function.c (assign_stack_local_1): Issue an error message if the frame size overflows...
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
31
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "tree-pass.h"
65 #include "predict.h"
66
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
70
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
74
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
76
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
84
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
89
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
93
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
99
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 life_analysis has run. */
103 int current_function_sp_is_unchanging;
104
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
109
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
115
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
118
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
122
123 /* The currently compiled function. */
124 struct function *cfun = 0;
125
126 DEF_VEC_I(int);
127 DEF_VEC_ALLOC_I(int,heap);
128
129 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
130 static VEC(int,heap) *prologue;
131 static VEC(int,heap) *epilogue;
132
133 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
134 in this function. */
135 static VEC(int,heap) *sibcall_epilogue;
136 \f
137 /* In order to evaluate some expressions, such as function calls returning
138 structures in memory, we need to temporarily allocate stack locations.
139 We record each allocated temporary in the following structure.
140
141 Associated with each temporary slot is a nesting level. When we pop up
142 one level, all temporaries associated with the previous level are freed.
143 Normally, all temporaries are freed after the execution of the statement
144 in which they were created. However, if we are inside a ({...}) grouping,
145 the result may be in a temporary and hence must be preserved. If the
146 result could be in a temporary, we preserve it if we can determine which
147 one it is in. If we cannot determine which temporary may contain the
148 result, all temporaries are preserved. A temporary is preserved by
149 pretending it was allocated at the previous nesting level.
150
151 Automatic variables are also assigned temporary slots, at the nesting
152 level where they are defined. They are marked a "kept" so that
153 free_temp_slots will not free them. */
154
155 struct temp_slot GTY(())
156 {
157 /* Points to next temporary slot. */
158 struct temp_slot *next;
159 /* Points to previous temporary slot. */
160 struct temp_slot *prev;
161
162 /* The rtx to used to reference the slot. */
163 rtx slot;
164 /* The rtx used to represent the address if not the address of the
165 slot above. May be an EXPR_LIST if multiple addresses exist. */
166 rtx address;
167 /* The alignment (in bits) of the slot. */
168 unsigned int align;
169 /* The size, in units, of the slot. */
170 HOST_WIDE_INT size;
171 /* The type of the object in the slot, or zero if it doesn't correspond
172 to a type. We use this to determine whether a slot can be reused.
173 It can be reused if objects of the type of the new slot will always
174 conflict with objects of the type of the old slot. */
175 tree type;
176 /* Nonzero if this temporary is currently in use. */
177 char in_use;
178 /* Nonzero if this temporary has its address taken. */
179 char addr_taken;
180 /* Nesting level at which this slot is being used. */
181 int level;
182 /* Nonzero if this should survive a call to free_temp_slots. */
183 int keep;
184 /* The offset of the slot from the frame_pointer, including extra space
185 for alignment. This info is for combine_temp_slots. */
186 HOST_WIDE_INT base_offset;
187 /* The size of the slot, including extra space for alignment. This
188 info is for combine_temp_slots. */
189 HOST_WIDE_INT full_size;
190 };
191 \f
192 /* Forward declarations. */
193
194 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
195 struct function *);
196 static struct temp_slot *find_temp_slot_from_address (rtx);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200 static void reorder_fix_fragments (tree);
201 static int all_blocks (tree, tree *);
202 static tree *get_block_vector (tree, int *);
203 extern tree debug_find_var_in_block_tree (tree, tree);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
207 static int contains (rtx, VEC(int,heap) **);
208 #ifdef HAVE_return
209 static void emit_return_into_block (basic_block, rtx);
210 #endif
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx keep_stack_depressed (rtx);
213 #endif
214 static void prepare_function_start (tree);
215 static void do_clobber_return_reg (rtx, void *);
216 static void do_use_return_reg (rtx, void *);
217 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 \f
219 /* Pointer to chain of `struct function' for containing functions. */
220 struct function *outer_function_chain;
221
222 /* Given a function decl for a containing function,
223 return the `struct function' for it. */
224
225 struct function *
226 find_function_data (tree decl)
227 {
228 struct function *p;
229
230 for (p = outer_function_chain; p; p = p->outer)
231 if (p->decl == decl)
232 return p;
233
234 gcc_unreachable ();
235 }
236
237 /* Save the current context for compilation of a nested function.
238 This is called from language-specific code. The caller should use
239 the enter_nested langhook to save any language-specific state,
240 since this function knows only about language-independent
241 variables. */
242
243 void
244 push_function_context_to (tree context ATTRIBUTE_UNUSED)
245 {
246 struct function *p;
247
248 if (cfun == 0)
249 init_dummy_function_start ();
250 p = cfun;
251
252 p->outer = outer_function_chain;
253 outer_function_chain = p;
254
255 lang_hooks.function.enter_nested (p);
256
257 cfun = 0;
258 }
259
260 void
261 push_function_context (void)
262 {
263 push_function_context_to (current_function_decl);
264 }
265
266 /* Restore the last saved context, at the end of a nested function.
267 This function is called from language-specific code. */
268
269 void
270 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
271 {
272 struct function *p = outer_function_chain;
273
274 cfun = p;
275 outer_function_chain = p->outer;
276
277 current_function_decl = p->decl;
278
279 lang_hooks.function.leave_nested (p);
280
281 /* Reset variables that have known state during rtx generation. */
282 virtuals_instantiated = 0;
283 generating_concat_p = 1;
284 }
285
286 void
287 pop_function_context (void)
288 {
289 pop_function_context_from (current_function_decl);
290 }
291
292 /* Clear out all parts of the state in F that can safely be discarded
293 after the function has been parsed, but not compiled, to let
294 garbage collection reclaim the memory. */
295
296 void
297 free_after_parsing (struct function *f)
298 {
299 /* f->expr->forced_labels is used by code generation. */
300 /* f->emit->regno_reg_rtx is used by code generation. */
301 /* f->varasm is used by code generation. */
302 /* f->eh->eh_return_stub_label is used by code generation. */
303
304 lang_hooks.function.final (f);
305 }
306
307 /* Clear out all parts of the state in F that can safely be discarded
308 after the function has been compiled, to let garbage collection
309 reclaim the memory. */
310
311 void
312 free_after_compilation (struct function *f)
313 {
314 VEC_free (int, heap, prologue);
315 VEC_free (int, heap, epilogue);
316 VEC_free (int, heap, sibcall_epilogue);
317
318 f->eh = NULL;
319 f->expr = NULL;
320 f->emit = NULL;
321 f->varasm = NULL;
322 f->machine = NULL;
323 f->cfg = NULL;
324
325 f->x_avail_temp_slots = NULL;
326 f->x_used_temp_slots = NULL;
327 f->arg_offset_rtx = NULL;
328 f->return_rtx = NULL;
329 f->internal_arg_pointer = NULL;
330 f->x_nonlocal_goto_handler_labels = NULL;
331 f->x_return_label = NULL;
332 f->x_naked_return_label = NULL;
333 f->x_stack_slot_list = NULL;
334 f->x_tail_recursion_reentry = NULL;
335 f->x_arg_pointer_save_area = NULL;
336 f->x_parm_birth_insn = NULL;
337 f->original_arg_vector = NULL;
338 f->original_decl_initial = NULL;
339 f->epilogue_delay_list = NULL;
340 }
341 \f
342 /* Allocate fixed slots in the stack frame of the current function. */
343
344 /* Return size needed for stack frame based on slots so far allocated in
345 function F.
346 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
347 the caller may have to do that. */
348
349 static HOST_WIDE_INT
350 get_func_frame_size (struct function *f)
351 {
352 if (FRAME_GROWS_DOWNWARD)
353 return -f->x_frame_offset;
354 else
355 return f->x_frame_offset;
356 }
357
358 /* Return size needed for stack frame based on slots so far allocated.
359 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
360 the caller may have to do that. */
361 HOST_WIDE_INT
362 get_frame_size (void)
363 {
364 return get_func_frame_size (cfun);
365 }
366
367 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
368 with machine mode MODE.
369
370 ALIGN controls the amount of alignment for the address of the slot:
371 0 means according to MODE,
372 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
373 -2 means use BITS_PER_UNIT,
374 positive specifies alignment boundary in bits.
375
376 We do not round to stack_boundary here.
377
378 FUNCTION specifies the function to allocate in. */
379
380 static rtx
381 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
382 struct function *function)
383 {
384 rtx x, addr;
385 int bigend_correction = 0;
386 unsigned int alignment;
387 int frame_off, frame_alignment, frame_phase;
388
389 if (align == 0)
390 {
391 tree type;
392
393 if (mode == BLKmode)
394 alignment = BIGGEST_ALIGNMENT;
395 else
396 alignment = GET_MODE_ALIGNMENT (mode);
397
398 /* Allow the target to (possibly) increase the alignment of this
399 stack slot. */
400 type = lang_hooks.types.type_for_mode (mode, 0);
401 if (type)
402 alignment = LOCAL_ALIGNMENT (type, alignment);
403
404 alignment /= BITS_PER_UNIT;
405 }
406 else if (align == -1)
407 {
408 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
409 size = CEIL_ROUND (size, alignment);
410 }
411 else if (align == -2)
412 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
413 else
414 alignment = align / BITS_PER_UNIT;
415
416 if (FRAME_GROWS_DOWNWARD)
417 function->x_frame_offset -= size;
418
419 /* Ignore alignment we can't do with expected alignment of the boundary. */
420 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
421 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
422
423 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
424 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
425
426 /* Calculate how many bytes the start of local variables is off from
427 stack alignment. */
428 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
429 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
430 frame_phase = frame_off ? frame_alignment - frame_off : 0;
431
432 /* Round the frame offset to the specified alignment. The default is
433 to always honor requests to align the stack but a port may choose to
434 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
435 if (STACK_ALIGNMENT_NEEDED
436 || mode != BLKmode
437 || size != 0)
438 {
439 /* We must be careful here, since FRAME_OFFSET might be negative and
440 division with a negative dividend isn't as well defined as we might
441 like. So we instead assume that ALIGNMENT is a power of two and
442 use logical operations which are unambiguous. */
443 if (FRAME_GROWS_DOWNWARD)
444 function->x_frame_offset
445 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
446 (unsigned HOST_WIDE_INT) alignment)
447 + frame_phase);
448 else
449 function->x_frame_offset
450 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
451 (unsigned HOST_WIDE_INT) alignment)
452 + frame_phase);
453 }
454
455 /* On a big-endian machine, if we are allocating more space than we will use,
456 use the least significant bytes of those that are allocated. */
457 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
458 bigend_correction = size - GET_MODE_SIZE (mode);
459
460 /* If we have already instantiated virtual registers, return the actual
461 address relative to the frame pointer. */
462 if (function == cfun && virtuals_instantiated)
463 addr = plus_constant (frame_pointer_rtx,
464 trunc_int_for_mode
465 (frame_offset + bigend_correction
466 + STARTING_FRAME_OFFSET, Pmode));
467 else
468 addr = plus_constant (virtual_stack_vars_rtx,
469 trunc_int_for_mode
470 (function->x_frame_offset + bigend_correction,
471 Pmode));
472
473 if (!FRAME_GROWS_DOWNWARD)
474 function->x_frame_offset += size;
475
476 x = gen_rtx_MEM (mode, addr);
477 MEM_NOTRAP_P (x) = 1;
478
479 function->x_stack_slot_list
480 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
481
482 /* Try to detect frame size overflows. */
483 if ((FRAME_GROWS_DOWNWARD
484 ? (unsigned HOST_WIDE_INT) -function->x_frame_offset
485 : (unsigned HOST_WIDE_INT) function->x_frame_offset)
486 > ((unsigned HOST_WIDE_INT) 1 << (BITS_PER_WORD - 1))
487 /* Leave room for the fixed part of the frame. */
488 - 64 * UNITS_PER_WORD)
489 {
490 error ("%Jtotal size of local objects too large", function->decl);
491 /* Avoid duplicate error messages as much as possible. */
492 function->x_frame_offset = 0;
493 }
494
495 return x;
496 }
497
498 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
499 current function. */
500
501 rtx
502 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
503 {
504 return assign_stack_local_1 (mode, size, align, cfun);
505 }
506
507 \f
508 /* Removes temporary slot TEMP from LIST. */
509
510 static void
511 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
512 {
513 if (temp->next)
514 temp->next->prev = temp->prev;
515 if (temp->prev)
516 temp->prev->next = temp->next;
517 else
518 *list = temp->next;
519
520 temp->prev = temp->next = NULL;
521 }
522
523 /* Inserts temporary slot TEMP to LIST. */
524
525 static void
526 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
527 {
528 temp->next = *list;
529 if (*list)
530 (*list)->prev = temp;
531 temp->prev = NULL;
532 *list = temp;
533 }
534
535 /* Returns the list of used temp slots at LEVEL. */
536
537 static struct temp_slot **
538 temp_slots_at_level (int level)
539 {
540
541 if (!used_temp_slots)
542 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
543
544 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
545 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
546
547 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
548 }
549
550 /* Returns the maximal temporary slot level. */
551
552 static int
553 max_slot_level (void)
554 {
555 if (!used_temp_slots)
556 return -1;
557
558 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
559 }
560
561 /* Moves temporary slot TEMP to LEVEL. */
562
563 static void
564 move_slot_to_level (struct temp_slot *temp, int level)
565 {
566 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
567 insert_slot_to_list (temp, temp_slots_at_level (level));
568 temp->level = level;
569 }
570
571 /* Make temporary slot TEMP available. */
572
573 static void
574 make_slot_available (struct temp_slot *temp)
575 {
576 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
577 insert_slot_to_list (temp, &avail_temp_slots);
578 temp->in_use = 0;
579 temp->level = -1;
580 }
581 \f
582 /* Allocate a temporary stack slot and record it for possible later
583 reuse.
584
585 MODE is the machine mode to be given to the returned rtx.
586
587 SIZE is the size in units of the space required. We do no rounding here
588 since assign_stack_local will do any required rounding.
589
590 KEEP is 1 if this slot is to be retained after a call to
591 free_temp_slots. Automatic variables for a block are allocated
592 with this flag. KEEP values of 2 or 3 were needed respectively
593 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
594 or for SAVE_EXPRs, but they are now unused.
595
596 TYPE is the type that will be used for the stack slot. */
597
598 rtx
599 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
600 int keep, tree type)
601 {
602 unsigned int align;
603 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
604 rtx slot;
605
606 /* If SIZE is -1 it means that somebody tried to allocate a temporary
607 of a variable size. */
608 gcc_assert (size != -1);
609
610 /* These are now unused. */
611 gcc_assert (keep <= 1);
612
613 if (mode == BLKmode)
614 align = BIGGEST_ALIGNMENT;
615 else
616 align = GET_MODE_ALIGNMENT (mode);
617
618 if (! type)
619 type = lang_hooks.types.type_for_mode (mode, 0);
620
621 if (type)
622 align = LOCAL_ALIGNMENT (type, align);
623
624 /* Try to find an available, already-allocated temporary of the proper
625 mode which meets the size and alignment requirements. Choose the
626 smallest one with the closest alignment. */
627 for (p = avail_temp_slots; p; p = p->next)
628 {
629 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
630 && objects_must_conflict_p (p->type, type)
631 && (best_p == 0 || best_p->size > p->size
632 || (best_p->size == p->size && best_p->align > p->align)))
633 {
634 if (p->align == align && p->size == size)
635 {
636 selected = p;
637 cut_slot_from_list (selected, &avail_temp_slots);
638 best_p = 0;
639 break;
640 }
641 best_p = p;
642 }
643 }
644
645 /* Make our best, if any, the one to use. */
646 if (best_p)
647 {
648 selected = best_p;
649 cut_slot_from_list (selected, &avail_temp_slots);
650
651 /* If there are enough aligned bytes left over, make them into a new
652 temp_slot so that the extra bytes don't get wasted. Do this only
653 for BLKmode slots, so that we can be sure of the alignment. */
654 if (GET_MODE (best_p->slot) == BLKmode)
655 {
656 int alignment = best_p->align / BITS_PER_UNIT;
657 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
658
659 if (best_p->size - rounded_size >= alignment)
660 {
661 p = ggc_alloc (sizeof (struct temp_slot));
662 p->in_use = p->addr_taken = 0;
663 p->size = best_p->size - rounded_size;
664 p->base_offset = best_p->base_offset + rounded_size;
665 p->full_size = best_p->full_size - rounded_size;
666 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
667 p->align = best_p->align;
668 p->address = 0;
669 p->type = best_p->type;
670 insert_slot_to_list (p, &avail_temp_slots);
671
672 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
673 stack_slot_list);
674
675 best_p->size = rounded_size;
676 best_p->full_size = rounded_size;
677 }
678 }
679 }
680
681 /* If we still didn't find one, make a new temporary. */
682 if (selected == 0)
683 {
684 HOST_WIDE_INT frame_offset_old = frame_offset;
685
686 p = ggc_alloc (sizeof (struct temp_slot));
687
688 /* We are passing an explicit alignment request to assign_stack_local.
689 One side effect of that is assign_stack_local will not round SIZE
690 to ensure the frame offset remains suitably aligned.
691
692 So for requests which depended on the rounding of SIZE, we go ahead
693 and round it now. We also make sure ALIGNMENT is at least
694 BIGGEST_ALIGNMENT. */
695 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
696 p->slot = assign_stack_local (mode,
697 (mode == BLKmode
698 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
699 : size),
700 align);
701
702 p->align = align;
703
704 /* The following slot size computation is necessary because we don't
705 know the actual size of the temporary slot until assign_stack_local
706 has performed all the frame alignment and size rounding for the
707 requested temporary. Note that extra space added for alignment
708 can be either above or below this stack slot depending on which
709 way the frame grows. We include the extra space if and only if it
710 is above this slot. */
711 if (FRAME_GROWS_DOWNWARD)
712 p->size = frame_offset_old - frame_offset;
713 else
714 p->size = size;
715
716 /* Now define the fields used by combine_temp_slots. */
717 if (FRAME_GROWS_DOWNWARD)
718 {
719 p->base_offset = frame_offset;
720 p->full_size = frame_offset_old - frame_offset;
721 }
722 else
723 {
724 p->base_offset = frame_offset_old;
725 p->full_size = frame_offset - frame_offset_old;
726 }
727 p->address = 0;
728
729 selected = p;
730 }
731
732 p = selected;
733 p->in_use = 1;
734 p->addr_taken = 0;
735 p->type = type;
736 p->level = temp_slot_level;
737 p->keep = keep;
738
739 pp = temp_slots_at_level (p->level);
740 insert_slot_to_list (p, pp);
741
742 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
743 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
744 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
745
746 /* If we know the alias set for the memory that will be used, use
747 it. If there's no TYPE, then we don't know anything about the
748 alias set for the memory. */
749 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
750 set_mem_align (slot, align);
751
752 /* If a type is specified, set the relevant flags. */
753 if (type != 0)
754 {
755 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
756 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
757 }
758 MEM_NOTRAP_P (slot) = 1;
759
760 return slot;
761 }
762
763 /* Allocate a temporary stack slot and record it for possible later
764 reuse. First three arguments are same as in preceding function. */
765
766 rtx
767 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
768 {
769 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
770 }
771 \f
772 /* Assign a temporary.
773 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
774 and so that should be used in error messages. In either case, we
775 allocate of the given type.
776 KEEP is as for assign_stack_temp.
777 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
778 it is 0 if a register is OK.
779 DONT_PROMOTE is 1 if we should not promote values in register
780 to wider modes. */
781
782 rtx
783 assign_temp (tree type_or_decl, int keep, int memory_required,
784 int dont_promote ATTRIBUTE_UNUSED)
785 {
786 tree type, decl;
787 enum machine_mode mode;
788 #ifdef PROMOTE_MODE
789 int unsignedp;
790 #endif
791
792 if (DECL_P (type_or_decl))
793 decl = type_or_decl, type = TREE_TYPE (decl);
794 else
795 decl = NULL, type = type_or_decl;
796
797 mode = TYPE_MODE (type);
798 #ifdef PROMOTE_MODE
799 unsignedp = TYPE_UNSIGNED (type);
800 #endif
801
802 if (mode == BLKmode || memory_required)
803 {
804 HOST_WIDE_INT size = int_size_in_bytes (type);
805 tree size_tree;
806 rtx tmp;
807
808 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
809 problems with allocating the stack space. */
810 if (size == 0)
811 size = 1;
812
813 /* Unfortunately, we don't yet know how to allocate variable-sized
814 temporaries. However, sometimes we have a fixed upper limit on
815 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
816 instead. This is the case for Chill variable-sized strings. */
817 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
818 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
819 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
820 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
821
822 /* If we still haven't been able to get a size, see if the language
823 can compute a maximum size. */
824 if (size == -1
825 && (size_tree = lang_hooks.types.max_size (type)) != 0
826 && host_integerp (size_tree, 1))
827 size = tree_low_cst (size_tree, 1);
828
829 /* The size of the temporary may be too large to fit into an integer. */
830 /* ??? Not sure this should happen except for user silliness, so limit
831 this to things that aren't compiler-generated temporaries. The
832 rest of the time we'll die in assign_stack_temp_for_type. */
833 if (decl && size == -1
834 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
835 {
836 error ("size of variable %q+D is too large", decl);
837 size = 1;
838 }
839
840 tmp = assign_stack_temp_for_type (mode, size, keep, type);
841 return tmp;
842 }
843
844 #ifdef PROMOTE_MODE
845 if (! dont_promote)
846 mode = promote_mode (type, mode, &unsignedp, 0);
847 #endif
848
849 return gen_reg_rtx (mode);
850 }
851 \f
852 /* Combine temporary stack slots which are adjacent on the stack.
853
854 This allows for better use of already allocated stack space. This is only
855 done for BLKmode slots because we can be sure that we won't have alignment
856 problems in this case. */
857
858 static void
859 combine_temp_slots (void)
860 {
861 struct temp_slot *p, *q, *next, *next_q;
862 int num_slots;
863
864 /* We can't combine slots, because the information about which slot
865 is in which alias set will be lost. */
866 if (flag_strict_aliasing)
867 return;
868
869 /* If there are a lot of temp slots, don't do anything unless
870 high levels of optimization. */
871 if (! flag_expensive_optimizations)
872 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
873 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
874 return;
875
876 for (p = avail_temp_slots; p; p = next)
877 {
878 int delete_p = 0;
879
880 next = p->next;
881
882 if (GET_MODE (p->slot) != BLKmode)
883 continue;
884
885 for (q = p->next; q; q = next_q)
886 {
887 int delete_q = 0;
888
889 next_q = q->next;
890
891 if (GET_MODE (q->slot) != BLKmode)
892 continue;
893
894 if (p->base_offset + p->full_size == q->base_offset)
895 {
896 /* Q comes after P; combine Q into P. */
897 p->size += q->size;
898 p->full_size += q->full_size;
899 delete_q = 1;
900 }
901 else if (q->base_offset + q->full_size == p->base_offset)
902 {
903 /* P comes after Q; combine P into Q. */
904 q->size += p->size;
905 q->full_size += p->full_size;
906 delete_p = 1;
907 break;
908 }
909 if (delete_q)
910 cut_slot_from_list (q, &avail_temp_slots);
911 }
912
913 /* Either delete P or advance past it. */
914 if (delete_p)
915 cut_slot_from_list (p, &avail_temp_slots);
916 }
917 }
918 \f
919 /* Find the temp slot corresponding to the object at address X. */
920
921 static struct temp_slot *
922 find_temp_slot_from_address (rtx x)
923 {
924 struct temp_slot *p;
925 rtx next;
926 int i;
927
928 for (i = max_slot_level (); i >= 0; i--)
929 for (p = *temp_slots_at_level (i); p; p = p->next)
930 {
931 if (XEXP (p->slot, 0) == x
932 || p->address == x
933 || (GET_CODE (x) == PLUS
934 && XEXP (x, 0) == virtual_stack_vars_rtx
935 && GET_CODE (XEXP (x, 1)) == CONST_INT
936 && INTVAL (XEXP (x, 1)) >= p->base_offset
937 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
938 return p;
939
940 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
941 for (next = p->address; next; next = XEXP (next, 1))
942 if (XEXP (next, 0) == x)
943 return p;
944 }
945
946 /* If we have a sum involving a register, see if it points to a temp
947 slot. */
948 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
949 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
950 return p;
951 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
952 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
953 return p;
954
955 return 0;
956 }
957
958 /* Indicate that NEW is an alternate way of referring to the temp slot
959 that previously was known by OLD. */
960
961 void
962 update_temp_slot_address (rtx old, rtx new)
963 {
964 struct temp_slot *p;
965
966 if (rtx_equal_p (old, new))
967 return;
968
969 p = find_temp_slot_from_address (old);
970
971 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
972 is a register, see if one operand of the PLUS is a temporary
973 location. If so, NEW points into it. Otherwise, if both OLD and
974 NEW are a PLUS and if there is a register in common between them.
975 If so, try a recursive call on those values. */
976 if (p == 0)
977 {
978 if (GET_CODE (old) != PLUS)
979 return;
980
981 if (REG_P (new))
982 {
983 update_temp_slot_address (XEXP (old, 0), new);
984 update_temp_slot_address (XEXP (old, 1), new);
985 return;
986 }
987 else if (GET_CODE (new) != PLUS)
988 return;
989
990 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
991 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
992 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
993 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
994 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
995 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
996 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
997 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
998
999 return;
1000 }
1001
1002 /* Otherwise add an alias for the temp's address. */
1003 else if (p->address == 0)
1004 p->address = new;
1005 else
1006 {
1007 if (GET_CODE (p->address) != EXPR_LIST)
1008 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1009
1010 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1011 }
1012 }
1013
1014 /* If X could be a reference to a temporary slot, mark the fact that its
1015 address was taken. */
1016
1017 void
1018 mark_temp_addr_taken (rtx x)
1019 {
1020 struct temp_slot *p;
1021
1022 if (x == 0)
1023 return;
1024
1025 /* If X is not in memory or is at a constant address, it cannot be in
1026 a temporary slot. */
1027 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1028 return;
1029
1030 p = find_temp_slot_from_address (XEXP (x, 0));
1031 if (p != 0)
1032 p->addr_taken = 1;
1033 }
1034
1035 /* If X could be a reference to a temporary slot, mark that slot as
1036 belonging to the to one level higher than the current level. If X
1037 matched one of our slots, just mark that one. Otherwise, we can't
1038 easily predict which it is, so upgrade all of them. Kept slots
1039 need not be touched.
1040
1041 This is called when an ({...}) construct occurs and a statement
1042 returns a value in memory. */
1043
1044 void
1045 preserve_temp_slots (rtx x)
1046 {
1047 struct temp_slot *p = 0, *next;
1048
1049 /* If there is no result, we still might have some objects whose address
1050 were taken, so we need to make sure they stay around. */
1051 if (x == 0)
1052 {
1053 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1054 {
1055 next = p->next;
1056
1057 if (p->addr_taken)
1058 move_slot_to_level (p, temp_slot_level - 1);
1059 }
1060
1061 return;
1062 }
1063
1064 /* If X is a register that is being used as a pointer, see if we have
1065 a temporary slot we know it points to. To be consistent with
1066 the code below, we really should preserve all non-kept slots
1067 if we can't find a match, but that seems to be much too costly. */
1068 if (REG_P (x) && REG_POINTER (x))
1069 p = find_temp_slot_from_address (x);
1070
1071 /* If X is not in memory or is at a constant address, it cannot be in
1072 a temporary slot, but it can contain something whose address was
1073 taken. */
1074 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1075 {
1076 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1077 {
1078 next = p->next;
1079
1080 if (p->addr_taken)
1081 move_slot_to_level (p, temp_slot_level - 1);
1082 }
1083
1084 return;
1085 }
1086
1087 /* First see if we can find a match. */
1088 if (p == 0)
1089 p = find_temp_slot_from_address (XEXP (x, 0));
1090
1091 if (p != 0)
1092 {
1093 /* Move everything at our level whose address was taken to our new
1094 level in case we used its address. */
1095 struct temp_slot *q;
1096
1097 if (p->level == temp_slot_level)
1098 {
1099 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1100 {
1101 next = q->next;
1102
1103 if (p != q && q->addr_taken)
1104 move_slot_to_level (q, temp_slot_level - 1);
1105 }
1106
1107 move_slot_to_level (p, temp_slot_level - 1);
1108 p->addr_taken = 0;
1109 }
1110 return;
1111 }
1112
1113 /* Otherwise, preserve all non-kept slots at this level. */
1114 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1115 {
1116 next = p->next;
1117
1118 if (!p->keep)
1119 move_slot_to_level (p, temp_slot_level - 1);
1120 }
1121 }
1122
1123 /* Free all temporaries used so far. This is normally called at the
1124 end of generating code for a statement. */
1125
1126 void
1127 free_temp_slots (void)
1128 {
1129 struct temp_slot *p, *next;
1130
1131 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1132 {
1133 next = p->next;
1134
1135 if (!p->keep)
1136 make_slot_available (p);
1137 }
1138
1139 combine_temp_slots ();
1140 }
1141
1142 /* Push deeper into the nesting level for stack temporaries. */
1143
1144 void
1145 push_temp_slots (void)
1146 {
1147 temp_slot_level++;
1148 }
1149
1150 /* Pop a temporary nesting level. All slots in use in the current level
1151 are freed. */
1152
1153 void
1154 pop_temp_slots (void)
1155 {
1156 struct temp_slot *p, *next;
1157
1158 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1159 {
1160 next = p->next;
1161 make_slot_available (p);
1162 }
1163
1164 combine_temp_slots ();
1165
1166 temp_slot_level--;
1167 }
1168
1169 /* Initialize temporary slots. */
1170
1171 void
1172 init_temp_slots (void)
1173 {
1174 /* We have not allocated any temporaries yet. */
1175 avail_temp_slots = 0;
1176 used_temp_slots = 0;
1177 temp_slot_level = 0;
1178 }
1179 \f
1180 /* These routines are responsible for converting virtual register references
1181 to the actual hard register references once RTL generation is complete.
1182
1183 The following four variables are used for communication between the
1184 routines. They contain the offsets of the virtual registers from their
1185 respective hard registers. */
1186
1187 static int in_arg_offset;
1188 static int var_offset;
1189 static int dynamic_offset;
1190 static int out_arg_offset;
1191 static int cfa_offset;
1192
1193 /* In most machines, the stack pointer register is equivalent to the bottom
1194 of the stack. */
1195
1196 #ifndef STACK_POINTER_OFFSET
1197 #define STACK_POINTER_OFFSET 0
1198 #endif
1199
1200 /* If not defined, pick an appropriate default for the offset of dynamically
1201 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1202 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1203
1204 #ifndef STACK_DYNAMIC_OFFSET
1205
1206 /* The bottom of the stack points to the actual arguments. If
1207 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1208 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1209 stack space for register parameters is not pushed by the caller, but
1210 rather part of the fixed stack areas and hence not included in
1211 `current_function_outgoing_args_size'. Nevertheless, we must allow
1212 for it when allocating stack dynamic objects. */
1213
1214 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1215 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1216 ((ACCUMULATE_OUTGOING_ARGS \
1217 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1218 + (STACK_POINTER_OFFSET)) \
1219
1220 #else
1221 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1222 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1223 + (STACK_POINTER_OFFSET))
1224 #endif
1225 #endif
1226
1227 \f
1228 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1229 is a virtual register, return the equivalent hard register and set the
1230 offset indirectly through the pointer. Otherwise, return 0. */
1231
1232 static rtx
1233 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1234 {
1235 rtx new;
1236 HOST_WIDE_INT offset;
1237
1238 if (x == virtual_incoming_args_rtx)
1239 new = arg_pointer_rtx, offset = in_arg_offset;
1240 else if (x == virtual_stack_vars_rtx)
1241 new = frame_pointer_rtx, offset = var_offset;
1242 else if (x == virtual_stack_dynamic_rtx)
1243 new = stack_pointer_rtx, offset = dynamic_offset;
1244 else if (x == virtual_outgoing_args_rtx)
1245 new = stack_pointer_rtx, offset = out_arg_offset;
1246 else if (x == virtual_cfa_rtx)
1247 new = arg_pointer_rtx, offset = cfa_offset;
1248 else
1249 return NULL_RTX;
1250
1251 *poffset = offset;
1252 return new;
1253 }
1254
1255 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1256 Instantiate any virtual registers present inside of *LOC. The expression
1257 is simplified, as much as possible, but is not to be considered "valid"
1258 in any sense implied by the target. If any change is made, set CHANGED
1259 to true. */
1260
1261 static int
1262 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1263 {
1264 HOST_WIDE_INT offset;
1265 bool *changed = (bool *) data;
1266 rtx x, new;
1267
1268 x = *loc;
1269 if (x == 0)
1270 return 0;
1271
1272 switch (GET_CODE (x))
1273 {
1274 case REG:
1275 new = instantiate_new_reg (x, &offset);
1276 if (new)
1277 {
1278 *loc = plus_constant (new, offset);
1279 if (changed)
1280 *changed = true;
1281 }
1282 return -1;
1283
1284 case PLUS:
1285 new = instantiate_new_reg (XEXP (x, 0), &offset);
1286 if (new)
1287 {
1288 new = plus_constant (new, offset);
1289 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1290 if (changed)
1291 *changed = true;
1292 return -1;
1293 }
1294
1295 /* FIXME -- from old code */
1296 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1297 we can commute the PLUS and SUBREG because pointers into the
1298 frame are well-behaved. */
1299 break;
1300
1301 default:
1302 break;
1303 }
1304
1305 return 0;
1306 }
1307
1308 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1309 matches the predicate for insn CODE operand OPERAND. */
1310
1311 static int
1312 safe_insn_predicate (int code, int operand, rtx x)
1313 {
1314 const struct insn_operand_data *op_data;
1315
1316 if (code < 0)
1317 return true;
1318
1319 op_data = &insn_data[code].operand[operand];
1320 if (op_data->predicate == NULL)
1321 return true;
1322
1323 return op_data->predicate (x, op_data->mode);
1324 }
1325
1326 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1327 registers present inside of insn. The result will be a valid insn. */
1328
1329 static void
1330 instantiate_virtual_regs_in_insn (rtx insn)
1331 {
1332 HOST_WIDE_INT offset;
1333 int insn_code, i;
1334 bool any_change = false;
1335 rtx set, new, x, seq;
1336
1337 /* There are some special cases to be handled first. */
1338 set = single_set (insn);
1339 if (set)
1340 {
1341 /* We're allowed to assign to a virtual register. This is interpreted
1342 to mean that the underlying register gets assigned the inverse
1343 transformation. This is used, for example, in the handling of
1344 non-local gotos. */
1345 new = instantiate_new_reg (SET_DEST (set), &offset);
1346 if (new)
1347 {
1348 start_sequence ();
1349
1350 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1351 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1352 GEN_INT (-offset));
1353 x = force_operand (x, new);
1354 if (x != new)
1355 emit_move_insn (new, x);
1356
1357 seq = get_insns ();
1358 end_sequence ();
1359
1360 emit_insn_before (seq, insn);
1361 delete_insn (insn);
1362 return;
1363 }
1364
1365 /* Handle a straight copy from a virtual register by generating a
1366 new add insn. The difference between this and falling through
1367 to the generic case is avoiding a new pseudo and eliminating a
1368 move insn in the initial rtl stream. */
1369 new = instantiate_new_reg (SET_SRC (set), &offset);
1370 if (new && offset != 0
1371 && REG_P (SET_DEST (set))
1372 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1373 {
1374 start_sequence ();
1375
1376 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1377 new, GEN_INT (offset), SET_DEST (set),
1378 1, OPTAB_LIB_WIDEN);
1379 if (x != SET_DEST (set))
1380 emit_move_insn (SET_DEST (set), x);
1381
1382 seq = get_insns ();
1383 end_sequence ();
1384
1385 emit_insn_before (seq, insn);
1386 delete_insn (insn);
1387 return;
1388 }
1389
1390 extract_insn (insn);
1391 insn_code = INSN_CODE (insn);
1392
1393 /* Handle a plus involving a virtual register by determining if the
1394 operands remain valid if they're modified in place. */
1395 if (GET_CODE (SET_SRC (set)) == PLUS
1396 && recog_data.n_operands >= 3
1397 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1398 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1399 && GET_CODE (recog_data.operand[2]) == CONST_INT
1400 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1401 {
1402 offset += INTVAL (recog_data.operand[2]);
1403
1404 /* If the sum is zero, then replace with a plain move. */
1405 if (offset == 0
1406 && REG_P (SET_DEST (set))
1407 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1408 {
1409 start_sequence ();
1410 emit_move_insn (SET_DEST (set), new);
1411 seq = get_insns ();
1412 end_sequence ();
1413
1414 emit_insn_before (seq, insn);
1415 delete_insn (insn);
1416 return;
1417 }
1418
1419 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1420
1421 /* Using validate_change and apply_change_group here leaves
1422 recog_data in an invalid state. Since we know exactly what
1423 we want to check, do those two by hand. */
1424 if (safe_insn_predicate (insn_code, 1, new)
1425 && safe_insn_predicate (insn_code, 2, x))
1426 {
1427 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1428 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1429 any_change = true;
1430
1431 /* Fall through into the regular operand fixup loop in
1432 order to take care of operands other than 1 and 2. */
1433 }
1434 }
1435 }
1436 else
1437 {
1438 extract_insn (insn);
1439 insn_code = INSN_CODE (insn);
1440 }
1441
1442 /* In the general case, we expect virtual registers to appear only in
1443 operands, and then only as either bare registers or inside memories. */
1444 for (i = 0; i < recog_data.n_operands; ++i)
1445 {
1446 x = recog_data.operand[i];
1447 switch (GET_CODE (x))
1448 {
1449 case MEM:
1450 {
1451 rtx addr = XEXP (x, 0);
1452 bool changed = false;
1453
1454 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1455 if (!changed)
1456 continue;
1457
1458 start_sequence ();
1459 x = replace_equiv_address (x, addr);
1460 seq = get_insns ();
1461 end_sequence ();
1462 if (seq)
1463 emit_insn_before (seq, insn);
1464 }
1465 break;
1466
1467 case REG:
1468 new = instantiate_new_reg (x, &offset);
1469 if (new == NULL)
1470 continue;
1471 if (offset == 0)
1472 x = new;
1473 else
1474 {
1475 start_sequence ();
1476
1477 /* Careful, special mode predicates may have stuff in
1478 insn_data[insn_code].operand[i].mode that isn't useful
1479 to us for computing a new value. */
1480 /* ??? Recognize address_operand and/or "p" constraints
1481 to see if (plus new offset) is a valid before we put
1482 this through expand_simple_binop. */
1483 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1484 GEN_INT (offset), NULL_RTX,
1485 1, OPTAB_LIB_WIDEN);
1486 seq = get_insns ();
1487 end_sequence ();
1488 emit_insn_before (seq, insn);
1489 }
1490 break;
1491
1492 case SUBREG:
1493 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1494 if (new == NULL)
1495 continue;
1496 if (offset != 0)
1497 {
1498 start_sequence ();
1499 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1500 GEN_INT (offset), NULL_RTX,
1501 1, OPTAB_LIB_WIDEN);
1502 seq = get_insns ();
1503 end_sequence ();
1504 emit_insn_before (seq, insn);
1505 }
1506 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1507 GET_MODE (new), SUBREG_BYTE (x));
1508 break;
1509
1510 default:
1511 continue;
1512 }
1513
1514 /* At this point, X contains the new value for the operand.
1515 Validate the new value vs the insn predicate. Note that
1516 asm insns will have insn_code -1 here. */
1517 if (!safe_insn_predicate (insn_code, i, x))
1518 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1519
1520 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1521 any_change = true;
1522 }
1523
1524 if (any_change)
1525 {
1526 /* Propagate operand changes into the duplicates. */
1527 for (i = 0; i < recog_data.n_dups; ++i)
1528 *recog_data.dup_loc[i]
1529 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1530
1531 /* Force re-recognition of the instruction for validation. */
1532 INSN_CODE (insn) = -1;
1533 }
1534
1535 if (asm_noperands (PATTERN (insn)) >= 0)
1536 {
1537 if (!check_asm_operands (PATTERN (insn)))
1538 {
1539 error_for_asm (insn, "impossible constraint in %<asm%>");
1540 delete_insn (insn);
1541 }
1542 }
1543 else
1544 {
1545 if (recog_memoized (insn) < 0)
1546 fatal_insn_not_found (insn);
1547 }
1548 }
1549
1550 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1551 do any instantiation required. */
1552
1553 static void
1554 instantiate_decl (rtx x)
1555 {
1556 rtx addr;
1557
1558 if (x == 0)
1559 return;
1560
1561 /* If this is a CONCAT, recurse for the pieces. */
1562 if (GET_CODE (x) == CONCAT)
1563 {
1564 instantiate_decl (XEXP (x, 0));
1565 instantiate_decl (XEXP (x, 1));
1566 return;
1567 }
1568
1569 /* If this is not a MEM, no need to do anything. Similarly if the
1570 address is a constant or a register that is not a virtual register. */
1571 if (!MEM_P (x))
1572 return;
1573
1574 addr = XEXP (x, 0);
1575 if (CONSTANT_P (addr)
1576 || (REG_P (addr)
1577 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1578 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1579 return;
1580
1581 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1582 }
1583
1584 /* Subroutine of instantiate_decls: Process all decls in the given
1585 BLOCK node and all its subblocks. */
1586
1587 static void
1588 instantiate_decls_1 (tree let)
1589 {
1590 tree t;
1591
1592 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1593 if (DECL_RTL_SET_P (t))
1594 instantiate_decl (DECL_RTL (t));
1595
1596 /* Process all subblocks. */
1597 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1598 instantiate_decls_1 (t);
1599 }
1600
1601 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1602 all virtual registers in their DECL_RTL's. */
1603
1604 static void
1605 instantiate_decls (tree fndecl)
1606 {
1607 tree decl;
1608
1609 /* Process all parameters of the function. */
1610 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1611 {
1612 instantiate_decl (DECL_RTL (decl));
1613 instantiate_decl (DECL_INCOMING_RTL (decl));
1614 }
1615
1616 /* Now process all variables defined in the function or its subblocks. */
1617 instantiate_decls_1 (DECL_INITIAL (fndecl));
1618 }
1619
1620 /* Pass through the INSNS of function FNDECL and convert virtual register
1621 references to hard register references. */
1622
1623 void
1624 instantiate_virtual_regs (void)
1625 {
1626 rtx insn;
1627
1628 /* Compute the offsets to use for this function. */
1629 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1630 var_offset = STARTING_FRAME_OFFSET;
1631 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1632 out_arg_offset = STACK_POINTER_OFFSET;
1633 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1634
1635 /* Initialize recognition, indicating that volatile is OK. */
1636 init_recog ();
1637
1638 /* Scan through all the insns, instantiating every virtual register still
1639 present. */
1640 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1641 if (INSN_P (insn))
1642 {
1643 /* These patterns in the instruction stream can never be recognized.
1644 Fortunately, they shouldn't contain virtual registers either. */
1645 if (GET_CODE (PATTERN (insn)) == USE
1646 || GET_CODE (PATTERN (insn)) == CLOBBER
1647 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1648 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1649 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1650 continue;
1651
1652 instantiate_virtual_regs_in_insn (insn);
1653
1654 if (INSN_DELETED_P (insn))
1655 continue;
1656
1657 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1658
1659 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1660 if (GET_CODE (insn) == CALL_INSN)
1661 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1662 instantiate_virtual_regs_in_rtx, NULL);
1663 }
1664
1665 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1666 instantiate_decls (current_function_decl);
1667
1668 /* Indicate that, from now on, assign_stack_local should use
1669 frame_pointer_rtx. */
1670 virtuals_instantiated = 1;
1671 }
1672
1673 struct tree_opt_pass pass_instantiate_virtual_regs =
1674 {
1675 "vregs", /* name */
1676 NULL, /* gate */
1677 instantiate_virtual_regs, /* execute */
1678 NULL, /* sub */
1679 NULL, /* next */
1680 0, /* static_pass_number */
1681 0, /* tv_id */
1682 0, /* properties_required */
1683 0, /* properties_provided */
1684 0, /* properties_destroyed */
1685 0, /* todo_flags_start */
1686 TODO_dump_func, /* todo_flags_finish */
1687 0 /* letter */
1688 };
1689
1690 \f
1691 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1692 This means a type for which function calls must pass an address to the
1693 function or get an address back from the function.
1694 EXP may be a type node or an expression (whose type is tested). */
1695
1696 int
1697 aggregate_value_p (tree exp, tree fntype)
1698 {
1699 int i, regno, nregs;
1700 rtx reg;
1701
1702 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1703
1704 if (fntype)
1705 switch (TREE_CODE (fntype))
1706 {
1707 case CALL_EXPR:
1708 fntype = get_callee_fndecl (fntype);
1709 fntype = fntype ? TREE_TYPE (fntype) : 0;
1710 break;
1711 case FUNCTION_DECL:
1712 fntype = TREE_TYPE (fntype);
1713 break;
1714 case FUNCTION_TYPE:
1715 case METHOD_TYPE:
1716 break;
1717 case IDENTIFIER_NODE:
1718 fntype = 0;
1719 break;
1720 default:
1721 /* We don't expect other rtl types here. */
1722 gcc_unreachable ();
1723 }
1724
1725 if (TREE_CODE (type) == VOID_TYPE)
1726 return 0;
1727 /* If the front end has decided that this needs to be passed by
1728 reference, do so. */
1729 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1730 && DECL_BY_REFERENCE (exp))
1731 return 1;
1732 if (targetm.calls.return_in_memory (type, fntype))
1733 return 1;
1734 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1735 and thus can't be returned in registers. */
1736 if (TREE_ADDRESSABLE (type))
1737 return 1;
1738 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1739 return 1;
1740 /* Make sure we have suitable call-clobbered regs to return
1741 the value in; if not, we must return it in memory. */
1742 reg = hard_function_value (type, 0, fntype, 0);
1743
1744 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1745 it is OK. */
1746 if (!REG_P (reg))
1747 return 0;
1748
1749 regno = REGNO (reg);
1750 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1751 for (i = 0; i < nregs; i++)
1752 if (! call_used_regs[regno + i])
1753 return 1;
1754 return 0;
1755 }
1756 \f
1757 /* Return true if we should assign DECL a pseudo register; false if it
1758 should live on the local stack. */
1759
1760 bool
1761 use_register_for_decl (tree decl)
1762 {
1763 /* Honor volatile. */
1764 if (TREE_SIDE_EFFECTS (decl))
1765 return false;
1766
1767 /* Honor addressability. */
1768 if (TREE_ADDRESSABLE (decl))
1769 return false;
1770
1771 /* Only register-like things go in registers. */
1772 if (DECL_MODE (decl) == BLKmode)
1773 return false;
1774
1775 /* If -ffloat-store specified, don't put explicit float variables
1776 into registers. */
1777 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1778 propagates values across these stores, and it probably shouldn't. */
1779 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1780 return false;
1781
1782 /* If we're not interested in tracking debugging information for
1783 this decl, then we can certainly put it in a register. */
1784 if (DECL_IGNORED_P (decl))
1785 return true;
1786
1787 return (optimize || DECL_REGISTER (decl));
1788 }
1789
1790 /* Return true if TYPE should be passed by invisible reference. */
1791
1792 bool
1793 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1794 tree type, bool named_arg)
1795 {
1796 if (type)
1797 {
1798 /* If this type contains non-trivial constructors, then it is
1799 forbidden for the middle-end to create any new copies. */
1800 if (TREE_ADDRESSABLE (type))
1801 return true;
1802
1803 /* GCC post 3.4 passes *all* variable sized types by reference. */
1804 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1805 return true;
1806 }
1807
1808 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1809 }
1810
1811 /* Return true if TYPE, which is passed by reference, should be callee
1812 copied instead of caller copied. */
1813
1814 bool
1815 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1816 tree type, bool named_arg)
1817 {
1818 if (type && TREE_ADDRESSABLE (type))
1819 return false;
1820 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1821 }
1822
1823 /* Structures to communicate between the subroutines of assign_parms.
1824 The first holds data persistent across all parameters, the second
1825 is cleared out for each parameter. */
1826
1827 struct assign_parm_data_all
1828 {
1829 CUMULATIVE_ARGS args_so_far;
1830 struct args_size stack_args_size;
1831 tree function_result_decl;
1832 tree orig_fnargs;
1833 rtx conversion_insns;
1834 HOST_WIDE_INT pretend_args_size;
1835 HOST_WIDE_INT extra_pretend_bytes;
1836 int reg_parm_stack_space;
1837 };
1838
1839 struct assign_parm_data_one
1840 {
1841 tree nominal_type;
1842 tree passed_type;
1843 rtx entry_parm;
1844 rtx stack_parm;
1845 enum machine_mode nominal_mode;
1846 enum machine_mode passed_mode;
1847 enum machine_mode promoted_mode;
1848 struct locate_and_pad_arg_data locate;
1849 int partial;
1850 BOOL_BITFIELD named_arg : 1;
1851 BOOL_BITFIELD passed_pointer : 1;
1852 BOOL_BITFIELD on_stack : 1;
1853 BOOL_BITFIELD loaded_in_reg : 1;
1854 };
1855
1856 /* A subroutine of assign_parms. Initialize ALL. */
1857
1858 static void
1859 assign_parms_initialize_all (struct assign_parm_data_all *all)
1860 {
1861 tree fntype;
1862
1863 memset (all, 0, sizeof (*all));
1864
1865 fntype = TREE_TYPE (current_function_decl);
1866
1867 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1868 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1869 #else
1870 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1871 current_function_decl, -1);
1872 #endif
1873
1874 #ifdef REG_PARM_STACK_SPACE
1875 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1876 #endif
1877 }
1878
1879 /* If ARGS contains entries with complex types, split the entry into two
1880 entries of the component type. Return a new list of substitutions are
1881 needed, else the old list. */
1882
1883 static tree
1884 split_complex_args (tree args)
1885 {
1886 tree p;
1887
1888 /* Before allocating memory, check for the common case of no complex. */
1889 for (p = args; p; p = TREE_CHAIN (p))
1890 {
1891 tree type = TREE_TYPE (p);
1892 if (TREE_CODE (type) == COMPLEX_TYPE
1893 && targetm.calls.split_complex_arg (type))
1894 goto found;
1895 }
1896 return args;
1897
1898 found:
1899 args = copy_list (args);
1900
1901 for (p = args; p; p = TREE_CHAIN (p))
1902 {
1903 tree type = TREE_TYPE (p);
1904 if (TREE_CODE (type) == COMPLEX_TYPE
1905 && targetm.calls.split_complex_arg (type))
1906 {
1907 tree decl;
1908 tree subtype = TREE_TYPE (type);
1909 bool addressable = TREE_ADDRESSABLE (p);
1910
1911 /* Rewrite the PARM_DECL's type with its component. */
1912 TREE_TYPE (p) = subtype;
1913 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1914 DECL_MODE (p) = VOIDmode;
1915 DECL_SIZE (p) = NULL;
1916 DECL_SIZE_UNIT (p) = NULL;
1917 /* If this arg must go in memory, put it in a pseudo here.
1918 We can't allow it to go in memory as per normal parms,
1919 because the usual place might not have the imag part
1920 adjacent to the real part. */
1921 DECL_ARTIFICIAL (p) = addressable;
1922 DECL_IGNORED_P (p) = addressable;
1923 TREE_ADDRESSABLE (p) = 0;
1924 layout_decl (p, 0);
1925
1926 /* Build a second synthetic decl. */
1927 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1928 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1929 DECL_ARTIFICIAL (decl) = addressable;
1930 DECL_IGNORED_P (decl) = addressable;
1931 layout_decl (decl, 0);
1932
1933 /* Splice it in; skip the new decl. */
1934 TREE_CHAIN (decl) = TREE_CHAIN (p);
1935 TREE_CHAIN (p) = decl;
1936 p = decl;
1937 }
1938 }
1939
1940 return args;
1941 }
1942
1943 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1944 the hidden struct return argument, and (abi willing) complex args.
1945 Return the new parameter list. */
1946
1947 static tree
1948 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1949 {
1950 tree fndecl = current_function_decl;
1951 tree fntype = TREE_TYPE (fndecl);
1952 tree fnargs = DECL_ARGUMENTS (fndecl);
1953
1954 /* If struct value address is treated as the first argument, make it so. */
1955 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1956 && ! current_function_returns_pcc_struct
1957 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
1958 {
1959 tree type = build_pointer_type (TREE_TYPE (fntype));
1960 tree decl;
1961
1962 decl = build_decl (PARM_DECL, NULL_TREE, type);
1963 DECL_ARG_TYPE (decl) = type;
1964 DECL_ARTIFICIAL (decl) = 1;
1965 DECL_IGNORED_P (decl) = 1;
1966
1967 TREE_CHAIN (decl) = fnargs;
1968 fnargs = decl;
1969 all->function_result_decl = decl;
1970 }
1971
1972 all->orig_fnargs = fnargs;
1973
1974 /* If the target wants to split complex arguments into scalars, do so. */
1975 if (targetm.calls.split_complex_arg)
1976 fnargs = split_complex_args (fnargs);
1977
1978 return fnargs;
1979 }
1980
1981 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
1982 data for the parameter. Incorporate ABI specifics such as pass-by-
1983 reference and type promotion. */
1984
1985 static void
1986 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
1987 struct assign_parm_data_one *data)
1988 {
1989 tree nominal_type, passed_type;
1990 enum machine_mode nominal_mode, passed_mode, promoted_mode;
1991
1992 memset (data, 0, sizeof (*data));
1993
1994 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
1995 if (!current_function_stdarg)
1996 data->named_arg = 1; /* No varadic parms. */
1997 else if (TREE_CHAIN (parm))
1998 data->named_arg = 1; /* Not the last non-varadic parm. */
1999 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2000 data->named_arg = 1; /* Only varadic ones are unnamed. */
2001 else
2002 data->named_arg = 0; /* Treat as varadic. */
2003
2004 nominal_type = TREE_TYPE (parm);
2005 passed_type = DECL_ARG_TYPE (parm);
2006
2007 /* Look out for errors propagating this far. Also, if the parameter's
2008 type is void then its value doesn't matter. */
2009 if (TREE_TYPE (parm) == error_mark_node
2010 /* This can happen after weird syntax errors
2011 or if an enum type is defined among the parms. */
2012 || TREE_CODE (parm) != PARM_DECL
2013 || passed_type == NULL
2014 || VOID_TYPE_P (nominal_type))
2015 {
2016 nominal_type = passed_type = void_type_node;
2017 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2018 goto egress;
2019 }
2020
2021 /* Find mode of arg as it is passed, and mode of arg as it should be
2022 during execution of this function. */
2023 passed_mode = TYPE_MODE (passed_type);
2024 nominal_mode = TYPE_MODE (nominal_type);
2025
2026 /* If the parm is to be passed as a transparent union, use the type of
2027 the first field for the tests below. We have already verified that
2028 the modes are the same. */
2029 if (TREE_CODE (passed_type) == UNION_TYPE
2030 && TYPE_TRANSPARENT_UNION (passed_type))
2031 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2032
2033 /* See if this arg was passed by invisible reference. */
2034 if (pass_by_reference (&all->args_so_far, passed_mode,
2035 passed_type, data->named_arg))
2036 {
2037 passed_type = nominal_type = build_pointer_type (passed_type);
2038 data->passed_pointer = true;
2039 passed_mode = nominal_mode = Pmode;
2040 }
2041
2042 /* Find mode as it is passed by the ABI. */
2043 promoted_mode = passed_mode;
2044 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2045 {
2046 int unsignedp = TYPE_UNSIGNED (passed_type);
2047 promoted_mode = promote_mode (passed_type, promoted_mode,
2048 &unsignedp, 1);
2049 }
2050
2051 egress:
2052 data->nominal_type = nominal_type;
2053 data->passed_type = passed_type;
2054 data->nominal_mode = nominal_mode;
2055 data->passed_mode = passed_mode;
2056 data->promoted_mode = promoted_mode;
2057 }
2058
2059 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2060
2061 static void
2062 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2063 struct assign_parm_data_one *data, bool no_rtl)
2064 {
2065 int varargs_pretend_bytes = 0;
2066
2067 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2068 data->promoted_mode,
2069 data->passed_type,
2070 &varargs_pretend_bytes, no_rtl);
2071
2072 /* If the back-end has requested extra stack space, record how much is
2073 needed. Do not change pretend_args_size otherwise since it may be
2074 nonzero from an earlier partial argument. */
2075 if (varargs_pretend_bytes > 0)
2076 all->pretend_args_size = varargs_pretend_bytes;
2077 }
2078
2079 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2080 the incoming location of the current parameter. */
2081
2082 static void
2083 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2084 struct assign_parm_data_one *data)
2085 {
2086 HOST_WIDE_INT pretend_bytes = 0;
2087 rtx entry_parm;
2088 bool in_regs;
2089
2090 if (data->promoted_mode == VOIDmode)
2091 {
2092 data->entry_parm = data->stack_parm = const0_rtx;
2093 return;
2094 }
2095
2096 #ifdef FUNCTION_INCOMING_ARG
2097 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2098 data->passed_type, data->named_arg);
2099 #else
2100 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2101 data->passed_type, data->named_arg);
2102 #endif
2103
2104 if (entry_parm == 0)
2105 data->promoted_mode = data->passed_mode;
2106
2107 /* Determine parm's home in the stack, in case it arrives in the stack
2108 or we should pretend it did. Compute the stack position and rtx where
2109 the argument arrives and its size.
2110
2111 There is one complexity here: If this was a parameter that would
2112 have been passed in registers, but wasn't only because it is
2113 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2114 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2115 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2116 as it was the previous time. */
2117 in_regs = entry_parm != 0;
2118 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2119 in_regs = true;
2120 #endif
2121 if (!in_regs && !data->named_arg)
2122 {
2123 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2124 {
2125 rtx tem;
2126 #ifdef FUNCTION_INCOMING_ARG
2127 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2128 data->passed_type, true);
2129 #else
2130 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2131 data->passed_type, true);
2132 #endif
2133 in_regs = tem != NULL;
2134 }
2135 }
2136
2137 /* If this parameter was passed both in registers and in the stack, use
2138 the copy on the stack. */
2139 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2140 data->passed_type))
2141 entry_parm = 0;
2142
2143 if (entry_parm)
2144 {
2145 int partial;
2146
2147 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2148 data->promoted_mode,
2149 data->passed_type,
2150 data->named_arg);
2151 data->partial = partial;
2152
2153 /* The caller might already have allocated stack space for the
2154 register parameters. */
2155 if (partial != 0 && all->reg_parm_stack_space == 0)
2156 {
2157 /* Part of this argument is passed in registers and part
2158 is passed on the stack. Ask the prologue code to extend
2159 the stack part so that we can recreate the full value.
2160
2161 PRETEND_BYTES is the size of the registers we need to store.
2162 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2163 stack space that the prologue should allocate.
2164
2165 Internally, gcc assumes that the argument pointer is aligned
2166 to STACK_BOUNDARY bits. This is used both for alignment
2167 optimizations (see init_emit) and to locate arguments that are
2168 aligned to more than PARM_BOUNDARY bits. We must preserve this
2169 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2170 a stack boundary. */
2171
2172 /* We assume at most one partial arg, and it must be the first
2173 argument on the stack. */
2174 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2175
2176 pretend_bytes = partial;
2177 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2178
2179 /* We want to align relative to the actual stack pointer, so
2180 don't include this in the stack size until later. */
2181 all->extra_pretend_bytes = all->pretend_args_size;
2182 }
2183 }
2184
2185 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2186 entry_parm ? data->partial : 0, current_function_decl,
2187 &all->stack_args_size, &data->locate);
2188
2189 /* Adjust offsets to include the pretend args. */
2190 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2191 data->locate.slot_offset.constant += pretend_bytes;
2192 data->locate.offset.constant += pretend_bytes;
2193
2194 data->entry_parm = entry_parm;
2195 }
2196
2197 /* A subroutine of assign_parms. If there is actually space on the stack
2198 for this parm, count it in stack_args_size and return true. */
2199
2200 static bool
2201 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2202 struct assign_parm_data_one *data)
2203 {
2204 /* Trivially true if we've no incoming register. */
2205 if (data->entry_parm == NULL)
2206 ;
2207 /* Also true if we're partially in registers and partially not,
2208 since we've arranged to drop the entire argument on the stack. */
2209 else if (data->partial != 0)
2210 ;
2211 /* Also true if the target says that it's passed in both registers
2212 and on the stack. */
2213 else if (GET_CODE (data->entry_parm) == PARALLEL
2214 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2215 ;
2216 /* Also true if the target says that there's stack allocated for
2217 all register parameters. */
2218 else if (all->reg_parm_stack_space > 0)
2219 ;
2220 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2221 else
2222 return false;
2223
2224 all->stack_args_size.constant += data->locate.size.constant;
2225 if (data->locate.size.var)
2226 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2227
2228 return true;
2229 }
2230
2231 /* A subroutine of assign_parms. Given that this parameter is allocated
2232 stack space by the ABI, find it. */
2233
2234 static void
2235 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2236 {
2237 rtx offset_rtx, stack_parm;
2238 unsigned int align, boundary;
2239
2240 /* If we're passing this arg using a reg, make its stack home the
2241 aligned stack slot. */
2242 if (data->entry_parm)
2243 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2244 else
2245 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2246
2247 stack_parm = current_function_internal_arg_pointer;
2248 if (offset_rtx != const0_rtx)
2249 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2250 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2251
2252 set_mem_attributes (stack_parm, parm, 1);
2253
2254 boundary = data->locate.boundary;
2255 align = BITS_PER_UNIT;
2256
2257 /* If we're padding upward, we know that the alignment of the slot
2258 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2259 intentionally forcing upward padding. Otherwise we have to come
2260 up with a guess at the alignment based on OFFSET_RTX. */
2261 if (data->locate.where_pad != downward || data->entry_parm)
2262 align = boundary;
2263 else if (GET_CODE (offset_rtx) == CONST_INT)
2264 {
2265 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2266 align = align & -align;
2267 }
2268 set_mem_align (stack_parm, align);
2269
2270 if (data->entry_parm)
2271 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2272
2273 data->stack_parm = stack_parm;
2274 }
2275
2276 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2277 always valid and contiguous. */
2278
2279 static void
2280 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2281 {
2282 rtx entry_parm = data->entry_parm;
2283 rtx stack_parm = data->stack_parm;
2284
2285 /* If this parm was passed part in regs and part in memory, pretend it
2286 arrived entirely in memory by pushing the register-part onto the stack.
2287 In the special case of a DImode or DFmode that is split, we could put
2288 it together in a pseudoreg directly, but for now that's not worth
2289 bothering with. */
2290 if (data->partial != 0)
2291 {
2292 /* Handle calls that pass values in multiple non-contiguous
2293 locations. The Irix 6 ABI has examples of this. */
2294 if (GET_CODE (entry_parm) == PARALLEL)
2295 emit_group_store (validize_mem (stack_parm), entry_parm,
2296 data->passed_type,
2297 int_size_in_bytes (data->passed_type));
2298 else
2299 {
2300 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2301 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2302 data->partial / UNITS_PER_WORD);
2303 }
2304
2305 entry_parm = stack_parm;
2306 }
2307
2308 /* If we didn't decide this parm came in a register, by default it came
2309 on the stack. */
2310 else if (entry_parm == NULL)
2311 entry_parm = stack_parm;
2312
2313 /* When an argument is passed in multiple locations, we can't make use
2314 of this information, but we can save some copying if the whole argument
2315 is passed in a single register. */
2316 else if (GET_CODE (entry_parm) == PARALLEL
2317 && data->nominal_mode != BLKmode
2318 && data->passed_mode != BLKmode)
2319 {
2320 size_t i, len = XVECLEN (entry_parm, 0);
2321
2322 for (i = 0; i < len; i++)
2323 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2324 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2325 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2326 == data->passed_mode)
2327 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2328 {
2329 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2330 break;
2331 }
2332 }
2333
2334 data->entry_parm = entry_parm;
2335 }
2336
2337 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2338 always valid and properly aligned. */
2339
2340 static void
2341 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2342 {
2343 rtx stack_parm = data->stack_parm;
2344
2345 /* If we can't trust the parm stack slot to be aligned enough for its
2346 ultimate type, don't use that slot after entry. We'll make another
2347 stack slot, if we need one. */
2348 if (stack_parm
2349 && ((STRICT_ALIGNMENT
2350 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2351 || (data->nominal_type
2352 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2353 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2354 stack_parm = NULL;
2355
2356 /* If parm was passed in memory, and we need to convert it on entry,
2357 don't store it back in that same slot. */
2358 else if (data->entry_parm == stack_parm
2359 && data->nominal_mode != BLKmode
2360 && data->nominal_mode != data->passed_mode)
2361 stack_parm = NULL;
2362
2363 /* If stack protection is in effect for this function, don't leave any
2364 pointers in their passed stack slots. */
2365 else if (cfun->stack_protect_guard
2366 && (flag_stack_protect == 2
2367 || data->passed_pointer
2368 || POINTER_TYPE_P (data->nominal_type)))
2369 stack_parm = NULL;
2370
2371 data->stack_parm = stack_parm;
2372 }
2373
2374 /* A subroutine of assign_parms. Return true if the current parameter
2375 should be stored as a BLKmode in the current frame. */
2376
2377 static bool
2378 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2379 {
2380 if (data->nominal_mode == BLKmode)
2381 return true;
2382 if (GET_CODE (data->entry_parm) == PARALLEL)
2383 return true;
2384
2385 #ifdef BLOCK_REG_PADDING
2386 /* Only assign_parm_setup_block knows how to deal with register arguments
2387 that are padded at the least significant end. */
2388 if (REG_P (data->entry_parm)
2389 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2390 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2391 == (BYTES_BIG_ENDIAN ? upward : downward)))
2392 return true;
2393 #endif
2394
2395 return false;
2396 }
2397
2398 /* A subroutine of assign_parms. Arrange for the parameter to be
2399 present and valid in DATA->STACK_RTL. */
2400
2401 static void
2402 assign_parm_setup_block (struct assign_parm_data_all *all,
2403 tree parm, struct assign_parm_data_one *data)
2404 {
2405 rtx entry_parm = data->entry_parm;
2406 rtx stack_parm = data->stack_parm;
2407 HOST_WIDE_INT size;
2408 HOST_WIDE_INT size_stored;
2409 rtx orig_entry_parm = entry_parm;
2410
2411 if (GET_CODE (entry_parm) == PARALLEL)
2412 entry_parm = emit_group_move_into_temps (entry_parm);
2413
2414 /* If we've a non-block object that's nevertheless passed in parts,
2415 reconstitute it in register operations rather than on the stack. */
2416 if (GET_CODE (entry_parm) == PARALLEL
2417 && data->nominal_mode != BLKmode)
2418 {
2419 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2420
2421 if ((XVECLEN (entry_parm, 0) > 1
2422 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2423 && use_register_for_decl (parm))
2424 {
2425 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2426
2427 push_to_sequence (all->conversion_insns);
2428
2429 /* For values returned in multiple registers, handle possible
2430 incompatible calls to emit_group_store.
2431
2432 For example, the following would be invalid, and would have to
2433 be fixed by the conditional below:
2434
2435 emit_group_store ((reg:SF), (parallel:DF))
2436 emit_group_store ((reg:SI), (parallel:DI))
2437
2438 An example of this are doubles in e500 v2:
2439 (parallel:DF (expr_list (reg:SI) (const_int 0))
2440 (expr_list (reg:SI) (const_int 4))). */
2441 if (data->nominal_mode != data->passed_mode)
2442 {
2443 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2444 emit_group_store (t, entry_parm, NULL_TREE,
2445 GET_MODE_SIZE (GET_MODE (entry_parm)));
2446 convert_move (parmreg, t, 0);
2447 }
2448 else
2449 emit_group_store (parmreg, entry_parm, data->nominal_type,
2450 int_size_in_bytes (data->nominal_type));
2451
2452 all->conversion_insns = get_insns ();
2453 end_sequence ();
2454
2455 SET_DECL_RTL (parm, parmreg);
2456 return;
2457 }
2458 }
2459
2460 size = int_size_in_bytes (data->passed_type);
2461 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2462 if (stack_parm == 0)
2463 {
2464 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2465 stack_parm = assign_stack_local (BLKmode, size_stored,
2466 DECL_ALIGN (parm));
2467 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2468 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2469 set_mem_attributes (stack_parm, parm, 1);
2470 }
2471
2472 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2473 calls that pass values in multiple non-contiguous locations. */
2474 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2475 {
2476 rtx mem;
2477
2478 /* Note that we will be storing an integral number of words.
2479 So we have to be careful to ensure that we allocate an
2480 integral number of words. We do this above when we call
2481 assign_stack_local if space was not allocated in the argument
2482 list. If it was, this will not work if PARM_BOUNDARY is not
2483 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2484 if it becomes a problem. Exception is when BLKmode arrives
2485 with arguments not conforming to word_mode. */
2486
2487 if (data->stack_parm == 0)
2488 ;
2489 else if (GET_CODE (entry_parm) == PARALLEL)
2490 ;
2491 else
2492 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2493
2494 mem = validize_mem (stack_parm);
2495
2496 /* Handle values in multiple non-contiguous locations. */
2497 if (GET_CODE (entry_parm) == PARALLEL)
2498 {
2499 push_to_sequence (all->conversion_insns);
2500 emit_group_store (mem, entry_parm, data->passed_type, size);
2501 all->conversion_insns = get_insns ();
2502 end_sequence ();
2503 }
2504
2505 else if (size == 0)
2506 ;
2507
2508 /* If SIZE is that of a mode no bigger than a word, just use
2509 that mode's store operation. */
2510 else if (size <= UNITS_PER_WORD)
2511 {
2512 enum machine_mode mode
2513 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2514
2515 if (mode != BLKmode
2516 #ifdef BLOCK_REG_PADDING
2517 && (size == UNITS_PER_WORD
2518 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2519 != (BYTES_BIG_ENDIAN ? upward : downward)))
2520 #endif
2521 )
2522 {
2523 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2524 emit_move_insn (change_address (mem, mode, 0), reg);
2525 }
2526
2527 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2528 machine must be aligned to the left before storing
2529 to memory. Note that the previous test doesn't
2530 handle all cases (e.g. SIZE == 3). */
2531 else if (size != UNITS_PER_WORD
2532 #ifdef BLOCK_REG_PADDING
2533 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2534 == downward)
2535 #else
2536 && BYTES_BIG_ENDIAN
2537 #endif
2538 )
2539 {
2540 rtx tem, x;
2541 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2542 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2543
2544 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2545 build_int_cst (NULL_TREE, by),
2546 NULL_RTX, 1);
2547 tem = change_address (mem, word_mode, 0);
2548 emit_move_insn (tem, x);
2549 }
2550 else
2551 move_block_from_reg (REGNO (entry_parm), mem,
2552 size_stored / UNITS_PER_WORD);
2553 }
2554 else
2555 move_block_from_reg (REGNO (entry_parm), mem,
2556 size_stored / UNITS_PER_WORD);
2557 }
2558 else if (data->stack_parm == 0)
2559 {
2560 push_to_sequence (all->conversion_insns);
2561 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2562 BLOCK_OP_NORMAL);
2563 all->conversion_insns = get_insns ();
2564 end_sequence ();
2565 }
2566
2567 data->stack_parm = stack_parm;
2568 SET_DECL_RTL (parm, stack_parm);
2569 }
2570
2571 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2572 parameter. Get it there. Perform all ABI specified conversions. */
2573
2574 static void
2575 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2576 struct assign_parm_data_one *data)
2577 {
2578 rtx parmreg;
2579 enum machine_mode promoted_nominal_mode;
2580 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2581 bool did_conversion = false;
2582
2583 /* Store the parm in a pseudoregister during the function, but we may
2584 need to do it in a wider mode. */
2585
2586 promoted_nominal_mode
2587 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2588
2589 parmreg = gen_reg_rtx (promoted_nominal_mode);
2590
2591 if (!DECL_ARTIFICIAL (parm))
2592 mark_user_reg (parmreg);
2593
2594 /* If this was an item that we received a pointer to,
2595 set DECL_RTL appropriately. */
2596 if (data->passed_pointer)
2597 {
2598 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2599 set_mem_attributes (x, parm, 1);
2600 SET_DECL_RTL (parm, x);
2601 }
2602 else
2603 SET_DECL_RTL (parm, parmreg);
2604
2605 /* Copy the value into the register. */
2606 if (data->nominal_mode != data->passed_mode
2607 || promoted_nominal_mode != data->promoted_mode)
2608 {
2609 int save_tree_used;
2610
2611 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2612 mode, by the caller. We now have to convert it to
2613 NOMINAL_MODE, if different. However, PARMREG may be in
2614 a different mode than NOMINAL_MODE if it is being stored
2615 promoted.
2616
2617 If ENTRY_PARM is a hard register, it might be in a register
2618 not valid for operating in its mode (e.g., an odd-numbered
2619 register for a DFmode). In that case, moves are the only
2620 thing valid, so we can't do a convert from there. This
2621 occurs when the calling sequence allow such misaligned
2622 usages.
2623
2624 In addition, the conversion may involve a call, which could
2625 clobber parameters which haven't been copied to pseudo
2626 registers yet. Therefore, we must first copy the parm to
2627 a pseudo reg here, and save the conversion until after all
2628 parameters have been moved. */
2629
2630 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2631
2632 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2633
2634 push_to_sequence (all->conversion_insns);
2635 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2636
2637 if (GET_CODE (tempreg) == SUBREG
2638 && GET_MODE (tempreg) == data->nominal_mode
2639 && REG_P (SUBREG_REG (tempreg))
2640 && data->nominal_mode == data->passed_mode
2641 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2642 && GET_MODE_SIZE (GET_MODE (tempreg))
2643 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2644 {
2645 /* The argument is already sign/zero extended, so note it
2646 into the subreg. */
2647 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2648 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2649 }
2650
2651 /* TREE_USED gets set erroneously during expand_assignment. */
2652 save_tree_used = TREE_USED (parm);
2653 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2654 TREE_USED (parm) = save_tree_used;
2655 all->conversion_insns = get_insns ();
2656 end_sequence ();
2657
2658 did_conversion = true;
2659 }
2660 else
2661 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2662
2663 /* If we were passed a pointer but the actual value can safely live
2664 in a register, put it in one. */
2665 if (data->passed_pointer
2666 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2667 /* If by-reference argument was promoted, demote it. */
2668 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2669 || use_register_for_decl (parm)))
2670 {
2671 /* We can't use nominal_mode, because it will have been set to
2672 Pmode above. We must use the actual mode of the parm. */
2673 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2674 mark_user_reg (parmreg);
2675
2676 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2677 {
2678 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2679 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2680
2681 push_to_sequence (all->conversion_insns);
2682 emit_move_insn (tempreg, DECL_RTL (parm));
2683 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2684 emit_move_insn (parmreg, tempreg);
2685 all->conversion_insns = get_insns ();
2686 end_sequence ();
2687
2688 did_conversion = true;
2689 }
2690 else
2691 emit_move_insn (parmreg, DECL_RTL (parm));
2692
2693 SET_DECL_RTL (parm, parmreg);
2694
2695 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2696 now the parm. */
2697 data->stack_parm = NULL;
2698 }
2699
2700 /* Mark the register as eliminable if we did no conversion and it was
2701 copied from memory at a fixed offset, and the arg pointer was not
2702 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2703 offset formed an invalid address, such memory-equivalences as we
2704 make here would screw up life analysis for it. */
2705 if (data->nominal_mode == data->passed_mode
2706 && !did_conversion
2707 && data->stack_parm != 0
2708 && MEM_P (data->stack_parm)
2709 && data->locate.offset.var == 0
2710 && reg_mentioned_p (virtual_incoming_args_rtx,
2711 XEXP (data->stack_parm, 0)))
2712 {
2713 rtx linsn = get_last_insn ();
2714 rtx sinsn, set;
2715
2716 /* Mark complex types separately. */
2717 if (GET_CODE (parmreg) == CONCAT)
2718 {
2719 enum machine_mode submode
2720 = GET_MODE_INNER (GET_MODE (parmreg));
2721 int regnor = REGNO (XEXP (parmreg, 0));
2722 int regnoi = REGNO (XEXP (parmreg, 1));
2723 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2724 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2725 GET_MODE_SIZE (submode));
2726
2727 /* Scan backwards for the set of the real and
2728 imaginary parts. */
2729 for (sinsn = linsn; sinsn != 0;
2730 sinsn = prev_nonnote_insn (sinsn))
2731 {
2732 set = single_set (sinsn);
2733 if (set == 0)
2734 continue;
2735
2736 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2737 REG_NOTES (sinsn)
2738 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2739 REG_NOTES (sinsn));
2740 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2741 REG_NOTES (sinsn)
2742 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2743 REG_NOTES (sinsn));
2744 }
2745 }
2746 else if ((set = single_set (linsn)) != 0
2747 && SET_DEST (set) == parmreg)
2748 REG_NOTES (linsn)
2749 = gen_rtx_EXPR_LIST (REG_EQUIV,
2750 data->stack_parm, REG_NOTES (linsn));
2751 }
2752
2753 /* For pointer data type, suggest pointer register. */
2754 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2755 mark_reg_pointer (parmreg,
2756 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2757 }
2758
2759 /* A subroutine of assign_parms. Allocate stack space to hold the current
2760 parameter. Get it there. Perform all ABI specified conversions. */
2761
2762 static void
2763 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2764 struct assign_parm_data_one *data)
2765 {
2766 /* Value must be stored in the stack slot STACK_PARM during function
2767 execution. */
2768 bool to_conversion = false;
2769
2770 if (data->promoted_mode != data->nominal_mode)
2771 {
2772 /* Conversion is required. */
2773 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2774
2775 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2776
2777 push_to_sequence (all->conversion_insns);
2778 to_conversion = true;
2779
2780 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2781 TYPE_UNSIGNED (TREE_TYPE (parm)));
2782
2783 if (data->stack_parm)
2784 /* ??? This may need a big-endian conversion on sparc64. */
2785 data->stack_parm
2786 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2787 }
2788
2789 if (data->entry_parm != data->stack_parm)
2790 {
2791 rtx src, dest;
2792
2793 if (data->stack_parm == 0)
2794 {
2795 data->stack_parm
2796 = assign_stack_local (GET_MODE (data->entry_parm),
2797 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2798 TYPE_ALIGN (data->passed_type));
2799 set_mem_attributes (data->stack_parm, parm, 1);
2800 }
2801
2802 dest = validize_mem (data->stack_parm);
2803 src = validize_mem (data->entry_parm);
2804
2805 if (MEM_P (src))
2806 {
2807 /* Use a block move to handle potentially misaligned entry_parm. */
2808 if (!to_conversion)
2809 push_to_sequence (all->conversion_insns);
2810 to_conversion = true;
2811
2812 emit_block_move (dest, src,
2813 GEN_INT (int_size_in_bytes (data->passed_type)),
2814 BLOCK_OP_NORMAL);
2815 }
2816 else
2817 emit_move_insn (dest, src);
2818 }
2819
2820 if (to_conversion)
2821 {
2822 all->conversion_insns = get_insns ();
2823 end_sequence ();
2824 }
2825
2826 SET_DECL_RTL (parm, data->stack_parm);
2827 }
2828
2829 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2830 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2831
2832 static void
2833 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2834 {
2835 tree parm;
2836 tree orig_fnargs = all->orig_fnargs;
2837
2838 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2839 {
2840 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2841 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2842 {
2843 rtx tmp, real, imag;
2844 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2845
2846 real = DECL_RTL (fnargs);
2847 imag = DECL_RTL (TREE_CHAIN (fnargs));
2848 if (inner != GET_MODE (real))
2849 {
2850 real = gen_lowpart_SUBREG (inner, real);
2851 imag = gen_lowpart_SUBREG (inner, imag);
2852 }
2853
2854 if (TREE_ADDRESSABLE (parm))
2855 {
2856 rtx rmem, imem;
2857 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2858
2859 /* split_complex_arg put the real and imag parts in
2860 pseudos. Move them to memory. */
2861 tmp = assign_stack_local (DECL_MODE (parm), size,
2862 TYPE_ALIGN (TREE_TYPE (parm)));
2863 set_mem_attributes (tmp, parm, 1);
2864 rmem = adjust_address_nv (tmp, inner, 0);
2865 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2866 push_to_sequence (all->conversion_insns);
2867 emit_move_insn (rmem, real);
2868 emit_move_insn (imem, imag);
2869 all->conversion_insns = get_insns ();
2870 end_sequence ();
2871 }
2872 else
2873 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2874 SET_DECL_RTL (parm, tmp);
2875
2876 real = DECL_INCOMING_RTL (fnargs);
2877 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2878 if (inner != GET_MODE (real))
2879 {
2880 real = gen_lowpart_SUBREG (inner, real);
2881 imag = gen_lowpart_SUBREG (inner, imag);
2882 }
2883 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2884 set_decl_incoming_rtl (parm, tmp);
2885 fnargs = TREE_CHAIN (fnargs);
2886 }
2887 else
2888 {
2889 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2890 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2891
2892 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2893 instead of the copy of decl, i.e. FNARGS. */
2894 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2895 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2896 }
2897
2898 fnargs = TREE_CHAIN (fnargs);
2899 }
2900 }
2901
2902 /* Assign RTL expressions to the function's parameters. This may involve
2903 copying them into registers and using those registers as the DECL_RTL. */
2904
2905 static void
2906 assign_parms (tree fndecl)
2907 {
2908 struct assign_parm_data_all all;
2909 tree fnargs, parm;
2910
2911 current_function_internal_arg_pointer
2912 = targetm.calls.internal_arg_pointer ();
2913
2914 assign_parms_initialize_all (&all);
2915 fnargs = assign_parms_augmented_arg_list (&all);
2916
2917 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2918 {
2919 struct assign_parm_data_one data;
2920
2921 /* Extract the type of PARM; adjust it according to ABI. */
2922 assign_parm_find_data_types (&all, parm, &data);
2923
2924 /* Early out for errors and void parameters. */
2925 if (data.passed_mode == VOIDmode)
2926 {
2927 SET_DECL_RTL (parm, const0_rtx);
2928 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2929 continue;
2930 }
2931
2932 if (current_function_stdarg && !TREE_CHAIN (parm))
2933 assign_parms_setup_varargs (&all, &data, false);
2934
2935 /* Find out where the parameter arrives in this function. */
2936 assign_parm_find_entry_rtl (&all, &data);
2937
2938 /* Find out where stack space for this parameter might be. */
2939 if (assign_parm_is_stack_parm (&all, &data))
2940 {
2941 assign_parm_find_stack_rtl (parm, &data);
2942 assign_parm_adjust_entry_rtl (&data);
2943 }
2944
2945 /* Record permanently how this parm was passed. */
2946 set_decl_incoming_rtl (parm, data.entry_parm);
2947
2948 /* Update info on where next arg arrives in registers. */
2949 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2950 data.passed_type, data.named_arg);
2951
2952 assign_parm_adjust_stack_rtl (&data);
2953
2954 if (assign_parm_setup_block_p (&data))
2955 assign_parm_setup_block (&all, parm, &data);
2956 else if (data.passed_pointer || use_register_for_decl (parm))
2957 assign_parm_setup_reg (&all, parm, &data);
2958 else
2959 assign_parm_setup_stack (&all, parm, &data);
2960 }
2961
2962 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
2963 assign_parms_unsplit_complex (&all, fnargs);
2964
2965 /* Output all parameter conversion instructions (possibly including calls)
2966 now that all parameters have been copied out of hard registers. */
2967 emit_insn (all.conversion_insns);
2968
2969 /* If we are receiving a struct value address as the first argument, set up
2970 the RTL for the function result. As this might require code to convert
2971 the transmitted address to Pmode, we do this here to ensure that possible
2972 preliminary conversions of the address have been emitted already. */
2973 if (all.function_result_decl)
2974 {
2975 tree result = DECL_RESULT (current_function_decl);
2976 rtx addr = DECL_RTL (all.function_result_decl);
2977 rtx x;
2978
2979 if (DECL_BY_REFERENCE (result))
2980 x = addr;
2981 else
2982 {
2983 addr = convert_memory_address (Pmode, addr);
2984 x = gen_rtx_MEM (DECL_MODE (result), addr);
2985 set_mem_attributes (x, result, 1);
2986 }
2987 SET_DECL_RTL (result, x);
2988 }
2989
2990 /* We have aligned all the args, so add space for the pretend args. */
2991 current_function_pretend_args_size = all.pretend_args_size;
2992 all.stack_args_size.constant += all.extra_pretend_bytes;
2993 current_function_args_size = all.stack_args_size.constant;
2994
2995 /* Adjust function incoming argument size for alignment and
2996 minimum length. */
2997
2998 #ifdef REG_PARM_STACK_SPACE
2999 current_function_args_size = MAX (current_function_args_size,
3000 REG_PARM_STACK_SPACE (fndecl));
3001 #endif
3002
3003 current_function_args_size = CEIL_ROUND (current_function_args_size,
3004 PARM_BOUNDARY / BITS_PER_UNIT);
3005
3006 #ifdef ARGS_GROW_DOWNWARD
3007 current_function_arg_offset_rtx
3008 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3009 : expand_expr (size_diffop (all.stack_args_size.var,
3010 size_int (-all.stack_args_size.constant)),
3011 NULL_RTX, VOIDmode, 0));
3012 #else
3013 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3014 #endif
3015
3016 /* See how many bytes, if any, of its args a function should try to pop
3017 on return. */
3018
3019 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3020 current_function_args_size);
3021
3022 /* For stdarg.h function, save info about
3023 regs and stack space used by the named args. */
3024
3025 current_function_args_info = all.args_so_far;
3026
3027 /* Set the rtx used for the function return value. Put this in its
3028 own variable so any optimizers that need this information don't have
3029 to include tree.h. Do this here so it gets done when an inlined
3030 function gets output. */
3031
3032 current_function_return_rtx
3033 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3034 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3035
3036 /* If scalar return value was computed in a pseudo-reg, or was a named
3037 return value that got dumped to the stack, copy that to the hard
3038 return register. */
3039 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3040 {
3041 tree decl_result = DECL_RESULT (fndecl);
3042 rtx decl_rtl = DECL_RTL (decl_result);
3043
3044 if (REG_P (decl_rtl)
3045 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3046 : DECL_REGISTER (decl_result))
3047 {
3048 rtx real_decl_rtl;
3049
3050 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3051 fndecl, true);
3052 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3053 /* The delay slot scheduler assumes that current_function_return_rtx
3054 holds the hard register containing the return value, not a
3055 temporary pseudo. */
3056 current_function_return_rtx = real_decl_rtl;
3057 }
3058 }
3059 }
3060
3061 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3062 For all seen types, gimplify their sizes. */
3063
3064 static tree
3065 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3066 {
3067 tree t = *tp;
3068
3069 *walk_subtrees = 0;
3070 if (TYPE_P (t))
3071 {
3072 if (POINTER_TYPE_P (t))
3073 *walk_subtrees = 1;
3074 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3075 && !TYPE_SIZES_GIMPLIFIED (t))
3076 {
3077 gimplify_type_sizes (t, (tree *) data);
3078 *walk_subtrees = 1;
3079 }
3080 }
3081
3082 return NULL;
3083 }
3084
3085 /* Gimplify the parameter list for current_function_decl. This involves
3086 evaluating SAVE_EXPRs of variable sized parameters and generating code
3087 to implement callee-copies reference parameters. Returns a list of
3088 statements to add to the beginning of the function, or NULL if nothing
3089 to do. */
3090
3091 tree
3092 gimplify_parameters (void)
3093 {
3094 struct assign_parm_data_all all;
3095 tree fnargs, parm, stmts = NULL;
3096
3097 assign_parms_initialize_all (&all);
3098 fnargs = assign_parms_augmented_arg_list (&all);
3099
3100 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3101 {
3102 struct assign_parm_data_one data;
3103
3104 /* Extract the type of PARM; adjust it according to ABI. */
3105 assign_parm_find_data_types (&all, parm, &data);
3106
3107 /* Early out for errors and void parameters. */
3108 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3109 continue;
3110
3111 /* Update info on where next arg arrives in registers. */
3112 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3113 data.passed_type, data.named_arg);
3114
3115 /* ??? Once upon a time variable_size stuffed parameter list
3116 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3117 turned out to be less than manageable in the gimple world.
3118 Now we have to hunt them down ourselves. */
3119 walk_tree_without_duplicates (&data.passed_type,
3120 gimplify_parm_type, &stmts);
3121
3122 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3123 {
3124 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3125 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3126 }
3127
3128 if (data.passed_pointer)
3129 {
3130 tree type = TREE_TYPE (data.passed_type);
3131 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3132 type, data.named_arg))
3133 {
3134 tree local, t;
3135
3136 /* For constant sized objects, this is trivial; for
3137 variable-sized objects, we have to play games. */
3138 if (TREE_CONSTANT (DECL_SIZE (parm)))
3139 {
3140 local = create_tmp_var (type, get_name (parm));
3141 DECL_IGNORED_P (local) = 0;
3142 }
3143 else
3144 {
3145 tree ptr_type, addr, args;
3146
3147 ptr_type = build_pointer_type (type);
3148 addr = create_tmp_var (ptr_type, get_name (parm));
3149 DECL_IGNORED_P (addr) = 0;
3150 local = build_fold_indirect_ref (addr);
3151
3152 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3153 t = built_in_decls[BUILT_IN_ALLOCA];
3154 t = build_function_call_expr (t, args);
3155 t = fold_convert (ptr_type, t);
3156 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3157 gimplify_and_add (t, &stmts);
3158 }
3159
3160 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3161 gimplify_and_add (t, &stmts);
3162
3163 SET_DECL_VALUE_EXPR (parm, local);
3164 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3165 }
3166 }
3167 }
3168
3169 return stmts;
3170 }
3171 \f
3172 /* Indicate whether REGNO is an incoming argument to the current function
3173 that was promoted to a wider mode. If so, return the RTX for the
3174 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3175 that REGNO is promoted from and whether the promotion was signed or
3176 unsigned. */
3177
3178 rtx
3179 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3180 {
3181 tree arg;
3182
3183 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3184 arg = TREE_CHAIN (arg))
3185 if (REG_P (DECL_INCOMING_RTL (arg))
3186 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3187 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3188 {
3189 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3190 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3191
3192 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3193 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3194 && mode != DECL_MODE (arg))
3195 {
3196 *pmode = DECL_MODE (arg);
3197 *punsignedp = unsignedp;
3198 return DECL_INCOMING_RTL (arg);
3199 }
3200 }
3201
3202 return 0;
3203 }
3204
3205 \f
3206 /* Compute the size and offset from the start of the stacked arguments for a
3207 parm passed in mode PASSED_MODE and with type TYPE.
3208
3209 INITIAL_OFFSET_PTR points to the current offset into the stacked
3210 arguments.
3211
3212 The starting offset and size for this parm are returned in
3213 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3214 nonzero, the offset is that of stack slot, which is returned in
3215 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3216 padding required from the initial offset ptr to the stack slot.
3217
3218 IN_REGS is nonzero if the argument will be passed in registers. It will
3219 never be set if REG_PARM_STACK_SPACE is not defined.
3220
3221 FNDECL is the function in which the argument was defined.
3222
3223 There are two types of rounding that are done. The first, controlled by
3224 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3225 list to be aligned to the specific boundary (in bits). This rounding
3226 affects the initial and starting offsets, but not the argument size.
3227
3228 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3229 optionally rounds the size of the parm to PARM_BOUNDARY. The
3230 initial offset is not affected by this rounding, while the size always
3231 is and the starting offset may be. */
3232
3233 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3234 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3235 callers pass in the total size of args so far as
3236 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3237
3238 void
3239 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3240 int partial, tree fndecl ATTRIBUTE_UNUSED,
3241 struct args_size *initial_offset_ptr,
3242 struct locate_and_pad_arg_data *locate)
3243 {
3244 tree sizetree;
3245 enum direction where_pad;
3246 unsigned int boundary;
3247 int reg_parm_stack_space = 0;
3248 int part_size_in_regs;
3249
3250 #ifdef REG_PARM_STACK_SPACE
3251 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3252
3253 /* If we have found a stack parm before we reach the end of the
3254 area reserved for registers, skip that area. */
3255 if (! in_regs)
3256 {
3257 if (reg_parm_stack_space > 0)
3258 {
3259 if (initial_offset_ptr->var)
3260 {
3261 initial_offset_ptr->var
3262 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3263 ssize_int (reg_parm_stack_space));
3264 initial_offset_ptr->constant = 0;
3265 }
3266 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3267 initial_offset_ptr->constant = reg_parm_stack_space;
3268 }
3269 }
3270 #endif /* REG_PARM_STACK_SPACE */
3271
3272 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3273
3274 sizetree
3275 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3276 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3277 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3278 locate->where_pad = where_pad;
3279 locate->boundary = boundary;
3280
3281 /* Remember if the outgoing parameter requires extra alignment on the
3282 calling function side. */
3283 if (boundary > PREFERRED_STACK_BOUNDARY)
3284 boundary = PREFERRED_STACK_BOUNDARY;
3285 if (cfun->stack_alignment_needed < boundary)
3286 cfun->stack_alignment_needed = boundary;
3287
3288 #ifdef ARGS_GROW_DOWNWARD
3289 locate->slot_offset.constant = -initial_offset_ptr->constant;
3290 if (initial_offset_ptr->var)
3291 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3292 initial_offset_ptr->var);
3293
3294 {
3295 tree s2 = sizetree;
3296 if (where_pad != none
3297 && (!host_integerp (sizetree, 1)
3298 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3299 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3300 SUB_PARM_SIZE (locate->slot_offset, s2);
3301 }
3302
3303 locate->slot_offset.constant += part_size_in_regs;
3304
3305 if (!in_regs
3306 #ifdef REG_PARM_STACK_SPACE
3307 || REG_PARM_STACK_SPACE (fndecl) > 0
3308 #endif
3309 )
3310 pad_to_arg_alignment (&locate->slot_offset, boundary,
3311 &locate->alignment_pad);
3312
3313 locate->size.constant = (-initial_offset_ptr->constant
3314 - locate->slot_offset.constant);
3315 if (initial_offset_ptr->var)
3316 locate->size.var = size_binop (MINUS_EXPR,
3317 size_binop (MINUS_EXPR,
3318 ssize_int (0),
3319 initial_offset_ptr->var),
3320 locate->slot_offset.var);
3321
3322 /* Pad_below needs the pre-rounded size to know how much to pad
3323 below. */
3324 locate->offset = locate->slot_offset;
3325 if (where_pad == downward)
3326 pad_below (&locate->offset, passed_mode, sizetree);
3327
3328 #else /* !ARGS_GROW_DOWNWARD */
3329 if (!in_regs
3330 #ifdef REG_PARM_STACK_SPACE
3331 || REG_PARM_STACK_SPACE (fndecl) > 0
3332 #endif
3333 )
3334 pad_to_arg_alignment (initial_offset_ptr, boundary,
3335 &locate->alignment_pad);
3336 locate->slot_offset = *initial_offset_ptr;
3337
3338 #ifdef PUSH_ROUNDING
3339 if (passed_mode != BLKmode)
3340 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3341 #endif
3342
3343 /* Pad_below needs the pre-rounded size to know how much to pad below
3344 so this must be done before rounding up. */
3345 locate->offset = locate->slot_offset;
3346 if (where_pad == downward)
3347 pad_below (&locate->offset, passed_mode, sizetree);
3348
3349 if (where_pad != none
3350 && (!host_integerp (sizetree, 1)
3351 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3352 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3353
3354 ADD_PARM_SIZE (locate->size, sizetree);
3355
3356 locate->size.constant -= part_size_in_regs;
3357 #endif /* ARGS_GROW_DOWNWARD */
3358 }
3359
3360 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3361 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3362
3363 static void
3364 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3365 struct args_size *alignment_pad)
3366 {
3367 tree save_var = NULL_TREE;
3368 HOST_WIDE_INT save_constant = 0;
3369 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3370 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3371
3372 #ifdef SPARC_STACK_BOUNDARY_HACK
3373 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3374 the real alignment of %sp. However, when it does this, the
3375 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3376 if (SPARC_STACK_BOUNDARY_HACK)
3377 sp_offset = 0;
3378 #endif
3379
3380 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3381 {
3382 save_var = offset_ptr->var;
3383 save_constant = offset_ptr->constant;
3384 }
3385
3386 alignment_pad->var = NULL_TREE;
3387 alignment_pad->constant = 0;
3388
3389 if (boundary > BITS_PER_UNIT)
3390 {
3391 if (offset_ptr->var)
3392 {
3393 tree sp_offset_tree = ssize_int (sp_offset);
3394 tree offset = size_binop (PLUS_EXPR,
3395 ARGS_SIZE_TREE (*offset_ptr),
3396 sp_offset_tree);
3397 #ifdef ARGS_GROW_DOWNWARD
3398 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3399 #else
3400 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3401 #endif
3402
3403 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3404 /* ARGS_SIZE_TREE includes constant term. */
3405 offset_ptr->constant = 0;
3406 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3407 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3408 save_var);
3409 }
3410 else
3411 {
3412 offset_ptr->constant = -sp_offset +
3413 #ifdef ARGS_GROW_DOWNWARD
3414 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3415 #else
3416 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3417 #endif
3418 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3419 alignment_pad->constant = offset_ptr->constant - save_constant;
3420 }
3421 }
3422 }
3423
3424 static void
3425 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3426 {
3427 if (passed_mode != BLKmode)
3428 {
3429 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3430 offset_ptr->constant
3431 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3432 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3433 - GET_MODE_SIZE (passed_mode));
3434 }
3435 else
3436 {
3437 if (TREE_CODE (sizetree) != INTEGER_CST
3438 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3439 {
3440 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3441 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3442 /* Add it in. */
3443 ADD_PARM_SIZE (*offset_ptr, s2);
3444 SUB_PARM_SIZE (*offset_ptr, sizetree);
3445 }
3446 }
3447 }
3448 \f
3449 /* Walk the tree of blocks describing the binding levels within a function
3450 and warn about variables the might be killed by setjmp or vfork.
3451 This is done after calling flow_analysis and before global_alloc
3452 clobbers the pseudo-regs to hard regs. */
3453
3454 void
3455 setjmp_vars_warning (tree block)
3456 {
3457 tree decl, sub;
3458
3459 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3460 {
3461 if (TREE_CODE (decl) == VAR_DECL
3462 && DECL_RTL_SET_P (decl)
3463 && REG_P (DECL_RTL (decl))
3464 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3465 warning (0, "variable %q+D might be clobbered by %<longjmp%>"
3466 " or %<vfork%>",
3467 decl);
3468 }
3469
3470 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3471 setjmp_vars_warning (sub);
3472 }
3473
3474 /* Do the appropriate part of setjmp_vars_warning
3475 but for arguments instead of local variables. */
3476
3477 void
3478 setjmp_args_warning (void)
3479 {
3480 tree decl;
3481 for (decl = DECL_ARGUMENTS (current_function_decl);
3482 decl; decl = TREE_CHAIN (decl))
3483 if (DECL_RTL (decl) != 0
3484 && REG_P (DECL_RTL (decl))
3485 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3486 warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3487 decl);
3488 }
3489
3490 \f
3491 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3492 and create duplicate blocks. */
3493 /* ??? Need an option to either create block fragments or to create
3494 abstract origin duplicates of a source block. It really depends
3495 on what optimization has been performed. */
3496
3497 void
3498 reorder_blocks (void)
3499 {
3500 tree block = DECL_INITIAL (current_function_decl);
3501 VEC(tree,heap) *block_stack;
3502
3503 if (block == NULL_TREE)
3504 return;
3505
3506 block_stack = VEC_alloc (tree, heap, 10);
3507
3508 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3509 clear_block_marks (block);
3510
3511 /* Prune the old trees away, so that they don't get in the way. */
3512 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3513 BLOCK_CHAIN (block) = NULL_TREE;
3514
3515 /* Recreate the block tree from the note nesting. */
3516 reorder_blocks_1 (get_insns (), block, &block_stack);
3517 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3518
3519 /* Remove deleted blocks from the block fragment chains. */
3520 reorder_fix_fragments (block);
3521
3522 VEC_free (tree, heap, block_stack);
3523 }
3524
3525 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3526
3527 void
3528 clear_block_marks (tree block)
3529 {
3530 while (block)
3531 {
3532 TREE_ASM_WRITTEN (block) = 0;
3533 clear_block_marks (BLOCK_SUBBLOCKS (block));
3534 block = BLOCK_CHAIN (block);
3535 }
3536 }
3537
3538 static void
3539 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3540 {
3541 rtx insn;
3542
3543 for (insn = insns; insn; insn = NEXT_INSN (insn))
3544 {
3545 if (NOTE_P (insn))
3546 {
3547 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3548 {
3549 tree block = NOTE_BLOCK (insn);
3550
3551 /* If we have seen this block before, that means it now
3552 spans multiple address regions. Create a new fragment. */
3553 if (TREE_ASM_WRITTEN (block))
3554 {
3555 tree new_block = copy_node (block);
3556 tree origin;
3557
3558 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3559 ? BLOCK_FRAGMENT_ORIGIN (block)
3560 : block);
3561 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3562 BLOCK_FRAGMENT_CHAIN (new_block)
3563 = BLOCK_FRAGMENT_CHAIN (origin);
3564 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3565
3566 NOTE_BLOCK (insn) = new_block;
3567 block = new_block;
3568 }
3569
3570 BLOCK_SUBBLOCKS (block) = 0;
3571 TREE_ASM_WRITTEN (block) = 1;
3572 /* When there's only one block for the entire function,
3573 current_block == block and we mustn't do this, it
3574 will cause infinite recursion. */
3575 if (block != current_block)
3576 {
3577 BLOCK_SUPERCONTEXT (block) = current_block;
3578 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3579 BLOCK_SUBBLOCKS (current_block) = block;
3580 current_block = block;
3581 }
3582 VEC_safe_push (tree, heap, *p_block_stack, block);
3583 }
3584 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3585 {
3586 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3587 BLOCK_SUBBLOCKS (current_block)
3588 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3589 current_block = BLOCK_SUPERCONTEXT (current_block);
3590 }
3591 }
3592 }
3593 }
3594
3595 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3596 appears in the block tree, select one of the fragments to become
3597 the new origin block. */
3598
3599 static void
3600 reorder_fix_fragments (tree block)
3601 {
3602 while (block)
3603 {
3604 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3605 tree new_origin = NULL_TREE;
3606
3607 if (dup_origin)
3608 {
3609 if (! TREE_ASM_WRITTEN (dup_origin))
3610 {
3611 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3612
3613 /* Find the first of the remaining fragments. There must
3614 be at least one -- the current block. */
3615 while (! TREE_ASM_WRITTEN (new_origin))
3616 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3617 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3618 }
3619 }
3620 else if (! dup_origin)
3621 new_origin = block;
3622
3623 /* Re-root the rest of the fragments to the new origin. In the
3624 case that DUP_ORIGIN was null, that means BLOCK was the origin
3625 of a chain of fragments and we want to remove those fragments
3626 that didn't make it to the output. */
3627 if (new_origin)
3628 {
3629 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3630 tree chain = *pp;
3631
3632 while (chain)
3633 {
3634 if (TREE_ASM_WRITTEN (chain))
3635 {
3636 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3637 *pp = chain;
3638 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3639 }
3640 chain = BLOCK_FRAGMENT_CHAIN (chain);
3641 }
3642 *pp = NULL_TREE;
3643 }
3644
3645 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3646 block = BLOCK_CHAIN (block);
3647 }
3648 }
3649
3650 /* Reverse the order of elements in the chain T of blocks,
3651 and return the new head of the chain (old last element). */
3652
3653 tree
3654 blocks_nreverse (tree t)
3655 {
3656 tree prev = 0, decl, next;
3657 for (decl = t; decl; decl = next)
3658 {
3659 next = BLOCK_CHAIN (decl);
3660 BLOCK_CHAIN (decl) = prev;
3661 prev = decl;
3662 }
3663 return prev;
3664 }
3665
3666 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3667 non-NULL, list them all into VECTOR, in a depth-first preorder
3668 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3669 blocks. */
3670
3671 static int
3672 all_blocks (tree block, tree *vector)
3673 {
3674 int n_blocks = 0;
3675
3676 while (block)
3677 {
3678 TREE_ASM_WRITTEN (block) = 0;
3679
3680 /* Record this block. */
3681 if (vector)
3682 vector[n_blocks] = block;
3683
3684 ++n_blocks;
3685
3686 /* Record the subblocks, and their subblocks... */
3687 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3688 vector ? vector + n_blocks : 0);
3689 block = BLOCK_CHAIN (block);
3690 }
3691
3692 return n_blocks;
3693 }
3694
3695 /* Return a vector containing all the blocks rooted at BLOCK. The
3696 number of elements in the vector is stored in N_BLOCKS_P. The
3697 vector is dynamically allocated; it is the caller's responsibility
3698 to call `free' on the pointer returned. */
3699
3700 static tree *
3701 get_block_vector (tree block, int *n_blocks_p)
3702 {
3703 tree *block_vector;
3704
3705 *n_blocks_p = all_blocks (block, NULL);
3706 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3707 all_blocks (block, block_vector);
3708
3709 return block_vector;
3710 }
3711
3712 static GTY(()) int next_block_index = 2;
3713
3714 /* Set BLOCK_NUMBER for all the blocks in FN. */
3715
3716 void
3717 number_blocks (tree fn)
3718 {
3719 int i;
3720 int n_blocks;
3721 tree *block_vector;
3722
3723 /* For SDB and XCOFF debugging output, we start numbering the blocks
3724 from 1 within each function, rather than keeping a running
3725 count. */
3726 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3727 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3728 next_block_index = 1;
3729 #endif
3730
3731 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3732
3733 /* The top-level BLOCK isn't numbered at all. */
3734 for (i = 1; i < n_blocks; ++i)
3735 /* We number the blocks from two. */
3736 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3737
3738 free (block_vector);
3739
3740 return;
3741 }
3742
3743 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3744
3745 tree
3746 debug_find_var_in_block_tree (tree var, tree block)
3747 {
3748 tree t;
3749
3750 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3751 if (t == var)
3752 return block;
3753
3754 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3755 {
3756 tree ret = debug_find_var_in_block_tree (var, t);
3757 if (ret)
3758 return ret;
3759 }
3760
3761 return NULL_TREE;
3762 }
3763 \f
3764 /* Allocate a function structure for FNDECL and set its contents
3765 to the defaults. */
3766
3767 void
3768 allocate_struct_function (tree fndecl)
3769 {
3770 tree result;
3771 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3772
3773 cfun = ggc_alloc_cleared (sizeof (struct function));
3774
3775 cfun->stack_alignment_needed = STACK_BOUNDARY;
3776 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3777
3778 current_function_funcdef_no = funcdef_no++;
3779
3780 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3781
3782 init_eh_for_function ();
3783
3784 lang_hooks.function.init (cfun);
3785 if (init_machine_status)
3786 cfun->machine = (*init_machine_status) ();
3787
3788 if (fndecl == NULL)
3789 return;
3790
3791 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3792 cfun->decl = fndecl;
3793
3794 result = DECL_RESULT (fndecl);
3795 if (aggregate_value_p (result, fndecl))
3796 {
3797 #ifdef PCC_STATIC_STRUCT_RETURN
3798 current_function_returns_pcc_struct = 1;
3799 #endif
3800 current_function_returns_struct = 1;
3801 }
3802
3803 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3804
3805 current_function_stdarg
3806 = (fntype
3807 && TYPE_ARG_TYPES (fntype) != 0
3808 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3809 != void_type_node));
3810
3811 /* Assume all registers in stdarg functions need to be saved. */
3812 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3813 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3814 }
3815
3816 /* Reset cfun, and other non-struct-function variables to defaults as
3817 appropriate for emitting rtl at the start of a function. */
3818
3819 static void
3820 prepare_function_start (tree fndecl)
3821 {
3822 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3823 cfun = DECL_STRUCT_FUNCTION (fndecl);
3824 else
3825 allocate_struct_function (fndecl);
3826 init_emit ();
3827 init_varasm_status (cfun);
3828 init_expr ();
3829
3830 cse_not_expected = ! optimize;
3831
3832 /* Caller save not needed yet. */
3833 caller_save_needed = 0;
3834
3835 /* We haven't done register allocation yet. */
3836 reg_renumber = 0;
3837
3838 /* Indicate that we have not instantiated virtual registers yet. */
3839 virtuals_instantiated = 0;
3840
3841 /* Indicate that we want CONCATs now. */
3842 generating_concat_p = 1;
3843
3844 /* Indicate we have no need of a frame pointer yet. */
3845 frame_pointer_needed = 0;
3846 }
3847
3848 /* Initialize the rtl expansion mechanism so that we can do simple things
3849 like generate sequences. This is used to provide a context during global
3850 initialization of some passes. */
3851 void
3852 init_dummy_function_start (void)
3853 {
3854 prepare_function_start (NULL);
3855 }
3856
3857 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3858 and initialize static variables for generating RTL for the statements
3859 of the function. */
3860
3861 void
3862 init_function_start (tree subr)
3863 {
3864 prepare_function_start (subr);
3865
3866 /* Prevent ever trying to delete the first instruction of a
3867 function. Also tell final how to output a linenum before the
3868 function prologue. Note linenums could be missing, e.g. when
3869 compiling a Java .class file. */
3870 if (! DECL_IS_BUILTIN (subr))
3871 emit_line_note (DECL_SOURCE_LOCATION (subr));
3872
3873 /* Make sure first insn is a note even if we don't want linenums.
3874 This makes sure the first insn will never be deleted.
3875 Also, final expects a note to appear there. */
3876 emit_note (NOTE_INSN_DELETED);
3877
3878 /* Warn if this value is an aggregate type,
3879 regardless of which calling convention we are using for it. */
3880 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3881 warning (OPT_Waggregate_return, "function returns an aggregate");
3882 }
3883
3884 /* Make sure all values used by the optimization passes have sane
3885 defaults. */
3886 void
3887 init_function_for_compilation (void)
3888 {
3889 reg_renumber = 0;
3890
3891 /* No prologue/epilogue insns yet. Make sure that these vectors are
3892 empty. */
3893 gcc_assert (VEC_length (int, prologue) == 0);
3894 gcc_assert (VEC_length (int, epilogue) == 0);
3895 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3896 }
3897
3898 struct tree_opt_pass pass_init_function =
3899 {
3900 NULL, /* name */
3901 NULL, /* gate */
3902 init_function_for_compilation, /* execute */
3903 NULL, /* sub */
3904 NULL, /* next */
3905 0, /* static_pass_number */
3906 0, /* tv_id */
3907 0, /* properties_required */
3908 0, /* properties_provided */
3909 0, /* properties_destroyed */
3910 0, /* todo_flags_start */
3911 0, /* todo_flags_finish */
3912 0 /* letter */
3913 };
3914
3915
3916 void
3917 expand_main_function (void)
3918 {
3919 #if (defined(INVOKE__main) \
3920 || (!defined(HAS_INIT_SECTION) \
3921 && !defined(INIT_SECTION_ASM_OP) \
3922 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3923 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3924 #endif
3925 }
3926 \f
3927 /* Expand code to initialize the stack_protect_guard. This is invoked at
3928 the beginning of a function to be protected. */
3929
3930 #ifndef HAVE_stack_protect_set
3931 # define HAVE_stack_protect_set 0
3932 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3933 #endif
3934
3935 void
3936 stack_protect_prologue (void)
3937 {
3938 tree guard_decl = targetm.stack_protect_guard ();
3939 rtx x, y;
3940
3941 /* Avoid expand_expr here, because we don't want guard_decl pulled
3942 into registers unless absolutely necessary. And we know that
3943 cfun->stack_protect_guard is a local stack slot, so this skips
3944 all the fluff. */
3945 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3946 y = validize_mem (DECL_RTL (guard_decl));
3947
3948 /* Allow the target to copy from Y to X without leaking Y into a
3949 register. */
3950 if (HAVE_stack_protect_set)
3951 {
3952 rtx insn = gen_stack_protect_set (x, y);
3953 if (insn)
3954 {
3955 emit_insn (insn);
3956 return;
3957 }
3958 }
3959
3960 /* Otherwise do a straight move. */
3961 emit_move_insn (x, y);
3962 }
3963
3964 /* Expand code to verify the stack_protect_guard. This is invoked at
3965 the end of a function to be protected. */
3966
3967 #ifndef HAVE_stack_protect_test
3968 # define HAVE_stack_protect_test 0
3969 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
3970 #endif
3971
3972 void
3973 stack_protect_epilogue (void)
3974 {
3975 tree guard_decl = targetm.stack_protect_guard ();
3976 rtx label = gen_label_rtx ();
3977 rtx x, y, tmp;
3978
3979 /* Avoid expand_expr here, because we don't want guard_decl pulled
3980 into registers unless absolutely necessary. And we know that
3981 cfun->stack_protect_guard is a local stack slot, so this skips
3982 all the fluff. */
3983 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3984 y = validize_mem (DECL_RTL (guard_decl));
3985
3986 /* Allow the target to compare Y with X without leaking either into
3987 a register. */
3988 switch (HAVE_stack_protect_test != 0)
3989 {
3990 case 1:
3991 tmp = gen_stack_protect_test (x, y, label);
3992 if (tmp)
3993 {
3994 emit_insn (tmp);
3995 break;
3996 }
3997 /* FALLTHRU */
3998
3999 default:
4000 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4001 break;
4002 }
4003
4004 /* The noreturn predictor has been moved to the tree level. The rtl-level
4005 predictors estimate this branch about 20%, which isn't enough to get
4006 things moved out of line. Since this is the only extant case of adding
4007 a noreturn function at the rtl level, it doesn't seem worth doing ought
4008 except adding the prediction by hand. */
4009 tmp = get_last_insn ();
4010 if (JUMP_P (tmp))
4011 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4012
4013 expand_expr_stmt (targetm.stack_protect_fail ());
4014 emit_label (label);
4015 }
4016 \f
4017 /* Start the RTL for a new function, and set variables used for
4018 emitting RTL.
4019 SUBR is the FUNCTION_DECL node.
4020 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4021 the function's parameters, which must be run at any return statement. */
4022
4023 void
4024 expand_function_start (tree subr)
4025 {
4026 /* Make sure volatile mem refs aren't considered
4027 valid operands of arithmetic insns. */
4028 init_recog_no_volatile ();
4029
4030 current_function_profile
4031 = (profile_flag
4032 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4033
4034 current_function_limit_stack
4035 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4036
4037 /* Make the label for return statements to jump to. Do not special
4038 case machines with special return instructions -- they will be
4039 handled later during jump, ifcvt, or epilogue creation. */
4040 return_label = gen_label_rtx ();
4041
4042 /* Initialize rtx used to return the value. */
4043 /* Do this before assign_parms so that we copy the struct value address
4044 before any library calls that assign parms might generate. */
4045
4046 /* Decide whether to return the value in memory or in a register. */
4047 if (aggregate_value_p (DECL_RESULT (subr), subr))
4048 {
4049 /* Returning something that won't go in a register. */
4050 rtx value_address = 0;
4051
4052 #ifdef PCC_STATIC_STRUCT_RETURN
4053 if (current_function_returns_pcc_struct)
4054 {
4055 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4056 value_address = assemble_static_space (size);
4057 }
4058 else
4059 #endif
4060 {
4061 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4062 /* Expect to be passed the address of a place to store the value.
4063 If it is passed as an argument, assign_parms will take care of
4064 it. */
4065 if (sv)
4066 {
4067 value_address = gen_reg_rtx (Pmode);
4068 emit_move_insn (value_address, sv);
4069 }
4070 }
4071 if (value_address)
4072 {
4073 rtx x = value_address;
4074 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4075 {
4076 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4077 set_mem_attributes (x, DECL_RESULT (subr), 1);
4078 }
4079 SET_DECL_RTL (DECL_RESULT (subr), x);
4080 }
4081 }
4082 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4083 /* If return mode is void, this decl rtl should not be used. */
4084 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4085 else
4086 {
4087 /* Compute the return values into a pseudo reg, which we will copy
4088 into the true return register after the cleanups are done. */
4089 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4090 if (TYPE_MODE (return_type) != BLKmode
4091 && targetm.calls.return_in_msb (return_type))
4092 /* expand_function_end will insert the appropriate padding in
4093 this case. Use the return value's natural (unpadded) mode
4094 within the function proper. */
4095 SET_DECL_RTL (DECL_RESULT (subr),
4096 gen_reg_rtx (TYPE_MODE (return_type)));
4097 else
4098 {
4099 /* In order to figure out what mode to use for the pseudo, we
4100 figure out what the mode of the eventual return register will
4101 actually be, and use that. */
4102 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4103
4104 /* Structures that are returned in registers are not
4105 aggregate_value_p, so we may see a PARALLEL or a REG. */
4106 if (REG_P (hard_reg))
4107 SET_DECL_RTL (DECL_RESULT (subr),
4108 gen_reg_rtx (GET_MODE (hard_reg)));
4109 else
4110 {
4111 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4112 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4113 }
4114 }
4115
4116 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4117 result to the real return register(s). */
4118 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4119 }
4120
4121 /* Initialize rtx for parameters and local variables.
4122 In some cases this requires emitting insns. */
4123 assign_parms (subr);
4124
4125 /* If function gets a static chain arg, store it. */
4126 if (cfun->static_chain_decl)
4127 {
4128 tree parm = cfun->static_chain_decl;
4129 rtx local = gen_reg_rtx (Pmode);
4130
4131 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4132 SET_DECL_RTL (parm, local);
4133 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4134
4135 emit_move_insn (local, static_chain_incoming_rtx);
4136 }
4137
4138 /* If the function receives a non-local goto, then store the
4139 bits we need to restore the frame pointer. */
4140 if (cfun->nonlocal_goto_save_area)
4141 {
4142 tree t_save;
4143 rtx r_save;
4144
4145 /* ??? We need to do this save early. Unfortunately here is
4146 before the frame variable gets declared. Help out... */
4147 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4148
4149 t_save = build4 (ARRAY_REF, ptr_type_node,
4150 cfun->nonlocal_goto_save_area,
4151 integer_zero_node, NULL_TREE, NULL_TREE);
4152 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4153 r_save = convert_memory_address (Pmode, r_save);
4154
4155 emit_move_insn (r_save, virtual_stack_vars_rtx);
4156 update_nonlocal_goto_save_area ();
4157 }
4158
4159 /* The following was moved from init_function_start.
4160 The move is supposed to make sdb output more accurate. */
4161 /* Indicate the beginning of the function body,
4162 as opposed to parm setup. */
4163 emit_note (NOTE_INSN_FUNCTION_BEG);
4164
4165 if (!NOTE_P (get_last_insn ()))
4166 emit_note (NOTE_INSN_DELETED);
4167 parm_birth_insn = get_last_insn ();
4168
4169 if (current_function_profile)
4170 {
4171 #ifdef PROFILE_HOOK
4172 PROFILE_HOOK (current_function_funcdef_no);
4173 #endif
4174 }
4175
4176 /* After the display initializations is where the tail-recursion label
4177 should go, if we end up needing one. Ensure we have a NOTE here
4178 since some things (like trampolines) get placed before this. */
4179 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4180
4181 /* Make sure there is a line number after the function entry setup code. */
4182 force_next_line_note ();
4183 }
4184 \f
4185 /* Undo the effects of init_dummy_function_start. */
4186 void
4187 expand_dummy_function_end (void)
4188 {
4189 /* End any sequences that failed to be closed due to syntax errors. */
4190 while (in_sequence_p ())
4191 end_sequence ();
4192
4193 /* Outside function body, can't compute type's actual size
4194 until next function's body starts. */
4195
4196 free_after_parsing (cfun);
4197 free_after_compilation (cfun);
4198 cfun = 0;
4199 }
4200
4201 /* Call DOIT for each hard register used as a return value from
4202 the current function. */
4203
4204 void
4205 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4206 {
4207 rtx outgoing = current_function_return_rtx;
4208
4209 if (! outgoing)
4210 return;
4211
4212 if (REG_P (outgoing))
4213 (*doit) (outgoing, arg);
4214 else if (GET_CODE (outgoing) == PARALLEL)
4215 {
4216 int i;
4217
4218 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4219 {
4220 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4221
4222 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4223 (*doit) (x, arg);
4224 }
4225 }
4226 }
4227
4228 static void
4229 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4230 {
4231 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4232 }
4233
4234 void
4235 clobber_return_register (void)
4236 {
4237 diddle_return_value (do_clobber_return_reg, NULL);
4238
4239 /* In case we do use pseudo to return value, clobber it too. */
4240 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4241 {
4242 tree decl_result = DECL_RESULT (current_function_decl);
4243 rtx decl_rtl = DECL_RTL (decl_result);
4244 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4245 {
4246 do_clobber_return_reg (decl_rtl, NULL);
4247 }
4248 }
4249 }
4250
4251 static void
4252 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4253 {
4254 emit_insn (gen_rtx_USE (VOIDmode, reg));
4255 }
4256
4257 void
4258 use_return_register (void)
4259 {
4260 diddle_return_value (do_use_return_reg, NULL);
4261 }
4262
4263 /* Possibly warn about unused parameters. */
4264 void
4265 do_warn_unused_parameter (tree fn)
4266 {
4267 tree decl;
4268
4269 for (decl = DECL_ARGUMENTS (fn);
4270 decl; decl = TREE_CHAIN (decl))
4271 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4272 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4273 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4274 }
4275
4276 static GTY(()) rtx initial_trampoline;
4277
4278 /* Generate RTL for the end of the current function. */
4279
4280 void
4281 expand_function_end (void)
4282 {
4283 rtx clobber_after;
4284
4285 /* If arg_pointer_save_area was referenced only from a nested
4286 function, we will not have initialized it yet. Do that now. */
4287 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4288 get_arg_pointer_save_area (cfun);
4289
4290 /* If we are doing stack checking and this function makes calls,
4291 do a stack probe at the start of the function to ensure we have enough
4292 space for another stack frame. */
4293 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4294 {
4295 rtx insn, seq;
4296
4297 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4298 if (CALL_P (insn))
4299 {
4300 start_sequence ();
4301 probe_stack_range (STACK_CHECK_PROTECT,
4302 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4303 seq = get_insns ();
4304 end_sequence ();
4305 emit_insn_before (seq, tail_recursion_reentry);
4306 break;
4307 }
4308 }
4309
4310 /* Possibly warn about unused parameters.
4311 When frontend does unit-at-a-time, the warning is already
4312 issued at finalization time. */
4313 if (warn_unused_parameter
4314 && !lang_hooks.callgraph.expand_function)
4315 do_warn_unused_parameter (current_function_decl);
4316
4317 /* End any sequences that failed to be closed due to syntax errors. */
4318 while (in_sequence_p ())
4319 end_sequence ();
4320
4321 clear_pending_stack_adjust ();
4322 do_pending_stack_adjust ();
4323
4324 /* @@@ This is a kludge. We want to ensure that instructions that
4325 may trap are not moved into the epilogue by scheduling, because
4326 we don't always emit unwind information for the epilogue.
4327 However, not all machine descriptions define a blockage insn, so
4328 emit an ASM_INPUT to act as one. */
4329 if (flag_non_call_exceptions)
4330 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4331
4332 /* Mark the end of the function body.
4333 If control reaches this insn, the function can drop through
4334 without returning a value. */
4335 emit_note (NOTE_INSN_FUNCTION_END);
4336
4337 /* Must mark the last line number note in the function, so that the test
4338 coverage code can avoid counting the last line twice. This just tells
4339 the code to ignore the immediately following line note, since there
4340 already exists a copy of this note somewhere above. This line number
4341 note is still needed for debugging though, so we can't delete it. */
4342 if (flag_test_coverage)
4343 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4344
4345 /* Output a linenumber for the end of the function.
4346 SDB depends on this. */
4347 force_next_line_note ();
4348 emit_line_note (input_location);
4349
4350 /* Before the return label (if any), clobber the return
4351 registers so that they are not propagated live to the rest of
4352 the function. This can only happen with functions that drop
4353 through; if there had been a return statement, there would
4354 have either been a return rtx, or a jump to the return label.
4355
4356 We delay actual code generation after the current_function_value_rtx
4357 is computed. */
4358 clobber_after = get_last_insn ();
4359
4360 /* Output the label for the actual return from the function. */
4361 emit_label (return_label);
4362
4363 /* Let except.c know where it should emit the call to unregister
4364 the function context for sjlj exceptions. */
4365 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4366 sjlj_emit_function_exit_after (get_last_insn ());
4367
4368 /* If this is an implementation of throw, do what's necessary to
4369 communicate between __builtin_eh_return and the epilogue. */
4370 expand_eh_return ();
4371
4372 /* If scalar return value was computed in a pseudo-reg, or was a named
4373 return value that got dumped to the stack, copy that to the hard
4374 return register. */
4375 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4376 {
4377 tree decl_result = DECL_RESULT (current_function_decl);
4378 rtx decl_rtl = DECL_RTL (decl_result);
4379
4380 if (REG_P (decl_rtl)
4381 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4382 : DECL_REGISTER (decl_result))
4383 {
4384 rtx real_decl_rtl = current_function_return_rtx;
4385
4386 /* This should be set in assign_parms. */
4387 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4388
4389 /* If this is a BLKmode structure being returned in registers,
4390 then use the mode computed in expand_return. Note that if
4391 decl_rtl is memory, then its mode may have been changed,
4392 but that current_function_return_rtx has not. */
4393 if (GET_MODE (real_decl_rtl) == BLKmode)
4394 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4395
4396 /* If a non-BLKmode return value should be padded at the least
4397 significant end of the register, shift it left by the appropriate
4398 amount. BLKmode results are handled using the group load/store
4399 machinery. */
4400 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4401 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4402 {
4403 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4404 REGNO (real_decl_rtl)),
4405 decl_rtl);
4406 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4407 }
4408 /* If a named return value dumped decl_return to memory, then
4409 we may need to re-do the PROMOTE_MODE signed/unsigned
4410 extension. */
4411 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4412 {
4413 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4414
4415 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4416 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4417 &unsignedp, 1);
4418
4419 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4420 }
4421 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4422 {
4423 /* If expand_function_start has created a PARALLEL for decl_rtl,
4424 move the result to the real return registers. Otherwise, do
4425 a group load from decl_rtl for a named return. */
4426 if (GET_CODE (decl_rtl) == PARALLEL)
4427 emit_group_move (real_decl_rtl, decl_rtl);
4428 else
4429 emit_group_load (real_decl_rtl, decl_rtl,
4430 TREE_TYPE (decl_result),
4431 int_size_in_bytes (TREE_TYPE (decl_result)));
4432 }
4433 /* In the case of complex integer modes smaller than a word, we'll
4434 need to generate some non-trivial bitfield insertions. Do that
4435 on a pseudo and not the hard register. */
4436 else if (GET_CODE (decl_rtl) == CONCAT
4437 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4438 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4439 {
4440 int old_generating_concat_p;
4441 rtx tmp;
4442
4443 old_generating_concat_p = generating_concat_p;
4444 generating_concat_p = 0;
4445 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4446 generating_concat_p = old_generating_concat_p;
4447
4448 emit_move_insn (tmp, decl_rtl);
4449 emit_move_insn (real_decl_rtl, tmp);
4450 }
4451 else
4452 emit_move_insn (real_decl_rtl, decl_rtl);
4453 }
4454 }
4455
4456 /* If returning a structure, arrange to return the address of the value
4457 in a place where debuggers expect to find it.
4458
4459 If returning a structure PCC style,
4460 the caller also depends on this value.
4461 And current_function_returns_pcc_struct is not necessarily set. */
4462 if (current_function_returns_struct
4463 || current_function_returns_pcc_struct)
4464 {
4465 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4466 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4467 rtx outgoing;
4468
4469 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4470 type = TREE_TYPE (type);
4471 else
4472 value_address = XEXP (value_address, 0);
4473
4474 outgoing = targetm.calls.function_value (build_pointer_type (type),
4475 current_function_decl, true);
4476
4477 /* Mark this as a function return value so integrate will delete the
4478 assignment and USE below when inlining this function. */
4479 REG_FUNCTION_VALUE_P (outgoing) = 1;
4480
4481 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4482 value_address = convert_memory_address (GET_MODE (outgoing),
4483 value_address);
4484
4485 emit_move_insn (outgoing, value_address);
4486
4487 /* Show return register used to hold result (in this case the address
4488 of the result. */
4489 current_function_return_rtx = outgoing;
4490 }
4491
4492 /* Emit the actual code to clobber return register. */
4493 {
4494 rtx seq;
4495
4496 start_sequence ();
4497 clobber_return_register ();
4498 expand_naked_return ();
4499 seq = get_insns ();
4500 end_sequence ();
4501
4502 emit_insn_after (seq, clobber_after);
4503 }
4504
4505 /* Output the label for the naked return from the function. */
4506 emit_label (naked_return_label);
4507
4508 /* If stack protection is enabled for this function, check the guard. */
4509 if (cfun->stack_protect_guard)
4510 stack_protect_epilogue ();
4511
4512 /* If we had calls to alloca, and this machine needs
4513 an accurate stack pointer to exit the function,
4514 insert some code to save and restore the stack pointer. */
4515 if (! EXIT_IGNORE_STACK
4516 && current_function_calls_alloca)
4517 {
4518 rtx tem = 0;
4519
4520 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4521 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4522 }
4523
4524 /* ??? This should no longer be necessary since stupid is no longer with
4525 us, but there are some parts of the compiler (eg reload_combine, and
4526 sh mach_dep_reorg) that still try and compute their own lifetime info
4527 instead of using the general framework. */
4528 use_return_register ();
4529 }
4530
4531 rtx
4532 get_arg_pointer_save_area (struct function *f)
4533 {
4534 rtx ret = f->x_arg_pointer_save_area;
4535
4536 if (! ret)
4537 {
4538 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4539 f->x_arg_pointer_save_area = ret;
4540 }
4541
4542 if (f == cfun && ! f->arg_pointer_save_area_init)
4543 {
4544 rtx seq;
4545
4546 /* Save the arg pointer at the beginning of the function. The
4547 generated stack slot may not be a valid memory address, so we
4548 have to check it and fix it if necessary. */
4549 start_sequence ();
4550 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4551 seq = get_insns ();
4552 end_sequence ();
4553
4554 push_topmost_sequence ();
4555 emit_insn_after (seq, entry_of_function ());
4556 pop_topmost_sequence ();
4557 }
4558
4559 return ret;
4560 }
4561 \f
4562 /* Extend a vector that records the INSN_UIDs of INSNS
4563 (a list of one or more insns). */
4564
4565 static void
4566 record_insns (rtx insns, VEC(int,heap) **vecp)
4567 {
4568 rtx tmp;
4569
4570 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4571 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4572 }
4573
4574 /* Set the locator of the insn chain starting at INSN to LOC. */
4575 static void
4576 set_insn_locators (rtx insn, int loc)
4577 {
4578 while (insn != NULL_RTX)
4579 {
4580 if (INSN_P (insn))
4581 INSN_LOCATOR (insn) = loc;
4582 insn = NEXT_INSN (insn);
4583 }
4584 }
4585
4586 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4587 be running after reorg, SEQUENCE rtl is possible. */
4588
4589 static int
4590 contains (rtx insn, VEC(int,heap) **vec)
4591 {
4592 int i, j;
4593
4594 if (NONJUMP_INSN_P (insn)
4595 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4596 {
4597 int count = 0;
4598 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4599 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4600 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4601 == VEC_index (int, *vec, j))
4602 count++;
4603 return count;
4604 }
4605 else
4606 {
4607 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4608 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4609 return 1;
4610 }
4611 return 0;
4612 }
4613
4614 int
4615 prologue_epilogue_contains (rtx insn)
4616 {
4617 if (contains (insn, &prologue))
4618 return 1;
4619 if (contains (insn, &epilogue))
4620 return 1;
4621 return 0;
4622 }
4623
4624 int
4625 sibcall_epilogue_contains (rtx insn)
4626 {
4627 if (sibcall_epilogue)
4628 return contains (insn, &sibcall_epilogue);
4629 return 0;
4630 }
4631
4632 #ifdef HAVE_return
4633 /* Insert gen_return at the end of block BB. This also means updating
4634 block_for_insn appropriately. */
4635
4636 static void
4637 emit_return_into_block (basic_block bb, rtx line_note)
4638 {
4639 emit_jump_insn_after (gen_return (), BB_END (bb));
4640 if (line_note)
4641 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4642 }
4643 #endif /* HAVE_return */
4644
4645 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4646
4647 /* These functions convert the epilogue into a variant that does not
4648 modify the stack pointer. This is used in cases where a function
4649 returns an object whose size is not known until it is computed.
4650 The called function leaves the object on the stack, leaves the
4651 stack depressed, and returns a pointer to the object.
4652
4653 What we need to do is track all modifications and references to the
4654 stack pointer, deleting the modifications and changing the
4655 references to point to the location the stack pointer would have
4656 pointed to had the modifications taken place.
4657
4658 These functions need to be portable so we need to make as few
4659 assumptions about the epilogue as we can. However, the epilogue
4660 basically contains three things: instructions to reset the stack
4661 pointer, instructions to reload registers, possibly including the
4662 frame pointer, and an instruction to return to the caller.
4663
4664 We must be sure of what a relevant epilogue insn is doing. We also
4665 make no attempt to validate the insns we make since if they are
4666 invalid, we probably can't do anything valid. The intent is that
4667 these routines get "smarter" as more and more machines start to use
4668 them and they try operating on different epilogues.
4669
4670 We use the following structure to track what the part of the
4671 epilogue that we've already processed has done. We keep two copies
4672 of the SP equivalence, one for use during the insn we are
4673 processing and one for use in the next insn. The difference is
4674 because one part of a PARALLEL may adjust SP and the other may use
4675 it. */
4676
4677 struct epi_info
4678 {
4679 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4680 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4681 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4682 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4683 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4684 should be set to once we no longer need
4685 its value. */
4686 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4687 for registers. */
4688 };
4689
4690 static void handle_epilogue_set (rtx, struct epi_info *);
4691 static void update_epilogue_consts (rtx, rtx, void *);
4692 static void emit_equiv_load (struct epi_info *);
4693
4694 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4695 no modifications to the stack pointer. Return the new list of insns. */
4696
4697 static rtx
4698 keep_stack_depressed (rtx insns)
4699 {
4700 int j;
4701 struct epi_info info;
4702 rtx insn, next;
4703
4704 /* If the epilogue is just a single instruction, it must be OK as is. */
4705 if (NEXT_INSN (insns) == NULL_RTX)
4706 return insns;
4707
4708 /* Otherwise, start a sequence, initialize the information we have, and
4709 process all the insns we were given. */
4710 start_sequence ();
4711
4712 info.sp_equiv_reg = stack_pointer_rtx;
4713 info.sp_offset = 0;
4714 info.equiv_reg_src = 0;
4715
4716 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4717 info.const_equiv[j] = 0;
4718
4719 insn = insns;
4720 next = NULL_RTX;
4721 while (insn != NULL_RTX)
4722 {
4723 next = NEXT_INSN (insn);
4724
4725 if (!INSN_P (insn))
4726 {
4727 add_insn (insn);
4728 insn = next;
4729 continue;
4730 }
4731
4732 /* If this insn references the register that SP is equivalent to and
4733 we have a pending load to that register, we must force out the load
4734 first and then indicate we no longer know what SP's equivalent is. */
4735 if (info.equiv_reg_src != 0
4736 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4737 {
4738 emit_equiv_load (&info);
4739 info.sp_equiv_reg = 0;
4740 }
4741
4742 info.new_sp_equiv_reg = info.sp_equiv_reg;
4743 info.new_sp_offset = info.sp_offset;
4744
4745 /* If this is a (RETURN) and the return address is on the stack,
4746 update the address and change to an indirect jump. */
4747 if (GET_CODE (PATTERN (insn)) == RETURN
4748 || (GET_CODE (PATTERN (insn)) == PARALLEL
4749 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4750 {
4751 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4752 rtx base = 0;
4753 HOST_WIDE_INT offset = 0;
4754 rtx jump_insn, jump_set;
4755
4756 /* If the return address is in a register, we can emit the insn
4757 unchanged. Otherwise, it must be a MEM and we see what the
4758 base register and offset are. In any case, we have to emit any
4759 pending load to the equivalent reg of SP, if any. */
4760 if (REG_P (retaddr))
4761 {
4762 emit_equiv_load (&info);
4763 add_insn (insn);
4764 insn = next;
4765 continue;
4766 }
4767 else
4768 {
4769 rtx ret_ptr;
4770 gcc_assert (MEM_P (retaddr));
4771
4772 ret_ptr = XEXP (retaddr, 0);
4773
4774 if (REG_P (ret_ptr))
4775 {
4776 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4777 offset = 0;
4778 }
4779 else
4780 {
4781 gcc_assert (GET_CODE (ret_ptr) == PLUS
4782 && REG_P (XEXP (ret_ptr, 0))
4783 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4784 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4785 offset = INTVAL (XEXP (ret_ptr, 1));
4786 }
4787 }
4788
4789 /* If the base of the location containing the return pointer
4790 is SP, we must update it with the replacement address. Otherwise,
4791 just build the necessary MEM. */
4792 retaddr = plus_constant (base, offset);
4793 if (base == stack_pointer_rtx)
4794 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4795 plus_constant (info.sp_equiv_reg,
4796 info.sp_offset));
4797
4798 retaddr = gen_rtx_MEM (Pmode, retaddr);
4799 MEM_NOTRAP_P (retaddr) = 1;
4800
4801 /* If there is a pending load to the equivalent register for SP
4802 and we reference that register, we must load our address into
4803 a scratch register and then do that load. */
4804 if (info.equiv_reg_src
4805 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4806 {
4807 unsigned int regno;
4808 rtx reg;
4809
4810 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4811 if (HARD_REGNO_MODE_OK (regno, Pmode)
4812 && !fixed_regs[regno]
4813 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4814 && !REGNO_REG_SET_P
4815 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4816 && !refers_to_regno_p (regno,
4817 regno + hard_regno_nregs[regno]
4818 [Pmode],
4819 info.equiv_reg_src, NULL)
4820 && info.const_equiv[regno] == 0)
4821 break;
4822
4823 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4824
4825 reg = gen_rtx_REG (Pmode, regno);
4826 emit_move_insn (reg, retaddr);
4827 retaddr = reg;
4828 }
4829
4830 emit_equiv_load (&info);
4831 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4832
4833 /* Show the SET in the above insn is a RETURN. */
4834 jump_set = single_set (jump_insn);
4835 gcc_assert (jump_set);
4836 SET_IS_RETURN_P (jump_set) = 1;
4837 }
4838
4839 /* If SP is not mentioned in the pattern and its equivalent register, if
4840 any, is not modified, just emit it. Otherwise, if neither is set,
4841 replace the reference to SP and emit the insn. If none of those are
4842 true, handle each SET individually. */
4843 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4844 && (info.sp_equiv_reg == stack_pointer_rtx
4845 || !reg_set_p (info.sp_equiv_reg, insn)))
4846 add_insn (insn);
4847 else if (! reg_set_p (stack_pointer_rtx, insn)
4848 && (info.sp_equiv_reg == stack_pointer_rtx
4849 || !reg_set_p (info.sp_equiv_reg, insn)))
4850 {
4851 int changed;
4852
4853 changed = validate_replace_rtx (stack_pointer_rtx,
4854 plus_constant (info.sp_equiv_reg,
4855 info.sp_offset),
4856 insn);
4857 gcc_assert (changed);
4858
4859 add_insn (insn);
4860 }
4861 else if (GET_CODE (PATTERN (insn)) == SET)
4862 handle_epilogue_set (PATTERN (insn), &info);
4863 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4864 {
4865 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4866 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4867 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4868 }
4869 else
4870 add_insn (insn);
4871
4872 info.sp_equiv_reg = info.new_sp_equiv_reg;
4873 info.sp_offset = info.new_sp_offset;
4874
4875 /* Now update any constants this insn sets. */
4876 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4877 insn = next;
4878 }
4879
4880 insns = get_insns ();
4881 end_sequence ();
4882 return insns;
4883 }
4884
4885 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4886 structure that contains information about what we've seen so far. We
4887 process this SET by either updating that data or by emitting one or
4888 more insns. */
4889
4890 static void
4891 handle_epilogue_set (rtx set, struct epi_info *p)
4892 {
4893 /* First handle the case where we are setting SP. Record what it is being
4894 set from, which we must be able to determine */
4895 if (reg_set_p (stack_pointer_rtx, set))
4896 {
4897 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4898
4899 if (GET_CODE (SET_SRC (set)) == PLUS)
4900 {
4901 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4902 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4903 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4904 else
4905 {
4906 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4907 && (REGNO (XEXP (SET_SRC (set), 1))
4908 < FIRST_PSEUDO_REGISTER)
4909 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4910 p->new_sp_offset
4911 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4912 }
4913 }
4914 else
4915 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4916
4917 /* If we are adjusting SP, we adjust from the old data. */
4918 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4919 {
4920 p->new_sp_equiv_reg = p->sp_equiv_reg;
4921 p->new_sp_offset += p->sp_offset;
4922 }
4923
4924 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4925
4926 return;
4927 }
4928
4929 /* Next handle the case where we are setting SP's equivalent
4930 register. We must not already have a value to set it to. We
4931 could update, but there seems little point in handling that case.
4932 Note that we have to allow for the case where we are setting the
4933 register set in the previous part of a PARALLEL inside a single
4934 insn. But use the old offset for any updates within this insn.
4935 We must allow for the case where the register is being set in a
4936 different (usually wider) mode than Pmode). */
4937 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4938 {
4939 gcc_assert (!p->equiv_reg_src
4940 && REG_P (p->new_sp_equiv_reg)
4941 && REG_P (SET_DEST (set))
4942 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4943 <= BITS_PER_WORD)
4944 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4945 p->equiv_reg_src
4946 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4947 plus_constant (p->sp_equiv_reg,
4948 p->sp_offset));
4949 }
4950
4951 /* Otherwise, replace any references to SP in the insn to its new value
4952 and emit the insn. */
4953 else
4954 {
4955 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4956 plus_constant (p->sp_equiv_reg,
4957 p->sp_offset));
4958 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4959 plus_constant (p->sp_equiv_reg,
4960 p->sp_offset));
4961 emit_insn (set);
4962 }
4963 }
4964
4965 /* Update the tracking information for registers set to constants. */
4966
4967 static void
4968 update_epilogue_consts (rtx dest, rtx x, void *data)
4969 {
4970 struct epi_info *p = (struct epi_info *) data;
4971 rtx new;
4972
4973 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4974 return;
4975
4976 /* If we are either clobbering a register or doing a partial set,
4977 show we don't know the value. */
4978 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4979 p->const_equiv[REGNO (dest)] = 0;
4980
4981 /* If we are setting it to a constant, record that constant. */
4982 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4983 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4984
4985 /* If this is a binary operation between a register we have been tracking
4986 and a constant, see if we can compute a new constant value. */
4987 else if (ARITHMETIC_P (SET_SRC (x))
4988 && REG_P (XEXP (SET_SRC (x), 0))
4989 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4990 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4991 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4992 && 0 != (new = simplify_binary_operation
4993 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4994 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4995 XEXP (SET_SRC (x), 1)))
4996 && GET_CODE (new) == CONST_INT)
4997 p->const_equiv[REGNO (dest)] = new;
4998
4999 /* Otherwise, we can't do anything with this value. */
5000 else
5001 p->const_equiv[REGNO (dest)] = 0;
5002 }
5003
5004 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5005
5006 static void
5007 emit_equiv_load (struct epi_info *p)
5008 {
5009 if (p->equiv_reg_src != 0)
5010 {
5011 rtx dest = p->sp_equiv_reg;
5012
5013 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5014 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5015 REGNO (p->sp_equiv_reg));
5016
5017 emit_move_insn (dest, p->equiv_reg_src);
5018 p->equiv_reg_src = 0;
5019 }
5020 }
5021 #endif
5022
5023 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5024 this into place with notes indicating where the prologue ends and where
5025 the epilogue begins. Update the basic block information when possible. */
5026
5027 void
5028 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5029 {
5030 int inserted = 0;
5031 edge e;
5032 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5033 rtx seq;
5034 #endif
5035 #ifdef HAVE_prologue
5036 rtx prologue_end = NULL_RTX;
5037 #endif
5038 #if defined (HAVE_epilogue) || defined(HAVE_return)
5039 rtx epilogue_end = NULL_RTX;
5040 #endif
5041 edge_iterator ei;
5042
5043 #ifdef HAVE_prologue
5044 if (HAVE_prologue)
5045 {
5046 start_sequence ();
5047 seq = gen_prologue ();
5048 emit_insn (seq);
5049
5050 /* Retain a map of the prologue insns. */
5051 record_insns (seq, &prologue);
5052 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5053
5054 seq = get_insns ();
5055 end_sequence ();
5056 set_insn_locators (seq, prologue_locator);
5057
5058 /* Can't deal with multiple successors of the entry block
5059 at the moment. Function should always have at least one
5060 entry point. */
5061 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5062
5063 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5064 inserted = 1;
5065 }
5066 #endif
5067
5068 /* If the exit block has no non-fake predecessors, we don't need
5069 an epilogue. */
5070 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5071 if ((e->flags & EDGE_FAKE) == 0)
5072 break;
5073 if (e == NULL)
5074 goto epilogue_done;
5075
5076 #ifdef HAVE_return
5077 if (optimize && HAVE_return)
5078 {
5079 /* If we're allowed to generate a simple return instruction,
5080 then by definition we don't need a full epilogue. Examine
5081 the block that falls through to EXIT. If it does not
5082 contain any code, examine its predecessors and try to
5083 emit (conditional) return instructions. */
5084
5085 basic_block last;
5086 rtx label;
5087
5088 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5089 if (e->flags & EDGE_FALLTHRU)
5090 break;
5091 if (e == NULL)
5092 goto epilogue_done;
5093 last = e->src;
5094
5095 /* Verify that there are no active instructions in the last block. */
5096 label = BB_END (last);
5097 while (label && !LABEL_P (label))
5098 {
5099 if (active_insn_p (label))
5100 break;
5101 label = PREV_INSN (label);
5102 }
5103
5104 if (BB_HEAD (last) == label && LABEL_P (label))
5105 {
5106 edge_iterator ei2;
5107 rtx epilogue_line_note = NULL_RTX;
5108
5109 /* Locate the line number associated with the closing brace,
5110 if we can find one. */
5111 for (seq = get_last_insn ();
5112 seq && ! active_insn_p (seq);
5113 seq = PREV_INSN (seq))
5114 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5115 {
5116 epilogue_line_note = seq;
5117 break;
5118 }
5119
5120 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5121 {
5122 basic_block bb = e->src;
5123 rtx jump;
5124
5125 if (bb == ENTRY_BLOCK_PTR)
5126 {
5127 ei_next (&ei2);
5128 continue;
5129 }
5130
5131 jump = BB_END (bb);
5132 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5133 {
5134 ei_next (&ei2);
5135 continue;
5136 }
5137
5138 /* If we have an unconditional jump, we can replace that
5139 with a simple return instruction. */
5140 if (simplejump_p (jump))
5141 {
5142 emit_return_into_block (bb, epilogue_line_note);
5143 delete_insn (jump);
5144 }
5145
5146 /* If we have a conditional jump, we can try to replace
5147 that with a conditional return instruction. */
5148 else if (condjump_p (jump))
5149 {
5150 if (! redirect_jump (jump, 0, 0))
5151 {
5152 ei_next (&ei2);
5153 continue;
5154 }
5155
5156 /* If this block has only one successor, it both jumps
5157 and falls through to the fallthru block, so we can't
5158 delete the edge. */
5159 if (single_succ_p (bb))
5160 {
5161 ei_next (&ei2);
5162 continue;
5163 }
5164 }
5165 else
5166 {
5167 ei_next (&ei2);
5168 continue;
5169 }
5170
5171 /* Fix up the CFG for the successful change we just made. */
5172 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5173 }
5174
5175 /* Emit a return insn for the exit fallthru block. Whether
5176 this is still reachable will be determined later. */
5177
5178 emit_barrier_after (BB_END (last));
5179 emit_return_into_block (last, epilogue_line_note);
5180 epilogue_end = BB_END (last);
5181 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5182 goto epilogue_done;
5183 }
5184 }
5185 #endif
5186 /* Find the edge that falls through to EXIT. Other edges may exist
5187 due to RETURN instructions, but those don't need epilogues.
5188 There really shouldn't be a mixture -- either all should have
5189 been converted or none, however... */
5190
5191 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5192 if (e->flags & EDGE_FALLTHRU)
5193 break;
5194 if (e == NULL)
5195 goto epilogue_done;
5196
5197 #ifdef HAVE_epilogue
5198 if (HAVE_epilogue)
5199 {
5200 start_sequence ();
5201 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5202
5203 seq = gen_epilogue ();
5204
5205 #ifdef INCOMING_RETURN_ADDR_RTX
5206 /* If this function returns with the stack depressed and we can support
5207 it, massage the epilogue to actually do that. */
5208 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5209 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5210 seq = keep_stack_depressed (seq);
5211 #endif
5212
5213 emit_jump_insn (seq);
5214
5215 /* Retain a map of the epilogue insns. */
5216 record_insns (seq, &epilogue);
5217 set_insn_locators (seq, epilogue_locator);
5218
5219 seq = get_insns ();
5220 end_sequence ();
5221
5222 insert_insn_on_edge (seq, e);
5223 inserted = 1;
5224 }
5225 else
5226 #endif
5227 {
5228 basic_block cur_bb;
5229
5230 if (! next_active_insn (BB_END (e->src)))
5231 goto epilogue_done;
5232 /* We have a fall-through edge to the exit block, the source is not
5233 at the end of the function, and there will be an assembler epilogue
5234 at the end of the function.
5235 We can't use force_nonfallthru here, because that would try to
5236 use return. Inserting a jump 'by hand' is extremely messy, so
5237 we take advantage of cfg_layout_finalize using
5238 fixup_fallthru_exit_predecessor. */
5239 cfg_layout_initialize (0);
5240 FOR_EACH_BB (cur_bb)
5241 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5242 cur_bb->aux = cur_bb->next_bb;
5243 cfg_layout_finalize ();
5244 }
5245 epilogue_done:
5246
5247 if (inserted)
5248 commit_edge_insertions ();
5249
5250 #ifdef HAVE_sibcall_epilogue
5251 /* Emit sibling epilogues before any sibling call sites. */
5252 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5253 {
5254 basic_block bb = e->src;
5255 rtx insn = BB_END (bb);
5256
5257 if (!CALL_P (insn)
5258 || ! SIBLING_CALL_P (insn))
5259 {
5260 ei_next (&ei);
5261 continue;
5262 }
5263
5264 start_sequence ();
5265 emit_insn (gen_sibcall_epilogue ());
5266 seq = get_insns ();
5267 end_sequence ();
5268
5269 /* Retain a map of the epilogue insns. Used in life analysis to
5270 avoid getting rid of sibcall epilogue insns. Do this before we
5271 actually emit the sequence. */
5272 record_insns (seq, &sibcall_epilogue);
5273 set_insn_locators (seq, epilogue_locator);
5274
5275 emit_insn_before (seq, insn);
5276 ei_next (&ei);
5277 }
5278 #endif
5279
5280 #ifdef HAVE_prologue
5281 /* This is probably all useless now that we use locators. */
5282 if (prologue_end)
5283 {
5284 rtx insn, prev;
5285
5286 /* GDB handles `break f' by setting a breakpoint on the first
5287 line note after the prologue. Which means (1) that if
5288 there are line number notes before where we inserted the
5289 prologue we should move them, and (2) we should generate a
5290 note before the end of the first basic block, if there isn't
5291 one already there.
5292
5293 ??? This behavior is completely broken when dealing with
5294 multiple entry functions. We simply place the note always
5295 into first basic block and let alternate entry points
5296 to be missed.
5297 */
5298
5299 for (insn = prologue_end; insn; insn = prev)
5300 {
5301 prev = PREV_INSN (insn);
5302 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5303 {
5304 /* Note that we cannot reorder the first insn in the
5305 chain, since rest_of_compilation relies on that
5306 remaining constant. */
5307 if (prev == NULL)
5308 break;
5309 reorder_insns (insn, insn, prologue_end);
5310 }
5311 }
5312
5313 /* Find the last line number note in the first block. */
5314 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5315 insn != prologue_end && insn;
5316 insn = PREV_INSN (insn))
5317 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5318 break;
5319
5320 /* If we didn't find one, make a copy of the first line number
5321 we run across. */
5322 if (! insn)
5323 {
5324 for (insn = next_active_insn (prologue_end);
5325 insn;
5326 insn = PREV_INSN (insn))
5327 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5328 {
5329 emit_note_copy_after (insn, prologue_end);
5330 break;
5331 }
5332 }
5333 }
5334 #endif
5335 #ifdef HAVE_epilogue
5336 if (epilogue_end)
5337 {
5338 rtx insn, next;
5339
5340 /* Similarly, move any line notes that appear after the epilogue.
5341 There is no need, however, to be quite so anal about the existence
5342 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5343 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5344 info generation. */
5345 for (insn = epilogue_end; insn; insn = next)
5346 {
5347 next = NEXT_INSN (insn);
5348 if (NOTE_P (insn)
5349 && (NOTE_LINE_NUMBER (insn) > 0
5350 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5351 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5352 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5353 }
5354 }
5355 #endif
5356 }
5357
5358 /* Reposition the prologue-end and epilogue-begin notes after instruction
5359 scheduling and delayed branch scheduling. */
5360
5361 void
5362 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5363 {
5364 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5365 rtx insn, last, note;
5366 int len;
5367
5368 if ((len = VEC_length (int, prologue)) > 0)
5369 {
5370 last = 0, note = 0;
5371
5372 /* Scan from the beginning until we reach the last prologue insn.
5373 We apparently can't depend on basic_block_{head,end} after
5374 reorg has run. */
5375 for (insn = f; insn; insn = NEXT_INSN (insn))
5376 {
5377 if (NOTE_P (insn))
5378 {
5379 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5380 note = insn;
5381 }
5382 else if (contains (insn, &prologue))
5383 {
5384 last = insn;
5385 if (--len == 0)
5386 break;
5387 }
5388 }
5389
5390 if (last)
5391 {
5392 /* Find the prologue-end note if we haven't already, and
5393 move it to just after the last prologue insn. */
5394 if (note == 0)
5395 {
5396 for (note = last; (note = NEXT_INSN (note));)
5397 if (NOTE_P (note)
5398 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5399 break;
5400 }
5401
5402 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5403 if (LABEL_P (last))
5404 last = NEXT_INSN (last);
5405 reorder_insns (note, note, last);
5406 }
5407 }
5408
5409 if ((len = VEC_length (int, epilogue)) > 0)
5410 {
5411 last = 0, note = 0;
5412
5413 /* Scan from the end until we reach the first epilogue insn.
5414 We apparently can't depend on basic_block_{head,end} after
5415 reorg has run. */
5416 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5417 {
5418 if (NOTE_P (insn))
5419 {
5420 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5421 note = insn;
5422 }
5423 else if (contains (insn, &epilogue))
5424 {
5425 last = insn;
5426 if (--len == 0)
5427 break;
5428 }
5429 }
5430
5431 if (last)
5432 {
5433 /* Find the epilogue-begin note if we haven't already, and
5434 move it to just before the first epilogue insn. */
5435 if (note == 0)
5436 {
5437 for (note = insn; (note = PREV_INSN (note));)
5438 if (NOTE_P (note)
5439 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5440 break;
5441 }
5442
5443 if (PREV_INSN (last) != note)
5444 reorder_insns (note, note, PREV_INSN (last));
5445 }
5446 }
5447 #endif /* HAVE_prologue or HAVE_epilogue */
5448 }
5449
5450 /* Resets insn_block_boundaries array. */
5451
5452 void
5453 reset_block_changes (void)
5454 {
5455 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5456 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5457 }
5458
5459 /* Record the boundary for BLOCK. */
5460 void
5461 record_block_change (tree block)
5462 {
5463 int i, n;
5464 tree last_block;
5465
5466 if (!block)
5467 return;
5468
5469 if(!cfun->ib_boundaries_block)
5470 return;
5471
5472 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5473 VARRAY_POP (cfun->ib_boundaries_block);
5474 n = get_max_uid ();
5475 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5476 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5477
5478 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5479 }
5480
5481 /* Finishes record of boundaries. */
5482 void finalize_block_changes (void)
5483 {
5484 record_block_change (DECL_INITIAL (current_function_decl));
5485 }
5486
5487 /* For INSN return the BLOCK it belongs to. */
5488 void
5489 check_block_change (rtx insn, tree *block)
5490 {
5491 unsigned uid = INSN_UID (insn);
5492
5493 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5494 return;
5495
5496 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5497 }
5498
5499 /* Releases the ib_boundaries_block records. */
5500 void
5501 free_block_changes (void)
5502 {
5503 cfun->ib_boundaries_block = NULL;
5504 }
5505
5506 /* Returns the name of the current function. */
5507 const char *
5508 current_function_name (void)
5509 {
5510 return lang_hooks.decl_printable_name (cfun->decl, 2);
5511 }
5512 \f
5513
5514 static void
5515 rest_of_handle_check_leaf_regs (void)
5516 {
5517 #ifdef LEAF_REGISTERS
5518 current_function_uses_only_leaf_regs
5519 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5520 #endif
5521 }
5522
5523 struct tree_opt_pass pass_leaf_regs =
5524 {
5525 NULL, /* name */
5526 NULL, /* gate */
5527 rest_of_handle_check_leaf_regs, /* execute */
5528 NULL, /* sub */
5529 NULL, /* next */
5530 0, /* static_pass_number */
5531 0, /* tv_id */
5532 0, /* properties_required */
5533 0, /* properties_provided */
5534 0, /* properties_destroyed */
5535 0, /* todo_flags_start */
5536 0, /* todo_flags_finish */
5537 0 /* letter */
5538 };
5539
5540
5541 #include "gt-function.h"