pa.md (integer_indexed_store splitters): Use mem_shadd_operand.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "hash-set.h"
40 #include "machmode.h"
41 #include "vec.h"
42 #include "double-int.h"
43 #include "input.h"
44 #include "alias.h"
45 #include "symtab.h"
46 #include "wide-int.h"
47 #include "inchash.h"
48 #include "tree.h"
49 #include "fold-const.h"
50 #include "stor-layout.h"
51 #include "varasm.h"
52 #include "stringpool.h"
53 #include "flags.h"
54 #include "except.h"
55 #include "hashtab.h"
56 #include "hard-reg-set.h"
57 #include "function.h"
58 #include "rtl.h"
59 #include "statistics.h"
60 #include "real.h"
61 #include "fixed-value.h"
62 #include "insn-config.h"
63 #include "expmed.h"
64 #include "dojump.h"
65 #include "explow.h"
66 #include "calls.h"
67 #include "emit-rtl.h"
68 #include "stmt.h"
69 #include "expr.h"
70 #include "insn-codes.h"
71 #include "optabs.h"
72 #include "libfuncs.h"
73 #include "regs.h"
74 #include "recog.h"
75 #include "output.h"
76 #include "tm_p.h"
77 #include "langhooks.h"
78 #include "target.h"
79 #include "common/common-target.h"
80 #include "gimple-expr.h"
81 #include "gimplify.h"
82 #include "tree-pass.h"
83 #include "predict.h"
84 #include "dominance.h"
85 #include "cfg.h"
86 #include "cfgrtl.h"
87 #include "cfganal.h"
88 #include "cfgbuild.h"
89 #include "cfgcleanup.h"
90 #include "basic-block.h"
91 #include "df.h"
92 #include "params.h"
93 #include "bb-reorder.h"
94 #include "shrink-wrap.h"
95 #include "toplev.h"
96 #include "rtl-iter.h"
97 #include "tree-chkp.h"
98 #include "rtl-chkp.h"
99
100 /* So we can assign to cfun in this file. */
101 #undef cfun
102
103 #ifndef STACK_ALIGNMENT_NEEDED
104 #define STACK_ALIGNMENT_NEEDED 1
105 #endif
106
107 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
108
109 /* Round a value to the lowest integer less than it that is a multiple of
110 the required alignment. Avoid using division in case the value is
111 negative. Assume the alignment is a power of two. */
112 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
113
114 /* Similar, but round to the next highest integer that meets the
115 alignment. */
116 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
117
118 /* Nonzero once virtual register instantiation has been done.
119 assign_stack_local uses frame_pointer_rtx when this is nonzero.
120 calls.c:emit_library_call_value_1 uses it to set up
121 post-instantiation libcalls. */
122 int virtuals_instantiated;
123
124 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
125 static GTY(()) int funcdef_no;
126
127 /* These variables hold pointers to functions to create and destroy
128 target specific, per-function data structures. */
129 struct machine_function * (*init_machine_status) (void);
130
131 /* The currently compiled function. */
132 struct function *cfun = 0;
133
134 /* These hashes record the prologue and epilogue insns. */
135
136 struct insn_cache_hasher : ggc_cache_hasher<rtx>
137 {
138 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
139 static bool equal (rtx a, rtx b) { return a == b; }
140 };
141
142 static GTY((cache))
143 hash_table<insn_cache_hasher> *prologue_insn_hash;
144 static GTY((cache))
145 hash_table<insn_cache_hasher> *epilogue_insn_hash;
146 \f
147
148 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
149 vec<tree, va_gc> *types_used_by_cur_var_decl;
150
151 /* Forward declarations. */
152
153 static struct temp_slot *find_temp_slot_from_address (rtx);
154 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
155 static void pad_below (struct args_size *, machine_mode, tree);
156 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
157 static int all_blocks (tree, tree *);
158 static tree *get_block_vector (tree, int *);
159 extern tree debug_find_var_in_block_tree (tree, tree);
160 /* We always define `record_insns' even if it's not used so that we
161 can always export `prologue_epilogue_contains'. */
162 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
163 ATTRIBUTE_UNUSED;
164 static bool contains (const_rtx, hash_table<insn_cache_hasher> *);
165 static void prepare_function_start (void);
166 static void do_clobber_return_reg (rtx, void *);
167 static void do_use_return_reg (rtx, void *);
168 \f
169 /* Stack of nested functions. */
170 /* Keep track of the cfun stack. */
171
172 typedef struct function *function_p;
173
174 static vec<function_p> function_context_stack;
175
176 /* Save the current context for compilation of a nested function.
177 This is called from language-specific code. */
178
179 void
180 push_function_context (void)
181 {
182 if (cfun == 0)
183 allocate_struct_function (NULL, false);
184
185 function_context_stack.safe_push (cfun);
186 set_cfun (NULL);
187 }
188
189 /* Restore the last saved context, at the end of a nested function.
190 This function is called from language-specific code. */
191
192 void
193 pop_function_context (void)
194 {
195 struct function *p = function_context_stack.pop ();
196 set_cfun (p);
197 current_function_decl = p->decl;
198
199 /* Reset variables that have known state during rtx generation. */
200 virtuals_instantiated = 0;
201 generating_concat_p = 1;
202 }
203
204 /* Clear out all parts of the state in F that can safely be discarded
205 after the function has been parsed, but not compiled, to let
206 garbage collection reclaim the memory. */
207
208 void
209 free_after_parsing (struct function *f)
210 {
211 f->language = 0;
212 }
213
214 /* Clear out all parts of the state in F that can safely be discarded
215 after the function has been compiled, to let garbage collection
216 reclaim the memory. */
217
218 void
219 free_after_compilation (struct function *f)
220 {
221 prologue_insn_hash = NULL;
222 epilogue_insn_hash = NULL;
223
224 free (crtl->emit.regno_pointer_align);
225
226 memset (crtl, 0, sizeof (struct rtl_data));
227 f->eh = NULL;
228 f->machine = NULL;
229 f->cfg = NULL;
230
231 regno_reg_rtx = NULL;
232 }
233 \f
234 /* Return size needed for stack frame based on slots so far allocated.
235 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
236 the caller may have to do that. */
237
238 HOST_WIDE_INT
239 get_frame_size (void)
240 {
241 if (FRAME_GROWS_DOWNWARD)
242 return -frame_offset;
243 else
244 return frame_offset;
245 }
246
247 /* Issue an error message and return TRUE if frame OFFSET overflows in
248 the signed target pointer arithmetics for function FUNC. Otherwise
249 return FALSE. */
250
251 bool
252 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
253 {
254 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
255
256 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
257 /* Leave room for the fixed part of the frame. */
258 - 64 * UNITS_PER_WORD)
259 {
260 error_at (DECL_SOURCE_LOCATION (func),
261 "total size of local objects too large");
262 return TRUE;
263 }
264
265 return FALSE;
266 }
267
268 /* Return stack slot alignment in bits for TYPE and MODE. */
269
270 static unsigned int
271 get_stack_local_alignment (tree type, machine_mode mode)
272 {
273 unsigned int alignment;
274
275 if (mode == BLKmode)
276 alignment = BIGGEST_ALIGNMENT;
277 else
278 alignment = GET_MODE_ALIGNMENT (mode);
279
280 /* Allow the frond-end to (possibly) increase the alignment of this
281 stack slot. */
282 if (! type)
283 type = lang_hooks.types.type_for_mode (mode, 0);
284
285 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
286 }
287
288 /* Determine whether it is possible to fit a stack slot of size SIZE and
289 alignment ALIGNMENT into an area in the stack frame that starts at
290 frame offset START and has a length of LENGTH. If so, store the frame
291 offset to be used for the stack slot in *POFFSET and return true;
292 return false otherwise. This function will extend the frame size when
293 given a start/length pair that lies at the end of the frame. */
294
295 static bool
296 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
297 HOST_WIDE_INT size, unsigned int alignment,
298 HOST_WIDE_INT *poffset)
299 {
300 HOST_WIDE_INT this_frame_offset;
301 int frame_off, frame_alignment, frame_phase;
302
303 /* Calculate how many bytes the start of local variables is off from
304 stack alignment. */
305 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
306 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
307 frame_phase = frame_off ? frame_alignment - frame_off : 0;
308
309 /* Round the frame offset to the specified alignment. */
310
311 /* We must be careful here, since FRAME_OFFSET might be negative and
312 division with a negative dividend isn't as well defined as we might
313 like. So we instead assume that ALIGNMENT is a power of two and
314 use logical operations which are unambiguous. */
315 if (FRAME_GROWS_DOWNWARD)
316 this_frame_offset
317 = (FLOOR_ROUND (start + length - size - frame_phase,
318 (unsigned HOST_WIDE_INT) alignment)
319 + frame_phase);
320 else
321 this_frame_offset
322 = (CEIL_ROUND (start - frame_phase,
323 (unsigned HOST_WIDE_INT) alignment)
324 + frame_phase);
325
326 /* See if it fits. If this space is at the edge of the frame,
327 consider extending the frame to make it fit. Our caller relies on
328 this when allocating a new slot. */
329 if (frame_offset == start && this_frame_offset < frame_offset)
330 frame_offset = this_frame_offset;
331 else if (this_frame_offset < start)
332 return false;
333 else if (start + length == frame_offset
334 && this_frame_offset + size > start + length)
335 frame_offset = this_frame_offset + size;
336 else if (this_frame_offset + size > start + length)
337 return false;
338
339 *poffset = this_frame_offset;
340 return true;
341 }
342
343 /* Create a new frame_space structure describing free space in the stack
344 frame beginning at START and ending at END, and chain it into the
345 function's frame_space_list. */
346
347 static void
348 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
349 {
350 struct frame_space *space = ggc_alloc<frame_space> ();
351 space->next = crtl->frame_space_list;
352 crtl->frame_space_list = space;
353 space->start = start;
354 space->length = end - start;
355 }
356
357 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
358 with machine mode MODE.
359
360 ALIGN controls the amount of alignment for the address of the slot:
361 0 means according to MODE,
362 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
363 -2 means use BITS_PER_UNIT,
364 positive specifies alignment boundary in bits.
365
366 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
367 alignment and ASLK_RECORD_PAD bit set if we should remember
368 extra space we allocated for alignment purposes. When we are
369 called from assign_stack_temp_for_type, it is not set so we don't
370 track the same stack slot in two independent lists.
371
372 We do not round to stack_boundary here. */
373
374 rtx
375 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
376 int align, int kind)
377 {
378 rtx x, addr;
379 int bigend_correction = 0;
380 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
381 unsigned int alignment, alignment_in_bits;
382
383 if (align == 0)
384 {
385 alignment = get_stack_local_alignment (NULL, mode);
386 alignment /= BITS_PER_UNIT;
387 }
388 else if (align == -1)
389 {
390 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
391 size = CEIL_ROUND (size, alignment);
392 }
393 else if (align == -2)
394 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
395 else
396 alignment = align / BITS_PER_UNIT;
397
398 alignment_in_bits = alignment * BITS_PER_UNIT;
399
400 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
401 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
402 {
403 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
404 alignment = alignment_in_bits / BITS_PER_UNIT;
405 }
406
407 if (SUPPORTS_STACK_ALIGNMENT)
408 {
409 if (crtl->stack_alignment_estimated < alignment_in_bits)
410 {
411 if (!crtl->stack_realign_processed)
412 crtl->stack_alignment_estimated = alignment_in_bits;
413 else
414 {
415 /* If stack is realigned and stack alignment value
416 hasn't been finalized, it is OK not to increase
417 stack_alignment_estimated. The bigger alignment
418 requirement is recorded in stack_alignment_needed
419 below. */
420 gcc_assert (!crtl->stack_realign_finalized);
421 if (!crtl->stack_realign_needed)
422 {
423 /* It is OK to reduce the alignment as long as the
424 requested size is 0 or the estimated stack
425 alignment >= mode alignment. */
426 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
427 || size == 0
428 || (crtl->stack_alignment_estimated
429 >= GET_MODE_ALIGNMENT (mode)));
430 alignment_in_bits = crtl->stack_alignment_estimated;
431 alignment = alignment_in_bits / BITS_PER_UNIT;
432 }
433 }
434 }
435 }
436
437 if (crtl->stack_alignment_needed < alignment_in_bits)
438 crtl->stack_alignment_needed = alignment_in_bits;
439 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
440 crtl->max_used_stack_slot_alignment = alignment_in_bits;
441
442 if (mode != BLKmode || size != 0)
443 {
444 if (kind & ASLK_RECORD_PAD)
445 {
446 struct frame_space **psp;
447
448 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
449 {
450 struct frame_space *space = *psp;
451 if (!try_fit_stack_local (space->start, space->length, size,
452 alignment, &slot_offset))
453 continue;
454 *psp = space->next;
455 if (slot_offset > space->start)
456 add_frame_space (space->start, slot_offset);
457 if (slot_offset + size < space->start + space->length)
458 add_frame_space (slot_offset + size,
459 space->start + space->length);
460 goto found_space;
461 }
462 }
463 }
464 else if (!STACK_ALIGNMENT_NEEDED)
465 {
466 slot_offset = frame_offset;
467 goto found_space;
468 }
469
470 old_frame_offset = frame_offset;
471
472 if (FRAME_GROWS_DOWNWARD)
473 {
474 frame_offset -= size;
475 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
476
477 if (kind & ASLK_RECORD_PAD)
478 {
479 if (slot_offset > frame_offset)
480 add_frame_space (frame_offset, slot_offset);
481 if (slot_offset + size < old_frame_offset)
482 add_frame_space (slot_offset + size, old_frame_offset);
483 }
484 }
485 else
486 {
487 frame_offset += size;
488 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
489
490 if (kind & ASLK_RECORD_PAD)
491 {
492 if (slot_offset > old_frame_offset)
493 add_frame_space (old_frame_offset, slot_offset);
494 if (slot_offset + size < frame_offset)
495 add_frame_space (slot_offset + size, frame_offset);
496 }
497 }
498
499 found_space:
500 /* On a big-endian machine, if we are allocating more space than we will use,
501 use the least significant bytes of those that are allocated. */
502 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
503 bigend_correction = size - GET_MODE_SIZE (mode);
504
505 /* If we have already instantiated virtual registers, return the actual
506 address relative to the frame pointer. */
507 if (virtuals_instantiated)
508 addr = plus_constant (Pmode, frame_pointer_rtx,
509 trunc_int_for_mode
510 (slot_offset + bigend_correction
511 + STARTING_FRAME_OFFSET, Pmode));
512 else
513 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
514 trunc_int_for_mode
515 (slot_offset + bigend_correction,
516 Pmode));
517
518 x = gen_rtx_MEM (mode, addr);
519 set_mem_align (x, alignment_in_bits);
520 MEM_NOTRAP_P (x) = 1;
521
522 stack_slot_list
523 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
524
525 if (frame_offset_overflow (frame_offset, current_function_decl))
526 frame_offset = 0;
527
528 return x;
529 }
530
531 /* Wrap up assign_stack_local_1 with last parameter as false. */
532
533 rtx
534 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
535 {
536 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
537 }
538 \f
539 /* In order to evaluate some expressions, such as function calls returning
540 structures in memory, we need to temporarily allocate stack locations.
541 We record each allocated temporary in the following structure.
542
543 Associated with each temporary slot is a nesting level. When we pop up
544 one level, all temporaries associated with the previous level are freed.
545 Normally, all temporaries are freed after the execution of the statement
546 in which they were created. However, if we are inside a ({...}) grouping,
547 the result may be in a temporary and hence must be preserved. If the
548 result could be in a temporary, we preserve it if we can determine which
549 one it is in. If we cannot determine which temporary may contain the
550 result, all temporaries are preserved. A temporary is preserved by
551 pretending it was allocated at the previous nesting level. */
552
553 struct GTY(()) temp_slot {
554 /* Points to next temporary slot. */
555 struct temp_slot *next;
556 /* Points to previous temporary slot. */
557 struct temp_slot *prev;
558 /* The rtx to used to reference the slot. */
559 rtx slot;
560 /* The size, in units, of the slot. */
561 HOST_WIDE_INT size;
562 /* The type of the object in the slot, or zero if it doesn't correspond
563 to a type. We use this to determine whether a slot can be reused.
564 It can be reused if objects of the type of the new slot will always
565 conflict with objects of the type of the old slot. */
566 tree type;
567 /* The alignment (in bits) of the slot. */
568 unsigned int align;
569 /* Nonzero if this temporary is currently in use. */
570 char in_use;
571 /* Nesting level at which this slot is being used. */
572 int level;
573 /* The offset of the slot from the frame_pointer, including extra space
574 for alignment. This info is for combine_temp_slots. */
575 HOST_WIDE_INT base_offset;
576 /* The size of the slot, including extra space for alignment. This
577 info is for combine_temp_slots. */
578 HOST_WIDE_INT full_size;
579 };
580
581 /* Entry for the below hash table. */
582 struct GTY((for_user)) temp_slot_address_entry {
583 hashval_t hash;
584 rtx address;
585 struct temp_slot *temp_slot;
586 };
587
588 struct temp_address_hasher : ggc_hasher<temp_slot_address_entry *>
589 {
590 static hashval_t hash (temp_slot_address_entry *);
591 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
592 };
593
594 /* A table of addresses that represent a stack slot. The table is a mapping
595 from address RTXen to a temp slot. */
596 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
597 static size_t n_temp_slots_in_use;
598
599 /* Removes temporary slot TEMP from LIST. */
600
601 static void
602 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
603 {
604 if (temp->next)
605 temp->next->prev = temp->prev;
606 if (temp->prev)
607 temp->prev->next = temp->next;
608 else
609 *list = temp->next;
610
611 temp->prev = temp->next = NULL;
612 }
613
614 /* Inserts temporary slot TEMP to LIST. */
615
616 static void
617 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
618 {
619 temp->next = *list;
620 if (*list)
621 (*list)->prev = temp;
622 temp->prev = NULL;
623 *list = temp;
624 }
625
626 /* Returns the list of used temp slots at LEVEL. */
627
628 static struct temp_slot **
629 temp_slots_at_level (int level)
630 {
631 if (level >= (int) vec_safe_length (used_temp_slots))
632 vec_safe_grow_cleared (used_temp_slots, level + 1);
633
634 return &(*used_temp_slots)[level];
635 }
636
637 /* Returns the maximal temporary slot level. */
638
639 static int
640 max_slot_level (void)
641 {
642 if (!used_temp_slots)
643 return -1;
644
645 return used_temp_slots->length () - 1;
646 }
647
648 /* Moves temporary slot TEMP to LEVEL. */
649
650 static void
651 move_slot_to_level (struct temp_slot *temp, int level)
652 {
653 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
654 insert_slot_to_list (temp, temp_slots_at_level (level));
655 temp->level = level;
656 }
657
658 /* Make temporary slot TEMP available. */
659
660 static void
661 make_slot_available (struct temp_slot *temp)
662 {
663 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
664 insert_slot_to_list (temp, &avail_temp_slots);
665 temp->in_use = 0;
666 temp->level = -1;
667 n_temp_slots_in_use--;
668 }
669
670 /* Compute the hash value for an address -> temp slot mapping.
671 The value is cached on the mapping entry. */
672 static hashval_t
673 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
674 {
675 int do_not_record = 0;
676 return hash_rtx (t->address, GET_MODE (t->address),
677 &do_not_record, NULL, false);
678 }
679
680 /* Return the hash value for an address -> temp slot mapping. */
681 hashval_t
682 temp_address_hasher::hash (temp_slot_address_entry *t)
683 {
684 return t->hash;
685 }
686
687 /* Compare two address -> temp slot mapping entries. */
688 bool
689 temp_address_hasher::equal (temp_slot_address_entry *t1,
690 temp_slot_address_entry *t2)
691 {
692 return exp_equiv_p (t1->address, t2->address, 0, true);
693 }
694
695 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
696 static void
697 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
698 {
699 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
700 t->address = address;
701 t->temp_slot = temp_slot;
702 t->hash = temp_slot_address_compute_hash (t);
703 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
704 }
705
706 /* Remove an address -> temp slot mapping entry if the temp slot is
707 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
708 int
709 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
710 {
711 const struct temp_slot_address_entry *t = *slot;
712 if (! t->temp_slot->in_use)
713 temp_slot_address_table->clear_slot (slot);
714 return 1;
715 }
716
717 /* Remove all mappings of addresses to unused temp slots. */
718 static void
719 remove_unused_temp_slot_addresses (void)
720 {
721 /* Use quicker clearing if there aren't any active temp slots. */
722 if (n_temp_slots_in_use)
723 temp_slot_address_table->traverse
724 <void *, remove_unused_temp_slot_addresses_1> (NULL);
725 else
726 temp_slot_address_table->empty ();
727 }
728
729 /* Find the temp slot corresponding to the object at address X. */
730
731 static struct temp_slot *
732 find_temp_slot_from_address (rtx x)
733 {
734 struct temp_slot *p;
735 struct temp_slot_address_entry tmp, *t;
736
737 /* First try the easy way:
738 See if X exists in the address -> temp slot mapping. */
739 tmp.address = x;
740 tmp.temp_slot = NULL;
741 tmp.hash = temp_slot_address_compute_hash (&tmp);
742 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
743 if (t)
744 return t->temp_slot;
745
746 /* If we have a sum involving a register, see if it points to a temp
747 slot. */
748 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
749 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
750 return p;
751 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
752 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
753 return p;
754
755 /* Last resort: Address is a virtual stack var address. */
756 if (GET_CODE (x) == PLUS
757 && XEXP (x, 0) == virtual_stack_vars_rtx
758 && CONST_INT_P (XEXP (x, 1)))
759 {
760 int i;
761 for (i = max_slot_level (); i >= 0; i--)
762 for (p = *temp_slots_at_level (i); p; p = p->next)
763 {
764 if (INTVAL (XEXP (x, 1)) >= p->base_offset
765 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
766 return p;
767 }
768 }
769
770 return NULL;
771 }
772 \f
773 /* Allocate a temporary stack slot and record it for possible later
774 reuse.
775
776 MODE is the machine mode to be given to the returned rtx.
777
778 SIZE is the size in units of the space required. We do no rounding here
779 since assign_stack_local will do any required rounding.
780
781 TYPE is the type that will be used for the stack slot. */
782
783 rtx
784 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
785 tree type)
786 {
787 unsigned int align;
788 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
789 rtx slot;
790
791 /* If SIZE is -1 it means that somebody tried to allocate a temporary
792 of a variable size. */
793 gcc_assert (size != -1);
794
795 align = get_stack_local_alignment (type, mode);
796
797 /* Try to find an available, already-allocated temporary of the proper
798 mode which meets the size and alignment requirements. Choose the
799 smallest one with the closest alignment.
800
801 If assign_stack_temp is called outside of the tree->rtl expansion,
802 we cannot reuse the stack slots (that may still refer to
803 VIRTUAL_STACK_VARS_REGNUM). */
804 if (!virtuals_instantiated)
805 {
806 for (p = avail_temp_slots; p; p = p->next)
807 {
808 if (p->align >= align && p->size >= size
809 && GET_MODE (p->slot) == mode
810 && objects_must_conflict_p (p->type, type)
811 && (best_p == 0 || best_p->size > p->size
812 || (best_p->size == p->size && best_p->align > p->align)))
813 {
814 if (p->align == align && p->size == size)
815 {
816 selected = p;
817 cut_slot_from_list (selected, &avail_temp_slots);
818 best_p = 0;
819 break;
820 }
821 best_p = p;
822 }
823 }
824 }
825
826 /* Make our best, if any, the one to use. */
827 if (best_p)
828 {
829 selected = best_p;
830 cut_slot_from_list (selected, &avail_temp_slots);
831
832 /* If there are enough aligned bytes left over, make them into a new
833 temp_slot so that the extra bytes don't get wasted. Do this only
834 for BLKmode slots, so that we can be sure of the alignment. */
835 if (GET_MODE (best_p->slot) == BLKmode)
836 {
837 int alignment = best_p->align / BITS_PER_UNIT;
838 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
839
840 if (best_p->size - rounded_size >= alignment)
841 {
842 p = ggc_alloc<temp_slot> ();
843 p->in_use = 0;
844 p->size = best_p->size - rounded_size;
845 p->base_offset = best_p->base_offset + rounded_size;
846 p->full_size = best_p->full_size - rounded_size;
847 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
848 p->align = best_p->align;
849 p->type = best_p->type;
850 insert_slot_to_list (p, &avail_temp_slots);
851
852 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
853 stack_slot_list);
854
855 best_p->size = rounded_size;
856 best_p->full_size = rounded_size;
857 }
858 }
859 }
860
861 /* If we still didn't find one, make a new temporary. */
862 if (selected == 0)
863 {
864 HOST_WIDE_INT frame_offset_old = frame_offset;
865
866 p = ggc_alloc<temp_slot> ();
867
868 /* We are passing an explicit alignment request to assign_stack_local.
869 One side effect of that is assign_stack_local will not round SIZE
870 to ensure the frame offset remains suitably aligned.
871
872 So for requests which depended on the rounding of SIZE, we go ahead
873 and round it now. We also make sure ALIGNMENT is at least
874 BIGGEST_ALIGNMENT. */
875 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
876 p->slot = assign_stack_local_1 (mode,
877 (mode == BLKmode
878 ? CEIL_ROUND (size,
879 (int) align
880 / BITS_PER_UNIT)
881 : size),
882 align, 0);
883
884 p->align = align;
885
886 /* The following slot size computation is necessary because we don't
887 know the actual size of the temporary slot until assign_stack_local
888 has performed all the frame alignment and size rounding for the
889 requested temporary. Note that extra space added for alignment
890 can be either above or below this stack slot depending on which
891 way the frame grows. We include the extra space if and only if it
892 is above this slot. */
893 if (FRAME_GROWS_DOWNWARD)
894 p->size = frame_offset_old - frame_offset;
895 else
896 p->size = size;
897
898 /* Now define the fields used by combine_temp_slots. */
899 if (FRAME_GROWS_DOWNWARD)
900 {
901 p->base_offset = frame_offset;
902 p->full_size = frame_offset_old - frame_offset;
903 }
904 else
905 {
906 p->base_offset = frame_offset_old;
907 p->full_size = frame_offset - frame_offset_old;
908 }
909
910 selected = p;
911 }
912
913 p = selected;
914 p->in_use = 1;
915 p->type = type;
916 p->level = temp_slot_level;
917 n_temp_slots_in_use++;
918
919 pp = temp_slots_at_level (p->level);
920 insert_slot_to_list (p, pp);
921 insert_temp_slot_address (XEXP (p->slot, 0), p);
922
923 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
924 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
925 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
926
927 /* If we know the alias set for the memory that will be used, use
928 it. If there's no TYPE, then we don't know anything about the
929 alias set for the memory. */
930 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
931 set_mem_align (slot, align);
932
933 /* If a type is specified, set the relevant flags. */
934 if (type != 0)
935 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
936 MEM_NOTRAP_P (slot) = 1;
937
938 return slot;
939 }
940
941 /* Allocate a temporary stack slot and record it for possible later
942 reuse. First two arguments are same as in preceding function. */
943
944 rtx
945 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
946 {
947 return assign_stack_temp_for_type (mode, size, NULL_TREE);
948 }
949 \f
950 /* Assign a temporary.
951 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
952 and so that should be used in error messages. In either case, we
953 allocate of the given type.
954 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
955 it is 0 if a register is OK.
956 DONT_PROMOTE is 1 if we should not promote values in register
957 to wider modes. */
958
959 rtx
960 assign_temp (tree type_or_decl, int memory_required,
961 int dont_promote ATTRIBUTE_UNUSED)
962 {
963 tree type, decl;
964 machine_mode mode;
965 #ifdef PROMOTE_MODE
966 int unsignedp;
967 #endif
968
969 if (DECL_P (type_or_decl))
970 decl = type_or_decl, type = TREE_TYPE (decl);
971 else
972 decl = NULL, type = type_or_decl;
973
974 mode = TYPE_MODE (type);
975 #ifdef PROMOTE_MODE
976 unsignedp = TYPE_UNSIGNED (type);
977 #endif
978
979 if (mode == BLKmode || memory_required)
980 {
981 HOST_WIDE_INT size = int_size_in_bytes (type);
982 rtx tmp;
983
984 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
985 problems with allocating the stack space. */
986 if (size == 0)
987 size = 1;
988
989 /* Unfortunately, we don't yet know how to allocate variable-sized
990 temporaries. However, sometimes we can find a fixed upper limit on
991 the size, so try that instead. */
992 else if (size == -1)
993 size = max_int_size_in_bytes (type);
994
995 /* The size of the temporary may be too large to fit into an integer. */
996 /* ??? Not sure this should happen except for user silliness, so limit
997 this to things that aren't compiler-generated temporaries. The
998 rest of the time we'll die in assign_stack_temp_for_type. */
999 if (decl && size == -1
1000 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1001 {
1002 error ("size of variable %q+D is too large", decl);
1003 size = 1;
1004 }
1005
1006 tmp = assign_stack_temp_for_type (mode, size, type);
1007 return tmp;
1008 }
1009
1010 #ifdef PROMOTE_MODE
1011 if (! dont_promote)
1012 mode = promote_mode (type, mode, &unsignedp);
1013 #endif
1014
1015 return gen_reg_rtx (mode);
1016 }
1017 \f
1018 /* Combine temporary stack slots which are adjacent on the stack.
1019
1020 This allows for better use of already allocated stack space. This is only
1021 done for BLKmode slots because we can be sure that we won't have alignment
1022 problems in this case. */
1023
1024 static void
1025 combine_temp_slots (void)
1026 {
1027 struct temp_slot *p, *q, *next, *next_q;
1028 int num_slots;
1029
1030 /* We can't combine slots, because the information about which slot
1031 is in which alias set will be lost. */
1032 if (flag_strict_aliasing)
1033 return;
1034
1035 /* If there are a lot of temp slots, don't do anything unless
1036 high levels of optimization. */
1037 if (! flag_expensive_optimizations)
1038 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1039 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1040 return;
1041
1042 for (p = avail_temp_slots; p; p = next)
1043 {
1044 int delete_p = 0;
1045
1046 next = p->next;
1047
1048 if (GET_MODE (p->slot) != BLKmode)
1049 continue;
1050
1051 for (q = p->next; q; q = next_q)
1052 {
1053 int delete_q = 0;
1054
1055 next_q = q->next;
1056
1057 if (GET_MODE (q->slot) != BLKmode)
1058 continue;
1059
1060 if (p->base_offset + p->full_size == q->base_offset)
1061 {
1062 /* Q comes after P; combine Q into P. */
1063 p->size += q->size;
1064 p->full_size += q->full_size;
1065 delete_q = 1;
1066 }
1067 else if (q->base_offset + q->full_size == p->base_offset)
1068 {
1069 /* P comes after Q; combine P into Q. */
1070 q->size += p->size;
1071 q->full_size += p->full_size;
1072 delete_p = 1;
1073 break;
1074 }
1075 if (delete_q)
1076 cut_slot_from_list (q, &avail_temp_slots);
1077 }
1078
1079 /* Either delete P or advance past it. */
1080 if (delete_p)
1081 cut_slot_from_list (p, &avail_temp_slots);
1082 }
1083 }
1084 \f
1085 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1086 slot that previously was known by OLD_RTX. */
1087
1088 void
1089 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1090 {
1091 struct temp_slot *p;
1092
1093 if (rtx_equal_p (old_rtx, new_rtx))
1094 return;
1095
1096 p = find_temp_slot_from_address (old_rtx);
1097
1098 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1099 NEW_RTX is a register, see if one operand of the PLUS is a
1100 temporary location. If so, NEW_RTX points into it. Otherwise,
1101 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1102 in common between them. If so, try a recursive call on those
1103 values. */
1104 if (p == 0)
1105 {
1106 if (GET_CODE (old_rtx) != PLUS)
1107 return;
1108
1109 if (REG_P (new_rtx))
1110 {
1111 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1112 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1113 return;
1114 }
1115 else if (GET_CODE (new_rtx) != PLUS)
1116 return;
1117
1118 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1119 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1120 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1121 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1122 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1123 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1124 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1125 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1126
1127 return;
1128 }
1129
1130 /* Otherwise add an alias for the temp's address. */
1131 insert_temp_slot_address (new_rtx, p);
1132 }
1133
1134 /* If X could be a reference to a temporary slot, mark that slot as
1135 belonging to the to one level higher than the current level. If X
1136 matched one of our slots, just mark that one. Otherwise, we can't
1137 easily predict which it is, so upgrade all of them.
1138
1139 This is called when an ({...}) construct occurs and a statement
1140 returns a value in memory. */
1141
1142 void
1143 preserve_temp_slots (rtx x)
1144 {
1145 struct temp_slot *p = 0, *next;
1146
1147 if (x == 0)
1148 return;
1149
1150 /* If X is a register that is being used as a pointer, see if we have
1151 a temporary slot we know it points to. */
1152 if (REG_P (x) && REG_POINTER (x))
1153 p = find_temp_slot_from_address (x);
1154
1155 /* If X is not in memory or is at a constant address, it cannot be in
1156 a temporary slot. */
1157 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1158 return;
1159
1160 /* First see if we can find a match. */
1161 if (p == 0)
1162 p = find_temp_slot_from_address (XEXP (x, 0));
1163
1164 if (p != 0)
1165 {
1166 if (p->level == temp_slot_level)
1167 move_slot_to_level (p, temp_slot_level - 1);
1168 return;
1169 }
1170
1171 /* Otherwise, preserve all non-kept slots at this level. */
1172 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1173 {
1174 next = p->next;
1175 move_slot_to_level (p, temp_slot_level - 1);
1176 }
1177 }
1178
1179 /* Free all temporaries used so far. This is normally called at the
1180 end of generating code for a statement. */
1181
1182 void
1183 free_temp_slots (void)
1184 {
1185 struct temp_slot *p, *next;
1186 bool some_available = false;
1187
1188 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1189 {
1190 next = p->next;
1191 make_slot_available (p);
1192 some_available = true;
1193 }
1194
1195 if (some_available)
1196 {
1197 remove_unused_temp_slot_addresses ();
1198 combine_temp_slots ();
1199 }
1200 }
1201
1202 /* Push deeper into the nesting level for stack temporaries. */
1203
1204 void
1205 push_temp_slots (void)
1206 {
1207 temp_slot_level++;
1208 }
1209
1210 /* Pop a temporary nesting level. All slots in use in the current level
1211 are freed. */
1212
1213 void
1214 pop_temp_slots (void)
1215 {
1216 free_temp_slots ();
1217 temp_slot_level--;
1218 }
1219
1220 /* Initialize temporary slots. */
1221
1222 void
1223 init_temp_slots (void)
1224 {
1225 /* We have not allocated any temporaries yet. */
1226 avail_temp_slots = 0;
1227 vec_alloc (used_temp_slots, 0);
1228 temp_slot_level = 0;
1229 n_temp_slots_in_use = 0;
1230
1231 /* Set up the table to map addresses to temp slots. */
1232 if (! temp_slot_address_table)
1233 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1234 else
1235 temp_slot_address_table->empty ();
1236 }
1237 \f
1238 /* Functions and data structures to keep track of the values hard regs
1239 had at the start of the function. */
1240
1241 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1242 and has_hard_reg_initial_val.. */
1243 typedef struct GTY(()) initial_value_pair {
1244 rtx hard_reg;
1245 rtx pseudo;
1246 } initial_value_pair;
1247 /* ??? This could be a VEC but there is currently no way to define an
1248 opaque VEC type. This could be worked around by defining struct
1249 initial_value_pair in function.h. */
1250 typedef struct GTY(()) initial_value_struct {
1251 int num_entries;
1252 int max_entries;
1253 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1254 } initial_value_struct;
1255
1256 /* If a pseudo represents an initial hard reg (or expression), return
1257 it, else return NULL_RTX. */
1258
1259 rtx
1260 get_hard_reg_initial_reg (rtx reg)
1261 {
1262 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1263 int i;
1264
1265 if (ivs == 0)
1266 return NULL_RTX;
1267
1268 for (i = 0; i < ivs->num_entries; i++)
1269 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1270 return ivs->entries[i].hard_reg;
1271
1272 return NULL_RTX;
1273 }
1274
1275 /* Make sure that there's a pseudo register of mode MODE that stores the
1276 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1277
1278 rtx
1279 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1280 {
1281 struct initial_value_struct *ivs;
1282 rtx rv;
1283
1284 rv = has_hard_reg_initial_val (mode, regno);
1285 if (rv)
1286 return rv;
1287
1288 ivs = crtl->hard_reg_initial_vals;
1289 if (ivs == 0)
1290 {
1291 ivs = ggc_alloc<initial_value_struct> ();
1292 ivs->num_entries = 0;
1293 ivs->max_entries = 5;
1294 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1295 crtl->hard_reg_initial_vals = ivs;
1296 }
1297
1298 if (ivs->num_entries >= ivs->max_entries)
1299 {
1300 ivs->max_entries += 5;
1301 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1302 ivs->max_entries);
1303 }
1304
1305 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1306 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1307
1308 return ivs->entries[ivs->num_entries++].pseudo;
1309 }
1310
1311 /* See if get_hard_reg_initial_val has been used to create a pseudo
1312 for the initial value of hard register REGNO in mode MODE. Return
1313 the associated pseudo if so, otherwise return NULL. */
1314
1315 rtx
1316 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1317 {
1318 struct initial_value_struct *ivs;
1319 int i;
1320
1321 ivs = crtl->hard_reg_initial_vals;
1322 if (ivs != 0)
1323 for (i = 0; i < ivs->num_entries; i++)
1324 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1325 && REGNO (ivs->entries[i].hard_reg) == regno)
1326 return ivs->entries[i].pseudo;
1327
1328 return NULL_RTX;
1329 }
1330
1331 unsigned int
1332 emit_initial_value_sets (void)
1333 {
1334 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1335 int i;
1336 rtx_insn *seq;
1337
1338 if (ivs == 0)
1339 return 0;
1340
1341 start_sequence ();
1342 for (i = 0; i < ivs->num_entries; i++)
1343 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1344 seq = get_insns ();
1345 end_sequence ();
1346
1347 emit_insn_at_entry (seq);
1348 return 0;
1349 }
1350
1351 /* Return the hardreg-pseudoreg initial values pair entry I and
1352 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1353 bool
1354 initial_value_entry (int i, rtx *hreg, rtx *preg)
1355 {
1356 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1357 if (!ivs || i >= ivs->num_entries)
1358 return false;
1359
1360 *hreg = ivs->entries[i].hard_reg;
1361 *preg = ivs->entries[i].pseudo;
1362 return true;
1363 }
1364 \f
1365 /* These routines are responsible for converting virtual register references
1366 to the actual hard register references once RTL generation is complete.
1367
1368 The following four variables are used for communication between the
1369 routines. They contain the offsets of the virtual registers from their
1370 respective hard registers. */
1371
1372 static int in_arg_offset;
1373 static int var_offset;
1374 static int dynamic_offset;
1375 static int out_arg_offset;
1376 static int cfa_offset;
1377
1378 /* In most machines, the stack pointer register is equivalent to the bottom
1379 of the stack. */
1380
1381 #ifndef STACK_POINTER_OFFSET
1382 #define STACK_POINTER_OFFSET 0
1383 #endif
1384
1385 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1386 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1387 #endif
1388
1389 /* If not defined, pick an appropriate default for the offset of dynamically
1390 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1391 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1392
1393 #ifndef STACK_DYNAMIC_OFFSET
1394
1395 /* The bottom of the stack points to the actual arguments. If
1396 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1397 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1398 stack space for register parameters is not pushed by the caller, but
1399 rather part of the fixed stack areas and hence not included in
1400 `crtl->outgoing_args_size'. Nevertheless, we must allow
1401 for it when allocating stack dynamic objects. */
1402
1403 #ifdef INCOMING_REG_PARM_STACK_SPACE
1404 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1405 ((ACCUMULATE_OUTGOING_ARGS \
1406 ? (crtl->outgoing_args_size \
1407 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1408 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1409 : 0) + (STACK_POINTER_OFFSET))
1410 #else
1411 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1412 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1413 + (STACK_POINTER_OFFSET))
1414 #endif
1415 #endif
1416
1417 \f
1418 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1419 is a virtual register, return the equivalent hard register and set the
1420 offset indirectly through the pointer. Otherwise, return 0. */
1421
1422 static rtx
1423 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1424 {
1425 rtx new_rtx;
1426 HOST_WIDE_INT offset;
1427
1428 if (x == virtual_incoming_args_rtx)
1429 {
1430 if (stack_realign_drap)
1431 {
1432 /* Replace virtual_incoming_args_rtx with internal arg
1433 pointer if DRAP is used to realign stack. */
1434 new_rtx = crtl->args.internal_arg_pointer;
1435 offset = 0;
1436 }
1437 else
1438 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1439 }
1440 else if (x == virtual_stack_vars_rtx)
1441 new_rtx = frame_pointer_rtx, offset = var_offset;
1442 else if (x == virtual_stack_dynamic_rtx)
1443 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1444 else if (x == virtual_outgoing_args_rtx)
1445 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1446 else if (x == virtual_cfa_rtx)
1447 {
1448 #ifdef FRAME_POINTER_CFA_OFFSET
1449 new_rtx = frame_pointer_rtx;
1450 #else
1451 new_rtx = arg_pointer_rtx;
1452 #endif
1453 offset = cfa_offset;
1454 }
1455 else if (x == virtual_preferred_stack_boundary_rtx)
1456 {
1457 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1458 offset = 0;
1459 }
1460 else
1461 return NULL_RTX;
1462
1463 *poffset = offset;
1464 return new_rtx;
1465 }
1466
1467 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1468 registers present inside of *LOC. The expression is simplified,
1469 as much as possible, but is not to be considered "valid" in any sense
1470 implied by the target. Return true if any change is made. */
1471
1472 static bool
1473 instantiate_virtual_regs_in_rtx (rtx *loc)
1474 {
1475 if (!*loc)
1476 return false;
1477 bool changed = false;
1478 subrtx_ptr_iterator::array_type array;
1479 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1480 {
1481 rtx *loc = *iter;
1482 if (rtx x = *loc)
1483 {
1484 rtx new_rtx;
1485 HOST_WIDE_INT offset;
1486 switch (GET_CODE (x))
1487 {
1488 case REG:
1489 new_rtx = instantiate_new_reg (x, &offset);
1490 if (new_rtx)
1491 {
1492 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1493 changed = true;
1494 }
1495 iter.skip_subrtxes ();
1496 break;
1497
1498 case PLUS:
1499 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1500 if (new_rtx)
1501 {
1502 XEXP (x, 0) = new_rtx;
1503 *loc = plus_constant (GET_MODE (x), x, offset, true);
1504 changed = true;
1505 iter.skip_subrtxes ();
1506 break;
1507 }
1508
1509 /* FIXME -- from old code */
1510 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1511 we can commute the PLUS and SUBREG because pointers into the
1512 frame are well-behaved. */
1513 break;
1514
1515 default:
1516 break;
1517 }
1518 }
1519 }
1520 return changed;
1521 }
1522
1523 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1524 matches the predicate for insn CODE operand OPERAND. */
1525
1526 static int
1527 safe_insn_predicate (int code, int operand, rtx x)
1528 {
1529 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1530 }
1531
1532 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1533 registers present inside of insn. The result will be a valid insn. */
1534
1535 static void
1536 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1537 {
1538 HOST_WIDE_INT offset;
1539 int insn_code, i;
1540 bool any_change = false;
1541 rtx set, new_rtx, x;
1542 rtx_insn *seq;
1543
1544 /* There are some special cases to be handled first. */
1545 set = single_set (insn);
1546 if (set)
1547 {
1548 /* We're allowed to assign to a virtual register. This is interpreted
1549 to mean that the underlying register gets assigned the inverse
1550 transformation. This is used, for example, in the handling of
1551 non-local gotos. */
1552 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1553 if (new_rtx)
1554 {
1555 start_sequence ();
1556
1557 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1558 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1559 gen_int_mode (-offset, GET_MODE (new_rtx)));
1560 x = force_operand (x, new_rtx);
1561 if (x != new_rtx)
1562 emit_move_insn (new_rtx, x);
1563
1564 seq = get_insns ();
1565 end_sequence ();
1566
1567 emit_insn_before (seq, insn);
1568 delete_insn (insn);
1569 return;
1570 }
1571
1572 /* Handle a straight copy from a virtual register by generating a
1573 new add insn. The difference between this and falling through
1574 to the generic case is avoiding a new pseudo and eliminating a
1575 move insn in the initial rtl stream. */
1576 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1577 if (new_rtx && offset != 0
1578 && REG_P (SET_DEST (set))
1579 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1580 {
1581 start_sequence ();
1582
1583 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1584 gen_int_mode (offset,
1585 GET_MODE (SET_DEST (set))),
1586 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1587 if (x != SET_DEST (set))
1588 emit_move_insn (SET_DEST (set), x);
1589
1590 seq = get_insns ();
1591 end_sequence ();
1592
1593 emit_insn_before (seq, insn);
1594 delete_insn (insn);
1595 return;
1596 }
1597
1598 extract_insn (insn);
1599 insn_code = INSN_CODE (insn);
1600
1601 /* Handle a plus involving a virtual register by determining if the
1602 operands remain valid if they're modified in place. */
1603 if (GET_CODE (SET_SRC (set)) == PLUS
1604 && recog_data.n_operands >= 3
1605 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1606 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1607 && CONST_INT_P (recog_data.operand[2])
1608 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1609 {
1610 offset += INTVAL (recog_data.operand[2]);
1611
1612 /* If the sum is zero, then replace with a plain move. */
1613 if (offset == 0
1614 && REG_P (SET_DEST (set))
1615 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1616 {
1617 start_sequence ();
1618 emit_move_insn (SET_DEST (set), new_rtx);
1619 seq = get_insns ();
1620 end_sequence ();
1621
1622 emit_insn_before (seq, insn);
1623 delete_insn (insn);
1624 return;
1625 }
1626
1627 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1628
1629 /* Using validate_change and apply_change_group here leaves
1630 recog_data in an invalid state. Since we know exactly what
1631 we want to check, do those two by hand. */
1632 if (safe_insn_predicate (insn_code, 1, new_rtx)
1633 && safe_insn_predicate (insn_code, 2, x))
1634 {
1635 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1636 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1637 any_change = true;
1638
1639 /* Fall through into the regular operand fixup loop in
1640 order to take care of operands other than 1 and 2. */
1641 }
1642 }
1643 }
1644 else
1645 {
1646 extract_insn (insn);
1647 insn_code = INSN_CODE (insn);
1648 }
1649
1650 /* In the general case, we expect virtual registers to appear only in
1651 operands, and then only as either bare registers or inside memories. */
1652 for (i = 0; i < recog_data.n_operands; ++i)
1653 {
1654 x = recog_data.operand[i];
1655 switch (GET_CODE (x))
1656 {
1657 case MEM:
1658 {
1659 rtx addr = XEXP (x, 0);
1660
1661 if (!instantiate_virtual_regs_in_rtx (&addr))
1662 continue;
1663
1664 start_sequence ();
1665 x = replace_equiv_address (x, addr, true);
1666 /* It may happen that the address with the virtual reg
1667 was valid (e.g. based on the virtual stack reg, which might
1668 be acceptable to the predicates with all offsets), whereas
1669 the address now isn't anymore, for instance when the address
1670 is still offsetted, but the base reg isn't virtual-stack-reg
1671 anymore. Below we would do a force_reg on the whole operand,
1672 but this insn might actually only accept memory. Hence,
1673 before doing that last resort, try to reload the address into
1674 a register, so this operand stays a MEM. */
1675 if (!safe_insn_predicate (insn_code, i, x))
1676 {
1677 addr = force_reg (GET_MODE (addr), addr);
1678 x = replace_equiv_address (x, addr, true);
1679 }
1680 seq = get_insns ();
1681 end_sequence ();
1682 if (seq)
1683 emit_insn_before (seq, insn);
1684 }
1685 break;
1686
1687 case REG:
1688 new_rtx = instantiate_new_reg (x, &offset);
1689 if (new_rtx == NULL)
1690 continue;
1691 if (offset == 0)
1692 x = new_rtx;
1693 else
1694 {
1695 start_sequence ();
1696
1697 /* Careful, special mode predicates may have stuff in
1698 insn_data[insn_code].operand[i].mode that isn't useful
1699 to us for computing a new value. */
1700 /* ??? Recognize address_operand and/or "p" constraints
1701 to see if (plus new offset) is a valid before we put
1702 this through expand_simple_binop. */
1703 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1704 gen_int_mode (offset, GET_MODE (x)),
1705 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1706 seq = get_insns ();
1707 end_sequence ();
1708 emit_insn_before (seq, insn);
1709 }
1710 break;
1711
1712 case SUBREG:
1713 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1714 if (new_rtx == NULL)
1715 continue;
1716 if (offset != 0)
1717 {
1718 start_sequence ();
1719 new_rtx = expand_simple_binop
1720 (GET_MODE (new_rtx), PLUS, new_rtx,
1721 gen_int_mode (offset, GET_MODE (new_rtx)),
1722 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1723 seq = get_insns ();
1724 end_sequence ();
1725 emit_insn_before (seq, insn);
1726 }
1727 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1728 GET_MODE (new_rtx), SUBREG_BYTE (x));
1729 gcc_assert (x);
1730 break;
1731
1732 default:
1733 continue;
1734 }
1735
1736 /* At this point, X contains the new value for the operand.
1737 Validate the new value vs the insn predicate. Note that
1738 asm insns will have insn_code -1 here. */
1739 if (!safe_insn_predicate (insn_code, i, x))
1740 {
1741 start_sequence ();
1742 if (REG_P (x))
1743 {
1744 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1745 x = copy_to_reg (x);
1746 }
1747 else
1748 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1749 seq = get_insns ();
1750 end_sequence ();
1751 if (seq)
1752 emit_insn_before (seq, insn);
1753 }
1754
1755 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1756 any_change = true;
1757 }
1758
1759 if (any_change)
1760 {
1761 /* Propagate operand changes into the duplicates. */
1762 for (i = 0; i < recog_data.n_dups; ++i)
1763 *recog_data.dup_loc[i]
1764 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1765
1766 /* Force re-recognition of the instruction for validation. */
1767 INSN_CODE (insn) = -1;
1768 }
1769
1770 if (asm_noperands (PATTERN (insn)) >= 0)
1771 {
1772 if (!check_asm_operands (PATTERN (insn)))
1773 {
1774 error_for_asm (insn, "impossible constraint in %<asm%>");
1775 /* For asm goto, instead of fixing up all the edges
1776 just clear the template and clear input operands
1777 (asm goto doesn't have any output operands). */
1778 if (JUMP_P (insn))
1779 {
1780 rtx asm_op = extract_asm_operands (PATTERN (insn));
1781 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1782 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1783 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1784 }
1785 else
1786 delete_insn (insn);
1787 }
1788 }
1789 else
1790 {
1791 if (recog_memoized (insn) < 0)
1792 fatal_insn_not_found (insn);
1793 }
1794 }
1795
1796 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1797 do any instantiation required. */
1798
1799 void
1800 instantiate_decl_rtl (rtx x)
1801 {
1802 rtx addr;
1803
1804 if (x == 0)
1805 return;
1806
1807 /* If this is a CONCAT, recurse for the pieces. */
1808 if (GET_CODE (x) == CONCAT)
1809 {
1810 instantiate_decl_rtl (XEXP (x, 0));
1811 instantiate_decl_rtl (XEXP (x, 1));
1812 return;
1813 }
1814
1815 /* If this is not a MEM, no need to do anything. Similarly if the
1816 address is a constant or a register that is not a virtual register. */
1817 if (!MEM_P (x))
1818 return;
1819
1820 addr = XEXP (x, 0);
1821 if (CONSTANT_P (addr)
1822 || (REG_P (addr)
1823 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1824 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1825 return;
1826
1827 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1828 }
1829
1830 /* Helper for instantiate_decls called via walk_tree: Process all decls
1831 in the given DECL_VALUE_EXPR. */
1832
1833 static tree
1834 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1835 {
1836 tree t = *tp;
1837 if (! EXPR_P (t))
1838 {
1839 *walk_subtrees = 0;
1840 if (DECL_P (t))
1841 {
1842 if (DECL_RTL_SET_P (t))
1843 instantiate_decl_rtl (DECL_RTL (t));
1844 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1845 && DECL_INCOMING_RTL (t))
1846 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1847 if ((TREE_CODE (t) == VAR_DECL
1848 || TREE_CODE (t) == RESULT_DECL)
1849 && DECL_HAS_VALUE_EXPR_P (t))
1850 {
1851 tree v = DECL_VALUE_EXPR (t);
1852 walk_tree (&v, instantiate_expr, NULL, NULL);
1853 }
1854 }
1855 }
1856 return NULL;
1857 }
1858
1859 /* Subroutine of instantiate_decls: Process all decls in the given
1860 BLOCK node and all its subblocks. */
1861
1862 static void
1863 instantiate_decls_1 (tree let)
1864 {
1865 tree t;
1866
1867 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1868 {
1869 if (DECL_RTL_SET_P (t))
1870 instantiate_decl_rtl (DECL_RTL (t));
1871 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1872 {
1873 tree v = DECL_VALUE_EXPR (t);
1874 walk_tree (&v, instantiate_expr, NULL, NULL);
1875 }
1876 }
1877
1878 /* Process all subblocks. */
1879 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1880 instantiate_decls_1 (t);
1881 }
1882
1883 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1884 all virtual registers in their DECL_RTL's. */
1885
1886 static void
1887 instantiate_decls (tree fndecl)
1888 {
1889 tree decl;
1890 unsigned ix;
1891
1892 /* Process all parameters of the function. */
1893 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1894 {
1895 instantiate_decl_rtl (DECL_RTL (decl));
1896 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1897 if (DECL_HAS_VALUE_EXPR_P (decl))
1898 {
1899 tree v = DECL_VALUE_EXPR (decl);
1900 walk_tree (&v, instantiate_expr, NULL, NULL);
1901 }
1902 }
1903
1904 if ((decl = DECL_RESULT (fndecl))
1905 && TREE_CODE (decl) == RESULT_DECL)
1906 {
1907 if (DECL_RTL_SET_P (decl))
1908 instantiate_decl_rtl (DECL_RTL (decl));
1909 if (DECL_HAS_VALUE_EXPR_P (decl))
1910 {
1911 tree v = DECL_VALUE_EXPR (decl);
1912 walk_tree (&v, instantiate_expr, NULL, NULL);
1913 }
1914 }
1915
1916 /* Process the saved static chain if it exists. */
1917 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1918 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1919 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1920
1921 /* Now process all variables defined in the function or its subblocks. */
1922 instantiate_decls_1 (DECL_INITIAL (fndecl));
1923
1924 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1925 if (DECL_RTL_SET_P (decl))
1926 instantiate_decl_rtl (DECL_RTL (decl));
1927 vec_free (cfun->local_decls);
1928 }
1929
1930 /* Pass through the INSNS of function FNDECL and convert virtual register
1931 references to hard register references. */
1932
1933 static unsigned int
1934 instantiate_virtual_regs (void)
1935 {
1936 rtx_insn *insn;
1937
1938 /* Compute the offsets to use for this function. */
1939 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1940 var_offset = STARTING_FRAME_OFFSET;
1941 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1942 out_arg_offset = STACK_POINTER_OFFSET;
1943 #ifdef FRAME_POINTER_CFA_OFFSET
1944 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1945 #else
1946 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1947 #endif
1948
1949 /* Initialize recognition, indicating that volatile is OK. */
1950 init_recog ();
1951
1952 /* Scan through all the insns, instantiating every virtual register still
1953 present. */
1954 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1955 if (INSN_P (insn))
1956 {
1957 /* These patterns in the instruction stream can never be recognized.
1958 Fortunately, they shouldn't contain virtual registers either. */
1959 if (GET_CODE (PATTERN (insn)) == USE
1960 || GET_CODE (PATTERN (insn)) == CLOBBER
1961 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1962 continue;
1963 else if (DEBUG_INSN_P (insn))
1964 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1965 else
1966 instantiate_virtual_regs_in_insn (insn);
1967
1968 if (insn->deleted ())
1969 continue;
1970
1971 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1972
1973 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1974 if (CALL_P (insn))
1975 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1976 }
1977
1978 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1979 instantiate_decls (current_function_decl);
1980
1981 targetm.instantiate_decls ();
1982
1983 /* Indicate that, from now on, assign_stack_local should use
1984 frame_pointer_rtx. */
1985 virtuals_instantiated = 1;
1986
1987 return 0;
1988 }
1989
1990 namespace {
1991
1992 const pass_data pass_data_instantiate_virtual_regs =
1993 {
1994 RTL_PASS, /* type */
1995 "vregs", /* name */
1996 OPTGROUP_NONE, /* optinfo_flags */
1997 TV_NONE, /* tv_id */
1998 0, /* properties_required */
1999 0, /* properties_provided */
2000 0, /* properties_destroyed */
2001 0, /* todo_flags_start */
2002 0, /* todo_flags_finish */
2003 };
2004
2005 class pass_instantiate_virtual_regs : public rtl_opt_pass
2006 {
2007 public:
2008 pass_instantiate_virtual_regs (gcc::context *ctxt)
2009 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2010 {}
2011
2012 /* opt_pass methods: */
2013 virtual unsigned int execute (function *)
2014 {
2015 return instantiate_virtual_regs ();
2016 }
2017
2018 }; // class pass_instantiate_virtual_regs
2019
2020 } // anon namespace
2021
2022 rtl_opt_pass *
2023 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2024 {
2025 return new pass_instantiate_virtual_regs (ctxt);
2026 }
2027
2028 \f
2029 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2030 This means a type for which function calls must pass an address to the
2031 function or get an address back from the function.
2032 EXP may be a type node or an expression (whose type is tested). */
2033
2034 int
2035 aggregate_value_p (const_tree exp, const_tree fntype)
2036 {
2037 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2038 int i, regno, nregs;
2039 rtx reg;
2040
2041 if (fntype)
2042 switch (TREE_CODE (fntype))
2043 {
2044 case CALL_EXPR:
2045 {
2046 tree fndecl = get_callee_fndecl (fntype);
2047 if (fndecl)
2048 fntype = TREE_TYPE (fndecl);
2049 else if (CALL_EXPR_FN (fntype))
2050 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2051 else
2052 /* For internal functions, assume nothing needs to be
2053 returned in memory. */
2054 return 0;
2055 }
2056 break;
2057 case FUNCTION_DECL:
2058 fntype = TREE_TYPE (fntype);
2059 break;
2060 case FUNCTION_TYPE:
2061 case METHOD_TYPE:
2062 break;
2063 case IDENTIFIER_NODE:
2064 fntype = NULL_TREE;
2065 break;
2066 default:
2067 /* We don't expect other tree types here. */
2068 gcc_unreachable ();
2069 }
2070
2071 if (VOID_TYPE_P (type))
2072 return 0;
2073
2074 /* If a record should be passed the same as its first (and only) member
2075 don't pass it as an aggregate. */
2076 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2077 return aggregate_value_p (first_field (type), fntype);
2078
2079 /* If the front end has decided that this needs to be passed by
2080 reference, do so. */
2081 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2082 && DECL_BY_REFERENCE (exp))
2083 return 1;
2084
2085 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2086 if (fntype && TREE_ADDRESSABLE (fntype))
2087 return 1;
2088
2089 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2090 and thus can't be returned in registers. */
2091 if (TREE_ADDRESSABLE (type))
2092 return 1;
2093
2094 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2095 return 1;
2096
2097 if (targetm.calls.return_in_memory (type, fntype))
2098 return 1;
2099
2100 /* Make sure we have suitable call-clobbered regs to return
2101 the value in; if not, we must return it in memory. */
2102 reg = hard_function_value (type, 0, fntype, 0);
2103
2104 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2105 it is OK. */
2106 if (!REG_P (reg))
2107 return 0;
2108
2109 regno = REGNO (reg);
2110 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2111 for (i = 0; i < nregs; i++)
2112 if (! call_used_regs[regno + i])
2113 return 1;
2114
2115 return 0;
2116 }
2117 \f
2118 /* Return true if we should assign DECL a pseudo register; false if it
2119 should live on the local stack. */
2120
2121 bool
2122 use_register_for_decl (const_tree decl)
2123 {
2124 if (!targetm.calls.allocate_stack_slots_for_args ())
2125 return true;
2126
2127 /* Honor volatile. */
2128 if (TREE_SIDE_EFFECTS (decl))
2129 return false;
2130
2131 /* Honor addressability. */
2132 if (TREE_ADDRESSABLE (decl))
2133 return false;
2134
2135 /* Decl is implicitly addressible by bound stores and loads
2136 if it is an aggregate holding bounds. */
2137 if (chkp_function_instrumented_p (current_function_decl)
2138 && TREE_TYPE (decl)
2139 && !BOUNDED_P (decl)
2140 && chkp_type_has_pointer (TREE_TYPE (decl)))
2141 return false;
2142
2143 /* Only register-like things go in registers. */
2144 if (DECL_MODE (decl) == BLKmode)
2145 return false;
2146
2147 /* If -ffloat-store specified, don't put explicit float variables
2148 into registers. */
2149 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2150 propagates values across these stores, and it probably shouldn't. */
2151 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2152 return false;
2153
2154 /* If we're not interested in tracking debugging information for
2155 this decl, then we can certainly put it in a register. */
2156 if (DECL_IGNORED_P (decl))
2157 return true;
2158
2159 if (optimize)
2160 return true;
2161
2162 if (!DECL_REGISTER (decl))
2163 return false;
2164
2165 switch (TREE_CODE (TREE_TYPE (decl)))
2166 {
2167 case RECORD_TYPE:
2168 case UNION_TYPE:
2169 case QUAL_UNION_TYPE:
2170 /* When not optimizing, disregard register keyword for variables with
2171 types containing methods, otherwise the methods won't be callable
2172 from the debugger. */
2173 if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl))))
2174 return false;
2175 break;
2176 default:
2177 break;
2178 }
2179
2180 return true;
2181 }
2182
2183 /* Return true if TYPE should be passed by invisible reference. */
2184
2185 bool
2186 pass_by_reference (CUMULATIVE_ARGS *ca, machine_mode mode,
2187 tree type, bool named_arg)
2188 {
2189 if (type)
2190 {
2191 /* If this type contains non-trivial constructors, then it is
2192 forbidden for the middle-end to create any new copies. */
2193 if (TREE_ADDRESSABLE (type))
2194 return true;
2195
2196 /* GCC post 3.4 passes *all* variable sized types by reference. */
2197 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2198 return true;
2199
2200 /* If a record type should be passed the same as its first (and only)
2201 member, use the type and mode of that member. */
2202 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2203 {
2204 type = TREE_TYPE (first_field (type));
2205 mode = TYPE_MODE (type);
2206 }
2207 }
2208
2209 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2210 type, named_arg);
2211 }
2212
2213 /* Return true if TYPE, which is passed by reference, should be callee
2214 copied instead of caller copied. */
2215
2216 bool
2217 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
2218 tree type, bool named_arg)
2219 {
2220 if (type && TREE_ADDRESSABLE (type))
2221 return false;
2222 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2223 named_arg);
2224 }
2225
2226 /* Structures to communicate between the subroutines of assign_parms.
2227 The first holds data persistent across all parameters, the second
2228 is cleared out for each parameter. */
2229
2230 struct assign_parm_data_all
2231 {
2232 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2233 should become a job of the target or otherwise encapsulated. */
2234 CUMULATIVE_ARGS args_so_far_v;
2235 cumulative_args_t args_so_far;
2236 struct args_size stack_args_size;
2237 tree function_result_decl;
2238 tree orig_fnargs;
2239 rtx_insn *first_conversion_insn;
2240 rtx_insn *last_conversion_insn;
2241 HOST_WIDE_INT pretend_args_size;
2242 HOST_WIDE_INT extra_pretend_bytes;
2243 int reg_parm_stack_space;
2244 };
2245
2246 struct assign_parm_data_one
2247 {
2248 tree nominal_type;
2249 tree passed_type;
2250 rtx entry_parm;
2251 rtx stack_parm;
2252 machine_mode nominal_mode;
2253 machine_mode passed_mode;
2254 machine_mode promoted_mode;
2255 struct locate_and_pad_arg_data locate;
2256 int partial;
2257 BOOL_BITFIELD named_arg : 1;
2258 BOOL_BITFIELD passed_pointer : 1;
2259 BOOL_BITFIELD on_stack : 1;
2260 BOOL_BITFIELD loaded_in_reg : 1;
2261 };
2262
2263 struct bounds_parm_data
2264 {
2265 assign_parm_data_one parm_data;
2266 tree bounds_parm;
2267 tree ptr_parm;
2268 rtx ptr_entry;
2269 int bound_no;
2270 };
2271
2272 /* A subroutine of assign_parms. Initialize ALL. */
2273
2274 static void
2275 assign_parms_initialize_all (struct assign_parm_data_all *all)
2276 {
2277 tree fntype ATTRIBUTE_UNUSED;
2278
2279 memset (all, 0, sizeof (*all));
2280
2281 fntype = TREE_TYPE (current_function_decl);
2282
2283 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2284 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2285 #else
2286 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2287 current_function_decl, -1);
2288 #endif
2289 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2290
2291 #ifdef INCOMING_REG_PARM_STACK_SPACE
2292 all->reg_parm_stack_space
2293 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2294 #endif
2295 }
2296
2297 /* If ARGS contains entries with complex types, split the entry into two
2298 entries of the component type. Return a new list of substitutions are
2299 needed, else the old list. */
2300
2301 static void
2302 split_complex_args (vec<tree> *args)
2303 {
2304 unsigned i;
2305 tree p;
2306
2307 FOR_EACH_VEC_ELT (*args, i, p)
2308 {
2309 tree type = TREE_TYPE (p);
2310 if (TREE_CODE (type) == COMPLEX_TYPE
2311 && targetm.calls.split_complex_arg (type))
2312 {
2313 tree decl;
2314 tree subtype = TREE_TYPE (type);
2315 bool addressable = TREE_ADDRESSABLE (p);
2316
2317 /* Rewrite the PARM_DECL's type with its component. */
2318 p = copy_node (p);
2319 TREE_TYPE (p) = subtype;
2320 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2321 DECL_MODE (p) = VOIDmode;
2322 DECL_SIZE (p) = NULL;
2323 DECL_SIZE_UNIT (p) = NULL;
2324 /* If this arg must go in memory, put it in a pseudo here.
2325 We can't allow it to go in memory as per normal parms,
2326 because the usual place might not have the imag part
2327 adjacent to the real part. */
2328 DECL_ARTIFICIAL (p) = addressable;
2329 DECL_IGNORED_P (p) = addressable;
2330 TREE_ADDRESSABLE (p) = 0;
2331 layout_decl (p, 0);
2332 (*args)[i] = p;
2333
2334 /* Build a second synthetic decl. */
2335 decl = build_decl (EXPR_LOCATION (p),
2336 PARM_DECL, NULL_TREE, subtype);
2337 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2338 DECL_ARTIFICIAL (decl) = addressable;
2339 DECL_IGNORED_P (decl) = addressable;
2340 layout_decl (decl, 0);
2341 args->safe_insert (++i, decl);
2342 }
2343 }
2344 }
2345
2346 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2347 the hidden struct return argument, and (abi willing) complex args.
2348 Return the new parameter list. */
2349
2350 static vec<tree>
2351 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2352 {
2353 tree fndecl = current_function_decl;
2354 tree fntype = TREE_TYPE (fndecl);
2355 vec<tree> fnargs = vNULL;
2356 tree arg;
2357
2358 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2359 fnargs.safe_push (arg);
2360
2361 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2362
2363 /* If struct value address is treated as the first argument, make it so. */
2364 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2365 && ! cfun->returns_pcc_struct
2366 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2367 {
2368 tree type = build_pointer_type (TREE_TYPE (fntype));
2369 tree decl;
2370
2371 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2372 PARM_DECL, get_identifier (".result_ptr"), type);
2373 DECL_ARG_TYPE (decl) = type;
2374 DECL_ARTIFICIAL (decl) = 1;
2375 DECL_NAMELESS (decl) = 1;
2376 TREE_CONSTANT (decl) = 1;
2377
2378 DECL_CHAIN (decl) = all->orig_fnargs;
2379 all->orig_fnargs = decl;
2380 fnargs.safe_insert (0, decl);
2381
2382 all->function_result_decl = decl;
2383
2384 /* If function is instrumented then bounds of the
2385 passed structure address is the second argument. */
2386 if (chkp_function_instrumented_p (fndecl))
2387 {
2388 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2389 PARM_DECL, get_identifier (".result_bnd"),
2390 pointer_bounds_type_node);
2391 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2392 DECL_ARTIFICIAL (decl) = 1;
2393 DECL_NAMELESS (decl) = 1;
2394 TREE_CONSTANT (decl) = 1;
2395
2396 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2397 DECL_CHAIN (all->orig_fnargs) = decl;
2398 fnargs.safe_insert (1, decl);
2399 }
2400 }
2401
2402 /* If the target wants to split complex arguments into scalars, do so. */
2403 if (targetm.calls.split_complex_arg)
2404 split_complex_args (&fnargs);
2405
2406 return fnargs;
2407 }
2408
2409 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2410 data for the parameter. Incorporate ABI specifics such as pass-by-
2411 reference and type promotion. */
2412
2413 static void
2414 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2415 struct assign_parm_data_one *data)
2416 {
2417 tree nominal_type, passed_type;
2418 machine_mode nominal_mode, passed_mode, promoted_mode;
2419 int unsignedp;
2420
2421 memset (data, 0, sizeof (*data));
2422
2423 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2424 if (!cfun->stdarg)
2425 data->named_arg = 1; /* No variadic parms. */
2426 else if (DECL_CHAIN (parm))
2427 data->named_arg = 1; /* Not the last non-variadic parm. */
2428 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2429 data->named_arg = 1; /* Only variadic ones are unnamed. */
2430 else
2431 data->named_arg = 0; /* Treat as variadic. */
2432
2433 nominal_type = TREE_TYPE (parm);
2434 passed_type = DECL_ARG_TYPE (parm);
2435
2436 /* Look out for errors propagating this far. Also, if the parameter's
2437 type is void then its value doesn't matter. */
2438 if (TREE_TYPE (parm) == error_mark_node
2439 /* This can happen after weird syntax errors
2440 or if an enum type is defined among the parms. */
2441 || TREE_CODE (parm) != PARM_DECL
2442 || passed_type == NULL
2443 || VOID_TYPE_P (nominal_type))
2444 {
2445 nominal_type = passed_type = void_type_node;
2446 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2447 goto egress;
2448 }
2449
2450 /* Find mode of arg as it is passed, and mode of arg as it should be
2451 during execution of this function. */
2452 passed_mode = TYPE_MODE (passed_type);
2453 nominal_mode = TYPE_MODE (nominal_type);
2454
2455 /* If the parm is to be passed as a transparent union or record, use the
2456 type of the first field for the tests below. We have already verified
2457 that the modes are the same. */
2458 if ((TREE_CODE (passed_type) == UNION_TYPE
2459 || TREE_CODE (passed_type) == RECORD_TYPE)
2460 && TYPE_TRANSPARENT_AGGR (passed_type))
2461 passed_type = TREE_TYPE (first_field (passed_type));
2462
2463 /* See if this arg was passed by invisible reference. */
2464 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2465 passed_type, data->named_arg))
2466 {
2467 passed_type = nominal_type = build_pointer_type (passed_type);
2468 data->passed_pointer = true;
2469 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2470 }
2471
2472 /* Find mode as it is passed by the ABI. */
2473 unsignedp = TYPE_UNSIGNED (passed_type);
2474 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2475 TREE_TYPE (current_function_decl), 0);
2476
2477 egress:
2478 data->nominal_type = nominal_type;
2479 data->passed_type = passed_type;
2480 data->nominal_mode = nominal_mode;
2481 data->passed_mode = passed_mode;
2482 data->promoted_mode = promoted_mode;
2483 }
2484
2485 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2486
2487 static void
2488 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2489 struct assign_parm_data_one *data, bool no_rtl)
2490 {
2491 int varargs_pretend_bytes = 0;
2492
2493 targetm.calls.setup_incoming_varargs (all->args_so_far,
2494 data->promoted_mode,
2495 data->passed_type,
2496 &varargs_pretend_bytes, no_rtl);
2497
2498 /* If the back-end has requested extra stack space, record how much is
2499 needed. Do not change pretend_args_size otherwise since it may be
2500 nonzero from an earlier partial argument. */
2501 if (varargs_pretend_bytes > 0)
2502 all->pretend_args_size = varargs_pretend_bytes;
2503 }
2504
2505 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2506 the incoming location of the current parameter. */
2507
2508 static void
2509 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2510 struct assign_parm_data_one *data)
2511 {
2512 HOST_WIDE_INT pretend_bytes = 0;
2513 rtx entry_parm;
2514 bool in_regs;
2515
2516 if (data->promoted_mode == VOIDmode)
2517 {
2518 data->entry_parm = data->stack_parm = const0_rtx;
2519 return;
2520 }
2521
2522 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2523 data->promoted_mode,
2524 data->passed_type,
2525 data->named_arg);
2526
2527 if (entry_parm == 0)
2528 data->promoted_mode = data->passed_mode;
2529
2530 /* Determine parm's home in the stack, in case it arrives in the stack
2531 or we should pretend it did. Compute the stack position and rtx where
2532 the argument arrives and its size.
2533
2534 There is one complexity here: If this was a parameter that would
2535 have been passed in registers, but wasn't only because it is
2536 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2537 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2538 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2539 as it was the previous time. */
2540 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2541 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2542 in_regs = true;
2543 #endif
2544 if (!in_regs && !data->named_arg)
2545 {
2546 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2547 {
2548 rtx tem;
2549 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2550 data->promoted_mode,
2551 data->passed_type, true);
2552 in_regs = tem != NULL;
2553 }
2554 }
2555
2556 /* If this parameter was passed both in registers and in the stack, use
2557 the copy on the stack. */
2558 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2559 data->passed_type))
2560 entry_parm = 0;
2561
2562 if (entry_parm)
2563 {
2564 int partial;
2565
2566 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2567 data->promoted_mode,
2568 data->passed_type,
2569 data->named_arg);
2570 data->partial = partial;
2571
2572 /* The caller might already have allocated stack space for the
2573 register parameters. */
2574 if (partial != 0 && all->reg_parm_stack_space == 0)
2575 {
2576 /* Part of this argument is passed in registers and part
2577 is passed on the stack. Ask the prologue code to extend
2578 the stack part so that we can recreate the full value.
2579
2580 PRETEND_BYTES is the size of the registers we need to store.
2581 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2582 stack space that the prologue should allocate.
2583
2584 Internally, gcc assumes that the argument pointer is aligned
2585 to STACK_BOUNDARY bits. This is used both for alignment
2586 optimizations (see init_emit) and to locate arguments that are
2587 aligned to more than PARM_BOUNDARY bits. We must preserve this
2588 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2589 a stack boundary. */
2590
2591 /* We assume at most one partial arg, and it must be the first
2592 argument on the stack. */
2593 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2594
2595 pretend_bytes = partial;
2596 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2597
2598 /* We want to align relative to the actual stack pointer, so
2599 don't include this in the stack size until later. */
2600 all->extra_pretend_bytes = all->pretend_args_size;
2601 }
2602 }
2603
2604 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2605 all->reg_parm_stack_space,
2606 entry_parm ? data->partial : 0, current_function_decl,
2607 &all->stack_args_size, &data->locate);
2608
2609 /* Update parm_stack_boundary if this parameter is passed in the
2610 stack. */
2611 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2612 crtl->parm_stack_boundary = data->locate.boundary;
2613
2614 /* Adjust offsets to include the pretend args. */
2615 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2616 data->locate.slot_offset.constant += pretend_bytes;
2617 data->locate.offset.constant += pretend_bytes;
2618
2619 data->entry_parm = entry_parm;
2620 }
2621
2622 /* A subroutine of assign_parms. If there is actually space on the stack
2623 for this parm, count it in stack_args_size and return true. */
2624
2625 static bool
2626 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2627 struct assign_parm_data_one *data)
2628 {
2629 /* Bounds are never passed on the stack to keep compatibility
2630 with not instrumented code. */
2631 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2632 return false;
2633 /* Trivially true if we've no incoming register. */
2634 else if (data->entry_parm == NULL)
2635 ;
2636 /* Also true if we're partially in registers and partially not,
2637 since we've arranged to drop the entire argument on the stack. */
2638 else if (data->partial != 0)
2639 ;
2640 /* Also true if the target says that it's passed in both registers
2641 and on the stack. */
2642 else if (GET_CODE (data->entry_parm) == PARALLEL
2643 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2644 ;
2645 /* Also true if the target says that there's stack allocated for
2646 all register parameters. */
2647 else if (all->reg_parm_stack_space > 0)
2648 ;
2649 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2650 else
2651 return false;
2652
2653 all->stack_args_size.constant += data->locate.size.constant;
2654 if (data->locate.size.var)
2655 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2656
2657 return true;
2658 }
2659
2660 /* A subroutine of assign_parms. Given that this parameter is allocated
2661 stack space by the ABI, find it. */
2662
2663 static void
2664 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2665 {
2666 rtx offset_rtx, stack_parm;
2667 unsigned int align, boundary;
2668
2669 /* If we're passing this arg using a reg, make its stack home the
2670 aligned stack slot. */
2671 if (data->entry_parm)
2672 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2673 else
2674 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2675
2676 stack_parm = crtl->args.internal_arg_pointer;
2677 if (offset_rtx != const0_rtx)
2678 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2679 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2680
2681 if (!data->passed_pointer)
2682 {
2683 set_mem_attributes (stack_parm, parm, 1);
2684 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2685 while promoted mode's size is needed. */
2686 if (data->promoted_mode != BLKmode
2687 && data->promoted_mode != DECL_MODE (parm))
2688 {
2689 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2690 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2691 {
2692 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2693 data->promoted_mode);
2694 if (offset)
2695 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2696 }
2697 }
2698 }
2699
2700 boundary = data->locate.boundary;
2701 align = BITS_PER_UNIT;
2702
2703 /* If we're padding upward, we know that the alignment of the slot
2704 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2705 intentionally forcing upward padding. Otherwise we have to come
2706 up with a guess at the alignment based on OFFSET_RTX. */
2707 if (data->locate.where_pad != downward || data->entry_parm)
2708 align = boundary;
2709 else if (CONST_INT_P (offset_rtx))
2710 {
2711 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2712 align = align & -align;
2713 }
2714 set_mem_align (stack_parm, align);
2715
2716 if (data->entry_parm)
2717 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2718
2719 data->stack_parm = stack_parm;
2720 }
2721
2722 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2723 always valid and contiguous. */
2724
2725 static void
2726 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2727 {
2728 rtx entry_parm = data->entry_parm;
2729 rtx stack_parm = data->stack_parm;
2730
2731 /* If this parm was passed part in regs and part in memory, pretend it
2732 arrived entirely in memory by pushing the register-part onto the stack.
2733 In the special case of a DImode or DFmode that is split, we could put
2734 it together in a pseudoreg directly, but for now that's not worth
2735 bothering with. */
2736 if (data->partial != 0)
2737 {
2738 /* Handle calls that pass values in multiple non-contiguous
2739 locations. The Irix 6 ABI has examples of this. */
2740 if (GET_CODE (entry_parm) == PARALLEL)
2741 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2742 data->passed_type,
2743 int_size_in_bytes (data->passed_type));
2744 else
2745 {
2746 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2747 move_block_from_reg (REGNO (entry_parm),
2748 validize_mem (copy_rtx (stack_parm)),
2749 data->partial / UNITS_PER_WORD);
2750 }
2751
2752 entry_parm = stack_parm;
2753 }
2754
2755 /* If we didn't decide this parm came in a register, by default it came
2756 on the stack. */
2757 else if (entry_parm == NULL)
2758 entry_parm = stack_parm;
2759
2760 /* When an argument is passed in multiple locations, we can't make use
2761 of this information, but we can save some copying if the whole argument
2762 is passed in a single register. */
2763 else if (GET_CODE (entry_parm) == PARALLEL
2764 && data->nominal_mode != BLKmode
2765 && data->passed_mode != BLKmode)
2766 {
2767 size_t i, len = XVECLEN (entry_parm, 0);
2768
2769 for (i = 0; i < len; i++)
2770 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2771 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2772 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2773 == data->passed_mode)
2774 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2775 {
2776 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2777 break;
2778 }
2779 }
2780
2781 data->entry_parm = entry_parm;
2782 }
2783
2784 /* A subroutine of assign_parms. Reconstitute any values which were
2785 passed in multiple registers and would fit in a single register. */
2786
2787 static void
2788 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2789 {
2790 rtx entry_parm = data->entry_parm;
2791
2792 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2793 This can be done with register operations rather than on the
2794 stack, even if we will store the reconstituted parameter on the
2795 stack later. */
2796 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2797 {
2798 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2799 emit_group_store (parmreg, entry_parm, data->passed_type,
2800 GET_MODE_SIZE (GET_MODE (entry_parm)));
2801 entry_parm = parmreg;
2802 }
2803
2804 data->entry_parm = entry_parm;
2805 }
2806
2807 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2808 always valid and properly aligned. */
2809
2810 static void
2811 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2812 {
2813 rtx stack_parm = data->stack_parm;
2814
2815 /* If we can't trust the parm stack slot to be aligned enough for its
2816 ultimate type, don't use that slot after entry. We'll make another
2817 stack slot, if we need one. */
2818 if (stack_parm
2819 && ((STRICT_ALIGNMENT
2820 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2821 || (data->nominal_type
2822 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2823 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2824 stack_parm = NULL;
2825
2826 /* If parm was passed in memory, and we need to convert it on entry,
2827 don't store it back in that same slot. */
2828 else if (data->entry_parm == stack_parm
2829 && data->nominal_mode != BLKmode
2830 && data->nominal_mode != data->passed_mode)
2831 stack_parm = NULL;
2832
2833 /* If stack protection is in effect for this function, don't leave any
2834 pointers in their passed stack slots. */
2835 else if (crtl->stack_protect_guard
2836 && (flag_stack_protect == 2
2837 || data->passed_pointer
2838 || POINTER_TYPE_P (data->nominal_type)))
2839 stack_parm = NULL;
2840
2841 data->stack_parm = stack_parm;
2842 }
2843
2844 /* A subroutine of assign_parms. Return true if the current parameter
2845 should be stored as a BLKmode in the current frame. */
2846
2847 static bool
2848 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2849 {
2850 if (data->nominal_mode == BLKmode)
2851 return true;
2852 if (GET_MODE (data->entry_parm) == BLKmode)
2853 return true;
2854
2855 #ifdef BLOCK_REG_PADDING
2856 /* Only assign_parm_setup_block knows how to deal with register arguments
2857 that are padded at the least significant end. */
2858 if (REG_P (data->entry_parm)
2859 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2860 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2861 == (BYTES_BIG_ENDIAN ? upward : downward)))
2862 return true;
2863 #endif
2864
2865 return false;
2866 }
2867
2868 /* A subroutine of assign_parms. Arrange for the parameter to be
2869 present and valid in DATA->STACK_RTL. */
2870
2871 static void
2872 assign_parm_setup_block (struct assign_parm_data_all *all,
2873 tree parm, struct assign_parm_data_one *data)
2874 {
2875 rtx entry_parm = data->entry_parm;
2876 rtx stack_parm = data->stack_parm;
2877 HOST_WIDE_INT size;
2878 HOST_WIDE_INT size_stored;
2879
2880 if (GET_CODE (entry_parm) == PARALLEL)
2881 entry_parm = emit_group_move_into_temps (entry_parm);
2882
2883 size = int_size_in_bytes (data->passed_type);
2884 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2885 if (stack_parm == 0)
2886 {
2887 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2888 stack_parm = assign_stack_local (BLKmode, size_stored,
2889 DECL_ALIGN (parm));
2890 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2891 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2892 set_mem_attributes (stack_parm, parm, 1);
2893 }
2894
2895 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2896 calls that pass values in multiple non-contiguous locations. */
2897 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2898 {
2899 rtx mem;
2900
2901 /* Note that we will be storing an integral number of words.
2902 So we have to be careful to ensure that we allocate an
2903 integral number of words. We do this above when we call
2904 assign_stack_local if space was not allocated in the argument
2905 list. If it was, this will not work if PARM_BOUNDARY is not
2906 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2907 if it becomes a problem. Exception is when BLKmode arrives
2908 with arguments not conforming to word_mode. */
2909
2910 if (data->stack_parm == 0)
2911 ;
2912 else if (GET_CODE (entry_parm) == PARALLEL)
2913 ;
2914 else
2915 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2916
2917 mem = validize_mem (copy_rtx (stack_parm));
2918
2919 /* Handle values in multiple non-contiguous locations. */
2920 if (GET_CODE (entry_parm) == PARALLEL)
2921 {
2922 push_to_sequence2 (all->first_conversion_insn,
2923 all->last_conversion_insn);
2924 emit_group_store (mem, entry_parm, data->passed_type, size);
2925 all->first_conversion_insn = get_insns ();
2926 all->last_conversion_insn = get_last_insn ();
2927 end_sequence ();
2928 }
2929
2930 else if (size == 0)
2931 ;
2932
2933 /* If SIZE is that of a mode no bigger than a word, just use
2934 that mode's store operation. */
2935 else if (size <= UNITS_PER_WORD)
2936 {
2937 machine_mode mode
2938 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2939
2940 if (mode != BLKmode
2941 #ifdef BLOCK_REG_PADDING
2942 && (size == UNITS_PER_WORD
2943 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2944 != (BYTES_BIG_ENDIAN ? upward : downward)))
2945 #endif
2946 )
2947 {
2948 rtx reg;
2949
2950 /* We are really truncating a word_mode value containing
2951 SIZE bytes into a value of mode MODE. If such an
2952 operation requires no actual instructions, we can refer
2953 to the value directly in mode MODE, otherwise we must
2954 start with the register in word_mode and explicitly
2955 convert it. */
2956 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2957 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2958 else
2959 {
2960 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2961 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2962 }
2963 emit_move_insn (change_address (mem, mode, 0), reg);
2964 }
2965
2966 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2967 machine must be aligned to the left before storing
2968 to memory. Note that the previous test doesn't
2969 handle all cases (e.g. SIZE == 3). */
2970 else if (size != UNITS_PER_WORD
2971 #ifdef BLOCK_REG_PADDING
2972 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2973 == downward)
2974 #else
2975 && BYTES_BIG_ENDIAN
2976 #endif
2977 )
2978 {
2979 rtx tem, x;
2980 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2981 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2982
2983 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2984 tem = change_address (mem, word_mode, 0);
2985 emit_move_insn (tem, x);
2986 }
2987 else
2988 move_block_from_reg (REGNO (entry_parm), mem,
2989 size_stored / UNITS_PER_WORD);
2990 }
2991 else
2992 move_block_from_reg (REGNO (entry_parm), mem,
2993 size_stored / UNITS_PER_WORD);
2994 }
2995 else if (data->stack_parm == 0)
2996 {
2997 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2998 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2999 BLOCK_OP_NORMAL);
3000 all->first_conversion_insn = get_insns ();
3001 all->last_conversion_insn = get_last_insn ();
3002 end_sequence ();
3003 }
3004
3005 data->stack_parm = stack_parm;
3006 SET_DECL_RTL (parm, stack_parm);
3007 }
3008
3009 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3010 parameter. Get it there. Perform all ABI specified conversions. */
3011
3012 static void
3013 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3014 struct assign_parm_data_one *data)
3015 {
3016 rtx parmreg, validated_mem;
3017 rtx equiv_stack_parm;
3018 machine_mode promoted_nominal_mode;
3019 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3020 bool did_conversion = false;
3021 bool need_conversion, moved;
3022
3023 /* Store the parm in a pseudoregister during the function, but we may
3024 need to do it in a wider mode. Using 2 here makes the result
3025 consistent with promote_decl_mode and thus expand_expr_real_1. */
3026 promoted_nominal_mode
3027 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3028 TREE_TYPE (current_function_decl), 2);
3029
3030 parmreg = gen_reg_rtx (promoted_nominal_mode);
3031
3032 if (!DECL_ARTIFICIAL (parm))
3033 mark_user_reg (parmreg);
3034
3035 /* If this was an item that we received a pointer to,
3036 set DECL_RTL appropriately. */
3037 if (data->passed_pointer)
3038 {
3039 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3040 set_mem_attributes (x, parm, 1);
3041 SET_DECL_RTL (parm, x);
3042 }
3043 else
3044 SET_DECL_RTL (parm, parmreg);
3045
3046 assign_parm_remove_parallels (data);
3047
3048 /* Copy the value into the register, thus bridging between
3049 assign_parm_find_data_types and expand_expr_real_1. */
3050
3051 equiv_stack_parm = data->stack_parm;
3052 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3053
3054 need_conversion = (data->nominal_mode != data->passed_mode
3055 || promoted_nominal_mode != data->promoted_mode);
3056 moved = false;
3057
3058 if (need_conversion
3059 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3060 && data->nominal_mode == data->passed_mode
3061 && data->nominal_mode == GET_MODE (data->entry_parm))
3062 {
3063 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3064 mode, by the caller. We now have to convert it to
3065 NOMINAL_MODE, if different. However, PARMREG may be in
3066 a different mode than NOMINAL_MODE if it is being stored
3067 promoted.
3068
3069 If ENTRY_PARM is a hard register, it might be in a register
3070 not valid for operating in its mode (e.g., an odd-numbered
3071 register for a DFmode). In that case, moves are the only
3072 thing valid, so we can't do a convert from there. This
3073 occurs when the calling sequence allow such misaligned
3074 usages.
3075
3076 In addition, the conversion may involve a call, which could
3077 clobber parameters which haven't been copied to pseudo
3078 registers yet.
3079
3080 First, we try to emit an insn which performs the necessary
3081 conversion. We verify that this insn does not clobber any
3082 hard registers. */
3083
3084 enum insn_code icode;
3085 rtx op0, op1;
3086
3087 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3088 unsignedp);
3089
3090 op0 = parmreg;
3091 op1 = validated_mem;
3092 if (icode != CODE_FOR_nothing
3093 && insn_operand_matches (icode, 0, op0)
3094 && insn_operand_matches (icode, 1, op1))
3095 {
3096 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3097 rtx_insn *insn, *insns;
3098 rtx t = op1;
3099 HARD_REG_SET hardregs;
3100
3101 start_sequence ();
3102 /* If op1 is a hard register that is likely spilled, first
3103 force it into a pseudo, otherwise combiner might extend
3104 its lifetime too much. */
3105 if (GET_CODE (t) == SUBREG)
3106 t = SUBREG_REG (t);
3107 if (REG_P (t)
3108 && HARD_REGISTER_P (t)
3109 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3110 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3111 {
3112 t = gen_reg_rtx (GET_MODE (op1));
3113 emit_move_insn (t, op1);
3114 }
3115 else
3116 t = op1;
3117 rtx pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3118 data->passed_mode, unsignedp);
3119 emit_insn (pat);
3120 insns = get_insns ();
3121
3122 moved = true;
3123 CLEAR_HARD_REG_SET (hardregs);
3124 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3125 {
3126 if (INSN_P (insn))
3127 note_stores (PATTERN (insn), record_hard_reg_sets,
3128 &hardregs);
3129 if (!hard_reg_set_empty_p (hardregs))
3130 moved = false;
3131 }
3132
3133 end_sequence ();
3134
3135 if (moved)
3136 {
3137 emit_insn (insns);
3138 if (equiv_stack_parm != NULL_RTX)
3139 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3140 equiv_stack_parm);
3141 }
3142 }
3143 }
3144
3145 if (moved)
3146 /* Nothing to do. */
3147 ;
3148 else if (need_conversion)
3149 {
3150 /* We did not have an insn to convert directly, or the sequence
3151 generated appeared unsafe. We must first copy the parm to a
3152 pseudo reg, and save the conversion until after all
3153 parameters have been moved. */
3154
3155 int save_tree_used;
3156 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3157
3158 emit_move_insn (tempreg, validated_mem);
3159
3160 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3161 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3162
3163 if (GET_CODE (tempreg) == SUBREG
3164 && GET_MODE (tempreg) == data->nominal_mode
3165 && REG_P (SUBREG_REG (tempreg))
3166 && data->nominal_mode == data->passed_mode
3167 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3168 && GET_MODE_SIZE (GET_MODE (tempreg))
3169 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3170 {
3171 /* The argument is already sign/zero extended, so note it
3172 into the subreg. */
3173 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3174 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3175 }
3176
3177 /* TREE_USED gets set erroneously during expand_assignment. */
3178 save_tree_used = TREE_USED (parm);
3179 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3180 TREE_USED (parm) = save_tree_used;
3181 all->first_conversion_insn = get_insns ();
3182 all->last_conversion_insn = get_last_insn ();
3183 end_sequence ();
3184
3185 did_conversion = true;
3186 }
3187 else
3188 emit_move_insn (parmreg, validated_mem);
3189
3190 /* If we were passed a pointer but the actual value can safely live
3191 in a register, retrieve it and use it directly. */
3192 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3193 {
3194 /* We can't use nominal_mode, because it will have been set to
3195 Pmode above. We must use the actual mode of the parm. */
3196 if (use_register_for_decl (parm))
3197 {
3198 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3199 mark_user_reg (parmreg);
3200 }
3201 else
3202 {
3203 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3204 TYPE_MODE (TREE_TYPE (parm)),
3205 TYPE_ALIGN (TREE_TYPE (parm)));
3206 parmreg
3207 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3208 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3209 align);
3210 set_mem_attributes (parmreg, parm, 1);
3211 }
3212
3213 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3214 {
3215 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3216 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3217
3218 push_to_sequence2 (all->first_conversion_insn,
3219 all->last_conversion_insn);
3220 emit_move_insn (tempreg, DECL_RTL (parm));
3221 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3222 emit_move_insn (parmreg, tempreg);
3223 all->first_conversion_insn = get_insns ();
3224 all->last_conversion_insn = get_last_insn ();
3225 end_sequence ();
3226
3227 did_conversion = true;
3228 }
3229 else
3230 emit_move_insn (parmreg, DECL_RTL (parm));
3231
3232 SET_DECL_RTL (parm, parmreg);
3233
3234 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3235 now the parm. */
3236 data->stack_parm = NULL;
3237 }
3238
3239 /* Mark the register as eliminable if we did no conversion and it was
3240 copied from memory at a fixed offset, and the arg pointer was not
3241 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3242 offset formed an invalid address, such memory-equivalences as we
3243 make here would screw up life analysis for it. */
3244 if (data->nominal_mode == data->passed_mode
3245 && !did_conversion
3246 && data->stack_parm != 0
3247 && MEM_P (data->stack_parm)
3248 && data->locate.offset.var == 0
3249 && reg_mentioned_p (virtual_incoming_args_rtx,
3250 XEXP (data->stack_parm, 0)))
3251 {
3252 rtx_insn *linsn = get_last_insn ();
3253 rtx_insn *sinsn;
3254 rtx set;
3255
3256 /* Mark complex types separately. */
3257 if (GET_CODE (parmreg) == CONCAT)
3258 {
3259 machine_mode submode
3260 = GET_MODE_INNER (GET_MODE (parmreg));
3261 int regnor = REGNO (XEXP (parmreg, 0));
3262 int regnoi = REGNO (XEXP (parmreg, 1));
3263 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3264 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3265 GET_MODE_SIZE (submode));
3266
3267 /* Scan backwards for the set of the real and
3268 imaginary parts. */
3269 for (sinsn = linsn; sinsn != 0;
3270 sinsn = prev_nonnote_insn (sinsn))
3271 {
3272 set = single_set (sinsn);
3273 if (set == 0)
3274 continue;
3275
3276 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3277 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3278 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3279 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3280 }
3281 }
3282 else
3283 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3284 }
3285
3286 /* For pointer data type, suggest pointer register. */
3287 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3288 mark_reg_pointer (parmreg,
3289 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3290 }
3291
3292 /* A subroutine of assign_parms. Allocate stack space to hold the current
3293 parameter. Get it there. Perform all ABI specified conversions. */
3294
3295 static void
3296 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3297 struct assign_parm_data_one *data)
3298 {
3299 /* Value must be stored in the stack slot STACK_PARM during function
3300 execution. */
3301 bool to_conversion = false;
3302
3303 assign_parm_remove_parallels (data);
3304
3305 if (data->promoted_mode != data->nominal_mode)
3306 {
3307 /* Conversion is required. */
3308 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3309
3310 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3311
3312 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3313 to_conversion = true;
3314
3315 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3316 TYPE_UNSIGNED (TREE_TYPE (parm)));
3317
3318 if (data->stack_parm)
3319 {
3320 int offset = subreg_lowpart_offset (data->nominal_mode,
3321 GET_MODE (data->stack_parm));
3322 /* ??? This may need a big-endian conversion on sparc64. */
3323 data->stack_parm
3324 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3325 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3326 set_mem_offset (data->stack_parm,
3327 MEM_OFFSET (data->stack_parm) + offset);
3328 }
3329 }
3330
3331 if (data->entry_parm != data->stack_parm)
3332 {
3333 rtx src, dest;
3334
3335 if (data->stack_parm == 0)
3336 {
3337 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3338 GET_MODE (data->entry_parm),
3339 TYPE_ALIGN (data->passed_type));
3340 data->stack_parm
3341 = assign_stack_local (GET_MODE (data->entry_parm),
3342 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3343 align);
3344 set_mem_attributes (data->stack_parm, parm, 1);
3345 }
3346
3347 dest = validize_mem (copy_rtx (data->stack_parm));
3348 src = validize_mem (copy_rtx (data->entry_parm));
3349
3350 if (MEM_P (src))
3351 {
3352 /* Use a block move to handle potentially misaligned entry_parm. */
3353 if (!to_conversion)
3354 push_to_sequence2 (all->first_conversion_insn,
3355 all->last_conversion_insn);
3356 to_conversion = true;
3357
3358 emit_block_move (dest, src,
3359 GEN_INT (int_size_in_bytes (data->passed_type)),
3360 BLOCK_OP_NORMAL);
3361 }
3362 else
3363 emit_move_insn (dest, src);
3364 }
3365
3366 if (to_conversion)
3367 {
3368 all->first_conversion_insn = get_insns ();
3369 all->last_conversion_insn = get_last_insn ();
3370 end_sequence ();
3371 }
3372
3373 SET_DECL_RTL (parm, data->stack_parm);
3374 }
3375
3376 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3377 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3378
3379 static void
3380 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3381 vec<tree> fnargs)
3382 {
3383 tree parm;
3384 tree orig_fnargs = all->orig_fnargs;
3385 unsigned i = 0;
3386
3387 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3388 {
3389 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3390 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3391 {
3392 rtx tmp, real, imag;
3393 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3394
3395 real = DECL_RTL (fnargs[i]);
3396 imag = DECL_RTL (fnargs[i + 1]);
3397 if (inner != GET_MODE (real))
3398 {
3399 real = gen_lowpart_SUBREG (inner, real);
3400 imag = gen_lowpart_SUBREG (inner, imag);
3401 }
3402
3403 if (TREE_ADDRESSABLE (parm))
3404 {
3405 rtx rmem, imem;
3406 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3407 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3408 DECL_MODE (parm),
3409 TYPE_ALIGN (TREE_TYPE (parm)));
3410
3411 /* split_complex_arg put the real and imag parts in
3412 pseudos. Move them to memory. */
3413 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3414 set_mem_attributes (tmp, parm, 1);
3415 rmem = adjust_address_nv (tmp, inner, 0);
3416 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3417 push_to_sequence2 (all->first_conversion_insn,
3418 all->last_conversion_insn);
3419 emit_move_insn (rmem, real);
3420 emit_move_insn (imem, imag);
3421 all->first_conversion_insn = get_insns ();
3422 all->last_conversion_insn = get_last_insn ();
3423 end_sequence ();
3424 }
3425 else
3426 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3427 SET_DECL_RTL (parm, tmp);
3428
3429 real = DECL_INCOMING_RTL (fnargs[i]);
3430 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3431 if (inner != GET_MODE (real))
3432 {
3433 real = gen_lowpart_SUBREG (inner, real);
3434 imag = gen_lowpart_SUBREG (inner, imag);
3435 }
3436 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3437 set_decl_incoming_rtl (parm, tmp, false);
3438 i++;
3439 }
3440 }
3441 }
3442
3443 /* Load bounds of PARM from bounds table. */
3444 static void
3445 assign_parm_load_bounds (struct assign_parm_data_one *data,
3446 tree parm,
3447 rtx entry,
3448 unsigned bound_no)
3449 {
3450 bitmap_iterator bi;
3451 unsigned i, offs = 0;
3452 int bnd_no = -1;
3453 rtx slot = NULL, ptr = NULL;
3454
3455 if (parm)
3456 {
3457 bitmap slots;
3458 bitmap_obstack_initialize (NULL);
3459 slots = BITMAP_ALLOC (NULL);
3460 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3461 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3462 {
3463 if (bound_no)
3464 bound_no--;
3465 else
3466 {
3467 bnd_no = i;
3468 break;
3469 }
3470 }
3471 BITMAP_FREE (slots);
3472 bitmap_obstack_release (NULL);
3473 }
3474
3475 /* We may have bounds not associated with any pointer. */
3476 if (bnd_no != -1)
3477 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3478
3479 /* Find associated pointer. */
3480 if (bnd_no == -1)
3481 {
3482 /* If bounds are not associated with any bounds,
3483 then it is passed in a register or special slot. */
3484 gcc_assert (data->entry_parm);
3485 ptr = const0_rtx;
3486 }
3487 else if (MEM_P (entry))
3488 slot = adjust_address (entry, Pmode, offs);
3489 else if (REG_P (entry))
3490 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3491 else if (GET_CODE (entry) == PARALLEL)
3492 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3493 else
3494 gcc_unreachable ();
3495 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3496 data->entry_parm);
3497 }
3498
3499 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3500
3501 static void
3502 assign_bounds (vec<bounds_parm_data> &bndargs,
3503 struct assign_parm_data_all &all)
3504 {
3505 unsigned i, pass, handled = 0;
3506 bounds_parm_data *pbdata;
3507
3508 if (!bndargs.exists ())
3509 return;
3510
3511 /* We make few passes to store input bounds. Firstly handle bounds
3512 passed in registers. After that we load bounds passed in special
3513 slots. Finally we load bounds from Bounds Table. */
3514 for (pass = 0; pass < 3; pass++)
3515 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3516 {
3517 /* Pass 0 => regs only. */
3518 if (pass == 0
3519 && (!pbdata->parm_data.entry_parm
3520 || GET_CODE (pbdata->parm_data.entry_parm) != REG))
3521 continue;
3522 /* Pass 1 => slots only. */
3523 else if (pass == 1
3524 && (!pbdata->parm_data.entry_parm
3525 || GET_CODE (pbdata->parm_data.entry_parm) == REG))
3526 continue;
3527 /* Pass 2 => BT only. */
3528 else if (pass == 2
3529 && pbdata->parm_data.entry_parm)
3530 continue;
3531
3532 if (!pbdata->parm_data.entry_parm
3533 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3534 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3535 pbdata->ptr_entry, pbdata->bound_no);
3536
3537 set_decl_incoming_rtl (pbdata->bounds_parm,
3538 pbdata->parm_data.entry_parm, false);
3539
3540 if (assign_parm_setup_block_p (&pbdata->parm_data))
3541 assign_parm_setup_block (&all, pbdata->bounds_parm,
3542 &pbdata->parm_data);
3543 else if (pbdata->parm_data.passed_pointer
3544 || use_register_for_decl (pbdata->bounds_parm))
3545 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3546 &pbdata->parm_data);
3547 else
3548 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3549 &pbdata->parm_data);
3550
3551 /* Count handled bounds to make sure we miss nothing. */
3552 handled++;
3553 }
3554
3555 gcc_assert (handled == bndargs.length ());
3556
3557 bndargs.release ();
3558 }
3559
3560 /* Assign RTL expressions to the function's parameters. This may involve
3561 copying them into registers and using those registers as the DECL_RTL. */
3562
3563 static void
3564 assign_parms (tree fndecl)
3565 {
3566 struct assign_parm_data_all all;
3567 tree parm;
3568 vec<tree> fnargs;
3569 unsigned i, bound_no = 0;
3570 tree last_arg = NULL;
3571 rtx last_arg_entry = NULL;
3572 vec<bounds_parm_data> bndargs = vNULL;
3573 bounds_parm_data bdata;
3574
3575 crtl->args.internal_arg_pointer
3576 = targetm.calls.internal_arg_pointer ();
3577
3578 assign_parms_initialize_all (&all);
3579 fnargs = assign_parms_augmented_arg_list (&all);
3580
3581 FOR_EACH_VEC_ELT (fnargs, i, parm)
3582 {
3583 struct assign_parm_data_one data;
3584
3585 /* Extract the type of PARM; adjust it according to ABI. */
3586 assign_parm_find_data_types (&all, parm, &data);
3587
3588 /* Early out for errors and void parameters. */
3589 if (data.passed_mode == VOIDmode)
3590 {
3591 SET_DECL_RTL (parm, const0_rtx);
3592 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3593 continue;
3594 }
3595
3596 /* Estimate stack alignment from parameter alignment. */
3597 if (SUPPORTS_STACK_ALIGNMENT)
3598 {
3599 unsigned int align
3600 = targetm.calls.function_arg_boundary (data.promoted_mode,
3601 data.passed_type);
3602 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3603 align);
3604 if (TYPE_ALIGN (data.nominal_type) > align)
3605 align = MINIMUM_ALIGNMENT (data.nominal_type,
3606 TYPE_MODE (data.nominal_type),
3607 TYPE_ALIGN (data.nominal_type));
3608 if (crtl->stack_alignment_estimated < align)
3609 {
3610 gcc_assert (!crtl->stack_realign_processed);
3611 crtl->stack_alignment_estimated = align;
3612 }
3613 }
3614
3615 /* Find out where the parameter arrives in this function. */
3616 assign_parm_find_entry_rtl (&all, &data);
3617
3618 /* Find out where stack space for this parameter might be. */
3619 if (assign_parm_is_stack_parm (&all, &data))
3620 {
3621 assign_parm_find_stack_rtl (parm, &data);
3622 assign_parm_adjust_entry_rtl (&data);
3623 }
3624 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3625 {
3626 /* Remember where last non bounds arg was passed in case
3627 we have to load associated bounds for it from Bounds
3628 Table. */
3629 last_arg = parm;
3630 last_arg_entry = data.entry_parm;
3631 bound_no = 0;
3632 }
3633 /* Record permanently how this parm was passed. */
3634 if (data.passed_pointer)
3635 {
3636 rtx incoming_rtl
3637 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3638 data.entry_parm);
3639 set_decl_incoming_rtl (parm, incoming_rtl, true);
3640 }
3641 else
3642 set_decl_incoming_rtl (parm, data.entry_parm, false);
3643
3644 /* Boudns should be loaded in the particular order to
3645 have registers allocated correctly. Collect info about
3646 input bounds and load them later. */
3647 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3648 {
3649 /* Expect bounds in instrumented functions only. */
3650 gcc_assert (chkp_function_instrumented_p (fndecl));
3651
3652 bdata.parm_data = data;
3653 bdata.bounds_parm = parm;
3654 bdata.ptr_parm = last_arg;
3655 bdata.ptr_entry = last_arg_entry;
3656 bdata.bound_no = bound_no;
3657 bndargs.safe_push (bdata);
3658 }
3659 else
3660 {
3661 assign_parm_adjust_stack_rtl (&data);
3662
3663 if (assign_parm_setup_block_p (&data))
3664 assign_parm_setup_block (&all, parm, &data);
3665 else if (data.passed_pointer || use_register_for_decl (parm))
3666 assign_parm_setup_reg (&all, parm, &data);
3667 else
3668 assign_parm_setup_stack (&all, parm, &data);
3669 }
3670
3671 if (cfun->stdarg && !DECL_CHAIN (parm))
3672 {
3673 int pretend_bytes = 0;
3674
3675 assign_parms_setup_varargs (&all, &data, false);
3676
3677 if (chkp_function_instrumented_p (fndecl))
3678 {
3679 /* We expect this is the last parm. Otherwise it is wrong
3680 to assign bounds right now. */
3681 gcc_assert (i == (fnargs.length () - 1));
3682 assign_bounds (bndargs, all);
3683 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3684 data.promoted_mode,
3685 data.passed_type,
3686 &pretend_bytes,
3687 false);
3688 }
3689 }
3690
3691 /* Update info on where next arg arrives in registers. */
3692 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3693 data.passed_type, data.named_arg);
3694
3695 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3696 bound_no++;
3697 }
3698
3699 assign_bounds (bndargs, all);
3700
3701 if (targetm.calls.split_complex_arg)
3702 assign_parms_unsplit_complex (&all, fnargs);
3703
3704 fnargs.release ();
3705
3706 /* Output all parameter conversion instructions (possibly including calls)
3707 now that all parameters have been copied out of hard registers. */
3708 emit_insn (all.first_conversion_insn);
3709
3710 /* Estimate reload stack alignment from scalar return mode. */
3711 if (SUPPORTS_STACK_ALIGNMENT)
3712 {
3713 if (DECL_RESULT (fndecl))
3714 {
3715 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3716 machine_mode mode = TYPE_MODE (type);
3717
3718 if (mode != BLKmode
3719 && mode != VOIDmode
3720 && !AGGREGATE_TYPE_P (type))
3721 {
3722 unsigned int align = GET_MODE_ALIGNMENT (mode);
3723 if (crtl->stack_alignment_estimated < align)
3724 {
3725 gcc_assert (!crtl->stack_realign_processed);
3726 crtl->stack_alignment_estimated = align;
3727 }
3728 }
3729 }
3730 }
3731
3732 /* If we are receiving a struct value address as the first argument, set up
3733 the RTL for the function result. As this might require code to convert
3734 the transmitted address to Pmode, we do this here to ensure that possible
3735 preliminary conversions of the address have been emitted already. */
3736 if (all.function_result_decl)
3737 {
3738 tree result = DECL_RESULT (current_function_decl);
3739 rtx addr = DECL_RTL (all.function_result_decl);
3740 rtx x;
3741
3742 if (DECL_BY_REFERENCE (result))
3743 {
3744 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3745 x = addr;
3746 }
3747 else
3748 {
3749 SET_DECL_VALUE_EXPR (result,
3750 build1 (INDIRECT_REF, TREE_TYPE (result),
3751 all.function_result_decl));
3752 addr = convert_memory_address (Pmode, addr);
3753 x = gen_rtx_MEM (DECL_MODE (result), addr);
3754 set_mem_attributes (x, result, 1);
3755 }
3756
3757 DECL_HAS_VALUE_EXPR_P (result) = 1;
3758
3759 SET_DECL_RTL (result, x);
3760 }
3761
3762 /* We have aligned all the args, so add space for the pretend args. */
3763 crtl->args.pretend_args_size = all.pretend_args_size;
3764 all.stack_args_size.constant += all.extra_pretend_bytes;
3765 crtl->args.size = all.stack_args_size.constant;
3766
3767 /* Adjust function incoming argument size for alignment and
3768 minimum length. */
3769
3770 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3771 crtl->args.size = CEIL_ROUND (crtl->args.size,
3772 PARM_BOUNDARY / BITS_PER_UNIT);
3773
3774 if (ARGS_GROW_DOWNWARD)
3775 {
3776 crtl->args.arg_offset_rtx
3777 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3778 : expand_expr (size_diffop (all.stack_args_size.var,
3779 size_int (-all.stack_args_size.constant)),
3780 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3781 }
3782 else
3783 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3784
3785 /* See how many bytes, if any, of its args a function should try to pop
3786 on return. */
3787
3788 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3789 TREE_TYPE (fndecl),
3790 crtl->args.size);
3791
3792 /* For stdarg.h function, save info about
3793 regs and stack space used by the named args. */
3794
3795 crtl->args.info = all.args_so_far_v;
3796
3797 /* Set the rtx used for the function return value. Put this in its
3798 own variable so any optimizers that need this information don't have
3799 to include tree.h. Do this here so it gets done when an inlined
3800 function gets output. */
3801
3802 crtl->return_rtx
3803 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3804 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3805
3806 /* If scalar return value was computed in a pseudo-reg, or was a named
3807 return value that got dumped to the stack, copy that to the hard
3808 return register. */
3809 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3810 {
3811 tree decl_result = DECL_RESULT (fndecl);
3812 rtx decl_rtl = DECL_RTL (decl_result);
3813
3814 if (REG_P (decl_rtl)
3815 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3816 : DECL_REGISTER (decl_result))
3817 {
3818 rtx real_decl_rtl;
3819
3820 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3821 fndecl, true);
3822 if (chkp_function_instrumented_p (fndecl))
3823 crtl->return_bnd
3824 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3825 fndecl, true);
3826 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3827 /* The delay slot scheduler assumes that crtl->return_rtx
3828 holds the hard register containing the return value, not a
3829 temporary pseudo. */
3830 crtl->return_rtx = real_decl_rtl;
3831 }
3832 }
3833 }
3834
3835 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3836 For all seen types, gimplify their sizes. */
3837
3838 static tree
3839 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3840 {
3841 tree t = *tp;
3842
3843 *walk_subtrees = 0;
3844 if (TYPE_P (t))
3845 {
3846 if (POINTER_TYPE_P (t))
3847 *walk_subtrees = 1;
3848 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3849 && !TYPE_SIZES_GIMPLIFIED (t))
3850 {
3851 gimplify_type_sizes (t, (gimple_seq *) data);
3852 *walk_subtrees = 1;
3853 }
3854 }
3855
3856 return NULL;
3857 }
3858
3859 /* Gimplify the parameter list for current_function_decl. This involves
3860 evaluating SAVE_EXPRs of variable sized parameters and generating code
3861 to implement callee-copies reference parameters. Returns a sequence of
3862 statements to add to the beginning of the function. */
3863
3864 gimple_seq
3865 gimplify_parameters (void)
3866 {
3867 struct assign_parm_data_all all;
3868 tree parm;
3869 gimple_seq stmts = NULL;
3870 vec<tree> fnargs;
3871 unsigned i;
3872
3873 assign_parms_initialize_all (&all);
3874 fnargs = assign_parms_augmented_arg_list (&all);
3875
3876 FOR_EACH_VEC_ELT (fnargs, i, parm)
3877 {
3878 struct assign_parm_data_one data;
3879
3880 /* Extract the type of PARM; adjust it according to ABI. */
3881 assign_parm_find_data_types (&all, parm, &data);
3882
3883 /* Early out for errors and void parameters. */
3884 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3885 continue;
3886
3887 /* Update info on where next arg arrives in registers. */
3888 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3889 data.passed_type, data.named_arg);
3890
3891 /* ??? Once upon a time variable_size stuffed parameter list
3892 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3893 turned out to be less than manageable in the gimple world.
3894 Now we have to hunt them down ourselves. */
3895 walk_tree_without_duplicates (&data.passed_type,
3896 gimplify_parm_type, &stmts);
3897
3898 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3899 {
3900 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3901 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3902 }
3903
3904 if (data.passed_pointer)
3905 {
3906 tree type = TREE_TYPE (data.passed_type);
3907 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3908 type, data.named_arg))
3909 {
3910 tree local, t;
3911
3912 /* For constant-sized objects, this is trivial; for
3913 variable-sized objects, we have to play games. */
3914 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3915 && !(flag_stack_check == GENERIC_STACK_CHECK
3916 && compare_tree_int (DECL_SIZE_UNIT (parm),
3917 STACK_CHECK_MAX_VAR_SIZE) > 0))
3918 {
3919 local = create_tmp_var (type, get_name (parm));
3920 DECL_IGNORED_P (local) = 0;
3921 /* If PARM was addressable, move that flag over
3922 to the local copy, as its address will be taken,
3923 not the PARMs. Keep the parms address taken
3924 as we'll query that flag during gimplification. */
3925 if (TREE_ADDRESSABLE (parm))
3926 TREE_ADDRESSABLE (local) = 1;
3927 else if (TREE_CODE (type) == COMPLEX_TYPE
3928 || TREE_CODE (type) == VECTOR_TYPE)
3929 DECL_GIMPLE_REG_P (local) = 1;
3930 }
3931 else
3932 {
3933 tree ptr_type, addr;
3934
3935 ptr_type = build_pointer_type (type);
3936 addr = create_tmp_reg (ptr_type, get_name (parm));
3937 DECL_IGNORED_P (addr) = 0;
3938 local = build_fold_indirect_ref (addr);
3939
3940 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3941 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3942 size_int (DECL_ALIGN (parm)));
3943
3944 /* The call has been built for a variable-sized object. */
3945 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3946 t = fold_convert (ptr_type, t);
3947 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3948 gimplify_and_add (t, &stmts);
3949 }
3950
3951 gimplify_assign (local, parm, &stmts);
3952
3953 SET_DECL_VALUE_EXPR (parm, local);
3954 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3955 }
3956 }
3957 }
3958
3959 fnargs.release ();
3960
3961 return stmts;
3962 }
3963 \f
3964 /* Compute the size and offset from the start of the stacked arguments for a
3965 parm passed in mode PASSED_MODE and with type TYPE.
3966
3967 INITIAL_OFFSET_PTR points to the current offset into the stacked
3968 arguments.
3969
3970 The starting offset and size for this parm are returned in
3971 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3972 nonzero, the offset is that of stack slot, which is returned in
3973 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3974 padding required from the initial offset ptr to the stack slot.
3975
3976 IN_REGS is nonzero if the argument will be passed in registers. It will
3977 never be set if REG_PARM_STACK_SPACE is not defined.
3978
3979 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3980 for arguments which are passed in registers.
3981
3982 FNDECL is the function in which the argument was defined.
3983
3984 There are two types of rounding that are done. The first, controlled by
3985 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3986 argument list to be aligned to the specific boundary (in bits). This
3987 rounding affects the initial and starting offsets, but not the argument
3988 size.
3989
3990 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3991 optionally rounds the size of the parm to PARM_BOUNDARY. The
3992 initial offset is not affected by this rounding, while the size always
3993 is and the starting offset may be. */
3994
3995 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3996 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3997 callers pass in the total size of args so far as
3998 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3999
4000 void
4001 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4002 int reg_parm_stack_space, int partial,
4003 tree fndecl ATTRIBUTE_UNUSED,
4004 struct args_size *initial_offset_ptr,
4005 struct locate_and_pad_arg_data *locate)
4006 {
4007 tree sizetree;
4008 enum direction where_pad;
4009 unsigned int boundary, round_boundary;
4010 int part_size_in_regs;
4011
4012 /* If we have found a stack parm before we reach the end of the
4013 area reserved for registers, skip that area. */
4014 if (! in_regs)
4015 {
4016 if (reg_parm_stack_space > 0)
4017 {
4018 if (initial_offset_ptr->var)
4019 {
4020 initial_offset_ptr->var
4021 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4022 ssize_int (reg_parm_stack_space));
4023 initial_offset_ptr->constant = 0;
4024 }
4025 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4026 initial_offset_ptr->constant = reg_parm_stack_space;
4027 }
4028 }
4029
4030 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4031
4032 sizetree
4033 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4034 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4035 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4036 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4037 type);
4038 locate->where_pad = where_pad;
4039
4040 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4041 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4042 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4043
4044 locate->boundary = boundary;
4045
4046 if (SUPPORTS_STACK_ALIGNMENT)
4047 {
4048 /* stack_alignment_estimated can't change after stack has been
4049 realigned. */
4050 if (crtl->stack_alignment_estimated < boundary)
4051 {
4052 if (!crtl->stack_realign_processed)
4053 crtl->stack_alignment_estimated = boundary;
4054 else
4055 {
4056 /* If stack is realigned and stack alignment value
4057 hasn't been finalized, it is OK not to increase
4058 stack_alignment_estimated. The bigger alignment
4059 requirement is recorded in stack_alignment_needed
4060 below. */
4061 gcc_assert (!crtl->stack_realign_finalized
4062 && crtl->stack_realign_needed);
4063 }
4064 }
4065 }
4066
4067 /* Remember if the outgoing parameter requires extra alignment on the
4068 calling function side. */
4069 if (crtl->stack_alignment_needed < boundary)
4070 crtl->stack_alignment_needed = boundary;
4071 if (crtl->preferred_stack_boundary < boundary)
4072 crtl->preferred_stack_boundary = boundary;
4073
4074 if (ARGS_GROW_DOWNWARD)
4075 {
4076 locate->slot_offset.constant = -initial_offset_ptr->constant;
4077 if (initial_offset_ptr->var)
4078 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4079 initial_offset_ptr->var);
4080
4081 {
4082 tree s2 = sizetree;
4083 if (where_pad != none
4084 && (!tree_fits_uhwi_p (sizetree)
4085 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4086 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4087 SUB_PARM_SIZE (locate->slot_offset, s2);
4088 }
4089
4090 locate->slot_offset.constant += part_size_in_regs;
4091
4092 if (!in_regs || reg_parm_stack_space > 0)
4093 pad_to_arg_alignment (&locate->slot_offset, boundary,
4094 &locate->alignment_pad);
4095
4096 locate->size.constant = (-initial_offset_ptr->constant
4097 - locate->slot_offset.constant);
4098 if (initial_offset_ptr->var)
4099 locate->size.var = size_binop (MINUS_EXPR,
4100 size_binop (MINUS_EXPR,
4101 ssize_int (0),
4102 initial_offset_ptr->var),
4103 locate->slot_offset.var);
4104
4105 /* Pad_below needs the pre-rounded size to know how much to pad
4106 below. */
4107 locate->offset = locate->slot_offset;
4108 if (where_pad == downward)
4109 pad_below (&locate->offset, passed_mode, sizetree);
4110
4111 }
4112 else
4113 {
4114 if (!in_regs || reg_parm_stack_space > 0)
4115 pad_to_arg_alignment (initial_offset_ptr, boundary,
4116 &locate->alignment_pad);
4117 locate->slot_offset = *initial_offset_ptr;
4118
4119 #ifdef PUSH_ROUNDING
4120 if (passed_mode != BLKmode)
4121 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4122 #endif
4123
4124 /* Pad_below needs the pre-rounded size to know how much to pad below
4125 so this must be done before rounding up. */
4126 locate->offset = locate->slot_offset;
4127 if (where_pad == downward)
4128 pad_below (&locate->offset, passed_mode, sizetree);
4129
4130 if (where_pad != none
4131 && (!tree_fits_uhwi_p (sizetree)
4132 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4133 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4134
4135 ADD_PARM_SIZE (locate->size, sizetree);
4136
4137 locate->size.constant -= part_size_in_regs;
4138 }
4139
4140 #ifdef FUNCTION_ARG_OFFSET
4141 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
4142 #endif
4143 }
4144
4145 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4146 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4147
4148 static void
4149 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4150 struct args_size *alignment_pad)
4151 {
4152 tree save_var = NULL_TREE;
4153 HOST_WIDE_INT save_constant = 0;
4154 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4155 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
4156
4157 #ifdef SPARC_STACK_BOUNDARY_HACK
4158 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4159 the real alignment of %sp. However, when it does this, the
4160 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4161 if (SPARC_STACK_BOUNDARY_HACK)
4162 sp_offset = 0;
4163 #endif
4164
4165 if (boundary > PARM_BOUNDARY)
4166 {
4167 save_var = offset_ptr->var;
4168 save_constant = offset_ptr->constant;
4169 }
4170
4171 alignment_pad->var = NULL_TREE;
4172 alignment_pad->constant = 0;
4173
4174 if (boundary > BITS_PER_UNIT)
4175 {
4176 if (offset_ptr->var)
4177 {
4178 tree sp_offset_tree = ssize_int (sp_offset);
4179 tree offset = size_binop (PLUS_EXPR,
4180 ARGS_SIZE_TREE (*offset_ptr),
4181 sp_offset_tree);
4182 tree rounded;
4183 if (ARGS_GROW_DOWNWARD)
4184 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4185 else
4186 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4187
4188 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4189 /* ARGS_SIZE_TREE includes constant term. */
4190 offset_ptr->constant = 0;
4191 if (boundary > PARM_BOUNDARY)
4192 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4193 save_var);
4194 }
4195 else
4196 {
4197 offset_ptr->constant = -sp_offset +
4198 (ARGS_GROW_DOWNWARD
4199 ? FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes)
4200 : CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes));
4201
4202 if (boundary > PARM_BOUNDARY)
4203 alignment_pad->constant = offset_ptr->constant - save_constant;
4204 }
4205 }
4206 }
4207
4208 static void
4209 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4210 {
4211 if (passed_mode != BLKmode)
4212 {
4213 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4214 offset_ptr->constant
4215 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4216 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4217 - GET_MODE_SIZE (passed_mode));
4218 }
4219 else
4220 {
4221 if (TREE_CODE (sizetree) != INTEGER_CST
4222 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4223 {
4224 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4225 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4226 /* Add it in. */
4227 ADD_PARM_SIZE (*offset_ptr, s2);
4228 SUB_PARM_SIZE (*offset_ptr, sizetree);
4229 }
4230 }
4231 }
4232 \f
4233
4234 /* True if register REGNO was alive at a place where `setjmp' was
4235 called and was set more than once or is an argument. Such regs may
4236 be clobbered by `longjmp'. */
4237
4238 static bool
4239 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4240 {
4241 /* There appear to be cases where some local vars never reach the
4242 backend but have bogus regnos. */
4243 if (regno >= max_reg_num ())
4244 return false;
4245
4246 return ((REG_N_SETS (regno) > 1
4247 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4248 regno))
4249 && REGNO_REG_SET_P (setjmp_crosses, regno));
4250 }
4251
4252 /* Walk the tree of blocks describing the binding levels within a
4253 function and warn about variables the might be killed by setjmp or
4254 vfork. This is done after calling flow_analysis before register
4255 allocation since that will clobber the pseudo-regs to hard
4256 regs. */
4257
4258 static void
4259 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4260 {
4261 tree decl, sub;
4262
4263 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4264 {
4265 if (TREE_CODE (decl) == VAR_DECL
4266 && DECL_RTL_SET_P (decl)
4267 && REG_P (DECL_RTL (decl))
4268 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4269 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4270 " %<longjmp%> or %<vfork%>", decl);
4271 }
4272
4273 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4274 setjmp_vars_warning (setjmp_crosses, sub);
4275 }
4276
4277 /* Do the appropriate part of setjmp_vars_warning
4278 but for arguments instead of local variables. */
4279
4280 static void
4281 setjmp_args_warning (bitmap setjmp_crosses)
4282 {
4283 tree decl;
4284 for (decl = DECL_ARGUMENTS (current_function_decl);
4285 decl; decl = DECL_CHAIN (decl))
4286 if (DECL_RTL (decl) != 0
4287 && REG_P (DECL_RTL (decl))
4288 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4289 warning (OPT_Wclobbered,
4290 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4291 decl);
4292 }
4293
4294 /* Generate warning messages for variables live across setjmp. */
4295
4296 void
4297 generate_setjmp_warnings (void)
4298 {
4299 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4300
4301 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4302 || bitmap_empty_p (setjmp_crosses))
4303 return;
4304
4305 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4306 setjmp_args_warning (setjmp_crosses);
4307 }
4308
4309 \f
4310 /* Reverse the order of elements in the fragment chain T of blocks,
4311 and return the new head of the chain (old last element).
4312 In addition to that clear BLOCK_SAME_RANGE flags when needed
4313 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4314 its super fragment origin. */
4315
4316 static tree
4317 block_fragments_nreverse (tree t)
4318 {
4319 tree prev = 0, block, next, prev_super = 0;
4320 tree super = BLOCK_SUPERCONTEXT (t);
4321 if (BLOCK_FRAGMENT_ORIGIN (super))
4322 super = BLOCK_FRAGMENT_ORIGIN (super);
4323 for (block = t; block; block = next)
4324 {
4325 next = BLOCK_FRAGMENT_CHAIN (block);
4326 BLOCK_FRAGMENT_CHAIN (block) = prev;
4327 if ((prev && !BLOCK_SAME_RANGE (prev))
4328 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4329 != prev_super))
4330 BLOCK_SAME_RANGE (block) = 0;
4331 prev_super = BLOCK_SUPERCONTEXT (block);
4332 BLOCK_SUPERCONTEXT (block) = super;
4333 prev = block;
4334 }
4335 t = BLOCK_FRAGMENT_ORIGIN (t);
4336 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4337 != prev_super)
4338 BLOCK_SAME_RANGE (t) = 0;
4339 BLOCK_SUPERCONTEXT (t) = super;
4340 return prev;
4341 }
4342
4343 /* Reverse the order of elements in the chain T of blocks,
4344 and return the new head of the chain (old last element).
4345 Also do the same on subblocks and reverse the order of elements
4346 in BLOCK_FRAGMENT_CHAIN as well. */
4347
4348 static tree
4349 blocks_nreverse_all (tree t)
4350 {
4351 tree prev = 0, block, next;
4352 for (block = t; block; block = next)
4353 {
4354 next = BLOCK_CHAIN (block);
4355 BLOCK_CHAIN (block) = prev;
4356 if (BLOCK_FRAGMENT_CHAIN (block)
4357 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4358 {
4359 BLOCK_FRAGMENT_CHAIN (block)
4360 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4361 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4362 BLOCK_SAME_RANGE (block) = 0;
4363 }
4364 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4365 prev = block;
4366 }
4367 return prev;
4368 }
4369
4370
4371 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4372 and create duplicate blocks. */
4373 /* ??? Need an option to either create block fragments or to create
4374 abstract origin duplicates of a source block. It really depends
4375 on what optimization has been performed. */
4376
4377 void
4378 reorder_blocks (void)
4379 {
4380 tree block = DECL_INITIAL (current_function_decl);
4381
4382 if (block == NULL_TREE)
4383 return;
4384
4385 auto_vec<tree, 10> block_stack;
4386
4387 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4388 clear_block_marks (block);
4389
4390 /* Prune the old trees away, so that they don't get in the way. */
4391 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4392 BLOCK_CHAIN (block) = NULL_TREE;
4393
4394 /* Recreate the block tree from the note nesting. */
4395 reorder_blocks_1 (get_insns (), block, &block_stack);
4396 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4397 }
4398
4399 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4400
4401 void
4402 clear_block_marks (tree block)
4403 {
4404 while (block)
4405 {
4406 TREE_ASM_WRITTEN (block) = 0;
4407 clear_block_marks (BLOCK_SUBBLOCKS (block));
4408 block = BLOCK_CHAIN (block);
4409 }
4410 }
4411
4412 static void
4413 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4414 vec<tree> *p_block_stack)
4415 {
4416 rtx_insn *insn;
4417 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4418
4419 for (insn = insns; insn; insn = NEXT_INSN (insn))
4420 {
4421 if (NOTE_P (insn))
4422 {
4423 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4424 {
4425 tree block = NOTE_BLOCK (insn);
4426 tree origin;
4427
4428 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4429 origin = block;
4430
4431 if (prev_end)
4432 BLOCK_SAME_RANGE (prev_end) = 0;
4433 prev_end = NULL_TREE;
4434
4435 /* If we have seen this block before, that means it now
4436 spans multiple address regions. Create a new fragment. */
4437 if (TREE_ASM_WRITTEN (block))
4438 {
4439 tree new_block = copy_node (block);
4440
4441 BLOCK_SAME_RANGE (new_block) = 0;
4442 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4443 BLOCK_FRAGMENT_CHAIN (new_block)
4444 = BLOCK_FRAGMENT_CHAIN (origin);
4445 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4446
4447 NOTE_BLOCK (insn) = new_block;
4448 block = new_block;
4449 }
4450
4451 if (prev_beg == current_block && prev_beg)
4452 BLOCK_SAME_RANGE (block) = 1;
4453
4454 prev_beg = origin;
4455
4456 BLOCK_SUBBLOCKS (block) = 0;
4457 TREE_ASM_WRITTEN (block) = 1;
4458 /* When there's only one block for the entire function,
4459 current_block == block and we mustn't do this, it
4460 will cause infinite recursion. */
4461 if (block != current_block)
4462 {
4463 tree super;
4464 if (block != origin)
4465 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4466 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4467 (origin))
4468 == current_block);
4469 if (p_block_stack->is_empty ())
4470 super = current_block;
4471 else
4472 {
4473 super = p_block_stack->last ();
4474 gcc_assert (super == current_block
4475 || BLOCK_FRAGMENT_ORIGIN (super)
4476 == current_block);
4477 }
4478 BLOCK_SUPERCONTEXT (block) = super;
4479 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4480 BLOCK_SUBBLOCKS (current_block) = block;
4481 current_block = origin;
4482 }
4483 p_block_stack->safe_push (block);
4484 }
4485 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4486 {
4487 NOTE_BLOCK (insn) = p_block_stack->pop ();
4488 current_block = BLOCK_SUPERCONTEXT (current_block);
4489 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4490 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4491 prev_beg = NULL_TREE;
4492 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4493 ? NOTE_BLOCK (insn) : NULL_TREE;
4494 }
4495 }
4496 else
4497 {
4498 prev_beg = NULL_TREE;
4499 if (prev_end)
4500 BLOCK_SAME_RANGE (prev_end) = 0;
4501 prev_end = NULL_TREE;
4502 }
4503 }
4504 }
4505
4506 /* Reverse the order of elements in the chain T of blocks,
4507 and return the new head of the chain (old last element). */
4508
4509 tree
4510 blocks_nreverse (tree t)
4511 {
4512 tree prev = 0, block, next;
4513 for (block = t; block; block = next)
4514 {
4515 next = BLOCK_CHAIN (block);
4516 BLOCK_CHAIN (block) = prev;
4517 prev = block;
4518 }
4519 return prev;
4520 }
4521
4522 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4523 by modifying the last node in chain 1 to point to chain 2. */
4524
4525 tree
4526 block_chainon (tree op1, tree op2)
4527 {
4528 tree t1;
4529
4530 if (!op1)
4531 return op2;
4532 if (!op2)
4533 return op1;
4534
4535 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4536 continue;
4537 BLOCK_CHAIN (t1) = op2;
4538
4539 #ifdef ENABLE_TREE_CHECKING
4540 {
4541 tree t2;
4542 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4543 gcc_assert (t2 != t1);
4544 }
4545 #endif
4546
4547 return op1;
4548 }
4549
4550 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4551 non-NULL, list them all into VECTOR, in a depth-first preorder
4552 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4553 blocks. */
4554
4555 static int
4556 all_blocks (tree block, tree *vector)
4557 {
4558 int n_blocks = 0;
4559
4560 while (block)
4561 {
4562 TREE_ASM_WRITTEN (block) = 0;
4563
4564 /* Record this block. */
4565 if (vector)
4566 vector[n_blocks] = block;
4567
4568 ++n_blocks;
4569
4570 /* Record the subblocks, and their subblocks... */
4571 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4572 vector ? vector + n_blocks : 0);
4573 block = BLOCK_CHAIN (block);
4574 }
4575
4576 return n_blocks;
4577 }
4578
4579 /* Return a vector containing all the blocks rooted at BLOCK. The
4580 number of elements in the vector is stored in N_BLOCKS_P. The
4581 vector is dynamically allocated; it is the caller's responsibility
4582 to call `free' on the pointer returned. */
4583
4584 static tree *
4585 get_block_vector (tree block, int *n_blocks_p)
4586 {
4587 tree *block_vector;
4588
4589 *n_blocks_p = all_blocks (block, NULL);
4590 block_vector = XNEWVEC (tree, *n_blocks_p);
4591 all_blocks (block, block_vector);
4592
4593 return block_vector;
4594 }
4595
4596 static GTY(()) int next_block_index = 2;
4597
4598 /* Set BLOCK_NUMBER for all the blocks in FN. */
4599
4600 void
4601 number_blocks (tree fn)
4602 {
4603 int i;
4604 int n_blocks;
4605 tree *block_vector;
4606
4607 /* For SDB and XCOFF debugging output, we start numbering the blocks
4608 from 1 within each function, rather than keeping a running
4609 count. */
4610 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4611 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4612 next_block_index = 1;
4613 #endif
4614
4615 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4616
4617 /* The top-level BLOCK isn't numbered at all. */
4618 for (i = 1; i < n_blocks; ++i)
4619 /* We number the blocks from two. */
4620 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4621
4622 free (block_vector);
4623
4624 return;
4625 }
4626
4627 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4628
4629 DEBUG_FUNCTION tree
4630 debug_find_var_in_block_tree (tree var, tree block)
4631 {
4632 tree t;
4633
4634 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4635 if (t == var)
4636 return block;
4637
4638 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4639 {
4640 tree ret = debug_find_var_in_block_tree (var, t);
4641 if (ret)
4642 return ret;
4643 }
4644
4645 return NULL_TREE;
4646 }
4647 \f
4648 /* Keep track of whether we're in a dummy function context. If we are,
4649 we don't want to invoke the set_current_function hook, because we'll
4650 get into trouble if the hook calls target_reinit () recursively or
4651 when the initial initialization is not yet complete. */
4652
4653 static bool in_dummy_function;
4654
4655 /* Invoke the target hook when setting cfun. Update the optimization options
4656 if the function uses different options than the default. */
4657
4658 static void
4659 invoke_set_current_function_hook (tree fndecl)
4660 {
4661 if (!in_dummy_function)
4662 {
4663 tree opts = ((fndecl)
4664 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4665 : optimization_default_node);
4666
4667 if (!opts)
4668 opts = optimization_default_node;
4669
4670 /* Change optimization options if needed. */
4671 if (optimization_current_node != opts)
4672 {
4673 optimization_current_node = opts;
4674 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4675 }
4676
4677 targetm.set_current_function (fndecl);
4678 this_fn_optabs = this_target_optabs;
4679
4680 if (opts != optimization_default_node)
4681 {
4682 init_tree_optimization_optabs (opts);
4683 if (TREE_OPTIMIZATION_OPTABS (opts))
4684 this_fn_optabs = (struct target_optabs *)
4685 TREE_OPTIMIZATION_OPTABS (opts);
4686 }
4687 }
4688 }
4689
4690 /* cfun should never be set directly; use this function. */
4691
4692 void
4693 set_cfun (struct function *new_cfun)
4694 {
4695 if (cfun != new_cfun)
4696 {
4697 cfun = new_cfun;
4698 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4699 }
4700 }
4701
4702 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4703
4704 static vec<function_p> cfun_stack;
4705
4706 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4707 current_function_decl accordingly. */
4708
4709 void
4710 push_cfun (struct function *new_cfun)
4711 {
4712 gcc_assert ((!cfun && !current_function_decl)
4713 || (cfun && current_function_decl == cfun->decl));
4714 cfun_stack.safe_push (cfun);
4715 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4716 set_cfun (new_cfun);
4717 }
4718
4719 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4720
4721 void
4722 pop_cfun (void)
4723 {
4724 struct function *new_cfun = cfun_stack.pop ();
4725 /* When in_dummy_function, we do have a cfun but current_function_decl is
4726 NULL. We also allow pushing NULL cfun and subsequently changing
4727 current_function_decl to something else and have both restored by
4728 pop_cfun. */
4729 gcc_checking_assert (in_dummy_function
4730 || !cfun
4731 || current_function_decl == cfun->decl);
4732 set_cfun (new_cfun);
4733 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4734 }
4735
4736 /* Return value of funcdef and increase it. */
4737 int
4738 get_next_funcdef_no (void)
4739 {
4740 return funcdef_no++;
4741 }
4742
4743 /* Return value of funcdef. */
4744 int
4745 get_last_funcdef_no (void)
4746 {
4747 return funcdef_no;
4748 }
4749
4750 /* Allocate a function structure for FNDECL and set its contents
4751 to the defaults. Set cfun to the newly-allocated object.
4752 Some of the helper functions invoked during initialization assume
4753 that cfun has already been set. Therefore, assign the new object
4754 directly into cfun and invoke the back end hook explicitly at the
4755 very end, rather than initializing a temporary and calling set_cfun
4756 on it.
4757
4758 ABSTRACT_P is true if this is a function that will never be seen by
4759 the middle-end. Such functions are front-end concepts (like C++
4760 function templates) that do not correspond directly to functions
4761 placed in object files. */
4762
4763 void
4764 allocate_struct_function (tree fndecl, bool abstract_p)
4765 {
4766 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4767
4768 cfun = ggc_cleared_alloc<function> ();
4769
4770 init_eh_for_function ();
4771
4772 if (init_machine_status)
4773 cfun->machine = (*init_machine_status) ();
4774
4775 #ifdef OVERRIDE_ABI_FORMAT
4776 OVERRIDE_ABI_FORMAT (fndecl);
4777 #endif
4778
4779 if (fndecl != NULL_TREE)
4780 {
4781 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4782 cfun->decl = fndecl;
4783 current_function_funcdef_no = get_next_funcdef_no ();
4784 }
4785
4786 invoke_set_current_function_hook (fndecl);
4787
4788 if (fndecl != NULL_TREE)
4789 {
4790 tree result = DECL_RESULT (fndecl);
4791 if (!abstract_p && aggregate_value_p (result, fndecl))
4792 {
4793 #ifdef PCC_STATIC_STRUCT_RETURN
4794 cfun->returns_pcc_struct = 1;
4795 #endif
4796 cfun->returns_struct = 1;
4797 }
4798
4799 cfun->stdarg = stdarg_p (fntype);
4800
4801 /* Assume all registers in stdarg functions need to be saved. */
4802 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4803 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4804
4805 /* ??? This could be set on a per-function basis by the front-end
4806 but is this worth the hassle? */
4807 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4808 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4809
4810 if (!profile_flag && !flag_instrument_function_entry_exit)
4811 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4812 }
4813 }
4814
4815 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4816 instead of just setting it. */
4817
4818 void
4819 push_struct_function (tree fndecl)
4820 {
4821 /* When in_dummy_function we might be in the middle of a pop_cfun and
4822 current_function_decl and cfun may not match. */
4823 gcc_assert (in_dummy_function
4824 || (!cfun && !current_function_decl)
4825 || (cfun && current_function_decl == cfun->decl));
4826 cfun_stack.safe_push (cfun);
4827 current_function_decl = fndecl;
4828 allocate_struct_function (fndecl, false);
4829 }
4830
4831 /* Reset crtl and other non-struct-function variables to defaults as
4832 appropriate for emitting rtl at the start of a function. */
4833
4834 static void
4835 prepare_function_start (void)
4836 {
4837 gcc_assert (!get_last_insn ());
4838 init_temp_slots ();
4839 init_emit ();
4840 init_varasm_status ();
4841 init_expr ();
4842 default_rtl_profile ();
4843
4844 if (flag_stack_usage_info)
4845 {
4846 cfun->su = ggc_cleared_alloc<stack_usage> ();
4847 cfun->su->static_stack_size = -1;
4848 }
4849
4850 cse_not_expected = ! optimize;
4851
4852 /* Caller save not needed yet. */
4853 caller_save_needed = 0;
4854
4855 /* We haven't done register allocation yet. */
4856 reg_renumber = 0;
4857
4858 /* Indicate that we have not instantiated virtual registers yet. */
4859 virtuals_instantiated = 0;
4860
4861 /* Indicate that we want CONCATs now. */
4862 generating_concat_p = 1;
4863
4864 /* Indicate we have no need of a frame pointer yet. */
4865 frame_pointer_needed = 0;
4866 }
4867
4868 void
4869 push_dummy_function (bool with_decl)
4870 {
4871 tree fn_decl, fn_type, fn_result_decl;
4872
4873 gcc_assert (!in_dummy_function);
4874 in_dummy_function = true;
4875
4876 if (with_decl)
4877 {
4878 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4879 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4880 fn_type);
4881 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4882 NULL_TREE, void_type_node);
4883 DECL_RESULT (fn_decl) = fn_result_decl;
4884 }
4885 else
4886 fn_decl = NULL_TREE;
4887
4888 push_struct_function (fn_decl);
4889 }
4890
4891 /* Initialize the rtl expansion mechanism so that we can do simple things
4892 like generate sequences. This is used to provide a context during global
4893 initialization of some passes. You must call expand_dummy_function_end
4894 to exit this context. */
4895
4896 void
4897 init_dummy_function_start (void)
4898 {
4899 push_dummy_function (false);
4900 prepare_function_start ();
4901 }
4902
4903 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4904 and initialize static variables for generating RTL for the statements
4905 of the function. */
4906
4907 void
4908 init_function_start (tree subr)
4909 {
4910 if (subr && DECL_STRUCT_FUNCTION (subr))
4911 set_cfun (DECL_STRUCT_FUNCTION (subr));
4912 else
4913 allocate_struct_function (subr, false);
4914
4915 /* Initialize backend, if needed. */
4916 initialize_rtl ();
4917
4918 prepare_function_start ();
4919 decide_function_section (subr);
4920
4921 /* Warn if this value is an aggregate type,
4922 regardless of which calling convention we are using for it. */
4923 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4924 warning (OPT_Waggregate_return, "function returns an aggregate");
4925 }
4926
4927 /* Expand code to verify the stack_protect_guard. This is invoked at
4928 the end of a function to be protected. */
4929
4930 #ifndef HAVE_stack_protect_test
4931 # define HAVE_stack_protect_test 0
4932 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4933 #endif
4934
4935 void
4936 stack_protect_epilogue (void)
4937 {
4938 tree guard_decl = targetm.stack_protect_guard ();
4939 rtx_code_label *label = gen_label_rtx ();
4940 rtx x, y, tmp;
4941
4942 x = expand_normal (crtl->stack_protect_guard);
4943 y = expand_normal (guard_decl);
4944
4945 /* Allow the target to compare Y with X without leaking either into
4946 a register. */
4947 switch ((int) (HAVE_stack_protect_test != 0))
4948 {
4949 case 1:
4950 tmp = gen_stack_protect_test (x, y, label);
4951 if (tmp)
4952 {
4953 emit_insn (tmp);
4954 break;
4955 }
4956 /* FALLTHRU */
4957
4958 default:
4959 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4960 break;
4961 }
4962
4963 /* The noreturn predictor has been moved to the tree level. The rtl-level
4964 predictors estimate this branch about 20%, which isn't enough to get
4965 things moved out of line. Since this is the only extant case of adding
4966 a noreturn function at the rtl level, it doesn't seem worth doing ought
4967 except adding the prediction by hand. */
4968 tmp = get_last_insn ();
4969 if (JUMP_P (tmp))
4970 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4971
4972 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4973 free_temp_slots ();
4974 emit_label (label);
4975 }
4976 \f
4977 /* Start the RTL for a new function, and set variables used for
4978 emitting RTL.
4979 SUBR is the FUNCTION_DECL node.
4980 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4981 the function's parameters, which must be run at any return statement. */
4982
4983 void
4984 expand_function_start (tree subr)
4985 {
4986 /* Make sure volatile mem refs aren't considered
4987 valid operands of arithmetic insns. */
4988 init_recog_no_volatile ();
4989
4990 crtl->profile
4991 = (profile_flag
4992 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4993
4994 crtl->limit_stack
4995 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4996
4997 /* Make the label for return statements to jump to. Do not special
4998 case machines with special return instructions -- they will be
4999 handled later during jump, ifcvt, or epilogue creation. */
5000 return_label = gen_label_rtx ();
5001
5002 /* Initialize rtx used to return the value. */
5003 /* Do this before assign_parms so that we copy the struct value address
5004 before any library calls that assign parms might generate. */
5005
5006 /* Decide whether to return the value in memory or in a register. */
5007 if (aggregate_value_p (DECL_RESULT (subr), subr))
5008 {
5009 /* Returning something that won't go in a register. */
5010 rtx value_address = 0;
5011
5012 #ifdef PCC_STATIC_STRUCT_RETURN
5013 if (cfun->returns_pcc_struct)
5014 {
5015 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
5016 value_address = assemble_static_space (size);
5017 }
5018 else
5019 #endif
5020 {
5021 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5022 /* Expect to be passed the address of a place to store the value.
5023 If it is passed as an argument, assign_parms will take care of
5024 it. */
5025 if (sv)
5026 {
5027 value_address = gen_reg_rtx (Pmode);
5028 emit_move_insn (value_address, sv);
5029 }
5030 }
5031 if (value_address)
5032 {
5033 rtx x = value_address;
5034 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
5035 {
5036 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
5037 set_mem_attributes (x, DECL_RESULT (subr), 1);
5038 }
5039 SET_DECL_RTL (DECL_RESULT (subr), x);
5040 }
5041 }
5042 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
5043 /* If return mode is void, this decl rtl should not be used. */
5044 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
5045 else
5046 {
5047 /* Compute the return values into a pseudo reg, which we will copy
5048 into the true return register after the cleanups are done. */
5049 tree return_type = TREE_TYPE (DECL_RESULT (subr));
5050 if (TYPE_MODE (return_type) != BLKmode
5051 && targetm.calls.return_in_msb (return_type))
5052 /* expand_function_end will insert the appropriate padding in
5053 this case. Use the return value's natural (unpadded) mode
5054 within the function proper. */
5055 SET_DECL_RTL (DECL_RESULT (subr),
5056 gen_reg_rtx (TYPE_MODE (return_type)));
5057 else
5058 {
5059 /* In order to figure out what mode to use for the pseudo, we
5060 figure out what the mode of the eventual return register will
5061 actually be, and use that. */
5062 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5063
5064 /* Structures that are returned in registers are not
5065 aggregate_value_p, so we may see a PARALLEL or a REG. */
5066 if (REG_P (hard_reg))
5067 SET_DECL_RTL (DECL_RESULT (subr),
5068 gen_reg_rtx (GET_MODE (hard_reg)));
5069 else
5070 {
5071 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5072 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
5073 }
5074 }
5075
5076 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5077 result to the real return register(s). */
5078 DECL_REGISTER (DECL_RESULT (subr)) = 1;
5079
5080 if (chkp_function_instrumented_p (current_function_decl))
5081 {
5082 tree return_type = TREE_TYPE (DECL_RESULT (subr));
5083 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5084 subr, 1);
5085 SET_DECL_BOUNDS_RTL (DECL_RESULT (subr), bounds);
5086 }
5087 }
5088
5089 /* Initialize rtx for parameters and local variables.
5090 In some cases this requires emitting insns. */
5091 assign_parms (subr);
5092
5093 /* If function gets a static chain arg, store it. */
5094 if (cfun->static_chain_decl)
5095 {
5096 tree parm = cfun->static_chain_decl;
5097 rtx local, chain;
5098 rtx_insn *insn;
5099
5100 local = gen_reg_rtx (Pmode);
5101 chain = targetm.calls.static_chain (current_function_decl, true);
5102
5103 set_decl_incoming_rtl (parm, chain, false);
5104 SET_DECL_RTL (parm, local);
5105 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5106
5107 insn = emit_move_insn (local, chain);
5108
5109 /* Mark the register as eliminable, similar to parameters. */
5110 if (MEM_P (chain)
5111 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5112 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5113
5114 /* If we aren't optimizing, save the static chain onto the stack. */
5115 if (!optimize)
5116 {
5117 tree saved_static_chain_decl
5118 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5119 DECL_NAME (parm), TREE_TYPE (parm));
5120 rtx saved_static_chain_rtx
5121 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5122 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5123 emit_move_insn (saved_static_chain_rtx, chain);
5124 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5125 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5126 }
5127 }
5128
5129 /* If the function receives a non-local goto, then store the
5130 bits we need to restore the frame pointer. */
5131 if (cfun->nonlocal_goto_save_area)
5132 {
5133 tree t_save;
5134 rtx r_save;
5135
5136 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5137 gcc_assert (DECL_RTL_SET_P (var));
5138
5139 t_save = build4 (ARRAY_REF,
5140 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5141 cfun->nonlocal_goto_save_area,
5142 integer_zero_node, NULL_TREE, NULL_TREE);
5143 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5144 gcc_assert (GET_MODE (r_save) == Pmode);
5145
5146 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5147 update_nonlocal_goto_save_area ();
5148 }
5149
5150 /* The following was moved from init_function_start.
5151 The move is supposed to make sdb output more accurate. */
5152 /* Indicate the beginning of the function body,
5153 as opposed to parm setup. */
5154 emit_note (NOTE_INSN_FUNCTION_BEG);
5155
5156 gcc_assert (NOTE_P (get_last_insn ()));
5157
5158 parm_birth_insn = get_last_insn ();
5159
5160 if (crtl->profile)
5161 {
5162 #ifdef PROFILE_HOOK
5163 PROFILE_HOOK (current_function_funcdef_no);
5164 #endif
5165 }
5166
5167 /* If we are doing generic stack checking, the probe should go here. */
5168 if (flag_stack_check == GENERIC_STACK_CHECK)
5169 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5170 }
5171 \f
5172 void
5173 pop_dummy_function (void)
5174 {
5175 pop_cfun ();
5176 in_dummy_function = false;
5177 }
5178
5179 /* Undo the effects of init_dummy_function_start. */
5180 void
5181 expand_dummy_function_end (void)
5182 {
5183 gcc_assert (in_dummy_function);
5184
5185 /* End any sequences that failed to be closed due to syntax errors. */
5186 while (in_sequence_p ())
5187 end_sequence ();
5188
5189 /* Outside function body, can't compute type's actual size
5190 until next function's body starts. */
5191
5192 free_after_parsing (cfun);
5193 free_after_compilation (cfun);
5194 pop_dummy_function ();
5195 }
5196
5197 /* Helper for diddle_return_value. */
5198
5199 void
5200 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5201 {
5202 if (! outgoing)
5203 return;
5204
5205 if (REG_P (outgoing))
5206 (*doit) (outgoing, arg);
5207 else if (GET_CODE (outgoing) == PARALLEL)
5208 {
5209 int i;
5210
5211 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5212 {
5213 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5214
5215 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5216 (*doit) (x, arg);
5217 }
5218 }
5219 }
5220
5221 /* Call DOIT for each hard register used as a return value from
5222 the current function. */
5223
5224 void
5225 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5226 {
5227 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5228 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5229 }
5230
5231 static void
5232 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5233 {
5234 emit_clobber (reg);
5235 }
5236
5237 void
5238 clobber_return_register (void)
5239 {
5240 diddle_return_value (do_clobber_return_reg, NULL);
5241
5242 /* In case we do use pseudo to return value, clobber it too. */
5243 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5244 {
5245 tree decl_result = DECL_RESULT (current_function_decl);
5246 rtx decl_rtl = DECL_RTL (decl_result);
5247 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5248 {
5249 do_clobber_return_reg (decl_rtl, NULL);
5250 }
5251 }
5252 }
5253
5254 static void
5255 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5256 {
5257 emit_use (reg);
5258 }
5259
5260 static void
5261 use_return_register (void)
5262 {
5263 diddle_return_value (do_use_return_reg, NULL);
5264 }
5265
5266 /* Possibly warn about unused parameters. */
5267 void
5268 do_warn_unused_parameter (tree fn)
5269 {
5270 tree decl;
5271
5272 for (decl = DECL_ARGUMENTS (fn);
5273 decl; decl = DECL_CHAIN (decl))
5274 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5275 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
5276 && !TREE_NO_WARNING (decl))
5277 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
5278 }
5279
5280 /* Set the location of the insn chain starting at INSN to LOC. */
5281
5282 static void
5283 set_insn_locations (rtx_insn *insn, int loc)
5284 {
5285 while (insn != NULL)
5286 {
5287 if (INSN_P (insn))
5288 INSN_LOCATION (insn) = loc;
5289 insn = NEXT_INSN (insn);
5290 }
5291 }
5292
5293 /* Generate RTL for the end of the current function. */
5294
5295 void
5296 expand_function_end (void)
5297 {
5298 rtx clobber_after;
5299
5300 /* If arg_pointer_save_area was referenced only from a nested
5301 function, we will not have initialized it yet. Do that now. */
5302 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5303 get_arg_pointer_save_area ();
5304
5305 /* If we are doing generic stack checking and this function makes calls,
5306 do a stack probe at the start of the function to ensure we have enough
5307 space for another stack frame. */
5308 if (flag_stack_check == GENERIC_STACK_CHECK)
5309 {
5310 rtx_insn *insn, *seq;
5311
5312 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5313 if (CALL_P (insn))
5314 {
5315 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5316 start_sequence ();
5317 if (STACK_CHECK_MOVING_SP)
5318 anti_adjust_stack_and_probe (max_frame_size, true);
5319 else
5320 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5321 seq = get_insns ();
5322 end_sequence ();
5323 set_insn_locations (seq, prologue_location);
5324 emit_insn_before (seq, stack_check_probe_note);
5325 break;
5326 }
5327 }
5328
5329 /* End any sequences that failed to be closed due to syntax errors. */
5330 while (in_sequence_p ())
5331 end_sequence ();
5332
5333 clear_pending_stack_adjust ();
5334 do_pending_stack_adjust ();
5335
5336 /* Output a linenumber for the end of the function.
5337 SDB depends on this. */
5338 set_curr_insn_location (input_location);
5339
5340 /* Before the return label (if any), clobber the return
5341 registers so that they are not propagated live to the rest of
5342 the function. This can only happen with functions that drop
5343 through; if there had been a return statement, there would
5344 have either been a return rtx, or a jump to the return label.
5345
5346 We delay actual code generation after the current_function_value_rtx
5347 is computed. */
5348 clobber_after = get_last_insn ();
5349
5350 /* Output the label for the actual return from the function. */
5351 emit_label (return_label);
5352
5353 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5354 {
5355 /* Let except.c know where it should emit the call to unregister
5356 the function context for sjlj exceptions. */
5357 if (flag_exceptions)
5358 sjlj_emit_function_exit_after (get_last_insn ());
5359 }
5360 else
5361 {
5362 /* We want to ensure that instructions that may trap are not
5363 moved into the epilogue by scheduling, because we don't
5364 always emit unwind information for the epilogue. */
5365 if (cfun->can_throw_non_call_exceptions)
5366 emit_insn (gen_blockage ());
5367 }
5368
5369 /* If this is an implementation of throw, do what's necessary to
5370 communicate between __builtin_eh_return and the epilogue. */
5371 expand_eh_return ();
5372
5373 /* If scalar return value was computed in a pseudo-reg, or was a named
5374 return value that got dumped to the stack, copy that to the hard
5375 return register. */
5376 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5377 {
5378 tree decl_result = DECL_RESULT (current_function_decl);
5379 rtx decl_rtl = DECL_RTL (decl_result);
5380
5381 if (REG_P (decl_rtl)
5382 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5383 : DECL_REGISTER (decl_result))
5384 {
5385 rtx real_decl_rtl = crtl->return_rtx;
5386
5387 /* This should be set in assign_parms. */
5388 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5389
5390 /* If this is a BLKmode structure being returned in registers,
5391 then use the mode computed in expand_return. Note that if
5392 decl_rtl is memory, then its mode may have been changed,
5393 but that crtl->return_rtx has not. */
5394 if (GET_MODE (real_decl_rtl) == BLKmode)
5395 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5396
5397 /* If a non-BLKmode return value should be padded at the least
5398 significant end of the register, shift it left by the appropriate
5399 amount. BLKmode results are handled using the group load/store
5400 machinery. */
5401 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5402 && REG_P (real_decl_rtl)
5403 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5404 {
5405 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5406 REGNO (real_decl_rtl)),
5407 decl_rtl);
5408 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5409 }
5410 /* If a named return value dumped decl_return to memory, then
5411 we may need to re-do the PROMOTE_MODE signed/unsigned
5412 extension. */
5413 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5414 {
5415 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5416 promote_function_mode (TREE_TYPE (decl_result),
5417 GET_MODE (decl_rtl), &unsignedp,
5418 TREE_TYPE (current_function_decl), 1);
5419
5420 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5421 }
5422 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5423 {
5424 /* If expand_function_start has created a PARALLEL for decl_rtl,
5425 move the result to the real return registers. Otherwise, do
5426 a group load from decl_rtl for a named return. */
5427 if (GET_CODE (decl_rtl) == PARALLEL)
5428 emit_group_move (real_decl_rtl, decl_rtl);
5429 else
5430 emit_group_load (real_decl_rtl, decl_rtl,
5431 TREE_TYPE (decl_result),
5432 int_size_in_bytes (TREE_TYPE (decl_result)));
5433 }
5434 /* In the case of complex integer modes smaller than a word, we'll
5435 need to generate some non-trivial bitfield insertions. Do that
5436 on a pseudo and not the hard register. */
5437 else if (GET_CODE (decl_rtl) == CONCAT
5438 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5439 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5440 {
5441 int old_generating_concat_p;
5442 rtx tmp;
5443
5444 old_generating_concat_p = generating_concat_p;
5445 generating_concat_p = 0;
5446 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5447 generating_concat_p = old_generating_concat_p;
5448
5449 emit_move_insn (tmp, decl_rtl);
5450 emit_move_insn (real_decl_rtl, tmp);
5451 }
5452 else
5453 emit_move_insn (real_decl_rtl, decl_rtl);
5454 }
5455 }
5456
5457 /* If returning a structure, arrange to return the address of the value
5458 in a place where debuggers expect to find it.
5459
5460 If returning a structure PCC style,
5461 the caller also depends on this value.
5462 And cfun->returns_pcc_struct is not necessarily set. */
5463 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5464 && !targetm.calls.omit_struct_return_reg)
5465 {
5466 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5467 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5468 rtx outgoing;
5469
5470 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5471 type = TREE_TYPE (type);
5472 else
5473 value_address = XEXP (value_address, 0);
5474
5475 outgoing = targetm.calls.function_value (build_pointer_type (type),
5476 current_function_decl, true);
5477
5478 /* Mark this as a function return value so integrate will delete the
5479 assignment and USE below when inlining this function. */
5480 REG_FUNCTION_VALUE_P (outgoing) = 1;
5481
5482 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5483 value_address = convert_memory_address (GET_MODE (outgoing),
5484 value_address);
5485
5486 emit_move_insn (outgoing, value_address);
5487
5488 /* Show return register used to hold result (in this case the address
5489 of the result. */
5490 crtl->return_rtx = outgoing;
5491 }
5492
5493 /* Emit the actual code to clobber return register. Don't emit
5494 it if clobber_after is a barrier, then the previous basic block
5495 certainly doesn't fall thru into the exit block. */
5496 if (!BARRIER_P (clobber_after))
5497 {
5498 rtx seq;
5499
5500 start_sequence ();
5501 clobber_return_register ();
5502 seq = get_insns ();
5503 end_sequence ();
5504
5505 emit_insn_after (seq, clobber_after);
5506 }
5507
5508 /* Output the label for the naked return from the function. */
5509 if (naked_return_label)
5510 emit_label (naked_return_label);
5511
5512 /* @@@ This is a kludge. We want to ensure that instructions that
5513 may trap are not moved into the epilogue by scheduling, because
5514 we don't always emit unwind information for the epilogue. */
5515 if (cfun->can_throw_non_call_exceptions
5516 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5517 emit_insn (gen_blockage ());
5518
5519 /* If stack protection is enabled for this function, check the guard. */
5520 if (crtl->stack_protect_guard)
5521 stack_protect_epilogue ();
5522
5523 /* If we had calls to alloca, and this machine needs
5524 an accurate stack pointer to exit the function,
5525 insert some code to save and restore the stack pointer. */
5526 if (! EXIT_IGNORE_STACK
5527 && cfun->calls_alloca)
5528 {
5529 rtx tem = 0, seq;
5530
5531 start_sequence ();
5532 emit_stack_save (SAVE_FUNCTION, &tem);
5533 seq = get_insns ();
5534 end_sequence ();
5535 emit_insn_before (seq, parm_birth_insn);
5536
5537 emit_stack_restore (SAVE_FUNCTION, tem);
5538 }
5539
5540 /* ??? This should no longer be necessary since stupid is no longer with
5541 us, but there are some parts of the compiler (eg reload_combine, and
5542 sh mach_dep_reorg) that still try and compute their own lifetime info
5543 instead of using the general framework. */
5544 use_return_register ();
5545 }
5546
5547 rtx
5548 get_arg_pointer_save_area (void)
5549 {
5550 rtx ret = arg_pointer_save_area;
5551
5552 if (! ret)
5553 {
5554 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5555 arg_pointer_save_area = ret;
5556 }
5557
5558 if (! crtl->arg_pointer_save_area_init)
5559 {
5560 rtx seq;
5561
5562 /* Save the arg pointer at the beginning of the function. The
5563 generated stack slot may not be a valid memory address, so we
5564 have to check it and fix it if necessary. */
5565 start_sequence ();
5566 emit_move_insn (validize_mem (copy_rtx (ret)),
5567 crtl->args.internal_arg_pointer);
5568 seq = get_insns ();
5569 end_sequence ();
5570
5571 push_topmost_sequence ();
5572 emit_insn_after (seq, entry_of_function ());
5573 pop_topmost_sequence ();
5574
5575 crtl->arg_pointer_save_area_init = true;
5576 }
5577
5578 return ret;
5579 }
5580 \f
5581 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5582 for the first time. */
5583
5584 static void
5585 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5586 {
5587 rtx_insn *tmp;
5588 hash_table<insn_cache_hasher> *hash = *hashp;
5589
5590 if (hash == NULL)
5591 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5592
5593 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5594 {
5595 rtx *slot = hash->find_slot (tmp, INSERT);
5596 gcc_assert (*slot == NULL);
5597 *slot = tmp;
5598 }
5599 }
5600
5601 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5602 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5603 insn, then record COPY as well. */
5604
5605 void
5606 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5607 {
5608 hash_table<insn_cache_hasher> *hash;
5609 rtx *slot;
5610
5611 hash = epilogue_insn_hash;
5612 if (!hash || !hash->find (insn))
5613 {
5614 hash = prologue_insn_hash;
5615 if (!hash || !hash->find (insn))
5616 return;
5617 }
5618
5619 slot = hash->find_slot (copy, INSERT);
5620 gcc_assert (*slot == NULL);
5621 *slot = copy;
5622 }
5623
5624 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5625 we can be running after reorg, SEQUENCE rtl is possible. */
5626
5627 static bool
5628 contains (const_rtx insn, hash_table<insn_cache_hasher> *hash)
5629 {
5630 if (hash == NULL)
5631 return false;
5632
5633 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5634 {
5635 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5636 int i;
5637 for (i = seq->len () - 1; i >= 0; i--)
5638 if (hash->find (seq->element (i)))
5639 return true;
5640 return false;
5641 }
5642
5643 return hash->find (const_cast<rtx> (insn)) != NULL;
5644 }
5645
5646 int
5647 prologue_epilogue_contains (const_rtx insn)
5648 {
5649 if (contains (insn, prologue_insn_hash))
5650 return 1;
5651 if (contains (insn, epilogue_insn_hash))
5652 return 1;
5653 return 0;
5654 }
5655
5656 /* Insert use of return register before the end of BB. */
5657
5658 static void
5659 emit_use_return_register_into_block (basic_block bb)
5660 {
5661 rtx seq;
5662 rtx_insn *insn;
5663 start_sequence ();
5664 use_return_register ();
5665 seq = get_insns ();
5666 end_sequence ();
5667 insn = BB_END (bb);
5668 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5669 insn = prev_cc0_setter (insn);
5670
5671 emit_insn_before (seq, insn);
5672 }
5673
5674
5675 /* Create a return pattern, either simple_return or return, depending on
5676 simple_p. */
5677
5678 static rtx
5679 gen_return_pattern (bool simple_p)
5680 {
5681 if (!HAVE_simple_return)
5682 gcc_assert (!simple_p);
5683
5684 return simple_p ? gen_simple_return () : gen_return ();
5685 }
5686
5687 /* Insert an appropriate return pattern at the end of block BB. This
5688 also means updating block_for_insn appropriately. SIMPLE_P is
5689 the same as in gen_return_pattern and passed to it. */
5690
5691 void
5692 emit_return_into_block (bool simple_p, basic_block bb)
5693 {
5694 rtx jump, pat;
5695 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5696 pat = PATTERN (jump);
5697 if (GET_CODE (pat) == PARALLEL)
5698 pat = XVECEXP (pat, 0, 0);
5699 gcc_assert (ANY_RETURN_P (pat));
5700 JUMP_LABEL (jump) = pat;
5701 }
5702
5703 /* Set JUMP_LABEL for a return insn. */
5704
5705 void
5706 set_return_jump_label (rtx_insn *returnjump)
5707 {
5708 rtx pat = PATTERN (returnjump);
5709 if (GET_CODE (pat) == PARALLEL)
5710 pat = XVECEXP (pat, 0, 0);
5711 if (ANY_RETURN_P (pat))
5712 JUMP_LABEL (returnjump) = pat;
5713 else
5714 JUMP_LABEL (returnjump) = ret_rtx;
5715 }
5716
5717 /* Return true if there are any active insns between HEAD and TAIL. */
5718 bool
5719 active_insn_between (rtx_insn *head, rtx_insn *tail)
5720 {
5721 while (tail)
5722 {
5723 if (active_insn_p (tail))
5724 return true;
5725 if (tail == head)
5726 return false;
5727 tail = PREV_INSN (tail);
5728 }
5729 return false;
5730 }
5731
5732 /* LAST_BB is a block that exits, and empty of active instructions.
5733 Examine its predecessors for jumps that can be converted to
5734 (conditional) returns. */
5735 vec<edge>
5736 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5737 vec<edge> unconverted ATTRIBUTE_UNUSED)
5738 {
5739 int i;
5740 basic_block bb;
5741 rtx label;
5742 edge_iterator ei;
5743 edge e;
5744 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5745
5746 FOR_EACH_EDGE (e, ei, last_bb->preds)
5747 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5748 src_bbs.quick_push (e->src);
5749
5750 label = BB_HEAD (last_bb);
5751
5752 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5753 {
5754 rtx_insn *jump = BB_END (bb);
5755
5756 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5757 continue;
5758
5759 e = find_edge (bb, last_bb);
5760
5761 /* If we have an unconditional jump, we can replace that
5762 with a simple return instruction. */
5763 if (simplejump_p (jump))
5764 {
5765 /* The use of the return register might be present in the exit
5766 fallthru block. Either:
5767 - removing the use is safe, and we should remove the use in
5768 the exit fallthru block, or
5769 - removing the use is not safe, and we should add it here.
5770 For now, we conservatively choose the latter. Either of the
5771 2 helps in crossjumping. */
5772 emit_use_return_register_into_block (bb);
5773
5774 emit_return_into_block (simple_p, bb);
5775 delete_insn (jump);
5776 }
5777
5778 /* If we have a conditional jump branching to the last
5779 block, we can try to replace that with a conditional
5780 return instruction. */
5781 else if (condjump_p (jump))
5782 {
5783 rtx dest;
5784
5785 if (simple_p)
5786 dest = simple_return_rtx;
5787 else
5788 dest = ret_rtx;
5789 if (!redirect_jump (as_a <rtx_jump_insn *> (jump), dest, 0))
5790 {
5791 if (HAVE_simple_return && simple_p)
5792 {
5793 if (dump_file)
5794 fprintf (dump_file,
5795 "Failed to redirect bb %d branch.\n", bb->index);
5796 unconverted.safe_push (e);
5797 }
5798 continue;
5799 }
5800
5801 /* See comment in simplejump_p case above. */
5802 emit_use_return_register_into_block (bb);
5803
5804 /* If this block has only one successor, it both jumps
5805 and falls through to the fallthru block, so we can't
5806 delete the edge. */
5807 if (single_succ_p (bb))
5808 continue;
5809 }
5810 else
5811 {
5812 if (HAVE_simple_return && simple_p)
5813 {
5814 if (dump_file)
5815 fprintf (dump_file,
5816 "Failed to redirect bb %d branch.\n", bb->index);
5817 unconverted.safe_push (e);
5818 }
5819 continue;
5820 }
5821
5822 /* Fix up the CFG for the successful change we just made. */
5823 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5824 e->flags &= ~EDGE_CROSSING;
5825 }
5826 src_bbs.release ();
5827 return unconverted;
5828 }
5829
5830 /* Emit a return insn for the exit fallthru block. */
5831 basic_block
5832 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5833 {
5834 basic_block last_bb = exit_fallthru_edge->src;
5835
5836 if (JUMP_P (BB_END (last_bb)))
5837 {
5838 last_bb = split_edge (exit_fallthru_edge);
5839 exit_fallthru_edge = single_succ_edge (last_bb);
5840 }
5841 emit_barrier_after (BB_END (last_bb));
5842 emit_return_into_block (simple_p, last_bb);
5843 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5844 return last_bb;
5845 }
5846
5847
5848 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5849 this into place with notes indicating where the prologue ends and where
5850 the epilogue begins. Update the basic block information when possible.
5851
5852 Notes on epilogue placement:
5853 There are several kinds of edges to the exit block:
5854 * a single fallthru edge from LAST_BB
5855 * possibly, edges from blocks containing sibcalls
5856 * possibly, fake edges from infinite loops
5857
5858 The epilogue is always emitted on the fallthru edge from the last basic
5859 block in the function, LAST_BB, into the exit block.
5860
5861 If LAST_BB is empty except for a label, it is the target of every
5862 other basic block in the function that ends in a return. If a
5863 target has a return or simple_return pattern (possibly with
5864 conditional variants), these basic blocks can be changed so that a
5865 return insn is emitted into them, and their target is adjusted to
5866 the real exit block.
5867
5868 Notes on shrink wrapping: We implement a fairly conservative
5869 version of shrink-wrapping rather than the textbook one. We only
5870 generate a single prologue and a single epilogue. This is
5871 sufficient to catch a number of interesting cases involving early
5872 exits.
5873
5874 First, we identify the blocks that require the prologue to occur before
5875 them. These are the ones that modify a call-saved register, or reference
5876 any of the stack or frame pointer registers. To simplify things, we then
5877 mark everything reachable from these blocks as also requiring a prologue.
5878 This takes care of loops automatically, and avoids the need to examine
5879 whether MEMs reference the frame, since it is sufficient to check for
5880 occurrences of the stack or frame pointer.
5881
5882 We then compute the set of blocks for which the need for a prologue
5883 is anticipatable (borrowing terminology from the shrink-wrapping
5884 description in Muchnick's book). These are the blocks which either
5885 require a prologue themselves, or those that have only successors
5886 where the prologue is anticipatable. The prologue needs to be
5887 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5888 is not. For the moment, we ensure that only one such edge exists.
5889
5890 The epilogue is placed as described above, but we make a
5891 distinction between inserting return and simple_return patterns
5892 when modifying other blocks that end in a return. Blocks that end
5893 in a sibcall omit the sibcall_epilogue if the block is not in
5894 ANTIC. */
5895
5896 void
5897 thread_prologue_and_epilogue_insns (void)
5898 {
5899 bool inserted;
5900 vec<edge> unconverted_simple_returns = vNULL;
5901 bitmap_head bb_flags;
5902 rtx_insn *returnjump;
5903 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5904 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5905 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5906 edge_iterator ei;
5907
5908 df_analyze ();
5909
5910 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5911
5912 inserted = false;
5913 epilogue_end = NULL;
5914 returnjump = NULL;
5915
5916 /* Can't deal with multiple successors of the entry block at the
5917 moment. Function should always have at least one entry
5918 point. */
5919 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5920 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5921 orig_entry_edge = entry_edge;
5922
5923 split_prologue_seq = NULL;
5924 if (flag_split_stack
5925 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5926 == NULL))
5927 {
5928 #ifndef HAVE_split_stack_prologue
5929 gcc_unreachable ();
5930 #else
5931 gcc_assert (HAVE_split_stack_prologue);
5932
5933 start_sequence ();
5934 emit_insn (gen_split_stack_prologue ());
5935 split_prologue_seq = get_insns ();
5936 end_sequence ();
5937
5938 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5939 set_insn_locations (split_prologue_seq, prologue_location);
5940 #endif
5941 }
5942
5943 prologue_seq = NULL;
5944 #ifdef HAVE_prologue
5945 if (HAVE_prologue)
5946 {
5947 start_sequence ();
5948 rtx_insn *seq = safe_as_a <rtx_insn *> (gen_prologue ());
5949 emit_insn (seq);
5950
5951 /* Insert an explicit USE for the frame pointer
5952 if the profiling is on and the frame pointer is required. */
5953 if (crtl->profile && frame_pointer_needed)
5954 emit_use (hard_frame_pointer_rtx);
5955
5956 /* Retain a map of the prologue insns. */
5957 record_insns (seq, NULL, &prologue_insn_hash);
5958 emit_note (NOTE_INSN_PROLOGUE_END);
5959
5960 /* Ensure that instructions are not moved into the prologue when
5961 profiling is on. The call to the profiling routine can be
5962 emitted within the live range of a call-clobbered register. */
5963 if (!targetm.profile_before_prologue () && crtl->profile)
5964 emit_insn (gen_blockage ());
5965
5966 prologue_seq = get_insns ();
5967 end_sequence ();
5968 set_insn_locations (prologue_seq, prologue_location);
5969 }
5970 #endif
5971
5972 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5973
5974 /* Try to perform a kind of shrink-wrapping, making sure the
5975 prologue/epilogue is emitted only around those parts of the
5976 function that require it. */
5977
5978 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5979
5980 if (split_prologue_seq != NULL_RTX)
5981 {
5982 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5983 inserted = true;
5984 }
5985 if (prologue_seq != NULL_RTX)
5986 {
5987 insert_insn_on_edge (prologue_seq, entry_edge);
5988 inserted = true;
5989 }
5990
5991 /* If the exit block has no non-fake predecessors, we don't need
5992 an epilogue. */
5993 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5994 if ((e->flags & EDGE_FAKE) == 0)
5995 break;
5996 if (e == NULL)
5997 goto epilogue_done;
5998
5999 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6000
6001 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6002
6003 if (HAVE_simple_return && entry_edge != orig_entry_edge)
6004 exit_fallthru_edge
6005 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
6006 &unconverted_simple_returns,
6007 &returnjump);
6008 if (HAVE_return)
6009 {
6010 if (exit_fallthru_edge == NULL)
6011 goto epilogue_done;
6012
6013 if (optimize)
6014 {
6015 basic_block last_bb = exit_fallthru_edge->src;
6016
6017 if (LABEL_P (BB_HEAD (last_bb))
6018 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6019 convert_jumps_to_returns (last_bb, false, vNULL);
6020
6021 if (EDGE_COUNT (last_bb->preds) != 0
6022 && single_succ_p (last_bb))
6023 {
6024 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6025 epilogue_end = returnjump = BB_END (last_bb);
6026
6027 /* Emitting the return may add a basic block.
6028 Fix bb_flags for the added block. */
6029 if (HAVE_simple_return && last_bb != exit_fallthru_edge->src)
6030 bitmap_set_bit (&bb_flags, last_bb->index);
6031
6032 goto epilogue_done;
6033 }
6034 }
6035 }
6036
6037 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6038 this marker for the splits of EH_RETURN patterns, and nothing else
6039 uses the flag in the meantime. */
6040 epilogue_completed = 1;
6041
6042 #ifdef HAVE_eh_return
6043 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6044 some targets, these get split to a special version of the epilogue
6045 code. In order to be able to properly annotate these with unwind
6046 info, try to split them now. If we get a valid split, drop an
6047 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6048 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6049 {
6050 rtx_insn *prev, *last, *trial;
6051
6052 if (e->flags & EDGE_FALLTHRU)
6053 continue;
6054 last = BB_END (e->src);
6055 if (!eh_returnjump_p (last))
6056 continue;
6057
6058 prev = PREV_INSN (last);
6059 trial = try_split (PATTERN (last), last, 1);
6060 if (trial == last)
6061 continue;
6062
6063 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6064 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6065 }
6066 #endif
6067
6068 /* If nothing falls through into the exit block, we don't need an
6069 epilogue. */
6070
6071 if (exit_fallthru_edge == NULL)
6072 goto epilogue_done;
6073
6074 if (HAVE_epilogue)
6075 {
6076 start_sequence ();
6077 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6078 rtx_insn *seq = as_a <rtx_insn *> (gen_epilogue ());
6079 if (seq)
6080 emit_jump_insn (seq);
6081
6082 /* Retain a map of the epilogue insns. */
6083 record_insns (seq, NULL, &epilogue_insn_hash);
6084 set_insn_locations (seq, epilogue_location);
6085
6086 seq = get_insns ();
6087 returnjump = get_last_insn ();
6088 end_sequence ();
6089
6090 insert_insn_on_edge (seq, exit_fallthru_edge);
6091 inserted = true;
6092
6093 if (JUMP_P (returnjump))
6094 set_return_jump_label (returnjump);
6095 }
6096 else
6097 {
6098 basic_block cur_bb;
6099
6100 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6101 goto epilogue_done;
6102 /* We have a fall-through edge to the exit block, the source is not
6103 at the end of the function, and there will be an assembler epilogue
6104 at the end of the function.
6105 We can't use force_nonfallthru here, because that would try to
6106 use return. Inserting a jump 'by hand' is extremely messy, so
6107 we take advantage of cfg_layout_finalize using
6108 fixup_fallthru_exit_predecessor. */
6109 cfg_layout_initialize (0);
6110 FOR_EACH_BB_FN (cur_bb, cfun)
6111 if (cur_bb->index >= NUM_FIXED_BLOCKS
6112 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6113 cur_bb->aux = cur_bb->next_bb;
6114 cfg_layout_finalize ();
6115 }
6116
6117 epilogue_done:
6118
6119 default_rtl_profile ();
6120
6121 if (inserted)
6122 {
6123 sbitmap blocks;
6124
6125 commit_edge_insertions ();
6126
6127 /* Look for basic blocks within the prologue insns. */
6128 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6129 bitmap_clear (blocks);
6130 bitmap_set_bit (blocks, entry_edge->dest->index);
6131 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6132 find_many_sub_basic_blocks (blocks);
6133 sbitmap_free (blocks);
6134
6135 /* The epilogue insns we inserted may cause the exit edge to no longer
6136 be fallthru. */
6137 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6138 {
6139 if (((e->flags & EDGE_FALLTHRU) != 0)
6140 && returnjump_p (BB_END (e->src)))
6141 e->flags &= ~EDGE_FALLTHRU;
6142 }
6143 }
6144
6145 if (HAVE_simple_return)
6146 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags,
6147 returnjump, unconverted_simple_returns);
6148
6149 #ifdef HAVE_sibcall_epilogue
6150 /* Emit sibling epilogues before any sibling call sites. */
6151 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6152 ei_safe_edge (ei));
6153 )
6154 {
6155 basic_block bb = e->src;
6156 rtx_insn *insn = BB_END (bb);
6157 rtx ep_seq;
6158
6159 if (!CALL_P (insn)
6160 || ! SIBLING_CALL_P (insn)
6161 || (HAVE_simple_return && (entry_edge != orig_entry_edge
6162 && !bitmap_bit_p (&bb_flags, bb->index))))
6163 {
6164 ei_next (&ei);
6165 continue;
6166 }
6167
6168 ep_seq = gen_sibcall_epilogue ();
6169 if (ep_seq)
6170 {
6171 start_sequence ();
6172 emit_note (NOTE_INSN_EPILOGUE_BEG);
6173 emit_insn (ep_seq);
6174 rtx_insn *seq = get_insns ();
6175 end_sequence ();
6176
6177 /* Retain a map of the epilogue insns. Used in life analysis to
6178 avoid getting rid of sibcall epilogue insns. Do this before we
6179 actually emit the sequence. */
6180 record_insns (seq, NULL, &epilogue_insn_hash);
6181 set_insn_locations (seq, epilogue_location);
6182
6183 emit_insn_before (seq, insn);
6184 }
6185 ei_next (&ei);
6186 }
6187 #endif
6188
6189 if (epilogue_end)
6190 {
6191 rtx_insn *insn, *next;
6192
6193 /* Similarly, move any line notes that appear after the epilogue.
6194 There is no need, however, to be quite so anal about the existence
6195 of such a note. Also possibly move
6196 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6197 info generation. */
6198 for (insn = epilogue_end; insn; insn = next)
6199 {
6200 next = NEXT_INSN (insn);
6201 if (NOTE_P (insn)
6202 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6203 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6204 }
6205 }
6206
6207 bitmap_clear (&bb_flags);
6208
6209 /* Threading the prologue and epilogue changes the artificial refs
6210 in the entry and exit blocks. */
6211 epilogue_completed = 1;
6212 df_update_entry_exit_and_calls ();
6213 }
6214
6215 /* Reposition the prologue-end and epilogue-begin notes after
6216 instruction scheduling. */
6217
6218 void
6219 reposition_prologue_and_epilogue_notes (void)
6220 {
6221 #if ! defined (HAVE_prologue) && ! defined (HAVE_sibcall_epilogue)
6222 if (!HAVE_epilogue)
6223 return;
6224 #endif
6225
6226 /* Since the hash table is created on demand, the fact that it is
6227 non-null is a signal that it is non-empty. */
6228 if (prologue_insn_hash != NULL)
6229 {
6230 size_t len = prologue_insn_hash->elements ();
6231 rtx_insn *insn, *last = NULL, *note = NULL;
6232
6233 /* Scan from the beginning until we reach the last prologue insn. */
6234 /* ??? While we do have the CFG intact, there are two problems:
6235 (1) The prologue can contain loops (typically probing the stack),
6236 which means that the end of the prologue isn't in the first bb.
6237 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6238 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6239 {
6240 if (NOTE_P (insn))
6241 {
6242 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6243 note = insn;
6244 }
6245 else if (contains (insn, prologue_insn_hash))
6246 {
6247 last = insn;
6248 if (--len == 0)
6249 break;
6250 }
6251 }
6252
6253 if (last)
6254 {
6255 if (note == NULL)
6256 {
6257 /* Scan forward looking for the PROLOGUE_END note. It should
6258 be right at the beginning of the block, possibly with other
6259 insn notes that got moved there. */
6260 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6261 {
6262 if (NOTE_P (note)
6263 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6264 break;
6265 }
6266 }
6267
6268 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6269 if (LABEL_P (last))
6270 last = NEXT_INSN (last);
6271 reorder_insns (note, note, last);
6272 }
6273 }
6274
6275 if (epilogue_insn_hash != NULL)
6276 {
6277 edge_iterator ei;
6278 edge e;
6279
6280 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6281 {
6282 rtx_insn *insn, *first = NULL, *note = NULL;
6283 basic_block bb = e->src;
6284
6285 /* Scan from the beginning until we reach the first epilogue insn. */
6286 FOR_BB_INSNS (bb, insn)
6287 {
6288 if (NOTE_P (insn))
6289 {
6290 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6291 {
6292 note = insn;
6293 if (first != NULL)
6294 break;
6295 }
6296 }
6297 else if (first == NULL && contains (insn, epilogue_insn_hash))
6298 {
6299 first = insn;
6300 if (note != NULL)
6301 break;
6302 }
6303 }
6304
6305 if (note)
6306 {
6307 /* If the function has a single basic block, and no real
6308 epilogue insns (e.g. sibcall with no cleanup), the
6309 epilogue note can get scheduled before the prologue
6310 note. If we have frame related prologue insns, having
6311 them scanned during the epilogue will result in a crash.
6312 In this case re-order the epilogue note to just before
6313 the last insn in the block. */
6314 if (first == NULL)
6315 first = BB_END (bb);
6316
6317 if (PREV_INSN (first) != note)
6318 reorder_insns (note, note, PREV_INSN (first));
6319 }
6320 }
6321 }
6322 }
6323
6324 /* Returns the name of function declared by FNDECL. */
6325 const char *
6326 fndecl_name (tree fndecl)
6327 {
6328 if (fndecl == NULL)
6329 return "(nofn)";
6330 return lang_hooks.decl_printable_name (fndecl, 2);
6331 }
6332
6333 /* Returns the name of function FN. */
6334 const char *
6335 function_name (struct function *fn)
6336 {
6337 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6338 return fndecl_name (fndecl);
6339 }
6340
6341 /* Returns the name of the current function. */
6342 const char *
6343 current_function_name (void)
6344 {
6345 return function_name (cfun);
6346 }
6347 \f
6348
6349 static unsigned int
6350 rest_of_handle_check_leaf_regs (void)
6351 {
6352 #ifdef LEAF_REGISTERS
6353 crtl->uses_only_leaf_regs
6354 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6355 #endif
6356 return 0;
6357 }
6358
6359 /* Insert a TYPE into the used types hash table of CFUN. */
6360
6361 static void
6362 used_types_insert_helper (tree type, struct function *func)
6363 {
6364 if (type != NULL && func != NULL)
6365 {
6366 if (func->used_types_hash == NULL)
6367 func->used_types_hash = hash_set<tree>::create_ggc (37);
6368
6369 func->used_types_hash->add (type);
6370 }
6371 }
6372
6373 /* Given a type, insert it into the used hash table in cfun. */
6374 void
6375 used_types_insert (tree t)
6376 {
6377 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6378 if (TYPE_NAME (t))
6379 break;
6380 else
6381 t = TREE_TYPE (t);
6382 if (TREE_CODE (t) == ERROR_MARK)
6383 return;
6384 if (TYPE_NAME (t) == NULL_TREE
6385 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6386 t = TYPE_MAIN_VARIANT (t);
6387 if (debug_info_level > DINFO_LEVEL_NONE)
6388 {
6389 if (cfun)
6390 used_types_insert_helper (t, cfun);
6391 else
6392 {
6393 /* So this might be a type referenced by a global variable.
6394 Record that type so that we can later decide to emit its
6395 debug information. */
6396 vec_safe_push (types_used_by_cur_var_decl, t);
6397 }
6398 }
6399 }
6400
6401 /* Helper to Hash a struct types_used_by_vars_entry. */
6402
6403 static hashval_t
6404 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6405 {
6406 gcc_assert (entry && entry->var_decl && entry->type);
6407
6408 return iterative_hash_object (entry->type,
6409 iterative_hash_object (entry->var_decl, 0));
6410 }
6411
6412 /* Hash function of the types_used_by_vars_entry hash table. */
6413
6414 hashval_t
6415 used_type_hasher::hash (types_used_by_vars_entry *entry)
6416 {
6417 return hash_types_used_by_vars_entry (entry);
6418 }
6419
6420 /*Equality function of the types_used_by_vars_entry hash table. */
6421
6422 bool
6423 used_type_hasher::equal (types_used_by_vars_entry *e1,
6424 types_used_by_vars_entry *e2)
6425 {
6426 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6427 }
6428
6429 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6430
6431 void
6432 types_used_by_var_decl_insert (tree type, tree var_decl)
6433 {
6434 if (type != NULL && var_decl != NULL)
6435 {
6436 types_used_by_vars_entry **slot;
6437 struct types_used_by_vars_entry e;
6438 e.var_decl = var_decl;
6439 e.type = type;
6440 if (types_used_by_vars_hash == NULL)
6441 types_used_by_vars_hash
6442 = hash_table<used_type_hasher>::create_ggc (37);
6443
6444 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6445 if (*slot == NULL)
6446 {
6447 struct types_used_by_vars_entry *entry;
6448 entry = ggc_alloc<types_used_by_vars_entry> ();
6449 entry->type = type;
6450 entry->var_decl = var_decl;
6451 *slot = entry;
6452 }
6453 }
6454 }
6455
6456 namespace {
6457
6458 const pass_data pass_data_leaf_regs =
6459 {
6460 RTL_PASS, /* type */
6461 "*leaf_regs", /* name */
6462 OPTGROUP_NONE, /* optinfo_flags */
6463 TV_NONE, /* tv_id */
6464 0, /* properties_required */
6465 0, /* properties_provided */
6466 0, /* properties_destroyed */
6467 0, /* todo_flags_start */
6468 0, /* todo_flags_finish */
6469 };
6470
6471 class pass_leaf_regs : public rtl_opt_pass
6472 {
6473 public:
6474 pass_leaf_regs (gcc::context *ctxt)
6475 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6476 {}
6477
6478 /* opt_pass methods: */
6479 virtual unsigned int execute (function *)
6480 {
6481 return rest_of_handle_check_leaf_regs ();
6482 }
6483
6484 }; // class pass_leaf_regs
6485
6486 } // anon namespace
6487
6488 rtl_opt_pass *
6489 make_pass_leaf_regs (gcc::context *ctxt)
6490 {
6491 return new pass_leaf_regs (ctxt);
6492 }
6493
6494 static unsigned int
6495 rest_of_handle_thread_prologue_and_epilogue (void)
6496 {
6497 if (optimize)
6498 cleanup_cfg (CLEANUP_EXPENSIVE);
6499
6500 /* On some machines, the prologue and epilogue code, or parts thereof,
6501 can be represented as RTL. Doing so lets us schedule insns between
6502 it and the rest of the code and also allows delayed branch
6503 scheduling to operate in the epilogue. */
6504 thread_prologue_and_epilogue_insns ();
6505
6506 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6507 see PR57320. */
6508 cleanup_cfg (0);
6509
6510 /* The stack usage info is finalized during prologue expansion. */
6511 if (flag_stack_usage_info)
6512 output_stack_usage ();
6513
6514 return 0;
6515 }
6516
6517 namespace {
6518
6519 const pass_data pass_data_thread_prologue_and_epilogue =
6520 {
6521 RTL_PASS, /* type */
6522 "pro_and_epilogue", /* name */
6523 OPTGROUP_NONE, /* optinfo_flags */
6524 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6525 0, /* properties_required */
6526 0, /* properties_provided */
6527 0, /* properties_destroyed */
6528 0, /* todo_flags_start */
6529 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6530 };
6531
6532 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6533 {
6534 public:
6535 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6536 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6537 {}
6538
6539 /* opt_pass methods: */
6540 virtual unsigned int execute (function *)
6541 {
6542 return rest_of_handle_thread_prologue_and_epilogue ();
6543 }
6544
6545 }; // class pass_thread_prologue_and_epilogue
6546
6547 } // anon namespace
6548
6549 rtl_opt_pass *
6550 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6551 {
6552 return new pass_thread_prologue_and_epilogue (ctxt);
6553 }
6554 \f
6555
6556 /* This mini-pass fixes fall-out from SSA in asm statements that have
6557 in-out constraints. Say you start with
6558
6559 orig = inout;
6560 asm ("": "+mr" (inout));
6561 use (orig);
6562
6563 which is transformed very early to use explicit output and match operands:
6564
6565 orig = inout;
6566 asm ("": "=mr" (inout) : "0" (inout));
6567 use (orig);
6568
6569 Or, after SSA and copyprop,
6570
6571 asm ("": "=mr" (inout_2) : "0" (inout_1));
6572 use (inout_1);
6573
6574 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6575 they represent two separate values, so they will get different pseudo
6576 registers during expansion. Then, since the two operands need to match
6577 per the constraints, but use different pseudo registers, reload can
6578 only register a reload for these operands. But reloads can only be
6579 satisfied by hardregs, not by memory, so we need a register for this
6580 reload, just because we are presented with non-matching operands.
6581 So, even though we allow memory for this operand, no memory can be
6582 used for it, just because the two operands don't match. This can
6583 cause reload failures on register-starved targets.
6584
6585 So it's a symptom of reload not being able to use memory for reloads
6586 or, alternatively it's also a symptom of both operands not coming into
6587 reload as matching (in which case the pseudo could go to memory just
6588 fine, as the alternative allows it, and no reload would be necessary).
6589 We fix the latter problem here, by transforming
6590
6591 asm ("": "=mr" (inout_2) : "0" (inout_1));
6592
6593 back to
6594
6595 inout_2 = inout_1;
6596 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6597
6598 static void
6599 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6600 {
6601 int i;
6602 bool changed = false;
6603 rtx op = SET_SRC (p_sets[0]);
6604 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6605 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6606 bool *output_matched = XALLOCAVEC (bool, noutputs);
6607
6608 memset (output_matched, 0, noutputs * sizeof (bool));
6609 for (i = 0; i < ninputs; i++)
6610 {
6611 rtx input, output;
6612 rtx_insn *insns;
6613 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6614 char *end;
6615 int match, j;
6616
6617 if (*constraint == '%')
6618 constraint++;
6619
6620 match = strtoul (constraint, &end, 10);
6621 if (end == constraint)
6622 continue;
6623
6624 gcc_assert (match < noutputs);
6625 output = SET_DEST (p_sets[match]);
6626 input = RTVEC_ELT (inputs, i);
6627 /* Only do the transformation for pseudos. */
6628 if (! REG_P (output)
6629 || rtx_equal_p (output, input)
6630 || (GET_MODE (input) != VOIDmode
6631 && GET_MODE (input) != GET_MODE (output)))
6632 continue;
6633
6634 /* We can't do anything if the output is also used as input,
6635 as we're going to overwrite it. */
6636 for (j = 0; j < ninputs; j++)
6637 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6638 break;
6639 if (j != ninputs)
6640 continue;
6641
6642 /* Avoid changing the same input several times. For
6643 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6644 only change in once (to out1), rather than changing it
6645 first to out1 and afterwards to out2. */
6646 if (i > 0)
6647 {
6648 for (j = 0; j < noutputs; j++)
6649 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6650 break;
6651 if (j != noutputs)
6652 continue;
6653 }
6654 output_matched[match] = true;
6655
6656 start_sequence ();
6657 emit_move_insn (output, input);
6658 insns = get_insns ();
6659 end_sequence ();
6660 emit_insn_before (insns, insn);
6661
6662 /* Now replace all mentions of the input with output. We can't
6663 just replace the occurrence in inputs[i], as the register might
6664 also be used in some other input (or even in an address of an
6665 output), which would mean possibly increasing the number of
6666 inputs by one (namely 'output' in addition), which might pose
6667 a too complicated problem for reload to solve. E.g. this situation:
6668
6669 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6670
6671 Here 'input' is used in two occurrences as input (once for the
6672 input operand, once for the address in the second output operand).
6673 If we would replace only the occurrence of the input operand (to
6674 make the matching) we would be left with this:
6675
6676 output = input
6677 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6678
6679 Now we suddenly have two different input values (containing the same
6680 value, but different pseudos) where we formerly had only one.
6681 With more complicated asms this might lead to reload failures
6682 which wouldn't have happen without this pass. So, iterate over
6683 all operands and replace all occurrences of the register used. */
6684 for (j = 0; j < noutputs; j++)
6685 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6686 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6687 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6688 input, output);
6689 for (j = 0; j < ninputs; j++)
6690 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6691 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6692 input, output);
6693
6694 changed = true;
6695 }
6696
6697 if (changed)
6698 df_insn_rescan (insn);
6699 }
6700
6701 /* Add the decl D to the local_decls list of FUN. */
6702
6703 void
6704 add_local_decl (struct function *fun, tree d)
6705 {
6706 gcc_assert (TREE_CODE (d) == VAR_DECL);
6707 vec_safe_push (fun->local_decls, d);
6708 }
6709
6710 namespace {
6711
6712 const pass_data pass_data_match_asm_constraints =
6713 {
6714 RTL_PASS, /* type */
6715 "asmcons", /* name */
6716 OPTGROUP_NONE, /* optinfo_flags */
6717 TV_NONE, /* tv_id */
6718 0, /* properties_required */
6719 0, /* properties_provided */
6720 0, /* properties_destroyed */
6721 0, /* todo_flags_start */
6722 0, /* todo_flags_finish */
6723 };
6724
6725 class pass_match_asm_constraints : public rtl_opt_pass
6726 {
6727 public:
6728 pass_match_asm_constraints (gcc::context *ctxt)
6729 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6730 {}
6731
6732 /* opt_pass methods: */
6733 virtual unsigned int execute (function *);
6734
6735 }; // class pass_match_asm_constraints
6736
6737 unsigned
6738 pass_match_asm_constraints::execute (function *fun)
6739 {
6740 basic_block bb;
6741 rtx_insn *insn;
6742 rtx pat, *p_sets;
6743 int noutputs;
6744
6745 if (!crtl->has_asm_statement)
6746 return 0;
6747
6748 df_set_flags (DF_DEFER_INSN_RESCAN);
6749 FOR_EACH_BB_FN (bb, fun)
6750 {
6751 FOR_BB_INSNS (bb, insn)
6752 {
6753 if (!INSN_P (insn))
6754 continue;
6755
6756 pat = PATTERN (insn);
6757 if (GET_CODE (pat) == PARALLEL)
6758 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6759 else if (GET_CODE (pat) == SET)
6760 p_sets = &PATTERN (insn), noutputs = 1;
6761 else
6762 continue;
6763
6764 if (GET_CODE (*p_sets) == SET
6765 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6766 match_asm_constraints_1 (insn, p_sets, noutputs);
6767 }
6768 }
6769
6770 return TODO_df_finish;
6771 }
6772
6773 } // anon namespace
6774
6775 rtl_opt_pass *
6776 make_pass_match_asm_constraints (gcc::context *ctxt)
6777 {
6778 return new pass_match_asm_constraints (ctxt);
6779 }
6780
6781
6782 #include "gt-function.h"