c-decl.c: Fix a comment typo.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
35
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
40
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "libfuncs.h"
50 #include "regs.h"
51 #include "hard-reg-set.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "output.h"
55 #include "basic-block.h"
56 #include "toplev.h"
57 #include "hashtab.h"
58 #include "ggc.h"
59 #include "tm_p.h"
60 #include "integrate.h"
61 #include "langhooks.h"
62
63 #ifndef TRAMPOLINE_ALIGNMENT
64 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
65 #endif
66
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
70
71 /* Some systems use __main in a way incompatible with its use in gcc, in these
72 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
73 give the same symbol without quotes for an alternative entry point. You
74 must define both, or neither. */
75 #ifndef NAME__MAIN
76 #define NAME__MAIN "__main"
77 #endif
78
79 /* Round a value to the lowest integer less than it that is a multiple of
80 the required alignment. Avoid using division in case the value is
81 negative. Assume the alignment is a power of two. */
82 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
83
84 /* Similar, but round to the next highest integer that meets the
85 alignment. */
86 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
87
88 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
89 during rtl generation. If they are different register numbers, this is
90 always true. It may also be true if
91 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
92 generation. See fix_lexical_addr for details. */
93
94 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
95 #define NEED_SEPARATE_AP
96 #endif
97
98 /* Nonzero if function being compiled doesn't contain any calls
99 (ignoring the prologue and epilogue). This is set prior to
100 local register allocation and is valid for the remaining
101 compiler passes. */
102 int current_function_is_leaf;
103
104 /* Nonzero if function being compiled doesn't contain any instructions
105 that can throw an exception. This is set prior to final. */
106
107 int current_function_nothrow;
108
109 /* Nonzero if function being compiled doesn't modify the stack pointer
110 (ignoring the prologue and epilogue). This is only valid after
111 life_analysis has run. */
112 int current_function_sp_is_unchanging;
113
114 /* Nonzero if the function being compiled is a leaf function which only
115 uses leaf registers. This is valid after reload (specifically after
116 sched2) and is useful only if the port defines LEAF_REGISTERS. */
117 int current_function_uses_only_leaf_regs;
118
119 /* Nonzero once virtual register instantiation has been done.
120 assign_stack_local uses frame_pointer_rtx when this is nonzero.
121 calls.c:emit_library_call_value_1 uses it to set up
122 post-instantiation libcalls. */
123 int virtuals_instantiated;
124
125 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
126 static int funcdef_no;
127
128 /* These variables hold pointers to functions to create and destroy
129 target specific, per-function data structures. */
130 struct machine_function * (*init_machine_status) PARAMS ((void));
131
132 /* The FUNCTION_DECL for an inline function currently being expanded. */
133 tree inline_function_decl;
134
135 /* The currently compiled function. */
136 struct function *cfun = 0;
137
138 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
139 static GTY(()) varray_type prologue;
140 static GTY(()) varray_type epilogue;
141
142 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
143 in this function. */
144 static GTY(()) varray_type sibcall_epilogue;
145 \f
146 /* In order to evaluate some expressions, such as function calls returning
147 structures in memory, we need to temporarily allocate stack locations.
148 We record each allocated temporary in the following structure.
149
150 Associated with each temporary slot is a nesting level. When we pop up
151 one level, all temporaries associated with the previous level are freed.
152 Normally, all temporaries are freed after the execution of the statement
153 in which they were created. However, if we are inside a ({...}) grouping,
154 the result may be in a temporary and hence must be preserved. If the
155 result could be in a temporary, we preserve it if we can determine which
156 one it is in. If we cannot determine which temporary may contain the
157 result, all temporaries are preserved. A temporary is preserved by
158 pretending it was allocated at the previous nesting level.
159
160 Automatic variables are also assigned temporary slots, at the nesting
161 level where they are defined. They are marked a "kept" so that
162 free_temp_slots will not free them. */
163
164 struct temp_slot GTY(())
165 {
166 /* Points to next temporary slot. */
167 struct temp_slot *next;
168 /* The rtx to used to reference the slot. */
169 rtx slot;
170 /* The rtx used to represent the address if not the address of the
171 slot above. May be an EXPR_LIST if multiple addresses exist. */
172 rtx address;
173 /* The alignment (in bits) of the slot. */
174 unsigned int align;
175 /* The size, in units, of the slot. */
176 HOST_WIDE_INT size;
177 /* The type of the object in the slot, or zero if it doesn't correspond
178 to a type. We use this to determine whether a slot can be reused.
179 It can be reused if objects of the type of the new slot will always
180 conflict with objects of the type of the old slot. */
181 tree type;
182 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
183 tree rtl_expr;
184 /* Nonzero if this temporary is currently in use. */
185 char in_use;
186 /* Nonzero if this temporary has its address taken. */
187 char addr_taken;
188 /* Nesting level at which this slot is being used. */
189 int level;
190 /* Nonzero if this should survive a call to free_temp_slots. */
191 int keep;
192 /* The offset of the slot from the frame_pointer, including extra space
193 for alignment. This info is for combine_temp_slots. */
194 HOST_WIDE_INT base_offset;
195 /* The size of the slot, including extra space for alignment. This
196 info is for combine_temp_slots. */
197 HOST_WIDE_INT full_size;
198 };
199 \f
200 /* This structure is used to record MEMs or pseudos used to replace VAR, any
201 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
202 maintain this list in case two operands of an insn were required to match;
203 in that case we must ensure we use the same replacement. */
204
205 struct fixup_replacement GTY(())
206 {
207 rtx old;
208 rtx new;
209 struct fixup_replacement *next;
210 };
211
212 struct insns_for_mem_entry
213 {
214 /* A MEM. */
215 rtx key;
216 /* These are the INSNs which reference the MEM. */
217 rtx insns;
218 };
219
220 /* Forward declarations. */
221
222 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
223 int, struct function *));
224 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
225 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
226 enum machine_mode, enum machine_mode,
227 int, unsigned int, int,
228 htab_t));
229 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
230 enum machine_mode,
231 htab_t));
232 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int, rtx,
233 htab_t));
234 static struct fixup_replacement
235 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
236 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
237 int, int, rtx));
238 static void fixup_var_refs_insns_with_hash
239 PARAMS ((htab_t, rtx,
240 enum machine_mode, int, rtx));
241 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
242 int, int, rtx));
243 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
244 struct fixup_replacement **, rtx));
245 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, enum machine_mode, int));
246 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, enum machine_mode,
247 int));
248 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
249 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
250 static void instantiate_decls PARAMS ((tree, int));
251 static void instantiate_decls_1 PARAMS ((tree, int));
252 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
253 static rtx instantiate_new_reg PARAMS ((rtx, HOST_WIDE_INT *));
254 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
255 static void delete_handlers PARAMS ((void));
256 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
257 struct args_size *));
258 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
259 tree));
260 static rtx round_trampoline_addr PARAMS ((rtx));
261 static rtx adjust_trampoline_addr PARAMS ((rtx));
262 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
263 static void reorder_blocks_0 PARAMS ((tree));
264 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
265 static void reorder_fix_fragments PARAMS ((tree));
266 static tree blocks_nreverse PARAMS ((tree));
267 static int all_blocks PARAMS ((tree, tree *));
268 static tree *get_block_vector PARAMS ((tree, int *));
269 extern tree debug_find_var_in_block_tree PARAMS ((tree, tree));
270 /* We always define `record_insns' even if its not used so that we
271 can always export `prologue_epilogue_contains'. */
272 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
273 static int contains PARAMS ((rtx, varray_type));
274 #ifdef HAVE_return
275 static void emit_return_into_block PARAMS ((basic_block, rtx));
276 #endif
277 static void put_addressof_into_stack PARAMS ((rtx, htab_t));
278 static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
279 htab_t));
280 static void purge_single_hard_subreg_set PARAMS ((rtx));
281 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
282 static rtx keep_stack_depressed PARAMS ((rtx));
283 #endif
284 static int is_addressof PARAMS ((rtx *, void *));
285 static hashval_t insns_for_mem_hash PARAMS ((const void *));
286 static int insns_for_mem_comp PARAMS ((const void *, const void *));
287 static int insns_for_mem_walk PARAMS ((rtx *, void *));
288 static void compute_insns_for_mem PARAMS ((rtx, rtx, htab_t));
289 static void prepare_function_start PARAMS ((void));
290 static void do_clobber_return_reg PARAMS ((rtx, void *));
291 static void do_use_return_reg PARAMS ((rtx, void *));
292 \f
293 /* Pointer to chain of `struct function' for containing functions. */
294 static GTY(()) struct function *outer_function_chain;
295
296 /* Given a function decl for a containing function,
297 return the `struct function' for it. */
298
299 struct function *
300 find_function_data (decl)
301 tree decl;
302 {
303 struct function *p;
304
305 for (p = outer_function_chain; p; p = p->outer)
306 if (p->decl == decl)
307 return p;
308
309 abort ();
310 }
311
312 /* Save the current context for compilation of a nested function.
313 This is called from language-specific code. The caller should use
314 the enter_nested langhook to save any language-specific state,
315 since this function knows only about language-independent
316 variables. */
317
318 void
319 push_function_context_to (context)
320 tree context;
321 {
322 struct function *p;
323
324 if (context)
325 {
326 if (context == current_function_decl)
327 cfun->contains_functions = 1;
328 else
329 {
330 struct function *containing = find_function_data (context);
331 containing->contains_functions = 1;
332 }
333 }
334
335 if (cfun == 0)
336 init_dummy_function_start ();
337 p = cfun;
338
339 p->outer = outer_function_chain;
340 outer_function_chain = p;
341 p->fixup_var_refs_queue = 0;
342
343 (*lang_hooks.function.enter_nested) (p);
344
345 cfun = 0;
346 }
347
348 void
349 push_function_context ()
350 {
351 push_function_context_to (current_function_decl);
352 }
353
354 /* Restore the last saved context, at the end of a nested function.
355 This function is called from language-specific code. */
356
357 void
358 pop_function_context_from (context)
359 tree context ATTRIBUTE_UNUSED;
360 {
361 struct function *p = outer_function_chain;
362 struct var_refs_queue *queue;
363
364 cfun = p;
365 outer_function_chain = p->outer;
366
367 current_function_decl = p->decl;
368 reg_renumber = 0;
369
370 restore_emit_status (p);
371
372 (*lang_hooks.function.leave_nested) (p);
373
374 /* Finish doing put_var_into_stack for any of our variables which became
375 addressable during the nested function. If only one entry has to be
376 fixed up, just do that one. Otherwise, first make a list of MEMs that
377 are not to be unshared. */
378 if (p->fixup_var_refs_queue == 0)
379 ;
380 else if (p->fixup_var_refs_queue->next == 0)
381 fixup_var_refs (p->fixup_var_refs_queue->modified,
382 p->fixup_var_refs_queue->promoted_mode,
383 p->fixup_var_refs_queue->unsignedp,
384 p->fixup_var_refs_queue->modified, 0);
385 else
386 {
387 rtx list = 0;
388
389 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
390 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
391
392 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
393 fixup_var_refs (queue->modified, queue->promoted_mode,
394 queue->unsignedp, list, 0);
395
396 }
397
398 p->fixup_var_refs_queue = 0;
399
400 /* Reset variables that have known state during rtx generation. */
401 rtx_equal_function_value_matters = 1;
402 virtuals_instantiated = 0;
403 generating_concat_p = 1;
404 }
405
406 void
407 pop_function_context ()
408 {
409 pop_function_context_from (current_function_decl);
410 }
411
412 /* Clear out all parts of the state in F that can safely be discarded
413 after the function has been parsed, but not compiled, to let
414 garbage collection reclaim the memory. */
415
416 void
417 free_after_parsing (f)
418 struct function *f;
419 {
420 /* f->expr->forced_labels is used by code generation. */
421 /* f->emit->regno_reg_rtx is used by code generation. */
422 /* f->varasm is used by code generation. */
423 /* f->eh->eh_return_stub_label is used by code generation. */
424
425 (*lang_hooks.function.final) (f);
426 f->stmt = NULL;
427 }
428
429 /* Clear out all parts of the state in F that can safely be discarded
430 after the function has been compiled, to let garbage collection
431 reclaim the memory. */
432
433 void
434 free_after_compilation (f)
435 struct function *f;
436 {
437 f->eh = NULL;
438 f->expr = NULL;
439 f->emit = NULL;
440 f->varasm = NULL;
441 f->machine = NULL;
442
443 f->x_temp_slots = NULL;
444 f->arg_offset_rtx = NULL;
445 f->return_rtx = NULL;
446 f->internal_arg_pointer = NULL;
447 f->x_nonlocal_labels = NULL;
448 f->x_nonlocal_goto_handler_slots = NULL;
449 f->x_nonlocal_goto_handler_labels = NULL;
450 f->x_nonlocal_goto_stack_level = NULL;
451 f->x_cleanup_label = NULL;
452 f->x_return_label = NULL;
453 f->x_save_expr_regs = NULL;
454 f->x_stack_slot_list = NULL;
455 f->x_rtl_expr_chain = NULL;
456 f->x_tail_recursion_label = NULL;
457 f->x_tail_recursion_reentry = NULL;
458 f->x_arg_pointer_save_area = NULL;
459 f->x_clobber_return_insn = NULL;
460 f->x_context_display = NULL;
461 f->x_trampoline_list = NULL;
462 f->x_parm_birth_insn = NULL;
463 f->x_last_parm_insn = NULL;
464 f->x_parm_reg_stack_loc = NULL;
465 f->fixup_var_refs_queue = NULL;
466 f->original_arg_vector = NULL;
467 f->original_decl_initial = NULL;
468 f->inl_last_parm_insn = NULL;
469 f->epilogue_delay_list = NULL;
470 }
471 \f
472 /* Allocate fixed slots in the stack frame of the current function. */
473
474 /* Return size needed for stack frame based on slots so far allocated in
475 function F.
476 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
477 the caller may have to do that. */
478
479 HOST_WIDE_INT
480 get_func_frame_size (f)
481 struct function *f;
482 {
483 #ifdef FRAME_GROWS_DOWNWARD
484 return -f->x_frame_offset;
485 #else
486 return f->x_frame_offset;
487 #endif
488 }
489
490 /* Return size needed for stack frame based on slots so far allocated.
491 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
492 the caller may have to do that. */
493 HOST_WIDE_INT
494 get_frame_size ()
495 {
496 return get_func_frame_size (cfun);
497 }
498
499 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
500 with machine mode MODE.
501
502 ALIGN controls the amount of alignment for the address of the slot:
503 0 means according to MODE,
504 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
505 positive specifies alignment boundary in bits.
506
507 We do not round to stack_boundary here.
508
509 FUNCTION specifies the function to allocate in. */
510
511 static rtx
512 assign_stack_local_1 (mode, size, align, function)
513 enum machine_mode mode;
514 HOST_WIDE_INT size;
515 int align;
516 struct function *function;
517 {
518 rtx x, addr;
519 int bigend_correction = 0;
520 int alignment;
521 int frame_off, frame_alignment, frame_phase;
522
523 if (align == 0)
524 {
525 tree type;
526
527 if (mode == BLKmode)
528 alignment = BIGGEST_ALIGNMENT;
529 else
530 alignment = GET_MODE_ALIGNMENT (mode);
531
532 /* Allow the target to (possibly) increase the alignment of this
533 stack slot. */
534 type = (*lang_hooks.types.type_for_mode) (mode, 0);
535 if (type)
536 alignment = LOCAL_ALIGNMENT (type, alignment);
537
538 alignment /= BITS_PER_UNIT;
539 }
540 else if (align == -1)
541 {
542 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
543 size = CEIL_ROUND (size, alignment);
544 }
545 else
546 alignment = align / BITS_PER_UNIT;
547
548 #ifdef FRAME_GROWS_DOWNWARD
549 function->x_frame_offset -= size;
550 #endif
551
552 /* Ignore alignment we can't do with expected alignment of the boundary. */
553 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
554 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
555
556 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
557 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
558
559 /* Calculate how many bytes the start of local variables is off from
560 stack alignment. */
561 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
562 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
563 frame_phase = frame_off ? frame_alignment - frame_off : 0;
564
565 /* Round frame offset to that alignment.
566 We must be careful here, since FRAME_OFFSET might be negative and
567 division with a negative dividend isn't as well defined as we might
568 like. So we instead assume that ALIGNMENT is a power of two and
569 use logical operations which are unambiguous. */
570 #ifdef FRAME_GROWS_DOWNWARD
571 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment) + frame_phase;
572 #else
573 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset - frame_phase, alignment) + frame_phase;
574 #endif
575
576 /* On a big-endian machine, if we are allocating more space than we will use,
577 use the least significant bytes of those that are allocated. */
578 if (BYTES_BIG_ENDIAN && mode != BLKmode)
579 bigend_correction = size - GET_MODE_SIZE (mode);
580
581 /* If we have already instantiated virtual registers, return the actual
582 address relative to the frame pointer. */
583 if (function == cfun && virtuals_instantiated)
584 addr = plus_constant (frame_pointer_rtx,
585 (frame_offset + bigend_correction
586 + STARTING_FRAME_OFFSET));
587 else
588 addr = plus_constant (virtual_stack_vars_rtx,
589 function->x_frame_offset + bigend_correction);
590
591 #ifndef FRAME_GROWS_DOWNWARD
592 function->x_frame_offset += size;
593 #endif
594
595 x = gen_rtx_MEM (mode, addr);
596
597 function->x_stack_slot_list
598 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
599
600 return x;
601 }
602
603 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
604 current function. */
605
606 rtx
607 assign_stack_local (mode, size, align)
608 enum machine_mode mode;
609 HOST_WIDE_INT size;
610 int align;
611 {
612 return assign_stack_local_1 (mode, size, align, cfun);
613 }
614 \f
615 /* Allocate a temporary stack slot and record it for possible later
616 reuse.
617
618 MODE is the machine mode to be given to the returned rtx.
619
620 SIZE is the size in units of the space required. We do no rounding here
621 since assign_stack_local will do any required rounding.
622
623 KEEP is 1 if this slot is to be retained after a call to
624 free_temp_slots. Automatic variables for a block are allocated
625 with this flag. KEEP is 2 if we allocate a longer term temporary,
626 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
627 if we are to allocate something at an inner level to be treated as
628 a variable in the block (e.g., a SAVE_EXPR).
629
630 TYPE is the type that will be used for the stack slot. */
631
632 rtx
633 assign_stack_temp_for_type (mode, size, keep, type)
634 enum machine_mode mode;
635 HOST_WIDE_INT size;
636 int keep;
637 tree type;
638 {
639 unsigned int align;
640 struct temp_slot *p, *best_p = 0;
641 rtx slot;
642
643 /* If SIZE is -1 it means that somebody tried to allocate a temporary
644 of a variable size. */
645 if (size == -1)
646 abort ();
647
648 if (mode == BLKmode)
649 align = BIGGEST_ALIGNMENT;
650 else
651 align = GET_MODE_ALIGNMENT (mode);
652
653 if (! type)
654 type = (*lang_hooks.types.type_for_mode) (mode, 0);
655
656 if (type)
657 align = LOCAL_ALIGNMENT (type, align);
658
659 /* Try to find an available, already-allocated temporary of the proper
660 mode which meets the size and alignment requirements. Choose the
661 smallest one with the closest alignment. */
662 for (p = temp_slots; p; p = p->next)
663 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
664 && ! p->in_use
665 && objects_must_conflict_p (p->type, type)
666 && (best_p == 0 || best_p->size > p->size
667 || (best_p->size == p->size && best_p->align > p->align)))
668 {
669 if (p->align == align && p->size == size)
670 {
671 best_p = 0;
672 break;
673 }
674 best_p = p;
675 }
676
677 /* Make our best, if any, the one to use. */
678 if (best_p)
679 {
680 /* If there are enough aligned bytes left over, make them into a new
681 temp_slot so that the extra bytes don't get wasted. Do this only
682 for BLKmode slots, so that we can be sure of the alignment. */
683 if (GET_MODE (best_p->slot) == BLKmode)
684 {
685 int alignment = best_p->align / BITS_PER_UNIT;
686 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
687
688 if (best_p->size - rounded_size >= alignment)
689 {
690 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
691 p->in_use = p->addr_taken = 0;
692 p->size = best_p->size - rounded_size;
693 p->base_offset = best_p->base_offset + rounded_size;
694 p->full_size = best_p->full_size - rounded_size;
695 p->slot = gen_rtx_MEM (BLKmode,
696 plus_constant (XEXP (best_p->slot, 0),
697 rounded_size));
698 p->align = best_p->align;
699 p->address = 0;
700 p->rtl_expr = 0;
701 p->type = best_p->type;
702 p->next = temp_slots;
703 temp_slots = p;
704
705 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
706 stack_slot_list);
707
708 best_p->size = rounded_size;
709 best_p->full_size = rounded_size;
710 }
711 }
712
713 p = best_p;
714 }
715
716 /* If we still didn't find one, make a new temporary. */
717 if (p == 0)
718 {
719 HOST_WIDE_INT frame_offset_old = frame_offset;
720
721 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
722
723 /* We are passing an explicit alignment request to assign_stack_local.
724 One side effect of that is assign_stack_local will not round SIZE
725 to ensure the frame offset remains suitably aligned.
726
727 So for requests which depended on the rounding of SIZE, we go ahead
728 and round it now. We also make sure ALIGNMENT is at least
729 BIGGEST_ALIGNMENT. */
730 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
731 abort ();
732 p->slot = assign_stack_local (mode,
733 (mode == BLKmode
734 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
735 : size),
736 align);
737
738 p->align = align;
739
740 /* The following slot size computation is necessary because we don't
741 know the actual size of the temporary slot until assign_stack_local
742 has performed all the frame alignment and size rounding for the
743 requested temporary. Note that extra space added for alignment
744 can be either above or below this stack slot depending on which
745 way the frame grows. We include the extra space if and only if it
746 is above this slot. */
747 #ifdef FRAME_GROWS_DOWNWARD
748 p->size = frame_offset_old - frame_offset;
749 #else
750 p->size = size;
751 #endif
752
753 /* Now define the fields used by combine_temp_slots. */
754 #ifdef FRAME_GROWS_DOWNWARD
755 p->base_offset = frame_offset;
756 p->full_size = frame_offset_old - frame_offset;
757 #else
758 p->base_offset = frame_offset_old;
759 p->full_size = frame_offset - frame_offset_old;
760 #endif
761 p->address = 0;
762 p->next = temp_slots;
763 temp_slots = p;
764 }
765
766 p->in_use = 1;
767 p->addr_taken = 0;
768 p->rtl_expr = seq_rtl_expr;
769 p->type = type;
770
771 if (keep == 2)
772 {
773 p->level = target_temp_slot_level;
774 p->keep = 0;
775 }
776 else if (keep == 3)
777 {
778 p->level = var_temp_slot_level;
779 p->keep = 0;
780 }
781 else
782 {
783 p->level = temp_slot_level;
784 p->keep = keep;
785 }
786
787
788 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
789 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
790 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
791
792 /* If we know the alias set for the memory that will be used, use
793 it. If there's no TYPE, then we don't know anything about the
794 alias set for the memory. */
795 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
796 set_mem_align (slot, align);
797
798 /* If a type is specified, set the relevant flags. */
799 if (type != 0)
800 {
801 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
802 && TYPE_READONLY (type));
803 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
804 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
805 }
806
807 return slot;
808 }
809
810 /* Allocate a temporary stack slot and record it for possible later
811 reuse. First three arguments are same as in preceding function. */
812
813 rtx
814 assign_stack_temp (mode, size, keep)
815 enum machine_mode mode;
816 HOST_WIDE_INT size;
817 int keep;
818 {
819 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
820 }
821 \f
822 /* Assign a temporary.
823 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
824 and so that should be used in error messages. In either case, we
825 allocate of the given type.
826 KEEP is as for assign_stack_temp.
827 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
828 it is 0 if a register is OK.
829 DONT_PROMOTE is 1 if we should not promote values in register
830 to wider modes. */
831
832 rtx
833 assign_temp (type_or_decl, keep, memory_required, dont_promote)
834 tree type_or_decl;
835 int keep;
836 int memory_required;
837 int dont_promote ATTRIBUTE_UNUSED;
838 {
839 tree type, decl;
840 enum machine_mode mode;
841 #ifndef PROMOTE_FOR_CALL_ONLY
842 int unsignedp;
843 #endif
844
845 if (DECL_P (type_or_decl))
846 decl = type_or_decl, type = TREE_TYPE (decl);
847 else
848 decl = NULL, type = type_or_decl;
849
850 mode = TYPE_MODE (type);
851 #ifndef PROMOTE_FOR_CALL_ONLY
852 unsignedp = TREE_UNSIGNED (type);
853 #endif
854
855 if (mode == BLKmode || memory_required)
856 {
857 HOST_WIDE_INT size = int_size_in_bytes (type);
858 rtx tmp;
859
860 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
861 problems with allocating the stack space. */
862 if (size == 0)
863 size = 1;
864
865 /* Unfortunately, we don't yet know how to allocate variable-sized
866 temporaries. However, sometimes we have a fixed upper limit on
867 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
868 instead. This is the case for Chill variable-sized strings. */
869 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
870 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
871 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
872 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
873
874 /* The size of the temporary may be too large to fit into an integer. */
875 /* ??? Not sure this should happen except for user silliness, so limit
876 this to things that aren't compiler-generated temporaries. The
877 rest of the time we'll abort in assign_stack_temp_for_type. */
878 if (decl && size == -1
879 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
880 {
881 error_with_decl (decl, "size of variable `%s' is too large");
882 size = 1;
883 }
884
885 tmp = assign_stack_temp_for_type (mode, size, keep, type);
886 return tmp;
887 }
888
889 #ifndef PROMOTE_FOR_CALL_ONLY
890 if (! dont_promote)
891 mode = promote_mode (type, mode, &unsignedp, 0);
892 #endif
893
894 return gen_reg_rtx (mode);
895 }
896 \f
897 /* Combine temporary stack slots which are adjacent on the stack.
898
899 This allows for better use of already allocated stack space. This is only
900 done for BLKmode slots because we can be sure that we won't have alignment
901 problems in this case. */
902
903 void
904 combine_temp_slots ()
905 {
906 struct temp_slot *p, *q;
907 struct temp_slot *prev_p, *prev_q;
908 int num_slots;
909
910 /* We can't combine slots, because the information about which slot
911 is in which alias set will be lost. */
912 if (flag_strict_aliasing)
913 return;
914
915 /* If there are a lot of temp slots, don't do anything unless
916 high levels of optimization. */
917 if (! flag_expensive_optimizations)
918 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
919 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
920 return;
921
922 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
923 {
924 int delete_p = 0;
925
926 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
927 for (q = p->next, prev_q = p; q; q = prev_q->next)
928 {
929 int delete_q = 0;
930 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
931 {
932 if (p->base_offset + p->full_size == q->base_offset)
933 {
934 /* Q comes after P; combine Q into P. */
935 p->size += q->size;
936 p->full_size += q->full_size;
937 delete_q = 1;
938 }
939 else if (q->base_offset + q->full_size == p->base_offset)
940 {
941 /* P comes after Q; combine P into Q. */
942 q->size += p->size;
943 q->full_size += p->full_size;
944 delete_p = 1;
945 break;
946 }
947 }
948 /* Either delete Q or advance past it. */
949 if (delete_q)
950 prev_q->next = q->next;
951 else
952 prev_q = q;
953 }
954 /* Either delete P or advance past it. */
955 if (delete_p)
956 {
957 if (prev_p)
958 prev_p->next = p->next;
959 else
960 temp_slots = p->next;
961 }
962 else
963 prev_p = p;
964 }
965 }
966 \f
967 /* Find the temp slot corresponding to the object at address X. */
968
969 static struct temp_slot *
970 find_temp_slot_from_address (x)
971 rtx x;
972 {
973 struct temp_slot *p;
974 rtx next;
975
976 for (p = temp_slots; p; p = p->next)
977 {
978 if (! p->in_use)
979 continue;
980
981 else if (XEXP (p->slot, 0) == x
982 || p->address == x
983 || (GET_CODE (x) == PLUS
984 && XEXP (x, 0) == virtual_stack_vars_rtx
985 && GET_CODE (XEXP (x, 1)) == CONST_INT
986 && INTVAL (XEXP (x, 1)) >= p->base_offset
987 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
988 return p;
989
990 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
991 for (next = p->address; next; next = XEXP (next, 1))
992 if (XEXP (next, 0) == x)
993 return p;
994 }
995
996 /* If we have a sum involving a register, see if it points to a temp
997 slot. */
998 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
999 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1000 return p;
1001 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1002 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1003 return p;
1004
1005 return 0;
1006 }
1007
1008 /* Indicate that NEW is an alternate way of referring to the temp slot
1009 that previously was known by OLD. */
1010
1011 void
1012 update_temp_slot_address (old, new)
1013 rtx old, new;
1014 {
1015 struct temp_slot *p;
1016
1017 if (rtx_equal_p (old, new))
1018 return;
1019
1020 p = find_temp_slot_from_address (old);
1021
1022 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1023 is a register, see if one operand of the PLUS is a temporary
1024 location. If so, NEW points into it. Otherwise, if both OLD and
1025 NEW are a PLUS and if there is a register in common between them.
1026 If so, try a recursive call on those values. */
1027 if (p == 0)
1028 {
1029 if (GET_CODE (old) != PLUS)
1030 return;
1031
1032 if (GET_CODE (new) == REG)
1033 {
1034 update_temp_slot_address (XEXP (old, 0), new);
1035 update_temp_slot_address (XEXP (old, 1), new);
1036 return;
1037 }
1038 else if (GET_CODE (new) != PLUS)
1039 return;
1040
1041 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1042 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1043 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1044 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1045 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1046 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1047 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1048 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1049
1050 return;
1051 }
1052
1053 /* Otherwise add an alias for the temp's address. */
1054 else if (p->address == 0)
1055 p->address = new;
1056 else
1057 {
1058 if (GET_CODE (p->address) != EXPR_LIST)
1059 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1060
1061 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1062 }
1063 }
1064
1065 /* If X could be a reference to a temporary slot, mark the fact that its
1066 address was taken. */
1067
1068 void
1069 mark_temp_addr_taken (x)
1070 rtx x;
1071 {
1072 struct temp_slot *p;
1073
1074 if (x == 0)
1075 return;
1076
1077 /* If X is not in memory or is at a constant address, it cannot be in
1078 a temporary slot. */
1079 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1080 return;
1081
1082 p = find_temp_slot_from_address (XEXP (x, 0));
1083 if (p != 0)
1084 p->addr_taken = 1;
1085 }
1086
1087 /* If X could be a reference to a temporary slot, mark that slot as
1088 belonging to the to one level higher than the current level. If X
1089 matched one of our slots, just mark that one. Otherwise, we can't
1090 easily predict which it is, so upgrade all of them. Kept slots
1091 need not be touched.
1092
1093 This is called when an ({...}) construct occurs and a statement
1094 returns a value in memory. */
1095
1096 void
1097 preserve_temp_slots (x)
1098 rtx x;
1099 {
1100 struct temp_slot *p = 0;
1101
1102 /* If there is no result, we still might have some objects whose address
1103 were taken, so we need to make sure they stay around. */
1104 if (x == 0)
1105 {
1106 for (p = temp_slots; p; p = p->next)
1107 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1108 p->level--;
1109
1110 return;
1111 }
1112
1113 /* If X is a register that is being used as a pointer, see if we have
1114 a temporary slot we know it points to. To be consistent with
1115 the code below, we really should preserve all non-kept slots
1116 if we can't find a match, but that seems to be much too costly. */
1117 if (GET_CODE (x) == REG && REG_POINTER (x))
1118 p = find_temp_slot_from_address (x);
1119
1120 /* If X is not in memory or is at a constant address, it cannot be in
1121 a temporary slot, but it can contain something whose address was
1122 taken. */
1123 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1124 {
1125 for (p = temp_slots; p; p = p->next)
1126 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1127 p->level--;
1128
1129 return;
1130 }
1131
1132 /* First see if we can find a match. */
1133 if (p == 0)
1134 p = find_temp_slot_from_address (XEXP (x, 0));
1135
1136 if (p != 0)
1137 {
1138 /* Move everything at our level whose address was taken to our new
1139 level in case we used its address. */
1140 struct temp_slot *q;
1141
1142 if (p->level == temp_slot_level)
1143 {
1144 for (q = temp_slots; q; q = q->next)
1145 if (q != p && q->addr_taken && q->level == p->level)
1146 q->level--;
1147
1148 p->level--;
1149 p->addr_taken = 0;
1150 }
1151 return;
1152 }
1153
1154 /* Otherwise, preserve all non-kept slots at this level. */
1155 for (p = temp_slots; p; p = p->next)
1156 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1157 p->level--;
1158 }
1159
1160 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1161 with that RTL_EXPR, promote it into a temporary slot at the present
1162 level so it will not be freed when we free slots made in the
1163 RTL_EXPR. */
1164
1165 void
1166 preserve_rtl_expr_result (x)
1167 rtx x;
1168 {
1169 struct temp_slot *p;
1170
1171 /* If X is not in memory or is at a constant address, it cannot be in
1172 a temporary slot. */
1173 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1174 return;
1175
1176 /* If we can find a match, move it to our level unless it is already at
1177 an upper level. */
1178 p = find_temp_slot_from_address (XEXP (x, 0));
1179 if (p != 0)
1180 {
1181 p->level = MIN (p->level, temp_slot_level);
1182 p->rtl_expr = 0;
1183 }
1184
1185 return;
1186 }
1187
1188 /* Free all temporaries used so far. This is normally called at the end
1189 of generating code for a statement. Don't free any temporaries
1190 currently in use for an RTL_EXPR that hasn't yet been emitted.
1191 We could eventually do better than this since it can be reused while
1192 generating the same RTL_EXPR, but this is complex and probably not
1193 worthwhile. */
1194
1195 void
1196 free_temp_slots ()
1197 {
1198 struct temp_slot *p;
1199
1200 for (p = temp_slots; p; p = p->next)
1201 if (p->in_use && p->level == temp_slot_level && ! p->keep
1202 && p->rtl_expr == 0)
1203 p->in_use = 0;
1204
1205 combine_temp_slots ();
1206 }
1207
1208 /* Free all temporary slots used in T, an RTL_EXPR node. */
1209
1210 void
1211 free_temps_for_rtl_expr (t)
1212 tree t;
1213 {
1214 struct temp_slot *p;
1215
1216 for (p = temp_slots; p; p = p->next)
1217 if (p->rtl_expr == t)
1218 {
1219 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1220 needs to be preserved. This can happen if a temporary in
1221 the RTL_EXPR was addressed; preserve_temp_slots will move
1222 the temporary into a higher level. */
1223 if (temp_slot_level <= p->level)
1224 p->in_use = 0;
1225 else
1226 p->rtl_expr = NULL_TREE;
1227 }
1228
1229 combine_temp_slots ();
1230 }
1231
1232 /* Mark all temporaries ever allocated in this function as not suitable
1233 for reuse until the current level is exited. */
1234
1235 void
1236 mark_all_temps_used ()
1237 {
1238 struct temp_slot *p;
1239
1240 for (p = temp_slots; p; p = p->next)
1241 {
1242 p->in_use = p->keep = 1;
1243 p->level = MIN (p->level, temp_slot_level);
1244 }
1245 }
1246
1247 /* Push deeper into the nesting level for stack temporaries. */
1248
1249 void
1250 push_temp_slots ()
1251 {
1252 temp_slot_level++;
1253 }
1254
1255 /* Likewise, but save the new level as the place to allocate variables
1256 for blocks. */
1257
1258 #if 0
1259 void
1260 push_temp_slots_for_block ()
1261 {
1262 push_temp_slots ();
1263
1264 var_temp_slot_level = temp_slot_level;
1265 }
1266
1267 /* Likewise, but save the new level as the place to allocate temporaries
1268 for TARGET_EXPRs. */
1269
1270 void
1271 push_temp_slots_for_target ()
1272 {
1273 push_temp_slots ();
1274
1275 target_temp_slot_level = temp_slot_level;
1276 }
1277
1278 /* Set and get the value of target_temp_slot_level. The only
1279 permitted use of these functions is to save and restore this value. */
1280
1281 int
1282 get_target_temp_slot_level ()
1283 {
1284 return target_temp_slot_level;
1285 }
1286
1287 void
1288 set_target_temp_slot_level (level)
1289 int level;
1290 {
1291 target_temp_slot_level = level;
1292 }
1293 #endif
1294
1295 /* Pop a temporary nesting level. All slots in use in the current level
1296 are freed. */
1297
1298 void
1299 pop_temp_slots ()
1300 {
1301 struct temp_slot *p;
1302
1303 for (p = temp_slots; p; p = p->next)
1304 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1305 p->in_use = 0;
1306
1307 combine_temp_slots ();
1308
1309 temp_slot_level--;
1310 }
1311
1312 /* Initialize temporary slots. */
1313
1314 void
1315 init_temp_slots ()
1316 {
1317 /* We have not allocated any temporaries yet. */
1318 temp_slots = 0;
1319 temp_slot_level = 0;
1320 var_temp_slot_level = 0;
1321 target_temp_slot_level = 0;
1322 }
1323 \f
1324 /* Retroactively move an auto variable from a register to a stack slot.
1325 This is done when an address-reference to the variable is seen. */
1326
1327 void
1328 put_var_into_stack (decl)
1329 tree decl;
1330 {
1331 rtx reg;
1332 enum machine_mode promoted_mode, decl_mode;
1333 struct function *function = 0;
1334 tree context;
1335 int can_use_addressof;
1336 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1337 int usedp = (TREE_USED (decl)
1338 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1339
1340 context = decl_function_context (decl);
1341
1342 /* Get the current rtl used for this object and its original mode. */
1343 reg = (TREE_CODE (decl) == SAVE_EXPR
1344 ? SAVE_EXPR_RTL (decl)
1345 : DECL_RTL_IF_SET (decl));
1346
1347 /* No need to do anything if decl has no rtx yet
1348 since in that case caller is setting TREE_ADDRESSABLE
1349 and a stack slot will be assigned when the rtl is made. */
1350 if (reg == 0)
1351 return;
1352
1353 /* Get the declared mode for this object. */
1354 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1355 : DECL_MODE (decl));
1356 /* Get the mode it's actually stored in. */
1357 promoted_mode = GET_MODE (reg);
1358
1359 /* If this variable comes from an outer function, find that
1360 function's saved context. Don't use find_function_data here,
1361 because it might not be in any active function.
1362 FIXME: Is that really supposed to happen?
1363 It does in ObjC at least. */
1364 if (context != current_function_decl && context != inline_function_decl)
1365 for (function = outer_function_chain; function; function = function->outer)
1366 if (function->decl == context)
1367 break;
1368
1369 /* If this is a variable-size object with a pseudo to address it,
1370 put that pseudo into the stack, if the var is nonlocal. */
1371 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1372 && GET_CODE (reg) == MEM
1373 && GET_CODE (XEXP (reg, 0)) == REG
1374 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1375 {
1376 reg = XEXP (reg, 0);
1377 decl_mode = promoted_mode = GET_MODE (reg);
1378 }
1379
1380 can_use_addressof
1381 = (function == 0
1382 && optimize > 0
1383 /* FIXME make it work for promoted modes too */
1384 && decl_mode == promoted_mode
1385 #ifdef NON_SAVING_SETJMP
1386 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1387 #endif
1388 );
1389
1390 /* If we can't use ADDRESSOF, make sure we see through one we already
1391 generated. */
1392 if (! can_use_addressof && GET_CODE (reg) == MEM
1393 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1394 reg = XEXP (XEXP (reg, 0), 0);
1395
1396 /* Now we should have a value that resides in one or more pseudo regs. */
1397
1398 if (GET_CODE (reg) == REG)
1399 {
1400 /* If this variable lives in the current function and we don't need
1401 to put things in the stack for the sake of setjmp, try to keep it
1402 in a register until we know we actually need the address. */
1403 if (can_use_addressof)
1404 gen_mem_addressof (reg, decl);
1405 else
1406 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1407 decl_mode, volatilep, 0, usedp, 0);
1408 }
1409 else if (GET_CODE (reg) == CONCAT)
1410 {
1411 /* A CONCAT contains two pseudos; put them both in the stack.
1412 We do it so they end up consecutive.
1413 We fixup references to the parts only after we fixup references
1414 to the whole CONCAT, lest we do double fixups for the latter
1415 references. */
1416 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1417 tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1418 rtx lopart = XEXP (reg, 0);
1419 rtx hipart = XEXP (reg, 1);
1420 #ifdef FRAME_GROWS_DOWNWARD
1421 /* Since part 0 should have a lower address, do it second. */
1422 put_reg_into_stack (function, hipart, part_type, part_mode,
1423 part_mode, volatilep, 0, 0, 0);
1424 put_reg_into_stack (function, lopart, part_type, part_mode,
1425 part_mode, volatilep, 0, 0, 0);
1426 #else
1427 put_reg_into_stack (function, lopart, part_type, part_mode,
1428 part_mode, volatilep, 0, 0, 0);
1429 put_reg_into_stack (function, hipart, part_type, part_mode,
1430 part_mode, volatilep, 0, 0, 0);
1431 #endif
1432
1433 /* Change the CONCAT into a combined MEM for both parts. */
1434 PUT_CODE (reg, MEM);
1435 MEM_ATTRS (reg) = 0;
1436
1437 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1438 already computed alias sets. Here we want to re-generate. */
1439 if (DECL_P (decl))
1440 SET_DECL_RTL (decl, NULL);
1441 set_mem_attributes (reg, decl, 1);
1442 if (DECL_P (decl))
1443 SET_DECL_RTL (decl, reg);
1444
1445 /* The two parts are in memory order already.
1446 Use the lower parts address as ours. */
1447 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1448 /* Prevent sharing of rtl that might lose. */
1449 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1450 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1451 if (usedp)
1452 {
1453 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1454 promoted_mode, 0);
1455 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1456 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1457 }
1458 }
1459 else
1460 return;
1461 }
1462
1463 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1464 into the stack frame of FUNCTION (0 means the current function).
1465 DECL_MODE is the machine mode of the user-level data type.
1466 PROMOTED_MODE is the machine mode of the register.
1467 VOLATILE_P is nonzero if this is for a "volatile" decl.
1468 USED_P is nonzero if this reg might have already been used in an insn. */
1469
1470 static void
1471 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1472 original_regno, used_p, ht)
1473 struct function *function;
1474 rtx reg;
1475 tree type;
1476 enum machine_mode promoted_mode, decl_mode;
1477 int volatile_p;
1478 unsigned int original_regno;
1479 int used_p;
1480 htab_t ht;
1481 {
1482 struct function *func = function ? function : cfun;
1483 rtx new = 0;
1484 unsigned int regno = original_regno;
1485
1486 if (regno == 0)
1487 regno = REGNO (reg);
1488
1489 if (regno < func->x_max_parm_reg)
1490 new = func->x_parm_reg_stack_loc[regno];
1491
1492 if (new == 0)
1493 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1494
1495 PUT_CODE (reg, MEM);
1496 PUT_MODE (reg, decl_mode);
1497 XEXP (reg, 0) = XEXP (new, 0);
1498 MEM_ATTRS (reg) = 0;
1499 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1500 MEM_VOLATILE_P (reg) = volatile_p;
1501
1502 /* If this is a memory ref that contains aggregate components,
1503 mark it as such for cse and loop optimize. If we are reusing a
1504 previously generated stack slot, then we need to copy the bit in
1505 case it was set for other reasons. For instance, it is set for
1506 __builtin_va_alist. */
1507 if (type)
1508 {
1509 MEM_SET_IN_STRUCT_P (reg,
1510 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1511 set_mem_alias_set (reg, get_alias_set (type));
1512 }
1513
1514 if (used_p)
1515 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1516 }
1517
1518 /* Make sure that all refs to the variable, previously made
1519 when it was a register, are fixed up to be valid again.
1520 See function above for meaning of arguments. */
1521
1522 static void
1523 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1524 struct function *function;
1525 rtx reg;
1526 tree type;
1527 enum machine_mode promoted_mode;
1528 htab_t ht;
1529 {
1530 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1531
1532 if (function != 0)
1533 {
1534 struct var_refs_queue *temp;
1535
1536 temp
1537 = (struct var_refs_queue *) ggc_alloc (sizeof (struct var_refs_queue));
1538 temp->modified = reg;
1539 temp->promoted_mode = promoted_mode;
1540 temp->unsignedp = unsigned_p;
1541 temp->next = function->fixup_var_refs_queue;
1542 function->fixup_var_refs_queue = temp;
1543 }
1544 else
1545 /* Variable is local; fix it up now. */
1546 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1547 }
1548 \f
1549 static void
1550 fixup_var_refs (var, promoted_mode, unsignedp, may_share, ht)
1551 rtx var;
1552 enum machine_mode promoted_mode;
1553 int unsignedp;
1554 htab_t ht;
1555 rtx may_share;
1556 {
1557 tree pending;
1558 rtx first_insn = get_insns ();
1559 struct sequence_stack *stack = seq_stack;
1560 tree rtl_exps = rtl_expr_chain;
1561
1562 /* If there's a hash table, it must record all uses of VAR. */
1563 if (ht)
1564 {
1565 if (stack != 0)
1566 abort ();
1567 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1568 may_share);
1569 return;
1570 }
1571
1572 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1573 stack == 0, may_share);
1574
1575 /* Scan all pending sequences too. */
1576 for (; stack; stack = stack->next)
1577 {
1578 push_to_full_sequence (stack->first, stack->last);
1579 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1580 stack->next != 0, may_share);
1581 /* Update remembered end of sequence
1582 in case we added an insn at the end. */
1583 stack->last = get_last_insn ();
1584 end_sequence ();
1585 }
1586
1587 /* Scan all waiting RTL_EXPRs too. */
1588 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1589 {
1590 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1591 if (seq != const0_rtx && seq != 0)
1592 {
1593 push_to_sequence (seq);
1594 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1595 may_share);
1596 end_sequence ();
1597 }
1598 }
1599 }
1600 \f
1601 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1602 some part of an insn. Return a struct fixup_replacement whose OLD
1603 value is equal to X. Allocate a new structure if no such entry exists. */
1604
1605 static struct fixup_replacement *
1606 find_fixup_replacement (replacements, x)
1607 struct fixup_replacement **replacements;
1608 rtx x;
1609 {
1610 struct fixup_replacement *p;
1611
1612 /* See if we have already replaced this. */
1613 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1614 ;
1615
1616 if (p == 0)
1617 {
1618 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1619 p->old = x;
1620 p->new = 0;
1621 p->next = *replacements;
1622 *replacements = p;
1623 }
1624
1625 return p;
1626 }
1627
1628 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1629 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1630 for the current function. MAY_SHARE is either a MEM that is not
1631 to be unshared or a list of them. */
1632
1633 static void
1634 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel, may_share)
1635 rtx insn;
1636 rtx var;
1637 enum machine_mode promoted_mode;
1638 int unsignedp;
1639 int toplevel;
1640 rtx may_share;
1641 {
1642 while (insn)
1643 {
1644 /* fixup_var_refs_insn might modify insn, so save its next
1645 pointer now. */
1646 rtx next = NEXT_INSN (insn);
1647
1648 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1649 the three sequences they (potentially) contain, and process
1650 them recursively. The CALL_INSN itself is not interesting. */
1651
1652 if (GET_CODE (insn) == CALL_INSN
1653 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1654 {
1655 int i;
1656
1657 /* Look at the Normal call, sibling call and tail recursion
1658 sequences attached to the CALL_PLACEHOLDER. */
1659 for (i = 0; i < 3; i++)
1660 {
1661 rtx seq = XEXP (PATTERN (insn), i);
1662 if (seq)
1663 {
1664 push_to_sequence (seq);
1665 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1666 may_share);
1667 XEXP (PATTERN (insn), i) = get_insns ();
1668 end_sequence ();
1669 }
1670 }
1671 }
1672
1673 else if (INSN_P (insn))
1674 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1675 may_share);
1676
1677 insn = next;
1678 }
1679 }
1680
1681 /* Look up the insns which reference VAR in HT and fix them up. Other
1682 arguments are the same as fixup_var_refs_insns.
1683
1684 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1685 because the hash table will point straight to the interesting insn
1686 (inside the CALL_PLACEHOLDER). */
1687
1688 static void
1689 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp, may_share)
1690 htab_t ht;
1691 rtx var;
1692 enum machine_mode promoted_mode;
1693 int unsignedp;
1694 rtx may_share;
1695 {
1696 struct insns_for_mem_entry tmp;
1697 struct insns_for_mem_entry *ime;
1698 rtx insn_list;
1699
1700 tmp.key = var;
1701 ime = (struct insns_for_mem_entry *) htab_find (ht, &tmp);
1702 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1703 if (INSN_P (XEXP (insn_list, 0)))
1704 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1705 unsignedp, 1, may_share);
1706 }
1707
1708
1709 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1710 the insn under examination, VAR is the variable to fix up
1711 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1712 TOPLEVEL is nonzero if this is the main insn chain for this
1713 function. */
1714
1715 static void
1716 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel, no_share)
1717 rtx insn;
1718 rtx var;
1719 enum machine_mode promoted_mode;
1720 int unsignedp;
1721 int toplevel;
1722 rtx no_share;
1723 {
1724 rtx call_dest = 0;
1725 rtx set, prev, prev_set;
1726 rtx note;
1727
1728 /* Remember the notes in case we delete the insn. */
1729 note = REG_NOTES (insn);
1730
1731 /* If this is a CLOBBER of VAR, delete it.
1732
1733 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1734 and REG_RETVAL notes too. */
1735 if (GET_CODE (PATTERN (insn)) == CLOBBER
1736 && (XEXP (PATTERN (insn), 0) == var
1737 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1738 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1739 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1740 {
1741 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1742 /* The REG_LIBCALL note will go away since we are going to
1743 turn INSN into a NOTE, so just delete the
1744 corresponding REG_RETVAL note. */
1745 remove_note (XEXP (note, 0),
1746 find_reg_note (XEXP (note, 0), REG_RETVAL,
1747 NULL_RTX));
1748
1749 delete_insn (insn);
1750 }
1751
1752 /* The insn to load VAR from a home in the arglist
1753 is now a no-op. When we see it, just delete it.
1754 Similarly if this is storing VAR from a register from which
1755 it was loaded in the previous insn. This will occur
1756 when an ADDRESSOF was made for an arglist slot. */
1757 else if (toplevel
1758 && (set = single_set (insn)) != 0
1759 && SET_DEST (set) == var
1760 /* If this represents the result of an insn group,
1761 don't delete the insn. */
1762 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1763 && (rtx_equal_p (SET_SRC (set), var)
1764 || (GET_CODE (SET_SRC (set)) == REG
1765 && (prev = prev_nonnote_insn (insn)) != 0
1766 && (prev_set = single_set (prev)) != 0
1767 && SET_DEST (prev_set) == SET_SRC (set)
1768 && rtx_equal_p (SET_SRC (prev_set), var))))
1769 {
1770 delete_insn (insn);
1771 }
1772 else
1773 {
1774 struct fixup_replacement *replacements = 0;
1775 rtx next_insn = NEXT_INSN (insn);
1776
1777 if (SMALL_REGISTER_CLASSES)
1778 {
1779 /* If the insn that copies the results of a CALL_INSN
1780 into a pseudo now references VAR, we have to use an
1781 intermediate pseudo since we want the life of the
1782 return value register to be only a single insn.
1783
1784 If we don't use an intermediate pseudo, such things as
1785 address computations to make the address of VAR valid
1786 if it is not can be placed between the CALL_INSN and INSN.
1787
1788 To make sure this doesn't happen, we record the destination
1789 of the CALL_INSN and see if the next insn uses both that
1790 and VAR. */
1791
1792 if (call_dest != 0 && GET_CODE (insn) == INSN
1793 && reg_mentioned_p (var, PATTERN (insn))
1794 && reg_mentioned_p (call_dest, PATTERN (insn)))
1795 {
1796 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1797
1798 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1799
1800 PATTERN (insn) = replace_rtx (PATTERN (insn),
1801 call_dest, temp);
1802 }
1803
1804 if (GET_CODE (insn) == CALL_INSN
1805 && GET_CODE (PATTERN (insn)) == SET)
1806 call_dest = SET_DEST (PATTERN (insn));
1807 else if (GET_CODE (insn) == CALL_INSN
1808 && GET_CODE (PATTERN (insn)) == PARALLEL
1809 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1810 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1811 else
1812 call_dest = 0;
1813 }
1814
1815 /* See if we have to do anything to INSN now that VAR is in
1816 memory. If it needs to be loaded into a pseudo, use a single
1817 pseudo for the entire insn in case there is a MATCH_DUP
1818 between two operands. We pass a pointer to the head of
1819 a list of struct fixup_replacements. If fixup_var_refs_1
1820 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1821 it will record them in this list.
1822
1823 If it allocated a pseudo for any replacement, we copy into
1824 it here. */
1825
1826 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1827 &replacements, no_share);
1828
1829 /* If this is last_parm_insn, and any instructions were output
1830 after it to fix it up, then we must set last_parm_insn to
1831 the last such instruction emitted. */
1832 if (insn == last_parm_insn)
1833 last_parm_insn = PREV_INSN (next_insn);
1834
1835 while (replacements)
1836 {
1837 struct fixup_replacement *next;
1838
1839 if (GET_CODE (replacements->new) == REG)
1840 {
1841 rtx insert_before;
1842 rtx seq;
1843
1844 /* OLD might be a (subreg (mem)). */
1845 if (GET_CODE (replacements->old) == SUBREG)
1846 replacements->old
1847 = fixup_memory_subreg (replacements->old, insn,
1848 promoted_mode, 0);
1849 else
1850 replacements->old
1851 = fixup_stack_1 (replacements->old, insn);
1852
1853 insert_before = insn;
1854
1855 /* If we are changing the mode, do a conversion.
1856 This might be wasteful, but combine.c will
1857 eliminate much of the waste. */
1858
1859 if (GET_MODE (replacements->new)
1860 != GET_MODE (replacements->old))
1861 {
1862 start_sequence ();
1863 convert_move (replacements->new,
1864 replacements->old, unsignedp);
1865 seq = get_insns ();
1866 end_sequence ();
1867 }
1868 else
1869 seq = gen_move_insn (replacements->new,
1870 replacements->old);
1871
1872 emit_insn_before (seq, insert_before);
1873 }
1874
1875 next = replacements->next;
1876 free (replacements);
1877 replacements = next;
1878 }
1879 }
1880
1881 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1882 But don't touch other insns referred to by reg-notes;
1883 we will get them elsewhere. */
1884 while (note)
1885 {
1886 if (GET_CODE (note) != INSN_LIST)
1887 XEXP (note, 0)
1888 = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1889 promoted_mode, 1);
1890 note = XEXP (note, 1);
1891 }
1892 }
1893 \f
1894 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1895 See if the rtx expression at *LOC in INSN needs to be changed.
1896
1897 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1898 contain a list of original rtx's and replacements. If we find that we need
1899 to modify this insn by replacing a memory reference with a pseudo or by
1900 making a new MEM to implement a SUBREG, we consult that list to see if
1901 we have already chosen a replacement. If none has already been allocated,
1902 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1903 or the SUBREG, as appropriate, to the pseudo. */
1904
1905 static void
1906 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements, no_share)
1907 rtx var;
1908 enum machine_mode promoted_mode;
1909 rtx *loc;
1910 rtx insn;
1911 struct fixup_replacement **replacements;
1912 rtx no_share;
1913 {
1914 int i;
1915 rtx x = *loc;
1916 RTX_CODE code = GET_CODE (x);
1917 const char *fmt;
1918 rtx tem, tem1;
1919 struct fixup_replacement *replacement;
1920
1921 switch (code)
1922 {
1923 case ADDRESSOF:
1924 if (XEXP (x, 0) == var)
1925 {
1926 /* Prevent sharing of rtl that might lose. */
1927 rtx sub = copy_rtx (XEXP (var, 0));
1928
1929 if (! validate_change (insn, loc, sub, 0))
1930 {
1931 rtx y = gen_reg_rtx (GET_MODE (sub));
1932 rtx seq, new_insn;
1933
1934 /* We should be able to replace with a register or all is lost.
1935 Note that we can't use validate_change to verify this, since
1936 we're not caring for replacing all dups simultaneously. */
1937 if (! validate_replace_rtx (*loc, y, insn))
1938 abort ();
1939
1940 /* Careful! First try to recognize a direct move of the
1941 value, mimicking how things are done in gen_reload wrt
1942 PLUS. Consider what happens when insn is a conditional
1943 move instruction and addsi3 clobbers flags. */
1944
1945 start_sequence ();
1946 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1947 seq = get_insns ();
1948 end_sequence ();
1949
1950 if (recog_memoized (new_insn) < 0)
1951 {
1952 /* That failed. Fall back on force_operand and hope. */
1953
1954 start_sequence ();
1955 sub = force_operand (sub, y);
1956 if (sub != y)
1957 emit_insn (gen_move_insn (y, sub));
1958 seq = get_insns ();
1959 end_sequence ();
1960 }
1961
1962 #ifdef HAVE_cc0
1963 /* Don't separate setter from user. */
1964 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1965 insn = PREV_INSN (insn);
1966 #endif
1967
1968 emit_insn_before (seq, insn);
1969 }
1970 }
1971 return;
1972
1973 case MEM:
1974 if (var == x)
1975 {
1976 /* If we already have a replacement, use it. Otherwise,
1977 try to fix up this address in case it is invalid. */
1978
1979 replacement = find_fixup_replacement (replacements, var);
1980 if (replacement->new)
1981 {
1982 *loc = replacement->new;
1983 return;
1984 }
1985
1986 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1987
1988 /* Unless we are forcing memory to register or we changed the mode,
1989 we can leave things the way they are if the insn is valid. */
1990
1991 INSN_CODE (insn) = -1;
1992 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1993 && recog_memoized (insn) >= 0)
1994 return;
1995
1996 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1997 return;
1998 }
1999
2000 /* If X contains VAR, we need to unshare it here so that we update
2001 each occurrence separately. But all identical MEMs in one insn
2002 must be replaced with the same rtx because of the possibility of
2003 MATCH_DUPs. */
2004
2005 if (reg_mentioned_p (var, x))
2006 {
2007 replacement = find_fixup_replacement (replacements, x);
2008 if (replacement->new == 0)
2009 replacement->new = copy_most_rtx (x, no_share);
2010
2011 *loc = x = replacement->new;
2012 code = GET_CODE (x);
2013 }
2014 break;
2015
2016 case REG:
2017 case CC0:
2018 case PC:
2019 case CONST_INT:
2020 case CONST:
2021 case SYMBOL_REF:
2022 case LABEL_REF:
2023 case CONST_DOUBLE:
2024 case CONST_VECTOR:
2025 return;
2026
2027 case SIGN_EXTRACT:
2028 case ZERO_EXTRACT:
2029 /* Note that in some cases those types of expressions are altered
2030 by optimize_bit_field, and do not survive to get here. */
2031 if (XEXP (x, 0) == var
2032 || (GET_CODE (XEXP (x, 0)) == SUBREG
2033 && SUBREG_REG (XEXP (x, 0)) == var))
2034 {
2035 /* Get TEM as a valid MEM in the mode presently in the insn.
2036
2037 We don't worry about the possibility of MATCH_DUP here; it
2038 is highly unlikely and would be tricky to handle. */
2039
2040 tem = XEXP (x, 0);
2041 if (GET_CODE (tem) == SUBREG)
2042 {
2043 if (GET_MODE_BITSIZE (GET_MODE (tem))
2044 > GET_MODE_BITSIZE (GET_MODE (var)))
2045 {
2046 replacement = find_fixup_replacement (replacements, var);
2047 if (replacement->new == 0)
2048 replacement->new = gen_reg_rtx (GET_MODE (var));
2049 SUBREG_REG (tem) = replacement->new;
2050
2051 /* The following code works only if we have a MEM, so we
2052 need to handle the subreg here. We directly substitute
2053 it assuming that a subreg must be OK here. We already
2054 scheduled a replacement to copy the mem into the
2055 subreg. */
2056 XEXP (x, 0) = tem;
2057 return;
2058 }
2059 else
2060 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2061 }
2062 else
2063 tem = fixup_stack_1 (tem, insn);
2064
2065 /* Unless we want to load from memory, get TEM into the proper mode
2066 for an extract from memory. This can only be done if the
2067 extract is at a constant position and length. */
2068
2069 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2070 && GET_CODE (XEXP (x, 2)) == CONST_INT
2071 && ! mode_dependent_address_p (XEXP (tem, 0))
2072 && ! MEM_VOLATILE_P (tem))
2073 {
2074 enum machine_mode wanted_mode = VOIDmode;
2075 enum machine_mode is_mode = GET_MODE (tem);
2076 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2077
2078 if (GET_CODE (x) == ZERO_EXTRACT)
2079 {
2080 enum machine_mode new_mode
2081 = mode_for_extraction (EP_extzv, 1);
2082 if (new_mode != MAX_MACHINE_MODE)
2083 wanted_mode = new_mode;
2084 }
2085 else if (GET_CODE (x) == SIGN_EXTRACT)
2086 {
2087 enum machine_mode new_mode
2088 = mode_for_extraction (EP_extv, 1);
2089 if (new_mode != MAX_MACHINE_MODE)
2090 wanted_mode = new_mode;
2091 }
2092
2093 /* If we have a narrower mode, we can do something. */
2094 if (wanted_mode != VOIDmode
2095 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2096 {
2097 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2098 rtx old_pos = XEXP (x, 2);
2099 rtx newmem;
2100
2101 /* If the bytes and bits are counted differently, we
2102 must adjust the offset. */
2103 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2104 offset = (GET_MODE_SIZE (is_mode)
2105 - GET_MODE_SIZE (wanted_mode) - offset);
2106
2107 pos %= GET_MODE_BITSIZE (wanted_mode);
2108
2109 newmem = adjust_address_nv (tem, wanted_mode, offset);
2110
2111 /* Make the change and see if the insn remains valid. */
2112 INSN_CODE (insn) = -1;
2113 XEXP (x, 0) = newmem;
2114 XEXP (x, 2) = GEN_INT (pos);
2115
2116 if (recog_memoized (insn) >= 0)
2117 return;
2118
2119 /* Otherwise, restore old position. XEXP (x, 0) will be
2120 restored later. */
2121 XEXP (x, 2) = old_pos;
2122 }
2123 }
2124
2125 /* If we get here, the bitfield extract insn can't accept a memory
2126 reference. Copy the input into a register. */
2127
2128 tem1 = gen_reg_rtx (GET_MODE (tem));
2129 emit_insn_before (gen_move_insn (tem1, tem), insn);
2130 XEXP (x, 0) = tem1;
2131 return;
2132 }
2133 break;
2134
2135 case SUBREG:
2136 if (SUBREG_REG (x) == var)
2137 {
2138 /* If this is a special SUBREG made because VAR was promoted
2139 from a wider mode, replace it with VAR and call ourself
2140 recursively, this time saying that the object previously
2141 had its current mode (by virtue of the SUBREG). */
2142
2143 if (SUBREG_PROMOTED_VAR_P (x))
2144 {
2145 *loc = var;
2146 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2147 no_share);
2148 return;
2149 }
2150
2151 /* If this SUBREG makes VAR wider, it has become a paradoxical
2152 SUBREG with VAR in memory, but these aren't allowed at this
2153 stage of the compilation. So load VAR into a pseudo and take
2154 a SUBREG of that pseudo. */
2155 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2156 {
2157 replacement = find_fixup_replacement (replacements, var);
2158 if (replacement->new == 0)
2159 replacement->new = gen_reg_rtx (promoted_mode);
2160 SUBREG_REG (x) = replacement->new;
2161 return;
2162 }
2163
2164 /* See if we have already found a replacement for this SUBREG.
2165 If so, use it. Otherwise, make a MEM and see if the insn
2166 is recognized. If not, or if we should force MEM into a register,
2167 make a pseudo for this SUBREG. */
2168 replacement = find_fixup_replacement (replacements, x);
2169 if (replacement->new)
2170 {
2171 *loc = replacement->new;
2172 return;
2173 }
2174
2175 replacement->new = *loc = fixup_memory_subreg (x, insn,
2176 promoted_mode, 0);
2177
2178 INSN_CODE (insn) = -1;
2179 if (! flag_force_mem && recog_memoized (insn) >= 0)
2180 return;
2181
2182 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2183 return;
2184 }
2185 break;
2186
2187 case SET:
2188 /* First do special simplification of bit-field references. */
2189 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2190 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2191 optimize_bit_field (x, insn, 0);
2192 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2193 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2194 optimize_bit_field (x, insn, 0);
2195
2196 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2197 into a register and then store it back out. */
2198 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2199 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2200 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2201 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2202 > GET_MODE_SIZE (GET_MODE (var))))
2203 {
2204 replacement = find_fixup_replacement (replacements, var);
2205 if (replacement->new == 0)
2206 replacement->new = gen_reg_rtx (GET_MODE (var));
2207
2208 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2209 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2210 }
2211
2212 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2213 insn into a pseudo and store the low part of the pseudo into VAR. */
2214 if (GET_CODE (SET_DEST (x)) == SUBREG
2215 && SUBREG_REG (SET_DEST (x)) == var
2216 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2217 > GET_MODE_SIZE (GET_MODE (var))))
2218 {
2219 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2220 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2221 tem)),
2222 insn);
2223 break;
2224 }
2225
2226 {
2227 rtx dest = SET_DEST (x);
2228 rtx src = SET_SRC (x);
2229 rtx outerdest = dest;
2230
2231 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2232 || GET_CODE (dest) == SIGN_EXTRACT
2233 || GET_CODE (dest) == ZERO_EXTRACT)
2234 dest = XEXP (dest, 0);
2235
2236 if (GET_CODE (src) == SUBREG)
2237 src = SUBREG_REG (src);
2238
2239 /* If VAR does not appear at the top level of the SET
2240 just scan the lower levels of the tree. */
2241
2242 if (src != var && dest != var)
2243 break;
2244
2245 /* We will need to rerecognize this insn. */
2246 INSN_CODE (insn) = -1;
2247
2248 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2249 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2250 {
2251 /* Since this case will return, ensure we fixup all the
2252 operands here. */
2253 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2254 insn, replacements, no_share);
2255 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2256 insn, replacements, no_share);
2257 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2258 insn, replacements, no_share);
2259
2260 tem = XEXP (outerdest, 0);
2261
2262 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2263 that may appear inside a ZERO_EXTRACT.
2264 This was legitimate when the MEM was a REG. */
2265 if (GET_CODE (tem) == SUBREG
2266 && SUBREG_REG (tem) == var)
2267 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2268 else
2269 tem = fixup_stack_1 (tem, insn);
2270
2271 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2272 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2273 && ! mode_dependent_address_p (XEXP (tem, 0))
2274 && ! MEM_VOLATILE_P (tem))
2275 {
2276 enum machine_mode wanted_mode;
2277 enum machine_mode is_mode = GET_MODE (tem);
2278 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2279
2280 wanted_mode = mode_for_extraction (EP_insv, 0);
2281
2282 /* If we have a narrower mode, we can do something. */
2283 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2284 {
2285 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2286 rtx old_pos = XEXP (outerdest, 2);
2287 rtx newmem;
2288
2289 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2290 offset = (GET_MODE_SIZE (is_mode)
2291 - GET_MODE_SIZE (wanted_mode) - offset);
2292
2293 pos %= GET_MODE_BITSIZE (wanted_mode);
2294
2295 newmem = adjust_address_nv (tem, wanted_mode, offset);
2296
2297 /* Make the change and see if the insn remains valid. */
2298 INSN_CODE (insn) = -1;
2299 XEXP (outerdest, 0) = newmem;
2300 XEXP (outerdest, 2) = GEN_INT (pos);
2301
2302 if (recog_memoized (insn) >= 0)
2303 return;
2304
2305 /* Otherwise, restore old position. XEXP (x, 0) will be
2306 restored later. */
2307 XEXP (outerdest, 2) = old_pos;
2308 }
2309 }
2310
2311 /* If we get here, the bit-field store doesn't allow memory
2312 or isn't located at a constant position. Load the value into
2313 a register, do the store, and put it back into memory. */
2314
2315 tem1 = gen_reg_rtx (GET_MODE (tem));
2316 emit_insn_before (gen_move_insn (tem1, tem), insn);
2317 emit_insn_after (gen_move_insn (tem, tem1), insn);
2318 XEXP (outerdest, 0) = tem1;
2319 return;
2320 }
2321
2322 /* STRICT_LOW_PART is a no-op on memory references
2323 and it can cause combinations to be unrecognizable,
2324 so eliminate it. */
2325
2326 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2327 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2328
2329 /* A valid insn to copy VAR into or out of a register
2330 must be left alone, to avoid an infinite loop here.
2331 If the reference to VAR is by a subreg, fix that up,
2332 since SUBREG is not valid for a memref.
2333 Also fix up the address of the stack slot.
2334
2335 Note that we must not try to recognize the insn until
2336 after we know that we have valid addresses and no
2337 (subreg (mem ...) ...) constructs, since these interfere
2338 with determining the validity of the insn. */
2339
2340 if ((SET_SRC (x) == var
2341 || (GET_CODE (SET_SRC (x)) == SUBREG
2342 && SUBREG_REG (SET_SRC (x)) == var))
2343 && (GET_CODE (SET_DEST (x)) == REG
2344 || (GET_CODE (SET_DEST (x)) == SUBREG
2345 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2346 && GET_MODE (var) == promoted_mode
2347 && x == single_set (insn))
2348 {
2349 rtx pat, last;
2350
2351 if (GET_CODE (SET_SRC (x)) == SUBREG
2352 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2353 > GET_MODE_SIZE (GET_MODE (var))))
2354 {
2355 /* This (subreg VAR) is now a paradoxical subreg. We need
2356 to replace VAR instead of the subreg. */
2357 replacement = find_fixup_replacement (replacements, var);
2358 if (replacement->new == NULL_RTX)
2359 replacement->new = gen_reg_rtx (GET_MODE (var));
2360 SUBREG_REG (SET_SRC (x)) = replacement->new;
2361 }
2362 else
2363 {
2364 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2365 if (replacement->new)
2366 SET_SRC (x) = replacement->new;
2367 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2368 SET_SRC (x) = replacement->new
2369 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2370 0);
2371 else
2372 SET_SRC (x) = replacement->new
2373 = fixup_stack_1 (SET_SRC (x), insn);
2374 }
2375
2376 if (recog_memoized (insn) >= 0)
2377 return;
2378
2379 /* INSN is not valid, but we know that we want to
2380 copy SET_SRC (x) to SET_DEST (x) in some way. So
2381 we generate the move and see whether it requires more
2382 than one insn. If it does, we emit those insns and
2383 delete INSN. Otherwise, we can just replace the pattern
2384 of INSN; we have already verified above that INSN has
2385 no other function that to do X. */
2386
2387 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2388 if (NEXT_INSN (pat) != NULL_RTX)
2389 {
2390 last = emit_insn_before (pat, insn);
2391
2392 /* INSN might have REG_RETVAL or other important notes, so
2393 we need to store the pattern of the last insn in the
2394 sequence into INSN similarly to the normal case. LAST
2395 should not have REG_NOTES, but we allow them if INSN has
2396 no REG_NOTES. */
2397 if (REG_NOTES (last) && REG_NOTES (insn))
2398 abort ();
2399 if (REG_NOTES (last))
2400 REG_NOTES (insn) = REG_NOTES (last);
2401 PATTERN (insn) = PATTERN (last);
2402
2403 delete_insn (last);
2404 }
2405 else
2406 PATTERN (insn) = PATTERN (pat);
2407
2408 return;
2409 }
2410
2411 if ((SET_DEST (x) == var
2412 || (GET_CODE (SET_DEST (x)) == SUBREG
2413 && SUBREG_REG (SET_DEST (x)) == var))
2414 && (GET_CODE (SET_SRC (x)) == REG
2415 || (GET_CODE (SET_SRC (x)) == SUBREG
2416 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2417 && GET_MODE (var) == promoted_mode
2418 && x == single_set (insn))
2419 {
2420 rtx pat, last;
2421
2422 if (GET_CODE (SET_DEST (x)) == SUBREG)
2423 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2424 promoted_mode, 0);
2425 else
2426 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2427
2428 if (recog_memoized (insn) >= 0)
2429 return;
2430
2431 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2432 if (NEXT_INSN (pat) != NULL_RTX)
2433 {
2434 last = emit_insn_before (pat, insn);
2435
2436 /* INSN might have REG_RETVAL or other important notes, so
2437 we need to store the pattern of the last insn in the
2438 sequence into INSN similarly to the normal case. LAST
2439 should not have REG_NOTES, but we allow them if INSN has
2440 no REG_NOTES. */
2441 if (REG_NOTES (last) && REG_NOTES (insn))
2442 abort ();
2443 if (REG_NOTES (last))
2444 REG_NOTES (insn) = REG_NOTES (last);
2445 PATTERN (insn) = PATTERN (last);
2446
2447 delete_insn (last);
2448 }
2449 else
2450 PATTERN (insn) = PATTERN (pat);
2451
2452 return;
2453 }
2454
2455 /* Otherwise, storing into VAR must be handled specially
2456 by storing into a temporary and copying that into VAR
2457 with a new insn after this one. Note that this case
2458 will be used when storing into a promoted scalar since
2459 the insn will now have different modes on the input
2460 and output and hence will be invalid (except for the case
2461 of setting it to a constant, which does not need any
2462 change if it is valid). We generate extra code in that case,
2463 but combine.c will eliminate it. */
2464
2465 if (dest == var)
2466 {
2467 rtx temp;
2468 rtx fixeddest = SET_DEST (x);
2469 enum machine_mode temp_mode;
2470
2471 /* STRICT_LOW_PART can be discarded, around a MEM. */
2472 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2473 fixeddest = XEXP (fixeddest, 0);
2474 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2475 if (GET_CODE (fixeddest) == SUBREG)
2476 {
2477 fixeddest = fixup_memory_subreg (fixeddest, insn,
2478 promoted_mode, 0);
2479 temp_mode = GET_MODE (fixeddest);
2480 }
2481 else
2482 {
2483 fixeddest = fixup_stack_1 (fixeddest, insn);
2484 temp_mode = promoted_mode;
2485 }
2486
2487 temp = gen_reg_rtx (temp_mode);
2488
2489 emit_insn_after (gen_move_insn (fixeddest,
2490 gen_lowpart (GET_MODE (fixeddest),
2491 temp)),
2492 insn);
2493
2494 SET_DEST (x) = temp;
2495 }
2496 }
2497
2498 default:
2499 break;
2500 }
2501
2502 /* Nothing special about this RTX; fix its operands. */
2503
2504 fmt = GET_RTX_FORMAT (code);
2505 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2506 {
2507 if (fmt[i] == 'e')
2508 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2509 no_share);
2510 else if (fmt[i] == 'E')
2511 {
2512 int j;
2513 for (j = 0; j < XVECLEN (x, i); j++)
2514 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2515 insn, replacements, no_share);
2516 }
2517 }
2518 }
2519 \f
2520 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2521 The REG was placed on the stack, so X now has the form (SUBREG:m1
2522 (MEM:m2 ...)).
2523
2524 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2525 must be emitted to compute NEWADDR, put them before INSN.
2526
2527 UNCRITICAL nonzero means accept paradoxical subregs.
2528 This is used for subregs found inside REG_NOTES. */
2529
2530 static rtx
2531 fixup_memory_subreg (x, insn, promoted_mode, uncritical)
2532 rtx x;
2533 rtx insn;
2534 enum machine_mode promoted_mode;
2535 int uncritical;
2536 {
2537 int offset;
2538 rtx mem = SUBREG_REG (x);
2539 rtx addr = XEXP (mem, 0);
2540 enum machine_mode mode = GET_MODE (x);
2541 rtx result, seq;
2542
2543 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2544 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2545 abort ();
2546
2547 offset = SUBREG_BYTE (x);
2548 if (BYTES_BIG_ENDIAN)
2549 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2550 the offset so that it points to the right location within the
2551 MEM. */
2552 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2553
2554 if (!flag_force_addr
2555 && memory_address_p (mode, plus_constant (addr, offset)))
2556 /* Shortcut if no insns need be emitted. */
2557 return adjust_address (mem, mode, offset);
2558
2559 start_sequence ();
2560 result = adjust_address (mem, mode, offset);
2561 seq = get_insns ();
2562 end_sequence ();
2563
2564 emit_insn_before (seq, insn);
2565 return result;
2566 }
2567
2568 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2569 Replace subexpressions of X in place.
2570 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2571 Otherwise return X, with its contents possibly altered.
2572
2573 INSN, PROMOTED_MODE and UNCRITICAL are as for
2574 fixup_memory_subreg. */
2575
2576 static rtx
2577 walk_fixup_memory_subreg (x, insn, promoted_mode, uncritical)
2578 rtx x;
2579 rtx insn;
2580 enum machine_mode promoted_mode;
2581 int uncritical;
2582 {
2583 enum rtx_code code;
2584 const char *fmt;
2585 int i;
2586
2587 if (x == 0)
2588 return 0;
2589
2590 code = GET_CODE (x);
2591
2592 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2593 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2594
2595 /* Nothing special about this RTX; fix its operands. */
2596
2597 fmt = GET_RTX_FORMAT (code);
2598 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2599 {
2600 if (fmt[i] == 'e')
2601 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2602 promoted_mode, uncritical);
2603 else if (fmt[i] == 'E')
2604 {
2605 int j;
2606 for (j = 0; j < XVECLEN (x, i); j++)
2607 XVECEXP (x, i, j)
2608 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2609 promoted_mode, uncritical);
2610 }
2611 }
2612 return x;
2613 }
2614 \f
2615 /* For each memory ref within X, if it refers to a stack slot
2616 with an out of range displacement, put the address in a temp register
2617 (emitting new insns before INSN to load these registers)
2618 and alter the memory ref to use that register.
2619 Replace each such MEM rtx with a copy, to avoid clobberage. */
2620
2621 static rtx
2622 fixup_stack_1 (x, insn)
2623 rtx x;
2624 rtx insn;
2625 {
2626 int i;
2627 RTX_CODE code = GET_CODE (x);
2628 const char *fmt;
2629
2630 if (code == MEM)
2631 {
2632 rtx ad = XEXP (x, 0);
2633 /* If we have address of a stack slot but it's not valid
2634 (displacement is too large), compute the sum in a register. */
2635 if (GET_CODE (ad) == PLUS
2636 && GET_CODE (XEXP (ad, 0)) == REG
2637 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2638 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2639 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2640 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2641 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2642 #endif
2643 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2644 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2645 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2646 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2647 {
2648 rtx temp, seq;
2649 if (memory_address_p (GET_MODE (x), ad))
2650 return x;
2651
2652 start_sequence ();
2653 temp = copy_to_reg (ad);
2654 seq = get_insns ();
2655 end_sequence ();
2656 emit_insn_before (seq, insn);
2657 return replace_equiv_address (x, temp);
2658 }
2659 return x;
2660 }
2661
2662 fmt = GET_RTX_FORMAT (code);
2663 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2664 {
2665 if (fmt[i] == 'e')
2666 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2667 else if (fmt[i] == 'E')
2668 {
2669 int j;
2670 for (j = 0; j < XVECLEN (x, i); j++)
2671 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2672 }
2673 }
2674 return x;
2675 }
2676 \f
2677 /* Optimization: a bit-field instruction whose field
2678 happens to be a byte or halfword in memory
2679 can be changed to a move instruction.
2680
2681 We call here when INSN is an insn to examine or store into a bit-field.
2682 BODY is the SET-rtx to be altered.
2683
2684 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2685 (Currently this is called only from function.c, and EQUIV_MEM
2686 is always 0.) */
2687
2688 static void
2689 optimize_bit_field (body, insn, equiv_mem)
2690 rtx body;
2691 rtx insn;
2692 rtx *equiv_mem;
2693 {
2694 rtx bitfield;
2695 int destflag;
2696 rtx seq = 0;
2697 enum machine_mode mode;
2698
2699 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2700 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2701 bitfield = SET_DEST (body), destflag = 1;
2702 else
2703 bitfield = SET_SRC (body), destflag = 0;
2704
2705 /* First check that the field being stored has constant size and position
2706 and is in fact a byte or halfword suitably aligned. */
2707
2708 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2709 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2710 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2711 != BLKmode)
2712 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2713 {
2714 rtx memref = 0;
2715
2716 /* Now check that the containing word is memory, not a register,
2717 and that it is safe to change the machine mode. */
2718
2719 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2720 memref = XEXP (bitfield, 0);
2721 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2722 && equiv_mem != 0)
2723 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2724 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2725 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2726 memref = SUBREG_REG (XEXP (bitfield, 0));
2727 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2728 && equiv_mem != 0
2729 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2730 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2731
2732 if (memref
2733 && ! mode_dependent_address_p (XEXP (memref, 0))
2734 && ! MEM_VOLATILE_P (memref))
2735 {
2736 /* Now adjust the address, first for any subreg'ing
2737 that we are now getting rid of,
2738 and then for which byte of the word is wanted. */
2739
2740 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2741 rtx insns;
2742
2743 /* Adjust OFFSET to count bits from low-address byte. */
2744 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2745 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2746 - offset - INTVAL (XEXP (bitfield, 1)));
2747
2748 /* Adjust OFFSET to count bytes from low-address byte. */
2749 offset /= BITS_PER_UNIT;
2750 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2751 {
2752 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2753 / UNITS_PER_WORD) * UNITS_PER_WORD;
2754 if (BYTES_BIG_ENDIAN)
2755 offset -= (MIN (UNITS_PER_WORD,
2756 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2757 - MIN (UNITS_PER_WORD,
2758 GET_MODE_SIZE (GET_MODE (memref))));
2759 }
2760
2761 start_sequence ();
2762 memref = adjust_address (memref, mode, offset);
2763 insns = get_insns ();
2764 end_sequence ();
2765 emit_insn_before (insns, insn);
2766
2767 /* Store this memory reference where
2768 we found the bit field reference. */
2769
2770 if (destflag)
2771 {
2772 validate_change (insn, &SET_DEST (body), memref, 1);
2773 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2774 {
2775 rtx src = SET_SRC (body);
2776 while (GET_CODE (src) == SUBREG
2777 && SUBREG_BYTE (src) == 0)
2778 src = SUBREG_REG (src);
2779 if (GET_MODE (src) != GET_MODE (memref))
2780 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2781 validate_change (insn, &SET_SRC (body), src, 1);
2782 }
2783 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2784 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2785 /* This shouldn't happen because anything that didn't have
2786 one of these modes should have got converted explicitly
2787 and then referenced through a subreg.
2788 This is so because the original bit-field was
2789 handled by agg_mode and so its tree structure had
2790 the same mode that memref now has. */
2791 abort ();
2792 }
2793 else
2794 {
2795 rtx dest = SET_DEST (body);
2796
2797 while (GET_CODE (dest) == SUBREG
2798 && SUBREG_BYTE (dest) == 0
2799 && (GET_MODE_CLASS (GET_MODE (dest))
2800 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2801 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2802 <= UNITS_PER_WORD))
2803 dest = SUBREG_REG (dest);
2804
2805 validate_change (insn, &SET_DEST (body), dest, 1);
2806
2807 if (GET_MODE (dest) == GET_MODE (memref))
2808 validate_change (insn, &SET_SRC (body), memref, 1);
2809 else
2810 {
2811 /* Convert the mem ref to the destination mode. */
2812 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2813
2814 start_sequence ();
2815 convert_move (newreg, memref,
2816 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2817 seq = get_insns ();
2818 end_sequence ();
2819
2820 validate_change (insn, &SET_SRC (body), newreg, 1);
2821 }
2822 }
2823
2824 /* See if we can convert this extraction or insertion into
2825 a simple move insn. We might not be able to do so if this
2826 was, for example, part of a PARALLEL.
2827
2828 If we succeed, write out any needed conversions. If we fail,
2829 it is hard to guess why we failed, so don't do anything
2830 special; just let the optimization be suppressed. */
2831
2832 if (apply_change_group () && seq)
2833 emit_insn_before (seq, insn);
2834 }
2835 }
2836 }
2837 \f
2838 /* These routines are responsible for converting virtual register references
2839 to the actual hard register references once RTL generation is complete.
2840
2841 The following four variables are used for communication between the
2842 routines. They contain the offsets of the virtual registers from their
2843 respective hard registers. */
2844
2845 static int in_arg_offset;
2846 static int var_offset;
2847 static int dynamic_offset;
2848 static int out_arg_offset;
2849 static int cfa_offset;
2850
2851 /* In most machines, the stack pointer register is equivalent to the bottom
2852 of the stack. */
2853
2854 #ifndef STACK_POINTER_OFFSET
2855 #define STACK_POINTER_OFFSET 0
2856 #endif
2857
2858 /* If not defined, pick an appropriate default for the offset of dynamically
2859 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2860 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2861
2862 #ifndef STACK_DYNAMIC_OFFSET
2863
2864 /* The bottom of the stack points to the actual arguments. If
2865 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2866 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2867 stack space for register parameters is not pushed by the caller, but
2868 rather part of the fixed stack areas and hence not included in
2869 `current_function_outgoing_args_size'. Nevertheless, we must allow
2870 for it when allocating stack dynamic objects. */
2871
2872 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2873 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2874 ((ACCUMULATE_OUTGOING_ARGS \
2875 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2876 + (STACK_POINTER_OFFSET)) \
2877
2878 #else
2879 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2880 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2881 + (STACK_POINTER_OFFSET))
2882 #endif
2883 #endif
2884
2885 /* On most machines, the CFA coincides with the first incoming parm. */
2886
2887 #ifndef ARG_POINTER_CFA_OFFSET
2888 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2889 #endif
2890
2891 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had its
2892 address taken. DECL is the decl or SAVE_EXPR for the object stored in the
2893 register, for later use if we do need to force REG into the stack. REG is
2894 overwritten by the MEM like in put_reg_into_stack. */
2895
2896 rtx
2897 gen_mem_addressof (reg, decl)
2898 rtx reg;
2899 tree decl;
2900 {
2901 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2902 REGNO (reg), decl);
2903
2904 /* Calculate this before we start messing with decl's RTL. */
2905 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2906
2907 /* If the original REG was a user-variable, then so is the REG whose
2908 address is being taken. Likewise for unchanging. */
2909 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2910 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2911
2912 PUT_CODE (reg, MEM);
2913 MEM_ATTRS (reg) = 0;
2914 XEXP (reg, 0) = r;
2915
2916 if (decl)
2917 {
2918 tree type = TREE_TYPE (decl);
2919 enum machine_mode decl_mode
2920 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2921 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2922 : DECL_RTL_IF_SET (decl));
2923
2924 PUT_MODE (reg, decl_mode);
2925
2926 /* Clear DECL_RTL momentarily so functions below will work
2927 properly, then set it again. */
2928 if (DECL_P (decl) && decl_rtl == reg)
2929 SET_DECL_RTL (decl, 0);
2930
2931 set_mem_attributes (reg, decl, 1);
2932 set_mem_alias_set (reg, set);
2933
2934 if (DECL_P (decl) && decl_rtl == reg)
2935 SET_DECL_RTL (decl, reg);
2936
2937 if (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0))
2938 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2939 }
2940 else
2941 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2942
2943 return reg;
2944 }
2945
2946 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2947
2948 void
2949 flush_addressof (decl)
2950 tree decl;
2951 {
2952 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2953 && DECL_RTL (decl) != 0
2954 && GET_CODE (DECL_RTL (decl)) == MEM
2955 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2956 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2957 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2958 }
2959
2960 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2961
2962 static void
2963 put_addressof_into_stack (r, ht)
2964 rtx r;
2965 htab_t ht;
2966 {
2967 tree decl, type;
2968 int volatile_p, used_p;
2969
2970 rtx reg = XEXP (r, 0);
2971
2972 if (GET_CODE (reg) != REG)
2973 abort ();
2974
2975 decl = ADDRESSOF_DECL (r);
2976 if (decl)
2977 {
2978 type = TREE_TYPE (decl);
2979 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2980 && TREE_THIS_VOLATILE (decl));
2981 used_p = (TREE_USED (decl)
2982 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2983 }
2984 else
2985 {
2986 type = NULL_TREE;
2987 volatile_p = 0;
2988 used_p = 1;
2989 }
2990
2991 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2992 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2993 }
2994
2995 /* List of replacements made below in purge_addressof_1 when creating
2996 bitfield insertions. */
2997 static rtx purge_bitfield_addressof_replacements;
2998
2999 /* List of replacements made below in purge_addressof_1 for patterns
3000 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
3001 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
3002 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
3003 enough in complex cases, e.g. when some field values can be
3004 extracted by usage MEM with narrower mode. */
3005 static rtx purge_addressof_replacements;
3006
3007 /* Helper function for purge_addressof. See if the rtx expression at *LOC
3008 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
3009 the stack. If the function returns FALSE then the replacement could not
3010 be made. */
3011
3012 static bool
3013 purge_addressof_1 (loc, insn, force, store, ht)
3014 rtx *loc;
3015 rtx insn;
3016 int force, store;
3017 htab_t ht;
3018 {
3019 rtx x;
3020 RTX_CODE code;
3021 int i, j;
3022 const char *fmt;
3023 bool result = true;
3024
3025 /* Re-start here to avoid recursion in common cases. */
3026 restart:
3027
3028 x = *loc;
3029 if (x == 0)
3030 return true;
3031
3032 code = GET_CODE (x);
3033
3034 /* If we don't return in any of the cases below, we will recurse inside
3035 the RTX, which will normally result in any ADDRESSOF being forced into
3036 memory. */
3037 if (code == SET)
3038 {
3039 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3040 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3041 return result;
3042 }
3043 else if (code == ADDRESSOF)
3044 {
3045 rtx sub, insns;
3046
3047 if (GET_CODE (XEXP (x, 0)) != MEM)
3048 {
3049 put_addressof_into_stack (x, ht);
3050 return true;
3051 }
3052
3053 /* We must create a copy of the rtx because it was created by
3054 overwriting a REG rtx which is always shared. */
3055 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3056 if (validate_change (insn, loc, sub, 0)
3057 || validate_replace_rtx (x, sub, insn))
3058 return true;
3059
3060 start_sequence ();
3061 sub = force_operand (sub, NULL_RTX);
3062 if (! validate_change (insn, loc, sub, 0)
3063 && ! validate_replace_rtx (x, sub, insn))
3064 abort ();
3065
3066 insns = get_insns ();
3067 end_sequence ();
3068 emit_insn_before (insns, insn);
3069 return true;
3070 }
3071
3072 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3073 {
3074 rtx sub = XEXP (XEXP (x, 0), 0);
3075
3076 if (GET_CODE (sub) == MEM)
3077 sub = adjust_address_nv (sub, GET_MODE (x), 0);
3078 else if (GET_CODE (sub) == REG
3079 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3080 ;
3081 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3082 {
3083 int size_x, size_sub;
3084
3085 if (!insn)
3086 {
3087 /* When processing REG_NOTES look at the list of
3088 replacements done on the insn to find the register that X
3089 was replaced by. */
3090 rtx tem;
3091
3092 for (tem = purge_bitfield_addressof_replacements;
3093 tem != NULL_RTX;
3094 tem = XEXP (XEXP (tem, 1), 1))
3095 if (rtx_equal_p (x, XEXP (tem, 0)))
3096 {
3097 *loc = XEXP (XEXP (tem, 1), 0);
3098 return true;
3099 }
3100
3101 /* See comment for purge_addressof_replacements. */
3102 for (tem = purge_addressof_replacements;
3103 tem != NULL_RTX;
3104 tem = XEXP (XEXP (tem, 1), 1))
3105 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3106 {
3107 rtx z = XEXP (XEXP (tem, 1), 0);
3108
3109 if (GET_MODE (x) == GET_MODE (z)
3110 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3111 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3112 abort ();
3113
3114 /* It can happen that the note may speak of things
3115 in a wider (or just different) mode than the
3116 code did. This is especially true of
3117 REG_RETVAL. */
3118
3119 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3120 z = SUBREG_REG (z);
3121
3122 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3123 && (GET_MODE_SIZE (GET_MODE (x))
3124 > GET_MODE_SIZE (GET_MODE (z))))
3125 {
3126 /* This can occur as a result in invalid
3127 pointer casts, e.g. float f; ...
3128 *(long long int *)&f.
3129 ??? We could emit a warning here, but
3130 without a line number that wouldn't be
3131 very helpful. */
3132 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3133 }
3134 else
3135 z = gen_lowpart (GET_MODE (x), z);
3136
3137 *loc = z;
3138 return true;
3139 }
3140
3141 /* Sometimes we may not be able to find the replacement. For
3142 example when the original insn was a MEM in a wider mode,
3143 and the note is part of a sign extension of a narrowed
3144 version of that MEM. Gcc testcase compile/990829-1.c can
3145 generate an example of this situation. Rather than complain
3146 we return false, which will prompt our caller to remove the
3147 offending note. */
3148 return false;
3149 }
3150
3151 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3152 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3153
3154 /* Don't even consider working with paradoxical subregs,
3155 or the moral equivalent seen here. */
3156 if (size_x <= size_sub
3157 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3158 {
3159 /* Do a bitfield insertion to mirror what would happen
3160 in memory. */
3161
3162 rtx val, seq;
3163
3164 if (store)
3165 {
3166 rtx p = PREV_INSN (insn);
3167
3168 start_sequence ();
3169 val = gen_reg_rtx (GET_MODE (x));
3170 if (! validate_change (insn, loc, val, 0))
3171 {
3172 /* Discard the current sequence and put the
3173 ADDRESSOF on stack. */
3174 end_sequence ();
3175 goto give_up;
3176 }
3177 seq = get_insns ();
3178 end_sequence ();
3179 emit_insn_before (seq, insn);
3180 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3181 insn, ht);
3182
3183 start_sequence ();
3184 store_bit_field (sub, size_x, 0, GET_MODE (x),
3185 val, GET_MODE_SIZE (GET_MODE (sub)));
3186
3187 /* Make sure to unshare any shared rtl that store_bit_field
3188 might have created. */
3189 unshare_all_rtl_again (get_insns ());
3190
3191 seq = get_insns ();
3192 end_sequence ();
3193 p = emit_insn_after (seq, insn);
3194 if (NEXT_INSN (insn))
3195 compute_insns_for_mem (NEXT_INSN (insn),
3196 p ? NEXT_INSN (p) : NULL_RTX,
3197 ht);
3198 }
3199 else
3200 {
3201 rtx p = PREV_INSN (insn);
3202
3203 start_sequence ();
3204 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3205 GET_MODE (x), GET_MODE (x),
3206 GET_MODE_SIZE (GET_MODE (sub)));
3207
3208 if (! validate_change (insn, loc, val, 0))
3209 {
3210 /* Discard the current sequence and put the
3211 ADDRESSOF on stack. */
3212 end_sequence ();
3213 goto give_up;
3214 }
3215
3216 seq = get_insns ();
3217 end_sequence ();
3218 emit_insn_before (seq, insn);
3219 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3220 insn, ht);
3221 }
3222
3223 /* Remember the replacement so that the same one can be done
3224 on the REG_NOTES. */
3225 purge_bitfield_addressof_replacements
3226 = gen_rtx_EXPR_LIST (VOIDmode, x,
3227 gen_rtx_EXPR_LIST
3228 (VOIDmode, val,
3229 purge_bitfield_addressof_replacements));
3230
3231 /* We replaced with a reg -- all done. */
3232 return true;
3233 }
3234 }
3235
3236 else if (validate_change (insn, loc, sub, 0))
3237 {
3238 /* Remember the replacement so that the same one can be done
3239 on the REG_NOTES. */
3240 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3241 {
3242 rtx tem;
3243
3244 for (tem = purge_addressof_replacements;
3245 tem != NULL_RTX;
3246 tem = XEXP (XEXP (tem, 1), 1))
3247 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3248 {
3249 XEXP (XEXP (tem, 1), 0) = sub;
3250 return true;
3251 }
3252 purge_addressof_replacements
3253 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3254 gen_rtx_EXPR_LIST (VOIDmode, sub,
3255 purge_addressof_replacements));
3256 return true;
3257 }
3258 goto restart;
3259 }
3260 }
3261
3262 give_up:
3263 /* Scan all subexpressions. */
3264 fmt = GET_RTX_FORMAT (code);
3265 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3266 {
3267 if (*fmt == 'e')
3268 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3269 else if (*fmt == 'E')
3270 for (j = 0; j < XVECLEN (x, i); j++)
3271 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3272 }
3273
3274 return result;
3275 }
3276
3277 /* Return a hash value for K, a REG. */
3278
3279 static hashval_t
3280 insns_for_mem_hash (k)
3281 const void * k;
3282 {
3283 /* Use the address of the key for the hash value. */
3284 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3285 return htab_hash_pointer (m->key);
3286 }
3287
3288 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3289
3290 static int
3291 insns_for_mem_comp (k1, k2)
3292 const void * k1;
3293 const void * k2;
3294 {
3295 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3296 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3297 return m1->key == m2->key;
3298 }
3299
3300 struct insns_for_mem_walk_info
3301 {
3302 /* The hash table that we are using to record which INSNs use which
3303 MEMs. */
3304 htab_t ht;
3305
3306 /* The INSN we are currently processing. */
3307 rtx insn;
3308
3309 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3310 to find the insns that use the REGs in the ADDRESSOFs. */
3311 int pass;
3312 };
3313
3314 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3315 that might be used in an ADDRESSOF expression, record this INSN in
3316 the hash table given by DATA (which is really a pointer to an
3317 insns_for_mem_walk_info structure). */
3318
3319 static int
3320 insns_for_mem_walk (r, data)
3321 rtx *r;
3322 void *data;
3323 {
3324 struct insns_for_mem_walk_info *ifmwi
3325 = (struct insns_for_mem_walk_info *) data;
3326 struct insns_for_mem_entry tmp;
3327 tmp.insns = NULL_RTX;
3328
3329 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3330 && GET_CODE (XEXP (*r, 0)) == REG)
3331 {
3332 PTR *e;
3333 tmp.key = XEXP (*r, 0);
3334 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3335 if (*e == NULL)
3336 {
3337 *e = ggc_alloc (sizeof (tmp));
3338 memcpy (*e, &tmp, sizeof (tmp));
3339 }
3340 }
3341 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3342 {
3343 struct insns_for_mem_entry *ifme;
3344 tmp.key = *r;
3345 ifme = (struct insns_for_mem_entry *) htab_find (ifmwi->ht, &tmp);
3346
3347 /* If we have not already recorded this INSN, do so now. Since
3348 we process the INSNs in order, we know that if we have
3349 recorded it it must be at the front of the list. */
3350 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3351 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3352 ifme->insns);
3353 }
3354
3355 return 0;
3356 }
3357
3358 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3359 which REGs in HT. */
3360
3361 static void
3362 compute_insns_for_mem (insns, last_insn, ht)
3363 rtx insns;
3364 rtx last_insn;
3365 htab_t ht;
3366 {
3367 rtx insn;
3368 struct insns_for_mem_walk_info ifmwi;
3369 ifmwi.ht = ht;
3370
3371 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3372 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3373 if (INSN_P (insn))
3374 {
3375 ifmwi.insn = insn;
3376 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3377 }
3378 }
3379
3380 /* Helper function for purge_addressof called through for_each_rtx.
3381 Returns true iff the rtl is an ADDRESSOF. */
3382
3383 static int
3384 is_addressof (rtl, data)
3385 rtx *rtl;
3386 void *data ATTRIBUTE_UNUSED;
3387 {
3388 return GET_CODE (*rtl) == ADDRESSOF;
3389 }
3390
3391 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3392 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3393 stack. */
3394
3395 void
3396 purge_addressof (insns)
3397 rtx insns;
3398 {
3399 rtx insn;
3400 htab_t ht;
3401
3402 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3403 requires a fixup pass over the instruction stream to correct
3404 INSNs that depended on the REG being a REG, and not a MEM. But,
3405 these fixup passes are slow. Furthermore, most MEMs are not
3406 mentioned in very many instructions. So, we speed up the process
3407 by pre-calculating which REGs occur in which INSNs; that allows
3408 us to perform the fixup passes much more quickly. */
3409 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3410 compute_insns_for_mem (insns, NULL_RTX, ht);
3411
3412 for (insn = insns; insn; insn = NEXT_INSN (insn))
3413 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3414 || GET_CODE (insn) == CALL_INSN)
3415 {
3416 if (! purge_addressof_1 (&PATTERN (insn), insn,
3417 asm_noperands (PATTERN (insn)) > 0, 0, ht))
3418 /* If we could not replace the ADDRESSOFs in the insn,
3419 something is wrong. */
3420 abort ();
3421
3422 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, ht))
3423 {
3424 /* If we could not replace the ADDRESSOFs in the insn's notes,
3425 we can just remove the offending notes instead. */
3426 rtx note;
3427
3428 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3429 {
3430 /* If we find a REG_RETVAL note then the insn is a libcall.
3431 Such insns must have REG_EQUAL notes as well, in order
3432 for later passes of the compiler to work. So it is not
3433 safe to delete the notes here, and instead we abort. */
3434 if (REG_NOTE_KIND (note) == REG_RETVAL)
3435 abort ();
3436 if (for_each_rtx (&note, is_addressof, NULL))
3437 remove_note (insn, note);
3438 }
3439 }
3440 }
3441
3442 /* Clean up. */
3443 purge_bitfield_addressof_replacements = 0;
3444 purge_addressof_replacements = 0;
3445
3446 /* REGs are shared. purge_addressof will destructively replace a REG
3447 with a MEM, which creates shared MEMs.
3448
3449 Unfortunately, the children of put_reg_into_stack assume that MEMs
3450 referring to the same stack slot are shared (fixup_var_refs and
3451 the associated hash table code).
3452
3453 So, we have to do another unsharing pass after we have flushed any
3454 REGs that had their address taken into the stack.
3455
3456 It may be worth tracking whether or not we converted any REGs into
3457 MEMs to avoid this overhead when it is not needed. */
3458 unshare_all_rtl_again (get_insns ());
3459 }
3460 \f
3461 /* Convert a SET of a hard subreg to a set of the appropriate hard
3462 register. A subroutine of purge_hard_subreg_sets. */
3463
3464 static void
3465 purge_single_hard_subreg_set (pattern)
3466 rtx pattern;
3467 {
3468 rtx reg = SET_DEST (pattern);
3469 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3470 int offset = 0;
3471
3472 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3473 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3474 {
3475 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3476 GET_MODE (SUBREG_REG (reg)),
3477 SUBREG_BYTE (reg),
3478 GET_MODE (reg));
3479 reg = SUBREG_REG (reg);
3480 }
3481
3482
3483 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3484 {
3485 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3486 SET_DEST (pattern) = reg;
3487 }
3488 }
3489
3490 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3491 only such SETs that we expect to see are those left in because
3492 integrate can't handle sets of parts of a return value register.
3493
3494 We don't use alter_subreg because we only want to eliminate subregs
3495 of hard registers. */
3496
3497 void
3498 purge_hard_subreg_sets (insn)
3499 rtx insn;
3500 {
3501 for (; insn; insn = NEXT_INSN (insn))
3502 {
3503 if (INSN_P (insn))
3504 {
3505 rtx pattern = PATTERN (insn);
3506 switch (GET_CODE (pattern))
3507 {
3508 case SET:
3509 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3510 purge_single_hard_subreg_set (pattern);
3511 break;
3512 case PARALLEL:
3513 {
3514 int j;
3515 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3516 {
3517 rtx inner_pattern = XVECEXP (pattern, 0, j);
3518 if (GET_CODE (inner_pattern) == SET
3519 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3520 purge_single_hard_subreg_set (inner_pattern);
3521 }
3522 }
3523 break;
3524 default:
3525 break;
3526 }
3527 }
3528 }
3529 }
3530 \f
3531 /* Pass through the INSNS of function FNDECL and convert virtual register
3532 references to hard register references. */
3533
3534 void
3535 instantiate_virtual_regs (fndecl, insns)
3536 tree fndecl;
3537 rtx insns;
3538 {
3539 rtx insn;
3540 unsigned int i;
3541
3542 /* Compute the offsets to use for this function. */
3543 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3544 var_offset = STARTING_FRAME_OFFSET;
3545 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3546 out_arg_offset = STACK_POINTER_OFFSET;
3547 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3548
3549 /* Scan all variables and parameters of this function. For each that is
3550 in memory, instantiate all virtual registers if the result is a valid
3551 address. If not, we do it later. That will handle most uses of virtual
3552 regs on many machines. */
3553 instantiate_decls (fndecl, 1);
3554
3555 /* Initialize recognition, indicating that volatile is OK. */
3556 init_recog ();
3557
3558 /* Scan through all the insns, instantiating every virtual register still
3559 present. */
3560 for (insn = insns; insn; insn = NEXT_INSN (insn))
3561 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3562 || GET_CODE (insn) == CALL_INSN)
3563 {
3564 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3565 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3566 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3567 if (GET_CODE (insn) == CALL_INSN)
3568 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3569 NULL_RTX, 0);
3570 }
3571
3572 /* Instantiate the stack slots for the parm registers, for later use in
3573 addressof elimination. */
3574 for (i = 0; i < max_parm_reg; ++i)
3575 if (parm_reg_stack_loc[i])
3576 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3577
3578 /* Now instantiate the remaining register equivalences for debugging info.
3579 These will not be valid addresses. */
3580 instantiate_decls (fndecl, 0);
3581
3582 /* Indicate that, from now on, assign_stack_local should use
3583 frame_pointer_rtx. */
3584 virtuals_instantiated = 1;
3585 }
3586
3587 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3588 all virtual registers in their DECL_RTL's.
3589
3590 If VALID_ONLY, do this only if the resulting address is still valid.
3591 Otherwise, always do it. */
3592
3593 static void
3594 instantiate_decls (fndecl, valid_only)
3595 tree fndecl;
3596 int valid_only;
3597 {
3598 tree decl;
3599
3600 /* Process all parameters of the function. */
3601 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3602 {
3603 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3604 HOST_WIDE_INT size_rtl;
3605
3606 instantiate_decl (DECL_RTL (decl), size, valid_only);
3607
3608 /* If the parameter was promoted, then the incoming RTL mode may be
3609 larger than the declared type size. We must use the larger of
3610 the two sizes. */
3611 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3612 size = MAX (size_rtl, size);
3613 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3614 }
3615
3616 /* Now process all variables defined in the function or its subblocks. */
3617 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3618 }
3619
3620 /* Subroutine of instantiate_decls: Process all decls in the given
3621 BLOCK node and all its subblocks. */
3622
3623 static void
3624 instantiate_decls_1 (let, valid_only)
3625 tree let;
3626 int valid_only;
3627 {
3628 tree t;
3629
3630 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3631 if (DECL_RTL_SET_P (t))
3632 instantiate_decl (DECL_RTL (t),
3633 int_size_in_bytes (TREE_TYPE (t)),
3634 valid_only);
3635
3636 /* Process all subblocks. */
3637 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3638 instantiate_decls_1 (t, valid_only);
3639 }
3640
3641 /* Subroutine of the preceding procedures: Given RTL representing a
3642 decl and the size of the object, do any instantiation required.
3643
3644 If VALID_ONLY is nonzero, it means that the RTL should only be
3645 changed if the new address is valid. */
3646
3647 static void
3648 instantiate_decl (x, size, valid_only)
3649 rtx x;
3650 HOST_WIDE_INT size;
3651 int valid_only;
3652 {
3653 enum machine_mode mode;
3654 rtx addr;
3655
3656 /* If this is not a MEM, no need to do anything. Similarly if the
3657 address is a constant or a register that is not a virtual register. */
3658
3659 if (x == 0 || GET_CODE (x) != MEM)
3660 return;
3661
3662 addr = XEXP (x, 0);
3663 if (CONSTANT_P (addr)
3664 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3665 || (GET_CODE (addr) == REG
3666 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3667 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3668 return;
3669
3670 /* If we should only do this if the address is valid, copy the address.
3671 We need to do this so we can undo any changes that might make the
3672 address invalid. This copy is unfortunate, but probably can't be
3673 avoided. */
3674
3675 if (valid_only)
3676 addr = copy_rtx (addr);
3677
3678 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3679
3680 if (valid_only && size >= 0)
3681 {
3682 unsigned HOST_WIDE_INT decl_size = size;
3683
3684 /* Now verify that the resulting address is valid for every integer or
3685 floating-point mode up to and including SIZE bytes long. We do this
3686 since the object might be accessed in any mode and frame addresses
3687 are shared. */
3688
3689 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3690 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3691 mode = GET_MODE_WIDER_MODE (mode))
3692 if (! memory_address_p (mode, addr))
3693 return;
3694
3695 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3696 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3697 mode = GET_MODE_WIDER_MODE (mode))
3698 if (! memory_address_p (mode, addr))
3699 return;
3700 }
3701
3702 /* Put back the address now that we have updated it and we either know
3703 it is valid or we don't care whether it is valid. */
3704
3705 XEXP (x, 0) = addr;
3706 }
3707 \f
3708 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3709 is a virtual register, return the equivalent hard register and set the
3710 offset indirectly through the pointer. Otherwise, return 0. */
3711
3712 static rtx
3713 instantiate_new_reg (x, poffset)
3714 rtx x;
3715 HOST_WIDE_INT *poffset;
3716 {
3717 rtx new;
3718 HOST_WIDE_INT offset;
3719
3720 if (x == virtual_incoming_args_rtx)
3721 new = arg_pointer_rtx, offset = in_arg_offset;
3722 else if (x == virtual_stack_vars_rtx)
3723 new = frame_pointer_rtx, offset = var_offset;
3724 else if (x == virtual_stack_dynamic_rtx)
3725 new = stack_pointer_rtx, offset = dynamic_offset;
3726 else if (x == virtual_outgoing_args_rtx)
3727 new = stack_pointer_rtx, offset = out_arg_offset;
3728 else if (x == virtual_cfa_rtx)
3729 new = arg_pointer_rtx, offset = cfa_offset;
3730 else
3731 return 0;
3732
3733 *poffset = offset;
3734 return new;
3735 }
3736 \f
3737 /* Given a pointer to a piece of rtx and an optional pointer to the
3738 containing object, instantiate any virtual registers present in it.
3739
3740 If EXTRA_INSNS, we always do the replacement and generate
3741 any extra insns before OBJECT. If it zero, we do nothing if replacement
3742 is not valid.
3743
3744 Return 1 if we either had nothing to do or if we were able to do the
3745 needed replacement. Return 0 otherwise; we only return zero if
3746 EXTRA_INSNS is zero.
3747
3748 We first try some simple transformations to avoid the creation of extra
3749 pseudos. */
3750
3751 static int
3752 instantiate_virtual_regs_1 (loc, object, extra_insns)
3753 rtx *loc;
3754 rtx object;
3755 int extra_insns;
3756 {
3757 rtx x;
3758 RTX_CODE code;
3759 rtx new = 0;
3760 HOST_WIDE_INT offset = 0;
3761 rtx temp;
3762 rtx seq;
3763 int i, j;
3764 const char *fmt;
3765
3766 /* Re-start here to avoid recursion in common cases. */
3767 restart:
3768
3769 x = *loc;
3770 if (x == 0)
3771 return 1;
3772
3773 code = GET_CODE (x);
3774
3775 /* Check for some special cases. */
3776 switch (code)
3777 {
3778 case CONST_INT:
3779 case CONST_DOUBLE:
3780 case CONST_VECTOR:
3781 case CONST:
3782 case SYMBOL_REF:
3783 case CODE_LABEL:
3784 case PC:
3785 case CC0:
3786 case ASM_INPUT:
3787 case ADDR_VEC:
3788 case ADDR_DIFF_VEC:
3789 case RETURN:
3790 return 1;
3791
3792 case SET:
3793 /* We are allowed to set the virtual registers. This means that
3794 the actual register should receive the source minus the
3795 appropriate offset. This is used, for example, in the handling
3796 of non-local gotos. */
3797 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3798 {
3799 rtx src = SET_SRC (x);
3800
3801 /* We are setting the register, not using it, so the relevant
3802 offset is the negative of the offset to use were we using
3803 the register. */
3804 offset = - offset;
3805 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3806
3807 /* The only valid sources here are PLUS or REG. Just do
3808 the simplest possible thing to handle them. */
3809 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3810 abort ();
3811
3812 start_sequence ();
3813 if (GET_CODE (src) != REG)
3814 temp = force_operand (src, NULL_RTX);
3815 else
3816 temp = src;
3817 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3818 seq = get_insns ();
3819 end_sequence ();
3820
3821 emit_insn_before (seq, object);
3822 SET_DEST (x) = new;
3823
3824 if (! validate_change (object, &SET_SRC (x), temp, 0)
3825 || ! extra_insns)
3826 abort ();
3827
3828 return 1;
3829 }
3830
3831 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3832 loc = &SET_SRC (x);
3833 goto restart;
3834
3835 case PLUS:
3836 /* Handle special case of virtual register plus constant. */
3837 if (CONSTANT_P (XEXP (x, 1)))
3838 {
3839 rtx old, new_offset;
3840
3841 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3842 if (GET_CODE (XEXP (x, 0)) == PLUS)
3843 {
3844 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3845 {
3846 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3847 extra_insns);
3848 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3849 }
3850 else
3851 {
3852 loc = &XEXP (x, 0);
3853 goto restart;
3854 }
3855 }
3856
3857 #ifdef POINTERS_EXTEND_UNSIGNED
3858 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3859 we can commute the PLUS and SUBREG because pointers into the
3860 frame are well-behaved. */
3861 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3862 && GET_CODE (XEXP (x, 1)) == CONST_INT
3863 && 0 != (new
3864 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3865 &offset))
3866 && validate_change (object, loc,
3867 plus_constant (gen_lowpart (ptr_mode,
3868 new),
3869 offset
3870 + INTVAL (XEXP (x, 1))),
3871 0))
3872 return 1;
3873 #endif
3874 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3875 {
3876 /* We know the second operand is a constant. Unless the
3877 first operand is a REG (which has been already checked),
3878 it needs to be checked. */
3879 if (GET_CODE (XEXP (x, 0)) != REG)
3880 {
3881 loc = &XEXP (x, 0);
3882 goto restart;
3883 }
3884 return 1;
3885 }
3886
3887 new_offset = plus_constant (XEXP (x, 1), offset);
3888
3889 /* If the new constant is zero, try to replace the sum with just
3890 the register. */
3891 if (new_offset == const0_rtx
3892 && validate_change (object, loc, new, 0))
3893 return 1;
3894
3895 /* Next try to replace the register and new offset.
3896 There are two changes to validate here and we can't assume that
3897 in the case of old offset equals new just changing the register
3898 will yield a valid insn. In the interests of a little efficiency,
3899 however, we only call validate change once (we don't queue up the
3900 changes and then call apply_change_group). */
3901
3902 old = XEXP (x, 0);
3903 if (offset == 0
3904 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3905 : (XEXP (x, 0) = new,
3906 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3907 {
3908 if (! extra_insns)
3909 {
3910 XEXP (x, 0) = old;
3911 return 0;
3912 }
3913
3914 /* Otherwise copy the new constant into a register and replace
3915 constant with that register. */
3916 temp = gen_reg_rtx (Pmode);
3917 XEXP (x, 0) = new;
3918 if (validate_change (object, &XEXP (x, 1), temp, 0))
3919 emit_insn_before (gen_move_insn (temp, new_offset), object);
3920 else
3921 {
3922 /* If that didn't work, replace this expression with a
3923 register containing the sum. */
3924
3925 XEXP (x, 0) = old;
3926 new = gen_rtx_PLUS (Pmode, new, new_offset);
3927
3928 start_sequence ();
3929 temp = force_operand (new, NULL_RTX);
3930 seq = get_insns ();
3931 end_sequence ();
3932
3933 emit_insn_before (seq, object);
3934 if (! validate_change (object, loc, temp, 0)
3935 && ! validate_replace_rtx (x, temp, object))
3936 abort ();
3937 }
3938 }
3939
3940 return 1;
3941 }
3942
3943 /* Fall through to generic two-operand expression case. */
3944 case EXPR_LIST:
3945 case CALL:
3946 case COMPARE:
3947 case MINUS:
3948 case MULT:
3949 case DIV: case UDIV:
3950 case MOD: case UMOD:
3951 case AND: case IOR: case XOR:
3952 case ROTATERT: case ROTATE:
3953 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3954 case NE: case EQ:
3955 case GE: case GT: case GEU: case GTU:
3956 case LE: case LT: case LEU: case LTU:
3957 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3958 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3959 loc = &XEXP (x, 0);
3960 goto restart;
3961
3962 case MEM:
3963 /* Most cases of MEM that convert to valid addresses have already been
3964 handled by our scan of decls. The only special handling we
3965 need here is to make a copy of the rtx to ensure it isn't being
3966 shared if we have to change it to a pseudo.
3967
3968 If the rtx is a simple reference to an address via a virtual register,
3969 it can potentially be shared. In such cases, first try to make it
3970 a valid address, which can also be shared. Otherwise, copy it and
3971 proceed normally.
3972
3973 First check for common cases that need no processing. These are
3974 usually due to instantiation already being done on a previous instance
3975 of a shared rtx. */
3976
3977 temp = XEXP (x, 0);
3978 if (CONSTANT_ADDRESS_P (temp)
3979 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3980 || temp == arg_pointer_rtx
3981 #endif
3982 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3983 || temp == hard_frame_pointer_rtx
3984 #endif
3985 || temp == frame_pointer_rtx)
3986 return 1;
3987
3988 if (GET_CODE (temp) == PLUS
3989 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3990 && (XEXP (temp, 0) == frame_pointer_rtx
3991 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3992 || XEXP (temp, 0) == hard_frame_pointer_rtx
3993 #endif
3994 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3995 || XEXP (temp, 0) == arg_pointer_rtx
3996 #endif
3997 ))
3998 return 1;
3999
4000 if (temp == virtual_stack_vars_rtx
4001 || temp == virtual_incoming_args_rtx
4002 || (GET_CODE (temp) == PLUS
4003 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4004 && (XEXP (temp, 0) == virtual_stack_vars_rtx
4005 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
4006 {
4007 /* This MEM may be shared. If the substitution can be done without
4008 the need to generate new pseudos, we want to do it in place
4009 so all copies of the shared rtx benefit. The call below will
4010 only make substitutions if the resulting address is still
4011 valid.
4012
4013 Note that we cannot pass X as the object in the recursive call
4014 since the insn being processed may not allow all valid
4015 addresses. However, if we were not passed on object, we can
4016 only modify X without copying it if X will have a valid
4017 address.
4018
4019 ??? Also note that this can still lose if OBJECT is an insn that
4020 has less restrictions on an address that some other insn.
4021 In that case, we will modify the shared address. This case
4022 doesn't seem very likely, though. One case where this could
4023 happen is in the case of a USE or CLOBBER reference, but we
4024 take care of that below. */
4025
4026 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4027 object ? object : x, 0))
4028 return 1;
4029
4030 /* Otherwise make a copy and process that copy. We copy the entire
4031 RTL expression since it might be a PLUS which could also be
4032 shared. */
4033 *loc = x = copy_rtx (x);
4034 }
4035
4036 /* Fall through to generic unary operation case. */
4037 case PREFETCH:
4038 case SUBREG:
4039 case STRICT_LOW_PART:
4040 case NEG: case NOT:
4041 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4042 case SIGN_EXTEND: case ZERO_EXTEND:
4043 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4044 case FLOAT: case FIX:
4045 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4046 case ABS:
4047 case SQRT:
4048 case FFS:
4049 /* These case either have just one operand or we know that we need not
4050 check the rest of the operands. */
4051 loc = &XEXP (x, 0);
4052 goto restart;
4053
4054 case USE:
4055 case CLOBBER:
4056 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4057 go ahead and make the invalid one, but do it to a copy. For a REG,
4058 just make the recursive call, since there's no chance of a problem. */
4059
4060 if ((GET_CODE (XEXP (x, 0)) == MEM
4061 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4062 0))
4063 || (GET_CODE (XEXP (x, 0)) == REG
4064 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4065 return 1;
4066
4067 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4068 loc = &XEXP (x, 0);
4069 goto restart;
4070
4071 case REG:
4072 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4073 in front of this insn and substitute the temporary. */
4074 if ((new = instantiate_new_reg (x, &offset)) != 0)
4075 {
4076 temp = plus_constant (new, offset);
4077 if (!validate_change (object, loc, temp, 0))
4078 {
4079 if (! extra_insns)
4080 return 0;
4081
4082 start_sequence ();
4083 temp = force_operand (temp, NULL_RTX);
4084 seq = get_insns ();
4085 end_sequence ();
4086
4087 emit_insn_before (seq, object);
4088 if (! validate_change (object, loc, temp, 0)
4089 && ! validate_replace_rtx (x, temp, object))
4090 abort ();
4091 }
4092 }
4093
4094 return 1;
4095
4096 case ADDRESSOF:
4097 if (GET_CODE (XEXP (x, 0)) == REG)
4098 return 1;
4099
4100 else if (GET_CODE (XEXP (x, 0)) == MEM)
4101 {
4102 /* If we have a (addressof (mem ..)), do any instantiation inside
4103 since we know we'll be making the inside valid when we finally
4104 remove the ADDRESSOF. */
4105 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4106 return 1;
4107 }
4108 break;
4109
4110 default:
4111 break;
4112 }
4113
4114 /* Scan all subexpressions. */
4115 fmt = GET_RTX_FORMAT (code);
4116 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4117 if (*fmt == 'e')
4118 {
4119 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4120 return 0;
4121 }
4122 else if (*fmt == 'E')
4123 for (j = 0; j < XVECLEN (x, i); j++)
4124 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4125 extra_insns))
4126 return 0;
4127
4128 return 1;
4129 }
4130 \f
4131 /* Optimization: assuming this function does not receive nonlocal gotos,
4132 delete the handlers for such, as well as the insns to establish
4133 and disestablish them. */
4134
4135 static void
4136 delete_handlers ()
4137 {
4138 rtx insn;
4139 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4140 {
4141 /* Delete the handler by turning off the flag that would
4142 prevent jump_optimize from deleting it.
4143 Also permit deletion of the nonlocal labels themselves
4144 if nothing local refers to them. */
4145 if (GET_CODE (insn) == CODE_LABEL)
4146 {
4147 tree t, last_t;
4148
4149 LABEL_PRESERVE_P (insn) = 0;
4150
4151 /* Remove it from the nonlocal_label list, to avoid confusing
4152 flow. */
4153 for (t = nonlocal_labels, last_t = 0; t;
4154 last_t = t, t = TREE_CHAIN (t))
4155 if (DECL_RTL (TREE_VALUE (t)) == insn)
4156 break;
4157 if (t)
4158 {
4159 if (! last_t)
4160 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4161 else
4162 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4163 }
4164 }
4165 if (GET_CODE (insn) == INSN)
4166 {
4167 int can_delete = 0;
4168 rtx t;
4169 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4170 if (reg_mentioned_p (t, PATTERN (insn)))
4171 {
4172 can_delete = 1;
4173 break;
4174 }
4175 if (can_delete
4176 || (nonlocal_goto_stack_level != 0
4177 && reg_mentioned_p (nonlocal_goto_stack_level,
4178 PATTERN (insn))))
4179 delete_related_insns (insn);
4180 }
4181 }
4182 }
4183 \f
4184 int
4185 max_parm_reg_num ()
4186 {
4187 return max_parm_reg;
4188 }
4189
4190 /* Return the first insn following those generated by `assign_parms'. */
4191
4192 rtx
4193 get_first_nonparm_insn ()
4194 {
4195 if (last_parm_insn)
4196 return NEXT_INSN (last_parm_insn);
4197 return get_insns ();
4198 }
4199
4200 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4201 Crash if there is none. */
4202
4203 rtx
4204 get_first_block_beg ()
4205 {
4206 rtx searcher;
4207 rtx insn = get_first_nonparm_insn ();
4208
4209 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4210 if (GET_CODE (searcher) == NOTE
4211 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4212 return searcher;
4213
4214 abort (); /* Invalid call to this function. (See comments above.) */
4215 return NULL_RTX;
4216 }
4217
4218 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4219 This means a type for which function calls must pass an address to the
4220 function or get an address back from the function.
4221 EXP may be a type node or an expression (whose type is tested). */
4222
4223 int
4224 aggregate_value_p (exp)
4225 tree exp;
4226 {
4227 int i, regno, nregs;
4228 rtx reg;
4229
4230 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4231
4232 if (TREE_CODE (type) == VOID_TYPE)
4233 return 0;
4234 if (RETURN_IN_MEMORY (type))
4235 return 1;
4236 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4237 and thus can't be returned in registers. */
4238 if (TREE_ADDRESSABLE (type))
4239 return 1;
4240 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4241 return 1;
4242 /* Make sure we have suitable call-clobbered regs to return
4243 the value in; if not, we must return it in memory. */
4244 reg = hard_function_value (type, 0, 0);
4245
4246 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4247 it is OK. */
4248 if (GET_CODE (reg) != REG)
4249 return 0;
4250
4251 regno = REGNO (reg);
4252 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4253 for (i = 0; i < nregs; i++)
4254 if (! call_used_regs[regno + i])
4255 return 1;
4256 return 0;
4257 }
4258 \f
4259 /* Assign RTL expressions to the function's parameters.
4260 This may involve copying them into registers and using
4261 those registers as the RTL for them. */
4262
4263 void
4264 assign_parms (fndecl)
4265 tree fndecl;
4266 {
4267 tree parm;
4268 rtx entry_parm = 0;
4269 rtx stack_parm = 0;
4270 CUMULATIVE_ARGS args_so_far;
4271 enum machine_mode promoted_mode, passed_mode;
4272 enum machine_mode nominal_mode, promoted_nominal_mode;
4273 int unsignedp;
4274 /* Total space needed so far for args on the stack,
4275 given as a constant and a tree-expression. */
4276 struct args_size stack_args_size;
4277 tree fntype = TREE_TYPE (fndecl);
4278 tree fnargs = DECL_ARGUMENTS (fndecl);
4279 /* This is used for the arg pointer when referring to stack args. */
4280 rtx internal_arg_pointer;
4281 /* This is a dummy PARM_DECL that we used for the function result if
4282 the function returns a structure. */
4283 tree function_result_decl = 0;
4284 #ifdef SETUP_INCOMING_VARARGS
4285 int varargs_setup = 0;
4286 #endif
4287 rtx conversion_insns = 0;
4288 struct args_size alignment_pad;
4289
4290 /* Nonzero if function takes extra anonymous args.
4291 This means the last named arg must be on the stack
4292 right before the anonymous ones. */
4293 int stdarg
4294 = (TYPE_ARG_TYPES (fntype) != 0
4295 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4296 != void_type_node));
4297
4298 current_function_stdarg = stdarg;
4299
4300 /* If the reg that the virtual arg pointer will be translated into is
4301 not a fixed reg or is the stack pointer, make a copy of the virtual
4302 arg pointer, and address parms via the copy. The frame pointer is
4303 considered fixed even though it is not marked as such.
4304
4305 The second time through, simply use ap to avoid generating rtx. */
4306
4307 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4308 || ! (fixed_regs[ARG_POINTER_REGNUM]
4309 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4310 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4311 else
4312 internal_arg_pointer = virtual_incoming_args_rtx;
4313 current_function_internal_arg_pointer = internal_arg_pointer;
4314
4315 stack_args_size.constant = 0;
4316 stack_args_size.var = 0;
4317
4318 /* If struct value address is treated as the first argument, make it so. */
4319 if (aggregate_value_p (DECL_RESULT (fndecl))
4320 && ! current_function_returns_pcc_struct
4321 && struct_value_incoming_rtx == 0)
4322 {
4323 tree type = build_pointer_type (TREE_TYPE (fntype));
4324
4325 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4326
4327 DECL_ARG_TYPE (function_result_decl) = type;
4328 TREE_CHAIN (function_result_decl) = fnargs;
4329 fnargs = function_result_decl;
4330 }
4331
4332 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4333 parm_reg_stack_loc = (rtx *) ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4334
4335 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4336 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4337 #else
4338 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4339 #endif
4340
4341 /* We haven't yet found an argument that we must push and pretend the
4342 caller did. */
4343 current_function_pretend_args_size = 0;
4344
4345 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4346 {
4347 struct args_size stack_offset;
4348 struct args_size arg_size;
4349 int passed_pointer = 0;
4350 int did_conversion = 0;
4351 tree passed_type = DECL_ARG_TYPE (parm);
4352 tree nominal_type = TREE_TYPE (parm);
4353 int pretend_named;
4354 int last_named = 0, named_arg;
4355
4356 /* Set LAST_NAMED if this is last named arg before last
4357 anonymous args. */
4358 if (stdarg)
4359 {
4360 tree tem;
4361
4362 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4363 if (DECL_NAME (tem))
4364 break;
4365
4366 if (tem == 0)
4367 last_named = 1;
4368 }
4369 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4370 most machines, if this is a varargs/stdarg function, then we treat
4371 the last named arg as if it were anonymous too. */
4372 named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4373
4374 if (TREE_TYPE (parm) == error_mark_node
4375 /* This can happen after weird syntax errors
4376 or if an enum type is defined among the parms. */
4377 || TREE_CODE (parm) != PARM_DECL
4378 || passed_type == NULL)
4379 {
4380 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4381 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4382 TREE_USED (parm) = 1;
4383 continue;
4384 }
4385
4386 /* Find mode of arg as it is passed, and mode of arg
4387 as it should be during execution of this function. */
4388 passed_mode = TYPE_MODE (passed_type);
4389 nominal_mode = TYPE_MODE (nominal_type);
4390
4391 /* If the parm's mode is VOID, its value doesn't matter,
4392 and avoid the usual things like emit_move_insn that could crash. */
4393 if (nominal_mode == VOIDmode)
4394 {
4395 SET_DECL_RTL (parm, const0_rtx);
4396 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4397 continue;
4398 }
4399
4400 /* If the parm is to be passed as a transparent union, use the
4401 type of the first field for the tests below. We have already
4402 verified that the modes are the same. */
4403 if (DECL_TRANSPARENT_UNION (parm)
4404 || (TREE_CODE (passed_type) == UNION_TYPE
4405 && TYPE_TRANSPARENT_UNION (passed_type)))
4406 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4407
4408 /* See if this arg was passed by invisible reference. It is if
4409 it is an object whose size depends on the contents of the
4410 object itself or if the machine requires these objects be passed
4411 that way. */
4412
4413 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4414 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4415 || TREE_ADDRESSABLE (passed_type)
4416 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4417 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4418 passed_type, named_arg)
4419 #endif
4420 )
4421 {
4422 passed_type = nominal_type = build_pointer_type (passed_type);
4423 passed_pointer = 1;
4424 passed_mode = nominal_mode = Pmode;
4425 }
4426 /* See if the frontend wants to pass this by invisible reference. */
4427 else if (passed_type != nominal_type
4428 && POINTER_TYPE_P (passed_type)
4429 && TREE_TYPE (passed_type) == nominal_type)
4430 {
4431 nominal_type = passed_type;
4432 passed_pointer = 1;
4433 passed_mode = nominal_mode = Pmode;
4434 }
4435
4436 promoted_mode = passed_mode;
4437
4438 #ifdef PROMOTE_FUNCTION_ARGS
4439 /* Compute the mode in which the arg is actually extended to. */
4440 unsignedp = TREE_UNSIGNED (passed_type);
4441 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4442 #endif
4443
4444 /* Let machine desc say which reg (if any) the parm arrives in.
4445 0 means it arrives on the stack. */
4446 #ifdef FUNCTION_INCOMING_ARG
4447 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4448 passed_type, named_arg);
4449 #else
4450 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4451 passed_type, named_arg);
4452 #endif
4453
4454 if (entry_parm == 0)
4455 promoted_mode = passed_mode;
4456
4457 #ifdef SETUP_INCOMING_VARARGS
4458 /* If this is the last named parameter, do any required setup for
4459 varargs or stdargs. We need to know about the case of this being an
4460 addressable type, in which case we skip the registers it
4461 would have arrived in.
4462
4463 For stdargs, LAST_NAMED will be set for two parameters, the one that
4464 is actually the last named, and the dummy parameter. We only
4465 want to do this action once.
4466
4467 Also, indicate when RTL generation is to be suppressed. */
4468 if (last_named && !varargs_setup)
4469 {
4470 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4471 current_function_pretend_args_size, 0);
4472 varargs_setup = 1;
4473 }
4474 #endif
4475
4476 /* Determine parm's home in the stack,
4477 in case it arrives in the stack or we should pretend it did.
4478
4479 Compute the stack position and rtx where the argument arrives
4480 and its size.
4481
4482 There is one complexity here: If this was a parameter that would
4483 have been passed in registers, but wasn't only because it is
4484 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4485 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4486 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4487 0 as it was the previous time. */
4488
4489 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4490 locate_and_pad_parm (promoted_mode, passed_type,
4491 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4492 1,
4493 #else
4494 #ifdef FUNCTION_INCOMING_ARG
4495 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4496 passed_type,
4497 pretend_named) != 0,
4498 #else
4499 FUNCTION_ARG (args_so_far, promoted_mode,
4500 passed_type,
4501 pretend_named) != 0,
4502 #endif
4503 #endif
4504 fndecl, &stack_args_size, &stack_offset, &arg_size,
4505 &alignment_pad);
4506
4507 {
4508 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4509
4510 if (offset_rtx == const0_rtx)
4511 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4512 else
4513 stack_parm = gen_rtx_MEM (promoted_mode,
4514 gen_rtx_PLUS (Pmode,
4515 internal_arg_pointer,
4516 offset_rtx));
4517
4518 set_mem_attributes (stack_parm, parm, 1);
4519 }
4520
4521 /* If this parameter was passed both in registers and in the stack,
4522 use the copy on the stack. */
4523 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4524 entry_parm = 0;
4525
4526 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4527 /* If this parm was passed part in regs and part in memory,
4528 pretend it arrived entirely in memory
4529 by pushing the register-part onto the stack.
4530
4531 In the special case of a DImode or DFmode that is split,
4532 we could put it together in a pseudoreg directly,
4533 but for now that's not worth bothering with. */
4534
4535 if (entry_parm)
4536 {
4537 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4538 passed_type, named_arg);
4539
4540 if (nregs > 0)
4541 {
4542 current_function_pretend_args_size
4543 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4544 / (PARM_BOUNDARY / BITS_PER_UNIT)
4545 * (PARM_BOUNDARY / BITS_PER_UNIT));
4546
4547 /* Handle calls that pass values in multiple non-contiguous
4548 locations. The Irix 6 ABI has examples of this. */
4549 if (GET_CODE (entry_parm) == PARALLEL)
4550 emit_group_store (validize_mem (stack_parm), entry_parm,
4551 int_size_in_bytes (TREE_TYPE (parm)));
4552
4553 else
4554 move_block_from_reg (REGNO (entry_parm),
4555 validize_mem (stack_parm), nregs,
4556 int_size_in_bytes (TREE_TYPE (parm)));
4557
4558 entry_parm = stack_parm;
4559 }
4560 }
4561 #endif
4562
4563 /* If we didn't decide this parm came in a register,
4564 by default it came on the stack. */
4565 if (entry_parm == 0)
4566 entry_parm = stack_parm;
4567
4568 /* Record permanently how this parm was passed. */
4569 DECL_INCOMING_RTL (parm) = entry_parm;
4570
4571 /* If there is actually space on the stack for this parm,
4572 count it in stack_args_size; otherwise set stack_parm to 0
4573 to indicate there is no preallocated stack slot for the parm. */
4574
4575 if (entry_parm == stack_parm
4576 || (GET_CODE (entry_parm) == PARALLEL
4577 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4578 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4579 /* On some machines, even if a parm value arrives in a register
4580 there is still an (uninitialized) stack slot allocated for it.
4581
4582 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4583 whether this parameter already has a stack slot allocated,
4584 because an arg block exists only if current_function_args_size
4585 is larger than some threshold, and we haven't calculated that
4586 yet. So, for now, we just assume that stack slots never exist
4587 in this case. */
4588 || REG_PARM_STACK_SPACE (fndecl) > 0
4589 #endif
4590 )
4591 {
4592 stack_args_size.constant += arg_size.constant;
4593 if (arg_size.var)
4594 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4595 }
4596 else
4597 /* No stack slot was pushed for this parm. */
4598 stack_parm = 0;
4599
4600 /* Update info on where next arg arrives in registers. */
4601
4602 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4603 passed_type, named_arg);
4604
4605 /* If we can't trust the parm stack slot to be aligned enough
4606 for its ultimate type, don't use that slot after entry.
4607 We'll make another stack slot, if we need one. */
4608 {
4609 unsigned int thisparm_boundary
4610 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4611
4612 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4613 stack_parm = 0;
4614 }
4615
4616 /* If parm was passed in memory, and we need to convert it on entry,
4617 don't store it back in that same slot. */
4618 if (entry_parm != 0
4619 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4620 stack_parm = 0;
4621
4622 /* When an argument is passed in multiple locations, we can't
4623 make use of this information, but we can save some copying if
4624 the whole argument is passed in a single register. */
4625 if (GET_CODE (entry_parm) == PARALLEL
4626 && nominal_mode != BLKmode && passed_mode != BLKmode)
4627 {
4628 int i, len = XVECLEN (entry_parm, 0);
4629
4630 for (i = 0; i < len; i++)
4631 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4632 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4633 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4634 == passed_mode)
4635 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4636 {
4637 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4638 DECL_INCOMING_RTL (parm) = entry_parm;
4639 break;
4640 }
4641 }
4642
4643 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4644 in the mode in which it arrives.
4645 STACK_PARM is an RTX for a stack slot where the parameter can live
4646 during the function (in case we want to put it there).
4647 STACK_PARM is 0 if no stack slot was pushed for it.
4648
4649 Now output code if necessary to convert ENTRY_PARM to
4650 the type in which this function declares it,
4651 and store that result in an appropriate place,
4652 which may be a pseudo reg, may be STACK_PARM,
4653 or may be a local stack slot if STACK_PARM is 0.
4654
4655 Set DECL_RTL to that place. */
4656
4657 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4658 {
4659 /* If a BLKmode arrives in registers, copy it to a stack slot.
4660 Handle calls that pass values in multiple non-contiguous
4661 locations. The Irix 6 ABI has examples of this. */
4662 if (GET_CODE (entry_parm) == REG
4663 || GET_CODE (entry_parm) == PARALLEL)
4664 {
4665 int size_stored
4666 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4667 UNITS_PER_WORD);
4668
4669 /* Note that we will be storing an integral number of words.
4670 So we have to be careful to ensure that we allocate an
4671 integral number of words. We do this below in the
4672 assign_stack_local if space was not allocated in the argument
4673 list. If it was, this will not work if PARM_BOUNDARY is not
4674 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4675 if it becomes a problem. */
4676
4677 if (stack_parm == 0)
4678 {
4679 stack_parm
4680 = assign_stack_local (GET_MODE (entry_parm),
4681 size_stored, 0);
4682 set_mem_attributes (stack_parm, parm, 1);
4683 }
4684
4685 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4686 abort ();
4687
4688 /* Handle calls that pass values in multiple non-contiguous
4689 locations. The Irix 6 ABI has examples of this. */
4690 if (GET_CODE (entry_parm) == PARALLEL)
4691 emit_group_store (validize_mem (stack_parm), entry_parm,
4692 int_size_in_bytes (TREE_TYPE (parm)));
4693 else
4694 move_block_from_reg (REGNO (entry_parm),
4695 validize_mem (stack_parm),
4696 size_stored / UNITS_PER_WORD,
4697 int_size_in_bytes (TREE_TYPE (parm)));
4698 }
4699 SET_DECL_RTL (parm, stack_parm);
4700 }
4701 else if (! ((! optimize
4702 && ! DECL_REGISTER (parm))
4703 || TREE_SIDE_EFFECTS (parm)
4704 /* If -ffloat-store specified, don't put explicit
4705 float variables into registers. */
4706 || (flag_float_store
4707 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4708 /* Always assign pseudo to structure return or item passed
4709 by invisible reference. */
4710 || passed_pointer || parm == function_result_decl)
4711 {
4712 /* Store the parm in a pseudoregister during the function, but we
4713 may need to do it in a wider mode. */
4714
4715 rtx parmreg;
4716 unsigned int regno, regnoi = 0, regnor = 0;
4717
4718 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4719
4720 promoted_nominal_mode
4721 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4722
4723 parmreg = gen_reg_rtx (promoted_nominal_mode);
4724 mark_user_reg (parmreg);
4725
4726 /* If this was an item that we received a pointer to, set DECL_RTL
4727 appropriately. */
4728 if (passed_pointer)
4729 {
4730 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4731 parmreg);
4732 set_mem_attributes (x, parm, 1);
4733 SET_DECL_RTL (parm, x);
4734 }
4735 else
4736 {
4737 SET_DECL_RTL (parm, parmreg);
4738 maybe_set_unchanging (DECL_RTL (parm), parm);
4739 }
4740
4741 /* Copy the value into the register. */
4742 if (nominal_mode != passed_mode
4743 || promoted_nominal_mode != promoted_mode)
4744 {
4745 int save_tree_used;
4746 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4747 mode, by the caller. We now have to convert it to
4748 NOMINAL_MODE, if different. However, PARMREG may be in
4749 a different mode than NOMINAL_MODE if it is being stored
4750 promoted.
4751
4752 If ENTRY_PARM is a hard register, it might be in a register
4753 not valid for operating in its mode (e.g., an odd-numbered
4754 register for a DFmode). In that case, moves are the only
4755 thing valid, so we can't do a convert from there. This
4756 occurs when the calling sequence allow such misaligned
4757 usages.
4758
4759 In addition, the conversion may involve a call, which could
4760 clobber parameters which haven't been copied to pseudo
4761 registers yet. Therefore, we must first copy the parm to
4762 a pseudo reg here, and save the conversion until after all
4763 parameters have been moved. */
4764
4765 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4766
4767 emit_move_insn (tempreg, validize_mem (entry_parm));
4768
4769 push_to_sequence (conversion_insns);
4770 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4771
4772 if (GET_CODE (tempreg) == SUBREG
4773 && GET_MODE (tempreg) == nominal_mode
4774 && GET_CODE (SUBREG_REG (tempreg)) == REG
4775 && nominal_mode == passed_mode
4776 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4777 && GET_MODE_SIZE (GET_MODE (tempreg))
4778 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4779 {
4780 /* The argument is already sign/zero extended, so note it
4781 into the subreg. */
4782 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4783 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4784 }
4785
4786 /* TREE_USED gets set erroneously during expand_assignment. */
4787 save_tree_used = TREE_USED (parm);
4788 expand_assignment (parm,
4789 make_tree (nominal_type, tempreg), 0, 0);
4790 TREE_USED (parm) = save_tree_used;
4791 conversion_insns = get_insns ();
4792 did_conversion = 1;
4793 end_sequence ();
4794 }
4795 else
4796 emit_move_insn (parmreg, validize_mem (entry_parm));
4797
4798 /* If we were passed a pointer but the actual value
4799 can safely live in a register, put it in one. */
4800 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4801 /* If by-reference argument was promoted, demote it. */
4802 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4803 || ! ((! optimize
4804 && ! DECL_REGISTER (parm))
4805 || TREE_SIDE_EFFECTS (parm)
4806 /* If -ffloat-store specified, don't put explicit
4807 float variables into registers. */
4808 || (flag_float_store
4809 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4810 {
4811 /* We can't use nominal_mode, because it will have been set to
4812 Pmode above. We must use the actual mode of the parm. */
4813 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4814 mark_user_reg (parmreg);
4815 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4816 {
4817 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4818 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4819 push_to_sequence (conversion_insns);
4820 emit_move_insn (tempreg, DECL_RTL (parm));
4821 SET_DECL_RTL (parm,
4822 convert_to_mode (GET_MODE (parmreg),
4823 tempreg,
4824 unsigned_p));
4825 emit_move_insn (parmreg, DECL_RTL (parm));
4826 conversion_insns = get_insns();
4827 did_conversion = 1;
4828 end_sequence ();
4829 }
4830 else
4831 emit_move_insn (parmreg, DECL_RTL (parm));
4832 SET_DECL_RTL (parm, parmreg);
4833 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4834 now the parm. */
4835 stack_parm = 0;
4836 }
4837 #ifdef FUNCTION_ARG_CALLEE_COPIES
4838 /* If we are passed an arg by reference and it is our responsibility
4839 to make a copy, do it now.
4840 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4841 original argument, so we must recreate them in the call to
4842 FUNCTION_ARG_CALLEE_COPIES. */
4843 /* ??? Later add code to handle the case that if the argument isn't
4844 modified, don't do the copy. */
4845
4846 else if (passed_pointer
4847 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4848 TYPE_MODE (DECL_ARG_TYPE (parm)),
4849 DECL_ARG_TYPE (parm),
4850 named_arg)
4851 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4852 {
4853 rtx copy;
4854 tree type = DECL_ARG_TYPE (parm);
4855
4856 /* This sequence may involve a library call perhaps clobbering
4857 registers that haven't been copied to pseudos yet. */
4858
4859 push_to_sequence (conversion_insns);
4860
4861 if (!COMPLETE_TYPE_P (type)
4862 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4863 /* This is a variable sized object. */
4864 copy = gen_rtx_MEM (BLKmode,
4865 allocate_dynamic_stack_space
4866 (expr_size (parm), NULL_RTX,
4867 TYPE_ALIGN (type)));
4868 else
4869 copy = assign_stack_temp (TYPE_MODE (type),
4870 int_size_in_bytes (type), 1);
4871 set_mem_attributes (copy, parm, 1);
4872
4873 store_expr (parm, copy, 0);
4874 emit_move_insn (parmreg, XEXP (copy, 0));
4875 conversion_insns = get_insns ();
4876 did_conversion = 1;
4877 end_sequence ();
4878 }
4879 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4880
4881 /* In any case, record the parm's desired stack location
4882 in case we later discover it must live in the stack.
4883
4884 If it is a COMPLEX value, store the stack location for both
4885 halves. */
4886
4887 if (GET_CODE (parmreg) == CONCAT)
4888 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4889 else
4890 regno = REGNO (parmreg);
4891
4892 if (regno >= max_parm_reg)
4893 {
4894 rtx *new;
4895 int old_max_parm_reg = max_parm_reg;
4896
4897 /* It's slow to expand this one register at a time,
4898 but it's also rare and we need max_parm_reg to be
4899 precisely correct. */
4900 max_parm_reg = regno + 1;
4901 new = (rtx *) ggc_realloc (parm_reg_stack_loc,
4902 max_parm_reg * sizeof (rtx));
4903 memset ((char *) (new + old_max_parm_reg), 0,
4904 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4905 parm_reg_stack_loc = new;
4906 }
4907
4908 if (GET_CODE (parmreg) == CONCAT)
4909 {
4910 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4911
4912 regnor = REGNO (gen_realpart (submode, parmreg));
4913 regnoi = REGNO (gen_imagpart (submode, parmreg));
4914
4915 if (stack_parm != 0)
4916 {
4917 parm_reg_stack_loc[regnor]
4918 = gen_realpart (submode, stack_parm);
4919 parm_reg_stack_loc[regnoi]
4920 = gen_imagpart (submode, stack_parm);
4921 }
4922 else
4923 {
4924 parm_reg_stack_loc[regnor] = 0;
4925 parm_reg_stack_loc[regnoi] = 0;
4926 }
4927 }
4928 else
4929 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4930
4931 /* Mark the register as eliminable if we did no conversion
4932 and it was copied from memory at a fixed offset,
4933 and the arg pointer was not copied to a pseudo-reg.
4934 If the arg pointer is a pseudo reg or the offset formed
4935 an invalid address, such memory-equivalences
4936 as we make here would screw up life analysis for it. */
4937 if (nominal_mode == passed_mode
4938 && ! did_conversion
4939 && stack_parm != 0
4940 && GET_CODE (stack_parm) == MEM
4941 && stack_offset.var == 0
4942 && reg_mentioned_p (virtual_incoming_args_rtx,
4943 XEXP (stack_parm, 0)))
4944 {
4945 rtx linsn = get_last_insn ();
4946 rtx sinsn, set;
4947
4948 /* Mark complex types separately. */
4949 if (GET_CODE (parmreg) == CONCAT)
4950 /* Scan backwards for the set of the real and
4951 imaginary parts. */
4952 for (sinsn = linsn; sinsn != 0;
4953 sinsn = prev_nonnote_insn (sinsn))
4954 {
4955 set = single_set (sinsn);
4956 if (set != 0
4957 && SET_DEST (set) == regno_reg_rtx [regnoi])
4958 REG_NOTES (sinsn)
4959 = gen_rtx_EXPR_LIST (REG_EQUIV,
4960 parm_reg_stack_loc[regnoi],
4961 REG_NOTES (sinsn));
4962 else if (set != 0
4963 && SET_DEST (set) == regno_reg_rtx [regnor])
4964 REG_NOTES (sinsn)
4965 = gen_rtx_EXPR_LIST (REG_EQUIV,
4966 parm_reg_stack_loc[regnor],
4967 REG_NOTES (sinsn));
4968 }
4969 else if ((set = single_set (linsn)) != 0
4970 && SET_DEST (set) == parmreg)
4971 REG_NOTES (linsn)
4972 = gen_rtx_EXPR_LIST (REG_EQUIV,
4973 stack_parm, REG_NOTES (linsn));
4974 }
4975
4976 /* For pointer data type, suggest pointer register. */
4977 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4978 mark_reg_pointer (parmreg,
4979 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4980
4981 /* If something wants our address, try to use ADDRESSOF. */
4982 if (TREE_ADDRESSABLE (parm))
4983 {
4984 /* If we end up putting something into the stack,
4985 fixup_var_refs_insns will need to make a pass over
4986 all the instructions. It looks through the pending
4987 sequences -- but it can't see the ones in the
4988 CONVERSION_INSNS, if they're not on the sequence
4989 stack. So, we go back to that sequence, just so that
4990 the fixups will happen. */
4991 push_to_sequence (conversion_insns);
4992 put_var_into_stack (parm);
4993 conversion_insns = get_insns ();
4994 end_sequence ();
4995 }
4996 }
4997 else
4998 {
4999 /* Value must be stored in the stack slot STACK_PARM
5000 during function execution. */
5001
5002 if (promoted_mode != nominal_mode)
5003 {
5004 /* Conversion is required. */
5005 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5006
5007 emit_move_insn (tempreg, validize_mem (entry_parm));
5008
5009 push_to_sequence (conversion_insns);
5010 entry_parm = convert_to_mode (nominal_mode, tempreg,
5011 TREE_UNSIGNED (TREE_TYPE (parm)));
5012 if (stack_parm)
5013 /* ??? This may need a big-endian conversion on sparc64. */
5014 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5015
5016 conversion_insns = get_insns ();
5017 did_conversion = 1;
5018 end_sequence ();
5019 }
5020
5021 if (entry_parm != stack_parm)
5022 {
5023 if (stack_parm == 0)
5024 {
5025 stack_parm
5026 = assign_stack_local (GET_MODE (entry_parm),
5027 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
5028 set_mem_attributes (stack_parm, parm, 1);
5029 }
5030
5031 if (promoted_mode != nominal_mode)
5032 {
5033 push_to_sequence (conversion_insns);
5034 emit_move_insn (validize_mem (stack_parm),
5035 validize_mem (entry_parm));
5036 conversion_insns = get_insns ();
5037 end_sequence ();
5038 }
5039 else
5040 emit_move_insn (validize_mem (stack_parm),
5041 validize_mem (entry_parm));
5042 }
5043
5044 SET_DECL_RTL (parm, stack_parm);
5045 }
5046
5047 /* If this "parameter" was the place where we are receiving the
5048 function's incoming structure pointer, set up the result. */
5049 if (parm == function_result_decl)
5050 {
5051 tree result = DECL_RESULT (fndecl);
5052 rtx addr = DECL_RTL (parm);
5053 rtx x;
5054
5055 #ifdef POINTERS_EXTEND_UNSIGNED
5056 if (GET_MODE (addr) != Pmode)
5057 addr = convert_memory_address (Pmode, addr);
5058 #endif
5059
5060 x = gen_rtx_MEM (DECL_MODE (result), addr);
5061 set_mem_attributes (x, result, 1);
5062 SET_DECL_RTL (result, x);
5063 }
5064
5065 if (GET_CODE (DECL_RTL (parm)) == REG)
5066 REGNO_DECL (REGNO (DECL_RTL (parm))) = parm;
5067 else if (GET_CODE (DECL_RTL (parm)) == CONCAT)
5068 {
5069 REGNO_DECL (REGNO (XEXP (DECL_RTL (parm), 0))) = parm;
5070 REGNO_DECL (REGNO (XEXP (DECL_RTL (parm), 1))) = parm;
5071 }
5072
5073 }
5074
5075 /* Output all parameter conversion instructions (possibly including calls)
5076 now that all parameters have been copied out of hard registers. */
5077 emit_insn (conversion_insns);
5078
5079 last_parm_insn = get_last_insn ();
5080
5081 current_function_args_size = stack_args_size.constant;
5082
5083 /* Adjust function incoming argument size for alignment and
5084 minimum length. */
5085
5086 #ifdef REG_PARM_STACK_SPACE
5087 #ifndef MAYBE_REG_PARM_STACK_SPACE
5088 current_function_args_size = MAX (current_function_args_size,
5089 REG_PARM_STACK_SPACE (fndecl));
5090 #endif
5091 #endif
5092
5093 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5094
5095 current_function_args_size
5096 = ((current_function_args_size + STACK_BYTES - 1)
5097 / STACK_BYTES) * STACK_BYTES;
5098
5099 #ifdef ARGS_GROW_DOWNWARD
5100 current_function_arg_offset_rtx
5101 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5102 : expand_expr (size_diffop (stack_args_size.var,
5103 size_int (-stack_args_size.constant)),
5104 NULL_RTX, VOIDmode, 0));
5105 #else
5106 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5107 #endif
5108
5109 /* See how many bytes, if any, of its args a function should try to pop
5110 on return. */
5111
5112 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5113 current_function_args_size);
5114
5115 /* For stdarg.h function, save info about
5116 regs and stack space used by the named args. */
5117
5118 current_function_args_info = args_so_far;
5119
5120 /* Set the rtx used for the function return value. Put this in its
5121 own variable so any optimizers that need this information don't have
5122 to include tree.h. Do this here so it gets done when an inlined
5123 function gets output. */
5124
5125 current_function_return_rtx
5126 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5127 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5128
5129 /* If scalar return value was computed in a pseudo-reg, or was a named
5130 return value that got dumped to the stack, copy that to the hard
5131 return register. */
5132 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5133 {
5134 tree decl_result = DECL_RESULT (fndecl);
5135 rtx decl_rtl = DECL_RTL (decl_result);
5136
5137 if (REG_P (decl_rtl)
5138 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5139 : DECL_REGISTER (decl_result))
5140 {
5141 rtx real_decl_rtl;
5142
5143 #ifdef FUNCTION_OUTGOING_VALUE
5144 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5145 fndecl);
5146 #else
5147 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5148 fndecl);
5149 #endif
5150 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5151 /* The delay slot scheduler assumes that current_function_return_rtx
5152 holds the hard register containing the return value, not a
5153 temporary pseudo. */
5154 current_function_return_rtx = real_decl_rtl;
5155 }
5156 }
5157 }
5158 \f
5159 /* Indicate whether REGNO is an incoming argument to the current function
5160 that was promoted to a wider mode. If so, return the RTX for the
5161 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5162 that REGNO is promoted from and whether the promotion was signed or
5163 unsigned. */
5164
5165 #ifdef PROMOTE_FUNCTION_ARGS
5166
5167 rtx
5168 promoted_input_arg (regno, pmode, punsignedp)
5169 unsigned int regno;
5170 enum machine_mode *pmode;
5171 int *punsignedp;
5172 {
5173 tree arg;
5174
5175 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5176 arg = TREE_CHAIN (arg))
5177 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5178 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5179 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5180 {
5181 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5182 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5183
5184 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5185 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5186 && mode != DECL_MODE (arg))
5187 {
5188 *pmode = DECL_MODE (arg);
5189 *punsignedp = unsignedp;
5190 return DECL_INCOMING_RTL (arg);
5191 }
5192 }
5193
5194 return 0;
5195 }
5196
5197 #endif
5198 \f
5199 /* Compute the size and offset from the start of the stacked arguments for a
5200 parm passed in mode PASSED_MODE and with type TYPE.
5201
5202 INITIAL_OFFSET_PTR points to the current offset into the stacked
5203 arguments.
5204
5205 The starting offset and size for this parm are returned in *OFFSET_PTR
5206 and *ARG_SIZE_PTR, respectively.
5207
5208 IN_REGS is nonzero if the argument will be passed in registers. It will
5209 never be set if REG_PARM_STACK_SPACE is not defined.
5210
5211 FNDECL is the function in which the argument was defined.
5212
5213 There are two types of rounding that are done. The first, controlled by
5214 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5215 list to be aligned to the specific boundary (in bits). This rounding
5216 affects the initial and starting offsets, but not the argument size.
5217
5218 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5219 optionally rounds the size of the parm to PARM_BOUNDARY. The
5220 initial offset is not affected by this rounding, while the size always
5221 is and the starting offset may be. */
5222
5223 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5224 initial_offset_ptr is positive because locate_and_pad_parm's
5225 callers pass in the total size of args so far as
5226 initial_offset_ptr. arg_size_ptr is always positive. */
5227
5228 void
5229 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5230 initial_offset_ptr, offset_ptr, arg_size_ptr,
5231 alignment_pad)
5232 enum machine_mode passed_mode;
5233 tree type;
5234 int in_regs ATTRIBUTE_UNUSED;
5235 tree fndecl ATTRIBUTE_UNUSED;
5236 struct args_size *initial_offset_ptr;
5237 struct args_size *offset_ptr;
5238 struct args_size *arg_size_ptr;
5239 struct args_size *alignment_pad;
5240
5241 {
5242 tree sizetree
5243 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5244 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5245 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5246 #ifdef ARGS_GROW_DOWNWARD
5247 tree s2 = sizetree;
5248 #endif
5249
5250 #ifdef REG_PARM_STACK_SPACE
5251 /* If we have found a stack parm before we reach the end of the
5252 area reserved for registers, skip that area. */
5253 if (! in_regs)
5254 {
5255 int reg_parm_stack_space = 0;
5256
5257 #ifdef MAYBE_REG_PARM_STACK_SPACE
5258 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5259 #else
5260 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5261 #endif
5262 if (reg_parm_stack_space > 0)
5263 {
5264 if (initial_offset_ptr->var)
5265 {
5266 initial_offset_ptr->var
5267 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5268 ssize_int (reg_parm_stack_space));
5269 initial_offset_ptr->constant = 0;
5270 }
5271 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5272 initial_offset_ptr->constant = reg_parm_stack_space;
5273 }
5274 }
5275 #endif /* REG_PARM_STACK_SPACE */
5276
5277 arg_size_ptr->var = 0;
5278 arg_size_ptr->constant = 0;
5279 alignment_pad->var = 0;
5280 alignment_pad->constant = 0;
5281
5282 #ifdef ARGS_GROW_DOWNWARD
5283 if (initial_offset_ptr->var)
5284 {
5285 offset_ptr->constant = 0;
5286 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5287 initial_offset_ptr->var);
5288 }
5289 else
5290 {
5291 offset_ptr->constant = -initial_offset_ptr->constant;
5292 offset_ptr->var = 0;
5293 }
5294
5295 if (where_pad != none
5296 && (!host_integerp (sizetree, 1)
5297 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5298 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5299 SUB_PARM_SIZE (*offset_ptr, s2);
5300
5301 if (!in_regs
5302 #ifdef REG_PARM_STACK_SPACE
5303 || REG_PARM_STACK_SPACE (fndecl) > 0
5304 #endif
5305 )
5306 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5307
5308 if (initial_offset_ptr->var)
5309 arg_size_ptr->var = size_binop (MINUS_EXPR,
5310 size_binop (MINUS_EXPR,
5311 ssize_int (0),
5312 initial_offset_ptr->var),
5313 offset_ptr->var);
5314
5315 else
5316 arg_size_ptr->constant = (-initial_offset_ptr->constant
5317 - offset_ptr->constant);
5318
5319 /* Pad_below needs the pre-rounded size to know how much to pad below.
5320 We only pad parameters which are not in registers as they have their
5321 padding done elsewhere. */
5322 if (where_pad == downward
5323 && !in_regs)
5324 pad_below (offset_ptr, passed_mode, sizetree);
5325
5326 #else /* !ARGS_GROW_DOWNWARD */
5327 if (!in_regs
5328 #ifdef REG_PARM_STACK_SPACE
5329 || REG_PARM_STACK_SPACE (fndecl) > 0
5330 #endif
5331 )
5332 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5333 *offset_ptr = *initial_offset_ptr;
5334
5335 #ifdef PUSH_ROUNDING
5336 if (passed_mode != BLKmode)
5337 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5338 #endif
5339
5340 /* Pad_below needs the pre-rounded size to know how much to pad below
5341 so this must be done before rounding up. */
5342 if (where_pad == downward
5343 /* However, BLKmode args passed in regs have their padding done elsewhere.
5344 The stack slot must be able to hold the entire register. */
5345 && !(in_regs && passed_mode == BLKmode))
5346 pad_below (offset_ptr, passed_mode, sizetree);
5347
5348 if (where_pad != none
5349 && (!host_integerp (sizetree, 1)
5350 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5351 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5352
5353 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5354 #endif /* ARGS_GROW_DOWNWARD */
5355 }
5356
5357 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5358 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5359
5360 static void
5361 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5362 struct args_size *offset_ptr;
5363 int boundary;
5364 struct args_size *alignment_pad;
5365 {
5366 tree save_var = NULL_TREE;
5367 HOST_WIDE_INT save_constant = 0;
5368
5369 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5370
5371 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5372 {
5373 save_var = offset_ptr->var;
5374 save_constant = offset_ptr->constant;
5375 }
5376
5377 alignment_pad->var = NULL_TREE;
5378 alignment_pad->constant = 0;
5379
5380 if (boundary > BITS_PER_UNIT)
5381 {
5382 if (offset_ptr->var)
5383 {
5384 offset_ptr->var =
5385 #ifdef ARGS_GROW_DOWNWARD
5386 round_down
5387 #else
5388 round_up
5389 #endif
5390 (ARGS_SIZE_TREE (*offset_ptr),
5391 boundary / BITS_PER_UNIT);
5392 offset_ptr->constant = 0; /*?*/
5393 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5394 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5395 save_var);
5396 }
5397 else
5398 {
5399 offset_ptr->constant =
5400 #ifdef ARGS_GROW_DOWNWARD
5401 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5402 #else
5403 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5404 #endif
5405 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5406 alignment_pad->constant = offset_ptr->constant - save_constant;
5407 }
5408 }
5409 }
5410
5411 static void
5412 pad_below (offset_ptr, passed_mode, sizetree)
5413 struct args_size *offset_ptr;
5414 enum machine_mode passed_mode;
5415 tree sizetree;
5416 {
5417 if (passed_mode != BLKmode)
5418 {
5419 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5420 offset_ptr->constant
5421 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5422 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5423 - GET_MODE_SIZE (passed_mode));
5424 }
5425 else
5426 {
5427 if (TREE_CODE (sizetree) != INTEGER_CST
5428 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5429 {
5430 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5431 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5432 /* Add it in. */
5433 ADD_PARM_SIZE (*offset_ptr, s2);
5434 SUB_PARM_SIZE (*offset_ptr, sizetree);
5435 }
5436 }
5437 }
5438 \f
5439 /* Walk the tree of blocks describing the binding levels within a function
5440 and warn about uninitialized variables.
5441 This is done after calling flow_analysis and before global_alloc
5442 clobbers the pseudo-regs to hard regs. */
5443
5444 void
5445 uninitialized_vars_warning (block)
5446 tree block;
5447 {
5448 tree decl, sub;
5449 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5450 {
5451 if (warn_uninitialized
5452 && TREE_CODE (decl) == VAR_DECL
5453 /* These warnings are unreliable for and aggregates
5454 because assigning the fields one by one can fail to convince
5455 flow.c that the entire aggregate was initialized.
5456 Unions are troublesome because members may be shorter. */
5457 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5458 && DECL_RTL (decl) != 0
5459 && GET_CODE (DECL_RTL (decl)) == REG
5460 /* Global optimizations can make it difficult to determine if a
5461 particular variable has been initialized. However, a VAR_DECL
5462 with a nonzero DECL_INITIAL had an initializer, so do not
5463 claim it is potentially uninitialized.
5464
5465 We do not care about the actual value in DECL_INITIAL, so we do
5466 not worry that it may be a dangling pointer. */
5467 && DECL_INITIAL (decl) == NULL_TREE
5468 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5469 warning_with_decl (decl,
5470 "`%s' might be used uninitialized in this function");
5471 if (extra_warnings
5472 && TREE_CODE (decl) == VAR_DECL
5473 && DECL_RTL (decl) != 0
5474 && GET_CODE (DECL_RTL (decl)) == REG
5475 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5476 warning_with_decl (decl,
5477 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5478 }
5479 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5480 uninitialized_vars_warning (sub);
5481 }
5482
5483 /* Do the appropriate part of uninitialized_vars_warning
5484 but for arguments instead of local variables. */
5485
5486 void
5487 setjmp_args_warning ()
5488 {
5489 tree decl;
5490 for (decl = DECL_ARGUMENTS (current_function_decl);
5491 decl; decl = TREE_CHAIN (decl))
5492 if (DECL_RTL (decl) != 0
5493 && GET_CODE (DECL_RTL (decl)) == REG
5494 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5495 warning_with_decl (decl,
5496 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5497 }
5498
5499 /* If this function call setjmp, put all vars into the stack
5500 unless they were declared `register'. */
5501
5502 void
5503 setjmp_protect (block)
5504 tree block;
5505 {
5506 tree decl, sub;
5507 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5508 if ((TREE_CODE (decl) == VAR_DECL
5509 || TREE_CODE (decl) == PARM_DECL)
5510 && DECL_RTL (decl) != 0
5511 && (GET_CODE (DECL_RTL (decl)) == REG
5512 || (GET_CODE (DECL_RTL (decl)) == MEM
5513 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5514 /* If this variable came from an inline function, it must be
5515 that its life doesn't overlap the setjmp. If there was a
5516 setjmp in the function, it would already be in memory. We
5517 must exclude such variable because their DECL_RTL might be
5518 set to strange things such as virtual_stack_vars_rtx. */
5519 && ! DECL_FROM_INLINE (decl)
5520 && (
5521 #ifdef NON_SAVING_SETJMP
5522 /* If longjmp doesn't restore the registers,
5523 don't put anything in them. */
5524 NON_SAVING_SETJMP
5525 ||
5526 #endif
5527 ! DECL_REGISTER (decl)))
5528 put_var_into_stack (decl);
5529 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5530 setjmp_protect (sub);
5531 }
5532 \f
5533 /* Like the previous function, but for args instead of local variables. */
5534
5535 void
5536 setjmp_protect_args ()
5537 {
5538 tree decl;
5539 for (decl = DECL_ARGUMENTS (current_function_decl);
5540 decl; decl = TREE_CHAIN (decl))
5541 if ((TREE_CODE (decl) == VAR_DECL
5542 || TREE_CODE (decl) == PARM_DECL)
5543 && DECL_RTL (decl) != 0
5544 && (GET_CODE (DECL_RTL (decl)) == REG
5545 || (GET_CODE (DECL_RTL (decl)) == MEM
5546 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5547 && (
5548 /* If longjmp doesn't restore the registers,
5549 don't put anything in them. */
5550 #ifdef NON_SAVING_SETJMP
5551 NON_SAVING_SETJMP
5552 ||
5553 #endif
5554 ! DECL_REGISTER (decl)))
5555 put_var_into_stack (decl);
5556 }
5557 \f
5558 /* Return the context-pointer register corresponding to DECL,
5559 or 0 if it does not need one. */
5560
5561 rtx
5562 lookup_static_chain (decl)
5563 tree decl;
5564 {
5565 tree context = decl_function_context (decl);
5566 tree link;
5567
5568 if (context == 0
5569 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5570 return 0;
5571
5572 /* We treat inline_function_decl as an alias for the current function
5573 because that is the inline function whose vars, types, etc.
5574 are being merged into the current function.
5575 See expand_inline_function. */
5576 if (context == current_function_decl || context == inline_function_decl)
5577 return virtual_stack_vars_rtx;
5578
5579 for (link = context_display; link; link = TREE_CHAIN (link))
5580 if (TREE_PURPOSE (link) == context)
5581 return RTL_EXPR_RTL (TREE_VALUE (link));
5582
5583 abort ();
5584 }
5585 \f
5586 /* Convert a stack slot address ADDR for variable VAR
5587 (from a containing function)
5588 into an address valid in this function (using a static chain). */
5589
5590 rtx
5591 fix_lexical_addr (addr, var)
5592 rtx addr;
5593 tree var;
5594 {
5595 rtx basereg;
5596 HOST_WIDE_INT displacement;
5597 tree context = decl_function_context (var);
5598 struct function *fp;
5599 rtx base = 0;
5600
5601 /* If this is the present function, we need not do anything. */
5602 if (context == current_function_decl || context == inline_function_decl)
5603 return addr;
5604
5605 fp = find_function_data (context);
5606
5607 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5608 addr = XEXP (XEXP (addr, 0), 0);
5609
5610 /* Decode given address as base reg plus displacement. */
5611 if (GET_CODE (addr) == REG)
5612 basereg = addr, displacement = 0;
5613 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5614 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5615 else
5616 abort ();
5617
5618 /* We accept vars reached via the containing function's
5619 incoming arg pointer and via its stack variables pointer. */
5620 if (basereg == fp->internal_arg_pointer)
5621 {
5622 /* If reached via arg pointer, get the arg pointer value
5623 out of that function's stack frame.
5624
5625 There are two cases: If a separate ap is needed, allocate a
5626 slot in the outer function for it and dereference it that way.
5627 This is correct even if the real ap is actually a pseudo.
5628 Otherwise, just adjust the offset from the frame pointer to
5629 compensate. */
5630
5631 #ifdef NEED_SEPARATE_AP
5632 rtx addr;
5633
5634 addr = get_arg_pointer_save_area (fp);
5635 addr = fix_lexical_addr (XEXP (addr, 0), var);
5636 addr = memory_address (Pmode, addr);
5637
5638 base = gen_rtx_MEM (Pmode, addr);
5639 set_mem_alias_set (base, get_frame_alias_set ());
5640 base = copy_to_reg (base);
5641 #else
5642 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5643 base = lookup_static_chain (var);
5644 #endif
5645 }
5646
5647 else if (basereg == virtual_stack_vars_rtx)
5648 {
5649 /* This is the same code as lookup_static_chain, duplicated here to
5650 avoid an extra call to decl_function_context. */
5651 tree link;
5652
5653 for (link = context_display; link; link = TREE_CHAIN (link))
5654 if (TREE_PURPOSE (link) == context)
5655 {
5656 base = RTL_EXPR_RTL (TREE_VALUE (link));
5657 break;
5658 }
5659 }
5660
5661 if (base == 0)
5662 abort ();
5663
5664 /* Use same offset, relative to appropriate static chain or argument
5665 pointer. */
5666 return plus_constant (base, displacement);
5667 }
5668 \f
5669 /* Return the address of the trampoline for entering nested fn FUNCTION.
5670 If necessary, allocate a trampoline (in the stack frame)
5671 and emit rtl to initialize its contents (at entry to this function). */
5672
5673 rtx
5674 trampoline_address (function)
5675 tree function;
5676 {
5677 tree link;
5678 tree rtlexp;
5679 rtx tramp;
5680 struct function *fp;
5681 tree fn_context;
5682
5683 /* Find an existing trampoline and return it. */
5684 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5685 if (TREE_PURPOSE (link) == function)
5686 return
5687 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5688
5689 for (fp = outer_function_chain; fp; fp = fp->outer)
5690 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5691 if (TREE_PURPOSE (link) == function)
5692 {
5693 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5694 function);
5695 return adjust_trampoline_addr (tramp);
5696 }
5697
5698 /* None exists; we must make one. */
5699
5700 /* Find the `struct function' for the function containing FUNCTION. */
5701 fp = 0;
5702 fn_context = decl_function_context (function);
5703 if (fn_context != current_function_decl
5704 && fn_context != inline_function_decl)
5705 fp = find_function_data (fn_context);
5706
5707 /* Allocate run-time space for this trampoline
5708 (usually in the defining function's stack frame). */
5709 #ifdef ALLOCATE_TRAMPOLINE
5710 tramp = ALLOCATE_TRAMPOLINE (fp);
5711 #else
5712 /* If rounding needed, allocate extra space
5713 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5714 #define TRAMPOLINE_REAL_SIZE \
5715 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5716 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5717 fp ? fp : cfun);
5718 #endif
5719
5720 /* Record the trampoline for reuse and note it for later initialization
5721 by expand_function_end. */
5722 if (fp != 0)
5723 {
5724 rtlexp = make_node (RTL_EXPR);
5725 RTL_EXPR_RTL (rtlexp) = tramp;
5726 fp->x_trampoline_list = tree_cons (function, rtlexp,
5727 fp->x_trampoline_list);
5728 }
5729 else
5730 {
5731 /* Make the RTL_EXPR node temporary, not momentary, so that the
5732 trampoline_list doesn't become garbage. */
5733 rtlexp = make_node (RTL_EXPR);
5734
5735 RTL_EXPR_RTL (rtlexp) = tramp;
5736 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5737 }
5738
5739 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5740 return adjust_trampoline_addr (tramp);
5741 }
5742
5743 /* Given a trampoline address,
5744 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5745
5746 static rtx
5747 round_trampoline_addr (tramp)
5748 rtx tramp;
5749 {
5750 /* Round address up to desired boundary. */
5751 rtx temp = gen_reg_rtx (Pmode);
5752 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5753 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5754
5755 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5756 temp, 0, OPTAB_LIB_WIDEN);
5757 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5758 temp, 0, OPTAB_LIB_WIDEN);
5759
5760 return tramp;
5761 }
5762
5763 /* Given a trampoline address, round it then apply any
5764 platform-specific adjustments so that the result can be used for a
5765 function call . */
5766
5767 static rtx
5768 adjust_trampoline_addr (tramp)
5769 rtx tramp;
5770 {
5771 tramp = round_trampoline_addr (tramp);
5772 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5773 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5774 #endif
5775 return tramp;
5776 }
5777 \f
5778 /* Put all this function's BLOCK nodes including those that are chained
5779 onto the first block into a vector, and return it.
5780 Also store in each NOTE for the beginning or end of a block
5781 the index of that block in the vector.
5782 The arguments are BLOCK, the chain of top-level blocks of the function,
5783 and INSNS, the insn chain of the function. */
5784
5785 void
5786 identify_blocks ()
5787 {
5788 int n_blocks;
5789 tree *block_vector, *last_block_vector;
5790 tree *block_stack;
5791 tree block = DECL_INITIAL (current_function_decl);
5792
5793 if (block == 0)
5794 return;
5795
5796 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5797 depth-first order. */
5798 block_vector = get_block_vector (block, &n_blocks);
5799 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5800
5801 last_block_vector = identify_blocks_1 (get_insns (),
5802 block_vector + 1,
5803 block_vector + n_blocks,
5804 block_stack);
5805
5806 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5807 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5808 if (0 && last_block_vector != block_vector + n_blocks)
5809 abort ();
5810
5811 free (block_vector);
5812 free (block_stack);
5813 }
5814
5815 /* Subroutine of identify_blocks. Do the block substitution on the
5816 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5817
5818 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5819 BLOCK_VECTOR is incremented for each block seen. */
5820
5821 static tree *
5822 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5823 rtx insns;
5824 tree *block_vector;
5825 tree *end_block_vector;
5826 tree *orig_block_stack;
5827 {
5828 rtx insn;
5829 tree *block_stack = orig_block_stack;
5830
5831 for (insn = insns; insn; insn = NEXT_INSN (insn))
5832 {
5833 if (GET_CODE (insn) == NOTE)
5834 {
5835 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5836 {
5837 tree b;
5838
5839 /* If there are more block notes than BLOCKs, something
5840 is badly wrong. */
5841 if (block_vector == end_block_vector)
5842 abort ();
5843
5844 b = *block_vector++;
5845 NOTE_BLOCK (insn) = b;
5846 *block_stack++ = b;
5847 }
5848 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5849 {
5850 /* If there are more NOTE_INSN_BLOCK_ENDs than
5851 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5852 if (block_stack == orig_block_stack)
5853 abort ();
5854
5855 NOTE_BLOCK (insn) = *--block_stack;
5856 }
5857 }
5858 else if (GET_CODE (insn) == CALL_INSN
5859 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5860 {
5861 rtx cp = PATTERN (insn);
5862
5863 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5864 end_block_vector, block_stack);
5865 if (XEXP (cp, 1))
5866 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5867 end_block_vector, block_stack);
5868 if (XEXP (cp, 2))
5869 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5870 end_block_vector, block_stack);
5871 }
5872 }
5873
5874 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5875 something is badly wrong. */
5876 if (block_stack != orig_block_stack)
5877 abort ();
5878
5879 return block_vector;
5880 }
5881
5882 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
5883 and create duplicate blocks. */
5884 /* ??? Need an option to either create block fragments or to create
5885 abstract origin duplicates of a source block. It really depends
5886 on what optimization has been performed. */
5887
5888 void
5889 reorder_blocks ()
5890 {
5891 tree block = DECL_INITIAL (current_function_decl);
5892 varray_type block_stack;
5893
5894 if (block == NULL_TREE)
5895 return;
5896
5897 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5898
5899 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
5900 reorder_blocks_0 (block);
5901
5902 /* Prune the old trees away, so that they don't get in the way. */
5903 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5904 BLOCK_CHAIN (block) = NULL_TREE;
5905
5906 /* Recreate the block tree from the note nesting. */
5907 reorder_blocks_1 (get_insns (), block, &block_stack);
5908 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5909
5910 /* Remove deleted blocks from the block fragment chains. */
5911 reorder_fix_fragments (block);
5912 }
5913
5914 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
5915
5916 static void
5917 reorder_blocks_0 (block)
5918 tree block;
5919 {
5920 while (block)
5921 {
5922 TREE_ASM_WRITTEN (block) = 0;
5923 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
5924 block = BLOCK_CHAIN (block);
5925 }
5926 }
5927
5928 static void
5929 reorder_blocks_1 (insns, current_block, p_block_stack)
5930 rtx insns;
5931 tree current_block;
5932 varray_type *p_block_stack;
5933 {
5934 rtx insn;
5935
5936 for (insn = insns; insn; insn = NEXT_INSN (insn))
5937 {
5938 if (GET_CODE (insn) == NOTE)
5939 {
5940 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5941 {
5942 tree block = NOTE_BLOCK (insn);
5943
5944 /* If we have seen this block before, that means it now
5945 spans multiple address regions. Create a new fragment. */
5946 if (TREE_ASM_WRITTEN (block))
5947 {
5948 tree new_block = copy_node (block);
5949 tree origin;
5950
5951 origin = (BLOCK_FRAGMENT_ORIGIN (block)
5952 ? BLOCK_FRAGMENT_ORIGIN (block)
5953 : block);
5954 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
5955 BLOCK_FRAGMENT_CHAIN (new_block)
5956 = BLOCK_FRAGMENT_CHAIN (origin);
5957 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
5958
5959 NOTE_BLOCK (insn) = new_block;
5960 block = new_block;
5961 }
5962
5963 BLOCK_SUBBLOCKS (block) = 0;
5964 TREE_ASM_WRITTEN (block) = 1;
5965 BLOCK_SUPERCONTEXT (block) = current_block;
5966 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5967 BLOCK_SUBBLOCKS (current_block) = block;
5968 current_block = block;
5969 VARRAY_PUSH_TREE (*p_block_stack, block);
5970 }
5971 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5972 {
5973 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5974 VARRAY_POP (*p_block_stack);
5975 BLOCK_SUBBLOCKS (current_block)
5976 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5977 current_block = BLOCK_SUPERCONTEXT (current_block);
5978 }
5979 }
5980 else if (GET_CODE (insn) == CALL_INSN
5981 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5982 {
5983 rtx cp = PATTERN (insn);
5984 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5985 if (XEXP (cp, 1))
5986 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5987 if (XEXP (cp, 2))
5988 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5989 }
5990 }
5991 }
5992
5993 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
5994 appears in the block tree, select one of the fragments to become
5995 the new origin block. */
5996
5997 static void
5998 reorder_fix_fragments (block)
5999 tree block;
6000 {
6001 while (block)
6002 {
6003 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6004 tree new_origin = NULL_TREE;
6005
6006 if (dup_origin)
6007 {
6008 if (! TREE_ASM_WRITTEN (dup_origin))
6009 {
6010 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6011
6012 /* Find the first of the remaining fragments. There must
6013 be at least one -- the current block. */
6014 while (! TREE_ASM_WRITTEN (new_origin))
6015 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6016 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6017 }
6018 }
6019 else if (! dup_origin)
6020 new_origin = block;
6021
6022 /* Re-root the rest of the fragments to the new origin. In the
6023 case that DUP_ORIGIN was null, that means BLOCK was the origin
6024 of a chain of fragments and we want to remove those fragments
6025 that didn't make it to the output. */
6026 if (new_origin)
6027 {
6028 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6029 tree chain = *pp;
6030
6031 while (chain)
6032 {
6033 if (TREE_ASM_WRITTEN (chain))
6034 {
6035 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6036 *pp = chain;
6037 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6038 }
6039 chain = BLOCK_FRAGMENT_CHAIN (chain);
6040 }
6041 *pp = NULL_TREE;
6042 }
6043
6044 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6045 block = BLOCK_CHAIN (block);
6046 }
6047 }
6048
6049 /* Reverse the order of elements in the chain T of blocks,
6050 and return the new head of the chain (old last element). */
6051
6052 static tree
6053 blocks_nreverse (t)
6054 tree t;
6055 {
6056 tree prev = 0, decl, next;
6057 for (decl = t; decl; decl = next)
6058 {
6059 next = BLOCK_CHAIN (decl);
6060 BLOCK_CHAIN (decl) = prev;
6061 prev = decl;
6062 }
6063 return prev;
6064 }
6065
6066 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6067 non-NULL, list them all into VECTOR, in a depth-first preorder
6068 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6069 blocks. */
6070
6071 static int
6072 all_blocks (block, vector)
6073 tree block;
6074 tree *vector;
6075 {
6076 int n_blocks = 0;
6077
6078 while (block)
6079 {
6080 TREE_ASM_WRITTEN (block) = 0;
6081
6082 /* Record this block. */
6083 if (vector)
6084 vector[n_blocks] = block;
6085
6086 ++n_blocks;
6087
6088 /* Record the subblocks, and their subblocks... */
6089 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6090 vector ? vector + n_blocks : 0);
6091 block = BLOCK_CHAIN (block);
6092 }
6093
6094 return n_blocks;
6095 }
6096
6097 /* Return a vector containing all the blocks rooted at BLOCK. The
6098 number of elements in the vector is stored in N_BLOCKS_P. The
6099 vector is dynamically allocated; it is the caller's responsibility
6100 to call `free' on the pointer returned. */
6101
6102 static tree *
6103 get_block_vector (block, n_blocks_p)
6104 tree block;
6105 int *n_blocks_p;
6106 {
6107 tree *block_vector;
6108
6109 *n_blocks_p = all_blocks (block, NULL);
6110 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
6111 all_blocks (block, block_vector);
6112
6113 return block_vector;
6114 }
6115
6116 static int next_block_index = 2;
6117
6118 /* Set BLOCK_NUMBER for all the blocks in FN. */
6119
6120 void
6121 number_blocks (fn)
6122 tree fn;
6123 {
6124 int i;
6125 int n_blocks;
6126 tree *block_vector;
6127
6128 /* For SDB and XCOFF debugging output, we start numbering the blocks
6129 from 1 within each function, rather than keeping a running
6130 count. */
6131 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6132 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6133 next_block_index = 1;
6134 #endif
6135
6136 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6137
6138 /* The top-level BLOCK isn't numbered at all. */
6139 for (i = 1; i < n_blocks; ++i)
6140 /* We number the blocks from two. */
6141 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6142
6143 free (block_vector);
6144
6145 return;
6146 }
6147
6148 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6149
6150 tree
6151 debug_find_var_in_block_tree (var, block)
6152 tree var;
6153 tree block;
6154 {
6155 tree t;
6156
6157 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6158 if (t == var)
6159 return block;
6160
6161 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6162 {
6163 tree ret = debug_find_var_in_block_tree (var, t);
6164 if (ret)
6165 return ret;
6166 }
6167
6168 return NULL_TREE;
6169 }
6170 \f
6171 /* Allocate a function structure and reset its contents to the defaults. */
6172
6173 static void
6174 prepare_function_start ()
6175 {
6176 cfun = (struct function *) ggc_alloc_cleared (sizeof (struct function));
6177
6178 init_stmt_for_function ();
6179 init_eh_for_function ();
6180
6181 cse_not_expected = ! optimize;
6182
6183 /* Caller save not needed yet. */
6184 caller_save_needed = 0;
6185
6186 /* No stack slots have been made yet. */
6187 stack_slot_list = 0;
6188
6189 current_function_has_nonlocal_label = 0;
6190 current_function_has_nonlocal_goto = 0;
6191
6192 /* There is no stack slot for handling nonlocal gotos. */
6193 nonlocal_goto_handler_slots = 0;
6194 nonlocal_goto_stack_level = 0;
6195
6196 /* No labels have been declared for nonlocal use. */
6197 nonlocal_labels = 0;
6198 nonlocal_goto_handler_labels = 0;
6199
6200 /* No function calls so far in this function. */
6201 function_call_count = 0;
6202
6203 /* No parm regs have been allocated.
6204 (This is important for output_inline_function.) */
6205 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6206
6207 /* Initialize the RTL mechanism. */
6208 init_emit ();
6209
6210 /* Initialize the queue of pending postincrement and postdecrements,
6211 and some other info in expr.c. */
6212 init_expr ();
6213
6214 /* We haven't done register allocation yet. */
6215 reg_renumber = 0;
6216
6217 init_varasm_status (cfun);
6218
6219 /* Clear out data used for inlining. */
6220 cfun->inlinable = 0;
6221 cfun->original_decl_initial = 0;
6222 cfun->original_arg_vector = 0;
6223
6224 cfun->stack_alignment_needed = STACK_BOUNDARY;
6225 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6226
6227 /* Set if a call to setjmp is seen. */
6228 current_function_calls_setjmp = 0;
6229
6230 /* Set if a call to longjmp is seen. */
6231 current_function_calls_longjmp = 0;
6232
6233 current_function_calls_alloca = 0;
6234 current_function_contains_functions = 0;
6235 current_function_is_leaf = 0;
6236 current_function_nothrow = 0;
6237 current_function_sp_is_unchanging = 0;
6238 current_function_uses_only_leaf_regs = 0;
6239 current_function_has_computed_jump = 0;
6240 current_function_is_thunk = 0;
6241
6242 current_function_returns_pcc_struct = 0;
6243 current_function_returns_struct = 0;
6244 current_function_epilogue_delay_list = 0;
6245 current_function_uses_const_pool = 0;
6246 current_function_uses_pic_offset_table = 0;
6247 current_function_cannot_inline = 0;
6248
6249 /* We have not yet needed to make a label to jump to for tail-recursion. */
6250 tail_recursion_label = 0;
6251
6252 /* We haven't had a need to make a save area for ap yet. */
6253 arg_pointer_save_area = 0;
6254
6255 /* No stack slots allocated yet. */
6256 frame_offset = 0;
6257
6258 /* No SAVE_EXPRs in this function yet. */
6259 save_expr_regs = 0;
6260
6261 /* No RTL_EXPRs in this function yet. */
6262 rtl_expr_chain = 0;
6263
6264 /* Set up to allocate temporaries. */
6265 init_temp_slots ();
6266
6267 /* Indicate that we need to distinguish between the return value of the
6268 present function and the return value of a function being called. */
6269 rtx_equal_function_value_matters = 1;
6270
6271 /* Indicate that we have not instantiated virtual registers yet. */
6272 virtuals_instantiated = 0;
6273
6274 /* Indicate that we want CONCATs now. */
6275 generating_concat_p = 1;
6276
6277 /* Indicate we have no need of a frame pointer yet. */
6278 frame_pointer_needed = 0;
6279
6280 /* By default assume not stdarg. */
6281 current_function_stdarg = 0;
6282
6283 /* We haven't made any trampolines for this function yet. */
6284 trampoline_list = 0;
6285
6286 init_pending_stack_adjust ();
6287 inhibit_defer_pop = 0;
6288
6289 current_function_outgoing_args_size = 0;
6290
6291 current_function_funcdef_no = funcdef_no++;
6292
6293 cfun->arc_profile = profile_arc_flag || flag_test_coverage;
6294
6295 cfun->arc_profile = profile_arc_flag || flag_test_coverage;
6296
6297 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6298
6299 cfun->max_jumptable_ents = 0;
6300
6301 (*lang_hooks.function.init) (cfun);
6302 if (init_machine_status)
6303 cfun->machine = (*init_machine_status) ();
6304 }
6305
6306 /* Initialize the rtl expansion mechanism so that we can do simple things
6307 like generate sequences. This is used to provide a context during global
6308 initialization of some passes. */
6309 void
6310 init_dummy_function_start ()
6311 {
6312 prepare_function_start ();
6313 }
6314
6315 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6316 and initialize static variables for generating RTL for the statements
6317 of the function. */
6318
6319 void
6320 init_function_start (subr, filename, line)
6321 tree subr;
6322 const char *filename;
6323 int line;
6324 {
6325 prepare_function_start ();
6326
6327 current_function_name = (*lang_hooks.decl_printable_name) (subr, 2);
6328 cfun->decl = subr;
6329
6330 /* Nonzero if this is a nested function that uses a static chain. */
6331
6332 current_function_needs_context
6333 = (decl_function_context (current_function_decl) != 0
6334 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6335
6336 /* Within function body, compute a type's size as soon it is laid out. */
6337 immediate_size_expand++;
6338
6339 /* Prevent ever trying to delete the first instruction of a function.
6340 Also tell final how to output a linenum before the function prologue.
6341 Note linenums could be missing, e.g. when compiling a Java .class file. */
6342 if (line > 0)
6343 emit_line_note (filename, line);
6344
6345 /* Make sure first insn is a note even if we don't want linenums.
6346 This makes sure the first insn will never be deleted.
6347 Also, final expects a note to appear there. */
6348 emit_note (NULL, NOTE_INSN_DELETED);
6349
6350 /* Set flags used by final.c. */
6351 if (aggregate_value_p (DECL_RESULT (subr)))
6352 {
6353 #ifdef PCC_STATIC_STRUCT_RETURN
6354 current_function_returns_pcc_struct = 1;
6355 #endif
6356 current_function_returns_struct = 1;
6357 }
6358
6359 /* Warn if this value is an aggregate type,
6360 regardless of which calling convention we are using for it. */
6361 if (warn_aggregate_return
6362 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6363 warning ("function returns an aggregate");
6364
6365 current_function_returns_pointer
6366 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6367 }
6368
6369 /* Make sure all values used by the optimization passes have sane
6370 defaults. */
6371 void
6372 init_function_for_compilation ()
6373 {
6374 reg_renumber = 0;
6375
6376 /* No prologue/epilogue insns yet. */
6377 VARRAY_GROW (prologue, 0);
6378 VARRAY_GROW (epilogue, 0);
6379 VARRAY_GROW (sibcall_epilogue, 0);
6380 }
6381
6382 /* Expand a call to __main at the beginning of a possible main function. */
6383
6384 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6385 #undef HAS_INIT_SECTION
6386 #define HAS_INIT_SECTION
6387 #endif
6388
6389 void
6390 expand_main_function ()
6391 {
6392 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6393 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6394 {
6395 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6396 rtx tmp, seq;
6397
6398 start_sequence ();
6399 /* Forcibly align the stack. */
6400 #ifdef STACK_GROWS_DOWNWARD
6401 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6402 stack_pointer_rtx, 1, OPTAB_WIDEN);
6403 #else
6404 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6405 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6406 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6407 stack_pointer_rtx, 1, OPTAB_WIDEN);
6408 #endif
6409 if (tmp != stack_pointer_rtx)
6410 emit_move_insn (stack_pointer_rtx, tmp);
6411
6412 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6413 tmp = force_reg (Pmode, const0_rtx);
6414 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6415 seq = get_insns ();
6416 end_sequence ();
6417
6418 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6419 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6420 break;
6421 if (tmp)
6422 emit_insn_before (seq, tmp);
6423 else
6424 emit_insn (seq);
6425 }
6426 #endif
6427
6428 #ifndef HAS_INIT_SECTION
6429 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), LCT_NORMAL,
6430 VOIDmode, 0);
6431 #endif
6432 }
6433 \f
6434 /* The PENDING_SIZES represent the sizes of variable-sized types.
6435 Create RTL for the various sizes now (using temporary variables),
6436 so that we can refer to the sizes from the RTL we are generating
6437 for the current function. The PENDING_SIZES are a TREE_LIST. The
6438 TREE_VALUE of each node is a SAVE_EXPR. */
6439
6440 void
6441 expand_pending_sizes (pending_sizes)
6442 tree pending_sizes;
6443 {
6444 tree tem;
6445
6446 /* Evaluate now the sizes of any types declared among the arguments. */
6447 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6448 {
6449 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6450 /* Flush the queue in case this parameter declaration has
6451 side-effects. */
6452 emit_queue ();
6453 }
6454 }
6455
6456 /* Start the RTL for a new function, and set variables used for
6457 emitting RTL.
6458 SUBR is the FUNCTION_DECL node.
6459 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6460 the function's parameters, which must be run at any return statement. */
6461
6462 void
6463 expand_function_start (subr, parms_have_cleanups)
6464 tree subr;
6465 int parms_have_cleanups;
6466 {
6467 tree tem;
6468 rtx last_ptr = NULL_RTX;
6469
6470 /* Make sure volatile mem refs aren't considered
6471 valid operands of arithmetic insns. */
6472 init_recog_no_volatile ();
6473
6474 current_function_instrument_entry_exit
6475 = (flag_instrument_function_entry_exit
6476 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6477
6478 current_function_profile
6479 = (profile_flag
6480 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6481
6482 current_function_limit_stack
6483 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6484
6485 /* If function gets a static chain arg, store it in the stack frame.
6486 Do this first, so it gets the first stack slot offset. */
6487 if (current_function_needs_context)
6488 {
6489 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6490
6491 /* Delay copying static chain if it is not a register to avoid
6492 conflicts with regs used for parameters. */
6493 if (! SMALL_REGISTER_CLASSES
6494 || GET_CODE (static_chain_incoming_rtx) == REG)
6495 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6496 }
6497
6498 /* If the parameters of this function need cleaning up, get a label
6499 for the beginning of the code which executes those cleanups. This must
6500 be done before doing anything with return_label. */
6501 if (parms_have_cleanups)
6502 cleanup_label = gen_label_rtx ();
6503 else
6504 cleanup_label = 0;
6505
6506 /* Make the label for return statements to jump to. Do not special
6507 case machines with special return instructions -- they will be
6508 handled later during jump, ifcvt, or epilogue creation. */
6509 return_label = gen_label_rtx ();
6510
6511 /* Initialize rtx used to return the value. */
6512 /* Do this before assign_parms so that we copy the struct value address
6513 before any library calls that assign parms might generate. */
6514
6515 /* Decide whether to return the value in memory or in a register. */
6516 if (aggregate_value_p (DECL_RESULT (subr)))
6517 {
6518 /* Returning something that won't go in a register. */
6519 rtx value_address = 0;
6520
6521 #ifdef PCC_STATIC_STRUCT_RETURN
6522 if (current_function_returns_pcc_struct)
6523 {
6524 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6525 value_address = assemble_static_space (size);
6526 }
6527 else
6528 #endif
6529 {
6530 /* Expect to be passed the address of a place to store the value.
6531 If it is passed as an argument, assign_parms will take care of
6532 it. */
6533 if (struct_value_incoming_rtx)
6534 {
6535 value_address = gen_reg_rtx (Pmode);
6536 emit_move_insn (value_address, struct_value_incoming_rtx);
6537 }
6538 }
6539 if (value_address)
6540 {
6541 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6542 set_mem_attributes (x, DECL_RESULT (subr), 1);
6543 SET_DECL_RTL (DECL_RESULT (subr), x);
6544 }
6545 }
6546 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6547 /* If return mode is void, this decl rtl should not be used. */
6548 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6549 else
6550 {
6551 /* Compute the return values into a pseudo reg, which we will copy
6552 into the true return register after the cleanups are done. */
6553
6554 /* In order to figure out what mode to use for the pseudo, we
6555 figure out what the mode of the eventual return register will
6556 actually be, and use that. */
6557 rtx hard_reg
6558 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6559 subr, 1);
6560
6561 /* Structures that are returned in registers are not aggregate_value_p,
6562 so we may see a PARALLEL or a REG. */
6563 if (REG_P (hard_reg))
6564 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6565 else if (GET_CODE (hard_reg) == PARALLEL)
6566 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6567 else
6568 abort ();
6569
6570 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6571 result to the real return register(s). */
6572 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6573 }
6574
6575 /* Initialize rtx for parameters and local variables.
6576 In some cases this requires emitting insns. */
6577
6578 assign_parms (subr);
6579
6580 /* Copy the static chain now if it wasn't a register. The delay is to
6581 avoid conflicts with the parameter passing registers. */
6582
6583 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6584 if (GET_CODE (static_chain_incoming_rtx) != REG)
6585 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6586
6587 /* The following was moved from init_function_start.
6588 The move is supposed to make sdb output more accurate. */
6589 /* Indicate the beginning of the function body,
6590 as opposed to parm setup. */
6591 emit_note (NULL, NOTE_INSN_FUNCTION_BEG);
6592
6593 if (GET_CODE (get_last_insn ()) != NOTE)
6594 emit_note (NULL, NOTE_INSN_DELETED);
6595 parm_birth_insn = get_last_insn ();
6596
6597 context_display = 0;
6598 if (current_function_needs_context)
6599 {
6600 /* Fetch static chain values for containing functions. */
6601 tem = decl_function_context (current_function_decl);
6602 /* Copy the static chain pointer into a pseudo. If we have
6603 small register classes, copy the value from memory if
6604 static_chain_incoming_rtx is a REG. */
6605 if (tem)
6606 {
6607 /* If the static chain originally came in a register, put it back
6608 there, then move it out in the next insn. The reason for
6609 this peculiar code is to satisfy function integration. */
6610 if (SMALL_REGISTER_CLASSES
6611 && GET_CODE (static_chain_incoming_rtx) == REG)
6612 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6613 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6614 }
6615
6616 while (tem)
6617 {
6618 tree rtlexp = make_node (RTL_EXPR);
6619
6620 RTL_EXPR_RTL (rtlexp) = last_ptr;
6621 context_display = tree_cons (tem, rtlexp, context_display);
6622 tem = decl_function_context (tem);
6623 if (tem == 0)
6624 break;
6625 /* Chain thru stack frames, assuming pointer to next lexical frame
6626 is found at the place we always store it. */
6627 #ifdef FRAME_GROWS_DOWNWARD
6628 last_ptr = plus_constant (last_ptr,
6629 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6630 #endif
6631 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6632 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6633 last_ptr = copy_to_reg (last_ptr);
6634
6635 /* If we are not optimizing, ensure that we know that this
6636 piece of context is live over the entire function. */
6637 if (! optimize)
6638 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6639 save_expr_regs);
6640 }
6641 }
6642
6643 if (current_function_instrument_entry_exit)
6644 {
6645 rtx fun = DECL_RTL (current_function_decl);
6646 if (GET_CODE (fun) == MEM)
6647 fun = XEXP (fun, 0);
6648 else
6649 abort ();
6650 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6651 2, fun, Pmode,
6652 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6653 0,
6654 hard_frame_pointer_rtx),
6655 Pmode);
6656 }
6657
6658 if (current_function_profile)
6659 {
6660 #ifdef PROFILE_HOOK
6661 PROFILE_HOOK (current_function_funcdef_no);
6662 #endif
6663 }
6664
6665 /* After the display initializations is where the tail-recursion label
6666 should go, if we end up needing one. Ensure we have a NOTE here
6667 since some things (like trampolines) get placed before this. */
6668 tail_recursion_reentry = emit_note (NULL, NOTE_INSN_DELETED);
6669
6670 /* Evaluate now the sizes of any types declared among the arguments. */
6671 expand_pending_sizes (nreverse (get_pending_sizes ()));
6672
6673 /* Make sure there is a line number after the function entry setup code. */
6674 force_next_line_note ();
6675 }
6676 \f
6677 /* Undo the effects of init_dummy_function_start. */
6678 void
6679 expand_dummy_function_end ()
6680 {
6681 /* End any sequences that failed to be closed due to syntax errors. */
6682 while (in_sequence_p ())
6683 end_sequence ();
6684
6685 /* Outside function body, can't compute type's actual size
6686 until next function's body starts. */
6687
6688 free_after_parsing (cfun);
6689 free_after_compilation (cfun);
6690 cfun = 0;
6691 }
6692
6693 /* Call DOIT for each hard register used as a return value from
6694 the current function. */
6695
6696 void
6697 diddle_return_value (doit, arg)
6698 void (*doit) PARAMS ((rtx, void *));
6699 void *arg;
6700 {
6701 rtx outgoing = current_function_return_rtx;
6702
6703 if (! outgoing)
6704 return;
6705
6706 if (GET_CODE (outgoing) == REG)
6707 (*doit) (outgoing, arg);
6708 else if (GET_CODE (outgoing) == PARALLEL)
6709 {
6710 int i;
6711
6712 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6713 {
6714 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6715
6716 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6717 (*doit) (x, arg);
6718 }
6719 }
6720 }
6721
6722 static void
6723 do_clobber_return_reg (reg, arg)
6724 rtx reg;
6725 void *arg ATTRIBUTE_UNUSED;
6726 {
6727 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6728 }
6729
6730 void
6731 clobber_return_register ()
6732 {
6733 diddle_return_value (do_clobber_return_reg, NULL);
6734
6735 /* In case we do use pseudo to return value, clobber it too. */
6736 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6737 {
6738 tree decl_result = DECL_RESULT (current_function_decl);
6739 rtx decl_rtl = DECL_RTL (decl_result);
6740 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6741 {
6742 do_clobber_return_reg (decl_rtl, NULL);
6743 }
6744 }
6745 }
6746
6747 static void
6748 do_use_return_reg (reg, arg)
6749 rtx reg;
6750 void *arg ATTRIBUTE_UNUSED;
6751 {
6752 emit_insn (gen_rtx_USE (VOIDmode, reg));
6753 }
6754
6755 void
6756 use_return_register ()
6757 {
6758 diddle_return_value (do_use_return_reg, NULL);
6759 }
6760
6761 static GTY(()) rtx initial_trampoline;
6762
6763 /* Generate RTL for the end of the current function.
6764 FILENAME and LINE are the current position in the source file.
6765
6766 It is up to language-specific callers to do cleanups for parameters--
6767 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6768
6769 void
6770 expand_function_end (filename, line, end_bindings)
6771 const char *filename;
6772 int line;
6773 int end_bindings;
6774 {
6775 tree link;
6776 rtx clobber_after;
6777
6778 finish_expr_for_function ();
6779
6780 /* If arg_pointer_save_area was referenced only from a nested
6781 function, we will not have initialized it yet. Do that now. */
6782 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6783 get_arg_pointer_save_area (cfun);
6784
6785 #ifdef NON_SAVING_SETJMP
6786 /* Don't put any variables in registers if we call setjmp
6787 on a machine that fails to restore the registers. */
6788 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6789 {
6790 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6791 setjmp_protect (DECL_INITIAL (current_function_decl));
6792
6793 setjmp_protect_args ();
6794 }
6795 #endif
6796
6797 /* Initialize any trampolines required by this function. */
6798 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6799 {
6800 tree function = TREE_PURPOSE (link);
6801 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6802 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6803 #ifdef TRAMPOLINE_TEMPLATE
6804 rtx blktramp;
6805 #endif
6806 rtx seq;
6807
6808 #ifdef TRAMPOLINE_TEMPLATE
6809 /* First make sure this compilation has a template for
6810 initializing trampolines. */
6811 if (initial_trampoline == 0)
6812 {
6813 initial_trampoline
6814 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6815 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6816 }
6817 #endif
6818
6819 /* Generate insns to initialize the trampoline. */
6820 start_sequence ();
6821 tramp = round_trampoline_addr (XEXP (tramp, 0));
6822 #ifdef TRAMPOLINE_TEMPLATE
6823 blktramp = replace_equiv_address (initial_trampoline, tramp);
6824 emit_block_move (blktramp, initial_trampoline,
6825 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6826 #endif
6827 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6828 seq = get_insns ();
6829 end_sequence ();
6830
6831 /* Put those insns at entry to the containing function (this one). */
6832 emit_insn_before (seq, tail_recursion_reentry);
6833 }
6834
6835 /* If we are doing stack checking and this function makes calls,
6836 do a stack probe at the start of the function to ensure we have enough
6837 space for another stack frame. */
6838 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6839 {
6840 rtx insn, seq;
6841
6842 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6843 if (GET_CODE (insn) == CALL_INSN)
6844 {
6845 start_sequence ();
6846 probe_stack_range (STACK_CHECK_PROTECT,
6847 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6848 seq = get_insns ();
6849 end_sequence ();
6850 emit_insn_before (seq, tail_recursion_reentry);
6851 break;
6852 }
6853 }
6854
6855 /* Warn about unused parms if extra warnings were specified. */
6856 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6857 warning. WARN_UNUSED_PARAMETER is negative when set by
6858 -Wunused. */
6859 if (warn_unused_parameter > 0
6860 || (warn_unused_parameter < 0 && extra_warnings))
6861 {
6862 tree decl;
6863
6864 for (decl = DECL_ARGUMENTS (current_function_decl);
6865 decl; decl = TREE_CHAIN (decl))
6866 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6867 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6868 warning_with_decl (decl, "unused parameter `%s'");
6869 }
6870
6871 /* Delete handlers for nonlocal gotos if nothing uses them. */
6872 if (nonlocal_goto_handler_slots != 0
6873 && ! current_function_has_nonlocal_label)
6874 delete_handlers ();
6875
6876 /* End any sequences that failed to be closed due to syntax errors. */
6877 while (in_sequence_p ())
6878 end_sequence ();
6879
6880 /* Outside function body, can't compute type's actual size
6881 until next function's body starts. */
6882 immediate_size_expand--;
6883
6884 clear_pending_stack_adjust ();
6885 do_pending_stack_adjust ();
6886
6887 /* Mark the end of the function body.
6888 If control reaches this insn, the function can drop through
6889 without returning a value. */
6890 emit_note (NULL, NOTE_INSN_FUNCTION_END);
6891
6892 /* Must mark the last line number note in the function, so that the test
6893 coverage code can avoid counting the last line twice. This just tells
6894 the code to ignore the immediately following line note, since there
6895 already exists a copy of this note somewhere above. This line number
6896 note is still needed for debugging though, so we can't delete it. */
6897 if (flag_test_coverage)
6898 emit_note (NULL, NOTE_INSN_REPEATED_LINE_NUMBER);
6899
6900 /* Output a linenumber for the end of the function.
6901 SDB depends on this. */
6902 emit_line_note_force (filename, line);
6903
6904 /* Before the return label (if any), clobber the return
6905 registers so that they are not propagated live to the rest of
6906 the function. This can only happen with functions that drop
6907 through; if there had been a return statement, there would
6908 have either been a return rtx, or a jump to the return label.
6909
6910 We delay actual code generation after the current_function_value_rtx
6911 is computed. */
6912 clobber_after = get_last_insn ();
6913
6914 /* Output the label for the actual return from the function,
6915 if one is expected. This happens either because a function epilogue
6916 is used instead of a return instruction, or because a return was done
6917 with a goto in order to run local cleanups, or because of pcc-style
6918 structure returning. */
6919 if (return_label)
6920 emit_label (return_label);
6921
6922 /* C++ uses this. */
6923 if (end_bindings)
6924 expand_end_bindings (0, 0, 0);
6925
6926 if (current_function_instrument_entry_exit)
6927 {
6928 rtx fun = DECL_RTL (current_function_decl);
6929 if (GET_CODE (fun) == MEM)
6930 fun = XEXP (fun, 0);
6931 else
6932 abort ();
6933 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
6934 2, fun, Pmode,
6935 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6936 0,
6937 hard_frame_pointer_rtx),
6938 Pmode);
6939 }
6940
6941 /* Let except.c know where it should emit the call to unregister
6942 the function context for sjlj exceptions. */
6943 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6944 sjlj_emit_function_exit_after (get_last_insn ());
6945
6946 /* If we had calls to alloca, and this machine needs
6947 an accurate stack pointer to exit the function,
6948 insert some code to save and restore the stack pointer. */
6949 #ifdef EXIT_IGNORE_STACK
6950 if (! EXIT_IGNORE_STACK)
6951 #endif
6952 if (current_function_calls_alloca)
6953 {
6954 rtx tem = 0;
6955
6956 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6957 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6958 }
6959
6960 /* If scalar return value was computed in a pseudo-reg, or was a named
6961 return value that got dumped to the stack, copy that to the hard
6962 return register. */
6963 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6964 {
6965 tree decl_result = DECL_RESULT (current_function_decl);
6966 rtx decl_rtl = DECL_RTL (decl_result);
6967
6968 if (REG_P (decl_rtl)
6969 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6970 : DECL_REGISTER (decl_result))
6971 {
6972 rtx real_decl_rtl = current_function_return_rtx;
6973
6974 /* This should be set in assign_parms. */
6975 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
6976 abort ();
6977
6978 /* If this is a BLKmode structure being returned in registers,
6979 then use the mode computed in expand_return. Note that if
6980 decl_rtl is memory, then its mode may have been changed,
6981 but that current_function_return_rtx has not. */
6982 if (GET_MODE (real_decl_rtl) == BLKmode)
6983 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
6984
6985 /* If a named return value dumped decl_return to memory, then
6986 we may need to re-do the PROMOTE_MODE signed/unsigned
6987 extension. */
6988 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
6989 {
6990 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
6991
6992 #ifdef PROMOTE_FUNCTION_RETURN
6993 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
6994 &unsignedp, 1);
6995 #endif
6996
6997 convert_move (real_decl_rtl, decl_rtl, unsignedp);
6998 }
6999 else if (GET_CODE (real_decl_rtl) == PARALLEL)
7000 {
7001 /* If expand_function_start has created a PARALLEL for decl_rtl,
7002 move the result to the real return registers. Otherwise, do
7003 a group load from decl_rtl for a named return. */
7004 if (GET_CODE (decl_rtl) == PARALLEL)
7005 emit_group_move (real_decl_rtl, decl_rtl);
7006 else
7007 emit_group_load (real_decl_rtl, decl_rtl,
7008 int_size_in_bytes (TREE_TYPE (decl_result)));
7009 }
7010 else
7011 emit_move_insn (real_decl_rtl, decl_rtl);
7012 }
7013 }
7014
7015 /* If returning a structure, arrange to return the address of the value
7016 in a place where debuggers expect to find it.
7017
7018 If returning a structure PCC style,
7019 the caller also depends on this value.
7020 And current_function_returns_pcc_struct is not necessarily set. */
7021 if (current_function_returns_struct
7022 || current_function_returns_pcc_struct)
7023 {
7024 rtx value_address
7025 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7026 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7027 #ifdef FUNCTION_OUTGOING_VALUE
7028 rtx outgoing
7029 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7030 current_function_decl);
7031 #else
7032 rtx outgoing
7033 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7034 #endif
7035
7036 /* Mark this as a function return value so integrate will delete the
7037 assignment and USE below when inlining this function. */
7038 REG_FUNCTION_VALUE_P (outgoing) = 1;
7039
7040 #ifdef POINTERS_EXTEND_UNSIGNED
7041 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7042 if (GET_MODE (outgoing) != GET_MODE (value_address))
7043 value_address = convert_memory_address (GET_MODE (outgoing),
7044 value_address);
7045 #endif
7046
7047 emit_move_insn (outgoing, value_address);
7048
7049 /* Show return register used to hold result (in this case the address
7050 of the result. */
7051 current_function_return_rtx = outgoing;
7052 }
7053
7054 /* If this is an implementation of throw, do what's necessary to
7055 communicate between __builtin_eh_return and the epilogue. */
7056 expand_eh_return ();
7057
7058 /* Emit the actual code to clobber return register. */
7059 {
7060 rtx seq, after;
7061
7062 start_sequence ();
7063 clobber_return_register ();
7064 seq = get_insns ();
7065 end_sequence ();
7066
7067 after = emit_insn_after (seq, clobber_after);
7068
7069 if (clobber_after != after)
7070 cfun->x_clobber_return_insn = after;
7071 }
7072
7073 /* ??? This should no longer be necessary since stupid is no longer with
7074 us, but there are some parts of the compiler (eg reload_combine, and
7075 sh mach_dep_reorg) that still try and compute their own lifetime info
7076 instead of using the general framework. */
7077 use_return_register ();
7078
7079 /* Fix up any gotos that jumped out to the outermost
7080 binding level of the function.
7081 Must follow emitting RETURN_LABEL. */
7082
7083 /* If you have any cleanups to do at this point,
7084 and they need to create temporary variables,
7085 then you will lose. */
7086 expand_fixups (get_insns ());
7087 }
7088
7089 rtx
7090 get_arg_pointer_save_area (f)
7091 struct function *f;
7092 {
7093 rtx ret = f->x_arg_pointer_save_area;
7094
7095 if (! ret)
7096 {
7097 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7098 f->x_arg_pointer_save_area = ret;
7099 }
7100
7101 if (f == cfun && ! f->arg_pointer_save_area_init)
7102 {
7103 rtx seq;
7104
7105 /* Save the arg pointer at the beginning of the function. The
7106 generated stack slot may not be a valid memory address, so we
7107 have to check it and fix it if necessary. */
7108 start_sequence ();
7109 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7110 seq = get_insns ();
7111 end_sequence ();
7112
7113 push_topmost_sequence ();
7114 emit_insn_after (seq, get_insns ());
7115 pop_topmost_sequence ();
7116 }
7117
7118 return ret;
7119 }
7120 \f
7121 /* Extend a vector that records the INSN_UIDs of INSNS
7122 (a list of one or more insns). */
7123
7124 static void
7125 record_insns (insns, vecp)
7126 rtx insns;
7127 varray_type *vecp;
7128 {
7129 int i, len;
7130 rtx tmp;
7131
7132 tmp = insns;
7133 len = 0;
7134 while (tmp != NULL_RTX)
7135 {
7136 len++;
7137 tmp = NEXT_INSN (tmp);
7138 }
7139
7140 i = VARRAY_SIZE (*vecp);
7141 VARRAY_GROW (*vecp, i + len);
7142 tmp = insns;
7143 while (tmp != NULL_RTX)
7144 {
7145 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7146 i++;
7147 tmp = NEXT_INSN (tmp);
7148 }
7149 }
7150
7151 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7152 be running after reorg, SEQUENCE rtl is possible. */
7153
7154 static int
7155 contains (insn, vec)
7156 rtx insn;
7157 varray_type vec;
7158 {
7159 int i, j;
7160
7161 if (GET_CODE (insn) == INSN
7162 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7163 {
7164 int count = 0;
7165 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7166 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7167 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7168 count++;
7169 return count;
7170 }
7171 else
7172 {
7173 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7174 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7175 return 1;
7176 }
7177 return 0;
7178 }
7179
7180 int
7181 prologue_epilogue_contains (insn)
7182 rtx insn;
7183 {
7184 if (contains (insn, prologue))
7185 return 1;
7186 if (contains (insn, epilogue))
7187 return 1;
7188 return 0;
7189 }
7190
7191 int
7192 sibcall_epilogue_contains (insn)
7193 rtx insn;
7194 {
7195 if (sibcall_epilogue)
7196 return contains (insn, sibcall_epilogue);
7197 return 0;
7198 }
7199
7200 #ifdef HAVE_return
7201 /* Insert gen_return at the end of block BB. This also means updating
7202 block_for_insn appropriately. */
7203
7204 static void
7205 emit_return_into_block (bb, line_note)
7206 basic_block bb;
7207 rtx line_note;
7208 {
7209 rtx p, end;
7210
7211 p = NEXT_INSN (bb->end);
7212 end = emit_jump_insn_after (gen_return (), bb->end);
7213 if (line_note)
7214 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7215 NOTE_LINE_NUMBER (line_note), PREV_INSN (bb->end));
7216 }
7217 #endif /* HAVE_return */
7218
7219 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7220
7221 /* These functions convert the epilogue into a variant that does not modify the
7222 stack pointer. This is used in cases where a function returns an object
7223 whose size is not known until it is computed. The called function leaves the
7224 object on the stack, leaves the stack depressed, and returns a pointer to
7225 the object.
7226
7227 What we need to do is track all modifications and references to the stack
7228 pointer, deleting the modifications and changing the references to point to
7229 the location the stack pointer would have pointed to had the modifications
7230 taken place.
7231
7232 These functions need to be portable so we need to make as few assumptions
7233 about the epilogue as we can. However, the epilogue basically contains
7234 three things: instructions to reset the stack pointer, instructions to
7235 reload registers, possibly including the frame pointer, and an
7236 instruction to return to the caller.
7237
7238 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7239 We also make no attempt to validate the insns we make since if they are
7240 invalid, we probably can't do anything valid. The intent is that these
7241 routines get "smarter" as more and more machines start to use them and
7242 they try operating on different epilogues.
7243
7244 We use the following structure to track what the part of the epilogue that
7245 we've already processed has done. We keep two copies of the SP equivalence,
7246 one for use during the insn we are processing and one for use in the next
7247 insn. The difference is because one part of a PARALLEL may adjust SP
7248 and the other may use it. */
7249
7250 struct epi_info
7251 {
7252 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7253 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7254 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7255 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7256 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7257 should be set to once we no longer need
7258 its value. */
7259 };
7260
7261 static void handle_epilogue_set PARAMS ((rtx, struct epi_info *));
7262 static void emit_equiv_load PARAMS ((struct epi_info *));
7263
7264 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7265 no modifications to the stack pointer. Return the new list of insns. */
7266
7267 static rtx
7268 keep_stack_depressed (insns)
7269 rtx insns;
7270 {
7271 int j;
7272 struct epi_info info;
7273 rtx insn, next;
7274
7275 /* If the epilogue is just a single instruction, it ust be OK as is. */
7276
7277 if (NEXT_INSN (insns) == NULL_RTX)
7278 return insns;
7279
7280 /* Otherwise, start a sequence, initialize the information we have, and
7281 process all the insns we were given. */
7282 start_sequence ();
7283
7284 info.sp_equiv_reg = stack_pointer_rtx;
7285 info.sp_offset = 0;
7286 info.equiv_reg_src = 0;
7287
7288 insn = insns;
7289 next = NULL_RTX;
7290 while (insn != NULL_RTX)
7291 {
7292 next = NEXT_INSN (insn);
7293
7294 if (!INSN_P (insn))
7295 {
7296 add_insn (insn);
7297 insn = next;
7298 continue;
7299 }
7300
7301 /* If this insn references the register that SP is equivalent to and
7302 we have a pending load to that register, we must force out the load
7303 first and then indicate we no longer know what SP's equivalent is. */
7304 if (info.equiv_reg_src != 0
7305 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7306 {
7307 emit_equiv_load (&info);
7308 info.sp_equiv_reg = 0;
7309 }
7310
7311 info.new_sp_equiv_reg = info.sp_equiv_reg;
7312 info.new_sp_offset = info.sp_offset;
7313
7314 /* If this is a (RETURN) and the return address is on the stack,
7315 update the address and change to an indirect jump. */
7316 if (GET_CODE (PATTERN (insn)) == RETURN
7317 || (GET_CODE (PATTERN (insn)) == PARALLEL
7318 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7319 {
7320 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7321 rtx base = 0;
7322 HOST_WIDE_INT offset = 0;
7323 rtx jump_insn, jump_set;
7324
7325 /* If the return address is in a register, we can emit the insn
7326 unchanged. Otherwise, it must be a MEM and we see what the
7327 base register and offset are. In any case, we have to emit any
7328 pending load to the equivalent reg of SP, if any. */
7329 if (GET_CODE (retaddr) == REG)
7330 {
7331 emit_equiv_load (&info);
7332 add_insn (insn);
7333 insn = next;
7334 continue;
7335 }
7336 else if (GET_CODE (retaddr) == MEM
7337 && GET_CODE (XEXP (retaddr, 0)) == REG)
7338 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7339 else if (GET_CODE (retaddr) == MEM
7340 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7341 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7342 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7343 {
7344 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7345 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7346 }
7347 else
7348 abort ();
7349
7350 /* If the base of the location containing the return pointer
7351 is SP, we must update it with the replacement address. Otherwise,
7352 just build the necessary MEM. */
7353 retaddr = plus_constant (base, offset);
7354 if (base == stack_pointer_rtx)
7355 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7356 plus_constant (info.sp_equiv_reg,
7357 info.sp_offset));
7358
7359 retaddr = gen_rtx_MEM (Pmode, retaddr);
7360
7361 /* If there is a pending load to the equivalent register for SP
7362 and we reference that register, we must load our address into
7363 a scratch register and then do that load. */
7364 if (info.equiv_reg_src
7365 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7366 {
7367 unsigned int regno;
7368 rtx reg;
7369
7370 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7371 if (HARD_REGNO_MODE_OK (regno, Pmode)
7372 && !fixed_regs[regno]
7373 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7374 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7375 regno)
7376 && !refers_to_regno_p (regno,
7377 regno + HARD_REGNO_NREGS (regno,
7378 Pmode),
7379 info.equiv_reg_src, NULL))
7380 break;
7381
7382 if (regno == FIRST_PSEUDO_REGISTER)
7383 abort ();
7384
7385 reg = gen_rtx_REG (Pmode, regno);
7386 emit_move_insn (reg, retaddr);
7387 retaddr = reg;
7388 }
7389
7390 emit_equiv_load (&info);
7391 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7392
7393 /* Show the SET in the above insn is a RETURN. */
7394 jump_set = single_set (jump_insn);
7395 if (jump_set == 0)
7396 abort ();
7397 else
7398 SET_IS_RETURN_P (jump_set) = 1;
7399 }
7400
7401 /* If SP is not mentioned in the pattern and its equivalent register, if
7402 any, is not modified, just emit it. Otherwise, if neither is set,
7403 replace the reference to SP and emit the insn. If none of those are
7404 true, handle each SET individually. */
7405 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7406 && (info.sp_equiv_reg == stack_pointer_rtx
7407 || !reg_set_p (info.sp_equiv_reg, insn)))
7408 add_insn (insn);
7409 else if (! reg_set_p (stack_pointer_rtx, insn)
7410 && (info.sp_equiv_reg == stack_pointer_rtx
7411 || !reg_set_p (info.sp_equiv_reg, insn)))
7412 {
7413 if (! validate_replace_rtx (stack_pointer_rtx,
7414 plus_constant (info.sp_equiv_reg,
7415 info.sp_offset),
7416 insn))
7417 abort ();
7418
7419 add_insn (insn);
7420 }
7421 else if (GET_CODE (PATTERN (insn)) == SET)
7422 handle_epilogue_set (PATTERN (insn), &info);
7423 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7424 {
7425 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7426 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7427 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7428 }
7429 else
7430 add_insn (insn);
7431
7432 info.sp_equiv_reg = info.new_sp_equiv_reg;
7433 info.sp_offset = info.new_sp_offset;
7434
7435 insn = next;
7436 }
7437
7438 insns = get_insns ();
7439 end_sequence ();
7440 return insns;
7441 }
7442
7443 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7444 structure that contains information about what we've seen so far. We
7445 process this SET by either updating that data or by emitting one or
7446 more insns. */
7447
7448 static void
7449 handle_epilogue_set (set, p)
7450 rtx set;
7451 struct epi_info *p;
7452 {
7453 /* First handle the case where we are setting SP. Record what it is being
7454 set from. If unknown, abort. */
7455 if (reg_set_p (stack_pointer_rtx, set))
7456 {
7457 if (SET_DEST (set) != stack_pointer_rtx)
7458 abort ();
7459
7460 if (GET_CODE (SET_SRC (set)) == PLUS
7461 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7462 {
7463 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7464 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7465 }
7466 else
7467 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7468
7469 /* If we are adjusting SP, we adjust from the old data. */
7470 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7471 {
7472 p->new_sp_equiv_reg = p->sp_equiv_reg;
7473 p->new_sp_offset += p->sp_offset;
7474 }
7475
7476 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7477 abort ();
7478
7479 return;
7480 }
7481
7482 /* Next handle the case where we are setting SP's equivalent register.
7483 If we already have a value to set it to, abort. We could update, but
7484 there seems little point in handling that case. Note that we have
7485 to allow for the case where we are setting the register set in
7486 the previous part of a PARALLEL inside a single insn. But use the
7487 old offset for any updates within this insn. */
7488 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7489 {
7490 if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
7491 || p->equiv_reg_src != 0)
7492 abort ();
7493 else
7494 p->equiv_reg_src
7495 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7496 plus_constant (p->sp_equiv_reg,
7497 p->sp_offset));
7498 }
7499
7500 /* Otherwise, replace any references to SP in the insn to its new value
7501 and emit the insn. */
7502 else
7503 {
7504 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7505 plus_constant (p->sp_equiv_reg,
7506 p->sp_offset));
7507 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7508 plus_constant (p->sp_equiv_reg,
7509 p->sp_offset));
7510 emit_insn (set);
7511 }
7512 }
7513
7514 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7515
7516 static void
7517 emit_equiv_load (p)
7518 struct epi_info *p;
7519 {
7520 if (p->equiv_reg_src != 0)
7521 emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);
7522
7523 p->equiv_reg_src = 0;
7524 }
7525 #endif
7526
7527 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7528 this into place with notes indicating where the prologue ends and where
7529 the epilogue begins. Update the basic block information when possible. */
7530
7531 void
7532 thread_prologue_and_epilogue_insns (f)
7533 rtx f ATTRIBUTE_UNUSED;
7534 {
7535 int inserted = 0;
7536 edge e;
7537 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7538 rtx seq;
7539 #endif
7540 #ifdef HAVE_prologue
7541 rtx prologue_end = NULL_RTX;
7542 #endif
7543 #if defined (HAVE_epilogue) || defined(HAVE_return)
7544 rtx epilogue_end = NULL_RTX;
7545 #endif
7546
7547 #ifdef HAVE_prologue
7548 if (HAVE_prologue)
7549 {
7550 start_sequence ();
7551 seq = gen_prologue ();
7552 emit_insn (seq);
7553
7554 /* Retain a map of the prologue insns. */
7555 record_insns (seq, &prologue);
7556 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7557
7558 seq = get_insns ();
7559 end_sequence ();
7560
7561 /* Can't deal with multiple successors of the entry block
7562 at the moment. Function should always have at least one
7563 entry point. */
7564 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7565 abort ();
7566
7567 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7568 inserted = 1;
7569 }
7570 #endif
7571
7572 /* If the exit block has no non-fake predecessors, we don't need
7573 an epilogue. */
7574 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7575 if ((e->flags & EDGE_FAKE) == 0)
7576 break;
7577 if (e == NULL)
7578 goto epilogue_done;
7579
7580 #ifdef HAVE_return
7581 if (optimize && HAVE_return)
7582 {
7583 /* If we're allowed to generate a simple return instruction,
7584 then by definition we don't need a full epilogue. Examine
7585 the block that falls through to EXIT. If it does not
7586 contain any code, examine its predecessors and try to
7587 emit (conditional) return instructions. */
7588
7589 basic_block last;
7590 edge e_next;
7591 rtx label;
7592
7593 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7594 if (e->flags & EDGE_FALLTHRU)
7595 break;
7596 if (e == NULL)
7597 goto epilogue_done;
7598 last = e->src;
7599
7600 /* Verify that there are no active instructions in the last block. */
7601 label = last->end;
7602 while (label && GET_CODE (label) != CODE_LABEL)
7603 {
7604 if (active_insn_p (label))
7605 break;
7606 label = PREV_INSN (label);
7607 }
7608
7609 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7610 {
7611 rtx epilogue_line_note = NULL_RTX;
7612
7613 /* Locate the line number associated with the closing brace,
7614 if we can find one. */
7615 for (seq = get_last_insn ();
7616 seq && ! active_insn_p (seq);
7617 seq = PREV_INSN (seq))
7618 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7619 {
7620 epilogue_line_note = seq;
7621 break;
7622 }
7623
7624 for (e = last->pred; e; e = e_next)
7625 {
7626 basic_block bb = e->src;
7627 rtx jump;
7628
7629 e_next = e->pred_next;
7630 if (bb == ENTRY_BLOCK_PTR)
7631 continue;
7632
7633 jump = bb->end;
7634 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7635 continue;
7636
7637 /* If we have an unconditional jump, we can replace that
7638 with a simple return instruction. */
7639 if (simplejump_p (jump))
7640 {
7641 emit_return_into_block (bb, epilogue_line_note);
7642 delete_insn (jump);
7643 }
7644
7645 /* If we have a conditional jump, we can try to replace
7646 that with a conditional return instruction. */
7647 else if (condjump_p (jump))
7648 {
7649 rtx ret, *loc;
7650
7651 ret = SET_SRC (PATTERN (jump));
7652 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
7653 loc = &XEXP (ret, 1);
7654 else
7655 loc = &XEXP (ret, 2);
7656 ret = gen_rtx_RETURN (VOIDmode);
7657
7658 if (! validate_change (jump, loc, ret, 0))
7659 continue;
7660 if (JUMP_LABEL (jump))
7661 LABEL_NUSES (JUMP_LABEL (jump))--;
7662
7663 /* If this block has only one successor, it both jumps
7664 and falls through to the fallthru block, so we can't
7665 delete the edge. */
7666 if (bb->succ->succ_next == NULL)
7667 continue;
7668 }
7669 else
7670 continue;
7671
7672 /* Fix up the CFG for the successful change we just made. */
7673 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7674 }
7675
7676 /* Emit a return insn for the exit fallthru block. Whether
7677 this is still reachable will be determined later. */
7678
7679 emit_barrier_after (last->end);
7680 emit_return_into_block (last, epilogue_line_note);
7681 epilogue_end = last->end;
7682 last->succ->flags &= ~EDGE_FALLTHRU;
7683 goto epilogue_done;
7684 }
7685 }
7686 #endif
7687 #ifdef HAVE_epilogue
7688 if (HAVE_epilogue)
7689 {
7690 /* Find the edge that falls through to EXIT. Other edges may exist
7691 due to RETURN instructions, but those don't need epilogues.
7692 There really shouldn't be a mixture -- either all should have
7693 been converted or none, however... */
7694
7695 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7696 if (e->flags & EDGE_FALLTHRU)
7697 break;
7698 if (e == NULL)
7699 goto epilogue_done;
7700
7701 start_sequence ();
7702 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7703
7704 seq = gen_epilogue ();
7705
7706 #ifdef INCOMING_RETURN_ADDR_RTX
7707 /* If this function returns with the stack depressed and we can support
7708 it, massage the epilogue to actually do that. */
7709 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7710 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7711 seq = keep_stack_depressed (seq);
7712 #endif
7713
7714 emit_jump_insn (seq);
7715
7716 /* Retain a map of the epilogue insns. */
7717 record_insns (seq, &epilogue);
7718
7719 seq = get_insns ();
7720 end_sequence ();
7721
7722 insert_insn_on_edge (seq, e);
7723 inserted = 1;
7724 }
7725 #endif
7726 epilogue_done:
7727
7728 if (inserted)
7729 commit_edge_insertions ();
7730
7731 #ifdef HAVE_sibcall_epilogue
7732 /* Emit sibling epilogues before any sibling call sites. */
7733 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7734 {
7735 basic_block bb = e->src;
7736 rtx insn = bb->end;
7737 rtx i;
7738 rtx newinsn;
7739
7740 if (GET_CODE (insn) != CALL_INSN
7741 || ! SIBLING_CALL_P (insn))
7742 continue;
7743
7744 start_sequence ();
7745 emit_insn (gen_sibcall_epilogue ());
7746 seq = get_insns ();
7747 end_sequence ();
7748
7749 /* Retain a map of the epilogue insns. Used in life analysis to
7750 avoid getting rid of sibcall epilogue insns. Do this before we
7751 actually emit the sequence. */
7752 record_insns (seq, &sibcall_epilogue);
7753
7754 i = PREV_INSN (insn);
7755 newinsn = emit_insn_before (seq, insn);
7756 }
7757 #endif
7758
7759 #ifdef HAVE_prologue
7760 if (prologue_end)
7761 {
7762 rtx insn, prev;
7763
7764 /* GDB handles `break f' by setting a breakpoint on the first
7765 line note after the prologue. Which means (1) that if
7766 there are line number notes before where we inserted the
7767 prologue we should move them, and (2) we should generate a
7768 note before the end of the first basic block, if there isn't
7769 one already there.
7770
7771 ??? This behavior is completely broken when dealing with
7772 multiple entry functions. We simply place the note always
7773 into first basic block and let alternate entry points
7774 to be missed.
7775 */
7776
7777 for (insn = prologue_end; insn; insn = prev)
7778 {
7779 prev = PREV_INSN (insn);
7780 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7781 {
7782 /* Note that we cannot reorder the first insn in the
7783 chain, since rest_of_compilation relies on that
7784 remaining constant. */
7785 if (prev == NULL)
7786 break;
7787 reorder_insns (insn, insn, prologue_end);
7788 }
7789 }
7790
7791 /* Find the last line number note in the first block. */
7792 for (insn = ENTRY_BLOCK_PTR->next_bb->end;
7793 insn != prologue_end && insn;
7794 insn = PREV_INSN (insn))
7795 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7796 break;
7797
7798 /* If we didn't find one, make a copy of the first line number
7799 we run across. */
7800 if (! insn)
7801 {
7802 for (insn = next_active_insn (prologue_end);
7803 insn;
7804 insn = PREV_INSN (insn))
7805 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7806 {
7807 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7808 NOTE_LINE_NUMBER (insn),
7809 prologue_end);
7810 break;
7811 }
7812 }
7813 }
7814 #endif
7815 #ifdef HAVE_epilogue
7816 if (epilogue_end)
7817 {
7818 rtx insn, next;
7819
7820 /* Similarly, move any line notes that appear after the epilogue.
7821 There is no need, however, to be quite so anal about the existence
7822 of such a note. */
7823 for (insn = epilogue_end; insn; insn = next)
7824 {
7825 next = NEXT_INSN (insn);
7826 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7827 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7828 }
7829 }
7830 #endif
7831 }
7832
7833 /* Reposition the prologue-end and epilogue-begin notes after instruction
7834 scheduling and delayed branch scheduling. */
7835
7836 void
7837 reposition_prologue_and_epilogue_notes (f)
7838 rtx f ATTRIBUTE_UNUSED;
7839 {
7840 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7841 rtx insn, last, note;
7842 int len;
7843
7844 if ((len = VARRAY_SIZE (prologue)) > 0)
7845 {
7846 last = 0, note = 0;
7847
7848 /* Scan from the beginning until we reach the last prologue insn.
7849 We apparently can't depend on basic_block_{head,end} after
7850 reorg has run. */
7851 for (insn = f; insn; insn = NEXT_INSN (insn))
7852 {
7853 if (GET_CODE (insn) == NOTE)
7854 {
7855 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7856 note = insn;
7857 }
7858 else if (contains (insn, prologue))
7859 {
7860 last = insn;
7861 if (--len == 0)
7862 break;
7863 }
7864 }
7865
7866 if (last)
7867 {
7868 rtx next;
7869
7870 /* Find the prologue-end note if we haven't already, and
7871 move it to just after the last prologue insn. */
7872 if (note == 0)
7873 {
7874 for (note = last; (note = NEXT_INSN (note));)
7875 if (GET_CODE (note) == NOTE
7876 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7877 break;
7878 }
7879
7880 next = NEXT_INSN (note);
7881
7882 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7883 if (GET_CODE (last) == CODE_LABEL)
7884 last = NEXT_INSN (last);
7885 reorder_insns (note, note, last);
7886 }
7887 }
7888
7889 if ((len = VARRAY_SIZE (epilogue)) > 0)
7890 {
7891 last = 0, note = 0;
7892
7893 /* Scan from the end until we reach the first epilogue insn.
7894 We apparently can't depend on basic_block_{head,end} after
7895 reorg has run. */
7896 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7897 {
7898 if (GET_CODE (insn) == NOTE)
7899 {
7900 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7901 note = insn;
7902 }
7903 else if (contains (insn, epilogue))
7904 {
7905 last = insn;
7906 if (--len == 0)
7907 break;
7908 }
7909 }
7910
7911 if (last)
7912 {
7913 /* Find the epilogue-begin note if we haven't already, and
7914 move it to just before the first epilogue insn. */
7915 if (note == 0)
7916 {
7917 for (note = insn; (note = PREV_INSN (note));)
7918 if (GET_CODE (note) == NOTE
7919 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7920 break;
7921 }
7922
7923 if (PREV_INSN (last) != note)
7924 reorder_insns (note, note, PREV_INSN (last));
7925 }
7926 }
7927 #endif /* HAVE_prologue or HAVE_epilogue */
7928 }
7929
7930 /* Called once, at initialization, to initialize function.c. */
7931
7932 void
7933 init_function_once ()
7934 {
7935 VARRAY_INT_INIT (prologue, 0, "prologue");
7936 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7937 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7938 }
7939
7940 #include "gt-function.h"