Add 2006 to copyright line
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
31
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "tree-pass.h"
65 #include "predict.h"
66
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
70
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
74
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
76
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
84
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
89
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
93
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
99
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 life_analysis has run. */
103 int current_function_sp_is_unchanging;
104
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
109
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
115
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
118
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
122
123 /* The currently compiled function. */
124 struct function *cfun = 0;
125
126 DEF_VEC_I(int);
127 DEF_VEC_ALLOC_I(int,heap);
128
129 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
130 static VEC(int,heap) *prologue;
131 static VEC(int,heap) *epilogue;
132
133 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
134 in this function. */
135 static VEC(int,heap) *sibcall_epilogue;
136 \f
137 /* In order to evaluate some expressions, such as function calls returning
138 structures in memory, we need to temporarily allocate stack locations.
139 We record each allocated temporary in the following structure.
140
141 Associated with each temporary slot is a nesting level. When we pop up
142 one level, all temporaries associated with the previous level are freed.
143 Normally, all temporaries are freed after the execution of the statement
144 in which they were created. However, if we are inside a ({...}) grouping,
145 the result may be in a temporary and hence must be preserved. If the
146 result could be in a temporary, we preserve it if we can determine which
147 one it is in. If we cannot determine which temporary may contain the
148 result, all temporaries are preserved. A temporary is preserved by
149 pretending it was allocated at the previous nesting level.
150
151 Automatic variables are also assigned temporary slots, at the nesting
152 level where they are defined. They are marked a "kept" so that
153 free_temp_slots will not free them. */
154
155 struct temp_slot GTY(())
156 {
157 /* Points to next temporary slot. */
158 struct temp_slot *next;
159 /* Points to previous temporary slot. */
160 struct temp_slot *prev;
161
162 /* The rtx to used to reference the slot. */
163 rtx slot;
164 /* The rtx used to represent the address if not the address of the
165 slot above. May be an EXPR_LIST if multiple addresses exist. */
166 rtx address;
167 /* The alignment (in bits) of the slot. */
168 unsigned int align;
169 /* The size, in units, of the slot. */
170 HOST_WIDE_INT size;
171 /* The type of the object in the slot, or zero if it doesn't correspond
172 to a type. We use this to determine whether a slot can be reused.
173 It can be reused if objects of the type of the new slot will always
174 conflict with objects of the type of the old slot. */
175 tree type;
176 /* Nonzero if this temporary is currently in use. */
177 char in_use;
178 /* Nonzero if this temporary has its address taken. */
179 char addr_taken;
180 /* Nesting level at which this slot is being used. */
181 int level;
182 /* Nonzero if this should survive a call to free_temp_slots. */
183 int keep;
184 /* The offset of the slot from the frame_pointer, including extra space
185 for alignment. This info is for combine_temp_slots. */
186 HOST_WIDE_INT base_offset;
187 /* The size of the slot, including extra space for alignment. This
188 info is for combine_temp_slots. */
189 HOST_WIDE_INT full_size;
190 };
191 \f
192 /* Forward declarations. */
193
194 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
195 struct function *);
196 static struct temp_slot *find_temp_slot_from_address (rtx);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200 static void reorder_fix_fragments (tree);
201 static int all_blocks (tree, tree *);
202 static tree *get_block_vector (tree, int *);
203 extern tree debug_find_var_in_block_tree (tree, tree);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
207 static int contains (rtx, VEC(int,heap) **);
208 #ifdef HAVE_return
209 static void emit_return_into_block (basic_block, rtx);
210 #endif
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx keep_stack_depressed (rtx);
213 #endif
214 static void prepare_function_start (tree);
215 static void do_clobber_return_reg (rtx, void *);
216 static void do_use_return_reg (rtx, void *);
217 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 \f
219 /* Pointer to chain of `struct function' for containing functions. */
220 struct function *outer_function_chain;
221
222 /* Given a function decl for a containing function,
223 return the `struct function' for it. */
224
225 struct function *
226 find_function_data (tree decl)
227 {
228 struct function *p;
229
230 for (p = outer_function_chain; p; p = p->outer)
231 if (p->decl == decl)
232 return p;
233
234 gcc_unreachable ();
235 }
236
237 /* Save the current context for compilation of a nested function.
238 This is called from language-specific code. The caller should use
239 the enter_nested langhook to save any language-specific state,
240 since this function knows only about language-independent
241 variables. */
242
243 void
244 push_function_context_to (tree context ATTRIBUTE_UNUSED)
245 {
246 struct function *p;
247
248 if (cfun == 0)
249 init_dummy_function_start ();
250 p = cfun;
251
252 p->outer = outer_function_chain;
253 outer_function_chain = p;
254
255 lang_hooks.function.enter_nested (p);
256
257 cfun = 0;
258 }
259
260 void
261 push_function_context (void)
262 {
263 push_function_context_to (current_function_decl);
264 }
265
266 /* Restore the last saved context, at the end of a nested function.
267 This function is called from language-specific code. */
268
269 void
270 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
271 {
272 struct function *p = outer_function_chain;
273
274 cfun = p;
275 outer_function_chain = p->outer;
276
277 current_function_decl = p->decl;
278
279 lang_hooks.function.leave_nested (p);
280
281 /* Reset variables that have known state during rtx generation. */
282 virtuals_instantiated = 0;
283 generating_concat_p = 1;
284 }
285
286 void
287 pop_function_context (void)
288 {
289 pop_function_context_from (current_function_decl);
290 }
291
292 /* Clear out all parts of the state in F that can safely be discarded
293 after the function has been parsed, but not compiled, to let
294 garbage collection reclaim the memory. */
295
296 void
297 free_after_parsing (struct function *f)
298 {
299 /* f->expr->forced_labels is used by code generation. */
300 /* f->emit->regno_reg_rtx is used by code generation. */
301 /* f->varasm is used by code generation. */
302 /* f->eh->eh_return_stub_label is used by code generation. */
303
304 lang_hooks.function.final (f);
305 }
306
307 /* Clear out all parts of the state in F that can safely be discarded
308 after the function has been compiled, to let garbage collection
309 reclaim the memory. */
310
311 void
312 free_after_compilation (struct function *f)
313 {
314 VEC_free (int, heap, prologue);
315 VEC_free (int, heap, epilogue);
316 VEC_free (int, heap, sibcall_epilogue);
317
318 f->eh = NULL;
319 f->expr = NULL;
320 f->emit = NULL;
321 f->varasm = NULL;
322 f->machine = NULL;
323 f->cfg = NULL;
324
325 f->x_avail_temp_slots = NULL;
326 f->x_used_temp_slots = NULL;
327 f->arg_offset_rtx = NULL;
328 f->return_rtx = NULL;
329 f->internal_arg_pointer = NULL;
330 f->x_nonlocal_goto_handler_labels = NULL;
331 f->x_return_label = NULL;
332 f->x_naked_return_label = NULL;
333 f->x_stack_slot_list = NULL;
334 f->x_tail_recursion_reentry = NULL;
335 f->x_arg_pointer_save_area = NULL;
336 f->x_parm_birth_insn = NULL;
337 f->original_arg_vector = NULL;
338 f->original_decl_initial = NULL;
339 f->epilogue_delay_list = NULL;
340 }
341 \f
342 /* Allocate fixed slots in the stack frame of the current function. */
343
344 /* Return size needed for stack frame based on slots so far allocated in
345 function F.
346 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
347 the caller may have to do that. */
348
349 static HOST_WIDE_INT
350 get_func_frame_size (struct function *f)
351 {
352 if (FRAME_GROWS_DOWNWARD)
353 return -f->x_frame_offset;
354 else
355 return f->x_frame_offset;
356 }
357
358 /* Return size needed for stack frame based on slots so far allocated.
359 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
360 the caller may have to do that. */
361 HOST_WIDE_INT
362 get_frame_size (void)
363 {
364 return get_func_frame_size (cfun);
365 }
366
367 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
368 with machine mode MODE.
369
370 ALIGN controls the amount of alignment for the address of the slot:
371 0 means according to MODE,
372 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
373 -2 means use BITS_PER_UNIT,
374 positive specifies alignment boundary in bits.
375
376 We do not round to stack_boundary here.
377
378 FUNCTION specifies the function to allocate in. */
379
380 static rtx
381 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
382 struct function *function)
383 {
384 rtx x, addr;
385 int bigend_correction = 0;
386 unsigned int alignment;
387 int frame_off, frame_alignment, frame_phase;
388
389 if (align == 0)
390 {
391 tree type;
392
393 if (mode == BLKmode)
394 alignment = BIGGEST_ALIGNMENT;
395 else
396 alignment = GET_MODE_ALIGNMENT (mode);
397
398 /* Allow the target to (possibly) increase the alignment of this
399 stack slot. */
400 type = lang_hooks.types.type_for_mode (mode, 0);
401 if (type)
402 alignment = LOCAL_ALIGNMENT (type, alignment);
403
404 alignment /= BITS_PER_UNIT;
405 }
406 else if (align == -1)
407 {
408 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
409 size = CEIL_ROUND (size, alignment);
410 }
411 else if (align == -2)
412 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
413 else
414 alignment = align / BITS_PER_UNIT;
415
416 if (FRAME_GROWS_DOWNWARD)
417 function->x_frame_offset -= size;
418
419 /* Ignore alignment we can't do with expected alignment of the boundary. */
420 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
421 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
422
423 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
424 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
425
426 /* Calculate how many bytes the start of local variables is off from
427 stack alignment. */
428 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
429 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
430 frame_phase = frame_off ? frame_alignment - frame_off : 0;
431
432 /* Round the frame offset to the specified alignment. The default is
433 to always honor requests to align the stack but a port may choose to
434 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
435 if (STACK_ALIGNMENT_NEEDED
436 || mode != BLKmode
437 || size != 0)
438 {
439 /* We must be careful here, since FRAME_OFFSET might be negative and
440 division with a negative dividend isn't as well defined as we might
441 like. So we instead assume that ALIGNMENT is a power of two and
442 use logical operations which are unambiguous. */
443 if (FRAME_GROWS_DOWNWARD)
444 function->x_frame_offset
445 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
446 (unsigned HOST_WIDE_INT) alignment)
447 + frame_phase);
448 else
449 function->x_frame_offset
450 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
451 (unsigned HOST_WIDE_INT) alignment)
452 + frame_phase);
453 }
454
455 /* On a big-endian machine, if we are allocating more space than we will use,
456 use the least significant bytes of those that are allocated. */
457 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
458 bigend_correction = size - GET_MODE_SIZE (mode);
459
460 /* If we have already instantiated virtual registers, return the actual
461 address relative to the frame pointer. */
462 if (function == cfun && virtuals_instantiated)
463 addr = plus_constant (frame_pointer_rtx,
464 trunc_int_for_mode
465 (frame_offset + bigend_correction
466 + STARTING_FRAME_OFFSET, Pmode));
467 else
468 addr = plus_constant (virtual_stack_vars_rtx,
469 trunc_int_for_mode
470 (function->x_frame_offset + bigend_correction,
471 Pmode));
472
473 if (!FRAME_GROWS_DOWNWARD)
474 function->x_frame_offset += size;
475
476 x = gen_rtx_MEM (mode, addr);
477 MEM_NOTRAP_P (x) = 1;
478
479 function->x_stack_slot_list
480 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
481
482 /* Try to detect frame size overflows on native platforms. */
483 #if BITS_PER_WORD >= 32
484 if ((FRAME_GROWS_DOWNWARD
485 ? (unsigned HOST_WIDE_INT) -function->x_frame_offset
486 : (unsigned HOST_WIDE_INT) function->x_frame_offset)
487 > ((unsigned HOST_WIDE_INT) 1 << (BITS_PER_WORD - 1))
488 /* Leave room for the fixed part of the frame. */
489 - 64 * UNITS_PER_WORD)
490 {
491 error ("%Jtotal size of local objects too large", function->decl);
492 /* Avoid duplicate error messages as much as possible. */
493 function->x_frame_offset = 0;
494 }
495 #endif
496
497 return x;
498 }
499
500 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
501 current function. */
502
503 rtx
504 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
505 {
506 return assign_stack_local_1 (mode, size, align, cfun);
507 }
508
509 \f
510 /* Removes temporary slot TEMP from LIST. */
511
512 static void
513 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
514 {
515 if (temp->next)
516 temp->next->prev = temp->prev;
517 if (temp->prev)
518 temp->prev->next = temp->next;
519 else
520 *list = temp->next;
521
522 temp->prev = temp->next = NULL;
523 }
524
525 /* Inserts temporary slot TEMP to LIST. */
526
527 static void
528 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
529 {
530 temp->next = *list;
531 if (*list)
532 (*list)->prev = temp;
533 temp->prev = NULL;
534 *list = temp;
535 }
536
537 /* Returns the list of used temp slots at LEVEL. */
538
539 static struct temp_slot **
540 temp_slots_at_level (int level)
541 {
542
543 if (!used_temp_slots)
544 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
545
546 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
547 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
548
549 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
550 }
551
552 /* Returns the maximal temporary slot level. */
553
554 static int
555 max_slot_level (void)
556 {
557 if (!used_temp_slots)
558 return -1;
559
560 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
561 }
562
563 /* Moves temporary slot TEMP to LEVEL. */
564
565 static void
566 move_slot_to_level (struct temp_slot *temp, int level)
567 {
568 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
569 insert_slot_to_list (temp, temp_slots_at_level (level));
570 temp->level = level;
571 }
572
573 /* Make temporary slot TEMP available. */
574
575 static void
576 make_slot_available (struct temp_slot *temp)
577 {
578 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
579 insert_slot_to_list (temp, &avail_temp_slots);
580 temp->in_use = 0;
581 temp->level = -1;
582 }
583 \f
584 /* Allocate a temporary stack slot and record it for possible later
585 reuse.
586
587 MODE is the machine mode to be given to the returned rtx.
588
589 SIZE is the size in units of the space required. We do no rounding here
590 since assign_stack_local will do any required rounding.
591
592 KEEP is 1 if this slot is to be retained after a call to
593 free_temp_slots. Automatic variables for a block are allocated
594 with this flag. KEEP values of 2 or 3 were needed respectively
595 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
596 or for SAVE_EXPRs, but they are now unused.
597
598 TYPE is the type that will be used for the stack slot. */
599
600 rtx
601 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
602 int keep, tree type)
603 {
604 unsigned int align;
605 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
606 rtx slot;
607
608 /* If SIZE is -1 it means that somebody tried to allocate a temporary
609 of a variable size. */
610 gcc_assert (size != -1);
611
612 /* These are now unused. */
613 gcc_assert (keep <= 1);
614
615 if (mode == BLKmode)
616 align = BIGGEST_ALIGNMENT;
617 else
618 align = GET_MODE_ALIGNMENT (mode);
619
620 if (! type)
621 type = lang_hooks.types.type_for_mode (mode, 0);
622
623 if (type)
624 align = LOCAL_ALIGNMENT (type, align);
625
626 /* Try to find an available, already-allocated temporary of the proper
627 mode which meets the size and alignment requirements. Choose the
628 smallest one with the closest alignment. */
629 for (p = avail_temp_slots; p; p = p->next)
630 {
631 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
632 && objects_must_conflict_p (p->type, type)
633 && (best_p == 0 || best_p->size > p->size
634 || (best_p->size == p->size && best_p->align > p->align)))
635 {
636 if (p->align == align && p->size == size)
637 {
638 selected = p;
639 cut_slot_from_list (selected, &avail_temp_slots);
640 best_p = 0;
641 break;
642 }
643 best_p = p;
644 }
645 }
646
647 /* Make our best, if any, the one to use. */
648 if (best_p)
649 {
650 selected = best_p;
651 cut_slot_from_list (selected, &avail_temp_slots);
652
653 /* If there are enough aligned bytes left over, make them into a new
654 temp_slot so that the extra bytes don't get wasted. Do this only
655 for BLKmode slots, so that we can be sure of the alignment. */
656 if (GET_MODE (best_p->slot) == BLKmode)
657 {
658 int alignment = best_p->align / BITS_PER_UNIT;
659 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
660
661 if (best_p->size - rounded_size >= alignment)
662 {
663 p = ggc_alloc (sizeof (struct temp_slot));
664 p->in_use = p->addr_taken = 0;
665 p->size = best_p->size - rounded_size;
666 p->base_offset = best_p->base_offset + rounded_size;
667 p->full_size = best_p->full_size - rounded_size;
668 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
669 p->align = best_p->align;
670 p->address = 0;
671 p->type = best_p->type;
672 insert_slot_to_list (p, &avail_temp_slots);
673
674 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
675 stack_slot_list);
676
677 best_p->size = rounded_size;
678 best_p->full_size = rounded_size;
679 }
680 }
681 }
682
683 /* If we still didn't find one, make a new temporary. */
684 if (selected == 0)
685 {
686 HOST_WIDE_INT frame_offset_old = frame_offset;
687
688 p = ggc_alloc (sizeof (struct temp_slot));
689
690 /* We are passing an explicit alignment request to assign_stack_local.
691 One side effect of that is assign_stack_local will not round SIZE
692 to ensure the frame offset remains suitably aligned.
693
694 So for requests which depended on the rounding of SIZE, we go ahead
695 and round it now. We also make sure ALIGNMENT is at least
696 BIGGEST_ALIGNMENT. */
697 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
698 p->slot = assign_stack_local (mode,
699 (mode == BLKmode
700 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
701 : size),
702 align);
703
704 p->align = align;
705
706 /* The following slot size computation is necessary because we don't
707 know the actual size of the temporary slot until assign_stack_local
708 has performed all the frame alignment and size rounding for the
709 requested temporary. Note that extra space added for alignment
710 can be either above or below this stack slot depending on which
711 way the frame grows. We include the extra space if and only if it
712 is above this slot. */
713 if (FRAME_GROWS_DOWNWARD)
714 p->size = frame_offset_old - frame_offset;
715 else
716 p->size = size;
717
718 /* Now define the fields used by combine_temp_slots. */
719 if (FRAME_GROWS_DOWNWARD)
720 {
721 p->base_offset = frame_offset;
722 p->full_size = frame_offset_old - frame_offset;
723 }
724 else
725 {
726 p->base_offset = frame_offset_old;
727 p->full_size = frame_offset - frame_offset_old;
728 }
729 p->address = 0;
730
731 selected = p;
732 }
733
734 p = selected;
735 p->in_use = 1;
736 p->addr_taken = 0;
737 p->type = type;
738 p->level = temp_slot_level;
739 p->keep = keep;
740
741 pp = temp_slots_at_level (p->level);
742 insert_slot_to_list (p, pp);
743
744 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
745 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
746 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
747
748 /* If we know the alias set for the memory that will be used, use
749 it. If there's no TYPE, then we don't know anything about the
750 alias set for the memory. */
751 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
752 set_mem_align (slot, align);
753
754 /* If a type is specified, set the relevant flags. */
755 if (type != 0)
756 {
757 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
758 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
759 }
760 MEM_NOTRAP_P (slot) = 1;
761
762 return slot;
763 }
764
765 /* Allocate a temporary stack slot and record it for possible later
766 reuse. First three arguments are same as in preceding function. */
767
768 rtx
769 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
770 {
771 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
772 }
773 \f
774 /* Assign a temporary.
775 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
776 and so that should be used in error messages. In either case, we
777 allocate of the given type.
778 KEEP is as for assign_stack_temp.
779 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
780 it is 0 if a register is OK.
781 DONT_PROMOTE is 1 if we should not promote values in register
782 to wider modes. */
783
784 rtx
785 assign_temp (tree type_or_decl, int keep, int memory_required,
786 int dont_promote ATTRIBUTE_UNUSED)
787 {
788 tree type, decl;
789 enum machine_mode mode;
790 #ifdef PROMOTE_MODE
791 int unsignedp;
792 #endif
793
794 if (DECL_P (type_or_decl))
795 decl = type_or_decl, type = TREE_TYPE (decl);
796 else
797 decl = NULL, type = type_or_decl;
798
799 mode = TYPE_MODE (type);
800 #ifdef PROMOTE_MODE
801 unsignedp = TYPE_UNSIGNED (type);
802 #endif
803
804 if (mode == BLKmode || memory_required)
805 {
806 HOST_WIDE_INT size = int_size_in_bytes (type);
807 tree size_tree;
808 rtx tmp;
809
810 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
811 problems with allocating the stack space. */
812 if (size == 0)
813 size = 1;
814
815 /* Unfortunately, we don't yet know how to allocate variable-sized
816 temporaries. However, sometimes we have a fixed upper limit on
817 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
818 instead. This is the case for Chill variable-sized strings. */
819 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
820 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
821 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
822 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
823
824 /* If we still haven't been able to get a size, see if the language
825 can compute a maximum size. */
826 if (size == -1
827 && (size_tree = lang_hooks.types.max_size (type)) != 0
828 && host_integerp (size_tree, 1))
829 size = tree_low_cst (size_tree, 1);
830
831 /* The size of the temporary may be too large to fit into an integer. */
832 /* ??? Not sure this should happen except for user silliness, so limit
833 this to things that aren't compiler-generated temporaries. The
834 rest of the time we'll die in assign_stack_temp_for_type. */
835 if (decl && size == -1
836 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
837 {
838 error ("size of variable %q+D is too large", decl);
839 size = 1;
840 }
841
842 tmp = assign_stack_temp_for_type (mode, size, keep, type);
843 return tmp;
844 }
845
846 #ifdef PROMOTE_MODE
847 if (! dont_promote)
848 mode = promote_mode (type, mode, &unsignedp, 0);
849 #endif
850
851 return gen_reg_rtx (mode);
852 }
853 \f
854 /* Combine temporary stack slots which are adjacent on the stack.
855
856 This allows for better use of already allocated stack space. This is only
857 done for BLKmode slots because we can be sure that we won't have alignment
858 problems in this case. */
859
860 static void
861 combine_temp_slots (void)
862 {
863 struct temp_slot *p, *q, *next, *next_q;
864 int num_slots;
865
866 /* We can't combine slots, because the information about which slot
867 is in which alias set will be lost. */
868 if (flag_strict_aliasing)
869 return;
870
871 /* If there are a lot of temp slots, don't do anything unless
872 high levels of optimization. */
873 if (! flag_expensive_optimizations)
874 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
875 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
876 return;
877
878 for (p = avail_temp_slots; p; p = next)
879 {
880 int delete_p = 0;
881
882 next = p->next;
883
884 if (GET_MODE (p->slot) != BLKmode)
885 continue;
886
887 for (q = p->next; q; q = next_q)
888 {
889 int delete_q = 0;
890
891 next_q = q->next;
892
893 if (GET_MODE (q->slot) != BLKmode)
894 continue;
895
896 if (p->base_offset + p->full_size == q->base_offset)
897 {
898 /* Q comes after P; combine Q into P. */
899 p->size += q->size;
900 p->full_size += q->full_size;
901 delete_q = 1;
902 }
903 else if (q->base_offset + q->full_size == p->base_offset)
904 {
905 /* P comes after Q; combine P into Q. */
906 q->size += p->size;
907 q->full_size += p->full_size;
908 delete_p = 1;
909 break;
910 }
911 if (delete_q)
912 cut_slot_from_list (q, &avail_temp_slots);
913 }
914
915 /* Either delete P or advance past it. */
916 if (delete_p)
917 cut_slot_from_list (p, &avail_temp_slots);
918 }
919 }
920 \f
921 /* Find the temp slot corresponding to the object at address X. */
922
923 static struct temp_slot *
924 find_temp_slot_from_address (rtx x)
925 {
926 struct temp_slot *p;
927 rtx next;
928 int i;
929
930 for (i = max_slot_level (); i >= 0; i--)
931 for (p = *temp_slots_at_level (i); p; p = p->next)
932 {
933 if (XEXP (p->slot, 0) == x
934 || p->address == x
935 || (GET_CODE (x) == PLUS
936 && XEXP (x, 0) == virtual_stack_vars_rtx
937 && GET_CODE (XEXP (x, 1)) == CONST_INT
938 && INTVAL (XEXP (x, 1)) >= p->base_offset
939 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
940 return p;
941
942 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
943 for (next = p->address; next; next = XEXP (next, 1))
944 if (XEXP (next, 0) == x)
945 return p;
946 }
947
948 /* If we have a sum involving a register, see if it points to a temp
949 slot. */
950 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
951 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
952 return p;
953 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
954 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
955 return p;
956
957 return 0;
958 }
959
960 /* Indicate that NEW is an alternate way of referring to the temp slot
961 that previously was known by OLD. */
962
963 void
964 update_temp_slot_address (rtx old, rtx new)
965 {
966 struct temp_slot *p;
967
968 if (rtx_equal_p (old, new))
969 return;
970
971 p = find_temp_slot_from_address (old);
972
973 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
974 is a register, see if one operand of the PLUS is a temporary
975 location. If so, NEW points into it. Otherwise, if both OLD and
976 NEW are a PLUS and if there is a register in common between them.
977 If so, try a recursive call on those values. */
978 if (p == 0)
979 {
980 if (GET_CODE (old) != PLUS)
981 return;
982
983 if (REG_P (new))
984 {
985 update_temp_slot_address (XEXP (old, 0), new);
986 update_temp_slot_address (XEXP (old, 1), new);
987 return;
988 }
989 else if (GET_CODE (new) != PLUS)
990 return;
991
992 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
993 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
994 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
995 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
996 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
997 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
998 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
999 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1000
1001 return;
1002 }
1003
1004 /* Otherwise add an alias for the temp's address. */
1005 else if (p->address == 0)
1006 p->address = new;
1007 else
1008 {
1009 if (GET_CODE (p->address) != EXPR_LIST)
1010 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1011
1012 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1013 }
1014 }
1015
1016 /* If X could be a reference to a temporary slot, mark the fact that its
1017 address was taken. */
1018
1019 void
1020 mark_temp_addr_taken (rtx x)
1021 {
1022 struct temp_slot *p;
1023
1024 if (x == 0)
1025 return;
1026
1027 /* If X is not in memory or is at a constant address, it cannot be in
1028 a temporary slot. */
1029 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1030 return;
1031
1032 p = find_temp_slot_from_address (XEXP (x, 0));
1033 if (p != 0)
1034 p->addr_taken = 1;
1035 }
1036
1037 /* If X could be a reference to a temporary slot, mark that slot as
1038 belonging to the to one level higher than the current level. If X
1039 matched one of our slots, just mark that one. Otherwise, we can't
1040 easily predict which it is, so upgrade all of them. Kept slots
1041 need not be touched.
1042
1043 This is called when an ({...}) construct occurs and a statement
1044 returns a value in memory. */
1045
1046 void
1047 preserve_temp_slots (rtx x)
1048 {
1049 struct temp_slot *p = 0, *next;
1050
1051 /* If there is no result, we still might have some objects whose address
1052 were taken, so we need to make sure they stay around. */
1053 if (x == 0)
1054 {
1055 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1056 {
1057 next = p->next;
1058
1059 if (p->addr_taken)
1060 move_slot_to_level (p, temp_slot_level - 1);
1061 }
1062
1063 return;
1064 }
1065
1066 /* If X is a register that is being used as a pointer, see if we have
1067 a temporary slot we know it points to. To be consistent with
1068 the code below, we really should preserve all non-kept slots
1069 if we can't find a match, but that seems to be much too costly. */
1070 if (REG_P (x) && REG_POINTER (x))
1071 p = find_temp_slot_from_address (x);
1072
1073 /* If X is not in memory or is at a constant address, it cannot be in
1074 a temporary slot, but it can contain something whose address was
1075 taken. */
1076 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1077 {
1078 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1079 {
1080 next = p->next;
1081
1082 if (p->addr_taken)
1083 move_slot_to_level (p, temp_slot_level - 1);
1084 }
1085
1086 return;
1087 }
1088
1089 /* First see if we can find a match. */
1090 if (p == 0)
1091 p = find_temp_slot_from_address (XEXP (x, 0));
1092
1093 if (p != 0)
1094 {
1095 /* Move everything at our level whose address was taken to our new
1096 level in case we used its address. */
1097 struct temp_slot *q;
1098
1099 if (p->level == temp_slot_level)
1100 {
1101 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1102 {
1103 next = q->next;
1104
1105 if (p != q && q->addr_taken)
1106 move_slot_to_level (q, temp_slot_level - 1);
1107 }
1108
1109 move_slot_to_level (p, temp_slot_level - 1);
1110 p->addr_taken = 0;
1111 }
1112 return;
1113 }
1114
1115 /* Otherwise, preserve all non-kept slots at this level. */
1116 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1117 {
1118 next = p->next;
1119
1120 if (!p->keep)
1121 move_slot_to_level (p, temp_slot_level - 1);
1122 }
1123 }
1124
1125 /* Free all temporaries used so far. This is normally called at the
1126 end of generating code for a statement. */
1127
1128 void
1129 free_temp_slots (void)
1130 {
1131 struct temp_slot *p, *next;
1132
1133 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1134 {
1135 next = p->next;
1136
1137 if (!p->keep)
1138 make_slot_available (p);
1139 }
1140
1141 combine_temp_slots ();
1142 }
1143
1144 /* Push deeper into the nesting level for stack temporaries. */
1145
1146 void
1147 push_temp_slots (void)
1148 {
1149 temp_slot_level++;
1150 }
1151
1152 /* Pop a temporary nesting level. All slots in use in the current level
1153 are freed. */
1154
1155 void
1156 pop_temp_slots (void)
1157 {
1158 struct temp_slot *p, *next;
1159
1160 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1161 {
1162 next = p->next;
1163 make_slot_available (p);
1164 }
1165
1166 combine_temp_slots ();
1167
1168 temp_slot_level--;
1169 }
1170
1171 /* Initialize temporary slots. */
1172
1173 void
1174 init_temp_slots (void)
1175 {
1176 /* We have not allocated any temporaries yet. */
1177 avail_temp_slots = 0;
1178 used_temp_slots = 0;
1179 temp_slot_level = 0;
1180 }
1181 \f
1182 /* These routines are responsible for converting virtual register references
1183 to the actual hard register references once RTL generation is complete.
1184
1185 The following four variables are used for communication between the
1186 routines. They contain the offsets of the virtual registers from their
1187 respective hard registers. */
1188
1189 static int in_arg_offset;
1190 static int var_offset;
1191 static int dynamic_offset;
1192 static int out_arg_offset;
1193 static int cfa_offset;
1194
1195 /* In most machines, the stack pointer register is equivalent to the bottom
1196 of the stack. */
1197
1198 #ifndef STACK_POINTER_OFFSET
1199 #define STACK_POINTER_OFFSET 0
1200 #endif
1201
1202 /* If not defined, pick an appropriate default for the offset of dynamically
1203 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1204 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1205
1206 #ifndef STACK_DYNAMIC_OFFSET
1207
1208 /* The bottom of the stack points to the actual arguments. If
1209 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1210 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1211 stack space for register parameters is not pushed by the caller, but
1212 rather part of the fixed stack areas and hence not included in
1213 `current_function_outgoing_args_size'. Nevertheless, we must allow
1214 for it when allocating stack dynamic objects. */
1215
1216 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1217 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1218 ((ACCUMULATE_OUTGOING_ARGS \
1219 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1220 + (STACK_POINTER_OFFSET)) \
1221
1222 #else
1223 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1224 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1225 + (STACK_POINTER_OFFSET))
1226 #endif
1227 #endif
1228
1229 \f
1230 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1231 is a virtual register, return the equivalent hard register and set the
1232 offset indirectly through the pointer. Otherwise, return 0. */
1233
1234 static rtx
1235 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1236 {
1237 rtx new;
1238 HOST_WIDE_INT offset;
1239
1240 if (x == virtual_incoming_args_rtx)
1241 new = arg_pointer_rtx, offset = in_arg_offset;
1242 else if (x == virtual_stack_vars_rtx)
1243 new = frame_pointer_rtx, offset = var_offset;
1244 else if (x == virtual_stack_dynamic_rtx)
1245 new = stack_pointer_rtx, offset = dynamic_offset;
1246 else if (x == virtual_outgoing_args_rtx)
1247 new = stack_pointer_rtx, offset = out_arg_offset;
1248 else if (x == virtual_cfa_rtx)
1249 {
1250 #ifdef FRAME_POINTER_CFA_OFFSET
1251 new = frame_pointer_rtx;
1252 #else
1253 new = arg_pointer_rtx;
1254 #endif
1255 offset = cfa_offset;
1256 }
1257 else
1258 return NULL_RTX;
1259
1260 *poffset = offset;
1261 return new;
1262 }
1263
1264 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1265 Instantiate any virtual registers present inside of *LOC. The expression
1266 is simplified, as much as possible, but is not to be considered "valid"
1267 in any sense implied by the target. If any change is made, set CHANGED
1268 to true. */
1269
1270 static int
1271 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1272 {
1273 HOST_WIDE_INT offset;
1274 bool *changed = (bool *) data;
1275 rtx x, new;
1276
1277 x = *loc;
1278 if (x == 0)
1279 return 0;
1280
1281 switch (GET_CODE (x))
1282 {
1283 case REG:
1284 new = instantiate_new_reg (x, &offset);
1285 if (new)
1286 {
1287 *loc = plus_constant (new, offset);
1288 if (changed)
1289 *changed = true;
1290 }
1291 return -1;
1292
1293 case PLUS:
1294 new = instantiate_new_reg (XEXP (x, 0), &offset);
1295 if (new)
1296 {
1297 new = plus_constant (new, offset);
1298 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1299 if (changed)
1300 *changed = true;
1301 return -1;
1302 }
1303
1304 /* FIXME -- from old code */
1305 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1306 we can commute the PLUS and SUBREG because pointers into the
1307 frame are well-behaved. */
1308 break;
1309
1310 default:
1311 break;
1312 }
1313
1314 return 0;
1315 }
1316
1317 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1318 matches the predicate for insn CODE operand OPERAND. */
1319
1320 static int
1321 safe_insn_predicate (int code, int operand, rtx x)
1322 {
1323 const struct insn_operand_data *op_data;
1324
1325 if (code < 0)
1326 return true;
1327
1328 op_data = &insn_data[code].operand[operand];
1329 if (op_data->predicate == NULL)
1330 return true;
1331
1332 return op_data->predicate (x, op_data->mode);
1333 }
1334
1335 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1336 registers present inside of insn. The result will be a valid insn. */
1337
1338 static void
1339 instantiate_virtual_regs_in_insn (rtx insn)
1340 {
1341 HOST_WIDE_INT offset;
1342 int insn_code, i;
1343 bool any_change = false;
1344 rtx set, new, x, seq;
1345
1346 /* There are some special cases to be handled first. */
1347 set = single_set (insn);
1348 if (set)
1349 {
1350 /* We're allowed to assign to a virtual register. This is interpreted
1351 to mean that the underlying register gets assigned the inverse
1352 transformation. This is used, for example, in the handling of
1353 non-local gotos. */
1354 new = instantiate_new_reg (SET_DEST (set), &offset);
1355 if (new)
1356 {
1357 start_sequence ();
1358
1359 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1360 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1361 GEN_INT (-offset));
1362 x = force_operand (x, new);
1363 if (x != new)
1364 emit_move_insn (new, x);
1365
1366 seq = get_insns ();
1367 end_sequence ();
1368
1369 emit_insn_before (seq, insn);
1370 delete_insn (insn);
1371 return;
1372 }
1373
1374 /* Handle a straight copy from a virtual register by generating a
1375 new add insn. The difference between this and falling through
1376 to the generic case is avoiding a new pseudo and eliminating a
1377 move insn in the initial rtl stream. */
1378 new = instantiate_new_reg (SET_SRC (set), &offset);
1379 if (new && offset != 0
1380 && REG_P (SET_DEST (set))
1381 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1382 {
1383 start_sequence ();
1384
1385 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1386 new, GEN_INT (offset), SET_DEST (set),
1387 1, OPTAB_LIB_WIDEN);
1388 if (x != SET_DEST (set))
1389 emit_move_insn (SET_DEST (set), x);
1390
1391 seq = get_insns ();
1392 end_sequence ();
1393
1394 emit_insn_before (seq, insn);
1395 delete_insn (insn);
1396 return;
1397 }
1398
1399 extract_insn (insn);
1400 insn_code = INSN_CODE (insn);
1401
1402 /* Handle a plus involving a virtual register by determining if the
1403 operands remain valid if they're modified in place. */
1404 if (GET_CODE (SET_SRC (set)) == PLUS
1405 && recog_data.n_operands >= 3
1406 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1407 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1408 && GET_CODE (recog_data.operand[2]) == CONST_INT
1409 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1410 {
1411 offset += INTVAL (recog_data.operand[2]);
1412
1413 /* If the sum is zero, then replace with a plain move. */
1414 if (offset == 0
1415 && REG_P (SET_DEST (set))
1416 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1417 {
1418 start_sequence ();
1419 emit_move_insn (SET_DEST (set), new);
1420 seq = get_insns ();
1421 end_sequence ();
1422
1423 emit_insn_before (seq, insn);
1424 delete_insn (insn);
1425 return;
1426 }
1427
1428 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1429
1430 /* Using validate_change and apply_change_group here leaves
1431 recog_data in an invalid state. Since we know exactly what
1432 we want to check, do those two by hand. */
1433 if (safe_insn_predicate (insn_code, 1, new)
1434 && safe_insn_predicate (insn_code, 2, x))
1435 {
1436 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1437 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1438 any_change = true;
1439
1440 /* Fall through into the regular operand fixup loop in
1441 order to take care of operands other than 1 and 2. */
1442 }
1443 }
1444 }
1445 else
1446 {
1447 extract_insn (insn);
1448 insn_code = INSN_CODE (insn);
1449 }
1450
1451 /* In the general case, we expect virtual registers to appear only in
1452 operands, and then only as either bare registers or inside memories. */
1453 for (i = 0; i < recog_data.n_operands; ++i)
1454 {
1455 x = recog_data.operand[i];
1456 switch (GET_CODE (x))
1457 {
1458 case MEM:
1459 {
1460 rtx addr = XEXP (x, 0);
1461 bool changed = false;
1462
1463 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1464 if (!changed)
1465 continue;
1466
1467 start_sequence ();
1468 x = replace_equiv_address (x, addr);
1469 seq = get_insns ();
1470 end_sequence ();
1471 if (seq)
1472 emit_insn_before (seq, insn);
1473 }
1474 break;
1475
1476 case REG:
1477 new = instantiate_new_reg (x, &offset);
1478 if (new == NULL)
1479 continue;
1480 if (offset == 0)
1481 x = new;
1482 else
1483 {
1484 start_sequence ();
1485
1486 /* Careful, special mode predicates may have stuff in
1487 insn_data[insn_code].operand[i].mode that isn't useful
1488 to us for computing a new value. */
1489 /* ??? Recognize address_operand and/or "p" constraints
1490 to see if (plus new offset) is a valid before we put
1491 this through expand_simple_binop. */
1492 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1493 GEN_INT (offset), NULL_RTX,
1494 1, OPTAB_LIB_WIDEN);
1495 seq = get_insns ();
1496 end_sequence ();
1497 emit_insn_before (seq, insn);
1498 }
1499 break;
1500
1501 case SUBREG:
1502 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1503 if (new == NULL)
1504 continue;
1505 if (offset != 0)
1506 {
1507 start_sequence ();
1508 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1509 GEN_INT (offset), NULL_RTX,
1510 1, OPTAB_LIB_WIDEN);
1511 seq = get_insns ();
1512 end_sequence ();
1513 emit_insn_before (seq, insn);
1514 }
1515 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1516 GET_MODE (new), SUBREG_BYTE (x));
1517 break;
1518
1519 default:
1520 continue;
1521 }
1522
1523 /* At this point, X contains the new value for the operand.
1524 Validate the new value vs the insn predicate. Note that
1525 asm insns will have insn_code -1 here. */
1526 if (!safe_insn_predicate (insn_code, i, x))
1527 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1528
1529 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1530 any_change = true;
1531 }
1532
1533 if (any_change)
1534 {
1535 /* Propagate operand changes into the duplicates. */
1536 for (i = 0; i < recog_data.n_dups; ++i)
1537 *recog_data.dup_loc[i]
1538 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1539
1540 /* Force re-recognition of the instruction for validation. */
1541 INSN_CODE (insn) = -1;
1542 }
1543
1544 if (asm_noperands (PATTERN (insn)) >= 0)
1545 {
1546 if (!check_asm_operands (PATTERN (insn)))
1547 {
1548 error_for_asm (insn, "impossible constraint in %<asm%>");
1549 delete_insn (insn);
1550 }
1551 }
1552 else
1553 {
1554 if (recog_memoized (insn) < 0)
1555 fatal_insn_not_found (insn);
1556 }
1557 }
1558
1559 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1560 do any instantiation required. */
1561
1562 static void
1563 instantiate_decl (rtx x)
1564 {
1565 rtx addr;
1566
1567 if (x == 0)
1568 return;
1569
1570 /* If this is a CONCAT, recurse for the pieces. */
1571 if (GET_CODE (x) == CONCAT)
1572 {
1573 instantiate_decl (XEXP (x, 0));
1574 instantiate_decl (XEXP (x, 1));
1575 return;
1576 }
1577
1578 /* If this is not a MEM, no need to do anything. Similarly if the
1579 address is a constant or a register that is not a virtual register. */
1580 if (!MEM_P (x))
1581 return;
1582
1583 addr = XEXP (x, 0);
1584 if (CONSTANT_P (addr)
1585 || (REG_P (addr)
1586 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1587 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1588 return;
1589
1590 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1591 }
1592
1593 /* Helper for instantiate_decls called via walk_tree: Process all decls
1594 in the given DECL_VALUE_EXPR. */
1595
1596 static tree
1597 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1598 {
1599 tree t = *tp;
1600 if (! EXPR_P (t))
1601 {
1602 *walk_subtrees = 0;
1603 if (DECL_P (t) && DECL_RTL_SET_P (t))
1604 instantiate_decl (DECL_RTL (t));
1605 }
1606 return NULL;
1607 }
1608
1609 /* Subroutine of instantiate_decls: Process all decls in the given
1610 BLOCK node and all its subblocks. */
1611
1612 static void
1613 instantiate_decls_1 (tree let)
1614 {
1615 tree t;
1616
1617 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1618 {
1619 if (DECL_RTL_SET_P (t))
1620 instantiate_decl (DECL_RTL (t));
1621 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1622 {
1623 tree v = DECL_VALUE_EXPR (t);
1624 walk_tree (&v, instantiate_expr, NULL, NULL);
1625 }
1626 }
1627
1628 /* Process all subblocks. */
1629 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1630 instantiate_decls_1 (t);
1631 }
1632
1633 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1634 all virtual registers in their DECL_RTL's. */
1635
1636 static void
1637 instantiate_decls (tree fndecl)
1638 {
1639 tree decl;
1640
1641 /* Process all parameters of the function. */
1642 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1643 {
1644 instantiate_decl (DECL_RTL (decl));
1645 instantiate_decl (DECL_INCOMING_RTL (decl));
1646 if (DECL_HAS_VALUE_EXPR_P (decl))
1647 {
1648 tree v = DECL_VALUE_EXPR (decl);
1649 walk_tree (&v, instantiate_expr, NULL, NULL);
1650 }
1651 }
1652
1653 /* Now process all variables defined in the function or its subblocks. */
1654 instantiate_decls_1 (DECL_INITIAL (fndecl));
1655 }
1656
1657 /* Pass through the INSNS of function FNDECL and convert virtual register
1658 references to hard register references. */
1659
1660 static void
1661 instantiate_virtual_regs (void)
1662 {
1663 rtx insn;
1664
1665 /* Compute the offsets to use for this function. */
1666 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1667 var_offset = STARTING_FRAME_OFFSET;
1668 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1669 out_arg_offset = STACK_POINTER_OFFSET;
1670 #ifdef FRAME_POINTER_CFA_OFFSET
1671 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1672 #else
1673 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1674 #endif
1675
1676 /* Initialize recognition, indicating that volatile is OK. */
1677 init_recog ();
1678
1679 /* Scan through all the insns, instantiating every virtual register still
1680 present. */
1681 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1682 if (INSN_P (insn))
1683 {
1684 /* These patterns in the instruction stream can never be recognized.
1685 Fortunately, they shouldn't contain virtual registers either. */
1686 if (GET_CODE (PATTERN (insn)) == USE
1687 || GET_CODE (PATTERN (insn)) == CLOBBER
1688 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1689 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1690 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1691 continue;
1692
1693 instantiate_virtual_regs_in_insn (insn);
1694
1695 if (INSN_DELETED_P (insn))
1696 continue;
1697
1698 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1699
1700 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1701 if (GET_CODE (insn) == CALL_INSN)
1702 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1703 instantiate_virtual_regs_in_rtx, NULL);
1704 }
1705
1706 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1707 instantiate_decls (current_function_decl);
1708
1709 /* Indicate that, from now on, assign_stack_local should use
1710 frame_pointer_rtx. */
1711 virtuals_instantiated = 1;
1712 }
1713
1714 struct tree_opt_pass pass_instantiate_virtual_regs =
1715 {
1716 "vregs", /* name */
1717 NULL, /* gate */
1718 instantiate_virtual_regs, /* execute */
1719 NULL, /* sub */
1720 NULL, /* next */
1721 0, /* static_pass_number */
1722 0, /* tv_id */
1723 0, /* properties_required */
1724 0, /* properties_provided */
1725 0, /* properties_destroyed */
1726 0, /* todo_flags_start */
1727 TODO_dump_func, /* todo_flags_finish */
1728 0 /* letter */
1729 };
1730
1731 \f
1732 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1733 This means a type for which function calls must pass an address to the
1734 function or get an address back from the function.
1735 EXP may be a type node or an expression (whose type is tested). */
1736
1737 int
1738 aggregate_value_p (tree exp, tree fntype)
1739 {
1740 int i, regno, nregs;
1741 rtx reg;
1742
1743 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1744
1745 if (fntype)
1746 switch (TREE_CODE (fntype))
1747 {
1748 case CALL_EXPR:
1749 fntype = get_callee_fndecl (fntype);
1750 fntype = fntype ? TREE_TYPE (fntype) : 0;
1751 break;
1752 case FUNCTION_DECL:
1753 fntype = TREE_TYPE (fntype);
1754 break;
1755 case FUNCTION_TYPE:
1756 case METHOD_TYPE:
1757 break;
1758 case IDENTIFIER_NODE:
1759 fntype = 0;
1760 break;
1761 default:
1762 /* We don't expect other rtl types here. */
1763 gcc_unreachable ();
1764 }
1765
1766 if (TREE_CODE (type) == VOID_TYPE)
1767 return 0;
1768 /* If the front end has decided that this needs to be passed by
1769 reference, do so. */
1770 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1771 && DECL_BY_REFERENCE (exp))
1772 return 1;
1773 if (targetm.calls.return_in_memory (type, fntype))
1774 return 1;
1775 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1776 and thus can't be returned in registers. */
1777 if (TREE_ADDRESSABLE (type))
1778 return 1;
1779 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1780 return 1;
1781 /* Make sure we have suitable call-clobbered regs to return
1782 the value in; if not, we must return it in memory. */
1783 reg = hard_function_value (type, 0, fntype, 0);
1784
1785 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1786 it is OK. */
1787 if (!REG_P (reg))
1788 return 0;
1789
1790 regno = REGNO (reg);
1791 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1792 for (i = 0; i < nregs; i++)
1793 if (! call_used_regs[regno + i])
1794 return 1;
1795 return 0;
1796 }
1797 \f
1798 /* Return true if we should assign DECL a pseudo register; false if it
1799 should live on the local stack. */
1800
1801 bool
1802 use_register_for_decl (tree decl)
1803 {
1804 /* Honor volatile. */
1805 if (TREE_SIDE_EFFECTS (decl))
1806 return false;
1807
1808 /* Honor addressability. */
1809 if (TREE_ADDRESSABLE (decl))
1810 return false;
1811
1812 /* Only register-like things go in registers. */
1813 if (DECL_MODE (decl) == BLKmode)
1814 return false;
1815
1816 /* If -ffloat-store specified, don't put explicit float variables
1817 into registers. */
1818 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1819 propagates values across these stores, and it probably shouldn't. */
1820 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1821 return false;
1822
1823 /* If we're not interested in tracking debugging information for
1824 this decl, then we can certainly put it in a register. */
1825 if (DECL_IGNORED_P (decl))
1826 return true;
1827
1828 return (optimize || DECL_REGISTER (decl));
1829 }
1830
1831 /* Return true if TYPE should be passed by invisible reference. */
1832
1833 bool
1834 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1835 tree type, bool named_arg)
1836 {
1837 if (type)
1838 {
1839 /* If this type contains non-trivial constructors, then it is
1840 forbidden for the middle-end to create any new copies. */
1841 if (TREE_ADDRESSABLE (type))
1842 return true;
1843
1844 /* GCC post 3.4 passes *all* variable sized types by reference. */
1845 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1846 return true;
1847 }
1848
1849 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1850 }
1851
1852 /* Return true if TYPE, which is passed by reference, should be callee
1853 copied instead of caller copied. */
1854
1855 bool
1856 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1857 tree type, bool named_arg)
1858 {
1859 if (type && TREE_ADDRESSABLE (type))
1860 return false;
1861 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1862 }
1863
1864 /* Structures to communicate between the subroutines of assign_parms.
1865 The first holds data persistent across all parameters, the second
1866 is cleared out for each parameter. */
1867
1868 struct assign_parm_data_all
1869 {
1870 CUMULATIVE_ARGS args_so_far;
1871 struct args_size stack_args_size;
1872 tree function_result_decl;
1873 tree orig_fnargs;
1874 rtx conversion_insns;
1875 HOST_WIDE_INT pretend_args_size;
1876 HOST_WIDE_INT extra_pretend_bytes;
1877 int reg_parm_stack_space;
1878 };
1879
1880 struct assign_parm_data_one
1881 {
1882 tree nominal_type;
1883 tree passed_type;
1884 rtx entry_parm;
1885 rtx stack_parm;
1886 enum machine_mode nominal_mode;
1887 enum machine_mode passed_mode;
1888 enum machine_mode promoted_mode;
1889 struct locate_and_pad_arg_data locate;
1890 int partial;
1891 BOOL_BITFIELD named_arg : 1;
1892 BOOL_BITFIELD passed_pointer : 1;
1893 BOOL_BITFIELD on_stack : 1;
1894 BOOL_BITFIELD loaded_in_reg : 1;
1895 };
1896
1897 /* A subroutine of assign_parms. Initialize ALL. */
1898
1899 static void
1900 assign_parms_initialize_all (struct assign_parm_data_all *all)
1901 {
1902 tree fntype;
1903
1904 memset (all, 0, sizeof (*all));
1905
1906 fntype = TREE_TYPE (current_function_decl);
1907
1908 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1909 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1910 #else
1911 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1912 current_function_decl, -1);
1913 #endif
1914
1915 #ifdef REG_PARM_STACK_SPACE
1916 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1917 #endif
1918 }
1919
1920 /* If ARGS contains entries with complex types, split the entry into two
1921 entries of the component type. Return a new list of substitutions are
1922 needed, else the old list. */
1923
1924 static tree
1925 split_complex_args (tree args)
1926 {
1927 tree p;
1928
1929 /* Before allocating memory, check for the common case of no complex. */
1930 for (p = args; p; p = TREE_CHAIN (p))
1931 {
1932 tree type = TREE_TYPE (p);
1933 if (TREE_CODE (type) == COMPLEX_TYPE
1934 && targetm.calls.split_complex_arg (type))
1935 goto found;
1936 }
1937 return args;
1938
1939 found:
1940 args = copy_list (args);
1941
1942 for (p = args; p; p = TREE_CHAIN (p))
1943 {
1944 tree type = TREE_TYPE (p);
1945 if (TREE_CODE (type) == COMPLEX_TYPE
1946 && targetm.calls.split_complex_arg (type))
1947 {
1948 tree decl;
1949 tree subtype = TREE_TYPE (type);
1950 bool addressable = TREE_ADDRESSABLE (p);
1951
1952 /* Rewrite the PARM_DECL's type with its component. */
1953 TREE_TYPE (p) = subtype;
1954 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1955 DECL_MODE (p) = VOIDmode;
1956 DECL_SIZE (p) = NULL;
1957 DECL_SIZE_UNIT (p) = NULL;
1958 /* If this arg must go in memory, put it in a pseudo here.
1959 We can't allow it to go in memory as per normal parms,
1960 because the usual place might not have the imag part
1961 adjacent to the real part. */
1962 DECL_ARTIFICIAL (p) = addressable;
1963 DECL_IGNORED_P (p) = addressable;
1964 TREE_ADDRESSABLE (p) = 0;
1965 layout_decl (p, 0);
1966
1967 /* Build a second synthetic decl. */
1968 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1969 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1970 DECL_ARTIFICIAL (decl) = addressable;
1971 DECL_IGNORED_P (decl) = addressable;
1972 layout_decl (decl, 0);
1973
1974 /* Splice it in; skip the new decl. */
1975 TREE_CHAIN (decl) = TREE_CHAIN (p);
1976 TREE_CHAIN (p) = decl;
1977 p = decl;
1978 }
1979 }
1980
1981 return args;
1982 }
1983
1984 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1985 the hidden struct return argument, and (abi willing) complex args.
1986 Return the new parameter list. */
1987
1988 static tree
1989 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1990 {
1991 tree fndecl = current_function_decl;
1992 tree fntype = TREE_TYPE (fndecl);
1993 tree fnargs = DECL_ARGUMENTS (fndecl);
1994
1995 /* If struct value address is treated as the first argument, make it so. */
1996 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1997 && ! current_function_returns_pcc_struct
1998 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
1999 {
2000 tree type = build_pointer_type (TREE_TYPE (fntype));
2001 tree decl;
2002
2003 decl = build_decl (PARM_DECL, NULL_TREE, type);
2004 DECL_ARG_TYPE (decl) = type;
2005 DECL_ARTIFICIAL (decl) = 1;
2006 DECL_IGNORED_P (decl) = 1;
2007
2008 TREE_CHAIN (decl) = fnargs;
2009 fnargs = decl;
2010 all->function_result_decl = decl;
2011 }
2012
2013 all->orig_fnargs = fnargs;
2014
2015 /* If the target wants to split complex arguments into scalars, do so. */
2016 if (targetm.calls.split_complex_arg)
2017 fnargs = split_complex_args (fnargs);
2018
2019 return fnargs;
2020 }
2021
2022 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2023 data for the parameter. Incorporate ABI specifics such as pass-by-
2024 reference and type promotion. */
2025
2026 static void
2027 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2028 struct assign_parm_data_one *data)
2029 {
2030 tree nominal_type, passed_type;
2031 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2032
2033 memset (data, 0, sizeof (*data));
2034
2035 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2036 if (!current_function_stdarg)
2037 data->named_arg = 1; /* No varadic parms. */
2038 else if (TREE_CHAIN (parm))
2039 data->named_arg = 1; /* Not the last non-varadic parm. */
2040 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2041 data->named_arg = 1; /* Only varadic ones are unnamed. */
2042 else
2043 data->named_arg = 0; /* Treat as varadic. */
2044
2045 nominal_type = TREE_TYPE (parm);
2046 passed_type = DECL_ARG_TYPE (parm);
2047
2048 /* Look out for errors propagating this far. Also, if the parameter's
2049 type is void then its value doesn't matter. */
2050 if (TREE_TYPE (parm) == error_mark_node
2051 /* This can happen after weird syntax errors
2052 or if an enum type is defined among the parms. */
2053 || TREE_CODE (parm) != PARM_DECL
2054 || passed_type == NULL
2055 || VOID_TYPE_P (nominal_type))
2056 {
2057 nominal_type = passed_type = void_type_node;
2058 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2059 goto egress;
2060 }
2061
2062 /* Find mode of arg as it is passed, and mode of arg as it should be
2063 during execution of this function. */
2064 passed_mode = TYPE_MODE (passed_type);
2065 nominal_mode = TYPE_MODE (nominal_type);
2066
2067 /* If the parm is to be passed as a transparent union, use the type of
2068 the first field for the tests below. We have already verified that
2069 the modes are the same. */
2070 if (TREE_CODE (passed_type) == UNION_TYPE
2071 && TYPE_TRANSPARENT_UNION (passed_type))
2072 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2073
2074 /* See if this arg was passed by invisible reference. */
2075 if (pass_by_reference (&all->args_so_far, passed_mode,
2076 passed_type, data->named_arg))
2077 {
2078 passed_type = nominal_type = build_pointer_type (passed_type);
2079 data->passed_pointer = true;
2080 passed_mode = nominal_mode = Pmode;
2081 }
2082
2083 /* Find mode as it is passed by the ABI. */
2084 promoted_mode = passed_mode;
2085 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2086 {
2087 int unsignedp = TYPE_UNSIGNED (passed_type);
2088 promoted_mode = promote_mode (passed_type, promoted_mode,
2089 &unsignedp, 1);
2090 }
2091
2092 egress:
2093 data->nominal_type = nominal_type;
2094 data->passed_type = passed_type;
2095 data->nominal_mode = nominal_mode;
2096 data->passed_mode = passed_mode;
2097 data->promoted_mode = promoted_mode;
2098 }
2099
2100 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2101
2102 static void
2103 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2104 struct assign_parm_data_one *data, bool no_rtl)
2105 {
2106 int varargs_pretend_bytes = 0;
2107
2108 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2109 data->promoted_mode,
2110 data->passed_type,
2111 &varargs_pretend_bytes, no_rtl);
2112
2113 /* If the back-end has requested extra stack space, record how much is
2114 needed. Do not change pretend_args_size otherwise since it may be
2115 nonzero from an earlier partial argument. */
2116 if (varargs_pretend_bytes > 0)
2117 all->pretend_args_size = varargs_pretend_bytes;
2118 }
2119
2120 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2121 the incoming location of the current parameter. */
2122
2123 static void
2124 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2125 struct assign_parm_data_one *data)
2126 {
2127 HOST_WIDE_INT pretend_bytes = 0;
2128 rtx entry_parm;
2129 bool in_regs;
2130
2131 if (data->promoted_mode == VOIDmode)
2132 {
2133 data->entry_parm = data->stack_parm = const0_rtx;
2134 return;
2135 }
2136
2137 #ifdef FUNCTION_INCOMING_ARG
2138 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2139 data->passed_type, data->named_arg);
2140 #else
2141 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2142 data->passed_type, data->named_arg);
2143 #endif
2144
2145 if (entry_parm == 0)
2146 data->promoted_mode = data->passed_mode;
2147
2148 /* Determine parm's home in the stack, in case it arrives in the stack
2149 or we should pretend it did. Compute the stack position and rtx where
2150 the argument arrives and its size.
2151
2152 There is one complexity here: If this was a parameter that would
2153 have been passed in registers, but wasn't only because it is
2154 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2155 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2156 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2157 as it was the previous time. */
2158 in_regs = entry_parm != 0;
2159 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2160 in_regs = true;
2161 #endif
2162 if (!in_regs && !data->named_arg)
2163 {
2164 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2165 {
2166 rtx tem;
2167 #ifdef FUNCTION_INCOMING_ARG
2168 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2169 data->passed_type, true);
2170 #else
2171 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2172 data->passed_type, true);
2173 #endif
2174 in_regs = tem != NULL;
2175 }
2176 }
2177
2178 /* If this parameter was passed both in registers and in the stack, use
2179 the copy on the stack. */
2180 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2181 data->passed_type))
2182 entry_parm = 0;
2183
2184 if (entry_parm)
2185 {
2186 int partial;
2187
2188 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2189 data->promoted_mode,
2190 data->passed_type,
2191 data->named_arg);
2192 data->partial = partial;
2193
2194 /* The caller might already have allocated stack space for the
2195 register parameters. */
2196 if (partial != 0 && all->reg_parm_stack_space == 0)
2197 {
2198 /* Part of this argument is passed in registers and part
2199 is passed on the stack. Ask the prologue code to extend
2200 the stack part so that we can recreate the full value.
2201
2202 PRETEND_BYTES is the size of the registers we need to store.
2203 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2204 stack space that the prologue should allocate.
2205
2206 Internally, gcc assumes that the argument pointer is aligned
2207 to STACK_BOUNDARY bits. This is used both for alignment
2208 optimizations (see init_emit) and to locate arguments that are
2209 aligned to more than PARM_BOUNDARY bits. We must preserve this
2210 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2211 a stack boundary. */
2212
2213 /* We assume at most one partial arg, and it must be the first
2214 argument on the stack. */
2215 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2216
2217 pretend_bytes = partial;
2218 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2219
2220 /* We want to align relative to the actual stack pointer, so
2221 don't include this in the stack size until later. */
2222 all->extra_pretend_bytes = all->pretend_args_size;
2223 }
2224 }
2225
2226 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2227 entry_parm ? data->partial : 0, current_function_decl,
2228 &all->stack_args_size, &data->locate);
2229
2230 /* Adjust offsets to include the pretend args. */
2231 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2232 data->locate.slot_offset.constant += pretend_bytes;
2233 data->locate.offset.constant += pretend_bytes;
2234
2235 data->entry_parm = entry_parm;
2236 }
2237
2238 /* A subroutine of assign_parms. If there is actually space on the stack
2239 for this parm, count it in stack_args_size and return true. */
2240
2241 static bool
2242 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2243 struct assign_parm_data_one *data)
2244 {
2245 /* Trivially true if we've no incoming register. */
2246 if (data->entry_parm == NULL)
2247 ;
2248 /* Also true if we're partially in registers and partially not,
2249 since we've arranged to drop the entire argument on the stack. */
2250 else if (data->partial != 0)
2251 ;
2252 /* Also true if the target says that it's passed in both registers
2253 and on the stack. */
2254 else if (GET_CODE (data->entry_parm) == PARALLEL
2255 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2256 ;
2257 /* Also true if the target says that there's stack allocated for
2258 all register parameters. */
2259 else if (all->reg_parm_stack_space > 0)
2260 ;
2261 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2262 else
2263 return false;
2264
2265 all->stack_args_size.constant += data->locate.size.constant;
2266 if (data->locate.size.var)
2267 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2268
2269 return true;
2270 }
2271
2272 /* A subroutine of assign_parms. Given that this parameter is allocated
2273 stack space by the ABI, find it. */
2274
2275 static void
2276 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2277 {
2278 rtx offset_rtx, stack_parm;
2279 unsigned int align, boundary;
2280
2281 /* If we're passing this arg using a reg, make its stack home the
2282 aligned stack slot. */
2283 if (data->entry_parm)
2284 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2285 else
2286 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2287
2288 stack_parm = current_function_internal_arg_pointer;
2289 if (offset_rtx != const0_rtx)
2290 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2291 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2292
2293 set_mem_attributes (stack_parm, parm, 1);
2294
2295 boundary = data->locate.boundary;
2296 align = BITS_PER_UNIT;
2297
2298 /* If we're padding upward, we know that the alignment of the slot
2299 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2300 intentionally forcing upward padding. Otherwise we have to come
2301 up with a guess at the alignment based on OFFSET_RTX. */
2302 if (data->locate.where_pad != downward || data->entry_parm)
2303 align = boundary;
2304 else if (GET_CODE (offset_rtx) == CONST_INT)
2305 {
2306 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2307 align = align & -align;
2308 }
2309 set_mem_align (stack_parm, align);
2310
2311 if (data->entry_parm)
2312 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2313
2314 data->stack_parm = stack_parm;
2315 }
2316
2317 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2318 always valid and contiguous. */
2319
2320 static void
2321 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2322 {
2323 rtx entry_parm = data->entry_parm;
2324 rtx stack_parm = data->stack_parm;
2325
2326 /* If this parm was passed part in regs and part in memory, pretend it
2327 arrived entirely in memory by pushing the register-part onto the stack.
2328 In the special case of a DImode or DFmode that is split, we could put
2329 it together in a pseudoreg directly, but for now that's not worth
2330 bothering with. */
2331 if (data->partial != 0)
2332 {
2333 /* Handle calls that pass values in multiple non-contiguous
2334 locations. The Irix 6 ABI has examples of this. */
2335 if (GET_CODE (entry_parm) == PARALLEL)
2336 emit_group_store (validize_mem (stack_parm), entry_parm,
2337 data->passed_type,
2338 int_size_in_bytes (data->passed_type));
2339 else
2340 {
2341 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2342 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2343 data->partial / UNITS_PER_WORD);
2344 }
2345
2346 entry_parm = stack_parm;
2347 }
2348
2349 /* If we didn't decide this parm came in a register, by default it came
2350 on the stack. */
2351 else if (entry_parm == NULL)
2352 entry_parm = stack_parm;
2353
2354 /* When an argument is passed in multiple locations, we can't make use
2355 of this information, but we can save some copying if the whole argument
2356 is passed in a single register. */
2357 else if (GET_CODE (entry_parm) == PARALLEL
2358 && data->nominal_mode != BLKmode
2359 && data->passed_mode != BLKmode)
2360 {
2361 size_t i, len = XVECLEN (entry_parm, 0);
2362
2363 for (i = 0; i < len; i++)
2364 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2365 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2366 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2367 == data->passed_mode)
2368 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2369 {
2370 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2371 break;
2372 }
2373 }
2374
2375 data->entry_parm = entry_parm;
2376 }
2377
2378 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2379 always valid and properly aligned. */
2380
2381 static void
2382 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2383 {
2384 rtx stack_parm = data->stack_parm;
2385
2386 /* If we can't trust the parm stack slot to be aligned enough for its
2387 ultimate type, don't use that slot after entry. We'll make another
2388 stack slot, if we need one. */
2389 if (stack_parm
2390 && ((STRICT_ALIGNMENT
2391 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2392 || (data->nominal_type
2393 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2394 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2395 stack_parm = NULL;
2396
2397 /* If parm was passed in memory, and we need to convert it on entry,
2398 don't store it back in that same slot. */
2399 else if (data->entry_parm == stack_parm
2400 && data->nominal_mode != BLKmode
2401 && data->nominal_mode != data->passed_mode)
2402 stack_parm = NULL;
2403
2404 /* If stack protection is in effect for this function, don't leave any
2405 pointers in their passed stack slots. */
2406 else if (cfun->stack_protect_guard
2407 && (flag_stack_protect == 2
2408 || data->passed_pointer
2409 || POINTER_TYPE_P (data->nominal_type)))
2410 stack_parm = NULL;
2411
2412 data->stack_parm = stack_parm;
2413 }
2414
2415 /* A subroutine of assign_parms. Return true if the current parameter
2416 should be stored as a BLKmode in the current frame. */
2417
2418 static bool
2419 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2420 {
2421 if (data->nominal_mode == BLKmode)
2422 return true;
2423 if (GET_CODE (data->entry_parm) == PARALLEL)
2424 return true;
2425
2426 #ifdef BLOCK_REG_PADDING
2427 /* Only assign_parm_setup_block knows how to deal with register arguments
2428 that are padded at the least significant end. */
2429 if (REG_P (data->entry_parm)
2430 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2431 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2432 == (BYTES_BIG_ENDIAN ? upward : downward)))
2433 return true;
2434 #endif
2435
2436 return false;
2437 }
2438
2439 /* A subroutine of assign_parms. Arrange for the parameter to be
2440 present and valid in DATA->STACK_RTL. */
2441
2442 static void
2443 assign_parm_setup_block (struct assign_parm_data_all *all,
2444 tree parm, struct assign_parm_data_one *data)
2445 {
2446 rtx entry_parm = data->entry_parm;
2447 rtx stack_parm = data->stack_parm;
2448 HOST_WIDE_INT size;
2449 HOST_WIDE_INT size_stored;
2450 rtx orig_entry_parm = entry_parm;
2451
2452 if (GET_CODE (entry_parm) == PARALLEL)
2453 entry_parm = emit_group_move_into_temps (entry_parm);
2454
2455 /* If we've a non-block object that's nevertheless passed in parts,
2456 reconstitute it in register operations rather than on the stack. */
2457 if (GET_CODE (entry_parm) == PARALLEL
2458 && data->nominal_mode != BLKmode)
2459 {
2460 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2461
2462 if ((XVECLEN (entry_parm, 0) > 1
2463 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2464 && use_register_for_decl (parm))
2465 {
2466 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2467
2468 push_to_sequence (all->conversion_insns);
2469
2470 /* For values returned in multiple registers, handle possible
2471 incompatible calls to emit_group_store.
2472
2473 For example, the following would be invalid, and would have to
2474 be fixed by the conditional below:
2475
2476 emit_group_store ((reg:SF), (parallel:DF))
2477 emit_group_store ((reg:SI), (parallel:DI))
2478
2479 An example of this are doubles in e500 v2:
2480 (parallel:DF (expr_list (reg:SI) (const_int 0))
2481 (expr_list (reg:SI) (const_int 4))). */
2482 if (data->nominal_mode != data->passed_mode)
2483 {
2484 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2485 emit_group_store (t, entry_parm, NULL_TREE,
2486 GET_MODE_SIZE (GET_MODE (entry_parm)));
2487 convert_move (parmreg, t, 0);
2488 }
2489 else
2490 emit_group_store (parmreg, entry_parm, data->nominal_type,
2491 int_size_in_bytes (data->nominal_type));
2492
2493 all->conversion_insns = get_insns ();
2494 end_sequence ();
2495
2496 SET_DECL_RTL (parm, parmreg);
2497 return;
2498 }
2499 }
2500
2501 size = int_size_in_bytes (data->passed_type);
2502 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2503 if (stack_parm == 0)
2504 {
2505 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2506 stack_parm = assign_stack_local (BLKmode, size_stored,
2507 DECL_ALIGN (parm));
2508 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2509 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2510 set_mem_attributes (stack_parm, parm, 1);
2511 }
2512
2513 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2514 calls that pass values in multiple non-contiguous locations. */
2515 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2516 {
2517 rtx mem;
2518
2519 /* Note that we will be storing an integral number of words.
2520 So we have to be careful to ensure that we allocate an
2521 integral number of words. We do this above when we call
2522 assign_stack_local if space was not allocated in the argument
2523 list. If it was, this will not work if PARM_BOUNDARY is not
2524 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2525 if it becomes a problem. Exception is when BLKmode arrives
2526 with arguments not conforming to word_mode. */
2527
2528 if (data->stack_parm == 0)
2529 ;
2530 else if (GET_CODE (entry_parm) == PARALLEL)
2531 ;
2532 else
2533 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2534
2535 mem = validize_mem (stack_parm);
2536
2537 /* Handle values in multiple non-contiguous locations. */
2538 if (GET_CODE (entry_parm) == PARALLEL)
2539 {
2540 push_to_sequence (all->conversion_insns);
2541 emit_group_store (mem, entry_parm, data->passed_type, size);
2542 all->conversion_insns = get_insns ();
2543 end_sequence ();
2544 }
2545
2546 else if (size == 0)
2547 ;
2548
2549 /* If SIZE is that of a mode no bigger than a word, just use
2550 that mode's store operation. */
2551 else if (size <= UNITS_PER_WORD)
2552 {
2553 enum machine_mode mode
2554 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2555
2556 if (mode != BLKmode
2557 #ifdef BLOCK_REG_PADDING
2558 && (size == UNITS_PER_WORD
2559 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2560 != (BYTES_BIG_ENDIAN ? upward : downward)))
2561 #endif
2562 )
2563 {
2564 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2565 emit_move_insn (change_address (mem, mode, 0), reg);
2566 }
2567
2568 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2569 machine must be aligned to the left before storing
2570 to memory. Note that the previous test doesn't
2571 handle all cases (e.g. SIZE == 3). */
2572 else if (size != UNITS_PER_WORD
2573 #ifdef BLOCK_REG_PADDING
2574 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2575 == downward)
2576 #else
2577 && BYTES_BIG_ENDIAN
2578 #endif
2579 )
2580 {
2581 rtx tem, x;
2582 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2583 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2584
2585 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2586 build_int_cst (NULL_TREE, by),
2587 NULL_RTX, 1);
2588 tem = change_address (mem, word_mode, 0);
2589 emit_move_insn (tem, x);
2590 }
2591 else
2592 move_block_from_reg (REGNO (entry_parm), mem,
2593 size_stored / UNITS_PER_WORD);
2594 }
2595 else
2596 move_block_from_reg (REGNO (entry_parm), mem,
2597 size_stored / UNITS_PER_WORD);
2598 }
2599 else if (data->stack_parm == 0)
2600 {
2601 push_to_sequence (all->conversion_insns);
2602 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2603 BLOCK_OP_NORMAL);
2604 all->conversion_insns = get_insns ();
2605 end_sequence ();
2606 }
2607
2608 data->stack_parm = stack_parm;
2609 SET_DECL_RTL (parm, stack_parm);
2610 }
2611
2612 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2613 parameter. Get it there. Perform all ABI specified conversions. */
2614
2615 static void
2616 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2617 struct assign_parm_data_one *data)
2618 {
2619 rtx parmreg;
2620 enum machine_mode promoted_nominal_mode;
2621 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2622 bool did_conversion = false;
2623
2624 /* Store the parm in a pseudoregister during the function, but we may
2625 need to do it in a wider mode. */
2626
2627 /* This is not really promoting for a call. However we need to be
2628 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2629 promoted_nominal_mode
2630 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2631
2632 parmreg = gen_reg_rtx (promoted_nominal_mode);
2633
2634 if (!DECL_ARTIFICIAL (parm))
2635 mark_user_reg (parmreg);
2636
2637 /* If this was an item that we received a pointer to,
2638 set DECL_RTL appropriately. */
2639 if (data->passed_pointer)
2640 {
2641 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2642 set_mem_attributes (x, parm, 1);
2643 SET_DECL_RTL (parm, x);
2644 }
2645 else
2646 SET_DECL_RTL (parm, parmreg);
2647
2648 /* Copy the value into the register. */
2649 if (data->nominal_mode != data->passed_mode
2650 || promoted_nominal_mode != data->promoted_mode)
2651 {
2652 int save_tree_used;
2653
2654 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2655 mode, by the caller. We now have to convert it to
2656 NOMINAL_MODE, if different. However, PARMREG may be in
2657 a different mode than NOMINAL_MODE if it is being stored
2658 promoted.
2659
2660 If ENTRY_PARM is a hard register, it might be in a register
2661 not valid for operating in its mode (e.g., an odd-numbered
2662 register for a DFmode). In that case, moves are the only
2663 thing valid, so we can't do a convert from there. This
2664 occurs when the calling sequence allow such misaligned
2665 usages.
2666
2667 In addition, the conversion may involve a call, which could
2668 clobber parameters which haven't been copied to pseudo
2669 registers yet. Therefore, we must first copy the parm to
2670 a pseudo reg here, and save the conversion until after all
2671 parameters have been moved. */
2672
2673 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2674
2675 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2676
2677 push_to_sequence (all->conversion_insns);
2678 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2679
2680 if (GET_CODE (tempreg) == SUBREG
2681 && GET_MODE (tempreg) == data->nominal_mode
2682 && REG_P (SUBREG_REG (tempreg))
2683 && data->nominal_mode == data->passed_mode
2684 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2685 && GET_MODE_SIZE (GET_MODE (tempreg))
2686 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2687 {
2688 /* The argument is already sign/zero extended, so note it
2689 into the subreg. */
2690 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2691 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2692 }
2693
2694 /* TREE_USED gets set erroneously during expand_assignment. */
2695 save_tree_used = TREE_USED (parm);
2696 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2697 TREE_USED (parm) = save_tree_used;
2698 all->conversion_insns = get_insns ();
2699 end_sequence ();
2700
2701 did_conversion = true;
2702 }
2703 else
2704 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2705
2706 /* If we were passed a pointer but the actual value can safely live
2707 in a register, put it in one. */
2708 if (data->passed_pointer
2709 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2710 /* If by-reference argument was promoted, demote it. */
2711 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2712 || use_register_for_decl (parm)))
2713 {
2714 /* We can't use nominal_mode, because it will have been set to
2715 Pmode above. We must use the actual mode of the parm. */
2716 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2717 mark_user_reg (parmreg);
2718
2719 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2720 {
2721 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2722 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2723
2724 push_to_sequence (all->conversion_insns);
2725 emit_move_insn (tempreg, DECL_RTL (parm));
2726 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2727 emit_move_insn (parmreg, tempreg);
2728 all->conversion_insns = get_insns ();
2729 end_sequence ();
2730
2731 did_conversion = true;
2732 }
2733 else
2734 emit_move_insn (parmreg, DECL_RTL (parm));
2735
2736 SET_DECL_RTL (parm, parmreg);
2737
2738 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2739 now the parm. */
2740 data->stack_parm = NULL;
2741 }
2742
2743 /* Mark the register as eliminable if we did no conversion and it was
2744 copied from memory at a fixed offset, and the arg pointer was not
2745 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2746 offset formed an invalid address, such memory-equivalences as we
2747 make here would screw up life analysis for it. */
2748 if (data->nominal_mode == data->passed_mode
2749 && !did_conversion
2750 && data->stack_parm != 0
2751 && MEM_P (data->stack_parm)
2752 && data->locate.offset.var == 0
2753 && reg_mentioned_p (virtual_incoming_args_rtx,
2754 XEXP (data->stack_parm, 0)))
2755 {
2756 rtx linsn = get_last_insn ();
2757 rtx sinsn, set;
2758
2759 /* Mark complex types separately. */
2760 if (GET_CODE (parmreg) == CONCAT)
2761 {
2762 enum machine_mode submode
2763 = GET_MODE_INNER (GET_MODE (parmreg));
2764 int regnor = REGNO (XEXP (parmreg, 0));
2765 int regnoi = REGNO (XEXP (parmreg, 1));
2766 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2767 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2768 GET_MODE_SIZE (submode));
2769
2770 /* Scan backwards for the set of the real and
2771 imaginary parts. */
2772 for (sinsn = linsn; sinsn != 0;
2773 sinsn = prev_nonnote_insn (sinsn))
2774 {
2775 set = single_set (sinsn);
2776 if (set == 0)
2777 continue;
2778
2779 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2780 REG_NOTES (sinsn)
2781 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2782 REG_NOTES (sinsn));
2783 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2784 REG_NOTES (sinsn)
2785 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2786 REG_NOTES (sinsn));
2787 }
2788 }
2789 else if ((set = single_set (linsn)) != 0
2790 && SET_DEST (set) == parmreg)
2791 REG_NOTES (linsn)
2792 = gen_rtx_EXPR_LIST (REG_EQUIV,
2793 data->stack_parm, REG_NOTES (linsn));
2794 }
2795
2796 /* For pointer data type, suggest pointer register. */
2797 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2798 mark_reg_pointer (parmreg,
2799 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2800 }
2801
2802 /* A subroutine of assign_parms. Allocate stack space to hold the current
2803 parameter. Get it there. Perform all ABI specified conversions. */
2804
2805 static void
2806 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2807 struct assign_parm_data_one *data)
2808 {
2809 /* Value must be stored in the stack slot STACK_PARM during function
2810 execution. */
2811 bool to_conversion = false;
2812
2813 if (data->promoted_mode != data->nominal_mode)
2814 {
2815 /* Conversion is required. */
2816 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2817
2818 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2819
2820 push_to_sequence (all->conversion_insns);
2821 to_conversion = true;
2822
2823 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2824 TYPE_UNSIGNED (TREE_TYPE (parm)));
2825
2826 if (data->stack_parm)
2827 /* ??? This may need a big-endian conversion on sparc64. */
2828 data->stack_parm
2829 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2830 }
2831
2832 if (data->entry_parm != data->stack_parm)
2833 {
2834 rtx src, dest;
2835
2836 if (data->stack_parm == 0)
2837 {
2838 data->stack_parm
2839 = assign_stack_local (GET_MODE (data->entry_parm),
2840 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2841 TYPE_ALIGN (data->passed_type));
2842 set_mem_attributes (data->stack_parm, parm, 1);
2843 }
2844
2845 dest = validize_mem (data->stack_parm);
2846 src = validize_mem (data->entry_parm);
2847
2848 if (MEM_P (src))
2849 {
2850 /* Use a block move to handle potentially misaligned entry_parm. */
2851 if (!to_conversion)
2852 push_to_sequence (all->conversion_insns);
2853 to_conversion = true;
2854
2855 emit_block_move (dest, src,
2856 GEN_INT (int_size_in_bytes (data->passed_type)),
2857 BLOCK_OP_NORMAL);
2858 }
2859 else
2860 emit_move_insn (dest, src);
2861 }
2862
2863 if (to_conversion)
2864 {
2865 all->conversion_insns = get_insns ();
2866 end_sequence ();
2867 }
2868
2869 SET_DECL_RTL (parm, data->stack_parm);
2870 }
2871
2872 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2873 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2874
2875 static void
2876 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2877 {
2878 tree parm;
2879 tree orig_fnargs = all->orig_fnargs;
2880
2881 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2882 {
2883 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2884 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2885 {
2886 rtx tmp, real, imag;
2887 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2888
2889 real = DECL_RTL (fnargs);
2890 imag = DECL_RTL (TREE_CHAIN (fnargs));
2891 if (inner != GET_MODE (real))
2892 {
2893 real = gen_lowpart_SUBREG (inner, real);
2894 imag = gen_lowpart_SUBREG (inner, imag);
2895 }
2896
2897 if (TREE_ADDRESSABLE (parm))
2898 {
2899 rtx rmem, imem;
2900 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2901
2902 /* split_complex_arg put the real and imag parts in
2903 pseudos. Move them to memory. */
2904 tmp = assign_stack_local (DECL_MODE (parm), size,
2905 TYPE_ALIGN (TREE_TYPE (parm)));
2906 set_mem_attributes (tmp, parm, 1);
2907 rmem = adjust_address_nv (tmp, inner, 0);
2908 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2909 push_to_sequence (all->conversion_insns);
2910 emit_move_insn (rmem, real);
2911 emit_move_insn (imem, imag);
2912 all->conversion_insns = get_insns ();
2913 end_sequence ();
2914 }
2915 else
2916 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2917 SET_DECL_RTL (parm, tmp);
2918
2919 real = DECL_INCOMING_RTL (fnargs);
2920 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2921 if (inner != GET_MODE (real))
2922 {
2923 real = gen_lowpart_SUBREG (inner, real);
2924 imag = gen_lowpart_SUBREG (inner, imag);
2925 }
2926 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2927 set_decl_incoming_rtl (parm, tmp);
2928 fnargs = TREE_CHAIN (fnargs);
2929 }
2930 else
2931 {
2932 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2933 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2934
2935 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2936 instead of the copy of decl, i.e. FNARGS. */
2937 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2938 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2939 }
2940
2941 fnargs = TREE_CHAIN (fnargs);
2942 }
2943 }
2944
2945 /* Assign RTL expressions to the function's parameters. This may involve
2946 copying them into registers and using those registers as the DECL_RTL. */
2947
2948 static void
2949 assign_parms (tree fndecl)
2950 {
2951 struct assign_parm_data_all all;
2952 tree fnargs, parm;
2953
2954 current_function_internal_arg_pointer
2955 = targetm.calls.internal_arg_pointer ();
2956
2957 assign_parms_initialize_all (&all);
2958 fnargs = assign_parms_augmented_arg_list (&all);
2959
2960 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2961 {
2962 struct assign_parm_data_one data;
2963
2964 /* Extract the type of PARM; adjust it according to ABI. */
2965 assign_parm_find_data_types (&all, parm, &data);
2966
2967 /* Early out for errors and void parameters. */
2968 if (data.passed_mode == VOIDmode)
2969 {
2970 SET_DECL_RTL (parm, const0_rtx);
2971 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2972 continue;
2973 }
2974
2975 if (current_function_stdarg && !TREE_CHAIN (parm))
2976 assign_parms_setup_varargs (&all, &data, false);
2977
2978 /* Find out where the parameter arrives in this function. */
2979 assign_parm_find_entry_rtl (&all, &data);
2980
2981 /* Find out where stack space for this parameter might be. */
2982 if (assign_parm_is_stack_parm (&all, &data))
2983 {
2984 assign_parm_find_stack_rtl (parm, &data);
2985 assign_parm_adjust_entry_rtl (&data);
2986 }
2987
2988 /* Record permanently how this parm was passed. */
2989 set_decl_incoming_rtl (parm, data.entry_parm);
2990
2991 /* Update info on where next arg arrives in registers. */
2992 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2993 data.passed_type, data.named_arg);
2994
2995 assign_parm_adjust_stack_rtl (&data);
2996
2997 if (assign_parm_setup_block_p (&data))
2998 assign_parm_setup_block (&all, parm, &data);
2999 else if (data.passed_pointer || use_register_for_decl (parm))
3000 assign_parm_setup_reg (&all, parm, &data);
3001 else
3002 assign_parm_setup_stack (&all, parm, &data);
3003 }
3004
3005 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3006 assign_parms_unsplit_complex (&all, fnargs);
3007
3008 /* Output all parameter conversion instructions (possibly including calls)
3009 now that all parameters have been copied out of hard registers. */
3010 emit_insn (all.conversion_insns);
3011
3012 /* If we are receiving a struct value address as the first argument, set up
3013 the RTL for the function result. As this might require code to convert
3014 the transmitted address to Pmode, we do this here to ensure that possible
3015 preliminary conversions of the address have been emitted already. */
3016 if (all.function_result_decl)
3017 {
3018 tree result = DECL_RESULT (current_function_decl);
3019 rtx addr = DECL_RTL (all.function_result_decl);
3020 rtx x;
3021
3022 if (DECL_BY_REFERENCE (result))
3023 x = addr;
3024 else
3025 {
3026 addr = convert_memory_address (Pmode, addr);
3027 x = gen_rtx_MEM (DECL_MODE (result), addr);
3028 set_mem_attributes (x, result, 1);
3029 }
3030 SET_DECL_RTL (result, x);
3031 }
3032
3033 /* We have aligned all the args, so add space for the pretend args. */
3034 current_function_pretend_args_size = all.pretend_args_size;
3035 all.stack_args_size.constant += all.extra_pretend_bytes;
3036 current_function_args_size = all.stack_args_size.constant;
3037
3038 /* Adjust function incoming argument size for alignment and
3039 minimum length. */
3040
3041 #ifdef REG_PARM_STACK_SPACE
3042 current_function_args_size = MAX (current_function_args_size,
3043 REG_PARM_STACK_SPACE (fndecl));
3044 #endif
3045
3046 current_function_args_size = CEIL_ROUND (current_function_args_size,
3047 PARM_BOUNDARY / BITS_PER_UNIT);
3048
3049 #ifdef ARGS_GROW_DOWNWARD
3050 current_function_arg_offset_rtx
3051 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3052 : expand_expr (size_diffop (all.stack_args_size.var,
3053 size_int (-all.stack_args_size.constant)),
3054 NULL_RTX, VOIDmode, 0));
3055 #else
3056 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3057 #endif
3058
3059 /* See how many bytes, if any, of its args a function should try to pop
3060 on return. */
3061
3062 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3063 current_function_args_size);
3064
3065 /* For stdarg.h function, save info about
3066 regs and stack space used by the named args. */
3067
3068 current_function_args_info = all.args_so_far;
3069
3070 /* Set the rtx used for the function return value. Put this in its
3071 own variable so any optimizers that need this information don't have
3072 to include tree.h. Do this here so it gets done when an inlined
3073 function gets output. */
3074
3075 current_function_return_rtx
3076 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3077 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3078
3079 /* If scalar return value was computed in a pseudo-reg, or was a named
3080 return value that got dumped to the stack, copy that to the hard
3081 return register. */
3082 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3083 {
3084 tree decl_result = DECL_RESULT (fndecl);
3085 rtx decl_rtl = DECL_RTL (decl_result);
3086
3087 if (REG_P (decl_rtl)
3088 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3089 : DECL_REGISTER (decl_result))
3090 {
3091 rtx real_decl_rtl;
3092
3093 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3094 fndecl, true);
3095 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3096 /* The delay slot scheduler assumes that current_function_return_rtx
3097 holds the hard register containing the return value, not a
3098 temporary pseudo. */
3099 current_function_return_rtx = real_decl_rtl;
3100 }
3101 }
3102 }
3103
3104 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3105 For all seen types, gimplify their sizes. */
3106
3107 static tree
3108 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3109 {
3110 tree t = *tp;
3111
3112 *walk_subtrees = 0;
3113 if (TYPE_P (t))
3114 {
3115 if (POINTER_TYPE_P (t))
3116 *walk_subtrees = 1;
3117 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3118 && !TYPE_SIZES_GIMPLIFIED (t))
3119 {
3120 gimplify_type_sizes (t, (tree *) data);
3121 *walk_subtrees = 1;
3122 }
3123 }
3124
3125 return NULL;
3126 }
3127
3128 /* Gimplify the parameter list for current_function_decl. This involves
3129 evaluating SAVE_EXPRs of variable sized parameters and generating code
3130 to implement callee-copies reference parameters. Returns a list of
3131 statements to add to the beginning of the function, or NULL if nothing
3132 to do. */
3133
3134 tree
3135 gimplify_parameters (void)
3136 {
3137 struct assign_parm_data_all all;
3138 tree fnargs, parm, stmts = NULL;
3139
3140 assign_parms_initialize_all (&all);
3141 fnargs = assign_parms_augmented_arg_list (&all);
3142
3143 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3144 {
3145 struct assign_parm_data_one data;
3146
3147 /* Extract the type of PARM; adjust it according to ABI. */
3148 assign_parm_find_data_types (&all, parm, &data);
3149
3150 /* Early out for errors and void parameters. */
3151 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3152 continue;
3153
3154 /* Update info on where next arg arrives in registers. */
3155 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3156 data.passed_type, data.named_arg);
3157
3158 /* ??? Once upon a time variable_size stuffed parameter list
3159 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3160 turned out to be less than manageable in the gimple world.
3161 Now we have to hunt them down ourselves. */
3162 walk_tree_without_duplicates (&data.passed_type,
3163 gimplify_parm_type, &stmts);
3164
3165 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3166 {
3167 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3168 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3169 }
3170
3171 if (data.passed_pointer)
3172 {
3173 tree type = TREE_TYPE (data.passed_type);
3174 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3175 type, data.named_arg))
3176 {
3177 tree local, t;
3178
3179 /* For constant sized objects, this is trivial; for
3180 variable-sized objects, we have to play games. */
3181 if (TREE_CONSTANT (DECL_SIZE (parm)))
3182 {
3183 local = create_tmp_var (type, get_name (parm));
3184 DECL_IGNORED_P (local) = 0;
3185 }
3186 else
3187 {
3188 tree ptr_type, addr, args;
3189
3190 ptr_type = build_pointer_type (type);
3191 addr = create_tmp_var (ptr_type, get_name (parm));
3192 DECL_IGNORED_P (addr) = 0;
3193 local = build_fold_indirect_ref (addr);
3194
3195 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3196 t = built_in_decls[BUILT_IN_ALLOCA];
3197 t = build_function_call_expr (t, args);
3198 t = fold_convert (ptr_type, t);
3199 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3200 gimplify_and_add (t, &stmts);
3201 }
3202
3203 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3204 gimplify_and_add (t, &stmts);
3205
3206 SET_DECL_VALUE_EXPR (parm, local);
3207 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3208 }
3209 }
3210 }
3211
3212 return stmts;
3213 }
3214 \f
3215 /* Indicate whether REGNO is an incoming argument to the current function
3216 that was promoted to a wider mode. If so, return the RTX for the
3217 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3218 that REGNO is promoted from and whether the promotion was signed or
3219 unsigned. */
3220
3221 rtx
3222 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3223 {
3224 tree arg;
3225
3226 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3227 arg = TREE_CHAIN (arg))
3228 if (REG_P (DECL_INCOMING_RTL (arg))
3229 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3230 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3231 {
3232 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3233 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3234
3235 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3236 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3237 && mode != DECL_MODE (arg))
3238 {
3239 *pmode = DECL_MODE (arg);
3240 *punsignedp = unsignedp;
3241 return DECL_INCOMING_RTL (arg);
3242 }
3243 }
3244
3245 return 0;
3246 }
3247
3248 \f
3249 /* Compute the size and offset from the start of the stacked arguments for a
3250 parm passed in mode PASSED_MODE and with type TYPE.
3251
3252 INITIAL_OFFSET_PTR points to the current offset into the stacked
3253 arguments.
3254
3255 The starting offset and size for this parm are returned in
3256 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3257 nonzero, the offset is that of stack slot, which is returned in
3258 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3259 padding required from the initial offset ptr to the stack slot.
3260
3261 IN_REGS is nonzero if the argument will be passed in registers. It will
3262 never be set if REG_PARM_STACK_SPACE is not defined.
3263
3264 FNDECL is the function in which the argument was defined.
3265
3266 There are two types of rounding that are done. The first, controlled by
3267 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3268 list to be aligned to the specific boundary (in bits). This rounding
3269 affects the initial and starting offsets, but not the argument size.
3270
3271 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3272 optionally rounds the size of the parm to PARM_BOUNDARY. The
3273 initial offset is not affected by this rounding, while the size always
3274 is and the starting offset may be. */
3275
3276 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3277 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3278 callers pass in the total size of args so far as
3279 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3280
3281 void
3282 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3283 int partial, tree fndecl ATTRIBUTE_UNUSED,
3284 struct args_size *initial_offset_ptr,
3285 struct locate_and_pad_arg_data *locate)
3286 {
3287 tree sizetree;
3288 enum direction where_pad;
3289 unsigned int boundary;
3290 int reg_parm_stack_space = 0;
3291 int part_size_in_regs;
3292
3293 #ifdef REG_PARM_STACK_SPACE
3294 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3295
3296 /* If we have found a stack parm before we reach the end of the
3297 area reserved for registers, skip that area. */
3298 if (! in_regs)
3299 {
3300 if (reg_parm_stack_space > 0)
3301 {
3302 if (initial_offset_ptr->var)
3303 {
3304 initial_offset_ptr->var
3305 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3306 ssize_int (reg_parm_stack_space));
3307 initial_offset_ptr->constant = 0;
3308 }
3309 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3310 initial_offset_ptr->constant = reg_parm_stack_space;
3311 }
3312 }
3313 #endif /* REG_PARM_STACK_SPACE */
3314
3315 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3316
3317 sizetree
3318 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3319 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3320 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3321 locate->where_pad = where_pad;
3322 locate->boundary = boundary;
3323
3324 /* Remember if the outgoing parameter requires extra alignment on the
3325 calling function side. */
3326 if (boundary > PREFERRED_STACK_BOUNDARY)
3327 boundary = PREFERRED_STACK_BOUNDARY;
3328 if (cfun->stack_alignment_needed < boundary)
3329 cfun->stack_alignment_needed = boundary;
3330
3331 #ifdef ARGS_GROW_DOWNWARD
3332 locate->slot_offset.constant = -initial_offset_ptr->constant;
3333 if (initial_offset_ptr->var)
3334 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3335 initial_offset_ptr->var);
3336
3337 {
3338 tree s2 = sizetree;
3339 if (where_pad != none
3340 && (!host_integerp (sizetree, 1)
3341 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3342 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3343 SUB_PARM_SIZE (locate->slot_offset, s2);
3344 }
3345
3346 locate->slot_offset.constant += part_size_in_regs;
3347
3348 if (!in_regs
3349 #ifdef REG_PARM_STACK_SPACE
3350 || REG_PARM_STACK_SPACE (fndecl) > 0
3351 #endif
3352 )
3353 pad_to_arg_alignment (&locate->slot_offset, boundary,
3354 &locate->alignment_pad);
3355
3356 locate->size.constant = (-initial_offset_ptr->constant
3357 - locate->slot_offset.constant);
3358 if (initial_offset_ptr->var)
3359 locate->size.var = size_binop (MINUS_EXPR,
3360 size_binop (MINUS_EXPR,
3361 ssize_int (0),
3362 initial_offset_ptr->var),
3363 locate->slot_offset.var);
3364
3365 /* Pad_below needs the pre-rounded size to know how much to pad
3366 below. */
3367 locate->offset = locate->slot_offset;
3368 if (where_pad == downward)
3369 pad_below (&locate->offset, passed_mode, sizetree);
3370
3371 #else /* !ARGS_GROW_DOWNWARD */
3372 if (!in_regs
3373 #ifdef REG_PARM_STACK_SPACE
3374 || REG_PARM_STACK_SPACE (fndecl) > 0
3375 #endif
3376 )
3377 pad_to_arg_alignment (initial_offset_ptr, boundary,
3378 &locate->alignment_pad);
3379 locate->slot_offset = *initial_offset_ptr;
3380
3381 #ifdef PUSH_ROUNDING
3382 if (passed_mode != BLKmode)
3383 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3384 #endif
3385
3386 /* Pad_below needs the pre-rounded size to know how much to pad below
3387 so this must be done before rounding up. */
3388 locate->offset = locate->slot_offset;
3389 if (where_pad == downward)
3390 pad_below (&locate->offset, passed_mode, sizetree);
3391
3392 if (where_pad != none
3393 && (!host_integerp (sizetree, 1)
3394 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3395 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3396
3397 ADD_PARM_SIZE (locate->size, sizetree);
3398
3399 locate->size.constant -= part_size_in_regs;
3400 #endif /* ARGS_GROW_DOWNWARD */
3401 }
3402
3403 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3404 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3405
3406 static void
3407 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3408 struct args_size *alignment_pad)
3409 {
3410 tree save_var = NULL_TREE;
3411 HOST_WIDE_INT save_constant = 0;
3412 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3413 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3414
3415 #ifdef SPARC_STACK_BOUNDARY_HACK
3416 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3417 the real alignment of %sp. However, when it does this, the
3418 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3419 if (SPARC_STACK_BOUNDARY_HACK)
3420 sp_offset = 0;
3421 #endif
3422
3423 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3424 {
3425 save_var = offset_ptr->var;
3426 save_constant = offset_ptr->constant;
3427 }
3428
3429 alignment_pad->var = NULL_TREE;
3430 alignment_pad->constant = 0;
3431
3432 if (boundary > BITS_PER_UNIT)
3433 {
3434 if (offset_ptr->var)
3435 {
3436 tree sp_offset_tree = ssize_int (sp_offset);
3437 tree offset = size_binop (PLUS_EXPR,
3438 ARGS_SIZE_TREE (*offset_ptr),
3439 sp_offset_tree);
3440 #ifdef ARGS_GROW_DOWNWARD
3441 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3442 #else
3443 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3444 #endif
3445
3446 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3447 /* ARGS_SIZE_TREE includes constant term. */
3448 offset_ptr->constant = 0;
3449 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3450 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3451 save_var);
3452 }
3453 else
3454 {
3455 offset_ptr->constant = -sp_offset +
3456 #ifdef ARGS_GROW_DOWNWARD
3457 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3458 #else
3459 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3460 #endif
3461 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3462 alignment_pad->constant = offset_ptr->constant - save_constant;
3463 }
3464 }
3465 }
3466
3467 static void
3468 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3469 {
3470 if (passed_mode != BLKmode)
3471 {
3472 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3473 offset_ptr->constant
3474 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3475 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3476 - GET_MODE_SIZE (passed_mode));
3477 }
3478 else
3479 {
3480 if (TREE_CODE (sizetree) != INTEGER_CST
3481 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3482 {
3483 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3484 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3485 /* Add it in. */
3486 ADD_PARM_SIZE (*offset_ptr, s2);
3487 SUB_PARM_SIZE (*offset_ptr, sizetree);
3488 }
3489 }
3490 }
3491 \f
3492 /* Walk the tree of blocks describing the binding levels within a function
3493 and warn about variables the might be killed by setjmp or vfork.
3494 This is done after calling flow_analysis and before global_alloc
3495 clobbers the pseudo-regs to hard regs. */
3496
3497 void
3498 setjmp_vars_warning (tree block)
3499 {
3500 tree decl, sub;
3501
3502 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3503 {
3504 if (TREE_CODE (decl) == VAR_DECL
3505 && DECL_RTL_SET_P (decl)
3506 && REG_P (DECL_RTL (decl))
3507 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3508 warning (0, "variable %q+D might be clobbered by %<longjmp%>"
3509 " or %<vfork%>",
3510 decl);
3511 }
3512
3513 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3514 setjmp_vars_warning (sub);
3515 }
3516
3517 /* Do the appropriate part of setjmp_vars_warning
3518 but for arguments instead of local variables. */
3519
3520 void
3521 setjmp_args_warning (void)
3522 {
3523 tree decl;
3524 for (decl = DECL_ARGUMENTS (current_function_decl);
3525 decl; decl = TREE_CHAIN (decl))
3526 if (DECL_RTL (decl) != 0
3527 && REG_P (DECL_RTL (decl))
3528 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3529 warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3530 decl);
3531 }
3532
3533 \f
3534 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3535 and create duplicate blocks. */
3536 /* ??? Need an option to either create block fragments or to create
3537 abstract origin duplicates of a source block. It really depends
3538 on what optimization has been performed. */
3539
3540 void
3541 reorder_blocks (void)
3542 {
3543 tree block = DECL_INITIAL (current_function_decl);
3544 VEC(tree,heap) *block_stack;
3545
3546 if (block == NULL_TREE)
3547 return;
3548
3549 block_stack = VEC_alloc (tree, heap, 10);
3550
3551 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3552 clear_block_marks (block);
3553
3554 /* Prune the old trees away, so that they don't get in the way. */
3555 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3556 BLOCK_CHAIN (block) = NULL_TREE;
3557
3558 /* Recreate the block tree from the note nesting. */
3559 reorder_blocks_1 (get_insns (), block, &block_stack);
3560 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3561
3562 /* Remove deleted blocks from the block fragment chains. */
3563 reorder_fix_fragments (block);
3564
3565 VEC_free (tree, heap, block_stack);
3566 }
3567
3568 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3569
3570 void
3571 clear_block_marks (tree block)
3572 {
3573 while (block)
3574 {
3575 TREE_ASM_WRITTEN (block) = 0;
3576 clear_block_marks (BLOCK_SUBBLOCKS (block));
3577 block = BLOCK_CHAIN (block);
3578 }
3579 }
3580
3581 static void
3582 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3583 {
3584 rtx insn;
3585
3586 for (insn = insns; insn; insn = NEXT_INSN (insn))
3587 {
3588 if (NOTE_P (insn))
3589 {
3590 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3591 {
3592 tree block = NOTE_BLOCK (insn);
3593
3594 /* If we have seen this block before, that means it now
3595 spans multiple address regions. Create a new fragment. */
3596 if (TREE_ASM_WRITTEN (block))
3597 {
3598 tree new_block = copy_node (block);
3599 tree origin;
3600
3601 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3602 ? BLOCK_FRAGMENT_ORIGIN (block)
3603 : block);
3604 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3605 BLOCK_FRAGMENT_CHAIN (new_block)
3606 = BLOCK_FRAGMENT_CHAIN (origin);
3607 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3608
3609 NOTE_BLOCK (insn) = new_block;
3610 block = new_block;
3611 }
3612
3613 BLOCK_SUBBLOCKS (block) = 0;
3614 TREE_ASM_WRITTEN (block) = 1;
3615 /* When there's only one block for the entire function,
3616 current_block == block and we mustn't do this, it
3617 will cause infinite recursion. */
3618 if (block != current_block)
3619 {
3620 BLOCK_SUPERCONTEXT (block) = current_block;
3621 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3622 BLOCK_SUBBLOCKS (current_block) = block;
3623 current_block = block;
3624 }
3625 VEC_safe_push (tree, heap, *p_block_stack, block);
3626 }
3627 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3628 {
3629 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3630 BLOCK_SUBBLOCKS (current_block)
3631 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3632 current_block = BLOCK_SUPERCONTEXT (current_block);
3633 }
3634 }
3635 }
3636 }
3637
3638 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3639 appears in the block tree, select one of the fragments to become
3640 the new origin block. */
3641
3642 static void
3643 reorder_fix_fragments (tree block)
3644 {
3645 while (block)
3646 {
3647 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3648 tree new_origin = NULL_TREE;
3649
3650 if (dup_origin)
3651 {
3652 if (! TREE_ASM_WRITTEN (dup_origin))
3653 {
3654 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3655
3656 /* Find the first of the remaining fragments. There must
3657 be at least one -- the current block. */
3658 while (! TREE_ASM_WRITTEN (new_origin))
3659 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3660 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3661 }
3662 }
3663 else if (! dup_origin)
3664 new_origin = block;
3665
3666 /* Re-root the rest of the fragments to the new origin. In the
3667 case that DUP_ORIGIN was null, that means BLOCK was the origin
3668 of a chain of fragments and we want to remove those fragments
3669 that didn't make it to the output. */
3670 if (new_origin)
3671 {
3672 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3673 tree chain = *pp;
3674
3675 while (chain)
3676 {
3677 if (TREE_ASM_WRITTEN (chain))
3678 {
3679 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3680 *pp = chain;
3681 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3682 }
3683 chain = BLOCK_FRAGMENT_CHAIN (chain);
3684 }
3685 *pp = NULL_TREE;
3686 }
3687
3688 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3689 block = BLOCK_CHAIN (block);
3690 }
3691 }
3692
3693 /* Reverse the order of elements in the chain T of blocks,
3694 and return the new head of the chain (old last element). */
3695
3696 tree
3697 blocks_nreverse (tree t)
3698 {
3699 tree prev = 0, decl, next;
3700 for (decl = t; decl; decl = next)
3701 {
3702 next = BLOCK_CHAIN (decl);
3703 BLOCK_CHAIN (decl) = prev;
3704 prev = decl;
3705 }
3706 return prev;
3707 }
3708
3709 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3710 non-NULL, list them all into VECTOR, in a depth-first preorder
3711 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3712 blocks. */
3713
3714 static int
3715 all_blocks (tree block, tree *vector)
3716 {
3717 int n_blocks = 0;
3718
3719 while (block)
3720 {
3721 TREE_ASM_WRITTEN (block) = 0;
3722
3723 /* Record this block. */
3724 if (vector)
3725 vector[n_blocks] = block;
3726
3727 ++n_blocks;
3728
3729 /* Record the subblocks, and their subblocks... */
3730 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3731 vector ? vector + n_blocks : 0);
3732 block = BLOCK_CHAIN (block);
3733 }
3734
3735 return n_blocks;
3736 }
3737
3738 /* Return a vector containing all the blocks rooted at BLOCK. The
3739 number of elements in the vector is stored in N_BLOCKS_P. The
3740 vector is dynamically allocated; it is the caller's responsibility
3741 to call `free' on the pointer returned. */
3742
3743 static tree *
3744 get_block_vector (tree block, int *n_blocks_p)
3745 {
3746 tree *block_vector;
3747
3748 *n_blocks_p = all_blocks (block, NULL);
3749 block_vector = XNEWVEC (tree, *n_blocks_p);
3750 all_blocks (block, block_vector);
3751
3752 return block_vector;
3753 }
3754
3755 static GTY(()) int next_block_index = 2;
3756
3757 /* Set BLOCK_NUMBER for all the blocks in FN. */
3758
3759 void
3760 number_blocks (tree fn)
3761 {
3762 int i;
3763 int n_blocks;
3764 tree *block_vector;
3765
3766 /* For SDB and XCOFF debugging output, we start numbering the blocks
3767 from 1 within each function, rather than keeping a running
3768 count. */
3769 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3770 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3771 next_block_index = 1;
3772 #endif
3773
3774 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3775
3776 /* The top-level BLOCK isn't numbered at all. */
3777 for (i = 1; i < n_blocks; ++i)
3778 /* We number the blocks from two. */
3779 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3780
3781 free (block_vector);
3782
3783 return;
3784 }
3785
3786 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3787
3788 tree
3789 debug_find_var_in_block_tree (tree var, tree block)
3790 {
3791 tree t;
3792
3793 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3794 if (t == var)
3795 return block;
3796
3797 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3798 {
3799 tree ret = debug_find_var_in_block_tree (var, t);
3800 if (ret)
3801 return ret;
3802 }
3803
3804 return NULL_TREE;
3805 }
3806 \f
3807 /* Allocate a function structure for FNDECL and set its contents
3808 to the defaults. */
3809
3810 void
3811 allocate_struct_function (tree fndecl)
3812 {
3813 tree result;
3814 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3815
3816 cfun = ggc_alloc_cleared (sizeof (struct function));
3817
3818 cfun->stack_alignment_needed = STACK_BOUNDARY;
3819 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3820
3821 current_function_funcdef_no = funcdef_no++;
3822
3823 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3824
3825 init_eh_for_function ();
3826
3827 lang_hooks.function.init (cfun);
3828 if (init_machine_status)
3829 cfun->machine = (*init_machine_status) ();
3830
3831 if (fndecl == NULL)
3832 return;
3833
3834 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3835 cfun->decl = fndecl;
3836
3837 result = DECL_RESULT (fndecl);
3838 if (aggregate_value_p (result, fndecl))
3839 {
3840 #ifdef PCC_STATIC_STRUCT_RETURN
3841 current_function_returns_pcc_struct = 1;
3842 #endif
3843 current_function_returns_struct = 1;
3844 }
3845
3846 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3847
3848 current_function_stdarg
3849 = (fntype
3850 && TYPE_ARG_TYPES (fntype) != 0
3851 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3852 != void_type_node));
3853
3854 /* Assume all registers in stdarg functions need to be saved. */
3855 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3856 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3857 }
3858
3859 /* Reset cfun, and other non-struct-function variables to defaults as
3860 appropriate for emitting rtl at the start of a function. */
3861
3862 static void
3863 prepare_function_start (tree fndecl)
3864 {
3865 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3866 cfun = DECL_STRUCT_FUNCTION (fndecl);
3867 else
3868 allocate_struct_function (fndecl);
3869 init_emit ();
3870 init_varasm_status (cfun);
3871 init_expr ();
3872
3873 cse_not_expected = ! optimize;
3874
3875 /* Caller save not needed yet. */
3876 caller_save_needed = 0;
3877
3878 /* We haven't done register allocation yet. */
3879 reg_renumber = 0;
3880
3881 /* Indicate that we have not instantiated virtual registers yet. */
3882 virtuals_instantiated = 0;
3883
3884 /* Indicate that we want CONCATs now. */
3885 generating_concat_p = 1;
3886
3887 /* Indicate we have no need of a frame pointer yet. */
3888 frame_pointer_needed = 0;
3889 }
3890
3891 /* Initialize the rtl expansion mechanism so that we can do simple things
3892 like generate sequences. This is used to provide a context during global
3893 initialization of some passes. */
3894 void
3895 init_dummy_function_start (void)
3896 {
3897 prepare_function_start (NULL);
3898 }
3899
3900 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3901 and initialize static variables for generating RTL for the statements
3902 of the function. */
3903
3904 void
3905 init_function_start (tree subr)
3906 {
3907 prepare_function_start (subr);
3908
3909 /* Prevent ever trying to delete the first instruction of a
3910 function. Also tell final how to output a linenum before the
3911 function prologue. Note linenums could be missing, e.g. when
3912 compiling a Java .class file. */
3913 if (! DECL_IS_BUILTIN (subr))
3914 emit_line_note (DECL_SOURCE_LOCATION (subr));
3915
3916 /* Make sure first insn is a note even if we don't want linenums.
3917 This makes sure the first insn will never be deleted.
3918 Also, final expects a note to appear there. */
3919 emit_note (NOTE_INSN_DELETED);
3920
3921 /* Warn if this value is an aggregate type,
3922 regardless of which calling convention we are using for it. */
3923 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3924 warning (OPT_Waggregate_return, "function returns an aggregate");
3925 }
3926
3927 /* Make sure all values used by the optimization passes have sane
3928 defaults. */
3929 void
3930 init_function_for_compilation (void)
3931 {
3932 reg_renumber = 0;
3933
3934 /* No prologue/epilogue insns yet. Make sure that these vectors are
3935 empty. */
3936 gcc_assert (VEC_length (int, prologue) == 0);
3937 gcc_assert (VEC_length (int, epilogue) == 0);
3938 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3939 }
3940
3941 struct tree_opt_pass pass_init_function =
3942 {
3943 NULL, /* name */
3944 NULL, /* gate */
3945 init_function_for_compilation, /* execute */
3946 NULL, /* sub */
3947 NULL, /* next */
3948 0, /* static_pass_number */
3949 0, /* tv_id */
3950 0, /* properties_required */
3951 0, /* properties_provided */
3952 0, /* properties_destroyed */
3953 0, /* todo_flags_start */
3954 0, /* todo_flags_finish */
3955 0 /* letter */
3956 };
3957
3958
3959 void
3960 expand_main_function (void)
3961 {
3962 #if (defined(INVOKE__main) \
3963 || (!defined(HAS_INIT_SECTION) \
3964 && !defined(INIT_SECTION_ASM_OP) \
3965 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3966 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3967 #endif
3968 }
3969 \f
3970 /* Expand code to initialize the stack_protect_guard. This is invoked at
3971 the beginning of a function to be protected. */
3972
3973 #ifndef HAVE_stack_protect_set
3974 # define HAVE_stack_protect_set 0
3975 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3976 #endif
3977
3978 void
3979 stack_protect_prologue (void)
3980 {
3981 tree guard_decl = targetm.stack_protect_guard ();
3982 rtx x, y;
3983
3984 /* Avoid expand_expr here, because we don't want guard_decl pulled
3985 into registers unless absolutely necessary. And we know that
3986 cfun->stack_protect_guard is a local stack slot, so this skips
3987 all the fluff. */
3988 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3989 y = validize_mem (DECL_RTL (guard_decl));
3990
3991 /* Allow the target to copy from Y to X without leaking Y into a
3992 register. */
3993 if (HAVE_stack_protect_set)
3994 {
3995 rtx insn = gen_stack_protect_set (x, y);
3996 if (insn)
3997 {
3998 emit_insn (insn);
3999 return;
4000 }
4001 }
4002
4003 /* Otherwise do a straight move. */
4004 emit_move_insn (x, y);
4005 }
4006
4007 /* Expand code to verify the stack_protect_guard. This is invoked at
4008 the end of a function to be protected. */
4009
4010 #ifndef HAVE_stack_protect_test
4011 # define HAVE_stack_protect_test 0
4012 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4013 #endif
4014
4015 void
4016 stack_protect_epilogue (void)
4017 {
4018 tree guard_decl = targetm.stack_protect_guard ();
4019 rtx label = gen_label_rtx ();
4020 rtx x, y, tmp;
4021
4022 /* Avoid expand_expr here, because we don't want guard_decl pulled
4023 into registers unless absolutely necessary. And we know that
4024 cfun->stack_protect_guard is a local stack slot, so this skips
4025 all the fluff. */
4026 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4027 y = validize_mem (DECL_RTL (guard_decl));
4028
4029 /* Allow the target to compare Y with X without leaking either into
4030 a register. */
4031 switch (HAVE_stack_protect_test != 0)
4032 {
4033 case 1:
4034 tmp = gen_stack_protect_test (x, y, label);
4035 if (tmp)
4036 {
4037 emit_insn (tmp);
4038 break;
4039 }
4040 /* FALLTHRU */
4041
4042 default:
4043 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4044 break;
4045 }
4046
4047 /* The noreturn predictor has been moved to the tree level. The rtl-level
4048 predictors estimate this branch about 20%, which isn't enough to get
4049 things moved out of line. Since this is the only extant case of adding
4050 a noreturn function at the rtl level, it doesn't seem worth doing ought
4051 except adding the prediction by hand. */
4052 tmp = get_last_insn ();
4053 if (JUMP_P (tmp))
4054 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4055
4056 expand_expr_stmt (targetm.stack_protect_fail ());
4057 emit_label (label);
4058 }
4059 \f
4060 /* Start the RTL for a new function, and set variables used for
4061 emitting RTL.
4062 SUBR is the FUNCTION_DECL node.
4063 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4064 the function's parameters, which must be run at any return statement. */
4065
4066 void
4067 expand_function_start (tree subr)
4068 {
4069 /* Make sure volatile mem refs aren't considered
4070 valid operands of arithmetic insns. */
4071 init_recog_no_volatile ();
4072
4073 current_function_profile
4074 = (profile_flag
4075 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4076
4077 current_function_limit_stack
4078 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4079
4080 /* Make the label for return statements to jump to. Do not special
4081 case machines with special return instructions -- they will be
4082 handled later during jump, ifcvt, or epilogue creation. */
4083 return_label = gen_label_rtx ();
4084
4085 /* Initialize rtx used to return the value. */
4086 /* Do this before assign_parms so that we copy the struct value address
4087 before any library calls that assign parms might generate. */
4088
4089 /* Decide whether to return the value in memory or in a register. */
4090 if (aggregate_value_p (DECL_RESULT (subr), subr))
4091 {
4092 /* Returning something that won't go in a register. */
4093 rtx value_address = 0;
4094
4095 #ifdef PCC_STATIC_STRUCT_RETURN
4096 if (current_function_returns_pcc_struct)
4097 {
4098 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4099 value_address = assemble_static_space (size);
4100 }
4101 else
4102 #endif
4103 {
4104 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4105 /* Expect to be passed the address of a place to store the value.
4106 If it is passed as an argument, assign_parms will take care of
4107 it. */
4108 if (sv)
4109 {
4110 value_address = gen_reg_rtx (Pmode);
4111 emit_move_insn (value_address, sv);
4112 }
4113 }
4114 if (value_address)
4115 {
4116 rtx x = value_address;
4117 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4118 {
4119 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4120 set_mem_attributes (x, DECL_RESULT (subr), 1);
4121 }
4122 SET_DECL_RTL (DECL_RESULT (subr), x);
4123 }
4124 }
4125 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4126 /* If return mode is void, this decl rtl should not be used. */
4127 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4128 else
4129 {
4130 /* Compute the return values into a pseudo reg, which we will copy
4131 into the true return register after the cleanups are done. */
4132 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4133 if (TYPE_MODE (return_type) != BLKmode
4134 && targetm.calls.return_in_msb (return_type))
4135 /* expand_function_end will insert the appropriate padding in
4136 this case. Use the return value's natural (unpadded) mode
4137 within the function proper. */
4138 SET_DECL_RTL (DECL_RESULT (subr),
4139 gen_reg_rtx (TYPE_MODE (return_type)));
4140 else
4141 {
4142 /* In order to figure out what mode to use for the pseudo, we
4143 figure out what the mode of the eventual return register will
4144 actually be, and use that. */
4145 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4146
4147 /* Structures that are returned in registers are not
4148 aggregate_value_p, so we may see a PARALLEL or a REG. */
4149 if (REG_P (hard_reg))
4150 SET_DECL_RTL (DECL_RESULT (subr),
4151 gen_reg_rtx (GET_MODE (hard_reg)));
4152 else
4153 {
4154 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4155 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4156 }
4157 }
4158
4159 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4160 result to the real return register(s). */
4161 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4162 }
4163
4164 /* Initialize rtx for parameters and local variables.
4165 In some cases this requires emitting insns. */
4166 assign_parms (subr);
4167
4168 /* If function gets a static chain arg, store it. */
4169 if (cfun->static_chain_decl)
4170 {
4171 tree parm = cfun->static_chain_decl;
4172 rtx local = gen_reg_rtx (Pmode);
4173
4174 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4175 SET_DECL_RTL (parm, local);
4176 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4177
4178 emit_move_insn (local, static_chain_incoming_rtx);
4179 }
4180
4181 /* If the function receives a non-local goto, then store the
4182 bits we need to restore the frame pointer. */
4183 if (cfun->nonlocal_goto_save_area)
4184 {
4185 tree t_save;
4186 rtx r_save;
4187
4188 /* ??? We need to do this save early. Unfortunately here is
4189 before the frame variable gets declared. Help out... */
4190 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4191
4192 t_save = build4 (ARRAY_REF, ptr_type_node,
4193 cfun->nonlocal_goto_save_area,
4194 integer_zero_node, NULL_TREE, NULL_TREE);
4195 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4196 r_save = convert_memory_address (Pmode, r_save);
4197
4198 emit_move_insn (r_save, virtual_stack_vars_rtx);
4199 update_nonlocal_goto_save_area ();
4200 }
4201
4202 /* The following was moved from init_function_start.
4203 The move is supposed to make sdb output more accurate. */
4204 /* Indicate the beginning of the function body,
4205 as opposed to parm setup. */
4206 emit_note (NOTE_INSN_FUNCTION_BEG);
4207
4208 if (!NOTE_P (get_last_insn ()))
4209 emit_note (NOTE_INSN_DELETED);
4210 parm_birth_insn = get_last_insn ();
4211
4212 if (current_function_profile)
4213 {
4214 #ifdef PROFILE_HOOK
4215 PROFILE_HOOK (current_function_funcdef_no);
4216 #endif
4217 }
4218
4219 /* After the display initializations is where the tail-recursion label
4220 should go, if we end up needing one. Ensure we have a NOTE here
4221 since some things (like trampolines) get placed before this. */
4222 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4223
4224 /* Make sure there is a line number after the function entry setup code. */
4225 force_next_line_note ();
4226 }
4227 \f
4228 /* Undo the effects of init_dummy_function_start. */
4229 void
4230 expand_dummy_function_end (void)
4231 {
4232 /* End any sequences that failed to be closed due to syntax errors. */
4233 while (in_sequence_p ())
4234 end_sequence ();
4235
4236 /* Outside function body, can't compute type's actual size
4237 until next function's body starts. */
4238
4239 free_after_parsing (cfun);
4240 free_after_compilation (cfun);
4241 cfun = 0;
4242 }
4243
4244 /* Call DOIT for each hard register used as a return value from
4245 the current function. */
4246
4247 void
4248 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4249 {
4250 rtx outgoing = current_function_return_rtx;
4251
4252 if (! outgoing)
4253 return;
4254
4255 if (REG_P (outgoing))
4256 (*doit) (outgoing, arg);
4257 else if (GET_CODE (outgoing) == PARALLEL)
4258 {
4259 int i;
4260
4261 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4262 {
4263 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4264
4265 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4266 (*doit) (x, arg);
4267 }
4268 }
4269 }
4270
4271 static void
4272 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4273 {
4274 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4275 }
4276
4277 void
4278 clobber_return_register (void)
4279 {
4280 diddle_return_value (do_clobber_return_reg, NULL);
4281
4282 /* In case we do use pseudo to return value, clobber it too. */
4283 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4284 {
4285 tree decl_result = DECL_RESULT (current_function_decl);
4286 rtx decl_rtl = DECL_RTL (decl_result);
4287 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4288 {
4289 do_clobber_return_reg (decl_rtl, NULL);
4290 }
4291 }
4292 }
4293
4294 static void
4295 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4296 {
4297 emit_insn (gen_rtx_USE (VOIDmode, reg));
4298 }
4299
4300 void
4301 use_return_register (void)
4302 {
4303 diddle_return_value (do_use_return_reg, NULL);
4304 }
4305
4306 /* Possibly warn about unused parameters. */
4307 void
4308 do_warn_unused_parameter (tree fn)
4309 {
4310 tree decl;
4311
4312 for (decl = DECL_ARGUMENTS (fn);
4313 decl; decl = TREE_CHAIN (decl))
4314 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4315 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4316 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4317 }
4318
4319 static GTY(()) rtx initial_trampoline;
4320
4321 /* Generate RTL for the end of the current function. */
4322
4323 void
4324 expand_function_end (void)
4325 {
4326 rtx clobber_after;
4327
4328 /* If arg_pointer_save_area was referenced only from a nested
4329 function, we will not have initialized it yet. Do that now. */
4330 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4331 get_arg_pointer_save_area (cfun);
4332
4333 /* If we are doing stack checking and this function makes calls,
4334 do a stack probe at the start of the function to ensure we have enough
4335 space for another stack frame. */
4336 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4337 {
4338 rtx insn, seq;
4339
4340 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4341 if (CALL_P (insn))
4342 {
4343 start_sequence ();
4344 probe_stack_range (STACK_CHECK_PROTECT,
4345 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4346 seq = get_insns ();
4347 end_sequence ();
4348 emit_insn_before (seq, tail_recursion_reentry);
4349 break;
4350 }
4351 }
4352
4353 /* Possibly warn about unused parameters.
4354 When frontend does unit-at-a-time, the warning is already
4355 issued at finalization time. */
4356 if (warn_unused_parameter
4357 && !lang_hooks.callgraph.expand_function)
4358 do_warn_unused_parameter (current_function_decl);
4359
4360 /* End any sequences that failed to be closed due to syntax errors. */
4361 while (in_sequence_p ())
4362 end_sequence ();
4363
4364 clear_pending_stack_adjust ();
4365 do_pending_stack_adjust ();
4366
4367 /* Mark the end of the function body.
4368 If control reaches this insn, the function can drop through
4369 without returning a value. */
4370 emit_note (NOTE_INSN_FUNCTION_END);
4371
4372 /* Must mark the last line number note in the function, so that the test
4373 coverage code can avoid counting the last line twice. This just tells
4374 the code to ignore the immediately following line note, since there
4375 already exists a copy of this note somewhere above. This line number
4376 note is still needed for debugging though, so we can't delete it. */
4377 if (flag_test_coverage)
4378 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4379
4380 /* Output a linenumber for the end of the function.
4381 SDB depends on this. */
4382 force_next_line_note ();
4383 emit_line_note (input_location);
4384
4385 /* Before the return label (if any), clobber the return
4386 registers so that they are not propagated live to the rest of
4387 the function. This can only happen with functions that drop
4388 through; if there had been a return statement, there would
4389 have either been a return rtx, or a jump to the return label.
4390
4391 We delay actual code generation after the current_function_value_rtx
4392 is computed. */
4393 clobber_after = get_last_insn ();
4394
4395 /* Output the label for the actual return from the function. */
4396 emit_label (return_label);
4397
4398 if (USING_SJLJ_EXCEPTIONS)
4399 {
4400 /* Let except.c know where it should emit the call to unregister
4401 the function context for sjlj exceptions. */
4402 if (flag_exceptions)
4403 sjlj_emit_function_exit_after (get_last_insn ());
4404 }
4405 else
4406 {
4407 /* @@@ This is a kludge. We want to ensure that instructions that
4408 may trap are not moved into the epilogue by scheduling, because
4409 we don't always emit unwind information for the epilogue.
4410 However, not all machine descriptions define a blockage insn, so
4411 emit an ASM_INPUT to act as one. */
4412 if (flag_non_call_exceptions)
4413 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4414 }
4415
4416 /* If this is an implementation of throw, do what's necessary to
4417 communicate between __builtin_eh_return and the epilogue. */
4418 expand_eh_return ();
4419
4420 /* If scalar return value was computed in a pseudo-reg, or was a named
4421 return value that got dumped to the stack, copy that to the hard
4422 return register. */
4423 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4424 {
4425 tree decl_result = DECL_RESULT (current_function_decl);
4426 rtx decl_rtl = DECL_RTL (decl_result);
4427
4428 if (REG_P (decl_rtl)
4429 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4430 : DECL_REGISTER (decl_result))
4431 {
4432 rtx real_decl_rtl = current_function_return_rtx;
4433
4434 /* This should be set in assign_parms. */
4435 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4436
4437 /* If this is a BLKmode structure being returned in registers,
4438 then use the mode computed in expand_return. Note that if
4439 decl_rtl is memory, then its mode may have been changed,
4440 but that current_function_return_rtx has not. */
4441 if (GET_MODE (real_decl_rtl) == BLKmode)
4442 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4443
4444 /* If a non-BLKmode return value should be padded at the least
4445 significant end of the register, shift it left by the appropriate
4446 amount. BLKmode results are handled using the group load/store
4447 machinery. */
4448 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4449 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4450 {
4451 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4452 REGNO (real_decl_rtl)),
4453 decl_rtl);
4454 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4455 }
4456 /* If a named return value dumped decl_return to memory, then
4457 we may need to re-do the PROMOTE_MODE signed/unsigned
4458 extension. */
4459 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4460 {
4461 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4462
4463 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4464 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4465 &unsignedp, 1);
4466
4467 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4468 }
4469 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4470 {
4471 /* If expand_function_start has created a PARALLEL for decl_rtl,
4472 move the result to the real return registers. Otherwise, do
4473 a group load from decl_rtl for a named return. */
4474 if (GET_CODE (decl_rtl) == PARALLEL)
4475 emit_group_move (real_decl_rtl, decl_rtl);
4476 else
4477 emit_group_load (real_decl_rtl, decl_rtl,
4478 TREE_TYPE (decl_result),
4479 int_size_in_bytes (TREE_TYPE (decl_result)));
4480 }
4481 /* In the case of complex integer modes smaller than a word, we'll
4482 need to generate some non-trivial bitfield insertions. Do that
4483 on a pseudo and not the hard register. */
4484 else if (GET_CODE (decl_rtl) == CONCAT
4485 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4486 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4487 {
4488 int old_generating_concat_p;
4489 rtx tmp;
4490
4491 old_generating_concat_p = generating_concat_p;
4492 generating_concat_p = 0;
4493 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4494 generating_concat_p = old_generating_concat_p;
4495
4496 emit_move_insn (tmp, decl_rtl);
4497 emit_move_insn (real_decl_rtl, tmp);
4498 }
4499 else
4500 emit_move_insn (real_decl_rtl, decl_rtl);
4501 }
4502 }
4503
4504 /* If returning a structure, arrange to return the address of the value
4505 in a place where debuggers expect to find it.
4506
4507 If returning a structure PCC style,
4508 the caller also depends on this value.
4509 And current_function_returns_pcc_struct is not necessarily set. */
4510 if (current_function_returns_struct
4511 || current_function_returns_pcc_struct)
4512 {
4513 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4514 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4515 rtx outgoing;
4516
4517 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4518 type = TREE_TYPE (type);
4519 else
4520 value_address = XEXP (value_address, 0);
4521
4522 outgoing = targetm.calls.function_value (build_pointer_type (type),
4523 current_function_decl, true);
4524
4525 /* Mark this as a function return value so integrate will delete the
4526 assignment and USE below when inlining this function. */
4527 REG_FUNCTION_VALUE_P (outgoing) = 1;
4528
4529 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4530 value_address = convert_memory_address (GET_MODE (outgoing),
4531 value_address);
4532
4533 emit_move_insn (outgoing, value_address);
4534
4535 /* Show return register used to hold result (in this case the address
4536 of the result. */
4537 current_function_return_rtx = outgoing;
4538 }
4539
4540 /* Emit the actual code to clobber return register. */
4541 {
4542 rtx seq;
4543
4544 start_sequence ();
4545 clobber_return_register ();
4546 expand_naked_return ();
4547 seq = get_insns ();
4548 end_sequence ();
4549
4550 emit_insn_after (seq, clobber_after);
4551 }
4552
4553 /* Output the label for the naked return from the function. */
4554 emit_label (naked_return_label);
4555
4556 /* If stack protection is enabled for this function, check the guard. */
4557 if (cfun->stack_protect_guard)
4558 stack_protect_epilogue ();
4559
4560 /* If we had calls to alloca, and this machine needs
4561 an accurate stack pointer to exit the function,
4562 insert some code to save and restore the stack pointer. */
4563 if (! EXIT_IGNORE_STACK
4564 && current_function_calls_alloca)
4565 {
4566 rtx tem = 0;
4567
4568 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4569 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4570 }
4571
4572 /* ??? This should no longer be necessary since stupid is no longer with
4573 us, but there are some parts of the compiler (eg reload_combine, and
4574 sh mach_dep_reorg) that still try and compute their own lifetime info
4575 instead of using the general framework. */
4576 use_return_register ();
4577 }
4578
4579 rtx
4580 get_arg_pointer_save_area (struct function *f)
4581 {
4582 rtx ret = f->x_arg_pointer_save_area;
4583
4584 if (! ret)
4585 {
4586 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4587 f->x_arg_pointer_save_area = ret;
4588 }
4589
4590 if (f == cfun && ! f->arg_pointer_save_area_init)
4591 {
4592 rtx seq;
4593
4594 /* Save the arg pointer at the beginning of the function. The
4595 generated stack slot may not be a valid memory address, so we
4596 have to check it and fix it if necessary. */
4597 start_sequence ();
4598 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4599 seq = get_insns ();
4600 end_sequence ();
4601
4602 push_topmost_sequence ();
4603 emit_insn_after (seq, entry_of_function ());
4604 pop_topmost_sequence ();
4605 }
4606
4607 return ret;
4608 }
4609 \f
4610 /* Extend a vector that records the INSN_UIDs of INSNS
4611 (a list of one or more insns). */
4612
4613 static void
4614 record_insns (rtx insns, VEC(int,heap) **vecp)
4615 {
4616 rtx tmp;
4617
4618 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4619 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4620 }
4621
4622 /* Set the locator of the insn chain starting at INSN to LOC. */
4623 static void
4624 set_insn_locators (rtx insn, int loc)
4625 {
4626 while (insn != NULL_RTX)
4627 {
4628 if (INSN_P (insn))
4629 INSN_LOCATOR (insn) = loc;
4630 insn = NEXT_INSN (insn);
4631 }
4632 }
4633
4634 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4635 be running after reorg, SEQUENCE rtl is possible. */
4636
4637 static int
4638 contains (rtx insn, VEC(int,heap) **vec)
4639 {
4640 int i, j;
4641
4642 if (NONJUMP_INSN_P (insn)
4643 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4644 {
4645 int count = 0;
4646 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4647 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4648 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4649 == VEC_index (int, *vec, j))
4650 count++;
4651 return count;
4652 }
4653 else
4654 {
4655 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4656 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4657 return 1;
4658 }
4659 return 0;
4660 }
4661
4662 int
4663 prologue_epilogue_contains (rtx insn)
4664 {
4665 if (contains (insn, &prologue))
4666 return 1;
4667 if (contains (insn, &epilogue))
4668 return 1;
4669 return 0;
4670 }
4671
4672 int
4673 sibcall_epilogue_contains (rtx insn)
4674 {
4675 if (sibcall_epilogue)
4676 return contains (insn, &sibcall_epilogue);
4677 return 0;
4678 }
4679
4680 #ifdef HAVE_return
4681 /* Insert gen_return at the end of block BB. This also means updating
4682 block_for_insn appropriately. */
4683
4684 static void
4685 emit_return_into_block (basic_block bb, rtx line_note)
4686 {
4687 emit_jump_insn_after (gen_return (), BB_END (bb));
4688 if (line_note)
4689 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4690 }
4691 #endif /* HAVE_return */
4692
4693 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4694
4695 /* These functions convert the epilogue into a variant that does not
4696 modify the stack pointer. This is used in cases where a function
4697 returns an object whose size is not known until it is computed.
4698 The called function leaves the object on the stack, leaves the
4699 stack depressed, and returns a pointer to the object.
4700
4701 What we need to do is track all modifications and references to the
4702 stack pointer, deleting the modifications and changing the
4703 references to point to the location the stack pointer would have
4704 pointed to had the modifications taken place.
4705
4706 These functions need to be portable so we need to make as few
4707 assumptions about the epilogue as we can. However, the epilogue
4708 basically contains three things: instructions to reset the stack
4709 pointer, instructions to reload registers, possibly including the
4710 frame pointer, and an instruction to return to the caller.
4711
4712 We must be sure of what a relevant epilogue insn is doing. We also
4713 make no attempt to validate the insns we make since if they are
4714 invalid, we probably can't do anything valid. The intent is that
4715 these routines get "smarter" as more and more machines start to use
4716 them and they try operating on different epilogues.
4717
4718 We use the following structure to track what the part of the
4719 epilogue that we've already processed has done. We keep two copies
4720 of the SP equivalence, one for use during the insn we are
4721 processing and one for use in the next insn. The difference is
4722 because one part of a PARALLEL may adjust SP and the other may use
4723 it. */
4724
4725 struct epi_info
4726 {
4727 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4728 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4729 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4730 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4731 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4732 should be set to once we no longer need
4733 its value. */
4734 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4735 for registers. */
4736 };
4737
4738 static void handle_epilogue_set (rtx, struct epi_info *);
4739 static void update_epilogue_consts (rtx, rtx, void *);
4740 static void emit_equiv_load (struct epi_info *);
4741
4742 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4743 no modifications to the stack pointer. Return the new list of insns. */
4744
4745 static rtx
4746 keep_stack_depressed (rtx insns)
4747 {
4748 int j;
4749 struct epi_info info;
4750 rtx insn, next;
4751
4752 /* If the epilogue is just a single instruction, it must be OK as is. */
4753 if (NEXT_INSN (insns) == NULL_RTX)
4754 return insns;
4755
4756 /* Otherwise, start a sequence, initialize the information we have, and
4757 process all the insns we were given. */
4758 start_sequence ();
4759
4760 info.sp_equiv_reg = stack_pointer_rtx;
4761 info.sp_offset = 0;
4762 info.equiv_reg_src = 0;
4763
4764 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4765 info.const_equiv[j] = 0;
4766
4767 insn = insns;
4768 next = NULL_RTX;
4769 while (insn != NULL_RTX)
4770 {
4771 next = NEXT_INSN (insn);
4772
4773 if (!INSN_P (insn))
4774 {
4775 add_insn (insn);
4776 insn = next;
4777 continue;
4778 }
4779
4780 /* If this insn references the register that SP is equivalent to and
4781 we have a pending load to that register, we must force out the load
4782 first and then indicate we no longer know what SP's equivalent is. */
4783 if (info.equiv_reg_src != 0
4784 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4785 {
4786 emit_equiv_load (&info);
4787 info.sp_equiv_reg = 0;
4788 }
4789
4790 info.new_sp_equiv_reg = info.sp_equiv_reg;
4791 info.new_sp_offset = info.sp_offset;
4792
4793 /* If this is a (RETURN) and the return address is on the stack,
4794 update the address and change to an indirect jump. */
4795 if (GET_CODE (PATTERN (insn)) == RETURN
4796 || (GET_CODE (PATTERN (insn)) == PARALLEL
4797 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4798 {
4799 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4800 rtx base = 0;
4801 HOST_WIDE_INT offset = 0;
4802 rtx jump_insn, jump_set;
4803
4804 /* If the return address is in a register, we can emit the insn
4805 unchanged. Otherwise, it must be a MEM and we see what the
4806 base register and offset are. In any case, we have to emit any
4807 pending load to the equivalent reg of SP, if any. */
4808 if (REG_P (retaddr))
4809 {
4810 emit_equiv_load (&info);
4811 add_insn (insn);
4812 insn = next;
4813 continue;
4814 }
4815 else
4816 {
4817 rtx ret_ptr;
4818 gcc_assert (MEM_P (retaddr));
4819
4820 ret_ptr = XEXP (retaddr, 0);
4821
4822 if (REG_P (ret_ptr))
4823 {
4824 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4825 offset = 0;
4826 }
4827 else
4828 {
4829 gcc_assert (GET_CODE (ret_ptr) == PLUS
4830 && REG_P (XEXP (ret_ptr, 0))
4831 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4832 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4833 offset = INTVAL (XEXP (ret_ptr, 1));
4834 }
4835 }
4836
4837 /* If the base of the location containing the return pointer
4838 is SP, we must update it with the replacement address. Otherwise,
4839 just build the necessary MEM. */
4840 retaddr = plus_constant (base, offset);
4841 if (base == stack_pointer_rtx)
4842 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4843 plus_constant (info.sp_equiv_reg,
4844 info.sp_offset));
4845
4846 retaddr = gen_rtx_MEM (Pmode, retaddr);
4847 MEM_NOTRAP_P (retaddr) = 1;
4848
4849 /* If there is a pending load to the equivalent register for SP
4850 and we reference that register, we must load our address into
4851 a scratch register and then do that load. */
4852 if (info.equiv_reg_src
4853 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4854 {
4855 unsigned int regno;
4856 rtx reg;
4857
4858 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4859 if (HARD_REGNO_MODE_OK (regno, Pmode)
4860 && !fixed_regs[regno]
4861 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4862 && !REGNO_REG_SET_P
4863 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4864 && !refers_to_regno_p (regno,
4865 regno + hard_regno_nregs[regno]
4866 [Pmode],
4867 info.equiv_reg_src, NULL)
4868 && info.const_equiv[regno] == 0)
4869 break;
4870
4871 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4872
4873 reg = gen_rtx_REG (Pmode, regno);
4874 emit_move_insn (reg, retaddr);
4875 retaddr = reg;
4876 }
4877
4878 emit_equiv_load (&info);
4879 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4880
4881 /* Show the SET in the above insn is a RETURN. */
4882 jump_set = single_set (jump_insn);
4883 gcc_assert (jump_set);
4884 SET_IS_RETURN_P (jump_set) = 1;
4885 }
4886
4887 /* If SP is not mentioned in the pattern and its equivalent register, if
4888 any, is not modified, just emit it. Otherwise, if neither is set,
4889 replace the reference to SP and emit the insn. If none of those are
4890 true, handle each SET individually. */
4891 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4892 && (info.sp_equiv_reg == stack_pointer_rtx
4893 || !reg_set_p (info.sp_equiv_reg, insn)))
4894 add_insn (insn);
4895 else if (! reg_set_p (stack_pointer_rtx, insn)
4896 && (info.sp_equiv_reg == stack_pointer_rtx
4897 || !reg_set_p (info.sp_equiv_reg, insn)))
4898 {
4899 int changed;
4900
4901 changed = validate_replace_rtx (stack_pointer_rtx,
4902 plus_constant (info.sp_equiv_reg,
4903 info.sp_offset),
4904 insn);
4905 gcc_assert (changed);
4906
4907 add_insn (insn);
4908 }
4909 else if (GET_CODE (PATTERN (insn)) == SET)
4910 handle_epilogue_set (PATTERN (insn), &info);
4911 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4912 {
4913 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4914 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4915 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4916 }
4917 else
4918 add_insn (insn);
4919
4920 info.sp_equiv_reg = info.new_sp_equiv_reg;
4921 info.sp_offset = info.new_sp_offset;
4922
4923 /* Now update any constants this insn sets. */
4924 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4925 insn = next;
4926 }
4927
4928 insns = get_insns ();
4929 end_sequence ();
4930 return insns;
4931 }
4932
4933 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4934 structure that contains information about what we've seen so far. We
4935 process this SET by either updating that data or by emitting one or
4936 more insns. */
4937
4938 static void
4939 handle_epilogue_set (rtx set, struct epi_info *p)
4940 {
4941 /* First handle the case where we are setting SP. Record what it is being
4942 set from, which we must be able to determine */
4943 if (reg_set_p (stack_pointer_rtx, set))
4944 {
4945 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4946
4947 if (GET_CODE (SET_SRC (set)) == PLUS)
4948 {
4949 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4950 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4951 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4952 else
4953 {
4954 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4955 && (REGNO (XEXP (SET_SRC (set), 1))
4956 < FIRST_PSEUDO_REGISTER)
4957 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4958 p->new_sp_offset
4959 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4960 }
4961 }
4962 else
4963 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4964
4965 /* If we are adjusting SP, we adjust from the old data. */
4966 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4967 {
4968 p->new_sp_equiv_reg = p->sp_equiv_reg;
4969 p->new_sp_offset += p->sp_offset;
4970 }
4971
4972 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4973
4974 return;
4975 }
4976
4977 /* Next handle the case where we are setting SP's equivalent
4978 register. We must not already have a value to set it to. We
4979 could update, but there seems little point in handling that case.
4980 Note that we have to allow for the case where we are setting the
4981 register set in the previous part of a PARALLEL inside a single
4982 insn. But use the old offset for any updates within this insn.
4983 We must allow for the case where the register is being set in a
4984 different (usually wider) mode than Pmode). */
4985 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4986 {
4987 gcc_assert (!p->equiv_reg_src
4988 && REG_P (p->new_sp_equiv_reg)
4989 && REG_P (SET_DEST (set))
4990 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4991 <= BITS_PER_WORD)
4992 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4993 p->equiv_reg_src
4994 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4995 plus_constant (p->sp_equiv_reg,
4996 p->sp_offset));
4997 }
4998
4999 /* Otherwise, replace any references to SP in the insn to its new value
5000 and emit the insn. */
5001 else
5002 {
5003 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5004 plus_constant (p->sp_equiv_reg,
5005 p->sp_offset));
5006 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5007 plus_constant (p->sp_equiv_reg,
5008 p->sp_offset));
5009 emit_insn (set);
5010 }
5011 }
5012
5013 /* Update the tracking information for registers set to constants. */
5014
5015 static void
5016 update_epilogue_consts (rtx dest, rtx x, void *data)
5017 {
5018 struct epi_info *p = (struct epi_info *) data;
5019 rtx new;
5020
5021 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5022 return;
5023
5024 /* If we are either clobbering a register or doing a partial set,
5025 show we don't know the value. */
5026 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5027 p->const_equiv[REGNO (dest)] = 0;
5028
5029 /* If we are setting it to a constant, record that constant. */
5030 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5031 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5032
5033 /* If this is a binary operation between a register we have been tracking
5034 and a constant, see if we can compute a new constant value. */
5035 else if (ARITHMETIC_P (SET_SRC (x))
5036 && REG_P (XEXP (SET_SRC (x), 0))
5037 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5038 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5039 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5040 && 0 != (new = simplify_binary_operation
5041 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5042 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5043 XEXP (SET_SRC (x), 1)))
5044 && GET_CODE (new) == CONST_INT)
5045 p->const_equiv[REGNO (dest)] = new;
5046
5047 /* Otherwise, we can't do anything with this value. */
5048 else
5049 p->const_equiv[REGNO (dest)] = 0;
5050 }
5051
5052 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5053
5054 static void
5055 emit_equiv_load (struct epi_info *p)
5056 {
5057 if (p->equiv_reg_src != 0)
5058 {
5059 rtx dest = p->sp_equiv_reg;
5060
5061 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5062 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5063 REGNO (p->sp_equiv_reg));
5064
5065 emit_move_insn (dest, p->equiv_reg_src);
5066 p->equiv_reg_src = 0;
5067 }
5068 }
5069 #endif
5070
5071 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5072 this into place with notes indicating where the prologue ends and where
5073 the epilogue begins. Update the basic block information when possible. */
5074
5075 void
5076 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5077 {
5078 int inserted = 0;
5079 edge e;
5080 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5081 rtx seq;
5082 #endif
5083 #ifdef HAVE_prologue
5084 rtx prologue_end = NULL_RTX;
5085 #endif
5086 #if defined (HAVE_epilogue) || defined(HAVE_return)
5087 rtx epilogue_end = NULL_RTX;
5088 #endif
5089 edge_iterator ei;
5090
5091 #ifdef HAVE_prologue
5092 if (HAVE_prologue)
5093 {
5094 start_sequence ();
5095 seq = gen_prologue ();
5096 emit_insn (seq);
5097
5098 /* Retain a map of the prologue insns. */
5099 record_insns (seq, &prologue);
5100 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5101
5102 seq = get_insns ();
5103 end_sequence ();
5104 set_insn_locators (seq, prologue_locator);
5105
5106 /* Can't deal with multiple successors of the entry block
5107 at the moment. Function should always have at least one
5108 entry point. */
5109 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5110
5111 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5112 inserted = 1;
5113 }
5114 #endif
5115
5116 /* If the exit block has no non-fake predecessors, we don't need
5117 an epilogue. */
5118 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5119 if ((e->flags & EDGE_FAKE) == 0)
5120 break;
5121 if (e == NULL)
5122 goto epilogue_done;
5123
5124 #ifdef HAVE_return
5125 if (optimize && HAVE_return)
5126 {
5127 /* If we're allowed to generate a simple return instruction,
5128 then by definition we don't need a full epilogue. Examine
5129 the block that falls through to EXIT. If it does not
5130 contain any code, examine its predecessors and try to
5131 emit (conditional) return instructions. */
5132
5133 basic_block last;
5134 rtx label;
5135
5136 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5137 if (e->flags & EDGE_FALLTHRU)
5138 break;
5139 if (e == NULL)
5140 goto epilogue_done;
5141 last = e->src;
5142
5143 /* Verify that there are no active instructions in the last block. */
5144 label = BB_END (last);
5145 while (label && !LABEL_P (label))
5146 {
5147 if (active_insn_p (label))
5148 break;
5149 label = PREV_INSN (label);
5150 }
5151
5152 if (BB_HEAD (last) == label && LABEL_P (label))
5153 {
5154 edge_iterator ei2;
5155 rtx epilogue_line_note = NULL_RTX;
5156
5157 /* Locate the line number associated with the closing brace,
5158 if we can find one. */
5159 for (seq = get_last_insn ();
5160 seq && ! active_insn_p (seq);
5161 seq = PREV_INSN (seq))
5162 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5163 {
5164 epilogue_line_note = seq;
5165 break;
5166 }
5167
5168 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5169 {
5170 basic_block bb = e->src;
5171 rtx jump;
5172
5173 if (bb == ENTRY_BLOCK_PTR)
5174 {
5175 ei_next (&ei2);
5176 continue;
5177 }
5178
5179 jump = BB_END (bb);
5180 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5181 {
5182 ei_next (&ei2);
5183 continue;
5184 }
5185
5186 /* If we have an unconditional jump, we can replace that
5187 with a simple return instruction. */
5188 if (simplejump_p (jump))
5189 {
5190 emit_return_into_block (bb, epilogue_line_note);
5191 delete_insn (jump);
5192 }
5193
5194 /* If we have a conditional jump, we can try to replace
5195 that with a conditional return instruction. */
5196 else if (condjump_p (jump))
5197 {
5198 if (! redirect_jump (jump, 0, 0))
5199 {
5200 ei_next (&ei2);
5201 continue;
5202 }
5203
5204 /* If this block has only one successor, it both jumps
5205 and falls through to the fallthru block, so we can't
5206 delete the edge. */
5207 if (single_succ_p (bb))
5208 {
5209 ei_next (&ei2);
5210 continue;
5211 }
5212 }
5213 else
5214 {
5215 ei_next (&ei2);
5216 continue;
5217 }
5218
5219 /* Fix up the CFG for the successful change we just made. */
5220 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5221 }
5222
5223 /* Emit a return insn for the exit fallthru block. Whether
5224 this is still reachable will be determined later. */
5225
5226 emit_barrier_after (BB_END (last));
5227 emit_return_into_block (last, epilogue_line_note);
5228 epilogue_end = BB_END (last);
5229 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5230 goto epilogue_done;
5231 }
5232 }
5233 #endif
5234 /* Find the edge that falls through to EXIT. Other edges may exist
5235 due to RETURN instructions, but those don't need epilogues.
5236 There really shouldn't be a mixture -- either all should have
5237 been converted or none, however... */
5238
5239 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5240 if (e->flags & EDGE_FALLTHRU)
5241 break;
5242 if (e == NULL)
5243 goto epilogue_done;
5244
5245 #ifdef HAVE_epilogue
5246 if (HAVE_epilogue)
5247 {
5248 start_sequence ();
5249 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5250
5251 seq = gen_epilogue ();
5252
5253 #ifdef INCOMING_RETURN_ADDR_RTX
5254 /* If this function returns with the stack depressed and we can support
5255 it, massage the epilogue to actually do that. */
5256 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5257 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5258 seq = keep_stack_depressed (seq);
5259 #endif
5260
5261 emit_jump_insn (seq);
5262
5263 /* Retain a map of the epilogue insns. */
5264 record_insns (seq, &epilogue);
5265 set_insn_locators (seq, epilogue_locator);
5266
5267 seq = get_insns ();
5268 end_sequence ();
5269
5270 insert_insn_on_edge (seq, e);
5271 inserted = 1;
5272 }
5273 else
5274 #endif
5275 {
5276 basic_block cur_bb;
5277
5278 if (! next_active_insn (BB_END (e->src)))
5279 goto epilogue_done;
5280 /* We have a fall-through edge to the exit block, the source is not
5281 at the end of the function, and there will be an assembler epilogue
5282 at the end of the function.
5283 We can't use force_nonfallthru here, because that would try to
5284 use return. Inserting a jump 'by hand' is extremely messy, so
5285 we take advantage of cfg_layout_finalize using
5286 fixup_fallthru_exit_predecessor. */
5287 cfg_layout_initialize (0);
5288 FOR_EACH_BB (cur_bb)
5289 if (cur_bb->index >= NUM_FIXED_BLOCKS
5290 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5291 cur_bb->aux = cur_bb->next_bb;
5292 cfg_layout_finalize ();
5293 }
5294 epilogue_done:
5295
5296 if (inserted)
5297 commit_edge_insertions ();
5298
5299 #ifdef HAVE_sibcall_epilogue
5300 /* Emit sibling epilogues before any sibling call sites. */
5301 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5302 {
5303 basic_block bb = e->src;
5304 rtx insn = BB_END (bb);
5305
5306 if (!CALL_P (insn)
5307 || ! SIBLING_CALL_P (insn))
5308 {
5309 ei_next (&ei);
5310 continue;
5311 }
5312
5313 start_sequence ();
5314 emit_insn (gen_sibcall_epilogue ());
5315 seq = get_insns ();
5316 end_sequence ();
5317
5318 /* Retain a map of the epilogue insns. Used in life analysis to
5319 avoid getting rid of sibcall epilogue insns. Do this before we
5320 actually emit the sequence. */
5321 record_insns (seq, &sibcall_epilogue);
5322 set_insn_locators (seq, epilogue_locator);
5323
5324 emit_insn_before (seq, insn);
5325 ei_next (&ei);
5326 }
5327 #endif
5328
5329 #ifdef HAVE_prologue
5330 /* This is probably all useless now that we use locators. */
5331 if (prologue_end)
5332 {
5333 rtx insn, prev;
5334
5335 /* GDB handles `break f' by setting a breakpoint on the first
5336 line note after the prologue. Which means (1) that if
5337 there are line number notes before where we inserted the
5338 prologue we should move them, and (2) we should generate a
5339 note before the end of the first basic block, if there isn't
5340 one already there.
5341
5342 ??? This behavior is completely broken when dealing with
5343 multiple entry functions. We simply place the note always
5344 into first basic block and let alternate entry points
5345 to be missed.
5346 */
5347
5348 for (insn = prologue_end; insn; insn = prev)
5349 {
5350 prev = PREV_INSN (insn);
5351 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5352 {
5353 /* Note that we cannot reorder the first insn in the
5354 chain, since rest_of_compilation relies on that
5355 remaining constant. */
5356 if (prev == NULL)
5357 break;
5358 reorder_insns (insn, insn, prologue_end);
5359 }
5360 }
5361
5362 /* Find the last line number note in the first block. */
5363 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5364 insn != prologue_end && insn;
5365 insn = PREV_INSN (insn))
5366 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5367 break;
5368
5369 /* If we didn't find one, make a copy of the first line number
5370 we run across. */
5371 if (! insn)
5372 {
5373 for (insn = next_active_insn (prologue_end);
5374 insn;
5375 insn = PREV_INSN (insn))
5376 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5377 {
5378 emit_note_copy_after (insn, prologue_end);
5379 break;
5380 }
5381 }
5382 }
5383 #endif
5384 #ifdef HAVE_epilogue
5385 if (epilogue_end)
5386 {
5387 rtx insn, next;
5388
5389 /* Similarly, move any line notes that appear after the epilogue.
5390 There is no need, however, to be quite so anal about the existence
5391 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5392 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5393 info generation. */
5394 for (insn = epilogue_end; insn; insn = next)
5395 {
5396 next = NEXT_INSN (insn);
5397 if (NOTE_P (insn)
5398 && (NOTE_LINE_NUMBER (insn) > 0
5399 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5400 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5401 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5402 }
5403 }
5404 #endif
5405 }
5406
5407 /* Reposition the prologue-end and epilogue-begin notes after instruction
5408 scheduling and delayed branch scheduling. */
5409
5410 void
5411 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5412 {
5413 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5414 rtx insn, last, note;
5415 int len;
5416
5417 if ((len = VEC_length (int, prologue)) > 0)
5418 {
5419 last = 0, note = 0;
5420
5421 /* Scan from the beginning until we reach the last prologue insn.
5422 We apparently can't depend on basic_block_{head,end} after
5423 reorg has run. */
5424 for (insn = f; insn; insn = NEXT_INSN (insn))
5425 {
5426 if (NOTE_P (insn))
5427 {
5428 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5429 note = insn;
5430 }
5431 else if (contains (insn, &prologue))
5432 {
5433 last = insn;
5434 if (--len == 0)
5435 break;
5436 }
5437 }
5438
5439 if (last)
5440 {
5441 /* Find the prologue-end note if we haven't already, and
5442 move it to just after the last prologue insn. */
5443 if (note == 0)
5444 {
5445 for (note = last; (note = NEXT_INSN (note));)
5446 if (NOTE_P (note)
5447 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5448 break;
5449 }
5450
5451 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5452 if (LABEL_P (last))
5453 last = NEXT_INSN (last);
5454 reorder_insns (note, note, last);
5455 }
5456 }
5457
5458 if ((len = VEC_length (int, epilogue)) > 0)
5459 {
5460 last = 0, note = 0;
5461
5462 /* Scan from the end until we reach the first epilogue insn.
5463 We apparently can't depend on basic_block_{head,end} after
5464 reorg has run. */
5465 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5466 {
5467 if (NOTE_P (insn))
5468 {
5469 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5470 note = insn;
5471 }
5472 else if (contains (insn, &epilogue))
5473 {
5474 last = insn;
5475 if (--len == 0)
5476 break;
5477 }
5478 }
5479
5480 if (last)
5481 {
5482 /* Find the epilogue-begin note if we haven't already, and
5483 move it to just before the first epilogue insn. */
5484 if (note == 0)
5485 {
5486 for (note = insn; (note = PREV_INSN (note));)
5487 if (NOTE_P (note)
5488 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5489 break;
5490 }
5491
5492 if (PREV_INSN (last) != note)
5493 reorder_insns (note, note, PREV_INSN (last));
5494 }
5495 }
5496 #endif /* HAVE_prologue or HAVE_epilogue */
5497 }
5498
5499 /* Resets insn_block_boundaries array. */
5500
5501 void
5502 reset_block_changes (void)
5503 {
5504 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5505 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5506 }
5507
5508 /* Record the boundary for BLOCK. */
5509 void
5510 record_block_change (tree block)
5511 {
5512 int i, n;
5513 tree last_block;
5514
5515 if (!block)
5516 return;
5517
5518 if(!cfun->ib_boundaries_block)
5519 return;
5520
5521 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5522 VARRAY_POP (cfun->ib_boundaries_block);
5523 n = get_max_uid ();
5524 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5525 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5526
5527 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5528 }
5529
5530 /* Finishes record of boundaries. */
5531 void finalize_block_changes (void)
5532 {
5533 record_block_change (DECL_INITIAL (current_function_decl));
5534 }
5535
5536 /* For INSN return the BLOCK it belongs to. */
5537 void
5538 check_block_change (rtx insn, tree *block)
5539 {
5540 unsigned uid = INSN_UID (insn);
5541
5542 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5543 return;
5544
5545 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5546 }
5547
5548 /* Releases the ib_boundaries_block records. */
5549 void
5550 free_block_changes (void)
5551 {
5552 cfun->ib_boundaries_block = NULL;
5553 }
5554
5555 /* Returns the name of the current function. */
5556 const char *
5557 current_function_name (void)
5558 {
5559 return lang_hooks.decl_printable_name (cfun->decl, 2);
5560 }
5561 \f
5562
5563 static void
5564 rest_of_handle_check_leaf_regs (void)
5565 {
5566 #ifdef LEAF_REGISTERS
5567 current_function_uses_only_leaf_regs
5568 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5569 #endif
5570 }
5571
5572 struct tree_opt_pass pass_leaf_regs =
5573 {
5574 NULL, /* name */
5575 NULL, /* gate */
5576 rest_of_handle_check_leaf_regs, /* execute */
5577 NULL, /* sub */
5578 NULL, /* next */
5579 0, /* static_pass_number */
5580 0, /* tv_id */
5581 0, /* properties_required */
5582 0, /* properties_provided */
5583 0, /* properties_destroyed */
5584 0, /* todo_flags_start */
5585 0, /* todo_flags_finish */
5586 0 /* letter */
5587 };
5588
5589
5590 #include "gt-function.h"