intrinsic.h (gfc_check_selected_real_kind, [...]): Update prototypes.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
75
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
85
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
100
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
105
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
110
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
116
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
119
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
123
124 /* The currently compiled function. */
125 struct function *cfun = 0;
126
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
132 \f
133
134 htab_t types_used_by_vars_hash = NULL;
135 VEC(tree,gc) *types_used_by_cur_var_decl;
136
137 /* Forward declarations. */
138
139 static struct temp_slot *find_temp_slot_from_address (rtx);
140 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
141 static void pad_below (struct args_size *, enum machine_mode, tree);
142 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
143 static int all_blocks (tree, tree *);
144 static tree *get_block_vector (tree, int *);
145 extern tree debug_find_var_in_block_tree (tree, tree);
146 /* We always define `record_insns' even if it's not used so that we
147 can always export `prologue_epilogue_contains'. */
148 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
149 static bool contains (const_rtx, htab_t);
150 #ifdef HAVE_return
151 static void emit_return_into_block (basic_block);
152 #endif
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
156 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
157 \f
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
160
161 typedef struct function *function_p;
162
163 DEF_VEC_P(function_p);
164 DEF_VEC_ALLOC_P(function_p,heap);
165 static VEC(function_p,heap) *function_context_stack;
166
167 /* Save the current context for compilation of a nested function.
168 This is called from language-specific code. */
169
170 void
171 push_function_context (void)
172 {
173 if (cfun == 0)
174 allocate_struct_function (NULL, false);
175
176 VEC_safe_push (function_p, heap, function_context_stack, cfun);
177 set_cfun (NULL);
178 }
179
180 /* Restore the last saved context, at the end of a nested function.
181 This function is called from language-specific code. */
182
183 void
184 pop_function_context (void)
185 {
186 struct function *p = VEC_pop (function_p, function_context_stack);
187 set_cfun (p);
188 current_function_decl = p->decl;
189
190 /* Reset variables that have known state during rtx generation. */
191 virtuals_instantiated = 0;
192 generating_concat_p = 1;
193 }
194
195 /* Clear out all parts of the state in F that can safely be discarded
196 after the function has been parsed, but not compiled, to let
197 garbage collection reclaim the memory. */
198
199 void
200 free_after_parsing (struct function *f)
201 {
202 f->language = 0;
203 }
204
205 /* Clear out all parts of the state in F that can safely be discarded
206 after the function has been compiled, to let garbage collection
207 reclaim the memory. */
208
209 void
210 free_after_compilation (struct function *f)
211 {
212 prologue_insn_hash = NULL;
213 epilogue_insn_hash = NULL;
214
215 if (crtl->emit.regno_pointer_align)
216 free (crtl->emit.regno_pointer_align);
217
218 memset (crtl, 0, sizeof (struct rtl_data));
219 f->eh = NULL;
220 f->machine = NULL;
221 f->cfg = NULL;
222
223 regno_reg_rtx = NULL;
224 insn_locators_free ();
225 }
226 \f
227 /* Return size needed for stack frame based on slots so far allocated.
228 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
229 the caller may have to do that. */
230
231 HOST_WIDE_INT
232 get_frame_size (void)
233 {
234 if (FRAME_GROWS_DOWNWARD)
235 return -frame_offset;
236 else
237 return frame_offset;
238 }
239
240 /* Issue an error message and return TRUE if frame OFFSET overflows in
241 the signed target pointer arithmetics for function FUNC. Otherwise
242 return FALSE. */
243
244 bool
245 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
246 {
247 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
248
249 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
250 /* Leave room for the fixed part of the frame. */
251 - 64 * UNITS_PER_WORD)
252 {
253 error_at (DECL_SOURCE_LOCATION (func),
254 "total size of local objects too large");
255 return TRUE;
256 }
257
258 return FALSE;
259 }
260
261 /* Return stack slot alignment in bits for TYPE and MODE. */
262
263 static unsigned int
264 get_stack_local_alignment (tree type, enum machine_mode mode)
265 {
266 unsigned int alignment;
267
268 if (mode == BLKmode)
269 alignment = BIGGEST_ALIGNMENT;
270 else
271 alignment = GET_MODE_ALIGNMENT (mode);
272
273 /* Allow the frond-end to (possibly) increase the alignment of this
274 stack slot. */
275 if (! type)
276 type = lang_hooks.types.type_for_mode (mode, 0);
277
278 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
279 }
280
281 /* Determine whether it is possible to fit a stack slot of size SIZE and
282 alignment ALIGNMENT into an area in the stack frame that starts at
283 frame offset START and has a length of LENGTH. If so, store the frame
284 offset to be used for the stack slot in *POFFSET and return true;
285 return false otherwise. This function will extend the frame size when
286 given a start/length pair that lies at the end of the frame. */
287
288 static bool
289 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
290 HOST_WIDE_INT size, unsigned int alignment,
291 HOST_WIDE_INT *poffset)
292 {
293 HOST_WIDE_INT this_frame_offset;
294 int frame_off, frame_alignment, frame_phase;
295
296 /* Calculate how many bytes the start of local variables is off from
297 stack alignment. */
298 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
299 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
300 frame_phase = frame_off ? frame_alignment - frame_off : 0;
301
302 /* Round the frame offset to the specified alignment. */
303
304 /* We must be careful here, since FRAME_OFFSET might be negative and
305 division with a negative dividend isn't as well defined as we might
306 like. So we instead assume that ALIGNMENT is a power of two and
307 use logical operations which are unambiguous. */
308 if (FRAME_GROWS_DOWNWARD)
309 this_frame_offset
310 = (FLOOR_ROUND (start + length - size - frame_phase,
311 (unsigned HOST_WIDE_INT) alignment)
312 + frame_phase);
313 else
314 this_frame_offset
315 = (CEIL_ROUND (start - frame_phase,
316 (unsigned HOST_WIDE_INT) alignment)
317 + frame_phase);
318
319 /* See if it fits. If this space is at the edge of the frame,
320 consider extending the frame to make it fit. Our caller relies on
321 this when allocating a new slot. */
322 if (frame_offset == start && this_frame_offset < frame_offset)
323 frame_offset = this_frame_offset;
324 else if (this_frame_offset < start)
325 return false;
326 else if (start + length == frame_offset
327 && this_frame_offset + size > start + length)
328 frame_offset = this_frame_offset + size;
329 else if (this_frame_offset + size > start + length)
330 return false;
331
332 *poffset = this_frame_offset;
333 return true;
334 }
335
336 /* Create a new frame_space structure describing free space in the stack
337 frame beginning at START and ending at END, and chain it into the
338 function's frame_space_list. */
339
340 static void
341 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
342 {
343 struct frame_space *space = ggc_alloc_frame_space ();
344 space->next = crtl->frame_space_list;
345 crtl->frame_space_list = space;
346 space->start = start;
347 space->length = end - start;
348 }
349
350 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
351 with machine mode MODE.
352
353 ALIGN controls the amount of alignment for the address of the slot:
354 0 means according to MODE,
355 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
356 -2 means use BITS_PER_UNIT,
357 positive specifies alignment boundary in bits.
358
359 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
360
361 We do not round to stack_boundary here. */
362
363 rtx
364 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
365 int align,
366 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
367 {
368 rtx x, addr;
369 int bigend_correction = 0;
370 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
371 unsigned int alignment, alignment_in_bits;
372
373 if (align == 0)
374 {
375 alignment = get_stack_local_alignment (NULL, mode);
376 alignment /= BITS_PER_UNIT;
377 }
378 else if (align == -1)
379 {
380 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
381 size = CEIL_ROUND (size, alignment);
382 }
383 else if (align == -2)
384 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
385 else
386 alignment = align / BITS_PER_UNIT;
387
388 alignment_in_bits = alignment * BITS_PER_UNIT;
389
390 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
391 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
392 {
393 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
394 alignment = alignment_in_bits / BITS_PER_UNIT;
395 }
396
397 if (SUPPORTS_STACK_ALIGNMENT)
398 {
399 if (crtl->stack_alignment_estimated < alignment_in_bits)
400 {
401 if (!crtl->stack_realign_processed)
402 crtl->stack_alignment_estimated = alignment_in_bits;
403 else
404 {
405 /* If stack is realigned and stack alignment value
406 hasn't been finalized, it is OK not to increase
407 stack_alignment_estimated. The bigger alignment
408 requirement is recorded in stack_alignment_needed
409 below. */
410 gcc_assert (!crtl->stack_realign_finalized);
411 if (!crtl->stack_realign_needed)
412 {
413 /* It is OK to reduce the alignment as long as the
414 requested size is 0 or the estimated stack
415 alignment >= mode alignment. */
416 gcc_assert (reduce_alignment_ok
417 || size == 0
418 || (crtl->stack_alignment_estimated
419 >= GET_MODE_ALIGNMENT (mode)));
420 alignment_in_bits = crtl->stack_alignment_estimated;
421 alignment = alignment_in_bits / BITS_PER_UNIT;
422 }
423 }
424 }
425 }
426
427 if (crtl->stack_alignment_needed < alignment_in_bits)
428 crtl->stack_alignment_needed = alignment_in_bits;
429 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
430 crtl->max_used_stack_slot_alignment = alignment_in_bits;
431
432 if (mode != BLKmode || size != 0)
433 {
434 struct frame_space **psp;
435
436 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
437 {
438 struct frame_space *space = *psp;
439 if (!try_fit_stack_local (space->start, space->length, size,
440 alignment, &slot_offset))
441 continue;
442 *psp = space->next;
443 if (slot_offset > space->start)
444 add_frame_space (space->start, slot_offset);
445 if (slot_offset + size < space->start + space->length)
446 add_frame_space (slot_offset + size,
447 space->start + space->length);
448 goto found_space;
449 }
450 }
451 else if (!STACK_ALIGNMENT_NEEDED)
452 {
453 slot_offset = frame_offset;
454 goto found_space;
455 }
456
457 old_frame_offset = frame_offset;
458
459 if (FRAME_GROWS_DOWNWARD)
460 {
461 frame_offset -= size;
462 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
463
464 if (slot_offset > frame_offset)
465 add_frame_space (frame_offset, slot_offset);
466 if (slot_offset + size < old_frame_offset)
467 add_frame_space (slot_offset + size, old_frame_offset);
468 }
469 else
470 {
471 frame_offset += size;
472 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
473
474 if (slot_offset > old_frame_offset)
475 add_frame_space (old_frame_offset, slot_offset);
476 if (slot_offset + size < frame_offset)
477 add_frame_space (slot_offset + size, frame_offset);
478 }
479
480 found_space:
481 /* On a big-endian machine, if we are allocating more space than we will use,
482 use the least significant bytes of those that are allocated. */
483 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
484 bigend_correction = size - GET_MODE_SIZE (mode);
485
486 /* If we have already instantiated virtual registers, return the actual
487 address relative to the frame pointer. */
488 if (virtuals_instantiated)
489 addr = plus_constant (frame_pointer_rtx,
490 trunc_int_for_mode
491 (slot_offset + bigend_correction
492 + STARTING_FRAME_OFFSET, Pmode));
493 else
494 addr = plus_constant (virtual_stack_vars_rtx,
495 trunc_int_for_mode
496 (slot_offset + bigend_correction,
497 Pmode));
498
499 x = gen_rtx_MEM (mode, addr);
500 set_mem_align (x, alignment_in_bits);
501 MEM_NOTRAP_P (x) = 1;
502
503 stack_slot_list
504 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
505
506 if (frame_offset_overflow (frame_offset, current_function_decl))
507 frame_offset = 0;
508
509 return x;
510 }
511
512 /* Wrap up assign_stack_local_1 with last parameter as false. */
513
514 rtx
515 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
516 {
517 return assign_stack_local_1 (mode, size, align, false);
518 }
519 \f
520 \f
521 /* In order to evaluate some expressions, such as function calls returning
522 structures in memory, we need to temporarily allocate stack locations.
523 We record each allocated temporary in the following structure.
524
525 Associated with each temporary slot is a nesting level. When we pop up
526 one level, all temporaries associated with the previous level are freed.
527 Normally, all temporaries are freed after the execution of the statement
528 in which they were created. However, if we are inside a ({...}) grouping,
529 the result may be in a temporary and hence must be preserved. If the
530 result could be in a temporary, we preserve it if we can determine which
531 one it is in. If we cannot determine which temporary may contain the
532 result, all temporaries are preserved. A temporary is preserved by
533 pretending it was allocated at the previous nesting level.
534
535 Automatic variables are also assigned temporary slots, at the nesting
536 level where they are defined. They are marked a "kept" so that
537 free_temp_slots will not free them. */
538
539 struct GTY(()) temp_slot {
540 /* Points to next temporary slot. */
541 struct temp_slot *next;
542 /* Points to previous temporary slot. */
543 struct temp_slot *prev;
544 /* The rtx to used to reference the slot. */
545 rtx slot;
546 /* The size, in units, of the slot. */
547 HOST_WIDE_INT size;
548 /* The type of the object in the slot, or zero if it doesn't correspond
549 to a type. We use this to determine whether a slot can be reused.
550 It can be reused if objects of the type of the new slot will always
551 conflict with objects of the type of the old slot. */
552 tree type;
553 /* The alignment (in bits) of the slot. */
554 unsigned int align;
555 /* Nonzero if this temporary is currently in use. */
556 char in_use;
557 /* Nonzero if this temporary has its address taken. */
558 char addr_taken;
559 /* Nesting level at which this slot is being used. */
560 int level;
561 /* Nonzero if this should survive a call to free_temp_slots. */
562 int keep;
563 /* The offset of the slot from the frame_pointer, including extra space
564 for alignment. This info is for combine_temp_slots. */
565 HOST_WIDE_INT base_offset;
566 /* The size of the slot, including extra space for alignment. This
567 info is for combine_temp_slots. */
568 HOST_WIDE_INT full_size;
569 };
570
571 /* A table of addresses that represent a stack slot. The table is a mapping
572 from address RTXen to a temp slot. */
573 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
574
575 /* Entry for the above hash table. */
576 struct GTY(()) temp_slot_address_entry {
577 hashval_t hash;
578 rtx address;
579 struct temp_slot *temp_slot;
580 };
581
582 /* Removes temporary slot TEMP from LIST. */
583
584 static void
585 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
586 {
587 if (temp->next)
588 temp->next->prev = temp->prev;
589 if (temp->prev)
590 temp->prev->next = temp->next;
591 else
592 *list = temp->next;
593
594 temp->prev = temp->next = NULL;
595 }
596
597 /* Inserts temporary slot TEMP to LIST. */
598
599 static void
600 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
601 {
602 temp->next = *list;
603 if (*list)
604 (*list)->prev = temp;
605 temp->prev = NULL;
606 *list = temp;
607 }
608
609 /* Returns the list of used temp slots at LEVEL. */
610
611 static struct temp_slot **
612 temp_slots_at_level (int level)
613 {
614 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
615 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
616
617 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
618 }
619
620 /* Returns the maximal temporary slot level. */
621
622 static int
623 max_slot_level (void)
624 {
625 if (!used_temp_slots)
626 return -1;
627
628 return VEC_length (temp_slot_p, used_temp_slots) - 1;
629 }
630
631 /* Moves temporary slot TEMP to LEVEL. */
632
633 static void
634 move_slot_to_level (struct temp_slot *temp, int level)
635 {
636 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
637 insert_slot_to_list (temp, temp_slots_at_level (level));
638 temp->level = level;
639 }
640
641 /* Make temporary slot TEMP available. */
642
643 static void
644 make_slot_available (struct temp_slot *temp)
645 {
646 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
647 insert_slot_to_list (temp, &avail_temp_slots);
648 temp->in_use = 0;
649 temp->level = -1;
650 }
651
652 /* Compute the hash value for an address -> temp slot mapping.
653 The value is cached on the mapping entry. */
654 static hashval_t
655 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
656 {
657 int do_not_record = 0;
658 return hash_rtx (t->address, GET_MODE (t->address),
659 &do_not_record, NULL, false);
660 }
661
662 /* Return the hash value for an address -> temp slot mapping. */
663 static hashval_t
664 temp_slot_address_hash (const void *p)
665 {
666 const struct temp_slot_address_entry *t;
667 t = (const struct temp_slot_address_entry *) p;
668 return t->hash;
669 }
670
671 /* Compare two address -> temp slot mapping entries. */
672 static int
673 temp_slot_address_eq (const void *p1, const void *p2)
674 {
675 const struct temp_slot_address_entry *t1, *t2;
676 t1 = (const struct temp_slot_address_entry *) p1;
677 t2 = (const struct temp_slot_address_entry *) p2;
678 return exp_equiv_p (t1->address, t2->address, 0, true);
679 }
680
681 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
682 static void
683 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
684 {
685 void **slot;
686 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
687 t->address = address;
688 t->temp_slot = temp_slot;
689 t->hash = temp_slot_address_compute_hash (t);
690 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
691 *slot = t;
692 }
693
694 /* Remove an address -> temp slot mapping entry if the temp slot is
695 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
696 static int
697 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
698 {
699 const struct temp_slot_address_entry *t;
700 t = (const struct temp_slot_address_entry *) *slot;
701 if (! t->temp_slot->in_use)
702 *slot = NULL;
703 return 1;
704 }
705
706 /* Remove all mappings of addresses to unused temp slots. */
707 static void
708 remove_unused_temp_slot_addresses (void)
709 {
710 htab_traverse (temp_slot_address_table,
711 remove_unused_temp_slot_addresses_1,
712 NULL);
713 }
714
715 /* Find the temp slot corresponding to the object at address X. */
716
717 static struct temp_slot *
718 find_temp_slot_from_address (rtx x)
719 {
720 struct temp_slot *p;
721 struct temp_slot_address_entry tmp, *t;
722
723 /* First try the easy way:
724 See if X exists in the address -> temp slot mapping. */
725 tmp.address = x;
726 tmp.temp_slot = NULL;
727 tmp.hash = temp_slot_address_compute_hash (&tmp);
728 t = (struct temp_slot_address_entry *)
729 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
730 if (t)
731 return t->temp_slot;
732
733 /* If we have a sum involving a register, see if it points to a temp
734 slot. */
735 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
736 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
737 return p;
738 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
739 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
740 return p;
741
742 /* Last resort: Address is a virtual stack var address. */
743 if (GET_CODE (x) == PLUS
744 && XEXP (x, 0) == virtual_stack_vars_rtx
745 && CONST_INT_P (XEXP (x, 1)))
746 {
747 int i;
748 for (i = max_slot_level (); i >= 0; i--)
749 for (p = *temp_slots_at_level (i); p; p = p->next)
750 {
751 if (INTVAL (XEXP (x, 1)) >= p->base_offset
752 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
753 return p;
754 }
755 }
756
757 return NULL;
758 }
759 \f
760 /* Allocate a temporary stack slot and record it for possible later
761 reuse.
762
763 MODE is the machine mode to be given to the returned rtx.
764
765 SIZE is the size in units of the space required. We do no rounding here
766 since assign_stack_local will do any required rounding.
767
768 KEEP is 1 if this slot is to be retained after a call to
769 free_temp_slots. Automatic variables for a block are allocated
770 with this flag. KEEP values of 2 or 3 were needed respectively
771 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
772 or for SAVE_EXPRs, but they are now unused.
773
774 TYPE is the type that will be used for the stack slot. */
775
776 rtx
777 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
778 int keep, tree type)
779 {
780 unsigned int align;
781 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
782 rtx slot;
783
784 /* If SIZE is -1 it means that somebody tried to allocate a temporary
785 of a variable size. */
786 gcc_assert (size != -1);
787
788 /* These are now unused. */
789 gcc_assert (keep <= 1);
790
791 align = get_stack_local_alignment (type, mode);
792
793 /* Try to find an available, already-allocated temporary of the proper
794 mode which meets the size and alignment requirements. Choose the
795 smallest one with the closest alignment.
796
797 If assign_stack_temp is called outside of the tree->rtl expansion,
798 we cannot reuse the stack slots (that may still refer to
799 VIRTUAL_STACK_VARS_REGNUM). */
800 if (!virtuals_instantiated)
801 {
802 for (p = avail_temp_slots; p; p = p->next)
803 {
804 if (p->align >= align && p->size >= size
805 && GET_MODE (p->slot) == mode
806 && objects_must_conflict_p (p->type, type)
807 && (best_p == 0 || best_p->size > p->size
808 || (best_p->size == p->size && best_p->align > p->align)))
809 {
810 if (p->align == align && p->size == size)
811 {
812 selected = p;
813 cut_slot_from_list (selected, &avail_temp_slots);
814 best_p = 0;
815 break;
816 }
817 best_p = p;
818 }
819 }
820 }
821
822 /* Make our best, if any, the one to use. */
823 if (best_p)
824 {
825 selected = best_p;
826 cut_slot_from_list (selected, &avail_temp_slots);
827
828 /* If there are enough aligned bytes left over, make them into a new
829 temp_slot so that the extra bytes don't get wasted. Do this only
830 for BLKmode slots, so that we can be sure of the alignment. */
831 if (GET_MODE (best_p->slot) == BLKmode)
832 {
833 int alignment = best_p->align / BITS_PER_UNIT;
834 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
835
836 if (best_p->size - rounded_size >= alignment)
837 {
838 p = ggc_alloc_temp_slot ();
839 p->in_use = p->addr_taken = 0;
840 p->size = best_p->size - rounded_size;
841 p->base_offset = best_p->base_offset + rounded_size;
842 p->full_size = best_p->full_size - rounded_size;
843 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
844 p->align = best_p->align;
845 p->type = best_p->type;
846 insert_slot_to_list (p, &avail_temp_slots);
847
848 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
849 stack_slot_list);
850
851 best_p->size = rounded_size;
852 best_p->full_size = rounded_size;
853 }
854 }
855 }
856
857 /* If we still didn't find one, make a new temporary. */
858 if (selected == 0)
859 {
860 HOST_WIDE_INT frame_offset_old = frame_offset;
861
862 p = ggc_alloc_temp_slot ();
863
864 /* We are passing an explicit alignment request to assign_stack_local.
865 One side effect of that is assign_stack_local will not round SIZE
866 to ensure the frame offset remains suitably aligned.
867
868 So for requests which depended on the rounding of SIZE, we go ahead
869 and round it now. We also make sure ALIGNMENT is at least
870 BIGGEST_ALIGNMENT. */
871 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
872 p->slot = assign_stack_local (mode,
873 (mode == BLKmode
874 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
875 : size),
876 align);
877
878 p->align = align;
879
880 /* The following slot size computation is necessary because we don't
881 know the actual size of the temporary slot until assign_stack_local
882 has performed all the frame alignment and size rounding for the
883 requested temporary. Note that extra space added for alignment
884 can be either above or below this stack slot depending on which
885 way the frame grows. We include the extra space if and only if it
886 is above this slot. */
887 if (FRAME_GROWS_DOWNWARD)
888 p->size = frame_offset_old - frame_offset;
889 else
890 p->size = size;
891
892 /* Now define the fields used by combine_temp_slots. */
893 if (FRAME_GROWS_DOWNWARD)
894 {
895 p->base_offset = frame_offset;
896 p->full_size = frame_offset_old - frame_offset;
897 }
898 else
899 {
900 p->base_offset = frame_offset_old;
901 p->full_size = frame_offset - frame_offset_old;
902 }
903
904 selected = p;
905 }
906
907 p = selected;
908 p->in_use = 1;
909 p->addr_taken = 0;
910 p->type = type;
911 p->level = temp_slot_level;
912 p->keep = keep;
913
914 pp = temp_slots_at_level (p->level);
915 insert_slot_to_list (p, pp);
916 insert_temp_slot_address (XEXP (p->slot, 0), p);
917
918 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
919 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
920 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
921
922 /* If we know the alias set for the memory that will be used, use
923 it. If there's no TYPE, then we don't know anything about the
924 alias set for the memory. */
925 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
926 set_mem_align (slot, align);
927
928 /* If a type is specified, set the relevant flags. */
929 if (type != 0)
930 {
931 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
932 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
933 || TREE_CODE (type) == COMPLEX_TYPE));
934 }
935 MEM_NOTRAP_P (slot) = 1;
936
937 return slot;
938 }
939
940 /* Allocate a temporary stack slot and record it for possible later
941 reuse. First three arguments are same as in preceding function. */
942
943 rtx
944 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
945 {
946 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
947 }
948 \f
949 /* Assign a temporary.
950 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
951 and so that should be used in error messages. In either case, we
952 allocate of the given type.
953 KEEP is as for assign_stack_temp.
954 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
955 it is 0 if a register is OK.
956 DONT_PROMOTE is 1 if we should not promote values in register
957 to wider modes. */
958
959 rtx
960 assign_temp (tree type_or_decl, int keep, int memory_required,
961 int dont_promote ATTRIBUTE_UNUSED)
962 {
963 tree type, decl;
964 enum machine_mode mode;
965 #ifdef PROMOTE_MODE
966 int unsignedp;
967 #endif
968
969 if (DECL_P (type_or_decl))
970 decl = type_or_decl, type = TREE_TYPE (decl);
971 else
972 decl = NULL, type = type_or_decl;
973
974 mode = TYPE_MODE (type);
975 #ifdef PROMOTE_MODE
976 unsignedp = TYPE_UNSIGNED (type);
977 #endif
978
979 if (mode == BLKmode || memory_required)
980 {
981 HOST_WIDE_INT size = int_size_in_bytes (type);
982 rtx tmp;
983
984 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
985 problems with allocating the stack space. */
986 if (size == 0)
987 size = 1;
988
989 /* Unfortunately, we don't yet know how to allocate variable-sized
990 temporaries. However, sometimes we can find a fixed upper limit on
991 the size, so try that instead. */
992 else if (size == -1)
993 size = max_int_size_in_bytes (type);
994
995 /* The size of the temporary may be too large to fit into an integer. */
996 /* ??? Not sure this should happen except for user silliness, so limit
997 this to things that aren't compiler-generated temporaries. The
998 rest of the time we'll die in assign_stack_temp_for_type. */
999 if (decl && size == -1
1000 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1001 {
1002 error ("size of variable %q+D is too large", decl);
1003 size = 1;
1004 }
1005
1006 tmp = assign_stack_temp_for_type (mode, size, keep, type);
1007 return tmp;
1008 }
1009
1010 #ifdef PROMOTE_MODE
1011 if (! dont_promote)
1012 mode = promote_mode (type, mode, &unsignedp);
1013 #endif
1014
1015 return gen_reg_rtx (mode);
1016 }
1017 \f
1018 /* Combine temporary stack slots which are adjacent on the stack.
1019
1020 This allows for better use of already allocated stack space. This is only
1021 done for BLKmode slots because we can be sure that we won't have alignment
1022 problems in this case. */
1023
1024 static void
1025 combine_temp_slots (void)
1026 {
1027 struct temp_slot *p, *q, *next, *next_q;
1028 int num_slots;
1029
1030 /* We can't combine slots, because the information about which slot
1031 is in which alias set will be lost. */
1032 if (flag_strict_aliasing)
1033 return;
1034
1035 /* If there are a lot of temp slots, don't do anything unless
1036 high levels of optimization. */
1037 if (! flag_expensive_optimizations)
1038 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1039 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1040 return;
1041
1042 for (p = avail_temp_slots; p; p = next)
1043 {
1044 int delete_p = 0;
1045
1046 next = p->next;
1047
1048 if (GET_MODE (p->slot) != BLKmode)
1049 continue;
1050
1051 for (q = p->next; q; q = next_q)
1052 {
1053 int delete_q = 0;
1054
1055 next_q = q->next;
1056
1057 if (GET_MODE (q->slot) != BLKmode)
1058 continue;
1059
1060 if (p->base_offset + p->full_size == q->base_offset)
1061 {
1062 /* Q comes after P; combine Q into P. */
1063 p->size += q->size;
1064 p->full_size += q->full_size;
1065 delete_q = 1;
1066 }
1067 else if (q->base_offset + q->full_size == p->base_offset)
1068 {
1069 /* P comes after Q; combine P into Q. */
1070 q->size += p->size;
1071 q->full_size += p->full_size;
1072 delete_p = 1;
1073 break;
1074 }
1075 if (delete_q)
1076 cut_slot_from_list (q, &avail_temp_slots);
1077 }
1078
1079 /* Either delete P or advance past it. */
1080 if (delete_p)
1081 cut_slot_from_list (p, &avail_temp_slots);
1082 }
1083 }
1084 \f
1085 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1086 slot that previously was known by OLD_RTX. */
1087
1088 void
1089 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1090 {
1091 struct temp_slot *p;
1092
1093 if (rtx_equal_p (old_rtx, new_rtx))
1094 return;
1095
1096 p = find_temp_slot_from_address (old_rtx);
1097
1098 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1099 NEW_RTX is a register, see if one operand of the PLUS is a
1100 temporary location. If so, NEW_RTX points into it. Otherwise,
1101 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1102 in common between them. If so, try a recursive call on those
1103 values. */
1104 if (p == 0)
1105 {
1106 if (GET_CODE (old_rtx) != PLUS)
1107 return;
1108
1109 if (REG_P (new_rtx))
1110 {
1111 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1112 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1113 return;
1114 }
1115 else if (GET_CODE (new_rtx) != PLUS)
1116 return;
1117
1118 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1119 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1120 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1121 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1122 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1123 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1124 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1125 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1126
1127 return;
1128 }
1129
1130 /* Otherwise add an alias for the temp's address. */
1131 insert_temp_slot_address (new_rtx, p);
1132 }
1133
1134 /* If X could be a reference to a temporary slot, mark the fact that its
1135 address was taken. */
1136
1137 void
1138 mark_temp_addr_taken (rtx x)
1139 {
1140 struct temp_slot *p;
1141
1142 if (x == 0)
1143 return;
1144
1145 /* If X is not in memory or is at a constant address, it cannot be in
1146 a temporary slot. */
1147 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1148 return;
1149
1150 p = find_temp_slot_from_address (XEXP (x, 0));
1151 if (p != 0)
1152 p->addr_taken = 1;
1153 }
1154
1155 /* If X could be a reference to a temporary slot, mark that slot as
1156 belonging to the to one level higher than the current level. If X
1157 matched one of our slots, just mark that one. Otherwise, we can't
1158 easily predict which it is, so upgrade all of them. Kept slots
1159 need not be touched.
1160
1161 This is called when an ({...}) construct occurs and a statement
1162 returns a value in memory. */
1163
1164 void
1165 preserve_temp_slots (rtx x)
1166 {
1167 struct temp_slot *p = 0, *next;
1168
1169 /* If there is no result, we still might have some objects whose address
1170 were taken, so we need to make sure they stay around. */
1171 if (x == 0)
1172 {
1173 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1174 {
1175 next = p->next;
1176
1177 if (p->addr_taken)
1178 move_slot_to_level (p, temp_slot_level - 1);
1179 }
1180
1181 return;
1182 }
1183
1184 /* If X is a register that is being used as a pointer, see if we have
1185 a temporary slot we know it points to. To be consistent with
1186 the code below, we really should preserve all non-kept slots
1187 if we can't find a match, but that seems to be much too costly. */
1188 if (REG_P (x) && REG_POINTER (x))
1189 p = find_temp_slot_from_address (x);
1190
1191 /* If X is not in memory or is at a constant address, it cannot be in
1192 a temporary slot, but it can contain something whose address was
1193 taken. */
1194 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1195 {
1196 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1197 {
1198 next = p->next;
1199
1200 if (p->addr_taken)
1201 move_slot_to_level (p, temp_slot_level - 1);
1202 }
1203
1204 return;
1205 }
1206
1207 /* First see if we can find a match. */
1208 if (p == 0)
1209 p = find_temp_slot_from_address (XEXP (x, 0));
1210
1211 if (p != 0)
1212 {
1213 /* Move everything at our level whose address was taken to our new
1214 level in case we used its address. */
1215 struct temp_slot *q;
1216
1217 if (p->level == temp_slot_level)
1218 {
1219 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1220 {
1221 next = q->next;
1222
1223 if (p != q && q->addr_taken)
1224 move_slot_to_level (q, temp_slot_level - 1);
1225 }
1226
1227 move_slot_to_level (p, temp_slot_level - 1);
1228 p->addr_taken = 0;
1229 }
1230 return;
1231 }
1232
1233 /* Otherwise, preserve all non-kept slots at this level. */
1234 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1235 {
1236 next = p->next;
1237
1238 if (!p->keep)
1239 move_slot_to_level (p, temp_slot_level - 1);
1240 }
1241 }
1242
1243 /* Free all temporaries used so far. This is normally called at the
1244 end of generating code for a statement. */
1245
1246 void
1247 free_temp_slots (void)
1248 {
1249 struct temp_slot *p, *next;
1250 bool some_available = false;
1251
1252 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1253 {
1254 next = p->next;
1255
1256 if (!p->keep)
1257 {
1258 make_slot_available (p);
1259 some_available = true;
1260 }
1261 }
1262
1263 if (some_available)
1264 {
1265 remove_unused_temp_slot_addresses ();
1266 combine_temp_slots ();
1267 }
1268 }
1269
1270 /* Push deeper into the nesting level for stack temporaries. */
1271
1272 void
1273 push_temp_slots (void)
1274 {
1275 temp_slot_level++;
1276 }
1277
1278 /* Pop a temporary nesting level. All slots in use in the current level
1279 are freed. */
1280
1281 void
1282 pop_temp_slots (void)
1283 {
1284 struct temp_slot *p, *next;
1285 bool some_available = false;
1286
1287 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1288 {
1289 next = p->next;
1290 make_slot_available (p);
1291 some_available = true;
1292 }
1293
1294 if (some_available)
1295 {
1296 remove_unused_temp_slot_addresses ();
1297 combine_temp_slots ();
1298 }
1299
1300 temp_slot_level--;
1301 }
1302
1303 /* Initialize temporary slots. */
1304
1305 void
1306 init_temp_slots (void)
1307 {
1308 /* We have not allocated any temporaries yet. */
1309 avail_temp_slots = 0;
1310 used_temp_slots = 0;
1311 temp_slot_level = 0;
1312
1313 /* Set up the table to map addresses to temp slots. */
1314 if (! temp_slot_address_table)
1315 temp_slot_address_table = htab_create_ggc (32,
1316 temp_slot_address_hash,
1317 temp_slot_address_eq,
1318 NULL);
1319 else
1320 htab_empty (temp_slot_address_table);
1321 }
1322 \f
1323 /* These routines are responsible for converting virtual register references
1324 to the actual hard register references once RTL generation is complete.
1325
1326 The following four variables are used for communication between the
1327 routines. They contain the offsets of the virtual registers from their
1328 respective hard registers. */
1329
1330 static int in_arg_offset;
1331 static int var_offset;
1332 static int dynamic_offset;
1333 static int out_arg_offset;
1334 static int cfa_offset;
1335
1336 /* In most machines, the stack pointer register is equivalent to the bottom
1337 of the stack. */
1338
1339 #ifndef STACK_POINTER_OFFSET
1340 #define STACK_POINTER_OFFSET 0
1341 #endif
1342
1343 /* If not defined, pick an appropriate default for the offset of dynamically
1344 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1345 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1346
1347 #ifndef STACK_DYNAMIC_OFFSET
1348
1349 /* The bottom of the stack points to the actual arguments. If
1350 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1351 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1352 stack space for register parameters is not pushed by the caller, but
1353 rather part of the fixed stack areas and hence not included in
1354 `crtl->outgoing_args_size'. Nevertheless, we must allow
1355 for it when allocating stack dynamic objects. */
1356
1357 #if defined(REG_PARM_STACK_SPACE)
1358 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1359 ((ACCUMULATE_OUTGOING_ARGS \
1360 ? (crtl->outgoing_args_size \
1361 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1362 : REG_PARM_STACK_SPACE (FNDECL))) \
1363 : 0) + (STACK_POINTER_OFFSET))
1364 #else
1365 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1366 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1367 + (STACK_POINTER_OFFSET))
1368 #endif
1369 #endif
1370
1371 \f
1372 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1373 is a virtual register, return the equivalent hard register and set the
1374 offset indirectly through the pointer. Otherwise, return 0. */
1375
1376 static rtx
1377 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1378 {
1379 rtx new_rtx;
1380 HOST_WIDE_INT offset;
1381
1382 if (x == virtual_incoming_args_rtx)
1383 {
1384 if (stack_realign_drap)
1385 {
1386 /* Replace virtual_incoming_args_rtx with internal arg
1387 pointer if DRAP is used to realign stack. */
1388 new_rtx = crtl->args.internal_arg_pointer;
1389 offset = 0;
1390 }
1391 else
1392 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1393 }
1394 else if (x == virtual_stack_vars_rtx)
1395 new_rtx = frame_pointer_rtx, offset = var_offset;
1396 else if (x == virtual_stack_dynamic_rtx)
1397 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1398 else if (x == virtual_outgoing_args_rtx)
1399 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1400 else if (x == virtual_cfa_rtx)
1401 {
1402 #ifdef FRAME_POINTER_CFA_OFFSET
1403 new_rtx = frame_pointer_rtx;
1404 #else
1405 new_rtx = arg_pointer_rtx;
1406 #endif
1407 offset = cfa_offset;
1408 }
1409 else
1410 return NULL_RTX;
1411
1412 *poffset = offset;
1413 return new_rtx;
1414 }
1415
1416 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1417 Instantiate any virtual registers present inside of *LOC. The expression
1418 is simplified, as much as possible, but is not to be considered "valid"
1419 in any sense implied by the target. If any change is made, set CHANGED
1420 to true. */
1421
1422 static int
1423 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1424 {
1425 HOST_WIDE_INT offset;
1426 bool *changed = (bool *) data;
1427 rtx x, new_rtx;
1428
1429 x = *loc;
1430 if (x == 0)
1431 return 0;
1432
1433 switch (GET_CODE (x))
1434 {
1435 case REG:
1436 new_rtx = instantiate_new_reg (x, &offset);
1437 if (new_rtx)
1438 {
1439 *loc = plus_constant (new_rtx, offset);
1440 if (changed)
1441 *changed = true;
1442 }
1443 return -1;
1444
1445 case PLUS:
1446 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1447 if (new_rtx)
1448 {
1449 new_rtx = plus_constant (new_rtx, offset);
1450 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1451 if (changed)
1452 *changed = true;
1453 return -1;
1454 }
1455
1456 /* FIXME -- from old code */
1457 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1458 we can commute the PLUS and SUBREG because pointers into the
1459 frame are well-behaved. */
1460 break;
1461
1462 default:
1463 break;
1464 }
1465
1466 return 0;
1467 }
1468
1469 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1470 matches the predicate for insn CODE operand OPERAND. */
1471
1472 static int
1473 safe_insn_predicate (int code, int operand, rtx x)
1474 {
1475 const struct insn_operand_data *op_data;
1476
1477 if (code < 0)
1478 return true;
1479
1480 op_data = &insn_data[code].operand[operand];
1481 if (op_data->predicate == NULL)
1482 return true;
1483
1484 return op_data->predicate (x, op_data->mode);
1485 }
1486
1487 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1488 registers present inside of insn. The result will be a valid insn. */
1489
1490 static void
1491 instantiate_virtual_regs_in_insn (rtx insn)
1492 {
1493 HOST_WIDE_INT offset;
1494 int insn_code, i;
1495 bool any_change = false;
1496 rtx set, new_rtx, x, seq;
1497
1498 /* There are some special cases to be handled first. */
1499 set = single_set (insn);
1500 if (set)
1501 {
1502 /* We're allowed to assign to a virtual register. This is interpreted
1503 to mean that the underlying register gets assigned the inverse
1504 transformation. This is used, for example, in the handling of
1505 non-local gotos. */
1506 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1507 if (new_rtx)
1508 {
1509 start_sequence ();
1510
1511 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1512 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1513 GEN_INT (-offset));
1514 x = force_operand (x, new_rtx);
1515 if (x != new_rtx)
1516 emit_move_insn (new_rtx, x);
1517
1518 seq = get_insns ();
1519 end_sequence ();
1520
1521 emit_insn_before (seq, insn);
1522 delete_insn (insn);
1523 return;
1524 }
1525
1526 /* Handle a straight copy from a virtual register by generating a
1527 new add insn. The difference between this and falling through
1528 to the generic case is avoiding a new pseudo and eliminating a
1529 move insn in the initial rtl stream. */
1530 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1531 if (new_rtx && offset != 0
1532 && REG_P (SET_DEST (set))
1533 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1534 {
1535 start_sequence ();
1536
1537 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1538 new_rtx, GEN_INT (offset), SET_DEST (set),
1539 1, OPTAB_LIB_WIDEN);
1540 if (x != SET_DEST (set))
1541 emit_move_insn (SET_DEST (set), x);
1542
1543 seq = get_insns ();
1544 end_sequence ();
1545
1546 emit_insn_before (seq, insn);
1547 delete_insn (insn);
1548 return;
1549 }
1550
1551 extract_insn (insn);
1552 insn_code = INSN_CODE (insn);
1553
1554 /* Handle a plus involving a virtual register by determining if the
1555 operands remain valid if they're modified in place. */
1556 if (GET_CODE (SET_SRC (set)) == PLUS
1557 && recog_data.n_operands >= 3
1558 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1559 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1560 && CONST_INT_P (recog_data.operand[2])
1561 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1562 {
1563 offset += INTVAL (recog_data.operand[2]);
1564
1565 /* If the sum is zero, then replace with a plain move. */
1566 if (offset == 0
1567 && REG_P (SET_DEST (set))
1568 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1569 {
1570 start_sequence ();
1571 emit_move_insn (SET_DEST (set), new_rtx);
1572 seq = get_insns ();
1573 end_sequence ();
1574
1575 emit_insn_before (seq, insn);
1576 delete_insn (insn);
1577 return;
1578 }
1579
1580 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1581
1582 /* Using validate_change and apply_change_group here leaves
1583 recog_data in an invalid state. Since we know exactly what
1584 we want to check, do those two by hand. */
1585 if (safe_insn_predicate (insn_code, 1, new_rtx)
1586 && safe_insn_predicate (insn_code, 2, x))
1587 {
1588 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1589 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1590 any_change = true;
1591
1592 /* Fall through into the regular operand fixup loop in
1593 order to take care of operands other than 1 and 2. */
1594 }
1595 }
1596 }
1597 else
1598 {
1599 extract_insn (insn);
1600 insn_code = INSN_CODE (insn);
1601 }
1602
1603 /* In the general case, we expect virtual registers to appear only in
1604 operands, and then only as either bare registers or inside memories. */
1605 for (i = 0; i < recog_data.n_operands; ++i)
1606 {
1607 x = recog_data.operand[i];
1608 switch (GET_CODE (x))
1609 {
1610 case MEM:
1611 {
1612 rtx addr = XEXP (x, 0);
1613 bool changed = false;
1614
1615 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1616 if (!changed)
1617 continue;
1618
1619 start_sequence ();
1620 x = replace_equiv_address (x, addr);
1621 /* It may happen that the address with the virtual reg
1622 was valid (e.g. based on the virtual stack reg, which might
1623 be acceptable to the predicates with all offsets), whereas
1624 the address now isn't anymore, for instance when the address
1625 is still offsetted, but the base reg isn't virtual-stack-reg
1626 anymore. Below we would do a force_reg on the whole operand,
1627 but this insn might actually only accept memory. Hence,
1628 before doing that last resort, try to reload the address into
1629 a register, so this operand stays a MEM. */
1630 if (!safe_insn_predicate (insn_code, i, x))
1631 {
1632 addr = force_reg (GET_MODE (addr), addr);
1633 x = replace_equiv_address (x, addr);
1634 }
1635 seq = get_insns ();
1636 end_sequence ();
1637 if (seq)
1638 emit_insn_before (seq, insn);
1639 }
1640 break;
1641
1642 case REG:
1643 new_rtx = instantiate_new_reg (x, &offset);
1644 if (new_rtx == NULL)
1645 continue;
1646 if (offset == 0)
1647 x = new_rtx;
1648 else
1649 {
1650 start_sequence ();
1651
1652 /* Careful, special mode predicates may have stuff in
1653 insn_data[insn_code].operand[i].mode that isn't useful
1654 to us for computing a new value. */
1655 /* ??? Recognize address_operand and/or "p" constraints
1656 to see if (plus new offset) is a valid before we put
1657 this through expand_simple_binop. */
1658 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1659 GEN_INT (offset), NULL_RTX,
1660 1, OPTAB_LIB_WIDEN);
1661 seq = get_insns ();
1662 end_sequence ();
1663 emit_insn_before (seq, insn);
1664 }
1665 break;
1666
1667 case SUBREG:
1668 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1669 if (new_rtx == NULL)
1670 continue;
1671 if (offset != 0)
1672 {
1673 start_sequence ();
1674 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1675 GEN_INT (offset), NULL_RTX,
1676 1, OPTAB_LIB_WIDEN);
1677 seq = get_insns ();
1678 end_sequence ();
1679 emit_insn_before (seq, insn);
1680 }
1681 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1682 GET_MODE (new_rtx), SUBREG_BYTE (x));
1683 gcc_assert (x);
1684 break;
1685
1686 default:
1687 continue;
1688 }
1689
1690 /* At this point, X contains the new value for the operand.
1691 Validate the new value vs the insn predicate. Note that
1692 asm insns will have insn_code -1 here. */
1693 if (!safe_insn_predicate (insn_code, i, x))
1694 {
1695 start_sequence ();
1696 if (REG_P (x))
1697 {
1698 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1699 x = copy_to_reg (x);
1700 }
1701 else
1702 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1703 seq = get_insns ();
1704 end_sequence ();
1705 if (seq)
1706 emit_insn_before (seq, insn);
1707 }
1708
1709 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1710 any_change = true;
1711 }
1712
1713 if (any_change)
1714 {
1715 /* Propagate operand changes into the duplicates. */
1716 for (i = 0; i < recog_data.n_dups; ++i)
1717 *recog_data.dup_loc[i]
1718 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1719
1720 /* Force re-recognition of the instruction for validation. */
1721 INSN_CODE (insn) = -1;
1722 }
1723
1724 if (asm_noperands (PATTERN (insn)) >= 0)
1725 {
1726 if (!check_asm_operands (PATTERN (insn)))
1727 {
1728 error_for_asm (insn, "impossible constraint in %<asm%>");
1729 delete_insn (insn);
1730 }
1731 }
1732 else
1733 {
1734 if (recog_memoized (insn) < 0)
1735 fatal_insn_not_found (insn);
1736 }
1737 }
1738
1739 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1740 do any instantiation required. */
1741
1742 void
1743 instantiate_decl_rtl (rtx x)
1744 {
1745 rtx addr;
1746
1747 if (x == 0)
1748 return;
1749
1750 /* If this is a CONCAT, recurse for the pieces. */
1751 if (GET_CODE (x) == CONCAT)
1752 {
1753 instantiate_decl_rtl (XEXP (x, 0));
1754 instantiate_decl_rtl (XEXP (x, 1));
1755 return;
1756 }
1757
1758 /* If this is not a MEM, no need to do anything. Similarly if the
1759 address is a constant or a register that is not a virtual register. */
1760 if (!MEM_P (x))
1761 return;
1762
1763 addr = XEXP (x, 0);
1764 if (CONSTANT_P (addr)
1765 || (REG_P (addr)
1766 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1767 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1768 return;
1769
1770 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1771 }
1772
1773 /* Helper for instantiate_decls called via walk_tree: Process all decls
1774 in the given DECL_VALUE_EXPR. */
1775
1776 static tree
1777 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1778 {
1779 tree t = *tp;
1780 if (! EXPR_P (t))
1781 {
1782 *walk_subtrees = 0;
1783 if (DECL_P (t) && DECL_RTL_SET_P (t))
1784 instantiate_decl_rtl (DECL_RTL (t));
1785 }
1786 return NULL;
1787 }
1788
1789 /* Subroutine of instantiate_decls: Process all decls in the given
1790 BLOCK node and all its subblocks. */
1791
1792 static void
1793 instantiate_decls_1 (tree let)
1794 {
1795 tree t;
1796
1797 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1798 {
1799 if (DECL_RTL_SET_P (t))
1800 instantiate_decl_rtl (DECL_RTL (t));
1801 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1802 {
1803 tree v = DECL_VALUE_EXPR (t);
1804 walk_tree (&v, instantiate_expr, NULL, NULL);
1805 }
1806 }
1807
1808 /* Process all subblocks. */
1809 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1810 instantiate_decls_1 (t);
1811 }
1812
1813 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1814 all virtual registers in their DECL_RTL's. */
1815
1816 static void
1817 instantiate_decls (tree fndecl)
1818 {
1819 tree decl, t, next;
1820
1821 /* Process all parameters of the function. */
1822 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1823 {
1824 instantiate_decl_rtl (DECL_RTL (decl));
1825 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1826 if (DECL_HAS_VALUE_EXPR_P (decl))
1827 {
1828 tree v = DECL_VALUE_EXPR (decl);
1829 walk_tree (&v, instantiate_expr, NULL, NULL);
1830 }
1831 }
1832
1833 /* Now process all variables defined in the function or its subblocks. */
1834 instantiate_decls_1 (DECL_INITIAL (fndecl));
1835
1836 t = cfun->local_decls;
1837 cfun->local_decls = NULL_TREE;
1838 for (; t; t = next)
1839 {
1840 next = TREE_CHAIN (t);
1841 decl = TREE_VALUE (t);
1842 if (DECL_RTL_SET_P (decl))
1843 instantiate_decl_rtl (DECL_RTL (decl));
1844 ggc_free (t);
1845 }
1846 }
1847
1848 /* Pass through the INSNS of function FNDECL and convert virtual register
1849 references to hard register references. */
1850
1851 static unsigned int
1852 instantiate_virtual_regs (void)
1853 {
1854 rtx insn;
1855
1856 /* Compute the offsets to use for this function. */
1857 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1858 var_offset = STARTING_FRAME_OFFSET;
1859 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1860 out_arg_offset = STACK_POINTER_OFFSET;
1861 #ifdef FRAME_POINTER_CFA_OFFSET
1862 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1863 #else
1864 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1865 #endif
1866
1867 /* Initialize recognition, indicating that volatile is OK. */
1868 init_recog ();
1869
1870 /* Scan through all the insns, instantiating every virtual register still
1871 present. */
1872 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1873 if (INSN_P (insn))
1874 {
1875 /* These patterns in the instruction stream can never be recognized.
1876 Fortunately, they shouldn't contain virtual registers either. */
1877 if (GET_CODE (PATTERN (insn)) == USE
1878 || GET_CODE (PATTERN (insn)) == CLOBBER
1879 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1880 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1881 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1882 continue;
1883 else if (DEBUG_INSN_P (insn))
1884 for_each_rtx (&INSN_VAR_LOCATION (insn),
1885 instantiate_virtual_regs_in_rtx, NULL);
1886 else
1887 instantiate_virtual_regs_in_insn (insn);
1888
1889 if (INSN_DELETED_P (insn))
1890 continue;
1891
1892 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1893
1894 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1895 if (CALL_P (insn))
1896 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1897 instantiate_virtual_regs_in_rtx, NULL);
1898 }
1899
1900 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1901 instantiate_decls (current_function_decl);
1902
1903 targetm.instantiate_decls ();
1904
1905 /* Indicate that, from now on, assign_stack_local should use
1906 frame_pointer_rtx. */
1907 virtuals_instantiated = 1;
1908 return 0;
1909 }
1910
1911 struct rtl_opt_pass pass_instantiate_virtual_regs =
1912 {
1913 {
1914 RTL_PASS,
1915 "vregs", /* name */
1916 NULL, /* gate */
1917 instantiate_virtual_regs, /* execute */
1918 NULL, /* sub */
1919 NULL, /* next */
1920 0, /* static_pass_number */
1921 TV_NONE, /* tv_id */
1922 0, /* properties_required */
1923 0, /* properties_provided */
1924 0, /* properties_destroyed */
1925 0, /* todo_flags_start */
1926 TODO_dump_func /* todo_flags_finish */
1927 }
1928 };
1929
1930 \f
1931 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1932 This means a type for which function calls must pass an address to the
1933 function or get an address back from the function.
1934 EXP may be a type node or an expression (whose type is tested). */
1935
1936 int
1937 aggregate_value_p (const_tree exp, const_tree fntype)
1938 {
1939 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1940 int i, regno, nregs;
1941 rtx reg;
1942
1943 if (fntype)
1944 switch (TREE_CODE (fntype))
1945 {
1946 case CALL_EXPR:
1947 {
1948 tree fndecl = get_callee_fndecl (fntype);
1949 fntype = (fndecl
1950 ? TREE_TYPE (fndecl)
1951 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1952 }
1953 break;
1954 case FUNCTION_DECL:
1955 fntype = TREE_TYPE (fntype);
1956 break;
1957 case FUNCTION_TYPE:
1958 case METHOD_TYPE:
1959 break;
1960 case IDENTIFIER_NODE:
1961 fntype = NULL_TREE;
1962 break;
1963 default:
1964 /* We don't expect other tree types here. */
1965 gcc_unreachable ();
1966 }
1967
1968 if (VOID_TYPE_P (type))
1969 return 0;
1970
1971 /* If a record should be passed the same as its first (and only) member
1972 don't pass it as an aggregate. */
1973 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
1974 return aggregate_value_p (first_field (type), fntype);
1975
1976 /* If the front end has decided that this needs to be passed by
1977 reference, do so. */
1978 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1979 && DECL_BY_REFERENCE (exp))
1980 return 1;
1981
1982 /* Function types that are TREE_ADDRESSABLE force return in memory. */
1983 if (fntype && TREE_ADDRESSABLE (fntype))
1984 return 1;
1985
1986 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1987 and thus can't be returned in registers. */
1988 if (TREE_ADDRESSABLE (type))
1989 return 1;
1990
1991 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1992 return 1;
1993
1994 if (targetm.calls.return_in_memory (type, fntype))
1995 return 1;
1996
1997 /* Make sure we have suitable call-clobbered regs to return
1998 the value in; if not, we must return it in memory. */
1999 reg = hard_function_value (type, 0, fntype, 0);
2000
2001 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2002 it is OK. */
2003 if (!REG_P (reg))
2004 return 0;
2005
2006 regno = REGNO (reg);
2007 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2008 for (i = 0; i < nregs; i++)
2009 if (! call_used_regs[regno + i])
2010 return 1;
2011
2012 return 0;
2013 }
2014 \f
2015 /* Return true if we should assign DECL a pseudo register; false if it
2016 should live on the local stack. */
2017
2018 bool
2019 use_register_for_decl (const_tree decl)
2020 {
2021 if (!targetm.calls.allocate_stack_slots_for_args())
2022 return true;
2023
2024 /* Honor volatile. */
2025 if (TREE_SIDE_EFFECTS (decl))
2026 return false;
2027
2028 /* Honor addressability. */
2029 if (TREE_ADDRESSABLE (decl))
2030 return false;
2031
2032 /* Only register-like things go in registers. */
2033 if (DECL_MODE (decl) == BLKmode)
2034 return false;
2035
2036 /* If -ffloat-store specified, don't put explicit float variables
2037 into registers. */
2038 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2039 propagates values across these stores, and it probably shouldn't. */
2040 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2041 return false;
2042
2043 /* If we're not interested in tracking debugging information for
2044 this decl, then we can certainly put it in a register. */
2045 if (DECL_IGNORED_P (decl))
2046 return true;
2047
2048 if (optimize)
2049 return true;
2050
2051 if (!DECL_REGISTER (decl))
2052 return false;
2053
2054 switch (TREE_CODE (TREE_TYPE (decl)))
2055 {
2056 case RECORD_TYPE:
2057 case UNION_TYPE:
2058 case QUAL_UNION_TYPE:
2059 /* When not optimizing, disregard register keyword for variables with
2060 types containing methods, otherwise the methods won't be callable
2061 from the debugger. */
2062 if (TYPE_METHODS (TREE_TYPE (decl)))
2063 return false;
2064 break;
2065 default:
2066 break;
2067 }
2068
2069 return true;
2070 }
2071
2072 /* Return true if TYPE should be passed by invisible reference. */
2073
2074 bool
2075 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2076 tree type, bool named_arg)
2077 {
2078 if (type)
2079 {
2080 /* If this type contains non-trivial constructors, then it is
2081 forbidden for the middle-end to create any new copies. */
2082 if (TREE_ADDRESSABLE (type))
2083 return true;
2084
2085 /* GCC post 3.4 passes *all* variable sized types by reference. */
2086 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2087 return true;
2088
2089 /* If a record type should be passed the same as its first (and only)
2090 member, use the type and mode of that member. */
2091 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2092 {
2093 type = TREE_TYPE (first_field (type));
2094 mode = TYPE_MODE (type);
2095 }
2096 }
2097
2098 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
2099 }
2100
2101 /* Return true if TYPE, which is passed by reference, should be callee
2102 copied instead of caller copied. */
2103
2104 bool
2105 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2106 tree type, bool named_arg)
2107 {
2108 if (type && TREE_ADDRESSABLE (type))
2109 return false;
2110 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2111 }
2112
2113 /* Structures to communicate between the subroutines of assign_parms.
2114 The first holds data persistent across all parameters, the second
2115 is cleared out for each parameter. */
2116
2117 struct assign_parm_data_all
2118 {
2119 CUMULATIVE_ARGS args_so_far;
2120 struct args_size stack_args_size;
2121 tree function_result_decl;
2122 tree orig_fnargs;
2123 rtx first_conversion_insn;
2124 rtx last_conversion_insn;
2125 HOST_WIDE_INT pretend_args_size;
2126 HOST_WIDE_INT extra_pretend_bytes;
2127 int reg_parm_stack_space;
2128 };
2129
2130 struct assign_parm_data_one
2131 {
2132 tree nominal_type;
2133 tree passed_type;
2134 rtx entry_parm;
2135 rtx stack_parm;
2136 enum machine_mode nominal_mode;
2137 enum machine_mode passed_mode;
2138 enum machine_mode promoted_mode;
2139 struct locate_and_pad_arg_data locate;
2140 int partial;
2141 BOOL_BITFIELD named_arg : 1;
2142 BOOL_BITFIELD passed_pointer : 1;
2143 BOOL_BITFIELD on_stack : 1;
2144 BOOL_BITFIELD loaded_in_reg : 1;
2145 };
2146
2147 /* A subroutine of assign_parms. Initialize ALL. */
2148
2149 static void
2150 assign_parms_initialize_all (struct assign_parm_data_all *all)
2151 {
2152 tree fntype ATTRIBUTE_UNUSED;
2153
2154 memset (all, 0, sizeof (*all));
2155
2156 fntype = TREE_TYPE (current_function_decl);
2157
2158 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2159 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2160 #else
2161 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2162 current_function_decl, -1);
2163 #endif
2164
2165 #ifdef REG_PARM_STACK_SPACE
2166 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2167 #endif
2168 }
2169
2170 /* If ARGS contains entries with complex types, split the entry into two
2171 entries of the component type. Return a new list of substitutions are
2172 needed, else the old list. */
2173
2174 static void
2175 split_complex_args (VEC(tree, heap) **args)
2176 {
2177 unsigned i;
2178 tree p;
2179
2180 for (i = 0; VEC_iterate (tree, *args, i, p); ++i)
2181 {
2182 tree type = TREE_TYPE (p);
2183 if (TREE_CODE (type) == COMPLEX_TYPE
2184 && targetm.calls.split_complex_arg (type))
2185 {
2186 tree decl;
2187 tree subtype = TREE_TYPE (type);
2188 bool addressable = TREE_ADDRESSABLE (p);
2189
2190 /* Rewrite the PARM_DECL's type with its component. */
2191 p = copy_node (p);
2192 TREE_TYPE (p) = subtype;
2193 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2194 DECL_MODE (p) = VOIDmode;
2195 DECL_SIZE (p) = NULL;
2196 DECL_SIZE_UNIT (p) = NULL;
2197 /* If this arg must go in memory, put it in a pseudo here.
2198 We can't allow it to go in memory as per normal parms,
2199 because the usual place might not have the imag part
2200 adjacent to the real part. */
2201 DECL_ARTIFICIAL (p) = addressable;
2202 DECL_IGNORED_P (p) = addressable;
2203 TREE_ADDRESSABLE (p) = 0;
2204 layout_decl (p, 0);
2205 VEC_replace (tree, *args, i, p);
2206
2207 /* Build a second synthetic decl. */
2208 decl = build_decl (EXPR_LOCATION (p),
2209 PARM_DECL, NULL_TREE, subtype);
2210 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2211 DECL_ARTIFICIAL (decl) = addressable;
2212 DECL_IGNORED_P (decl) = addressable;
2213 layout_decl (decl, 0);
2214 VEC_safe_insert (tree, heap, *args, ++i, decl);
2215 }
2216 }
2217 }
2218
2219 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2220 the hidden struct return argument, and (abi willing) complex args.
2221 Return the new parameter list. */
2222
2223 static VEC(tree, heap) *
2224 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2225 {
2226 tree fndecl = current_function_decl;
2227 tree fntype = TREE_TYPE (fndecl);
2228 VEC(tree, heap) *fnargs = NULL;
2229 tree arg;
2230
2231 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
2232 VEC_safe_push (tree, heap, fnargs, arg);
2233
2234 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2235
2236 /* If struct value address is treated as the first argument, make it so. */
2237 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2238 && ! cfun->returns_pcc_struct
2239 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2240 {
2241 tree type = build_pointer_type (TREE_TYPE (fntype));
2242 tree decl;
2243
2244 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2245 PARM_DECL, NULL_TREE, type);
2246 DECL_ARG_TYPE (decl) = type;
2247 DECL_ARTIFICIAL (decl) = 1;
2248 DECL_IGNORED_P (decl) = 1;
2249
2250 TREE_CHAIN (decl) = all->orig_fnargs;
2251 all->orig_fnargs = decl;
2252 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2253
2254 all->function_result_decl = decl;
2255 }
2256
2257 /* If the target wants to split complex arguments into scalars, do so. */
2258 if (targetm.calls.split_complex_arg)
2259 split_complex_args (&fnargs);
2260
2261 return fnargs;
2262 }
2263
2264 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2265 data for the parameter. Incorporate ABI specifics such as pass-by-
2266 reference and type promotion. */
2267
2268 static void
2269 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2270 struct assign_parm_data_one *data)
2271 {
2272 tree nominal_type, passed_type;
2273 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2274 int unsignedp;
2275
2276 memset (data, 0, sizeof (*data));
2277
2278 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2279 if (!cfun->stdarg)
2280 data->named_arg = 1; /* No variadic parms. */
2281 else if (TREE_CHAIN (parm))
2282 data->named_arg = 1; /* Not the last non-variadic parm. */
2283 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2284 data->named_arg = 1; /* Only variadic ones are unnamed. */
2285 else
2286 data->named_arg = 0; /* Treat as variadic. */
2287
2288 nominal_type = TREE_TYPE (parm);
2289 passed_type = DECL_ARG_TYPE (parm);
2290
2291 /* Look out for errors propagating this far. Also, if the parameter's
2292 type is void then its value doesn't matter. */
2293 if (TREE_TYPE (parm) == error_mark_node
2294 /* This can happen after weird syntax errors
2295 or if an enum type is defined among the parms. */
2296 || TREE_CODE (parm) != PARM_DECL
2297 || passed_type == NULL
2298 || VOID_TYPE_P (nominal_type))
2299 {
2300 nominal_type = passed_type = void_type_node;
2301 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2302 goto egress;
2303 }
2304
2305 /* Find mode of arg as it is passed, and mode of arg as it should be
2306 during execution of this function. */
2307 passed_mode = TYPE_MODE (passed_type);
2308 nominal_mode = TYPE_MODE (nominal_type);
2309
2310 /* If the parm is to be passed as a transparent union or record, use the
2311 type of the first field for the tests below. We have already verified
2312 that the modes are the same. */
2313 if ((TREE_CODE (passed_type) == UNION_TYPE
2314 || TREE_CODE (passed_type) == RECORD_TYPE)
2315 && TYPE_TRANSPARENT_AGGR (passed_type))
2316 passed_type = TREE_TYPE (first_field (passed_type));
2317
2318 /* See if this arg was passed by invisible reference. */
2319 if (pass_by_reference (&all->args_so_far, passed_mode,
2320 passed_type, data->named_arg))
2321 {
2322 passed_type = nominal_type = build_pointer_type (passed_type);
2323 data->passed_pointer = true;
2324 passed_mode = nominal_mode = Pmode;
2325 }
2326
2327 /* Find mode as it is passed by the ABI. */
2328 unsignedp = TYPE_UNSIGNED (passed_type);
2329 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2330 TREE_TYPE (current_function_decl), 0);
2331
2332 egress:
2333 data->nominal_type = nominal_type;
2334 data->passed_type = passed_type;
2335 data->nominal_mode = nominal_mode;
2336 data->passed_mode = passed_mode;
2337 data->promoted_mode = promoted_mode;
2338 }
2339
2340 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2341
2342 static void
2343 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2344 struct assign_parm_data_one *data, bool no_rtl)
2345 {
2346 int varargs_pretend_bytes = 0;
2347
2348 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2349 data->promoted_mode,
2350 data->passed_type,
2351 &varargs_pretend_bytes, no_rtl);
2352
2353 /* If the back-end has requested extra stack space, record how much is
2354 needed. Do not change pretend_args_size otherwise since it may be
2355 nonzero from an earlier partial argument. */
2356 if (varargs_pretend_bytes > 0)
2357 all->pretend_args_size = varargs_pretend_bytes;
2358 }
2359
2360 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2361 the incoming location of the current parameter. */
2362
2363 static void
2364 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2365 struct assign_parm_data_one *data)
2366 {
2367 HOST_WIDE_INT pretend_bytes = 0;
2368 rtx entry_parm;
2369 bool in_regs;
2370
2371 if (data->promoted_mode == VOIDmode)
2372 {
2373 data->entry_parm = data->stack_parm = const0_rtx;
2374 return;
2375 }
2376
2377 #ifdef FUNCTION_INCOMING_ARG
2378 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2379 data->passed_type, data->named_arg);
2380 #else
2381 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2382 data->passed_type, data->named_arg);
2383 #endif
2384
2385 if (entry_parm == 0)
2386 data->promoted_mode = data->passed_mode;
2387
2388 /* Determine parm's home in the stack, in case it arrives in the stack
2389 or we should pretend it did. Compute the stack position and rtx where
2390 the argument arrives and its size.
2391
2392 There is one complexity here: If this was a parameter that would
2393 have been passed in registers, but wasn't only because it is
2394 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2395 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2396 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2397 as it was the previous time. */
2398 in_regs = entry_parm != 0;
2399 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2400 in_regs = true;
2401 #endif
2402 if (!in_regs && !data->named_arg)
2403 {
2404 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2405 {
2406 rtx tem;
2407 #ifdef FUNCTION_INCOMING_ARG
2408 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2409 data->passed_type, true);
2410 #else
2411 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2412 data->passed_type, true);
2413 #endif
2414 in_regs = tem != NULL;
2415 }
2416 }
2417
2418 /* If this parameter was passed both in registers and in the stack, use
2419 the copy on the stack. */
2420 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2421 data->passed_type))
2422 entry_parm = 0;
2423
2424 if (entry_parm)
2425 {
2426 int partial;
2427
2428 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2429 data->promoted_mode,
2430 data->passed_type,
2431 data->named_arg);
2432 data->partial = partial;
2433
2434 /* The caller might already have allocated stack space for the
2435 register parameters. */
2436 if (partial != 0 && all->reg_parm_stack_space == 0)
2437 {
2438 /* Part of this argument is passed in registers and part
2439 is passed on the stack. Ask the prologue code to extend
2440 the stack part so that we can recreate the full value.
2441
2442 PRETEND_BYTES is the size of the registers we need to store.
2443 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2444 stack space that the prologue should allocate.
2445
2446 Internally, gcc assumes that the argument pointer is aligned
2447 to STACK_BOUNDARY bits. This is used both for alignment
2448 optimizations (see init_emit) and to locate arguments that are
2449 aligned to more than PARM_BOUNDARY bits. We must preserve this
2450 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2451 a stack boundary. */
2452
2453 /* We assume at most one partial arg, and it must be the first
2454 argument on the stack. */
2455 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2456
2457 pretend_bytes = partial;
2458 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2459
2460 /* We want to align relative to the actual stack pointer, so
2461 don't include this in the stack size until later. */
2462 all->extra_pretend_bytes = all->pretend_args_size;
2463 }
2464 }
2465
2466 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2467 entry_parm ? data->partial : 0, current_function_decl,
2468 &all->stack_args_size, &data->locate);
2469
2470 /* Update parm_stack_boundary if this parameter is passed in the
2471 stack. */
2472 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2473 crtl->parm_stack_boundary = data->locate.boundary;
2474
2475 /* Adjust offsets to include the pretend args. */
2476 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2477 data->locate.slot_offset.constant += pretend_bytes;
2478 data->locate.offset.constant += pretend_bytes;
2479
2480 data->entry_parm = entry_parm;
2481 }
2482
2483 /* A subroutine of assign_parms. If there is actually space on the stack
2484 for this parm, count it in stack_args_size and return true. */
2485
2486 static bool
2487 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2488 struct assign_parm_data_one *data)
2489 {
2490 /* Trivially true if we've no incoming register. */
2491 if (data->entry_parm == NULL)
2492 ;
2493 /* Also true if we're partially in registers and partially not,
2494 since we've arranged to drop the entire argument on the stack. */
2495 else if (data->partial != 0)
2496 ;
2497 /* Also true if the target says that it's passed in both registers
2498 and on the stack. */
2499 else if (GET_CODE (data->entry_parm) == PARALLEL
2500 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2501 ;
2502 /* Also true if the target says that there's stack allocated for
2503 all register parameters. */
2504 else if (all->reg_parm_stack_space > 0)
2505 ;
2506 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2507 else
2508 return false;
2509
2510 all->stack_args_size.constant += data->locate.size.constant;
2511 if (data->locate.size.var)
2512 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2513
2514 return true;
2515 }
2516
2517 /* A subroutine of assign_parms. Given that this parameter is allocated
2518 stack space by the ABI, find it. */
2519
2520 static void
2521 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2522 {
2523 rtx offset_rtx, stack_parm;
2524 unsigned int align, boundary;
2525
2526 /* If we're passing this arg using a reg, make its stack home the
2527 aligned stack slot. */
2528 if (data->entry_parm)
2529 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2530 else
2531 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2532
2533 stack_parm = crtl->args.internal_arg_pointer;
2534 if (offset_rtx != const0_rtx)
2535 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2536 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2537
2538 if (!data->passed_pointer)
2539 {
2540 set_mem_attributes (stack_parm, parm, 1);
2541 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2542 while promoted mode's size is needed. */
2543 if (data->promoted_mode != BLKmode
2544 && data->promoted_mode != DECL_MODE (parm))
2545 {
2546 set_mem_size (stack_parm,
2547 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2548 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2549 {
2550 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2551 data->promoted_mode);
2552 if (offset)
2553 set_mem_offset (stack_parm,
2554 plus_constant (MEM_OFFSET (stack_parm),
2555 -offset));
2556 }
2557 }
2558 }
2559
2560 boundary = data->locate.boundary;
2561 align = BITS_PER_UNIT;
2562
2563 /* If we're padding upward, we know that the alignment of the slot
2564 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2565 intentionally forcing upward padding. Otherwise we have to come
2566 up with a guess at the alignment based on OFFSET_RTX. */
2567 if (data->locate.where_pad != downward || data->entry_parm)
2568 align = boundary;
2569 else if (CONST_INT_P (offset_rtx))
2570 {
2571 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2572 align = align & -align;
2573 }
2574 set_mem_align (stack_parm, align);
2575
2576 if (data->entry_parm)
2577 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2578
2579 data->stack_parm = stack_parm;
2580 }
2581
2582 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2583 always valid and contiguous. */
2584
2585 static void
2586 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2587 {
2588 rtx entry_parm = data->entry_parm;
2589 rtx stack_parm = data->stack_parm;
2590
2591 /* If this parm was passed part in regs and part in memory, pretend it
2592 arrived entirely in memory by pushing the register-part onto the stack.
2593 In the special case of a DImode or DFmode that is split, we could put
2594 it together in a pseudoreg directly, but for now that's not worth
2595 bothering with. */
2596 if (data->partial != 0)
2597 {
2598 /* Handle calls that pass values in multiple non-contiguous
2599 locations. The Irix 6 ABI has examples of this. */
2600 if (GET_CODE (entry_parm) == PARALLEL)
2601 emit_group_store (validize_mem (stack_parm), entry_parm,
2602 data->passed_type,
2603 int_size_in_bytes (data->passed_type));
2604 else
2605 {
2606 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2607 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2608 data->partial / UNITS_PER_WORD);
2609 }
2610
2611 entry_parm = stack_parm;
2612 }
2613
2614 /* If we didn't decide this parm came in a register, by default it came
2615 on the stack. */
2616 else if (entry_parm == NULL)
2617 entry_parm = stack_parm;
2618
2619 /* When an argument is passed in multiple locations, we can't make use
2620 of this information, but we can save some copying if the whole argument
2621 is passed in a single register. */
2622 else if (GET_CODE (entry_parm) == PARALLEL
2623 && data->nominal_mode != BLKmode
2624 && data->passed_mode != BLKmode)
2625 {
2626 size_t i, len = XVECLEN (entry_parm, 0);
2627
2628 for (i = 0; i < len; i++)
2629 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2630 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2631 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2632 == data->passed_mode)
2633 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2634 {
2635 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2636 break;
2637 }
2638 }
2639
2640 data->entry_parm = entry_parm;
2641 }
2642
2643 /* A subroutine of assign_parms. Reconstitute any values which were
2644 passed in multiple registers and would fit in a single register. */
2645
2646 static void
2647 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2648 {
2649 rtx entry_parm = data->entry_parm;
2650
2651 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2652 This can be done with register operations rather than on the
2653 stack, even if we will store the reconstituted parameter on the
2654 stack later. */
2655 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2656 {
2657 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2658 emit_group_store (parmreg, entry_parm, data->passed_type,
2659 GET_MODE_SIZE (GET_MODE (entry_parm)));
2660 entry_parm = parmreg;
2661 }
2662
2663 data->entry_parm = entry_parm;
2664 }
2665
2666 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2667 always valid and properly aligned. */
2668
2669 static void
2670 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2671 {
2672 rtx stack_parm = data->stack_parm;
2673
2674 /* If we can't trust the parm stack slot to be aligned enough for its
2675 ultimate type, don't use that slot after entry. We'll make another
2676 stack slot, if we need one. */
2677 if (stack_parm
2678 && ((STRICT_ALIGNMENT
2679 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2680 || (data->nominal_type
2681 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2682 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2683 stack_parm = NULL;
2684
2685 /* If parm was passed in memory, and we need to convert it on entry,
2686 don't store it back in that same slot. */
2687 else if (data->entry_parm == stack_parm
2688 && data->nominal_mode != BLKmode
2689 && data->nominal_mode != data->passed_mode)
2690 stack_parm = NULL;
2691
2692 /* If stack protection is in effect for this function, don't leave any
2693 pointers in their passed stack slots. */
2694 else if (crtl->stack_protect_guard
2695 && (flag_stack_protect == 2
2696 || data->passed_pointer
2697 || POINTER_TYPE_P (data->nominal_type)))
2698 stack_parm = NULL;
2699
2700 data->stack_parm = stack_parm;
2701 }
2702
2703 /* A subroutine of assign_parms. Return true if the current parameter
2704 should be stored as a BLKmode in the current frame. */
2705
2706 static bool
2707 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2708 {
2709 if (data->nominal_mode == BLKmode)
2710 return true;
2711 if (GET_MODE (data->entry_parm) == BLKmode)
2712 return true;
2713
2714 #ifdef BLOCK_REG_PADDING
2715 /* Only assign_parm_setup_block knows how to deal with register arguments
2716 that are padded at the least significant end. */
2717 if (REG_P (data->entry_parm)
2718 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2719 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2720 == (BYTES_BIG_ENDIAN ? upward : downward)))
2721 return true;
2722 #endif
2723
2724 return false;
2725 }
2726
2727 /* A subroutine of assign_parms. Arrange for the parameter to be
2728 present and valid in DATA->STACK_RTL. */
2729
2730 static void
2731 assign_parm_setup_block (struct assign_parm_data_all *all,
2732 tree parm, struct assign_parm_data_one *data)
2733 {
2734 rtx entry_parm = data->entry_parm;
2735 rtx stack_parm = data->stack_parm;
2736 HOST_WIDE_INT size;
2737 HOST_WIDE_INT size_stored;
2738
2739 if (GET_CODE (entry_parm) == PARALLEL)
2740 entry_parm = emit_group_move_into_temps (entry_parm);
2741
2742 size = int_size_in_bytes (data->passed_type);
2743 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2744 if (stack_parm == 0)
2745 {
2746 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2747 stack_parm = assign_stack_local (BLKmode, size_stored,
2748 DECL_ALIGN (parm));
2749 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2750 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2751 set_mem_attributes (stack_parm, parm, 1);
2752 }
2753
2754 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2755 calls that pass values in multiple non-contiguous locations. */
2756 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2757 {
2758 rtx mem;
2759
2760 /* Note that we will be storing an integral number of words.
2761 So we have to be careful to ensure that we allocate an
2762 integral number of words. We do this above when we call
2763 assign_stack_local if space was not allocated in the argument
2764 list. If it was, this will not work if PARM_BOUNDARY is not
2765 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2766 if it becomes a problem. Exception is when BLKmode arrives
2767 with arguments not conforming to word_mode. */
2768
2769 if (data->stack_parm == 0)
2770 ;
2771 else if (GET_CODE (entry_parm) == PARALLEL)
2772 ;
2773 else
2774 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2775
2776 mem = validize_mem (stack_parm);
2777
2778 /* Handle values in multiple non-contiguous locations. */
2779 if (GET_CODE (entry_parm) == PARALLEL)
2780 {
2781 push_to_sequence2 (all->first_conversion_insn,
2782 all->last_conversion_insn);
2783 emit_group_store (mem, entry_parm, data->passed_type, size);
2784 all->first_conversion_insn = get_insns ();
2785 all->last_conversion_insn = get_last_insn ();
2786 end_sequence ();
2787 }
2788
2789 else if (size == 0)
2790 ;
2791
2792 /* If SIZE is that of a mode no bigger than a word, just use
2793 that mode's store operation. */
2794 else if (size <= UNITS_PER_WORD)
2795 {
2796 enum machine_mode mode
2797 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2798
2799 if (mode != BLKmode
2800 #ifdef BLOCK_REG_PADDING
2801 && (size == UNITS_PER_WORD
2802 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2803 != (BYTES_BIG_ENDIAN ? upward : downward)))
2804 #endif
2805 )
2806 {
2807 rtx reg;
2808
2809 /* We are really truncating a word_mode value containing
2810 SIZE bytes into a value of mode MODE. If such an
2811 operation requires no actual instructions, we can refer
2812 to the value directly in mode MODE, otherwise we must
2813 start with the register in word_mode and explicitly
2814 convert it. */
2815 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2816 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2817 else
2818 {
2819 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2820 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2821 }
2822 emit_move_insn (change_address (mem, mode, 0), reg);
2823 }
2824
2825 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2826 machine must be aligned to the left before storing
2827 to memory. Note that the previous test doesn't
2828 handle all cases (e.g. SIZE == 3). */
2829 else if (size != UNITS_PER_WORD
2830 #ifdef BLOCK_REG_PADDING
2831 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2832 == downward)
2833 #else
2834 && BYTES_BIG_ENDIAN
2835 #endif
2836 )
2837 {
2838 rtx tem, x;
2839 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2840 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2841
2842 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2843 build_int_cst (NULL_TREE, by),
2844 NULL_RTX, 1);
2845 tem = change_address (mem, word_mode, 0);
2846 emit_move_insn (tem, x);
2847 }
2848 else
2849 move_block_from_reg (REGNO (entry_parm), mem,
2850 size_stored / UNITS_PER_WORD);
2851 }
2852 else
2853 move_block_from_reg (REGNO (entry_parm), mem,
2854 size_stored / UNITS_PER_WORD);
2855 }
2856 else if (data->stack_parm == 0)
2857 {
2858 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2859 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2860 BLOCK_OP_NORMAL);
2861 all->first_conversion_insn = get_insns ();
2862 all->last_conversion_insn = get_last_insn ();
2863 end_sequence ();
2864 }
2865
2866 data->stack_parm = stack_parm;
2867 SET_DECL_RTL (parm, stack_parm);
2868 }
2869
2870 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2871 parameter. Get it there. Perform all ABI specified conversions. */
2872
2873 static void
2874 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2875 struct assign_parm_data_one *data)
2876 {
2877 rtx parmreg;
2878 enum machine_mode promoted_nominal_mode;
2879 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2880 bool did_conversion = false;
2881
2882 /* Store the parm in a pseudoregister during the function, but we may
2883 need to do it in a wider mode. Using 2 here makes the result
2884 consistent with promote_decl_mode and thus expand_expr_real_1. */
2885 promoted_nominal_mode
2886 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2887 TREE_TYPE (current_function_decl), 2);
2888
2889 parmreg = gen_reg_rtx (promoted_nominal_mode);
2890
2891 if (!DECL_ARTIFICIAL (parm))
2892 mark_user_reg (parmreg);
2893
2894 /* If this was an item that we received a pointer to,
2895 set DECL_RTL appropriately. */
2896 if (data->passed_pointer)
2897 {
2898 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2899 set_mem_attributes (x, parm, 1);
2900 SET_DECL_RTL (parm, x);
2901 }
2902 else
2903 SET_DECL_RTL (parm, parmreg);
2904
2905 assign_parm_remove_parallels (data);
2906
2907 /* Copy the value into the register, thus bridging between
2908 assign_parm_find_data_types and expand_expr_real_1. */
2909 if (data->nominal_mode != data->passed_mode
2910 || promoted_nominal_mode != data->promoted_mode)
2911 {
2912 int save_tree_used;
2913
2914 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2915 mode, by the caller. We now have to convert it to
2916 NOMINAL_MODE, if different. However, PARMREG may be in
2917 a different mode than NOMINAL_MODE if it is being stored
2918 promoted.
2919
2920 If ENTRY_PARM is a hard register, it might be in a register
2921 not valid for operating in its mode (e.g., an odd-numbered
2922 register for a DFmode). In that case, moves are the only
2923 thing valid, so we can't do a convert from there. This
2924 occurs when the calling sequence allow such misaligned
2925 usages.
2926
2927 In addition, the conversion may involve a call, which could
2928 clobber parameters which haven't been copied to pseudo
2929 registers yet. Therefore, we must first copy the parm to
2930 a pseudo reg here, and save the conversion until after all
2931 parameters have been moved. */
2932
2933 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2934
2935 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2936
2937 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2938 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2939
2940 if (GET_CODE (tempreg) == SUBREG
2941 && GET_MODE (tempreg) == data->nominal_mode
2942 && REG_P (SUBREG_REG (tempreg))
2943 && data->nominal_mode == data->passed_mode
2944 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2945 && GET_MODE_SIZE (GET_MODE (tempreg))
2946 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2947 {
2948 /* The argument is already sign/zero extended, so note it
2949 into the subreg. */
2950 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2951 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2952 }
2953
2954 /* TREE_USED gets set erroneously during expand_assignment. */
2955 save_tree_used = TREE_USED (parm);
2956 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2957 TREE_USED (parm) = save_tree_used;
2958 all->first_conversion_insn = get_insns ();
2959 all->last_conversion_insn = get_last_insn ();
2960 end_sequence ();
2961
2962 did_conversion = true;
2963 }
2964 else
2965 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2966
2967 /* If we were passed a pointer but the actual value can safely live
2968 in a register, put it in one. */
2969 if (data->passed_pointer
2970 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2971 /* If by-reference argument was promoted, demote it. */
2972 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2973 || use_register_for_decl (parm)))
2974 {
2975 /* We can't use nominal_mode, because it will have been set to
2976 Pmode above. We must use the actual mode of the parm. */
2977 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2978 mark_user_reg (parmreg);
2979
2980 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2981 {
2982 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2983 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2984
2985 push_to_sequence2 (all->first_conversion_insn,
2986 all->last_conversion_insn);
2987 emit_move_insn (tempreg, DECL_RTL (parm));
2988 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2989 emit_move_insn (parmreg, tempreg);
2990 all->first_conversion_insn = get_insns ();
2991 all->last_conversion_insn = get_last_insn ();
2992 end_sequence ();
2993
2994 did_conversion = true;
2995 }
2996 else
2997 emit_move_insn (parmreg, DECL_RTL (parm));
2998
2999 SET_DECL_RTL (parm, parmreg);
3000
3001 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3002 now the parm. */
3003 data->stack_parm = NULL;
3004 }
3005
3006 /* Mark the register as eliminable if we did no conversion and it was
3007 copied from memory at a fixed offset, and the arg pointer was not
3008 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3009 offset formed an invalid address, such memory-equivalences as we
3010 make here would screw up life analysis for it. */
3011 if (data->nominal_mode == data->passed_mode
3012 && !did_conversion
3013 && data->stack_parm != 0
3014 && MEM_P (data->stack_parm)
3015 && data->locate.offset.var == 0
3016 && reg_mentioned_p (virtual_incoming_args_rtx,
3017 XEXP (data->stack_parm, 0)))
3018 {
3019 rtx linsn = get_last_insn ();
3020 rtx sinsn, set;
3021
3022 /* Mark complex types separately. */
3023 if (GET_CODE (parmreg) == CONCAT)
3024 {
3025 enum machine_mode submode
3026 = GET_MODE_INNER (GET_MODE (parmreg));
3027 int regnor = REGNO (XEXP (parmreg, 0));
3028 int regnoi = REGNO (XEXP (parmreg, 1));
3029 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3030 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3031 GET_MODE_SIZE (submode));
3032
3033 /* Scan backwards for the set of the real and
3034 imaginary parts. */
3035 for (sinsn = linsn; sinsn != 0;
3036 sinsn = prev_nonnote_insn (sinsn))
3037 {
3038 set = single_set (sinsn);
3039 if (set == 0)
3040 continue;
3041
3042 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3043 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3044 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3045 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3046 }
3047 }
3048 else if ((set = single_set (linsn)) != 0
3049 && SET_DEST (set) == parmreg)
3050 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
3051 }
3052
3053 /* For pointer data type, suggest pointer register. */
3054 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3055 mark_reg_pointer (parmreg,
3056 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3057 }
3058
3059 /* A subroutine of assign_parms. Allocate stack space to hold the current
3060 parameter. Get it there. Perform all ABI specified conversions. */
3061
3062 static void
3063 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3064 struct assign_parm_data_one *data)
3065 {
3066 /* Value must be stored in the stack slot STACK_PARM during function
3067 execution. */
3068 bool to_conversion = false;
3069
3070 assign_parm_remove_parallels (data);
3071
3072 if (data->promoted_mode != data->nominal_mode)
3073 {
3074 /* Conversion is required. */
3075 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3076
3077 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3078
3079 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3080 to_conversion = true;
3081
3082 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3083 TYPE_UNSIGNED (TREE_TYPE (parm)));
3084
3085 if (data->stack_parm)
3086 {
3087 int offset = subreg_lowpart_offset (data->nominal_mode,
3088 GET_MODE (data->stack_parm));
3089 /* ??? This may need a big-endian conversion on sparc64. */
3090 data->stack_parm
3091 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3092 if (offset && MEM_OFFSET (data->stack_parm))
3093 set_mem_offset (data->stack_parm,
3094 plus_constant (MEM_OFFSET (data->stack_parm),
3095 offset));
3096 }
3097 }
3098
3099 if (data->entry_parm != data->stack_parm)
3100 {
3101 rtx src, dest;
3102
3103 if (data->stack_parm == 0)
3104 {
3105 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3106 GET_MODE (data->entry_parm),
3107 TYPE_ALIGN (data->passed_type));
3108 data->stack_parm
3109 = assign_stack_local (GET_MODE (data->entry_parm),
3110 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3111 align);
3112 set_mem_attributes (data->stack_parm, parm, 1);
3113 }
3114
3115 dest = validize_mem (data->stack_parm);
3116 src = validize_mem (data->entry_parm);
3117
3118 if (MEM_P (src))
3119 {
3120 /* Use a block move to handle potentially misaligned entry_parm. */
3121 if (!to_conversion)
3122 push_to_sequence2 (all->first_conversion_insn,
3123 all->last_conversion_insn);
3124 to_conversion = true;
3125
3126 emit_block_move (dest, src,
3127 GEN_INT (int_size_in_bytes (data->passed_type)),
3128 BLOCK_OP_NORMAL);
3129 }
3130 else
3131 emit_move_insn (dest, src);
3132 }
3133
3134 if (to_conversion)
3135 {
3136 all->first_conversion_insn = get_insns ();
3137 all->last_conversion_insn = get_last_insn ();
3138 end_sequence ();
3139 }
3140
3141 SET_DECL_RTL (parm, data->stack_parm);
3142 }
3143
3144 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3145 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3146
3147 static void
3148 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3149 VEC(tree, heap) *fnargs)
3150 {
3151 tree parm;
3152 tree orig_fnargs = all->orig_fnargs;
3153 unsigned i = 0;
3154
3155 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3156 {
3157 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3158 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3159 {
3160 rtx tmp, real, imag;
3161 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3162
3163 real = DECL_RTL (VEC_index (tree, fnargs, i));
3164 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3165 if (inner != GET_MODE (real))
3166 {
3167 real = gen_lowpart_SUBREG (inner, real);
3168 imag = gen_lowpart_SUBREG (inner, imag);
3169 }
3170
3171 if (TREE_ADDRESSABLE (parm))
3172 {
3173 rtx rmem, imem;
3174 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3175 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3176 DECL_MODE (parm),
3177 TYPE_ALIGN (TREE_TYPE (parm)));
3178
3179 /* split_complex_arg put the real and imag parts in
3180 pseudos. Move them to memory. */
3181 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3182 set_mem_attributes (tmp, parm, 1);
3183 rmem = adjust_address_nv (tmp, inner, 0);
3184 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3185 push_to_sequence2 (all->first_conversion_insn,
3186 all->last_conversion_insn);
3187 emit_move_insn (rmem, real);
3188 emit_move_insn (imem, imag);
3189 all->first_conversion_insn = get_insns ();
3190 all->last_conversion_insn = get_last_insn ();
3191 end_sequence ();
3192 }
3193 else
3194 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3195 SET_DECL_RTL (parm, tmp);
3196
3197 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3198 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3199 if (inner != GET_MODE (real))
3200 {
3201 real = gen_lowpart_SUBREG (inner, real);
3202 imag = gen_lowpart_SUBREG (inner, imag);
3203 }
3204 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3205 set_decl_incoming_rtl (parm, tmp, false);
3206 i++;
3207 }
3208 }
3209 }
3210
3211 /* Assign RTL expressions to the function's parameters. This may involve
3212 copying them into registers and using those registers as the DECL_RTL. */
3213
3214 static void
3215 assign_parms (tree fndecl)
3216 {
3217 struct assign_parm_data_all all;
3218 tree parm;
3219 VEC(tree, heap) *fnargs;
3220 unsigned i;
3221
3222 crtl->args.internal_arg_pointer
3223 = targetm.calls.internal_arg_pointer ();
3224
3225 assign_parms_initialize_all (&all);
3226 fnargs = assign_parms_augmented_arg_list (&all);
3227
3228 for (i = 0; VEC_iterate (tree, fnargs, i, parm); ++i)
3229 {
3230 struct assign_parm_data_one data;
3231
3232 /* Extract the type of PARM; adjust it according to ABI. */
3233 assign_parm_find_data_types (&all, parm, &data);
3234
3235 /* Early out for errors and void parameters. */
3236 if (data.passed_mode == VOIDmode)
3237 {
3238 SET_DECL_RTL (parm, const0_rtx);
3239 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3240 continue;
3241 }
3242
3243 /* Estimate stack alignment from parameter alignment. */
3244 if (SUPPORTS_STACK_ALIGNMENT)
3245 {
3246 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3247 data.passed_type);
3248 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3249 align);
3250 if (TYPE_ALIGN (data.nominal_type) > align)
3251 align = MINIMUM_ALIGNMENT (data.nominal_type,
3252 TYPE_MODE (data.nominal_type),
3253 TYPE_ALIGN (data.nominal_type));
3254 if (crtl->stack_alignment_estimated < align)
3255 {
3256 gcc_assert (!crtl->stack_realign_processed);
3257 crtl->stack_alignment_estimated = align;
3258 }
3259 }
3260
3261 if (cfun->stdarg && !TREE_CHAIN (parm))
3262 assign_parms_setup_varargs (&all, &data, false);
3263
3264 /* Find out where the parameter arrives in this function. */
3265 assign_parm_find_entry_rtl (&all, &data);
3266
3267 /* Find out where stack space for this parameter might be. */
3268 if (assign_parm_is_stack_parm (&all, &data))
3269 {
3270 assign_parm_find_stack_rtl (parm, &data);
3271 assign_parm_adjust_entry_rtl (&data);
3272 }
3273
3274 /* Record permanently how this parm was passed. */
3275 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3276
3277 /* Update info on where next arg arrives in registers. */
3278 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3279 data.passed_type, data.named_arg);
3280
3281 assign_parm_adjust_stack_rtl (&data);
3282
3283 if (assign_parm_setup_block_p (&data))
3284 assign_parm_setup_block (&all, parm, &data);
3285 else if (data.passed_pointer || use_register_for_decl (parm))
3286 assign_parm_setup_reg (&all, parm, &data);
3287 else
3288 assign_parm_setup_stack (&all, parm, &data);
3289 }
3290
3291 if (targetm.calls.split_complex_arg)
3292 assign_parms_unsplit_complex (&all, fnargs);
3293
3294 VEC_free (tree, heap, fnargs);
3295
3296 /* Output all parameter conversion instructions (possibly including calls)
3297 now that all parameters have been copied out of hard registers. */
3298 emit_insn (all.first_conversion_insn);
3299
3300 /* Estimate reload stack alignment from scalar return mode. */
3301 if (SUPPORTS_STACK_ALIGNMENT)
3302 {
3303 if (DECL_RESULT (fndecl))
3304 {
3305 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3306 enum machine_mode mode = TYPE_MODE (type);
3307
3308 if (mode != BLKmode
3309 && mode != VOIDmode
3310 && !AGGREGATE_TYPE_P (type))
3311 {
3312 unsigned int align = GET_MODE_ALIGNMENT (mode);
3313 if (crtl->stack_alignment_estimated < align)
3314 {
3315 gcc_assert (!crtl->stack_realign_processed);
3316 crtl->stack_alignment_estimated = align;
3317 }
3318 }
3319 }
3320 }
3321
3322 /* If we are receiving a struct value address as the first argument, set up
3323 the RTL for the function result. As this might require code to convert
3324 the transmitted address to Pmode, we do this here to ensure that possible
3325 preliminary conversions of the address have been emitted already. */
3326 if (all.function_result_decl)
3327 {
3328 tree result = DECL_RESULT (current_function_decl);
3329 rtx addr = DECL_RTL (all.function_result_decl);
3330 rtx x;
3331
3332 if (DECL_BY_REFERENCE (result))
3333 x = addr;
3334 else
3335 {
3336 addr = convert_memory_address (Pmode, addr);
3337 x = gen_rtx_MEM (DECL_MODE (result), addr);
3338 set_mem_attributes (x, result, 1);
3339 }
3340 SET_DECL_RTL (result, x);
3341 }
3342
3343 /* We have aligned all the args, so add space for the pretend args. */
3344 crtl->args.pretend_args_size = all.pretend_args_size;
3345 all.stack_args_size.constant += all.extra_pretend_bytes;
3346 crtl->args.size = all.stack_args_size.constant;
3347
3348 /* Adjust function incoming argument size for alignment and
3349 minimum length. */
3350
3351 #ifdef REG_PARM_STACK_SPACE
3352 crtl->args.size = MAX (crtl->args.size,
3353 REG_PARM_STACK_SPACE (fndecl));
3354 #endif
3355
3356 crtl->args.size = CEIL_ROUND (crtl->args.size,
3357 PARM_BOUNDARY / BITS_PER_UNIT);
3358
3359 #ifdef ARGS_GROW_DOWNWARD
3360 crtl->args.arg_offset_rtx
3361 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3362 : expand_expr (size_diffop (all.stack_args_size.var,
3363 size_int (-all.stack_args_size.constant)),
3364 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3365 #else
3366 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3367 #endif
3368
3369 /* See how many bytes, if any, of its args a function should try to pop
3370 on return. */
3371
3372 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3373 crtl->args.size);
3374
3375 /* For stdarg.h function, save info about
3376 regs and stack space used by the named args. */
3377
3378 crtl->args.info = all.args_so_far;
3379
3380 /* Set the rtx used for the function return value. Put this in its
3381 own variable so any optimizers that need this information don't have
3382 to include tree.h. Do this here so it gets done when an inlined
3383 function gets output. */
3384
3385 crtl->return_rtx
3386 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3387 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3388
3389 /* If scalar return value was computed in a pseudo-reg, or was a named
3390 return value that got dumped to the stack, copy that to the hard
3391 return register. */
3392 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3393 {
3394 tree decl_result = DECL_RESULT (fndecl);
3395 rtx decl_rtl = DECL_RTL (decl_result);
3396
3397 if (REG_P (decl_rtl)
3398 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3399 : DECL_REGISTER (decl_result))
3400 {
3401 rtx real_decl_rtl;
3402
3403 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3404 fndecl, true);
3405 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3406 /* The delay slot scheduler assumes that crtl->return_rtx
3407 holds the hard register containing the return value, not a
3408 temporary pseudo. */
3409 crtl->return_rtx = real_decl_rtl;
3410 }
3411 }
3412 }
3413
3414 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3415 For all seen types, gimplify their sizes. */
3416
3417 static tree
3418 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3419 {
3420 tree t = *tp;
3421
3422 *walk_subtrees = 0;
3423 if (TYPE_P (t))
3424 {
3425 if (POINTER_TYPE_P (t))
3426 *walk_subtrees = 1;
3427 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3428 && !TYPE_SIZES_GIMPLIFIED (t))
3429 {
3430 gimplify_type_sizes (t, (gimple_seq *) data);
3431 *walk_subtrees = 1;
3432 }
3433 }
3434
3435 return NULL;
3436 }
3437
3438 /* Gimplify the parameter list for current_function_decl. This involves
3439 evaluating SAVE_EXPRs of variable sized parameters and generating code
3440 to implement callee-copies reference parameters. Returns a sequence of
3441 statements to add to the beginning of the function. */
3442
3443 gimple_seq
3444 gimplify_parameters (void)
3445 {
3446 struct assign_parm_data_all all;
3447 tree parm;
3448 gimple_seq stmts = NULL;
3449 VEC(tree, heap) *fnargs;
3450 unsigned i;
3451
3452 assign_parms_initialize_all (&all);
3453 fnargs = assign_parms_augmented_arg_list (&all);
3454
3455 for (i = 0; VEC_iterate (tree, fnargs, i, parm); ++i)
3456 {
3457 struct assign_parm_data_one data;
3458
3459 /* Extract the type of PARM; adjust it according to ABI. */
3460 assign_parm_find_data_types (&all, parm, &data);
3461
3462 /* Early out for errors and void parameters. */
3463 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3464 continue;
3465
3466 /* Update info on where next arg arrives in registers. */
3467 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3468 data.passed_type, data.named_arg);
3469
3470 /* ??? Once upon a time variable_size stuffed parameter list
3471 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3472 turned out to be less than manageable in the gimple world.
3473 Now we have to hunt them down ourselves. */
3474 walk_tree_without_duplicates (&data.passed_type,
3475 gimplify_parm_type, &stmts);
3476
3477 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3478 {
3479 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3480 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3481 }
3482
3483 if (data.passed_pointer)
3484 {
3485 tree type = TREE_TYPE (data.passed_type);
3486 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3487 type, data.named_arg))
3488 {
3489 tree local, t;
3490
3491 /* For constant-sized objects, this is trivial; for
3492 variable-sized objects, we have to play games. */
3493 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3494 && !(flag_stack_check == GENERIC_STACK_CHECK
3495 && compare_tree_int (DECL_SIZE_UNIT (parm),
3496 STACK_CHECK_MAX_VAR_SIZE) > 0))
3497 {
3498 local = create_tmp_var (type, get_name (parm));
3499 DECL_IGNORED_P (local) = 0;
3500 /* If PARM was addressable, move that flag over
3501 to the local copy, as its address will be taken,
3502 not the PARMs. */
3503 if (TREE_ADDRESSABLE (parm))
3504 {
3505 TREE_ADDRESSABLE (parm) = 0;
3506 TREE_ADDRESSABLE (local) = 1;
3507 }
3508 }
3509 else
3510 {
3511 tree ptr_type, addr;
3512
3513 ptr_type = build_pointer_type (type);
3514 addr = create_tmp_var (ptr_type, get_name (parm));
3515 DECL_IGNORED_P (addr) = 0;
3516 local = build_fold_indirect_ref (addr);
3517
3518 t = built_in_decls[BUILT_IN_ALLOCA];
3519 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3520 t = fold_convert (ptr_type, t);
3521 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3522 gimplify_and_add (t, &stmts);
3523 }
3524
3525 gimplify_assign (local, parm, &stmts);
3526
3527 SET_DECL_VALUE_EXPR (parm, local);
3528 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3529 }
3530 }
3531 }
3532
3533 VEC_free (tree, heap, fnargs);
3534
3535 return stmts;
3536 }
3537 \f
3538 /* Compute the size and offset from the start of the stacked arguments for a
3539 parm passed in mode PASSED_MODE and with type TYPE.
3540
3541 INITIAL_OFFSET_PTR points to the current offset into the stacked
3542 arguments.
3543
3544 The starting offset and size for this parm are returned in
3545 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3546 nonzero, the offset is that of stack slot, which is returned in
3547 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3548 padding required from the initial offset ptr to the stack slot.
3549
3550 IN_REGS is nonzero if the argument will be passed in registers. It will
3551 never be set if REG_PARM_STACK_SPACE is not defined.
3552
3553 FNDECL is the function in which the argument was defined.
3554
3555 There are two types of rounding that are done. The first, controlled by
3556 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3557 list to be aligned to the specific boundary (in bits). This rounding
3558 affects the initial and starting offsets, but not the argument size.
3559
3560 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3561 optionally rounds the size of the parm to PARM_BOUNDARY. The
3562 initial offset is not affected by this rounding, while the size always
3563 is and the starting offset may be. */
3564
3565 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3566 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3567 callers pass in the total size of args so far as
3568 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3569
3570 void
3571 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3572 int partial, tree fndecl ATTRIBUTE_UNUSED,
3573 struct args_size *initial_offset_ptr,
3574 struct locate_and_pad_arg_data *locate)
3575 {
3576 tree sizetree;
3577 enum direction where_pad;
3578 unsigned int boundary;
3579 int reg_parm_stack_space = 0;
3580 int part_size_in_regs;
3581
3582 #ifdef REG_PARM_STACK_SPACE
3583 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3584
3585 /* If we have found a stack parm before we reach the end of the
3586 area reserved for registers, skip that area. */
3587 if (! in_regs)
3588 {
3589 if (reg_parm_stack_space > 0)
3590 {
3591 if (initial_offset_ptr->var)
3592 {
3593 initial_offset_ptr->var
3594 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3595 ssize_int (reg_parm_stack_space));
3596 initial_offset_ptr->constant = 0;
3597 }
3598 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3599 initial_offset_ptr->constant = reg_parm_stack_space;
3600 }
3601 }
3602 #endif /* REG_PARM_STACK_SPACE */
3603
3604 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3605
3606 sizetree
3607 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3608 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3609 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3610 locate->where_pad = where_pad;
3611
3612 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3613 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3614 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3615
3616 locate->boundary = boundary;
3617
3618 if (SUPPORTS_STACK_ALIGNMENT)
3619 {
3620 /* stack_alignment_estimated can't change after stack has been
3621 realigned. */
3622 if (crtl->stack_alignment_estimated < boundary)
3623 {
3624 if (!crtl->stack_realign_processed)
3625 crtl->stack_alignment_estimated = boundary;
3626 else
3627 {
3628 /* If stack is realigned and stack alignment value
3629 hasn't been finalized, it is OK not to increase
3630 stack_alignment_estimated. The bigger alignment
3631 requirement is recorded in stack_alignment_needed
3632 below. */
3633 gcc_assert (!crtl->stack_realign_finalized
3634 && crtl->stack_realign_needed);
3635 }
3636 }
3637 }
3638
3639 /* Remember if the outgoing parameter requires extra alignment on the
3640 calling function side. */
3641 if (crtl->stack_alignment_needed < boundary)
3642 crtl->stack_alignment_needed = boundary;
3643 if (crtl->preferred_stack_boundary < boundary)
3644 crtl->preferred_stack_boundary = boundary;
3645
3646 #ifdef ARGS_GROW_DOWNWARD
3647 locate->slot_offset.constant = -initial_offset_ptr->constant;
3648 if (initial_offset_ptr->var)
3649 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3650 initial_offset_ptr->var);
3651
3652 {
3653 tree s2 = sizetree;
3654 if (where_pad != none
3655 && (!host_integerp (sizetree, 1)
3656 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3657 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3658 SUB_PARM_SIZE (locate->slot_offset, s2);
3659 }
3660
3661 locate->slot_offset.constant += part_size_in_regs;
3662
3663 if (!in_regs
3664 #ifdef REG_PARM_STACK_SPACE
3665 || REG_PARM_STACK_SPACE (fndecl) > 0
3666 #endif
3667 )
3668 pad_to_arg_alignment (&locate->slot_offset, boundary,
3669 &locate->alignment_pad);
3670
3671 locate->size.constant = (-initial_offset_ptr->constant
3672 - locate->slot_offset.constant);
3673 if (initial_offset_ptr->var)
3674 locate->size.var = size_binop (MINUS_EXPR,
3675 size_binop (MINUS_EXPR,
3676 ssize_int (0),
3677 initial_offset_ptr->var),
3678 locate->slot_offset.var);
3679
3680 /* Pad_below needs the pre-rounded size to know how much to pad
3681 below. */
3682 locate->offset = locate->slot_offset;
3683 if (where_pad == downward)
3684 pad_below (&locate->offset, passed_mode, sizetree);
3685
3686 #else /* !ARGS_GROW_DOWNWARD */
3687 if (!in_regs
3688 #ifdef REG_PARM_STACK_SPACE
3689 || REG_PARM_STACK_SPACE (fndecl) > 0
3690 #endif
3691 )
3692 pad_to_arg_alignment (initial_offset_ptr, boundary,
3693 &locate->alignment_pad);
3694 locate->slot_offset = *initial_offset_ptr;
3695
3696 #ifdef PUSH_ROUNDING
3697 if (passed_mode != BLKmode)
3698 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3699 #endif
3700
3701 /* Pad_below needs the pre-rounded size to know how much to pad below
3702 so this must be done before rounding up. */
3703 locate->offset = locate->slot_offset;
3704 if (where_pad == downward)
3705 pad_below (&locate->offset, passed_mode, sizetree);
3706
3707 if (where_pad != none
3708 && (!host_integerp (sizetree, 1)
3709 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3710 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3711
3712 ADD_PARM_SIZE (locate->size, sizetree);
3713
3714 locate->size.constant -= part_size_in_regs;
3715 #endif /* ARGS_GROW_DOWNWARD */
3716
3717 #ifdef FUNCTION_ARG_OFFSET
3718 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3719 #endif
3720 }
3721
3722 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3723 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3724
3725 static void
3726 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3727 struct args_size *alignment_pad)
3728 {
3729 tree save_var = NULL_TREE;
3730 HOST_WIDE_INT save_constant = 0;
3731 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3732 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3733
3734 #ifdef SPARC_STACK_BOUNDARY_HACK
3735 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3736 the real alignment of %sp. However, when it does this, the
3737 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3738 if (SPARC_STACK_BOUNDARY_HACK)
3739 sp_offset = 0;
3740 #endif
3741
3742 if (boundary > PARM_BOUNDARY)
3743 {
3744 save_var = offset_ptr->var;
3745 save_constant = offset_ptr->constant;
3746 }
3747
3748 alignment_pad->var = NULL_TREE;
3749 alignment_pad->constant = 0;
3750
3751 if (boundary > BITS_PER_UNIT)
3752 {
3753 if (offset_ptr->var)
3754 {
3755 tree sp_offset_tree = ssize_int (sp_offset);
3756 tree offset = size_binop (PLUS_EXPR,
3757 ARGS_SIZE_TREE (*offset_ptr),
3758 sp_offset_tree);
3759 #ifdef ARGS_GROW_DOWNWARD
3760 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3761 #else
3762 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3763 #endif
3764
3765 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3766 /* ARGS_SIZE_TREE includes constant term. */
3767 offset_ptr->constant = 0;
3768 if (boundary > PARM_BOUNDARY)
3769 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3770 save_var);
3771 }
3772 else
3773 {
3774 offset_ptr->constant = -sp_offset +
3775 #ifdef ARGS_GROW_DOWNWARD
3776 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3777 #else
3778 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3779 #endif
3780 if (boundary > PARM_BOUNDARY)
3781 alignment_pad->constant = offset_ptr->constant - save_constant;
3782 }
3783 }
3784 }
3785
3786 static void
3787 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3788 {
3789 if (passed_mode != BLKmode)
3790 {
3791 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3792 offset_ptr->constant
3793 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3794 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3795 - GET_MODE_SIZE (passed_mode));
3796 }
3797 else
3798 {
3799 if (TREE_CODE (sizetree) != INTEGER_CST
3800 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3801 {
3802 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3803 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3804 /* Add it in. */
3805 ADD_PARM_SIZE (*offset_ptr, s2);
3806 SUB_PARM_SIZE (*offset_ptr, sizetree);
3807 }
3808 }
3809 }
3810 \f
3811
3812 /* True if register REGNO was alive at a place where `setjmp' was
3813 called and was set more than once or is an argument. Such regs may
3814 be clobbered by `longjmp'. */
3815
3816 static bool
3817 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3818 {
3819 /* There appear to be cases where some local vars never reach the
3820 backend but have bogus regnos. */
3821 if (regno >= max_reg_num ())
3822 return false;
3823
3824 return ((REG_N_SETS (regno) > 1
3825 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3826 && REGNO_REG_SET_P (setjmp_crosses, regno));
3827 }
3828
3829 /* Walk the tree of blocks describing the binding levels within a
3830 function and warn about variables the might be killed by setjmp or
3831 vfork. This is done after calling flow_analysis before register
3832 allocation since that will clobber the pseudo-regs to hard
3833 regs. */
3834
3835 static void
3836 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3837 {
3838 tree decl, sub;
3839
3840 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3841 {
3842 if (TREE_CODE (decl) == VAR_DECL
3843 && DECL_RTL_SET_P (decl)
3844 && REG_P (DECL_RTL (decl))
3845 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3846 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3847 " %<longjmp%> or %<vfork%>", decl);
3848 }
3849
3850 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3851 setjmp_vars_warning (setjmp_crosses, sub);
3852 }
3853
3854 /* Do the appropriate part of setjmp_vars_warning
3855 but for arguments instead of local variables. */
3856
3857 static void
3858 setjmp_args_warning (bitmap setjmp_crosses)
3859 {
3860 tree decl;
3861 for (decl = DECL_ARGUMENTS (current_function_decl);
3862 decl; decl = TREE_CHAIN (decl))
3863 if (DECL_RTL (decl) != 0
3864 && REG_P (DECL_RTL (decl))
3865 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3866 warning (OPT_Wclobbered,
3867 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3868 decl);
3869 }
3870
3871 /* Generate warning messages for variables live across setjmp. */
3872
3873 void
3874 generate_setjmp_warnings (void)
3875 {
3876 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3877
3878 if (n_basic_blocks == NUM_FIXED_BLOCKS
3879 || bitmap_empty_p (setjmp_crosses))
3880 return;
3881
3882 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3883 setjmp_args_warning (setjmp_crosses);
3884 }
3885
3886 \f
3887 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3888 and create duplicate blocks. */
3889 /* ??? Need an option to either create block fragments or to create
3890 abstract origin duplicates of a source block. It really depends
3891 on what optimization has been performed. */
3892
3893 void
3894 reorder_blocks (void)
3895 {
3896 tree block = DECL_INITIAL (current_function_decl);
3897 VEC(tree,heap) *block_stack;
3898
3899 if (block == NULL_TREE)
3900 return;
3901
3902 block_stack = VEC_alloc (tree, heap, 10);
3903
3904 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3905 clear_block_marks (block);
3906
3907 /* Prune the old trees away, so that they don't get in the way. */
3908 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3909 BLOCK_CHAIN (block) = NULL_TREE;
3910
3911 /* Recreate the block tree from the note nesting. */
3912 reorder_blocks_1 (get_insns (), block, &block_stack);
3913 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3914
3915 VEC_free (tree, heap, block_stack);
3916 }
3917
3918 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3919
3920 void
3921 clear_block_marks (tree block)
3922 {
3923 while (block)
3924 {
3925 TREE_ASM_WRITTEN (block) = 0;
3926 clear_block_marks (BLOCK_SUBBLOCKS (block));
3927 block = BLOCK_CHAIN (block);
3928 }
3929 }
3930
3931 static void
3932 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3933 {
3934 rtx insn;
3935
3936 for (insn = insns; insn; insn = NEXT_INSN (insn))
3937 {
3938 if (NOTE_P (insn))
3939 {
3940 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3941 {
3942 tree block = NOTE_BLOCK (insn);
3943 tree origin;
3944
3945 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3946 ? BLOCK_FRAGMENT_ORIGIN (block)
3947 : block);
3948
3949 /* If we have seen this block before, that means it now
3950 spans multiple address regions. Create a new fragment. */
3951 if (TREE_ASM_WRITTEN (block))
3952 {
3953 tree new_block = copy_node (block);
3954
3955 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3956 BLOCK_FRAGMENT_CHAIN (new_block)
3957 = BLOCK_FRAGMENT_CHAIN (origin);
3958 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3959
3960 NOTE_BLOCK (insn) = new_block;
3961 block = new_block;
3962 }
3963
3964 BLOCK_SUBBLOCKS (block) = 0;
3965 TREE_ASM_WRITTEN (block) = 1;
3966 /* When there's only one block for the entire function,
3967 current_block == block and we mustn't do this, it
3968 will cause infinite recursion. */
3969 if (block != current_block)
3970 {
3971 if (block != origin)
3972 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3973
3974 BLOCK_SUPERCONTEXT (block) = current_block;
3975 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3976 BLOCK_SUBBLOCKS (current_block) = block;
3977 current_block = origin;
3978 }
3979 VEC_safe_push (tree, heap, *p_block_stack, block);
3980 }
3981 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3982 {
3983 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3984 BLOCK_SUBBLOCKS (current_block)
3985 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3986 current_block = BLOCK_SUPERCONTEXT (current_block);
3987 }
3988 }
3989 }
3990 }
3991
3992 /* Reverse the order of elements in the chain T of blocks,
3993 and return the new head of the chain (old last element). */
3994
3995 tree
3996 blocks_nreverse (tree t)
3997 {
3998 tree prev = 0, decl, next;
3999 for (decl = t; decl; decl = next)
4000 {
4001 next = BLOCK_CHAIN (decl);
4002 BLOCK_CHAIN (decl) = prev;
4003 prev = decl;
4004 }
4005 return prev;
4006 }
4007
4008 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4009 non-NULL, list them all into VECTOR, in a depth-first preorder
4010 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4011 blocks. */
4012
4013 static int
4014 all_blocks (tree block, tree *vector)
4015 {
4016 int n_blocks = 0;
4017
4018 while (block)
4019 {
4020 TREE_ASM_WRITTEN (block) = 0;
4021
4022 /* Record this block. */
4023 if (vector)
4024 vector[n_blocks] = block;
4025
4026 ++n_blocks;
4027
4028 /* Record the subblocks, and their subblocks... */
4029 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4030 vector ? vector + n_blocks : 0);
4031 block = BLOCK_CHAIN (block);
4032 }
4033
4034 return n_blocks;
4035 }
4036
4037 /* Return a vector containing all the blocks rooted at BLOCK. The
4038 number of elements in the vector is stored in N_BLOCKS_P. The
4039 vector is dynamically allocated; it is the caller's responsibility
4040 to call `free' on the pointer returned. */
4041
4042 static tree *
4043 get_block_vector (tree block, int *n_blocks_p)
4044 {
4045 tree *block_vector;
4046
4047 *n_blocks_p = all_blocks (block, NULL);
4048 block_vector = XNEWVEC (tree, *n_blocks_p);
4049 all_blocks (block, block_vector);
4050
4051 return block_vector;
4052 }
4053
4054 static GTY(()) int next_block_index = 2;
4055
4056 /* Set BLOCK_NUMBER for all the blocks in FN. */
4057
4058 void
4059 number_blocks (tree fn)
4060 {
4061 int i;
4062 int n_blocks;
4063 tree *block_vector;
4064
4065 /* For SDB and XCOFF debugging output, we start numbering the blocks
4066 from 1 within each function, rather than keeping a running
4067 count. */
4068 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4069 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4070 next_block_index = 1;
4071 #endif
4072
4073 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4074
4075 /* The top-level BLOCK isn't numbered at all. */
4076 for (i = 1; i < n_blocks; ++i)
4077 /* We number the blocks from two. */
4078 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4079
4080 free (block_vector);
4081
4082 return;
4083 }
4084
4085 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4086
4087 DEBUG_FUNCTION tree
4088 debug_find_var_in_block_tree (tree var, tree block)
4089 {
4090 tree t;
4091
4092 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4093 if (t == var)
4094 return block;
4095
4096 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4097 {
4098 tree ret = debug_find_var_in_block_tree (var, t);
4099 if (ret)
4100 return ret;
4101 }
4102
4103 return NULL_TREE;
4104 }
4105 \f
4106 /* Keep track of whether we're in a dummy function context. If we are,
4107 we don't want to invoke the set_current_function hook, because we'll
4108 get into trouble if the hook calls target_reinit () recursively or
4109 when the initial initialization is not yet complete. */
4110
4111 static bool in_dummy_function;
4112
4113 /* Invoke the target hook when setting cfun. Update the optimization options
4114 if the function uses different options than the default. */
4115
4116 static void
4117 invoke_set_current_function_hook (tree fndecl)
4118 {
4119 if (!in_dummy_function)
4120 {
4121 tree opts = ((fndecl)
4122 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4123 : optimization_default_node);
4124
4125 if (!opts)
4126 opts = optimization_default_node;
4127
4128 /* Change optimization options if needed. */
4129 if (optimization_current_node != opts)
4130 {
4131 optimization_current_node = opts;
4132 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4133 }
4134
4135 targetm.set_current_function (fndecl);
4136 }
4137 }
4138
4139 /* cfun should never be set directly; use this function. */
4140
4141 void
4142 set_cfun (struct function *new_cfun)
4143 {
4144 if (cfun != new_cfun)
4145 {
4146 cfun = new_cfun;
4147 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4148 }
4149 }
4150
4151 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4152
4153 static VEC(function_p,heap) *cfun_stack;
4154
4155 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4156
4157 void
4158 push_cfun (struct function *new_cfun)
4159 {
4160 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4161 set_cfun (new_cfun);
4162 }
4163
4164 /* Pop cfun from the stack. */
4165
4166 void
4167 pop_cfun (void)
4168 {
4169 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4170 set_cfun (new_cfun);
4171 }
4172
4173 /* Return value of funcdef and increase it. */
4174 int
4175 get_next_funcdef_no (void)
4176 {
4177 return funcdef_no++;
4178 }
4179
4180 /* Allocate a function structure for FNDECL and set its contents
4181 to the defaults. Set cfun to the newly-allocated object.
4182 Some of the helper functions invoked during initialization assume
4183 that cfun has already been set. Therefore, assign the new object
4184 directly into cfun and invoke the back end hook explicitly at the
4185 very end, rather than initializing a temporary and calling set_cfun
4186 on it.
4187
4188 ABSTRACT_P is true if this is a function that will never be seen by
4189 the middle-end. Such functions are front-end concepts (like C++
4190 function templates) that do not correspond directly to functions
4191 placed in object files. */
4192
4193 void
4194 allocate_struct_function (tree fndecl, bool abstract_p)
4195 {
4196 tree result;
4197 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4198
4199 cfun = ggc_alloc_cleared_function ();
4200
4201 init_eh_for_function ();
4202
4203 if (init_machine_status)
4204 cfun->machine = (*init_machine_status) ();
4205
4206 #ifdef OVERRIDE_ABI_FORMAT
4207 OVERRIDE_ABI_FORMAT (fndecl);
4208 #endif
4209
4210 invoke_set_current_function_hook (fndecl);
4211
4212 if (fndecl != NULL_TREE)
4213 {
4214 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4215 cfun->decl = fndecl;
4216 current_function_funcdef_no = get_next_funcdef_no ();
4217
4218 result = DECL_RESULT (fndecl);
4219 if (!abstract_p && aggregate_value_p (result, fndecl))
4220 {
4221 #ifdef PCC_STATIC_STRUCT_RETURN
4222 cfun->returns_pcc_struct = 1;
4223 #endif
4224 cfun->returns_struct = 1;
4225 }
4226
4227 cfun->stdarg
4228 = (fntype
4229 && TYPE_ARG_TYPES (fntype) != 0
4230 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4231 != void_type_node));
4232
4233 /* Assume all registers in stdarg functions need to be saved. */
4234 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4235 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4236
4237 /* ??? This could be set on a per-function basis by the front-end
4238 but is this worth the hassle? */
4239 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4240 }
4241 }
4242
4243 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4244 instead of just setting it. */
4245
4246 void
4247 push_struct_function (tree fndecl)
4248 {
4249 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4250 allocate_struct_function (fndecl, false);
4251 }
4252
4253 /* Reset crtl and other non-struct-function variables to defaults as
4254 appropriate for emitting rtl at the start of a function. */
4255
4256 static void
4257 prepare_function_start (void)
4258 {
4259 gcc_assert (!crtl->emit.x_last_insn);
4260 init_temp_slots ();
4261 init_emit ();
4262 init_varasm_status ();
4263 init_expr ();
4264 default_rtl_profile ();
4265
4266 cse_not_expected = ! optimize;
4267
4268 /* Caller save not needed yet. */
4269 caller_save_needed = 0;
4270
4271 /* We haven't done register allocation yet. */
4272 reg_renumber = 0;
4273
4274 /* Indicate that we have not instantiated virtual registers yet. */
4275 virtuals_instantiated = 0;
4276
4277 /* Indicate that we want CONCATs now. */
4278 generating_concat_p = 1;
4279
4280 /* Indicate we have no need of a frame pointer yet. */
4281 frame_pointer_needed = 0;
4282 }
4283
4284 /* Initialize the rtl expansion mechanism so that we can do simple things
4285 like generate sequences. This is used to provide a context during global
4286 initialization of some passes. You must call expand_dummy_function_end
4287 to exit this context. */
4288
4289 void
4290 init_dummy_function_start (void)
4291 {
4292 gcc_assert (!in_dummy_function);
4293 in_dummy_function = true;
4294 push_struct_function (NULL_TREE);
4295 prepare_function_start ();
4296 }
4297
4298 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4299 and initialize static variables for generating RTL for the statements
4300 of the function. */
4301
4302 void
4303 init_function_start (tree subr)
4304 {
4305 if (subr && DECL_STRUCT_FUNCTION (subr))
4306 set_cfun (DECL_STRUCT_FUNCTION (subr));
4307 else
4308 allocate_struct_function (subr, false);
4309 prepare_function_start ();
4310
4311 /* Warn if this value is an aggregate type,
4312 regardless of which calling convention we are using for it. */
4313 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4314 warning (OPT_Waggregate_return, "function returns an aggregate");
4315 }
4316
4317 /* Make sure all values used by the optimization passes have sane defaults. */
4318 unsigned int
4319 init_function_for_compilation (void)
4320 {
4321 reg_renumber = 0;
4322 return 0;
4323 }
4324
4325 struct rtl_opt_pass pass_init_function =
4326 {
4327 {
4328 RTL_PASS,
4329 "*init_function", /* name */
4330 NULL, /* gate */
4331 init_function_for_compilation, /* execute */
4332 NULL, /* sub */
4333 NULL, /* next */
4334 0, /* static_pass_number */
4335 TV_NONE, /* tv_id */
4336 0, /* properties_required */
4337 0, /* properties_provided */
4338 0, /* properties_destroyed */
4339 0, /* todo_flags_start */
4340 0 /* todo_flags_finish */
4341 }
4342 };
4343
4344
4345 void
4346 expand_main_function (void)
4347 {
4348 #if (defined(INVOKE__main) \
4349 || (!defined(HAS_INIT_SECTION) \
4350 && !defined(INIT_SECTION_ASM_OP) \
4351 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4352 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4353 #endif
4354 }
4355 \f
4356 /* Expand code to initialize the stack_protect_guard. This is invoked at
4357 the beginning of a function to be protected. */
4358
4359 #ifndef HAVE_stack_protect_set
4360 # define HAVE_stack_protect_set 0
4361 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4362 #endif
4363
4364 void
4365 stack_protect_prologue (void)
4366 {
4367 tree guard_decl = targetm.stack_protect_guard ();
4368 rtx x, y;
4369
4370 x = expand_normal (crtl->stack_protect_guard);
4371 y = expand_normal (guard_decl);
4372
4373 /* Allow the target to copy from Y to X without leaking Y into a
4374 register. */
4375 if (HAVE_stack_protect_set)
4376 {
4377 rtx insn = gen_stack_protect_set (x, y);
4378 if (insn)
4379 {
4380 emit_insn (insn);
4381 return;
4382 }
4383 }
4384
4385 /* Otherwise do a straight move. */
4386 emit_move_insn (x, y);
4387 }
4388
4389 /* Expand code to verify the stack_protect_guard. This is invoked at
4390 the end of a function to be protected. */
4391
4392 #ifndef HAVE_stack_protect_test
4393 # define HAVE_stack_protect_test 0
4394 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4395 #endif
4396
4397 void
4398 stack_protect_epilogue (void)
4399 {
4400 tree guard_decl = targetm.stack_protect_guard ();
4401 rtx label = gen_label_rtx ();
4402 rtx x, y, tmp;
4403
4404 x = expand_normal (crtl->stack_protect_guard);
4405 y = expand_normal (guard_decl);
4406
4407 /* Allow the target to compare Y with X without leaking either into
4408 a register. */
4409 switch (HAVE_stack_protect_test != 0)
4410 {
4411 case 1:
4412 tmp = gen_stack_protect_test (x, y, label);
4413 if (tmp)
4414 {
4415 emit_insn (tmp);
4416 break;
4417 }
4418 /* FALLTHRU */
4419
4420 default:
4421 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4422 break;
4423 }
4424
4425 /* The noreturn predictor has been moved to the tree level. The rtl-level
4426 predictors estimate this branch about 20%, which isn't enough to get
4427 things moved out of line. Since this is the only extant case of adding
4428 a noreturn function at the rtl level, it doesn't seem worth doing ought
4429 except adding the prediction by hand. */
4430 tmp = get_last_insn ();
4431 if (JUMP_P (tmp))
4432 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4433
4434 expand_expr_stmt (targetm.stack_protect_fail ());
4435 emit_label (label);
4436 }
4437 \f
4438 /* Start the RTL for a new function, and set variables used for
4439 emitting RTL.
4440 SUBR is the FUNCTION_DECL node.
4441 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4442 the function's parameters, which must be run at any return statement. */
4443
4444 void
4445 expand_function_start (tree subr)
4446 {
4447 /* Make sure volatile mem refs aren't considered
4448 valid operands of arithmetic insns. */
4449 init_recog_no_volatile ();
4450
4451 crtl->profile
4452 = (profile_flag
4453 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4454
4455 crtl->limit_stack
4456 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4457
4458 /* Make the label for return statements to jump to. Do not special
4459 case machines with special return instructions -- they will be
4460 handled later during jump, ifcvt, or epilogue creation. */
4461 return_label = gen_label_rtx ();
4462
4463 /* Initialize rtx used to return the value. */
4464 /* Do this before assign_parms so that we copy the struct value address
4465 before any library calls that assign parms might generate. */
4466
4467 /* Decide whether to return the value in memory or in a register. */
4468 if (aggregate_value_p (DECL_RESULT (subr), subr))
4469 {
4470 /* Returning something that won't go in a register. */
4471 rtx value_address = 0;
4472
4473 #ifdef PCC_STATIC_STRUCT_RETURN
4474 if (cfun->returns_pcc_struct)
4475 {
4476 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4477 value_address = assemble_static_space (size);
4478 }
4479 else
4480 #endif
4481 {
4482 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4483 /* Expect to be passed the address of a place to store the value.
4484 If it is passed as an argument, assign_parms will take care of
4485 it. */
4486 if (sv)
4487 {
4488 value_address = gen_reg_rtx (Pmode);
4489 emit_move_insn (value_address, sv);
4490 }
4491 }
4492 if (value_address)
4493 {
4494 rtx x = value_address;
4495 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4496 {
4497 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4498 set_mem_attributes (x, DECL_RESULT (subr), 1);
4499 }
4500 SET_DECL_RTL (DECL_RESULT (subr), x);
4501 }
4502 }
4503 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4504 /* If return mode is void, this decl rtl should not be used. */
4505 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4506 else
4507 {
4508 /* Compute the return values into a pseudo reg, which we will copy
4509 into the true return register after the cleanups are done. */
4510 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4511 if (TYPE_MODE (return_type) != BLKmode
4512 && targetm.calls.return_in_msb (return_type))
4513 /* expand_function_end will insert the appropriate padding in
4514 this case. Use the return value's natural (unpadded) mode
4515 within the function proper. */
4516 SET_DECL_RTL (DECL_RESULT (subr),
4517 gen_reg_rtx (TYPE_MODE (return_type)));
4518 else
4519 {
4520 /* In order to figure out what mode to use for the pseudo, we
4521 figure out what the mode of the eventual return register will
4522 actually be, and use that. */
4523 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4524
4525 /* Structures that are returned in registers are not
4526 aggregate_value_p, so we may see a PARALLEL or a REG. */
4527 if (REG_P (hard_reg))
4528 SET_DECL_RTL (DECL_RESULT (subr),
4529 gen_reg_rtx (GET_MODE (hard_reg)));
4530 else
4531 {
4532 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4533 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4534 }
4535 }
4536
4537 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4538 result to the real return register(s). */
4539 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4540 }
4541
4542 /* Initialize rtx for parameters and local variables.
4543 In some cases this requires emitting insns. */
4544 assign_parms (subr);
4545
4546 /* If function gets a static chain arg, store it. */
4547 if (cfun->static_chain_decl)
4548 {
4549 tree parm = cfun->static_chain_decl;
4550 rtx local, chain, insn;
4551
4552 local = gen_reg_rtx (Pmode);
4553 chain = targetm.calls.static_chain (current_function_decl, true);
4554
4555 set_decl_incoming_rtl (parm, chain, false);
4556 SET_DECL_RTL (parm, local);
4557 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4558
4559 insn = emit_move_insn (local, chain);
4560
4561 /* Mark the register as eliminable, similar to parameters. */
4562 if (MEM_P (chain)
4563 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4564 set_unique_reg_note (insn, REG_EQUIV, chain);
4565 }
4566
4567 /* If the function receives a non-local goto, then store the
4568 bits we need to restore the frame pointer. */
4569 if (cfun->nonlocal_goto_save_area)
4570 {
4571 tree t_save;
4572 rtx r_save;
4573
4574 /* ??? We need to do this save early. Unfortunately here is
4575 before the frame variable gets declared. Help out... */
4576 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4577 if (!DECL_RTL_SET_P (var))
4578 expand_decl (var);
4579
4580 t_save = build4 (ARRAY_REF, ptr_type_node,
4581 cfun->nonlocal_goto_save_area,
4582 integer_zero_node, NULL_TREE, NULL_TREE);
4583 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4584 r_save = convert_memory_address (Pmode, r_save);
4585
4586 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4587 update_nonlocal_goto_save_area ();
4588 }
4589
4590 /* The following was moved from init_function_start.
4591 The move is supposed to make sdb output more accurate. */
4592 /* Indicate the beginning of the function body,
4593 as opposed to parm setup. */
4594 emit_note (NOTE_INSN_FUNCTION_BEG);
4595
4596 gcc_assert (NOTE_P (get_last_insn ()));
4597
4598 parm_birth_insn = get_last_insn ();
4599
4600 if (crtl->profile)
4601 {
4602 #ifdef PROFILE_HOOK
4603 PROFILE_HOOK (current_function_funcdef_no);
4604 #endif
4605 }
4606
4607 /* After the display initializations is where the stack checking
4608 probe should go. */
4609 if(flag_stack_check)
4610 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4611
4612 /* Make sure there is a line number after the function entry setup code. */
4613 force_next_line_note ();
4614 }
4615 \f
4616 /* Undo the effects of init_dummy_function_start. */
4617 void
4618 expand_dummy_function_end (void)
4619 {
4620 gcc_assert (in_dummy_function);
4621
4622 /* End any sequences that failed to be closed due to syntax errors. */
4623 while (in_sequence_p ())
4624 end_sequence ();
4625
4626 /* Outside function body, can't compute type's actual size
4627 until next function's body starts. */
4628
4629 free_after_parsing (cfun);
4630 free_after_compilation (cfun);
4631 pop_cfun ();
4632 in_dummy_function = false;
4633 }
4634
4635 /* Call DOIT for each hard register used as a return value from
4636 the current function. */
4637
4638 void
4639 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4640 {
4641 rtx outgoing = crtl->return_rtx;
4642
4643 if (! outgoing)
4644 return;
4645
4646 if (REG_P (outgoing))
4647 (*doit) (outgoing, arg);
4648 else if (GET_CODE (outgoing) == PARALLEL)
4649 {
4650 int i;
4651
4652 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4653 {
4654 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4655
4656 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4657 (*doit) (x, arg);
4658 }
4659 }
4660 }
4661
4662 static void
4663 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4664 {
4665 emit_clobber (reg);
4666 }
4667
4668 void
4669 clobber_return_register (void)
4670 {
4671 diddle_return_value (do_clobber_return_reg, NULL);
4672
4673 /* In case we do use pseudo to return value, clobber it too. */
4674 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4675 {
4676 tree decl_result = DECL_RESULT (current_function_decl);
4677 rtx decl_rtl = DECL_RTL (decl_result);
4678 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4679 {
4680 do_clobber_return_reg (decl_rtl, NULL);
4681 }
4682 }
4683 }
4684
4685 static void
4686 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4687 {
4688 emit_use (reg);
4689 }
4690
4691 static void
4692 use_return_register (void)
4693 {
4694 diddle_return_value (do_use_return_reg, NULL);
4695 }
4696
4697 /* Possibly warn about unused parameters. */
4698 void
4699 do_warn_unused_parameter (tree fn)
4700 {
4701 tree decl;
4702
4703 for (decl = DECL_ARGUMENTS (fn);
4704 decl; decl = TREE_CHAIN (decl))
4705 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4706 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4707 && !TREE_NO_WARNING (decl))
4708 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4709 }
4710
4711 static GTY(()) rtx initial_trampoline;
4712
4713 /* Generate RTL for the end of the current function. */
4714
4715 void
4716 expand_function_end (void)
4717 {
4718 rtx clobber_after;
4719
4720 /* If arg_pointer_save_area was referenced only from a nested
4721 function, we will not have initialized it yet. Do that now. */
4722 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4723 get_arg_pointer_save_area ();
4724
4725 /* If we are doing generic stack checking and this function makes calls,
4726 do a stack probe at the start of the function to ensure we have enough
4727 space for another stack frame. */
4728 if (flag_stack_check == GENERIC_STACK_CHECK)
4729 {
4730 rtx insn, seq;
4731
4732 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4733 if (CALL_P (insn))
4734 {
4735 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4736 start_sequence ();
4737 if (STACK_CHECK_MOVING_SP)
4738 anti_adjust_stack_and_probe (max_frame_size, true);
4739 else
4740 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4741 seq = get_insns ();
4742 end_sequence ();
4743 emit_insn_before (seq, stack_check_probe_note);
4744 break;
4745 }
4746 }
4747
4748 /* End any sequences that failed to be closed due to syntax errors. */
4749 while (in_sequence_p ())
4750 end_sequence ();
4751
4752 clear_pending_stack_adjust ();
4753 do_pending_stack_adjust ();
4754
4755 /* Output a linenumber for the end of the function.
4756 SDB depends on this. */
4757 force_next_line_note ();
4758 set_curr_insn_source_location (input_location);
4759
4760 /* Before the return label (if any), clobber the return
4761 registers so that they are not propagated live to the rest of
4762 the function. This can only happen with functions that drop
4763 through; if there had been a return statement, there would
4764 have either been a return rtx, or a jump to the return label.
4765
4766 We delay actual code generation after the current_function_value_rtx
4767 is computed. */
4768 clobber_after = get_last_insn ();
4769
4770 /* Output the label for the actual return from the function. */
4771 emit_label (return_label);
4772
4773 if (USING_SJLJ_EXCEPTIONS)
4774 {
4775 /* Let except.c know where it should emit the call to unregister
4776 the function context for sjlj exceptions. */
4777 if (flag_exceptions)
4778 sjlj_emit_function_exit_after (get_last_insn ());
4779 }
4780 else
4781 {
4782 /* We want to ensure that instructions that may trap are not
4783 moved into the epilogue by scheduling, because we don't
4784 always emit unwind information for the epilogue. */
4785 if (cfun->can_throw_non_call_exceptions)
4786 emit_insn (gen_blockage ());
4787 }
4788
4789 /* If this is an implementation of throw, do what's necessary to
4790 communicate between __builtin_eh_return and the epilogue. */
4791 expand_eh_return ();
4792
4793 /* If scalar return value was computed in a pseudo-reg, or was a named
4794 return value that got dumped to the stack, copy that to the hard
4795 return register. */
4796 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4797 {
4798 tree decl_result = DECL_RESULT (current_function_decl);
4799 rtx decl_rtl = DECL_RTL (decl_result);
4800
4801 if (REG_P (decl_rtl)
4802 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4803 : DECL_REGISTER (decl_result))
4804 {
4805 rtx real_decl_rtl = crtl->return_rtx;
4806
4807 /* This should be set in assign_parms. */
4808 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4809
4810 /* If this is a BLKmode structure being returned in registers,
4811 then use the mode computed in expand_return. Note that if
4812 decl_rtl is memory, then its mode may have been changed,
4813 but that crtl->return_rtx has not. */
4814 if (GET_MODE (real_decl_rtl) == BLKmode)
4815 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4816
4817 /* If a non-BLKmode return value should be padded at the least
4818 significant end of the register, shift it left by the appropriate
4819 amount. BLKmode results are handled using the group load/store
4820 machinery. */
4821 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4822 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4823 {
4824 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4825 REGNO (real_decl_rtl)),
4826 decl_rtl);
4827 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4828 }
4829 /* If a named return value dumped decl_return to memory, then
4830 we may need to re-do the PROMOTE_MODE signed/unsigned
4831 extension. */
4832 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4833 {
4834 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4835 promote_function_mode (TREE_TYPE (decl_result),
4836 GET_MODE (decl_rtl), &unsignedp,
4837 TREE_TYPE (current_function_decl), 1);
4838
4839 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4840 }
4841 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4842 {
4843 /* If expand_function_start has created a PARALLEL for decl_rtl,
4844 move the result to the real return registers. Otherwise, do
4845 a group load from decl_rtl for a named return. */
4846 if (GET_CODE (decl_rtl) == PARALLEL)
4847 emit_group_move (real_decl_rtl, decl_rtl);
4848 else
4849 emit_group_load (real_decl_rtl, decl_rtl,
4850 TREE_TYPE (decl_result),
4851 int_size_in_bytes (TREE_TYPE (decl_result)));
4852 }
4853 /* In the case of complex integer modes smaller than a word, we'll
4854 need to generate some non-trivial bitfield insertions. Do that
4855 on a pseudo and not the hard register. */
4856 else if (GET_CODE (decl_rtl) == CONCAT
4857 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4858 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4859 {
4860 int old_generating_concat_p;
4861 rtx tmp;
4862
4863 old_generating_concat_p = generating_concat_p;
4864 generating_concat_p = 0;
4865 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4866 generating_concat_p = old_generating_concat_p;
4867
4868 emit_move_insn (tmp, decl_rtl);
4869 emit_move_insn (real_decl_rtl, tmp);
4870 }
4871 else
4872 emit_move_insn (real_decl_rtl, decl_rtl);
4873 }
4874 }
4875
4876 /* If returning a structure, arrange to return the address of the value
4877 in a place where debuggers expect to find it.
4878
4879 If returning a structure PCC style,
4880 the caller also depends on this value.
4881 And cfun->returns_pcc_struct is not necessarily set. */
4882 if (cfun->returns_struct
4883 || cfun->returns_pcc_struct)
4884 {
4885 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4886 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4887 rtx outgoing;
4888
4889 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4890 type = TREE_TYPE (type);
4891 else
4892 value_address = XEXP (value_address, 0);
4893
4894 outgoing = targetm.calls.function_value (build_pointer_type (type),
4895 current_function_decl, true);
4896
4897 /* Mark this as a function return value so integrate will delete the
4898 assignment and USE below when inlining this function. */
4899 REG_FUNCTION_VALUE_P (outgoing) = 1;
4900
4901 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4902 value_address = convert_memory_address (GET_MODE (outgoing),
4903 value_address);
4904
4905 emit_move_insn (outgoing, value_address);
4906
4907 /* Show return register used to hold result (in this case the address
4908 of the result. */
4909 crtl->return_rtx = outgoing;
4910 }
4911
4912 /* Emit the actual code to clobber return register. */
4913 {
4914 rtx seq;
4915
4916 start_sequence ();
4917 clobber_return_register ();
4918 seq = get_insns ();
4919 end_sequence ();
4920
4921 emit_insn_after (seq, clobber_after);
4922 }
4923
4924 /* Output the label for the naked return from the function. */
4925 if (naked_return_label)
4926 emit_label (naked_return_label);
4927
4928 /* @@@ This is a kludge. We want to ensure that instructions that
4929 may trap are not moved into the epilogue by scheduling, because
4930 we don't always emit unwind information for the epilogue. */
4931 if (!USING_SJLJ_EXCEPTIONS && cfun->can_throw_non_call_exceptions)
4932 emit_insn (gen_blockage ());
4933
4934 /* If stack protection is enabled for this function, check the guard. */
4935 if (crtl->stack_protect_guard)
4936 stack_protect_epilogue ();
4937
4938 /* If we had calls to alloca, and this machine needs
4939 an accurate stack pointer to exit the function,
4940 insert some code to save and restore the stack pointer. */
4941 if (! EXIT_IGNORE_STACK
4942 && cfun->calls_alloca)
4943 {
4944 rtx tem = 0;
4945
4946 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4947 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4948 }
4949
4950 /* ??? This should no longer be necessary since stupid is no longer with
4951 us, but there are some parts of the compiler (eg reload_combine, and
4952 sh mach_dep_reorg) that still try and compute their own lifetime info
4953 instead of using the general framework. */
4954 use_return_register ();
4955 }
4956
4957 rtx
4958 get_arg_pointer_save_area (void)
4959 {
4960 rtx ret = arg_pointer_save_area;
4961
4962 if (! ret)
4963 {
4964 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4965 arg_pointer_save_area = ret;
4966 }
4967
4968 if (! crtl->arg_pointer_save_area_init)
4969 {
4970 rtx seq;
4971
4972 /* Save the arg pointer at the beginning of the function. The
4973 generated stack slot may not be a valid memory address, so we
4974 have to check it and fix it if necessary. */
4975 start_sequence ();
4976 emit_move_insn (validize_mem (ret),
4977 crtl->args.internal_arg_pointer);
4978 seq = get_insns ();
4979 end_sequence ();
4980
4981 push_topmost_sequence ();
4982 emit_insn_after (seq, entry_of_function ());
4983 pop_topmost_sequence ();
4984 }
4985
4986 return ret;
4987 }
4988 \f
4989 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4990 for the first time. */
4991
4992 static void
4993 record_insns (rtx insns, rtx end, htab_t *hashp)
4994 {
4995 rtx tmp;
4996 htab_t hash = *hashp;
4997
4998 if (hash == NULL)
4999 *hashp = hash
5000 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5001
5002 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5003 {
5004 void **slot = htab_find_slot (hash, tmp, INSERT);
5005 gcc_assert (*slot == NULL);
5006 *slot = tmp;
5007 }
5008 }
5009
5010 /* INSN has been duplicated as COPY, as part of duping a basic block.
5011 If INSN is an epilogue insn, then record COPY as epilogue as well. */
5012
5013 void
5014 maybe_copy_epilogue_insn (rtx insn, rtx copy)
5015 {
5016 void **slot;
5017
5018 if (epilogue_insn_hash == NULL
5019 || htab_find (epilogue_insn_hash, insn) == NULL)
5020 return;
5021
5022 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
5023 gcc_assert (*slot == NULL);
5024 *slot = copy;
5025 }
5026
5027 /* Set the locator of the insn chain starting at INSN to LOC. */
5028 static void
5029 set_insn_locators (rtx insn, int loc)
5030 {
5031 while (insn != NULL_RTX)
5032 {
5033 if (INSN_P (insn))
5034 INSN_LOCATOR (insn) = loc;
5035 insn = NEXT_INSN (insn);
5036 }
5037 }
5038
5039 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5040 we can be running after reorg, SEQUENCE rtl is possible. */
5041
5042 static bool
5043 contains (const_rtx insn, htab_t hash)
5044 {
5045 if (hash == NULL)
5046 return false;
5047
5048 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5049 {
5050 int i;
5051 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5052 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5053 return true;
5054 return false;
5055 }
5056
5057 return htab_find (hash, insn) != NULL;
5058 }
5059
5060 int
5061 prologue_epilogue_contains (const_rtx insn)
5062 {
5063 if (contains (insn, prologue_insn_hash))
5064 return 1;
5065 if (contains (insn, epilogue_insn_hash))
5066 return 1;
5067 return 0;
5068 }
5069
5070 #ifdef HAVE_return
5071 /* Insert gen_return at the end of block BB. This also means updating
5072 block_for_insn appropriately. */
5073
5074 static void
5075 emit_return_into_block (basic_block bb)
5076 {
5077 emit_jump_insn_after (gen_return (), BB_END (bb));
5078 }
5079 #endif /* HAVE_return */
5080
5081 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5082 this into place with notes indicating where the prologue ends and where
5083 the epilogue begins. Update the basic block information when possible. */
5084
5085 static void
5086 thread_prologue_and_epilogue_insns (void)
5087 {
5088 int inserted = 0;
5089 edge e;
5090 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5091 rtx seq;
5092 #endif
5093 #if defined (HAVE_epilogue) || defined(HAVE_return)
5094 rtx epilogue_end = NULL_RTX;
5095 #endif
5096 edge_iterator ei;
5097
5098 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5099 #ifdef HAVE_prologue
5100 if (HAVE_prologue)
5101 {
5102 start_sequence ();
5103 seq = gen_prologue ();
5104 emit_insn (seq);
5105
5106 /* Insert an explicit USE for the frame pointer
5107 if the profiling is on and the frame pointer is required. */
5108 if (crtl->profile && frame_pointer_needed)
5109 emit_use (hard_frame_pointer_rtx);
5110
5111 /* Retain a map of the prologue insns. */
5112 record_insns (seq, NULL, &prologue_insn_hash);
5113 emit_note (NOTE_INSN_PROLOGUE_END);
5114
5115 #ifndef PROFILE_BEFORE_PROLOGUE
5116 /* Ensure that instructions are not moved into the prologue when
5117 profiling is on. The call to the profiling routine can be
5118 emitted within the live range of a call-clobbered register. */
5119 if (crtl->profile)
5120 emit_insn (gen_blockage ());
5121 #endif
5122
5123 seq = get_insns ();
5124 end_sequence ();
5125 set_insn_locators (seq, prologue_locator);
5126
5127 /* Can't deal with multiple successors of the entry block
5128 at the moment. Function should always have at least one
5129 entry point. */
5130 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5131
5132 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5133 inserted = 1;
5134 }
5135 #endif
5136
5137 /* If the exit block has no non-fake predecessors, we don't need
5138 an epilogue. */
5139 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5140 if ((e->flags & EDGE_FAKE) == 0)
5141 break;
5142 if (e == NULL)
5143 goto epilogue_done;
5144
5145 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5146 #ifdef HAVE_return
5147 if (optimize && HAVE_return)
5148 {
5149 /* If we're allowed to generate a simple return instruction,
5150 then by definition we don't need a full epilogue. Examine
5151 the block that falls through to EXIT. If it does not
5152 contain any code, examine its predecessors and try to
5153 emit (conditional) return instructions. */
5154
5155 basic_block last;
5156 rtx label;
5157
5158 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5159 if (e->flags & EDGE_FALLTHRU)
5160 break;
5161 if (e == NULL)
5162 goto epilogue_done;
5163 last = e->src;
5164
5165 /* Verify that there are no active instructions in the last block. */
5166 label = BB_END (last);
5167 while (label && !LABEL_P (label))
5168 {
5169 if (active_insn_p (label))
5170 break;
5171 label = PREV_INSN (label);
5172 }
5173
5174 if (BB_HEAD (last) == label && LABEL_P (label))
5175 {
5176 edge_iterator ei2;
5177
5178 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5179 {
5180 basic_block bb = e->src;
5181 rtx jump;
5182
5183 if (bb == ENTRY_BLOCK_PTR)
5184 {
5185 ei_next (&ei2);
5186 continue;
5187 }
5188
5189 jump = BB_END (bb);
5190 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5191 {
5192 ei_next (&ei2);
5193 continue;
5194 }
5195
5196 /* If we have an unconditional jump, we can replace that
5197 with a simple return instruction. */
5198 if (simplejump_p (jump))
5199 {
5200 emit_return_into_block (bb);
5201 delete_insn (jump);
5202 }
5203
5204 /* If we have a conditional jump, we can try to replace
5205 that with a conditional return instruction. */
5206 else if (condjump_p (jump))
5207 {
5208 if (! redirect_jump (jump, 0, 0))
5209 {
5210 ei_next (&ei2);
5211 continue;
5212 }
5213
5214 /* If this block has only one successor, it both jumps
5215 and falls through to the fallthru block, so we can't
5216 delete the edge. */
5217 if (single_succ_p (bb))
5218 {
5219 ei_next (&ei2);
5220 continue;
5221 }
5222 }
5223 else
5224 {
5225 ei_next (&ei2);
5226 continue;
5227 }
5228
5229 /* Fix up the CFG for the successful change we just made. */
5230 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5231 }
5232
5233 /* Emit a return insn for the exit fallthru block. Whether
5234 this is still reachable will be determined later. */
5235
5236 emit_barrier_after (BB_END (last));
5237 emit_return_into_block (last);
5238 epilogue_end = BB_END (last);
5239 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5240 goto epilogue_done;
5241 }
5242 }
5243 #endif
5244
5245 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5246 this marker for the splits of EH_RETURN patterns, and nothing else
5247 uses the flag in the meantime. */
5248 epilogue_completed = 1;
5249
5250 #ifdef HAVE_eh_return
5251 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5252 some targets, these get split to a special version of the epilogue
5253 code. In order to be able to properly annotate these with unwind
5254 info, try to split them now. If we get a valid split, drop an
5255 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5256 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5257 {
5258 rtx prev, last, trial;
5259
5260 if (e->flags & EDGE_FALLTHRU)
5261 continue;
5262 last = BB_END (e->src);
5263 if (!eh_returnjump_p (last))
5264 continue;
5265
5266 prev = PREV_INSN (last);
5267 trial = try_split (PATTERN (last), last, 1);
5268 if (trial == last)
5269 continue;
5270
5271 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5272 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5273 }
5274 #endif
5275
5276 /* Find the edge that falls through to EXIT. Other edges may exist
5277 due to RETURN instructions, but those don't need epilogues.
5278 There really shouldn't be a mixture -- either all should have
5279 been converted or none, however... */
5280
5281 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5282 if (e->flags & EDGE_FALLTHRU)
5283 break;
5284 if (e == NULL)
5285 goto epilogue_done;
5286
5287 #ifdef HAVE_epilogue
5288 if (HAVE_epilogue)
5289 {
5290 start_sequence ();
5291 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5292 seq = gen_epilogue ();
5293 emit_jump_insn (seq);
5294
5295 /* Retain a map of the epilogue insns. */
5296 record_insns (seq, NULL, &epilogue_insn_hash);
5297 set_insn_locators (seq, epilogue_locator);
5298
5299 seq = get_insns ();
5300 end_sequence ();
5301
5302 insert_insn_on_edge (seq, e);
5303 inserted = 1;
5304 }
5305 else
5306 #endif
5307 {
5308 basic_block cur_bb;
5309
5310 if (! next_active_insn (BB_END (e->src)))
5311 goto epilogue_done;
5312 /* We have a fall-through edge to the exit block, the source is not
5313 at the end of the function, and there will be an assembler epilogue
5314 at the end of the function.
5315 We can't use force_nonfallthru here, because that would try to
5316 use return. Inserting a jump 'by hand' is extremely messy, so
5317 we take advantage of cfg_layout_finalize using
5318 fixup_fallthru_exit_predecessor. */
5319 cfg_layout_initialize (0);
5320 FOR_EACH_BB (cur_bb)
5321 if (cur_bb->index >= NUM_FIXED_BLOCKS
5322 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5323 cur_bb->aux = cur_bb->next_bb;
5324 cfg_layout_finalize ();
5325 }
5326 epilogue_done:
5327 default_rtl_profile ();
5328
5329 if (inserted)
5330 {
5331 commit_edge_insertions ();
5332
5333 /* The epilogue insns we inserted may cause the exit edge to no longer
5334 be fallthru. */
5335 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5336 {
5337 if (((e->flags & EDGE_FALLTHRU) != 0)
5338 && returnjump_p (BB_END (e->src)))
5339 e->flags &= ~EDGE_FALLTHRU;
5340 }
5341 }
5342
5343 #ifdef HAVE_sibcall_epilogue
5344 /* Emit sibling epilogues before any sibling call sites. */
5345 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5346 {
5347 basic_block bb = e->src;
5348 rtx insn = BB_END (bb);
5349
5350 if (!CALL_P (insn)
5351 || ! SIBLING_CALL_P (insn))
5352 {
5353 ei_next (&ei);
5354 continue;
5355 }
5356
5357 start_sequence ();
5358 emit_note (NOTE_INSN_EPILOGUE_BEG);
5359 emit_insn (gen_sibcall_epilogue ());
5360 seq = get_insns ();
5361 end_sequence ();
5362
5363 /* Retain a map of the epilogue insns. Used in life analysis to
5364 avoid getting rid of sibcall epilogue insns. Do this before we
5365 actually emit the sequence. */
5366 record_insns (seq, NULL, &epilogue_insn_hash);
5367 set_insn_locators (seq, epilogue_locator);
5368
5369 emit_insn_before (seq, insn);
5370 ei_next (&ei);
5371 }
5372 #endif
5373
5374 #ifdef HAVE_epilogue
5375 if (epilogue_end)
5376 {
5377 rtx insn, next;
5378
5379 /* Similarly, move any line notes that appear after the epilogue.
5380 There is no need, however, to be quite so anal about the existence
5381 of such a note. Also possibly move
5382 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5383 info generation. */
5384 for (insn = epilogue_end; insn; insn = next)
5385 {
5386 next = NEXT_INSN (insn);
5387 if (NOTE_P (insn)
5388 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5389 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5390 }
5391 }
5392 #endif
5393
5394 /* Threading the prologue and epilogue changes the artificial refs
5395 in the entry and exit blocks. */
5396 epilogue_completed = 1;
5397 df_update_entry_exit_and_calls ();
5398 }
5399
5400 /* Reposition the prologue-end and epilogue-begin notes after
5401 instruction scheduling. */
5402
5403 void
5404 reposition_prologue_and_epilogue_notes (void)
5405 {
5406 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5407 || defined (HAVE_sibcall_epilogue)
5408 /* Since the hash table is created on demand, the fact that it is
5409 non-null is a signal that it is non-empty. */
5410 if (prologue_insn_hash != NULL)
5411 {
5412 size_t len = htab_elements (prologue_insn_hash);
5413 rtx insn, last = NULL, note = NULL;
5414
5415 /* Scan from the beginning until we reach the last prologue insn. */
5416 /* ??? While we do have the CFG intact, there are two problems:
5417 (1) The prologue can contain loops (typically probing the stack),
5418 which means that the end of the prologue isn't in the first bb.
5419 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5420 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5421 {
5422 if (NOTE_P (insn))
5423 {
5424 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5425 note = insn;
5426 }
5427 else if (contains (insn, prologue_insn_hash))
5428 {
5429 last = insn;
5430 if (--len == 0)
5431 break;
5432 }
5433 }
5434
5435 if (last)
5436 {
5437 if (note == NULL)
5438 {
5439 /* Scan forward looking for the PROLOGUE_END note. It should
5440 be right at the beginning of the block, possibly with other
5441 insn notes that got moved there. */
5442 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5443 {
5444 if (NOTE_P (note)
5445 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5446 break;
5447 }
5448 }
5449
5450 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5451 if (LABEL_P (last))
5452 last = NEXT_INSN (last);
5453 reorder_insns (note, note, last);
5454 }
5455 }
5456
5457 if (epilogue_insn_hash != NULL)
5458 {
5459 edge_iterator ei;
5460 edge e;
5461
5462 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5463 {
5464 rtx insn, first = NULL, note = NULL;
5465 basic_block bb = e->src;
5466
5467 /* Scan from the beginning until we reach the first epilogue insn. */
5468 FOR_BB_INSNS (bb, insn)
5469 {
5470 if (NOTE_P (insn))
5471 {
5472 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5473 {
5474 note = insn;
5475 if (first != NULL)
5476 break;
5477 }
5478 }
5479 else if (first == NULL && contains (insn, epilogue_insn_hash))
5480 {
5481 first = insn;
5482 if (note != NULL)
5483 break;
5484 }
5485 }
5486
5487 if (note)
5488 {
5489 /* If the function has a single basic block, and no real
5490 epilogue insns (e.g. sibcall with no cleanup), the
5491 epilogue note can get scheduled before the prologue
5492 note. If we have frame related prologue insns, having
5493 them scanned during the epilogue will result in a crash.
5494 In this case re-order the epilogue note to just before
5495 the last insn in the block. */
5496 if (first == NULL)
5497 first = BB_END (bb);
5498
5499 if (PREV_INSN (first) != note)
5500 reorder_insns (note, note, PREV_INSN (first));
5501 }
5502 }
5503 }
5504 #endif /* HAVE_prologue or HAVE_epilogue */
5505 }
5506
5507 /* Returns the name of the current function. */
5508 const char *
5509 current_function_name (void)
5510 {
5511 if (cfun == NULL)
5512 return "<none>";
5513 return lang_hooks.decl_printable_name (cfun->decl, 2);
5514 }
5515 \f
5516
5517 static unsigned int
5518 rest_of_handle_check_leaf_regs (void)
5519 {
5520 #ifdef LEAF_REGISTERS
5521 current_function_uses_only_leaf_regs
5522 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5523 #endif
5524 return 0;
5525 }
5526
5527 /* Insert a TYPE into the used types hash table of CFUN. */
5528
5529 static void
5530 used_types_insert_helper (tree type, struct function *func)
5531 {
5532 if (type != NULL && func != NULL)
5533 {
5534 void **slot;
5535
5536 if (func->used_types_hash == NULL)
5537 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5538 htab_eq_pointer, NULL);
5539 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5540 if (*slot == NULL)
5541 *slot = type;
5542 }
5543 }
5544
5545 /* Given a type, insert it into the used hash table in cfun. */
5546 void
5547 used_types_insert (tree t)
5548 {
5549 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5550 if (TYPE_NAME (t))
5551 break;
5552 else
5553 t = TREE_TYPE (t);
5554 if (TYPE_NAME (t) == NULL_TREE
5555 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
5556 t = TYPE_MAIN_VARIANT (t);
5557 if (debug_info_level > DINFO_LEVEL_NONE)
5558 {
5559 if (cfun)
5560 used_types_insert_helper (t, cfun);
5561 else
5562 /* So this might be a type referenced by a global variable.
5563 Record that type so that we can later decide to emit its debug
5564 information. */
5565 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
5566 }
5567 }
5568
5569 /* Helper to Hash a struct types_used_by_vars_entry. */
5570
5571 static hashval_t
5572 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5573 {
5574 gcc_assert (entry && entry->var_decl && entry->type);
5575
5576 return iterative_hash_object (entry->type,
5577 iterative_hash_object (entry->var_decl, 0));
5578 }
5579
5580 /* Hash function of the types_used_by_vars_entry hash table. */
5581
5582 hashval_t
5583 types_used_by_vars_do_hash (const void *x)
5584 {
5585 const struct types_used_by_vars_entry *entry =
5586 (const struct types_used_by_vars_entry *) x;
5587
5588 return hash_types_used_by_vars_entry (entry);
5589 }
5590
5591 /*Equality function of the types_used_by_vars_entry hash table. */
5592
5593 int
5594 types_used_by_vars_eq (const void *x1, const void *x2)
5595 {
5596 const struct types_used_by_vars_entry *e1 =
5597 (const struct types_used_by_vars_entry *) x1;
5598 const struct types_used_by_vars_entry *e2 =
5599 (const struct types_used_by_vars_entry *)x2;
5600
5601 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5602 }
5603
5604 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5605
5606 void
5607 types_used_by_var_decl_insert (tree type, tree var_decl)
5608 {
5609 if (type != NULL && var_decl != NULL)
5610 {
5611 void **slot;
5612 struct types_used_by_vars_entry e;
5613 e.var_decl = var_decl;
5614 e.type = type;
5615 if (types_used_by_vars_hash == NULL)
5616 types_used_by_vars_hash =
5617 htab_create_ggc (37, types_used_by_vars_do_hash,
5618 types_used_by_vars_eq, NULL);
5619 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5620 hash_types_used_by_vars_entry (&e), INSERT);
5621 if (*slot == NULL)
5622 {
5623 struct types_used_by_vars_entry *entry;
5624 entry = ggc_alloc_types_used_by_vars_entry ();
5625 entry->type = type;
5626 entry->var_decl = var_decl;
5627 *slot = entry;
5628 }
5629 }
5630 }
5631
5632 struct rtl_opt_pass pass_leaf_regs =
5633 {
5634 {
5635 RTL_PASS,
5636 "*leaf_regs", /* name */
5637 NULL, /* gate */
5638 rest_of_handle_check_leaf_regs, /* execute */
5639 NULL, /* sub */
5640 NULL, /* next */
5641 0, /* static_pass_number */
5642 TV_NONE, /* tv_id */
5643 0, /* properties_required */
5644 0, /* properties_provided */
5645 0, /* properties_destroyed */
5646 0, /* todo_flags_start */
5647 0 /* todo_flags_finish */
5648 }
5649 };
5650
5651 static unsigned int
5652 rest_of_handle_thread_prologue_and_epilogue (void)
5653 {
5654 if (optimize)
5655 cleanup_cfg (CLEANUP_EXPENSIVE);
5656 /* On some machines, the prologue and epilogue code, or parts thereof,
5657 can be represented as RTL. Doing so lets us schedule insns between
5658 it and the rest of the code and also allows delayed branch
5659 scheduling to operate in the epilogue. */
5660
5661 thread_prologue_and_epilogue_insns ();
5662 return 0;
5663 }
5664
5665 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5666 {
5667 {
5668 RTL_PASS,
5669 "pro_and_epilogue", /* name */
5670 NULL, /* gate */
5671 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5672 NULL, /* sub */
5673 NULL, /* next */
5674 0, /* static_pass_number */
5675 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5676 0, /* properties_required */
5677 0, /* properties_provided */
5678 0, /* properties_destroyed */
5679 TODO_verify_flow, /* todo_flags_start */
5680 TODO_dump_func |
5681 TODO_df_verify |
5682 TODO_df_finish | TODO_verify_rtl_sharing |
5683 TODO_ggc_collect /* todo_flags_finish */
5684 }
5685 };
5686 \f
5687
5688 /* This mini-pass fixes fall-out from SSA in asm statements that have
5689 in-out constraints. Say you start with
5690
5691 orig = inout;
5692 asm ("": "+mr" (inout));
5693 use (orig);
5694
5695 which is transformed very early to use explicit output and match operands:
5696
5697 orig = inout;
5698 asm ("": "=mr" (inout) : "0" (inout));
5699 use (orig);
5700
5701 Or, after SSA and copyprop,
5702
5703 asm ("": "=mr" (inout_2) : "0" (inout_1));
5704 use (inout_1);
5705
5706 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5707 they represent two separate values, so they will get different pseudo
5708 registers during expansion. Then, since the two operands need to match
5709 per the constraints, but use different pseudo registers, reload can
5710 only register a reload for these operands. But reloads can only be
5711 satisfied by hardregs, not by memory, so we need a register for this
5712 reload, just because we are presented with non-matching operands.
5713 So, even though we allow memory for this operand, no memory can be
5714 used for it, just because the two operands don't match. This can
5715 cause reload failures on register-starved targets.
5716
5717 So it's a symptom of reload not being able to use memory for reloads
5718 or, alternatively it's also a symptom of both operands not coming into
5719 reload as matching (in which case the pseudo could go to memory just
5720 fine, as the alternative allows it, and no reload would be necessary).
5721 We fix the latter problem here, by transforming
5722
5723 asm ("": "=mr" (inout_2) : "0" (inout_1));
5724
5725 back to
5726
5727 inout_2 = inout_1;
5728 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5729
5730 static void
5731 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5732 {
5733 int i;
5734 bool changed = false;
5735 rtx op = SET_SRC (p_sets[0]);
5736 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5737 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5738 bool *output_matched = XALLOCAVEC (bool, noutputs);
5739
5740 memset (output_matched, 0, noutputs * sizeof (bool));
5741 for (i = 0; i < ninputs; i++)
5742 {
5743 rtx input, output, insns;
5744 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5745 char *end;
5746 int match, j;
5747
5748 if (*constraint == '%')
5749 constraint++;
5750
5751 match = strtoul (constraint, &end, 10);
5752 if (end == constraint)
5753 continue;
5754
5755 gcc_assert (match < noutputs);
5756 output = SET_DEST (p_sets[match]);
5757 input = RTVEC_ELT (inputs, i);
5758 /* Only do the transformation for pseudos. */
5759 if (! REG_P (output)
5760 || rtx_equal_p (output, input)
5761 || (GET_MODE (input) != VOIDmode
5762 && GET_MODE (input) != GET_MODE (output)))
5763 continue;
5764
5765 /* We can't do anything if the output is also used as input,
5766 as we're going to overwrite it. */
5767 for (j = 0; j < ninputs; j++)
5768 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5769 break;
5770 if (j != ninputs)
5771 continue;
5772
5773 /* Avoid changing the same input several times. For
5774 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5775 only change in once (to out1), rather than changing it
5776 first to out1 and afterwards to out2. */
5777 if (i > 0)
5778 {
5779 for (j = 0; j < noutputs; j++)
5780 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5781 break;
5782 if (j != noutputs)
5783 continue;
5784 }
5785 output_matched[match] = true;
5786
5787 start_sequence ();
5788 emit_move_insn (output, input);
5789 insns = get_insns ();
5790 end_sequence ();
5791 emit_insn_before (insns, insn);
5792
5793 /* Now replace all mentions of the input with output. We can't
5794 just replace the occurrence in inputs[i], as the register might
5795 also be used in some other input (or even in an address of an
5796 output), which would mean possibly increasing the number of
5797 inputs by one (namely 'output' in addition), which might pose
5798 a too complicated problem for reload to solve. E.g. this situation:
5799
5800 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5801
5802 Here 'input' is used in two occurrences as input (once for the
5803 input operand, once for the address in the second output operand).
5804 If we would replace only the occurrence of the input operand (to
5805 make the matching) we would be left with this:
5806
5807 output = input
5808 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5809
5810 Now we suddenly have two different input values (containing the same
5811 value, but different pseudos) where we formerly had only one.
5812 With more complicated asms this might lead to reload failures
5813 which wouldn't have happen without this pass. So, iterate over
5814 all operands and replace all occurrences of the register used. */
5815 for (j = 0; j < noutputs; j++)
5816 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5817 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5818 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5819 input, output);
5820 for (j = 0; j < ninputs; j++)
5821 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5822 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5823 input, output);
5824
5825 changed = true;
5826 }
5827
5828 if (changed)
5829 df_insn_rescan (insn);
5830 }
5831
5832 static unsigned
5833 rest_of_match_asm_constraints (void)
5834 {
5835 basic_block bb;
5836 rtx insn, pat, *p_sets;
5837 int noutputs;
5838
5839 if (!crtl->has_asm_statement)
5840 return 0;
5841
5842 df_set_flags (DF_DEFER_INSN_RESCAN);
5843 FOR_EACH_BB (bb)
5844 {
5845 FOR_BB_INSNS (bb, insn)
5846 {
5847 if (!INSN_P (insn))
5848 continue;
5849
5850 pat = PATTERN (insn);
5851 if (GET_CODE (pat) == PARALLEL)
5852 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5853 else if (GET_CODE (pat) == SET)
5854 p_sets = &PATTERN (insn), noutputs = 1;
5855 else
5856 continue;
5857
5858 if (GET_CODE (*p_sets) == SET
5859 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5860 match_asm_constraints_1 (insn, p_sets, noutputs);
5861 }
5862 }
5863
5864 return TODO_df_finish;
5865 }
5866
5867 struct rtl_opt_pass pass_match_asm_constraints =
5868 {
5869 {
5870 RTL_PASS,
5871 "asmcons", /* name */
5872 NULL, /* gate */
5873 rest_of_match_asm_constraints, /* execute */
5874 NULL, /* sub */
5875 NULL, /* next */
5876 0, /* static_pass_number */
5877 TV_NONE, /* tv_id */
5878 0, /* properties_required */
5879 0, /* properties_provided */
5880 0, /* properties_destroyed */
5881 0, /* todo_flags_start */
5882 TODO_dump_func /* todo_flags_finish */
5883 }
5884 };
5885
5886
5887 #include "gt-function.h"