9e36af74d72344d9cb3c33eae0a3285e5c44d13a
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
31
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "tree-pass.h"
65 #include "predict.h"
66
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
70
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
74
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
76
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
84
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
89
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
93
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
99
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 life_analysis has run. */
103 int current_function_sp_is_unchanging;
104
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
109
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
115
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
118
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
122
123 /* The currently compiled function. */
124 struct function *cfun = 0;
125
126 DEF_VEC_I(int);
127 DEF_VEC_ALLOC_I(int,heap);
128
129 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
130 static VEC(int,heap) *prologue;
131 static VEC(int,heap) *epilogue;
132
133 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
134 in this function. */
135 static VEC(int,heap) *sibcall_epilogue;
136 \f
137 /* In order to evaluate some expressions, such as function calls returning
138 structures in memory, we need to temporarily allocate stack locations.
139 We record each allocated temporary in the following structure.
140
141 Associated with each temporary slot is a nesting level. When we pop up
142 one level, all temporaries associated with the previous level are freed.
143 Normally, all temporaries are freed after the execution of the statement
144 in which they were created. However, if we are inside a ({...}) grouping,
145 the result may be in a temporary and hence must be preserved. If the
146 result could be in a temporary, we preserve it if we can determine which
147 one it is in. If we cannot determine which temporary may contain the
148 result, all temporaries are preserved. A temporary is preserved by
149 pretending it was allocated at the previous nesting level.
150
151 Automatic variables are also assigned temporary slots, at the nesting
152 level where they are defined. They are marked a "kept" so that
153 free_temp_slots will not free them. */
154
155 struct temp_slot GTY(())
156 {
157 /* Points to next temporary slot. */
158 struct temp_slot *next;
159 /* Points to previous temporary slot. */
160 struct temp_slot *prev;
161
162 /* The rtx to used to reference the slot. */
163 rtx slot;
164 /* The rtx used to represent the address if not the address of the
165 slot above. May be an EXPR_LIST if multiple addresses exist. */
166 rtx address;
167 /* The alignment (in bits) of the slot. */
168 unsigned int align;
169 /* The size, in units, of the slot. */
170 HOST_WIDE_INT size;
171 /* The type of the object in the slot, or zero if it doesn't correspond
172 to a type. We use this to determine whether a slot can be reused.
173 It can be reused if objects of the type of the new slot will always
174 conflict with objects of the type of the old slot. */
175 tree type;
176 /* Nonzero if this temporary is currently in use. */
177 char in_use;
178 /* Nonzero if this temporary has its address taken. */
179 char addr_taken;
180 /* Nesting level at which this slot is being used. */
181 int level;
182 /* Nonzero if this should survive a call to free_temp_slots. */
183 int keep;
184 /* The offset of the slot from the frame_pointer, including extra space
185 for alignment. This info is for combine_temp_slots. */
186 HOST_WIDE_INT base_offset;
187 /* The size of the slot, including extra space for alignment. This
188 info is for combine_temp_slots. */
189 HOST_WIDE_INT full_size;
190 };
191 \f
192 /* Forward declarations. */
193
194 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
195 struct function *);
196 static struct temp_slot *find_temp_slot_from_address (rtx);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200 static void reorder_fix_fragments (tree);
201 static int all_blocks (tree, tree *);
202 static tree *get_block_vector (tree, int *);
203 extern tree debug_find_var_in_block_tree (tree, tree);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
207 static int contains (rtx, VEC(int,heap) **);
208 #ifdef HAVE_return
209 static void emit_return_into_block (basic_block, rtx);
210 #endif
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx keep_stack_depressed (rtx);
213 #endif
214 static void prepare_function_start (tree);
215 static void do_clobber_return_reg (rtx, void *);
216 static void do_use_return_reg (rtx, void *);
217 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 \f
219 /* Pointer to chain of `struct function' for containing functions. */
220 struct function *outer_function_chain;
221
222 /* Given a function decl for a containing function,
223 return the `struct function' for it. */
224
225 struct function *
226 find_function_data (tree decl)
227 {
228 struct function *p;
229
230 for (p = outer_function_chain; p; p = p->outer)
231 if (p->decl == decl)
232 return p;
233
234 gcc_unreachable ();
235 }
236
237 /* Save the current context for compilation of a nested function.
238 This is called from language-specific code. The caller should use
239 the enter_nested langhook to save any language-specific state,
240 since this function knows only about language-independent
241 variables. */
242
243 void
244 push_function_context_to (tree context ATTRIBUTE_UNUSED)
245 {
246 struct function *p;
247
248 if (cfun == 0)
249 init_dummy_function_start ();
250 p = cfun;
251
252 p->outer = outer_function_chain;
253 outer_function_chain = p;
254
255 lang_hooks.function.enter_nested (p);
256
257 cfun = 0;
258 }
259
260 void
261 push_function_context (void)
262 {
263 push_function_context_to (current_function_decl);
264 }
265
266 /* Restore the last saved context, at the end of a nested function.
267 This function is called from language-specific code. */
268
269 void
270 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
271 {
272 struct function *p = outer_function_chain;
273
274 cfun = p;
275 outer_function_chain = p->outer;
276
277 current_function_decl = p->decl;
278
279 lang_hooks.function.leave_nested (p);
280
281 /* Reset variables that have known state during rtx generation. */
282 virtuals_instantiated = 0;
283 generating_concat_p = 1;
284 }
285
286 void
287 pop_function_context (void)
288 {
289 pop_function_context_from (current_function_decl);
290 }
291
292 /* Clear out all parts of the state in F that can safely be discarded
293 after the function has been parsed, but not compiled, to let
294 garbage collection reclaim the memory. */
295
296 void
297 free_after_parsing (struct function *f)
298 {
299 /* f->expr->forced_labels is used by code generation. */
300 /* f->emit->regno_reg_rtx is used by code generation. */
301 /* f->varasm is used by code generation. */
302 /* f->eh->eh_return_stub_label is used by code generation. */
303
304 lang_hooks.function.final (f);
305 }
306
307 /* Clear out all parts of the state in F that can safely be discarded
308 after the function has been compiled, to let garbage collection
309 reclaim the memory. */
310
311 void
312 free_after_compilation (struct function *f)
313 {
314 VEC_free (int, heap, prologue);
315 VEC_free (int, heap, epilogue);
316 VEC_free (int, heap, sibcall_epilogue);
317
318 f->eh = NULL;
319 f->expr = NULL;
320 f->emit = NULL;
321 f->varasm = NULL;
322 f->machine = NULL;
323 f->cfg = NULL;
324
325 f->x_avail_temp_slots = NULL;
326 f->x_used_temp_slots = NULL;
327 f->arg_offset_rtx = NULL;
328 f->return_rtx = NULL;
329 f->internal_arg_pointer = NULL;
330 f->x_nonlocal_goto_handler_labels = NULL;
331 f->x_return_label = NULL;
332 f->x_naked_return_label = NULL;
333 f->x_stack_slot_list = NULL;
334 f->x_tail_recursion_reentry = NULL;
335 f->x_arg_pointer_save_area = NULL;
336 f->x_parm_birth_insn = NULL;
337 f->original_arg_vector = NULL;
338 f->original_decl_initial = NULL;
339 f->epilogue_delay_list = NULL;
340 }
341 \f
342 /* Allocate fixed slots in the stack frame of the current function. */
343
344 /* Return size needed for stack frame based on slots so far allocated in
345 function F.
346 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
347 the caller may have to do that. */
348
349 static HOST_WIDE_INT
350 get_func_frame_size (struct function *f)
351 {
352 if (FRAME_GROWS_DOWNWARD)
353 return -f->x_frame_offset;
354 else
355 return f->x_frame_offset;
356 }
357
358 /* Return size needed for stack frame based on slots so far allocated.
359 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
360 the caller may have to do that. */
361 HOST_WIDE_INT
362 get_frame_size (void)
363 {
364 return get_func_frame_size (cfun);
365 }
366
367 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
368 with machine mode MODE.
369
370 ALIGN controls the amount of alignment for the address of the slot:
371 0 means according to MODE,
372 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
373 -2 means use BITS_PER_UNIT,
374 positive specifies alignment boundary in bits.
375
376 We do not round to stack_boundary here.
377
378 FUNCTION specifies the function to allocate in. */
379
380 static rtx
381 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
382 struct function *function)
383 {
384 rtx x, addr;
385 int bigend_correction = 0;
386 unsigned int alignment;
387 int frame_off, frame_alignment, frame_phase;
388
389 if (align == 0)
390 {
391 tree type;
392
393 if (mode == BLKmode)
394 alignment = BIGGEST_ALIGNMENT;
395 else
396 alignment = GET_MODE_ALIGNMENT (mode);
397
398 /* Allow the target to (possibly) increase the alignment of this
399 stack slot. */
400 type = lang_hooks.types.type_for_mode (mode, 0);
401 if (type)
402 alignment = LOCAL_ALIGNMENT (type, alignment);
403
404 alignment /= BITS_PER_UNIT;
405 }
406 else if (align == -1)
407 {
408 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
409 size = CEIL_ROUND (size, alignment);
410 }
411 else if (align == -2)
412 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
413 else
414 alignment = align / BITS_PER_UNIT;
415
416 if (FRAME_GROWS_DOWNWARD)
417 function->x_frame_offset -= size;
418
419 /* Ignore alignment we can't do with expected alignment of the boundary. */
420 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
421 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
422
423 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
424 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
425
426 /* Calculate how many bytes the start of local variables is off from
427 stack alignment. */
428 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
429 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
430 frame_phase = frame_off ? frame_alignment - frame_off : 0;
431
432 /* Round the frame offset to the specified alignment. The default is
433 to always honor requests to align the stack but a port may choose to
434 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
435 if (STACK_ALIGNMENT_NEEDED
436 || mode != BLKmode
437 || size != 0)
438 {
439 /* We must be careful here, since FRAME_OFFSET might be negative and
440 division with a negative dividend isn't as well defined as we might
441 like. So we instead assume that ALIGNMENT is a power of two and
442 use logical operations which are unambiguous. */
443 if (FRAME_GROWS_DOWNWARD)
444 function->x_frame_offset
445 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
446 (unsigned HOST_WIDE_INT) alignment)
447 + frame_phase);
448 else
449 function->x_frame_offset
450 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
451 (unsigned HOST_WIDE_INT) alignment)
452 + frame_phase);
453 }
454
455 /* On a big-endian machine, if we are allocating more space than we will use,
456 use the least significant bytes of those that are allocated. */
457 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
458 bigend_correction = size - GET_MODE_SIZE (mode);
459
460 /* If we have already instantiated virtual registers, return the actual
461 address relative to the frame pointer. */
462 if (function == cfun && virtuals_instantiated)
463 addr = plus_constant (frame_pointer_rtx,
464 trunc_int_for_mode
465 (frame_offset + bigend_correction
466 + STARTING_FRAME_OFFSET, Pmode));
467 else
468 addr = plus_constant (virtual_stack_vars_rtx,
469 trunc_int_for_mode
470 (function->x_frame_offset + bigend_correction,
471 Pmode));
472
473 if (!FRAME_GROWS_DOWNWARD)
474 function->x_frame_offset += size;
475
476 x = gen_rtx_MEM (mode, addr);
477 MEM_NOTRAP_P (x) = 1;
478
479 function->x_stack_slot_list
480 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
481
482 return x;
483 }
484
485 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
486 current function. */
487
488 rtx
489 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
490 {
491 return assign_stack_local_1 (mode, size, align, cfun);
492 }
493
494 \f
495 /* Removes temporary slot TEMP from LIST. */
496
497 static void
498 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
499 {
500 if (temp->next)
501 temp->next->prev = temp->prev;
502 if (temp->prev)
503 temp->prev->next = temp->next;
504 else
505 *list = temp->next;
506
507 temp->prev = temp->next = NULL;
508 }
509
510 /* Inserts temporary slot TEMP to LIST. */
511
512 static void
513 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
514 {
515 temp->next = *list;
516 if (*list)
517 (*list)->prev = temp;
518 temp->prev = NULL;
519 *list = temp;
520 }
521
522 /* Returns the list of used temp slots at LEVEL. */
523
524 static struct temp_slot **
525 temp_slots_at_level (int level)
526 {
527
528 if (!used_temp_slots)
529 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
530
531 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
532 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
533
534 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
535 }
536
537 /* Returns the maximal temporary slot level. */
538
539 static int
540 max_slot_level (void)
541 {
542 if (!used_temp_slots)
543 return -1;
544
545 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
546 }
547
548 /* Moves temporary slot TEMP to LEVEL. */
549
550 static void
551 move_slot_to_level (struct temp_slot *temp, int level)
552 {
553 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
554 insert_slot_to_list (temp, temp_slots_at_level (level));
555 temp->level = level;
556 }
557
558 /* Make temporary slot TEMP available. */
559
560 static void
561 make_slot_available (struct temp_slot *temp)
562 {
563 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
564 insert_slot_to_list (temp, &avail_temp_slots);
565 temp->in_use = 0;
566 temp->level = -1;
567 }
568 \f
569 /* Allocate a temporary stack slot and record it for possible later
570 reuse.
571
572 MODE is the machine mode to be given to the returned rtx.
573
574 SIZE is the size in units of the space required. We do no rounding here
575 since assign_stack_local will do any required rounding.
576
577 KEEP is 1 if this slot is to be retained after a call to
578 free_temp_slots. Automatic variables for a block are allocated
579 with this flag. KEEP values of 2 or 3 were needed respectively
580 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
581 or for SAVE_EXPRs, but they are now unused.
582
583 TYPE is the type that will be used for the stack slot. */
584
585 rtx
586 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
587 int keep, tree type)
588 {
589 unsigned int align;
590 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
591 rtx slot;
592
593 /* If SIZE is -1 it means that somebody tried to allocate a temporary
594 of a variable size. */
595 gcc_assert (size != -1);
596
597 /* These are now unused. */
598 gcc_assert (keep <= 1);
599
600 if (mode == BLKmode)
601 align = BIGGEST_ALIGNMENT;
602 else
603 align = GET_MODE_ALIGNMENT (mode);
604
605 if (! type)
606 type = lang_hooks.types.type_for_mode (mode, 0);
607
608 if (type)
609 align = LOCAL_ALIGNMENT (type, align);
610
611 /* Try to find an available, already-allocated temporary of the proper
612 mode which meets the size and alignment requirements. Choose the
613 smallest one with the closest alignment. */
614 for (p = avail_temp_slots; p; p = p->next)
615 {
616 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
617 && objects_must_conflict_p (p->type, type)
618 && (best_p == 0 || best_p->size > p->size
619 || (best_p->size == p->size && best_p->align > p->align)))
620 {
621 if (p->align == align && p->size == size)
622 {
623 selected = p;
624 cut_slot_from_list (selected, &avail_temp_slots);
625 best_p = 0;
626 break;
627 }
628 best_p = p;
629 }
630 }
631
632 /* Make our best, if any, the one to use. */
633 if (best_p)
634 {
635 selected = best_p;
636 cut_slot_from_list (selected, &avail_temp_slots);
637
638 /* If there are enough aligned bytes left over, make them into a new
639 temp_slot so that the extra bytes don't get wasted. Do this only
640 for BLKmode slots, so that we can be sure of the alignment. */
641 if (GET_MODE (best_p->slot) == BLKmode)
642 {
643 int alignment = best_p->align / BITS_PER_UNIT;
644 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
645
646 if (best_p->size - rounded_size >= alignment)
647 {
648 p = ggc_alloc (sizeof (struct temp_slot));
649 p->in_use = p->addr_taken = 0;
650 p->size = best_p->size - rounded_size;
651 p->base_offset = best_p->base_offset + rounded_size;
652 p->full_size = best_p->full_size - rounded_size;
653 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
654 p->align = best_p->align;
655 p->address = 0;
656 p->type = best_p->type;
657 insert_slot_to_list (p, &avail_temp_slots);
658
659 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
660 stack_slot_list);
661
662 best_p->size = rounded_size;
663 best_p->full_size = rounded_size;
664 }
665 }
666 }
667
668 /* If we still didn't find one, make a new temporary. */
669 if (selected == 0)
670 {
671 HOST_WIDE_INT frame_offset_old = frame_offset;
672
673 p = ggc_alloc (sizeof (struct temp_slot));
674
675 /* We are passing an explicit alignment request to assign_stack_local.
676 One side effect of that is assign_stack_local will not round SIZE
677 to ensure the frame offset remains suitably aligned.
678
679 So for requests which depended on the rounding of SIZE, we go ahead
680 and round it now. We also make sure ALIGNMENT is at least
681 BIGGEST_ALIGNMENT. */
682 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
683 p->slot = assign_stack_local (mode,
684 (mode == BLKmode
685 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
686 : size),
687 align);
688
689 p->align = align;
690
691 /* The following slot size computation is necessary because we don't
692 know the actual size of the temporary slot until assign_stack_local
693 has performed all the frame alignment and size rounding for the
694 requested temporary. Note that extra space added for alignment
695 can be either above or below this stack slot depending on which
696 way the frame grows. We include the extra space if and only if it
697 is above this slot. */
698 if (FRAME_GROWS_DOWNWARD)
699 p->size = frame_offset_old - frame_offset;
700 else
701 p->size = size;
702
703 /* Now define the fields used by combine_temp_slots. */
704 if (FRAME_GROWS_DOWNWARD)
705 {
706 p->base_offset = frame_offset;
707 p->full_size = frame_offset_old - frame_offset;
708 }
709 else
710 {
711 p->base_offset = frame_offset_old;
712 p->full_size = frame_offset - frame_offset_old;
713 }
714 p->address = 0;
715
716 selected = p;
717 }
718
719 p = selected;
720 p->in_use = 1;
721 p->addr_taken = 0;
722 p->type = type;
723 p->level = temp_slot_level;
724 p->keep = keep;
725
726 pp = temp_slots_at_level (p->level);
727 insert_slot_to_list (p, pp);
728
729 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
730 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
731 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
732
733 /* If we know the alias set for the memory that will be used, use
734 it. If there's no TYPE, then we don't know anything about the
735 alias set for the memory. */
736 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
737 set_mem_align (slot, align);
738
739 /* If a type is specified, set the relevant flags. */
740 if (type != 0)
741 {
742 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
743 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
744 }
745 MEM_NOTRAP_P (slot) = 1;
746
747 return slot;
748 }
749
750 /* Allocate a temporary stack slot and record it for possible later
751 reuse. First three arguments are same as in preceding function. */
752
753 rtx
754 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
755 {
756 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
757 }
758 \f
759 /* Assign a temporary.
760 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
761 and so that should be used in error messages. In either case, we
762 allocate of the given type.
763 KEEP is as for assign_stack_temp.
764 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
765 it is 0 if a register is OK.
766 DONT_PROMOTE is 1 if we should not promote values in register
767 to wider modes. */
768
769 rtx
770 assign_temp (tree type_or_decl, int keep, int memory_required,
771 int dont_promote ATTRIBUTE_UNUSED)
772 {
773 tree type, decl;
774 enum machine_mode mode;
775 #ifdef PROMOTE_MODE
776 int unsignedp;
777 #endif
778
779 if (DECL_P (type_or_decl))
780 decl = type_or_decl, type = TREE_TYPE (decl);
781 else
782 decl = NULL, type = type_or_decl;
783
784 mode = TYPE_MODE (type);
785 #ifdef PROMOTE_MODE
786 unsignedp = TYPE_UNSIGNED (type);
787 #endif
788
789 if (mode == BLKmode || memory_required)
790 {
791 HOST_WIDE_INT size = int_size_in_bytes (type);
792 tree size_tree;
793 rtx tmp;
794
795 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
796 problems with allocating the stack space. */
797 if (size == 0)
798 size = 1;
799
800 /* Unfortunately, we don't yet know how to allocate variable-sized
801 temporaries. However, sometimes we have a fixed upper limit on
802 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
803 instead. This is the case for Chill variable-sized strings. */
804 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
805 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
806 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
807 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
808
809 /* If we still haven't been able to get a size, see if the language
810 can compute a maximum size. */
811 if (size == -1
812 && (size_tree = lang_hooks.types.max_size (type)) != 0
813 && host_integerp (size_tree, 1))
814 size = tree_low_cst (size_tree, 1);
815
816 /* The size of the temporary may be too large to fit into an integer. */
817 /* ??? Not sure this should happen except for user silliness, so limit
818 this to things that aren't compiler-generated temporaries. The
819 rest of the time we'll die in assign_stack_temp_for_type. */
820 if (decl && size == -1
821 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
822 {
823 error ("size of variable %q+D is too large", decl);
824 size = 1;
825 }
826
827 tmp = assign_stack_temp_for_type (mode, size, keep, type);
828 return tmp;
829 }
830
831 #ifdef PROMOTE_MODE
832 if (! dont_promote)
833 mode = promote_mode (type, mode, &unsignedp, 0);
834 #endif
835
836 return gen_reg_rtx (mode);
837 }
838 \f
839 /* Combine temporary stack slots which are adjacent on the stack.
840
841 This allows for better use of already allocated stack space. This is only
842 done for BLKmode slots because we can be sure that we won't have alignment
843 problems in this case. */
844
845 static void
846 combine_temp_slots (void)
847 {
848 struct temp_slot *p, *q, *next, *next_q;
849 int num_slots;
850
851 /* We can't combine slots, because the information about which slot
852 is in which alias set will be lost. */
853 if (flag_strict_aliasing)
854 return;
855
856 /* If there are a lot of temp slots, don't do anything unless
857 high levels of optimization. */
858 if (! flag_expensive_optimizations)
859 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
860 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
861 return;
862
863 for (p = avail_temp_slots; p; p = next)
864 {
865 int delete_p = 0;
866
867 next = p->next;
868
869 if (GET_MODE (p->slot) != BLKmode)
870 continue;
871
872 for (q = p->next; q; q = next_q)
873 {
874 int delete_q = 0;
875
876 next_q = q->next;
877
878 if (GET_MODE (q->slot) != BLKmode)
879 continue;
880
881 if (p->base_offset + p->full_size == q->base_offset)
882 {
883 /* Q comes after P; combine Q into P. */
884 p->size += q->size;
885 p->full_size += q->full_size;
886 delete_q = 1;
887 }
888 else if (q->base_offset + q->full_size == p->base_offset)
889 {
890 /* P comes after Q; combine P into Q. */
891 q->size += p->size;
892 q->full_size += p->full_size;
893 delete_p = 1;
894 break;
895 }
896 if (delete_q)
897 cut_slot_from_list (q, &avail_temp_slots);
898 }
899
900 /* Either delete P or advance past it. */
901 if (delete_p)
902 cut_slot_from_list (p, &avail_temp_slots);
903 }
904 }
905 \f
906 /* Find the temp slot corresponding to the object at address X. */
907
908 static struct temp_slot *
909 find_temp_slot_from_address (rtx x)
910 {
911 struct temp_slot *p;
912 rtx next;
913 int i;
914
915 for (i = max_slot_level (); i >= 0; i--)
916 for (p = *temp_slots_at_level (i); p; p = p->next)
917 {
918 if (XEXP (p->slot, 0) == x
919 || p->address == x
920 || (GET_CODE (x) == PLUS
921 && XEXP (x, 0) == virtual_stack_vars_rtx
922 && GET_CODE (XEXP (x, 1)) == CONST_INT
923 && INTVAL (XEXP (x, 1)) >= p->base_offset
924 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
925 return p;
926
927 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
928 for (next = p->address; next; next = XEXP (next, 1))
929 if (XEXP (next, 0) == x)
930 return p;
931 }
932
933 /* If we have a sum involving a register, see if it points to a temp
934 slot. */
935 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
936 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
937 return p;
938 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
939 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
940 return p;
941
942 return 0;
943 }
944
945 /* Indicate that NEW is an alternate way of referring to the temp slot
946 that previously was known by OLD. */
947
948 void
949 update_temp_slot_address (rtx old, rtx new)
950 {
951 struct temp_slot *p;
952
953 if (rtx_equal_p (old, new))
954 return;
955
956 p = find_temp_slot_from_address (old);
957
958 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
959 is a register, see if one operand of the PLUS is a temporary
960 location. If so, NEW points into it. Otherwise, if both OLD and
961 NEW are a PLUS and if there is a register in common between them.
962 If so, try a recursive call on those values. */
963 if (p == 0)
964 {
965 if (GET_CODE (old) != PLUS)
966 return;
967
968 if (REG_P (new))
969 {
970 update_temp_slot_address (XEXP (old, 0), new);
971 update_temp_slot_address (XEXP (old, 1), new);
972 return;
973 }
974 else if (GET_CODE (new) != PLUS)
975 return;
976
977 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
978 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
979 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
980 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
981 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
982 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
983 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
984 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
985
986 return;
987 }
988
989 /* Otherwise add an alias for the temp's address. */
990 else if (p->address == 0)
991 p->address = new;
992 else
993 {
994 if (GET_CODE (p->address) != EXPR_LIST)
995 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
996
997 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
998 }
999 }
1000
1001 /* If X could be a reference to a temporary slot, mark the fact that its
1002 address was taken. */
1003
1004 void
1005 mark_temp_addr_taken (rtx x)
1006 {
1007 struct temp_slot *p;
1008
1009 if (x == 0)
1010 return;
1011
1012 /* If X is not in memory or is at a constant address, it cannot be in
1013 a temporary slot. */
1014 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1015 return;
1016
1017 p = find_temp_slot_from_address (XEXP (x, 0));
1018 if (p != 0)
1019 p->addr_taken = 1;
1020 }
1021
1022 /* If X could be a reference to a temporary slot, mark that slot as
1023 belonging to the to one level higher than the current level. If X
1024 matched one of our slots, just mark that one. Otherwise, we can't
1025 easily predict which it is, so upgrade all of them. Kept slots
1026 need not be touched.
1027
1028 This is called when an ({...}) construct occurs and a statement
1029 returns a value in memory. */
1030
1031 void
1032 preserve_temp_slots (rtx x)
1033 {
1034 struct temp_slot *p = 0, *next;
1035
1036 /* If there is no result, we still might have some objects whose address
1037 were taken, so we need to make sure they stay around. */
1038 if (x == 0)
1039 {
1040 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1041 {
1042 next = p->next;
1043
1044 if (p->addr_taken)
1045 move_slot_to_level (p, temp_slot_level - 1);
1046 }
1047
1048 return;
1049 }
1050
1051 /* If X is a register that is being used as a pointer, see if we have
1052 a temporary slot we know it points to. To be consistent with
1053 the code below, we really should preserve all non-kept slots
1054 if we can't find a match, but that seems to be much too costly. */
1055 if (REG_P (x) && REG_POINTER (x))
1056 p = find_temp_slot_from_address (x);
1057
1058 /* If X is not in memory or is at a constant address, it cannot be in
1059 a temporary slot, but it can contain something whose address was
1060 taken. */
1061 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1062 {
1063 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1064 {
1065 next = p->next;
1066
1067 if (p->addr_taken)
1068 move_slot_to_level (p, temp_slot_level - 1);
1069 }
1070
1071 return;
1072 }
1073
1074 /* First see if we can find a match. */
1075 if (p == 0)
1076 p = find_temp_slot_from_address (XEXP (x, 0));
1077
1078 if (p != 0)
1079 {
1080 /* Move everything at our level whose address was taken to our new
1081 level in case we used its address. */
1082 struct temp_slot *q;
1083
1084 if (p->level == temp_slot_level)
1085 {
1086 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1087 {
1088 next = q->next;
1089
1090 if (p != q && q->addr_taken)
1091 move_slot_to_level (q, temp_slot_level - 1);
1092 }
1093
1094 move_slot_to_level (p, temp_slot_level - 1);
1095 p->addr_taken = 0;
1096 }
1097 return;
1098 }
1099
1100 /* Otherwise, preserve all non-kept slots at this level. */
1101 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1102 {
1103 next = p->next;
1104
1105 if (!p->keep)
1106 move_slot_to_level (p, temp_slot_level - 1);
1107 }
1108 }
1109
1110 /* Free all temporaries used so far. This is normally called at the
1111 end of generating code for a statement. */
1112
1113 void
1114 free_temp_slots (void)
1115 {
1116 struct temp_slot *p, *next;
1117
1118 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1119 {
1120 next = p->next;
1121
1122 if (!p->keep)
1123 make_slot_available (p);
1124 }
1125
1126 combine_temp_slots ();
1127 }
1128
1129 /* Push deeper into the nesting level for stack temporaries. */
1130
1131 void
1132 push_temp_slots (void)
1133 {
1134 temp_slot_level++;
1135 }
1136
1137 /* Pop a temporary nesting level. All slots in use in the current level
1138 are freed. */
1139
1140 void
1141 pop_temp_slots (void)
1142 {
1143 struct temp_slot *p, *next;
1144
1145 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1146 {
1147 next = p->next;
1148 make_slot_available (p);
1149 }
1150
1151 combine_temp_slots ();
1152
1153 temp_slot_level--;
1154 }
1155
1156 /* Initialize temporary slots. */
1157
1158 void
1159 init_temp_slots (void)
1160 {
1161 /* We have not allocated any temporaries yet. */
1162 avail_temp_slots = 0;
1163 used_temp_slots = 0;
1164 temp_slot_level = 0;
1165 }
1166 \f
1167 /* These routines are responsible for converting virtual register references
1168 to the actual hard register references once RTL generation is complete.
1169
1170 The following four variables are used for communication between the
1171 routines. They contain the offsets of the virtual registers from their
1172 respective hard registers. */
1173
1174 static int in_arg_offset;
1175 static int var_offset;
1176 static int dynamic_offset;
1177 static int out_arg_offset;
1178 static int cfa_offset;
1179
1180 /* In most machines, the stack pointer register is equivalent to the bottom
1181 of the stack. */
1182
1183 #ifndef STACK_POINTER_OFFSET
1184 #define STACK_POINTER_OFFSET 0
1185 #endif
1186
1187 /* If not defined, pick an appropriate default for the offset of dynamically
1188 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1189 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1190
1191 #ifndef STACK_DYNAMIC_OFFSET
1192
1193 /* The bottom of the stack points to the actual arguments. If
1194 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1195 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1196 stack space for register parameters is not pushed by the caller, but
1197 rather part of the fixed stack areas and hence not included in
1198 `current_function_outgoing_args_size'. Nevertheless, we must allow
1199 for it when allocating stack dynamic objects. */
1200
1201 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1202 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1203 ((ACCUMULATE_OUTGOING_ARGS \
1204 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1205 + (STACK_POINTER_OFFSET)) \
1206
1207 #else
1208 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1209 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1210 + (STACK_POINTER_OFFSET))
1211 #endif
1212 #endif
1213
1214 \f
1215 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1216 is a virtual register, return the equivalent hard register and set the
1217 offset indirectly through the pointer. Otherwise, return 0. */
1218
1219 static rtx
1220 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1221 {
1222 rtx new;
1223 HOST_WIDE_INT offset;
1224
1225 if (x == virtual_incoming_args_rtx)
1226 new = arg_pointer_rtx, offset = in_arg_offset;
1227 else if (x == virtual_stack_vars_rtx)
1228 new = frame_pointer_rtx, offset = var_offset;
1229 else if (x == virtual_stack_dynamic_rtx)
1230 new = stack_pointer_rtx, offset = dynamic_offset;
1231 else if (x == virtual_outgoing_args_rtx)
1232 new = stack_pointer_rtx, offset = out_arg_offset;
1233 else if (x == virtual_cfa_rtx)
1234 new = arg_pointer_rtx, offset = cfa_offset;
1235 else
1236 return NULL_RTX;
1237
1238 *poffset = offset;
1239 return new;
1240 }
1241
1242 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1243 Instantiate any virtual registers present inside of *LOC. The expression
1244 is simplified, as much as possible, but is not to be considered "valid"
1245 in any sense implied by the target. If any change is made, set CHANGED
1246 to true. */
1247
1248 static int
1249 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1250 {
1251 HOST_WIDE_INT offset;
1252 bool *changed = (bool *) data;
1253 rtx x, new;
1254
1255 x = *loc;
1256 if (x == 0)
1257 return 0;
1258
1259 switch (GET_CODE (x))
1260 {
1261 case REG:
1262 new = instantiate_new_reg (x, &offset);
1263 if (new)
1264 {
1265 *loc = plus_constant (new, offset);
1266 if (changed)
1267 *changed = true;
1268 }
1269 return -1;
1270
1271 case PLUS:
1272 new = instantiate_new_reg (XEXP (x, 0), &offset);
1273 if (new)
1274 {
1275 new = plus_constant (new, offset);
1276 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1277 if (changed)
1278 *changed = true;
1279 return -1;
1280 }
1281
1282 /* FIXME -- from old code */
1283 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1284 we can commute the PLUS and SUBREG because pointers into the
1285 frame are well-behaved. */
1286 break;
1287
1288 default:
1289 break;
1290 }
1291
1292 return 0;
1293 }
1294
1295 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1296 matches the predicate for insn CODE operand OPERAND. */
1297
1298 static int
1299 safe_insn_predicate (int code, int operand, rtx x)
1300 {
1301 const struct insn_operand_data *op_data;
1302
1303 if (code < 0)
1304 return true;
1305
1306 op_data = &insn_data[code].operand[operand];
1307 if (op_data->predicate == NULL)
1308 return true;
1309
1310 return op_data->predicate (x, op_data->mode);
1311 }
1312
1313 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1314 registers present inside of insn. The result will be a valid insn. */
1315
1316 static void
1317 instantiate_virtual_regs_in_insn (rtx insn)
1318 {
1319 HOST_WIDE_INT offset;
1320 int insn_code, i;
1321 bool any_change = false;
1322 rtx set, new, x, seq;
1323
1324 /* There are some special cases to be handled first. */
1325 set = single_set (insn);
1326 if (set)
1327 {
1328 /* We're allowed to assign to a virtual register. This is interpreted
1329 to mean that the underlying register gets assigned the inverse
1330 transformation. This is used, for example, in the handling of
1331 non-local gotos. */
1332 new = instantiate_new_reg (SET_DEST (set), &offset);
1333 if (new)
1334 {
1335 start_sequence ();
1336
1337 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1338 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1339 GEN_INT (-offset));
1340 x = force_operand (x, new);
1341 if (x != new)
1342 emit_move_insn (new, x);
1343
1344 seq = get_insns ();
1345 end_sequence ();
1346
1347 emit_insn_before (seq, insn);
1348 delete_insn (insn);
1349 return;
1350 }
1351
1352 /* Handle a straight copy from a virtual register by generating a
1353 new add insn. The difference between this and falling through
1354 to the generic case is avoiding a new pseudo and eliminating a
1355 move insn in the initial rtl stream. */
1356 new = instantiate_new_reg (SET_SRC (set), &offset);
1357 if (new && offset != 0
1358 && REG_P (SET_DEST (set))
1359 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1360 {
1361 start_sequence ();
1362
1363 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1364 new, GEN_INT (offset), SET_DEST (set),
1365 1, OPTAB_LIB_WIDEN);
1366 if (x != SET_DEST (set))
1367 emit_move_insn (SET_DEST (set), x);
1368
1369 seq = get_insns ();
1370 end_sequence ();
1371
1372 emit_insn_before (seq, insn);
1373 delete_insn (insn);
1374 return;
1375 }
1376
1377 extract_insn (insn);
1378 insn_code = INSN_CODE (insn);
1379
1380 /* Handle a plus involving a virtual register by determining if the
1381 operands remain valid if they're modified in place. */
1382 if (GET_CODE (SET_SRC (set)) == PLUS
1383 && recog_data.n_operands >= 3
1384 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1385 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1386 && GET_CODE (recog_data.operand[2]) == CONST_INT
1387 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1388 {
1389 offset += INTVAL (recog_data.operand[2]);
1390
1391 /* If the sum is zero, then replace with a plain move. */
1392 if (offset == 0
1393 && REG_P (SET_DEST (set))
1394 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1395 {
1396 start_sequence ();
1397 emit_move_insn (SET_DEST (set), new);
1398 seq = get_insns ();
1399 end_sequence ();
1400
1401 emit_insn_before (seq, insn);
1402 delete_insn (insn);
1403 return;
1404 }
1405
1406 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1407
1408 /* Using validate_change and apply_change_group here leaves
1409 recog_data in an invalid state. Since we know exactly what
1410 we want to check, do those two by hand. */
1411 if (safe_insn_predicate (insn_code, 1, new)
1412 && safe_insn_predicate (insn_code, 2, x))
1413 {
1414 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1415 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1416 any_change = true;
1417
1418 /* Fall through into the regular operand fixup loop in
1419 order to take care of operands other than 1 and 2. */
1420 }
1421 }
1422 }
1423 else
1424 {
1425 extract_insn (insn);
1426 insn_code = INSN_CODE (insn);
1427 }
1428
1429 /* In the general case, we expect virtual registers to appear only in
1430 operands, and then only as either bare registers or inside memories. */
1431 for (i = 0; i < recog_data.n_operands; ++i)
1432 {
1433 x = recog_data.operand[i];
1434 switch (GET_CODE (x))
1435 {
1436 case MEM:
1437 {
1438 rtx addr = XEXP (x, 0);
1439 bool changed = false;
1440
1441 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1442 if (!changed)
1443 continue;
1444
1445 start_sequence ();
1446 x = replace_equiv_address (x, addr);
1447 seq = get_insns ();
1448 end_sequence ();
1449 if (seq)
1450 emit_insn_before (seq, insn);
1451 }
1452 break;
1453
1454 case REG:
1455 new = instantiate_new_reg (x, &offset);
1456 if (new == NULL)
1457 continue;
1458 if (offset == 0)
1459 x = new;
1460 else
1461 {
1462 start_sequence ();
1463
1464 /* Careful, special mode predicates may have stuff in
1465 insn_data[insn_code].operand[i].mode that isn't useful
1466 to us for computing a new value. */
1467 /* ??? Recognize address_operand and/or "p" constraints
1468 to see if (plus new offset) is a valid before we put
1469 this through expand_simple_binop. */
1470 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1471 GEN_INT (offset), NULL_RTX,
1472 1, OPTAB_LIB_WIDEN);
1473 seq = get_insns ();
1474 end_sequence ();
1475 emit_insn_before (seq, insn);
1476 }
1477 break;
1478
1479 case SUBREG:
1480 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1481 if (new == NULL)
1482 continue;
1483 if (offset != 0)
1484 {
1485 start_sequence ();
1486 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1487 GEN_INT (offset), NULL_RTX,
1488 1, OPTAB_LIB_WIDEN);
1489 seq = get_insns ();
1490 end_sequence ();
1491 emit_insn_before (seq, insn);
1492 }
1493 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1494 GET_MODE (new), SUBREG_BYTE (x));
1495 break;
1496
1497 default:
1498 continue;
1499 }
1500
1501 /* At this point, X contains the new value for the operand.
1502 Validate the new value vs the insn predicate. Note that
1503 asm insns will have insn_code -1 here. */
1504 if (!safe_insn_predicate (insn_code, i, x))
1505 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1506
1507 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1508 any_change = true;
1509 }
1510
1511 if (any_change)
1512 {
1513 /* Propagate operand changes into the duplicates. */
1514 for (i = 0; i < recog_data.n_dups; ++i)
1515 *recog_data.dup_loc[i]
1516 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1517
1518 /* Force re-recognition of the instruction for validation. */
1519 INSN_CODE (insn) = -1;
1520 }
1521
1522 if (asm_noperands (PATTERN (insn)) >= 0)
1523 {
1524 if (!check_asm_operands (PATTERN (insn)))
1525 {
1526 error_for_asm (insn, "impossible constraint in %<asm%>");
1527 delete_insn (insn);
1528 }
1529 }
1530 else
1531 {
1532 if (recog_memoized (insn) < 0)
1533 fatal_insn_not_found (insn);
1534 }
1535 }
1536
1537 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1538 do any instantiation required. */
1539
1540 static void
1541 instantiate_decl (rtx x)
1542 {
1543 rtx addr;
1544
1545 if (x == 0)
1546 return;
1547
1548 /* If this is a CONCAT, recurse for the pieces. */
1549 if (GET_CODE (x) == CONCAT)
1550 {
1551 instantiate_decl (XEXP (x, 0));
1552 instantiate_decl (XEXP (x, 1));
1553 return;
1554 }
1555
1556 /* If this is not a MEM, no need to do anything. Similarly if the
1557 address is a constant or a register that is not a virtual register. */
1558 if (!MEM_P (x))
1559 return;
1560
1561 addr = XEXP (x, 0);
1562 if (CONSTANT_P (addr)
1563 || (REG_P (addr)
1564 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1565 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1566 return;
1567
1568 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1569 }
1570
1571 /* Subroutine of instantiate_decls: Process all decls in the given
1572 BLOCK node and all its subblocks. */
1573
1574 static void
1575 instantiate_decls_1 (tree let)
1576 {
1577 tree t;
1578
1579 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1580 if (DECL_RTL_SET_P (t))
1581 instantiate_decl (DECL_RTL (t));
1582
1583 /* Process all subblocks. */
1584 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1585 instantiate_decls_1 (t);
1586 }
1587
1588 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1589 all virtual registers in their DECL_RTL's. */
1590
1591 static void
1592 instantiate_decls (tree fndecl)
1593 {
1594 tree decl;
1595
1596 /* Process all parameters of the function. */
1597 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1598 {
1599 instantiate_decl (DECL_RTL (decl));
1600 instantiate_decl (DECL_INCOMING_RTL (decl));
1601 }
1602
1603 /* Now process all variables defined in the function or its subblocks. */
1604 instantiate_decls_1 (DECL_INITIAL (fndecl));
1605 }
1606
1607 /* Pass through the INSNS of function FNDECL and convert virtual register
1608 references to hard register references. */
1609
1610 void
1611 instantiate_virtual_regs (void)
1612 {
1613 rtx insn;
1614
1615 /* Compute the offsets to use for this function. */
1616 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1617 var_offset = STARTING_FRAME_OFFSET;
1618 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1619 out_arg_offset = STACK_POINTER_OFFSET;
1620 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1621
1622 /* Initialize recognition, indicating that volatile is OK. */
1623 init_recog ();
1624
1625 /* Scan through all the insns, instantiating every virtual register still
1626 present. */
1627 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1628 if (INSN_P (insn))
1629 {
1630 /* These patterns in the instruction stream can never be recognized.
1631 Fortunately, they shouldn't contain virtual registers either. */
1632 if (GET_CODE (PATTERN (insn)) == USE
1633 || GET_CODE (PATTERN (insn)) == CLOBBER
1634 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1635 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1636 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1637 continue;
1638
1639 instantiate_virtual_regs_in_insn (insn);
1640
1641 if (INSN_DELETED_P (insn))
1642 continue;
1643
1644 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1645
1646 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1647 if (GET_CODE (insn) == CALL_INSN)
1648 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1649 instantiate_virtual_regs_in_rtx, NULL);
1650 }
1651
1652 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1653 instantiate_decls (current_function_decl);
1654
1655 /* Indicate that, from now on, assign_stack_local should use
1656 frame_pointer_rtx. */
1657 virtuals_instantiated = 1;
1658 }
1659
1660 struct tree_opt_pass pass_instantiate_virtual_regs =
1661 {
1662 "vregs", /* name */
1663 NULL, /* gate */
1664 instantiate_virtual_regs, /* execute */
1665 NULL, /* sub */
1666 NULL, /* next */
1667 0, /* static_pass_number */
1668 0, /* tv_id */
1669 0, /* properties_required */
1670 0, /* properties_provided */
1671 0, /* properties_destroyed */
1672 0, /* todo_flags_start */
1673 TODO_dump_func, /* todo_flags_finish */
1674 0 /* letter */
1675 };
1676
1677 \f
1678 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1679 This means a type for which function calls must pass an address to the
1680 function or get an address back from the function.
1681 EXP may be a type node or an expression (whose type is tested). */
1682
1683 int
1684 aggregate_value_p (tree exp, tree fntype)
1685 {
1686 int i, regno, nregs;
1687 rtx reg;
1688
1689 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1690
1691 if (fntype)
1692 switch (TREE_CODE (fntype))
1693 {
1694 case CALL_EXPR:
1695 fntype = get_callee_fndecl (fntype);
1696 fntype = fntype ? TREE_TYPE (fntype) : 0;
1697 break;
1698 case FUNCTION_DECL:
1699 fntype = TREE_TYPE (fntype);
1700 break;
1701 case FUNCTION_TYPE:
1702 case METHOD_TYPE:
1703 break;
1704 case IDENTIFIER_NODE:
1705 fntype = 0;
1706 break;
1707 default:
1708 /* We don't expect other rtl types here. */
1709 gcc_unreachable ();
1710 }
1711
1712 if (TREE_CODE (type) == VOID_TYPE)
1713 return 0;
1714 /* If the front end has decided that this needs to be passed by
1715 reference, do so. */
1716 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1717 && DECL_BY_REFERENCE (exp))
1718 return 1;
1719 if (targetm.calls.return_in_memory (type, fntype))
1720 return 1;
1721 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1722 and thus can't be returned in registers. */
1723 if (TREE_ADDRESSABLE (type))
1724 return 1;
1725 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1726 return 1;
1727 /* Make sure we have suitable call-clobbered regs to return
1728 the value in; if not, we must return it in memory. */
1729 reg = hard_function_value (type, 0, fntype, 0);
1730
1731 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1732 it is OK. */
1733 if (!REG_P (reg))
1734 return 0;
1735
1736 regno = REGNO (reg);
1737 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1738 for (i = 0; i < nregs; i++)
1739 if (! call_used_regs[regno + i])
1740 return 1;
1741 return 0;
1742 }
1743 \f
1744 /* Return true if we should assign DECL a pseudo register; false if it
1745 should live on the local stack. */
1746
1747 bool
1748 use_register_for_decl (tree decl)
1749 {
1750 /* Honor volatile. */
1751 if (TREE_SIDE_EFFECTS (decl))
1752 return false;
1753
1754 /* Honor addressability. */
1755 if (TREE_ADDRESSABLE (decl))
1756 return false;
1757
1758 /* Only register-like things go in registers. */
1759 if (DECL_MODE (decl) == BLKmode)
1760 return false;
1761
1762 /* If -ffloat-store specified, don't put explicit float variables
1763 into registers. */
1764 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1765 propagates values across these stores, and it probably shouldn't. */
1766 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1767 return false;
1768
1769 /* If we're not interested in tracking debugging information for
1770 this decl, then we can certainly put it in a register. */
1771 if (DECL_IGNORED_P (decl))
1772 return true;
1773
1774 return (optimize || DECL_REGISTER (decl));
1775 }
1776
1777 /* Return true if TYPE should be passed by invisible reference. */
1778
1779 bool
1780 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1781 tree type, bool named_arg)
1782 {
1783 if (type)
1784 {
1785 /* If this type contains non-trivial constructors, then it is
1786 forbidden for the middle-end to create any new copies. */
1787 if (TREE_ADDRESSABLE (type))
1788 return true;
1789
1790 /* GCC post 3.4 passes *all* variable sized types by reference. */
1791 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1792 return true;
1793 }
1794
1795 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1796 }
1797
1798 /* Return true if TYPE, which is passed by reference, should be callee
1799 copied instead of caller copied. */
1800
1801 bool
1802 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1803 tree type, bool named_arg)
1804 {
1805 if (type && TREE_ADDRESSABLE (type))
1806 return false;
1807 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1808 }
1809
1810 /* Structures to communicate between the subroutines of assign_parms.
1811 The first holds data persistent across all parameters, the second
1812 is cleared out for each parameter. */
1813
1814 struct assign_parm_data_all
1815 {
1816 CUMULATIVE_ARGS args_so_far;
1817 struct args_size stack_args_size;
1818 tree function_result_decl;
1819 tree orig_fnargs;
1820 rtx conversion_insns;
1821 HOST_WIDE_INT pretend_args_size;
1822 HOST_WIDE_INT extra_pretend_bytes;
1823 int reg_parm_stack_space;
1824 };
1825
1826 struct assign_parm_data_one
1827 {
1828 tree nominal_type;
1829 tree passed_type;
1830 rtx entry_parm;
1831 rtx stack_parm;
1832 enum machine_mode nominal_mode;
1833 enum machine_mode passed_mode;
1834 enum machine_mode promoted_mode;
1835 struct locate_and_pad_arg_data locate;
1836 int partial;
1837 BOOL_BITFIELD named_arg : 1;
1838 BOOL_BITFIELD passed_pointer : 1;
1839 BOOL_BITFIELD on_stack : 1;
1840 BOOL_BITFIELD loaded_in_reg : 1;
1841 };
1842
1843 /* A subroutine of assign_parms. Initialize ALL. */
1844
1845 static void
1846 assign_parms_initialize_all (struct assign_parm_data_all *all)
1847 {
1848 tree fntype;
1849
1850 memset (all, 0, sizeof (*all));
1851
1852 fntype = TREE_TYPE (current_function_decl);
1853
1854 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1855 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1856 #else
1857 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1858 current_function_decl, -1);
1859 #endif
1860
1861 #ifdef REG_PARM_STACK_SPACE
1862 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1863 #endif
1864 }
1865
1866 /* If ARGS contains entries with complex types, split the entry into two
1867 entries of the component type. Return a new list of substitutions are
1868 needed, else the old list. */
1869
1870 static tree
1871 split_complex_args (tree args)
1872 {
1873 tree p;
1874
1875 /* Before allocating memory, check for the common case of no complex. */
1876 for (p = args; p; p = TREE_CHAIN (p))
1877 {
1878 tree type = TREE_TYPE (p);
1879 if (TREE_CODE (type) == COMPLEX_TYPE
1880 && targetm.calls.split_complex_arg (type))
1881 goto found;
1882 }
1883 return args;
1884
1885 found:
1886 args = copy_list (args);
1887
1888 for (p = args; p; p = TREE_CHAIN (p))
1889 {
1890 tree type = TREE_TYPE (p);
1891 if (TREE_CODE (type) == COMPLEX_TYPE
1892 && targetm.calls.split_complex_arg (type))
1893 {
1894 tree decl;
1895 tree subtype = TREE_TYPE (type);
1896 bool addressable = TREE_ADDRESSABLE (p);
1897
1898 /* Rewrite the PARM_DECL's type with its component. */
1899 TREE_TYPE (p) = subtype;
1900 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1901 DECL_MODE (p) = VOIDmode;
1902 DECL_SIZE (p) = NULL;
1903 DECL_SIZE_UNIT (p) = NULL;
1904 /* If this arg must go in memory, put it in a pseudo here.
1905 We can't allow it to go in memory as per normal parms,
1906 because the usual place might not have the imag part
1907 adjacent to the real part. */
1908 DECL_ARTIFICIAL (p) = addressable;
1909 DECL_IGNORED_P (p) = addressable;
1910 TREE_ADDRESSABLE (p) = 0;
1911 layout_decl (p, 0);
1912
1913 /* Build a second synthetic decl. */
1914 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1915 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1916 DECL_ARTIFICIAL (decl) = addressable;
1917 DECL_IGNORED_P (decl) = addressable;
1918 layout_decl (decl, 0);
1919
1920 /* Splice it in; skip the new decl. */
1921 TREE_CHAIN (decl) = TREE_CHAIN (p);
1922 TREE_CHAIN (p) = decl;
1923 p = decl;
1924 }
1925 }
1926
1927 return args;
1928 }
1929
1930 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1931 the hidden struct return argument, and (abi willing) complex args.
1932 Return the new parameter list. */
1933
1934 static tree
1935 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1936 {
1937 tree fndecl = current_function_decl;
1938 tree fntype = TREE_TYPE (fndecl);
1939 tree fnargs = DECL_ARGUMENTS (fndecl);
1940
1941 /* If struct value address is treated as the first argument, make it so. */
1942 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1943 && ! current_function_returns_pcc_struct
1944 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
1945 {
1946 tree type = build_pointer_type (TREE_TYPE (fntype));
1947 tree decl;
1948
1949 decl = build_decl (PARM_DECL, NULL_TREE, type);
1950 DECL_ARG_TYPE (decl) = type;
1951 DECL_ARTIFICIAL (decl) = 1;
1952 DECL_IGNORED_P (decl) = 1;
1953
1954 TREE_CHAIN (decl) = fnargs;
1955 fnargs = decl;
1956 all->function_result_decl = decl;
1957 }
1958
1959 all->orig_fnargs = fnargs;
1960
1961 /* If the target wants to split complex arguments into scalars, do so. */
1962 if (targetm.calls.split_complex_arg)
1963 fnargs = split_complex_args (fnargs);
1964
1965 return fnargs;
1966 }
1967
1968 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
1969 data for the parameter. Incorporate ABI specifics such as pass-by-
1970 reference and type promotion. */
1971
1972 static void
1973 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
1974 struct assign_parm_data_one *data)
1975 {
1976 tree nominal_type, passed_type;
1977 enum machine_mode nominal_mode, passed_mode, promoted_mode;
1978
1979 memset (data, 0, sizeof (*data));
1980
1981 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
1982 if (!current_function_stdarg)
1983 data->named_arg = 1; /* No varadic parms. */
1984 else if (TREE_CHAIN (parm))
1985 data->named_arg = 1; /* Not the last non-varadic parm. */
1986 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
1987 data->named_arg = 1; /* Only varadic ones are unnamed. */
1988 else
1989 data->named_arg = 0; /* Treat as varadic. */
1990
1991 nominal_type = TREE_TYPE (parm);
1992 passed_type = DECL_ARG_TYPE (parm);
1993
1994 /* Look out for errors propagating this far. Also, if the parameter's
1995 type is void then its value doesn't matter. */
1996 if (TREE_TYPE (parm) == error_mark_node
1997 /* This can happen after weird syntax errors
1998 or if an enum type is defined among the parms. */
1999 || TREE_CODE (parm) != PARM_DECL
2000 || passed_type == NULL
2001 || VOID_TYPE_P (nominal_type))
2002 {
2003 nominal_type = passed_type = void_type_node;
2004 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2005 goto egress;
2006 }
2007
2008 /* Find mode of arg as it is passed, and mode of arg as it should be
2009 during execution of this function. */
2010 passed_mode = TYPE_MODE (passed_type);
2011 nominal_mode = TYPE_MODE (nominal_type);
2012
2013 /* If the parm is to be passed as a transparent union, use the type of
2014 the first field for the tests below. We have already verified that
2015 the modes are the same. */
2016 if (TREE_CODE (passed_type) == UNION_TYPE
2017 && TYPE_TRANSPARENT_UNION (passed_type))
2018 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2019
2020 /* See if this arg was passed by invisible reference. */
2021 if (pass_by_reference (&all->args_so_far, passed_mode,
2022 passed_type, data->named_arg))
2023 {
2024 passed_type = nominal_type = build_pointer_type (passed_type);
2025 data->passed_pointer = true;
2026 passed_mode = nominal_mode = Pmode;
2027 }
2028
2029 /* Find mode as it is passed by the ABI. */
2030 promoted_mode = passed_mode;
2031 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2032 {
2033 int unsignedp = TYPE_UNSIGNED (passed_type);
2034 promoted_mode = promote_mode (passed_type, promoted_mode,
2035 &unsignedp, 1);
2036 }
2037
2038 egress:
2039 data->nominal_type = nominal_type;
2040 data->passed_type = passed_type;
2041 data->nominal_mode = nominal_mode;
2042 data->passed_mode = passed_mode;
2043 data->promoted_mode = promoted_mode;
2044 }
2045
2046 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2047
2048 static void
2049 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2050 struct assign_parm_data_one *data, bool no_rtl)
2051 {
2052 int varargs_pretend_bytes = 0;
2053
2054 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2055 data->promoted_mode,
2056 data->passed_type,
2057 &varargs_pretend_bytes, no_rtl);
2058
2059 /* If the back-end has requested extra stack space, record how much is
2060 needed. Do not change pretend_args_size otherwise since it may be
2061 nonzero from an earlier partial argument. */
2062 if (varargs_pretend_bytes > 0)
2063 all->pretend_args_size = varargs_pretend_bytes;
2064 }
2065
2066 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2067 the incoming location of the current parameter. */
2068
2069 static void
2070 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2071 struct assign_parm_data_one *data)
2072 {
2073 HOST_WIDE_INT pretend_bytes = 0;
2074 rtx entry_parm;
2075 bool in_regs;
2076
2077 if (data->promoted_mode == VOIDmode)
2078 {
2079 data->entry_parm = data->stack_parm = const0_rtx;
2080 return;
2081 }
2082
2083 #ifdef FUNCTION_INCOMING_ARG
2084 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2085 data->passed_type, data->named_arg);
2086 #else
2087 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2088 data->passed_type, data->named_arg);
2089 #endif
2090
2091 if (entry_parm == 0)
2092 data->promoted_mode = data->passed_mode;
2093
2094 /* Determine parm's home in the stack, in case it arrives in the stack
2095 or we should pretend it did. Compute the stack position and rtx where
2096 the argument arrives and its size.
2097
2098 There is one complexity here: If this was a parameter that would
2099 have been passed in registers, but wasn't only because it is
2100 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2101 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2102 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2103 as it was the previous time. */
2104 in_regs = entry_parm != 0;
2105 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2106 in_regs = true;
2107 #endif
2108 if (!in_regs && !data->named_arg)
2109 {
2110 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2111 {
2112 rtx tem;
2113 #ifdef FUNCTION_INCOMING_ARG
2114 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2115 data->passed_type, true);
2116 #else
2117 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2118 data->passed_type, true);
2119 #endif
2120 in_regs = tem != NULL;
2121 }
2122 }
2123
2124 /* If this parameter was passed both in registers and in the stack, use
2125 the copy on the stack. */
2126 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2127 data->passed_type))
2128 entry_parm = 0;
2129
2130 if (entry_parm)
2131 {
2132 int partial;
2133
2134 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2135 data->promoted_mode,
2136 data->passed_type,
2137 data->named_arg);
2138 data->partial = partial;
2139
2140 /* The caller might already have allocated stack space for the
2141 register parameters. */
2142 if (partial != 0 && all->reg_parm_stack_space == 0)
2143 {
2144 /* Part of this argument is passed in registers and part
2145 is passed on the stack. Ask the prologue code to extend
2146 the stack part so that we can recreate the full value.
2147
2148 PRETEND_BYTES is the size of the registers we need to store.
2149 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2150 stack space that the prologue should allocate.
2151
2152 Internally, gcc assumes that the argument pointer is aligned
2153 to STACK_BOUNDARY bits. This is used both for alignment
2154 optimizations (see init_emit) and to locate arguments that are
2155 aligned to more than PARM_BOUNDARY bits. We must preserve this
2156 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2157 a stack boundary. */
2158
2159 /* We assume at most one partial arg, and it must be the first
2160 argument on the stack. */
2161 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2162
2163 pretend_bytes = partial;
2164 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2165
2166 /* We want to align relative to the actual stack pointer, so
2167 don't include this in the stack size until later. */
2168 all->extra_pretend_bytes = all->pretend_args_size;
2169 }
2170 }
2171
2172 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2173 entry_parm ? data->partial : 0, current_function_decl,
2174 &all->stack_args_size, &data->locate);
2175
2176 /* Adjust offsets to include the pretend args. */
2177 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2178 data->locate.slot_offset.constant += pretend_bytes;
2179 data->locate.offset.constant += pretend_bytes;
2180
2181 data->entry_parm = entry_parm;
2182 }
2183
2184 /* A subroutine of assign_parms. If there is actually space on the stack
2185 for this parm, count it in stack_args_size and return true. */
2186
2187 static bool
2188 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2189 struct assign_parm_data_one *data)
2190 {
2191 /* Trivially true if we've no incoming register. */
2192 if (data->entry_parm == NULL)
2193 ;
2194 /* Also true if we're partially in registers and partially not,
2195 since we've arranged to drop the entire argument on the stack. */
2196 else if (data->partial != 0)
2197 ;
2198 /* Also true if the target says that it's passed in both registers
2199 and on the stack. */
2200 else if (GET_CODE (data->entry_parm) == PARALLEL
2201 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2202 ;
2203 /* Also true if the target says that there's stack allocated for
2204 all register parameters. */
2205 else if (all->reg_parm_stack_space > 0)
2206 ;
2207 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2208 else
2209 return false;
2210
2211 all->stack_args_size.constant += data->locate.size.constant;
2212 if (data->locate.size.var)
2213 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2214
2215 return true;
2216 }
2217
2218 /* A subroutine of assign_parms. Given that this parameter is allocated
2219 stack space by the ABI, find it. */
2220
2221 static void
2222 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2223 {
2224 rtx offset_rtx, stack_parm;
2225 unsigned int align, boundary;
2226
2227 /* If we're passing this arg using a reg, make its stack home the
2228 aligned stack slot. */
2229 if (data->entry_parm)
2230 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2231 else
2232 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2233
2234 stack_parm = current_function_internal_arg_pointer;
2235 if (offset_rtx != const0_rtx)
2236 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2237 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2238
2239 set_mem_attributes (stack_parm, parm, 1);
2240
2241 boundary = data->locate.boundary;
2242 align = BITS_PER_UNIT;
2243
2244 /* If we're padding upward, we know that the alignment of the slot
2245 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2246 intentionally forcing upward padding. Otherwise we have to come
2247 up with a guess at the alignment based on OFFSET_RTX. */
2248 if (data->locate.where_pad != downward || data->entry_parm)
2249 align = boundary;
2250 else if (GET_CODE (offset_rtx) == CONST_INT)
2251 {
2252 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2253 align = align & -align;
2254 }
2255 set_mem_align (stack_parm, align);
2256
2257 if (data->entry_parm)
2258 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2259
2260 data->stack_parm = stack_parm;
2261 }
2262
2263 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2264 always valid and contiguous. */
2265
2266 static void
2267 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2268 {
2269 rtx entry_parm = data->entry_parm;
2270 rtx stack_parm = data->stack_parm;
2271
2272 /* If this parm was passed part in regs and part in memory, pretend it
2273 arrived entirely in memory by pushing the register-part onto the stack.
2274 In the special case of a DImode or DFmode that is split, we could put
2275 it together in a pseudoreg directly, but for now that's not worth
2276 bothering with. */
2277 if (data->partial != 0)
2278 {
2279 /* Handle calls that pass values in multiple non-contiguous
2280 locations. The Irix 6 ABI has examples of this. */
2281 if (GET_CODE (entry_parm) == PARALLEL)
2282 emit_group_store (validize_mem (stack_parm), entry_parm,
2283 data->passed_type,
2284 int_size_in_bytes (data->passed_type));
2285 else
2286 {
2287 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2288 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2289 data->partial / UNITS_PER_WORD);
2290 }
2291
2292 entry_parm = stack_parm;
2293 }
2294
2295 /* If we didn't decide this parm came in a register, by default it came
2296 on the stack. */
2297 else if (entry_parm == NULL)
2298 entry_parm = stack_parm;
2299
2300 /* When an argument is passed in multiple locations, we can't make use
2301 of this information, but we can save some copying if the whole argument
2302 is passed in a single register. */
2303 else if (GET_CODE (entry_parm) == PARALLEL
2304 && data->nominal_mode != BLKmode
2305 && data->passed_mode != BLKmode)
2306 {
2307 size_t i, len = XVECLEN (entry_parm, 0);
2308
2309 for (i = 0; i < len; i++)
2310 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2311 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2312 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2313 == data->passed_mode)
2314 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2315 {
2316 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2317 break;
2318 }
2319 }
2320
2321 data->entry_parm = entry_parm;
2322 }
2323
2324 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2325 always valid and properly aligned. */
2326
2327 static void
2328 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2329 {
2330 rtx stack_parm = data->stack_parm;
2331
2332 /* If we can't trust the parm stack slot to be aligned enough for its
2333 ultimate type, don't use that slot after entry. We'll make another
2334 stack slot, if we need one. */
2335 if (stack_parm
2336 && ((STRICT_ALIGNMENT
2337 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2338 || (data->nominal_type
2339 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2340 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2341 stack_parm = NULL;
2342
2343 /* If parm was passed in memory, and we need to convert it on entry,
2344 don't store it back in that same slot. */
2345 else if (data->entry_parm == stack_parm
2346 && data->nominal_mode != BLKmode
2347 && data->nominal_mode != data->passed_mode)
2348 stack_parm = NULL;
2349
2350 /* If stack protection is in effect for this function, don't leave any
2351 pointers in their passed stack slots. */
2352 else if (cfun->stack_protect_guard
2353 && (flag_stack_protect == 2
2354 || data->passed_pointer
2355 || POINTER_TYPE_P (data->nominal_type)))
2356 stack_parm = NULL;
2357
2358 data->stack_parm = stack_parm;
2359 }
2360
2361 /* A subroutine of assign_parms. Return true if the current parameter
2362 should be stored as a BLKmode in the current frame. */
2363
2364 static bool
2365 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2366 {
2367 if (data->nominal_mode == BLKmode)
2368 return true;
2369 if (GET_CODE (data->entry_parm) == PARALLEL)
2370 return true;
2371
2372 #ifdef BLOCK_REG_PADDING
2373 /* Only assign_parm_setup_block knows how to deal with register arguments
2374 that are padded at the least significant end. */
2375 if (REG_P (data->entry_parm)
2376 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2377 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2378 == (BYTES_BIG_ENDIAN ? upward : downward)))
2379 return true;
2380 #endif
2381
2382 return false;
2383 }
2384
2385 /* A subroutine of assign_parms. Arrange for the parameter to be
2386 present and valid in DATA->STACK_RTL. */
2387
2388 static void
2389 assign_parm_setup_block (struct assign_parm_data_all *all,
2390 tree parm, struct assign_parm_data_one *data)
2391 {
2392 rtx entry_parm = data->entry_parm;
2393 rtx stack_parm = data->stack_parm;
2394 HOST_WIDE_INT size;
2395 HOST_WIDE_INT size_stored;
2396 rtx orig_entry_parm = entry_parm;
2397
2398 if (GET_CODE (entry_parm) == PARALLEL)
2399 entry_parm = emit_group_move_into_temps (entry_parm);
2400
2401 /* If we've a non-block object that's nevertheless passed in parts,
2402 reconstitute it in register operations rather than on the stack. */
2403 if (GET_CODE (entry_parm) == PARALLEL
2404 && data->nominal_mode != BLKmode)
2405 {
2406 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2407
2408 if ((XVECLEN (entry_parm, 0) > 1
2409 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2410 && use_register_for_decl (parm))
2411 {
2412 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2413
2414 push_to_sequence (all->conversion_insns);
2415
2416 /* For values returned in multiple registers, handle possible
2417 incompatible calls to emit_group_store.
2418
2419 For example, the following would be invalid, and would have to
2420 be fixed by the conditional below:
2421
2422 emit_group_store ((reg:SF), (parallel:DF))
2423 emit_group_store ((reg:SI), (parallel:DI))
2424
2425 An example of this are doubles in e500 v2:
2426 (parallel:DF (expr_list (reg:SI) (const_int 0))
2427 (expr_list (reg:SI) (const_int 4))). */
2428 if (data->nominal_mode != data->passed_mode)
2429 {
2430 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2431 emit_group_store (t, entry_parm, NULL_TREE,
2432 GET_MODE_SIZE (GET_MODE (entry_parm)));
2433 convert_move (parmreg, t, 0);
2434 }
2435 else
2436 emit_group_store (parmreg, entry_parm, data->nominal_type,
2437 int_size_in_bytes (data->nominal_type));
2438
2439 all->conversion_insns = get_insns ();
2440 end_sequence ();
2441
2442 SET_DECL_RTL (parm, parmreg);
2443 return;
2444 }
2445 }
2446
2447 size = int_size_in_bytes (data->passed_type);
2448 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2449 if (stack_parm == 0)
2450 {
2451 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2452 stack_parm = assign_stack_local (BLKmode, size_stored,
2453 DECL_ALIGN (parm));
2454 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2455 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2456 set_mem_attributes (stack_parm, parm, 1);
2457 }
2458
2459 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2460 calls that pass values in multiple non-contiguous locations. */
2461 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2462 {
2463 rtx mem;
2464
2465 /* Note that we will be storing an integral number of words.
2466 So we have to be careful to ensure that we allocate an
2467 integral number of words. We do this above when we call
2468 assign_stack_local if space was not allocated in the argument
2469 list. If it was, this will not work if PARM_BOUNDARY is not
2470 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2471 if it becomes a problem. Exception is when BLKmode arrives
2472 with arguments not conforming to word_mode. */
2473
2474 if (data->stack_parm == 0)
2475 ;
2476 else if (GET_CODE (entry_parm) == PARALLEL)
2477 ;
2478 else
2479 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2480
2481 mem = validize_mem (stack_parm);
2482
2483 /* Handle values in multiple non-contiguous locations. */
2484 if (GET_CODE (entry_parm) == PARALLEL)
2485 {
2486 push_to_sequence (all->conversion_insns);
2487 emit_group_store (mem, entry_parm, data->passed_type, size);
2488 all->conversion_insns = get_insns ();
2489 end_sequence ();
2490 }
2491
2492 else if (size == 0)
2493 ;
2494
2495 /* If SIZE is that of a mode no bigger than a word, just use
2496 that mode's store operation. */
2497 else if (size <= UNITS_PER_WORD)
2498 {
2499 enum machine_mode mode
2500 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2501
2502 if (mode != BLKmode
2503 #ifdef BLOCK_REG_PADDING
2504 && (size == UNITS_PER_WORD
2505 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2506 != (BYTES_BIG_ENDIAN ? upward : downward)))
2507 #endif
2508 )
2509 {
2510 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2511 emit_move_insn (change_address (mem, mode, 0), reg);
2512 }
2513
2514 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2515 machine must be aligned to the left before storing
2516 to memory. Note that the previous test doesn't
2517 handle all cases (e.g. SIZE == 3). */
2518 else if (size != UNITS_PER_WORD
2519 #ifdef BLOCK_REG_PADDING
2520 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2521 == downward)
2522 #else
2523 && BYTES_BIG_ENDIAN
2524 #endif
2525 )
2526 {
2527 rtx tem, x;
2528 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2529 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2530
2531 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2532 build_int_cst (NULL_TREE, by),
2533 NULL_RTX, 1);
2534 tem = change_address (mem, word_mode, 0);
2535 emit_move_insn (tem, x);
2536 }
2537 else
2538 move_block_from_reg (REGNO (entry_parm), mem,
2539 size_stored / UNITS_PER_WORD);
2540 }
2541 else
2542 move_block_from_reg (REGNO (entry_parm), mem,
2543 size_stored / UNITS_PER_WORD);
2544 }
2545 else if (data->stack_parm == 0)
2546 {
2547 push_to_sequence (all->conversion_insns);
2548 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2549 BLOCK_OP_NORMAL);
2550 all->conversion_insns = get_insns ();
2551 end_sequence ();
2552 }
2553
2554 data->stack_parm = stack_parm;
2555 SET_DECL_RTL (parm, stack_parm);
2556 }
2557
2558 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2559 parameter. Get it there. Perform all ABI specified conversions. */
2560
2561 static void
2562 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2563 struct assign_parm_data_one *data)
2564 {
2565 rtx parmreg;
2566 enum machine_mode promoted_nominal_mode;
2567 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2568 bool did_conversion = false;
2569
2570 /* Store the parm in a pseudoregister during the function, but we may
2571 need to do it in a wider mode. */
2572
2573 promoted_nominal_mode
2574 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2575
2576 parmreg = gen_reg_rtx (promoted_nominal_mode);
2577
2578 if (!DECL_ARTIFICIAL (parm))
2579 mark_user_reg (parmreg);
2580
2581 /* If this was an item that we received a pointer to,
2582 set DECL_RTL appropriately. */
2583 if (data->passed_pointer)
2584 {
2585 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2586 set_mem_attributes (x, parm, 1);
2587 SET_DECL_RTL (parm, x);
2588 }
2589 else
2590 SET_DECL_RTL (parm, parmreg);
2591
2592 /* Copy the value into the register. */
2593 if (data->nominal_mode != data->passed_mode
2594 || promoted_nominal_mode != data->promoted_mode)
2595 {
2596 int save_tree_used;
2597
2598 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2599 mode, by the caller. We now have to convert it to
2600 NOMINAL_MODE, if different. However, PARMREG may be in
2601 a different mode than NOMINAL_MODE if it is being stored
2602 promoted.
2603
2604 If ENTRY_PARM is a hard register, it might be in a register
2605 not valid for operating in its mode (e.g., an odd-numbered
2606 register for a DFmode). In that case, moves are the only
2607 thing valid, so we can't do a convert from there. This
2608 occurs when the calling sequence allow such misaligned
2609 usages.
2610
2611 In addition, the conversion may involve a call, which could
2612 clobber parameters which haven't been copied to pseudo
2613 registers yet. Therefore, we must first copy the parm to
2614 a pseudo reg here, and save the conversion until after all
2615 parameters have been moved. */
2616
2617 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2618
2619 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2620
2621 push_to_sequence (all->conversion_insns);
2622 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2623
2624 if (GET_CODE (tempreg) == SUBREG
2625 && GET_MODE (tempreg) == data->nominal_mode
2626 && REG_P (SUBREG_REG (tempreg))
2627 && data->nominal_mode == data->passed_mode
2628 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2629 && GET_MODE_SIZE (GET_MODE (tempreg))
2630 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2631 {
2632 /* The argument is already sign/zero extended, so note it
2633 into the subreg. */
2634 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2635 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2636 }
2637
2638 /* TREE_USED gets set erroneously during expand_assignment. */
2639 save_tree_used = TREE_USED (parm);
2640 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2641 TREE_USED (parm) = save_tree_used;
2642 all->conversion_insns = get_insns ();
2643 end_sequence ();
2644
2645 did_conversion = true;
2646 }
2647 else
2648 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2649
2650 /* If we were passed a pointer but the actual value can safely live
2651 in a register, put it in one. */
2652 if (data->passed_pointer
2653 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2654 /* If by-reference argument was promoted, demote it. */
2655 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2656 || use_register_for_decl (parm)))
2657 {
2658 /* We can't use nominal_mode, because it will have been set to
2659 Pmode above. We must use the actual mode of the parm. */
2660 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2661 mark_user_reg (parmreg);
2662
2663 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2664 {
2665 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2666 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2667
2668 push_to_sequence (all->conversion_insns);
2669 emit_move_insn (tempreg, DECL_RTL (parm));
2670 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2671 emit_move_insn (parmreg, tempreg);
2672 all->conversion_insns = get_insns ();
2673 end_sequence ();
2674
2675 did_conversion = true;
2676 }
2677 else
2678 emit_move_insn (parmreg, DECL_RTL (parm));
2679
2680 SET_DECL_RTL (parm, parmreg);
2681
2682 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2683 now the parm. */
2684 data->stack_parm = NULL;
2685 }
2686
2687 /* Mark the register as eliminable if we did no conversion and it was
2688 copied from memory at a fixed offset, and the arg pointer was not
2689 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2690 offset formed an invalid address, such memory-equivalences as we
2691 make here would screw up life analysis for it. */
2692 if (data->nominal_mode == data->passed_mode
2693 && !did_conversion
2694 && data->stack_parm != 0
2695 && MEM_P (data->stack_parm)
2696 && data->locate.offset.var == 0
2697 && reg_mentioned_p (virtual_incoming_args_rtx,
2698 XEXP (data->stack_parm, 0)))
2699 {
2700 rtx linsn = get_last_insn ();
2701 rtx sinsn, set;
2702
2703 /* Mark complex types separately. */
2704 if (GET_CODE (parmreg) == CONCAT)
2705 {
2706 enum machine_mode submode
2707 = GET_MODE_INNER (GET_MODE (parmreg));
2708 int regnor = REGNO (XEXP (parmreg, 0));
2709 int regnoi = REGNO (XEXP (parmreg, 1));
2710 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2711 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2712 GET_MODE_SIZE (submode));
2713
2714 /* Scan backwards for the set of the real and
2715 imaginary parts. */
2716 for (sinsn = linsn; sinsn != 0;
2717 sinsn = prev_nonnote_insn (sinsn))
2718 {
2719 set = single_set (sinsn);
2720 if (set == 0)
2721 continue;
2722
2723 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2724 REG_NOTES (sinsn)
2725 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2726 REG_NOTES (sinsn));
2727 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2728 REG_NOTES (sinsn)
2729 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2730 REG_NOTES (sinsn));
2731 }
2732 }
2733 else if ((set = single_set (linsn)) != 0
2734 && SET_DEST (set) == parmreg)
2735 REG_NOTES (linsn)
2736 = gen_rtx_EXPR_LIST (REG_EQUIV,
2737 data->stack_parm, REG_NOTES (linsn));
2738 }
2739
2740 /* For pointer data type, suggest pointer register. */
2741 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2742 mark_reg_pointer (parmreg,
2743 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2744 }
2745
2746 /* A subroutine of assign_parms. Allocate stack space to hold the current
2747 parameter. Get it there. Perform all ABI specified conversions. */
2748
2749 static void
2750 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2751 struct assign_parm_data_one *data)
2752 {
2753 /* Value must be stored in the stack slot STACK_PARM during function
2754 execution. */
2755 bool to_conversion = false;
2756
2757 if (data->promoted_mode != data->nominal_mode)
2758 {
2759 /* Conversion is required. */
2760 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2761
2762 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2763
2764 push_to_sequence (all->conversion_insns);
2765 to_conversion = true;
2766
2767 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2768 TYPE_UNSIGNED (TREE_TYPE (parm)));
2769
2770 if (data->stack_parm)
2771 /* ??? This may need a big-endian conversion on sparc64. */
2772 data->stack_parm
2773 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2774 }
2775
2776 if (data->entry_parm != data->stack_parm)
2777 {
2778 rtx src, dest;
2779
2780 if (data->stack_parm == 0)
2781 {
2782 data->stack_parm
2783 = assign_stack_local (GET_MODE (data->entry_parm),
2784 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2785 TYPE_ALIGN (data->passed_type));
2786 set_mem_attributes (data->stack_parm, parm, 1);
2787 }
2788
2789 dest = validize_mem (data->stack_parm);
2790 src = validize_mem (data->entry_parm);
2791
2792 if (MEM_P (src))
2793 {
2794 /* Use a block move to handle potentially misaligned entry_parm. */
2795 if (!to_conversion)
2796 push_to_sequence (all->conversion_insns);
2797 to_conversion = true;
2798
2799 emit_block_move (dest, src,
2800 GEN_INT (int_size_in_bytes (data->passed_type)),
2801 BLOCK_OP_NORMAL);
2802 }
2803 else
2804 emit_move_insn (dest, src);
2805 }
2806
2807 if (to_conversion)
2808 {
2809 all->conversion_insns = get_insns ();
2810 end_sequence ();
2811 }
2812
2813 SET_DECL_RTL (parm, data->stack_parm);
2814 }
2815
2816 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2817 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2818
2819 static void
2820 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2821 {
2822 tree parm;
2823 tree orig_fnargs = all->orig_fnargs;
2824
2825 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2826 {
2827 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2828 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2829 {
2830 rtx tmp, real, imag;
2831 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2832
2833 real = DECL_RTL (fnargs);
2834 imag = DECL_RTL (TREE_CHAIN (fnargs));
2835 if (inner != GET_MODE (real))
2836 {
2837 real = gen_lowpart_SUBREG (inner, real);
2838 imag = gen_lowpart_SUBREG (inner, imag);
2839 }
2840
2841 if (TREE_ADDRESSABLE (parm))
2842 {
2843 rtx rmem, imem;
2844 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2845
2846 /* split_complex_arg put the real and imag parts in
2847 pseudos. Move them to memory. */
2848 tmp = assign_stack_local (DECL_MODE (parm), size,
2849 TYPE_ALIGN (TREE_TYPE (parm)));
2850 set_mem_attributes (tmp, parm, 1);
2851 rmem = adjust_address_nv (tmp, inner, 0);
2852 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2853 push_to_sequence (all->conversion_insns);
2854 emit_move_insn (rmem, real);
2855 emit_move_insn (imem, imag);
2856 all->conversion_insns = get_insns ();
2857 end_sequence ();
2858 }
2859 else
2860 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2861 SET_DECL_RTL (parm, tmp);
2862
2863 real = DECL_INCOMING_RTL (fnargs);
2864 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2865 if (inner != GET_MODE (real))
2866 {
2867 real = gen_lowpart_SUBREG (inner, real);
2868 imag = gen_lowpart_SUBREG (inner, imag);
2869 }
2870 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2871 set_decl_incoming_rtl (parm, tmp);
2872 fnargs = TREE_CHAIN (fnargs);
2873 }
2874 else
2875 {
2876 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2877 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2878
2879 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2880 instead of the copy of decl, i.e. FNARGS. */
2881 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2882 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2883 }
2884
2885 fnargs = TREE_CHAIN (fnargs);
2886 }
2887 }
2888
2889 /* Assign RTL expressions to the function's parameters. This may involve
2890 copying them into registers and using those registers as the DECL_RTL. */
2891
2892 static void
2893 assign_parms (tree fndecl)
2894 {
2895 struct assign_parm_data_all all;
2896 tree fnargs, parm;
2897
2898 current_function_internal_arg_pointer
2899 = targetm.calls.internal_arg_pointer ();
2900
2901 assign_parms_initialize_all (&all);
2902 fnargs = assign_parms_augmented_arg_list (&all);
2903
2904 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2905 {
2906 struct assign_parm_data_one data;
2907
2908 /* Extract the type of PARM; adjust it according to ABI. */
2909 assign_parm_find_data_types (&all, parm, &data);
2910
2911 /* Early out for errors and void parameters. */
2912 if (data.passed_mode == VOIDmode)
2913 {
2914 SET_DECL_RTL (parm, const0_rtx);
2915 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2916 continue;
2917 }
2918
2919 if (current_function_stdarg && !TREE_CHAIN (parm))
2920 assign_parms_setup_varargs (&all, &data, false);
2921
2922 /* Find out where the parameter arrives in this function. */
2923 assign_parm_find_entry_rtl (&all, &data);
2924
2925 /* Find out where stack space for this parameter might be. */
2926 if (assign_parm_is_stack_parm (&all, &data))
2927 {
2928 assign_parm_find_stack_rtl (parm, &data);
2929 assign_parm_adjust_entry_rtl (&data);
2930 }
2931
2932 /* Record permanently how this parm was passed. */
2933 set_decl_incoming_rtl (parm, data.entry_parm);
2934
2935 /* Update info on where next arg arrives in registers. */
2936 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2937 data.passed_type, data.named_arg);
2938
2939 assign_parm_adjust_stack_rtl (&data);
2940
2941 if (assign_parm_setup_block_p (&data))
2942 assign_parm_setup_block (&all, parm, &data);
2943 else if (data.passed_pointer || use_register_for_decl (parm))
2944 assign_parm_setup_reg (&all, parm, &data);
2945 else
2946 assign_parm_setup_stack (&all, parm, &data);
2947 }
2948
2949 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
2950 assign_parms_unsplit_complex (&all, fnargs);
2951
2952 /* Output all parameter conversion instructions (possibly including calls)
2953 now that all parameters have been copied out of hard registers. */
2954 emit_insn (all.conversion_insns);
2955
2956 /* If we are receiving a struct value address as the first argument, set up
2957 the RTL for the function result. As this might require code to convert
2958 the transmitted address to Pmode, we do this here to ensure that possible
2959 preliminary conversions of the address have been emitted already. */
2960 if (all.function_result_decl)
2961 {
2962 tree result = DECL_RESULT (current_function_decl);
2963 rtx addr = DECL_RTL (all.function_result_decl);
2964 rtx x;
2965
2966 if (DECL_BY_REFERENCE (result))
2967 x = addr;
2968 else
2969 {
2970 addr = convert_memory_address (Pmode, addr);
2971 x = gen_rtx_MEM (DECL_MODE (result), addr);
2972 set_mem_attributes (x, result, 1);
2973 }
2974 SET_DECL_RTL (result, x);
2975 }
2976
2977 /* We have aligned all the args, so add space for the pretend args. */
2978 current_function_pretend_args_size = all.pretend_args_size;
2979 all.stack_args_size.constant += all.extra_pretend_bytes;
2980 current_function_args_size = all.stack_args_size.constant;
2981
2982 /* Adjust function incoming argument size for alignment and
2983 minimum length. */
2984
2985 #ifdef REG_PARM_STACK_SPACE
2986 current_function_args_size = MAX (current_function_args_size,
2987 REG_PARM_STACK_SPACE (fndecl));
2988 #endif
2989
2990 current_function_args_size = CEIL_ROUND (current_function_args_size,
2991 PARM_BOUNDARY / BITS_PER_UNIT);
2992
2993 #ifdef ARGS_GROW_DOWNWARD
2994 current_function_arg_offset_rtx
2995 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
2996 : expand_expr (size_diffop (all.stack_args_size.var,
2997 size_int (-all.stack_args_size.constant)),
2998 NULL_RTX, VOIDmode, 0));
2999 #else
3000 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3001 #endif
3002
3003 /* See how many bytes, if any, of its args a function should try to pop
3004 on return. */
3005
3006 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3007 current_function_args_size);
3008
3009 /* For stdarg.h function, save info about
3010 regs and stack space used by the named args. */
3011
3012 current_function_args_info = all.args_so_far;
3013
3014 /* Set the rtx used for the function return value. Put this in its
3015 own variable so any optimizers that need this information don't have
3016 to include tree.h. Do this here so it gets done when an inlined
3017 function gets output. */
3018
3019 current_function_return_rtx
3020 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3021 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3022
3023 /* If scalar return value was computed in a pseudo-reg, or was a named
3024 return value that got dumped to the stack, copy that to the hard
3025 return register. */
3026 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3027 {
3028 tree decl_result = DECL_RESULT (fndecl);
3029 rtx decl_rtl = DECL_RTL (decl_result);
3030
3031 if (REG_P (decl_rtl)
3032 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3033 : DECL_REGISTER (decl_result))
3034 {
3035 rtx real_decl_rtl;
3036
3037 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3038 fndecl, true);
3039 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3040 /* The delay slot scheduler assumes that current_function_return_rtx
3041 holds the hard register containing the return value, not a
3042 temporary pseudo. */
3043 current_function_return_rtx = real_decl_rtl;
3044 }
3045 }
3046 }
3047
3048 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3049 For all seen types, gimplify their sizes. */
3050
3051 static tree
3052 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3053 {
3054 tree t = *tp;
3055
3056 *walk_subtrees = 0;
3057 if (TYPE_P (t))
3058 {
3059 if (POINTER_TYPE_P (t))
3060 *walk_subtrees = 1;
3061 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3062 && !TYPE_SIZES_GIMPLIFIED (t))
3063 {
3064 gimplify_type_sizes (t, (tree *) data);
3065 *walk_subtrees = 1;
3066 }
3067 }
3068
3069 return NULL;
3070 }
3071
3072 /* Gimplify the parameter list for current_function_decl. This involves
3073 evaluating SAVE_EXPRs of variable sized parameters and generating code
3074 to implement callee-copies reference parameters. Returns a list of
3075 statements to add to the beginning of the function, or NULL if nothing
3076 to do. */
3077
3078 tree
3079 gimplify_parameters (void)
3080 {
3081 struct assign_parm_data_all all;
3082 tree fnargs, parm, stmts = NULL;
3083
3084 assign_parms_initialize_all (&all);
3085 fnargs = assign_parms_augmented_arg_list (&all);
3086
3087 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3088 {
3089 struct assign_parm_data_one data;
3090
3091 /* Extract the type of PARM; adjust it according to ABI. */
3092 assign_parm_find_data_types (&all, parm, &data);
3093
3094 /* Early out for errors and void parameters. */
3095 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3096 continue;
3097
3098 /* Update info on where next arg arrives in registers. */
3099 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3100 data.passed_type, data.named_arg);
3101
3102 /* ??? Once upon a time variable_size stuffed parameter list
3103 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3104 turned out to be less than manageable in the gimple world.
3105 Now we have to hunt them down ourselves. */
3106 walk_tree_without_duplicates (&data.passed_type,
3107 gimplify_parm_type, &stmts);
3108
3109 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3110 {
3111 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3112 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3113 }
3114
3115 if (data.passed_pointer)
3116 {
3117 tree type = TREE_TYPE (data.passed_type);
3118 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3119 type, data.named_arg))
3120 {
3121 tree local, t;
3122
3123 /* For constant sized objects, this is trivial; for
3124 variable-sized objects, we have to play games. */
3125 if (TREE_CONSTANT (DECL_SIZE (parm)))
3126 {
3127 local = create_tmp_var (type, get_name (parm));
3128 DECL_IGNORED_P (local) = 0;
3129 }
3130 else
3131 {
3132 tree ptr_type, addr, args;
3133
3134 ptr_type = build_pointer_type (type);
3135 addr = create_tmp_var (ptr_type, get_name (parm));
3136 DECL_IGNORED_P (addr) = 0;
3137 local = build_fold_indirect_ref (addr);
3138
3139 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3140 t = built_in_decls[BUILT_IN_ALLOCA];
3141 t = build_function_call_expr (t, args);
3142 t = fold_convert (ptr_type, t);
3143 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3144 gimplify_and_add (t, &stmts);
3145 }
3146
3147 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3148 gimplify_and_add (t, &stmts);
3149
3150 SET_DECL_VALUE_EXPR (parm, local);
3151 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3152 }
3153 }
3154 }
3155
3156 return stmts;
3157 }
3158 \f
3159 /* Indicate whether REGNO is an incoming argument to the current function
3160 that was promoted to a wider mode. If so, return the RTX for the
3161 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3162 that REGNO is promoted from and whether the promotion was signed or
3163 unsigned. */
3164
3165 rtx
3166 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3167 {
3168 tree arg;
3169
3170 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3171 arg = TREE_CHAIN (arg))
3172 if (REG_P (DECL_INCOMING_RTL (arg))
3173 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3174 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3175 {
3176 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3177 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3178
3179 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3180 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3181 && mode != DECL_MODE (arg))
3182 {
3183 *pmode = DECL_MODE (arg);
3184 *punsignedp = unsignedp;
3185 return DECL_INCOMING_RTL (arg);
3186 }
3187 }
3188
3189 return 0;
3190 }
3191
3192 \f
3193 /* Compute the size and offset from the start of the stacked arguments for a
3194 parm passed in mode PASSED_MODE and with type TYPE.
3195
3196 INITIAL_OFFSET_PTR points to the current offset into the stacked
3197 arguments.
3198
3199 The starting offset and size for this parm are returned in
3200 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3201 nonzero, the offset is that of stack slot, which is returned in
3202 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3203 padding required from the initial offset ptr to the stack slot.
3204
3205 IN_REGS is nonzero if the argument will be passed in registers. It will
3206 never be set if REG_PARM_STACK_SPACE is not defined.
3207
3208 FNDECL is the function in which the argument was defined.
3209
3210 There are two types of rounding that are done. The first, controlled by
3211 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3212 list to be aligned to the specific boundary (in bits). This rounding
3213 affects the initial and starting offsets, but not the argument size.
3214
3215 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3216 optionally rounds the size of the parm to PARM_BOUNDARY. The
3217 initial offset is not affected by this rounding, while the size always
3218 is and the starting offset may be. */
3219
3220 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3221 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3222 callers pass in the total size of args so far as
3223 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3224
3225 void
3226 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3227 int partial, tree fndecl ATTRIBUTE_UNUSED,
3228 struct args_size *initial_offset_ptr,
3229 struct locate_and_pad_arg_data *locate)
3230 {
3231 tree sizetree;
3232 enum direction where_pad;
3233 unsigned int boundary;
3234 int reg_parm_stack_space = 0;
3235 int part_size_in_regs;
3236
3237 #ifdef REG_PARM_STACK_SPACE
3238 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3239
3240 /* If we have found a stack parm before we reach the end of the
3241 area reserved for registers, skip that area. */
3242 if (! in_regs)
3243 {
3244 if (reg_parm_stack_space > 0)
3245 {
3246 if (initial_offset_ptr->var)
3247 {
3248 initial_offset_ptr->var
3249 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3250 ssize_int (reg_parm_stack_space));
3251 initial_offset_ptr->constant = 0;
3252 }
3253 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3254 initial_offset_ptr->constant = reg_parm_stack_space;
3255 }
3256 }
3257 #endif /* REG_PARM_STACK_SPACE */
3258
3259 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3260
3261 sizetree
3262 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3263 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3264 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3265 locate->where_pad = where_pad;
3266 locate->boundary = boundary;
3267
3268 /* Remember if the outgoing parameter requires extra alignment on the
3269 calling function side. */
3270 if (boundary > PREFERRED_STACK_BOUNDARY)
3271 boundary = PREFERRED_STACK_BOUNDARY;
3272 if (cfun->stack_alignment_needed < boundary)
3273 cfun->stack_alignment_needed = boundary;
3274
3275 #ifdef ARGS_GROW_DOWNWARD
3276 locate->slot_offset.constant = -initial_offset_ptr->constant;
3277 if (initial_offset_ptr->var)
3278 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3279 initial_offset_ptr->var);
3280
3281 {
3282 tree s2 = sizetree;
3283 if (where_pad != none
3284 && (!host_integerp (sizetree, 1)
3285 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3286 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3287 SUB_PARM_SIZE (locate->slot_offset, s2);
3288 }
3289
3290 locate->slot_offset.constant += part_size_in_regs;
3291
3292 if (!in_regs
3293 #ifdef REG_PARM_STACK_SPACE
3294 || REG_PARM_STACK_SPACE (fndecl) > 0
3295 #endif
3296 )
3297 pad_to_arg_alignment (&locate->slot_offset, boundary,
3298 &locate->alignment_pad);
3299
3300 locate->size.constant = (-initial_offset_ptr->constant
3301 - locate->slot_offset.constant);
3302 if (initial_offset_ptr->var)
3303 locate->size.var = size_binop (MINUS_EXPR,
3304 size_binop (MINUS_EXPR,
3305 ssize_int (0),
3306 initial_offset_ptr->var),
3307 locate->slot_offset.var);
3308
3309 /* Pad_below needs the pre-rounded size to know how much to pad
3310 below. */
3311 locate->offset = locate->slot_offset;
3312 if (where_pad == downward)
3313 pad_below (&locate->offset, passed_mode, sizetree);
3314
3315 #else /* !ARGS_GROW_DOWNWARD */
3316 if (!in_regs
3317 #ifdef REG_PARM_STACK_SPACE
3318 || REG_PARM_STACK_SPACE (fndecl) > 0
3319 #endif
3320 )
3321 pad_to_arg_alignment (initial_offset_ptr, boundary,
3322 &locate->alignment_pad);
3323 locate->slot_offset = *initial_offset_ptr;
3324
3325 #ifdef PUSH_ROUNDING
3326 if (passed_mode != BLKmode)
3327 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3328 #endif
3329
3330 /* Pad_below needs the pre-rounded size to know how much to pad below
3331 so this must be done before rounding up. */
3332 locate->offset = locate->slot_offset;
3333 if (where_pad == downward)
3334 pad_below (&locate->offset, passed_mode, sizetree);
3335
3336 if (where_pad != none
3337 && (!host_integerp (sizetree, 1)
3338 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3339 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3340
3341 ADD_PARM_SIZE (locate->size, sizetree);
3342
3343 locate->size.constant -= part_size_in_regs;
3344 #endif /* ARGS_GROW_DOWNWARD */
3345 }
3346
3347 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3348 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3349
3350 static void
3351 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3352 struct args_size *alignment_pad)
3353 {
3354 tree save_var = NULL_TREE;
3355 HOST_WIDE_INT save_constant = 0;
3356 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3357 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3358
3359 #ifdef SPARC_STACK_BOUNDARY_HACK
3360 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3361 the real alignment of %sp. However, when it does this, the
3362 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3363 if (SPARC_STACK_BOUNDARY_HACK)
3364 sp_offset = 0;
3365 #endif
3366
3367 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3368 {
3369 save_var = offset_ptr->var;
3370 save_constant = offset_ptr->constant;
3371 }
3372
3373 alignment_pad->var = NULL_TREE;
3374 alignment_pad->constant = 0;
3375
3376 if (boundary > BITS_PER_UNIT)
3377 {
3378 if (offset_ptr->var)
3379 {
3380 tree sp_offset_tree = ssize_int (sp_offset);
3381 tree offset = size_binop (PLUS_EXPR,
3382 ARGS_SIZE_TREE (*offset_ptr),
3383 sp_offset_tree);
3384 #ifdef ARGS_GROW_DOWNWARD
3385 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3386 #else
3387 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3388 #endif
3389
3390 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3391 /* ARGS_SIZE_TREE includes constant term. */
3392 offset_ptr->constant = 0;
3393 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3394 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3395 save_var);
3396 }
3397 else
3398 {
3399 offset_ptr->constant = -sp_offset +
3400 #ifdef ARGS_GROW_DOWNWARD
3401 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3402 #else
3403 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3404 #endif
3405 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3406 alignment_pad->constant = offset_ptr->constant - save_constant;
3407 }
3408 }
3409 }
3410
3411 static void
3412 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3413 {
3414 if (passed_mode != BLKmode)
3415 {
3416 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3417 offset_ptr->constant
3418 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3419 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3420 - GET_MODE_SIZE (passed_mode));
3421 }
3422 else
3423 {
3424 if (TREE_CODE (sizetree) != INTEGER_CST
3425 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3426 {
3427 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3428 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3429 /* Add it in. */
3430 ADD_PARM_SIZE (*offset_ptr, s2);
3431 SUB_PARM_SIZE (*offset_ptr, sizetree);
3432 }
3433 }
3434 }
3435 \f
3436 /* Walk the tree of blocks describing the binding levels within a function
3437 and warn about variables the might be killed by setjmp or vfork.
3438 This is done after calling flow_analysis and before global_alloc
3439 clobbers the pseudo-regs to hard regs. */
3440
3441 void
3442 setjmp_vars_warning (tree block)
3443 {
3444 tree decl, sub;
3445
3446 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3447 {
3448 if (TREE_CODE (decl) == VAR_DECL
3449 && DECL_RTL_SET_P (decl)
3450 && REG_P (DECL_RTL (decl))
3451 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3452 warning (0, "variable %q+D might be clobbered by %<longjmp%>"
3453 " or %<vfork%>",
3454 decl);
3455 }
3456
3457 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3458 setjmp_vars_warning (sub);
3459 }
3460
3461 /* Do the appropriate part of setjmp_vars_warning
3462 but for arguments instead of local variables. */
3463
3464 void
3465 setjmp_args_warning (void)
3466 {
3467 tree decl;
3468 for (decl = DECL_ARGUMENTS (current_function_decl);
3469 decl; decl = TREE_CHAIN (decl))
3470 if (DECL_RTL (decl) != 0
3471 && REG_P (DECL_RTL (decl))
3472 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3473 warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3474 decl);
3475 }
3476
3477 \f
3478 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3479 and create duplicate blocks. */
3480 /* ??? Need an option to either create block fragments or to create
3481 abstract origin duplicates of a source block. It really depends
3482 on what optimization has been performed. */
3483
3484 void
3485 reorder_blocks (void)
3486 {
3487 tree block = DECL_INITIAL (current_function_decl);
3488 VEC(tree,heap) *block_stack;
3489
3490 if (block == NULL_TREE)
3491 return;
3492
3493 block_stack = VEC_alloc (tree, heap, 10);
3494
3495 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3496 clear_block_marks (block);
3497
3498 /* Prune the old trees away, so that they don't get in the way. */
3499 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3500 BLOCK_CHAIN (block) = NULL_TREE;
3501
3502 /* Recreate the block tree from the note nesting. */
3503 reorder_blocks_1 (get_insns (), block, &block_stack);
3504 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3505
3506 /* Remove deleted blocks from the block fragment chains. */
3507 reorder_fix_fragments (block);
3508
3509 VEC_free (tree, heap, block_stack);
3510 }
3511
3512 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3513
3514 void
3515 clear_block_marks (tree block)
3516 {
3517 while (block)
3518 {
3519 TREE_ASM_WRITTEN (block) = 0;
3520 clear_block_marks (BLOCK_SUBBLOCKS (block));
3521 block = BLOCK_CHAIN (block);
3522 }
3523 }
3524
3525 static void
3526 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3527 {
3528 rtx insn;
3529
3530 for (insn = insns; insn; insn = NEXT_INSN (insn))
3531 {
3532 if (NOTE_P (insn))
3533 {
3534 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3535 {
3536 tree block = NOTE_BLOCK (insn);
3537
3538 /* If we have seen this block before, that means it now
3539 spans multiple address regions. Create a new fragment. */
3540 if (TREE_ASM_WRITTEN (block))
3541 {
3542 tree new_block = copy_node (block);
3543 tree origin;
3544
3545 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3546 ? BLOCK_FRAGMENT_ORIGIN (block)
3547 : block);
3548 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3549 BLOCK_FRAGMENT_CHAIN (new_block)
3550 = BLOCK_FRAGMENT_CHAIN (origin);
3551 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3552
3553 NOTE_BLOCK (insn) = new_block;
3554 block = new_block;
3555 }
3556
3557 BLOCK_SUBBLOCKS (block) = 0;
3558 TREE_ASM_WRITTEN (block) = 1;
3559 /* When there's only one block for the entire function,
3560 current_block == block and we mustn't do this, it
3561 will cause infinite recursion. */
3562 if (block != current_block)
3563 {
3564 BLOCK_SUPERCONTEXT (block) = current_block;
3565 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3566 BLOCK_SUBBLOCKS (current_block) = block;
3567 current_block = block;
3568 }
3569 VEC_safe_push (tree, heap, *p_block_stack, block);
3570 }
3571 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3572 {
3573 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3574 BLOCK_SUBBLOCKS (current_block)
3575 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3576 current_block = BLOCK_SUPERCONTEXT (current_block);
3577 }
3578 }
3579 }
3580 }
3581
3582 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3583 appears in the block tree, select one of the fragments to become
3584 the new origin block. */
3585
3586 static void
3587 reorder_fix_fragments (tree block)
3588 {
3589 while (block)
3590 {
3591 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3592 tree new_origin = NULL_TREE;
3593
3594 if (dup_origin)
3595 {
3596 if (! TREE_ASM_WRITTEN (dup_origin))
3597 {
3598 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3599
3600 /* Find the first of the remaining fragments. There must
3601 be at least one -- the current block. */
3602 while (! TREE_ASM_WRITTEN (new_origin))
3603 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3604 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3605 }
3606 }
3607 else if (! dup_origin)
3608 new_origin = block;
3609
3610 /* Re-root the rest of the fragments to the new origin. In the
3611 case that DUP_ORIGIN was null, that means BLOCK was the origin
3612 of a chain of fragments and we want to remove those fragments
3613 that didn't make it to the output. */
3614 if (new_origin)
3615 {
3616 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3617 tree chain = *pp;
3618
3619 while (chain)
3620 {
3621 if (TREE_ASM_WRITTEN (chain))
3622 {
3623 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3624 *pp = chain;
3625 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3626 }
3627 chain = BLOCK_FRAGMENT_CHAIN (chain);
3628 }
3629 *pp = NULL_TREE;
3630 }
3631
3632 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3633 block = BLOCK_CHAIN (block);
3634 }
3635 }
3636
3637 /* Reverse the order of elements in the chain T of blocks,
3638 and return the new head of the chain (old last element). */
3639
3640 tree
3641 blocks_nreverse (tree t)
3642 {
3643 tree prev = 0, decl, next;
3644 for (decl = t; decl; decl = next)
3645 {
3646 next = BLOCK_CHAIN (decl);
3647 BLOCK_CHAIN (decl) = prev;
3648 prev = decl;
3649 }
3650 return prev;
3651 }
3652
3653 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3654 non-NULL, list them all into VECTOR, in a depth-first preorder
3655 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3656 blocks. */
3657
3658 static int
3659 all_blocks (tree block, tree *vector)
3660 {
3661 int n_blocks = 0;
3662
3663 while (block)
3664 {
3665 TREE_ASM_WRITTEN (block) = 0;
3666
3667 /* Record this block. */
3668 if (vector)
3669 vector[n_blocks] = block;
3670
3671 ++n_blocks;
3672
3673 /* Record the subblocks, and their subblocks... */
3674 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3675 vector ? vector + n_blocks : 0);
3676 block = BLOCK_CHAIN (block);
3677 }
3678
3679 return n_blocks;
3680 }
3681
3682 /* Return a vector containing all the blocks rooted at BLOCK. The
3683 number of elements in the vector is stored in N_BLOCKS_P. The
3684 vector is dynamically allocated; it is the caller's responsibility
3685 to call `free' on the pointer returned. */
3686
3687 static tree *
3688 get_block_vector (tree block, int *n_blocks_p)
3689 {
3690 tree *block_vector;
3691
3692 *n_blocks_p = all_blocks (block, NULL);
3693 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3694 all_blocks (block, block_vector);
3695
3696 return block_vector;
3697 }
3698
3699 static GTY(()) int next_block_index = 2;
3700
3701 /* Set BLOCK_NUMBER for all the blocks in FN. */
3702
3703 void
3704 number_blocks (tree fn)
3705 {
3706 int i;
3707 int n_blocks;
3708 tree *block_vector;
3709
3710 /* For SDB and XCOFF debugging output, we start numbering the blocks
3711 from 1 within each function, rather than keeping a running
3712 count. */
3713 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3714 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3715 next_block_index = 1;
3716 #endif
3717
3718 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3719
3720 /* The top-level BLOCK isn't numbered at all. */
3721 for (i = 1; i < n_blocks; ++i)
3722 /* We number the blocks from two. */
3723 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3724
3725 free (block_vector);
3726
3727 return;
3728 }
3729
3730 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3731
3732 tree
3733 debug_find_var_in_block_tree (tree var, tree block)
3734 {
3735 tree t;
3736
3737 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3738 if (t == var)
3739 return block;
3740
3741 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3742 {
3743 tree ret = debug_find_var_in_block_tree (var, t);
3744 if (ret)
3745 return ret;
3746 }
3747
3748 return NULL_TREE;
3749 }
3750 \f
3751 /* Allocate a function structure for FNDECL and set its contents
3752 to the defaults. */
3753
3754 void
3755 allocate_struct_function (tree fndecl)
3756 {
3757 tree result;
3758 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3759
3760 cfun = ggc_alloc_cleared (sizeof (struct function));
3761
3762 cfun->stack_alignment_needed = STACK_BOUNDARY;
3763 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3764
3765 current_function_funcdef_no = funcdef_no++;
3766
3767 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3768
3769 init_eh_for_function ();
3770
3771 lang_hooks.function.init (cfun);
3772 if (init_machine_status)
3773 cfun->machine = (*init_machine_status) ();
3774
3775 if (fndecl == NULL)
3776 return;
3777
3778 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3779 cfun->decl = fndecl;
3780
3781 result = DECL_RESULT (fndecl);
3782 if (aggregate_value_p (result, fndecl))
3783 {
3784 #ifdef PCC_STATIC_STRUCT_RETURN
3785 current_function_returns_pcc_struct = 1;
3786 #endif
3787 current_function_returns_struct = 1;
3788 }
3789
3790 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3791
3792 current_function_stdarg
3793 = (fntype
3794 && TYPE_ARG_TYPES (fntype) != 0
3795 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3796 != void_type_node));
3797
3798 /* Assume all registers in stdarg functions need to be saved. */
3799 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3800 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3801 }
3802
3803 /* Reset cfun, and other non-struct-function variables to defaults as
3804 appropriate for emitting rtl at the start of a function. */
3805
3806 static void
3807 prepare_function_start (tree fndecl)
3808 {
3809 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3810 cfun = DECL_STRUCT_FUNCTION (fndecl);
3811 else
3812 allocate_struct_function (fndecl);
3813 init_emit ();
3814 init_varasm_status (cfun);
3815 init_expr ();
3816
3817 cse_not_expected = ! optimize;
3818
3819 /* Caller save not needed yet. */
3820 caller_save_needed = 0;
3821
3822 /* We haven't done register allocation yet. */
3823 reg_renumber = 0;
3824
3825 /* Indicate that we have not instantiated virtual registers yet. */
3826 virtuals_instantiated = 0;
3827
3828 /* Indicate that we want CONCATs now. */
3829 generating_concat_p = 1;
3830
3831 /* Indicate we have no need of a frame pointer yet. */
3832 frame_pointer_needed = 0;
3833 }
3834
3835 /* Initialize the rtl expansion mechanism so that we can do simple things
3836 like generate sequences. This is used to provide a context during global
3837 initialization of some passes. */
3838 void
3839 init_dummy_function_start (void)
3840 {
3841 prepare_function_start (NULL);
3842 }
3843
3844 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3845 and initialize static variables for generating RTL for the statements
3846 of the function. */
3847
3848 void
3849 init_function_start (tree subr)
3850 {
3851 prepare_function_start (subr);
3852
3853 /* Prevent ever trying to delete the first instruction of a
3854 function. Also tell final how to output a linenum before the
3855 function prologue. Note linenums could be missing, e.g. when
3856 compiling a Java .class file. */
3857 if (! DECL_IS_BUILTIN (subr))
3858 emit_line_note (DECL_SOURCE_LOCATION (subr));
3859
3860 /* Make sure first insn is a note even if we don't want linenums.
3861 This makes sure the first insn will never be deleted.
3862 Also, final expects a note to appear there. */
3863 emit_note (NOTE_INSN_DELETED);
3864
3865 /* Warn if this value is an aggregate type,
3866 regardless of which calling convention we are using for it. */
3867 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3868 warning (OPT_Waggregate_return, "function returns an aggregate");
3869 }
3870
3871 /* Make sure all values used by the optimization passes have sane
3872 defaults. */
3873 void
3874 init_function_for_compilation (void)
3875 {
3876 reg_renumber = 0;
3877
3878 /* No prologue/epilogue insns yet. Make sure that these vectors are
3879 empty. */
3880 gcc_assert (VEC_length (int, prologue) == 0);
3881 gcc_assert (VEC_length (int, epilogue) == 0);
3882 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3883 }
3884
3885 struct tree_opt_pass pass_init_function =
3886 {
3887 NULL, /* name */
3888 NULL, /* gate */
3889 init_function_for_compilation, /* execute */
3890 NULL, /* sub */
3891 NULL, /* next */
3892 0, /* static_pass_number */
3893 0, /* tv_id */
3894 0, /* properties_required */
3895 0, /* properties_provided */
3896 0, /* properties_destroyed */
3897 0, /* todo_flags_start */
3898 0, /* todo_flags_finish */
3899 0 /* letter */
3900 };
3901
3902
3903 void
3904 expand_main_function (void)
3905 {
3906 #if (defined(INVOKE__main) \
3907 || (!defined(HAS_INIT_SECTION) \
3908 && !defined(INIT_SECTION_ASM_OP) \
3909 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3910 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3911 #endif
3912 }
3913 \f
3914 /* Expand code to initialize the stack_protect_guard. This is invoked at
3915 the beginning of a function to be protected. */
3916
3917 #ifndef HAVE_stack_protect_set
3918 # define HAVE_stack_protect_set 0
3919 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3920 #endif
3921
3922 void
3923 stack_protect_prologue (void)
3924 {
3925 tree guard_decl = targetm.stack_protect_guard ();
3926 rtx x, y;
3927
3928 /* Avoid expand_expr here, because we don't want guard_decl pulled
3929 into registers unless absolutely necessary. And we know that
3930 cfun->stack_protect_guard is a local stack slot, so this skips
3931 all the fluff. */
3932 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3933 y = validize_mem (DECL_RTL (guard_decl));
3934
3935 /* Allow the target to copy from Y to X without leaking Y into a
3936 register. */
3937 if (HAVE_stack_protect_set)
3938 {
3939 rtx insn = gen_stack_protect_set (x, y);
3940 if (insn)
3941 {
3942 emit_insn (insn);
3943 return;
3944 }
3945 }
3946
3947 /* Otherwise do a straight move. */
3948 emit_move_insn (x, y);
3949 }
3950
3951 /* Expand code to verify the stack_protect_guard. This is invoked at
3952 the end of a function to be protected. */
3953
3954 #ifndef HAVE_stack_protect_test
3955 # define HAVE_stack_protect_test 0
3956 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
3957 #endif
3958
3959 void
3960 stack_protect_epilogue (void)
3961 {
3962 tree guard_decl = targetm.stack_protect_guard ();
3963 rtx label = gen_label_rtx ();
3964 rtx x, y, tmp;
3965
3966 /* Avoid expand_expr here, because we don't want guard_decl pulled
3967 into registers unless absolutely necessary. And we know that
3968 cfun->stack_protect_guard is a local stack slot, so this skips
3969 all the fluff. */
3970 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3971 y = validize_mem (DECL_RTL (guard_decl));
3972
3973 /* Allow the target to compare Y with X without leaking either into
3974 a register. */
3975 switch (HAVE_stack_protect_test != 0)
3976 {
3977 case 1:
3978 tmp = gen_stack_protect_test (x, y, label);
3979 if (tmp)
3980 {
3981 emit_insn (tmp);
3982 break;
3983 }
3984 /* FALLTHRU */
3985
3986 default:
3987 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
3988 break;
3989 }
3990
3991 /* The noreturn predictor has been moved to the tree level. The rtl-level
3992 predictors estimate this branch about 20%, which isn't enough to get
3993 things moved out of line. Since this is the only extant case of adding
3994 a noreturn function at the rtl level, it doesn't seem worth doing ought
3995 except adding the prediction by hand. */
3996 tmp = get_last_insn ();
3997 if (JUMP_P (tmp))
3998 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
3999
4000 expand_expr_stmt (targetm.stack_protect_fail ());
4001 emit_label (label);
4002 }
4003 \f
4004 /* Start the RTL for a new function, and set variables used for
4005 emitting RTL.
4006 SUBR is the FUNCTION_DECL node.
4007 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4008 the function's parameters, which must be run at any return statement. */
4009
4010 void
4011 expand_function_start (tree subr)
4012 {
4013 /* Make sure volatile mem refs aren't considered
4014 valid operands of arithmetic insns. */
4015 init_recog_no_volatile ();
4016
4017 current_function_profile
4018 = (profile_flag
4019 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4020
4021 current_function_limit_stack
4022 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4023
4024 /* Make the label for return statements to jump to. Do not special
4025 case machines with special return instructions -- they will be
4026 handled later during jump, ifcvt, or epilogue creation. */
4027 return_label = gen_label_rtx ();
4028
4029 /* Initialize rtx used to return the value. */
4030 /* Do this before assign_parms so that we copy the struct value address
4031 before any library calls that assign parms might generate. */
4032
4033 /* Decide whether to return the value in memory or in a register. */
4034 if (aggregate_value_p (DECL_RESULT (subr), subr))
4035 {
4036 /* Returning something that won't go in a register. */
4037 rtx value_address = 0;
4038
4039 #ifdef PCC_STATIC_STRUCT_RETURN
4040 if (current_function_returns_pcc_struct)
4041 {
4042 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4043 value_address = assemble_static_space (size);
4044 }
4045 else
4046 #endif
4047 {
4048 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4049 /* Expect to be passed the address of a place to store the value.
4050 If it is passed as an argument, assign_parms will take care of
4051 it. */
4052 if (sv)
4053 {
4054 value_address = gen_reg_rtx (Pmode);
4055 emit_move_insn (value_address, sv);
4056 }
4057 }
4058 if (value_address)
4059 {
4060 rtx x = value_address;
4061 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4062 {
4063 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4064 set_mem_attributes (x, DECL_RESULT (subr), 1);
4065 }
4066 SET_DECL_RTL (DECL_RESULT (subr), x);
4067 }
4068 }
4069 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4070 /* If return mode is void, this decl rtl should not be used. */
4071 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4072 else
4073 {
4074 /* Compute the return values into a pseudo reg, which we will copy
4075 into the true return register after the cleanups are done. */
4076 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4077 if (TYPE_MODE (return_type) != BLKmode
4078 && targetm.calls.return_in_msb (return_type))
4079 /* expand_function_end will insert the appropriate padding in
4080 this case. Use the return value's natural (unpadded) mode
4081 within the function proper. */
4082 SET_DECL_RTL (DECL_RESULT (subr),
4083 gen_reg_rtx (TYPE_MODE (return_type)));
4084 else
4085 {
4086 /* In order to figure out what mode to use for the pseudo, we
4087 figure out what the mode of the eventual return register will
4088 actually be, and use that. */
4089 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4090
4091 /* Structures that are returned in registers are not
4092 aggregate_value_p, so we may see a PARALLEL or a REG. */
4093 if (REG_P (hard_reg))
4094 SET_DECL_RTL (DECL_RESULT (subr),
4095 gen_reg_rtx (GET_MODE (hard_reg)));
4096 else
4097 {
4098 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4099 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4100 }
4101 }
4102
4103 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4104 result to the real return register(s). */
4105 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4106 }
4107
4108 /* Initialize rtx for parameters and local variables.
4109 In some cases this requires emitting insns. */
4110 assign_parms (subr);
4111
4112 /* If function gets a static chain arg, store it. */
4113 if (cfun->static_chain_decl)
4114 {
4115 tree parm = cfun->static_chain_decl;
4116 rtx local = gen_reg_rtx (Pmode);
4117
4118 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4119 SET_DECL_RTL (parm, local);
4120 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4121
4122 emit_move_insn (local, static_chain_incoming_rtx);
4123 }
4124
4125 /* If the function receives a non-local goto, then store the
4126 bits we need to restore the frame pointer. */
4127 if (cfun->nonlocal_goto_save_area)
4128 {
4129 tree t_save;
4130 rtx r_save;
4131
4132 /* ??? We need to do this save early. Unfortunately here is
4133 before the frame variable gets declared. Help out... */
4134 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4135
4136 t_save = build4 (ARRAY_REF, ptr_type_node,
4137 cfun->nonlocal_goto_save_area,
4138 integer_zero_node, NULL_TREE, NULL_TREE);
4139 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4140 r_save = convert_memory_address (Pmode, r_save);
4141
4142 emit_move_insn (r_save, virtual_stack_vars_rtx);
4143 update_nonlocal_goto_save_area ();
4144 }
4145
4146 /* The following was moved from init_function_start.
4147 The move is supposed to make sdb output more accurate. */
4148 /* Indicate the beginning of the function body,
4149 as opposed to parm setup. */
4150 emit_note (NOTE_INSN_FUNCTION_BEG);
4151
4152 if (!NOTE_P (get_last_insn ()))
4153 emit_note (NOTE_INSN_DELETED);
4154 parm_birth_insn = get_last_insn ();
4155
4156 if (current_function_profile)
4157 {
4158 #ifdef PROFILE_HOOK
4159 PROFILE_HOOK (current_function_funcdef_no);
4160 #endif
4161 }
4162
4163 /* After the display initializations is where the tail-recursion label
4164 should go, if we end up needing one. Ensure we have a NOTE here
4165 since some things (like trampolines) get placed before this. */
4166 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4167
4168 /* Make sure there is a line number after the function entry setup code. */
4169 force_next_line_note ();
4170 }
4171 \f
4172 /* Undo the effects of init_dummy_function_start. */
4173 void
4174 expand_dummy_function_end (void)
4175 {
4176 /* End any sequences that failed to be closed due to syntax errors. */
4177 while (in_sequence_p ())
4178 end_sequence ();
4179
4180 /* Outside function body, can't compute type's actual size
4181 until next function's body starts. */
4182
4183 free_after_parsing (cfun);
4184 free_after_compilation (cfun);
4185 cfun = 0;
4186 }
4187
4188 /* Call DOIT for each hard register used as a return value from
4189 the current function. */
4190
4191 void
4192 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4193 {
4194 rtx outgoing = current_function_return_rtx;
4195
4196 if (! outgoing)
4197 return;
4198
4199 if (REG_P (outgoing))
4200 (*doit) (outgoing, arg);
4201 else if (GET_CODE (outgoing) == PARALLEL)
4202 {
4203 int i;
4204
4205 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4206 {
4207 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4208
4209 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4210 (*doit) (x, arg);
4211 }
4212 }
4213 }
4214
4215 static void
4216 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4217 {
4218 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4219 }
4220
4221 void
4222 clobber_return_register (void)
4223 {
4224 diddle_return_value (do_clobber_return_reg, NULL);
4225
4226 /* In case we do use pseudo to return value, clobber it too. */
4227 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4228 {
4229 tree decl_result = DECL_RESULT (current_function_decl);
4230 rtx decl_rtl = DECL_RTL (decl_result);
4231 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4232 {
4233 do_clobber_return_reg (decl_rtl, NULL);
4234 }
4235 }
4236 }
4237
4238 static void
4239 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4240 {
4241 emit_insn (gen_rtx_USE (VOIDmode, reg));
4242 }
4243
4244 void
4245 use_return_register (void)
4246 {
4247 diddle_return_value (do_use_return_reg, NULL);
4248 }
4249
4250 /* Possibly warn about unused parameters. */
4251 void
4252 do_warn_unused_parameter (tree fn)
4253 {
4254 tree decl;
4255
4256 for (decl = DECL_ARGUMENTS (fn);
4257 decl; decl = TREE_CHAIN (decl))
4258 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4259 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4260 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4261 }
4262
4263 static GTY(()) rtx initial_trampoline;
4264
4265 /* Generate RTL for the end of the current function. */
4266
4267 void
4268 expand_function_end (void)
4269 {
4270 rtx clobber_after;
4271
4272 /* If arg_pointer_save_area was referenced only from a nested
4273 function, we will not have initialized it yet. Do that now. */
4274 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4275 get_arg_pointer_save_area (cfun);
4276
4277 /* If we are doing stack checking and this function makes calls,
4278 do a stack probe at the start of the function to ensure we have enough
4279 space for another stack frame. */
4280 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4281 {
4282 rtx insn, seq;
4283
4284 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4285 if (CALL_P (insn))
4286 {
4287 start_sequence ();
4288 probe_stack_range (STACK_CHECK_PROTECT,
4289 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4290 seq = get_insns ();
4291 end_sequence ();
4292 emit_insn_before (seq, tail_recursion_reentry);
4293 break;
4294 }
4295 }
4296
4297 /* Possibly warn about unused parameters.
4298 When frontend does unit-at-a-time, the warning is already
4299 issued at finalization time. */
4300 if (warn_unused_parameter
4301 && !lang_hooks.callgraph.expand_function)
4302 do_warn_unused_parameter (current_function_decl);
4303
4304 /* End any sequences that failed to be closed due to syntax errors. */
4305 while (in_sequence_p ())
4306 end_sequence ();
4307
4308 clear_pending_stack_adjust ();
4309 do_pending_stack_adjust ();
4310
4311 /* @@@ This is a kludge. We want to ensure that instructions that
4312 may trap are not moved into the epilogue by scheduling, because
4313 we don't always emit unwind information for the epilogue.
4314 However, not all machine descriptions define a blockage insn, so
4315 emit an ASM_INPUT to act as one. */
4316 if (flag_non_call_exceptions)
4317 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4318
4319 /* Mark the end of the function body.
4320 If control reaches this insn, the function can drop through
4321 without returning a value. */
4322 emit_note (NOTE_INSN_FUNCTION_END);
4323
4324 /* Must mark the last line number note in the function, so that the test
4325 coverage code can avoid counting the last line twice. This just tells
4326 the code to ignore the immediately following line note, since there
4327 already exists a copy of this note somewhere above. This line number
4328 note is still needed for debugging though, so we can't delete it. */
4329 if (flag_test_coverage)
4330 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4331
4332 /* Output a linenumber for the end of the function.
4333 SDB depends on this. */
4334 force_next_line_note ();
4335 emit_line_note (input_location);
4336
4337 /* Before the return label (if any), clobber the return
4338 registers so that they are not propagated live to the rest of
4339 the function. This can only happen with functions that drop
4340 through; if there had been a return statement, there would
4341 have either been a return rtx, or a jump to the return label.
4342
4343 We delay actual code generation after the current_function_value_rtx
4344 is computed. */
4345 clobber_after = get_last_insn ();
4346
4347 /* Output the label for the actual return from the function. */
4348 emit_label (return_label);
4349
4350 /* Let except.c know where it should emit the call to unregister
4351 the function context for sjlj exceptions. */
4352 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4353 sjlj_emit_function_exit_after (get_last_insn ());
4354
4355 /* If this is an implementation of throw, do what's necessary to
4356 communicate between __builtin_eh_return and the epilogue. */
4357 expand_eh_return ();
4358
4359 /* If scalar return value was computed in a pseudo-reg, or was a named
4360 return value that got dumped to the stack, copy that to the hard
4361 return register. */
4362 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4363 {
4364 tree decl_result = DECL_RESULT (current_function_decl);
4365 rtx decl_rtl = DECL_RTL (decl_result);
4366
4367 if (REG_P (decl_rtl)
4368 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4369 : DECL_REGISTER (decl_result))
4370 {
4371 rtx real_decl_rtl = current_function_return_rtx;
4372
4373 /* This should be set in assign_parms. */
4374 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4375
4376 /* If this is a BLKmode structure being returned in registers,
4377 then use the mode computed in expand_return. Note that if
4378 decl_rtl is memory, then its mode may have been changed,
4379 but that current_function_return_rtx has not. */
4380 if (GET_MODE (real_decl_rtl) == BLKmode)
4381 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4382
4383 /* If a non-BLKmode return value should be padded at the least
4384 significant end of the register, shift it left by the appropriate
4385 amount. BLKmode results are handled using the group load/store
4386 machinery. */
4387 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4388 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4389 {
4390 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4391 REGNO (real_decl_rtl)),
4392 decl_rtl);
4393 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4394 }
4395 /* If a named return value dumped decl_return to memory, then
4396 we may need to re-do the PROMOTE_MODE signed/unsigned
4397 extension. */
4398 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4399 {
4400 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4401
4402 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4403 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4404 &unsignedp, 1);
4405
4406 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4407 }
4408 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4409 {
4410 /* If expand_function_start has created a PARALLEL for decl_rtl,
4411 move the result to the real return registers. Otherwise, do
4412 a group load from decl_rtl for a named return. */
4413 if (GET_CODE (decl_rtl) == PARALLEL)
4414 emit_group_move (real_decl_rtl, decl_rtl);
4415 else
4416 emit_group_load (real_decl_rtl, decl_rtl,
4417 TREE_TYPE (decl_result),
4418 int_size_in_bytes (TREE_TYPE (decl_result)));
4419 }
4420 /* In the case of complex integer modes smaller than a word, we'll
4421 need to generate some non-trivial bitfield insertions. Do that
4422 on a pseudo and not the hard register. */
4423 else if (GET_CODE (decl_rtl) == CONCAT
4424 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4425 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4426 {
4427 int old_generating_concat_p;
4428 rtx tmp;
4429
4430 old_generating_concat_p = generating_concat_p;
4431 generating_concat_p = 0;
4432 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4433 generating_concat_p = old_generating_concat_p;
4434
4435 emit_move_insn (tmp, decl_rtl);
4436 emit_move_insn (real_decl_rtl, tmp);
4437 }
4438 else
4439 emit_move_insn (real_decl_rtl, decl_rtl);
4440 }
4441 }
4442
4443 /* If returning a structure, arrange to return the address of the value
4444 in a place where debuggers expect to find it.
4445
4446 If returning a structure PCC style,
4447 the caller also depends on this value.
4448 And current_function_returns_pcc_struct is not necessarily set. */
4449 if (current_function_returns_struct
4450 || current_function_returns_pcc_struct)
4451 {
4452 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4453 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4454 rtx outgoing;
4455
4456 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4457 type = TREE_TYPE (type);
4458 else
4459 value_address = XEXP (value_address, 0);
4460
4461 outgoing = targetm.calls.function_value (build_pointer_type (type),
4462 current_function_decl, true);
4463
4464 /* Mark this as a function return value so integrate will delete the
4465 assignment and USE below when inlining this function. */
4466 REG_FUNCTION_VALUE_P (outgoing) = 1;
4467
4468 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4469 value_address = convert_memory_address (GET_MODE (outgoing),
4470 value_address);
4471
4472 emit_move_insn (outgoing, value_address);
4473
4474 /* Show return register used to hold result (in this case the address
4475 of the result. */
4476 current_function_return_rtx = outgoing;
4477 }
4478
4479 /* Emit the actual code to clobber return register. */
4480 {
4481 rtx seq;
4482
4483 start_sequence ();
4484 clobber_return_register ();
4485 expand_naked_return ();
4486 seq = get_insns ();
4487 end_sequence ();
4488
4489 emit_insn_after (seq, clobber_after);
4490 }
4491
4492 /* Output the label for the naked return from the function. */
4493 emit_label (naked_return_label);
4494
4495 /* If stack protection is enabled for this function, check the guard. */
4496 if (cfun->stack_protect_guard)
4497 stack_protect_epilogue ();
4498
4499 /* If we had calls to alloca, and this machine needs
4500 an accurate stack pointer to exit the function,
4501 insert some code to save and restore the stack pointer. */
4502 if (! EXIT_IGNORE_STACK
4503 && current_function_calls_alloca)
4504 {
4505 rtx tem = 0;
4506
4507 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4508 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4509 }
4510
4511 /* ??? This should no longer be necessary since stupid is no longer with
4512 us, but there are some parts of the compiler (eg reload_combine, and
4513 sh mach_dep_reorg) that still try and compute their own lifetime info
4514 instead of using the general framework. */
4515 use_return_register ();
4516 }
4517
4518 rtx
4519 get_arg_pointer_save_area (struct function *f)
4520 {
4521 rtx ret = f->x_arg_pointer_save_area;
4522
4523 if (! ret)
4524 {
4525 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4526 f->x_arg_pointer_save_area = ret;
4527 }
4528
4529 if (f == cfun && ! f->arg_pointer_save_area_init)
4530 {
4531 rtx seq;
4532
4533 /* Save the arg pointer at the beginning of the function. The
4534 generated stack slot may not be a valid memory address, so we
4535 have to check it and fix it if necessary. */
4536 start_sequence ();
4537 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4538 seq = get_insns ();
4539 end_sequence ();
4540
4541 push_topmost_sequence ();
4542 emit_insn_after (seq, entry_of_function ());
4543 pop_topmost_sequence ();
4544 }
4545
4546 return ret;
4547 }
4548 \f
4549 /* Extend a vector that records the INSN_UIDs of INSNS
4550 (a list of one or more insns). */
4551
4552 static void
4553 record_insns (rtx insns, VEC(int,heap) **vecp)
4554 {
4555 rtx tmp;
4556
4557 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4558 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4559 }
4560
4561 /* Set the locator of the insn chain starting at INSN to LOC. */
4562 static void
4563 set_insn_locators (rtx insn, int loc)
4564 {
4565 while (insn != NULL_RTX)
4566 {
4567 if (INSN_P (insn))
4568 INSN_LOCATOR (insn) = loc;
4569 insn = NEXT_INSN (insn);
4570 }
4571 }
4572
4573 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4574 be running after reorg, SEQUENCE rtl is possible. */
4575
4576 static int
4577 contains (rtx insn, VEC(int,heap) **vec)
4578 {
4579 int i, j;
4580
4581 if (NONJUMP_INSN_P (insn)
4582 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4583 {
4584 int count = 0;
4585 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4586 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4587 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4588 == VEC_index (int, *vec, j))
4589 count++;
4590 return count;
4591 }
4592 else
4593 {
4594 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4595 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4596 return 1;
4597 }
4598 return 0;
4599 }
4600
4601 int
4602 prologue_epilogue_contains (rtx insn)
4603 {
4604 if (contains (insn, &prologue))
4605 return 1;
4606 if (contains (insn, &epilogue))
4607 return 1;
4608 return 0;
4609 }
4610
4611 int
4612 sibcall_epilogue_contains (rtx insn)
4613 {
4614 if (sibcall_epilogue)
4615 return contains (insn, &sibcall_epilogue);
4616 return 0;
4617 }
4618
4619 #ifdef HAVE_return
4620 /* Insert gen_return at the end of block BB. This also means updating
4621 block_for_insn appropriately. */
4622
4623 static void
4624 emit_return_into_block (basic_block bb, rtx line_note)
4625 {
4626 emit_jump_insn_after (gen_return (), BB_END (bb));
4627 if (line_note)
4628 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4629 }
4630 #endif /* HAVE_return */
4631
4632 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4633
4634 /* These functions convert the epilogue into a variant that does not
4635 modify the stack pointer. This is used in cases where a function
4636 returns an object whose size is not known until it is computed.
4637 The called function leaves the object on the stack, leaves the
4638 stack depressed, and returns a pointer to the object.
4639
4640 What we need to do is track all modifications and references to the
4641 stack pointer, deleting the modifications and changing the
4642 references to point to the location the stack pointer would have
4643 pointed to had the modifications taken place.
4644
4645 These functions need to be portable so we need to make as few
4646 assumptions about the epilogue as we can. However, the epilogue
4647 basically contains three things: instructions to reset the stack
4648 pointer, instructions to reload registers, possibly including the
4649 frame pointer, and an instruction to return to the caller.
4650
4651 We must be sure of what a relevant epilogue insn is doing. We also
4652 make no attempt to validate the insns we make since if they are
4653 invalid, we probably can't do anything valid. The intent is that
4654 these routines get "smarter" as more and more machines start to use
4655 them and they try operating on different epilogues.
4656
4657 We use the following structure to track what the part of the
4658 epilogue that we've already processed has done. We keep two copies
4659 of the SP equivalence, one for use during the insn we are
4660 processing and one for use in the next insn. The difference is
4661 because one part of a PARALLEL may adjust SP and the other may use
4662 it. */
4663
4664 struct epi_info
4665 {
4666 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4667 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4668 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4669 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4670 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4671 should be set to once we no longer need
4672 its value. */
4673 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4674 for registers. */
4675 };
4676
4677 static void handle_epilogue_set (rtx, struct epi_info *);
4678 static void update_epilogue_consts (rtx, rtx, void *);
4679 static void emit_equiv_load (struct epi_info *);
4680
4681 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4682 no modifications to the stack pointer. Return the new list of insns. */
4683
4684 static rtx
4685 keep_stack_depressed (rtx insns)
4686 {
4687 int j;
4688 struct epi_info info;
4689 rtx insn, next;
4690
4691 /* If the epilogue is just a single instruction, it must be OK as is. */
4692 if (NEXT_INSN (insns) == NULL_RTX)
4693 return insns;
4694
4695 /* Otherwise, start a sequence, initialize the information we have, and
4696 process all the insns we were given. */
4697 start_sequence ();
4698
4699 info.sp_equiv_reg = stack_pointer_rtx;
4700 info.sp_offset = 0;
4701 info.equiv_reg_src = 0;
4702
4703 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4704 info.const_equiv[j] = 0;
4705
4706 insn = insns;
4707 next = NULL_RTX;
4708 while (insn != NULL_RTX)
4709 {
4710 next = NEXT_INSN (insn);
4711
4712 if (!INSN_P (insn))
4713 {
4714 add_insn (insn);
4715 insn = next;
4716 continue;
4717 }
4718
4719 /* If this insn references the register that SP is equivalent to and
4720 we have a pending load to that register, we must force out the load
4721 first and then indicate we no longer know what SP's equivalent is. */
4722 if (info.equiv_reg_src != 0
4723 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4724 {
4725 emit_equiv_load (&info);
4726 info.sp_equiv_reg = 0;
4727 }
4728
4729 info.new_sp_equiv_reg = info.sp_equiv_reg;
4730 info.new_sp_offset = info.sp_offset;
4731
4732 /* If this is a (RETURN) and the return address is on the stack,
4733 update the address and change to an indirect jump. */
4734 if (GET_CODE (PATTERN (insn)) == RETURN
4735 || (GET_CODE (PATTERN (insn)) == PARALLEL
4736 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4737 {
4738 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4739 rtx base = 0;
4740 HOST_WIDE_INT offset = 0;
4741 rtx jump_insn, jump_set;
4742
4743 /* If the return address is in a register, we can emit the insn
4744 unchanged. Otherwise, it must be a MEM and we see what the
4745 base register and offset are. In any case, we have to emit any
4746 pending load to the equivalent reg of SP, if any. */
4747 if (REG_P (retaddr))
4748 {
4749 emit_equiv_load (&info);
4750 add_insn (insn);
4751 insn = next;
4752 continue;
4753 }
4754 else
4755 {
4756 rtx ret_ptr;
4757 gcc_assert (MEM_P (retaddr));
4758
4759 ret_ptr = XEXP (retaddr, 0);
4760
4761 if (REG_P (ret_ptr))
4762 {
4763 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4764 offset = 0;
4765 }
4766 else
4767 {
4768 gcc_assert (GET_CODE (ret_ptr) == PLUS
4769 && REG_P (XEXP (ret_ptr, 0))
4770 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4771 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4772 offset = INTVAL (XEXP (ret_ptr, 1));
4773 }
4774 }
4775
4776 /* If the base of the location containing the return pointer
4777 is SP, we must update it with the replacement address. Otherwise,
4778 just build the necessary MEM. */
4779 retaddr = plus_constant (base, offset);
4780 if (base == stack_pointer_rtx)
4781 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4782 plus_constant (info.sp_equiv_reg,
4783 info.sp_offset));
4784
4785 retaddr = gen_rtx_MEM (Pmode, retaddr);
4786 MEM_NOTRAP_P (retaddr) = 1;
4787
4788 /* If there is a pending load to the equivalent register for SP
4789 and we reference that register, we must load our address into
4790 a scratch register and then do that load. */
4791 if (info.equiv_reg_src
4792 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4793 {
4794 unsigned int regno;
4795 rtx reg;
4796
4797 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4798 if (HARD_REGNO_MODE_OK (regno, Pmode)
4799 && !fixed_regs[regno]
4800 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4801 && !REGNO_REG_SET_P
4802 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4803 && !refers_to_regno_p (regno,
4804 regno + hard_regno_nregs[regno]
4805 [Pmode],
4806 info.equiv_reg_src, NULL)
4807 && info.const_equiv[regno] == 0)
4808 break;
4809
4810 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4811
4812 reg = gen_rtx_REG (Pmode, regno);
4813 emit_move_insn (reg, retaddr);
4814 retaddr = reg;
4815 }
4816
4817 emit_equiv_load (&info);
4818 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4819
4820 /* Show the SET in the above insn is a RETURN. */
4821 jump_set = single_set (jump_insn);
4822 gcc_assert (jump_set);
4823 SET_IS_RETURN_P (jump_set) = 1;
4824 }
4825
4826 /* If SP is not mentioned in the pattern and its equivalent register, if
4827 any, is not modified, just emit it. Otherwise, if neither is set,
4828 replace the reference to SP and emit the insn. If none of those are
4829 true, handle each SET individually. */
4830 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4831 && (info.sp_equiv_reg == stack_pointer_rtx
4832 || !reg_set_p (info.sp_equiv_reg, insn)))
4833 add_insn (insn);
4834 else if (! reg_set_p (stack_pointer_rtx, insn)
4835 && (info.sp_equiv_reg == stack_pointer_rtx
4836 || !reg_set_p (info.sp_equiv_reg, insn)))
4837 {
4838 int changed;
4839
4840 changed = validate_replace_rtx (stack_pointer_rtx,
4841 plus_constant (info.sp_equiv_reg,
4842 info.sp_offset),
4843 insn);
4844 gcc_assert (changed);
4845
4846 add_insn (insn);
4847 }
4848 else if (GET_CODE (PATTERN (insn)) == SET)
4849 handle_epilogue_set (PATTERN (insn), &info);
4850 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4851 {
4852 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4853 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4854 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4855 }
4856 else
4857 add_insn (insn);
4858
4859 info.sp_equiv_reg = info.new_sp_equiv_reg;
4860 info.sp_offset = info.new_sp_offset;
4861
4862 /* Now update any constants this insn sets. */
4863 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4864 insn = next;
4865 }
4866
4867 insns = get_insns ();
4868 end_sequence ();
4869 return insns;
4870 }
4871
4872 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4873 structure that contains information about what we've seen so far. We
4874 process this SET by either updating that data or by emitting one or
4875 more insns. */
4876
4877 static void
4878 handle_epilogue_set (rtx set, struct epi_info *p)
4879 {
4880 /* First handle the case where we are setting SP. Record what it is being
4881 set from, which we must be able to determine */
4882 if (reg_set_p (stack_pointer_rtx, set))
4883 {
4884 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4885
4886 if (GET_CODE (SET_SRC (set)) == PLUS)
4887 {
4888 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4889 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4890 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4891 else
4892 {
4893 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4894 && (REGNO (XEXP (SET_SRC (set), 1))
4895 < FIRST_PSEUDO_REGISTER)
4896 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4897 p->new_sp_offset
4898 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4899 }
4900 }
4901 else
4902 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4903
4904 /* If we are adjusting SP, we adjust from the old data. */
4905 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4906 {
4907 p->new_sp_equiv_reg = p->sp_equiv_reg;
4908 p->new_sp_offset += p->sp_offset;
4909 }
4910
4911 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4912
4913 return;
4914 }
4915
4916 /* Next handle the case where we are setting SP's equivalent
4917 register. We must not already have a value to set it to. We
4918 could update, but there seems little point in handling that case.
4919 Note that we have to allow for the case where we are setting the
4920 register set in the previous part of a PARALLEL inside a single
4921 insn. But use the old offset for any updates within this insn.
4922 We must allow for the case where the register is being set in a
4923 different (usually wider) mode than Pmode). */
4924 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4925 {
4926 gcc_assert (!p->equiv_reg_src
4927 && REG_P (p->new_sp_equiv_reg)
4928 && REG_P (SET_DEST (set))
4929 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4930 <= BITS_PER_WORD)
4931 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4932 p->equiv_reg_src
4933 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4934 plus_constant (p->sp_equiv_reg,
4935 p->sp_offset));
4936 }
4937
4938 /* Otherwise, replace any references to SP in the insn to its new value
4939 and emit the insn. */
4940 else
4941 {
4942 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4943 plus_constant (p->sp_equiv_reg,
4944 p->sp_offset));
4945 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4946 plus_constant (p->sp_equiv_reg,
4947 p->sp_offset));
4948 emit_insn (set);
4949 }
4950 }
4951
4952 /* Update the tracking information for registers set to constants. */
4953
4954 static void
4955 update_epilogue_consts (rtx dest, rtx x, void *data)
4956 {
4957 struct epi_info *p = (struct epi_info *) data;
4958 rtx new;
4959
4960 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4961 return;
4962
4963 /* If we are either clobbering a register or doing a partial set,
4964 show we don't know the value. */
4965 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4966 p->const_equiv[REGNO (dest)] = 0;
4967
4968 /* If we are setting it to a constant, record that constant. */
4969 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4970 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4971
4972 /* If this is a binary operation between a register we have been tracking
4973 and a constant, see if we can compute a new constant value. */
4974 else if (ARITHMETIC_P (SET_SRC (x))
4975 && REG_P (XEXP (SET_SRC (x), 0))
4976 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4977 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4978 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4979 && 0 != (new = simplify_binary_operation
4980 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4981 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4982 XEXP (SET_SRC (x), 1)))
4983 && GET_CODE (new) == CONST_INT)
4984 p->const_equiv[REGNO (dest)] = new;
4985
4986 /* Otherwise, we can't do anything with this value. */
4987 else
4988 p->const_equiv[REGNO (dest)] = 0;
4989 }
4990
4991 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4992
4993 static void
4994 emit_equiv_load (struct epi_info *p)
4995 {
4996 if (p->equiv_reg_src != 0)
4997 {
4998 rtx dest = p->sp_equiv_reg;
4999
5000 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5001 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5002 REGNO (p->sp_equiv_reg));
5003
5004 emit_move_insn (dest, p->equiv_reg_src);
5005 p->equiv_reg_src = 0;
5006 }
5007 }
5008 #endif
5009
5010 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5011 this into place with notes indicating where the prologue ends and where
5012 the epilogue begins. Update the basic block information when possible. */
5013
5014 void
5015 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5016 {
5017 int inserted = 0;
5018 edge e;
5019 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5020 rtx seq;
5021 #endif
5022 #ifdef HAVE_prologue
5023 rtx prologue_end = NULL_RTX;
5024 #endif
5025 #if defined (HAVE_epilogue) || defined(HAVE_return)
5026 rtx epilogue_end = NULL_RTX;
5027 #endif
5028 edge_iterator ei;
5029
5030 #ifdef HAVE_prologue
5031 if (HAVE_prologue)
5032 {
5033 start_sequence ();
5034 seq = gen_prologue ();
5035 emit_insn (seq);
5036
5037 /* Retain a map of the prologue insns. */
5038 record_insns (seq, &prologue);
5039 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5040
5041 seq = get_insns ();
5042 end_sequence ();
5043 set_insn_locators (seq, prologue_locator);
5044
5045 /* Can't deal with multiple successors of the entry block
5046 at the moment. Function should always have at least one
5047 entry point. */
5048 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5049
5050 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5051 inserted = 1;
5052 }
5053 #endif
5054
5055 /* If the exit block has no non-fake predecessors, we don't need
5056 an epilogue. */
5057 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5058 if ((e->flags & EDGE_FAKE) == 0)
5059 break;
5060 if (e == NULL)
5061 goto epilogue_done;
5062
5063 #ifdef HAVE_return
5064 if (optimize && HAVE_return)
5065 {
5066 /* If we're allowed to generate a simple return instruction,
5067 then by definition we don't need a full epilogue. Examine
5068 the block that falls through to EXIT. If it does not
5069 contain any code, examine its predecessors and try to
5070 emit (conditional) return instructions. */
5071
5072 basic_block last;
5073 rtx label;
5074
5075 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5076 if (e->flags & EDGE_FALLTHRU)
5077 break;
5078 if (e == NULL)
5079 goto epilogue_done;
5080 last = e->src;
5081
5082 /* Verify that there are no active instructions in the last block. */
5083 label = BB_END (last);
5084 while (label && !LABEL_P (label))
5085 {
5086 if (active_insn_p (label))
5087 break;
5088 label = PREV_INSN (label);
5089 }
5090
5091 if (BB_HEAD (last) == label && LABEL_P (label))
5092 {
5093 edge_iterator ei2;
5094 rtx epilogue_line_note = NULL_RTX;
5095
5096 /* Locate the line number associated with the closing brace,
5097 if we can find one. */
5098 for (seq = get_last_insn ();
5099 seq && ! active_insn_p (seq);
5100 seq = PREV_INSN (seq))
5101 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5102 {
5103 epilogue_line_note = seq;
5104 break;
5105 }
5106
5107 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5108 {
5109 basic_block bb = e->src;
5110 rtx jump;
5111
5112 if (bb == ENTRY_BLOCK_PTR)
5113 {
5114 ei_next (&ei2);
5115 continue;
5116 }
5117
5118 jump = BB_END (bb);
5119 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5120 {
5121 ei_next (&ei2);
5122 continue;
5123 }
5124
5125 /* If we have an unconditional jump, we can replace that
5126 with a simple return instruction. */
5127 if (simplejump_p (jump))
5128 {
5129 emit_return_into_block (bb, epilogue_line_note);
5130 delete_insn (jump);
5131 }
5132
5133 /* If we have a conditional jump, we can try to replace
5134 that with a conditional return instruction. */
5135 else if (condjump_p (jump))
5136 {
5137 if (! redirect_jump (jump, 0, 0))
5138 {
5139 ei_next (&ei2);
5140 continue;
5141 }
5142
5143 /* If this block has only one successor, it both jumps
5144 and falls through to the fallthru block, so we can't
5145 delete the edge. */
5146 if (single_succ_p (bb))
5147 {
5148 ei_next (&ei2);
5149 continue;
5150 }
5151 }
5152 else
5153 {
5154 ei_next (&ei2);
5155 continue;
5156 }
5157
5158 /* Fix up the CFG for the successful change we just made. */
5159 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5160 }
5161
5162 /* Emit a return insn for the exit fallthru block. Whether
5163 this is still reachable will be determined later. */
5164
5165 emit_barrier_after (BB_END (last));
5166 emit_return_into_block (last, epilogue_line_note);
5167 epilogue_end = BB_END (last);
5168 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5169 goto epilogue_done;
5170 }
5171 }
5172 #endif
5173 /* Find the edge that falls through to EXIT. Other edges may exist
5174 due to RETURN instructions, but those don't need epilogues.
5175 There really shouldn't be a mixture -- either all should have
5176 been converted or none, however... */
5177
5178 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5179 if (e->flags & EDGE_FALLTHRU)
5180 break;
5181 if (e == NULL)
5182 goto epilogue_done;
5183
5184 #ifdef HAVE_epilogue
5185 if (HAVE_epilogue)
5186 {
5187 start_sequence ();
5188 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5189
5190 seq = gen_epilogue ();
5191
5192 #ifdef INCOMING_RETURN_ADDR_RTX
5193 /* If this function returns with the stack depressed and we can support
5194 it, massage the epilogue to actually do that. */
5195 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5196 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5197 seq = keep_stack_depressed (seq);
5198 #endif
5199
5200 emit_jump_insn (seq);
5201
5202 /* Retain a map of the epilogue insns. */
5203 record_insns (seq, &epilogue);
5204 set_insn_locators (seq, epilogue_locator);
5205
5206 seq = get_insns ();
5207 end_sequence ();
5208
5209 insert_insn_on_edge (seq, e);
5210 inserted = 1;
5211 }
5212 else
5213 #endif
5214 {
5215 basic_block cur_bb;
5216
5217 if (! next_active_insn (BB_END (e->src)))
5218 goto epilogue_done;
5219 /* We have a fall-through edge to the exit block, the source is not
5220 at the end of the function, and there will be an assembler epilogue
5221 at the end of the function.
5222 We can't use force_nonfallthru here, because that would try to
5223 use return. Inserting a jump 'by hand' is extremely messy, so
5224 we take advantage of cfg_layout_finalize using
5225 fixup_fallthru_exit_predecessor. */
5226 cfg_layout_initialize (0);
5227 FOR_EACH_BB (cur_bb)
5228 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5229 cur_bb->aux = cur_bb->next_bb;
5230 cfg_layout_finalize ();
5231 }
5232 epilogue_done:
5233
5234 if (inserted)
5235 commit_edge_insertions ();
5236
5237 #ifdef HAVE_sibcall_epilogue
5238 /* Emit sibling epilogues before any sibling call sites. */
5239 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5240 {
5241 basic_block bb = e->src;
5242 rtx insn = BB_END (bb);
5243
5244 if (!CALL_P (insn)
5245 || ! SIBLING_CALL_P (insn))
5246 {
5247 ei_next (&ei);
5248 continue;
5249 }
5250
5251 start_sequence ();
5252 emit_insn (gen_sibcall_epilogue ());
5253 seq = get_insns ();
5254 end_sequence ();
5255
5256 /* Retain a map of the epilogue insns. Used in life analysis to
5257 avoid getting rid of sibcall epilogue insns. Do this before we
5258 actually emit the sequence. */
5259 record_insns (seq, &sibcall_epilogue);
5260 set_insn_locators (seq, epilogue_locator);
5261
5262 emit_insn_before (seq, insn);
5263 ei_next (&ei);
5264 }
5265 #endif
5266
5267 #ifdef HAVE_prologue
5268 /* This is probably all useless now that we use locators. */
5269 if (prologue_end)
5270 {
5271 rtx insn, prev;
5272
5273 /* GDB handles `break f' by setting a breakpoint on the first
5274 line note after the prologue. Which means (1) that if
5275 there are line number notes before where we inserted the
5276 prologue we should move them, and (2) we should generate a
5277 note before the end of the first basic block, if there isn't
5278 one already there.
5279
5280 ??? This behavior is completely broken when dealing with
5281 multiple entry functions. We simply place the note always
5282 into first basic block and let alternate entry points
5283 to be missed.
5284 */
5285
5286 for (insn = prologue_end; insn; insn = prev)
5287 {
5288 prev = PREV_INSN (insn);
5289 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5290 {
5291 /* Note that we cannot reorder the first insn in the
5292 chain, since rest_of_compilation relies on that
5293 remaining constant. */
5294 if (prev == NULL)
5295 break;
5296 reorder_insns (insn, insn, prologue_end);
5297 }
5298 }
5299
5300 /* Find the last line number note in the first block. */
5301 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5302 insn != prologue_end && insn;
5303 insn = PREV_INSN (insn))
5304 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5305 break;
5306
5307 /* If we didn't find one, make a copy of the first line number
5308 we run across. */
5309 if (! insn)
5310 {
5311 for (insn = next_active_insn (prologue_end);
5312 insn;
5313 insn = PREV_INSN (insn))
5314 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5315 {
5316 emit_note_copy_after (insn, prologue_end);
5317 break;
5318 }
5319 }
5320 }
5321 #endif
5322 #ifdef HAVE_epilogue
5323 if (epilogue_end)
5324 {
5325 rtx insn, next;
5326
5327 /* Similarly, move any line notes that appear after the epilogue.
5328 There is no need, however, to be quite so anal about the existence
5329 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5330 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5331 info generation. */
5332 for (insn = epilogue_end; insn; insn = next)
5333 {
5334 next = NEXT_INSN (insn);
5335 if (NOTE_P (insn)
5336 && (NOTE_LINE_NUMBER (insn) > 0
5337 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5338 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5339 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5340 }
5341 }
5342 #endif
5343 }
5344
5345 /* Reposition the prologue-end and epilogue-begin notes after instruction
5346 scheduling and delayed branch scheduling. */
5347
5348 void
5349 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5350 {
5351 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5352 rtx insn, last, note;
5353 int len;
5354
5355 if ((len = VEC_length (int, prologue)) > 0)
5356 {
5357 last = 0, note = 0;
5358
5359 /* Scan from the beginning until we reach the last prologue insn.
5360 We apparently can't depend on basic_block_{head,end} after
5361 reorg has run. */
5362 for (insn = f; insn; insn = NEXT_INSN (insn))
5363 {
5364 if (NOTE_P (insn))
5365 {
5366 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5367 note = insn;
5368 }
5369 else if (contains (insn, &prologue))
5370 {
5371 last = insn;
5372 if (--len == 0)
5373 break;
5374 }
5375 }
5376
5377 if (last)
5378 {
5379 /* Find the prologue-end note if we haven't already, and
5380 move it to just after the last prologue insn. */
5381 if (note == 0)
5382 {
5383 for (note = last; (note = NEXT_INSN (note));)
5384 if (NOTE_P (note)
5385 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5386 break;
5387 }
5388
5389 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5390 if (LABEL_P (last))
5391 last = NEXT_INSN (last);
5392 reorder_insns (note, note, last);
5393 }
5394 }
5395
5396 if ((len = VEC_length (int, epilogue)) > 0)
5397 {
5398 last = 0, note = 0;
5399
5400 /* Scan from the end until we reach the first epilogue insn.
5401 We apparently can't depend on basic_block_{head,end} after
5402 reorg has run. */
5403 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5404 {
5405 if (NOTE_P (insn))
5406 {
5407 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5408 note = insn;
5409 }
5410 else if (contains (insn, &epilogue))
5411 {
5412 last = insn;
5413 if (--len == 0)
5414 break;
5415 }
5416 }
5417
5418 if (last)
5419 {
5420 /* Find the epilogue-begin note if we haven't already, and
5421 move it to just before the first epilogue insn. */
5422 if (note == 0)
5423 {
5424 for (note = insn; (note = PREV_INSN (note));)
5425 if (NOTE_P (note)
5426 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5427 break;
5428 }
5429
5430 if (PREV_INSN (last) != note)
5431 reorder_insns (note, note, PREV_INSN (last));
5432 }
5433 }
5434 #endif /* HAVE_prologue or HAVE_epilogue */
5435 }
5436
5437 /* Resets insn_block_boundaries array. */
5438
5439 void
5440 reset_block_changes (void)
5441 {
5442 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5443 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5444 }
5445
5446 /* Record the boundary for BLOCK. */
5447 void
5448 record_block_change (tree block)
5449 {
5450 int i, n;
5451 tree last_block;
5452
5453 if (!block)
5454 return;
5455
5456 if(!cfun->ib_boundaries_block)
5457 return;
5458
5459 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5460 VARRAY_POP (cfun->ib_boundaries_block);
5461 n = get_max_uid ();
5462 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5463 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5464
5465 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5466 }
5467
5468 /* Finishes record of boundaries. */
5469 void finalize_block_changes (void)
5470 {
5471 record_block_change (DECL_INITIAL (current_function_decl));
5472 }
5473
5474 /* For INSN return the BLOCK it belongs to. */
5475 void
5476 check_block_change (rtx insn, tree *block)
5477 {
5478 unsigned uid = INSN_UID (insn);
5479
5480 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5481 return;
5482
5483 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5484 }
5485
5486 /* Releases the ib_boundaries_block records. */
5487 void
5488 free_block_changes (void)
5489 {
5490 cfun->ib_boundaries_block = NULL;
5491 }
5492
5493 /* Returns the name of the current function. */
5494 const char *
5495 current_function_name (void)
5496 {
5497 return lang_hooks.decl_printable_name (cfun->decl, 2);
5498 }
5499 \f
5500
5501 static void
5502 rest_of_handle_check_leaf_regs (void)
5503 {
5504 #ifdef LEAF_REGISTERS
5505 current_function_uses_only_leaf_regs
5506 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5507 #endif
5508 }
5509
5510 struct tree_opt_pass pass_leaf_regs =
5511 {
5512 NULL, /* name */
5513 NULL, /* gate */
5514 rest_of_handle_check_leaf_regs, /* execute */
5515 NULL, /* sub */
5516 NULL, /* next */
5517 0, /* static_pass_number */
5518 0, /* tv_id */
5519 0, /* properties_required */
5520 0, /* properties_provided */
5521 0, /* properties_destroyed */
5522 0, /* todo_flags_start */
5523 0, /* todo_flags_finish */
5524 0 /* letter */
5525 };
5526
5527
5528 #include "gt-function.h"