56a3814e941276fc38e21bfb6748414ba69d650e
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
35
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
40
41 #include "config.h"
42 #include "system.h"
43 #include "coretypes.h"
44 #include "tm.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "optabs.h"
52 #include "libfuncs.h"
53 #include "regs.h"
54 #include "hard-reg-set.h"
55 #include "insn-config.h"
56 #include "recog.h"
57 #include "output.h"
58 #include "basic-block.h"
59 #include "toplev.h"
60 #include "hashtab.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63 #include "integrate.h"
64 #include "langhooks.h"
65 #include "target.h"
66
67 #ifndef TRAMPOLINE_ALIGNMENT
68 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
69 #endif
70
71 #ifndef LOCAL_ALIGNMENT
72 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
73 #endif
74
75 #ifndef STACK_ALIGNMENT_NEEDED
76 #define STACK_ALIGNMENT_NEEDED 1
77 #endif
78
79 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
80
81 /* Some systems use __main in a way incompatible with its use in gcc, in these
82 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
83 give the same symbol without quotes for an alternative entry point. You
84 must define both, or neither. */
85 #ifndef NAME__MAIN
86 #define NAME__MAIN "__main"
87 #endif
88
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
93
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
97
98 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
99 during rtl generation. If they are different register numbers, this is
100 always true. It may also be true if
101 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
102 generation. See fix_lexical_addr for details. */
103
104 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
105 #define NEED_SEPARATE_AP
106 #endif
107
108 /* Nonzero if function being compiled doesn't contain any calls
109 (ignoring the prologue and epilogue). This is set prior to
110 local register allocation and is valid for the remaining
111 compiler passes. */
112 int current_function_is_leaf;
113
114 /* Nonzero if function being compiled doesn't contain any instructions
115 that can throw an exception. This is set prior to final. */
116
117 int current_function_nothrow;
118
119 /* Nonzero if function being compiled doesn't modify the stack pointer
120 (ignoring the prologue and epilogue). This is only valid after
121 life_analysis has run. */
122 int current_function_sp_is_unchanging;
123
124 /* Nonzero if the function being compiled is a leaf function which only
125 uses leaf registers. This is valid after reload (specifically after
126 sched2) and is useful only if the port defines LEAF_REGISTERS. */
127 int current_function_uses_only_leaf_regs;
128
129 /* Nonzero once virtual register instantiation has been done.
130 assign_stack_local uses frame_pointer_rtx when this is nonzero.
131 calls.c:emit_library_call_value_1 uses it to set up
132 post-instantiation libcalls. */
133 int virtuals_instantiated;
134
135 /* Nonzero if at least one trampoline has been created. */
136 int trampolines_created;
137
138 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
139 static GTY(()) int funcdef_no;
140
141 /* These variables hold pointers to functions to create and destroy
142 target specific, per-function data structures. */
143 struct machine_function * (*init_machine_status) (void);
144
145 /* The FUNCTION_DECL for an inline function currently being expanded. */
146 tree inline_function_decl;
147
148 /* The currently compiled function. */
149 struct function *cfun = 0;
150
151 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
152 static GTY(()) varray_type prologue;
153 static GTY(()) varray_type epilogue;
154
155 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
156 in this function. */
157 static GTY(()) varray_type sibcall_epilogue;
158 \f
159 /* In order to evaluate some expressions, such as function calls returning
160 structures in memory, we need to temporarily allocate stack locations.
161 We record each allocated temporary in the following structure.
162
163 Associated with each temporary slot is a nesting level. When we pop up
164 one level, all temporaries associated with the previous level are freed.
165 Normally, all temporaries are freed after the execution of the statement
166 in which they were created. However, if we are inside a ({...}) grouping,
167 the result may be in a temporary and hence must be preserved. If the
168 result could be in a temporary, we preserve it if we can determine which
169 one it is in. If we cannot determine which temporary may contain the
170 result, all temporaries are preserved. A temporary is preserved by
171 pretending it was allocated at the previous nesting level.
172
173 Automatic variables are also assigned temporary slots, at the nesting
174 level where they are defined. They are marked a "kept" so that
175 free_temp_slots will not free them. */
176
177 struct temp_slot GTY(())
178 {
179 /* Points to next temporary slot. */
180 struct temp_slot *next;
181 /* The rtx to used to reference the slot. */
182 rtx slot;
183 /* The rtx used to represent the address if not the address of the
184 slot above. May be an EXPR_LIST if multiple addresses exist. */
185 rtx address;
186 /* The alignment (in bits) of the slot. */
187 unsigned int align;
188 /* The size, in units, of the slot. */
189 HOST_WIDE_INT size;
190 /* The type of the object in the slot, or zero if it doesn't correspond
191 to a type. We use this to determine whether a slot can be reused.
192 It can be reused if objects of the type of the new slot will always
193 conflict with objects of the type of the old slot. */
194 tree type;
195 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
196 tree rtl_expr;
197 /* Nonzero if this temporary is currently in use. */
198 char in_use;
199 /* Nonzero if this temporary has its address taken. */
200 char addr_taken;
201 /* Nesting level at which this slot is being used. */
202 int level;
203 /* Nonzero if this should survive a call to free_temp_slots. */
204 int keep;
205 /* The offset of the slot from the frame_pointer, including extra space
206 for alignment. This info is for combine_temp_slots. */
207 HOST_WIDE_INT base_offset;
208 /* The size of the slot, including extra space for alignment. This
209 info is for combine_temp_slots. */
210 HOST_WIDE_INT full_size;
211 };
212 \f
213 /* This structure is used to record MEMs or pseudos used to replace VAR, any
214 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
215 maintain this list in case two operands of an insn were required to match;
216 in that case we must ensure we use the same replacement. */
217
218 struct fixup_replacement GTY(())
219 {
220 rtx old;
221 rtx new;
222 struct fixup_replacement *next;
223 };
224
225 struct insns_for_mem_entry
226 {
227 /* A MEM. */
228 rtx key;
229 /* These are the INSNs which reference the MEM. */
230 rtx insns;
231 };
232
233 /* Forward declarations. */
234
235 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
236 struct function *);
237 static struct temp_slot *find_temp_slot_from_address (rtx);
238 static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode,
239 enum machine_mode, int, unsigned int, int, htab_t);
240 static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode,
241 htab_t);
242 static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t);
243 static struct fixup_replacement
244 *find_fixup_replacement (struct fixup_replacement **, rtx);
245 static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx);
246 static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx);
247 static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx);
248 static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx,
249 struct fixup_replacement **, rtx);
250 static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
251 static rtx walk_fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
252 static rtx fixup_stack_1 (rtx, rtx);
253 static void optimize_bit_field (rtx, rtx, rtx *);
254 static void instantiate_decls (tree, int);
255 static void instantiate_decls_1 (tree, int);
256 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
257 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
258 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
259 static void delete_handlers (void);
260 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
261 static void pad_below (struct args_size *, enum machine_mode, tree);
262 static rtx round_trampoline_addr (rtx);
263 static rtx adjust_trampoline_addr (rtx);
264 static tree *identify_blocks_1 (rtx, tree *, tree *, tree *);
265 static void reorder_blocks_0 (tree);
266 static void reorder_blocks_1 (rtx, tree, varray_type *);
267 static void reorder_fix_fragments (tree);
268 static tree blocks_nreverse (tree);
269 static int all_blocks (tree, tree *);
270 static tree *get_block_vector (tree, int *);
271 extern tree debug_find_var_in_block_tree (tree, tree);
272 /* We always define `record_insns' even if it's not used so that we
273 can always export `prologue_epilogue_contains'. */
274 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
275 static int contains (rtx, varray_type);
276 #ifdef HAVE_return
277 static void emit_return_into_block (basic_block, rtx);
278 #endif
279 static void put_addressof_into_stack (rtx, htab_t);
280 static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t);
281 static void purge_single_hard_subreg_set (rtx);
282 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
283 static rtx keep_stack_depressed (rtx);
284 #endif
285 static int is_addressof (rtx *, void *);
286 static hashval_t insns_for_mem_hash (const void *);
287 static int insns_for_mem_comp (const void *, const void *);
288 static int insns_for_mem_walk (rtx *, void *);
289 static void compute_insns_for_mem (rtx, rtx, htab_t);
290 static void prepare_function_start (tree);
291 static void do_clobber_return_reg (rtx, void *);
292 static void do_use_return_reg (rtx, void *);
293 static void instantiate_virtual_regs_lossage (rtx);
294 static tree split_complex_args (tree);
295 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
296 \f
297 /* Pointer to chain of `struct function' for containing functions. */
298 struct function *outer_function_chain;
299
300 /* List of insns that were postponed by purge_addressof_1. */
301 static rtx postponed_insns;
302
303 /* Given a function decl for a containing function,
304 return the `struct function' for it. */
305
306 struct function *
307 find_function_data (tree decl)
308 {
309 struct function *p;
310
311 for (p = outer_function_chain; p; p = p->outer)
312 if (p->decl == decl)
313 return p;
314
315 abort ();
316 }
317
318 /* Save the current context for compilation of a nested function.
319 This is called from language-specific code. The caller should use
320 the enter_nested langhook to save any language-specific state,
321 since this function knows only about language-independent
322 variables. */
323
324 void
325 push_function_context_to (tree context)
326 {
327 struct function *p;
328
329 if (context)
330 {
331 if (context == current_function_decl)
332 cfun->contains_functions = 1;
333 else
334 {
335 struct function *containing = find_function_data (context);
336 containing->contains_functions = 1;
337 }
338 }
339
340 if (cfun == 0)
341 init_dummy_function_start ();
342 p = cfun;
343
344 p->outer = outer_function_chain;
345 outer_function_chain = p;
346 p->fixup_var_refs_queue = 0;
347
348 lang_hooks.function.enter_nested (p);
349
350 cfun = 0;
351 }
352
353 void
354 push_function_context (void)
355 {
356 push_function_context_to (current_function_decl);
357 }
358
359 /* Restore the last saved context, at the end of a nested function.
360 This function is called from language-specific code. */
361
362 void
363 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
364 {
365 struct function *p = outer_function_chain;
366 struct var_refs_queue *queue;
367
368 cfun = p;
369 outer_function_chain = p->outer;
370
371 current_function_decl = p->decl;
372 reg_renumber = 0;
373
374 restore_emit_status (p);
375
376 lang_hooks.function.leave_nested (p);
377
378 /* Finish doing put_var_into_stack for any of our variables which became
379 addressable during the nested function. If only one entry has to be
380 fixed up, just do that one. Otherwise, first make a list of MEMs that
381 are not to be unshared. */
382 if (p->fixup_var_refs_queue == 0)
383 ;
384 else if (p->fixup_var_refs_queue->next == 0)
385 fixup_var_refs (p->fixup_var_refs_queue->modified,
386 p->fixup_var_refs_queue->promoted_mode,
387 p->fixup_var_refs_queue->unsignedp,
388 p->fixup_var_refs_queue->modified, 0);
389 else
390 {
391 rtx list = 0;
392
393 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
394 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
395
396 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
397 fixup_var_refs (queue->modified, queue->promoted_mode,
398 queue->unsignedp, list, 0);
399
400 }
401
402 p->fixup_var_refs_queue = 0;
403
404 /* Reset variables that have known state during rtx generation. */
405 rtx_equal_function_value_matters = 1;
406 virtuals_instantiated = 0;
407 generating_concat_p = 1;
408 }
409
410 void
411 pop_function_context (void)
412 {
413 pop_function_context_from (current_function_decl);
414 }
415
416 /* Clear out all parts of the state in F that can safely be discarded
417 after the function has been parsed, but not compiled, to let
418 garbage collection reclaim the memory. */
419
420 void
421 free_after_parsing (struct function *f)
422 {
423 /* f->expr->forced_labels is used by code generation. */
424 /* f->emit->regno_reg_rtx is used by code generation. */
425 /* f->varasm is used by code generation. */
426 /* f->eh->eh_return_stub_label is used by code generation. */
427
428 lang_hooks.function.final (f);
429 f->stmt = NULL;
430 }
431
432 /* Clear out all parts of the state in F that can safely be discarded
433 after the function has been compiled, to let garbage collection
434 reclaim the memory. */
435
436 void
437 free_after_compilation (struct function *f)
438 {
439 f->eh = NULL;
440 f->expr = NULL;
441 f->emit = NULL;
442 f->varasm = NULL;
443 f->machine = NULL;
444
445 f->x_temp_slots = NULL;
446 f->arg_offset_rtx = NULL;
447 f->return_rtx = NULL;
448 f->internal_arg_pointer = NULL;
449 f->x_nonlocal_labels = NULL;
450 f->x_nonlocal_goto_handler_slots = NULL;
451 f->x_nonlocal_goto_handler_labels = NULL;
452 f->x_nonlocal_goto_stack_level = NULL;
453 f->x_cleanup_label = NULL;
454 f->x_return_label = NULL;
455 f->x_naked_return_label = NULL;
456 f->computed_goto_common_label = NULL;
457 f->computed_goto_common_reg = NULL;
458 f->x_save_expr_regs = NULL;
459 f->x_stack_slot_list = NULL;
460 f->x_rtl_expr_chain = NULL;
461 f->x_tail_recursion_label = NULL;
462 f->x_tail_recursion_reentry = NULL;
463 f->x_arg_pointer_save_area = NULL;
464 f->x_clobber_return_insn = NULL;
465 f->x_context_display = NULL;
466 f->x_trampoline_list = NULL;
467 f->x_parm_birth_insn = NULL;
468 f->x_last_parm_insn = NULL;
469 f->x_parm_reg_stack_loc = NULL;
470 f->fixup_var_refs_queue = NULL;
471 f->original_arg_vector = NULL;
472 f->original_decl_initial = NULL;
473 f->inl_last_parm_insn = NULL;
474 f->epilogue_delay_list = NULL;
475 }
476 \f
477 /* Allocate fixed slots in the stack frame of the current function. */
478
479 /* Return size needed for stack frame based on slots so far allocated in
480 function F.
481 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
482 the caller may have to do that. */
483
484 HOST_WIDE_INT
485 get_func_frame_size (struct function *f)
486 {
487 #ifdef FRAME_GROWS_DOWNWARD
488 return -f->x_frame_offset;
489 #else
490 return f->x_frame_offset;
491 #endif
492 }
493
494 /* Return size needed for stack frame based on slots so far allocated.
495 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
496 the caller may have to do that. */
497 HOST_WIDE_INT
498 get_frame_size (void)
499 {
500 return get_func_frame_size (cfun);
501 }
502
503 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
504 with machine mode MODE.
505
506 ALIGN controls the amount of alignment for the address of the slot:
507 0 means according to MODE,
508 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
509 positive specifies alignment boundary in bits.
510
511 We do not round to stack_boundary here.
512
513 FUNCTION specifies the function to allocate in. */
514
515 static rtx
516 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
517 struct function *function)
518 {
519 rtx x, addr;
520 int bigend_correction = 0;
521 int alignment;
522 int frame_off, frame_alignment, frame_phase;
523
524 if (align == 0)
525 {
526 tree type;
527
528 if (mode == BLKmode)
529 alignment = BIGGEST_ALIGNMENT;
530 else
531 alignment = GET_MODE_ALIGNMENT (mode);
532
533 /* Allow the target to (possibly) increase the alignment of this
534 stack slot. */
535 type = lang_hooks.types.type_for_mode (mode, 0);
536 if (type)
537 alignment = LOCAL_ALIGNMENT (type, alignment);
538
539 alignment /= BITS_PER_UNIT;
540 }
541 else if (align == -1)
542 {
543 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
544 size = CEIL_ROUND (size, alignment);
545 }
546 else
547 alignment = align / BITS_PER_UNIT;
548
549 #ifdef FRAME_GROWS_DOWNWARD
550 function->x_frame_offset -= size;
551 #endif
552
553 /* Ignore alignment we can't do with expected alignment of the boundary. */
554 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
555 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
556
557 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
558 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
559
560 /* Calculate how many bytes the start of local variables is off from
561 stack alignment. */
562 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
563 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
564 frame_phase = frame_off ? frame_alignment - frame_off : 0;
565
566 /* Round the frame offset to the specified alignment. The default is
567 to always honor requests to align the stack but a port may choose to
568 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
569 if (STACK_ALIGNMENT_NEEDED
570 || mode != BLKmode
571 || size != 0)
572 {
573 /* We must be careful here, since FRAME_OFFSET might be negative and
574 division with a negative dividend isn't as well defined as we might
575 like. So we instead assume that ALIGNMENT is a power of two and
576 use logical operations which are unambiguous. */
577 #ifdef FRAME_GROWS_DOWNWARD
578 function->x_frame_offset
579 = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
580 + frame_phase);
581 #else
582 function->x_frame_offset
583 = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
584 + frame_phase);
585 #endif
586 }
587
588 /* On a big-endian machine, if we are allocating more space than we will use,
589 use the least significant bytes of those that are allocated. */
590 if (BYTES_BIG_ENDIAN && mode != BLKmode)
591 bigend_correction = size - GET_MODE_SIZE (mode);
592
593 /* If we have already instantiated virtual registers, return the actual
594 address relative to the frame pointer. */
595 if (function == cfun && virtuals_instantiated)
596 addr = plus_constant (frame_pointer_rtx,
597 trunc_int_for_mode
598 (frame_offset + bigend_correction
599 + STARTING_FRAME_OFFSET, Pmode));
600 else
601 addr = plus_constant (virtual_stack_vars_rtx,
602 trunc_int_for_mode
603 (function->x_frame_offset + bigend_correction,
604 Pmode));
605
606 #ifndef FRAME_GROWS_DOWNWARD
607 function->x_frame_offset += size;
608 #endif
609
610 x = gen_rtx_MEM (mode, addr);
611
612 function->x_stack_slot_list
613 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
614
615 return x;
616 }
617
618 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
619 current function. */
620
621 rtx
622 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
623 {
624 return assign_stack_local_1 (mode, size, align, cfun);
625 }
626 \f
627 /* Allocate a temporary stack slot and record it for possible later
628 reuse.
629
630 MODE is the machine mode to be given to the returned rtx.
631
632 SIZE is the size in units of the space required. We do no rounding here
633 since assign_stack_local will do any required rounding.
634
635 KEEP is 1 if this slot is to be retained after a call to
636 free_temp_slots. Automatic variables for a block are allocated
637 with this flag. KEEP is 2 if we allocate a longer term temporary,
638 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
639 if we are to allocate something at an inner level to be treated as
640 a variable in the block (e.g., a SAVE_EXPR).
641
642 TYPE is the type that will be used for the stack slot. */
643
644 rtx
645 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
646 tree type)
647 {
648 unsigned int align;
649 struct temp_slot *p, *best_p = 0;
650 rtx slot;
651
652 /* If SIZE is -1 it means that somebody tried to allocate a temporary
653 of a variable size. */
654 if (size == -1)
655 abort ();
656
657 if (mode == BLKmode)
658 align = BIGGEST_ALIGNMENT;
659 else
660 align = GET_MODE_ALIGNMENT (mode);
661
662 if (! type)
663 type = lang_hooks.types.type_for_mode (mode, 0);
664
665 if (type)
666 align = LOCAL_ALIGNMENT (type, align);
667
668 /* Try to find an available, already-allocated temporary of the proper
669 mode which meets the size and alignment requirements. Choose the
670 smallest one with the closest alignment. */
671 for (p = temp_slots; p; p = p->next)
672 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
673 && ! p->in_use
674 && objects_must_conflict_p (p->type, type)
675 && (best_p == 0 || best_p->size > p->size
676 || (best_p->size == p->size && best_p->align > p->align)))
677 {
678 if (p->align == align && p->size == size)
679 {
680 best_p = 0;
681 break;
682 }
683 best_p = p;
684 }
685
686 /* Make our best, if any, the one to use. */
687 if (best_p)
688 {
689 /* If there are enough aligned bytes left over, make them into a new
690 temp_slot so that the extra bytes don't get wasted. Do this only
691 for BLKmode slots, so that we can be sure of the alignment. */
692 if (GET_MODE (best_p->slot) == BLKmode)
693 {
694 int alignment = best_p->align / BITS_PER_UNIT;
695 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
696
697 if (best_p->size - rounded_size >= alignment)
698 {
699 p = ggc_alloc (sizeof (struct temp_slot));
700 p->in_use = p->addr_taken = 0;
701 p->size = best_p->size - rounded_size;
702 p->base_offset = best_p->base_offset + rounded_size;
703 p->full_size = best_p->full_size - rounded_size;
704 p->slot = gen_rtx_MEM (BLKmode,
705 plus_constant (XEXP (best_p->slot, 0),
706 rounded_size));
707 p->align = best_p->align;
708 p->address = 0;
709 p->rtl_expr = 0;
710 p->type = best_p->type;
711 p->next = temp_slots;
712 temp_slots = p;
713
714 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
715 stack_slot_list);
716
717 best_p->size = rounded_size;
718 best_p->full_size = rounded_size;
719 }
720 }
721
722 p = best_p;
723 }
724
725 /* If we still didn't find one, make a new temporary. */
726 if (p == 0)
727 {
728 HOST_WIDE_INT frame_offset_old = frame_offset;
729
730 p = ggc_alloc (sizeof (struct temp_slot));
731
732 /* We are passing an explicit alignment request to assign_stack_local.
733 One side effect of that is assign_stack_local will not round SIZE
734 to ensure the frame offset remains suitably aligned.
735
736 So for requests which depended on the rounding of SIZE, we go ahead
737 and round it now. We also make sure ALIGNMENT is at least
738 BIGGEST_ALIGNMENT. */
739 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
740 abort ();
741 p->slot = assign_stack_local (mode,
742 (mode == BLKmode
743 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
744 : size),
745 align);
746
747 p->align = align;
748
749 /* The following slot size computation is necessary because we don't
750 know the actual size of the temporary slot until assign_stack_local
751 has performed all the frame alignment and size rounding for the
752 requested temporary. Note that extra space added for alignment
753 can be either above or below this stack slot depending on which
754 way the frame grows. We include the extra space if and only if it
755 is above this slot. */
756 #ifdef FRAME_GROWS_DOWNWARD
757 p->size = frame_offset_old - frame_offset;
758 #else
759 p->size = size;
760 #endif
761
762 /* Now define the fields used by combine_temp_slots. */
763 #ifdef FRAME_GROWS_DOWNWARD
764 p->base_offset = frame_offset;
765 p->full_size = frame_offset_old - frame_offset;
766 #else
767 p->base_offset = frame_offset_old;
768 p->full_size = frame_offset - frame_offset_old;
769 #endif
770 p->address = 0;
771 p->next = temp_slots;
772 temp_slots = p;
773 }
774
775 p->in_use = 1;
776 p->addr_taken = 0;
777 p->rtl_expr = seq_rtl_expr;
778 p->type = type;
779
780 if (keep == 2)
781 {
782 p->level = target_temp_slot_level;
783 p->keep = 0;
784 }
785 else if (keep == 3)
786 {
787 p->level = var_temp_slot_level;
788 p->keep = 0;
789 }
790 else
791 {
792 p->level = temp_slot_level;
793 p->keep = keep;
794 }
795
796
797 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
798 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
799 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
800
801 /* If we know the alias set for the memory that will be used, use
802 it. If there's no TYPE, then we don't know anything about the
803 alias set for the memory. */
804 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
805 set_mem_align (slot, align);
806
807 /* If a type is specified, set the relevant flags. */
808 if (type != 0)
809 {
810 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
811 && TYPE_READONLY (type));
812 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
813 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
814 }
815
816 return slot;
817 }
818
819 /* Allocate a temporary stack slot and record it for possible later
820 reuse. First three arguments are same as in preceding function. */
821
822 rtx
823 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
824 {
825 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
826 }
827 \f
828 /* Assign a temporary.
829 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
830 and so that should be used in error messages. In either case, we
831 allocate of the given type.
832 KEEP is as for assign_stack_temp.
833 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
834 it is 0 if a register is OK.
835 DONT_PROMOTE is 1 if we should not promote values in register
836 to wider modes. */
837
838 rtx
839 assign_temp (tree type_or_decl, int keep, int memory_required,
840 int dont_promote ATTRIBUTE_UNUSED)
841 {
842 tree type, decl;
843 enum machine_mode mode;
844 #ifndef PROMOTE_FOR_CALL_ONLY
845 int unsignedp;
846 #endif
847
848 if (DECL_P (type_or_decl))
849 decl = type_or_decl, type = TREE_TYPE (decl);
850 else
851 decl = NULL, type = type_or_decl;
852
853 mode = TYPE_MODE (type);
854 #ifndef PROMOTE_FOR_CALL_ONLY
855 unsignedp = TYPE_UNSIGNED (type);
856 #endif
857
858 if (mode == BLKmode || memory_required)
859 {
860 HOST_WIDE_INT size = int_size_in_bytes (type);
861 rtx tmp;
862
863 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
864 problems with allocating the stack space. */
865 if (size == 0)
866 size = 1;
867
868 /* Unfortunately, we don't yet know how to allocate variable-sized
869 temporaries. However, sometimes we have a fixed upper limit on
870 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
871 instead. This is the case for Chill variable-sized strings. */
872 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
873 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
874 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
875 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
876
877 /* The size of the temporary may be too large to fit into an integer. */
878 /* ??? Not sure this should happen except for user silliness, so limit
879 this to things that aren't compiler-generated temporaries. The
880 rest of the time we'll abort in assign_stack_temp_for_type. */
881 if (decl && size == -1
882 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
883 {
884 error ("%Jsize of variable '%D' is too large", decl, decl);
885 size = 1;
886 }
887
888 tmp = assign_stack_temp_for_type (mode, size, keep, type);
889 return tmp;
890 }
891
892 #ifndef PROMOTE_FOR_CALL_ONLY
893 if (! dont_promote)
894 mode = promote_mode (type, mode, &unsignedp, 0);
895 #endif
896
897 return gen_reg_rtx (mode);
898 }
899 \f
900 /* Combine temporary stack slots which are adjacent on the stack.
901
902 This allows for better use of already allocated stack space. This is only
903 done for BLKmode slots because we can be sure that we won't have alignment
904 problems in this case. */
905
906 void
907 combine_temp_slots (void)
908 {
909 struct temp_slot *p, *q;
910 struct temp_slot *prev_p, *prev_q;
911 int num_slots;
912
913 /* We can't combine slots, because the information about which slot
914 is in which alias set will be lost. */
915 if (flag_strict_aliasing)
916 return;
917
918 /* If there are a lot of temp slots, don't do anything unless
919 high levels of optimization. */
920 if (! flag_expensive_optimizations)
921 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
922 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
923 return;
924
925 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
926 {
927 int delete_p = 0;
928
929 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
930 for (q = p->next, prev_q = p; q; q = prev_q->next)
931 {
932 int delete_q = 0;
933 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
934 {
935 if (p->base_offset + p->full_size == q->base_offset)
936 {
937 /* Q comes after P; combine Q into P. */
938 p->size += q->size;
939 p->full_size += q->full_size;
940 delete_q = 1;
941 }
942 else if (q->base_offset + q->full_size == p->base_offset)
943 {
944 /* P comes after Q; combine P into Q. */
945 q->size += p->size;
946 q->full_size += p->full_size;
947 delete_p = 1;
948 break;
949 }
950 }
951 /* Either delete Q or advance past it. */
952 if (delete_q)
953 prev_q->next = q->next;
954 else
955 prev_q = q;
956 }
957 /* Either delete P or advance past it. */
958 if (delete_p)
959 {
960 if (prev_p)
961 prev_p->next = p->next;
962 else
963 temp_slots = p->next;
964 }
965 else
966 prev_p = p;
967 }
968 }
969 \f
970 /* Find the temp slot corresponding to the object at address X. */
971
972 static struct temp_slot *
973 find_temp_slot_from_address (rtx x)
974 {
975 struct temp_slot *p;
976 rtx next;
977
978 for (p = temp_slots; p; p = p->next)
979 {
980 if (! p->in_use)
981 continue;
982
983 else if (XEXP (p->slot, 0) == x
984 || p->address == x
985 || (GET_CODE (x) == PLUS
986 && XEXP (x, 0) == virtual_stack_vars_rtx
987 && GET_CODE (XEXP (x, 1)) == CONST_INT
988 && INTVAL (XEXP (x, 1)) >= p->base_offset
989 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
990 return p;
991
992 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
993 for (next = p->address; next; next = XEXP (next, 1))
994 if (XEXP (next, 0) == x)
995 return p;
996 }
997
998 /* If we have a sum involving a register, see if it points to a temp
999 slot. */
1000 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1001 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1002 return p;
1003 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1004 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1005 return p;
1006
1007 return 0;
1008 }
1009
1010 /* Indicate that NEW is an alternate way of referring to the temp slot
1011 that previously was known by OLD. */
1012
1013 void
1014 update_temp_slot_address (rtx old, rtx new)
1015 {
1016 struct temp_slot *p;
1017
1018 if (rtx_equal_p (old, new))
1019 return;
1020
1021 p = find_temp_slot_from_address (old);
1022
1023 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1024 is a register, see if one operand of the PLUS is a temporary
1025 location. If so, NEW points into it. Otherwise, if both OLD and
1026 NEW are a PLUS and if there is a register in common between them.
1027 If so, try a recursive call on those values. */
1028 if (p == 0)
1029 {
1030 if (GET_CODE (old) != PLUS)
1031 return;
1032
1033 if (GET_CODE (new) == REG)
1034 {
1035 update_temp_slot_address (XEXP (old, 0), new);
1036 update_temp_slot_address (XEXP (old, 1), new);
1037 return;
1038 }
1039 else if (GET_CODE (new) != PLUS)
1040 return;
1041
1042 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1043 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1044 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1045 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1046 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1047 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1048 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1049 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1050
1051 return;
1052 }
1053
1054 /* Otherwise add an alias for the temp's address. */
1055 else if (p->address == 0)
1056 p->address = new;
1057 else
1058 {
1059 if (GET_CODE (p->address) != EXPR_LIST)
1060 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1061
1062 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1063 }
1064 }
1065
1066 /* If X could be a reference to a temporary slot, mark the fact that its
1067 address was taken. */
1068
1069 void
1070 mark_temp_addr_taken (rtx x)
1071 {
1072 struct temp_slot *p;
1073
1074 if (x == 0)
1075 return;
1076
1077 /* If X is not in memory or is at a constant address, it cannot be in
1078 a temporary slot. */
1079 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1080 return;
1081
1082 p = find_temp_slot_from_address (XEXP (x, 0));
1083 if (p != 0)
1084 p->addr_taken = 1;
1085 }
1086
1087 /* If X could be a reference to a temporary slot, mark that slot as
1088 belonging to the to one level higher than the current level. If X
1089 matched one of our slots, just mark that one. Otherwise, we can't
1090 easily predict which it is, so upgrade all of them. Kept slots
1091 need not be touched.
1092
1093 This is called when an ({...}) construct occurs and a statement
1094 returns a value in memory. */
1095
1096 void
1097 preserve_temp_slots (rtx x)
1098 {
1099 struct temp_slot *p = 0;
1100
1101 /* If there is no result, we still might have some objects whose address
1102 were taken, so we need to make sure they stay around. */
1103 if (x == 0)
1104 {
1105 for (p = temp_slots; p; p = p->next)
1106 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1107 p->level--;
1108
1109 return;
1110 }
1111
1112 /* If X is a register that is being used as a pointer, see if we have
1113 a temporary slot we know it points to. To be consistent with
1114 the code below, we really should preserve all non-kept slots
1115 if we can't find a match, but that seems to be much too costly. */
1116 if (GET_CODE (x) == REG && REG_POINTER (x))
1117 p = find_temp_slot_from_address (x);
1118
1119 /* If X is not in memory or is at a constant address, it cannot be in
1120 a temporary slot, but it can contain something whose address was
1121 taken. */
1122 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1123 {
1124 for (p = temp_slots; p; p = p->next)
1125 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1126 p->level--;
1127
1128 return;
1129 }
1130
1131 /* First see if we can find a match. */
1132 if (p == 0)
1133 p = find_temp_slot_from_address (XEXP (x, 0));
1134
1135 if (p != 0)
1136 {
1137 /* Move everything at our level whose address was taken to our new
1138 level in case we used its address. */
1139 struct temp_slot *q;
1140
1141 if (p->level == temp_slot_level)
1142 {
1143 for (q = temp_slots; q; q = q->next)
1144 if (q != p && q->addr_taken && q->level == p->level)
1145 q->level--;
1146
1147 p->level--;
1148 p->addr_taken = 0;
1149 }
1150 return;
1151 }
1152
1153 /* Otherwise, preserve all non-kept slots at this level. */
1154 for (p = temp_slots; p; p = p->next)
1155 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1156 p->level--;
1157 }
1158
1159 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1160 with that RTL_EXPR, promote it into a temporary slot at the present
1161 level so it will not be freed when we free slots made in the
1162 RTL_EXPR. */
1163
1164 void
1165 preserve_rtl_expr_result (rtx x)
1166 {
1167 struct temp_slot *p;
1168
1169 /* If X is not in memory or is at a constant address, it cannot be in
1170 a temporary slot. */
1171 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1172 return;
1173
1174 /* If we can find a match, move it to our level unless it is already at
1175 an upper level. */
1176 p = find_temp_slot_from_address (XEXP (x, 0));
1177 if (p != 0)
1178 {
1179 p->level = MIN (p->level, temp_slot_level);
1180 p->rtl_expr = 0;
1181 }
1182
1183 return;
1184 }
1185
1186 /* Free all temporaries used so far. This is normally called at the end
1187 of generating code for a statement. Don't free any temporaries
1188 currently in use for an RTL_EXPR that hasn't yet been emitted.
1189 We could eventually do better than this since it can be reused while
1190 generating the same RTL_EXPR, but this is complex and probably not
1191 worthwhile. */
1192
1193 void
1194 free_temp_slots (void)
1195 {
1196 struct temp_slot *p;
1197
1198 for (p = temp_slots; p; p = p->next)
1199 if (p->in_use && p->level == temp_slot_level && ! p->keep
1200 && p->rtl_expr == 0)
1201 p->in_use = 0;
1202
1203 combine_temp_slots ();
1204 }
1205
1206 /* Free all temporary slots used in T, an RTL_EXPR node. */
1207
1208 void
1209 free_temps_for_rtl_expr (tree t)
1210 {
1211 struct temp_slot *p;
1212
1213 for (p = temp_slots; p; p = p->next)
1214 if (p->rtl_expr == t)
1215 {
1216 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1217 needs to be preserved. This can happen if a temporary in
1218 the RTL_EXPR was addressed; preserve_temp_slots will move
1219 the temporary into a higher level. */
1220 if (temp_slot_level <= p->level)
1221 p->in_use = 0;
1222 else
1223 p->rtl_expr = NULL_TREE;
1224 }
1225
1226 combine_temp_slots ();
1227 }
1228
1229 /* Mark all temporaries ever allocated in this function as not suitable
1230 for reuse until the current level is exited. */
1231
1232 void
1233 mark_all_temps_used (void)
1234 {
1235 struct temp_slot *p;
1236
1237 for (p = temp_slots; p; p = p->next)
1238 {
1239 p->in_use = p->keep = 1;
1240 p->level = MIN (p->level, temp_slot_level);
1241 }
1242 }
1243
1244 /* Push deeper into the nesting level for stack temporaries. */
1245
1246 void
1247 push_temp_slots (void)
1248 {
1249 temp_slot_level++;
1250 }
1251
1252 /* Pop a temporary nesting level. All slots in use in the current level
1253 are freed. */
1254
1255 void
1256 pop_temp_slots (void)
1257 {
1258 struct temp_slot *p;
1259
1260 for (p = temp_slots; p; p = p->next)
1261 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1262 p->in_use = 0;
1263
1264 combine_temp_slots ();
1265
1266 temp_slot_level--;
1267 }
1268
1269 /* Initialize temporary slots. */
1270
1271 void
1272 init_temp_slots (void)
1273 {
1274 /* We have not allocated any temporaries yet. */
1275 temp_slots = 0;
1276 temp_slot_level = 0;
1277 var_temp_slot_level = 0;
1278 target_temp_slot_level = 0;
1279 }
1280 \f
1281 /* Retroactively move an auto variable from a register to a stack
1282 slot. This is done when an address-reference to the variable is
1283 seen. If RESCAN is true, all previously emitted instructions are
1284 examined and modified to handle the fact that DECL is now
1285 addressable. */
1286
1287 void
1288 put_var_into_stack (tree decl, int rescan)
1289 {
1290 rtx orig_reg, reg;
1291 enum machine_mode promoted_mode, decl_mode;
1292 struct function *function = 0;
1293 tree context;
1294 int can_use_addressof;
1295 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1296 int usedp = (TREE_USED (decl)
1297 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1298
1299 context = decl_function_context (decl);
1300
1301 /* Get the current rtl used for this object and its original mode. */
1302 orig_reg = reg = (TREE_CODE (decl) == SAVE_EXPR
1303 ? SAVE_EXPR_RTL (decl)
1304 : DECL_RTL_IF_SET (decl));
1305
1306 /* No need to do anything if decl has no rtx yet
1307 since in that case caller is setting TREE_ADDRESSABLE
1308 and a stack slot will be assigned when the rtl is made. */
1309 if (reg == 0)
1310 return;
1311
1312 /* Get the declared mode for this object. */
1313 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1314 : DECL_MODE (decl));
1315 /* Get the mode it's actually stored in. */
1316 promoted_mode = GET_MODE (reg);
1317
1318 /* If this variable comes from an outer function, find that
1319 function's saved context. Don't use find_function_data here,
1320 because it might not be in any active function.
1321 FIXME: Is that really supposed to happen?
1322 It does in ObjC at least. */
1323 if (context != current_function_decl && context != inline_function_decl)
1324 for (function = outer_function_chain; function; function = function->outer)
1325 if (function->decl == context)
1326 break;
1327
1328 /* If this is a variable-sized object or a structure passed by invisible
1329 reference, with a pseudo to address it, put that pseudo into the stack
1330 if the var is non-local. */
1331 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1332 && GET_CODE (reg) == MEM
1333 && GET_CODE (XEXP (reg, 0)) == REG
1334 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1335 {
1336 orig_reg = reg = XEXP (reg, 0);
1337 decl_mode = promoted_mode = GET_MODE (reg);
1338 }
1339
1340 /* If this variable lives in the current function and we don't need to put it
1341 in the stack for the sake of setjmp or the non-locality, try to keep it in
1342 a register until we know we actually need the address. */
1343 can_use_addressof
1344 = (function == 0
1345 && ! (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl))
1346 && optimize > 0
1347 /* FIXME make it work for promoted modes too */
1348 && decl_mode == promoted_mode
1349 #ifdef NON_SAVING_SETJMP
1350 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1351 #endif
1352 );
1353
1354 /* If we can't use ADDRESSOF, make sure we see through one we already
1355 generated. */
1356 if (! can_use_addressof && GET_CODE (reg) == MEM
1357 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1358 reg = XEXP (XEXP (reg, 0), 0);
1359
1360 /* Now we should have a value that resides in one or more pseudo regs. */
1361
1362 if (GET_CODE (reg) == REG)
1363 {
1364 if (can_use_addressof)
1365 gen_mem_addressof (reg, decl, rescan);
1366 else
1367 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1368 decl_mode, volatilep, 0, usedp, 0);
1369
1370 /* If this was previously a MEM but we've removed the ADDRESSOF,
1371 set this address into that MEM so we always use the same
1372 rtx for this variable. */
1373 if (orig_reg != reg && GET_CODE (orig_reg) == MEM)
1374 XEXP (orig_reg, 0) = XEXP (reg, 0);
1375 }
1376 else if (GET_CODE (reg) == CONCAT)
1377 {
1378 /* A CONCAT contains two pseudos; put them both in the stack.
1379 We do it so they end up consecutive.
1380 We fixup references to the parts only after we fixup references
1381 to the whole CONCAT, lest we do double fixups for the latter
1382 references. */
1383 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1384 tree part_type = lang_hooks.types.type_for_mode (part_mode, 0);
1385 rtx lopart = XEXP (reg, 0);
1386 rtx hipart = XEXP (reg, 1);
1387 #ifdef FRAME_GROWS_DOWNWARD
1388 /* Since part 0 should have a lower address, do it second. */
1389 put_reg_into_stack (function, hipart, part_type, part_mode,
1390 part_mode, volatilep, 0, 0, 0);
1391 put_reg_into_stack (function, lopart, part_type, part_mode,
1392 part_mode, volatilep, 0, 0, 0);
1393 #else
1394 put_reg_into_stack (function, lopart, part_type, part_mode,
1395 part_mode, volatilep, 0, 0, 0);
1396 put_reg_into_stack (function, hipart, part_type, part_mode,
1397 part_mode, volatilep, 0, 0, 0);
1398 #endif
1399
1400 /* Change the CONCAT into a combined MEM for both parts. */
1401 PUT_CODE (reg, MEM);
1402 MEM_ATTRS (reg) = 0;
1403
1404 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1405 already computed alias sets. Here we want to re-generate. */
1406 if (DECL_P (decl))
1407 SET_DECL_RTL (decl, NULL);
1408 set_mem_attributes (reg, decl, 1);
1409 if (DECL_P (decl))
1410 SET_DECL_RTL (decl, reg);
1411
1412 /* The two parts are in memory order already.
1413 Use the lower parts address as ours. */
1414 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1415 /* Prevent sharing of rtl that might lose. */
1416 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1417 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1418 if (usedp && rescan)
1419 {
1420 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1421 promoted_mode, 0);
1422 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1423 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1424 }
1425 }
1426 else
1427 return;
1428 }
1429
1430 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1431 into the stack frame of FUNCTION (0 means the current function).
1432 DECL_MODE is the machine mode of the user-level data type.
1433 PROMOTED_MODE is the machine mode of the register.
1434 VOLATILE_P is nonzero if this is for a "volatile" decl.
1435 USED_P is nonzero if this reg might have already been used in an insn. */
1436
1437 static void
1438 put_reg_into_stack (struct function *function, rtx reg, tree type,
1439 enum machine_mode promoted_mode,
1440 enum machine_mode decl_mode, int volatile_p,
1441 unsigned int original_regno, int used_p, htab_t ht)
1442 {
1443 struct function *func = function ? function : cfun;
1444 rtx new = 0;
1445 unsigned int regno = original_regno;
1446
1447 if (regno == 0)
1448 regno = REGNO (reg);
1449
1450 if (regno < func->x_max_parm_reg)
1451 {
1452 if (!func->x_parm_reg_stack_loc)
1453 abort ();
1454 new = func->x_parm_reg_stack_loc[regno];
1455 }
1456
1457 if (new == 0)
1458 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1459
1460 PUT_CODE (reg, MEM);
1461 PUT_MODE (reg, decl_mode);
1462 XEXP (reg, 0) = XEXP (new, 0);
1463 MEM_ATTRS (reg) = 0;
1464 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1465 MEM_VOLATILE_P (reg) = volatile_p;
1466
1467 /* If this is a memory ref that contains aggregate components,
1468 mark it as such for cse and loop optimize. If we are reusing a
1469 previously generated stack slot, then we need to copy the bit in
1470 case it was set for other reasons. For instance, it is set for
1471 __builtin_va_alist. */
1472 if (type)
1473 {
1474 MEM_SET_IN_STRUCT_P (reg,
1475 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1476 set_mem_alias_set (reg, get_alias_set (type));
1477 }
1478
1479 if (used_p)
1480 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1481 }
1482
1483 /* Make sure that all refs to the variable, previously made
1484 when it was a register, are fixed up to be valid again.
1485 See function above for meaning of arguments. */
1486
1487 static void
1488 schedule_fixup_var_refs (struct function *function, rtx reg, tree type,
1489 enum machine_mode promoted_mode, htab_t ht)
1490 {
1491 int unsigned_p = type ? TYPE_UNSIGNED (type) : 0;
1492
1493 if (function != 0)
1494 {
1495 struct var_refs_queue *temp;
1496
1497 temp = ggc_alloc (sizeof (struct var_refs_queue));
1498 temp->modified = reg;
1499 temp->promoted_mode = promoted_mode;
1500 temp->unsignedp = unsigned_p;
1501 temp->next = function->fixup_var_refs_queue;
1502 function->fixup_var_refs_queue = temp;
1503 }
1504 else
1505 /* Variable is local; fix it up now. */
1506 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1507 }
1508 \f
1509 static void
1510 fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp,
1511 rtx may_share, htab_t ht)
1512 {
1513 tree pending;
1514 rtx first_insn = get_insns ();
1515 struct sequence_stack *stack = seq_stack;
1516 tree rtl_exps = rtl_expr_chain;
1517 int save_volatile_ok = volatile_ok;
1518
1519 /* If there's a hash table, it must record all uses of VAR. */
1520 if (ht)
1521 {
1522 if (stack != 0)
1523 abort ();
1524 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1525 may_share);
1526 return;
1527 }
1528
1529 /* Volatile is valid in MEMs because all we're doing in changing the
1530 address inside. */
1531 volatile_ok = 1;
1532 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1533 stack == 0, may_share);
1534
1535 /* Scan all pending sequences too. */
1536 for (; stack; stack = stack->next)
1537 {
1538 push_to_full_sequence (stack->first, stack->last);
1539 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1540 stack->next != 0, may_share);
1541 /* Update remembered end of sequence
1542 in case we added an insn at the end. */
1543 stack->last = get_last_insn ();
1544 end_sequence ();
1545 }
1546
1547 /* Scan all waiting RTL_EXPRs too. */
1548 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1549 {
1550 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1551 if (seq != const0_rtx && seq != 0)
1552 {
1553 push_to_sequence (seq);
1554 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1555 may_share);
1556 end_sequence ();
1557 }
1558 }
1559
1560 volatile_ok = save_volatile_ok;
1561 }
1562 \f
1563 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1564 some part of an insn. Return a struct fixup_replacement whose OLD
1565 value is equal to X. Allocate a new structure if no such entry exists. */
1566
1567 static struct fixup_replacement *
1568 find_fixup_replacement (struct fixup_replacement **replacements, rtx x)
1569 {
1570 struct fixup_replacement *p;
1571
1572 /* See if we have already replaced this. */
1573 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1574 ;
1575
1576 if (p == 0)
1577 {
1578 p = xmalloc (sizeof (struct fixup_replacement));
1579 p->old = x;
1580 p->new = 0;
1581 p->next = *replacements;
1582 *replacements = p;
1583 }
1584
1585 return p;
1586 }
1587
1588 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1589 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1590 for the current function. MAY_SHARE is either a MEM that is not
1591 to be unshared or a list of them. */
1592
1593 static void
1594 fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode,
1595 int unsignedp, int toplevel, rtx may_share)
1596 {
1597 while (insn)
1598 {
1599 /* fixup_var_refs_insn might modify insn, so save its next
1600 pointer now. */
1601 rtx next = NEXT_INSN (insn);
1602
1603 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1604 the three sequences they (potentially) contain, and process
1605 them recursively. The CALL_INSN itself is not interesting. */
1606
1607 if (GET_CODE (insn) == CALL_INSN
1608 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1609 {
1610 int i;
1611
1612 /* Look at the Normal call, sibling call and tail recursion
1613 sequences attached to the CALL_PLACEHOLDER. */
1614 for (i = 0; i < 3; i++)
1615 {
1616 rtx seq = XEXP (PATTERN (insn), i);
1617 if (seq)
1618 {
1619 push_to_sequence (seq);
1620 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1621 may_share);
1622 XEXP (PATTERN (insn), i) = get_insns ();
1623 end_sequence ();
1624 }
1625 }
1626 }
1627
1628 else if (INSN_P (insn))
1629 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1630 may_share);
1631
1632 insn = next;
1633 }
1634 }
1635
1636 /* Look up the insns which reference VAR in HT and fix them up. Other
1637 arguments are the same as fixup_var_refs_insns.
1638
1639 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1640 because the hash table will point straight to the interesting insn
1641 (inside the CALL_PLACEHOLDER). */
1642
1643 static void
1644 fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode,
1645 int unsignedp, rtx may_share)
1646 {
1647 struct insns_for_mem_entry tmp;
1648 struct insns_for_mem_entry *ime;
1649 rtx insn_list;
1650
1651 tmp.key = var;
1652 ime = htab_find (ht, &tmp);
1653 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1654 if (INSN_P (XEXP (insn_list, 0)))
1655 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1656 unsignedp, 1, may_share);
1657 }
1658
1659
1660 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1661 the insn under examination, VAR is the variable to fix up
1662 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1663 TOPLEVEL is nonzero if this is the main insn chain for this
1664 function. */
1665
1666 static void
1667 fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode,
1668 int unsignedp, int toplevel, rtx no_share)
1669 {
1670 rtx call_dest = 0;
1671 rtx set, prev, prev_set;
1672 rtx note;
1673
1674 /* Remember the notes in case we delete the insn. */
1675 note = REG_NOTES (insn);
1676
1677 /* If this is a CLOBBER of VAR, delete it.
1678
1679 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1680 and REG_RETVAL notes too. */
1681 if (GET_CODE (PATTERN (insn)) == CLOBBER
1682 && (XEXP (PATTERN (insn), 0) == var
1683 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1684 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1685 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1686 {
1687 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1688 /* The REG_LIBCALL note will go away since we are going to
1689 turn INSN into a NOTE, so just delete the
1690 corresponding REG_RETVAL note. */
1691 remove_note (XEXP (note, 0),
1692 find_reg_note (XEXP (note, 0), REG_RETVAL,
1693 NULL_RTX));
1694
1695 delete_insn (insn);
1696 }
1697
1698 /* The insn to load VAR from a home in the arglist
1699 is now a no-op. When we see it, just delete it.
1700 Similarly if this is storing VAR from a register from which
1701 it was loaded in the previous insn. This will occur
1702 when an ADDRESSOF was made for an arglist slot. */
1703 else if (toplevel
1704 && (set = single_set (insn)) != 0
1705 && SET_DEST (set) == var
1706 /* If this represents the result of an insn group,
1707 don't delete the insn. */
1708 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1709 && (rtx_equal_p (SET_SRC (set), var)
1710 || (GET_CODE (SET_SRC (set)) == REG
1711 && (prev = prev_nonnote_insn (insn)) != 0
1712 && (prev_set = single_set (prev)) != 0
1713 && SET_DEST (prev_set) == SET_SRC (set)
1714 && rtx_equal_p (SET_SRC (prev_set), var))))
1715 {
1716 delete_insn (insn);
1717 }
1718 else
1719 {
1720 struct fixup_replacement *replacements = 0;
1721 rtx next_insn = NEXT_INSN (insn);
1722
1723 if (SMALL_REGISTER_CLASSES)
1724 {
1725 /* If the insn that copies the results of a CALL_INSN
1726 into a pseudo now references VAR, we have to use an
1727 intermediate pseudo since we want the life of the
1728 return value register to be only a single insn.
1729
1730 If we don't use an intermediate pseudo, such things as
1731 address computations to make the address of VAR valid
1732 if it is not can be placed between the CALL_INSN and INSN.
1733
1734 To make sure this doesn't happen, we record the destination
1735 of the CALL_INSN and see if the next insn uses both that
1736 and VAR. */
1737
1738 if (call_dest != 0 && GET_CODE (insn) == INSN
1739 && reg_mentioned_p (var, PATTERN (insn))
1740 && reg_mentioned_p (call_dest, PATTERN (insn)))
1741 {
1742 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1743
1744 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1745
1746 PATTERN (insn) = replace_rtx (PATTERN (insn),
1747 call_dest, temp);
1748 }
1749
1750 if (GET_CODE (insn) == CALL_INSN
1751 && GET_CODE (PATTERN (insn)) == SET)
1752 call_dest = SET_DEST (PATTERN (insn));
1753 else if (GET_CODE (insn) == CALL_INSN
1754 && GET_CODE (PATTERN (insn)) == PARALLEL
1755 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1756 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1757 else
1758 call_dest = 0;
1759 }
1760
1761 /* See if we have to do anything to INSN now that VAR is in
1762 memory. If it needs to be loaded into a pseudo, use a single
1763 pseudo for the entire insn in case there is a MATCH_DUP
1764 between two operands. We pass a pointer to the head of
1765 a list of struct fixup_replacements. If fixup_var_refs_1
1766 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1767 it will record them in this list.
1768
1769 If it allocated a pseudo for any replacement, we copy into
1770 it here. */
1771
1772 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1773 &replacements, no_share);
1774
1775 /* If this is last_parm_insn, and any instructions were output
1776 after it to fix it up, then we must set last_parm_insn to
1777 the last such instruction emitted. */
1778 if (insn == last_parm_insn)
1779 last_parm_insn = PREV_INSN (next_insn);
1780
1781 while (replacements)
1782 {
1783 struct fixup_replacement *next;
1784
1785 if (GET_CODE (replacements->new) == REG)
1786 {
1787 rtx insert_before;
1788 rtx seq;
1789
1790 /* OLD might be a (subreg (mem)). */
1791 if (GET_CODE (replacements->old) == SUBREG)
1792 replacements->old
1793 = fixup_memory_subreg (replacements->old, insn,
1794 promoted_mode, 0);
1795 else
1796 replacements->old
1797 = fixup_stack_1 (replacements->old, insn);
1798
1799 insert_before = insn;
1800
1801 /* If we are changing the mode, do a conversion.
1802 This might be wasteful, but combine.c will
1803 eliminate much of the waste. */
1804
1805 if (GET_MODE (replacements->new)
1806 != GET_MODE (replacements->old))
1807 {
1808 start_sequence ();
1809 convert_move (replacements->new,
1810 replacements->old, unsignedp);
1811 seq = get_insns ();
1812 end_sequence ();
1813 }
1814 else
1815 seq = gen_move_insn (replacements->new,
1816 replacements->old);
1817
1818 emit_insn_before (seq, insert_before);
1819 }
1820
1821 next = replacements->next;
1822 free (replacements);
1823 replacements = next;
1824 }
1825 }
1826
1827 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1828 But don't touch other insns referred to by reg-notes;
1829 we will get them elsewhere. */
1830 while (note)
1831 {
1832 if (GET_CODE (note) != INSN_LIST)
1833 XEXP (note, 0)
1834 = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1835 promoted_mode, 1);
1836 note = XEXP (note, 1);
1837 }
1838 }
1839 \f
1840 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1841 See if the rtx expression at *LOC in INSN needs to be changed.
1842
1843 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1844 contain a list of original rtx's and replacements. If we find that we need
1845 to modify this insn by replacing a memory reference with a pseudo or by
1846 making a new MEM to implement a SUBREG, we consult that list to see if
1847 we have already chosen a replacement. If none has already been allocated,
1848 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1849 or the SUBREG, as appropriate, to the pseudo. */
1850
1851 static void
1852 fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn,
1853 struct fixup_replacement **replacements, rtx no_share)
1854 {
1855 int i;
1856 rtx x = *loc;
1857 RTX_CODE code = GET_CODE (x);
1858 const char *fmt;
1859 rtx tem, tem1;
1860 struct fixup_replacement *replacement;
1861
1862 switch (code)
1863 {
1864 case ADDRESSOF:
1865 if (XEXP (x, 0) == var)
1866 {
1867 /* Prevent sharing of rtl that might lose. */
1868 rtx sub = copy_rtx (XEXP (var, 0));
1869
1870 if (! validate_change (insn, loc, sub, 0))
1871 {
1872 rtx y = gen_reg_rtx (GET_MODE (sub));
1873 rtx seq, new_insn;
1874
1875 /* We should be able to replace with a register or all is lost.
1876 Note that we can't use validate_change to verify this, since
1877 we're not caring for replacing all dups simultaneously. */
1878 if (! validate_replace_rtx (*loc, y, insn))
1879 abort ();
1880
1881 /* Careful! First try to recognize a direct move of the
1882 value, mimicking how things are done in gen_reload wrt
1883 PLUS. Consider what happens when insn is a conditional
1884 move instruction and addsi3 clobbers flags. */
1885
1886 start_sequence ();
1887 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1888 seq = get_insns ();
1889 end_sequence ();
1890
1891 if (recog_memoized (new_insn) < 0)
1892 {
1893 /* That failed. Fall back on force_operand and hope. */
1894
1895 start_sequence ();
1896 sub = force_operand (sub, y);
1897 if (sub != y)
1898 emit_insn (gen_move_insn (y, sub));
1899 seq = get_insns ();
1900 end_sequence ();
1901 }
1902
1903 #ifdef HAVE_cc0
1904 /* Don't separate setter from user. */
1905 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1906 insn = PREV_INSN (insn);
1907 #endif
1908
1909 emit_insn_before (seq, insn);
1910 }
1911 }
1912 return;
1913
1914 case MEM:
1915 if (var == x)
1916 {
1917 /* If we already have a replacement, use it. Otherwise,
1918 try to fix up this address in case it is invalid. */
1919
1920 replacement = find_fixup_replacement (replacements, var);
1921 if (replacement->new)
1922 {
1923 *loc = replacement->new;
1924 return;
1925 }
1926
1927 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1928
1929 /* Unless we are forcing memory to register or we changed the mode,
1930 we can leave things the way they are if the insn is valid. */
1931
1932 INSN_CODE (insn) = -1;
1933 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1934 && recog_memoized (insn) >= 0)
1935 return;
1936
1937 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1938 return;
1939 }
1940
1941 /* If X contains VAR, we need to unshare it here so that we update
1942 each occurrence separately. But all identical MEMs in one insn
1943 must be replaced with the same rtx because of the possibility of
1944 MATCH_DUPs. */
1945
1946 if (reg_mentioned_p (var, x))
1947 {
1948 replacement = find_fixup_replacement (replacements, x);
1949 if (replacement->new == 0)
1950 replacement->new = copy_most_rtx (x, no_share);
1951
1952 *loc = x = replacement->new;
1953 code = GET_CODE (x);
1954 }
1955 break;
1956
1957 case REG:
1958 case CC0:
1959 case PC:
1960 case CONST_INT:
1961 case CONST:
1962 case SYMBOL_REF:
1963 case LABEL_REF:
1964 case CONST_DOUBLE:
1965 case CONST_VECTOR:
1966 return;
1967
1968 case SIGN_EXTRACT:
1969 case ZERO_EXTRACT:
1970 /* Note that in some cases those types of expressions are altered
1971 by optimize_bit_field, and do not survive to get here. */
1972 if (XEXP (x, 0) == var
1973 || (GET_CODE (XEXP (x, 0)) == SUBREG
1974 && SUBREG_REG (XEXP (x, 0)) == var))
1975 {
1976 /* Get TEM as a valid MEM in the mode presently in the insn.
1977
1978 We don't worry about the possibility of MATCH_DUP here; it
1979 is highly unlikely and would be tricky to handle. */
1980
1981 tem = XEXP (x, 0);
1982 if (GET_CODE (tem) == SUBREG)
1983 {
1984 if (GET_MODE_BITSIZE (GET_MODE (tem))
1985 > GET_MODE_BITSIZE (GET_MODE (var)))
1986 {
1987 replacement = find_fixup_replacement (replacements, var);
1988 if (replacement->new == 0)
1989 replacement->new = gen_reg_rtx (GET_MODE (var));
1990 SUBREG_REG (tem) = replacement->new;
1991
1992 /* The following code works only if we have a MEM, so we
1993 need to handle the subreg here. We directly substitute
1994 it assuming that a subreg must be OK here. We already
1995 scheduled a replacement to copy the mem into the
1996 subreg. */
1997 XEXP (x, 0) = tem;
1998 return;
1999 }
2000 else
2001 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2002 }
2003 else
2004 tem = fixup_stack_1 (tem, insn);
2005
2006 /* Unless we want to load from memory, get TEM into the proper mode
2007 for an extract from memory. This can only be done if the
2008 extract is at a constant position and length. */
2009
2010 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2011 && GET_CODE (XEXP (x, 2)) == CONST_INT
2012 && ! mode_dependent_address_p (XEXP (tem, 0))
2013 && ! MEM_VOLATILE_P (tem))
2014 {
2015 enum machine_mode wanted_mode = VOIDmode;
2016 enum machine_mode is_mode = GET_MODE (tem);
2017 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2018
2019 if (GET_CODE (x) == ZERO_EXTRACT)
2020 {
2021 enum machine_mode new_mode
2022 = mode_for_extraction (EP_extzv, 1);
2023 if (new_mode != MAX_MACHINE_MODE)
2024 wanted_mode = new_mode;
2025 }
2026 else if (GET_CODE (x) == SIGN_EXTRACT)
2027 {
2028 enum machine_mode new_mode
2029 = mode_for_extraction (EP_extv, 1);
2030 if (new_mode != MAX_MACHINE_MODE)
2031 wanted_mode = new_mode;
2032 }
2033
2034 /* If we have a narrower mode, we can do something. */
2035 if (wanted_mode != VOIDmode
2036 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2037 {
2038 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2039 rtx old_pos = XEXP (x, 2);
2040 rtx newmem;
2041
2042 /* If the bytes and bits are counted differently, we
2043 must adjust the offset. */
2044 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2045 offset = (GET_MODE_SIZE (is_mode)
2046 - GET_MODE_SIZE (wanted_mode) - offset);
2047
2048 pos %= GET_MODE_BITSIZE (wanted_mode);
2049
2050 newmem = adjust_address_nv (tem, wanted_mode, offset);
2051
2052 /* Make the change and see if the insn remains valid. */
2053 INSN_CODE (insn) = -1;
2054 XEXP (x, 0) = newmem;
2055 XEXP (x, 2) = GEN_INT (pos);
2056
2057 if (recog_memoized (insn) >= 0)
2058 return;
2059
2060 /* Otherwise, restore old position. XEXP (x, 0) will be
2061 restored later. */
2062 XEXP (x, 2) = old_pos;
2063 }
2064 }
2065
2066 /* If we get here, the bitfield extract insn can't accept a memory
2067 reference. Copy the input into a register. */
2068
2069 tem1 = gen_reg_rtx (GET_MODE (tem));
2070 emit_insn_before (gen_move_insn (tem1, tem), insn);
2071 XEXP (x, 0) = tem1;
2072 return;
2073 }
2074 break;
2075
2076 case SUBREG:
2077 if (SUBREG_REG (x) == var)
2078 {
2079 /* If this is a special SUBREG made because VAR was promoted
2080 from a wider mode, replace it with VAR and call ourself
2081 recursively, this time saying that the object previously
2082 had its current mode (by virtue of the SUBREG). */
2083
2084 if (SUBREG_PROMOTED_VAR_P (x))
2085 {
2086 *loc = var;
2087 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2088 no_share);
2089 return;
2090 }
2091
2092 /* If this SUBREG makes VAR wider, it has become a paradoxical
2093 SUBREG with VAR in memory, but these aren't allowed at this
2094 stage of the compilation. So load VAR into a pseudo and take
2095 a SUBREG of that pseudo. */
2096 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2097 {
2098 replacement = find_fixup_replacement (replacements, var);
2099 if (replacement->new == 0)
2100 replacement->new = gen_reg_rtx (promoted_mode);
2101 SUBREG_REG (x) = replacement->new;
2102 return;
2103 }
2104
2105 /* See if we have already found a replacement for this SUBREG.
2106 If so, use it. Otherwise, make a MEM and see if the insn
2107 is recognized. If not, or if we should force MEM into a register,
2108 make a pseudo for this SUBREG. */
2109 replacement = find_fixup_replacement (replacements, x);
2110 if (replacement->new)
2111 {
2112 enum machine_mode mode = GET_MODE (x);
2113 *loc = replacement->new;
2114
2115 /* Careful! We may have just replaced a SUBREG by a MEM, which
2116 means that the insn may have become invalid again. We can't
2117 in this case make a new replacement since we already have one
2118 and we must deal with MATCH_DUPs. */
2119 if (GET_CODE (replacement->new) == MEM)
2120 {
2121 INSN_CODE (insn) = -1;
2122 if (recog_memoized (insn) >= 0)
2123 return;
2124
2125 fixup_var_refs_1 (replacement->new, mode, &PATTERN (insn),
2126 insn, replacements, no_share);
2127 }
2128
2129 return;
2130 }
2131
2132 replacement->new = *loc = fixup_memory_subreg (x, insn,
2133 promoted_mode, 0);
2134
2135 INSN_CODE (insn) = -1;
2136 if (! flag_force_mem && recog_memoized (insn) >= 0)
2137 return;
2138
2139 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2140 return;
2141 }
2142 break;
2143
2144 case SET:
2145 /* First do special simplification of bit-field references. */
2146 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2147 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2148 optimize_bit_field (x, insn, 0);
2149 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2150 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2151 optimize_bit_field (x, insn, 0);
2152
2153 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2154 into a register and then store it back out. */
2155 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2156 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2157 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2158 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2159 > GET_MODE_SIZE (GET_MODE (var))))
2160 {
2161 replacement = find_fixup_replacement (replacements, var);
2162 if (replacement->new == 0)
2163 replacement->new = gen_reg_rtx (GET_MODE (var));
2164
2165 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2166 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2167 }
2168
2169 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2170 insn into a pseudo and store the low part of the pseudo into VAR. */
2171 if (GET_CODE (SET_DEST (x)) == SUBREG
2172 && SUBREG_REG (SET_DEST (x)) == var
2173 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2174 > GET_MODE_SIZE (GET_MODE (var))))
2175 {
2176 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2177 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2178 tem)),
2179 insn);
2180 break;
2181 }
2182
2183 {
2184 rtx dest = SET_DEST (x);
2185 rtx src = SET_SRC (x);
2186 rtx outerdest = dest;
2187
2188 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2189 || GET_CODE (dest) == SIGN_EXTRACT
2190 || GET_CODE (dest) == ZERO_EXTRACT)
2191 dest = XEXP (dest, 0);
2192
2193 if (GET_CODE (src) == SUBREG)
2194 src = SUBREG_REG (src);
2195
2196 /* If VAR does not appear at the top level of the SET
2197 just scan the lower levels of the tree. */
2198
2199 if (src != var && dest != var)
2200 break;
2201
2202 /* We will need to rerecognize this insn. */
2203 INSN_CODE (insn) = -1;
2204
2205 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2206 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2207 {
2208 /* Since this case will return, ensure we fixup all the
2209 operands here. */
2210 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2211 insn, replacements, no_share);
2212 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2213 insn, replacements, no_share);
2214 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2215 insn, replacements, no_share);
2216
2217 tem = XEXP (outerdest, 0);
2218
2219 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2220 that may appear inside a ZERO_EXTRACT.
2221 This was legitimate when the MEM was a REG. */
2222 if (GET_CODE (tem) == SUBREG
2223 && SUBREG_REG (tem) == var)
2224 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2225 else
2226 tem = fixup_stack_1 (tem, insn);
2227
2228 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2229 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2230 && ! mode_dependent_address_p (XEXP (tem, 0))
2231 && ! MEM_VOLATILE_P (tem))
2232 {
2233 enum machine_mode wanted_mode;
2234 enum machine_mode is_mode = GET_MODE (tem);
2235 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2236
2237 wanted_mode = mode_for_extraction (EP_insv, 0);
2238
2239 /* If we have a narrower mode, we can do something. */
2240 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2241 {
2242 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2243 rtx old_pos = XEXP (outerdest, 2);
2244 rtx newmem;
2245
2246 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2247 offset = (GET_MODE_SIZE (is_mode)
2248 - GET_MODE_SIZE (wanted_mode) - offset);
2249
2250 pos %= GET_MODE_BITSIZE (wanted_mode);
2251
2252 newmem = adjust_address_nv (tem, wanted_mode, offset);
2253
2254 /* Make the change and see if the insn remains valid. */
2255 INSN_CODE (insn) = -1;
2256 XEXP (outerdest, 0) = newmem;
2257 XEXP (outerdest, 2) = GEN_INT (pos);
2258
2259 if (recog_memoized (insn) >= 0)
2260 return;
2261
2262 /* Otherwise, restore old position. XEXP (x, 0) will be
2263 restored later. */
2264 XEXP (outerdest, 2) = old_pos;
2265 }
2266 }
2267
2268 /* If we get here, the bit-field store doesn't allow memory
2269 or isn't located at a constant position. Load the value into
2270 a register, do the store, and put it back into memory. */
2271
2272 tem1 = gen_reg_rtx (GET_MODE (tem));
2273 emit_insn_before (gen_move_insn (tem1, tem), insn);
2274 emit_insn_after (gen_move_insn (tem, tem1), insn);
2275 XEXP (outerdest, 0) = tem1;
2276 return;
2277 }
2278
2279 /* STRICT_LOW_PART is a no-op on memory references
2280 and it can cause combinations to be unrecognizable,
2281 so eliminate it. */
2282
2283 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2284 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2285
2286 /* A valid insn to copy VAR into or out of a register
2287 must be left alone, to avoid an infinite loop here.
2288 If the reference to VAR is by a subreg, fix that up,
2289 since SUBREG is not valid for a memref.
2290 Also fix up the address of the stack slot.
2291
2292 Note that we must not try to recognize the insn until
2293 after we know that we have valid addresses and no
2294 (subreg (mem ...) ...) constructs, since these interfere
2295 with determining the validity of the insn. */
2296
2297 if ((SET_SRC (x) == var
2298 || (GET_CODE (SET_SRC (x)) == SUBREG
2299 && SUBREG_REG (SET_SRC (x)) == var))
2300 && (GET_CODE (SET_DEST (x)) == REG
2301 || (GET_CODE (SET_DEST (x)) == SUBREG
2302 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2303 && GET_MODE (var) == promoted_mode
2304 && x == single_set (insn))
2305 {
2306 rtx pat, last;
2307
2308 if (GET_CODE (SET_SRC (x)) == SUBREG
2309 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2310 > GET_MODE_SIZE (GET_MODE (var))))
2311 {
2312 /* This (subreg VAR) is now a paradoxical subreg. We need
2313 to replace VAR instead of the subreg. */
2314 replacement = find_fixup_replacement (replacements, var);
2315 if (replacement->new == NULL_RTX)
2316 replacement->new = gen_reg_rtx (GET_MODE (var));
2317 SUBREG_REG (SET_SRC (x)) = replacement->new;
2318 }
2319 else
2320 {
2321 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2322 if (replacement->new)
2323 SET_SRC (x) = replacement->new;
2324 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2325 SET_SRC (x) = replacement->new
2326 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2327 0);
2328 else
2329 SET_SRC (x) = replacement->new
2330 = fixup_stack_1 (SET_SRC (x), insn);
2331 }
2332
2333 if (recog_memoized (insn) >= 0)
2334 return;
2335
2336 /* INSN is not valid, but we know that we want to
2337 copy SET_SRC (x) to SET_DEST (x) in some way. So
2338 we generate the move and see whether it requires more
2339 than one insn. If it does, we emit those insns and
2340 delete INSN. Otherwise, we can just replace the pattern
2341 of INSN; we have already verified above that INSN has
2342 no other function that to do X. */
2343
2344 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2345 if (NEXT_INSN (pat) != NULL_RTX)
2346 {
2347 last = emit_insn_before (pat, insn);
2348
2349 /* INSN might have REG_RETVAL or other important notes, so
2350 we need to store the pattern of the last insn in the
2351 sequence into INSN similarly to the normal case. LAST
2352 should not have REG_NOTES, but we allow them if INSN has
2353 no REG_NOTES. */
2354 if (REG_NOTES (last) && REG_NOTES (insn))
2355 abort ();
2356 if (REG_NOTES (last))
2357 REG_NOTES (insn) = REG_NOTES (last);
2358 PATTERN (insn) = PATTERN (last);
2359
2360 delete_insn (last);
2361 }
2362 else
2363 PATTERN (insn) = PATTERN (pat);
2364
2365 return;
2366 }
2367
2368 if ((SET_DEST (x) == var
2369 || (GET_CODE (SET_DEST (x)) == SUBREG
2370 && SUBREG_REG (SET_DEST (x)) == var))
2371 && (GET_CODE (SET_SRC (x)) == REG
2372 || (GET_CODE (SET_SRC (x)) == SUBREG
2373 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2374 && GET_MODE (var) == promoted_mode
2375 && x == single_set (insn))
2376 {
2377 rtx pat, last;
2378
2379 if (GET_CODE (SET_DEST (x)) == SUBREG)
2380 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2381 promoted_mode, 0);
2382 else
2383 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2384
2385 if (recog_memoized (insn) >= 0)
2386 return;
2387
2388 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2389 if (NEXT_INSN (pat) != NULL_RTX)
2390 {
2391 last = emit_insn_before (pat, insn);
2392
2393 /* INSN might have REG_RETVAL or other important notes, so
2394 we need to store the pattern of the last insn in the
2395 sequence into INSN similarly to the normal case. LAST
2396 should not have REG_NOTES, but we allow them if INSN has
2397 no REG_NOTES. */
2398 if (REG_NOTES (last) && REG_NOTES (insn))
2399 abort ();
2400 if (REG_NOTES (last))
2401 REG_NOTES (insn) = REG_NOTES (last);
2402 PATTERN (insn) = PATTERN (last);
2403
2404 delete_insn (last);
2405 }
2406 else
2407 PATTERN (insn) = PATTERN (pat);
2408
2409 return;
2410 }
2411
2412 /* Otherwise, storing into VAR must be handled specially
2413 by storing into a temporary and copying that into VAR
2414 with a new insn after this one. Note that this case
2415 will be used when storing into a promoted scalar since
2416 the insn will now have different modes on the input
2417 and output and hence will be invalid (except for the case
2418 of setting it to a constant, which does not need any
2419 change if it is valid). We generate extra code in that case,
2420 but combine.c will eliminate it. */
2421
2422 if (dest == var)
2423 {
2424 rtx temp;
2425 rtx fixeddest = SET_DEST (x);
2426 enum machine_mode temp_mode;
2427
2428 /* STRICT_LOW_PART can be discarded, around a MEM. */
2429 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2430 fixeddest = XEXP (fixeddest, 0);
2431 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2432 if (GET_CODE (fixeddest) == SUBREG)
2433 {
2434 fixeddest = fixup_memory_subreg (fixeddest, insn,
2435 promoted_mode, 0);
2436 temp_mode = GET_MODE (fixeddest);
2437 }
2438 else
2439 {
2440 fixeddest = fixup_stack_1 (fixeddest, insn);
2441 temp_mode = promoted_mode;
2442 }
2443
2444 temp = gen_reg_rtx (temp_mode);
2445
2446 emit_insn_after (gen_move_insn (fixeddest,
2447 gen_lowpart (GET_MODE (fixeddest),
2448 temp)),
2449 insn);
2450
2451 SET_DEST (x) = temp;
2452 }
2453 }
2454
2455 default:
2456 break;
2457 }
2458
2459 /* Nothing special about this RTX; fix its operands. */
2460
2461 fmt = GET_RTX_FORMAT (code);
2462 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2463 {
2464 if (fmt[i] == 'e')
2465 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2466 no_share);
2467 else if (fmt[i] == 'E')
2468 {
2469 int j;
2470 for (j = 0; j < XVECLEN (x, i); j++)
2471 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2472 insn, replacements, no_share);
2473 }
2474 }
2475 }
2476 \f
2477 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2478 The REG was placed on the stack, so X now has the form (SUBREG:m1
2479 (MEM:m2 ...)).
2480
2481 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2482 must be emitted to compute NEWADDR, put them before INSN.
2483
2484 UNCRITICAL nonzero means accept paradoxical subregs.
2485 This is used for subregs found inside REG_NOTES. */
2486
2487 static rtx
2488 fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical)
2489 {
2490 int offset;
2491 rtx mem = SUBREG_REG (x);
2492 rtx addr = XEXP (mem, 0);
2493 enum machine_mode mode = GET_MODE (x);
2494 rtx result, seq;
2495
2496 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2497 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2498 abort ();
2499
2500 offset = SUBREG_BYTE (x);
2501 if (BYTES_BIG_ENDIAN)
2502 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2503 the offset so that it points to the right location within the
2504 MEM. */
2505 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2506
2507 if (!flag_force_addr
2508 && memory_address_p (mode, plus_constant (addr, offset)))
2509 /* Shortcut if no insns need be emitted. */
2510 return adjust_address (mem, mode, offset);
2511
2512 start_sequence ();
2513 result = adjust_address (mem, mode, offset);
2514 seq = get_insns ();
2515 end_sequence ();
2516
2517 emit_insn_before (seq, insn);
2518 return result;
2519 }
2520
2521 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2522 Replace subexpressions of X in place.
2523 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2524 Otherwise return X, with its contents possibly altered.
2525
2526 INSN, PROMOTED_MODE and UNCRITICAL are as for
2527 fixup_memory_subreg. */
2528
2529 static rtx
2530 walk_fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode,
2531 int uncritical)
2532 {
2533 enum rtx_code code;
2534 const char *fmt;
2535 int i;
2536
2537 if (x == 0)
2538 return 0;
2539
2540 code = GET_CODE (x);
2541
2542 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2543 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2544
2545 /* Nothing special about this RTX; fix its operands. */
2546
2547 fmt = GET_RTX_FORMAT (code);
2548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2549 {
2550 if (fmt[i] == 'e')
2551 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2552 promoted_mode, uncritical);
2553 else if (fmt[i] == 'E')
2554 {
2555 int j;
2556 for (j = 0; j < XVECLEN (x, i); j++)
2557 XVECEXP (x, i, j)
2558 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2559 promoted_mode, uncritical);
2560 }
2561 }
2562 return x;
2563 }
2564 \f
2565 /* For each memory ref within X, if it refers to a stack slot
2566 with an out of range displacement, put the address in a temp register
2567 (emitting new insns before INSN to load these registers)
2568 and alter the memory ref to use that register.
2569 Replace each such MEM rtx with a copy, to avoid clobberage. */
2570
2571 static rtx
2572 fixup_stack_1 (rtx x, rtx insn)
2573 {
2574 int i;
2575 RTX_CODE code = GET_CODE (x);
2576 const char *fmt;
2577
2578 if (code == MEM)
2579 {
2580 rtx ad = XEXP (x, 0);
2581 /* If we have address of a stack slot but it's not valid
2582 (displacement is too large), compute the sum in a register. */
2583 if (GET_CODE (ad) == PLUS
2584 && GET_CODE (XEXP (ad, 0)) == REG
2585 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2586 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2587 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2588 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2589 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2590 #endif
2591 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2592 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2593 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2594 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2595 {
2596 rtx temp, seq;
2597 if (memory_address_p (GET_MODE (x), ad))
2598 return x;
2599
2600 start_sequence ();
2601 temp = copy_to_reg (ad);
2602 seq = get_insns ();
2603 end_sequence ();
2604 emit_insn_before (seq, insn);
2605 return replace_equiv_address (x, temp);
2606 }
2607 return x;
2608 }
2609
2610 fmt = GET_RTX_FORMAT (code);
2611 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2612 {
2613 if (fmt[i] == 'e')
2614 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2615 else if (fmt[i] == 'E')
2616 {
2617 int j;
2618 for (j = 0; j < XVECLEN (x, i); j++)
2619 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2620 }
2621 }
2622 return x;
2623 }
2624 \f
2625 /* Optimization: a bit-field instruction whose field
2626 happens to be a byte or halfword in memory
2627 can be changed to a move instruction.
2628
2629 We call here when INSN is an insn to examine or store into a bit-field.
2630 BODY is the SET-rtx to be altered.
2631
2632 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2633 (Currently this is called only from function.c, and EQUIV_MEM
2634 is always 0.) */
2635
2636 static void
2637 optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem)
2638 {
2639 rtx bitfield;
2640 int destflag;
2641 rtx seq = 0;
2642 enum machine_mode mode;
2643
2644 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2645 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2646 bitfield = SET_DEST (body), destflag = 1;
2647 else
2648 bitfield = SET_SRC (body), destflag = 0;
2649
2650 /* First check that the field being stored has constant size and position
2651 and is in fact a byte or halfword suitably aligned. */
2652
2653 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2654 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2655 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2656 != BLKmode)
2657 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2658 {
2659 rtx memref = 0;
2660
2661 /* Now check that the containing word is memory, not a register,
2662 and that it is safe to change the machine mode. */
2663
2664 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2665 memref = XEXP (bitfield, 0);
2666 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2667 && equiv_mem != 0)
2668 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2669 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2670 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2671 memref = SUBREG_REG (XEXP (bitfield, 0));
2672 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2673 && equiv_mem != 0
2674 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2675 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2676
2677 if (memref
2678 && ! mode_dependent_address_p (XEXP (memref, 0))
2679 && ! MEM_VOLATILE_P (memref))
2680 {
2681 /* Now adjust the address, first for any subreg'ing
2682 that we are now getting rid of,
2683 and then for which byte of the word is wanted. */
2684
2685 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2686 rtx insns;
2687
2688 /* Adjust OFFSET to count bits from low-address byte. */
2689 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2690 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2691 - offset - INTVAL (XEXP (bitfield, 1)));
2692
2693 /* Adjust OFFSET to count bytes from low-address byte. */
2694 offset /= BITS_PER_UNIT;
2695 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2696 {
2697 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2698 / UNITS_PER_WORD) * UNITS_PER_WORD;
2699 if (BYTES_BIG_ENDIAN)
2700 offset -= (MIN (UNITS_PER_WORD,
2701 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2702 - MIN (UNITS_PER_WORD,
2703 GET_MODE_SIZE (GET_MODE (memref))));
2704 }
2705
2706 start_sequence ();
2707 memref = adjust_address (memref, mode, offset);
2708 insns = get_insns ();
2709 end_sequence ();
2710 emit_insn_before (insns, insn);
2711
2712 /* Store this memory reference where
2713 we found the bit field reference. */
2714
2715 if (destflag)
2716 {
2717 validate_change (insn, &SET_DEST (body), memref, 1);
2718 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2719 {
2720 rtx src = SET_SRC (body);
2721 while (GET_CODE (src) == SUBREG
2722 && SUBREG_BYTE (src) == 0)
2723 src = SUBREG_REG (src);
2724 if (GET_MODE (src) != GET_MODE (memref))
2725 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2726 validate_change (insn, &SET_SRC (body), src, 1);
2727 }
2728 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2729 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2730 /* This shouldn't happen because anything that didn't have
2731 one of these modes should have got converted explicitly
2732 and then referenced through a subreg.
2733 This is so because the original bit-field was
2734 handled by agg_mode and so its tree structure had
2735 the same mode that memref now has. */
2736 abort ();
2737 }
2738 else
2739 {
2740 rtx dest = SET_DEST (body);
2741
2742 while (GET_CODE (dest) == SUBREG
2743 && SUBREG_BYTE (dest) == 0
2744 && (GET_MODE_CLASS (GET_MODE (dest))
2745 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2746 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2747 <= UNITS_PER_WORD))
2748 dest = SUBREG_REG (dest);
2749
2750 validate_change (insn, &SET_DEST (body), dest, 1);
2751
2752 if (GET_MODE (dest) == GET_MODE (memref))
2753 validate_change (insn, &SET_SRC (body), memref, 1);
2754 else
2755 {
2756 /* Convert the mem ref to the destination mode. */
2757 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2758
2759 start_sequence ();
2760 convert_move (newreg, memref,
2761 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2762 seq = get_insns ();
2763 end_sequence ();
2764
2765 validate_change (insn, &SET_SRC (body), newreg, 1);
2766 }
2767 }
2768
2769 /* See if we can convert this extraction or insertion into
2770 a simple move insn. We might not be able to do so if this
2771 was, for example, part of a PARALLEL.
2772
2773 If we succeed, write out any needed conversions. If we fail,
2774 it is hard to guess why we failed, so don't do anything
2775 special; just let the optimization be suppressed. */
2776
2777 if (apply_change_group () && seq)
2778 emit_insn_before (seq, insn);
2779 }
2780 }
2781 }
2782 \f
2783 /* These routines are responsible for converting virtual register references
2784 to the actual hard register references once RTL generation is complete.
2785
2786 The following four variables are used for communication between the
2787 routines. They contain the offsets of the virtual registers from their
2788 respective hard registers. */
2789
2790 static int in_arg_offset;
2791 static int var_offset;
2792 static int dynamic_offset;
2793 static int out_arg_offset;
2794 static int cfa_offset;
2795
2796 /* In most machines, the stack pointer register is equivalent to the bottom
2797 of the stack. */
2798
2799 #ifndef STACK_POINTER_OFFSET
2800 #define STACK_POINTER_OFFSET 0
2801 #endif
2802
2803 /* If not defined, pick an appropriate default for the offset of dynamically
2804 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2805 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2806
2807 #ifndef STACK_DYNAMIC_OFFSET
2808
2809 /* The bottom of the stack points to the actual arguments. If
2810 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2811 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2812 stack space for register parameters is not pushed by the caller, but
2813 rather part of the fixed stack areas and hence not included in
2814 `current_function_outgoing_args_size'. Nevertheless, we must allow
2815 for it when allocating stack dynamic objects. */
2816
2817 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2818 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2819 ((ACCUMULATE_OUTGOING_ARGS \
2820 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2821 + (STACK_POINTER_OFFSET)) \
2822
2823 #else
2824 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2825 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2826 + (STACK_POINTER_OFFSET))
2827 #endif
2828 #endif
2829
2830 /* On most machines, the CFA coincides with the first incoming parm. */
2831
2832 #ifndef ARG_POINTER_CFA_OFFSET
2833 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2834 #endif
2835
2836 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
2837 had its address taken. DECL is the decl or SAVE_EXPR for the
2838 object stored in the register, for later use if we do need to force
2839 REG into the stack. REG is overwritten by the MEM like in
2840 put_reg_into_stack. RESCAN is true if previously emitted
2841 instructions must be rescanned and modified now that the REG has
2842 been transformed. */
2843
2844 rtx
2845 gen_mem_addressof (rtx reg, tree decl, int rescan)
2846 {
2847 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2848 REGNO (reg), decl);
2849
2850 /* Calculate this before we start messing with decl's RTL. */
2851 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2852
2853 /* If the original REG was a user-variable, then so is the REG whose
2854 address is being taken. Likewise for unchanging. */
2855 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2856 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2857
2858 PUT_CODE (reg, MEM);
2859 MEM_VOLATILE_P (reg) = 0;
2860 MEM_ATTRS (reg) = 0;
2861 XEXP (reg, 0) = r;
2862
2863 if (decl)
2864 {
2865 tree type = TREE_TYPE (decl);
2866 enum machine_mode decl_mode
2867 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2868 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2869 : DECL_RTL_IF_SET (decl));
2870
2871 PUT_MODE (reg, decl_mode);
2872
2873 /* Clear DECL_RTL momentarily so functions below will work
2874 properly, then set it again. */
2875 if (DECL_P (decl) && decl_rtl == reg)
2876 SET_DECL_RTL (decl, 0);
2877
2878 set_mem_attributes (reg, decl, 1);
2879 set_mem_alias_set (reg, set);
2880
2881 if (DECL_P (decl) && decl_rtl == reg)
2882 SET_DECL_RTL (decl, reg);
2883
2884 if (rescan
2885 && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
2886 fixup_var_refs (reg, GET_MODE (reg), TYPE_UNSIGNED (type), reg, 0);
2887 }
2888 else if (rescan)
2889 {
2890 /* This can only happen during reload. Clear the same flag bits as
2891 reload. */
2892 RTX_UNCHANGING_P (reg) = 0;
2893 MEM_IN_STRUCT_P (reg) = 0;
2894 MEM_SCALAR_P (reg) = 0;
2895
2896 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2897 }
2898
2899 return reg;
2900 }
2901
2902 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2903
2904 void
2905 flush_addressof (tree decl)
2906 {
2907 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2908 && DECL_RTL (decl) != 0
2909 && GET_CODE (DECL_RTL (decl)) == MEM
2910 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2911 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2912 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2913 }
2914
2915 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2916
2917 static void
2918 put_addressof_into_stack (rtx r, htab_t ht)
2919 {
2920 tree decl, type;
2921 int volatile_p, used_p;
2922
2923 rtx reg = XEXP (r, 0);
2924
2925 if (GET_CODE (reg) != REG)
2926 abort ();
2927
2928 decl = ADDRESSOF_DECL (r);
2929 if (decl)
2930 {
2931 type = TREE_TYPE (decl);
2932 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2933 && TREE_THIS_VOLATILE (decl));
2934 used_p = (TREE_USED (decl)
2935 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2936 }
2937 else
2938 {
2939 type = NULL_TREE;
2940 volatile_p = 0;
2941 used_p = 1;
2942 }
2943
2944 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2945 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2946 }
2947
2948 /* List of replacements made below in purge_addressof_1 when creating
2949 bitfield insertions. */
2950 static rtx purge_bitfield_addressof_replacements;
2951
2952 /* List of replacements made below in purge_addressof_1 for patterns
2953 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2954 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2955 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2956 enough in complex cases, e.g. when some field values can be
2957 extracted by usage MEM with narrower mode. */
2958 static rtx purge_addressof_replacements;
2959
2960 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2961 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2962 the stack. If the function returns FALSE then the replacement could not
2963 be made. If MAY_POSTPONE is true and we would not put the addressof
2964 to stack, postpone processing of the insn. */
2965
2966 static bool
2967 purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone,
2968 htab_t ht)
2969 {
2970 rtx x;
2971 RTX_CODE code;
2972 int i, j;
2973 const char *fmt;
2974 bool result = true;
2975 bool libcall = false;
2976
2977 /* Re-start here to avoid recursion in common cases. */
2978 restart:
2979
2980 x = *loc;
2981 if (x == 0)
2982 return true;
2983
2984 /* Is this a libcall? */
2985 if (!insn)
2986 libcall = REG_NOTE_KIND (*loc) == REG_RETVAL;
2987
2988 code = GET_CODE (x);
2989
2990 /* If we don't return in any of the cases below, we will recurse inside
2991 the RTX, which will normally result in any ADDRESSOF being forced into
2992 memory. */
2993 if (code == SET)
2994 {
2995 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
2996 may_postpone, ht);
2997 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
2998 may_postpone, ht);
2999 return result;
3000 }
3001 else if (code == ADDRESSOF)
3002 {
3003 rtx sub, insns;
3004
3005 if (GET_CODE (XEXP (x, 0)) != MEM)
3006 put_addressof_into_stack (x, ht);
3007
3008 /* We must create a copy of the rtx because it was created by
3009 overwriting a REG rtx which is always shared. */
3010 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3011 if (validate_change (insn, loc, sub, 0)
3012 || validate_replace_rtx (x, sub, insn))
3013 return true;
3014
3015 start_sequence ();
3016
3017 /* If SUB is a hard or virtual register, try it as a pseudo-register.
3018 Otherwise, perhaps SUB is an expression, so generate code to compute
3019 it. */
3020 if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
3021 sub = copy_to_reg (sub);
3022 else
3023 sub = force_operand (sub, NULL_RTX);
3024
3025 if (! validate_change (insn, loc, sub, 0)
3026 && ! validate_replace_rtx (x, sub, insn))
3027 abort ();
3028
3029 insns = get_insns ();
3030 end_sequence ();
3031 emit_insn_before (insns, insn);
3032 return true;
3033 }
3034
3035 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3036 {
3037 rtx sub = XEXP (XEXP (x, 0), 0);
3038
3039 if (GET_CODE (sub) == MEM)
3040 sub = adjust_address_nv (sub, GET_MODE (x), 0);
3041 else if (GET_CODE (sub) == REG
3042 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3043 ;
3044 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3045 {
3046 int size_x, size_sub;
3047
3048 if (may_postpone)
3049 {
3050 /* Postpone for now, so that we do not emit bitfield arithmetics
3051 unless there is some benefit from it. */
3052 if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
3053 postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
3054 return true;
3055 }
3056
3057 if (!insn)
3058 {
3059 /* When processing REG_NOTES look at the list of
3060 replacements done on the insn to find the register that X
3061 was replaced by. */
3062 rtx tem;
3063
3064 for (tem = purge_bitfield_addressof_replacements;
3065 tem != NULL_RTX;
3066 tem = XEXP (XEXP (tem, 1), 1))
3067 if (rtx_equal_p (x, XEXP (tem, 0)))
3068 {
3069 *loc = XEXP (XEXP (tem, 1), 0);
3070 return true;
3071 }
3072
3073 /* See comment for purge_addressof_replacements. */
3074 for (tem = purge_addressof_replacements;
3075 tem != NULL_RTX;
3076 tem = XEXP (XEXP (tem, 1), 1))
3077 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3078 {
3079 rtx z = XEXP (XEXP (tem, 1), 0);
3080
3081 if (GET_MODE (x) == GET_MODE (z)
3082 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3083 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3084 abort ();
3085
3086 /* It can happen that the note may speak of things
3087 in a wider (or just different) mode than the
3088 code did. This is especially true of
3089 REG_RETVAL. */
3090
3091 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3092 z = SUBREG_REG (z);
3093
3094 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3095 && (GET_MODE_SIZE (GET_MODE (x))
3096 > GET_MODE_SIZE (GET_MODE (z))))
3097 {
3098 /* This can occur as a result in invalid
3099 pointer casts, e.g. float f; ...
3100 *(long long int *)&f.
3101 ??? We could emit a warning here, but
3102 without a line number that wouldn't be
3103 very helpful. */
3104 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3105 }
3106 else
3107 z = gen_lowpart (GET_MODE (x), z);
3108
3109 *loc = z;
3110 return true;
3111 }
3112
3113 /* When we are processing the REG_NOTES of the last instruction
3114 of a libcall, there will be typically no replacements
3115 for that insn; the replacements happened before, piecemeal
3116 fashion. OTOH we are not interested in the details of
3117 this for the REG_EQUAL note, we want to know the big picture,
3118 which can be succinctly described with a simple SUBREG.
3119 Note that removing the REG_EQUAL note is not an option
3120 on the last insn of a libcall, so we must do a replacement. */
3121
3122 /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
3123 we got
3124 (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
3125 [0 S8 A32]), which can be expressed with a simple
3126 same-size subreg */
3127 if ((GET_MODE_SIZE (GET_MODE (x))
3128 <= GET_MODE_SIZE (GET_MODE (sub)))
3129 /* Again, invalid pointer casts (as in
3130 compile/990203-1.c) can require paradoxical
3131 subregs. */
3132 || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3133 && (GET_MODE_SIZE (GET_MODE (x))
3134 > GET_MODE_SIZE (GET_MODE (sub)))
3135 && libcall))
3136 {
3137 *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
3138 return true;
3139 }
3140 /* ??? Are there other cases we should handle? */
3141
3142 /* Sometimes we may not be able to find the replacement. For
3143 example when the original insn was a MEM in a wider mode,
3144 and the note is part of a sign extension of a narrowed
3145 version of that MEM. Gcc testcase compile/990829-1.c can
3146 generate an example of this situation. Rather than complain
3147 we return false, which will prompt our caller to remove the
3148 offending note. */
3149 return false;
3150 }
3151
3152 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3153 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3154
3155 /* Do not frob unchanging MEMs. If a later reference forces the
3156 pseudo to the stack, we can wind up with multiple writes to
3157 an unchanging memory, which is invalid. */
3158 if (RTX_UNCHANGING_P (x) && size_x != size_sub)
3159 ;
3160
3161 /* Don't even consider working with paradoxical subregs,
3162 or the moral equivalent seen here. */
3163 else if (size_x <= size_sub
3164 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3165 {
3166 /* Do a bitfield insertion to mirror what would happen
3167 in memory. */
3168
3169 rtx val, seq;
3170
3171 if (store)
3172 {
3173 rtx p = PREV_INSN (insn);
3174
3175 start_sequence ();
3176 val = gen_reg_rtx (GET_MODE (x));
3177 if (! validate_change (insn, loc, val, 0))
3178 {
3179 /* Discard the current sequence and put the
3180 ADDRESSOF on stack. */
3181 end_sequence ();
3182 goto give_up;
3183 }
3184 seq = get_insns ();
3185 end_sequence ();
3186 emit_insn_before (seq, insn);
3187 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3188 insn, ht);
3189
3190 start_sequence ();
3191 store_bit_field (sub, size_x, 0, GET_MODE (x),
3192 val, GET_MODE_SIZE (GET_MODE (sub)));
3193
3194 /* Make sure to unshare any shared rtl that store_bit_field
3195 might have created. */
3196 unshare_all_rtl_again (get_insns ());
3197
3198 seq = get_insns ();
3199 end_sequence ();
3200 p = emit_insn_after (seq, insn);
3201 if (NEXT_INSN (insn))
3202 compute_insns_for_mem (NEXT_INSN (insn),
3203 p ? NEXT_INSN (p) : NULL_RTX,
3204 ht);
3205 }
3206 else
3207 {
3208 rtx p = PREV_INSN (insn);
3209
3210 start_sequence ();
3211 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3212 GET_MODE (x), GET_MODE (x),
3213 GET_MODE_SIZE (GET_MODE (sub)));
3214
3215 if (! validate_change (insn, loc, val, 0))
3216 {
3217 /* Discard the current sequence and put the
3218 ADDRESSOF on stack. */
3219 end_sequence ();
3220 goto give_up;
3221 }
3222
3223 seq = get_insns ();
3224 end_sequence ();
3225 emit_insn_before (seq, insn);
3226 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3227 insn, ht);
3228 }
3229
3230 /* Remember the replacement so that the same one can be done
3231 on the REG_NOTES. */
3232 purge_bitfield_addressof_replacements
3233 = gen_rtx_EXPR_LIST (VOIDmode, x,
3234 gen_rtx_EXPR_LIST
3235 (VOIDmode, val,
3236 purge_bitfield_addressof_replacements));
3237
3238 /* We replaced with a reg -- all done. */
3239 return true;
3240 }
3241 }
3242
3243 else if (validate_change (insn, loc, sub, 0))
3244 {
3245 /* Remember the replacement so that the same one can be done
3246 on the REG_NOTES. */
3247 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3248 {
3249 rtx tem;
3250
3251 for (tem = purge_addressof_replacements;
3252 tem != NULL_RTX;
3253 tem = XEXP (XEXP (tem, 1), 1))
3254 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3255 {
3256 XEXP (XEXP (tem, 1), 0) = sub;
3257 return true;
3258 }
3259 purge_addressof_replacements
3260 = gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0),
3261 gen_rtx_EXPR_LIST (VOIDmode, sub,
3262 purge_addressof_replacements));
3263 return true;
3264 }
3265 goto restart;
3266 }
3267 }
3268
3269 give_up:
3270 /* Scan all subexpressions. */
3271 fmt = GET_RTX_FORMAT (code);
3272 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3273 {
3274 if (*fmt == 'e')
3275 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
3276 may_postpone, ht);
3277 else if (*fmt == 'E')
3278 for (j = 0; j < XVECLEN (x, i); j++)
3279 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
3280 may_postpone, ht);
3281 }
3282
3283 return result;
3284 }
3285
3286 /* Return a hash value for K, a REG. */
3287
3288 static hashval_t
3289 insns_for_mem_hash (const void *k)
3290 {
3291 /* Use the address of the key for the hash value. */
3292 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3293 return htab_hash_pointer (m->key);
3294 }
3295
3296 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3297
3298 static int
3299 insns_for_mem_comp (const void *k1, const void *k2)
3300 {
3301 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3302 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3303 return m1->key == m2->key;
3304 }
3305
3306 struct insns_for_mem_walk_info
3307 {
3308 /* The hash table that we are using to record which INSNs use which
3309 MEMs. */
3310 htab_t ht;
3311
3312 /* The INSN we are currently processing. */
3313 rtx insn;
3314
3315 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3316 to find the insns that use the REGs in the ADDRESSOFs. */
3317 int pass;
3318 };
3319
3320 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3321 that might be used in an ADDRESSOF expression, record this INSN in
3322 the hash table given by DATA (which is really a pointer to an
3323 insns_for_mem_walk_info structure). */
3324
3325 static int
3326 insns_for_mem_walk (rtx *r, void *data)
3327 {
3328 struct insns_for_mem_walk_info *ifmwi
3329 = (struct insns_for_mem_walk_info *) data;
3330 struct insns_for_mem_entry tmp;
3331 tmp.insns = NULL_RTX;
3332
3333 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3334 && GET_CODE (XEXP (*r, 0)) == REG)
3335 {
3336 void **e;
3337 tmp.key = XEXP (*r, 0);
3338 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3339 if (*e == NULL)
3340 {
3341 *e = ggc_alloc (sizeof (tmp));
3342 memcpy (*e, &tmp, sizeof (tmp));
3343 }
3344 }
3345 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3346 {
3347 struct insns_for_mem_entry *ifme;
3348 tmp.key = *r;
3349 ifme = htab_find (ifmwi->ht, &tmp);
3350
3351 /* If we have not already recorded this INSN, do so now. Since
3352 we process the INSNs in order, we know that if we have
3353 recorded it it must be at the front of the list. */
3354 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3355 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3356 ifme->insns);
3357 }
3358
3359 return 0;
3360 }
3361
3362 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3363 which REGs in HT. */
3364
3365 static void
3366 compute_insns_for_mem (rtx insns, rtx last_insn, htab_t ht)
3367 {
3368 rtx insn;
3369 struct insns_for_mem_walk_info ifmwi;
3370 ifmwi.ht = ht;
3371
3372 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3373 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3374 if (INSN_P (insn))
3375 {
3376 ifmwi.insn = insn;
3377 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3378 }
3379 }
3380
3381 /* Helper function for purge_addressof called through for_each_rtx.
3382 Returns true iff the rtl is an ADDRESSOF. */
3383
3384 static int
3385 is_addressof (rtx *rtl, void *data ATTRIBUTE_UNUSED)
3386 {
3387 return GET_CODE (*rtl) == ADDRESSOF;
3388 }
3389
3390 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3391 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3392 stack. */
3393
3394 void
3395 purge_addressof (rtx insns)
3396 {
3397 rtx insn, tmp;
3398 htab_t ht;
3399
3400 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3401 requires a fixup pass over the instruction stream to correct
3402 INSNs that depended on the REG being a REG, and not a MEM. But,
3403 these fixup passes are slow. Furthermore, most MEMs are not
3404 mentioned in very many instructions. So, we speed up the process
3405 by pre-calculating which REGs occur in which INSNs; that allows
3406 us to perform the fixup passes much more quickly. */
3407 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3408 compute_insns_for_mem (insns, NULL_RTX, ht);
3409
3410 postponed_insns = NULL;
3411
3412 for (insn = insns; insn; insn = NEXT_INSN (insn))
3413 if (INSN_P (insn))
3414 {
3415 if (! purge_addressof_1 (&PATTERN (insn), insn,
3416 asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
3417 /* If we could not replace the ADDRESSOFs in the insn,
3418 something is wrong. */
3419 abort ();
3420
3421 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
3422 {
3423 /* If we could not replace the ADDRESSOFs in the insn's notes,
3424 we can just remove the offending notes instead. */
3425 rtx note;
3426
3427 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3428 {
3429 /* If we find a REG_RETVAL note then the insn is a libcall.
3430 Such insns must have REG_EQUAL notes as well, in order
3431 for later passes of the compiler to work. So it is not
3432 safe to delete the notes here, and instead we abort. */
3433 if (REG_NOTE_KIND (note) == REG_RETVAL)
3434 abort ();
3435 if (for_each_rtx (&note, is_addressof, NULL))
3436 remove_note (insn, note);
3437 }
3438 }
3439 }
3440
3441 /* Process the postponed insns. */
3442 while (postponed_insns)
3443 {
3444 insn = XEXP (postponed_insns, 0);
3445 tmp = postponed_insns;
3446 postponed_insns = XEXP (postponed_insns, 1);
3447 free_INSN_LIST_node (tmp);
3448
3449 if (! purge_addressof_1 (&PATTERN (insn), insn,
3450 asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
3451 abort ();
3452 }
3453
3454 /* Clean up. */
3455 purge_bitfield_addressof_replacements = 0;
3456 purge_addressof_replacements = 0;
3457
3458 /* REGs are shared. purge_addressof will destructively replace a REG
3459 with a MEM, which creates shared MEMs.
3460
3461 Unfortunately, the children of put_reg_into_stack assume that MEMs
3462 referring to the same stack slot are shared (fixup_var_refs and
3463 the associated hash table code).
3464
3465 So, we have to do another unsharing pass after we have flushed any
3466 REGs that had their address taken into the stack.
3467
3468 It may be worth tracking whether or not we converted any REGs into
3469 MEMs to avoid this overhead when it is not needed. */
3470 unshare_all_rtl_again (get_insns ());
3471 }
3472 \f
3473 /* Convert a SET of a hard subreg to a set of the appropriate hard
3474 register. A subroutine of purge_hard_subreg_sets. */
3475
3476 static void
3477 purge_single_hard_subreg_set (rtx pattern)
3478 {
3479 rtx reg = SET_DEST (pattern);
3480 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3481 int offset = 0;
3482
3483 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3484 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3485 {
3486 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3487 GET_MODE (SUBREG_REG (reg)),
3488 SUBREG_BYTE (reg),
3489 GET_MODE (reg));
3490 reg = SUBREG_REG (reg);
3491 }
3492
3493
3494 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3495 {
3496 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3497 SET_DEST (pattern) = reg;
3498 }
3499 }
3500
3501 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3502 only such SETs that we expect to see are those left in because
3503 integrate can't handle sets of parts of a return value register.
3504
3505 We don't use alter_subreg because we only want to eliminate subregs
3506 of hard registers. */
3507
3508 void
3509 purge_hard_subreg_sets (rtx insn)
3510 {
3511 for (; insn; insn = NEXT_INSN (insn))
3512 {
3513 if (INSN_P (insn))
3514 {
3515 rtx pattern = PATTERN (insn);
3516 switch (GET_CODE (pattern))
3517 {
3518 case SET:
3519 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3520 purge_single_hard_subreg_set (pattern);
3521 break;
3522 case PARALLEL:
3523 {
3524 int j;
3525 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3526 {
3527 rtx inner_pattern = XVECEXP (pattern, 0, j);
3528 if (GET_CODE (inner_pattern) == SET
3529 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3530 purge_single_hard_subreg_set (inner_pattern);
3531 }
3532 }
3533 break;
3534 default:
3535 break;
3536 }
3537 }
3538 }
3539 }
3540 \f
3541 /* Pass through the INSNS of function FNDECL and convert virtual register
3542 references to hard register references. */
3543
3544 void
3545 instantiate_virtual_regs (tree fndecl, rtx insns)
3546 {
3547 rtx insn;
3548 unsigned int i;
3549
3550 /* Compute the offsets to use for this function. */
3551 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3552 var_offset = STARTING_FRAME_OFFSET;
3553 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3554 out_arg_offset = STACK_POINTER_OFFSET;
3555 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3556
3557 /* Scan all variables and parameters of this function. For each that is
3558 in memory, instantiate all virtual registers if the result is a valid
3559 address. If not, we do it later. That will handle most uses of virtual
3560 regs on many machines. */
3561 instantiate_decls (fndecl, 1);
3562
3563 /* Initialize recognition, indicating that volatile is OK. */
3564 init_recog ();
3565
3566 /* Scan through all the insns, instantiating every virtual register still
3567 present. */
3568 for (insn = insns; insn; insn = NEXT_INSN (insn))
3569 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3570 || GET_CODE (insn) == CALL_INSN)
3571 {
3572 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3573 if (INSN_DELETED_P (insn))
3574 continue;
3575 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3576 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3577 if (GET_CODE (insn) == CALL_INSN)
3578 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3579 NULL_RTX, 0);
3580
3581 /* Past this point all ASM statements should match. Verify that
3582 to avoid failures later in the compilation process. */
3583 if (asm_noperands (PATTERN (insn)) >= 0
3584 && ! check_asm_operands (PATTERN (insn)))
3585 instantiate_virtual_regs_lossage (insn);
3586 }
3587
3588 /* Instantiate the stack slots for the parm registers, for later use in
3589 addressof elimination. */
3590 for (i = 0; i < max_parm_reg; ++i)
3591 if (parm_reg_stack_loc[i])
3592 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3593
3594 /* Now instantiate the remaining register equivalences for debugging info.
3595 These will not be valid addresses. */
3596 instantiate_decls (fndecl, 0);
3597
3598 /* Indicate that, from now on, assign_stack_local should use
3599 frame_pointer_rtx. */
3600 virtuals_instantiated = 1;
3601 }
3602
3603 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3604 all virtual registers in their DECL_RTL's.
3605
3606 If VALID_ONLY, do this only if the resulting address is still valid.
3607 Otherwise, always do it. */
3608
3609 static void
3610 instantiate_decls (tree fndecl, int valid_only)
3611 {
3612 tree decl;
3613
3614 /* Process all parameters of the function. */
3615 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3616 {
3617 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3618 HOST_WIDE_INT size_rtl;
3619
3620 instantiate_decl (DECL_RTL (decl), size, valid_only);
3621
3622 /* If the parameter was promoted, then the incoming RTL mode may be
3623 larger than the declared type size. We must use the larger of
3624 the two sizes. */
3625 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3626 size = MAX (size_rtl, size);
3627 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3628 }
3629
3630 /* Now process all variables defined in the function or its subblocks. */
3631 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3632 }
3633
3634 /* Subroutine of instantiate_decls: Process all decls in the given
3635 BLOCK node and all its subblocks. */
3636
3637 static void
3638 instantiate_decls_1 (tree let, int valid_only)
3639 {
3640 tree t;
3641
3642 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3643 if (DECL_RTL_SET_P (t))
3644 instantiate_decl (DECL_RTL (t),
3645 int_size_in_bytes (TREE_TYPE (t)),
3646 valid_only);
3647
3648 /* Process all subblocks. */
3649 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3650 instantiate_decls_1 (t, valid_only);
3651 }
3652
3653 /* Subroutine of the preceding procedures: Given RTL representing a
3654 decl and the size of the object, do any instantiation required.
3655
3656 If VALID_ONLY is nonzero, it means that the RTL should only be
3657 changed if the new address is valid. */
3658
3659 static void
3660 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
3661 {
3662 enum machine_mode mode;
3663 rtx addr;
3664
3665 /* If this is not a MEM, no need to do anything. Similarly if the
3666 address is a constant or a register that is not a virtual register. */
3667
3668 if (x == 0 || GET_CODE (x) != MEM)
3669 return;
3670
3671 addr = XEXP (x, 0);
3672 if (CONSTANT_P (addr)
3673 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3674 || (GET_CODE (addr) == REG
3675 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3676 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3677 return;
3678
3679 /* If we should only do this if the address is valid, copy the address.
3680 We need to do this so we can undo any changes that might make the
3681 address invalid. This copy is unfortunate, but probably can't be
3682 avoided. */
3683
3684 if (valid_only)
3685 addr = copy_rtx (addr);
3686
3687 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3688
3689 if (valid_only && size >= 0)
3690 {
3691 unsigned HOST_WIDE_INT decl_size = size;
3692
3693 /* Now verify that the resulting address is valid for every integer or
3694 floating-point mode up to and including SIZE bytes long. We do this
3695 since the object might be accessed in any mode and frame addresses
3696 are shared. */
3697
3698 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3699 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3700 mode = GET_MODE_WIDER_MODE (mode))
3701 if (! memory_address_p (mode, addr))
3702 return;
3703
3704 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3705 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3706 mode = GET_MODE_WIDER_MODE (mode))
3707 if (! memory_address_p (mode, addr))
3708 return;
3709 }
3710
3711 /* Put back the address now that we have updated it and we either know
3712 it is valid or we don't care whether it is valid. */
3713
3714 XEXP (x, 0) = addr;
3715 }
3716 \f
3717 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3718 is a virtual register, return the equivalent hard register and set the
3719 offset indirectly through the pointer. Otherwise, return 0. */
3720
3721 static rtx
3722 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
3723 {
3724 rtx new;
3725 HOST_WIDE_INT offset;
3726
3727 if (x == virtual_incoming_args_rtx)
3728 new = arg_pointer_rtx, offset = in_arg_offset;
3729 else if (x == virtual_stack_vars_rtx)
3730 new = frame_pointer_rtx, offset = var_offset;
3731 else if (x == virtual_stack_dynamic_rtx)
3732 new = stack_pointer_rtx, offset = dynamic_offset;
3733 else if (x == virtual_outgoing_args_rtx)
3734 new = stack_pointer_rtx, offset = out_arg_offset;
3735 else if (x == virtual_cfa_rtx)
3736 new = arg_pointer_rtx, offset = cfa_offset;
3737 else
3738 return 0;
3739
3740 *poffset = offset;
3741 return new;
3742 }
3743 \f
3744
3745 /* Called when instantiate_virtual_regs has failed to update the instruction.
3746 Usually this means that non-matching instruction has been emit, however for
3747 asm statements it may be the problem in the constraints. */
3748 static void
3749 instantiate_virtual_regs_lossage (rtx insn)
3750 {
3751 if (asm_noperands (PATTERN (insn)) >= 0)
3752 {
3753 error_for_asm (insn, "impossible constraint in `asm'");
3754 delete_insn (insn);
3755 }
3756 else
3757 abort ();
3758 }
3759 /* Given a pointer to a piece of rtx and an optional pointer to the
3760 containing object, instantiate any virtual registers present in it.
3761
3762 If EXTRA_INSNS, we always do the replacement and generate
3763 any extra insns before OBJECT. If it zero, we do nothing if replacement
3764 is not valid.
3765
3766 Return 1 if we either had nothing to do or if we were able to do the
3767 needed replacement. Return 0 otherwise; we only return zero if
3768 EXTRA_INSNS is zero.
3769
3770 We first try some simple transformations to avoid the creation of extra
3771 pseudos. */
3772
3773 static int
3774 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
3775 {
3776 rtx x;
3777 RTX_CODE code;
3778 rtx new = 0;
3779 HOST_WIDE_INT offset = 0;
3780 rtx temp;
3781 rtx seq;
3782 int i, j;
3783 const char *fmt;
3784
3785 /* Re-start here to avoid recursion in common cases. */
3786 restart:
3787
3788 x = *loc;
3789 if (x == 0)
3790 return 1;
3791
3792 /* We may have detected and deleted invalid asm statements. */
3793 if (object && INSN_P (object) && INSN_DELETED_P (object))
3794 return 1;
3795
3796 code = GET_CODE (x);
3797
3798 /* Check for some special cases. */
3799 switch (code)
3800 {
3801 case CONST_INT:
3802 case CONST_DOUBLE:
3803 case CONST_VECTOR:
3804 case CONST:
3805 case SYMBOL_REF:
3806 case CODE_LABEL:
3807 case PC:
3808 case CC0:
3809 case ASM_INPUT:
3810 case ADDR_VEC:
3811 case ADDR_DIFF_VEC:
3812 case RETURN:
3813 return 1;
3814
3815 case SET:
3816 /* We are allowed to set the virtual registers. This means that
3817 the actual register should receive the source minus the
3818 appropriate offset. This is used, for example, in the handling
3819 of non-local gotos. */
3820 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3821 {
3822 rtx src = SET_SRC (x);
3823
3824 /* We are setting the register, not using it, so the relevant
3825 offset is the negative of the offset to use were we using
3826 the register. */
3827 offset = - offset;
3828 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3829
3830 /* The only valid sources here are PLUS or REG. Just do
3831 the simplest possible thing to handle them. */
3832 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3833 {
3834 instantiate_virtual_regs_lossage (object);
3835 return 1;
3836 }
3837
3838 start_sequence ();
3839 if (GET_CODE (src) != REG)
3840 temp = force_operand (src, NULL_RTX);
3841 else
3842 temp = src;
3843 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3844 seq = get_insns ();
3845 end_sequence ();
3846
3847 emit_insn_before (seq, object);
3848 SET_DEST (x) = new;
3849
3850 if (! validate_change (object, &SET_SRC (x), temp, 0)
3851 || ! extra_insns)
3852 instantiate_virtual_regs_lossage (object);
3853
3854 return 1;
3855 }
3856
3857 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3858 loc = &SET_SRC (x);
3859 goto restart;
3860
3861 case PLUS:
3862 /* Handle special case of virtual register plus constant. */
3863 if (CONSTANT_P (XEXP (x, 1)))
3864 {
3865 rtx old, new_offset;
3866
3867 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3868 if (GET_CODE (XEXP (x, 0)) == PLUS)
3869 {
3870 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3871 {
3872 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3873 extra_insns);
3874 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3875 }
3876 else
3877 {
3878 loc = &XEXP (x, 0);
3879 goto restart;
3880 }
3881 }
3882
3883 #ifdef POINTERS_EXTEND_UNSIGNED
3884 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3885 we can commute the PLUS and SUBREG because pointers into the
3886 frame are well-behaved. */
3887 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3888 && GET_CODE (XEXP (x, 1)) == CONST_INT
3889 && 0 != (new
3890 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3891 &offset))
3892 && validate_change (object, loc,
3893 plus_constant (gen_lowpart (ptr_mode,
3894 new),
3895 offset
3896 + INTVAL (XEXP (x, 1))),
3897 0))
3898 return 1;
3899 #endif
3900 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3901 {
3902 /* We know the second operand is a constant. Unless the
3903 first operand is a REG (which has been already checked),
3904 it needs to be checked. */
3905 if (GET_CODE (XEXP (x, 0)) != REG)
3906 {
3907 loc = &XEXP (x, 0);
3908 goto restart;
3909 }
3910 return 1;
3911 }
3912
3913 new_offset = plus_constant (XEXP (x, 1), offset);
3914
3915 /* If the new constant is zero, try to replace the sum with just
3916 the register. */
3917 if (new_offset == const0_rtx
3918 && validate_change (object, loc, new, 0))
3919 return 1;
3920
3921 /* Next try to replace the register and new offset.
3922 There are two changes to validate here and we can't assume that
3923 in the case of old offset equals new just changing the register
3924 will yield a valid insn. In the interests of a little efficiency,
3925 however, we only call validate change once (we don't queue up the
3926 changes and then call apply_change_group). */
3927
3928 old = XEXP (x, 0);
3929 if (offset == 0
3930 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3931 : (XEXP (x, 0) = new,
3932 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3933 {
3934 if (! extra_insns)
3935 {
3936 XEXP (x, 0) = old;
3937 return 0;
3938 }
3939
3940 /* Otherwise copy the new constant into a register and replace
3941 constant with that register. */
3942 temp = gen_reg_rtx (Pmode);
3943 XEXP (x, 0) = new;
3944 if (validate_change (object, &XEXP (x, 1), temp, 0))
3945 emit_insn_before (gen_move_insn (temp, new_offset), object);
3946 else
3947 {
3948 /* If that didn't work, replace this expression with a
3949 register containing the sum. */
3950
3951 XEXP (x, 0) = old;
3952 new = gen_rtx_PLUS (Pmode, new, new_offset);
3953
3954 start_sequence ();
3955 temp = force_operand (new, NULL_RTX);
3956 seq = get_insns ();
3957 end_sequence ();
3958
3959 emit_insn_before (seq, object);
3960 if (! validate_change (object, loc, temp, 0)
3961 && ! validate_replace_rtx (x, temp, object))
3962 {
3963 instantiate_virtual_regs_lossage (object);
3964 return 1;
3965 }
3966 }
3967 }
3968
3969 return 1;
3970 }
3971
3972 /* Fall through to generic two-operand expression case. */
3973 case EXPR_LIST:
3974 case CALL:
3975 case COMPARE:
3976 case MINUS:
3977 case MULT:
3978 case DIV: case UDIV:
3979 case MOD: case UMOD:
3980 case AND: case IOR: case XOR:
3981 case ROTATERT: case ROTATE:
3982 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3983 case NE: case EQ:
3984 case GE: case GT: case GEU: case GTU:
3985 case LE: case LT: case LEU: case LTU:
3986 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3987 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3988 loc = &XEXP (x, 0);
3989 goto restart;
3990
3991 case MEM:
3992 /* Most cases of MEM that convert to valid addresses have already been
3993 handled by our scan of decls. The only special handling we
3994 need here is to make a copy of the rtx to ensure it isn't being
3995 shared if we have to change it to a pseudo.
3996
3997 If the rtx is a simple reference to an address via a virtual register,
3998 it can potentially be shared. In such cases, first try to make it
3999 a valid address, which can also be shared. Otherwise, copy it and
4000 proceed normally.
4001
4002 First check for common cases that need no processing. These are
4003 usually due to instantiation already being done on a previous instance
4004 of a shared rtx. */
4005
4006 temp = XEXP (x, 0);
4007 if (CONSTANT_ADDRESS_P (temp)
4008 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4009 || temp == arg_pointer_rtx
4010 #endif
4011 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4012 || temp == hard_frame_pointer_rtx
4013 #endif
4014 || temp == frame_pointer_rtx)
4015 return 1;
4016
4017 if (GET_CODE (temp) == PLUS
4018 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4019 && (XEXP (temp, 0) == frame_pointer_rtx
4020 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4021 || XEXP (temp, 0) == hard_frame_pointer_rtx
4022 #endif
4023 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4024 || XEXP (temp, 0) == arg_pointer_rtx
4025 #endif
4026 ))
4027 return 1;
4028
4029 if (temp == virtual_stack_vars_rtx
4030 || temp == virtual_incoming_args_rtx
4031 || (GET_CODE (temp) == PLUS
4032 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4033 && (XEXP (temp, 0) == virtual_stack_vars_rtx
4034 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
4035 {
4036 /* This MEM may be shared. If the substitution can be done without
4037 the need to generate new pseudos, we want to do it in place
4038 so all copies of the shared rtx benefit. The call below will
4039 only make substitutions if the resulting address is still
4040 valid.
4041
4042 Note that we cannot pass X as the object in the recursive call
4043 since the insn being processed may not allow all valid
4044 addresses. However, if we were not passed on object, we can
4045 only modify X without copying it if X will have a valid
4046 address.
4047
4048 ??? Also note that this can still lose if OBJECT is an insn that
4049 has less restrictions on an address that some other insn.
4050 In that case, we will modify the shared address. This case
4051 doesn't seem very likely, though. One case where this could
4052 happen is in the case of a USE or CLOBBER reference, but we
4053 take care of that below. */
4054
4055 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4056 object ? object : x, 0))
4057 return 1;
4058
4059 /* Otherwise make a copy and process that copy. We copy the entire
4060 RTL expression since it might be a PLUS which could also be
4061 shared. */
4062 *loc = x = copy_rtx (x);
4063 }
4064
4065 /* Fall through to generic unary operation case. */
4066 case PREFETCH:
4067 case SUBREG:
4068 case STRICT_LOW_PART:
4069 case NEG: case NOT:
4070 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4071 case SIGN_EXTEND: case ZERO_EXTEND:
4072 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4073 case FLOAT: case FIX:
4074 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4075 case ABS:
4076 case SQRT:
4077 case FFS:
4078 case CLZ: case CTZ:
4079 case POPCOUNT: case PARITY:
4080 /* These case either have just one operand or we know that we need not
4081 check the rest of the operands. */
4082 loc = &XEXP (x, 0);
4083 goto restart;
4084
4085 case USE:
4086 case CLOBBER:
4087 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4088 go ahead and make the invalid one, but do it to a copy. For a REG,
4089 just make the recursive call, since there's no chance of a problem. */
4090
4091 if ((GET_CODE (XEXP (x, 0)) == MEM
4092 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4093 0))
4094 || (GET_CODE (XEXP (x, 0)) == REG
4095 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4096 return 1;
4097
4098 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4099 loc = &XEXP (x, 0);
4100 goto restart;
4101
4102 case REG:
4103 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4104 in front of this insn and substitute the temporary. */
4105 if ((new = instantiate_new_reg (x, &offset)) != 0)
4106 {
4107 temp = plus_constant (new, offset);
4108 if (!validate_change (object, loc, temp, 0))
4109 {
4110 if (! extra_insns)
4111 return 0;
4112
4113 start_sequence ();
4114 temp = force_operand (temp, NULL_RTX);
4115 seq = get_insns ();
4116 end_sequence ();
4117
4118 emit_insn_before (seq, object);
4119 if (! validate_change (object, loc, temp, 0)
4120 && ! validate_replace_rtx (x, temp, object))
4121 instantiate_virtual_regs_lossage (object);
4122 }
4123 }
4124
4125 return 1;
4126
4127 case ADDRESSOF:
4128 if (GET_CODE (XEXP (x, 0)) == REG)
4129 return 1;
4130
4131 else if (GET_CODE (XEXP (x, 0)) == MEM)
4132 {
4133 /* If we have a (addressof (mem ..)), do any instantiation inside
4134 since we know we'll be making the inside valid when we finally
4135 remove the ADDRESSOF. */
4136 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4137 return 1;
4138 }
4139 break;
4140
4141 default:
4142 break;
4143 }
4144
4145 /* Scan all subexpressions. */
4146 fmt = GET_RTX_FORMAT (code);
4147 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4148 if (*fmt == 'e')
4149 {
4150 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4151 return 0;
4152 }
4153 else if (*fmt == 'E')
4154 for (j = 0; j < XVECLEN (x, i); j++)
4155 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4156 extra_insns))
4157 return 0;
4158
4159 return 1;
4160 }
4161 \f
4162 /* Optimization: assuming this function does not receive nonlocal gotos,
4163 delete the handlers for such, as well as the insns to establish
4164 and disestablish them. */
4165
4166 static void
4167 delete_handlers (void)
4168 {
4169 rtx insn;
4170 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4171 {
4172 /* Delete the handler by turning off the flag that would
4173 prevent jump_optimize from deleting it.
4174 Also permit deletion of the nonlocal labels themselves
4175 if nothing local refers to them. */
4176 if (GET_CODE (insn) == CODE_LABEL)
4177 {
4178 tree t, last_t;
4179
4180 LABEL_PRESERVE_P (insn) = 0;
4181
4182 /* Remove it from the nonlocal_label list, to avoid confusing
4183 flow. */
4184 for (t = nonlocal_labels, last_t = 0; t;
4185 last_t = t, t = TREE_CHAIN (t))
4186 if (DECL_RTL (TREE_VALUE (t)) == insn)
4187 break;
4188 if (t)
4189 {
4190 if (! last_t)
4191 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4192 else
4193 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4194 }
4195 }
4196 if (GET_CODE (insn) == INSN)
4197 {
4198 int can_delete = 0;
4199 rtx t;
4200 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4201 if (reg_mentioned_p (t, PATTERN (insn)))
4202 {
4203 can_delete = 1;
4204 break;
4205 }
4206 if (can_delete
4207 || (nonlocal_goto_stack_level != 0
4208 && reg_mentioned_p (nonlocal_goto_stack_level,
4209 PATTERN (insn))))
4210 delete_related_insns (insn);
4211 }
4212 }
4213 }
4214 \f
4215 /* Return the first insn following those generated by `assign_parms'. */
4216
4217 rtx
4218 get_first_nonparm_insn (void)
4219 {
4220 if (last_parm_insn)
4221 return NEXT_INSN (last_parm_insn);
4222 return get_insns ();
4223 }
4224
4225 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4226 This means a type for which function calls must pass an address to the
4227 function or get an address back from the function.
4228 EXP may be a type node or an expression (whose type is tested). */
4229
4230 int
4231 aggregate_value_p (tree exp, tree fntype)
4232 {
4233 int i, regno, nregs;
4234 rtx reg;
4235
4236 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4237
4238 if (fntype)
4239 switch (TREE_CODE (fntype))
4240 {
4241 case CALL_EXPR:
4242 fntype = get_callee_fndecl (fntype);
4243 fntype = fntype ? TREE_TYPE (fntype) : 0;
4244 break;
4245 case FUNCTION_DECL:
4246 fntype = TREE_TYPE (fntype);
4247 break;
4248 case FUNCTION_TYPE:
4249 case METHOD_TYPE:
4250 break;
4251 case IDENTIFIER_NODE:
4252 fntype = 0;
4253 break;
4254 default:
4255 /* We don't expect other rtl types here. */
4256 abort();
4257 }
4258
4259 if (TREE_CODE (type) == VOID_TYPE)
4260 return 0;
4261 if (targetm.calls.return_in_memory (type, fntype))
4262 return 1;
4263 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4264 and thus can't be returned in registers. */
4265 if (TREE_ADDRESSABLE (type))
4266 return 1;
4267 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4268 return 1;
4269 /* Make sure we have suitable call-clobbered regs to return
4270 the value in; if not, we must return it in memory. */
4271 reg = hard_function_value (type, 0, 0);
4272
4273 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4274 it is OK. */
4275 if (GET_CODE (reg) != REG)
4276 return 0;
4277
4278 regno = REGNO (reg);
4279 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
4280 for (i = 0; i < nregs; i++)
4281 if (! call_used_regs[regno + i])
4282 return 1;
4283 return 0;
4284 }
4285 \f
4286 /* Assign RTL expressions to the function's parameters.
4287 This may involve copying them into registers and using
4288 those registers as the RTL for them. */
4289
4290 void
4291 assign_parms (tree fndecl)
4292 {
4293 tree parm;
4294 CUMULATIVE_ARGS args_so_far;
4295 /* Total space needed so far for args on the stack,
4296 given as a constant and a tree-expression. */
4297 struct args_size stack_args_size;
4298 HOST_WIDE_INT extra_pretend_bytes = 0;
4299 tree fntype = TREE_TYPE (fndecl);
4300 tree fnargs = DECL_ARGUMENTS (fndecl), orig_fnargs;
4301 /* This is used for the arg pointer when referring to stack args. */
4302 rtx internal_arg_pointer;
4303 /* This is a dummy PARM_DECL that we used for the function result if
4304 the function returns a structure. */
4305 tree function_result_decl = 0;
4306 int varargs_setup = 0;
4307 int reg_parm_stack_space ATTRIBUTE_UNUSED = 0;
4308 rtx conversion_insns = 0;
4309
4310 /* Nonzero if function takes extra anonymous args.
4311 This means the last named arg must be on the stack
4312 right before the anonymous ones. */
4313 int stdarg
4314 = (TYPE_ARG_TYPES (fntype) != 0
4315 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4316 != void_type_node));
4317
4318 current_function_stdarg = stdarg;
4319
4320 /* If the reg that the virtual arg pointer will be translated into is
4321 not a fixed reg or is the stack pointer, make a copy of the virtual
4322 arg pointer, and address parms via the copy. The frame pointer is
4323 considered fixed even though it is not marked as such.
4324
4325 The second time through, simply use ap to avoid generating rtx. */
4326
4327 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4328 || ! (fixed_regs[ARG_POINTER_REGNUM]
4329 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4330 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4331 else
4332 internal_arg_pointer = virtual_incoming_args_rtx;
4333 current_function_internal_arg_pointer = internal_arg_pointer;
4334
4335 stack_args_size.constant = 0;
4336 stack_args_size.var = 0;
4337
4338 /* If struct value address is treated as the first argument, make it so. */
4339 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
4340 && ! current_function_returns_pcc_struct
4341 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
4342 {
4343 tree type = build_pointer_type (TREE_TYPE (fntype));
4344
4345 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4346
4347 DECL_ARG_TYPE (function_result_decl) = type;
4348 TREE_CHAIN (function_result_decl) = fnargs;
4349 fnargs = function_result_decl;
4350 }
4351
4352 orig_fnargs = fnargs;
4353
4354 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4355 parm_reg_stack_loc = ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4356
4357 /* If the target wants to split complex arguments into scalars, do so. */
4358 if (targetm.calls.split_complex_arg)
4359 fnargs = split_complex_args (fnargs);
4360
4361 #ifdef REG_PARM_STACK_SPACE
4362 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4363 #endif
4364
4365 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4366 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4367 #else
4368 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl, -1);
4369 #endif
4370
4371 /* We haven't yet found an argument that we must push and pretend the
4372 caller did. */
4373 current_function_pretend_args_size = 0;
4374
4375 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4376 {
4377 rtx entry_parm;
4378 rtx stack_parm;
4379 enum machine_mode promoted_mode, passed_mode;
4380 enum machine_mode nominal_mode, promoted_nominal_mode;
4381 int unsignedp;
4382 struct locate_and_pad_arg_data locate;
4383 int passed_pointer = 0;
4384 int did_conversion = 0;
4385 tree passed_type = DECL_ARG_TYPE (parm);
4386 tree nominal_type = TREE_TYPE (parm);
4387 int last_named = 0, named_arg;
4388 int in_regs;
4389 int partial = 0;
4390 int pretend_bytes = 0;
4391 int loaded_in_reg = 0;
4392
4393 /* Set LAST_NAMED if this is last named arg before last
4394 anonymous args. */
4395 if (stdarg)
4396 {
4397 tree tem;
4398
4399 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4400 if (DECL_NAME (tem))
4401 break;
4402
4403 if (tem == 0)
4404 last_named = 1;
4405 }
4406 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4407 most machines, if this is a varargs/stdarg function, then we treat
4408 the last named arg as if it were anonymous too. */
4409 named_arg = (targetm.calls.strict_argument_naming (&args_so_far)
4410 ? 1 : !last_named);
4411
4412 if (TREE_TYPE (parm) == error_mark_node
4413 /* This can happen after weird syntax errors
4414 or if an enum type is defined among the parms. */
4415 || TREE_CODE (parm) != PARM_DECL
4416 || passed_type == NULL)
4417 {
4418 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4419 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4420 TREE_USED (parm) = 1;
4421 continue;
4422 }
4423
4424 /* Find mode of arg as it is passed, and mode of arg
4425 as it should be during execution of this function. */
4426 passed_mode = TYPE_MODE (passed_type);
4427 nominal_mode = TYPE_MODE (nominal_type);
4428
4429 /* If the parm's mode is VOID, its value doesn't matter,
4430 and avoid the usual things like emit_move_insn that could crash. */
4431 if (nominal_mode == VOIDmode)
4432 {
4433 SET_DECL_RTL (parm, const0_rtx);
4434 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4435 continue;
4436 }
4437
4438 /* If the parm is to be passed as a transparent union, use the
4439 type of the first field for the tests below. We have already
4440 verified that the modes are the same. */
4441 if (DECL_TRANSPARENT_UNION (parm)
4442 || (TREE_CODE (passed_type) == UNION_TYPE
4443 && TYPE_TRANSPARENT_UNION (passed_type)))
4444 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4445
4446 /* See if this arg was passed by invisible reference. It is if
4447 it is an object whose size depends on the contents of the
4448 object itself or if the machine requires these objects be passed
4449 that way. */
4450
4451 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type))
4452 || TREE_ADDRESSABLE (passed_type)
4453 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4454 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4455 passed_type, named_arg)
4456 #endif
4457 )
4458 {
4459 passed_type = nominal_type = build_pointer_type (passed_type);
4460 passed_pointer = 1;
4461 passed_mode = nominal_mode = Pmode;
4462 }
4463 /* See if the frontend wants to pass this by invisible reference. */
4464 else if (passed_type != nominal_type
4465 && POINTER_TYPE_P (passed_type)
4466 && TREE_TYPE (passed_type) == nominal_type)
4467 {
4468 nominal_type = passed_type;
4469 passed_pointer = 1;
4470 passed_mode = nominal_mode = Pmode;
4471 }
4472
4473 promoted_mode = passed_mode;
4474
4475 if (targetm.calls.promote_function_args (TREE_TYPE (fndecl)))
4476 {
4477 /* Compute the mode in which the arg is actually extended to. */
4478 unsignedp = TYPE_UNSIGNED (passed_type);
4479 promoted_mode = promote_mode (passed_type, promoted_mode,
4480 &unsignedp, 1);
4481 }
4482
4483 /* Let machine desc say which reg (if any) the parm arrives in.
4484 0 means it arrives on the stack. */
4485 #ifdef FUNCTION_INCOMING_ARG
4486 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4487 passed_type, named_arg);
4488 #else
4489 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4490 passed_type, named_arg);
4491 #endif
4492
4493 if (entry_parm == 0)
4494 promoted_mode = passed_mode;
4495
4496 /* If this is the last named parameter, do any required setup for
4497 varargs or stdargs. We need to know about the case of this being an
4498 addressable type, in which case we skip the registers it
4499 would have arrived in.
4500
4501 For stdargs, LAST_NAMED will be set for two parameters, the one that
4502 is actually the last named, and the dummy parameter. We only
4503 want to do this action once.
4504
4505 Also, indicate when RTL generation is to be suppressed. */
4506 if (last_named && !varargs_setup)
4507 {
4508 int varargs_pretend_bytes = 0;
4509 targetm.calls.setup_incoming_varargs (&args_so_far, promoted_mode,
4510 passed_type,
4511 &varargs_pretend_bytes, 0);
4512 varargs_setup = 1;
4513
4514 /* If the back-end has requested extra stack space, record how
4515 much is needed. Do not change pretend_args_size otherwise
4516 since it may be nonzero from an earlier partial argument. */
4517 if (varargs_pretend_bytes > 0)
4518 current_function_pretend_args_size = varargs_pretend_bytes;
4519 }
4520
4521 /* Determine parm's home in the stack,
4522 in case it arrives in the stack or we should pretend it did.
4523
4524 Compute the stack position and rtx where the argument arrives
4525 and its size.
4526
4527 There is one complexity here: If this was a parameter that would
4528 have been passed in registers, but wasn't only because it is
4529 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4530 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4531 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4532 0 as it was the previous time. */
4533 in_regs = entry_parm != 0;
4534 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4535 in_regs = 1;
4536 #endif
4537 if (!in_regs && !named_arg)
4538 {
4539 int pretend_named =
4540 targetm.calls.pretend_outgoing_varargs_named (&args_so_far);
4541 if (pretend_named)
4542 {
4543 #ifdef FUNCTION_INCOMING_ARG
4544 in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4545 passed_type,
4546 pretend_named) != 0;
4547 #else
4548 in_regs = FUNCTION_ARG (args_so_far, promoted_mode,
4549 passed_type,
4550 pretend_named) != 0;
4551 #endif
4552 }
4553 }
4554
4555 /* If this parameter was passed both in registers and in the stack,
4556 use the copy on the stack. */
4557 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4558 entry_parm = 0;
4559
4560 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4561 if (entry_parm)
4562 {
4563 partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4564 passed_type, named_arg);
4565 if (partial
4566 /* The caller might already have allocated stack space
4567 for the register parameters. */
4568 && reg_parm_stack_space == 0)
4569 {
4570 /* Part of this argument is passed in registers and part
4571 is passed on the stack. Ask the prologue code to extend
4572 the stack part so that we can recreate the full value.
4573
4574 PRETEND_BYTES is the size of the registers we need to store.
4575 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
4576 stack space that the prologue should allocate.
4577
4578 Internally, gcc assumes that the argument pointer is
4579 aligned to STACK_BOUNDARY bits. This is used both for
4580 alignment optimizations (see init_emit) and to locate
4581 arguments that are aligned to more than PARM_BOUNDARY
4582 bits. We must preserve this invariant by rounding
4583 CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to a stack
4584 boundary. */
4585
4586 /* We assume at most one partial arg, and it must be the first
4587 argument on the stack. */
4588 if (extra_pretend_bytes || current_function_pretend_args_size)
4589 abort ();
4590
4591 pretend_bytes = partial * UNITS_PER_WORD;
4592 current_function_pretend_args_size
4593 = CEIL_ROUND (pretend_bytes, STACK_BYTES);
4594
4595 /* We want to align relative to the actual stack pointer, so
4596 don't include this in the stack size until later. */
4597 extra_pretend_bytes = current_function_pretend_args_size;
4598 }
4599 }
4600 #endif
4601
4602 memset (&locate, 0, sizeof (locate));
4603 locate_and_pad_parm (promoted_mode, passed_type, in_regs,
4604 entry_parm ? partial : 0, fndecl,
4605 &stack_args_size, &locate);
4606 /* Adjust offsets to include the pretend args. */
4607 locate.slot_offset.constant += extra_pretend_bytes - pretend_bytes;
4608 locate.offset.constant += extra_pretend_bytes - pretend_bytes;
4609
4610 {
4611 rtx offset_rtx;
4612
4613 /* If we're passing this arg using a reg, make its stack home
4614 the aligned stack slot. */
4615 if (entry_parm)
4616 offset_rtx = ARGS_SIZE_RTX (locate.slot_offset);
4617 else
4618 offset_rtx = ARGS_SIZE_RTX (locate.offset);
4619
4620 if (offset_rtx == const0_rtx)
4621 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4622 else
4623 stack_parm = gen_rtx_MEM (promoted_mode,
4624 gen_rtx_PLUS (Pmode,
4625 internal_arg_pointer,
4626 offset_rtx));
4627
4628 set_mem_attributes (stack_parm, parm, 1);
4629 if (entry_parm && MEM_ATTRS (stack_parm)->align < PARM_BOUNDARY)
4630 set_mem_align (stack_parm, PARM_BOUNDARY);
4631
4632 /* Set also REG_ATTRS if parameter was passed in a register. */
4633 if (entry_parm)
4634 set_reg_attrs_for_parm (entry_parm, stack_parm);
4635 }
4636
4637 /* If this parm was passed part in regs and part in memory,
4638 pretend it arrived entirely in memory
4639 by pushing the register-part onto the stack.
4640
4641 In the special case of a DImode or DFmode that is split,
4642 we could put it together in a pseudoreg directly,
4643 but for now that's not worth bothering with. */
4644
4645 if (partial)
4646 {
4647 /* Handle calls that pass values in multiple non-contiguous
4648 locations. The Irix 6 ABI has examples of this. */
4649 if (GET_CODE (entry_parm) == PARALLEL)
4650 emit_group_store (validize_mem (stack_parm), entry_parm,
4651 TREE_TYPE (parm),
4652 int_size_in_bytes (TREE_TYPE (parm)));
4653
4654 else
4655 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
4656 partial);
4657
4658 entry_parm = stack_parm;
4659 }
4660
4661 /* If we didn't decide this parm came in a register,
4662 by default it came on the stack. */
4663 if (entry_parm == 0)
4664 entry_parm = stack_parm;
4665
4666 /* Record permanently how this parm was passed. */
4667 set_decl_incoming_rtl (parm, entry_parm);
4668
4669 /* If there is actually space on the stack for this parm,
4670 count it in stack_args_size; otherwise set stack_parm to 0
4671 to indicate there is no preallocated stack slot for the parm. */
4672
4673 if (entry_parm == stack_parm
4674 || (GET_CODE (entry_parm) == PARALLEL
4675 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4676 #if defined (REG_PARM_STACK_SPACE)
4677 /* On some machines, even if a parm value arrives in a register
4678 there is still an (uninitialized) stack slot allocated
4679 for it. */
4680 || REG_PARM_STACK_SPACE (fndecl) > 0
4681 #endif
4682 )
4683 {
4684 stack_args_size.constant += locate.size.constant;
4685 if (locate.size.var)
4686 ADD_PARM_SIZE (stack_args_size, locate.size.var);
4687 }
4688 else
4689 /* No stack slot was pushed for this parm. */
4690 stack_parm = 0;
4691
4692 /* Update info on where next arg arrives in registers. */
4693
4694 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4695 passed_type, named_arg);
4696
4697 /* If we can't trust the parm stack slot to be aligned enough
4698 for its ultimate type, don't use that slot after entry.
4699 We'll make another stack slot, if we need one. */
4700 {
4701 unsigned int thisparm_boundary
4702 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4703
4704 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4705 stack_parm = 0;
4706 }
4707
4708 /* If parm was passed in memory, and we need to convert it on entry,
4709 don't store it back in that same slot. */
4710 if (entry_parm == stack_parm
4711 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4712 stack_parm = 0;
4713
4714 /* When an argument is passed in multiple locations, we can't
4715 make use of this information, but we can save some copying if
4716 the whole argument is passed in a single register. */
4717 if (GET_CODE (entry_parm) == PARALLEL
4718 && nominal_mode != BLKmode && passed_mode != BLKmode)
4719 {
4720 int i, len = XVECLEN (entry_parm, 0);
4721
4722 for (i = 0; i < len; i++)
4723 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4724 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4725 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4726 == passed_mode)
4727 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4728 {
4729 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4730 set_decl_incoming_rtl (parm, entry_parm);
4731 break;
4732 }
4733 }
4734
4735 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4736 in the mode in which it arrives.
4737 STACK_PARM is an RTX for a stack slot where the parameter can live
4738 during the function (in case we want to put it there).
4739 STACK_PARM is 0 if no stack slot was pushed for it.
4740
4741 Now output code if necessary to convert ENTRY_PARM to
4742 the type in which this function declares it,
4743 and store that result in an appropriate place,
4744 which may be a pseudo reg, may be STACK_PARM,
4745 or may be a local stack slot if STACK_PARM is 0.
4746
4747 Set DECL_RTL to that place. */
4748
4749 if (GET_CODE (entry_parm) == PARALLEL && nominal_mode != BLKmode
4750 && XVECLEN (entry_parm, 0) > 1)
4751 {
4752 /* Reconstitute objects the size of a register or larger using
4753 register operations instead of the stack. */
4754 rtx parmreg = gen_reg_rtx (nominal_mode);
4755
4756 if (REG_P (parmreg))
4757 {
4758 unsigned int regno = REGNO (parmreg);
4759
4760 emit_group_store (parmreg, entry_parm, TREE_TYPE (parm),
4761 int_size_in_bytes (TREE_TYPE (parm)));
4762 SET_DECL_RTL (parm, parmreg);
4763 loaded_in_reg = 1;
4764
4765 if (regno >= max_parm_reg)
4766 {
4767 rtx *new;
4768 int old_max_parm_reg = max_parm_reg;
4769
4770 /* It's slow to expand this one register at a time,
4771 but it's also rare and we need max_parm_reg to be
4772 precisely correct. */
4773 max_parm_reg = regno + 1;
4774 new = ggc_realloc (parm_reg_stack_loc,
4775 max_parm_reg * sizeof (rtx));
4776 memset (new + old_max_parm_reg, 0,
4777 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4778 parm_reg_stack_loc = new;
4779 parm_reg_stack_loc[regno] = stack_parm;
4780 }
4781 }
4782 }
4783
4784 if (nominal_mode == BLKmode
4785 #ifdef BLOCK_REG_PADDING
4786 || (locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
4787 && GET_MODE_SIZE (promoted_mode) < UNITS_PER_WORD)
4788 #endif
4789 || GET_CODE (entry_parm) == PARALLEL)
4790 {
4791 /* If a BLKmode arrives in registers, copy it to a stack slot.
4792 Handle calls that pass values in multiple non-contiguous
4793 locations. The Irix 6 ABI has examples of this. */
4794 if (GET_CODE (entry_parm) == REG
4795 || (GET_CODE (entry_parm) == PARALLEL
4796 && (!loaded_in_reg || !optimize)))
4797 {
4798 int size = int_size_in_bytes (TREE_TYPE (parm));
4799 int size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
4800 rtx mem;
4801
4802 /* Note that we will be storing an integral number of words.
4803 So we have to be careful to ensure that we allocate an
4804 integral number of words. We do this below in the
4805 assign_stack_local if space was not allocated in the argument
4806 list. If it was, this will not work if PARM_BOUNDARY is not
4807 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4808 if it becomes a problem. Exception is when BLKmode arrives
4809 with arguments not conforming to word_mode. */
4810
4811 if (stack_parm == 0)
4812 {
4813 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
4814 PUT_MODE (stack_parm, GET_MODE (entry_parm));
4815 set_mem_attributes (stack_parm, parm, 1);
4816 }
4817 else if (GET_CODE (entry_parm) == PARALLEL
4818 && GET_MODE(entry_parm) == BLKmode)
4819 ;
4820 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4821 abort ();
4822
4823 mem = validize_mem (stack_parm);
4824
4825 /* Handle calls that pass values in multiple non-contiguous
4826 locations. The Irix 6 ABI has examples of this. */
4827 if (GET_CODE (entry_parm) == PARALLEL)
4828 emit_group_store (mem, entry_parm, TREE_TYPE (parm), size);
4829
4830 else if (size == 0)
4831 ;
4832
4833 /* If SIZE is that of a mode no bigger than a word, just use
4834 that mode's store operation. */
4835 else if (size <= UNITS_PER_WORD)
4836 {
4837 enum machine_mode mode
4838 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
4839
4840 if (mode != BLKmode
4841 #ifdef BLOCK_REG_PADDING
4842 && (size == UNITS_PER_WORD
4843 || (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4844 != (BYTES_BIG_ENDIAN ? upward : downward)))
4845 #endif
4846 )
4847 {
4848 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
4849 emit_move_insn (change_address (mem, mode, 0), reg);
4850 }
4851
4852 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
4853 machine must be aligned to the left before storing
4854 to memory. Note that the previous test doesn't
4855 handle all cases (e.g. SIZE == 3). */
4856 else if (size != UNITS_PER_WORD
4857 #ifdef BLOCK_REG_PADDING
4858 && (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4859 == downward)
4860 #else
4861 && BYTES_BIG_ENDIAN
4862 #endif
4863 )
4864 {
4865 rtx tem, x;
4866 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4867 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
4868
4869 x = expand_binop (word_mode, ashl_optab, reg,
4870 GEN_INT (by), 0, 1, OPTAB_WIDEN);
4871 tem = change_address (mem, word_mode, 0);
4872 emit_move_insn (tem, x);
4873 }
4874 else
4875 move_block_from_reg (REGNO (entry_parm), mem,
4876 size_stored / UNITS_PER_WORD);
4877 }
4878 else
4879 move_block_from_reg (REGNO (entry_parm), mem,
4880 size_stored / UNITS_PER_WORD);
4881 }
4882 /* If parm is already bound to register pair, don't change
4883 this binding. */
4884 if (! DECL_RTL_SET_P (parm))
4885 SET_DECL_RTL (parm, stack_parm);
4886 }
4887 else if (! ((! optimize
4888 && ! DECL_REGISTER (parm))
4889 || TREE_SIDE_EFFECTS (parm)
4890 /* If -ffloat-store specified, don't put explicit
4891 float variables into registers. */
4892 || (flag_float_store
4893 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4894 /* Always assign pseudo to structure return or item passed
4895 by invisible reference. */
4896 || passed_pointer || parm == function_result_decl)
4897 {
4898 /* Store the parm in a pseudoregister during the function, but we
4899 may need to do it in a wider mode. */
4900
4901 rtx parmreg;
4902 unsigned int regno, regnoi = 0, regnor = 0;
4903
4904 unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
4905
4906 promoted_nominal_mode
4907 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4908
4909 parmreg = gen_reg_rtx (promoted_nominal_mode);
4910 mark_user_reg (parmreg);
4911
4912 /* If this was an item that we received a pointer to, set DECL_RTL
4913 appropriately. */
4914 if (passed_pointer)
4915 {
4916 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4917 parmreg);
4918 set_mem_attributes (x, parm, 1);
4919 SET_DECL_RTL (parm, x);
4920 }
4921 else
4922 {
4923 SET_DECL_RTL (parm, parmreg);
4924 maybe_set_unchanging (DECL_RTL (parm), parm);
4925 }
4926
4927 /* Copy the value into the register. */
4928 if (nominal_mode != passed_mode
4929 || promoted_nominal_mode != promoted_mode)
4930 {
4931 int save_tree_used;
4932 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4933 mode, by the caller. We now have to convert it to
4934 NOMINAL_MODE, if different. However, PARMREG may be in
4935 a different mode than NOMINAL_MODE if it is being stored
4936 promoted.
4937
4938 If ENTRY_PARM is a hard register, it might be in a register
4939 not valid for operating in its mode (e.g., an odd-numbered
4940 register for a DFmode). In that case, moves are the only
4941 thing valid, so we can't do a convert from there. This
4942 occurs when the calling sequence allow such misaligned
4943 usages.
4944
4945 In addition, the conversion may involve a call, which could
4946 clobber parameters which haven't been copied to pseudo
4947 registers yet. Therefore, we must first copy the parm to
4948 a pseudo reg here, and save the conversion until after all
4949 parameters have been moved. */
4950
4951 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4952
4953 emit_move_insn (tempreg, validize_mem (entry_parm));
4954
4955 push_to_sequence (conversion_insns);
4956 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4957
4958 if (GET_CODE (tempreg) == SUBREG
4959 && GET_MODE (tempreg) == nominal_mode
4960 && GET_CODE (SUBREG_REG (tempreg)) == REG
4961 && nominal_mode == passed_mode
4962 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4963 && GET_MODE_SIZE (GET_MODE (tempreg))
4964 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4965 {
4966 /* The argument is already sign/zero extended, so note it
4967 into the subreg. */
4968 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4969 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4970 }
4971
4972 /* TREE_USED gets set erroneously during expand_assignment. */
4973 save_tree_used = TREE_USED (parm);
4974 expand_assignment (parm,
4975 make_tree (nominal_type, tempreg), 0);
4976 TREE_USED (parm) = save_tree_used;
4977 conversion_insns = get_insns ();
4978 did_conversion = 1;
4979 end_sequence ();
4980 }
4981 else
4982 emit_move_insn (parmreg, validize_mem (entry_parm));
4983
4984 /* If we were passed a pointer but the actual value
4985 can safely live in a register, put it in one. */
4986 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4987 /* If by-reference argument was promoted, demote it. */
4988 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4989 || ! ((! optimize
4990 && ! DECL_REGISTER (parm))
4991 || TREE_SIDE_EFFECTS (parm)
4992 /* If -ffloat-store specified, don't put explicit
4993 float variables into registers. */
4994 || (flag_float_store
4995 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4996 {
4997 /* We can't use nominal_mode, because it will have been set to
4998 Pmode above. We must use the actual mode of the parm. */
4999 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
5000 mark_user_reg (parmreg);
5001 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
5002 {
5003 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
5004 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
5005 push_to_sequence (conversion_insns);
5006 emit_move_insn (tempreg, DECL_RTL (parm));
5007 SET_DECL_RTL (parm,
5008 convert_to_mode (GET_MODE (parmreg),
5009 tempreg,
5010 unsigned_p));
5011 emit_move_insn (parmreg, DECL_RTL (parm));
5012 conversion_insns = get_insns();
5013 did_conversion = 1;
5014 end_sequence ();
5015 }
5016 else
5017 emit_move_insn (parmreg, DECL_RTL (parm));
5018 SET_DECL_RTL (parm, parmreg);
5019 /* STACK_PARM is the pointer, not the parm, and PARMREG is
5020 now the parm. */
5021 stack_parm = 0;
5022 }
5023 #ifdef FUNCTION_ARG_CALLEE_COPIES
5024 /* If we are passed an arg by reference and it is our responsibility
5025 to make a copy, do it now.
5026 PASSED_TYPE and PASSED mode now refer to the pointer, not the
5027 original argument, so we must recreate them in the call to
5028 FUNCTION_ARG_CALLEE_COPIES. */
5029 /* ??? Later add code to handle the case that if the argument isn't
5030 modified, don't do the copy. */
5031
5032 else if (passed_pointer
5033 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
5034 TYPE_MODE (TREE_TYPE (passed_type)),
5035 TREE_TYPE (passed_type),
5036 named_arg)
5037 && ! TREE_ADDRESSABLE (TREE_TYPE (passed_type)))
5038 {
5039 rtx copy;
5040 tree type = TREE_TYPE (passed_type);
5041
5042 /* This sequence may involve a library call perhaps clobbering
5043 registers that haven't been copied to pseudos yet. */
5044
5045 push_to_sequence (conversion_insns);
5046
5047 if (!COMPLETE_TYPE_P (type)
5048 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5049 /* This is a variable sized object. */
5050 copy = gen_rtx_MEM (BLKmode,
5051 allocate_dynamic_stack_space
5052 (expr_size (parm), NULL_RTX,
5053 TYPE_ALIGN (type)));
5054 else
5055 copy = assign_stack_temp (TYPE_MODE (type),
5056 int_size_in_bytes (type), 1);
5057 set_mem_attributes (copy, parm, 1);
5058
5059 store_expr (parm, copy, 0);
5060 emit_move_insn (parmreg, XEXP (copy, 0));
5061 conversion_insns = get_insns ();
5062 did_conversion = 1;
5063 end_sequence ();
5064 }
5065 #endif /* FUNCTION_ARG_CALLEE_COPIES */
5066
5067 /* In any case, record the parm's desired stack location
5068 in case we later discover it must live in the stack.
5069
5070 If it is a COMPLEX value, store the stack location for both
5071 halves. */
5072
5073 if (GET_CODE (parmreg) == CONCAT)
5074 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
5075 else
5076 regno = REGNO (parmreg);
5077
5078 if (regno >= max_parm_reg)
5079 {
5080 rtx *new;
5081 int old_max_parm_reg = max_parm_reg;
5082
5083 /* It's slow to expand this one register at a time,
5084 but it's also rare and we need max_parm_reg to be
5085 precisely correct. */
5086 max_parm_reg = regno + 1;
5087 new = ggc_realloc (parm_reg_stack_loc,
5088 max_parm_reg * sizeof (rtx));
5089 memset (new + old_max_parm_reg, 0,
5090 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
5091 parm_reg_stack_loc = new;
5092 }
5093
5094 if (GET_CODE (parmreg) == CONCAT)
5095 {
5096 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
5097
5098 regnor = REGNO (gen_realpart (submode, parmreg));
5099 regnoi = REGNO (gen_imagpart (submode, parmreg));
5100
5101 if (stack_parm != 0)
5102 {
5103 parm_reg_stack_loc[regnor]
5104 = gen_realpart (submode, stack_parm);
5105 parm_reg_stack_loc[regnoi]
5106 = gen_imagpart (submode, stack_parm);
5107 }
5108 else
5109 {
5110 parm_reg_stack_loc[regnor] = 0;
5111 parm_reg_stack_loc[regnoi] = 0;
5112 }
5113 }
5114 else
5115 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
5116
5117 /* Mark the register as eliminable if we did no conversion
5118 and it was copied from memory at a fixed offset,
5119 and the arg pointer was not copied to a pseudo-reg.
5120 If the arg pointer is a pseudo reg or the offset formed
5121 an invalid address, such memory-equivalences
5122 as we make here would screw up life analysis for it. */
5123 if (nominal_mode == passed_mode
5124 && ! did_conversion
5125 && stack_parm != 0
5126 && GET_CODE (stack_parm) == MEM
5127 && locate.offset.var == 0
5128 && reg_mentioned_p (virtual_incoming_args_rtx,
5129 XEXP (stack_parm, 0)))
5130 {
5131 rtx linsn = get_last_insn ();
5132 rtx sinsn, set;
5133
5134 /* Mark complex types separately. */
5135 if (GET_CODE (parmreg) == CONCAT)
5136 /* Scan backwards for the set of the real and
5137 imaginary parts. */
5138 for (sinsn = linsn; sinsn != 0;
5139 sinsn = prev_nonnote_insn (sinsn))
5140 {
5141 set = single_set (sinsn);
5142 if (set != 0
5143 && SET_DEST (set) == regno_reg_rtx [regnoi])
5144 REG_NOTES (sinsn)
5145 = gen_rtx_EXPR_LIST (REG_EQUIV,
5146 parm_reg_stack_loc[regnoi],
5147 REG_NOTES (sinsn));
5148 else if (set != 0
5149 && SET_DEST (set) == regno_reg_rtx [regnor])
5150 REG_NOTES (sinsn)
5151 = gen_rtx_EXPR_LIST (REG_EQUIV,
5152 parm_reg_stack_loc[regnor],
5153 REG_NOTES (sinsn));
5154 }
5155 else if ((set = single_set (linsn)) != 0
5156 && SET_DEST (set) == parmreg)
5157 REG_NOTES (linsn)
5158 = gen_rtx_EXPR_LIST (REG_EQUIV,
5159 stack_parm, REG_NOTES (linsn));
5160 }
5161
5162 /* For pointer data type, suggest pointer register. */
5163 if (POINTER_TYPE_P (TREE_TYPE (parm)))
5164 mark_reg_pointer (parmreg,
5165 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5166
5167 /* If something wants our address, try to use ADDRESSOF. */
5168 if (TREE_ADDRESSABLE (parm))
5169 {
5170 /* If we end up putting something into the stack,
5171 fixup_var_refs_insns will need to make a pass over
5172 all the instructions. It looks through the pending
5173 sequences -- but it can't see the ones in the
5174 CONVERSION_INSNS, if they're not on the sequence
5175 stack. So, we go back to that sequence, just so that
5176 the fixups will happen. */
5177 push_to_sequence (conversion_insns);
5178 put_var_into_stack (parm, /*rescan=*/true);
5179 conversion_insns = get_insns ();
5180 end_sequence ();
5181 }
5182 }
5183 else
5184 {
5185 /* Value must be stored in the stack slot STACK_PARM
5186 during function execution. */
5187
5188 if (promoted_mode != nominal_mode)
5189 {
5190 /* Conversion is required. */
5191 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5192
5193 emit_move_insn (tempreg, validize_mem (entry_parm));
5194
5195 push_to_sequence (conversion_insns);
5196 entry_parm = convert_to_mode (nominal_mode, tempreg,
5197 TYPE_UNSIGNED (TREE_TYPE (parm)));
5198 if (stack_parm)
5199 /* ??? This may need a big-endian conversion on sparc64. */
5200 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5201
5202 conversion_insns = get_insns ();
5203 did_conversion = 1;
5204 end_sequence ();
5205 }
5206
5207 if (entry_parm != stack_parm)
5208 {
5209 if (stack_parm == 0)
5210 {
5211 stack_parm
5212 = assign_stack_local (GET_MODE (entry_parm),
5213 GET_MODE_SIZE (GET_MODE (entry_parm)),
5214 0);
5215 set_mem_attributes (stack_parm, parm, 1);
5216 }
5217
5218 if (promoted_mode != nominal_mode)
5219 {
5220 push_to_sequence (conversion_insns);
5221 emit_move_insn (validize_mem (stack_parm),
5222 validize_mem (entry_parm));
5223 conversion_insns = get_insns ();
5224 end_sequence ();
5225 }
5226 else
5227 emit_move_insn (validize_mem (stack_parm),
5228 validize_mem (entry_parm));
5229 }
5230
5231 SET_DECL_RTL (parm, stack_parm);
5232 }
5233 }
5234
5235 if (targetm.calls.split_complex_arg && fnargs != orig_fnargs)
5236 {
5237 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
5238 {
5239 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
5240 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
5241 {
5242 rtx tmp, real, imag;
5243 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
5244
5245 real = DECL_RTL (fnargs);
5246 imag = DECL_RTL (TREE_CHAIN (fnargs));
5247 if (inner != GET_MODE (real))
5248 {
5249 real = gen_lowpart_SUBREG (inner, real);
5250 imag = gen_lowpart_SUBREG (inner, imag);
5251 }
5252 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
5253 SET_DECL_RTL (parm, tmp);
5254
5255 real = DECL_INCOMING_RTL (fnargs);
5256 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
5257 if (inner != GET_MODE (real))
5258 {
5259 real = gen_lowpart_SUBREG (inner, real);
5260 imag = gen_lowpart_SUBREG (inner, imag);
5261 }
5262 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
5263 set_decl_incoming_rtl (parm, tmp);
5264 fnargs = TREE_CHAIN (fnargs);
5265 }
5266 else
5267 {
5268 SET_DECL_RTL (parm, DECL_RTL (fnargs));
5269 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
5270
5271 /* Set MEM_EXPR to the original decl, i.e. to PARM,
5272 instead of the copy of decl, i.e. FNARGS. */
5273 if (DECL_INCOMING_RTL (parm)
5274 && GET_CODE (DECL_INCOMING_RTL (parm)) == MEM)
5275 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
5276 }
5277 fnargs = TREE_CHAIN (fnargs);
5278 }
5279 }
5280
5281 /* Output all parameter conversion instructions (possibly including calls)
5282 now that all parameters have been copied out of hard registers. */
5283 emit_insn (conversion_insns);
5284
5285 /* If we are receiving a struct value address as the first argument, set up
5286 the RTL for the function result. As this might require code to convert
5287 the transmitted address to Pmode, we do this here to ensure that possible
5288 preliminary conversions of the address have been emitted already. */
5289 if (function_result_decl)
5290 {
5291 tree result = DECL_RESULT (fndecl);
5292 rtx addr = DECL_RTL (function_result_decl);
5293 rtx x;
5294
5295 addr = convert_memory_address (Pmode, addr);
5296 x = gen_rtx_MEM (DECL_MODE (result), addr);
5297 set_mem_attributes (x, result, 1);
5298 SET_DECL_RTL (result, x);
5299 }
5300
5301 last_parm_insn = get_last_insn ();
5302
5303 /* We have aligned all the args, so add space for the pretend args. */
5304 stack_args_size.constant += extra_pretend_bytes;
5305 current_function_args_size = stack_args_size.constant;
5306
5307 /* Adjust function incoming argument size for alignment and
5308 minimum length. */
5309
5310 #ifdef REG_PARM_STACK_SPACE
5311 current_function_args_size = MAX (current_function_args_size,
5312 REG_PARM_STACK_SPACE (fndecl));
5313 #endif
5314
5315 current_function_args_size
5316 = ((current_function_args_size + STACK_BYTES - 1)
5317 / STACK_BYTES) * STACK_BYTES;
5318
5319 #ifdef ARGS_GROW_DOWNWARD
5320 current_function_arg_offset_rtx
5321 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5322 : expand_expr (size_diffop (stack_args_size.var,
5323 size_int (-stack_args_size.constant)),
5324 NULL_RTX, VOIDmode, 0));
5325 #else
5326 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5327 #endif
5328
5329 /* See how many bytes, if any, of its args a function should try to pop
5330 on return. */
5331
5332 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5333 current_function_args_size);
5334
5335 /* For stdarg.h function, save info about
5336 regs and stack space used by the named args. */
5337
5338 current_function_args_info = args_so_far;
5339
5340 /* Set the rtx used for the function return value. Put this in its
5341 own variable so any optimizers that need this information don't have
5342 to include tree.h. Do this here so it gets done when an inlined
5343 function gets output. */
5344
5345 current_function_return_rtx
5346 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5347 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5348
5349 /* If scalar return value was computed in a pseudo-reg, or was a named
5350 return value that got dumped to the stack, copy that to the hard
5351 return register. */
5352 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5353 {
5354 tree decl_result = DECL_RESULT (fndecl);
5355 rtx decl_rtl = DECL_RTL (decl_result);
5356
5357 if (REG_P (decl_rtl)
5358 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5359 : DECL_REGISTER (decl_result))
5360 {
5361 rtx real_decl_rtl;
5362
5363 #ifdef FUNCTION_OUTGOING_VALUE
5364 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5365 fndecl);
5366 #else
5367 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5368 fndecl);
5369 #endif
5370 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5371 /* The delay slot scheduler assumes that current_function_return_rtx
5372 holds the hard register containing the return value, not a
5373 temporary pseudo. */
5374 current_function_return_rtx = real_decl_rtl;
5375 }
5376 }
5377 }
5378
5379 /* If ARGS contains entries with complex types, split the entry into two
5380 entries of the component type. Return a new list of substitutions are
5381 needed, else the old list. */
5382
5383 static tree
5384 split_complex_args (tree args)
5385 {
5386 tree p;
5387
5388 /* Before allocating memory, check for the common case of no complex. */
5389 for (p = args; p; p = TREE_CHAIN (p))
5390 {
5391 tree type = TREE_TYPE (p);
5392 if (TREE_CODE (type) == COMPLEX_TYPE
5393 && targetm.calls.split_complex_arg (type))
5394 goto found;
5395 }
5396 return args;
5397
5398 found:
5399 args = copy_list (args);
5400
5401 for (p = args; p; p = TREE_CHAIN (p))
5402 {
5403 tree type = TREE_TYPE (p);
5404 if (TREE_CODE (type) == COMPLEX_TYPE
5405 && targetm.calls.split_complex_arg (type))
5406 {
5407 tree decl;
5408 tree subtype = TREE_TYPE (type);
5409
5410 /* Rewrite the PARM_DECL's type with its component. */
5411 TREE_TYPE (p) = subtype;
5412 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
5413 DECL_MODE (p) = VOIDmode;
5414 DECL_SIZE (p) = NULL;
5415 DECL_SIZE_UNIT (p) = NULL;
5416 layout_decl (p, 0);
5417
5418 /* Build a second synthetic decl. */
5419 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
5420 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
5421 layout_decl (decl, 0);
5422
5423 /* Splice it in; skip the new decl. */
5424 TREE_CHAIN (decl) = TREE_CHAIN (p);
5425 TREE_CHAIN (p) = decl;
5426 p = decl;
5427 }
5428 }
5429
5430 return args;
5431 }
5432 \f
5433 /* Indicate whether REGNO is an incoming argument to the current function
5434 that was promoted to a wider mode. If so, return the RTX for the
5435 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5436 that REGNO is promoted from and whether the promotion was signed or
5437 unsigned. */
5438
5439 rtx
5440 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
5441 {
5442 tree arg;
5443
5444 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5445 arg = TREE_CHAIN (arg))
5446 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5447 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5448 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5449 {
5450 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5451 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
5452
5453 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5454 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5455 && mode != DECL_MODE (arg))
5456 {
5457 *pmode = DECL_MODE (arg);
5458 *punsignedp = unsignedp;
5459 return DECL_INCOMING_RTL (arg);
5460 }
5461 }
5462
5463 return 0;
5464 }
5465
5466 \f
5467 /* Compute the size and offset from the start of the stacked arguments for a
5468 parm passed in mode PASSED_MODE and with type TYPE.
5469
5470 INITIAL_OFFSET_PTR points to the current offset into the stacked
5471 arguments.
5472
5473 The starting offset and size for this parm are returned in
5474 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
5475 nonzero, the offset is that of stack slot, which is returned in
5476 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
5477 padding required from the initial offset ptr to the stack slot.
5478
5479 IN_REGS is nonzero if the argument will be passed in registers. It will
5480 never be set if REG_PARM_STACK_SPACE is not defined.
5481
5482 FNDECL is the function in which the argument was defined.
5483
5484 There are two types of rounding that are done. The first, controlled by
5485 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5486 list to be aligned to the specific boundary (in bits). This rounding
5487 affects the initial and starting offsets, but not the argument size.
5488
5489 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5490 optionally rounds the size of the parm to PARM_BOUNDARY. The
5491 initial offset is not affected by this rounding, while the size always
5492 is and the starting offset may be. */
5493
5494 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
5495 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
5496 callers pass in the total size of args so far as
5497 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
5498
5499 void
5500 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
5501 int partial, tree fndecl ATTRIBUTE_UNUSED,
5502 struct args_size *initial_offset_ptr,
5503 struct locate_and_pad_arg_data *locate)
5504 {
5505 tree sizetree;
5506 enum direction where_pad;
5507 int boundary;
5508 int reg_parm_stack_space = 0;
5509 int part_size_in_regs;
5510
5511 #ifdef REG_PARM_STACK_SPACE
5512 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5513
5514 /* If we have found a stack parm before we reach the end of the
5515 area reserved for registers, skip that area. */
5516 if (! in_regs)
5517 {
5518 if (reg_parm_stack_space > 0)
5519 {
5520 if (initial_offset_ptr->var)
5521 {
5522 initial_offset_ptr->var
5523 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5524 ssize_int (reg_parm_stack_space));
5525 initial_offset_ptr->constant = 0;
5526 }
5527 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5528 initial_offset_ptr->constant = reg_parm_stack_space;
5529 }
5530 }
5531 #endif /* REG_PARM_STACK_SPACE */
5532
5533 part_size_in_regs = 0;
5534 if (reg_parm_stack_space == 0)
5535 part_size_in_regs = ((partial * UNITS_PER_WORD)
5536 / (PARM_BOUNDARY / BITS_PER_UNIT)
5537 * (PARM_BOUNDARY / BITS_PER_UNIT));
5538
5539 sizetree
5540 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5541 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5542 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5543 locate->where_pad = where_pad;
5544
5545 #ifdef ARGS_GROW_DOWNWARD
5546 locate->slot_offset.constant = -initial_offset_ptr->constant;
5547 if (initial_offset_ptr->var)
5548 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
5549 initial_offset_ptr->var);
5550
5551 {
5552 tree s2 = sizetree;
5553 if (where_pad != none
5554 && (!host_integerp (sizetree, 1)
5555 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5556 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5557 SUB_PARM_SIZE (locate->slot_offset, s2);
5558 }
5559
5560 locate->slot_offset.constant += part_size_in_regs;
5561
5562 if (!in_regs
5563 #ifdef REG_PARM_STACK_SPACE
5564 || REG_PARM_STACK_SPACE (fndecl) > 0
5565 #endif
5566 )
5567 pad_to_arg_alignment (&locate->slot_offset, boundary,
5568 &locate->alignment_pad);
5569
5570 locate->size.constant = (-initial_offset_ptr->constant
5571 - locate->slot_offset.constant);
5572 if (initial_offset_ptr->var)
5573 locate->size.var = size_binop (MINUS_EXPR,
5574 size_binop (MINUS_EXPR,
5575 ssize_int (0),
5576 initial_offset_ptr->var),
5577 locate->slot_offset.var);
5578
5579 /* Pad_below needs the pre-rounded size to know how much to pad
5580 below. */
5581 locate->offset = locate->slot_offset;
5582 if (where_pad == downward)
5583 pad_below (&locate->offset, passed_mode, sizetree);
5584
5585 #else /* !ARGS_GROW_DOWNWARD */
5586 if (!in_regs
5587 #ifdef REG_PARM_STACK_SPACE
5588 || REG_PARM_STACK_SPACE (fndecl) > 0
5589 #endif
5590 )
5591 pad_to_arg_alignment (initial_offset_ptr, boundary,
5592 &locate->alignment_pad);
5593 locate->slot_offset = *initial_offset_ptr;
5594
5595 #ifdef PUSH_ROUNDING
5596 if (passed_mode != BLKmode)
5597 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5598 #endif
5599
5600 /* Pad_below needs the pre-rounded size to know how much to pad below
5601 so this must be done before rounding up. */
5602 locate->offset = locate->slot_offset;
5603 if (where_pad == downward)
5604 pad_below (&locate->offset, passed_mode, sizetree);
5605
5606 if (where_pad != none
5607 && (!host_integerp (sizetree, 1)
5608 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5609 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5610
5611 ADD_PARM_SIZE (locate->size, sizetree);
5612
5613 locate->size.constant -= part_size_in_regs;
5614 #endif /* ARGS_GROW_DOWNWARD */
5615 }
5616
5617 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5618 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5619
5620 static void
5621 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
5622 struct args_size *alignment_pad)
5623 {
5624 tree save_var = NULL_TREE;
5625 HOST_WIDE_INT save_constant = 0;
5626 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5627 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
5628
5629 #ifdef SPARC_STACK_BOUNDARY_HACK
5630 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
5631 higher than the real alignment of %sp. However, when it does this,
5632 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
5633 This is a temporary hack while the sparc port is fixed. */
5634 if (SPARC_STACK_BOUNDARY_HACK)
5635 sp_offset = 0;
5636 #endif
5637
5638 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5639 {
5640 save_var = offset_ptr->var;
5641 save_constant = offset_ptr->constant;
5642 }
5643
5644 alignment_pad->var = NULL_TREE;
5645 alignment_pad->constant = 0;
5646
5647 if (boundary > BITS_PER_UNIT)
5648 {
5649 if (offset_ptr->var)
5650 {
5651 tree sp_offset_tree = ssize_int (sp_offset);
5652 tree offset = size_binop (PLUS_EXPR,
5653 ARGS_SIZE_TREE (*offset_ptr),
5654 sp_offset_tree);
5655 #ifdef ARGS_GROW_DOWNWARD
5656 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
5657 #else
5658 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
5659 #endif
5660
5661 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
5662 /* ARGS_SIZE_TREE includes constant term. */
5663 offset_ptr->constant = 0;
5664 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5665 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5666 save_var);
5667 }
5668 else
5669 {
5670 offset_ptr->constant = -sp_offset +
5671 #ifdef ARGS_GROW_DOWNWARD
5672 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5673 #else
5674 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5675 #endif
5676 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5677 alignment_pad->constant = offset_ptr->constant - save_constant;
5678 }
5679 }
5680 }
5681
5682 static void
5683 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
5684 {
5685 if (passed_mode != BLKmode)
5686 {
5687 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5688 offset_ptr->constant
5689 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5690 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5691 - GET_MODE_SIZE (passed_mode));
5692 }
5693 else
5694 {
5695 if (TREE_CODE (sizetree) != INTEGER_CST
5696 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5697 {
5698 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5699 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5700 /* Add it in. */
5701 ADD_PARM_SIZE (*offset_ptr, s2);
5702 SUB_PARM_SIZE (*offset_ptr, sizetree);
5703 }
5704 }
5705 }
5706 \f
5707 /* Walk the tree of blocks describing the binding levels within a function
5708 and warn about uninitialized variables.
5709 This is done after calling flow_analysis and before global_alloc
5710 clobbers the pseudo-regs to hard regs. */
5711
5712 void
5713 uninitialized_vars_warning (tree block)
5714 {
5715 tree decl, sub;
5716 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5717 {
5718 if (warn_uninitialized
5719 && TREE_CODE (decl) == VAR_DECL
5720 /* These warnings are unreliable for and aggregates
5721 because assigning the fields one by one can fail to convince
5722 flow.c that the entire aggregate was initialized.
5723 Unions are troublesome because members may be shorter. */
5724 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5725 && DECL_RTL_SET_P (decl)
5726 && GET_CODE (DECL_RTL (decl)) == REG
5727 /* Global optimizations can make it difficult to determine if a
5728 particular variable has been initialized. However, a VAR_DECL
5729 with a nonzero DECL_INITIAL had an initializer, so do not
5730 claim it is potentially uninitialized.
5731
5732 When the DECL_INITIAL is NULL call the language hook to tell us
5733 if we want to warn. */
5734 && (DECL_INITIAL (decl) == NULL_TREE || lang_hooks.decl_uninit (decl))
5735 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5736 warning ("%J'%D' might be used uninitialized in this function",
5737 decl, decl);
5738 if (extra_warnings
5739 && TREE_CODE (decl) == VAR_DECL
5740 && DECL_RTL_SET_P (decl)
5741 && GET_CODE (DECL_RTL (decl)) == REG
5742 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5743 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
5744 decl, decl);
5745 }
5746 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5747 uninitialized_vars_warning (sub);
5748 }
5749
5750 /* Do the appropriate part of uninitialized_vars_warning
5751 but for arguments instead of local variables. */
5752
5753 void
5754 setjmp_args_warning (void)
5755 {
5756 tree decl;
5757 for (decl = DECL_ARGUMENTS (current_function_decl);
5758 decl; decl = TREE_CHAIN (decl))
5759 if (DECL_RTL (decl) != 0
5760 && GET_CODE (DECL_RTL (decl)) == REG
5761 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5762 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
5763 decl, decl);
5764 }
5765
5766 /* If this function call setjmp, put all vars into the stack
5767 unless they were declared `register'. */
5768
5769 void
5770 setjmp_protect (tree block)
5771 {
5772 tree decl, sub;
5773 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5774 if ((TREE_CODE (decl) == VAR_DECL
5775 || TREE_CODE (decl) == PARM_DECL)
5776 && DECL_RTL (decl) != 0
5777 && (GET_CODE (DECL_RTL (decl)) == REG
5778 || (GET_CODE (DECL_RTL (decl)) == MEM
5779 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5780 /* If this variable came from an inline function, it must be
5781 that its life doesn't overlap the setjmp. If there was a
5782 setjmp in the function, it would already be in memory. We
5783 must exclude such variable because their DECL_RTL might be
5784 set to strange things such as virtual_stack_vars_rtx. */
5785 && ! DECL_FROM_INLINE (decl)
5786 && (
5787 #ifdef NON_SAVING_SETJMP
5788 /* If longjmp doesn't restore the registers,
5789 don't put anything in them. */
5790 NON_SAVING_SETJMP
5791 ||
5792 #endif
5793 ! DECL_REGISTER (decl)))
5794 put_var_into_stack (decl, /*rescan=*/true);
5795 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5796 setjmp_protect (sub);
5797 }
5798 \f
5799 /* Like the previous function, but for args instead of local variables. */
5800
5801 void
5802 setjmp_protect_args (void)
5803 {
5804 tree decl;
5805 for (decl = DECL_ARGUMENTS (current_function_decl);
5806 decl; decl = TREE_CHAIN (decl))
5807 if ((TREE_CODE (decl) == VAR_DECL
5808 || TREE_CODE (decl) == PARM_DECL)
5809 && DECL_RTL (decl) != 0
5810 && (GET_CODE (DECL_RTL (decl)) == REG
5811 || (GET_CODE (DECL_RTL (decl)) == MEM
5812 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5813 && (
5814 /* If longjmp doesn't restore the registers,
5815 don't put anything in them. */
5816 #ifdef NON_SAVING_SETJMP
5817 NON_SAVING_SETJMP
5818 ||
5819 #endif
5820 ! DECL_REGISTER (decl)))
5821 put_var_into_stack (decl, /*rescan=*/true);
5822 }
5823 \f
5824 /* Return the context-pointer register corresponding to DECL,
5825 or 0 if it does not need one. */
5826
5827 rtx
5828 lookup_static_chain (tree decl)
5829 {
5830 tree context = decl_function_context (decl);
5831 tree link;
5832
5833 if (context == 0
5834 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5835 return 0;
5836
5837 /* We treat inline_function_decl as an alias for the current function
5838 because that is the inline function whose vars, types, etc.
5839 are being merged into the current function.
5840 See expand_inline_function. */
5841 if (context == current_function_decl || context == inline_function_decl)
5842 return virtual_stack_vars_rtx;
5843
5844 for (link = context_display; link; link = TREE_CHAIN (link))
5845 if (TREE_PURPOSE (link) == context)
5846 return RTL_EXPR_RTL (TREE_VALUE (link));
5847
5848 abort ();
5849 }
5850 \f
5851 /* Convert a stack slot address ADDR for variable VAR
5852 (from a containing function)
5853 into an address valid in this function (using a static chain). */
5854
5855 rtx
5856 fix_lexical_addr (rtx addr, tree var)
5857 {
5858 rtx basereg;
5859 HOST_WIDE_INT displacement;
5860 tree context = decl_function_context (var);
5861 struct function *fp;
5862 rtx base = 0;
5863
5864 /* If this is the present function, we need not do anything. */
5865 if (context == current_function_decl || context == inline_function_decl)
5866 return addr;
5867
5868 fp = find_function_data (context);
5869
5870 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5871 addr = XEXP (XEXP (addr, 0), 0);
5872
5873 /* Decode given address as base reg plus displacement. */
5874 if (GET_CODE (addr) == REG)
5875 basereg = addr, displacement = 0;
5876 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5877 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5878 else
5879 abort ();
5880
5881 /* We accept vars reached via the containing function's
5882 incoming arg pointer and via its stack variables pointer. */
5883 if (basereg == fp->internal_arg_pointer)
5884 {
5885 /* If reached via arg pointer, get the arg pointer value
5886 out of that function's stack frame.
5887
5888 There are two cases: If a separate ap is needed, allocate a
5889 slot in the outer function for it and dereference it that way.
5890 This is correct even if the real ap is actually a pseudo.
5891 Otherwise, just adjust the offset from the frame pointer to
5892 compensate. */
5893
5894 #ifdef NEED_SEPARATE_AP
5895 rtx addr;
5896
5897 addr = get_arg_pointer_save_area (fp);
5898 addr = fix_lexical_addr (XEXP (addr, 0), var);
5899 addr = memory_address (Pmode, addr);
5900
5901 base = gen_rtx_MEM (Pmode, addr);
5902 set_mem_alias_set (base, get_frame_alias_set ());
5903 base = copy_to_reg (base);
5904 #else
5905 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5906 base = lookup_static_chain (var);
5907 #endif
5908 }
5909
5910 else if (basereg == virtual_stack_vars_rtx)
5911 {
5912 /* This is the same code as lookup_static_chain, duplicated here to
5913 avoid an extra call to decl_function_context. */
5914 tree link;
5915
5916 for (link = context_display; link; link = TREE_CHAIN (link))
5917 if (TREE_PURPOSE (link) == context)
5918 {
5919 base = RTL_EXPR_RTL (TREE_VALUE (link));
5920 break;
5921 }
5922 }
5923
5924 if (base == 0)
5925 abort ();
5926
5927 /* Use same offset, relative to appropriate static chain or argument
5928 pointer. */
5929 return plus_constant (base, displacement);
5930 }
5931 \f
5932 /* Return the address of the trampoline for entering nested fn FUNCTION.
5933 If necessary, allocate a trampoline (in the stack frame)
5934 and emit rtl to initialize its contents (at entry to this function). */
5935
5936 rtx
5937 trampoline_address (tree function)
5938 {
5939 tree link;
5940 tree rtlexp;
5941 rtx tramp;
5942 struct function *fp;
5943 tree fn_context;
5944
5945 /* Find an existing trampoline and return it. */
5946 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5947 if (TREE_PURPOSE (link) == function)
5948 return
5949 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5950
5951 for (fp = outer_function_chain; fp; fp = fp->outer)
5952 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5953 if (TREE_PURPOSE (link) == function)
5954 {
5955 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5956 function);
5957 return adjust_trampoline_addr (tramp);
5958 }
5959
5960 /* None exists; we must make one. */
5961
5962 /* Find the `struct function' for the function containing FUNCTION. */
5963 fp = 0;
5964 fn_context = decl_function_context (function);
5965 if (fn_context != current_function_decl
5966 && fn_context != inline_function_decl)
5967 fp = find_function_data (fn_context);
5968
5969 /* Allocate run-time space for this trampoline. */
5970 /* If rounding needed, allocate extra space
5971 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5972 #define TRAMPOLINE_REAL_SIZE \
5973 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5974 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5975 fp ? fp : cfun);
5976 /* Record the trampoline for reuse and note it for later initialization
5977 by expand_function_end. */
5978 if (fp != 0)
5979 {
5980 rtlexp = make_node (RTL_EXPR);
5981 RTL_EXPR_RTL (rtlexp) = tramp;
5982 fp->x_trampoline_list = tree_cons (function, rtlexp,
5983 fp->x_trampoline_list);
5984 }
5985 else
5986 {
5987 /* Make the RTL_EXPR node temporary, not momentary, so that the
5988 trampoline_list doesn't become garbage. */
5989 rtlexp = make_node (RTL_EXPR);
5990
5991 RTL_EXPR_RTL (rtlexp) = tramp;
5992 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5993 }
5994
5995 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5996 return adjust_trampoline_addr (tramp);
5997 }
5998
5999 /* Given a trampoline address,
6000 round it to multiple of TRAMPOLINE_ALIGNMENT. */
6001
6002 static rtx
6003 round_trampoline_addr (rtx tramp)
6004 {
6005 /* Round address up to desired boundary. */
6006 rtx temp = gen_reg_rtx (Pmode);
6007 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
6008 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
6009
6010 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
6011 temp, 0, OPTAB_LIB_WIDEN);
6012 tramp = expand_simple_binop (Pmode, AND, temp, mask,
6013 temp, 0, OPTAB_LIB_WIDEN);
6014
6015 return tramp;
6016 }
6017
6018 /* Given a trampoline address, round it then apply any
6019 platform-specific adjustments so that the result can be used for a
6020 function call . */
6021
6022 static rtx
6023 adjust_trampoline_addr (rtx tramp)
6024 {
6025 tramp = round_trampoline_addr (tramp);
6026 #ifdef TRAMPOLINE_ADJUST_ADDRESS
6027 TRAMPOLINE_ADJUST_ADDRESS (tramp);
6028 #endif
6029 return tramp;
6030 }
6031 \f
6032 /* Put all this function's BLOCK nodes including those that are chained
6033 onto the first block into a vector, and return it.
6034 Also store in each NOTE for the beginning or end of a block
6035 the index of that block in the vector.
6036 The arguments are BLOCK, the chain of top-level blocks of the function,
6037 and INSNS, the insn chain of the function. */
6038
6039 void
6040 identify_blocks (void)
6041 {
6042 int n_blocks;
6043 tree *block_vector, *last_block_vector;
6044 tree *block_stack;
6045 tree block = DECL_INITIAL (current_function_decl);
6046
6047 if (block == 0)
6048 return;
6049
6050 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
6051 depth-first order. */
6052 block_vector = get_block_vector (block, &n_blocks);
6053 block_stack = xmalloc (n_blocks * sizeof (tree));
6054
6055 last_block_vector = identify_blocks_1 (get_insns (),
6056 block_vector + 1,
6057 block_vector + n_blocks,
6058 block_stack);
6059
6060 /* If we didn't use all of the subblocks, we've misplaced block notes. */
6061 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
6062 if (0 && last_block_vector != block_vector + n_blocks)
6063 abort ();
6064
6065 free (block_vector);
6066 free (block_stack);
6067 }
6068
6069 /* Subroutine of identify_blocks. Do the block substitution on the
6070 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
6071
6072 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
6073 BLOCK_VECTOR is incremented for each block seen. */
6074
6075 static tree *
6076 identify_blocks_1 (rtx insns, tree *block_vector, tree *end_block_vector,
6077 tree *orig_block_stack)
6078 {
6079 rtx insn;
6080 tree *block_stack = orig_block_stack;
6081
6082 for (insn = insns; insn; insn = NEXT_INSN (insn))
6083 {
6084 if (GET_CODE (insn) == NOTE)
6085 {
6086 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
6087 {
6088 tree b;
6089
6090 /* If there are more block notes than BLOCKs, something
6091 is badly wrong. */
6092 if (block_vector == end_block_vector)
6093 abort ();
6094
6095 b = *block_vector++;
6096 NOTE_BLOCK (insn) = b;
6097 *block_stack++ = b;
6098 }
6099 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6100 {
6101 /* If there are more NOTE_INSN_BLOCK_ENDs than
6102 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
6103 if (block_stack == orig_block_stack)
6104 abort ();
6105
6106 NOTE_BLOCK (insn) = *--block_stack;
6107 }
6108 }
6109 else if (GET_CODE (insn) == CALL_INSN
6110 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6111 {
6112 rtx cp = PATTERN (insn);
6113
6114 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
6115 end_block_vector, block_stack);
6116 if (XEXP (cp, 1))
6117 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
6118 end_block_vector, block_stack);
6119 if (XEXP (cp, 2))
6120 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
6121 end_block_vector, block_stack);
6122 }
6123 }
6124
6125 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
6126 something is badly wrong. */
6127 if (block_stack != orig_block_stack)
6128 abort ();
6129
6130 return block_vector;
6131 }
6132
6133 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
6134 and create duplicate blocks. */
6135 /* ??? Need an option to either create block fragments or to create
6136 abstract origin duplicates of a source block. It really depends
6137 on what optimization has been performed. */
6138
6139 void
6140 reorder_blocks (void)
6141 {
6142 tree block = DECL_INITIAL (current_function_decl);
6143 varray_type block_stack;
6144
6145 if (block == NULL_TREE)
6146 return;
6147
6148 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
6149
6150 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
6151 reorder_blocks_0 (block);
6152
6153 /* Prune the old trees away, so that they don't get in the way. */
6154 BLOCK_SUBBLOCKS (block) = NULL_TREE;
6155 BLOCK_CHAIN (block) = NULL_TREE;
6156
6157 /* Recreate the block tree from the note nesting. */
6158 reorder_blocks_1 (get_insns (), block, &block_stack);
6159 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
6160
6161 /* Remove deleted blocks from the block fragment chains. */
6162 reorder_fix_fragments (block);
6163 }
6164
6165 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
6166
6167 static void
6168 reorder_blocks_0 (tree block)
6169 {
6170 while (block)
6171 {
6172 TREE_ASM_WRITTEN (block) = 0;
6173 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
6174 block = BLOCK_CHAIN (block);
6175 }
6176 }
6177
6178 static void
6179 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
6180 {
6181 rtx insn;
6182
6183 for (insn = insns; insn; insn = NEXT_INSN (insn))
6184 {
6185 if (GET_CODE (insn) == NOTE)
6186 {
6187 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
6188 {
6189 tree block = NOTE_BLOCK (insn);
6190
6191 /* If we have seen this block before, that means it now
6192 spans multiple address regions. Create a new fragment. */
6193 if (TREE_ASM_WRITTEN (block))
6194 {
6195 tree new_block = copy_node (block);
6196 tree origin;
6197
6198 origin = (BLOCK_FRAGMENT_ORIGIN (block)
6199 ? BLOCK_FRAGMENT_ORIGIN (block)
6200 : block);
6201 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
6202 BLOCK_FRAGMENT_CHAIN (new_block)
6203 = BLOCK_FRAGMENT_CHAIN (origin);
6204 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
6205
6206 NOTE_BLOCK (insn) = new_block;
6207 block = new_block;
6208 }
6209
6210 BLOCK_SUBBLOCKS (block) = 0;
6211 TREE_ASM_WRITTEN (block) = 1;
6212 /* When there's only one block for the entire function,
6213 current_block == block and we mustn't do this, it
6214 will cause infinite recursion. */
6215 if (block != current_block)
6216 {
6217 BLOCK_SUPERCONTEXT (block) = current_block;
6218 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
6219 BLOCK_SUBBLOCKS (current_block) = block;
6220 current_block = block;
6221 }
6222 VARRAY_PUSH_TREE (*p_block_stack, block);
6223 }
6224 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6225 {
6226 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
6227 VARRAY_POP (*p_block_stack);
6228 BLOCK_SUBBLOCKS (current_block)
6229 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
6230 current_block = BLOCK_SUPERCONTEXT (current_block);
6231 }
6232 }
6233 else if (GET_CODE (insn) == CALL_INSN
6234 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6235 {
6236 rtx cp = PATTERN (insn);
6237 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
6238 if (XEXP (cp, 1))
6239 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
6240 if (XEXP (cp, 2))
6241 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
6242 }
6243 }
6244 }
6245
6246 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
6247 appears in the block tree, select one of the fragments to become
6248 the new origin block. */
6249
6250 static void
6251 reorder_fix_fragments (tree block)
6252 {
6253 while (block)
6254 {
6255 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6256 tree new_origin = NULL_TREE;
6257
6258 if (dup_origin)
6259 {
6260 if (! TREE_ASM_WRITTEN (dup_origin))
6261 {
6262 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6263
6264 /* Find the first of the remaining fragments. There must
6265 be at least one -- the current block. */
6266 while (! TREE_ASM_WRITTEN (new_origin))
6267 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6268 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6269 }
6270 }
6271 else if (! dup_origin)
6272 new_origin = block;
6273
6274 /* Re-root the rest of the fragments to the new origin. In the
6275 case that DUP_ORIGIN was null, that means BLOCK was the origin
6276 of a chain of fragments and we want to remove those fragments
6277 that didn't make it to the output. */
6278 if (new_origin)
6279 {
6280 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6281 tree chain = *pp;
6282
6283 while (chain)
6284 {
6285 if (TREE_ASM_WRITTEN (chain))
6286 {
6287 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6288 *pp = chain;
6289 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6290 }
6291 chain = BLOCK_FRAGMENT_CHAIN (chain);
6292 }
6293 *pp = NULL_TREE;
6294 }
6295
6296 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6297 block = BLOCK_CHAIN (block);
6298 }
6299 }
6300
6301 /* Reverse the order of elements in the chain T of blocks,
6302 and return the new head of the chain (old last element). */
6303
6304 static tree
6305 blocks_nreverse (tree t)
6306 {
6307 tree prev = 0, decl, next;
6308 for (decl = t; decl; decl = next)
6309 {
6310 next = BLOCK_CHAIN (decl);
6311 BLOCK_CHAIN (decl) = prev;
6312 prev = decl;
6313 }
6314 return prev;
6315 }
6316
6317 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6318 non-NULL, list them all into VECTOR, in a depth-first preorder
6319 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6320 blocks. */
6321
6322 static int
6323 all_blocks (tree block, tree *vector)
6324 {
6325 int n_blocks = 0;
6326
6327 while (block)
6328 {
6329 TREE_ASM_WRITTEN (block) = 0;
6330
6331 /* Record this block. */
6332 if (vector)
6333 vector[n_blocks] = block;
6334
6335 ++n_blocks;
6336
6337 /* Record the subblocks, and their subblocks... */
6338 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6339 vector ? vector + n_blocks : 0);
6340 block = BLOCK_CHAIN (block);
6341 }
6342
6343 return n_blocks;
6344 }
6345
6346 /* Return a vector containing all the blocks rooted at BLOCK. The
6347 number of elements in the vector is stored in N_BLOCKS_P. The
6348 vector is dynamically allocated; it is the caller's responsibility
6349 to call `free' on the pointer returned. */
6350
6351 static tree *
6352 get_block_vector (tree block, int *n_blocks_p)
6353 {
6354 tree *block_vector;
6355
6356 *n_blocks_p = all_blocks (block, NULL);
6357 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
6358 all_blocks (block, block_vector);
6359
6360 return block_vector;
6361 }
6362
6363 static GTY(()) int next_block_index = 2;
6364
6365 /* Set BLOCK_NUMBER for all the blocks in FN. */
6366
6367 void
6368 number_blocks (tree fn)
6369 {
6370 int i;
6371 int n_blocks;
6372 tree *block_vector;
6373
6374 /* For SDB and XCOFF debugging output, we start numbering the blocks
6375 from 1 within each function, rather than keeping a running
6376 count. */
6377 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6378 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6379 next_block_index = 1;
6380 #endif
6381
6382 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6383
6384 /* The top-level BLOCK isn't numbered at all. */
6385 for (i = 1; i < n_blocks; ++i)
6386 /* We number the blocks from two. */
6387 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6388
6389 free (block_vector);
6390
6391 return;
6392 }
6393
6394 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6395
6396 tree
6397 debug_find_var_in_block_tree (tree var, tree block)
6398 {
6399 tree t;
6400
6401 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6402 if (t == var)
6403 return block;
6404
6405 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6406 {
6407 tree ret = debug_find_var_in_block_tree (var, t);
6408 if (ret)
6409 return ret;
6410 }
6411
6412 return NULL_TREE;
6413 }
6414 \f
6415 /* Allocate a function structure for FNDECL and set its contents
6416 to the defaults. */
6417
6418 void
6419 allocate_struct_function (tree fndecl)
6420 {
6421 tree result;
6422
6423 cfun = ggc_alloc_cleared (sizeof (struct function));
6424
6425 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6426
6427 cfun->stack_alignment_needed = STACK_BOUNDARY;
6428 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6429
6430 current_function_funcdef_no = funcdef_no++;
6431
6432 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6433
6434 init_stmt_for_function ();
6435 init_eh_for_function ();
6436
6437 lang_hooks.function.init (cfun);
6438 if (init_machine_status)
6439 cfun->machine = (*init_machine_status) ();
6440
6441 if (fndecl == NULL)
6442 return;
6443
6444 DECL_STRUCT_FUNCTION (fndecl) = cfun;
6445 cfun->decl = fndecl;
6446
6447 result = DECL_RESULT (fndecl);
6448 if (aggregate_value_p (result, fndecl))
6449 {
6450 #ifdef PCC_STATIC_STRUCT_RETURN
6451 current_function_returns_pcc_struct = 1;
6452 #endif
6453 current_function_returns_struct = 1;
6454 }
6455
6456 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
6457
6458 current_function_needs_context
6459 = (decl_function_context (current_function_decl) != 0
6460 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6461 }
6462
6463 /* Reset cfun, and other non-struct-function variables to defaults as
6464 appropriate for emitting rtl at the start of a function. */
6465
6466 static void
6467 prepare_function_start (tree fndecl)
6468 {
6469 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
6470 cfun = DECL_STRUCT_FUNCTION (fndecl);
6471 else
6472 allocate_struct_function (fndecl);
6473 init_emit ();
6474 init_varasm_status (cfun);
6475 init_expr ();
6476
6477 cse_not_expected = ! optimize;
6478
6479 /* Caller save not needed yet. */
6480 caller_save_needed = 0;
6481
6482 /* We haven't done register allocation yet. */
6483 reg_renumber = 0;
6484
6485 /* Indicate that we need to distinguish between the return value of the
6486 present function and the return value of a function being called. */
6487 rtx_equal_function_value_matters = 1;
6488
6489 /* Indicate that we have not instantiated virtual registers yet. */
6490 virtuals_instantiated = 0;
6491
6492 /* Indicate that we want CONCATs now. */
6493 generating_concat_p = 1;
6494
6495 /* Indicate we have no need of a frame pointer yet. */
6496 frame_pointer_needed = 0;
6497 }
6498
6499 /* Initialize the rtl expansion mechanism so that we can do simple things
6500 like generate sequences. This is used to provide a context during global
6501 initialization of some passes. */
6502 void
6503 init_dummy_function_start (void)
6504 {
6505 prepare_function_start (NULL);
6506 }
6507
6508 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6509 and initialize static variables for generating RTL for the statements
6510 of the function. */
6511
6512 void
6513 init_function_start (tree subr)
6514 {
6515 prepare_function_start (subr);
6516
6517 /* Within function body, compute a type's size as soon it is laid out. */
6518 immediate_size_expand++;
6519
6520 /* Prevent ever trying to delete the first instruction of a
6521 function. Also tell final how to output a linenum before the
6522 function prologue. Note linenums could be missing, e.g. when
6523 compiling a Java .class file. */
6524 if (DECL_SOURCE_LINE (subr))
6525 emit_line_note (DECL_SOURCE_LOCATION (subr));
6526
6527 /* Make sure first insn is a note even if we don't want linenums.
6528 This makes sure the first insn will never be deleted.
6529 Also, final expects a note to appear there. */
6530 emit_note (NOTE_INSN_DELETED);
6531
6532 /* Warn if this value is an aggregate type,
6533 regardless of which calling convention we are using for it. */
6534 if (warn_aggregate_return
6535 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6536 warning ("function returns an aggregate");
6537 }
6538
6539 /* Make sure all values used by the optimization passes have sane
6540 defaults. */
6541 void
6542 init_function_for_compilation (void)
6543 {
6544 reg_renumber = 0;
6545
6546 /* No prologue/epilogue insns yet. */
6547 VARRAY_GROW (prologue, 0);
6548 VARRAY_GROW (epilogue, 0);
6549 VARRAY_GROW (sibcall_epilogue, 0);
6550 }
6551
6552 /* Expand a call to __main at the beginning of a possible main function. */
6553
6554 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6555 #undef HAS_INIT_SECTION
6556 #define HAS_INIT_SECTION
6557 #endif
6558
6559 void
6560 expand_main_function (void)
6561 {
6562 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6563 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6564 {
6565 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6566 rtx tmp, seq;
6567
6568 start_sequence ();
6569 /* Forcibly align the stack. */
6570 #ifdef STACK_GROWS_DOWNWARD
6571 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6572 stack_pointer_rtx, 1, OPTAB_WIDEN);
6573 #else
6574 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6575 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6576 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6577 stack_pointer_rtx, 1, OPTAB_WIDEN);
6578 #endif
6579 if (tmp != stack_pointer_rtx)
6580 emit_move_insn (stack_pointer_rtx, tmp);
6581
6582 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6583 tmp = force_reg (Pmode, const0_rtx);
6584 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6585 seq = get_insns ();
6586 end_sequence ();
6587
6588 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6589 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6590 break;
6591 if (tmp)
6592 emit_insn_before (seq, tmp);
6593 else
6594 emit_insn (seq);
6595 }
6596 #endif
6597
6598 #ifndef HAS_INIT_SECTION
6599 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
6600 #endif
6601 }
6602 \f
6603 /* The PENDING_SIZES represent the sizes of variable-sized types.
6604 Create RTL for the various sizes now (using temporary variables),
6605 so that we can refer to the sizes from the RTL we are generating
6606 for the current function. The PENDING_SIZES are a TREE_LIST. The
6607 TREE_VALUE of each node is a SAVE_EXPR. */
6608
6609 void
6610 expand_pending_sizes (tree pending_sizes)
6611 {
6612 tree tem;
6613
6614 /* Evaluate now the sizes of any types declared among the arguments. */
6615 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6616 {
6617 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6618 /* Flush the queue in case this parameter declaration has
6619 side-effects. */
6620 emit_queue ();
6621 }
6622 }
6623
6624 /* Start the RTL for a new function, and set variables used for
6625 emitting RTL.
6626 SUBR is the FUNCTION_DECL node.
6627 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6628 the function's parameters, which must be run at any return statement. */
6629
6630 void
6631 expand_function_start (tree subr, int parms_have_cleanups)
6632 {
6633 tree tem;
6634 rtx last_ptr = NULL_RTX;
6635
6636 /* Make sure volatile mem refs aren't considered
6637 valid operands of arithmetic insns. */
6638 init_recog_no_volatile ();
6639
6640 current_function_instrument_entry_exit
6641 = (flag_instrument_function_entry_exit
6642 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6643
6644 current_function_profile
6645 = (profile_flag
6646 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6647
6648 current_function_limit_stack
6649 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6650
6651 /* If function gets a static chain arg, store it in the stack frame.
6652 Do this first, so it gets the first stack slot offset. */
6653 if (current_function_needs_context)
6654 {
6655 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6656
6657 /* Delay copying static chain if it is not a register to avoid
6658 conflicts with regs used for parameters. */
6659 if (! SMALL_REGISTER_CLASSES
6660 || GET_CODE (static_chain_incoming_rtx) == REG)
6661 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6662 }
6663
6664 /* If the parameters of this function need cleaning up, get a label
6665 for the beginning of the code which executes those cleanups. This must
6666 be done before doing anything with return_label. */
6667 if (parms_have_cleanups)
6668 cleanup_label = gen_label_rtx ();
6669 else
6670 cleanup_label = 0;
6671
6672 /* Make the label for return statements to jump to. Do not special
6673 case machines with special return instructions -- they will be
6674 handled later during jump, ifcvt, or epilogue creation. */
6675 return_label = gen_label_rtx ();
6676
6677 /* Initialize rtx used to return the value. */
6678 /* Do this before assign_parms so that we copy the struct value address
6679 before any library calls that assign parms might generate. */
6680
6681 /* Decide whether to return the value in memory or in a register. */
6682 if (aggregate_value_p (DECL_RESULT (subr), subr))
6683 {
6684 /* Returning something that won't go in a register. */
6685 rtx value_address = 0;
6686
6687 #ifdef PCC_STATIC_STRUCT_RETURN
6688 if (current_function_returns_pcc_struct)
6689 {
6690 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6691 value_address = assemble_static_space (size);
6692 }
6693 else
6694 #endif
6695 {
6696 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
6697 /* Expect to be passed the address of a place to store the value.
6698 If it is passed as an argument, assign_parms will take care of
6699 it. */
6700 if (sv)
6701 {
6702 value_address = gen_reg_rtx (Pmode);
6703 emit_move_insn (value_address, sv);
6704 }
6705 }
6706 if (value_address)
6707 {
6708 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6709 set_mem_attributes (x, DECL_RESULT (subr), 1);
6710 SET_DECL_RTL (DECL_RESULT (subr), x);
6711 }
6712 }
6713 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6714 /* If return mode is void, this decl rtl should not be used. */
6715 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6716 else
6717 {
6718 /* Compute the return values into a pseudo reg, which we will copy
6719 into the true return register after the cleanups are done. */
6720
6721 /* In order to figure out what mode to use for the pseudo, we
6722 figure out what the mode of the eventual return register will
6723 actually be, and use that. */
6724 rtx hard_reg
6725 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6726 subr, 1);
6727
6728 /* Structures that are returned in registers are not aggregate_value_p,
6729 so we may see a PARALLEL or a REG. */
6730 if (REG_P (hard_reg))
6731 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6732 else if (GET_CODE (hard_reg) == PARALLEL)
6733 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6734 else
6735 abort ();
6736
6737 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6738 result to the real return register(s). */
6739 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6740 }
6741
6742 /* Initialize rtx for parameters and local variables.
6743 In some cases this requires emitting insns. */
6744
6745 assign_parms (subr);
6746
6747 /* Copy the static chain now if it wasn't a register. The delay is to
6748 avoid conflicts with the parameter passing registers. */
6749
6750 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6751 if (GET_CODE (static_chain_incoming_rtx) != REG)
6752 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6753
6754 /* The following was moved from init_function_start.
6755 The move is supposed to make sdb output more accurate. */
6756 /* Indicate the beginning of the function body,
6757 as opposed to parm setup. */
6758 emit_note (NOTE_INSN_FUNCTION_BEG);
6759
6760 if (GET_CODE (get_last_insn ()) != NOTE)
6761 emit_note (NOTE_INSN_DELETED);
6762 parm_birth_insn = get_last_insn ();
6763
6764 context_display = 0;
6765 if (current_function_needs_context)
6766 {
6767 /* Fetch static chain values for containing functions. */
6768 tem = decl_function_context (current_function_decl);
6769 /* Copy the static chain pointer into a pseudo. If we have
6770 small register classes, copy the value from memory if
6771 static_chain_incoming_rtx is a REG. */
6772 if (tem)
6773 {
6774 /* If the static chain originally came in a register, put it back
6775 there, then move it out in the next insn. The reason for
6776 this peculiar code is to satisfy function integration. */
6777 if (SMALL_REGISTER_CLASSES
6778 && GET_CODE (static_chain_incoming_rtx) == REG)
6779 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6780 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6781 }
6782
6783 while (tem)
6784 {
6785 tree rtlexp = make_node (RTL_EXPR);
6786
6787 RTL_EXPR_RTL (rtlexp) = last_ptr;
6788 context_display = tree_cons (tem, rtlexp, context_display);
6789 tem = decl_function_context (tem);
6790 if (tem == 0)
6791 break;
6792 /* Chain through stack frames, assuming pointer to next lexical frame
6793 is found at the place we always store it. */
6794 #ifdef FRAME_GROWS_DOWNWARD
6795 last_ptr = plus_constant (last_ptr,
6796 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6797 #endif
6798 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6799 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6800 last_ptr = copy_to_reg (last_ptr);
6801
6802 /* If we are not optimizing, ensure that we know that this
6803 piece of context is live over the entire function. */
6804 if (! optimize)
6805 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6806 save_expr_regs);
6807 }
6808 }
6809
6810 if (current_function_instrument_entry_exit)
6811 {
6812 rtx fun = DECL_RTL (current_function_decl);
6813 if (GET_CODE (fun) == MEM)
6814 fun = XEXP (fun, 0);
6815 else
6816 abort ();
6817 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6818 2, fun, Pmode,
6819 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6820 0,
6821 hard_frame_pointer_rtx),
6822 Pmode);
6823 }
6824
6825 if (current_function_profile)
6826 {
6827 #ifdef PROFILE_HOOK
6828 PROFILE_HOOK (current_function_funcdef_no);
6829 #endif
6830 }
6831
6832 /* After the display initializations is where the tail-recursion label
6833 should go, if we end up needing one. Ensure we have a NOTE here
6834 since some things (like trampolines) get placed before this. */
6835 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
6836
6837 /* Evaluate now the sizes of any types declared among the arguments. */
6838 expand_pending_sizes (nreverse (get_pending_sizes ()));
6839
6840 /* Make sure there is a line number after the function entry setup code. */
6841 force_next_line_note ();
6842 }
6843 \f
6844 /* Undo the effects of init_dummy_function_start. */
6845 void
6846 expand_dummy_function_end (void)
6847 {
6848 /* End any sequences that failed to be closed due to syntax errors. */
6849 while (in_sequence_p ())
6850 end_sequence ();
6851
6852 /* Outside function body, can't compute type's actual size
6853 until next function's body starts. */
6854
6855 free_after_parsing (cfun);
6856 free_after_compilation (cfun);
6857 cfun = 0;
6858 }
6859
6860 /* Call DOIT for each hard register used as a return value from
6861 the current function. */
6862
6863 void
6864 diddle_return_value (void (*doit) (rtx, void *), void *arg)
6865 {
6866 rtx outgoing = current_function_return_rtx;
6867
6868 if (! outgoing)
6869 return;
6870
6871 if (GET_CODE (outgoing) == REG)
6872 (*doit) (outgoing, arg);
6873 else if (GET_CODE (outgoing) == PARALLEL)
6874 {
6875 int i;
6876
6877 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6878 {
6879 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6880
6881 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6882 (*doit) (x, arg);
6883 }
6884 }
6885 }
6886
6887 static void
6888 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6889 {
6890 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6891 }
6892
6893 void
6894 clobber_return_register (void)
6895 {
6896 diddle_return_value (do_clobber_return_reg, NULL);
6897
6898 /* In case we do use pseudo to return value, clobber it too. */
6899 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6900 {
6901 tree decl_result = DECL_RESULT (current_function_decl);
6902 rtx decl_rtl = DECL_RTL (decl_result);
6903 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6904 {
6905 do_clobber_return_reg (decl_rtl, NULL);
6906 }
6907 }
6908 }
6909
6910 static void
6911 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6912 {
6913 emit_insn (gen_rtx_USE (VOIDmode, reg));
6914 }
6915
6916 void
6917 use_return_register (void)
6918 {
6919 diddle_return_value (do_use_return_reg, NULL);
6920 }
6921
6922 static GTY(()) rtx initial_trampoline;
6923
6924 /* Generate RTL for the end of the current function. */
6925
6926 void
6927 expand_function_end (void)
6928 {
6929 tree link;
6930 rtx clobber_after;
6931
6932 finish_expr_for_function ();
6933
6934 /* If arg_pointer_save_area was referenced only from a nested
6935 function, we will not have initialized it yet. Do that now. */
6936 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6937 get_arg_pointer_save_area (cfun);
6938
6939 #ifdef NON_SAVING_SETJMP
6940 /* Don't put any variables in registers if we call setjmp
6941 on a machine that fails to restore the registers. */
6942 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6943 {
6944 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6945 setjmp_protect (DECL_INITIAL (current_function_decl));
6946
6947 setjmp_protect_args ();
6948 }
6949 #endif
6950
6951 /* Initialize any trampolines required by this function. */
6952 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6953 {
6954 tree function = TREE_PURPOSE (link);
6955 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6956 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6957 #ifdef TRAMPOLINE_TEMPLATE
6958 rtx blktramp;
6959 #endif
6960 rtx seq;
6961
6962 #ifdef TRAMPOLINE_TEMPLATE
6963 /* First make sure this compilation has a template for
6964 initializing trampolines. */
6965 if (initial_trampoline == 0)
6966 {
6967 initial_trampoline
6968 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6969 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6970 }
6971 #endif
6972
6973 /* Generate insns to initialize the trampoline. */
6974 start_sequence ();
6975 tramp = round_trampoline_addr (XEXP (tramp, 0));
6976 #ifdef TRAMPOLINE_TEMPLATE
6977 blktramp = replace_equiv_address (initial_trampoline, tramp);
6978 emit_block_move (blktramp, initial_trampoline,
6979 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6980 #endif
6981 trampolines_created = 1;
6982 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6983 seq = get_insns ();
6984 end_sequence ();
6985
6986 /* Put those insns at entry to the containing function (this one). */
6987 emit_insn_before (seq, tail_recursion_reentry);
6988 }
6989
6990 /* If we are doing stack checking and this function makes calls,
6991 do a stack probe at the start of the function to ensure we have enough
6992 space for another stack frame. */
6993 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6994 {
6995 rtx insn, seq;
6996
6997 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6998 if (GET_CODE (insn) == CALL_INSN)
6999 {
7000 start_sequence ();
7001 probe_stack_range (STACK_CHECK_PROTECT,
7002 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
7003 seq = get_insns ();
7004 end_sequence ();
7005 emit_insn_before (seq, tail_recursion_reentry);
7006 break;
7007 }
7008 }
7009
7010 /* Possibly warn about unused parameters. */
7011 if (warn_unused_parameter)
7012 {
7013 tree decl;
7014
7015 for (decl = DECL_ARGUMENTS (current_function_decl);
7016 decl; decl = TREE_CHAIN (decl))
7017 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
7018 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
7019 warning ("%Junused parameter '%D'", decl, decl);
7020 }
7021
7022 /* Delete handlers for nonlocal gotos if nothing uses them. */
7023 if (nonlocal_goto_handler_slots != 0
7024 && ! current_function_has_nonlocal_label)
7025 delete_handlers ();
7026
7027 /* End any sequences that failed to be closed due to syntax errors. */
7028 while (in_sequence_p ())
7029 end_sequence ();
7030
7031 /* Outside function body, can't compute type's actual size
7032 until next function's body starts. */
7033 immediate_size_expand--;
7034
7035 clear_pending_stack_adjust ();
7036 do_pending_stack_adjust ();
7037
7038 /* @@@ This is a kludge. We want to ensure that instructions that
7039 may trap are not moved into the epilogue by scheduling, because
7040 we don't always emit unwind information for the epilogue.
7041 However, not all machine descriptions define a blockage insn, so
7042 emit an ASM_INPUT to act as one. */
7043 if (flag_non_call_exceptions)
7044 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
7045
7046 /* Mark the end of the function body.
7047 If control reaches this insn, the function can drop through
7048 without returning a value. */
7049 emit_note (NOTE_INSN_FUNCTION_END);
7050
7051 /* Must mark the last line number note in the function, so that the test
7052 coverage code can avoid counting the last line twice. This just tells
7053 the code to ignore the immediately following line note, since there
7054 already exists a copy of this note somewhere above. This line number
7055 note is still needed for debugging though, so we can't delete it. */
7056 if (flag_test_coverage)
7057 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
7058
7059 /* Output a linenumber for the end of the function.
7060 SDB depends on this. */
7061 force_next_line_note ();
7062 emit_line_note (input_location);
7063
7064 /* Before the return label (if any), clobber the return
7065 registers so that they are not propagated live to the rest of
7066 the function. This can only happen with functions that drop
7067 through; if there had been a return statement, there would
7068 have either been a return rtx, or a jump to the return label.
7069
7070 We delay actual code generation after the current_function_value_rtx
7071 is computed. */
7072 clobber_after = get_last_insn ();
7073
7074 /* Output the label for the actual return from the function,
7075 if one is expected. This happens either because a function epilogue
7076 is used instead of a return instruction, or because a return was done
7077 with a goto in order to run local cleanups, or because of pcc-style
7078 structure returning. */
7079 if (return_label)
7080 emit_label (return_label);
7081
7082 if (current_function_instrument_entry_exit)
7083 {
7084 rtx fun = DECL_RTL (current_function_decl);
7085 if (GET_CODE (fun) == MEM)
7086 fun = XEXP (fun, 0);
7087 else
7088 abort ();
7089 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
7090 2, fun, Pmode,
7091 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
7092 0,
7093 hard_frame_pointer_rtx),
7094 Pmode);
7095 }
7096
7097 /* Let except.c know where it should emit the call to unregister
7098 the function context for sjlj exceptions. */
7099 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
7100 sjlj_emit_function_exit_after (get_last_insn ());
7101
7102 /* If we had calls to alloca, and this machine needs
7103 an accurate stack pointer to exit the function,
7104 insert some code to save and restore the stack pointer. */
7105 if (! EXIT_IGNORE_STACK
7106 && current_function_calls_alloca)
7107 {
7108 rtx tem = 0;
7109
7110 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
7111 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
7112 }
7113
7114 /* If scalar return value was computed in a pseudo-reg, or was a named
7115 return value that got dumped to the stack, copy that to the hard
7116 return register. */
7117 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
7118 {
7119 tree decl_result = DECL_RESULT (current_function_decl);
7120 rtx decl_rtl = DECL_RTL (decl_result);
7121
7122 if (REG_P (decl_rtl)
7123 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
7124 : DECL_REGISTER (decl_result))
7125 {
7126 rtx real_decl_rtl = current_function_return_rtx;
7127
7128 /* This should be set in assign_parms. */
7129 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
7130 abort ();
7131
7132 /* If this is a BLKmode structure being returned in registers,
7133 then use the mode computed in expand_return. Note that if
7134 decl_rtl is memory, then its mode may have been changed,
7135 but that current_function_return_rtx has not. */
7136 if (GET_MODE (real_decl_rtl) == BLKmode)
7137 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
7138
7139 /* If a named return value dumped decl_return to memory, then
7140 we may need to re-do the PROMOTE_MODE signed/unsigned
7141 extension. */
7142 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
7143 {
7144 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
7145
7146 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
7147 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
7148 &unsignedp, 1);
7149
7150 convert_move (real_decl_rtl, decl_rtl, unsignedp);
7151 }
7152 else if (GET_CODE (real_decl_rtl) == PARALLEL)
7153 {
7154 /* If expand_function_start has created a PARALLEL for decl_rtl,
7155 move the result to the real return registers. Otherwise, do
7156 a group load from decl_rtl for a named return. */
7157 if (GET_CODE (decl_rtl) == PARALLEL)
7158 emit_group_move (real_decl_rtl, decl_rtl);
7159 else
7160 emit_group_load (real_decl_rtl, decl_rtl,
7161 TREE_TYPE (decl_result),
7162 int_size_in_bytes (TREE_TYPE (decl_result)));
7163 }
7164 else
7165 emit_move_insn (real_decl_rtl, decl_rtl);
7166 }
7167 }
7168
7169 /* If returning a structure, arrange to return the address of the value
7170 in a place where debuggers expect to find it.
7171
7172 If returning a structure PCC style,
7173 the caller also depends on this value.
7174 And current_function_returns_pcc_struct is not necessarily set. */
7175 if (current_function_returns_struct
7176 || current_function_returns_pcc_struct)
7177 {
7178 rtx value_address
7179 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7180 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7181 #ifdef FUNCTION_OUTGOING_VALUE
7182 rtx outgoing
7183 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7184 current_function_decl);
7185 #else
7186 rtx outgoing
7187 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7188 #endif
7189
7190 /* Mark this as a function return value so integrate will delete the
7191 assignment and USE below when inlining this function. */
7192 REG_FUNCTION_VALUE_P (outgoing) = 1;
7193
7194 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7195 value_address = convert_memory_address (GET_MODE (outgoing),
7196 value_address);
7197
7198 emit_move_insn (outgoing, value_address);
7199
7200 /* Show return register used to hold result (in this case the address
7201 of the result. */
7202 current_function_return_rtx = outgoing;
7203 }
7204
7205 /* If this is an implementation of throw, do what's necessary to
7206 communicate between __builtin_eh_return and the epilogue. */
7207 expand_eh_return ();
7208
7209 /* Emit the actual code to clobber return register. */
7210 {
7211 rtx seq, after;
7212
7213 start_sequence ();
7214 clobber_return_register ();
7215 seq = get_insns ();
7216 end_sequence ();
7217
7218 after = emit_insn_after (seq, clobber_after);
7219
7220 if (clobber_after != after)
7221 cfun->x_clobber_return_insn = after;
7222 }
7223
7224 /* Output the label for the naked return from the function, if one is
7225 expected. This is currently used only by __builtin_return. */
7226 if (naked_return_label)
7227 emit_label (naked_return_label);
7228
7229 /* ??? This should no longer be necessary since stupid is no longer with
7230 us, but there are some parts of the compiler (eg reload_combine, and
7231 sh mach_dep_reorg) that still try and compute their own lifetime info
7232 instead of using the general framework. */
7233 use_return_register ();
7234
7235 /* Fix up any gotos that jumped out to the outermost
7236 binding level of the function.
7237 Must follow emitting RETURN_LABEL. */
7238
7239 /* If you have any cleanups to do at this point,
7240 and they need to create temporary variables,
7241 then you will lose. */
7242 expand_fixups (get_insns ());
7243 }
7244
7245 rtx
7246 get_arg_pointer_save_area (struct function *f)
7247 {
7248 rtx ret = f->x_arg_pointer_save_area;
7249
7250 if (! ret)
7251 {
7252 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7253 f->x_arg_pointer_save_area = ret;
7254 }
7255
7256 if (f == cfun && ! f->arg_pointer_save_area_init)
7257 {
7258 rtx seq;
7259
7260 /* Save the arg pointer at the beginning of the function. The
7261 generated stack slot may not be a valid memory address, so we
7262 have to check it and fix it if necessary. */
7263 start_sequence ();
7264 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7265 seq = get_insns ();
7266 end_sequence ();
7267
7268 push_topmost_sequence ();
7269 emit_insn_after (seq, get_insns ());
7270 pop_topmost_sequence ();
7271 }
7272
7273 return ret;
7274 }
7275 \f
7276 /* Extend a vector that records the INSN_UIDs of INSNS
7277 (a list of one or more insns). */
7278
7279 static void
7280 record_insns (rtx insns, varray_type *vecp)
7281 {
7282 int i, len;
7283 rtx tmp;
7284
7285 tmp = insns;
7286 len = 0;
7287 while (tmp != NULL_RTX)
7288 {
7289 len++;
7290 tmp = NEXT_INSN (tmp);
7291 }
7292
7293 i = VARRAY_SIZE (*vecp);
7294 VARRAY_GROW (*vecp, i + len);
7295 tmp = insns;
7296 while (tmp != NULL_RTX)
7297 {
7298 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7299 i++;
7300 tmp = NEXT_INSN (tmp);
7301 }
7302 }
7303
7304 /* Set the locator of the insn chain starting at INSN to LOC. */
7305 static void
7306 set_insn_locators (rtx insn, int loc)
7307 {
7308 while (insn != NULL_RTX)
7309 {
7310 if (INSN_P (insn))
7311 INSN_LOCATOR (insn) = loc;
7312 insn = NEXT_INSN (insn);
7313 }
7314 }
7315
7316 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7317 be running after reorg, SEQUENCE rtl is possible. */
7318
7319 static int
7320 contains (rtx insn, varray_type vec)
7321 {
7322 int i, j;
7323
7324 if (GET_CODE (insn) == INSN
7325 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7326 {
7327 int count = 0;
7328 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7329 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7330 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7331 count++;
7332 return count;
7333 }
7334 else
7335 {
7336 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7337 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7338 return 1;
7339 }
7340 return 0;
7341 }
7342
7343 int
7344 prologue_epilogue_contains (rtx insn)
7345 {
7346 if (contains (insn, prologue))
7347 return 1;
7348 if (contains (insn, epilogue))
7349 return 1;
7350 return 0;
7351 }
7352
7353 int
7354 sibcall_epilogue_contains (rtx insn)
7355 {
7356 if (sibcall_epilogue)
7357 return contains (insn, sibcall_epilogue);
7358 return 0;
7359 }
7360
7361 #ifdef HAVE_return
7362 /* Insert gen_return at the end of block BB. This also means updating
7363 block_for_insn appropriately. */
7364
7365 static void
7366 emit_return_into_block (basic_block bb, rtx line_note)
7367 {
7368 emit_jump_insn_after (gen_return (), BB_END (bb));
7369 if (line_note)
7370 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
7371 }
7372 #endif /* HAVE_return */
7373
7374 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7375
7376 /* These functions convert the epilogue into a variant that does not modify the
7377 stack pointer. This is used in cases where a function returns an object
7378 whose size is not known until it is computed. The called function leaves the
7379 object on the stack, leaves the stack depressed, and returns a pointer to
7380 the object.
7381
7382 What we need to do is track all modifications and references to the stack
7383 pointer, deleting the modifications and changing the references to point to
7384 the location the stack pointer would have pointed to had the modifications
7385 taken place.
7386
7387 These functions need to be portable so we need to make as few assumptions
7388 about the epilogue as we can. However, the epilogue basically contains
7389 three things: instructions to reset the stack pointer, instructions to
7390 reload registers, possibly including the frame pointer, and an
7391 instruction to return to the caller.
7392
7393 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7394 We also make no attempt to validate the insns we make since if they are
7395 invalid, we probably can't do anything valid. The intent is that these
7396 routines get "smarter" as more and more machines start to use them and
7397 they try operating on different epilogues.
7398
7399 We use the following structure to track what the part of the epilogue that
7400 we've already processed has done. We keep two copies of the SP equivalence,
7401 one for use during the insn we are processing and one for use in the next
7402 insn. The difference is because one part of a PARALLEL may adjust SP
7403 and the other may use it. */
7404
7405 struct epi_info
7406 {
7407 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7408 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7409 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7410 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7411 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7412 should be set to once we no longer need
7413 its value. */
7414 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
7415 for registers. */
7416 };
7417
7418 static void handle_epilogue_set (rtx, struct epi_info *);
7419 static void update_epilogue_consts (rtx, rtx, void *);
7420 static void emit_equiv_load (struct epi_info *);
7421
7422 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7423 no modifications to the stack pointer. Return the new list of insns. */
7424
7425 static rtx
7426 keep_stack_depressed (rtx insns)
7427 {
7428 int j;
7429 struct epi_info info;
7430 rtx insn, next;
7431
7432 /* If the epilogue is just a single instruction, it must be OK as is. */
7433 if (NEXT_INSN (insns) == NULL_RTX)
7434 return insns;
7435
7436 /* Otherwise, start a sequence, initialize the information we have, and
7437 process all the insns we were given. */
7438 start_sequence ();
7439
7440 info.sp_equiv_reg = stack_pointer_rtx;
7441 info.sp_offset = 0;
7442 info.equiv_reg_src = 0;
7443
7444 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
7445 info.const_equiv[j] = 0;
7446
7447 insn = insns;
7448 next = NULL_RTX;
7449 while (insn != NULL_RTX)
7450 {
7451 next = NEXT_INSN (insn);
7452
7453 if (!INSN_P (insn))
7454 {
7455 add_insn (insn);
7456 insn = next;
7457 continue;
7458 }
7459
7460 /* If this insn references the register that SP is equivalent to and
7461 we have a pending load to that register, we must force out the load
7462 first and then indicate we no longer know what SP's equivalent is. */
7463 if (info.equiv_reg_src != 0
7464 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7465 {
7466 emit_equiv_load (&info);
7467 info.sp_equiv_reg = 0;
7468 }
7469
7470 info.new_sp_equiv_reg = info.sp_equiv_reg;
7471 info.new_sp_offset = info.sp_offset;
7472
7473 /* If this is a (RETURN) and the return address is on the stack,
7474 update the address and change to an indirect jump. */
7475 if (GET_CODE (PATTERN (insn)) == RETURN
7476 || (GET_CODE (PATTERN (insn)) == PARALLEL
7477 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7478 {
7479 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7480 rtx base = 0;
7481 HOST_WIDE_INT offset = 0;
7482 rtx jump_insn, jump_set;
7483
7484 /* If the return address is in a register, we can emit the insn
7485 unchanged. Otherwise, it must be a MEM and we see what the
7486 base register and offset are. In any case, we have to emit any
7487 pending load to the equivalent reg of SP, if any. */
7488 if (GET_CODE (retaddr) == REG)
7489 {
7490 emit_equiv_load (&info);
7491 add_insn (insn);
7492 insn = next;
7493 continue;
7494 }
7495 else if (GET_CODE (retaddr) == MEM
7496 && GET_CODE (XEXP (retaddr, 0)) == REG)
7497 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7498 else if (GET_CODE (retaddr) == MEM
7499 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7500 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7501 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7502 {
7503 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7504 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7505 }
7506 else
7507 abort ();
7508
7509 /* If the base of the location containing the return pointer
7510 is SP, we must update it with the replacement address. Otherwise,
7511 just build the necessary MEM. */
7512 retaddr = plus_constant (base, offset);
7513 if (base == stack_pointer_rtx)
7514 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7515 plus_constant (info.sp_equiv_reg,
7516 info.sp_offset));
7517
7518 retaddr = gen_rtx_MEM (Pmode, retaddr);
7519
7520 /* If there is a pending load to the equivalent register for SP
7521 and we reference that register, we must load our address into
7522 a scratch register and then do that load. */
7523 if (info.equiv_reg_src
7524 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7525 {
7526 unsigned int regno;
7527 rtx reg;
7528
7529 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7530 if (HARD_REGNO_MODE_OK (regno, Pmode)
7531 && !fixed_regs[regno]
7532 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7533 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7534 regno)
7535 && !refers_to_regno_p (regno,
7536 regno + hard_regno_nregs[regno]
7537 [Pmode],
7538 info.equiv_reg_src, NULL)
7539 && info.const_equiv[regno] == 0)
7540 break;
7541
7542 if (regno == FIRST_PSEUDO_REGISTER)
7543 abort ();
7544
7545 reg = gen_rtx_REG (Pmode, regno);
7546 emit_move_insn (reg, retaddr);
7547 retaddr = reg;
7548 }
7549
7550 emit_equiv_load (&info);
7551 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7552
7553 /* Show the SET in the above insn is a RETURN. */
7554 jump_set = single_set (jump_insn);
7555 if (jump_set == 0)
7556 abort ();
7557 else
7558 SET_IS_RETURN_P (jump_set) = 1;
7559 }
7560
7561 /* If SP is not mentioned in the pattern and its equivalent register, if
7562 any, is not modified, just emit it. Otherwise, if neither is set,
7563 replace the reference to SP and emit the insn. If none of those are
7564 true, handle each SET individually. */
7565 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7566 && (info.sp_equiv_reg == stack_pointer_rtx
7567 || !reg_set_p (info.sp_equiv_reg, insn)))
7568 add_insn (insn);
7569 else if (! reg_set_p (stack_pointer_rtx, insn)
7570 && (info.sp_equiv_reg == stack_pointer_rtx
7571 || !reg_set_p (info.sp_equiv_reg, insn)))
7572 {
7573 if (! validate_replace_rtx (stack_pointer_rtx,
7574 plus_constant (info.sp_equiv_reg,
7575 info.sp_offset),
7576 insn))
7577 abort ();
7578
7579 add_insn (insn);
7580 }
7581 else if (GET_CODE (PATTERN (insn)) == SET)
7582 handle_epilogue_set (PATTERN (insn), &info);
7583 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7584 {
7585 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7586 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7587 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7588 }
7589 else
7590 add_insn (insn);
7591
7592 info.sp_equiv_reg = info.new_sp_equiv_reg;
7593 info.sp_offset = info.new_sp_offset;
7594
7595 /* Now update any constants this insn sets. */
7596 note_stores (PATTERN (insn), update_epilogue_consts, &info);
7597 insn = next;
7598 }
7599
7600 insns = get_insns ();
7601 end_sequence ();
7602 return insns;
7603 }
7604
7605 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7606 structure that contains information about what we've seen so far. We
7607 process this SET by either updating that data or by emitting one or
7608 more insns. */
7609
7610 static void
7611 handle_epilogue_set (rtx set, struct epi_info *p)
7612 {
7613 /* First handle the case where we are setting SP. Record what it is being
7614 set from. If unknown, abort. */
7615 if (reg_set_p (stack_pointer_rtx, set))
7616 {
7617 if (SET_DEST (set) != stack_pointer_rtx)
7618 abort ();
7619
7620 if (GET_CODE (SET_SRC (set)) == PLUS)
7621 {
7622 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7623 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7624 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7625 else if (GET_CODE (XEXP (SET_SRC (set), 1)) == REG
7626 && REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER
7627 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0)
7628 p->new_sp_offset
7629 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
7630 else
7631 abort ();
7632 }
7633 else
7634 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7635
7636 /* If we are adjusting SP, we adjust from the old data. */
7637 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7638 {
7639 p->new_sp_equiv_reg = p->sp_equiv_reg;
7640 p->new_sp_offset += p->sp_offset;
7641 }
7642
7643 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7644 abort ();
7645
7646 return;
7647 }
7648
7649 /* Next handle the case where we are setting SP's equivalent register.
7650 If we already have a value to set it to, abort. We could update, but
7651 there seems little point in handling that case. Note that we have
7652 to allow for the case where we are setting the register set in
7653 the previous part of a PARALLEL inside a single insn. But use the
7654 old offset for any updates within this insn. We must allow for the case
7655 where the register is being set in a different (usually wider) mode than
7656 Pmode). */
7657 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7658 {
7659 if (p->equiv_reg_src != 0
7660 || GET_CODE (p->new_sp_equiv_reg) != REG
7661 || GET_CODE (SET_DEST (set)) != REG
7662 || GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD
7663 || REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set)))
7664 abort ();
7665 else
7666 p->equiv_reg_src
7667 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7668 plus_constant (p->sp_equiv_reg,
7669 p->sp_offset));
7670 }
7671
7672 /* Otherwise, replace any references to SP in the insn to its new value
7673 and emit the insn. */
7674 else
7675 {
7676 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7677 plus_constant (p->sp_equiv_reg,
7678 p->sp_offset));
7679 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7680 plus_constant (p->sp_equiv_reg,
7681 p->sp_offset));
7682 emit_insn (set);
7683 }
7684 }
7685
7686 /* Update the tracking information for registers set to constants. */
7687
7688 static void
7689 update_epilogue_consts (rtx dest, rtx x, void *data)
7690 {
7691 struct epi_info *p = (struct epi_info *) data;
7692 rtx new;
7693
7694 if (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
7695 return;
7696
7697 /* If we are either clobbering a register or doing a partial set,
7698 show we don't know the value. */
7699 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
7700 p->const_equiv[REGNO (dest)] = 0;
7701
7702 /* If we are setting it to a constant, record that constant. */
7703 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
7704 p->const_equiv[REGNO (dest)] = SET_SRC (x);
7705
7706 /* If this is a binary operation between a register we have been tracking
7707 and a constant, see if we can compute a new constant value. */
7708 else if (ARITHMETIC_P (SET_SRC (x))
7709 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
7710 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
7711 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
7712 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
7713 && 0 != (new = simplify_binary_operation
7714 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
7715 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
7716 XEXP (SET_SRC (x), 1)))
7717 && GET_CODE (new) == CONST_INT)
7718 p->const_equiv[REGNO (dest)] = new;
7719
7720 /* Otherwise, we can't do anything with this value. */
7721 else
7722 p->const_equiv[REGNO (dest)] = 0;
7723 }
7724
7725 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7726
7727 static void
7728 emit_equiv_load (struct epi_info *p)
7729 {
7730 if (p->equiv_reg_src != 0)
7731 {
7732 rtx dest = p->sp_equiv_reg;
7733
7734 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
7735 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
7736 REGNO (p->sp_equiv_reg));
7737
7738 emit_move_insn (dest, p->equiv_reg_src);
7739 p->equiv_reg_src = 0;
7740 }
7741 }
7742 #endif
7743
7744 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7745 this into place with notes indicating where the prologue ends and where
7746 the epilogue begins. Update the basic block information when possible. */
7747
7748 void
7749 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
7750 {
7751 int inserted = 0;
7752 edge e;
7753 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7754 rtx seq;
7755 #endif
7756 #ifdef HAVE_prologue
7757 rtx prologue_end = NULL_RTX;
7758 #endif
7759 #if defined (HAVE_epilogue) || defined(HAVE_return)
7760 rtx epilogue_end = NULL_RTX;
7761 #endif
7762
7763 #ifdef HAVE_prologue
7764 if (HAVE_prologue)
7765 {
7766 start_sequence ();
7767 seq = gen_prologue ();
7768 emit_insn (seq);
7769
7770 /* Retain a map of the prologue insns. */
7771 record_insns (seq, &prologue);
7772 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
7773
7774 seq = get_insns ();
7775 end_sequence ();
7776 set_insn_locators (seq, prologue_locator);
7777
7778 /* Can't deal with multiple successors of the entry block
7779 at the moment. Function should always have at least one
7780 entry point. */
7781 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7782 abort ();
7783
7784 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7785 inserted = 1;
7786 }
7787 #endif
7788
7789 /* If the exit block has no non-fake predecessors, we don't need
7790 an epilogue. */
7791 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7792 if ((e->flags & EDGE_FAKE) == 0)
7793 break;
7794 if (e == NULL)
7795 goto epilogue_done;
7796
7797 #ifdef HAVE_return
7798 if (optimize && HAVE_return)
7799 {
7800 /* If we're allowed to generate a simple return instruction,
7801 then by definition we don't need a full epilogue. Examine
7802 the block that falls through to EXIT. If it does not
7803 contain any code, examine its predecessors and try to
7804 emit (conditional) return instructions. */
7805
7806 basic_block last;
7807 edge e_next;
7808 rtx label;
7809
7810 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7811 if (e->flags & EDGE_FALLTHRU)
7812 break;
7813 if (e == NULL)
7814 goto epilogue_done;
7815 last = e->src;
7816
7817 /* Verify that there are no active instructions in the last block. */
7818 label = BB_END (last);
7819 while (label && GET_CODE (label) != CODE_LABEL)
7820 {
7821 if (active_insn_p (label))
7822 break;
7823 label = PREV_INSN (label);
7824 }
7825
7826 if (BB_HEAD (last) == label && GET_CODE (label) == CODE_LABEL)
7827 {
7828 rtx epilogue_line_note = NULL_RTX;
7829
7830 /* Locate the line number associated with the closing brace,
7831 if we can find one. */
7832 for (seq = get_last_insn ();
7833 seq && ! active_insn_p (seq);
7834 seq = PREV_INSN (seq))
7835 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7836 {
7837 epilogue_line_note = seq;
7838 break;
7839 }
7840
7841 for (e = last->pred; e; e = e_next)
7842 {
7843 basic_block bb = e->src;
7844 rtx jump;
7845
7846 e_next = e->pred_next;
7847 if (bb == ENTRY_BLOCK_PTR)
7848 continue;
7849
7850 jump = BB_END (bb);
7851 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7852 continue;
7853
7854 /* If we have an unconditional jump, we can replace that
7855 with a simple return instruction. */
7856 if (simplejump_p (jump))
7857 {
7858 emit_return_into_block (bb, epilogue_line_note);
7859 delete_insn (jump);
7860 }
7861
7862 /* If we have a conditional jump, we can try to replace
7863 that with a conditional return instruction. */
7864 else if (condjump_p (jump))
7865 {
7866 if (! redirect_jump (jump, 0, 0))
7867 continue;
7868
7869 /* If this block has only one successor, it both jumps
7870 and falls through to the fallthru block, so we can't
7871 delete the edge. */
7872 if (bb->succ->succ_next == NULL)
7873 continue;
7874 }
7875 else
7876 continue;
7877
7878 /* Fix up the CFG for the successful change we just made. */
7879 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7880 }
7881
7882 /* Emit a return insn for the exit fallthru block. Whether
7883 this is still reachable will be determined later. */
7884
7885 emit_barrier_after (BB_END (last));
7886 emit_return_into_block (last, epilogue_line_note);
7887 epilogue_end = BB_END (last);
7888 last->succ->flags &= ~EDGE_FALLTHRU;
7889 goto epilogue_done;
7890 }
7891 }
7892 #endif
7893 #ifdef HAVE_epilogue
7894 if (HAVE_epilogue)
7895 {
7896 /* Find the edge that falls through to EXIT. Other edges may exist
7897 due to RETURN instructions, but those don't need epilogues.
7898 There really shouldn't be a mixture -- either all should have
7899 been converted or none, however... */
7900
7901 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7902 if (e->flags & EDGE_FALLTHRU)
7903 break;
7904 if (e == NULL)
7905 goto epilogue_done;
7906
7907 start_sequence ();
7908 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
7909
7910 seq = gen_epilogue ();
7911
7912 #ifdef INCOMING_RETURN_ADDR_RTX
7913 /* If this function returns with the stack depressed and we can support
7914 it, massage the epilogue to actually do that. */
7915 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7916 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7917 seq = keep_stack_depressed (seq);
7918 #endif
7919
7920 emit_jump_insn (seq);
7921
7922 /* Retain a map of the epilogue insns. */
7923 record_insns (seq, &epilogue);
7924 set_insn_locators (seq, epilogue_locator);
7925
7926 seq = get_insns ();
7927 end_sequence ();
7928
7929 insert_insn_on_edge (seq, e);
7930 inserted = 1;
7931 }
7932 #endif
7933 epilogue_done:
7934
7935 if (inserted)
7936 commit_edge_insertions ();
7937
7938 #ifdef HAVE_sibcall_epilogue
7939 /* Emit sibling epilogues before any sibling call sites. */
7940 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7941 {
7942 basic_block bb = e->src;
7943 rtx insn = BB_END (bb);
7944 rtx i;
7945 rtx newinsn;
7946
7947 if (GET_CODE (insn) != CALL_INSN
7948 || ! SIBLING_CALL_P (insn))
7949 continue;
7950
7951 start_sequence ();
7952 emit_insn (gen_sibcall_epilogue ());
7953 seq = get_insns ();
7954 end_sequence ();
7955
7956 /* Retain a map of the epilogue insns. Used in life analysis to
7957 avoid getting rid of sibcall epilogue insns. Do this before we
7958 actually emit the sequence. */
7959 record_insns (seq, &sibcall_epilogue);
7960 set_insn_locators (seq, epilogue_locator);
7961
7962 i = PREV_INSN (insn);
7963 newinsn = emit_insn_before (seq, insn);
7964 }
7965 #endif
7966
7967 #ifdef HAVE_prologue
7968 /* This is probably all useless now that we use locators. */
7969 if (prologue_end)
7970 {
7971 rtx insn, prev;
7972
7973 /* GDB handles `break f' by setting a breakpoint on the first
7974 line note after the prologue. Which means (1) that if
7975 there are line number notes before where we inserted the
7976 prologue we should move them, and (2) we should generate a
7977 note before the end of the first basic block, if there isn't
7978 one already there.
7979
7980 ??? This behavior is completely broken when dealing with
7981 multiple entry functions. We simply place the note always
7982 into first basic block and let alternate entry points
7983 to be missed.
7984 */
7985
7986 for (insn = prologue_end; insn; insn = prev)
7987 {
7988 prev = PREV_INSN (insn);
7989 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7990 {
7991 /* Note that we cannot reorder the first insn in the
7992 chain, since rest_of_compilation relies on that
7993 remaining constant. */
7994 if (prev == NULL)
7995 break;
7996 reorder_insns (insn, insn, prologue_end);
7997 }
7998 }
7999
8000 /* Find the last line number note in the first block. */
8001 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
8002 insn != prologue_end && insn;
8003 insn = PREV_INSN (insn))
8004 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
8005 break;
8006
8007 /* If we didn't find one, make a copy of the first line number
8008 we run across. */
8009 if (! insn)
8010 {
8011 for (insn = next_active_insn (prologue_end);
8012 insn;
8013 insn = PREV_INSN (insn))
8014 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
8015 {
8016 emit_note_copy_after (insn, prologue_end);
8017 break;
8018 }
8019 }
8020 }
8021 #endif
8022 #ifdef HAVE_epilogue
8023 if (epilogue_end)
8024 {
8025 rtx insn, next;
8026
8027 /* Similarly, move any line notes that appear after the epilogue.
8028 There is no need, however, to be quite so anal about the existence
8029 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
8030 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
8031 info generation. */
8032 for (insn = epilogue_end; insn; insn = next)
8033 {
8034 next = NEXT_INSN (insn);
8035 if (GET_CODE (insn) == NOTE
8036 && (NOTE_LINE_NUMBER (insn) > 0
8037 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
8038 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
8039 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
8040 }
8041 }
8042 #endif
8043 }
8044
8045 /* Reposition the prologue-end and epilogue-begin notes after instruction
8046 scheduling and delayed branch scheduling. */
8047
8048 void
8049 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
8050 {
8051 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
8052 rtx insn, last, note;
8053 int len;
8054
8055 if ((len = VARRAY_SIZE (prologue)) > 0)
8056 {
8057 last = 0, note = 0;
8058
8059 /* Scan from the beginning until we reach the last prologue insn.
8060 We apparently can't depend on basic_block_{head,end} after
8061 reorg has run. */
8062 for (insn = f; insn; insn = NEXT_INSN (insn))
8063 {
8064 if (GET_CODE (insn) == NOTE)
8065 {
8066 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
8067 note = insn;
8068 }
8069 else if (contains (insn, prologue))
8070 {
8071 last = insn;
8072 if (--len == 0)
8073 break;
8074 }
8075 }
8076
8077 if (last)
8078 {
8079 /* Find the prologue-end note if we haven't already, and
8080 move it to just after the last prologue insn. */
8081 if (note == 0)
8082 {
8083 for (note = last; (note = NEXT_INSN (note));)
8084 if (GET_CODE (note) == NOTE
8085 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
8086 break;
8087 }
8088
8089 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
8090 if (GET_CODE (last) == CODE_LABEL)
8091 last = NEXT_INSN (last);
8092 reorder_insns (note, note, last);
8093 }
8094 }
8095
8096 if ((len = VARRAY_SIZE (epilogue)) > 0)
8097 {
8098 last = 0, note = 0;
8099
8100 /* Scan from the end until we reach the first epilogue insn.
8101 We apparently can't depend on basic_block_{head,end} after
8102 reorg has run. */
8103 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8104 {
8105 if (GET_CODE (insn) == NOTE)
8106 {
8107 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
8108 note = insn;
8109 }
8110 else if (contains (insn, epilogue))
8111 {
8112 last = insn;
8113 if (--len == 0)
8114 break;
8115 }
8116 }
8117
8118 if (last)
8119 {
8120 /* Find the epilogue-begin note if we haven't already, and
8121 move it to just before the first epilogue insn. */
8122 if (note == 0)
8123 {
8124 for (note = insn; (note = PREV_INSN (note));)
8125 if (GET_CODE (note) == NOTE
8126 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
8127 break;
8128 }
8129
8130 if (PREV_INSN (last) != note)
8131 reorder_insns (note, note, PREV_INSN (last));
8132 }
8133 }
8134 #endif /* HAVE_prologue or HAVE_epilogue */
8135 }
8136
8137 /* Called once, at initialization, to initialize function.c. */
8138
8139 void
8140 init_function_once (void)
8141 {
8142 VARRAY_INT_INIT (prologue, 0, "prologue");
8143 VARRAY_INT_INIT (epilogue, 0, "epilogue");
8144 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
8145 }
8146
8147 /* Returns the name of the current function. */
8148 const char *
8149 current_function_name (void)
8150 {
8151 return lang_hooks.decl_printable_name (cfun->decl, 2);
8152 }
8153
8154 #include "gt-function.h"