(Synchronize with addition made to binutils sources):
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
75
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
85
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
100
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
105
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
110
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
116
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
119
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
123
124 /* The currently compiled function. */
125 struct function *cfun = 0;
126
127 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
128 static VEC(int,heap) *prologue;
129 static VEC(int,heap) *epilogue;
130
131 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
132 in this function. */
133 static VEC(int,heap) *sibcall_epilogue;
134 \f
135 /* Forward declarations. */
136
137 static struct temp_slot *find_temp_slot_from_address (rtx);
138 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
139 static void pad_below (struct args_size *, enum machine_mode, tree);
140 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
141 static int all_blocks (tree, tree *);
142 static tree *get_block_vector (tree, int *);
143 extern tree debug_find_var_in_block_tree (tree, tree);
144 /* We always define `record_insns' even if it's not used so that we
145 can always export `prologue_epilogue_contains'. */
146 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
147 static int contains (const_rtx, VEC(int,heap) **);
148 #ifdef HAVE_return
149 static void emit_return_into_block (basic_block);
150 #endif
151 static void prepare_function_start (void);
152 static void do_clobber_return_reg (rtx, void *);
153 static void do_use_return_reg (rtx, void *);
154 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
155 \f
156 /* Stack of nested functions. */
157 /* Keep track of the cfun stack. */
158
159 typedef struct function *function_p;
160
161 DEF_VEC_P(function_p);
162 DEF_VEC_ALLOC_P(function_p,heap);
163 static VEC(function_p,heap) *function_context_stack;
164
165 /* Save the current context for compilation of a nested function.
166 This is called from language-specific code. */
167
168 void
169 push_function_context (void)
170 {
171 if (cfun == 0)
172 allocate_struct_function (NULL, false);
173
174 VEC_safe_push (function_p, heap, function_context_stack, cfun);
175 set_cfun (NULL);
176 }
177
178 /* Restore the last saved context, at the end of a nested function.
179 This function is called from language-specific code. */
180
181 void
182 pop_function_context (void)
183 {
184 struct function *p = VEC_pop (function_p, function_context_stack);
185 set_cfun (p);
186 current_function_decl = p->decl;
187
188 /* Reset variables that have known state during rtx generation. */
189 virtuals_instantiated = 0;
190 generating_concat_p = 1;
191 }
192
193 /* Clear out all parts of the state in F that can safely be discarded
194 after the function has been parsed, but not compiled, to let
195 garbage collection reclaim the memory. */
196
197 void
198 free_after_parsing (struct function *f)
199 {
200 f->language = 0;
201 }
202
203 /* Clear out all parts of the state in F that can safely be discarded
204 after the function has been compiled, to let garbage collection
205 reclaim the memory. */
206
207 void
208 free_after_compilation (struct function *f)
209 {
210 VEC_free (int, heap, prologue);
211 VEC_free (int, heap, epilogue);
212 VEC_free (int, heap, sibcall_epilogue);
213 if (crtl->emit.regno_pointer_align)
214 free (crtl->emit.regno_pointer_align);
215
216 memset (crtl, 0, sizeof (struct rtl_data));
217 f->eh = NULL;
218 f->machine = NULL;
219 f->cfg = NULL;
220
221 regno_reg_rtx = NULL;
222 insn_locators_free ();
223 }
224 \f
225 /* Return size needed for stack frame based on slots so far allocated.
226 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
227 the caller may have to do that. */
228
229 HOST_WIDE_INT
230 get_frame_size (void)
231 {
232 if (FRAME_GROWS_DOWNWARD)
233 return -frame_offset;
234 else
235 return frame_offset;
236 }
237
238 /* Issue an error message and return TRUE if frame OFFSET overflows in
239 the signed target pointer arithmetics for function FUNC. Otherwise
240 return FALSE. */
241
242 bool
243 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
244 {
245 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
246
247 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
248 /* Leave room for the fixed part of the frame. */
249 - 64 * UNITS_PER_WORD)
250 {
251 error ("%Jtotal size of local objects too large", func);
252 return TRUE;
253 }
254
255 return FALSE;
256 }
257
258 /* Return stack slot alignment in bits for TYPE and MODE. */
259
260 static unsigned int
261 get_stack_local_alignment (tree type, enum machine_mode mode)
262 {
263 unsigned int alignment;
264
265 if (mode == BLKmode)
266 alignment = BIGGEST_ALIGNMENT;
267 else
268 alignment = GET_MODE_ALIGNMENT (mode);
269
270 /* Allow the frond-end to (possibly) increase the alignment of this
271 stack slot. */
272 if (! type)
273 type = lang_hooks.types.type_for_mode (mode, 0);
274
275 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
276 }
277
278 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
279 with machine mode MODE.
280
281 ALIGN controls the amount of alignment for the address of the slot:
282 0 means according to MODE,
283 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
284 -2 means use BITS_PER_UNIT,
285 positive specifies alignment boundary in bits.
286
287 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
288
289 We do not round to stack_boundary here. */
290
291 rtx
292 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
293 int align,
294 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
295 {
296 rtx x, addr;
297 int bigend_correction = 0;
298 unsigned int alignment, alignment_in_bits;
299 int frame_off, frame_alignment, frame_phase;
300
301 if (align == 0)
302 {
303 alignment = get_stack_local_alignment (NULL, mode);
304 alignment /= BITS_PER_UNIT;
305 }
306 else if (align == -1)
307 {
308 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
309 size = CEIL_ROUND (size, alignment);
310 }
311 else if (align == -2)
312 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
313 else
314 alignment = align / BITS_PER_UNIT;
315
316 alignment_in_bits = alignment * BITS_PER_UNIT;
317
318 if (FRAME_GROWS_DOWNWARD)
319 frame_offset -= size;
320
321 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
322 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
323 {
324 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
325 alignment = alignment_in_bits / BITS_PER_UNIT;
326 }
327
328 if (SUPPORTS_STACK_ALIGNMENT)
329 {
330 if (crtl->stack_alignment_estimated < alignment_in_bits)
331 {
332 if (!crtl->stack_realign_processed)
333 crtl->stack_alignment_estimated = alignment_in_bits;
334 else
335 {
336 /* If stack is realigned and stack alignment value
337 hasn't been finalized, it is OK not to increase
338 stack_alignment_estimated. The bigger alignment
339 requirement is recorded in stack_alignment_needed
340 below. */
341 gcc_assert (!crtl->stack_realign_finalized);
342 if (!crtl->stack_realign_needed)
343 {
344 /* It is OK to reduce the alignment as long as the
345 requested size is 0 or the estimated stack
346 alignment >= mode alignment. */
347 gcc_assert (reduce_alignment_ok
348 || size == 0
349 || (crtl->stack_alignment_estimated
350 >= GET_MODE_ALIGNMENT (mode)));
351 alignment_in_bits = crtl->stack_alignment_estimated;
352 alignment = alignment_in_bits / BITS_PER_UNIT;
353 }
354 }
355 }
356 }
357
358 if (crtl->stack_alignment_needed < alignment_in_bits)
359 crtl->stack_alignment_needed = alignment_in_bits;
360 if (crtl->max_used_stack_slot_alignment < crtl->stack_alignment_needed)
361 crtl->max_used_stack_slot_alignment = crtl->stack_alignment_needed;
362
363 /* Calculate how many bytes the start of local variables is off from
364 stack alignment. */
365 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
366 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
367 frame_phase = frame_off ? frame_alignment - frame_off : 0;
368
369 /* Round the frame offset to the specified alignment. The default is
370 to always honor requests to align the stack but a port may choose to
371 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
372 if (STACK_ALIGNMENT_NEEDED
373 || mode != BLKmode
374 || size != 0)
375 {
376 /* We must be careful here, since FRAME_OFFSET might be negative and
377 division with a negative dividend isn't as well defined as we might
378 like. So we instead assume that ALIGNMENT is a power of two and
379 use logical operations which are unambiguous. */
380 if (FRAME_GROWS_DOWNWARD)
381 frame_offset
382 = (FLOOR_ROUND (frame_offset - frame_phase,
383 (unsigned HOST_WIDE_INT) alignment)
384 + frame_phase);
385 else
386 frame_offset
387 = (CEIL_ROUND (frame_offset - frame_phase,
388 (unsigned HOST_WIDE_INT) alignment)
389 + frame_phase);
390 }
391
392 /* On a big-endian machine, if we are allocating more space than we will use,
393 use the least significant bytes of those that are allocated. */
394 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
395 bigend_correction = size - GET_MODE_SIZE (mode);
396
397 /* If we have already instantiated virtual registers, return the actual
398 address relative to the frame pointer. */
399 if (virtuals_instantiated)
400 addr = plus_constant (frame_pointer_rtx,
401 trunc_int_for_mode
402 (frame_offset + bigend_correction
403 + STARTING_FRAME_OFFSET, Pmode));
404 else
405 addr = plus_constant (virtual_stack_vars_rtx,
406 trunc_int_for_mode
407 (frame_offset + bigend_correction,
408 Pmode));
409
410 if (!FRAME_GROWS_DOWNWARD)
411 frame_offset += size;
412
413 x = gen_rtx_MEM (mode, addr);
414 set_mem_align (x, alignment_in_bits);
415 MEM_NOTRAP_P (x) = 1;
416
417 stack_slot_list
418 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
419
420 if (frame_offset_overflow (frame_offset, current_function_decl))
421 frame_offset = 0;
422
423 return x;
424 }
425
426 /* Wrap up assign_stack_local_1 with last parameter as false. */
427
428 rtx
429 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
430 {
431 return assign_stack_local_1 (mode, size, align, false);
432 }
433 \f
434 \f
435 /* In order to evaluate some expressions, such as function calls returning
436 structures in memory, we need to temporarily allocate stack locations.
437 We record each allocated temporary in the following structure.
438
439 Associated with each temporary slot is a nesting level. When we pop up
440 one level, all temporaries associated with the previous level are freed.
441 Normally, all temporaries are freed after the execution of the statement
442 in which they were created. However, if we are inside a ({...}) grouping,
443 the result may be in a temporary and hence must be preserved. If the
444 result could be in a temporary, we preserve it if we can determine which
445 one it is in. If we cannot determine which temporary may contain the
446 result, all temporaries are preserved. A temporary is preserved by
447 pretending it was allocated at the previous nesting level.
448
449 Automatic variables are also assigned temporary slots, at the nesting
450 level where they are defined. They are marked a "kept" so that
451 free_temp_slots will not free them. */
452
453 struct GTY(()) temp_slot {
454 /* Points to next temporary slot. */
455 struct temp_slot *next;
456 /* Points to previous temporary slot. */
457 struct temp_slot *prev;
458 /* The rtx to used to reference the slot. */
459 rtx slot;
460 /* The size, in units, of the slot. */
461 HOST_WIDE_INT size;
462 /* The type of the object in the slot, or zero if it doesn't correspond
463 to a type. We use this to determine whether a slot can be reused.
464 It can be reused if objects of the type of the new slot will always
465 conflict with objects of the type of the old slot. */
466 tree type;
467 /* The alignment (in bits) of the slot. */
468 unsigned int align;
469 /* Nonzero if this temporary is currently in use. */
470 char in_use;
471 /* Nonzero if this temporary has its address taken. */
472 char addr_taken;
473 /* Nesting level at which this slot is being used. */
474 int level;
475 /* Nonzero if this should survive a call to free_temp_slots. */
476 int keep;
477 /* The offset of the slot from the frame_pointer, including extra space
478 for alignment. This info is for combine_temp_slots. */
479 HOST_WIDE_INT base_offset;
480 /* The size of the slot, including extra space for alignment. This
481 info is for combine_temp_slots. */
482 HOST_WIDE_INT full_size;
483 };
484
485 /* A table of addresses that represent a stack slot. The table is a mapping
486 from address RTXen to a temp slot. */
487 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
488
489 /* Entry for the above hash table. */
490 struct GTY(()) temp_slot_address_entry {
491 hashval_t hash;
492 rtx address;
493 struct temp_slot *temp_slot;
494 };
495
496 /* Removes temporary slot TEMP from LIST. */
497
498 static void
499 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
500 {
501 if (temp->next)
502 temp->next->prev = temp->prev;
503 if (temp->prev)
504 temp->prev->next = temp->next;
505 else
506 *list = temp->next;
507
508 temp->prev = temp->next = NULL;
509 }
510
511 /* Inserts temporary slot TEMP to LIST. */
512
513 static void
514 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
515 {
516 temp->next = *list;
517 if (*list)
518 (*list)->prev = temp;
519 temp->prev = NULL;
520 *list = temp;
521 }
522
523 /* Returns the list of used temp slots at LEVEL. */
524
525 static struct temp_slot **
526 temp_slots_at_level (int level)
527 {
528 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
529 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
530
531 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
532 }
533
534 /* Returns the maximal temporary slot level. */
535
536 static int
537 max_slot_level (void)
538 {
539 if (!used_temp_slots)
540 return -1;
541
542 return VEC_length (temp_slot_p, used_temp_slots) - 1;
543 }
544
545 /* Moves temporary slot TEMP to LEVEL. */
546
547 static void
548 move_slot_to_level (struct temp_slot *temp, int level)
549 {
550 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
551 insert_slot_to_list (temp, temp_slots_at_level (level));
552 temp->level = level;
553 }
554
555 /* Make temporary slot TEMP available. */
556
557 static void
558 make_slot_available (struct temp_slot *temp)
559 {
560 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
561 insert_slot_to_list (temp, &avail_temp_slots);
562 temp->in_use = 0;
563 temp->level = -1;
564 }
565
566 /* Compute the hash value for an address -> temp slot mapping.
567 The value is cached on the mapping entry. */
568 static hashval_t
569 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
570 {
571 int do_not_record = 0;
572 return hash_rtx (t->address, GET_MODE (t->address),
573 &do_not_record, NULL, false);
574 }
575
576 /* Return the hash value for an address -> temp slot mapping. */
577 static hashval_t
578 temp_slot_address_hash (const void *p)
579 {
580 const struct temp_slot_address_entry *t;
581 t = (const struct temp_slot_address_entry *) p;
582 return t->hash;
583 }
584
585 /* Compare two address -> temp slot mapping entries. */
586 static int
587 temp_slot_address_eq (const void *p1, const void *p2)
588 {
589 const struct temp_slot_address_entry *t1, *t2;
590 t1 = (const struct temp_slot_address_entry *) p1;
591 t2 = (const struct temp_slot_address_entry *) p2;
592 return exp_equiv_p (t1->address, t2->address, 0, true);
593 }
594
595 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
596 static void
597 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
598 {
599 void **slot;
600 struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
601 t->address = address;
602 t->temp_slot = temp_slot;
603 t->hash = temp_slot_address_compute_hash (t);
604 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
605 *slot = t;
606 }
607
608 /* Remove an address -> temp slot mapping entry if the temp slot is
609 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
610 static int
611 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
612 {
613 const struct temp_slot_address_entry *t;
614 t = (const struct temp_slot_address_entry *) *slot;
615 if (! t->temp_slot->in_use)
616 *slot = NULL;
617 return 1;
618 }
619
620 /* Remove all mappings of addresses to unused temp slots. */
621 static void
622 remove_unused_temp_slot_addresses (void)
623 {
624 htab_traverse (temp_slot_address_table,
625 remove_unused_temp_slot_addresses_1,
626 NULL);
627 }
628
629 /* Find the temp slot corresponding to the object at address X. */
630
631 static struct temp_slot *
632 find_temp_slot_from_address (rtx x)
633 {
634 struct temp_slot *p;
635 struct temp_slot_address_entry tmp, *t;
636
637 /* First try the easy way:
638 See if X exists in the address -> temp slot mapping. */
639 tmp.address = x;
640 tmp.temp_slot = NULL;
641 tmp.hash = temp_slot_address_compute_hash (&tmp);
642 t = (struct temp_slot_address_entry *)
643 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
644 if (t)
645 return t->temp_slot;
646
647 /* If we have a sum involving a register, see if it points to a temp
648 slot. */
649 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
650 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
651 return p;
652 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
653 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
654 return p;
655
656 /* Last resort: Address is a virtual stack var address. */
657 if (GET_CODE (x) == PLUS
658 && XEXP (x, 0) == virtual_stack_vars_rtx
659 && GET_CODE (XEXP (x, 1)) == CONST_INT)
660 {
661 int i;
662 for (i = max_slot_level (); i >= 0; i--)
663 for (p = *temp_slots_at_level (i); p; p = p->next)
664 {
665 if (INTVAL (XEXP (x, 1)) >= p->base_offset
666 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
667 return p;
668 }
669 }
670
671 return NULL;
672 }
673 \f
674 /* Allocate a temporary stack slot and record it for possible later
675 reuse.
676
677 MODE is the machine mode to be given to the returned rtx.
678
679 SIZE is the size in units of the space required. We do no rounding here
680 since assign_stack_local will do any required rounding.
681
682 KEEP is 1 if this slot is to be retained after a call to
683 free_temp_slots. Automatic variables for a block are allocated
684 with this flag. KEEP values of 2 or 3 were needed respectively
685 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
686 or for SAVE_EXPRs, but they are now unused.
687
688 TYPE is the type that will be used for the stack slot. */
689
690 rtx
691 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
692 int keep, tree type)
693 {
694 unsigned int align;
695 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
696 rtx slot;
697
698 /* If SIZE is -1 it means that somebody tried to allocate a temporary
699 of a variable size. */
700 gcc_assert (size != -1);
701
702 /* These are now unused. */
703 gcc_assert (keep <= 1);
704
705 align = get_stack_local_alignment (type, mode);
706
707 /* Try to find an available, already-allocated temporary of the proper
708 mode which meets the size and alignment requirements. Choose the
709 smallest one with the closest alignment.
710
711 If assign_stack_temp is called outside of the tree->rtl expansion,
712 we cannot reuse the stack slots (that may still refer to
713 VIRTUAL_STACK_VARS_REGNUM). */
714 if (!virtuals_instantiated)
715 {
716 for (p = avail_temp_slots; p; p = p->next)
717 {
718 if (p->align >= align && p->size >= size
719 && GET_MODE (p->slot) == mode
720 && objects_must_conflict_p (p->type, type)
721 && (best_p == 0 || best_p->size > p->size
722 || (best_p->size == p->size && best_p->align > p->align)))
723 {
724 if (p->align == align && p->size == size)
725 {
726 selected = p;
727 cut_slot_from_list (selected, &avail_temp_slots);
728 best_p = 0;
729 break;
730 }
731 best_p = p;
732 }
733 }
734 }
735
736 /* Make our best, if any, the one to use. */
737 if (best_p)
738 {
739 selected = best_p;
740 cut_slot_from_list (selected, &avail_temp_slots);
741
742 /* If there are enough aligned bytes left over, make them into a new
743 temp_slot so that the extra bytes don't get wasted. Do this only
744 for BLKmode slots, so that we can be sure of the alignment. */
745 if (GET_MODE (best_p->slot) == BLKmode)
746 {
747 int alignment = best_p->align / BITS_PER_UNIT;
748 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
749
750 if (best_p->size - rounded_size >= alignment)
751 {
752 p = GGC_NEW (struct temp_slot);
753 p->in_use = p->addr_taken = 0;
754 p->size = best_p->size - rounded_size;
755 p->base_offset = best_p->base_offset + rounded_size;
756 p->full_size = best_p->full_size - rounded_size;
757 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
758 p->align = best_p->align;
759 p->type = best_p->type;
760 insert_slot_to_list (p, &avail_temp_slots);
761
762 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
763 stack_slot_list);
764
765 best_p->size = rounded_size;
766 best_p->full_size = rounded_size;
767 }
768 }
769 }
770
771 /* If we still didn't find one, make a new temporary. */
772 if (selected == 0)
773 {
774 HOST_WIDE_INT frame_offset_old = frame_offset;
775
776 p = GGC_NEW (struct temp_slot);
777
778 /* We are passing an explicit alignment request to assign_stack_local.
779 One side effect of that is assign_stack_local will not round SIZE
780 to ensure the frame offset remains suitably aligned.
781
782 So for requests which depended on the rounding of SIZE, we go ahead
783 and round it now. We also make sure ALIGNMENT is at least
784 BIGGEST_ALIGNMENT. */
785 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
786 p->slot = assign_stack_local (mode,
787 (mode == BLKmode
788 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
789 : size),
790 align);
791
792 p->align = align;
793
794 /* The following slot size computation is necessary because we don't
795 know the actual size of the temporary slot until assign_stack_local
796 has performed all the frame alignment and size rounding for the
797 requested temporary. Note that extra space added for alignment
798 can be either above or below this stack slot depending on which
799 way the frame grows. We include the extra space if and only if it
800 is above this slot. */
801 if (FRAME_GROWS_DOWNWARD)
802 p->size = frame_offset_old - frame_offset;
803 else
804 p->size = size;
805
806 /* Now define the fields used by combine_temp_slots. */
807 if (FRAME_GROWS_DOWNWARD)
808 {
809 p->base_offset = frame_offset;
810 p->full_size = frame_offset_old - frame_offset;
811 }
812 else
813 {
814 p->base_offset = frame_offset_old;
815 p->full_size = frame_offset - frame_offset_old;
816 }
817
818 selected = p;
819 }
820
821 p = selected;
822 p->in_use = 1;
823 p->addr_taken = 0;
824 p->type = type;
825 p->level = temp_slot_level;
826 p->keep = keep;
827
828 pp = temp_slots_at_level (p->level);
829 insert_slot_to_list (p, pp);
830 insert_temp_slot_address (XEXP (p->slot, 0), p);
831
832 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
833 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
834 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
835
836 /* If we know the alias set for the memory that will be used, use
837 it. If there's no TYPE, then we don't know anything about the
838 alias set for the memory. */
839 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
840 set_mem_align (slot, align);
841
842 /* If a type is specified, set the relevant flags. */
843 if (type != 0)
844 {
845 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
846 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
847 || TREE_CODE (type) == COMPLEX_TYPE));
848 }
849 MEM_NOTRAP_P (slot) = 1;
850
851 return slot;
852 }
853
854 /* Allocate a temporary stack slot and record it for possible later
855 reuse. First three arguments are same as in preceding function. */
856
857 rtx
858 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
859 {
860 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
861 }
862 \f
863 /* Assign a temporary.
864 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
865 and so that should be used in error messages. In either case, we
866 allocate of the given type.
867 KEEP is as for assign_stack_temp.
868 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
869 it is 0 if a register is OK.
870 DONT_PROMOTE is 1 if we should not promote values in register
871 to wider modes. */
872
873 rtx
874 assign_temp (tree type_or_decl, int keep, int memory_required,
875 int dont_promote ATTRIBUTE_UNUSED)
876 {
877 tree type, decl;
878 enum machine_mode mode;
879 #ifdef PROMOTE_MODE
880 int unsignedp;
881 #endif
882
883 if (DECL_P (type_or_decl))
884 decl = type_or_decl, type = TREE_TYPE (decl);
885 else
886 decl = NULL, type = type_or_decl;
887
888 mode = TYPE_MODE (type);
889 #ifdef PROMOTE_MODE
890 unsignedp = TYPE_UNSIGNED (type);
891 #endif
892
893 if (mode == BLKmode || memory_required)
894 {
895 HOST_WIDE_INT size = int_size_in_bytes (type);
896 rtx tmp;
897
898 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
899 problems with allocating the stack space. */
900 if (size == 0)
901 size = 1;
902
903 /* Unfortunately, we don't yet know how to allocate variable-sized
904 temporaries. However, sometimes we can find a fixed upper limit on
905 the size, so try that instead. */
906 else if (size == -1)
907 size = max_int_size_in_bytes (type);
908
909 /* The size of the temporary may be too large to fit into an integer. */
910 /* ??? Not sure this should happen except for user silliness, so limit
911 this to things that aren't compiler-generated temporaries. The
912 rest of the time we'll die in assign_stack_temp_for_type. */
913 if (decl && size == -1
914 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
915 {
916 error ("size of variable %q+D is too large", decl);
917 size = 1;
918 }
919
920 tmp = assign_stack_temp_for_type (mode, size, keep, type);
921 return tmp;
922 }
923
924 #ifdef PROMOTE_MODE
925 if (! dont_promote)
926 mode = promote_mode (type, mode, &unsignedp, 0);
927 #endif
928
929 return gen_reg_rtx (mode);
930 }
931 \f
932 /* Combine temporary stack slots which are adjacent on the stack.
933
934 This allows for better use of already allocated stack space. This is only
935 done for BLKmode slots because we can be sure that we won't have alignment
936 problems in this case. */
937
938 static void
939 combine_temp_slots (void)
940 {
941 struct temp_slot *p, *q, *next, *next_q;
942 int num_slots;
943
944 /* We can't combine slots, because the information about which slot
945 is in which alias set will be lost. */
946 if (flag_strict_aliasing)
947 return;
948
949 /* If there are a lot of temp slots, don't do anything unless
950 high levels of optimization. */
951 if (! flag_expensive_optimizations)
952 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
953 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
954 return;
955
956 for (p = avail_temp_slots; p; p = next)
957 {
958 int delete_p = 0;
959
960 next = p->next;
961
962 if (GET_MODE (p->slot) != BLKmode)
963 continue;
964
965 for (q = p->next; q; q = next_q)
966 {
967 int delete_q = 0;
968
969 next_q = q->next;
970
971 if (GET_MODE (q->slot) != BLKmode)
972 continue;
973
974 if (p->base_offset + p->full_size == q->base_offset)
975 {
976 /* Q comes after P; combine Q into P. */
977 p->size += q->size;
978 p->full_size += q->full_size;
979 delete_q = 1;
980 }
981 else if (q->base_offset + q->full_size == p->base_offset)
982 {
983 /* P comes after Q; combine P into Q. */
984 q->size += p->size;
985 q->full_size += p->full_size;
986 delete_p = 1;
987 break;
988 }
989 if (delete_q)
990 cut_slot_from_list (q, &avail_temp_slots);
991 }
992
993 /* Either delete P or advance past it. */
994 if (delete_p)
995 cut_slot_from_list (p, &avail_temp_slots);
996 }
997 }
998 \f
999 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1000 slot that previously was known by OLD_RTX. */
1001
1002 void
1003 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1004 {
1005 struct temp_slot *p;
1006
1007 if (rtx_equal_p (old_rtx, new_rtx))
1008 return;
1009
1010 p = find_temp_slot_from_address (old_rtx);
1011
1012 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1013 NEW_RTX is a register, see if one operand of the PLUS is a
1014 temporary location. If so, NEW_RTX points into it. Otherwise,
1015 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1016 in common between them. If so, try a recursive call on those
1017 values. */
1018 if (p == 0)
1019 {
1020 if (GET_CODE (old_rtx) != PLUS)
1021 return;
1022
1023 if (REG_P (new_rtx))
1024 {
1025 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1026 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1027 return;
1028 }
1029 else if (GET_CODE (new_rtx) != PLUS)
1030 return;
1031
1032 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1033 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1034 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1035 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1036 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1037 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1038 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1039 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1040
1041 return;
1042 }
1043
1044 /* Otherwise add an alias for the temp's address. */
1045 insert_temp_slot_address (new_rtx, p);
1046 }
1047
1048 /* If X could be a reference to a temporary slot, mark the fact that its
1049 address was taken. */
1050
1051 void
1052 mark_temp_addr_taken (rtx x)
1053 {
1054 struct temp_slot *p;
1055
1056 if (x == 0)
1057 return;
1058
1059 /* If X is not in memory or is at a constant address, it cannot be in
1060 a temporary slot. */
1061 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1062 return;
1063
1064 p = find_temp_slot_from_address (XEXP (x, 0));
1065 if (p != 0)
1066 p->addr_taken = 1;
1067 }
1068
1069 /* If X could be a reference to a temporary slot, mark that slot as
1070 belonging to the to one level higher than the current level. If X
1071 matched one of our slots, just mark that one. Otherwise, we can't
1072 easily predict which it is, so upgrade all of them. Kept slots
1073 need not be touched.
1074
1075 This is called when an ({...}) construct occurs and a statement
1076 returns a value in memory. */
1077
1078 void
1079 preserve_temp_slots (rtx x)
1080 {
1081 struct temp_slot *p = 0, *next;
1082
1083 /* If there is no result, we still might have some objects whose address
1084 were taken, so we need to make sure they stay around. */
1085 if (x == 0)
1086 {
1087 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1088 {
1089 next = p->next;
1090
1091 if (p->addr_taken)
1092 move_slot_to_level (p, temp_slot_level - 1);
1093 }
1094
1095 return;
1096 }
1097
1098 /* If X is a register that is being used as a pointer, see if we have
1099 a temporary slot we know it points to. To be consistent with
1100 the code below, we really should preserve all non-kept slots
1101 if we can't find a match, but that seems to be much too costly. */
1102 if (REG_P (x) && REG_POINTER (x))
1103 p = find_temp_slot_from_address (x);
1104
1105 /* If X is not in memory or is at a constant address, it cannot be in
1106 a temporary slot, but it can contain something whose address was
1107 taken. */
1108 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1109 {
1110 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1111 {
1112 next = p->next;
1113
1114 if (p->addr_taken)
1115 move_slot_to_level (p, temp_slot_level - 1);
1116 }
1117
1118 return;
1119 }
1120
1121 /* First see if we can find a match. */
1122 if (p == 0)
1123 p = find_temp_slot_from_address (XEXP (x, 0));
1124
1125 if (p != 0)
1126 {
1127 /* Move everything at our level whose address was taken to our new
1128 level in case we used its address. */
1129 struct temp_slot *q;
1130
1131 if (p->level == temp_slot_level)
1132 {
1133 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1134 {
1135 next = q->next;
1136
1137 if (p != q && q->addr_taken)
1138 move_slot_to_level (q, temp_slot_level - 1);
1139 }
1140
1141 move_slot_to_level (p, temp_slot_level - 1);
1142 p->addr_taken = 0;
1143 }
1144 return;
1145 }
1146
1147 /* Otherwise, preserve all non-kept slots at this level. */
1148 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1149 {
1150 next = p->next;
1151
1152 if (!p->keep)
1153 move_slot_to_level (p, temp_slot_level - 1);
1154 }
1155 }
1156
1157 /* Free all temporaries used so far. This is normally called at the
1158 end of generating code for a statement. */
1159
1160 void
1161 free_temp_slots (void)
1162 {
1163 struct temp_slot *p, *next;
1164
1165 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1166 {
1167 next = p->next;
1168
1169 if (!p->keep)
1170 make_slot_available (p);
1171 }
1172
1173 remove_unused_temp_slot_addresses ();
1174 combine_temp_slots ();
1175 }
1176
1177 /* Push deeper into the nesting level for stack temporaries. */
1178
1179 void
1180 push_temp_slots (void)
1181 {
1182 temp_slot_level++;
1183 }
1184
1185 /* Pop a temporary nesting level. All slots in use in the current level
1186 are freed. */
1187
1188 void
1189 pop_temp_slots (void)
1190 {
1191 struct temp_slot *p, *next;
1192
1193 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1194 {
1195 next = p->next;
1196 make_slot_available (p);
1197 }
1198
1199 remove_unused_temp_slot_addresses ();
1200 combine_temp_slots ();
1201
1202 temp_slot_level--;
1203 }
1204
1205 /* Initialize temporary slots. */
1206
1207 void
1208 init_temp_slots (void)
1209 {
1210 /* We have not allocated any temporaries yet. */
1211 avail_temp_slots = 0;
1212 used_temp_slots = 0;
1213 temp_slot_level = 0;
1214
1215 /* Set up the table to map addresses to temp slots. */
1216 if (! temp_slot_address_table)
1217 temp_slot_address_table = htab_create_ggc (32,
1218 temp_slot_address_hash,
1219 temp_slot_address_eq,
1220 NULL);
1221 else
1222 htab_empty (temp_slot_address_table);
1223 }
1224 \f
1225 /* These routines are responsible for converting virtual register references
1226 to the actual hard register references once RTL generation is complete.
1227
1228 The following four variables are used for communication between the
1229 routines. They contain the offsets of the virtual registers from their
1230 respective hard registers. */
1231
1232 static int in_arg_offset;
1233 static int var_offset;
1234 static int dynamic_offset;
1235 static int out_arg_offset;
1236 static int cfa_offset;
1237
1238 /* In most machines, the stack pointer register is equivalent to the bottom
1239 of the stack. */
1240
1241 #ifndef STACK_POINTER_OFFSET
1242 #define STACK_POINTER_OFFSET 0
1243 #endif
1244
1245 /* If not defined, pick an appropriate default for the offset of dynamically
1246 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1247 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1248
1249 #ifndef STACK_DYNAMIC_OFFSET
1250
1251 /* The bottom of the stack points to the actual arguments. If
1252 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1253 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1254 stack space for register parameters is not pushed by the caller, but
1255 rather part of the fixed stack areas and hence not included in
1256 `crtl->outgoing_args_size'. Nevertheless, we must allow
1257 for it when allocating stack dynamic objects. */
1258
1259 #if defined(REG_PARM_STACK_SPACE)
1260 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1261 ((ACCUMULATE_OUTGOING_ARGS \
1262 ? (crtl->outgoing_args_size \
1263 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1264 : REG_PARM_STACK_SPACE (FNDECL))) \
1265 : 0) + (STACK_POINTER_OFFSET))
1266 #else
1267 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1268 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1269 + (STACK_POINTER_OFFSET))
1270 #endif
1271 #endif
1272
1273 \f
1274 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1275 is a virtual register, return the equivalent hard register and set the
1276 offset indirectly through the pointer. Otherwise, return 0. */
1277
1278 static rtx
1279 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1280 {
1281 rtx new_rtx;
1282 HOST_WIDE_INT offset;
1283
1284 if (x == virtual_incoming_args_rtx)
1285 {
1286 if (stack_realign_drap)
1287 {
1288 /* Replace virtual_incoming_args_rtx with internal arg
1289 pointer if DRAP is used to realign stack. */
1290 new_rtx = crtl->args.internal_arg_pointer;
1291 offset = 0;
1292 }
1293 else
1294 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1295 }
1296 else if (x == virtual_stack_vars_rtx)
1297 new_rtx = frame_pointer_rtx, offset = var_offset;
1298 else if (x == virtual_stack_dynamic_rtx)
1299 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1300 else if (x == virtual_outgoing_args_rtx)
1301 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1302 else if (x == virtual_cfa_rtx)
1303 {
1304 #ifdef FRAME_POINTER_CFA_OFFSET
1305 new_rtx = frame_pointer_rtx;
1306 #else
1307 new_rtx = arg_pointer_rtx;
1308 #endif
1309 offset = cfa_offset;
1310 }
1311 else
1312 return NULL_RTX;
1313
1314 *poffset = offset;
1315 return new_rtx;
1316 }
1317
1318 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1319 Instantiate any virtual registers present inside of *LOC. The expression
1320 is simplified, as much as possible, but is not to be considered "valid"
1321 in any sense implied by the target. If any change is made, set CHANGED
1322 to true. */
1323
1324 static int
1325 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1326 {
1327 HOST_WIDE_INT offset;
1328 bool *changed = (bool *) data;
1329 rtx x, new_rtx;
1330
1331 x = *loc;
1332 if (x == 0)
1333 return 0;
1334
1335 switch (GET_CODE (x))
1336 {
1337 case REG:
1338 new_rtx = instantiate_new_reg (x, &offset);
1339 if (new_rtx)
1340 {
1341 *loc = plus_constant (new_rtx, offset);
1342 if (changed)
1343 *changed = true;
1344 }
1345 return -1;
1346
1347 case PLUS:
1348 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1349 if (new_rtx)
1350 {
1351 new_rtx = plus_constant (new_rtx, offset);
1352 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1353 if (changed)
1354 *changed = true;
1355 return -1;
1356 }
1357
1358 /* FIXME -- from old code */
1359 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1360 we can commute the PLUS and SUBREG because pointers into the
1361 frame are well-behaved. */
1362 break;
1363
1364 default:
1365 break;
1366 }
1367
1368 return 0;
1369 }
1370
1371 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1372 matches the predicate for insn CODE operand OPERAND. */
1373
1374 static int
1375 safe_insn_predicate (int code, int operand, rtx x)
1376 {
1377 const struct insn_operand_data *op_data;
1378
1379 if (code < 0)
1380 return true;
1381
1382 op_data = &insn_data[code].operand[operand];
1383 if (op_data->predicate == NULL)
1384 return true;
1385
1386 return op_data->predicate (x, op_data->mode);
1387 }
1388
1389 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1390 registers present inside of insn. The result will be a valid insn. */
1391
1392 static void
1393 instantiate_virtual_regs_in_insn (rtx insn)
1394 {
1395 HOST_WIDE_INT offset;
1396 int insn_code, i;
1397 bool any_change = false;
1398 rtx set, new_rtx, x, seq;
1399
1400 /* There are some special cases to be handled first. */
1401 set = single_set (insn);
1402 if (set)
1403 {
1404 /* We're allowed to assign to a virtual register. This is interpreted
1405 to mean that the underlying register gets assigned the inverse
1406 transformation. This is used, for example, in the handling of
1407 non-local gotos. */
1408 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1409 if (new_rtx)
1410 {
1411 start_sequence ();
1412
1413 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1414 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1415 GEN_INT (-offset));
1416 x = force_operand (x, new_rtx);
1417 if (x != new_rtx)
1418 emit_move_insn (new_rtx, x);
1419
1420 seq = get_insns ();
1421 end_sequence ();
1422
1423 emit_insn_before (seq, insn);
1424 delete_insn (insn);
1425 return;
1426 }
1427
1428 /* Handle a straight copy from a virtual register by generating a
1429 new add insn. The difference between this and falling through
1430 to the generic case is avoiding a new pseudo and eliminating a
1431 move insn in the initial rtl stream. */
1432 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1433 if (new_rtx && offset != 0
1434 && REG_P (SET_DEST (set))
1435 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1436 {
1437 start_sequence ();
1438
1439 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1440 new_rtx, GEN_INT (offset), SET_DEST (set),
1441 1, OPTAB_LIB_WIDEN);
1442 if (x != SET_DEST (set))
1443 emit_move_insn (SET_DEST (set), x);
1444
1445 seq = get_insns ();
1446 end_sequence ();
1447
1448 emit_insn_before (seq, insn);
1449 delete_insn (insn);
1450 return;
1451 }
1452
1453 extract_insn (insn);
1454 insn_code = INSN_CODE (insn);
1455
1456 /* Handle a plus involving a virtual register by determining if the
1457 operands remain valid if they're modified in place. */
1458 if (GET_CODE (SET_SRC (set)) == PLUS
1459 && recog_data.n_operands >= 3
1460 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1461 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1462 && GET_CODE (recog_data.operand[2]) == CONST_INT
1463 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1464 {
1465 offset += INTVAL (recog_data.operand[2]);
1466
1467 /* If the sum is zero, then replace with a plain move. */
1468 if (offset == 0
1469 && REG_P (SET_DEST (set))
1470 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1471 {
1472 start_sequence ();
1473 emit_move_insn (SET_DEST (set), new_rtx);
1474 seq = get_insns ();
1475 end_sequence ();
1476
1477 emit_insn_before (seq, insn);
1478 delete_insn (insn);
1479 return;
1480 }
1481
1482 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1483
1484 /* Using validate_change and apply_change_group here leaves
1485 recog_data in an invalid state. Since we know exactly what
1486 we want to check, do those two by hand. */
1487 if (safe_insn_predicate (insn_code, 1, new_rtx)
1488 && safe_insn_predicate (insn_code, 2, x))
1489 {
1490 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1491 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1492 any_change = true;
1493
1494 /* Fall through into the regular operand fixup loop in
1495 order to take care of operands other than 1 and 2. */
1496 }
1497 }
1498 }
1499 else
1500 {
1501 extract_insn (insn);
1502 insn_code = INSN_CODE (insn);
1503 }
1504
1505 /* In the general case, we expect virtual registers to appear only in
1506 operands, and then only as either bare registers or inside memories. */
1507 for (i = 0; i < recog_data.n_operands; ++i)
1508 {
1509 x = recog_data.operand[i];
1510 switch (GET_CODE (x))
1511 {
1512 case MEM:
1513 {
1514 rtx addr = XEXP (x, 0);
1515 bool changed = false;
1516
1517 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1518 if (!changed)
1519 continue;
1520
1521 start_sequence ();
1522 x = replace_equiv_address (x, addr);
1523 /* It may happen that the address with the virtual reg
1524 was valid (e.g. based on the virtual stack reg, which might
1525 be acceptable to the predicates with all offsets), whereas
1526 the address now isn't anymore, for instance when the address
1527 is still offsetted, but the base reg isn't virtual-stack-reg
1528 anymore. Below we would do a force_reg on the whole operand,
1529 but this insn might actually only accept memory. Hence,
1530 before doing that last resort, try to reload the address into
1531 a register, so this operand stays a MEM. */
1532 if (!safe_insn_predicate (insn_code, i, x))
1533 {
1534 addr = force_reg (GET_MODE (addr), addr);
1535 x = replace_equiv_address (x, addr);
1536 }
1537 seq = get_insns ();
1538 end_sequence ();
1539 if (seq)
1540 emit_insn_before (seq, insn);
1541 }
1542 break;
1543
1544 case REG:
1545 new_rtx = instantiate_new_reg (x, &offset);
1546 if (new_rtx == NULL)
1547 continue;
1548 if (offset == 0)
1549 x = new_rtx;
1550 else
1551 {
1552 start_sequence ();
1553
1554 /* Careful, special mode predicates may have stuff in
1555 insn_data[insn_code].operand[i].mode that isn't useful
1556 to us for computing a new value. */
1557 /* ??? Recognize address_operand and/or "p" constraints
1558 to see if (plus new offset) is a valid before we put
1559 this through expand_simple_binop. */
1560 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1561 GEN_INT (offset), NULL_RTX,
1562 1, OPTAB_LIB_WIDEN);
1563 seq = get_insns ();
1564 end_sequence ();
1565 emit_insn_before (seq, insn);
1566 }
1567 break;
1568
1569 case SUBREG:
1570 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1571 if (new_rtx == NULL)
1572 continue;
1573 if (offset != 0)
1574 {
1575 start_sequence ();
1576 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1577 GEN_INT (offset), NULL_RTX,
1578 1, OPTAB_LIB_WIDEN);
1579 seq = get_insns ();
1580 end_sequence ();
1581 emit_insn_before (seq, insn);
1582 }
1583 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1584 GET_MODE (new_rtx), SUBREG_BYTE (x));
1585 gcc_assert (x);
1586 break;
1587
1588 default:
1589 continue;
1590 }
1591
1592 /* At this point, X contains the new value for the operand.
1593 Validate the new value vs the insn predicate. Note that
1594 asm insns will have insn_code -1 here. */
1595 if (!safe_insn_predicate (insn_code, i, x))
1596 {
1597 start_sequence ();
1598 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1599 seq = get_insns ();
1600 end_sequence ();
1601 if (seq)
1602 emit_insn_before (seq, insn);
1603 }
1604
1605 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1606 any_change = true;
1607 }
1608
1609 if (any_change)
1610 {
1611 /* Propagate operand changes into the duplicates. */
1612 for (i = 0; i < recog_data.n_dups; ++i)
1613 *recog_data.dup_loc[i]
1614 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1615
1616 /* Force re-recognition of the instruction for validation. */
1617 INSN_CODE (insn) = -1;
1618 }
1619
1620 if (asm_noperands (PATTERN (insn)) >= 0)
1621 {
1622 if (!check_asm_operands (PATTERN (insn)))
1623 {
1624 error_for_asm (insn, "impossible constraint in %<asm%>");
1625 delete_insn (insn);
1626 }
1627 }
1628 else
1629 {
1630 if (recog_memoized (insn) < 0)
1631 fatal_insn_not_found (insn);
1632 }
1633 }
1634
1635 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1636 do any instantiation required. */
1637
1638 void
1639 instantiate_decl_rtl (rtx x)
1640 {
1641 rtx addr;
1642
1643 if (x == 0)
1644 return;
1645
1646 /* If this is a CONCAT, recurse for the pieces. */
1647 if (GET_CODE (x) == CONCAT)
1648 {
1649 instantiate_decl_rtl (XEXP (x, 0));
1650 instantiate_decl_rtl (XEXP (x, 1));
1651 return;
1652 }
1653
1654 /* If this is not a MEM, no need to do anything. Similarly if the
1655 address is a constant or a register that is not a virtual register. */
1656 if (!MEM_P (x))
1657 return;
1658
1659 addr = XEXP (x, 0);
1660 if (CONSTANT_P (addr)
1661 || (REG_P (addr)
1662 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1663 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1664 return;
1665
1666 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1667 }
1668
1669 /* Helper for instantiate_decls called via walk_tree: Process all decls
1670 in the given DECL_VALUE_EXPR. */
1671
1672 static tree
1673 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1674 {
1675 tree t = *tp;
1676 if (! EXPR_P (t))
1677 {
1678 *walk_subtrees = 0;
1679 if (DECL_P (t) && DECL_RTL_SET_P (t))
1680 instantiate_decl_rtl (DECL_RTL (t));
1681 }
1682 return NULL;
1683 }
1684
1685 /* Subroutine of instantiate_decls: Process all decls in the given
1686 BLOCK node and all its subblocks. */
1687
1688 static void
1689 instantiate_decls_1 (tree let)
1690 {
1691 tree t;
1692
1693 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1694 {
1695 if (DECL_RTL_SET_P (t))
1696 instantiate_decl_rtl (DECL_RTL (t));
1697 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1698 {
1699 tree v = DECL_VALUE_EXPR (t);
1700 walk_tree (&v, instantiate_expr, NULL, NULL);
1701 }
1702 }
1703
1704 /* Process all subblocks. */
1705 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1706 instantiate_decls_1 (t);
1707 }
1708
1709 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1710 all virtual registers in their DECL_RTL's. */
1711
1712 static void
1713 instantiate_decls (tree fndecl)
1714 {
1715 tree decl, t, next;
1716
1717 /* Process all parameters of the function. */
1718 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1719 {
1720 instantiate_decl_rtl (DECL_RTL (decl));
1721 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1722 if (DECL_HAS_VALUE_EXPR_P (decl))
1723 {
1724 tree v = DECL_VALUE_EXPR (decl);
1725 walk_tree (&v, instantiate_expr, NULL, NULL);
1726 }
1727 }
1728
1729 /* Now process all variables defined in the function or its subblocks. */
1730 instantiate_decls_1 (DECL_INITIAL (fndecl));
1731
1732 t = cfun->local_decls;
1733 cfun->local_decls = NULL_TREE;
1734 for (; t; t = next)
1735 {
1736 next = TREE_CHAIN (t);
1737 decl = TREE_VALUE (t);
1738 if (DECL_RTL_SET_P (decl))
1739 instantiate_decl_rtl (DECL_RTL (decl));
1740 ggc_free (t);
1741 }
1742 }
1743
1744 /* Pass through the INSNS of function FNDECL and convert virtual register
1745 references to hard register references. */
1746
1747 static unsigned int
1748 instantiate_virtual_regs (void)
1749 {
1750 rtx insn;
1751
1752 /* Compute the offsets to use for this function. */
1753 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1754 var_offset = STARTING_FRAME_OFFSET;
1755 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1756 out_arg_offset = STACK_POINTER_OFFSET;
1757 #ifdef FRAME_POINTER_CFA_OFFSET
1758 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1759 #else
1760 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1761 #endif
1762
1763 /* Initialize recognition, indicating that volatile is OK. */
1764 init_recog ();
1765
1766 /* Scan through all the insns, instantiating every virtual register still
1767 present. */
1768 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1769 if (INSN_P (insn))
1770 {
1771 /* These patterns in the instruction stream can never be recognized.
1772 Fortunately, they shouldn't contain virtual registers either. */
1773 if (GET_CODE (PATTERN (insn)) == USE
1774 || GET_CODE (PATTERN (insn)) == CLOBBER
1775 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1776 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1777 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1778 continue;
1779
1780 instantiate_virtual_regs_in_insn (insn);
1781
1782 if (INSN_DELETED_P (insn))
1783 continue;
1784
1785 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1786
1787 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1788 if (GET_CODE (insn) == CALL_INSN)
1789 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1790 instantiate_virtual_regs_in_rtx, NULL);
1791 }
1792
1793 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1794 instantiate_decls (current_function_decl);
1795
1796 targetm.instantiate_decls ();
1797
1798 /* Indicate that, from now on, assign_stack_local should use
1799 frame_pointer_rtx. */
1800 virtuals_instantiated = 1;
1801 return 0;
1802 }
1803
1804 struct rtl_opt_pass pass_instantiate_virtual_regs =
1805 {
1806 {
1807 RTL_PASS,
1808 "vregs", /* name */
1809 NULL, /* gate */
1810 instantiate_virtual_regs, /* execute */
1811 NULL, /* sub */
1812 NULL, /* next */
1813 0, /* static_pass_number */
1814 TV_NONE, /* tv_id */
1815 0, /* properties_required */
1816 0, /* properties_provided */
1817 0, /* properties_destroyed */
1818 0, /* todo_flags_start */
1819 TODO_dump_func /* todo_flags_finish */
1820 }
1821 };
1822
1823 \f
1824 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1825 This means a type for which function calls must pass an address to the
1826 function or get an address back from the function.
1827 EXP may be a type node or an expression (whose type is tested). */
1828
1829 int
1830 aggregate_value_p (const_tree exp, const_tree fntype)
1831 {
1832 int i, regno, nregs;
1833 rtx reg;
1834
1835 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1836
1837 /* DECL node associated with FNTYPE when relevant, which we might need to
1838 check for by-invisible-reference returns, typically for CALL_EXPR input
1839 EXPressions. */
1840 const_tree fndecl = NULL_TREE;
1841
1842 if (fntype)
1843 switch (TREE_CODE (fntype))
1844 {
1845 case CALL_EXPR:
1846 fndecl = get_callee_fndecl (fntype);
1847 fntype = (fndecl
1848 ? TREE_TYPE (fndecl)
1849 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1850 break;
1851 case FUNCTION_DECL:
1852 fndecl = fntype;
1853 fntype = TREE_TYPE (fndecl);
1854 break;
1855 case FUNCTION_TYPE:
1856 case METHOD_TYPE:
1857 break;
1858 case IDENTIFIER_NODE:
1859 fntype = 0;
1860 break;
1861 default:
1862 /* We don't expect other rtl types here. */
1863 gcc_unreachable ();
1864 }
1865
1866 if (TREE_CODE (type) == VOID_TYPE)
1867 return 0;
1868
1869 /* If the front end has decided that this needs to be passed by
1870 reference, do so. */
1871 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1872 && DECL_BY_REFERENCE (exp))
1873 return 1;
1874
1875 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1876 called function RESULT_DECL, meaning the function returns in memory by
1877 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1878 on the function type, which used to be the way to request such a return
1879 mechanism but might now be causing troubles at gimplification time if
1880 temporaries with the function type need to be created. */
1881 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1882 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1883 return 1;
1884
1885 if (targetm.calls.return_in_memory (type, fntype))
1886 return 1;
1887 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1888 and thus can't be returned in registers. */
1889 if (TREE_ADDRESSABLE (type))
1890 return 1;
1891 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1892 return 1;
1893 /* Make sure we have suitable call-clobbered regs to return
1894 the value in; if not, we must return it in memory. */
1895 reg = hard_function_value (type, 0, fntype, 0);
1896
1897 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1898 it is OK. */
1899 if (!REG_P (reg))
1900 return 0;
1901
1902 regno = REGNO (reg);
1903 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1904 for (i = 0; i < nregs; i++)
1905 if (! call_used_regs[regno + i])
1906 return 1;
1907 return 0;
1908 }
1909 \f
1910 /* Return true if we should assign DECL a pseudo register; false if it
1911 should live on the local stack. */
1912
1913 bool
1914 use_register_for_decl (const_tree decl)
1915 {
1916 if (!targetm.calls.allocate_stack_slots_for_args())
1917 return true;
1918
1919 /* Honor volatile. */
1920 if (TREE_SIDE_EFFECTS (decl))
1921 return false;
1922
1923 /* Honor addressability. */
1924 if (TREE_ADDRESSABLE (decl))
1925 return false;
1926
1927 /* Only register-like things go in registers. */
1928 if (DECL_MODE (decl) == BLKmode)
1929 return false;
1930
1931 /* If -ffloat-store specified, don't put explicit float variables
1932 into registers. */
1933 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1934 propagates values across these stores, and it probably shouldn't. */
1935 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1936 return false;
1937
1938 /* If we're not interested in tracking debugging information for
1939 this decl, then we can certainly put it in a register. */
1940 if (DECL_IGNORED_P (decl))
1941 return true;
1942
1943 if (optimize)
1944 return true;
1945
1946 if (!DECL_REGISTER (decl))
1947 return false;
1948
1949 switch (TREE_CODE (TREE_TYPE (decl)))
1950 {
1951 case RECORD_TYPE:
1952 case UNION_TYPE:
1953 case QUAL_UNION_TYPE:
1954 /* When not optimizing, disregard register keyword for variables with
1955 types containing methods, otherwise the methods won't be callable
1956 from the debugger. */
1957 if (TYPE_METHODS (TREE_TYPE (decl)))
1958 return false;
1959 break;
1960 default:
1961 break;
1962 }
1963
1964 return true;
1965 }
1966
1967 /* Return true if TYPE should be passed by invisible reference. */
1968
1969 bool
1970 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1971 tree type, bool named_arg)
1972 {
1973 if (type)
1974 {
1975 /* If this type contains non-trivial constructors, then it is
1976 forbidden for the middle-end to create any new copies. */
1977 if (TREE_ADDRESSABLE (type))
1978 return true;
1979
1980 /* GCC post 3.4 passes *all* variable sized types by reference. */
1981 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1982 return true;
1983 }
1984
1985 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1986 }
1987
1988 /* Return true if TYPE, which is passed by reference, should be callee
1989 copied instead of caller copied. */
1990
1991 bool
1992 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1993 tree type, bool named_arg)
1994 {
1995 if (type && TREE_ADDRESSABLE (type))
1996 return false;
1997 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1998 }
1999
2000 /* Structures to communicate between the subroutines of assign_parms.
2001 The first holds data persistent across all parameters, the second
2002 is cleared out for each parameter. */
2003
2004 struct assign_parm_data_all
2005 {
2006 CUMULATIVE_ARGS args_so_far;
2007 struct args_size stack_args_size;
2008 tree function_result_decl;
2009 tree orig_fnargs;
2010 rtx first_conversion_insn;
2011 rtx last_conversion_insn;
2012 HOST_WIDE_INT pretend_args_size;
2013 HOST_WIDE_INT extra_pretend_bytes;
2014 int reg_parm_stack_space;
2015 };
2016
2017 struct assign_parm_data_one
2018 {
2019 tree nominal_type;
2020 tree passed_type;
2021 rtx entry_parm;
2022 rtx stack_parm;
2023 enum machine_mode nominal_mode;
2024 enum machine_mode passed_mode;
2025 enum machine_mode promoted_mode;
2026 struct locate_and_pad_arg_data locate;
2027 int partial;
2028 BOOL_BITFIELD named_arg : 1;
2029 BOOL_BITFIELD passed_pointer : 1;
2030 BOOL_BITFIELD on_stack : 1;
2031 BOOL_BITFIELD loaded_in_reg : 1;
2032 };
2033
2034 /* A subroutine of assign_parms. Initialize ALL. */
2035
2036 static void
2037 assign_parms_initialize_all (struct assign_parm_data_all *all)
2038 {
2039 tree fntype;
2040
2041 memset (all, 0, sizeof (*all));
2042
2043 fntype = TREE_TYPE (current_function_decl);
2044
2045 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2046 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2047 #else
2048 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2049 current_function_decl, -1);
2050 #endif
2051
2052 #ifdef REG_PARM_STACK_SPACE
2053 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2054 #endif
2055 }
2056
2057 /* If ARGS contains entries with complex types, split the entry into two
2058 entries of the component type. Return a new list of substitutions are
2059 needed, else the old list. */
2060
2061 static tree
2062 split_complex_args (tree args)
2063 {
2064 tree p;
2065
2066 /* Before allocating memory, check for the common case of no complex. */
2067 for (p = args; p; p = TREE_CHAIN (p))
2068 {
2069 tree type = TREE_TYPE (p);
2070 if (TREE_CODE (type) == COMPLEX_TYPE
2071 && targetm.calls.split_complex_arg (type))
2072 goto found;
2073 }
2074 return args;
2075
2076 found:
2077 args = copy_list (args);
2078
2079 for (p = args; p; p = TREE_CHAIN (p))
2080 {
2081 tree type = TREE_TYPE (p);
2082 if (TREE_CODE (type) == COMPLEX_TYPE
2083 && targetm.calls.split_complex_arg (type))
2084 {
2085 tree decl;
2086 tree subtype = TREE_TYPE (type);
2087 bool addressable = TREE_ADDRESSABLE (p);
2088
2089 /* Rewrite the PARM_DECL's type with its component. */
2090 TREE_TYPE (p) = subtype;
2091 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2092 DECL_MODE (p) = VOIDmode;
2093 DECL_SIZE (p) = NULL;
2094 DECL_SIZE_UNIT (p) = NULL;
2095 /* If this arg must go in memory, put it in a pseudo here.
2096 We can't allow it to go in memory as per normal parms,
2097 because the usual place might not have the imag part
2098 adjacent to the real part. */
2099 DECL_ARTIFICIAL (p) = addressable;
2100 DECL_IGNORED_P (p) = addressable;
2101 TREE_ADDRESSABLE (p) = 0;
2102 layout_decl (p, 0);
2103
2104 /* Build a second synthetic decl. */
2105 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2106 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2107 DECL_ARTIFICIAL (decl) = addressable;
2108 DECL_IGNORED_P (decl) = addressable;
2109 layout_decl (decl, 0);
2110
2111 /* Splice it in; skip the new decl. */
2112 TREE_CHAIN (decl) = TREE_CHAIN (p);
2113 TREE_CHAIN (p) = decl;
2114 p = decl;
2115 }
2116 }
2117
2118 return args;
2119 }
2120
2121 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2122 the hidden struct return argument, and (abi willing) complex args.
2123 Return the new parameter list. */
2124
2125 static tree
2126 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2127 {
2128 tree fndecl = current_function_decl;
2129 tree fntype = TREE_TYPE (fndecl);
2130 tree fnargs = DECL_ARGUMENTS (fndecl);
2131
2132 /* If struct value address is treated as the first argument, make it so. */
2133 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2134 && ! cfun->returns_pcc_struct
2135 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2136 {
2137 tree type = build_pointer_type (TREE_TYPE (fntype));
2138 tree decl;
2139
2140 decl = build_decl (PARM_DECL, NULL_TREE, type);
2141 DECL_ARG_TYPE (decl) = type;
2142 DECL_ARTIFICIAL (decl) = 1;
2143 DECL_IGNORED_P (decl) = 1;
2144
2145 TREE_CHAIN (decl) = fnargs;
2146 fnargs = decl;
2147 all->function_result_decl = decl;
2148 }
2149
2150 all->orig_fnargs = fnargs;
2151
2152 /* If the target wants to split complex arguments into scalars, do so. */
2153 if (targetm.calls.split_complex_arg)
2154 fnargs = split_complex_args (fnargs);
2155
2156 return fnargs;
2157 }
2158
2159 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2160 data for the parameter. Incorporate ABI specifics such as pass-by-
2161 reference and type promotion. */
2162
2163 static void
2164 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2165 struct assign_parm_data_one *data)
2166 {
2167 tree nominal_type, passed_type;
2168 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2169
2170 memset (data, 0, sizeof (*data));
2171
2172 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2173 if (!cfun->stdarg)
2174 data->named_arg = 1; /* No variadic parms. */
2175 else if (TREE_CHAIN (parm))
2176 data->named_arg = 1; /* Not the last non-variadic parm. */
2177 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2178 data->named_arg = 1; /* Only variadic ones are unnamed. */
2179 else
2180 data->named_arg = 0; /* Treat as variadic. */
2181
2182 nominal_type = TREE_TYPE (parm);
2183 passed_type = DECL_ARG_TYPE (parm);
2184
2185 /* Look out for errors propagating this far. Also, if the parameter's
2186 type is void then its value doesn't matter. */
2187 if (TREE_TYPE (parm) == error_mark_node
2188 /* This can happen after weird syntax errors
2189 or if an enum type is defined among the parms. */
2190 || TREE_CODE (parm) != PARM_DECL
2191 || passed_type == NULL
2192 || VOID_TYPE_P (nominal_type))
2193 {
2194 nominal_type = passed_type = void_type_node;
2195 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2196 goto egress;
2197 }
2198
2199 /* Find mode of arg as it is passed, and mode of arg as it should be
2200 during execution of this function. */
2201 passed_mode = TYPE_MODE (passed_type);
2202 nominal_mode = TYPE_MODE (nominal_type);
2203
2204 /* If the parm is to be passed as a transparent union, use the type of
2205 the first field for the tests below. We have already verified that
2206 the modes are the same. */
2207 if (TREE_CODE (passed_type) == UNION_TYPE
2208 && TYPE_TRANSPARENT_UNION (passed_type))
2209 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2210
2211 /* See if this arg was passed by invisible reference. */
2212 if (pass_by_reference (&all->args_so_far, passed_mode,
2213 passed_type, data->named_arg))
2214 {
2215 passed_type = nominal_type = build_pointer_type (passed_type);
2216 data->passed_pointer = true;
2217 passed_mode = nominal_mode = Pmode;
2218 }
2219
2220 /* Find mode as it is passed by the ABI. */
2221 promoted_mode = passed_mode;
2222 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2223 {
2224 int unsignedp = TYPE_UNSIGNED (passed_type);
2225 promoted_mode = promote_mode (passed_type, promoted_mode,
2226 &unsignedp, 1);
2227 }
2228
2229 egress:
2230 data->nominal_type = nominal_type;
2231 data->passed_type = passed_type;
2232 data->nominal_mode = nominal_mode;
2233 data->passed_mode = passed_mode;
2234 data->promoted_mode = promoted_mode;
2235 }
2236
2237 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2238
2239 static void
2240 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2241 struct assign_parm_data_one *data, bool no_rtl)
2242 {
2243 int varargs_pretend_bytes = 0;
2244
2245 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2246 data->promoted_mode,
2247 data->passed_type,
2248 &varargs_pretend_bytes, no_rtl);
2249
2250 /* If the back-end has requested extra stack space, record how much is
2251 needed. Do not change pretend_args_size otherwise since it may be
2252 nonzero from an earlier partial argument. */
2253 if (varargs_pretend_bytes > 0)
2254 all->pretend_args_size = varargs_pretend_bytes;
2255 }
2256
2257 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2258 the incoming location of the current parameter. */
2259
2260 static void
2261 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2262 struct assign_parm_data_one *data)
2263 {
2264 HOST_WIDE_INT pretend_bytes = 0;
2265 rtx entry_parm;
2266 bool in_regs;
2267
2268 if (data->promoted_mode == VOIDmode)
2269 {
2270 data->entry_parm = data->stack_parm = const0_rtx;
2271 return;
2272 }
2273
2274 #ifdef FUNCTION_INCOMING_ARG
2275 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2276 data->passed_type, data->named_arg);
2277 #else
2278 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2279 data->passed_type, data->named_arg);
2280 #endif
2281
2282 if (entry_parm == 0)
2283 data->promoted_mode = data->passed_mode;
2284
2285 /* Determine parm's home in the stack, in case it arrives in the stack
2286 or we should pretend it did. Compute the stack position and rtx where
2287 the argument arrives and its size.
2288
2289 There is one complexity here: If this was a parameter that would
2290 have been passed in registers, but wasn't only because it is
2291 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2292 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2293 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2294 as it was the previous time. */
2295 in_regs = entry_parm != 0;
2296 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2297 in_regs = true;
2298 #endif
2299 if (!in_regs && !data->named_arg)
2300 {
2301 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2302 {
2303 rtx tem;
2304 #ifdef FUNCTION_INCOMING_ARG
2305 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2306 data->passed_type, true);
2307 #else
2308 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2309 data->passed_type, true);
2310 #endif
2311 in_regs = tem != NULL;
2312 }
2313 }
2314
2315 /* If this parameter was passed both in registers and in the stack, use
2316 the copy on the stack. */
2317 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2318 data->passed_type))
2319 entry_parm = 0;
2320
2321 if (entry_parm)
2322 {
2323 int partial;
2324
2325 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2326 data->promoted_mode,
2327 data->passed_type,
2328 data->named_arg);
2329 data->partial = partial;
2330
2331 /* The caller might already have allocated stack space for the
2332 register parameters. */
2333 if (partial != 0 && all->reg_parm_stack_space == 0)
2334 {
2335 /* Part of this argument is passed in registers and part
2336 is passed on the stack. Ask the prologue code to extend
2337 the stack part so that we can recreate the full value.
2338
2339 PRETEND_BYTES is the size of the registers we need to store.
2340 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2341 stack space that the prologue should allocate.
2342
2343 Internally, gcc assumes that the argument pointer is aligned
2344 to STACK_BOUNDARY bits. This is used both for alignment
2345 optimizations (see init_emit) and to locate arguments that are
2346 aligned to more than PARM_BOUNDARY bits. We must preserve this
2347 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2348 a stack boundary. */
2349
2350 /* We assume at most one partial arg, and it must be the first
2351 argument on the stack. */
2352 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2353
2354 pretend_bytes = partial;
2355 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2356
2357 /* We want to align relative to the actual stack pointer, so
2358 don't include this in the stack size until later. */
2359 all->extra_pretend_bytes = all->pretend_args_size;
2360 }
2361 }
2362
2363 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2364 entry_parm ? data->partial : 0, current_function_decl,
2365 &all->stack_args_size, &data->locate);
2366
2367 /* Update parm_stack_boundary if this parameter is passed in the
2368 stack. */
2369 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2370 crtl->parm_stack_boundary = data->locate.boundary;
2371
2372 /* Adjust offsets to include the pretend args. */
2373 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2374 data->locate.slot_offset.constant += pretend_bytes;
2375 data->locate.offset.constant += pretend_bytes;
2376
2377 data->entry_parm = entry_parm;
2378 }
2379
2380 /* A subroutine of assign_parms. If there is actually space on the stack
2381 for this parm, count it in stack_args_size and return true. */
2382
2383 static bool
2384 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2385 struct assign_parm_data_one *data)
2386 {
2387 /* Trivially true if we've no incoming register. */
2388 if (data->entry_parm == NULL)
2389 ;
2390 /* Also true if we're partially in registers and partially not,
2391 since we've arranged to drop the entire argument on the stack. */
2392 else if (data->partial != 0)
2393 ;
2394 /* Also true if the target says that it's passed in both registers
2395 and on the stack. */
2396 else if (GET_CODE (data->entry_parm) == PARALLEL
2397 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2398 ;
2399 /* Also true if the target says that there's stack allocated for
2400 all register parameters. */
2401 else if (all->reg_parm_stack_space > 0)
2402 ;
2403 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2404 else
2405 return false;
2406
2407 all->stack_args_size.constant += data->locate.size.constant;
2408 if (data->locate.size.var)
2409 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2410
2411 return true;
2412 }
2413
2414 /* A subroutine of assign_parms. Given that this parameter is allocated
2415 stack space by the ABI, find it. */
2416
2417 static void
2418 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2419 {
2420 rtx offset_rtx, stack_parm;
2421 unsigned int align, boundary;
2422
2423 /* If we're passing this arg using a reg, make its stack home the
2424 aligned stack slot. */
2425 if (data->entry_parm)
2426 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2427 else
2428 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2429
2430 stack_parm = crtl->args.internal_arg_pointer;
2431 if (offset_rtx != const0_rtx)
2432 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2433 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2434
2435 set_mem_attributes (stack_parm, parm, 1);
2436 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2437 while promoted mode's size is needed. */
2438 if (data->promoted_mode != BLKmode
2439 && data->promoted_mode != DECL_MODE (parm))
2440 {
2441 set_mem_size (stack_parm, GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2442 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2443 {
2444 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2445 data->promoted_mode);
2446 if (offset)
2447 set_mem_offset (stack_parm,
2448 plus_constant (MEM_OFFSET (stack_parm), -offset));
2449 }
2450 }
2451
2452 boundary = data->locate.boundary;
2453 align = BITS_PER_UNIT;
2454
2455 /* If we're padding upward, we know that the alignment of the slot
2456 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2457 intentionally forcing upward padding. Otherwise we have to come
2458 up with a guess at the alignment based on OFFSET_RTX. */
2459 if (data->locate.where_pad != downward || data->entry_parm)
2460 align = boundary;
2461 else if (GET_CODE (offset_rtx) == CONST_INT)
2462 {
2463 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2464 align = align & -align;
2465 }
2466 set_mem_align (stack_parm, align);
2467
2468 if (data->entry_parm)
2469 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2470
2471 data->stack_parm = stack_parm;
2472 }
2473
2474 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2475 always valid and contiguous. */
2476
2477 static void
2478 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2479 {
2480 rtx entry_parm = data->entry_parm;
2481 rtx stack_parm = data->stack_parm;
2482
2483 /* If this parm was passed part in regs and part in memory, pretend it
2484 arrived entirely in memory by pushing the register-part onto the stack.
2485 In the special case of a DImode or DFmode that is split, we could put
2486 it together in a pseudoreg directly, but for now that's not worth
2487 bothering with. */
2488 if (data->partial != 0)
2489 {
2490 /* Handle calls that pass values in multiple non-contiguous
2491 locations. The Irix 6 ABI has examples of this. */
2492 if (GET_CODE (entry_parm) == PARALLEL)
2493 emit_group_store (validize_mem (stack_parm), entry_parm,
2494 data->passed_type,
2495 int_size_in_bytes (data->passed_type));
2496 else
2497 {
2498 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2499 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2500 data->partial / UNITS_PER_WORD);
2501 }
2502
2503 entry_parm = stack_parm;
2504 }
2505
2506 /* If we didn't decide this parm came in a register, by default it came
2507 on the stack. */
2508 else if (entry_parm == NULL)
2509 entry_parm = stack_parm;
2510
2511 /* When an argument is passed in multiple locations, we can't make use
2512 of this information, but we can save some copying if the whole argument
2513 is passed in a single register. */
2514 else if (GET_CODE (entry_parm) == PARALLEL
2515 && data->nominal_mode != BLKmode
2516 && data->passed_mode != BLKmode)
2517 {
2518 size_t i, len = XVECLEN (entry_parm, 0);
2519
2520 for (i = 0; i < len; i++)
2521 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2522 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2523 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2524 == data->passed_mode)
2525 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2526 {
2527 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2528 break;
2529 }
2530 }
2531
2532 data->entry_parm = entry_parm;
2533 }
2534
2535 /* A subroutine of assign_parms. Reconstitute any values which were
2536 passed in multiple registers and would fit in a single register. */
2537
2538 static void
2539 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2540 {
2541 rtx entry_parm = data->entry_parm;
2542
2543 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2544 This can be done with register operations rather than on the
2545 stack, even if we will store the reconstituted parameter on the
2546 stack later. */
2547 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2548 {
2549 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2550 emit_group_store (parmreg, entry_parm, data->passed_type,
2551 GET_MODE_SIZE (GET_MODE (entry_parm)));
2552 entry_parm = parmreg;
2553 }
2554
2555 data->entry_parm = entry_parm;
2556 }
2557
2558 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2559 always valid and properly aligned. */
2560
2561 static void
2562 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2563 {
2564 rtx stack_parm = data->stack_parm;
2565
2566 /* If we can't trust the parm stack slot to be aligned enough for its
2567 ultimate type, don't use that slot after entry. We'll make another
2568 stack slot, if we need one. */
2569 if (stack_parm
2570 && ((STRICT_ALIGNMENT
2571 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2572 || (data->nominal_type
2573 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2574 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2575 stack_parm = NULL;
2576
2577 /* If parm was passed in memory, and we need to convert it on entry,
2578 don't store it back in that same slot. */
2579 else if (data->entry_parm == stack_parm
2580 && data->nominal_mode != BLKmode
2581 && data->nominal_mode != data->passed_mode)
2582 stack_parm = NULL;
2583
2584 /* If stack protection is in effect for this function, don't leave any
2585 pointers in their passed stack slots. */
2586 else if (crtl->stack_protect_guard
2587 && (flag_stack_protect == 2
2588 || data->passed_pointer
2589 || POINTER_TYPE_P (data->nominal_type)))
2590 stack_parm = NULL;
2591
2592 data->stack_parm = stack_parm;
2593 }
2594
2595 /* A subroutine of assign_parms. Return true if the current parameter
2596 should be stored as a BLKmode in the current frame. */
2597
2598 static bool
2599 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2600 {
2601 if (data->nominal_mode == BLKmode)
2602 return true;
2603 if (GET_MODE (data->entry_parm) == BLKmode)
2604 return true;
2605
2606 #ifdef BLOCK_REG_PADDING
2607 /* Only assign_parm_setup_block knows how to deal with register arguments
2608 that are padded at the least significant end. */
2609 if (REG_P (data->entry_parm)
2610 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2611 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2612 == (BYTES_BIG_ENDIAN ? upward : downward)))
2613 return true;
2614 #endif
2615
2616 return false;
2617 }
2618
2619 /* A subroutine of assign_parms. Arrange for the parameter to be
2620 present and valid in DATA->STACK_RTL. */
2621
2622 static void
2623 assign_parm_setup_block (struct assign_parm_data_all *all,
2624 tree parm, struct assign_parm_data_one *data)
2625 {
2626 rtx entry_parm = data->entry_parm;
2627 rtx stack_parm = data->stack_parm;
2628 HOST_WIDE_INT size;
2629 HOST_WIDE_INT size_stored;
2630
2631 if (GET_CODE (entry_parm) == PARALLEL)
2632 entry_parm = emit_group_move_into_temps (entry_parm);
2633
2634 size = int_size_in_bytes (data->passed_type);
2635 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2636 if (stack_parm == 0)
2637 {
2638 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2639 stack_parm = assign_stack_local (BLKmode, size_stored,
2640 DECL_ALIGN (parm));
2641 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2642 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2643 set_mem_attributes (stack_parm, parm, 1);
2644 }
2645
2646 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2647 calls that pass values in multiple non-contiguous locations. */
2648 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2649 {
2650 rtx mem;
2651
2652 /* Note that we will be storing an integral number of words.
2653 So we have to be careful to ensure that we allocate an
2654 integral number of words. We do this above when we call
2655 assign_stack_local if space was not allocated in the argument
2656 list. If it was, this will not work if PARM_BOUNDARY is not
2657 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2658 if it becomes a problem. Exception is when BLKmode arrives
2659 with arguments not conforming to word_mode. */
2660
2661 if (data->stack_parm == 0)
2662 ;
2663 else if (GET_CODE (entry_parm) == PARALLEL)
2664 ;
2665 else
2666 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2667
2668 mem = validize_mem (stack_parm);
2669
2670 /* Handle values in multiple non-contiguous locations. */
2671 if (GET_CODE (entry_parm) == PARALLEL)
2672 {
2673 push_to_sequence2 (all->first_conversion_insn,
2674 all->last_conversion_insn);
2675 emit_group_store (mem, entry_parm, data->passed_type, size);
2676 all->first_conversion_insn = get_insns ();
2677 all->last_conversion_insn = get_last_insn ();
2678 end_sequence ();
2679 }
2680
2681 else if (size == 0)
2682 ;
2683
2684 /* If SIZE is that of a mode no bigger than a word, just use
2685 that mode's store operation. */
2686 else if (size <= UNITS_PER_WORD)
2687 {
2688 enum machine_mode mode
2689 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2690
2691 if (mode != BLKmode
2692 #ifdef BLOCK_REG_PADDING
2693 && (size == UNITS_PER_WORD
2694 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2695 != (BYTES_BIG_ENDIAN ? upward : downward)))
2696 #endif
2697 )
2698 {
2699 rtx reg;
2700
2701 /* We are really truncating a word_mode value containing
2702 SIZE bytes into a value of mode MODE. If such an
2703 operation requires no actual instructions, we can refer
2704 to the value directly in mode MODE, otherwise we must
2705 start with the register in word_mode and explicitly
2706 convert it. */
2707 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2708 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2709 else
2710 {
2711 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2712 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2713 }
2714 emit_move_insn (change_address (mem, mode, 0), reg);
2715 }
2716
2717 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2718 machine must be aligned to the left before storing
2719 to memory. Note that the previous test doesn't
2720 handle all cases (e.g. SIZE == 3). */
2721 else if (size != UNITS_PER_WORD
2722 #ifdef BLOCK_REG_PADDING
2723 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2724 == downward)
2725 #else
2726 && BYTES_BIG_ENDIAN
2727 #endif
2728 )
2729 {
2730 rtx tem, x;
2731 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2732 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2733
2734 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2735 build_int_cst (NULL_TREE, by),
2736 NULL_RTX, 1);
2737 tem = change_address (mem, word_mode, 0);
2738 emit_move_insn (tem, x);
2739 }
2740 else
2741 move_block_from_reg (REGNO (entry_parm), mem,
2742 size_stored / UNITS_PER_WORD);
2743 }
2744 else
2745 move_block_from_reg (REGNO (entry_parm), mem,
2746 size_stored / UNITS_PER_WORD);
2747 }
2748 else if (data->stack_parm == 0)
2749 {
2750 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2751 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2752 BLOCK_OP_NORMAL);
2753 all->first_conversion_insn = get_insns ();
2754 all->last_conversion_insn = get_last_insn ();
2755 end_sequence ();
2756 }
2757
2758 data->stack_parm = stack_parm;
2759 SET_DECL_RTL (parm, stack_parm);
2760 }
2761
2762 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2763 parameter. Get it there. Perform all ABI specified conversions. */
2764
2765 static void
2766 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2767 struct assign_parm_data_one *data)
2768 {
2769 rtx parmreg;
2770 enum machine_mode promoted_nominal_mode;
2771 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2772 bool did_conversion = false;
2773
2774 /* Store the parm in a pseudoregister during the function, but we may
2775 need to do it in a wider mode. */
2776
2777 /* This is not really promoting for a call. However we need to be
2778 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2779 promoted_nominal_mode
2780 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2781
2782 parmreg = gen_reg_rtx (promoted_nominal_mode);
2783
2784 if (!DECL_ARTIFICIAL (parm))
2785 mark_user_reg (parmreg);
2786
2787 /* If this was an item that we received a pointer to,
2788 set DECL_RTL appropriately. */
2789 if (data->passed_pointer)
2790 {
2791 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2792 set_mem_attributes (x, parm, 1);
2793 SET_DECL_RTL (parm, x);
2794 }
2795 else
2796 SET_DECL_RTL (parm, parmreg);
2797
2798 assign_parm_remove_parallels (data);
2799
2800 /* Copy the value into the register. */
2801 if (data->nominal_mode != data->passed_mode
2802 || promoted_nominal_mode != data->promoted_mode)
2803 {
2804 int save_tree_used;
2805
2806 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2807 mode, by the caller. We now have to convert it to
2808 NOMINAL_MODE, if different. However, PARMREG may be in
2809 a different mode than NOMINAL_MODE if it is being stored
2810 promoted.
2811
2812 If ENTRY_PARM is a hard register, it might be in a register
2813 not valid for operating in its mode (e.g., an odd-numbered
2814 register for a DFmode). In that case, moves are the only
2815 thing valid, so we can't do a convert from there. This
2816 occurs when the calling sequence allow such misaligned
2817 usages.
2818
2819 In addition, the conversion may involve a call, which could
2820 clobber parameters which haven't been copied to pseudo
2821 registers yet. Therefore, we must first copy the parm to
2822 a pseudo reg here, and save the conversion until after all
2823 parameters have been moved. */
2824
2825 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2826
2827 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2828
2829 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2830 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2831
2832 if (GET_CODE (tempreg) == SUBREG
2833 && GET_MODE (tempreg) == data->nominal_mode
2834 && REG_P (SUBREG_REG (tempreg))
2835 && data->nominal_mode == data->passed_mode
2836 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2837 && GET_MODE_SIZE (GET_MODE (tempreg))
2838 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2839 {
2840 /* The argument is already sign/zero extended, so note it
2841 into the subreg. */
2842 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2843 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2844 }
2845
2846 /* TREE_USED gets set erroneously during expand_assignment. */
2847 save_tree_used = TREE_USED (parm);
2848 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2849 TREE_USED (parm) = save_tree_used;
2850 all->first_conversion_insn = get_insns ();
2851 all->last_conversion_insn = get_last_insn ();
2852 end_sequence ();
2853
2854 did_conversion = true;
2855 }
2856 else
2857 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2858
2859 /* If we were passed a pointer but the actual value can safely live
2860 in a register, put it in one. */
2861 if (data->passed_pointer
2862 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2863 /* If by-reference argument was promoted, demote it. */
2864 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2865 || use_register_for_decl (parm)))
2866 {
2867 /* We can't use nominal_mode, because it will have been set to
2868 Pmode above. We must use the actual mode of the parm. */
2869 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2870 mark_user_reg (parmreg);
2871
2872 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2873 {
2874 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2875 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2876
2877 push_to_sequence2 (all->first_conversion_insn,
2878 all->last_conversion_insn);
2879 emit_move_insn (tempreg, DECL_RTL (parm));
2880 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2881 emit_move_insn (parmreg, tempreg);
2882 all->first_conversion_insn = get_insns ();
2883 all->last_conversion_insn = get_last_insn ();
2884 end_sequence ();
2885
2886 did_conversion = true;
2887 }
2888 else
2889 emit_move_insn (parmreg, DECL_RTL (parm));
2890
2891 SET_DECL_RTL (parm, parmreg);
2892
2893 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2894 now the parm. */
2895 data->stack_parm = NULL;
2896 }
2897
2898 /* Mark the register as eliminable if we did no conversion and it was
2899 copied from memory at a fixed offset, and the arg pointer was not
2900 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2901 offset formed an invalid address, such memory-equivalences as we
2902 make here would screw up life analysis for it. */
2903 if (data->nominal_mode == data->passed_mode
2904 && !did_conversion
2905 && data->stack_parm != 0
2906 && MEM_P (data->stack_parm)
2907 && data->locate.offset.var == 0
2908 && reg_mentioned_p (virtual_incoming_args_rtx,
2909 XEXP (data->stack_parm, 0)))
2910 {
2911 rtx linsn = get_last_insn ();
2912 rtx sinsn, set;
2913
2914 /* Mark complex types separately. */
2915 if (GET_CODE (parmreg) == CONCAT)
2916 {
2917 enum machine_mode submode
2918 = GET_MODE_INNER (GET_MODE (parmreg));
2919 int regnor = REGNO (XEXP (parmreg, 0));
2920 int regnoi = REGNO (XEXP (parmreg, 1));
2921 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2922 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2923 GET_MODE_SIZE (submode));
2924
2925 /* Scan backwards for the set of the real and
2926 imaginary parts. */
2927 for (sinsn = linsn; sinsn != 0;
2928 sinsn = prev_nonnote_insn (sinsn))
2929 {
2930 set = single_set (sinsn);
2931 if (set == 0)
2932 continue;
2933
2934 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2935 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2936 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2937 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2938 }
2939 }
2940 else if ((set = single_set (linsn)) != 0
2941 && SET_DEST (set) == parmreg)
2942 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2943 }
2944
2945 /* For pointer data type, suggest pointer register. */
2946 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2947 mark_reg_pointer (parmreg,
2948 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2949 }
2950
2951 /* A subroutine of assign_parms. Allocate stack space to hold the current
2952 parameter. Get it there. Perform all ABI specified conversions. */
2953
2954 static void
2955 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2956 struct assign_parm_data_one *data)
2957 {
2958 /* Value must be stored in the stack slot STACK_PARM during function
2959 execution. */
2960 bool to_conversion = false;
2961
2962 assign_parm_remove_parallels (data);
2963
2964 if (data->promoted_mode != data->nominal_mode)
2965 {
2966 /* Conversion is required. */
2967 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2968
2969 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2970
2971 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2972 to_conversion = true;
2973
2974 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2975 TYPE_UNSIGNED (TREE_TYPE (parm)));
2976
2977 if (data->stack_parm)
2978 /* ??? This may need a big-endian conversion on sparc64. */
2979 data->stack_parm
2980 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2981 }
2982
2983 if (data->entry_parm != data->stack_parm)
2984 {
2985 rtx src, dest;
2986
2987 if (data->stack_parm == 0)
2988 {
2989 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
2990 GET_MODE (data->entry_parm),
2991 TYPE_ALIGN (data->passed_type));
2992 data->stack_parm
2993 = assign_stack_local (GET_MODE (data->entry_parm),
2994 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2995 align);
2996 set_mem_attributes (data->stack_parm, parm, 1);
2997 }
2998
2999 dest = validize_mem (data->stack_parm);
3000 src = validize_mem (data->entry_parm);
3001
3002 if (MEM_P (src))
3003 {
3004 /* Use a block move to handle potentially misaligned entry_parm. */
3005 if (!to_conversion)
3006 push_to_sequence2 (all->first_conversion_insn,
3007 all->last_conversion_insn);
3008 to_conversion = true;
3009
3010 emit_block_move (dest, src,
3011 GEN_INT (int_size_in_bytes (data->passed_type)),
3012 BLOCK_OP_NORMAL);
3013 }
3014 else
3015 emit_move_insn (dest, src);
3016 }
3017
3018 if (to_conversion)
3019 {
3020 all->first_conversion_insn = get_insns ();
3021 all->last_conversion_insn = get_last_insn ();
3022 end_sequence ();
3023 }
3024
3025 SET_DECL_RTL (parm, data->stack_parm);
3026 }
3027
3028 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3029 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3030
3031 static void
3032 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
3033 {
3034 tree parm;
3035 tree orig_fnargs = all->orig_fnargs;
3036
3037 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
3038 {
3039 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3040 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3041 {
3042 rtx tmp, real, imag;
3043 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3044
3045 real = DECL_RTL (fnargs);
3046 imag = DECL_RTL (TREE_CHAIN (fnargs));
3047 if (inner != GET_MODE (real))
3048 {
3049 real = gen_lowpart_SUBREG (inner, real);
3050 imag = gen_lowpart_SUBREG (inner, imag);
3051 }
3052
3053 if (TREE_ADDRESSABLE (parm))
3054 {
3055 rtx rmem, imem;
3056 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3057 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3058 DECL_MODE (parm),
3059 TYPE_ALIGN (TREE_TYPE (parm)));
3060
3061 /* split_complex_arg put the real and imag parts in
3062 pseudos. Move them to memory. */
3063 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3064 set_mem_attributes (tmp, parm, 1);
3065 rmem = adjust_address_nv (tmp, inner, 0);
3066 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3067 push_to_sequence2 (all->first_conversion_insn,
3068 all->last_conversion_insn);
3069 emit_move_insn (rmem, real);
3070 emit_move_insn (imem, imag);
3071 all->first_conversion_insn = get_insns ();
3072 all->last_conversion_insn = get_last_insn ();
3073 end_sequence ();
3074 }
3075 else
3076 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3077 SET_DECL_RTL (parm, tmp);
3078
3079 real = DECL_INCOMING_RTL (fnargs);
3080 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3081 if (inner != GET_MODE (real))
3082 {
3083 real = gen_lowpart_SUBREG (inner, real);
3084 imag = gen_lowpart_SUBREG (inner, imag);
3085 }
3086 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3087 set_decl_incoming_rtl (parm, tmp, false);
3088 fnargs = TREE_CHAIN (fnargs);
3089 }
3090 else
3091 {
3092 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3093 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
3094
3095 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3096 instead of the copy of decl, i.e. FNARGS. */
3097 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3098 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3099 }
3100
3101 fnargs = TREE_CHAIN (fnargs);
3102 }
3103 }
3104
3105 /* Assign RTL expressions to the function's parameters. This may involve
3106 copying them into registers and using those registers as the DECL_RTL. */
3107
3108 static void
3109 assign_parms (tree fndecl)
3110 {
3111 struct assign_parm_data_all all;
3112 tree fnargs, parm;
3113
3114 crtl->args.internal_arg_pointer
3115 = targetm.calls.internal_arg_pointer ();
3116
3117 assign_parms_initialize_all (&all);
3118 fnargs = assign_parms_augmented_arg_list (&all);
3119
3120 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3121 {
3122 struct assign_parm_data_one data;
3123
3124 /* Extract the type of PARM; adjust it according to ABI. */
3125 assign_parm_find_data_types (&all, parm, &data);
3126
3127 /* Early out for errors and void parameters. */
3128 if (data.passed_mode == VOIDmode)
3129 {
3130 SET_DECL_RTL (parm, const0_rtx);
3131 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3132 continue;
3133 }
3134
3135 /* Estimate stack alignment from parameter alignment. */
3136 if (SUPPORTS_STACK_ALIGNMENT)
3137 {
3138 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3139 data.passed_type);
3140 if (TYPE_ALIGN (data.nominal_type) > align)
3141 align = TYPE_ALIGN (data.passed_type);
3142 if (crtl->stack_alignment_estimated < align)
3143 {
3144 gcc_assert (!crtl->stack_realign_processed);
3145 crtl->stack_alignment_estimated = align;
3146 }
3147 }
3148
3149 if (cfun->stdarg && !TREE_CHAIN (parm))
3150 assign_parms_setup_varargs (&all, &data, false);
3151
3152 /* Find out where the parameter arrives in this function. */
3153 assign_parm_find_entry_rtl (&all, &data);
3154
3155 /* Find out where stack space for this parameter might be. */
3156 if (assign_parm_is_stack_parm (&all, &data))
3157 {
3158 assign_parm_find_stack_rtl (parm, &data);
3159 assign_parm_adjust_entry_rtl (&data);
3160 }
3161
3162 /* Record permanently how this parm was passed. */
3163 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3164
3165 /* Update info on where next arg arrives in registers. */
3166 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3167 data.passed_type, data.named_arg);
3168
3169 assign_parm_adjust_stack_rtl (&data);
3170
3171 if (assign_parm_setup_block_p (&data))
3172 assign_parm_setup_block (&all, parm, &data);
3173 else if (data.passed_pointer || use_register_for_decl (parm))
3174 assign_parm_setup_reg (&all, parm, &data);
3175 else
3176 assign_parm_setup_stack (&all, parm, &data);
3177 }
3178
3179 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3180 assign_parms_unsplit_complex (&all, fnargs);
3181
3182 /* Output all parameter conversion instructions (possibly including calls)
3183 now that all parameters have been copied out of hard registers. */
3184 emit_insn (all.first_conversion_insn);
3185
3186 /* Estimate reload stack alignment from scalar return mode. */
3187 if (SUPPORTS_STACK_ALIGNMENT)
3188 {
3189 if (DECL_RESULT (fndecl))
3190 {
3191 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3192 enum machine_mode mode = TYPE_MODE (type);
3193
3194 if (mode != BLKmode
3195 && mode != VOIDmode
3196 && !AGGREGATE_TYPE_P (type))
3197 {
3198 unsigned int align = GET_MODE_ALIGNMENT (mode);
3199 if (crtl->stack_alignment_estimated < align)
3200 {
3201 gcc_assert (!crtl->stack_realign_processed);
3202 crtl->stack_alignment_estimated = align;
3203 }
3204 }
3205 }
3206 }
3207
3208 /* If we are receiving a struct value address as the first argument, set up
3209 the RTL for the function result. As this might require code to convert
3210 the transmitted address to Pmode, we do this here to ensure that possible
3211 preliminary conversions of the address have been emitted already. */
3212 if (all.function_result_decl)
3213 {
3214 tree result = DECL_RESULT (current_function_decl);
3215 rtx addr = DECL_RTL (all.function_result_decl);
3216 rtx x;
3217
3218 if (DECL_BY_REFERENCE (result))
3219 x = addr;
3220 else
3221 {
3222 addr = convert_memory_address (Pmode, addr);
3223 x = gen_rtx_MEM (DECL_MODE (result), addr);
3224 set_mem_attributes (x, result, 1);
3225 }
3226 SET_DECL_RTL (result, x);
3227 }
3228
3229 /* We have aligned all the args, so add space for the pretend args. */
3230 crtl->args.pretend_args_size = all.pretend_args_size;
3231 all.stack_args_size.constant += all.extra_pretend_bytes;
3232 crtl->args.size = all.stack_args_size.constant;
3233
3234 /* Adjust function incoming argument size for alignment and
3235 minimum length. */
3236
3237 #ifdef REG_PARM_STACK_SPACE
3238 crtl->args.size = MAX (crtl->args.size,
3239 REG_PARM_STACK_SPACE (fndecl));
3240 #endif
3241
3242 crtl->args.size = CEIL_ROUND (crtl->args.size,
3243 PARM_BOUNDARY / BITS_PER_UNIT);
3244
3245 #ifdef ARGS_GROW_DOWNWARD
3246 crtl->args.arg_offset_rtx
3247 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3248 : expand_expr (size_diffop (all.stack_args_size.var,
3249 size_int (-all.stack_args_size.constant)),
3250 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3251 #else
3252 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3253 #endif
3254
3255 /* See how many bytes, if any, of its args a function should try to pop
3256 on return. */
3257
3258 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3259 crtl->args.size);
3260
3261 /* For stdarg.h function, save info about
3262 regs and stack space used by the named args. */
3263
3264 crtl->args.info = all.args_so_far;
3265
3266 /* Set the rtx used for the function return value. Put this in its
3267 own variable so any optimizers that need this information don't have
3268 to include tree.h. Do this here so it gets done when an inlined
3269 function gets output. */
3270
3271 crtl->return_rtx
3272 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3273 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3274
3275 /* If scalar return value was computed in a pseudo-reg, or was a named
3276 return value that got dumped to the stack, copy that to the hard
3277 return register. */
3278 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3279 {
3280 tree decl_result = DECL_RESULT (fndecl);
3281 rtx decl_rtl = DECL_RTL (decl_result);
3282
3283 if (REG_P (decl_rtl)
3284 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3285 : DECL_REGISTER (decl_result))
3286 {
3287 rtx real_decl_rtl;
3288
3289 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3290 fndecl, true);
3291 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3292 /* The delay slot scheduler assumes that crtl->return_rtx
3293 holds the hard register containing the return value, not a
3294 temporary pseudo. */
3295 crtl->return_rtx = real_decl_rtl;
3296 }
3297 }
3298 }
3299
3300 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3301 For all seen types, gimplify their sizes. */
3302
3303 static tree
3304 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3305 {
3306 tree t = *tp;
3307
3308 *walk_subtrees = 0;
3309 if (TYPE_P (t))
3310 {
3311 if (POINTER_TYPE_P (t))
3312 *walk_subtrees = 1;
3313 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3314 && !TYPE_SIZES_GIMPLIFIED (t))
3315 {
3316 gimplify_type_sizes (t, (gimple_seq *) data);
3317 *walk_subtrees = 1;
3318 }
3319 }
3320
3321 return NULL;
3322 }
3323
3324 /* Gimplify the parameter list for current_function_decl. This involves
3325 evaluating SAVE_EXPRs of variable sized parameters and generating code
3326 to implement callee-copies reference parameters. Returns a sequence of
3327 statements to add to the beginning of the function. */
3328
3329 gimple_seq
3330 gimplify_parameters (void)
3331 {
3332 struct assign_parm_data_all all;
3333 tree fnargs, parm;
3334 gimple_seq stmts = NULL;
3335
3336 assign_parms_initialize_all (&all);
3337 fnargs = assign_parms_augmented_arg_list (&all);
3338
3339 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3340 {
3341 struct assign_parm_data_one data;
3342
3343 /* Extract the type of PARM; adjust it according to ABI. */
3344 assign_parm_find_data_types (&all, parm, &data);
3345
3346 /* Early out for errors and void parameters. */
3347 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3348 continue;
3349
3350 /* Update info on where next arg arrives in registers. */
3351 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3352 data.passed_type, data.named_arg);
3353
3354 /* ??? Once upon a time variable_size stuffed parameter list
3355 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3356 turned out to be less than manageable in the gimple world.
3357 Now we have to hunt them down ourselves. */
3358 walk_tree_without_duplicates (&data.passed_type,
3359 gimplify_parm_type, &stmts);
3360
3361 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3362 {
3363 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3364 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3365 }
3366
3367 if (data.passed_pointer)
3368 {
3369 tree type = TREE_TYPE (data.passed_type);
3370 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3371 type, data.named_arg))
3372 {
3373 tree local, t;
3374
3375 /* For constant-sized objects, this is trivial; for
3376 variable-sized objects, we have to play games. */
3377 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3378 && !(flag_stack_check == GENERIC_STACK_CHECK
3379 && compare_tree_int (DECL_SIZE_UNIT (parm),
3380 STACK_CHECK_MAX_VAR_SIZE) > 0))
3381 {
3382 local = create_tmp_var (type, get_name (parm));
3383 DECL_IGNORED_P (local) = 0;
3384 /* If PARM was addressable, move that flag over
3385 to the local copy, as its address will be taken,
3386 not the PARMs. */
3387 if (TREE_ADDRESSABLE (parm))
3388 {
3389 TREE_ADDRESSABLE (parm) = 0;
3390 TREE_ADDRESSABLE (local) = 1;
3391 }
3392 }
3393 else
3394 {
3395 tree ptr_type, addr;
3396
3397 ptr_type = build_pointer_type (type);
3398 addr = create_tmp_var (ptr_type, get_name (parm));
3399 DECL_IGNORED_P (addr) = 0;
3400 local = build_fold_indirect_ref (addr);
3401
3402 t = built_in_decls[BUILT_IN_ALLOCA];
3403 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3404 t = fold_convert (ptr_type, t);
3405 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3406 gimplify_and_add (t, &stmts);
3407 }
3408
3409 gimplify_assign (local, parm, &stmts);
3410
3411 SET_DECL_VALUE_EXPR (parm, local);
3412 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3413 }
3414 }
3415 }
3416
3417 return stmts;
3418 }
3419 \f
3420 /* Compute the size and offset from the start of the stacked arguments for a
3421 parm passed in mode PASSED_MODE and with type TYPE.
3422
3423 INITIAL_OFFSET_PTR points to the current offset into the stacked
3424 arguments.
3425
3426 The starting offset and size for this parm are returned in
3427 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3428 nonzero, the offset is that of stack slot, which is returned in
3429 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3430 padding required from the initial offset ptr to the stack slot.
3431
3432 IN_REGS is nonzero if the argument will be passed in registers. It will
3433 never be set if REG_PARM_STACK_SPACE is not defined.
3434
3435 FNDECL is the function in which the argument was defined.
3436
3437 There are two types of rounding that are done. The first, controlled by
3438 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3439 list to be aligned to the specific boundary (in bits). This rounding
3440 affects the initial and starting offsets, but not the argument size.
3441
3442 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3443 optionally rounds the size of the parm to PARM_BOUNDARY. The
3444 initial offset is not affected by this rounding, while the size always
3445 is and the starting offset may be. */
3446
3447 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3448 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3449 callers pass in the total size of args so far as
3450 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3451
3452 void
3453 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3454 int partial, tree fndecl ATTRIBUTE_UNUSED,
3455 struct args_size *initial_offset_ptr,
3456 struct locate_and_pad_arg_data *locate)
3457 {
3458 tree sizetree;
3459 enum direction where_pad;
3460 unsigned int boundary;
3461 int reg_parm_stack_space = 0;
3462 int part_size_in_regs;
3463
3464 #ifdef REG_PARM_STACK_SPACE
3465 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3466
3467 /* If we have found a stack parm before we reach the end of the
3468 area reserved for registers, skip that area. */
3469 if (! in_regs)
3470 {
3471 if (reg_parm_stack_space > 0)
3472 {
3473 if (initial_offset_ptr->var)
3474 {
3475 initial_offset_ptr->var
3476 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3477 ssize_int (reg_parm_stack_space));
3478 initial_offset_ptr->constant = 0;
3479 }
3480 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3481 initial_offset_ptr->constant = reg_parm_stack_space;
3482 }
3483 }
3484 #endif /* REG_PARM_STACK_SPACE */
3485
3486 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3487
3488 sizetree
3489 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3490 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3491 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3492 locate->where_pad = where_pad;
3493
3494 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3495 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3496 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3497
3498 locate->boundary = boundary;
3499
3500 if (SUPPORTS_STACK_ALIGNMENT)
3501 {
3502 /* stack_alignment_estimated can't change after stack has been
3503 realigned. */
3504 if (crtl->stack_alignment_estimated < boundary)
3505 {
3506 if (!crtl->stack_realign_processed)
3507 crtl->stack_alignment_estimated = boundary;
3508 else
3509 {
3510 /* If stack is realigned and stack alignment value
3511 hasn't been finalized, it is OK not to increase
3512 stack_alignment_estimated. The bigger alignment
3513 requirement is recorded in stack_alignment_needed
3514 below. */
3515 gcc_assert (!crtl->stack_realign_finalized
3516 && crtl->stack_realign_needed);
3517 }
3518 }
3519 }
3520
3521 /* Remember if the outgoing parameter requires extra alignment on the
3522 calling function side. */
3523 if (crtl->stack_alignment_needed < boundary)
3524 crtl->stack_alignment_needed = boundary;
3525 if (crtl->max_used_stack_slot_alignment < crtl->stack_alignment_needed)
3526 crtl->max_used_stack_slot_alignment = crtl->stack_alignment_needed;
3527 if (crtl->preferred_stack_boundary < boundary)
3528 crtl->preferred_stack_boundary = boundary;
3529
3530 #ifdef ARGS_GROW_DOWNWARD
3531 locate->slot_offset.constant = -initial_offset_ptr->constant;
3532 if (initial_offset_ptr->var)
3533 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3534 initial_offset_ptr->var);
3535
3536 {
3537 tree s2 = sizetree;
3538 if (where_pad != none
3539 && (!host_integerp (sizetree, 1)
3540 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3541 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3542 SUB_PARM_SIZE (locate->slot_offset, s2);
3543 }
3544
3545 locate->slot_offset.constant += part_size_in_regs;
3546
3547 if (!in_regs
3548 #ifdef REG_PARM_STACK_SPACE
3549 || REG_PARM_STACK_SPACE (fndecl) > 0
3550 #endif
3551 )
3552 pad_to_arg_alignment (&locate->slot_offset, boundary,
3553 &locate->alignment_pad);
3554
3555 locate->size.constant = (-initial_offset_ptr->constant
3556 - locate->slot_offset.constant);
3557 if (initial_offset_ptr->var)
3558 locate->size.var = size_binop (MINUS_EXPR,
3559 size_binop (MINUS_EXPR,
3560 ssize_int (0),
3561 initial_offset_ptr->var),
3562 locate->slot_offset.var);
3563
3564 /* Pad_below needs the pre-rounded size to know how much to pad
3565 below. */
3566 locate->offset = locate->slot_offset;
3567 if (where_pad == downward)
3568 pad_below (&locate->offset, passed_mode, sizetree);
3569
3570 #else /* !ARGS_GROW_DOWNWARD */
3571 if (!in_regs
3572 #ifdef REG_PARM_STACK_SPACE
3573 || REG_PARM_STACK_SPACE (fndecl) > 0
3574 #endif
3575 )
3576 pad_to_arg_alignment (initial_offset_ptr, boundary,
3577 &locate->alignment_pad);
3578 locate->slot_offset = *initial_offset_ptr;
3579
3580 #ifdef PUSH_ROUNDING
3581 if (passed_mode != BLKmode)
3582 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3583 #endif
3584
3585 /* Pad_below needs the pre-rounded size to know how much to pad below
3586 so this must be done before rounding up. */
3587 locate->offset = locate->slot_offset;
3588 if (where_pad == downward)
3589 pad_below (&locate->offset, passed_mode, sizetree);
3590
3591 if (where_pad != none
3592 && (!host_integerp (sizetree, 1)
3593 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3594 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3595
3596 ADD_PARM_SIZE (locate->size, sizetree);
3597
3598 locate->size.constant -= part_size_in_regs;
3599 #endif /* ARGS_GROW_DOWNWARD */
3600
3601 #ifdef FUNCTION_ARG_OFFSET
3602 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3603 #endif
3604 }
3605
3606 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3607 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3608
3609 static void
3610 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3611 struct args_size *alignment_pad)
3612 {
3613 tree save_var = NULL_TREE;
3614 HOST_WIDE_INT save_constant = 0;
3615 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3616 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3617
3618 #ifdef SPARC_STACK_BOUNDARY_HACK
3619 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3620 the real alignment of %sp. However, when it does this, the
3621 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3622 if (SPARC_STACK_BOUNDARY_HACK)
3623 sp_offset = 0;
3624 #endif
3625
3626 if (boundary > PARM_BOUNDARY)
3627 {
3628 save_var = offset_ptr->var;
3629 save_constant = offset_ptr->constant;
3630 }
3631
3632 alignment_pad->var = NULL_TREE;
3633 alignment_pad->constant = 0;
3634
3635 if (boundary > BITS_PER_UNIT)
3636 {
3637 if (offset_ptr->var)
3638 {
3639 tree sp_offset_tree = ssize_int (sp_offset);
3640 tree offset = size_binop (PLUS_EXPR,
3641 ARGS_SIZE_TREE (*offset_ptr),
3642 sp_offset_tree);
3643 #ifdef ARGS_GROW_DOWNWARD
3644 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3645 #else
3646 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3647 #endif
3648
3649 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3650 /* ARGS_SIZE_TREE includes constant term. */
3651 offset_ptr->constant = 0;
3652 if (boundary > PARM_BOUNDARY)
3653 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3654 save_var);
3655 }
3656 else
3657 {
3658 offset_ptr->constant = -sp_offset +
3659 #ifdef ARGS_GROW_DOWNWARD
3660 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3661 #else
3662 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3663 #endif
3664 if (boundary > PARM_BOUNDARY)
3665 alignment_pad->constant = offset_ptr->constant - save_constant;
3666 }
3667 }
3668 }
3669
3670 static void
3671 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3672 {
3673 if (passed_mode != BLKmode)
3674 {
3675 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3676 offset_ptr->constant
3677 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3678 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3679 - GET_MODE_SIZE (passed_mode));
3680 }
3681 else
3682 {
3683 if (TREE_CODE (sizetree) != INTEGER_CST
3684 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3685 {
3686 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3687 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3688 /* Add it in. */
3689 ADD_PARM_SIZE (*offset_ptr, s2);
3690 SUB_PARM_SIZE (*offset_ptr, sizetree);
3691 }
3692 }
3693 }
3694 \f
3695
3696 /* True if register REGNO was alive at a place where `setjmp' was
3697 called and was set more than once or is an argument. Such regs may
3698 be clobbered by `longjmp'. */
3699
3700 static bool
3701 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3702 {
3703 /* There appear to be cases where some local vars never reach the
3704 backend but have bogus regnos. */
3705 if (regno >= max_reg_num ())
3706 return false;
3707
3708 return ((REG_N_SETS (regno) > 1
3709 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3710 && REGNO_REG_SET_P (setjmp_crosses, regno));
3711 }
3712
3713 /* Walk the tree of blocks describing the binding levels within a
3714 function and warn about variables the might be killed by setjmp or
3715 vfork. This is done after calling flow_analysis before register
3716 allocation since that will clobber the pseudo-regs to hard
3717 regs. */
3718
3719 static void
3720 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3721 {
3722 tree decl, sub;
3723
3724 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3725 {
3726 if (TREE_CODE (decl) == VAR_DECL
3727 && DECL_RTL_SET_P (decl)
3728 && REG_P (DECL_RTL (decl))
3729 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3730 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3731 " %<longjmp%> or %<vfork%>", decl);
3732 }
3733
3734 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3735 setjmp_vars_warning (setjmp_crosses, sub);
3736 }
3737
3738 /* Do the appropriate part of setjmp_vars_warning
3739 but for arguments instead of local variables. */
3740
3741 static void
3742 setjmp_args_warning (bitmap setjmp_crosses)
3743 {
3744 tree decl;
3745 for (decl = DECL_ARGUMENTS (current_function_decl);
3746 decl; decl = TREE_CHAIN (decl))
3747 if (DECL_RTL (decl) != 0
3748 && REG_P (DECL_RTL (decl))
3749 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3750 warning (OPT_Wclobbered,
3751 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3752 decl);
3753 }
3754
3755 /* Generate warning messages for variables live across setjmp. */
3756
3757 void
3758 generate_setjmp_warnings (void)
3759 {
3760 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3761
3762 if (n_basic_blocks == NUM_FIXED_BLOCKS
3763 || bitmap_empty_p (setjmp_crosses))
3764 return;
3765
3766 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3767 setjmp_args_warning (setjmp_crosses);
3768 }
3769
3770 \f
3771 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3772 and create duplicate blocks. */
3773 /* ??? Need an option to either create block fragments or to create
3774 abstract origin duplicates of a source block. It really depends
3775 on what optimization has been performed. */
3776
3777 void
3778 reorder_blocks (void)
3779 {
3780 tree block = DECL_INITIAL (current_function_decl);
3781 VEC(tree,heap) *block_stack;
3782
3783 if (block == NULL_TREE)
3784 return;
3785
3786 block_stack = VEC_alloc (tree, heap, 10);
3787
3788 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3789 clear_block_marks (block);
3790
3791 /* Prune the old trees away, so that they don't get in the way. */
3792 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3793 BLOCK_CHAIN (block) = NULL_TREE;
3794
3795 /* Recreate the block tree from the note nesting. */
3796 reorder_blocks_1 (get_insns (), block, &block_stack);
3797 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3798
3799 VEC_free (tree, heap, block_stack);
3800 }
3801
3802 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3803
3804 void
3805 clear_block_marks (tree block)
3806 {
3807 while (block)
3808 {
3809 TREE_ASM_WRITTEN (block) = 0;
3810 clear_block_marks (BLOCK_SUBBLOCKS (block));
3811 block = BLOCK_CHAIN (block);
3812 }
3813 }
3814
3815 static void
3816 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3817 {
3818 rtx insn;
3819
3820 for (insn = insns; insn; insn = NEXT_INSN (insn))
3821 {
3822 if (NOTE_P (insn))
3823 {
3824 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3825 {
3826 tree block = NOTE_BLOCK (insn);
3827 tree origin;
3828
3829 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3830 ? BLOCK_FRAGMENT_ORIGIN (block)
3831 : block);
3832
3833 /* If we have seen this block before, that means it now
3834 spans multiple address regions. Create a new fragment. */
3835 if (TREE_ASM_WRITTEN (block))
3836 {
3837 tree new_block = copy_node (block);
3838
3839 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3840 BLOCK_FRAGMENT_CHAIN (new_block)
3841 = BLOCK_FRAGMENT_CHAIN (origin);
3842 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3843
3844 NOTE_BLOCK (insn) = new_block;
3845 block = new_block;
3846 }
3847
3848 BLOCK_SUBBLOCKS (block) = 0;
3849 TREE_ASM_WRITTEN (block) = 1;
3850 /* When there's only one block for the entire function,
3851 current_block == block and we mustn't do this, it
3852 will cause infinite recursion. */
3853 if (block != current_block)
3854 {
3855 if (block != origin)
3856 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3857
3858 BLOCK_SUPERCONTEXT (block) = current_block;
3859 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3860 BLOCK_SUBBLOCKS (current_block) = block;
3861 current_block = origin;
3862 }
3863 VEC_safe_push (tree, heap, *p_block_stack, block);
3864 }
3865 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3866 {
3867 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3868 BLOCK_SUBBLOCKS (current_block)
3869 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3870 current_block = BLOCK_SUPERCONTEXT (current_block);
3871 }
3872 }
3873 }
3874 }
3875
3876 /* Reverse the order of elements in the chain T of blocks,
3877 and return the new head of the chain (old last element). */
3878
3879 tree
3880 blocks_nreverse (tree t)
3881 {
3882 tree prev = 0, decl, next;
3883 for (decl = t; decl; decl = next)
3884 {
3885 next = BLOCK_CHAIN (decl);
3886 BLOCK_CHAIN (decl) = prev;
3887 prev = decl;
3888 }
3889 return prev;
3890 }
3891
3892 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3893 non-NULL, list them all into VECTOR, in a depth-first preorder
3894 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3895 blocks. */
3896
3897 static int
3898 all_blocks (tree block, tree *vector)
3899 {
3900 int n_blocks = 0;
3901
3902 while (block)
3903 {
3904 TREE_ASM_WRITTEN (block) = 0;
3905
3906 /* Record this block. */
3907 if (vector)
3908 vector[n_blocks] = block;
3909
3910 ++n_blocks;
3911
3912 /* Record the subblocks, and their subblocks... */
3913 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3914 vector ? vector + n_blocks : 0);
3915 block = BLOCK_CHAIN (block);
3916 }
3917
3918 return n_blocks;
3919 }
3920
3921 /* Return a vector containing all the blocks rooted at BLOCK. The
3922 number of elements in the vector is stored in N_BLOCKS_P. The
3923 vector is dynamically allocated; it is the caller's responsibility
3924 to call `free' on the pointer returned. */
3925
3926 static tree *
3927 get_block_vector (tree block, int *n_blocks_p)
3928 {
3929 tree *block_vector;
3930
3931 *n_blocks_p = all_blocks (block, NULL);
3932 block_vector = XNEWVEC (tree, *n_blocks_p);
3933 all_blocks (block, block_vector);
3934
3935 return block_vector;
3936 }
3937
3938 static GTY(()) int next_block_index = 2;
3939
3940 /* Set BLOCK_NUMBER for all the blocks in FN. */
3941
3942 void
3943 number_blocks (tree fn)
3944 {
3945 int i;
3946 int n_blocks;
3947 tree *block_vector;
3948
3949 /* For SDB and XCOFF debugging output, we start numbering the blocks
3950 from 1 within each function, rather than keeping a running
3951 count. */
3952 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3953 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3954 next_block_index = 1;
3955 #endif
3956
3957 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3958
3959 /* The top-level BLOCK isn't numbered at all. */
3960 for (i = 1; i < n_blocks; ++i)
3961 /* We number the blocks from two. */
3962 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3963
3964 free (block_vector);
3965
3966 return;
3967 }
3968
3969 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3970
3971 tree
3972 debug_find_var_in_block_tree (tree var, tree block)
3973 {
3974 tree t;
3975
3976 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3977 if (t == var)
3978 return block;
3979
3980 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3981 {
3982 tree ret = debug_find_var_in_block_tree (var, t);
3983 if (ret)
3984 return ret;
3985 }
3986
3987 return NULL_TREE;
3988 }
3989 \f
3990 /* Keep track of whether we're in a dummy function context. If we are,
3991 we don't want to invoke the set_current_function hook, because we'll
3992 get into trouble if the hook calls target_reinit () recursively or
3993 when the initial initialization is not yet complete. */
3994
3995 static bool in_dummy_function;
3996
3997 /* Invoke the target hook when setting cfun. Update the optimization options
3998 if the function uses different options than the default. */
3999
4000 static void
4001 invoke_set_current_function_hook (tree fndecl)
4002 {
4003 if (!in_dummy_function)
4004 {
4005 tree opts = ((fndecl)
4006 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4007 : optimization_default_node);
4008
4009 if (!opts)
4010 opts = optimization_default_node;
4011
4012 /* Change optimization options if needed. */
4013 if (optimization_current_node != opts)
4014 {
4015 optimization_current_node = opts;
4016 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4017 }
4018
4019 targetm.set_current_function (fndecl);
4020 }
4021 }
4022
4023 /* cfun should never be set directly; use this function. */
4024
4025 void
4026 set_cfun (struct function *new_cfun)
4027 {
4028 if (cfun != new_cfun)
4029 {
4030 cfun = new_cfun;
4031 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4032 }
4033 }
4034
4035 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4036
4037 static VEC(function_p,heap) *cfun_stack;
4038
4039 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4040
4041 void
4042 push_cfun (struct function *new_cfun)
4043 {
4044 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4045 set_cfun (new_cfun);
4046 }
4047
4048 /* Pop cfun from the stack. */
4049
4050 void
4051 pop_cfun (void)
4052 {
4053 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4054 set_cfun (new_cfun);
4055 }
4056
4057 /* Return value of funcdef and increase it. */
4058 int
4059 get_next_funcdef_no (void)
4060 {
4061 return funcdef_no++;
4062 }
4063
4064 /* Allocate a function structure for FNDECL and set its contents
4065 to the defaults. Set cfun to the newly-allocated object.
4066 Some of the helper functions invoked during initialization assume
4067 that cfun has already been set. Therefore, assign the new object
4068 directly into cfun and invoke the back end hook explicitly at the
4069 very end, rather than initializing a temporary and calling set_cfun
4070 on it.
4071
4072 ABSTRACT_P is true if this is a function that will never be seen by
4073 the middle-end. Such functions are front-end concepts (like C++
4074 function templates) that do not correspond directly to functions
4075 placed in object files. */
4076
4077 void
4078 allocate_struct_function (tree fndecl, bool abstract_p)
4079 {
4080 tree result;
4081 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4082
4083 cfun = GGC_CNEW (struct function);
4084
4085 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
4086
4087 init_eh_for_function ();
4088
4089 if (init_machine_status)
4090 cfun->machine = (*init_machine_status) ();
4091
4092 #ifdef OVERRIDE_ABI_FORMAT
4093 OVERRIDE_ABI_FORMAT (fndecl);
4094 #endif
4095
4096 invoke_set_current_function_hook (fndecl);
4097
4098 if (fndecl != NULL_TREE)
4099 {
4100 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4101 cfun->decl = fndecl;
4102 current_function_funcdef_no = get_next_funcdef_no ();
4103
4104 result = DECL_RESULT (fndecl);
4105 if (!abstract_p && aggregate_value_p (result, fndecl))
4106 {
4107 #ifdef PCC_STATIC_STRUCT_RETURN
4108 cfun->returns_pcc_struct = 1;
4109 #endif
4110 cfun->returns_struct = 1;
4111 }
4112
4113 cfun->stdarg
4114 = (fntype
4115 && TYPE_ARG_TYPES (fntype) != 0
4116 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4117 != void_type_node));
4118
4119 /* Assume all registers in stdarg functions need to be saved. */
4120 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4121 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4122 }
4123 }
4124
4125 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4126 instead of just setting it. */
4127
4128 void
4129 push_struct_function (tree fndecl)
4130 {
4131 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4132 allocate_struct_function (fndecl, false);
4133 }
4134
4135 /* Reset cfun, and other non-struct-function variables to defaults as
4136 appropriate for emitting rtl at the start of a function. */
4137
4138 static void
4139 prepare_function_start (void)
4140 {
4141 gcc_assert (!crtl->emit.x_last_insn);
4142 init_temp_slots ();
4143 init_emit ();
4144 init_varasm_status ();
4145 init_expr ();
4146 default_rtl_profile ();
4147
4148 cse_not_expected = ! optimize;
4149
4150 /* Caller save not needed yet. */
4151 caller_save_needed = 0;
4152
4153 /* We haven't done register allocation yet. */
4154 reg_renumber = 0;
4155
4156 /* Indicate that we have not instantiated virtual registers yet. */
4157 virtuals_instantiated = 0;
4158
4159 /* Indicate that we want CONCATs now. */
4160 generating_concat_p = 1;
4161
4162 /* Indicate we have no need of a frame pointer yet. */
4163 frame_pointer_needed = 0;
4164 }
4165
4166 /* Initialize the rtl expansion mechanism so that we can do simple things
4167 like generate sequences. This is used to provide a context during global
4168 initialization of some passes. You must call expand_dummy_function_end
4169 to exit this context. */
4170
4171 void
4172 init_dummy_function_start (void)
4173 {
4174 gcc_assert (!in_dummy_function);
4175 in_dummy_function = true;
4176 push_struct_function (NULL_TREE);
4177 prepare_function_start ();
4178 }
4179
4180 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4181 and initialize static variables for generating RTL for the statements
4182 of the function. */
4183
4184 void
4185 init_function_start (tree subr)
4186 {
4187 if (subr && DECL_STRUCT_FUNCTION (subr))
4188 set_cfun (DECL_STRUCT_FUNCTION (subr));
4189 else
4190 allocate_struct_function (subr, false);
4191 prepare_function_start ();
4192
4193 /* Warn if this value is an aggregate type,
4194 regardless of which calling convention we are using for it. */
4195 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4196 warning (OPT_Waggregate_return, "function returns an aggregate");
4197 }
4198
4199 /* Make sure all values used by the optimization passes have sane
4200 defaults. */
4201 unsigned int
4202 init_function_for_compilation (void)
4203 {
4204 reg_renumber = 0;
4205
4206 /* No prologue/epilogue insns yet. Make sure that these vectors are
4207 empty. */
4208 gcc_assert (VEC_length (int, prologue) == 0);
4209 gcc_assert (VEC_length (int, epilogue) == 0);
4210 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
4211 return 0;
4212 }
4213
4214 struct rtl_opt_pass pass_init_function =
4215 {
4216 {
4217 RTL_PASS,
4218 NULL, /* name */
4219 NULL, /* gate */
4220 init_function_for_compilation, /* execute */
4221 NULL, /* sub */
4222 NULL, /* next */
4223 0, /* static_pass_number */
4224 TV_NONE, /* tv_id */
4225 0, /* properties_required */
4226 0, /* properties_provided */
4227 0, /* properties_destroyed */
4228 0, /* todo_flags_start */
4229 0 /* todo_flags_finish */
4230 }
4231 };
4232
4233
4234 void
4235 expand_main_function (void)
4236 {
4237 #if (defined(INVOKE__main) \
4238 || (!defined(HAS_INIT_SECTION) \
4239 && !defined(INIT_SECTION_ASM_OP) \
4240 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4241 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4242 #endif
4243 }
4244 \f
4245 /* Expand code to initialize the stack_protect_guard. This is invoked at
4246 the beginning of a function to be protected. */
4247
4248 #ifndef HAVE_stack_protect_set
4249 # define HAVE_stack_protect_set 0
4250 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4251 #endif
4252
4253 void
4254 stack_protect_prologue (void)
4255 {
4256 tree guard_decl = targetm.stack_protect_guard ();
4257 rtx x, y;
4258
4259 /* Avoid expand_expr here, because we don't want guard_decl pulled
4260 into registers unless absolutely necessary. And we know that
4261 crtl->stack_protect_guard is a local stack slot, so this skips
4262 all the fluff. */
4263 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4264 y = validize_mem (DECL_RTL (guard_decl));
4265
4266 /* Allow the target to copy from Y to X without leaking Y into a
4267 register. */
4268 if (HAVE_stack_protect_set)
4269 {
4270 rtx insn = gen_stack_protect_set (x, y);
4271 if (insn)
4272 {
4273 emit_insn (insn);
4274 return;
4275 }
4276 }
4277
4278 /* Otherwise do a straight move. */
4279 emit_move_insn (x, y);
4280 }
4281
4282 /* Expand code to verify the stack_protect_guard. This is invoked at
4283 the end of a function to be protected. */
4284
4285 #ifndef HAVE_stack_protect_test
4286 # define HAVE_stack_protect_test 0
4287 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4288 #endif
4289
4290 void
4291 stack_protect_epilogue (void)
4292 {
4293 tree guard_decl = targetm.stack_protect_guard ();
4294 rtx label = gen_label_rtx ();
4295 rtx x, y, tmp;
4296
4297 /* Avoid expand_expr here, because we don't want guard_decl pulled
4298 into registers unless absolutely necessary. And we know that
4299 crtl->stack_protect_guard is a local stack slot, so this skips
4300 all the fluff. */
4301 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4302 y = validize_mem (DECL_RTL (guard_decl));
4303
4304 /* Allow the target to compare Y with X without leaking either into
4305 a register. */
4306 switch (HAVE_stack_protect_test != 0)
4307 {
4308 case 1:
4309 tmp = gen_stack_protect_test (x, y, label);
4310 if (tmp)
4311 {
4312 emit_insn (tmp);
4313 break;
4314 }
4315 /* FALLTHRU */
4316
4317 default:
4318 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4319 break;
4320 }
4321
4322 /* The noreturn predictor has been moved to the tree level. The rtl-level
4323 predictors estimate this branch about 20%, which isn't enough to get
4324 things moved out of line. Since this is the only extant case of adding
4325 a noreturn function at the rtl level, it doesn't seem worth doing ought
4326 except adding the prediction by hand. */
4327 tmp = get_last_insn ();
4328 if (JUMP_P (tmp))
4329 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4330
4331 expand_expr_stmt (targetm.stack_protect_fail ());
4332 emit_label (label);
4333 }
4334 \f
4335 /* Start the RTL for a new function, and set variables used for
4336 emitting RTL.
4337 SUBR is the FUNCTION_DECL node.
4338 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4339 the function's parameters, which must be run at any return statement. */
4340
4341 void
4342 expand_function_start (tree subr)
4343 {
4344 /* Make sure volatile mem refs aren't considered
4345 valid operands of arithmetic insns. */
4346 init_recog_no_volatile ();
4347
4348 crtl->profile
4349 = (profile_flag
4350 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4351
4352 crtl->limit_stack
4353 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4354
4355 /* Make the label for return statements to jump to. Do not special
4356 case machines with special return instructions -- they will be
4357 handled later during jump, ifcvt, or epilogue creation. */
4358 return_label = gen_label_rtx ();
4359
4360 /* Initialize rtx used to return the value. */
4361 /* Do this before assign_parms so that we copy the struct value address
4362 before any library calls that assign parms might generate. */
4363
4364 /* Decide whether to return the value in memory or in a register. */
4365 if (aggregate_value_p (DECL_RESULT (subr), subr))
4366 {
4367 /* Returning something that won't go in a register. */
4368 rtx value_address = 0;
4369
4370 #ifdef PCC_STATIC_STRUCT_RETURN
4371 if (cfun->returns_pcc_struct)
4372 {
4373 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4374 value_address = assemble_static_space (size);
4375 }
4376 else
4377 #endif
4378 {
4379 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4380 /* Expect to be passed the address of a place to store the value.
4381 If it is passed as an argument, assign_parms will take care of
4382 it. */
4383 if (sv)
4384 {
4385 value_address = gen_reg_rtx (Pmode);
4386 emit_move_insn (value_address, sv);
4387 }
4388 }
4389 if (value_address)
4390 {
4391 rtx x = value_address;
4392 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4393 {
4394 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4395 set_mem_attributes (x, DECL_RESULT (subr), 1);
4396 }
4397 SET_DECL_RTL (DECL_RESULT (subr), x);
4398 }
4399 }
4400 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4401 /* If return mode is void, this decl rtl should not be used. */
4402 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4403 else
4404 {
4405 /* Compute the return values into a pseudo reg, which we will copy
4406 into the true return register after the cleanups are done. */
4407 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4408 if (TYPE_MODE (return_type) != BLKmode
4409 && targetm.calls.return_in_msb (return_type))
4410 /* expand_function_end will insert the appropriate padding in
4411 this case. Use the return value's natural (unpadded) mode
4412 within the function proper. */
4413 SET_DECL_RTL (DECL_RESULT (subr),
4414 gen_reg_rtx (TYPE_MODE (return_type)));
4415 else
4416 {
4417 /* In order to figure out what mode to use for the pseudo, we
4418 figure out what the mode of the eventual return register will
4419 actually be, and use that. */
4420 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4421
4422 /* Structures that are returned in registers are not
4423 aggregate_value_p, so we may see a PARALLEL or a REG. */
4424 if (REG_P (hard_reg))
4425 SET_DECL_RTL (DECL_RESULT (subr),
4426 gen_reg_rtx (GET_MODE (hard_reg)));
4427 else
4428 {
4429 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4430 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4431 }
4432 }
4433
4434 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4435 result to the real return register(s). */
4436 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4437 }
4438
4439 /* Initialize rtx for parameters and local variables.
4440 In some cases this requires emitting insns. */
4441 assign_parms (subr);
4442
4443 /* If function gets a static chain arg, store it. */
4444 if (cfun->static_chain_decl)
4445 {
4446 tree parm = cfun->static_chain_decl;
4447 rtx local = gen_reg_rtx (Pmode);
4448
4449 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4450 SET_DECL_RTL (parm, local);
4451 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4452
4453 emit_move_insn (local, static_chain_incoming_rtx);
4454 }
4455
4456 /* If the function receives a non-local goto, then store the
4457 bits we need to restore the frame pointer. */
4458 if (cfun->nonlocal_goto_save_area)
4459 {
4460 tree t_save;
4461 rtx r_save;
4462
4463 /* ??? We need to do this save early. Unfortunately here is
4464 before the frame variable gets declared. Help out... */
4465 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4466 if (!DECL_RTL_SET_P (var))
4467 expand_decl (var);
4468
4469 t_save = build4 (ARRAY_REF, ptr_type_node,
4470 cfun->nonlocal_goto_save_area,
4471 integer_zero_node, NULL_TREE, NULL_TREE);
4472 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4473 r_save = convert_memory_address (Pmode, r_save);
4474
4475 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4476 update_nonlocal_goto_save_area ();
4477 }
4478
4479 /* The following was moved from init_function_start.
4480 The move is supposed to make sdb output more accurate. */
4481 /* Indicate the beginning of the function body,
4482 as opposed to parm setup. */
4483 emit_note (NOTE_INSN_FUNCTION_BEG);
4484
4485 gcc_assert (NOTE_P (get_last_insn ()));
4486
4487 parm_birth_insn = get_last_insn ();
4488
4489 if (crtl->profile)
4490 {
4491 #ifdef PROFILE_HOOK
4492 PROFILE_HOOK (current_function_funcdef_no);
4493 #endif
4494 }
4495
4496 /* After the display initializations is where the stack checking
4497 probe should go. */
4498 if(flag_stack_check)
4499 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4500
4501 /* Make sure there is a line number after the function entry setup code. */
4502 force_next_line_note ();
4503 }
4504 \f
4505 /* Undo the effects of init_dummy_function_start. */
4506 void
4507 expand_dummy_function_end (void)
4508 {
4509 gcc_assert (in_dummy_function);
4510
4511 /* End any sequences that failed to be closed due to syntax errors. */
4512 while (in_sequence_p ())
4513 end_sequence ();
4514
4515 /* Outside function body, can't compute type's actual size
4516 until next function's body starts. */
4517
4518 free_after_parsing (cfun);
4519 free_after_compilation (cfun);
4520 pop_cfun ();
4521 in_dummy_function = false;
4522 }
4523
4524 /* Call DOIT for each hard register used as a return value from
4525 the current function. */
4526
4527 void
4528 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4529 {
4530 rtx outgoing = crtl->return_rtx;
4531
4532 if (! outgoing)
4533 return;
4534
4535 if (REG_P (outgoing))
4536 (*doit) (outgoing, arg);
4537 else if (GET_CODE (outgoing) == PARALLEL)
4538 {
4539 int i;
4540
4541 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4542 {
4543 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4544
4545 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4546 (*doit) (x, arg);
4547 }
4548 }
4549 }
4550
4551 static void
4552 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4553 {
4554 emit_clobber (reg);
4555 }
4556
4557 void
4558 clobber_return_register (void)
4559 {
4560 diddle_return_value (do_clobber_return_reg, NULL);
4561
4562 /* In case we do use pseudo to return value, clobber it too. */
4563 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4564 {
4565 tree decl_result = DECL_RESULT (current_function_decl);
4566 rtx decl_rtl = DECL_RTL (decl_result);
4567 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4568 {
4569 do_clobber_return_reg (decl_rtl, NULL);
4570 }
4571 }
4572 }
4573
4574 static void
4575 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4576 {
4577 emit_use (reg);
4578 }
4579
4580 static void
4581 use_return_register (void)
4582 {
4583 diddle_return_value (do_use_return_reg, NULL);
4584 }
4585
4586 /* Possibly warn about unused parameters. */
4587 void
4588 do_warn_unused_parameter (tree fn)
4589 {
4590 tree decl;
4591
4592 for (decl = DECL_ARGUMENTS (fn);
4593 decl; decl = TREE_CHAIN (decl))
4594 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4595 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4596 && !TREE_NO_WARNING (decl))
4597 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4598 }
4599
4600 static GTY(()) rtx initial_trampoline;
4601
4602 /* Generate RTL for the end of the current function. */
4603
4604 void
4605 expand_function_end (void)
4606 {
4607 rtx clobber_after;
4608
4609 /* If arg_pointer_save_area was referenced only from a nested
4610 function, we will not have initialized it yet. Do that now. */
4611 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4612 get_arg_pointer_save_area ();
4613
4614 /* If we are doing generic stack checking and this function makes calls,
4615 do a stack probe at the start of the function to ensure we have enough
4616 space for another stack frame. */
4617 if (flag_stack_check == GENERIC_STACK_CHECK)
4618 {
4619 rtx insn, seq;
4620
4621 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4622 if (CALL_P (insn))
4623 {
4624 start_sequence ();
4625 probe_stack_range (STACK_OLD_CHECK_PROTECT,
4626 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4627 seq = get_insns ();
4628 end_sequence ();
4629 emit_insn_before (seq, stack_check_probe_note);
4630 break;
4631 }
4632 }
4633
4634 /* End any sequences that failed to be closed due to syntax errors. */
4635 while (in_sequence_p ())
4636 end_sequence ();
4637
4638 clear_pending_stack_adjust ();
4639 do_pending_stack_adjust ();
4640
4641 /* Output a linenumber for the end of the function.
4642 SDB depends on this. */
4643 force_next_line_note ();
4644 set_curr_insn_source_location (input_location);
4645
4646 /* Before the return label (if any), clobber the return
4647 registers so that they are not propagated live to the rest of
4648 the function. This can only happen with functions that drop
4649 through; if there had been a return statement, there would
4650 have either been a return rtx, or a jump to the return label.
4651
4652 We delay actual code generation after the current_function_value_rtx
4653 is computed. */
4654 clobber_after = get_last_insn ();
4655
4656 /* Output the label for the actual return from the function. */
4657 emit_label (return_label);
4658
4659 if (USING_SJLJ_EXCEPTIONS)
4660 {
4661 /* Let except.c know where it should emit the call to unregister
4662 the function context for sjlj exceptions. */
4663 if (flag_exceptions)
4664 sjlj_emit_function_exit_after (get_last_insn ());
4665 }
4666 else
4667 {
4668 /* We want to ensure that instructions that may trap are not
4669 moved into the epilogue by scheduling, because we don't
4670 always emit unwind information for the epilogue. */
4671 if (flag_non_call_exceptions)
4672 emit_insn (gen_blockage ());
4673 }
4674
4675 /* If this is an implementation of throw, do what's necessary to
4676 communicate between __builtin_eh_return and the epilogue. */
4677 expand_eh_return ();
4678
4679 /* If scalar return value was computed in a pseudo-reg, or was a named
4680 return value that got dumped to the stack, copy that to the hard
4681 return register. */
4682 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4683 {
4684 tree decl_result = DECL_RESULT (current_function_decl);
4685 rtx decl_rtl = DECL_RTL (decl_result);
4686
4687 if (REG_P (decl_rtl)
4688 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4689 : DECL_REGISTER (decl_result))
4690 {
4691 rtx real_decl_rtl = crtl->return_rtx;
4692
4693 /* This should be set in assign_parms. */
4694 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4695
4696 /* If this is a BLKmode structure being returned in registers,
4697 then use the mode computed in expand_return. Note that if
4698 decl_rtl is memory, then its mode may have been changed,
4699 but that crtl->return_rtx has not. */
4700 if (GET_MODE (real_decl_rtl) == BLKmode)
4701 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4702
4703 /* If a non-BLKmode return value should be padded at the least
4704 significant end of the register, shift it left by the appropriate
4705 amount. BLKmode results are handled using the group load/store
4706 machinery. */
4707 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4708 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4709 {
4710 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4711 REGNO (real_decl_rtl)),
4712 decl_rtl);
4713 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4714 }
4715 /* If a named return value dumped decl_return to memory, then
4716 we may need to re-do the PROMOTE_MODE signed/unsigned
4717 extension. */
4718 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4719 {
4720 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4721
4722 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4723 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4724 &unsignedp, 1);
4725
4726 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4727 }
4728 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4729 {
4730 /* If expand_function_start has created a PARALLEL for decl_rtl,
4731 move the result to the real return registers. Otherwise, do
4732 a group load from decl_rtl for a named return. */
4733 if (GET_CODE (decl_rtl) == PARALLEL)
4734 emit_group_move (real_decl_rtl, decl_rtl);
4735 else
4736 emit_group_load (real_decl_rtl, decl_rtl,
4737 TREE_TYPE (decl_result),
4738 int_size_in_bytes (TREE_TYPE (decl_result)));
4739 }
4740 /* In the case of complex integer modes smaller than a word, we'll
4741 need to generate some non-trivial bitfield insertions. Do that
4742 on a pseudo and not the hard register. */
4743 else if (GET_CODE (decl_rtl) == CONCAT
4744 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4745 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4746 {
4747 int old_generating_concat_p;
4748 rtx tmp;
4749
4750 old_generating_concat_p = generating_concat_p;
4751 generating_concat_p = 0;
4752 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4753 generating_concat_p = old_generating_concat_p;
4754
4755 emit_move_insn (tmp, decl_rtl);
4756 emit_move_insn (real_decl_rtl, tmp);
4757 }
4758 else
4759 emit_move_insn (real_decl_rtl, decl_rtl);
4760 }
4761 }
4762
4763 /* If returning a structure, arrange to return the address of the value
4764 in a place where debuggers expect to find it.
4765
4766 If returning a structure PCC style,
4767 the caller also depends on this value.
4768 And cfun->returns_pcc_struct is not necessarily set. */
4769 if (cfun->returns_struct
4770 || cfun->returns_pcc_struct)
4771 {
4772 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4773 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4774 rtx outgoing;
4775
4776 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4777 type = TREE_TYPE (type);
4778 else
4779 value_address = XEXP (value_address, 0);
4780
4781 outgoing = targetm.calls.function_value (build_pointer_type (type),
4782 current_function_decl, true);
4783
4784 /* Mark this as a function return value so integrate will delete the
4785 assignment and USE below when inlining this function. */
4786 REG_FUNCTION_VALUE_P (outgoing) = 1;
4787
4788 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4789 value_address = convert_memory_address (GET_MODE (outgoing),
4790 value_address);
4791
4792 emit_move_insn (outgoing, value_address);
4793
4794 /* Show return register used to hold result (in this case the address
4795 of the result. */
4796 crtl->return_rtx = outgoing;
4797 }
4798
4799 /* Emit the actual code to clobber return register. */
4800 {
4801 rtx seq;
4802
4803 start_sequence ();
4804 clobber_return_register ();
4805 seq = get_insns ();
4806 end_sequence ();
4807
4808 emit_insn_after (seq, clobber_after);
4809 }
4810
4811 /* Output the label for the naked return from the function. */
4812 if (naked_return_label)
4813 emit_label (naked_return_label);
4814
4815 /* @@@ This is a kludge. We want to ensure that instructions that
4816 may trap are not moved into the epilogue by scheduling, because
4817 we don't always emit unwind information for the epilogue. */
4818 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4819 emit_insn (gen_blockage ());
4820
4821 /* If stack protection is enabled for this function, check the guard. */
4822 if (crtl->stack_protect_guard)
4823 stack_protect_epilogue ();
4824
4825 /* If we had calls to alloca, and this machine needs
4826 an accurate stack pointer to exit the function,
4827 insert some code to save and restore the stack pointer. */
4828 if (! EXIT_IGNORE_STACK
4829 && cfun->calls_alloca)
4830 {
4831 rtx tem = 0;
4832
4833 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4834 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4835 }
4836
4837 /* ??? This should no longer be necessary since stupid is no longer with
4838 us, but there are some parts of the compiler (eg reload_combine, and
4839 sh mach_dep_reorg) that still try and compute their own lifetime info
4840 instead of using the general framework. */
4841 use_return_register ();
4842 }
4843
4844 rtx
4845 get_arg_pointer_save_area (void)
4846 {
4847 rtx ret = arg_pointer_save_area;
4848
4849 if (! ret)
4850 {
4851 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4852 arg_pointer_save_area = ret;
4853 }
4854
4855 if (! crtl->arg_pointer_save_area_init)
4856 {
4857 rtx seq;
4858
4859 /* Save the arg pointer at the beginning of the function. The
4860 generated stack slot may not be a valid memory address, so we
4861 have to check it and fix it if necessary. */
4862 start_sequence ();
4863 emit_move_insn (validize_mem (ret),
4864 crtl->args.internal_arg_pointer);
4865 seq = get_insns ();
4866 end_sequence ();
4867
4868 push_topmost_sequence ();
4869 emit_insn_after (seq, entry_of_function ());
4870 pop_topmost_sequence ();
4871 }
4872
4873 return ret;
4874 }
4875 \f
4876 /* Extend a vector that records the INSN_UIDs of INSNS
4877 (a list of one or more insns). */
4878
4879 static void
4880 record_insns (rtx insns, VEC(int,heap) **vecp)
4881 {
4882 rtx tmp;
4883
4884 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4885 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4886 }
4887
4888 /* Set the locator of the insn chain starting at INSN to LOC. */
4889 static void
4890 set_insn_locators (rtx insn, int loc)
4891 {
4892 while (insn != NULL_RTX)
4893 {
4894 if (INSN_P (insn))
4895 INSN_LOCATOR (insn) = loc;
4896 insn = NEXT_INSN (insn);
4897 }
4898 }
4899
4900 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4901 be running after reorg, SEQUENCE rtl is possible. */
4902
4903 static int
4904 contains (const_rtx insn, VEC(int,heap) **vec)
4905 {
4906 int i, j;
4907
4908 if (NONJUMP_INSN_P (insn)
4909 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4910 {
4911 int count = 0;
4912 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4913 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4914 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4915 == VEC_index (int, *vec, j))
4916 count++;
4917 return count;
4918 }
4919 else
4920 {
4921 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4922 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4923 return 1;
4924 }
4925 return 0;
4926 }
4927
4928 int
4929 prologue_epilogue_contains (const_rtx insn)
4930 {
4931 if (contains (insn, &prologue))
4932 return 1;
4933 if (contains (insn, &epilogue))
4934 return 1;
4935 return 0;
4936 }
4937
4938 int
4939 sibcall_epilogue_contains (const_rtx insn)
4940 {
4941 if (sibcall_epilogue)
4942 return contains (insn, &sibcall_epilogue);
4943 return 0;
4944 }
4945
4946 #ifdef HAVE_return
4947 /* Insert gen_return at the end of block BB. This also means updating
4948 block_for_insn appropriately. */
4949
4950 static void
4951 emit_return_into_block (basic_block bb)
4952 {
4953 emit_jump_insn_after (gen_return (), BB_END (bb));
4954 }
4955 #endif /* HAVE_return */
4956
4957 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4958 this into place with notes indicating where the prologue ends and where
4959 the epilogue begins. Update the basic block information when possible. */
4960
4961 static void
4962 thread_prologue_and_epilogue_insns (void)
4963 {
4964 int inserted = 0;
4965 edge e;
4966 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4967 rtx seq;
4968 #endif
4969 #if defined (HAVE_epilogue) || defined(HAVE_return)
4970 rtx epilogue_end = NULL_RTX;
4971 #endif
4972 edge_iterator ei;
4973
4974 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
4975 #ifdef HAVE_prologue
4976 if (HAVE_prologue)
4977 {
4978 start_sequence ();
4979 seq = gen_prologue ();
4980 emit_insn (seq);
4981
4982 /* Insert an explicit USE for the frame pointer
4983 if the profiling is on and the frame pointer is required. */
4984 if (crtl->profile && frame_pointer_needed)
4985 emit_use (hard_frame_pointer_rtx);
4986
4987 /* Retain a map of the prologue insns. */
4988 record_insns (seq, &prologue);
4989 emit_note (NOTE_INSN_PROLOGUE_END);
4990
4991 #ifndef PROFILE_BEFORE_PROLOGUE
4992 /* Ensure that instructions are not moved into the prologue when
4993 profiling is on. The call to the profiling routine can be
4994 emitted within the live range of a call-clobbered register. */
4995 if (crtl->profile)
4996 emit_insn (gen_blockage ());
4997 #endif
4998
4999 seq = get_insns ();
5000 end_sequence ();
5001 set_insn_locators (seq, prologue_locator);
5002
5003 /* Can't deal with multiple successors of the entry block
5004 at the moment. Function should always have at least one
5005 entry point. */
5006 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5007
5008 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5009 inserted = 1;
5010 }
5011 #endif
5012
5013 /* If the exit block has no non-fake predecessors, we don't need
5014 an epilogue. */
5015 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5016 if ((e->flags & EDGE_FAKE) == 0)
5017 break;
5018 if (e == NULL)
5019 goto epilogue_done;
5020
5021 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5022 #ifdef HAVE_return
5023 if (optimize && HAVE_return)
5024 {
5025 /* If we're allowed to generate a simple return instruction,
5026 then by definition we don't need a full epilogue. Examine
5027 the block that falls through to EXIT. If it does not
5028 contain any code, examine its predecessors and try to
5029 emit (conditional) return instructions. */
5030
5031 basic_block last;
5032 rtx label;
5033
5034 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5035 if (e->flags & EDGE_FALLTHRU)
5036 break;
5037 if (e == NULL)
5038 goto epilogue_done;
5039 last = e->src;
5040
5041 /* Verify that there are no active instructions in the last block. */
5042 label = BB_END (last);
5043 while (label && !LABEL_P (label))
5044 {
5045 if (active_insn_p (label))
5046 break;
5047 label = PREV_INSN (label);
5048 }
5049
5050 if (BB_HEAD (last) == label && LABEL_P (label))
5051 {
5052 edge_iterator ei2;
5053
5054 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5055 {
5056 basic_block bb = e->src;
5057 rtx jump;
5058
5059 if (bb == ENTRY_BLOCK_PTR)
5060 {
5061 ei_next (&ei2);
5062 continue;
5063 }
5064
5065 jump = BB_END (bb);
5066 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5067 {
5068 ei_next (&ei2);
5069 continue;
5070 }
5071
5072 /* If we have an unconditional jump, we can replace that
5073 with a simple return instruction. */
5074 if (simplejump_p (jump))
5075 {
5076 emit_return_into_block (bb);
5077 delete_insn (jump);
5078 }
5079
5080 /* If we have a conditional jump, we can try to replace
5081 that with a conditional return instruction. */
5082 else if (condjump_p (jump))
5083 {
5084 if (! redirect_jump (jump, 0, 0))
5085 {
5086 ei_next (&ei2);
5087 continue;
5088 }
5089
5090 /* If this block has only one successor, it both jumps
5091 and falls through to the fallthru block, so we can't
5092 delete the edge. */
5093 if (single_succ_p (bb))
5094 {
5095 ei_next (&ei2);
5096 continue;
5097 }
5098 }
5099 else
5100 {
5101 ei_next (&ei2);
5102 continue;
5103 }
5104
5105 /* Fix up the CFG for the successful change we just made. */
5106 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5107 }
5108
5109 /* Emit a return insn for the exit fallthru block. Whether
5110 this is still reachable will be determined later. */
5111
5112 emit_barrier_after (BB_END (last));
5113 emit_return_into_block (last);
5114 epilogue_end = BB_END (last);
5115 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5116 goto epilogue_done;
5117 }
5118 }
5119 #endif
5120 /* Find the edge that falls through to EXIT. Other edges may exist
5121 due to RETURN instructions, but those don't need epilogues.
5122 There really shouldn't be a mixture -- either all should have
5123 been converted or none, however... */
5124
5125 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5126 if (e->flags & EDGE_FALLTHRU)
5127 break;
5128 if (e == NULL)
5129 goto epilogue_done;
5130
5131 #ifdef HAVE_epilogue
5132 if (HAVE_epilogue)
5133 {
5134 start_sequence ();
5135 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5136 seq = gen_epilogue ();
5137 emit_jump_insn (seq);
5138
5139 /* Retain a map of the epilogue insns. */
5140 record_insns (seq, &epilogue);
5141 set_insn_locators (seq, epilogue_locator);
5142
5143 seq = get_insns ();
5144 end_sequence ();
5145
5146 insert_insn_on_edge (seq, e);
5147 inserted = 1;
5148 }
5149 else
5150 #endif
5151 {
5152 basic_block cur_bb;
5153
5154 if (! next_active_insn (BB_END (e->src)))
5155 goto epilogue_done;
5156 /* We have a fall-through edge to the exit block, the source is not
5157 at the end of the function, and there will be an assembler epilogue
5158 at the end of the function.
5159 We can't use force_nonfallthru here, because that would try to
5160 use return. Inserting a jump 'by hand' is extremely messy, so
5161 we take advantage of cfg_layout_finalize using
5162 fixup_fallthru_exit_predecessor. */
5163 cfg_layout_initialize (0);
5164 FOR_EACH_BB (cur_bb)
5165 if (cur_bb->index >= NUM_FIXED_BLOCKS
5166 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5167 cur_bb->aux = cur_bb->next_bb;
5168 cfg_layout_finalize ();
5169 }
5170 epilogue_done:
5171 default_rtl_profile ();
5172
5173 if (inserted)
5174 {
5175 commit_edge_insertions ();
5176
5177 /* The epilogue insns we inserted may cause the exit edge to no longer
5178 be fallthru. */
5179 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5180 {
5181 if (((e->flags & EDGE_FALLTHRU) != 0)
5182 && returnjump_p (BB_END (e->src)))
5183 e->flags &= ~EDGE_FALLTHRU;
5184 }
5185 }
5186
5187 #ifdef HAVE_sibcall_epilogue
5188 /* Emit sibling epilogues before any sibling call sites. */
5189 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5190 {
5191 basic_block bb = e->src;
5192 rtx insn = BB_END (bb);
5193
5194 if (!CALL_P (insn)
5195 || ! SIBLING_CALL_P (insn))
5196 {
5197 ei_next (&ei);
5198 continue;
5199 }
5200
5201 start_sequence ();
5202 emit_insn (gen_sibcall_epilogue ());
5203 seq = get_insns ();
5204 end_sequence ();
5205
5206 /* Retain a map of the epilogue insns. Used in life analysis to
5207 avoid getting rid of sibcall epilogue insns. Do this before we
5208 actually emit the sequence. */
5209 record_insns (seq, &sibcall_epilogue);
5210 set_insn_locators (seq, epilogue_locator);
5211
5212 emit_insn_before (seq, insn);
5213 ei_next (&ei);
5214 }
5215 #endif
5216
5217 #ifdef HAVE_epilogue
5218 if (epilogue_end)
5219 {
5220 rtx insn, next;
5221
5222 /* Similarly, move any line notes that appear after the epilogue.
5223 There is no need, however, to be quite so anal about the existence
5224 of such a note. Also possibly move
5225 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5226 info generation. */
5227 for (insn = epilogue_end; insn; insn = next)
5228 {
5229 next = NEXT_INSN (insn);
5230 if (NOTE_P (insn)
5231 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5232 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5233 }
5234 }
5235 #endif
5236
5237 /* Threading the prologue and epilogue changes the artificial refs
5238 in the entry and exit blocks. */
5239 epilogue_completed = 1;
5240 df_update_entry_exit_and_calls ();
5241 }
5242
5243 /* Reposition the prologue-end and epilogue-begin notes after instruction
5244 scheduling and delayed branch scheduling. */
5245
5246 void
5247 reposition_prologue_and_epilogue_notes (void)
5248 {
5249 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5250 rtx insn, last, note;
5251 int len;
5252
5253 if ((len = VEC_length (int, prologue)) > 0)
5254 {
5255 last = 0, note = 0;
5256
5257 /* Scan from the beginning until we reach the last prologue insn.
5258 We apparently can't depend on basic_block_{head,end} after
5259 reorg has run. */
5260 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5261 {
5262 if (NOTE_P (insn))
5263 {
5264 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5265 note = insn;
5266 }
5267 else if (contains (insn, &prologue))
5268 {
5269 last = insn;
5270 if (--len == 0)
5271 break;
5272 }
5273 }
5274
5275 if (last)
5276 {
5277 /* Find the prologue-end note if we haven't already, and
5278 move it to just after the last prologue insn. */
5279 if (note == 0)
5280 {
5281 for (note = last; (note = NEXT_INSN (note));)
5282 if (NOTE_P (note)
5283 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5284 break;
5285 }
5286
5287 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5288 if (LABEL_P (last))
5289 last = NEXT_INSN (last);
5290 reorder_insns (note, note, last);
5291 }
5292 }
5293
5294 if ((len = VEC_length (int, epilogue)) > 0)
5295 {
5296 last = 0, note = 0;
5297
5298 /* Scan from the end until we reach the first epilogue insn.
5299 We apparently can't depend on basic_block_{head,end} after
5300 reorg has run. */
5301 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5302 {
5303 if (NOTE_P (insn))
5304 {
5305 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5306 note = insn;
5307 }
5308 else if (contains (insn, &epilogue))
5309 {
5310 last = insn;
5311 if (--len == 0)
5312 break;
5313 }
5314 }
5315
5316 if (last)
5317 {
5318 /* Find the epilogue-begin note if we haven't already, and
5319 move it to just before the first epilogue insn. */
5320 if (note == 0)
5321 {
5322 for (note = insn; (note = PREV_INSN (note));)
5323 if (NOTE_P (note)
5324 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5325 break;
5326 }
5327
5328 if (PREV_INSN (last) != note)
5329 reorder_insns (note, note, PREV_INSN (last));
5330 }
5331 }
5332 #endif /* HAVE_prologue or HAVE_epilogue */
5333 }
5334
5335 /* Returns the name of the current function. */
5336 const char *
5337 current_function_name (void)
5338 {
5339 return lang_hooks.decl_printable_name (cfun->decl, 2);
5340 }
5341 \f
5342
5343 static unsigned int
5344 rest_of_handle_check_leaf_regs (void)
5345 {
5346 #ifdef LEAF_REGISTERS
5347 current_function_uses_only_leaf_regs
5348 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5349 #endif
5350 return 0;
5351 }
5352
5353 /* Insert a TYPE into the used types hash table of CFUN. */
5354 static void
5355 used_types_insert_helper (tree type, struct function *func)
5356 {
5357 if (type != NULL && func != NULL)
5358 {
5359 void **slot;
5360
5361 if (func->used_types_hash == NULL)
5362 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5363 htab_eq_pointer, NULL);
5364 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5365 if (*slot == NULL)
5366 *slot = type;
5367 }
5368 }
5369
5370 /* Given a type, insert it into the used hash table in cfun. */
5371 void
5372 used_types_insert (tree t)
5373 {
5374 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5375 t = TREE_TYPE (t);
5376 t = TYPE_MAIN_VARIANT (t);
5377 if (debug_info_level > DINFO_LEVEL_NONE)
5378 used_types_insert_helper (t, cfun);
5379 }
5380
5381 struct rtl_opt_pass pass_leaf_regs =
5382 {
5383 {
5384 RTL_PASS,
5385 NULL, /* name */
5386 NULL, /* gate */
5387 rest_of_handle_check_leaf_regs, /* execute */
5388 NULL, /* sub */
5389 NULL, /* next */
5390 0, /* static_pass_number */
5391 TV_NONE, /* tv_id */
5392 0, /* properties_required */
5393 0, /* properties_provided */
5394 0, /* properties_destroyed */
5395 0, /* todo_flags_start */
5396 0 /* todo_flags_finish */
5397 }
5398 };
5399
5400 static unsigned int
5401 rest_of_handle_thread_prologue_and_epilogue (void)
5402 {
5403 if (optimize)
5404 cleanup_cfg (CLEANUP_EXPENSIVE);
5405 /* On some machines, the prologue and epilogue code, or parts thereof,
5406 can be represented as RTL. Doing so lets us schedule insns between
5407 it and the rest of the code and also allows delayed branch
5408 scheduling to operate in the epilogue. */
5409
5410 thread_prologue_and_epilogue_insns ();
5411 return 0;
5412 }
5413
5414 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5415 {
5416 {
5417 RTL_PASS,
5418 "pro_and_epilogue", /* name */
5419 NULL, /* gate */
5420 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5421 NULL, /* sub */
5422 NULL, /* next */
5423 0, /* static_pass_number */
5424 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5425 0, /* properties_required */
5426 0, /* properties_provided */
5427 0, /* properties_destroyed */
5428 TODO_verify_flow, /* todo_flags_start */
5429 TODO_dump_func |
5430 TODO_df_verify |
5431 TODO_df_finish | TODO_verify_rtl_sharing |
5432 TODO_ggc_collect /* todo_flags_finish */
5433 }
5434 };
5435 \f
5436
5437 /* This mini-pass fixes fall-out from SSA in asm statements that have
5438 in-out constraints. Say you start with
5439
5440 orig = inout;
5441 asm ("": "+mr" (inout));
5442 use (orig);
5443
5444 which is transformed very early to use explicit output and match operands:
5445
5446 orig = inout;
5447 asm ("": "=mr" (inout) : "0" (inout));
5448 use (orig);
5449
5450 Or, after SSA and copyprop,
5451
5452 asm ("": "=mr" (inout_2) : "0" (inout_1));
5453 use (inout_1);
5454
5455 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5456 they represent two separate values, so they will get different pseudo
5457 registers during expansion. Then, since the two operands need to match
5458 per the constraints, but use different pseudo registers, reload can
5459 only register a reload for these operands. But reloads can only be
5460 satisfied by hardregs, not by memory, so we need a register for this
5461 reload, just because we are presented with non-matching operands.
5462 So, even though we allow memory for this operand, no memory can be
5463 used for it, just because the two operands don't match. This can
5464 cause reload failures on register-starved targets.
5465
5466 So it's a symptom of reload not being able to use memory for reloads
5467 or, alternatively it's also a symptom of both operands not coming into
5468 reload as matching (in which case the pseudo could go to memory just
5469 fine, as the alternative allows it, and no reload would be necessary).
5470 We fix the latter problem here, by transforming
5471
5472 asm ("": "=mr" (inout_2) : "0" (inout_1));
5473
5474 back to
5475
5476 inout_2 = inout_1;
5477 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5478
5479 static void
5480 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5481 {
5482 int i;
5483 bool changed = false;
5484 rtx op = SET_SRC (p_sets[0]);
5485 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5486 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5487 bool *output_matched = XALLOCAVEC (bool, noutputs);
5488
5489 memset (output_matched, 0, noutputs * sizeof (bool));
5490 for (i = 0; i < ninputs; i++)
5491 {
5492 rtx input, output, insns;
5493 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5494 char *end;
5495 int match, j;
5496
5497 if (*constraint == '%')
5498 constraint++;
5499
5500 match = strtoul (constraint, &end, 10);
5501 if (end == constraint)
5502 continue;
5503
5504 gcc_assert (match < noutputs);
5505 output = SET_DEST (p_sets[match]);
5506 input = RTVEC_ELT (inputs, i);
5507 /* Only do the transformation for pseudos. */
5508 if (! REG_P (output)
5509 || rtx_equal_p (output, input)
5510 || (GET_MODE (input) != VOIDmode
5511 && GET_MODE (input) != GET_MODE (output)))
5512 continue;
5513
5514 /* We can't do anything if the output is also used as input,
5515 as we're going to overwrite it. */
5516 for (j = 0; j < ninputs; j++)
5517 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5518 break;
5519 if (j != ninputs)
5520 continue;
5521
5522 /* Avoid changing the same input several times. For
5523 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5524 only change in once (to out1), rather than changing it
5525 first to out1 and afterwards to out2. */
5526 if (i > 0)
5527 {
5528 for (j = 0; j < noutputs; j++)
5529 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5530 break;
5531 if (j != noutputs)
5532 continue;
5533 }
5534 output_matched[match] = true;
5535
5536 start_sequence ();
5537 emit_move_insn (output, input);
5538 insns = get_insns ();
5539 end_sequence ();
5540 emit_insn_before (insns, insn);
5541
5542 /* Now replace all mentions of the input with output. We can't
5543 just replace the occurrence in inputs[i], as the register might
5544 also be used in some other input (or even in an address of an
5545 output), which would mean possibly increasing the number of
5546 inputs by one (namely 'output' in addition), which might pose
5547 a too complicated problem for reload to solve. E.g. this situation:
5548
5549 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5550
5551 Here 'input' is used in two occurrences as input (once for the
5552 input operand, once for the address in the second output operand).
5553 If we would replace only the occurrence of the input operand (to
5554 make the matching) we would be left with this:
5555
5556 output = input
5557 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5558
5559 Now we suddenly have two different input values (containing the same
5560 value, but different pseudos) where we formerly had only one.
5561 With more complicated asms this might lead to reload failures
5562 which wouldn't have happen without this pass. So, iterate over
5563 all operands and replace all occurrences of the register used. */
5564 for (j = 0; j < noutputs; j++)
5565 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5566 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5567 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5568 input, output);
5569 for (j = 0; j < ninputs; j++)
5570 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5571 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5572 input, output);
5573
5574 changed = true;
5575 }
5576
5577 if (changed)
5578 df_insn_rescan (insn);
5579 }
5580
5581 static unsigned
5582 rest_of_match_asm_constraints (void)
5583 {
5584 basic_block bb;
5585 rtx insn, pat, *p_sets;
5586 int noutputs;
5587
5588 if (!crtl->has_asm_statement)
5589 return 0;
5590
5591 df_set_flags (DF_DEFER_INSN_RESCAN);
5592 FOR_EACH_BB (bb)
5593 {
5594 FOR_BB_INSNS (bb, insn)
5595 {
5596 if (!INSN_P (insn))
5597 continue;
5598
5599 pat = PATTERN (insn);
5600 if (GET_CODE (pat) == PARALLEL)
5601 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5602 else if (GET_CODE (pat) == SET)
5603 p_sets = &PATTERN (insn), noutputs = 1;
5604 else
5605 continue;
5606
5607 if (GET_CODE (*p_sets) == SET
5608 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5609 match_asm_constraints_1 (insn, p_sets, noutputs);
5610 }
5611 }
5612
5613 return TODO_df_finish;
5614 }
5615
5616 struct rtl_opt_pass pass_match_asm_constraints =
5617 {
5618 {
5619 RTL_PASS,
5620 "asmcons", /* name */
5621 NULL, /* gate */
5622 rest_of_match_asm_constraints, /* execute */
5623 NULL, /* sub */
5624 NULL, /* next */
5625 0, /* static_pass_number */
5626 TV_NONE, /* tv_id */
5627 0, /* properties_required */
5628 0, /* properties_provided */
5629 0, /* properties_destroyed */
5630 0, /* todo_flags_start */
5631 TODO_dump_func /* todo_flags_finish */
5632 }
5633 };
5634
5635
5636 #include "gt-function.h"