550 /* Trivially true if we've no incoming register. */
2551 if (data->entry_parm == NULL)
2552 ;
2553 /* Also true if we're partially in registers and partially not,
2554 since we've arranged to drop the entire argument on the stack. */
2555 else if (data->partial != 0)
2556 ;
2557 /* Also true if the target says that it's passed in both registers
2558 and on the stack. */
2559 else if (GET_CODE (data->entry_parm) == PARALLEL
2560 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2561 ;
2562 /* Also true if the target says that there's stack allocated for
2563 all register parameters. */
2564 else if (all->reg_parm_stack_space > 0)
2565 ;
2566 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2567 else
2568 return false;
2569
2570 all->stack_args_size.constant += data->locate.size.constant;
2571 if (data->locate.size.var)
2572 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2573
2574 return true;
2575 }
2576
2577 /* A subroutine of assign_parms. Given that this parameter is allocated
2578 stack space by the ABI, find it. */
2579
2580 static void
2581 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2582 {
2583 rtx offset_rtx, stack_parm;
2584 unsigned int align, boundary;
2585
2586 /* If we're passing this arg using a reg, make its stack home the
2587 aligned stack slot. */
2588 if (data->entry_parm)
2589 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2590 else
2591 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2592
2593 stack_parm = crtl->args.internal_arg_pointer;
2594 if (offset_rtx != const0_rtx)
2595 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2596 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2597
2598 if (!data->passed_pointer)
2599 {
2600 set_mem_attributes (stack_parm, parm, 1);
2601 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2602 while promoted mode's size is needed. */
2603 if (data->promoted_mode != BLKmode
2604 && data->promoted_mode != DECL_MODE (parm))
2605 {
2606 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2607 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2608 {
2609 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2610 data->promoted_mode);
2611 if (offset)
2612 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2613 }
2614 }
2615 }
2616
2617 boundary = data->locate.boundary;
2618 align = BITS_PER_UNIT;
2619
2620 /* If we're padding upward, we know that the alignment of the slot
2621 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2622 intentionally forcing upward padding. Otherwise we have to come
2623 up with a guess at the alignment based on OFFSET_RTX. */
2624 if (data->locate.where_pad != downward || data->entry_parm)
2625 align = boundary;
2626 else if (CONST_INT_P (offset_rtx))
2627 {
2628 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2629 align = align & -align;
2630 }
2631 set_mem_align (stack_parm, align);
2632
2633 if (data->entry_parm)
2634 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2635
2636 data->stack_parm = stack_parm;
2637 }
2638
2639 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2640 always valid and contiguous. */
2641
2642 static void
2643 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2644 {
2645 rtx entry_parm = data->entry_parm;
2646 rtx stack_parm = data->stack_parm;
2647
2648 /* If this parm was passed part in regs and part in memory, pretend it
2649 arrived entirely in memory by pushing the register-part onto the stack.
2650 In the special case of a DImode or DFmode that is split, we could put
2651 it together in a pseudoreg directly, but for now that's not worth
2652 bothering with. */
2653 if (data->partial != 0)
2654 {
2655 /* Handle calls that pass values in multiple non-contiguous
2656 locations. The Irix 6 ABI has examples of this. */
2657 if (GET_CODE (entry_parm) == PARALLEL)
2658 emit_group_store (validize_mem (stack_parm), entry_parm,
2659 data->passed_type,
2660 int_size_in_bytes (data->passed_type));
2661 else
2662 {
2663 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2664 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2665 data->partial / UNITS_PER_WORD);
2666 }
2667
2668 entry_parm = stack_parm;
2669 }
2670
2671 /* If we didn't decide this parm came in a register, by default it came
2672 on the stack. */
2673 else if (entry_parm == NULL)
2674 entry_parm = stack_parm;
2675
2676 /* When an argument is passed in multiple locations, we can't make use
2677 of this information, but we can save some copying if the whole argument
2678 is passed in a single register. */
2679 else if (GET_CODE (entry_parm) == PARALLEL
2680 && data->nominal_mode != BLKmode
2681 && data->passed_mode != BLKmode)
2682 {
2683 size_t i, len = XVECLEN (entry_parm, 0);
2684
2685 for (i = 0; i < len; i++)
2686 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2687 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2688 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2689 == data->passed_mode)
2690 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2691 {
2692 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2693 break;
2694 }
2695 }
2696
2697 data->entry_parm = entry_parm;
2698 }
2699
2700 /* A subroutine of assign_parms. Reconstitute any values which were
2701 passed in multiple registers and would fit in a single register. */
2702
2703 static void
2704 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2705 {
2706 rtx entry_parm = data->entry_parm;
2707
2708 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2709 This can be done with register operations rather than on the
2710 stack, even if we will store the reconstituted parameter on the
2711 stack later. */
2712 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2713 {
2714 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2715 emit_group_store (parmreg, entry_parm, data->passed_type,
2716 GET_MODE_SIZE (GET_MODE (entry_parm)));
2717 entry_parm = parmreg;
2718 }
2719
2720 data->entry_parm = entry_parm;
2721 }
2722
2723 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2724 always valid and properly aligned. */
2725
2726 static void
2727 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2728 {
2729 rtx stack_parm = data->stack_parm;
2730
2731 /* If we can't trust the parm stack slot to be aligned enough for its
2732 ultimate type, don't use that slot after entry. We'll make another
2733 stack slot, if we need one. */
2734 if (stack_parm
2735 && ((STRICT_ALIGNMENT
2736 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2737 || (data->nominal_type
2738 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2739 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2740 stack_parm = NULL;
2741
2742 /* If parm was passed in memory, and we need to convert it on entry,
2743 don't store it back in that same slot. */
2744 else if (data->entry_parm == stack_parm
2745 && data->nominal_mode != BLKmode
2746 && data->nominal_mode != data->passed_mode)
2747 stack_parm = NULL;
2748
2749 /* If stack protection is in effect for this function, don't leave any
2750 pointers in their passed stack slots. */
2751 else if (crtl->stack_protect_guard
2752 && (flag_stack_protect == 2
2753 || data->passed_pointer
2754 || POINTER_TYPE_P (data->nominal_type)))
2755 stack_parm = NULL;
2756
2757 data->stack_parm = stack_parm;
2758 }
2759
2760 /* A subroutine of assign_parms. Return true if the current parameter
2761 should be stored as a BLKmode in the current frame. */
2762
2763 static bool
2764 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2765 {
2766 if (data->nominal_mode == BLKmode)
2767 return true;
2768 if (GET_MODE (data->entry_parm) == BLKmode)
2769 return true;
2770
2771 #ifdef BLOCK_REG_PADDING
2772 /* Only assign_parm_setup_block knows how to deal with register arguments
2773 that are padded at the least significant end. */
2774 if (REG_P (data->entry_parm)
2775 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2776 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2777 == (BYTES_BIG_ENDIAN ? upward : downward)))
2778 return true;
2779 #endif
2780
2781 return false;
2782 }
2783
2784 /* A subroutine of assign_parms. Arrange for the parameter to be
2785 present and valid in DATA->STACK_RTL. */
2786
2787 static void
2788 assign_parm_setup_block (struct assign_parm_data_all *all,
2789 tree parm, struct assign_parm_data_one *data)
2790 {
2791 rtx entry_parm = data->entry_parm;
2792 rtx stack_parm = data->stack_parm;
2793 HOST_WIDE_INT size;
2794 HOST_WIDE_INT size_stored;
2795
2796 if (GET_CODE (entry_parm) == PARALLEL)
2797 entry_parm = emit_group_move_into_temps (entry_parm);
2798
2799 size = int_size_in_bytes (data->passed_type);
2800 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2801 if (stack_parm == 0)
2802 {
2803 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2804 stack_parm = assign_stack_local (BLKmode, size_stored,
2805 DECL_ALIGN (parm));
2806 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2807 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2808 set_mem_attributes (stack_parm, parm, 1);
2809 }
2810
2811 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2812 calls that pass values in multiple non-contiguous locations. */
2813 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2814 {
2815 rtx mem;
2816
2817 /* Note that we will be storing an integral number of words.
2818 So we have to be careful to ensure that we allocate an
2819 integral number of words. We do this above when we call
2820 assign_stack_local if space was not allocated in the argument
2821 list. If it was, this will not work if PARM_BOUNDARY is not
2822 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2823 if it becomes a problem. Exception is when BLKmode arrives
2824 with arguments not conforming to word_mode. */
2825
2826 if (data->stack_parm == 0)
2827 ;
2828 else if (GET_CODE (entry_parm) == PARALLEL)
2829 ;
2830 else
2831 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2832
2833 mem = validize_mem (stack_parm);
2834
2835 /* Handle values in multiple non-contiguous locations. */
2836 if (GET_CODE (entry_parm) == PARALLEL)
2837 {
2838 push_to_sequence2 (all->first_conversion_insn,
2839 all->last_conversion_insn);
2840 emit_group_store (mem, entry_parm, data->passed_type, size);
2841 all->first_conversion_insn = get_insns ();
2842 all->last_conversion_insn = get_last_insn ();
2843 end_sequence ();
2844 }
2845
2846 else if (size == 0)
2847 ;
2848
2849 /* If SIZE is that of a mode no bigger than a word, just use
2850 that mode's store operation. */
2851 else if (size <= UNITS_PER_WORD)
2852 {
2853 enum machine_mode mode
2854 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2855
2856 if (mode != BLKmode
2857 #ifdef BLOCK_REG_PADDING
2858 && (size == UNITS_PER_WORD
2859 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2860 != (BYTES_BIG_ENDIAN ? upward : downward)))
2861 #endif
2862 )
2863 {
2864 rtx reg;
2865
2866 /* We are really truncating a word_mode value containing
2867 SIZE bytes into a value of mode MODE. If such an
2868 operation requires no actual instructions, we can refer
2869 to the value directly in mode MODE, otherwise we must
2870 start with the register in word_mode and explicitly
2871 convert it. */
2872 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2873 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2874 else
2875 {
2876 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2877 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2878 }
2879 emit_move_insn (change_address (mem, mode, 0), reg);
2880 }
2881
2882 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2883 machine must be aligned to the left before storing
2884 to memory. Note that the previous test doesn't
2885 handle all cases (e.g. SIZE == 3). */
2886 else if (size != UNITS_PER_WORD
2887 #ifdef BLOCK_REG_PADDING
2888 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2889 == downward)
2890 #else
2891 && BYTES_BIG_ENDIAN
2892 #endif
2893 )
2894 {
2895 rtx tem, x;
2896 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2897 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2898
2899 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2900 tem = change_address (mem, word_mode, 0);
2901 emit_move_insn (tem, x);
2902 }
2903 else
2904 move_block_from_reg (REGNO (entry_parm), mem,
2905 size_stored / UNITS_PER_WORD);
2906 }
2907 else
2908 move_block_from_reg (REGNO (entry_parm), mem,
2909 size_stored / UNITS_PER_WORD);
2910 }
2911 else if (data->stack_parm == 0)
2912 {
2913 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2914 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2915 BLOCK_OP_NORMAL);
2916 all->first_conversion_insn = get_insns ();
2917 all->last_conversion_insn = get_last_insn ();
2918 end_sequence ();
2919 }
2920
2921 data->stack_parm = stack_parm;
2922 SET_DECL_RTL (parm, stack_parm);
2923 }
2924
2925 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2926 parameter. Get it there. Perform all ABI specified conversions. */
2927
2928 static void
2929 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2930 struct assign_parm_data_one *data)
2931 {
2932 rtx parmreg, validated_mem;
2933 rtx equiv_stack_parm;
2934 enum machine_mode promoted_nominal_mode;
2935 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2936 bool did_conversion = false;
2937 bool need_conversion, moved;
2938
2939 /* Store the parm in a pseudoregister during the function, but we may
2940 need to do it in a wider mode. Using 2 here makes the result
2941 consistent with promote_decl_mode and thus expand_expr_real_1. */
2942 promoted_nominal_mode
2943 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2944 TREE_TYPE (current_function_decl), 2);
2945
2946 parmreg = gen_reg_rtx (promoted_nominal_mode);
2947
2948 if (!DECL_ARTIFICIAL (parm))
2949 mark_user_reg (parmreg);
2950
2951 /* If this was an item that we received a pointer to,
2952 set DECL_RTL appropriately. */
2953 if (data->passed_pointer)
2954 {
2955 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2956 set_mem_attributes (x, parm, 1);
2957 SET_DECL_RTL (parm, x);
2958 }
2959 else
2960 SET_DECL_RTL (parm, parmreg);
2961
2962 assign_parm_remove_parallels (data);
2963
2964 /* Copy the value into the register, thus bridging between
2965 assign_parm_find_data_types and expand_expr_real_1. */
2966
2967 equiv_stack_parm = data->stack_parm;
2968 validated_mem = validize_mem (data->entry_parm);
2969
2970 need_conversion = (data->nominal_mode != data->passed_mode
2971 || promoted_nominal_mode != data->promoted_mode);
2972 moved = false;
2973
2974 if (need_conversion
2975 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2976 && data->nominal_mode == data->passed_mode
2977 && data->nominal_mode == GET_MODE (data->entry_parm))
2978 {
2979 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2980 mode, by the caller. We now have to convert it to
2981 NOMINAL_MODE, if different. However, PARMREG may be in
2982 a different mode than NOMINAL_MODE if it is being stored
2983 promoted.
2984
2985 If ENTRY_PARM is a hard register, it might be in a register
2986 not valid for operating in its mode (e.g., an odd-numbered
2987 register for a DFmode). In that case, moves are the only
2988 thing valid, so we can't do a convert from there. This
2989 occurs when the calling sequence allow such misaligned
2990 usages.
2991
2992 In addition, the conversion may involve a call, which could
2993 clobber parameters which haven't been copied to pseudo
2994 registers yet.
2995
2996 First, we try to emit an insn which performs the necessary
2997 conversion. We verify that this insn does not clobber any
2998 hard registers. */
2999
3000 enum insn_code icode;
3001 rtx op0, op1;
3002
3003 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3004 unsignedp);
3005
3006 op0 = parmreg;
3007 op1 = validated_mem;
3008 if (icode != CODE_FOR_nothing
3009 && insn_operand_matches (icode, 0, op0)
3010 && insn_operand_matches (icode, 1, op1))
3011 {
3012 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3013 rtx insn, insns, t = op1;
3014 HARD_REG_SET hardregs;
3015
3016 start_sequence ();
3017 /* If op1 is a hard register that is likely spilled, first
3018 force it into a pseudo, otherwise combiner might extend
3019 its lifetime too much. */
3020 if (GET_CODE (t) == SUBREG)
3021 t = SUBREG_REG (t);
3022 if (REG_P (t)
3023 && HARD_REGISTER_P (t)
3024 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3025 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3026 {
3027 t = gen_reg_rtx (GET_MODE (op1));
3028 emit_move_insn (t, op1);
3029 }
3030 else
3031 t = op1;
3032 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3033 data->passed_mode, unsignedp);
3034 emit_insn (insn);
3035 insns = get_insns ();
3036
3037 moved = true;
3038 CLEAR_HARD_REG_SET (hardregs);
3039 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3040 {
3041 if (INSN_P (insn))
3042 note_stores (PATTERN (insn), record_hard_reg_sets,
3043 &hardregs);
3044 if (!hard_reg_set_empty_p (hardregs))
3045 moved = false;
3046 }
3047
3048 end_sequence ();
3049
3050 if (moved)
3051 {
3052 emit_insn (insns);
3053 if (equiv_stack_parm != NULL_RTX)
3054 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3055 equiv_stack_parm);
3056 }
3057 }
3058 }
3059
3060 if (moved)
3061 /* Nothing to do. */
3062 ;
3063 else if (need_conversion)
3064 {
3065 /* We did not have an insn to convert directly, or the sequence
3066 generated appeared unsafe. We must first copy the parm to a
3067 pseudo reg, and save the conversion until after all
3068 parameters have been moved. */
3069
3070 int save_tree_used;
3071 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3072
3073 emit_move_insn (tempreg, validated_mem);
3074
3075 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3076 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3077
3078 if (GET_CODE (tempreg) == SUBREG
3079 && GET_MODE (tempreg) == data->nominal_mode
3080 && REG_P (SUBREG_REG (tempreg))
3081 && data->nominal_mode == data->passed_mode
3082 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3083 && GET_MODE_SIZE (GET_MODE (tempreg))
3084 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3085 {
3086 /* The argument is already sign/zero extended, so note it
3087 into the subreg. */
3088 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3089 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3090 }
3091
3092 /* TREE_USED gets set erroneously during expand_assignment. */
3093 save_tree_used = TREE_USED (parm);
3094 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3095 TREE_USED (parm) = save_tree_used;
3096 all->first_conversion_insn = get_insns ();
3097 all->last_conversion_insn = get_last_insn ();
3098 end_sequence ();
3099
3100 did_conversion = true;
3101 }
3102 else
3103 emit_move_insn (parmreg, validated_mem);
3104
3105 /* If we were passed a pointer but the actual value can safely live
3106 in a register, retrieve it and use it directly. */
3107 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3108 {
3109 /* We can't use nominal_mode, because it will have been set to
3110 Pmode above. We must use the actual mode of the parm. */
3111 if (use_register_for_decl (parm))
3112 {
3113 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3114 mark_user_reg (parmreg);
3115 }
3116 else
3117 {
3118 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3119 TYPE_MODE (TREE_TYPE (parm)),
3120 TYPE_ALIGN (TREE_TYPE (parm)));
3121 parmreg
3122 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3123 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3124 align);
3125 set_mem_attributes (parmreg, parm, 1);
3126 }
3127
3128 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3129 {
3130 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3131 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3132
3133 push_to_sequence2 (all->first_conversion_insn,
3134 all->last_conversion_insn);
3135 emit_move_insn (tempreg, DECL_RTL (parm));
3136 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3137 emit_move_insn (parmreg, tempreg);
3138 all->first_conversion_insn = get_insns ();
3139 all->last_conversion_insn = get_last_insn ();
3140 end_sequence ();
3141
3142 did_conversion = true;
3143 }
3144 else
3145 emit_move_insn (parmreg, DECL_RTL (parm));
3146
3147 SET_DECL_RTL (parm, parmreg);
3148
3149 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3150 now the parm. */
3151 data->stack_parm = NULL;
3152 }
3153
3154 /* Mark the register as eliminable if we did no conversion and it was
3155 copied from memory at a fixed offset, and the arg pointer was not
3156 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3157 offset formed an invalid address, such memory-equivalences as we
3158 make here would screw up life analysis for it. */
3159 if (data->nominal_mode == data->passed_mode
3160 && !did_conversion
3161 && data->stack_parm != 0
3162 && MEM_P (data->stack_parm)
3163 && data->locate.offset.var == 0
3164 && reg_mentioned_p (virtual_incoming_args_rtx,
3165 XEXP (data->stack_parm, 0)))
3166 {
3167 rtx linsn = get_last_insn ();
3168 rtx sinsn, set;
3169
3170 /* Mark complex types separately. */
3171 if (GET_CODE (parmreg) == CONCAT)
3172 {
3173 enum machine_mode submode
3174 = GET_MODE_INNER (GET_MODE (parmreg));
3175 int regnor = REGNO (XEXP (parmreg, 0));
3176 int regnoi = REGNO (XEXP (parmreg, 1));
3177 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3178 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3179 GET_MODE_SIZE (submode));
3180
3181 /* Scan backwards for the set of the real and
3182 imaginary parts. */
3183 for (sinsn = linsn; sinsn != 0;
3184 sinsn = prev_nonnote_insn (sinsn))
3185 {
3186 set = single_set (sinsn);
3187 if (set == 0)
3188 continue;
3189
3190 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3191 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3192 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3193 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3194 }
3195 }
3196 else
3197 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3198 }
3199
3200 /* For pointer data type, suggest pointer register. */
3201 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3202 mark_reg_pointer (parmreg,
3203 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3204 }
3205
3206 /* A subroutine of assign_parms. Allocate stack space to hold the current
3207 parameter. Get it there. Perform all ABI specified conversions. */
3208
3209 static void
3210 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3211 struct assign_parm_data_one *data)
3212 {
3213 /* Value must be stored in the stack slot STACK_PARM during function
3214 execution. */
3215 bool to_conversion = false;
3216
3217 assign_parm_remove_parallels (data);
3218
3219 if (data->promoted_mode != data->nominal_mode)
3220 {
3221 /* Conversion is required. */
3222 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3223
3224 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3225
3226 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3227 to_conversion = true;
3228
3229 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3230 TYPE_UNSIGNED (TREE_TYPE (parm)));
3231
3232 if (data->stack_parm)
3233 {
3234 int offset = subreg_lowpart_offset (data->nominal_mode,
3235 GET_MODE (data->stack_parm));
3236 /* ??? This may need a big-endian conversion on sparc64. */
3237 data->stack_parm
3238 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3239 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3240 set_mem_offset (data->stack_parm,
3241 MEM_OFFSET (data->stack_parm) + offset);
3242 }
3243 }
3244
3245 if (data->entry_parm != data->stack_parm)
3246 {
3247 rtx src, dest;
3248
3249 if (data->stack_parm == 0)
3250 {
3251 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3252 GET_MODE (data->entry_parm),
3253 TYPE_ALIGN (data->passed_type));
3254 data->stack_parm
3255 = assign_stack_local (GET_MODE (data->entry_parm),
3256 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3257 align);
3258 set_mem_attributes (data->stack_parm, parm, 1);
3259 }
3260
3261 dest = validize_mem (data->stack_parm);
3262 src = validize_mem (data->entry_parm);
3263
3264 if (MEM_P (src))
3265 {
3266 /* Use a block move to handle potentially misaligned entry_parm. */
3267 if (!to_conversion)
3268 push_to_sequence2 (all->first_conversion_insn,
3269 all->last_conversion_insn);
3270 to_conversion = true;
3271
3272 emit_block_move (dest, src,
3273 GEN_INT (int_size_in_bytes (data->passed_type)),
3274 BLOCK_OP_NORMAL);
3275 }
3276 else
3277 emit_move_insn (dest, src);
3278 }
3279
3280 if (to_conversion)
3281 {
3282 all->first_conversion_insn = get_insns ();
3283 all->last_conversion_insn = get_last_insn ();
3284 end_sequence ();
3285 }
3286
3287 SET_DECL_RTL (parm, data->stack_parm);
3288 }
3289
3290 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3291 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3292
3293 static void
3294 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3295 vec<tree> fnargs)
3296 {
3297 tree parm;
3298 tree orig_fnargs = all->orig_fnargs;
3299 unsigned i = 0;
3300
3301 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3302 {
3303 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3304 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3305 {
3306 rtx tmp, real, imag;
3307 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3308
3309 real = DECL_RTL (fnargs[i]);
3310 imag = DECL_RTL (fnargs[i + 1]);
3311 if (inner != GET_MODE (real))
3312 {
3313 real = gen_lowpart_SUBREG (inner, real);
3314 imag = gen_lowpart_SUBREG (inner, imag);
3315 }
3316
3317 if (TREE_ADDRESSABLE (parm))
3318 {
3319 rtx rmem, imem;
3320 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3321 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3322 DECL_MODE (parm),
3323 TYPE_ALIGN (TREE_TYPE (parm)));
3324
3325 /* split_complex_arg put the real and imag parts in
3326 pseudos. Move them to memory. */
3327 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3328 set_mem_attributes (tmp, parm, 1);
3329 rmem = adjust_address_nv (tmp, inner, 0);
3330 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3331 push_to_sequence2 (all->first_conversion_insn,
3332 all->last_conversion_insn);
3333 emit_move_insn (rmem, real);
3334 emit_move_insn (imem, imag);
3335 all->first_conversion_insn = get_insns ();
3336 all->last_conversion_insn = get_last_insn ();
3337 end_sequence ();
3338 }
3339 else
3340 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3341 SET_DECL_RTL (parm, tmp);
3342
3343 real = DECL_INCOMING_RTL (fnargs[i]);
3344 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3345 if (inner != GET_MODE (real))
3346 {
3347 real = gen_lowpart_SUBREG (inner, real);
3348 imag = gen_lowpart_SUBREG (inner, imag);
3349 }
3350 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3351 set_decl_incoming_rtl (parm, tmp, false);
3352 i++;
3353 }
3354 }
3355 }
3356
3357 /* Assign RTL expressions to the function's parameters. This may involve
3358 copying them into registers and using those registers as the DECL_RTL. */
3359
3360 static void
3361 assign_parms (tree fndecl)
3362 {
3363 struct assign_parm_data_all all;
3364 tree parm;
3365 vec<tree> fnargs;
3366 unsigned i;
3367
3368 crtl->args.internal_arg_pointer
3369 = targetm.calls.internal_arg_pointer ();
3370
3371 assign_parms_initialize_all (&all);
3372 fnargs = assign_parms_augmented_arg_list (&all);
3373
3374 FOR_EACH_VEC_ELT (fnargs, i, parm)
3375 {
3376 struct assign_parm_data_one data;
3377
3378 /* Extract the type of PARM; adjust it according to ABI. */
3379 assign_parm_find_data_types (&all, parm, &data);
3380
3381 /* Early out for errors and void parameters. */
3382 if (data.passed_mode == VOIDmode)
3383 {
3384 SET_DECL_RTL (parm, const0_rtx);
3385 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3386 continue;
3387 }
3388
3389 /* Estimate stack alignment from parameter alignment. */
3390 if (SUPPORTS_STACK_ALIGNMENT)
3391 {
3392 unsigned int align
3393 = targetm.calls.function_arg_boundary (data.promoted_mode,
3394 data.passed_type);
3395 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3396 align);
3397 if (TYPE_ALIGN (data.nominal_type) > align)
3398 align = MINIMUM_ALIGNMENT (data.nominal_type,
3399 TYPE_MODE (data.nominal_type),
3400 TYPE_ALIGN (data.nominal_type));
3401 if (crtl->stack_alignment_estimated < align)
3402 {
3403 gcc_assert (!crtl->stack_realign_processed);
3404 crtl->stack_alignment_estimated = align;
3405 }
3406 }
3407
3408 if (cfun->stdarg && !DECL_CHAIN (parm))
3409 assign_parms_setup_varargs (&all, &data, false);
3410
3411 /* Find out where the parameter arrives in this function. */
3412 assign_parm_find_entry_rtl (&all, &data);
3413
3414 /* Find out where stack space for this parameter might be. */
3415 if (assign_parm_is_stack_parm (&all, &data))
3416 {
3417 assign_parm_find_stack_rtl (parm, &data);
3418 assign_parm_adjust_entry_rtl (&data);
3419 }
3420
3421 /* Record permanently how this parm was passed. */
3422 if (data.passed_pointer)
3423 {
3424 rtx incoming_rtl
3425 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3426 data.entry_parm);
3427 set_decl_incoming_rtl (parm, incoming_rtl, true);
3428 }
3429 else
3430 set_decl_incoming_rtl (parm, data.entry_parm, false);
3431
3432 /* Update info on where next arg arrives in registers. */
3433 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3434 data.passed_type, data.named_arg);
3435
3436 assign_parm_adjust_stack_rtl (&data);
3437
3438 if (assign_parm_setup_block_p (&data))
3439 assign_parm_setup_block (&all, parm, &data);
3440 else if (data.passed_pointer || use_register_for_decl (parm))
3441 assign_parm_setup_reg (&all, parm, &data);
3442 else
3443 assign_parm_setup_stack (&all, parm, &data);
3444 }
3445
3446 if (targetm.calls.split_complex_arg)
3447 assign_parms_unsplit_complex (&all, fnargs);
3448
3449 fnargs.release ();
3450
3451 /* Output all parameter conversion instructions (possibly including calls)
3452 now that all parameters have been copied out of hard registers. */
3453 emit_insn (all.first_conversion_insn);
3454
3455 /* Estimate reload stack alignment from scalar return mode. */
3456 if (SUPPORTS_STACK_ALIGNMENT)
3457 {
3458 if (DECL_RESULT (fndecl))
3459 {
3460 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3461 enum machine_mode mode = TYPE_MODE (type);
3462
3463 if (mode != BLKmode
3464 && mode != VOIDmode
3465 && !AGGREGATE_TYPE_P (type))
3466 {
3467 unsigned int align = GET_MODE_ALIGNMENT (mode);
3468 if (crtl->stack_alignment_estimated < align)
3469 {
3470 gcc_assert (!crtl->stack_realign_processed);
3471 crtl->stack_alignment_estimated = align;
3472 }
3473 }
3474 }
3475 }
3476
3477 /* If we are receiving a struct value address as the first argument, set up
3478 the RTL for the function result. As this might require code to convert
3479 the transmitted address to Pmode, we do this here to ensure that possible
3480 preliminary conversions of the address have been emitted already. */
3481 if (all.function_result_decl)
3482 {
3483 tree result = DECL_RESULT (current_function_decl);
3484 rtx addr = DECL_RTL (all.function_result_decl);
3485 rtx x;
3486
3487 if (DECL_BY_REFERENCE (result))
3488 {
3489 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3490 x = addr;
3491 }
3492 else
3493 {
3494 SET_DECL_VALUE_EXPR (result,
3495 build1 (INDIRECT_REF, TREE_TYPE (result),
3496 all.function_result_decl));
3497 addr = convert_memory_address (Pmode, addr);
3498 x = gen_rtx_MEM (DECL_MODE (result), addr);
3499 set_mem_attributes (x, result, 1);
3500 }
3501
3502 DECL_HAS_VALUE_EXPR_P (result) = 1;
3503
3504 SET_DECL_RTL (result, x);
3505 }
3506
3507 /* We have aligned all the args, so add space for the pretend args. */
3508 crtl->args.pretend_args_size = all.pretend_args_size;
3509 all.stack_args_size.constant += all.extra_pretend_bytes;
3510 crtl->args.size = all.stack_args_size.constant;
3511
3512 /* Adjust function incoming argument size for alignment and
3513 minimum length. */
3514
3515 #ifdef REG_PARM_STACK_SPACE
3516 crtl->args.size = MAX (crtl->args.size,
3517 REG_PARM_STACK_SPACE (fndecl));
3518 #endif
3519
3520 crtl->args.size = CEIL_ROUND (crtl->args.size,
3521 PARM_BOUNDARY / BITS_PER_UNIT);
3522
3523 #ifdef ARGS_GROW_DOWNWARD
3524 crtl->args.arg_offset_rtx
3525 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3526 : expand_expr (size_diffop (all.stack_args_size.var,
3527 size_int (-all.stack_args_size.constant)),
3528 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3529 #else
3530 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3531 #endif
3532
3533 /* See how many bytes, if any, of its args a function should try to pop
3534 on return. */
3535
3536 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3537 TREE_TYPE (fndecl),
3538 crtl->args.size);
3539
3540 /* For stdarg.h function, save info about
3541 regs and stack space used by the named args. */
3542
3543 crtl->args.info = all.args_so_far_v;
3544
3545 /* Set the rtx used for the function return value. Put this in its
3546 own variable so any optimizers that need this information don't have
3547 to include tree.h. Do this here so it gets done when an inlined
3548 function gets output. */
3549
3550 crtl->return_rtx
3551 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3552 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3553
3554 /* If scalar return value was computed in a pseudo-reg, or was a named
3555 return value that got dumped to the stack, copy that to the hard
3556 return register. */
3557 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3558 {
3559 tree decl_result = DECL_RESULT (fndecl);
3560 rtx decl_rtl = DECL_RTL (decl_result);
3561
3562 if (REG_P (decl_rtl)
3563 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3564 : DECL_REGISTER (decl_result))
3565 {
3566 rtx real_decl_rtl;
3567
3568 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3569 fndecl, true);
3570 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3571 /* The delay slot scheduler assumes that crtl->return_rtx
3572 holds the hard register containing the return value, not a
3573 temporary pseudo. */
3574 crtl->return_rtx = real_decl_rtl;
3575 }
3576 }
3577 }
3578
3579 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3580 For all seen types, gimplify their sizes. */
3581
3582 static tree
3583 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3584 {
3585 tree t = *tp;
3586
3587 *walk_subtrees = 0;
3588 if (TYPE_P (t))
3589 {
3590 if (POINTER_TYPE_P (t))
3591 *walk_subtrees = 1;
3592 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3593 && !TYPE_SIZES_GIMPLIFIED (t))
3594 {
3595 gimplify_type_sizes (t, (gimple_seq *) data);
3596 *walk_subtrees = 1;
3597 }
3598 }
3599
3600 return NULL;
3601 }
3602
3603 /* Gimplify the parameter list for current_function_decl. This involves
3604 evaluating SAVE_EXPRs of variable sized parameters and generating code
3605 to implement callee-copies reference parameters. Returns a sequence of
3606 statements to add to the beginning of the function. */
3607
3608 gimple_seq
3609 gimplify_parameters (void)
3610 {
3611 struct assign_parm_data_all all;
3612 tree parm;
3613 gimple_seq stmts = NULL;
3614 vec<tree> fnargs;
3615 unsigned i;
3616
3617 assign_parms_initialize_all (&all);
3618 fnargs = assign_parms_augmented_arg_list (&all);
3619
3620 FOR_EACH_VEC_ELT (fnargs, i, parm)
3621 {
3622 struct assign_parm_data_one data;
3623
3624 /* Extract the type of PARM; adjust it according to ABI. */
3625 assign_parm_find_data_types (&all, parm, &data);
3626
3627 /* Early out for errors and void parameters. */
3628 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3629 continue;
3630
3631 /* Update info on where next arg arrives in registers. */
3632 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3633 data.passed_type, data.named_arg);
3634
3635 /* ??? Once upon a time variable_size stuffed parameter list
3636 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3637 turned out to be less than manageable in the gimple world.
3638 Now we have to hunt them down ourselves. */
3639 walk_tree_without_duplicates (&data.passed_type,
3640 gimplify_parm_type, &stmts);
3641
3642 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3643 {
3644 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3645 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3646 }
3647
3648 if (data.passed_pointer)
3649 {
3650 tree type = TREE_TYPE (data.passed_type);
3651 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3652 type, data.named_arg))
3653 {
3654 tree local, t;
3655
3656 /* For constant-sized objects, this is trivial; for
3657 variable-sized objects, we have to play games. */
3658 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3659 && !(flag_stack_check == GENERIC_STACK_CHECK
3660 && compare_tree_int (DECL_SIZE_UNIT (parm),
3661 STACK_CHECK_MAX_VAR_SIZE) > 0))
3662 {
3663 local = create_tmp_var (type, get_name (parm));
3664 DECL_IGNORED_P (local) = 0;
3665 /* If PARM was addressable, move that flag over
3666 to the local copy, as its address will be taken,
3667 not the PARMs. Keep the parms address taken
3668 as we'll query that flag during gimplification. */
3669 if (TREE_ADDRESSABLE (parm))
3670 TREE_ADDRESSABLE (local) = 1;
3671 else if (TREE_CODE (type) == COMPLEX_TYPE
3672 || TREE_CODE (type) == VECTOR_TYPE)
3673 DECL_GIMPLE_REG_P (local) = 1;
3674 }
3675 else
3676 {
3677 tree ptr_type, addr;
3678
3679 ptr_type = build_pointer_type (type);
3680 addr = create_tmp_reg (ptr_type, get_name (parm));
3681 DECL_IGNORED_P (addr) = 0;
3682 local = build_fold_indirect_ref (addr);
3683
3684 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3685 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3686 size_int (DECL_ALIGN (parm)));
3687
3688 /* The call has been built for a variable-sized object. */
3689 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3690 t = fold_convert (ptr_type, t);
3691 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3692 gimplify_and_add (t, &stmts);
3693 }
3694
3695 gimplify_assign (local, parm, &stmts);
3696
3697 SET_DECL_VALUE_EXPR (parm, local);
3698 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3699 }
3700 }
3701 }
3702
3703 fnargs.release ();
3704
3705 return stmts;
3706 }
3707 \f
3708 /* Compute the size and offset from the start of the stacked arguments for a
3709 parm passed in mode PASSED_MODE and with type TYPE.
3710
3711 INITIAL_OFFSET_PTR points to the current offset into the stacked
3712 arguments.
3713
3714 The starting offset and size for this parm are returned in
3715 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3716 nonzero, the offset is that of stack slot, which is returned in
3717 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3718 padding required from the initial offset ptr to the stack slot.
3719
3720 IN_REGS is nonzero if the argument will be passed in registers. It will
3721 never be set if REG_PARM_STACK_SPACE is not defined.
3722
3723 FNDECL is the function in which the argument was defined.
3724
3725 There are two types of rounding that are done. The first, controlled by
3726 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3727 argument list to be aligned to the specific boundary (in bits). This
3728 rounding affects the initial and starting offsets, but not the argument
3729 size.
3730
3731 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3732 optionally rounds the size of the parm to PARM_BOUNDARY. The
3733 initial offset is not affected by this rounding, while the size always
3734 is and the starting offset may be. */
3735
3736 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3737 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3738 callers pass in the total size of args so far as
3739 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3740
3741 void
3742 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3743 int partial, tree fndecl ATTRIBUTE_UNUSED,
3744 struct args_size *initial_offset_ptr,
3745 struct locate_and_pad_arg_data *locate)
3746 {
3747 tree sizetree;
3748 enum direction where_pad;
3749 unsigned int boundary, round_boundary;
3750 int reg_parm_stack_space = 0;
3751 int part_size_in_regs;
3752
3753 #ifdef REG_PARM_STACK_SPACE
3754 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3755
3756 /* If we have found a stack parm before we reach the end of the
3757 area reserved for registers, skip that area. */
3758 if (! in_regs)
3759 {
3760 if (reg_parm_stack_space > 0)
3761 {
3762 if (initial_offset_ptr->var)
3763 {
3764 initial_offset_ptr->var
3765 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3766 ssize_int (reg_parm_stack_space));
3767 initial_offset_ptr->constant = 0;
3768 }
3769 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3770 initial_offset_ptr->constant = reg_parm_stack_space;
3771 }
3772 }
3773 #endif /* REG_PARM_STACK_SPACE */
3774
3775 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3776
3777 sizetree
3778 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3779 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3780 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3781 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3782 type);
3783 locate->where_pad = where_pad;
3784
3785 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3786 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3787 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3788
3789 locate->boundary = boundary;
3790
3791 if (SUPPORTS_STACK_ALIGNMENT)
3792 {
3793 /* stack_alignment_estimated can't change after stack has been
3794 realigned. */
3795 if (crtl->stack_alignment_estimated < boundary)
3796 {
3797 if (!crtl->stack_realign_processed)
3798 crtl->stack_alignment_estimated = boundary;
3799 else
3800 {
3801 /* If stack is realigned and stack alignment value
3802 hasn't been finalized, it is OK not to increase
3803 stack_alignment_estimated. The bigger alignment
3804 requirement is recorded in stack_alignment_needed
3805 below. */
3806 gcc_assert (!crtl->stack_realign_finalized
3807 && crtl->stack_realign_needed);
3808 }
3809 }
3810 }
3811
3812 /* Remember if the outgoing parameter requires extra alignment on the
3813 calling function side. */
3814 if (crtl->stack_alignment_needed < boundary)
3815 crtl->stack_alignment_needed = boundary;
3816 if (crtl->preferred_stack_boundary < boundary)
3817 crtl->preferred_stack_boundary = boundary;
3818
3819 #ifdef ARGS_GROW_DOWNWARD
3820 locate->slot_offset.constant = -initial_offset_ptr->constant;
3821 if (initial_offset_ptr->var)
3822 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3823 initial_offset_ptr->var);
3824
3825 {
3826 tree s2 = sizetree;
3827 if (where_pad != none
3828 && (!host_integerp (sizetree, 1)
3829 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3830 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3831 SUB_PARM_SIZE (locate->slot_offset, s2);
3832 }
3833
3834 locate->slot_offset.constant += part_size_in_regs;
3835
3836 if (!in_regs
3837 #ifdef REG_PARM_STACK_SPACE
3838 || REG_PARM_STACK_SPACE (fndecl) > 0
3839 #endif
3840 )
3841 pad_to_arg_alignment (&locate->slot_offset, boundary,
3842 &locate->alignment_pad);
3843
3844 locate->size.constant = (-initial_offset_ptr->constant
3845 - locate->slot_offset.constant);
3846 if (initial_offset_ptr->var)
3847 locate->size.var = size_binop (MINUS_EXPR,
3848 size_binop (MINUS_EXPR,
3849 ssize_int (0),
3850 initial_offset_ptr->var),
3851 locate->slot_offset.var);
3852
3853 /* Pad_below needs the pre-rounded size to know how much to pad
3854 below. */
3855 locate->offset = locate->slot_offset;
3856 if (where_pad == downward)
3857 pad_below (&locate->offset, passed_mode, sizetree);
3858
3859 #else /* !ARGS_GROW_DOWNWARD */
3860 if (!in_regs
3861 #ifdef REG_PARM_STACK_SPACE
3862 || REG_PARM_STACK_SPACE (fndecl) > 0
3863 #endif
3864 )
3865 pad_to_arg_alignment (initial_offset_ptr, boundary,
3866 &locate->alignment_pad);
3867 locate->slot_offset = *initial_offset_ptr;
3868
3869 #ifdef PUSH_ROUNDING
3870 if (passed_mode != BLKmode)
3871 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3872 #endif
3873
3874 /* Pad_below needs the pre-rounded size to know how much to pad below
3875 so this must be done before rounding up. */
3876 locate->offset = locate->slot_offset;
3877 if (where_pad == downward)
3878 pad_below (&locate->offset, passed_mode, sizetree);
3879
3880 if (where_pad != none
3881 && (!host_integerp (sizetree, 1)
3882 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3883 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3884
3885 ADD_PARM_SIZE (locate->size, sizetree);
3886
3887 locate->size.constant -= part_size_in_regs;
3888 #endif /* ARGS_GROW_DOWNWARD */
3889
3890 #ifdef FUNCTION_ARG_OFFSET
3891 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3892 #endif
3893 }
3894
3895 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3896 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3897
3898 static void
3899 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3900 struct args_size *alignment_pad)
3901 {
3902 tree save_var = NULL_TREE;
3903 HOST_WIDE_INT save_constant = 0;
3904 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3905 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3906
3907 #ifdef SPARC_STACK_BOUNDARY_HACK
3908 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3909 the real alignment of %sp. However, when it does this, the
3910 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3911 if (SPARC_STACK_BOUNDARY_HACK)
3912 sp_offset = 0;
3913 #endif
3914
3915 if (boundary > PARM_BOUNDARY)
3916 {
3917 save_var = offset_ptr->var;
3918 save_constant = offset_ptr->constant;
3919 }
3920
3921 alignment_pad->var = NULL_TREE;
3922 alignment_pad->constant = 0;
3923
3924 if (boundary > BITS_PER_UNIT)
3925 {
3926 if (offset_ptr->var)
3927 {
3928 tree sp_offset_tree = ssize_int (sp_offset);
3929 tree offset = size_binop (PLUS_EXPR,
3930 ARGS_SIZE_TREE (*offset_ptr),
3931 sp_offset_tree);
3932 #ifdef ARGS_GROW_DOWNWARD
3933 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3934 #else
3935 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3936 #endif
3937
3938 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3939 /* ARGS_SIZE_TREE includes constant term. */
3940 offset_ptr->constant = 0;
3941 if (boundary > PARM_BOUNDARY)
3942 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3943 save_var);
3944 }
3945 else
3946 {
3947 offset_ptr->constant = -sp_offset +
3948 #ifdef ARGS_GROW_DOWNWARD
3949 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3950 #else
3951 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3952 #endif
3953 if (boundary > PARM_BOUNDARY)
3954 alignment_pad->constant = offset_ptr->constant - save_constant;
3955 }
3956 }
3957 }
3958
3959 static void
3960 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3961 {
3962 if (passed_mode != BLKmode)
3963 {
3964 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3965 offset_ptr->constant
3966 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3967 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3968 - GET_MODE_SIZE (passed_mode));
3969 }
3970 else
3971 {
3972 if (TREE_CODE (sizetree) != INTEGER_CST
3973 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3974 {
3975 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3976 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3977 /* Add it in. */
3978 ADD_PARM_SIZE (*offset_ptr, s2);
3979 SUB_PARM_SIZE (*offset_ptr, sizetree);
3980 }
3981 }
3982 }
3983 \f
3984
3985 /* True if register REGNO was alive at a place where `setjmp' was
3986 called and was set more than once or is an argument. Such regs may
3987 be clobbered by `longjmp'. */
3988
3989 static bool
3990 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3991 {
3992 /* There appear to be cases where some local vars never reach the
3993 backend but have bogus regnos. */
3994 if (regno >= max_reg_num ())
3995 return false;
3996
3997 return ((REG_N_SETS (regno) > 1
3998 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3999 && REGNO_REG_SET_P (setjmp_crosses, regno));
4000 }
4001
4002 /* Walk the tree of blocks describing the binding levels within a
4003 function and warn about variables the might be killed by setjmp or
4004 vfork. This is done after calling flow_analysis before register
4005 allocation since that will clobber the pseudo-regs to hard
4006 regs. */
4007
4008 static void
4009 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4010 {
4011 tree decl, sub;
4012
4013 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4014 {
4015 if (TREE_CODE (decl) == VAR_DECL
4016 && DECL_RTL_SET_P (decl)
4017 && REG_P (DECL_RTL (decl))
4018 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4019 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4020 " %<longjmp%> or %<vfork%>", decl);
4021 }
4022
4023 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4024 setjmp_vars_warning (setjmp_crosses, sub);
4025 }
4026
4027 /* Do the appropriate part of setjmp_vars_warning
4028 but for arguments instead of local variables. */
4029
4030 static void
4031 setjmp_args_warning (bitmap setjmp_crosses)
4032 {
4033 tree decl;
4034 for (decl = DECL_ARGUMENTS (current_function_decl);
4035 decl; decl = DECL_CHAIN (decl))
4036 if (DECL_RTL (decl) != 0
4037 && REG_P (DECL_RTL (decl))
4038 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4039 warning (OPT_Wclobbered,
4040 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4041 decl);
4042 }
4043
4044 /* Generate warning messages for variables live across setjmp. */
4045
4046 void
4047 generate_setjmp_warnings (void)
4048 {
4049 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4050
4051 if (n_basic_blocks == NUM_FIXED_BLOCKS
4052 || bitmap_empty_p (setjmp_crosses))
4053 return;
4054
4055 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4056 setjmp_args_warning (setjmp_crosses);
4057 }
4058
4059 \f
4060 /* Reverse the order of elements in the fragment chain T of blocks,
4061 and return the new head of the chain (old last element).
4062 In addition to that clear BLOCK_SAME_RANGE flags when needed
4063 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4064 its super fragment origin. */
4065
4066 static tree
4067 block_fragments_nreverse (tree t)
4068 {
4069 tree prev = 0, block, next, prev_super = 0;
4070 tree super = BLOCK_SUPERCONTEXT (t);
4071 if (BLOCK_FRAGMENT_ORIGIN (super))
4072 super = BLOCK_FRAGMENT_ORIGIN (super);
4073 for (block = t; block; block = next)
4074 {
4075 next = BLOCK_FRAGMENT_CHAIN (block);
4076 BLOCK_FRAGMENT_CHAIN (block) = prev;
4077 if ((prev && !BLOCK_SAME_RANGE (prev))
4078 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4079 != prev_super))
4080 BLOCK_SAME_RANGE (block) = 0;
4081 prev_super = BLOCK_SUPERCONTEXT (block);
4082 BLOCK_SUPERCONTEXT (block) = super;
4083 prev = block;
4084 }
4085 t = BLOCK_FRAGMENT_ORIGIN (t);
4086 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4087 != prev_super)
4088 BLOCK_SAME_RANGE (t) = 0;
4089 BLOCK_SUPERCONTEXT (t) = super;
4090 return prev;
4091 }
4092
4093 /* Reverse the order of elements in the chain T of blocks,
4094 and return the new head of the chain (old last element).
4095 Also do the same on subblocks and reverse the order of elements
4096 in BLOCK_FRAGMENT_CHAIN as well. */
4097
4098 static tree
4099 blocks_nreverse_all (tree t)
4100 {
4101 tree prev = 0, block, next;
4102 for (block = t; block; block = next)
4103 {
4104 next = BLOCK_CHAIN (block);
4105 BLOCK_CHAIN (block) = prev;
4106 if (BLOCK_FRAGMENT_CHAIN (block)
4107 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4108 {
4109 BLOCK_FRAGMENT_CHAIN (block)
4110 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4111 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4112 BLOCK_SAME_RANGE (block) = 0;
4113 }
4114 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4115 prev = block;
4116 }
4117 return prev;
4118 }
4119
4120
4121 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4122 and create duplicate blocks. */
4123 /* ??? Need an option to either create block fragments or to create
4124 abstract origin duplicates of a source block. It really depends
4125 on what optimization has been performed. */
4126
4127 void
4128 reorder_blocks (void)
4129 {
4130 tree block = DECL_INITIAL (current_function_decl);
4131
4132 if (block == NULL_TREE)
4133 return;
4134
4135 stack_vec<tree, 10> block_stack;
4136
4137 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4138 clear_block_marks (block);
4139
4140 /* Prune the old trees away, so that they don't get in the way. */
4141 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4142 BLOCK_CHAIN (block) = NULL_TREE;
4143
4144 /* Recreate the block tree from the note nesting. */
4145 reorder_blocks_1 (get_insns (), block, &block_stack);
4146 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4147 }
4148
4149 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4150
4151 void
4152 clear_block_marks (tree block)
4153 {
4154 while (block)
4155 {
4156 TREE_ASM_WRITTEN (block) = 0;
4157 clear_block_marks (BLOCK_SUBBLOCKS (block));
4158 block = BLOCK_CHAIN (block);
4159 }
4160 }
4161
4162 static void
4163 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4164 {
4165 rtx insn;
4166 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4167
4168 for (insn = insns; insn; insn = NEXT_INSN (insn))
4169 {
4170 if (NOTE_P (insn))
4171 {
4172 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4173 {
4174 tree block = NOTE_BLOCK (insn);
4175 tree origin;
4176
4177 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4178 origin = block;
4179
4180 if (prev_end)
4181 BLOCK_SAME_RANGE (prev_end) = 0;
4182 prev_end = NULL_TREE;
4183
4184 /* If we have seen this block before, that means it now
4185 spans multiple address regions. Create a new fragment. */
4186 if (TREE_ASM_WRITTEN (block))
4187 {
4188 tree new_block = copy_node (block);
4189
4190 BLOCK_SAME_RANGE (new_block) = 0;
4191 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4192 BLOCK_FRAGMENT_CHAIN (new_block)
4193 = BLOCK_FRAGMENT_CHAIN (origin);
4194 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4195
4196 NOTE_BLOCK (insn) = new_block;
4197 block = new_block;
4198 }
4199
4200 if (prev_beg == current_block && prev_beg)
4201 BLOCK_SAME_RANGE (block) = 1;
4202
4203 prev_beg = origin;
4204
4205 BLOCK_SUBBLOCKS (block) = 0;
4206 TREE_ASM_WRITTEN (block) = 1;
4207 /* When there's only one block for the entire function,
4208 current_block == block and we mustn't do this, it
4209 will cause infinite recursion. */
4210 if (block != current_block)
4211 {
4212 tree super;
4213 if (block != origin)
4214 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4215 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4216 (origin))
4217 == current_block);
4218 if (p_block_stack->is_empty ())
4219 super = current_block;
4220 else
4221 {
4222 super = p_block_stack->last ();
4223 gcc_assert (super == current_block
4224 || BLOCK_FRAGMENT_ORIGIN (super)
4225 == current_block);
4226 }
4227 BLOCK_SUPERCONTEXT (block) = super;
4228 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4229 BLOCK_SUBBLOCKS (current_block) = block;
4230 current_block = origin;
4231 }
4232 p_block_stack->safe_push (block);
4233 }
4234 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4235 {
4236 NOTE_BLOCK (insn) = p_block_stack->pop ();
4237 current_block = BLOCK_SUPERCONTEXT (current_block);
4238 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4239 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4240 prev_beg = NULL_TREE;
4241 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4242 ? NOTE_BLOCK (insn) : NULL_TREE;
4243 }
4244 }
4245 else
4246 {
4247 prev_beg = NULL_TREE;
4248 if (prev_end)
4249 BLOCK_SAME_RANGE (prev_end) = 0;
4250 prev_end = NULL_TREE;
4251 }
4252 }
4253 }
4254
4255 /* Reverse the order of elements in the chain T of blocks,
4256 and return the new head of the chain (old last element). */
4257
4258 tree
4259 blocks_nreverse (tree t)
4260 {
4261 tree prev = 0, block, next;
4262 for (block = t; block; block = next)
4263 {
4264 next = BLOCK_CHAIN (block);
4265 BLOCK_CHAIN (block) = prev;
4266 prev = block;
4267 }
4268 return prev;
4269 }
4270
4271 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4272 by modifying the last node in chain 1 to point to chain 2. */
4273
4274 tree
4275 block_chainon (tree op1, tree op2)
4276 {
4277 tree t1;
4278
4279 if (!op1)
4280 return op2;
4281 if (!op2)
4282 return op1;
4283
4284 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4285 continue;
4286 BLOCK_CHAIN (t1) = op2;
4287
4288 #ifdef ENABLE_TREE_CHECKING
4289 {
4290 tree t2;
4291 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4292 gcc_assert (t2 != t1);
4293 }
4294 #endif
4295
4296 return op1;
4297 }
4298
4299 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4300 non-NULL, list them all into VECTOR, in a depth-first preorder
4301 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4302 blocks. */
4303
4304 static int
4305 all_blocks (tree block, tree *vector)
4306 {
4307 int n_blocks = 0;
4308
4309 while (block)
4310 {
4311 TREE_ASM_WRITTEN (block) = 0;
4312
4313 /* Record this block. */
4314 if (vector)
4315 vector[n_blocks] = block;
4316
4317 ++n_blocks;
4318
4319 /* Record the subblocks, and their subblocks... */
4320 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4321 vector ? vector + n_blocks : 0);
4322 block = BLOCK_CHAIN (block);
4323 }
4324
4325 return n_blocks;
4326 }
4327
4328 /* Return a vector containing all the blocks rooted at BLOCK. The
4329 number of elements in the vector is stored in N_BLOCKS_P. The
4330 vector is dynamically allocated; it is the caller's responsibility
4331 to call `free' on the pointer returned. */
4332
4333 static tree *
4334 get_block_vector (tree block, int *n_blocks_p)
4335 {
4336 tree *block_vector;
4337
4338 *n_blocks_p = all_blocks (block, NULL);
4339 block_vector = XNEWVEC (tree, *n_blocks_p);
4340 all_blocks (block, block_vector);
4341
4342 return block_vector;
4343 }
4344
4345 static GTY(()) int next_block_index = 2;
4346
4347 /* Set BLOCK_NUMBER for all the blocks in FN. */
4348
4349 void
4350 number_blocks (tree fn)
4351 {
4352 int i;
4353 int n_blocks;
4354 tree *block_vector;
4355
4356 /* For SDB and XCOFF debugging output, we start numbering the blocks
4357 from 1 within each function, rather than keeping a running
4358 count. */
4359 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4360 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4361 next_block_index = 1;
4362 #endif
4363
4364 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4365
4366 /* The top-level BLOCK isn't numbered at all. */
4367 for (i = 1; i < n_blocks; ++i)
4368 /* We number the blocks from two. */
4369 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4370
4371 free (block_vector);
4372
4373 return;
4374 }
4375
4376 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4377
4378 DEBUG_FUNCTION tree
4379 debug_find_var_in_block_tree (tree var, tree block)
4380 {
4381 tree t;
4382
4383 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4384 if (t == var)
4385 return block;
4386
4387 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4388 {
4389 tree ret = debug_find_var_in_block_tree (var, t);
4390 if (ret)
4391 return ret;
4392 }
4393
4394 return NULL_TREE;
4395 }
4396 \f
4397 /* Keep track of whether we're in a dummy function context. If we are,
4398 we don't want to invoke the set_current_function hook, because we'll
4399 get into trouble if the hook calls target_reinit () recursively or
4400 when the initial initialization is not yet complete. */
4401
4402 static bool in_dummy_function;
4403
4404 /* Invoke the target hook when setting cfun. Update the optimization options
4405 if the function uses different options than the default. */
4406
4407 static void
4408 invoke_set_current_function_hook (tree fndecl)
4409 {
4410 if (!in_dummy_function)
4411 {
4412 tree opts = ((fndecl)
4413 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4414 : optimization_default_node);
4415
4416 if (!opts)
4417 opts = optimization_default_node;
4418
4419 /* Change optimization options if needed. */
4420 if (optimization_current_node != opts)
4421 {
4422 optimization_current_node = opts;
4423 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4424 }
4425
4426 targetm.set_current_function (fndecl);
4427 this_fn_optabs = this_target_optabs;
4428
4429 if (opts != optimization_default_node)
4430 {
4431 init_tree_optimization_optabs (opts);
4432 if (TREE_OPTIMIZATION_OPTABS (opts))
4433 this_fn_optabs = (struct target_optabs *)
4434 TREE_OPTIMIZATION_OPTABS (opts);
4435 }
4436 }
4437 }
4438
4439 /* cfun should never be set directly; use this function. */
4440
4441 void
4442 set_cfun (struct function *new_cfun)
4443 {
4444 if (cfun != new_cfun)
4445 {
4446 cfun = new_cfun;
4447 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4448 }
4449 }
4450
4451 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4452
4453 static vec<function_p> cfun_stack;
4454
4455 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4456 current_function_decl accordingly. */
4457
4458 void
4459 push_cfun (struct function *new_cfun)
4460 {
4461 gcc_assert ((!cfun && !current_function_decl)
4462 || (cfun && current_function_decl == cfun->decl));
4463 cfun_stack.safe_push (cfun);
4464 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4465 set_cfun (new_cfun);
4466 }
4467
4468 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4469
4470 void
4471 pop_cfun (void)
4472 {
4473 struct function *new_cfun = cfun_stack.pop ();
4474 /* When in_dummy_function, we do have a cfun but current_function_decl is
4475 NULL. We also allow pushing NULL cfun and subsequently changing
4476 current_function_decl to something else and have both restored by
4477 pop_cfun. */
4478 gcc_checking_assert (in_dummy_function
4479 || !cfun
4480 || current_function_decl == cfun->decl);
4481 set_cfun (new_cfun);
4482 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4483 }
4484
4485 /* Return value of funcdef and increase it. */
4486 int
4487 get_next_funcdef_no (void)
4488 {
4489 return funcdef_no++;
4490 }
4491
4492 /* Return value of funcdef. */
4493 int
4494 get_last_funcdef_no (void)
4495 {
4496 return funcdef_no;
4497 }
4498
4499 /* Allocate a function structure for FNDECL and set its contents
4500 to the defaults. Set cfun to the newly-allocated object.
4501 Some of the helper functions invoked during initialization assume
4502 that cfun has already been set. Therefore, assign the new object
4503 directly into cfun and invoke the back end hook explicitly at the
4504 very end, rather than initializing a temporary and calling set_cfun
4505 on it.
4506
4507 ABSTRACT_P is true if this is a function that will never be seen by
4508 the middle-end. Such functions are front-end concepts (like C++
4509 function templates) that do not correspond directly to functions
4510 placed in object files. */
4511
4512 void
4513 allocate_struct_function (tree fndecl, bool abstract_p)
4514 {
4515 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4516
4517 cfun = ggc_alloc_cleared_function ();
4518
4519 init_eh_for_function ();
4520
4521 if (init_machine_status)
4522 cfun->machine = (*init_machine_status) ();
4523
4524 #ifdef OVERRIDE_ABI_FORMAT
4525 OVERRIDE_ABI_FORMAT (fndecl);
4526 #endif
4527
4528 if (fndecl != NULL_TREE)
4529 {
4530 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4531 cfun->decl = fndecl;
4532 current_function_funcdef_no = get_next_funcdef_no ();
4533 }
4534
4535 invoke_set_current_function_hook (fndecl);
4536
4537 if (fndecl != NULL_TREE)
4538 {
4539 tree result = DECL_RESULT (fndecl);
4540 if (!abstract_p && aggregate_value_p (result, fndecl))
4541 {
4542 #ifdef PCC_STATIC_STRUCT_RETURN
4543 cfun->returns_pcc_struct = 1;
4544 #endif
4545 cfun->returns_struct = 1;
4546 }
4547
4548 cfun->stdarg = stdarg_p (fntype);
4549
4550 /* Assume all registers in stdarg functions need to be saved. */
4551 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4552 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4553
4554 /* ??? This could be set on a per-function basis by the front-end
4555 but is this worth the hassle? */
4556 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4557 }
4558 }
4559
4560 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4561 instead of just setting it. */
4562
4563 void
4564 push_struct_function (tree fndecl)
4565 {
4566 /* When in_dummy_function we might be in the middle of a pop_cfun and
4567 current_function_decl and cfun may not match. */
4568 gcc_assert (in_dummy_function
4569 || (!cfun && !current_function_decl)
4570 || (cfun && current_function_decl == cfun->decl));
4571 cfun_stack.safe_push (cfun);
4572 current_function_decl = fndecl;
4573 allocate_struct_function (fndecl, false);
4574 }
4575
4576 /* Reset crtl and other non-struct-function variables to defaults as
4577 appropriate for emitting rtl at the start of a function. */
4578
4579 static void
4580 prepare_function_start (void)
4581 {
4582 gcc_assert (!crtl->emit.x_last_insn);
4583 init_temp_slots ();
4584 init_emit ();
4585 init_varasm_status ();
4586 init_expr ();
4587 default_rtl_profile ();
4588
4589 if (flag_stack_usage_info)
4590 {
4591 cfun->su = ggc_alloc_cleared_stack_usage ();
4592 cfun->su->static_stack_size = -1;
4593 }
4594
4595 cse_not_expected = ! optimize;
4596
4597 /* Caller save not needed yet. */
4598 caller_save_needed = 0;
4599
4600 /* We haven't done register allocation yet. */
4601 reg_renumber = 0;
4602
4603 /* Indicate that we have not instantiated virtual registers yet. */
4604 virtuals_instantiated = 0;
4605
4606 /* Indicate that we want CONCATs now. */
4607 generating_concat_p = 1;
4608
4609 /* Indicate we have no need of a frame pointer yet. */
4610 frame_pointer_needed = 0;
4611 }
4612
4613 /* Initialize the rtl expansion mechanism so that we can do simple things
4614 like generate sequences. This is used to provide a context during global
4615 initialization of some passes. You must call expand_dummy_function_end
4616 to exit this context. */
4617
4618 void
4619 init_dummy_function_start (void)
4620 {
4621 gcc_assert (!in_dummy_function);
4622 in_dummy_function = true;
4623 push_struct_function (NULL_TREE);
4624 prepare_function_start ();
4625 }
4626
4627 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4628 and initialize static variables for generating RTL for the statements
4629 of the function. */
4630
4631 void
4632 init_function_start (tree subr)
4633 {
4634 if (subr && DECL_STRUCT_FUNCTION (subr))
4635 set_cfun (DECL_STRUCT_FUNCTION (subr));
4636 else
4637 allocate_struct_function (subr, false);
4638 prepare_function_start ();
4639 decide_function_section (subr);
4640
4641 /* Warn if this value is an aggregate type,
4642 regardless of which calling convention we are using for it. */
4643 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4644 warning (OPT_Waggregate_return, "function returns an aggregate");
4645 }
4646
4647
4648 void
4649 expand_main_function (void)
4650 {
4651 #if (defined(INVOKE__main) \
4652 || (!defined(HAS_INIT_SECTION) \
4653 && !defined(INIT_SECTION_ASM_OP) \
4654 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4655 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4656 #endif
4657 }
4658 \f
4659 /* Expand code to initialize the stack_protect_guard. This is invoked at
4660 the beginning of a function to be protected. */
4661
4662 #ifndef HAVE_stack_protect_set
4663 # define HAVE_stack_protect_set 0
4664 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4665 #endif
4666
4667 void
4668 stack_protect_prologue (void)
4669 {
4670 tree guard_decl = targetm.stack_protect_guard ();
4671 rtx x, y;
4672
4673 x = expand_normal (crtl->stack_protect_guard);
4674 y = expand_normal (guard_decl);
4675
4676 /* Allow the target to copy from Y to X without leaking Y into a
4677 register. */
4678 if (HAVE_stack_protect_set)
4679 {
4680 rtx insn = gen_stack_protect_set (x, y);
4681 if (insn)
4682 {
4683 emit_insn (insn);
4684 return;
4685 }
4686 }
4687
4688 /* Otherwise do a straight move. */
4689 emit_move_insn (x, y);
4690 }
4691
4692 /* Expand code to verify the stack_protect_guard. This is invoked at
4693 the end of a function to be protected. */
4694
4695 #ifndef HAVE_stack_protect_test
4696 # define HAVE_stack_protect_test 0
4697 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4698 #endif
4699
4700 void
4701 stack_protect_epilogue (void)
4702 {
4703 tree guard_decl = targetm.stack_protect_guard ();
4704 rtx label = gen_label_rtx ();
4705 rtx x, y, tmp;
4706
4707 x = expand_normal (crtl->stack_protect_guard);
4708 y = expand_normal (guard_decl);
4709
4710 /* Allow the target to compare Y with X without leaking either into
4711 a register. */
4712 switch (HAVE_stack_protect_test != 0)
4713 {
4714 case 1:
4715 tmp = gen_stack_protect_test (x, y, label);
4716 if (tmp)
4717 {
4718 emit_insn (tmp);
4719 break;
4720 }
4721 /* FALLTHRU */
4722
4723 default:
4724 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4725 break;
4726 }
4727
4728 /* The noreturn predictor has been moved to the tree level. The rtl-level
4729 predictors estimate this branch about 20%, which isn't enough to get
4730 things moved out of line. Since this is the only extant case of adding
4731 a noreturn function at the rtl level, it doesn't seem worth doing ought
4732 except adding the prediction by hand. */
4733 tmp = get_last_insn ();
4734 if (JUMP_P (tmp))
4735 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4736
4737 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4738 free_temp_slots ();
4739 emit_label (label);
4740 }
4741 \f
4742 /* Start the RTL for a new function, and set variables used for
4743 emitting RTL.
4744 SUBR is the FUNCTION_DECL node.
4745 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4746 the function's parameters, which must be run at any return statement. */
4747
4748 void
4749 expand_function_start (tree subr)
4750 {
4751 /* Make sure volatile mem refs aren't considered
4752 valid operands of arithmetic insns. */
4753 init_recog_no_volatile ();
4754
4755 crtl->profile
4756 = (profile_flag
4757 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4758
4759 crtl->limit_stack
4760 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4761
4762 /* Make the label for return statements to jump to. Do not special
4763 case machines with special return instructions -- they will be
4764 handled later during jump, ifcvt, or epilogue creation. */
4765 return_label = gen_label_rtx ();
4766
4767 /* Initialize rtx used to return the value. */
4768 /* Do this before assign_parms so that we copy the struct value address
4769 before any library calls that assign parms might generate. */
4770
4771 /* Decide whether to return the value in memory or in a register. */
4772 if (aggregate_value_p (DECL_RESULT (subr), subr))
4773 {
4774 /* Returning something that won't go in a register. */
4775 rtx value_address = 0;
4776
4777 #ifdef PCC_STATIC_STRUCT_RETURN
4778 if (cfun->returns_pcc_struct)
4779 {
4780 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4781 value_address = assemble_static_space (size);
4782 }
4783 else
4784 #endif
4785 {
4786 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4787 /* Expect to be passed the address of a place to store the value.
4788 If it is passed as an argument, assign_parms will take care of
4789 it. */
4790 if (sv)
4791 {
4792 value_address = gen_reg_rtx (Pmode);
4793 emit_move_insn (value_address, sv);
4794 }
4795 }
4796 if (value_address)
4797 {
4798 rtx x = value_address;
4799 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4800 {
4801 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4802 set_mem_attributes (x, DECL_RESULT (subr), 1);
4803 }
4804 SET_DECL_RTL (DECL_RESULT (subr), x);
4805 }
4806 }
4807 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4808 /* If return mode is void, this decl rtl should not be used. */
4809 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4810 else
4811 {
4812 /* Compute the return values into a pseudo reg, which we will copy
4813 into the true return register after the cleanups are done. */
4814 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4815 if (TYPE_MODE (return_type) != BLKmode
4816 && targetm.calls.return_in_msb (return_type))
4817 /* expand_function_end will insert the appropriate padding in
4818 this case. Use the return value's natural (unpadded) mode
4819 within the function proper. */
4820 SET_DECL_RTL (DECL_RESULT (subr),
4821 gen_reg_rtx (TYPE_MODE (return_type)));
4822 else
4823 {
4824 /* In order to figure out what mode to use for the pseudo, we
4825 figure out what the mode of the eventual return register will
4826 actually be, and use that. */
4827 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4828
4829 /* Structures that are returned in registers are not
4830 aggregate_value_p, so we may see a PARALLEL or a REG. */
4831 if (REG_P (hard_reg))
4832 SET_DECL_RTL (DECL_RESULT (subr),
4833 gen_reg_rtx (GET_MODE (hard_reg)));
4834 else
4835 {
4836 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4837 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4838 }
4839 }
4840
4841 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4842 result to the real return register(s). */
4843 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4844 }
4845
4846 /* Initialize rtx for parameters and local variables.
4847 In some cases this requires emitting insns. */
4848 assign_parms (subr);
4849
4850 /* If function gets a static chain arg, store it. */
4851 if (cfun->static_chain_decl)
4852 {
4853 tree parm = cfun->static_chain_decl;
4854 rtx local, chain, insn;
4855
4856 local = gen_reg_rtx (Pmode);
4857 chain = targetm.calls.static_chain (current_function_decl, true);
4858
4859 set_decl_incoming_rtl (parm, chain, false);
4860 SET_DECL_RTL (parm, local);
4861 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4862
4863 insn = emit_move_insn (local, chain);
4864
4865 /* Mark the register as eliminable, similar to parameters. */
4866 if (MEM_P (chain)
4867 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4868 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4869 }
4870
4871 /* If the function receives a non-local goto, then store the
4872 bits we need to restore the frame pointer. */
4873 if (cfun->nonlocal_goto_save_area)
4874 {
4875 tree t_save;
4876 rtx r_save;
4877
4878 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4879 gcc_assert (DECL_RTL_SET_P (var));
4880
4881 t_save = build4 (ARRAY_REF,
4882 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4883 cfun->nonlocal_goto_save_area,
4884 integer_zero_node, NULL_TREE, NULL_TREE);
4885 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4886 gcc_assert (GET_MODE (r_save) == Pmode);
4887
4888 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4889 update_nonlocal_goto_save_area ();
4890 }
4891
4892 /* The following was moved from init_function_start.
4893 The move is supposed to make sdb output more accurate. */
4894 /* Indicate the beginning of the function body,
4895 as opposed to parm setup. */
4896 emit_note (NOTE_INSN_FUNCTION_BEG);
4897
4898 gcc_assert (NOTE_P (get_last_insn ()));
4899
4900 parm_birth_insn = get_last_insn ();
4901
4902 if (crtl->profile)
4903 {
4904 #ifdef PROFILE_HOOK
4905 PROFILE_HOOK (current_function_funcdef_no);
4906 #endif
4907 }
4908
4909 /* If we are doing generic stack checking, the probe should go here. */
4910 if (flag_stack_check == GENERIC_STACK_CHECK)
4911 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4912 }
4913 \f
4914 /* Undo the effects of init_dummy_function_start. */
4915 void
4916 expand_dummy_function_end (void)
4917 {
4918 gcc_assert (in_dummy_function);
4919
4920 /* End any sequences that failed to be closed due to syntax errors. */
4921 while (in_sequence_p ())
4922 end_sequence ();
4923
4924 /* Outside function body, can't compute type's actual size
4925 until next function's body starts. */
4926
4927 free_after_parsing (cfun);
4928 free_after_compilation (cfun);
4929 pop_cfun ();
4930 in_dummy_function = false;
4931 }
4932
4933 /* Call DOIT for each hard register used as a return value from
4934 the current function. */
4935
4936 void
4937 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4938 {
4939 rtx outgoing = crtl->return_rtx;
4940
4941 if (! outgoing)
4942 return;
4943
4944 if (REG_P (outgoing))
4945 (*doit) (outgoing, arg);
4946 else if (GET_CODE (outgoing) == PARALLEL)
4947 {
4948 int i;
4949
4950 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4951 {
4952 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4953
4954 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4955 (*doit) (x, arg);
4956 }
4957 }
4958 }
4959
4960 static void
4961 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4962 {
4963 emit_clobber (reg);
4964 }
4965
4966 void
4967 clobber_return_register (void)
4968 {
4969 diddle_return_value (do_clobber_return_reg, NULL);
4970
4971 /* In case we do use pseudo to return value, clobber it too. */
4972 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4973 {
4974 tree decl_result = DECL_RESULT (current_function_decl);
4975 rtx decl_rtl = DECL_RTL (decl_result);
4976 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4977 {
4978 do_clobber_return_reg (decl_rtl, NULL);
4979 }
4980 }
4981 }
4982
4983 static void
4984 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4985 {
4986 emit_use (reg);
4987 }
4988
4989 static void
4990 use_return_register (void)
4991 {
4992 diddle_return_value (do_use_return_reg, NULL);
4993 }
4994
4995 /* Possibly warn about unused parameters. */
4996 void
4997 do_warn_unused_parameter (tree fn)
4998 {
4999 tree decl;
5000
5001 for (decl = DECL_ARGUMENTS (fn);
5002 decl; decl = DECL_CHAIN (decl))
5003 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5004 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
5005 && !TREE_NO_WARNING (decl))
5006 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
5007 }
5008
5009 /* Generate RTL for the end of the current function. */
5010
5011 void
5012 expand_function_end (void)
5013 {
5014 rtx clobber_after;
5015
5016 /* If arg_pointer_save_area was referenced only from a nested
5017 function, we will not have initialized it yet. Do that now. */
5018 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5019 get_arg_pointer_save_area ();
5020
5021 /* If we are doing generic stack checking and this function makes calls,
5022 do a stack probe at the start of the function to ensure we have enough
5023 space for another stack frame. */
5024 if (flag_stack_check == GENERIC_STACK_CHECK)
5025 {
5026 rtx insn, seq;
5027
5028 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5029 if (CALL_P (insn))
5030 {
5031 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5032 start_sequence ();
5033 if (STACK_CHECK_MOVING_SP)
5034 anti_adjust_stack_and_probe (max_frame_size, true);
5035 else
5036 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5037 seq = get_insns ();
5038 end_sequence ();
5039 set_insn_locations (seq, prologue_location);
5040 emit_insn_before (seq, stack_check_probe_note);
5041 break;
5042 }
5043 }
5044
5045 /* End any sequences that failed to be closed due to syntax errors. */
5046 while (in_sequence_p ())
5047 end_sequence ();
5048
5049 clear_pending_stack_adjust ();
5050 do_pending_stack_adjust ();
5051
5052 /* Output a linenumber for the end of the function.
5053 SDB depends on this. */
5054 set_curr_insn_location (input_location);
5055
5056 /* Before the return label (if any), clobber the return
5057 registers so that they are not propagated live to the rest of
5058 the function. This can only happen with functions that drop
5059 through; if there had been a return statement, there would
5060 have either been a return rtx, or a jump to the return label.
5061
5062 We delay actual code generation after the current_function_value_rtx
5063 is computed. */
5064 clobber_after = get_last_insn ();
5065
5066 /* Output the label for the actual return from the function. */
5067 emit_label (return_label);
5068
5069 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5070 {
5071 /* Let except.c know where it should emit the call to unregister
5072 the function context for sjlj exceptions. */
5073 if (flag_exceptions)
5074 sjlj_emit_function_exit_after (get_last_insn ());
5075 }
5076 else
5077 {
5078 /* We want to ensure that instructions that may trap are not
5079 moved into the epilogue by scheduling, because we don't
5080 always emit unwind information for the epilogue. */
5081 if (cfun->can_throw_non_call_exceptions)
5082 emit_insn (gen_blockage ());
5083 }
5084
5085 /* If this is an implementation of throw, do what's necessary to
5086 communicate between __builtin_eh_return and the epilogue. */
5087 expand_eh_return ();
5088
5089 /* If scalar return value was computed in a pseudo-reg, or was a named
5090 return value that got dumped to the stack, copy that to the hard
5091 return register. */
5092 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5093 {
5094 tree decl_result = DECL_RESULT (current_function_decl);
5095 rtx decl_rtl = DECL_RTL (decl_result);
5096
5097 if (REG_P (decl_rtl)
5098 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5099 : DECL_REGISTER (decl_result))
5100 {
5101 rtx real_decl_rtl = crtl->return_rtx;
5102
5103 /* This should be set in assign_parms. */
5104 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5105
5106 /* If this is a BLKmode structure being returned in registers,
5107 then use the mode computed in expand_return. Note that if
5108 decl_rtl is memory, then its mode may have been changed,
5109 but that crtl->return_rtx has not. */
5110 if (GET_MODE (real_decl_rtl) == BLKmode)
5111 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5112
5113 /* If a non-BLKmode return value should be padded at the least
5114 significant end of the register, shift it left by the appropriate
5115 amount. BLKmode results are handled using the group load/store
5116 machinery. */
5117 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5118 && REG_P (real_decl_rtl)
5119 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5120 {
5121 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5122 REGNO (real_decl_rtl)),
5123 decl_rtl);
5124 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5125 }
5126 /* If a named return value dumped decl_return to memory, then
5127 we may need to re-do the PROMOTE_MODE signed/unsigned
5128 extension. */
5129 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5130 {
5131 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5132 promote_function_mode (TREE_TYPE (decl_result),
5133 GET_MODE (decl_rtl), &unsignedp,
5134 TREE_TYPE (current_function_decl), 1);
5135
5136 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5137 }
5138 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5139 {
5140 /* If expand_function_start has created a PARALLEL for decl_rtl,
5141 move the result to the real return registers. Otherwise, do
5142 a group load from decl_rtl for a named return. */
5143 if (GET_CODE (decl_rtl) == PARALLEL)
5144 emit_group_move (real_decl_rtl, decl_rtl);
5145 else
5146 emit_group_load (real_decl_rtl, decl_rtl,
5147 TREE_TYPE (decl_result),
5148 int_size_in_bytes (TREE_TYPE (decl_result)));
5149 }
5150 /* In the case of complex integer modes smaller than a word, we'll
5151 need to generate some non-trivial bitfield insertions. Do that
5152 on a pseudo and not the hard register. */
5153 else if (GET_CODE (decl_rtl) == CONCAT
5154 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5155 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5156 {
5157 int old_generating_concat_p;
5158 rtx tmp;
5159
5160 old_generating_concat_p = generating_concat_p;
5161 generating_concat_p = 0;
5162 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5163 generating_concat_p = old_generating_concat_p;
5164
5165 emit_move_insn (tmp, decl_rtl);
5166 emit_move_insn (real_decl_rtl, tmp);
5167 }
5168 else
5169 emit_move_insn (real_decl_rtl, decl_rtl);
5170 }
5171 }
5172
5173 /* If returning a structure, arrange to return the address of the value
5174 in a place where debuggers expect to find it.
5175
5176 If returning a structure PCC style,
5177 the caller also depends on this value.
5178 And cfun->returns_pcc_struct is not necessarily set. */
5179 if (cfun->returns_struct
5180 || cfun->returns_pcc_struct)
5181 {
5182 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5183 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5184 rtx outgoing;
5185
5186 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5187 type = TREE_TYPE (type);
5188 else
5189 value_address = XEXP (value_address, 0);
5190
5191 outgoing = targetm.calls.function_value (build_pointer_type (type),
5192 current_function_decl, true);
5193
5194 /* Mark this as a function return value so integrate will delete the
5195 assignment and USE below when inlining this function. */
5196 REG_FUNCTION_VALUE_P (outgoing) = 1;
5197
5198 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5199 value_address = convert_memory_address (GET_MODE (outgoing),
5200 value_address);
5201
5202 emit_move_insn (outgoing, value_address);
5203
5204 /* Show return register used to hold result (in this case the address
5205 of the result. */
5206 crtl->return_rtx = outgoing;
5207 }
5208
5209 /* Emit the actual code to clobber return register. */
5210 {
5211 rtx seq;
5212
5213 start_sequence ();
5214 clobber_return_register ();
5215 seq = get_insns ();
5216 end_sequence ();
5217
5218 emit_insn_after (seq, clobber_after);
5219 }
5220
5221 /* Output the label for the naked return from the function. */
5222 if (naked_return_label)
5223 emit_label (naked_return_label);
5224
5225 /* @@@ This is a kludge. We want to ensure that instructions that
5226 may trap are not moved into the epilogue by scheduling, because
5227 we don't always emit unwind information for the epilogue. */
5228 if (cfun->can_throw_non_call_exceptions
5229 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5230 emit_insn (gen_blockage ());
5231
5232 /* If stack protection is enabled for this function, check the guard. */
5233 if (crtl->stack_protect_guard)
5234 stack_protect_epilogue ();
5235
5236 /* If we had calls to alloca, and this machine needs
5237 an accurate stack pointer to exit the function,
5238 insert some code to save and restore the stack pointer. */
5239 if (! EXIT_IGNORE_STACK
5240 && cfun->calls_alloca)
5241 {
5242 rtx tem = 0, seq;
5243
5244 start_sequence ();
5245 emit_stack_save (SAVE_FUNCTION, &tem);
5246 seq = get_insns ();
5247 end_sequence ();
5248 emit_insn_before (seq, parm_birth_insn);
5249
5250 emit_stack_restore (SAVE_FUNCTION, tem);
5251 }
5252
5253 /* ??? This should no longer be necessary since stupid is no longer with
5254 us, but there are some parts of the compiler (eg reload_combine, and
5255 sh mach_dep_reorg) that still try and compute their own lifetime info
5256 instead of using the general framework. */
5257 use_return_register ();
5258 }
5259
5260 rtx
5261 get_arg_pointer_save_area (void)
5262 {
5263 rtx ret = arg_pointer_save_area;
5264
5265 if (! ret)
5266 {
5267 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5268 arg_pointer_save_area = ret;
5269 }
5270
5271 if (! crtl->arg_pointer_save_area_init)
5272 {
5273 rtx seq;
5274
5275 /* Save the arg pointer at the beginning of the function. The
5276 generated stack slot may not be a valid memory address, so we
5277 have to check it and fix it if necessary. */
5278 start_sequence ();
5279 emit_move_insn (validize_mem (ret),
5280 crtl->args.internal_arg_pointer);
5281 seq = get_insns ();
5282 end_sequence ();
5283
5284 push_topmost_sequence ();
5285 emit_insn_after (seq, entry_of_function ());
5286 pop_topmost_sequence ();
5287
5288 crtl->arg_pointer_save_area_init = true;
5289 }
5290
5291 return ret;
5292 }
5293 \f
5294 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5295 for the first time. */
5296
5297 static void
5298 record_insns (rtx insns, rtx end, htab_t *hashp)
5299 {
5300 rtx tmp;
5301 htab_t hash = *hashp;
5302
5303 if (hash == NULL)
5304 *hashp = hash
5305 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5306
5307 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5308 {
5309 void **slot = htab_find_slot (hash, tmp, INSERT);
5310 gcc_assert (*slot == NULL);
5311 *slot = tmp;
5312 }
5313 }
5314
5315 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5316 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5317 insn, then record COPY as well. */
5318
5319 void
5320 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5321 {
5322 htab_t hash;
5323 void **slot;
5324
5325 hash = epilogue_insn_hash;
5326 if (!hash || !htab_find (hash, insn))
5327 {
5328 hash = prologue_insn_hash;
5329 if (!hash || !htab_find (hash, insn))
5330 return;
5331 }
5332
5333 slot = htab_find_slot (hash, copy, INSERT);
5334 gcc_assert (*slot == NULL);
5335 *slot = copy;
5336 }
5337
5338 /* Set the location of the insn chain starting at INSN to LOC. */
5339 static void
5340 set_insn_locations (rtx insn, int loc)
5341 {
5342 while (insn != NULL_RTX)
5343 {
5344 if (INSN_P (insn))
5345 INSN_LOCATION (insn) = loc;
5346 insn = NEXT_INSN (insn);
5347 }
5348 }
5349
5350 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5351 we can be running after reorg, SEQUENCE rtl is possible. */
5352
5353 static bool
5354 contains (const_rtx insn, htab_t hash)
5355 {
5356 if (hash == NULL)
5357 return false;
5358
5359 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5360 {
5361 int i;
5362 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5363 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5364 return true;
5365 return false;
5366 }
5367
5368 return htab_find (hash, insn) != NULL;
5369 }
5370
5371 int
5372 prologue_epilogue_contains (const_rtx insn)
5373 {
5374 if (contains (insn, prologue_insn_hash))
5375 return 1;
5376 if (contains (insn, epilogue_insn_hash))
5377 return 1;
5378 return 0;
5379 }
5380
5381 #ifdef HAVE_simple_return
5382
5383 /* Return true if INSN requires the stack frame to be set up.
5384 PROLOGUE_USED contains the hard registers used in the function
5385 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5386 prologue to set up for the function. */
5387 bool
5388 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5389 HARD_REG_SET set_up_by_prologue)
5390 {
5391 df_ref *df_rec;
5392 HARD_REG_SET hardregs;
5393 unsigned regno;
5394
5395 if (CALL_P (insn))
5396 return !SIBLING_CALL_P (insn);
5397
5398 /* We need a frame to get the unique CFA expected by the unwinder. */
5399 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5400 return true;
5401
5402 CLEAR_HARD_REG_SET (hardregs);
5403 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5404 {
5405 rtx dreg = DF_REF_REG (*df_rec);
5406
5407 if (!REG_P (dreg))
5408 continue;
5409
5410 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5411 REGNO (dreg));
5412 }
5413 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5414 return true;
5415 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5416 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5417 if (TEST_HARD_REG_BIT (hardregs, regno)
5418 && df_regs_ever_live_p (regno))
5419 return true;
5420
5421 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5422 {
5423 rtx reg = DF_REF_REG (*df_rec);
5424
5425 if (!REG_P (reg))
5426 continue;
5427
5428 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5429 REGNO (reg));
5430 }
5431 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5432 return true;
5433
5434 return false;
5435 }
5436
5437 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5438 and if BB is its only predecessor. Return that block if so,
5439 otherwise return null. */
5440
5441 static basic_block
5442 next_block_for_reg (basic_block bb, int regno, int end_regno)
5443 {
5444 edge e, live_edge;
5445 edge_iterator ei;
5446 bitmap live;
5447 int i;
5448
5449 live_edge = NULL;
5450 FOR_EACH_EDGE (e, ei, bb->succs)
5451 {
5452 live = df_get_live_in (e->dest);
5453 for (i = regno; i < end_regno; i++)
5454 if (REGNO_REG_SET_P (live, i))
5455 {
5456 if (live_edge && live_edge != e)
5457 return NULL;
5458 live_edge = e;
5459 }
5460 }
5461
5462 /* We can sometimes encounter dead code. Don't try to move it
5463 into the exit block. */
5464 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5465 return NULL;
5466
5467 /* Reject targets of abnormal edges. This is needed for correctness
5468 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5469 exception edges even though it is generally treated as call-saved
5470 for the majority of the compilation. Moving across abnormal edges
5471 isn't going to be interesting for shrink-wrap usage anyway. */
5472 if (live_edge->flags & EDGE_ABNORMAL)
5473 return NULL;
5474
5475 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5476 return NULL;
5477
5478 return live_edge->dest;
5479 }
5480
5481 /* Try to move INSN from BB to a successor. Return true on success.
5482 USES and DEFS are the set of registers that are used and defined
5483 after INSN in BB. */
5484
5485 static bool
5486 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5487 const HARD_REG_SET uses,
5488 const HARD_REG_SET defs)
5489 {
5490 rtx set, src, dest;
5491 bitmap live_out, live_in, bb_uses, bb_defs;
5492 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5493 basic_block next_block;
5494
5495 /* Look for a simple register copy. */
5496 set = single_set (insn);
5497 if (!set)
5498 return false;
5499 src = SET_SRC (set);
5500 dest = SET_DEST (set);
5501 if (!REG_P (dest) || !REG_P (src))
5502 return false;
5503
5504 /* Make sure that the source register isn't defined later in BB. */
5505 sregno = REGNO (src);
5506 end_sregno = END_REGNO (src);
5507 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5508 return false;
5509
5510 /* Make sure that the destination register isn't referenced later in BB. */
5511 dregno = REGNO (dest);
5512 end_dregno = END_REGNO (dest);
5513 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5514 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5515 return false;
5516
5517 /* See whether there is a successor block to which we could move INSN. */
5518 next_block = next_block_for_reg (bb, dregno, end_dregno);
5519 if (!next_block)
5520 return false;
5521
5522 /* At this point we are committed to moving INSN, but let's try to
5523 move it as far as we can. */
5524 do
5525 {
5526 live_out = df_get_live_out (bb);
5527 live_in = df_get_live_in (next_block);
5528 bb = next_block;
5529
5530 /* Check whether BB uses DEST or clobbers DEST. We need to add
5531 INSN to BB if so. Either way, DEST is no longer live on entry,
5532 except for any part that overlaps SRC (next loop). */
5533 bb_uses = &DF_LR_BB_INFO (bb)->use;
5534 bb_defs = &DF_LR_BB_INFO (bb)->def;
5535 if (df_live)
5536 {
5537 for (i = dregno; i < end_dregno; i++)
5538 {
5539 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i)
5540 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5541 next_block = NULL;
5542 CLEAR_REGNO_REG_SET (live_out, i);
5543 CLEAR_REGNO_REG_SET (live_in, i);
5544 }
5545
5546 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5547 Either way, SRC is now live on entry. */
5548 for (i = sregno; i < end_sregno; i++)
5549 {
5550 if (REGNO_REG_SET_P (bb_defs, i)
5551 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5552 next_block = NULL;
5553 SET_REGNO_REG_SET (live_out, i);
5554 SET_REGNO_REG_SET (live_in, i);
5555 }
5556 }
5557 else
5558 {
5559 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
5560 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
5561 at -O1, just give up searching NEXT_BLOCK. */
5562 next_block = NULL;
5563 for (i = dregno; i < end_dregno; i++)
5564 {
5565 CLEAR_REGNO_REG_SET (live_out, i);
5566 CLEAR_REGNO_REG_SET (live_in, i);
5567 }
5568
5569 for (i = sregno; i < end_sregno; i++)
5570 {
5571 SET_REGNO_REG_SET (live_out, i);
5572 SET_REGNO_REG_SET (live_in, i);
5573 }
5574 }
5575
5576 /* If we don't need to add the move to BB, look for a single
5577 successor block. */
5578 if (next_block)
5579 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5580 }
5581 while (next_block);
5582
5583 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5584 (next loop). */
5585 for (i = dregno; i < end_dregno; i++)
5586 {
5587 CLEAR_REGNO_REG_SET (bb_uses, i);
5588 SET_REGNO_REG_SET (bb_defs, i);
5589 }
5590
5591 /* BB now uses SRC. */
5592 for (i = sregno; i < end_sregno; i++)
5593 SET_REGNO_REG_SET (bb_uses, i);
5594
5595 emit_insn_after (PATTERN (insn), bb_note (bb));
5596 delete_insn (insn);
5597 return true;
5598 }
5599
5600 /* Look for register copies in the first block of the function, and move
5601 them down into successor blocks if the register is used only on one
5602 path. This exposes more opportunities for shrink-wrapping. These
5603 kinds of sets often occur when incoming argument registers are moved
5604 to call-saved registers because their values are live across one or
5605 more calls during the function. */
5606
5607 static void
5608 prepare_shrink_wrap (basic_block entry_block)
5609 {
5610 rtx insn, curr, x;
5611 HARD_REG_SET uses, defs;
5612 df_ref *ref;
5613
5614 CLEAR_HARD_REG_SET (uses);
5615 CLEAR_HARD_REG_SET (defs);
5616 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5617 if (NONDEBUG_INSN_P (insn)
5618 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5619 {
5620 /* Add all defined registers to DEFs. */
5621 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5622 {
5623 x = DF_REF_REG (*ref);
5624 if (REG_P (x) && HARD_REGISTER_P (x))
5625 SET_HARD_REG_BIT (defs, REGNO (x));
5626 }
5627
5628 /* Add all used registers to USESs. */
5629 for (ref = DF_INSN_USES (insn); *ref; ref++)
5630 {
5631 x = DF_REF_REG (*ref);
5632 if (REG_P (x) && HARD_REGISTER_P (x))
5633 SET_HARD_REG_BIT (uses, REGNO (x));
5634 }
5635 }
5636 }
5637
5638 #endif
5639
5640 #ifdef HAVE_return
5641 /* Insert use of return register before the end of BB. */
5642
5643 static void
5644 emit_use_return_register_into_block (basic_block bb)
5645 {
5646 rtx seq, insn;
5647 start_sequence ();
5648 use_return_register ();
5649 seq = get_insns ();
5650 end_sequence ();
5651 insn = BB_END (bb);
5652 #ifdef HAVE_cc0
5653 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5654 insn = prev_cc0_setter (insn);
5655 #endif
5656 emit_insn_before (seq, insn);
5657 }
5658
5659
5660 /* Create a return pattern, either simple_return or return, depending on
5661 simple_p. */
5662
5663 static rtx
5664 gen_return_pattern (bool simple_p)
5665 {
5666 #ifdef HAVE_simple_return
5667 return simple_p ? gen_simple_return () : gen_return ();
5668 #else
5669 gcc_assert (!simple_p);
5670 return gen_return ();
5671 #endif
5672 }
5673
5674 /* Insert an appropriate return pattern at the end of block BB. This
5675 also means updating block_for_insn appropriately. SIMPLE_P is
5676 the same as in gen_return_pattern and passed to it. */
5677
5678 static void
5679 emit_return_into_block (bool simple_p, basic_block bb)
5680 {
5681 rtx jump, pat;
5682 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5683 pat = PATTERN (jump);
5684 if (GET_CODE (pat) == PARALLEL)
5685 pat = XVECEXP (pat, 0, 0);
5686 gcc_assert (ANY_RETURN_P (pat));
5687 JUMP_LABEL (jump) = pat;
5688 }
5689 #endif
5690
5691 /* Set JUMP_LABEL for a return insn. */
5692
5693 void
5694 set_return_jump_label (rtx returnjump)
5695 {
5696 rtx pat = PATTERN (returnjump);
5697 if (GET_CODE (pat) == PARALLEL)
5698 pat = XVECEXP (pat, 0, 0);
5699 if (ANY_RETURN_P (pat))
5700 JUMP_LABEL (returnjump) = pat;
5701 else
5702 JUMP_LABEL (returnjump) = ret_rtx;
5703 }
5704
5705 #ifdef HAVE_simple_return
5706 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5707 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5708 static void
5709 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5710 bitmap_head *need_prologue)
5711 {
5712 edge_iterator ei;
5713 edge e;
5714 rtx insn = BB_END (bb);
5715
5716 /* We know BB has a single successor, so there is no need to copy a
5717 simple jump at the end of BB. */
5718 if (simplejump_p (insn))
5719 insn = PREV_INSN (insn);
5720
5721 start_sequence ();
5722 duplicate_insn_chain (BB_HEAD (bb), insn);
5723 if (dump_file)
5724 {
5725 unsigned count = 0;
5726 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5727 if (active_insn_p (insn))
5728 ++count;
5729 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5730 bb->index, copy_bb->index, count);
5731 }
5732 insn = get_insns ();
5733 end_sequence ();
5734 emit_insn_before (insn, before);
5735
5736 /* Redirect all the paths that need no prologue into copy_bb. */
5737 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5738 if (!bitmap_bit_p (need_prologue, e->src->index))
5739 {
5740 int freq = EDGE_FREQUENCY (e);
5741 copy_bb->count += e->count;
5742 copy_bb->frequency += EDGE_FREQUENCY (e);
5743 e->dest->count -= e->count;
5744 if (e->dest->count < 0)
5745 e->dest->count = 0;
5746 e->dest->frequency -= freq;
5747 if (e->dest->frequency < 0)
5748 e->dest->frequency = 0;
5749 redirect_edge_and_branch_force (e, copy_bb);
5750 continue;
5751 }
5752 else
5753 ei_next (&ei);
5754 }
5755 #endif
5756
5757 #if defined (HAVE_return) || defined (HAVE_simple_return)
5758 /* Return true if there are any active insns between HEAD and TAIL. */
5759 static bool
5760 active_insn_between (rtx head, rtx tail)
5761 {
5762 while (tail)
5763 {
5764 if (active_insn_p (tail))
5765 return true;
5766 if (tail == head)
5767 return false;
5768 tail = PREV_INSN (tail);
5769 }
5770 return false;
5771 }
5772
5773 /* LAST_BB is a block that exits, and empty of active instructions.
5774 Examine its predecessors for jumps that can be converted to
5775 (conditional) returns. */
5776 static vec<edge>
5777 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5778 vec<edge> unconverted ATTRIBUTE_UNUSED)
5779 {
5780 int i;
5781 basic_block bb;
5782 rtx label;
5783 edge_iterator ei;
5784 edge e;
5785 vec<basic_block> src_bbs;
5786
5787 src_bbs.create (EDGE_COUNT (last_bb->preds));
5788 FOR_EACH_EDGE (e, ei, last_bb->preds)
5789 if (e->src != ENTRY_BLOCK_PTR)
5790 src_bbs.quick_push (e->src);
5791
5792 label = BB_HEAD (last_bb);
5793
5794 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5795 {
5796 rtx jump = BB_END (bb);
5797
5798 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5799 continue;
5800
5801 e = find_edge (bb, last_bb);
5802
5803 /* If we have an unconditional jump, we can replace that
5804 with a simple return instruction. */
5805 if (simplejump_p (jump))
5806 {
5807 /* The use of the return register might be present in the exit
5808 fallthru block. Either:
5809 - removing the use is safe, and we should remove the use in
5810 the exit fallthru block, or
5811 - removing the use is not safe, and we should add it here.
5812 For now, we conservatively choose the latter. Either of the
5813 2 helps in crossjumping. */
5814 emit_use_return_register_into_block (bb);
5815
5816 emit_return_into_block (simple_p, bb);
5817 delete_insn (jump);
5818 }
5819
5820 /* If we have a conditional jump branching to the last
5821 block, we can try to replace that with a conditional
5822 return instruction. */
5823 else if (condjump_p (jump))
5824 {
5825 rtx dest;
5826
5827 if (simple_p)
5828 dest = simple_return_rtx;
5829 else
5830 dest = ret_rtx;
5831 if (!redirect_jump (jump, dest, 0))
5832 {
5833 #ifdef HAVE_simple_return
5834 if (simple_p)
5835 {
5836 if (dump_file)
5837 fprintf (dump_file,
5838 "Failed to redirect bb %d branch.\n", bb->index);
5839 unconverted.safe_push (e);
5840 }
5841 #endif
5842 continue;
5843 }
5844
5845 /* See comment in simplejump_p case above. */
5846 emit_use_return_register_into_block (bb);
5847
5848 /* If this block has only one successor, it both jumps
5849 and falls through to the fallthru block, so we can't
5850 delete the edge. */
5851 if (single_succ_p (bb))
5852 continue;
5853 }
5854 else
5855 {
5856 #ifdef HAVE_simple_return
5857 if (simple_p)
5858 {
5859 if (dump_file)
5860 fprintf (dump_file,
5861 "Failed to redirect bb %d branch.\n", bb->index);
5862 unconverted.safe_push (e);
5863 }
5864 #endif
5865 continue;
5866 }
5867
5868 /* Fix up the CFG for the successful change we just made. */
5869 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5870 e->flags &= ~EDGE_CROSSING;
5871 }
5872 src_bbs.release ();
5873 return unconverted;
5874 }
5875
5876 /* Emit a return insn for the exit fallthru block. */
5877 static basic_block
5878 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5879 {
5880 basic_block last_bb = exit_fallthru_edge->src;
5881
5882 if (JUMP_P (BB_END (last_bb)))
5883 {
5884 last_bb = split_edge (exit_fallthru_edge);
5885 exit_fallthru_edge = single_succ_edge (last_bb);
5886 }
5887 emit_barrier_after (BB_END (last_bb));
5888 emit_return_into_block (simple_p, last_bb);
5889 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5890 return last_bb;
5891 }
5892 #endif
5893
5894
5895 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5896 this into place with notes indicating where the prologue ends and where
5897 the epilogue begins. Update the basic block information when possible.
5898
5899 Notes on epilogue placement:
5900 There are several kinds of edges to the exit block:
5901 * a single fallthru edge from LAST_BB
5902 * possibly, edges from blocks containing sibcalls
5903 * possibly, fake edges from infinite loops
5904
5905 The epilogue is always emitted on the fallthru edge from the last basic
5906 block in the function, LAST_BB, into the exit block.
5907
5908 If LAST_BB is empty except for a label, it is the target of every
5909 other basic block in the function that ends in a return. If a
5910 target has a return or simple_return pattern (possibly with
5911 conditional variants), these basic blocks can be changed so that a
5912 return insn is emitted into them, and their target is adjusted to
5913 the real exit block.
5914
5915 Notes on shrink wrapping: We implement a fairly conservative
5916 version of shrink-wrapping rather than the textbook one. We only
5917 generate a single prologue and a single epilogue. This is
5918 sufficient to catch a number of interesting cases involving early
5919 exits.
5920
5921 First, we identify the blocks that require the prologue to occur before
5922 them. These are the ones that modify a call-saved register, or reference
5923 any of the stack or frame pointer registers. To simplify things, we then
5924 mark everything reachable from these blocks as also requiring a prologue.
5925 This takes care of loops automatically, and avoids the need to examine
5926 whether MEMs reference the frame, since it is sufficient to check for
5927 occurrences of the stack or frame pointer.
5928
5929 We then compute the set of blocks for which the need for a prologue
5930 is anticipatable (borrowing terminology from the shrink-wrapping
5931 description in Muchnick's book). These are the blocks which either
5932 require a prologue themselves, or those that have only successors
5933 where the prologue is anticipatable. The prologue needs to be
5934 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5935 is not. For the moment, we ensure that only one such edge exists.
5936
5937 The epilogue is placed as described above, but we make a
5938 distinction between inserting return and simple_return patterns
5939 when modifying other blocks that end in a return. Blocks that end
5940 in a sibcall omit the sibcall_epilogue if the block is not in
5941 ANTIC. */
5942
5943 static void
5944 thread_prologue_and_epilogue_insns (void)
5945 {
5946 bool inserted;
5947 #ifdef HAVE_simple_return
5948 vec<edge> unconverted_simple_returns = vNULL;
5949 bool nonempty_prologue;
5950 bitmap_head bb_flags;
5951 unsigned max_grow_size;
5952 #endif
5953 rtx returnjump;
5954 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5955 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5956 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5957 edge_iterator ei;
5958
5959 df_analyze ();
5960
5961 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5962
5963 inserted = false;
5964 seq = NULL_RTX;
5965 epilogue_end = NULL_RTX;
5966 returnjump = NULL_RTX;
5967
5968 /* Can't deal with multiple successors of the entry block at the
5969 moment. Function should always have at least one entry
5970 point. */
5971 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5972 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5973 orig_entry_edge = entry_edge;
5974
5975 split_prologue_seq = NULL_RTX;
5976 if (flag_split_stack
5977 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5978 == NULL))
5979 {
5980 #ifndef HAVE_split_stack_prologue
5981 gcc_unreachable ();
5982 #else
5983 gcc_assert (HAVE_split_stack_prologue);
5984
5985 start_sequence ();
5986 emit_insn (gen_split_stack_prologue ());
5987 split_prologue_seq = get_insns ();
5988 end_sequence ();
5989
5990 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5991 set_insn_locations (split_prologue_seq, prologue_location);
5992 #endif
5993 }
5994
5995 prologue_seq = NULL_RTX;
5996 #ifdef HAVE_prologue
5997 if (HAVE_prologue)
5998 {
5999 start_sequence ();
6000 seq = gen_prologue ();
6001 emit_insn (seq);
6002
6003 /* Insert an explicit USE for the frame pointer
6004 if the profiling is on and the frame pointer is required. */
6005 if (crtl->profile && frame_pointer_needed)
6006 emit_use (hard_frame_pointer_rtx);
6007
6008 /* Retain a map of the prologue insns. */
6009 record_insns (seq, NULL, &prologue_insn_hash);
6010 emit_note (NOTE_INSN_PROLOGUE_END);
6011
6012 /* Ensure that instructions are not moved into the prologue when
6013 profiling is on. The call to the profiling routine can be
6014 emitted within the live range of a call-clobbered register. */
6015 if (!targetm.profile_before_prologue () && crtl->profile)
6016 emit_insn (gen_blockage ());
6017
6018 prologue_seq = get_insns ();
6019 end_sequence ();
6020 set_insn_locations (prologue_seq, prologue_location);
6021 }
6022 #endif
6023
6024 #ifdef HAVE_simple_return
6025 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
6026
6027 /* Try to perform a kind of shrink-wrapping, making sure the
6028 prologue/epilogue is emitted only around those parts of the
6029 function that require it. */
6030
6031 nonempty_prologue = false;
6032 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
6033 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
6034 {
6035 nonempty_prologue = true;
6036 break;
6037 }
6038
6039 if (flag_shrink_wrap && HAVE_simple_return
6040 && (targetm.profile_before_prologue () || !crtl->profile)
6041 && nonempty_prologue && !crtl->calls_eh_return)
6042 {
6043 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
6044 struct hard_reg_set_container set_up_by_prologue;
6045 rtx p_insn;
6046 vec<basic_block> vec;
6047 basic_block bb;
6048 bitmap_head bb_antic_flags;
6049 bitmap_head bb_on_list;
6050 bitmap_head bb_tail;
6051
6052 if (dump_file)
6053 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
6054
6055 /* Compute the registers set and used in the prologue. */
6056 CLEAR_HARD_REG_SET (prologue_clobbered);
6057 CLEAR_HARD_REG_SET (prologue_used);
6058 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
6059 {
6060 HARD_REG_SET this_used;
6061 if (!NONDEBUG_INSN_P (p_insn))
6062 continue;
6063
6064 CLEAR_HARD_REG_SET (this_used);
6065 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6066 &this_used);
6067 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6068 IOR_HARD_REG_SET (prologue_used, this_used);
6069 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6070 &prologue_clobbered);
6071 }
6072
6073 prepare_shrink_wrap (entry_edge->dest);
6074
6075 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6076 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6077 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6078
6079 /* Find the set of basic blocks that require a stack frame,
6080 and blocks that are too big to be duplicated. */
6081
6082 vec.create (n_basic_blocks);
6083
6084 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6085 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6086 STACK_POINTER_REGNUM);
6087 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6088 if (frame_pointer_needed)
6089 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6090 HARD_FRAME_POINTER_REGNUM);
6091 if (pic_offset_table_rtx)
6092 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6093 PIC_OFFSET_TABLE_REGNUM);
6094 if (crtl->drap_reg)
6095 add_to_hard_reg_set (&set_up_by_prologue.set,
6096 GET_MODE (crtl->drap_reg),
6097 REGNO (crtl->drap_reg));
6098 if (targetm.set_up_by_prologue)
6099 targetm.set_up_by_prologue (&set_up_by_prologue);
6100
6101 /* We don't use a different max size depending on
6102 optimize_bb_for_speed_p because increasing shrink-wrapping
6103 opportunities by duplicating tail blocks can actually result
6104 in an overall decrease in code size. */
6105 max_grow_size = get_uncond_jump_length ();
6106 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6107
6108 FOR_EACH_BB (bb)
6109 {
6110 rtx insn;
6111 unsigned size = 0;
6112
6113 FOR_BB_INSNS (bb, insn)
6114 if (NONDEBUG_INSN_P (insn))
6115 {
6116 if (requires_stack_frame_p (insn, prologue_used,
6117 set_up_by_prologue.set))
6118 {
6119 if (bb == entry_edge->dest)
6120 goto fail_shrinkwrap;
6121 bitmap_set_bit (&bb_flags, bb->index);
6122 vec.quick_push (bb);
6123 break;
6124 }
6125 else if (size <= max_grow_size)
6126 {
6127 size += get_attr_min_length (insn);
6128 if (size > max_grow_size)
6129 bitmap_set_bit (&bb_on_list, bb->index);
6130 }
6131 }
6132 }
6133
6134 /* Blocks that really need a prologue, or are too big for tails. */
6135 bitmap_ior_into (&bb_on_list, &bb_flags);
6136
6137 /* For every basic block that needs a prologue, mark all blocks
6138 reachable from it, so as to ensure they are also seen as
6139 requiring a prologue. */
6140 while (!vec.is_empty ())
6141 {
6142 basic_block tmp_bb = vec.pop ();
6143
6144 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6145 if (e->dest != EXIT_BLOCK_PTR
6146 && bitmap_set_bit (&bb_flags, e->dest->index))
6147 vec.quick_push (e->dest);
6148 }
6149
6150 /* Find the set of basic blocks that need no prologue, have a
6151 single successor, can be duplicated, meet a max size
6152 requirement, and go to the exit via like blocks. */
6153 vec.quick_push (EXIT_BLOCK_PTR);
6154 while (!vec.is_empty ())
6155 {
6156 basic_block tmp_bb = vec.pop ();
6157
6158 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6159 if (single_succ_p (e->src)
6160 && !bitmap_bit_p (&bb_on_list, e->src->index)
6161 && can_duplicate_block_p (e->src))
6162 {
6163 edge pe;
6164 edge_iterator pei;
6165
6166 /* If there is predecessor of e->src which doesn't
6167 need prologue and the edge is complex,
6168 we might not be able to redirect the branch
6169 to a copy of e->src. */
6170 FOR_EACH_EDGE (pe, pei, e->src->preds)
6171 if ((pe->flags & EDGE_COMPLEX) != 0
6172 && !bitmap_bit_p (&bb_flags, pe->src->index))
6173 break;
6174 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6175 vec.quick_push (e->src);
6176 }
6177 }
6178
6179 /* Now walk backwards from every block that is marked as needing
6180 a prologue to compute the bb_antic_flags bitmap. Exclude
6181 tail blocks; They can be duplicated to be used on paths not
6182 needing a prologue. */
6183 bitmap_clear (&bb_on_list);
6184 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6185 FOR_EACH_BB (bb)
6186 {
6187 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6188 continue;
6189 FOR_EACH_EDGE (e, ei, bb->preds)
6190 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6191 && bitmap_set_bit (&bb_on_list, e->src->index))
6192 vec.quick_push (e->src);
6193 }
6194 while (!vec.is_empty ())
6195 {
6196 basic_block tmp_bb = vec.pop ();
6197 bool all_set = true;
6198
6199 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6200 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6201 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6202 {
6203 all_set = false;
6204 break;
6205 }
6206
6207 if (all_set)
6208 {
6209 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6210 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6211 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6212 && bitmap_set_bit (&bb_on_list, e->src->index))
6213 vec.quick_push (e->src);
6214 }
6215 }
6216 /* Find exactly one edge that leads to a block in ANTIC from
6217 a block that isn't. */
6218 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6219 FOR_EACH_BB (bb)
6220 {
6221 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6222 continue;
6223 FOR_EACH_EDGE (e, ei, bb->preds)
6224 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6225 {
6226 if (entry_edge != orig_entry_edge)
6227 {
6228 entry_edge = orig_entry_edge;
6229 if (dump_file)
6230 fprintf (dump_file, "More than one candidate edge.\n");
6231 goto fail_shrinkwrap;
6232 }
6233 if (dump_file)
6234 fprintf (dump_file, "Found candidate edge for "
6235 "shrink-wrapping, %d->%d.\n", e->src->index,
6236 e->dest->index);
6237 entry_edge = e;
6238 }
6239 }
6240
6241 if (entry_edge != orig_entry_edge)
6242 {
6243 /* Test whether the prologue is known to clobber any register
6244 (other than FP or SP) which are live on the edge. */
6245 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6246 if (frame_pointer_needed)
6247 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6248 REG_SET_TO_HARD_REG_SET (live_on_edge,
6249 df_get_live_in (entry_edge->dest));
6250 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6251 {
6252 entry_edge = orig_entry_edge;
6253 if (dump_file)
6254 fprintf (dump_file,
6255 "Shrink-wrapping aborted due to clobber.\n");
6256 }
6257 }
6258 if (entry_edge != orig_entry_edge)
6259 {
6260 crtl->shrink_wrapped = true;
6261 if (dump_file)
6262 fprintf (dump_file, "Performing shrink-wrapping.\n");
6263
6264 /* Find tail blocks reachable from both blocks needing a
6265 prologue and blocks not needing a prologue. */
6266 if (!bitmap_empty_p (&bb_tail))
6267 FOR_EACH_BB (bb)
6268 {
6269 bool some_pro, some_no_pro;
6270 if (!bitmap_bit_p (&bb_tail, bb->index))
6271 continue;
6272 some_pro = some_no_pro = false;
6273 FOR_EACH_EDGE (e, ei, bb->preds)
6274 {
6275 if (bitmap_bit_p (&bb_flags, e->src->index))
6276 some_pro = true;
6277 else
6278 some_no_pro = true;
6279 }
6280 if (some_pro && some_no_pro)
6281 vec.quick_push (bb);
6282 else
6283 bitmap_clear_bit (&bb_tail, bb->index);
6284 }
6285 /* Find the head of each tail. */
6286 while (!vec.is_empty ())
6287 {
6288 basic_block tbb = vec.pop ();
6289
6290 if (!bitmap_bit_p (&bb_tail, tbb->index))
6291 continue;
6292
6293 while (single_succ_p (tbb))
6294 {
6295 tbb = single_succ (tbb);
6296 bitmap_clear_bit (&bb_tail, tbb->index);
6297 }
6298 }
6299 /* Now duplicate the tails. */
6300 if (!bitmap_empty_p (&bb_tail))
6301 FOR_EACH_BB_REVERSE (bb)
6302 {
6303 basic_block copy_bb, tbb;
6304 rtx insert_point;
6305 int eflags;
6306
6307 if (!bitmap_clear_bit (&bb_tail, bb->index))
6308 continue;
6309
6310 /* Create a copy of BB, instructions and all, for
6311 use on paths that don't need a prologue.
6312 Ideal placement of the copy is on a fall-thru edge
6313 or after a block that would jump to the copy. */
6314 FOR_EACH_EDGE (e, ei, bb->preds)
6315 if (!bitmap_bit_p (&bb_flags, e->src->index)
6316 && single_succ_p (e->src))
6317 break;
6318 if (e)
6319 {
6320 /* Make sure we insert after any barriers. */
6321 rtx end = get_last_bb_insn (e->src);
6322 copy_bb = create_basic_block (NEXT_INSN (end),
6323 NULL_RTX, e->src);
6324 BB_COPY_PARTITION (copy_bb, e->src);
6325 }
6326 else
6327 {
6328 /* Otherwise put the copy at the end of the function. */
6329 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6330 EXIT_BLOCK_PTR->prev_bb);
6331 BB_COPY_PARTITION (copy_bb, bb);
6332 }
6333
6334 insert_point = emit_note_after (NOTE_INSN_DELETED,
6335 BB_END (copy_bb));
6336 emit_barrier_after (BB_END (copy_bb));
6337
6338 tbb = bb;
6339 while (1)
6340 {
6341 dup_block_and_redirect (tbb, copy_bb, insert_point,
6342 &bb_flags);
6343 tbb = single_succ (tbb);
6344 if (tbb == EXIT_BLOCK_PTR)
6345 break;
6346 e = split_block (copy_bb, PREV_INSN (insert_point));
6347 copy_bb = e->dest;
6348 }
6349
6350 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6351 We have yet to add a simple_return to the tails,
6352 as we'd like to first convert_jumps_to_returns in
6353 case the block is no longer used after that. */
6354 eflags = EDGE_FAKE;
6355 if (CALL_P (PREV_INSN (insert_point))
6356 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6357 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6358 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6359
6360 /* verify_flow_info doesn't like a note after a
6361 sibling call. */
6362 delete_insn (insert_point);
6363 if (bitmap_empty_p (&bb_tail))
6364 break;
6365 }
6366 }
6367
6368 fail_shrinkwrap:
6369 bitmap_clear (&bb_tail);
6370 bitmap_clear (&bb_antic_flags);
6371 bitmap_clear (&bb_on_list);
6372 vec.release ();
6373 }
6374 #endif
6375
6376 if (split_prologue_seq != NULL_RTX)
6377 {
6378 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6379 inserted = true;
6380 }
6381 if (prologue_seq != NULL_RTX)
6382 {
6383 insert_insn_on_edge (prologue_seq, entry_edge);
6384 inserted = true;
6385 }
6386
6387 /* If the exit block has no non-fake predecessors, we don't need
6388 an epilogue. */
6389 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6390 if ((e->flags & EDGE_FAKE) == 0)
6391 break;
6392 if (e == NULL)
6393 goto epilogue_done;
6394
6395 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6396
6397 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6398
6399 /* If we're allowed to generate a simple return instruction, then by
6400 definition we don't need a full epilogue. If the last basic
6401 block before the exit block does not contain active instructions,
6402 examine its predecessors and try to emit (conditional) return
6403 instructions. */
6404 #ifdef HAVE_simple_return
6405 if (entry_edge != orig_entry_edge)
6406 {
6407 if (optimize)
6408 {
6409 unsigned i, last;
6410
6411 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6412 (but won't remove). Stop at end of current preds. */
6413 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6414 for (i = 0; i < last; i++)
6415 {
6416 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6417 if (LABEL_P (BB_HEAD (e->src))
6418 && !bitmap_bit_p (&bb_flags, e->src->index)
6419 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6420 unconverted_simple_returns
6421 = convert_jumps_to_returns (e->src, true,
6422 unconverted_simple_returns);
6423 }
6424 }
6425
6426 if (exit_fallthru_edge != NULL
6427 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6428 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6429 {
6430 basic_block last_bb;
6431
6432 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6433 returnjump = BB_END (last_bb);
6434 exit_fallthru_edge = NULL;
6435 }
6436 }
6437 #endif
6438 #ifdef HAVE_return
6439 if (HAVE_return)
6440 {
6441 if (exit_fallthru_edge == NULL)
6442 goto epilogue_done;
6443
6444 if (optimize)
6445 {
6446 basic_block last_bb = exit_fallthru_edge->src;
6447
6448 if (LABEL_P (BB_HEAD (last_bb))
6449 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6450 convert_jumps_to_returns (last_bb, false, vNULL);
6451
6452 if (EDGE_COUNT (last_bb->preds) != 0
6453 && single_succ_p (last_bb))
6454 {
6455 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6456 epilogue_end = returnjump = BB_END (last_bb);
6457 #ifdef HAVE_simple_return
6458 /* Emitting the return may add a basic block.
6459 Fix bb_flags for the added block. */
6460 if (last_bb != exit_fallthru_edge->src)
6461 bitmap_set_bit (&bb_flags, last_bb->index);
6462 #endif
6463 goto epilogue_done;
6464 }
6465 }
6466 }
6467 #endif
6468
6469 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6470 this marker for the splits of EH_RETURN patterns, and nothing else
6471 uses the flag in the meantime. */
6472 epilogue_completed = 1;
6473
6474 #ifdef HAVE_eh_return
6475 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6476 some targets, these get split to a special version of the epilogue
6477 code. In order to be able to properly annotate these with unwind
6478 info, try to split them now. If we get a valid split, drop an
6479 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6480 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6481 {
6482 rtx prev, last, trial;
6483
6484 if (e->flags & EDGE_FALLTHRU)
6485 continue;
6486 last = BB_END (e->src);
6487 if (!eh_returnjump_p (last))
6488 continue;
6489
6490 prev = PREV_INSN (last);
6491 trial = try_split (PATTERN (last), last, 1);
6492 if (trial == last)
6493 continue;
6494
6495 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6496 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6497 }
6498 #endif
6499
6500 /* If nothing falls through into the exit block, we don't need an
6501 epilogue. */
6502
6503 if (exit_fallthru_edge == NULL)
6504 goto epilogue_done;
6505
6506 #ifdef HAVE_epilogue
6507 if (HAVE_epilogue)
6508 {
6509 start_sequence ();
6510 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6511 seq = gen_epilogue ();
6512 if (seq)
6513 emit_jump_insn (seq);
6514
6515 /* Retain a map of the epilogue insns. */
6516 record_insns (seq, NULL, &epilogue_insn_hash);
6517 set_insn_locations (seq, epilogue_location);
6518
6519 seq = get_insns ();
6520 returnjump = get_last_insn ();
6521 end_sequence ();
6522
6523 insert_insn_on_edge (seq, exit_fallthru_edge);
6524 inserted = true;
6525
6526 if (JUMP_P (returnjump))
6527 set_return_jump_label (returnjump);
6528 }
6529 else
6530 #endif
6531 {
6532 basic_block cur_bb;
6533
6534 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6535 goto epilogue_done;
6536 /* We have a fall-through edge to the exit block, the source is not
6537 at the end of the function, and there will be an assembler epilogue
6538 at the end of the function.
6539 We can't use force_nonfallthru here, because that would try to
6540 use return. Inserting a jump 'by hand' is extremely messy, so
6541 we take advantage of cfg_layout_finalize using
6542 fixup_fallthru_exit_predecessor. */
6543 cfg_layout_initialize (0);
6544 FOR_EACH_BB (cur_bb)
6545 if (cur_bb->index >= NUM_FIXED_BLOCKS
6546 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6547 cur_bb->aux = cur_bb->next_bb;
6548 cfg_layout_finalize ();
6549 }
6550
6551 epilogue_done:
6552
6553 default_rtl_profile ();
6554
6555 if (inserted)
6556 {
6557 sbitmap blocks;
6558
6559 commit_edge_insertions ();
6560
6561 /* Look for basic blocks within the prologue insns. */
6562 blocks = sbitmap_alloc (last_basic_block);
6563 bitmap_clear (blocks);
6564 bitmap_set_bit (blocks, entry_edge->dest->index);
6565 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6566 find_many_sub_basic_blocks (blocks);
6567 sbitmap_free (blocks);
6568
6569 /* The epilogue insns we inserted may cause the exit edge to no longer
6570 be fallthru. */
6571 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6572 {
6573 if (((e->flags & EDGE_FALLTHRU) != 0)
6574 && returnjump_p (BB_END (e->src)))
6575 e->flags &= ~EDGE_FALLTHRU;
6576 }
6577 }
6578
6579 #ifdef HAVE_simple_return
6580 /* If there were branches to an empty LAST_BB which we tried to
6581 convert to conditional simple_returns, but couldn't for some
6582 reason, create a block to hold a simple_return insn and redirect
6583 those remaining edges. */
6584 if (!unconverted_simple_returns.is_empty ())
6585 {
6586 basic_block simple_return_block_hot = NULL;
6587 basic_block simple_return_block_cold = NULL;
6588 edge pending_edge_hot = NULL;
6589 edge pending_edge_cold = NULL;
6590 basic_block exit_pred;
6591 int i;
6592
6593 gcc_assert (entry_edge != orig_entry_edge);
6594
6595 /* See if we can reuse the last insn that was emitted for the
6596 epilogue. */
6597 if (returnjump != NULL_RTX
6598 && JUMP_LABEL (returnjump) == simple_return_rtx)
6599 {
6600 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6601 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6602 simple_return_block_hot = e->dest;
6603 else
6604 simple_return_block_cold = e->dest;
6605 }
6606
6607 /* Also check returns we might need to add to tail blocks. */
6608 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6609 if (EDGE_COUNT (e->src->preds) != 0
6610 && (e->flags & EDGE_FAKE) != 0
6611 && !bitmap_bit_p (&bb_flags, e->src->index))
6612 {
6613 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6614 pending_edge_hot = e;
6615 else
6616 pending_edge_cold = e;
6617 }
6618
6619 /* Save a pointer to the exit's predecessor BB for use in
6620 inserting new BBs at the end of the function. Do this
6621 after the call to split_block above which may split
6622 the original exit pred. */
6623 exit_pred = EXIT_BLOCK_PTR->prev_bb;
6624
6625 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6626 {
6627 basic_block *pdest_bb;
6628 edge pending;
6629
6630 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6631 {
6632 pdest_bb = &simple_return_block_hot;
6633 pending = pending_edge_hot;
6634 }
6635 else
6636 {
6637 pdest_bb = &simple_return_block_cold;
6638 pending = pending_edge_cold;
6639 }
6640
6641 if (*pdest_bb == NULL && pending != NULL)
6642 {
6643 emit_return_into_block (true, pending->src);
6644 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6645 *pdest_bb = pending->src;
6646 }
6647 else if (*pdest_bb == NULL)
6648 {
6649 basic_block bb;
6650 rtx start;
6651
6652 bb = create_basic_block (NULL, NULL, exit_pred);
6653 BB_COPY_PARTITION (bb, e->src);
6654 start = emit_jump_insn_after (gen_simple_return (),
6655 BB_END (bb));
6656 JUMP_LABEL (start) = simple_return_rtx;
6657 emit_barrier_after (start);
6658
6659 *pdest_bb = bb;
6660 make_edge (bb, EXIT_BLOCK_PTR, 0);
6661 }
6662 redirect_edge_and_branch_force (e, *pdest_bb);
6663 }
6664 unconverted_simple_returns.release ();
6665 }
6666
6667 if (entry_edge != orig_entry_edge)
6668 {
6669 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6670 if (EDGE_COUNT (e->src->preds) != 0
6671 && (e->flags & EDGE_FAKE) != 0
6672 && !bitmap_bit_p (&bb_flags, e->src->index))
6673 {
6674 emit_return_into_block (true, e->src);
6675 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6676 }
6677 }
6678 #endif
6679
6680 #ifdef HAVE_sibcall_epilogue
6681 /* Emit sibling epilogues before any sibling call sites. */
6682 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6683 {
6684 basic_block bb = e->src;
6685 rtx insn = BB_END (bb);
6686 rtx ep_seq;
6687
6688 if (!CALL_P (insn)
6689 || ! SIBLING_CALL_P (insn)
6690 #ifdef HAVE_simple_return
6691 || (entry_edge != orig_entry_edge
6692 && !bitmap_bit_p (&bb_flags, bb->index))
6693 #endif
6694 )
6695 {
6696 ei_next (&ei);
6697 continue;
6698 }
6699
6700 ep_seq = gen_sibcall_epilogue ();
6701 if (ep_seq)
6702 {
6703 start_sequence ();
6704 emit_note (NOTE_INSN_EPILOGUE_BEG);
6705 emit_insn (ep_seq);
6706 seq = get_insns ();
6707 end_sequence ();
6708
6709 /* Retain a map of the epilogue insns. Used in life analysis to
6710 avoid getting rid of sibcall epilogue insns. Do this before we
6711 actually emit the sequence. */
6712 record_insns (seq, NULL, &epilogue_insn_hash);
6713 set_insn_locations (seq, epilogue_location);
6714
6715 emit_insn_before (seq, insn);
6716 }
6717 ei_next (&ei);
6718 }
6719 #endif
6720
6721 #ifdef HAVE_epilogue
6722 if (epilogue_end)
6723 {
6724 rtx insn, next;
6725
6726 /* Similarly, move any line notes that appear after the epilogue.
6727 There is no need, however, to be quite so anal about the existence
6728 of such a note. Also possibly move
6729 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6730 info generation. */
6731 for (insn = epilogue_end; insn; insn = next)
6732 {
6733 next = NEXT_INSN (insn);
6734 if (NOTE_P (insn)
6735 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6736 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6737 }
6738 }
6739 #endif
6740
6741 #ifdef HAVE_simple_return
6742 bitmap_clear (&bb_flags);
6743 #endif
6744
6745 /* Threading the prologue and epilogue changes the artificial refs
6746 in the entry and exit blocks. */
6747 epilogue_completed = 1;
6748 df_update_entry_exit_and_calls ();
6749 }
6750
6751 /* Reposition the prologue-end and epilogue-begin notes after
6752 instruction scheduling. */
6753
6754 void
6755 reposition_prologue_and_epilogue_notes (void)
6756 {
6757 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6758 || defined (HAVE_sibcall_epilogue)
6759 /* Since the hash table is created on demand, the fact that it is
6760 non-null is a signal that it is non-empty. */
6761 if (prologue_insn_hash != NULL)
6762 {
6763 size_t len = htab_elements (prologue_insn_hash);
6764 rtx insn, last = NULL, note = NULL;
6765
6766 /* Scan from the beginning until we reach the last prologue insn. */
6767 /* ??? While we do have the CFG intact, there are two problems:
6768 (1) The prologue can contain loops (typically probing the stack),
6769 which means that the end of the prologue isn't in the first bb.
6770 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6771 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6772 {
6773 if (NOTE_P (insn))
6774 {
6775 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6776 note = insn;
6777 }
6778 else if (contains (insn, prologue_insn_hash))
6779 {
6780 last = insn;
6781 if (--len == 0)
6782 break;
6783 }
6784 }
6785
6786 if (last)
6787 {
6788 if (note == NULL)
6789 {
6790 /* Scan forward looking for the PROLOGUE_END note. It should
6791 be right at the beginning of the block, possibly with other
6792 insn notes that got moved there. */
6793 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6794 {
6795 if (NOTE_P (note)
6796 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6797 break;
6798 }
6799 }
6800
6801 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6802 if (LABEL_P (last))
6803 last = NEXT_INSN (last);
6804 reorder_insns (note, note, last);
6805 }
6806 }
6807
6808 if (epilogue_insn_hash != NULL)
6809 {
6810 edge_iterator ei;
6811 edge e;
6812
6813 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6814 {
6815 rtx insn, first = NULL, note = NULL;
6816 basic_block bb = e->src;
6817
6818 /* Scan from the beginning until we reach the first epilogue insn. */
6819 FOR_BB_INSNS (bb, insn)
6820 {
6821 if (NOTE_P (insn))
6822 {
6823 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6824 {
6825 note = insn;
6826 if (first != NULL)
6827 break;
6828 }
6829 }
6830 else if (first == NULL && contains (insn, epilogue_insn_hash))
6831 {
6832 first = insn;
6833 if (note != NULL)
6834 break;
6835 }
6836 }
6837
6838 if (note)
6839 {
6840 /* If the function has a single basic block, and no real
6841 epilogue insns (e.g. sibcall with no cleanup), the
6842 epilogue note can get scheduled before the prologue
6843 note. If we have frame related prologue insns, having
6844 them scanned during the epilogue will result in a crash.
6845 In this case re-order the epilogue note to just before
6846 the last insn in the block. */
6847 if (first == NULL)
6848 first = BB_END (bb);
6849
6850 if (PREV_INSN (first) != note)
6851 reorder_insns (note, note, PREV_INSN (first));
6852 }
6853 }
6854 }
6855 #endif /* HAVE_prologue or HAVE_epilogue */
6856 }
6857
6858 /* Returns the name of function declared by FNDECL. */
6859 const char *
6860 fndecl_name (tree fndecl)
6861 {
6862 if (fndecl == NULL)
6863 return "(nofn)";
6864 return lang_hooks.decl_printable_name (fndecl, 2);
6865 }
6866
6867 /* Returns the name of function FN. */
6868 const char *
6869 function_name (struct function *fn)
6870 {
6871 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6872 return fndecl_name (fndecl);
6873 }
6874
6875 /* Returns the name of the current function. */
6876 const char *
6877 current_function_name (void)
6878 {
6879 return function_name (cfun);
6880 }
6881 \f
6882
6883 static unsigned int
6884 rest_of_handle_check_leaf_regs (void)
6885 {
6886 #ifdef LEAF_REGISTERS
6887 crtl->uses_only_leaf_regs
6888 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6889 #endif
6890 return 0;
6891 }
6892
6893 /* Insert a TYPE into the used types hash table of CFUN. */
6894
6895 static void
6896 used_types_insert_helper (tree type, struct function *func)
6897 {
6898 if (type != NULL && func != NULL)
6899 {
6900 void **slot;
6901
6902 if (func->used_types_hash == NULL)
6903 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6904 htab_eq_pointer, NULL);
6905 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6906 if (*slot == NULL)
6907 *slot = type;
6908 }
6909 }
6910
6911 /* Given a type, insert it into the used hash table in cfun. */
6912 void
6913 used_types_insert (tree t)
6914 {
6915 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6916 if (TYPE_NAME (t))
6917 break;
6918 else
6919 t = TREE_TYPE (t);
6920 if (TREE_CODE (t) == ERROR_MARK)
6921 return;
6922 if (TYPE_NAME (t) == NULL_TREE
6923 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6924 t = TYPE_MAIN_VARIANT (t);
6925 if (debug_info_level > DINFO_LEVEL_NONE)
6926 {
6927 if (cfun)
6928 used_types_insert_helper (t, cfun);
6929 else
6930 {
6931 /* So this might be a type referenced by a global variable.
6932 Record that type so that we can later decide to emit its
6933 debug information. */
6934 vec_safe_push (types_used_by_cur_var_decl, t);
6935 }
6936 }
6937 }
6938
6939 /* Helper to Hash a struct types_used_by_vars_entry. */
6940
6941 static hashval_t
6942 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6943 {
6944 gcc_assert (entry && entry->var_decl && entry->type);
6945
6946 return iterative_hash_object (entry->type,
6947 iterative_hash_object (entry->var_decl, 0));
6948 }
6949
6950 /* Hash function of the types_used_by_vars_entry hash table. */
6951
6952 hashval_t
6953 types_used_by_vars_do_hash (const void *x)
6954 {
6955 const struct types_used_by_vars_entry *entry =
6956 (const struct types_used_by_vars_entry *) x;
6957
6958 return hash_types_used_by_vars_entry (entry);
6959 }
6960
6961 /*Equality function of the types_used_by_vars_entry hash table. */
6962
6963 int
6964 types_used_by_vars_eq (const void *x1, const void *x2)
6965 {
6966 const struct types_used_by_vars_entry *e1 =
6967 (const struct types_used_by_vars_entry *) x1;
6968 const struct types_used_by_vars_entry *e2 =
6969 (const struct types_used_by_vars_entry *)x2;
6970
6971 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6972 }
6973
6974 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6975
6976 void
6977 types_used_by_var_decl_insert (tree type, tree var_decl)
6978 {
6979 if (type != NULL && var_decl != NULL)
6980 {
6981 void **slot;
6982 struct types_used_by_vars_entry e;
6983 e.var_decl = var_decl;
6984 e.type = type;
6985 if (types_used_by_vars_hash == NULL)
6986 types_used_by_vars_hash =
6987 htab_create_ggc (37, types_used_by_vars_do_hash,
6988 types_used_by_vars_eq, NULL);
6989 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6990 hash_types_used_by_vars_entry (&e), INSERT);
6991 if (*slot == NULL)
6992 {
6993 struct types_used_by_vars_entry *entry;
6994 entry = ggc_alloc_types_used_by_vars_entry ();
6995 entry->type = type;
6996 entry->var_decl = var_decl;
6997 *slot = entry;
6998 }
6999 }
7000 }
7001
7002 namespace {
7003
7004 const pass_data pass_data_leaf_regs =
7005 {
7006 RTL_PASS, /* type */
7007 "*leaf_regs", /* name */
7008 OPTGROUP_NONE, /* optinfo_flags */
7009 false, /* has_gate */
7010 true, /* has_execute */
7011 TV_NONE, /* tv_id */
7012 0, /* properties_required */
7013 0, /* properties_provided */
7014 0, /* properties_destroyed */
7015 0, /* todo_flags_start */
7016 0, /* todo_flags_finish */
7017 };
7018
7019 class pass_leaf_regs : public rtl_opt_pass
7020 {
7021 public:
7022 pass_leaf_regs (gcc::context *ctxt)
7023 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
7024 {}
7025
7026 /* opt_pass methods: */
7027 unsigned int execute () { return rest_of_handle_check_leaf_regs (); }
7028
7029 }; // class pass_leaf_regs
7030
7031 } // anon namespace
7032
7033 rtl_opt_pass *
7034 make_pass_leaf_regs (gcc::context *ctxt)
7035 {
7036 return new pass_leaf_regs (ctxt);
7037 }
7038
7039 static unsigned int
7040 rest_of_handle_thread_prologue_and_epilogue (void)
7041 {
7042 if (optimize)
7043 cleanup_cfg (CLEANUP_EXPENSIVE);
7044
7045 /* On some machines, the prologue and epilogue code, or parts thereof,
7046 can be represented as RTL. Doing so lets us schedule insns between
7047 it and the rest of the code and also allows delayed branch
7048 scheduling to operate in the epilogue. */
7049 thread_prologue_and_epilogue_insns ();
7050
7051 /* The stack usage info is finalized during prologue expansion. */
7052 if (flag_stack_usage_info)
7053 output_stack_usage ();
7054
7055 return 0;
7056 }
7057
7058 namespace {
7059
7060 const pass_data pass_data_thread_prologue_and_epilogue =
7061 {
7062 RTL_PASS, /* type */
7063 "pro_and_epilogue", /* name */
7064 OPTGROUP_NONE, /* optinfo_flags */
7065 false, /* has_gate */
7066 true, /* has_execute */
7067 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
7068 0, /* properties_required */
7069 0, /* properties_provided */
7070 0, /* properties_destroyed */
7071 TODO_verify_flow, /* todo_flags_start */
7072 ( TODO_df_verify | TODO_df_finish
7073 | TODO_verify_rtl_sharing ), /* todo_flags_finish */
7074 };
7075
7076 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
7077 {
7078 public:
7079 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7080 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
7081 {}
7082
7083 /* opt_pass methods: */
7084 unsigned int execute () {
7085 return rest_of_handle_thread_prologue_and_epilogue ();
7086 }
7087
7088 }; // class pass_thread_prologue_and_epilogue
7089
7090 } // anon namespace
7091
7092 rtl_opt_pass *
7093 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7094 {
7095 return new pass_thread_prologue_and_epilogue (ctxt);
7096 }
7097 \f
7098
7099 /* This mini-pass fixes fall-out from SSA in asm statements that have
7100 in-out constraints. Say you start with
7101
7102 orig = inout;
7103 asm ("": "+mr" (inout));
7104 use (orig);
7105
7106 which is transformed very early to use explicit output and match operands:
7107
7108 orig = inout;
7109 asm ("": "=mr" (inout) : "0" (inout));
7110 use (orig);
7111
7112 Or, after SSA and copyprop,
7113
7114 asm ("": "=mr" (inout_2) : "0" (inout_1));
7115 use (inout_1);
7116
7117 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7118 they represent two separate values, so they will get different pseudo
7119 registers during expansion. Then, since the two operands need to match
7120 per the constraints, but use different pseudo registers, reload can
7121 only register a reload for these operands. But reloads can only be
7122 satisfied by hardregs, not by memory, so we need a register for this
7123 reload, just because we are presented with non-matching operands.
7124 So, even though we allow memory for this operand, no memory can be
7125 used for it, just because the two operands don't match. This can
7126 cause reload failures on register-starved targets.
7127
7128 So it's a symptom of reload not being able to use memory for reloads
7129 or, alternatively it's also a symptom of both operands not coming into
7130 reload as matching (in which case the pseudo could go to memory just
7131 fine, as the alternative allows it, and no reload would be necessary).
7132 We fix the latter problem here, by transforming
7133
7134 asm ("": "=mr" (inout_2) : "0" (inout_1));
7135
7136 back to
7137
7138 inout_2 = inout_1;
7139 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7140
7141 static void
7142 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7143 {
7144 int i;
7145 bool changed = false;
7146 rtx op = SET_SRC (p_sets[0]);
7147 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7148 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7149 bool *output_matched = XALLOCAVEC (bool, noutputs);
7150
7151 memset (output_matched, 0, noutputs * sizeof (bool));
7152 for (i = 0; i < ninputs; i++)
7153 {
7154 rtx input, output, insns;
7155 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7156 char *end;
7157 int match, j;
7158
7159 if (*constraint == '%')
7160 constraint++;
7161
7162 match = strtoul (constraint, &end, 10);
7163 if (end == constraint)
7164 continue;
7165
7166 gcc_assert (match < noutputs);
7167 output = SET_DEST (p_sets[match]);
7168 input = RTVEC_ELT (inputs, i);
7169 /* Only do the transformation for pseudos. */
7170 if (! REG_P (output)
7171 || rtx_equal_p (output, input)
7172 || (GET_MODE (input) != VOIDmode
7173 && GET_MODE (input) != GET_MODE (output)))
7174 continue;
7175
7176 /* We can't do anything if the output is also used as input,
7177 as we're going to overwrite it. */
7178 for (j = 0; j < ninputs; j++)
7179 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7180 break;
7181 if (j != ninputs)
7182 continue;
7183
7184 /* Avoid changing the same input several times. For
7185 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7186 only change in once (to out1), rather than changing it
7187 first to out1 and afterwards to out2. */
7188 if (i > 0)
7189 {
7190 for (j = 0; j < noutputs; j++)
7191 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7192 break;
7193 if (j != noutputs)
7194 continue;
7195 }
7196 output_matched[match] = true;
7197
7198 start_sequence ();
7199 emit_move_insn (output, input);
7200 insns = get_insns ();
7201 end_sequence ();
7202 emit_insn_before (insns, insn);
7203
7204 /* Now replace all mentions of the input with output. We can't
7205 just replace the occurrence in inputs[i], as the register might
7206 also be used in some other input (or even in an address of an
7207 output), which would mean possibly increasing the number of
7208 inputs by one (namely 'output' in addition), which might pose
7209 a too complicated problem for reload to solve. E.g. this situation:
7210
7211 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7212
7213 Here 'input' is used in two occurrences as input (once for the
7214 input operand, once for the address in the second output operand).
7215 If we would replace only the occurrence of the input operand (to
7216 make the matching) we would be left with this:
7217
7218 output = input
7219 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7220
7221 Now we suddenly have two different input values (containing the same
7222 value, but different pseudos) where we formerly had only one.
7223 With more complicated asms this might lead to reload failures
7224 which wouldn't have happen without this pass. So, iterate over
7225 all operands and replace all occurrences of the register used. */
7226 for (j = 0; j < noutputs; j++)
7227 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7228 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7229 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7230 input, output);
7231 for (j = 0; j < ninputs; j++)
7232 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7233 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7234 input, output);
7235
7236 changed = true;
7237 }
7238
7239 if (changed)
7240 df_insn_rescan (insn);
7241 }
7242
7243 static unsigned
7244 rest_of_match_asm_constraints (void)
7245 {
7246 basic_block bb;
7247 rtx insn, pat, *p_sets;
7248 int noutputs;
7249
7250 if (!crtl->has_asm_statement)
7251 return 0;
7252
7253 df_set_flags (DF_DEFER_INSN_RESCAN);
7254 FOR_EACH_BB (bb)
7255 {
7256 FOR_BB_INSNS (bb, insn)
7257 {
7258 if (!INSN_P (insn))
7259 continue;
7260
7261 pat = PATTERN (insn);
7262 if (GET_CODE (pat) == PARALLEL)
7263 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7264 else if (GET_CODE (pat) == SET)
7265 p_sets = &PATTERN (insn), noutputs = 1;
7266 else
7267 continue;
7268
7269 if (GET_CODE (*p_sets) == SET
7270 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7271 match_asm_constraints_1 (insn, p_sets, noutputs);
7272 }
7273 }
7274
7275 return TODO_df_finish;
7276 }
7277
7278 namespace {
7279
7280 const pass_data pass_data_match_asm_constraints =
7281 {
7282 RTL_PASS, /* type */
7283 "asmcons", /* name */
7284 OPTGROUP_NONE, /* optinfo_flags */
7285 false, /* has_gate */
7286 true, /* has_execute */
7287 TV_NONE, /* tv_id */
7288 0, /* properties_required */
7289 0, /* properties_provided */
7290 0, /* properties_destroyed */
7291 0, /* todo_flags_start */
7292 0, /* todo_flags_finish */
7293 };
7294
7295 class pass_match_asm_constraints : public rtl_opt_pass
7296 {
7297 public:
7298 pass_match_asm_constraints (gcc::context *ctxt)
7299 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
7300 {}
7301
7302 /* opt_pass methods: */
7303 unsigned int execute () { return rest_of_match_asm_constraints (); }
7304
7305 }; // class pass_match_asm_constraints
7306
7307 } // anon namespace
7308
7309 rtl_opt_pass *
7310 make_pass_match_asm_constraints (gcc::context *ctxt)
7311 {
7312 return new pass_match_asm_constraints (ctxt);
7313 }
7314
7315
7316 #include "gt-function.h"