9f678d8f9298208602b27ff7bb4e5803822cb51d
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "tree-gimple.h"
63
64 #ifndef LOCAL_ALIGNMENT
65 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
66 #endif
67
68 #ifndef STACK_ALIGNMENT_NEEDED
69 #define STACK_ALIGNMENT_NEEDED 1
70 #endif
71
72 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73
74 /* Some systems use __main in a way incompatible with its use in gcc, in these
75 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
76 give the same symbol without quotes for an alternative entry point. You
77 must define both, or neither. */
78 #ifndef NAME__MAIN
79 #define NAME__MAIN "__main"
80 #endif
81
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90
91 /* Nonzero if function being compiled doesn't contain any calls
92 (ignoring the prologue and epilogue). This is set prior to
93 local register allocation and is valid for the remaining
94 compiler passes. */
95 int current_function_is_leaf;
96
97 /* Nonzero if function being compiled doesn't modify the stack pointer
98 (ignoring the prologue and epilogue). This is only valid after
99 life_analysis has run. */
100 int current_function_sp_is_unchanging;
101
102 /* Nonzero if the function being compiled is a leaf function which only
103 uses leaf registers. This is valid after reload (specifically after
104 sched2) and is useful only if the port defines LEAF_REGISTERS. */
105 int current_function_uses_only_leaf_regs;
106
107 /* Nonzero once virtual register instantiation has been done.
108 assign_stack_local uses frame_pointer_rtx when this is nonzero.
109 calls.c:emit_library_call_value_1 uses it to set up
110 post-instantiation libcalls. */
111 int virtuals_instantiated;
112
113 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
114 static GTY(()) int funcdef_no;
115
116 /* These variables hold pointers to functions to create and destroy
117 target specific, per-function data structures. */
118 struct machine_function * (*init_machine_status) (void);
119
120 /* The currently compiled function. */
121 struct function *cfun = 0;
122
123 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
124 static GTY(()) varray_type prologue;
125 static GTY(()) varray_type epilogue;
126
127 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
128 in this function. */
129 static GTY(()) varray_type sibcall_epilogue;
130 \f
131 /* In order to evaluate some expressions, such as function calls returning
132 structures in memory, we need to temporarily allocate stack locations.
133 We record each allocated temporary in the following structure.
134
135 Associated with each temporary slot is a nesting level. When we pop up
136 one level, all temporaries associated with the previous level are freed.
137 Normally, all temporaries are freed after the execution of the statement
138 in which they were created. However, if we are inside a ({...}) grouping,
139 the result may be in a temporary and hence must be preserved. If the
140 result could be in a temporary, we preserve it if we can determine which
141 one it is in. If we cannot determine which temporary may contain the
142 result, all temporaries are preserved. A temporary is preserved by
143 pretending it was allocated at the previous nesting level.
144
145 Automatic variables are also assigned temporary slots, at the nesting
146 level where they are defined. They are marked a "kept" so that
147 free_temp_slots will not free them. */
148
149 struct temp_slot GTY(())
150 {
151 /* Points to next temporary slot. */
152 struct temp_slot *next;
153 /* Points to previous temporary slot. */
154 struct temp_slot *prev;
155
156 /* The rtx to used to reference the slot. */
157 rtx slot;
158 /* The rtx used to represent the address if not the address of the
159 slot above. May be an EXPR_LIST if multiple addresses exist. */
160 rtx address;
161 /* The alignment (in bits) of the slot. */
162 unsigned int align;
163 /* The size, in units, of the slot. */
164 HOST_WIDE_INT size;
165 /* The type of the object in the slot, or zero if it doesn't correspond
166 to a type. We use this to determine whether a slot can be reused.
167 It can be reused if objects of the type of the new slot will always
168 conflict with objects of the type of the old slot. */
169 tree type;
170 /* Nonzero if this temporary is currently in use. */
171 char in_use;
172 /* Nonzero if this temporary has its address taken. */
173 char addr_taken;
174 /* Nesting level at which this slot is being used. */
175 int level;
176 /* Nonzero if this should survive a call to free_temp_slots. */
177 int keep;
178 /* The offset of the slot from the frame_pointer, including extra space
179 for alignment. This info is for combine_temp_slots. */
180 HOST_WIDE_INT base_offset;
181 /* The size of the slot, including extra space for alignment. This
182 info is for combine_temp_slots. */
183 HOST_WIDE_INT full_size;
184 };
185 \f
186 /* Forward declarations. */
187
188 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
189 struct function *);
190 static struct temp_slot *find_temp_slot_from_address (rtx);
191 static void instantiate_decls (tree, int);
192 static void instantiate_decls_1 (tree, int);
193 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
194 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
195 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
196 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
197 static void pad_below (struct args_size *, enum machine_mode, tree);
198 static void reorder_blocks_1 (rtx, tree, varray_type *);
199 static void reorder_fix_fragments (tree);
200 static int all_blocks (tree, tree *);
201 static tree *get_block_vector (tree, int *);
202 extern tree debug_find_var_in_block_tree (tree, tree);
203 /* We always define `record_insns' even if it's not used so that we
204 can always export `prologue_epilogue_contains'. */
205 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
206 static int contains (rtx, varray_type);
207 #ifdef HAVE_return
208 static void emit_return_into_block (basic_block, rtx);
209 #endif
210 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
211 static rtx keep_stack_depressed (rtx);
212 #endif
213 static void prepare_function_start (tree);
214 static void do_clobber_return_reg (rtx, void *);
215 static void do_use_return_reg (rtx, void *);
216 static void instantiate_virtual_regs_lossage (rtx);
217 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 \f
219 /* Pointer to chain of `struct function' for containing functions. */
220 struct function *outer_function_chain;
221
222 /* Given a function decl for a containing function,
223 return the `struct function' for it. */
224
225 struct function *
226 find_function_data (tree decl)
227 {
228 struct function *p;
229
230 for (p = outer_function_chain; p; p = p->outer)
231 if (p->decl == decl)
232 return p;
233
234 gcc_unreachable ();
235 }
236
237 /* Save the current context for compilation of a nested function.
238 This is called from language-specific code. The caller should use
239 the enter_nested langhook to save any language-specific state,
240 since this function knows only about language-independent
241 variables. */
242
243 void
244 push_function_context_to (tree context)
245 {
246 struct function *p;
247
248 if (context)
249 {
250 if (context == current_function_decl)
251 cfun->contains_functions = 1;
252 else
253 {
254 struct function *containing = find_function_data (context);
255 containing->contains_functions = 1;
256 }
257 }
258
259 if (cfun == 0)
260 init_dummy_function_start ();
261 p = cfun;
262
263 p->outer = outer_function_chain;
264 outer_function_chain = p;
265
266 lang_hooks.function.enter_nested (p);
267
268 cfun = 0;
269 }
270
271 void
272 push_function_context (void)
273 {
274 push_function_context_to (current_function_decl);
275 }
276
277 /* Restore the last saved context, at the end of a nested function.
278 This function is called from language-specific code. */
279
280 void
281 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
282 {
283 struct function *p = outer_function_chain;
284
285 cfun = p;
286 outer_function_chain = p->outer;
287
288 current_function_decl = p->decl;
289
290 lang_hooks.function.leave_nested (p);
291
292 /* Reset variables that have known state during rtx generation. */
293 virtuals_instantiated = 0;
294 generating_concat_p = 1;
295 }
296
297 void
298 pop_function_context (void)
299 {
300 pop_function_context_from (current_function_decl);
301 }
302
303 /* Clear out all parts of the state in F that can safely be discarded
304 after the function has been parsed, but not compiled, to let
305 garbage collection reclaim the memory. */
306
307 void
308 free_after_parsing (struct function *f)
309 {
310 /* f->expr->forced_labels is used by code generation. */
311 /* f->emit->regno_reg_rtx is used by code generation. */
312 /* f->varasm is used by code generation. */
313 /* f->eh->eh_return_stub_label is used by code generation. */
314
315 lang_hooks.function.final (f);
316 }
317
318 /* Clear out all parts of the state in F that can safely be discarded
319 after the function has been compiled, to let garbage collection
320 reclaim the memory. */
321
322 void
323 free_after_compilation (struct function *f)
324 {
325 f->eh = NULL;
326 f->expr = NULL;
327 f->emit = NULL;
328 f->varasm = NULL;
329 f->machine = NULL;
330
331 f->x_avail_temp_slots = NULL;
332 f->x_used_temp_slots = NULL;
333 f->arg_offset_rtx = NULL;
334 f->return_rtx = NULL;
335 f->internal_arg_pointer = NULL;
336 f->x_nonlocal_goto_handler_labels = NULL;
337 f->x_return_label = NULL;
338 f->x_naked_return_label = NULL;
339 f->x_stack_slot_list = NULL;
340 f->x_tail_recursion_reentry = NULL;
341 f->x_arg_pointer_save_area = NULL;
342 f->x_parm_birth_insn = NULL;
343 f->original_arg_vector = NULL;
344 f->original_decl_initial = NULL;
345 f->epilogue_delay_list = NULL;
346 }
347 \f
348 /* Allocate fixed slots in the stack frame of the current function. */
349
350 /* Return size needed for stack frame based on slots so far allocated in
351 function F.
352 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
353 the caller may have to do that. */
354
355 HOST_WIDE_INT
356 get_func_frame_size (struct function *f)
357 {
358 #ifdef FRAME_GROWS_DOWNWARD
359 return -f->x_frame_offset;
360 #else
361 return f->x_frame_offset;
362 #endif
363 }
364
365 /* Return size needed for stack frame based on slots so far allocated.
366 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
367 the caller may have to do that. */
368 HOST_WIDE_INT
369 get_frame_size (void)
370 {
371 return get_func_frame_size (cfun);
372 }
373
374 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
375 with machine mode MODE.
376
377 ALIGN controls the amount of alignment for the address of the slot:
378 0 means according to MODE,
379 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
380 -2 means use BITS_PER_UNIT,
381 positive specifies alignment boundary in bits.
382
383 We do not round to stack_boundary here.
384
385 FUNCTION specifies the function to allocate in. */
386
387 static rtx
388 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
389 struct function *function)
390 {
391 rtx x, addr;
392 int bigend_correction = 0;
393 unsigned int alignment;
394 int frame_off, frame_alignment, frame_phase;
395
396 if (align == 0)
397 {
398 tree type;
399
400 if (mode == BLKmode)
401 alignment = BIGGEST_ALIGNMENT;
402 else
403 alignment = GET_MODE_ALIGNMENT (mode);
404
405 /* Allow the target to (possibly) increase the alignment of this
406 stack slot. */
407 type = lang_hooks.types.type_for_mode (mode, 0);
408 if (type)
409 alignment = LOCAL_ALIGNMENT (type, alignment);
410
411 alignment /= BITS_PER_UNIT;
412 }
413 else if (align == -1)
414 {
415 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
416 size = CEIL_ROUND (size, alignment);
417 }
418 else if (align == -2)
419 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
420 else
421 alignment = align / BITS_PER_UNIT;
422
423 #ifdef FRAME_GROWS_DOWNWARD
424 function->x_frame_offset -= size;
425 #endif
426
427 /* Ignore alignment we can't do with expected alignment of the boundary. */
428 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
429 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
430
431 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
432 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
433
434 /* Calculate how many bytes the start of local variables is off from
435 stack alignment. */
436 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
437 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
438 frame_phase = frame_off ? frame_alignment - frame_off : 0;
439
440 /* Round the frame offset to the specified alignment. The default is
441 to always honor requests to align the stack but a port may choose to
442 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
443 if (STACK_ALIGNMENT_NEEDED
444 || mode != BLKmode
445 || size != 0)
446 {
447 /* We must be careful here, since FRAME_OFFSET might be negative and
448 division with a negative dividend isn't as well defined as we might
449 like. So we instead assume that ALIGNMENT is a power of two and
450 use logical operations which are unambiguous. */
451 #ifdef FRAME_GROWS_DOWNWARD
452 function->x_frame_offset
453 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
454 (unsigned HOST_WIDE_INT) alignment)
455 + frame_phase);
456 #else
457 function->x_frame_offset
458 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
459 (unsigned HOST_WIDE_INT) alignment)
460 + frame_phase);
461 #endif
462 }
463
464 /* On a big-endian machine, if we are allocating more space than we will use,
465 use the least significant bytes of those that are allocated. */
466 if (BYTES_BIG_ENDIAN && mode != BLKmode)
467 bigend_correction = size - GET_MODE_SIZE (mode);
468
469 /* If we have already instantiated virtual registers, return the actual
470 address relative to the frame pointer. */
471 if (function == cfun && virtuals_instantiated)
472 addr = plus_constant (frame_pointer_rtx,
473 trunc_int_for_mode
474 (frame_offset + bigend_correction
475 + STARTING_FRAME_OFFSET, Pmode));
476 else
477 addr = plus_constant (virtual_stack_vars_rtx,
478 trunc_int_for_mode
479 (function->x_frame_offset + bigend_correction,
480 Pmode));
481
482 #ifndef FRAME_GROWS_DOWNWARD
483 function->x_frame_offset += size;
484 #endif
485
486 x = gen_rtx_MEM (mode, addr);
487
488 function->x_stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
490
491 return x;
492 }
493
494 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
495 current function. */
496
497 rtx
498 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
499 {
500 return assign_stack_local_1 (mode, size, align, cfun);
501 }
502
503 \f
504 /* Removes temporary slot TEMP from LIST. */
505
506 static void
507 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
508 {
509 if (temp->next)
510 temp->next->prev = temp->prev;
511 if (temp->prev)
512 temp->prev->next = temp->next;
513 else
514 *list = temp->next;
515
516 temp->prev = temp->next = NULL;
517 }
518
519 /* Inserts temporary slot TEMP to LIST. */
520
521 static void
522 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
523 {
524 temp->next = *list;
525 if (*list)
526 (*list)->prev = temp;
527 temp->prev = NULL;
528 *list = temp;
529 }
530
531 /* Returns the list of used temp slots at LEVEL. */
532
533 static struct temp_slot **
534 temp_slots_at_level (int level)
535 {
536
537 if (!used_temp_slots)
538 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
539
540 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
541 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
542
543 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
544 }
545
546 /* Returns the maximal temporary slot level. */
547
548 static int
549 max_slot_level (void)
550 {
551 if (!used_temp_slots)
552 return -1;
553
554 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
555 }
556
557 /* Moves temporary slot TEMP to LEVEL. */
558
559 static void
560 move_slot_to_level (struct temp_slot *temp, int level)
561 {
562 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
563 insert_slot_to_list (temp, temp_slots_at_level (level));
564 temp->level = level;
565 }
566
567 /* Make temporary slot TEMP available. */
568
569 static void
570 make_slot_available (struct temp_slot *temp)
571 {
572 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
573 insert_slot_to_list (temp, &avail_temp_slots);
574 temp->in_use = 0;
575 temp->level = -1;
576 }
577 \f
578 /* Allocate a temporary stack slot and record it for possible later
579 reuse.
580
581 MODE is the machine mode to be given to the returned rtx.
582
583 SIZE is the size in units of the space required. We do no rounding here
584 since assign_stack_local will do any required rounding.
585
586 KEEP is 1 if this slot is to be retained after a call to
587 free_temp_slots. Automatic variables for a block are allocated
588 with this flag. KEEP values of 2 or 3 were needed respectively
589 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
590 or for SAVE_EXPRs, but they are now unused and will abort.
591
592 TYPE is the type that will be used for the stack slot. */
593
594 rtx
595 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
596 tree type)
597 {
598 unsigned int align;
599 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
600 rtx slot;
601
602 /* If SIZE is -1 it means that somebody tried to allocate a temporary
603 of a variable size. */
604 gcc_assert (size != -1);
605
606 /* These are now unused. */
607 gcc_assert (keep <= 1);
608
609 if (mode == BLKmode)
610 align = BIGGEST_ALIGNMENT;
611 else
612 align = GET_MODE_ALIGNMENT (mode);
613
614 if (! type)
615 type = lang_hooks.types.type_for_mode (mode, 0);
616
617 if (type)
618 align = LOCAL_ALIGNMENT (type, align);
619
620 /* Try to find an available, already-allocated temporary of the proper
621 mode which meets the size and alignment requirements. Choose the
622 smallest one with the closest alignment. */
623 for (p = avail_temp_slots; p; p = p->next)
624 {
625 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
626 && objects_must_conflict_p (p->type, type)
627 && (best_p == 0 || best_p->size > p->size
628 || (best_p->size == p->size && best_p->align > p->align)))
629 {
630 if (p->align == align && p->size == size)
631 {
632 selected = p;
633 cut_slot_from_list (selected, &avail_temp_slots);
634 best_p = 0;
635 break;
636 }
637 best_p = p;
638 }
639 }
640
641 /* Make our best, if any, the one to use. */
642 if (best_p)
643 {
644 selected = best_p;
645 cut_slot_from_list (selected, &avail_temp_slots);
646
647 /* If there are enough aligned bytes left over, make them into a new
648 temp_slot so that the extra bytes don't get wasted. Do this only
649 for BLKmode slots, so that we can be sure of the alignment. */
650 if (GET_MODE (best_p->slot) == BLKmode)
651 {
652 int alignment = best_p->align / BITS_PER_UNIT;
653 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
654
655 if (best_p->size - rounded_size >= alignment)
656 {
657 p = ggc_alloc (sizeof (struct temp_slot));
658 p->in_use = p->addr_taken = 0;
659 p->size = best_p->size - rounded_size;
660 p->base_offset = best_p->base_offset + rounded_size;
661 p->full_size = best_p->full_size - rounded_size;
662 p->slot = gen_rtx_MEM (BLKmode,
663 plus_constant (XEXP (best_p->slot, 0),
664 rounded_size));
665 p->align = best_p->align;
666 p->address = 0;
667 p->type = best_p->type;
668 insert_slot_to_list (p, &avail_temp_slots);
669
670 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
671 stack_slot_list);
672
673 best_p->size = rounded_size;
674 best_p->full_size = rounded_size;
675 }
676 }
677 }
678
679 /* If we still didn't find one, make a new temporary. */
680 if (selected == 0)
681 {
682 HOST_WIDE_INT frame_offset_old = frame_offset;
683
684 p = ggc_alloc (sizeof (struct temp_slot));
685
686 /* We are passing an explicit alignment request to assign_stack_local.
687 One side effect of that is assign_stack_local will not round SIZE
688 to ensure the frame offset remains suitably aligned.
689
690 So for requests which depended on the rounding of SIZE, we go ahead
691 and round it now. We also make sure ALIGNMENT is at least
692 BIGGEST_ALIGNMENT. */
693 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
694 p->slot = assign_stack_local (mode,
695 (mode == BLKmode
696 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
697 : size),
698 align);
699
700 p->align = align;
701
702 /* The following slot size computation is necessary because we don't
703 know the actual size of the temporary slot until assign_stack_local
704 has performed all the frame alignment and size rounding for the
705 requested temporary. Note that extra space added for alignment
706 can be either above or below this stack slot depending on which
707 way the frame grows. We include the extra space if and only if it
708 is above this slot. */
709 #ifdef FRAME_GROWS_DOWNWARD
710 p->size = frame_offset_old - frame_offset;
711 #else
712 p->size = size;
713 #endif
714
715 /* Now define the fields used by combine_temp_slots. */
716 #ifdef FRAME_GROWS_DOWNWARD
717 p->base_offset = frame_offset;
718 p->full_size = frame_offset_old - frame_offset;
719 #else
720 p->base_offset = frame_offset_old;
721 p->full_size = frame_offset - frame_offset_old;
722 #endif
723 p->address = 0;
724
725 selected = p;
726 }
727
728 p = selected;
729 p->in_use = 1;
730 p->addr_taken = 0;
731 p->type = type;
732 p->level = temp_slot_level;
733 p->keep = keep;
734
735 pp = temp_slots_at_level (p->level);
736 insert_slot_to_list (p, pp);
737
738 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
739 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
740 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
741
742 /* If we know the alias set for the memory that will be used, use
743 it. If there's no TYPE, then we don't know anything about the
744 alias set for the memory. */
745 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
746 set_mem_align (slot, align);
747
748 /* If a type is specified, set the relevant flags. */
749 if (type != 0)
750 {
751 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
752 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
753 }
754
755 return slot;
756 }
757
758 /* Allocate a temporary stack slot and record it for possible later
759 reuse. First three arguments are same as in preceding function. */
760
761 rtx
762 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
763 {
764 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
765 }
766 \f
767 /* Assign a temporary.
768 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
769 and so that should be used in error messages. In either case, we
770 allocate of the given type.
771 KEEP is as for assign_stack_temp.
772 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
773 it is 0 if a register is OK.
774 DONT_PROMOTE is 1 if we should not promote values in register
775 to wider modes. */
776
777 rtx
778 assign_temp (tree type_or_decl, int keep, int memory_required,
779 int dont_promote ATTRIBUTE_UNUSED)
780 {
781 tree type, decl;
782 enum machine_mode mode;
783 #ifdef PROMOTE_MODE
784 int unsignedp;
785 #endif
786
787 if (DECL_P (type_or_decl))
788 decl = type_or_decl, type = TREE_TYPE (decl);
789 else
790 decl = NULL, type = type_or_decl;
791
792 mode = TYPE_MODE (type);
793 #ifdef PROMOTE_MODE
794 unsignedp = TYPE_UNSIGNED (type);
795 #endif
796
797 if (mode == BLKmode || memory_required)
798 {
799 HOST_WIDE_INT size = int_size_in_bytes (type);
800 tree size_tree;
801 rtx tmp;
802
803 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
804 problems with allocating the stack space. */
805 if (size == 0)
806 size = 1;
807
808 /* Unfortunately, we don't yet know how to allocate variable-sized
809 temporaries. However, sometimes we have a fixed upper limit on
810 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
811 instead. This is the case for Chill variable-sized strings. */
812 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
813 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
814 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
815 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
816
817 /* If we still haven't been able to get a size, see if the language
818 can compute a maximum size. */
819 if (size == -1
820 && (size_tree = lang_hooks.types.max_size (type)) != 0
821 && host_integerp (size_tree, 1))
822 size = tree_low_cst (size_tree, 1);
823
824 /* The size of the temporary may be too large to fit into an integer. */
825 /* ??? Not sure this should happen except for user silliness, so limit
826 this to things that aren't compiler-generated temporaries. The
827 rest of the time we'll abort in assign_stack_temp_for_type. */
828 if (decl && size == -1
829 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
830 {
831 error ("%Jsize of variable %qD is too large", decl, decl);
832 size = 1;
833 }
834
835 tmp = assign_stack_temp_for_type (mode, size, keep, type);
836 return tmp;
837 }
838
839 #ifdef PROMOTE_MODE
840 if (! dont_promote)
841 mode = promote_mode (type, mode, &unsignedp, 0);
842 #endif
843
844 return gen_reg_rtx (mode);
845 }
846 \f
847 /* Combine temporary stack slots which are adjacent on the stack.
848
849 This allows for better use of already allocated stack space. This is only
850 done for BLKmode slots because we can be sure that we won't have alignment
851 problems in this case. */
852
853 static void
854 combine_temp_slots (void)
855 {
856 struct temp_slot *p, *q, *next, *next_q;
857 int num_slots;
858
859 /* We can't combine slots, because the information about which slot
860 is in which alias set will be lost. */
861 if (flag_strict_aliasing)
862 return;
863
864 /* If there are a lot of temp slots, don't do anything unless
865 high levels of optimization. */
866 if (! flag_expensive_optimizations)
867 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
868 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
869 return;
870
871 for (p = avail_temp_slots; p; p = next)
872 {
873 int delete_p = 0;
874
875 next = p->next;
876
877 if (GET_MODE (p->slot) != BLKmode)
878 continue;
879
880 for (q = p->next; q; q = next_q)
881 {
882 int delete_q = 0;
883
884 next_q = q->next;
885
886 if (GET_MODE (q->slot) != BLKmode)
887 continue;
888
889 if (p->base_offset + p->full_size == q->base_offset)
890 {
891 /* Q comes after P; combine Q into P. */
892 p->size += q->size;
893 p->full_size += q->full_size;
894 delete_q = 1;
895 }
896 else if (q->base_offset + q->full_size == p->base_offset)
897 {
898 /* P comes after Q; combine P into Q. */
899 q->size += p->size;
900 q->full_size += p->full_size;
901 delete_p = 1;
902 break;
903 }
904 if (delete_q)
905 cut_slot_from_list (q, &avail_temp_slots);
906 }
907
908 /* Either delete P or advance past it. */
909 if (delete_p)
910 cut_slot_from_list (p, &avail_temp_slots);
911 }
912 }
913 \f
914 /* Find the temp slot corresponding to the object at address X. */
915
916 static struct temp_slot *
917 find_temp_slot_from_address (rtx x)
918 {
919 struct temp_slot *p;
920 rtx next;
921 int i;
922
923 for (i = max_slot_level (); i >= 0; i--)
924 for (p = *temp_slots_at_level (i); p; p = p->next)
925 {
926 if (XEXP (p->slot, 0) == x
927 || p->address == x
928 || (GET_CODE (x) == PLUS
929 && XEXP (x, 0) == virtual_stack_vars_rtx
930 && GET_CODE (XEXP (x, 1)) == CONST_INT
931 && INTVAL (XEXP (x, 1)) >= p->base_offset
932 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
933 return p;
934
935 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
936 for (next = p->address; next; next = XEXP (next, 1))
937 if (XEXP (next, 0) == x)
938 return p;
939 }
940
941 /* If we have a sum involving a register, see if it points to a temp
942 slot. */
943 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
944 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
945 return p;
946 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
947 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
948 return p;
949
950 return 0;
951 }
952
953 /* Indicate that NEW is an alternate way of referring to the temp slot
954 that previously was known by OLD. */
955
956 void
957 update_temp_slot_address (rtx old, rtx new)
958 {
959 struct temp_slot *p;
960
961 if (rtx_equal_p (old, new))
962 return;
963
964 p = find_temp_slot_from_address (old);
965
966 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
967 is a register, see if one operand of the PLUS is a temporary
968 location. If so, NEW points into it. Otherwise, if both OLD and
969 NEW are a PLUS and if there is a register in common between them.
970 If so, try a recursive call on those values. */
971 if (p == 0)
972 {
973 if (GET_CODE (old) != PLUS)
974 return;
975
976 if (REG_P (new))
977 {
978 update_temp_slot_address (XEXP (old, 0), new);
979 update_temp_slot_address (XEXP (old, 1), new);
980 return;
981 }
982 else if (GET_CODE (new) != PLUS)
983 return;
984
985 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
986 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
987 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
988 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
989 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
990 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
991 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
992 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
993
994 return;
995 }
996
997 /* Otherwise add an alias for the temp's address. */
998 else if (p->address == 0)
999 p->address = new;
1000 else
1001 {
1002 if (GET_CODE (p->address) != EXPR_LIST)
1003 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1004
1005 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1006 }
1007 }
1008
1009 /* If X could be a reference to a temporary slot, mark the fact that its
1010 address was taken. */
1011
1012 void
1013 mark_temp_addr_taken (rtx x)
1014 {
1015 struct temp_slot *p;
1016
1017 if (x == 0)
1018 return;
1019
1020 /* If X is not in memory or is at a constant address, it cannot be in
1021 a temporary slot. */
1022 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1023 return;
1024
1025 p = find_temp_slot_from_address (XEXP (x, 0));
1026 if (p != 0)
1027 p->addr_taken = 1;
1028 }
1029
1030 /* If X could be a reference to a temporary slot, mark that slot as
1031 belonging to the to one level higher than the current level. If X
1032 matched one of our slots, just mark that one. Otherwise, we can't
1033 easily predict which it is, so upgrade all of them. Kept slots
1034 need not be touched.
1035
1036 This is called when an ({...}) construct occurs and a statement
1037 returns a value in memory. */
1038
1039 void
1040 preserve_temp_slots (rtx x)
1041 {
1042 struct temp_slot *p = 0, *next;
1043
1044 /* If there is no result, we still might have some objects whose address
1045 were taken, so we need to make sure they stay around. */
1046 if (x == 0)
1047 {
1048 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1049 {
1050 next = p->next;
1051
1052 if (p->addr_taken)
1053 move_slot_to_level (p, temp_slot_level - 1);
1054 }
1055
1056 return;
1057 }
1058
1059 /* If X is a register that is being used as a pointer, see if we have
1060 a temporary slot we know it points to. To be consistent with
1061 the code below, we really should preserve all non-kept slots
1062 if we can't find a match, but that seems to be much too costly. */
1063 if (REG_P (x) && REG_POINTER (x))
1064 p = find_temp_slot_from_address (x);
1065
1066 /* If X is not in memory or is at a constant address, it cannot be in
1067 a temporary slot, but it can contain something whose address was
1068 taken. */
1069 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1070 {
1071 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1072 {
1073 next = p->next;
1074
1075 if (p->addr_taken)
1076 move_slot_to_level (p, temp_slot_level - 1);
1077 }
1078
1079 return;
1080 }
1081
1082 /* First see if we can find a match. */
1083 if (p == 0)
1084 p = find_temp_slot_from_address (XEXP (x, 0));
1085
1086 if (p != 0)
1087 {
1088 /* Move everything at our level whose address was taken to our new
1089 level in case we used its address. */
1090 struct temp_slot *q;
1091
1092 if (p->level == temp_slot_level)
1093 {
1094 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1095 {
1096 next = q->next;
1097
1098 if (p != q && q->addr_taken)
1099 move_slot_to_level (q, temp_slot_level - 1);
1100 }
1101
1102 move_slot_to_level (p, temp_slot_level - 1);
1103 p->addr_taken = 0;
1104 }
1105 return;
1106 }
1107
1108 /* Otherwise, preserve all non-kept slots at this level. */
1109 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1110 {
1111 next = p->next;
1112
1113 if (!p->keep)
1114 move_slot_to_level (p, temp_slot_level - 1);
1115 }
1116 }
1117
1118 /* Free all temporaries used so far. This is normally called at the
1119 end of generating code for a statement. */
1120
1121 void
1122 free_temp_slots (void)
1123 {
1124 struct temp_slot *p, *next;
1125
1126 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1127 {
1128 next = p->next;
1129
1130 if (!p->keep)
1131 make_slot_available (p);
1132 }
1133
1134 combine_temp_slots ();
1135 }
1136
1137 /* Push deeper into the nesting level for stack temporaries. */
1138
1139 void
1140 push_temp_slots (void)
1141 {
1142 temp_slot_level++;
1143 }
1144
1145 /* Pop a temporary nesting level. All slots in use in the current level
1146 are freed. */
1147
1148 void
1149 pop_temp_slots (void)
1150 {
1151 struct temp_slot *p, *next;
1152
1153 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1154 {
1155 next = p->next;
1156 make_slot_available (p);
1157 }
1158
1159 combine_temp_slots ();
1160
1161 temp_slot_level--;
1162 }
1163
1164 /* Initialize temporary slots. */
1165
1166 void
1167 init_temp_slots (void)
1168 {
1169 /* We have not allocated any temporaries yet. */
1170 avail_temp_slots = 0;
1171 used_temp_slots = 0;
1172 temp_slot_level = 0;
1173 }
1174 \f
1175 /* These routines are responsible for converting virtual register references
1176 to the actual hard register references once RTL generation is complete.
1177
1178 The following four variables are used for communication between the
1179 routines. They contain the offsets of the virtual registers from their
1180 respective hard registers. */
1181
1182 static int in_arg_offset;
1183 static int var_offset;
1184 static int dynamic_offset;
1185 static int out_arg_offset;
1186 static int cfa_offset;
1187
1188 /* In most machines, the stack pointer register is equivalent to the bottom
1189 of the stack. */
1190
1191 #ifndef STACK_POINTER_OFFSET
1192 #define STACK_POINTER_OFFSET 0
1193 #endif
1194
1195 /* If not defined, pick an appropriate default for the offset of dynamically
1196 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1197 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1198
1199 #ifndef STACK_DYNAMIC_OFFSET
1200
1201 /* The bottom of the stack points to the actual arguments. If
1202 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1203 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1204 stack space for register parameters is not pushed by the caller, but
1205 rather part of the fixed stack areas and hence not included in
1206 `current_function_outgoing_args_size'. Nevertheless, we must allow
1207 for it when allocating stack dynamic objects. */
1208
1209 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1210 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1211 ((ACCUMULATE_OUTGOING_ARGS \
1212 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1213 + (STACK_POINTER_OFFSET)) \
1214
1215 #else
1216 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1217 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1218 + (STACK_POINTER_OFFSET))
1219 #endif
1220 #endif
1221
1222 /* On most machines, the CFA coincides with the first incoming parm. */
1223
1224 #ifndef ARG_POINTER_CFA_OFFSET
1225 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1226 #endif
1227
1228 \f
1229 /* Pass through the INSNS of function FNDECL and convert virtual register
1230 references to hard register references. */
1231
1232 void
1233 instantiate_virtual_regs (void)
1234 {
1235 rtx insn;
1236
1237 /* Compute the offsets to use for this function. */
1238 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1239 var_offset = STARTING_FRAME_OFFSET;
1240 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1241 out_arg_offset = STACK_POINTER_OFFSET;
1242 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1243
1244 /* Scan all variables and parameters of this function. For each that is
1245 in memory, instantiate all virtual registers if the result is a valid
1246 address. If not, we do it later. That will handle most uses of virtual
1247 regs on many machines. */
1248 instantiate_decls (current_function_decl, 1);
1249
1250 /* Initialize recognition, indicating that volatile is OK. */
1251 init_recog ();
1252
1253 /* Scan through all the insns, instantiating every virtual register still
1254 present. */
1255 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1256 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1257 || GET_CODE (insn) == CALL_INSN)
1258 {
1259 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1260 if (INSN_DELETED_P (insn))
1261 continue;
1262 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1263 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1264 if (GET_CODE (insn) == CALL_INSN)
1265 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1266 NULL_RTX, 0);
1267
1268 /* Past this point all ASM statements should match. Verify that
1269 to avoid failures later in the compilation process. */
1270 if (asm_noperands (PATTERN (insn)) >= 0
1271 && ! check_asm_operands (PATTERN (insn)))
1272 instantiate_virtual_regs_lossage (insn);
1273 }
1274
1275 /* Now instantiate the remaining register equivalences for debugging info.
1276 These will not be valid addresses. */
1277 instantiate_decls (current_function_decl, 0);
1278
1279 /* Indicate that, from now on, assign_stack_local should use
1280 frame_pointer_rtx. */
1281 virtuals_instantiated = 1;
1282 }
1283
1284 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1285 all virtual registers in their DECL_RTL's.
1286
1287 If VALID_ONLY, do this only if the resulting address is still valid.
1288 Otherwise, always do it. */
1289
1290 static void
1291 instantiate_decls (tree fndecl, int valid_only)
1292 {
1293 tree decl;
1294
1295 /* Process all parameters of the function. */
1296 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1297 {
1298 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1299 HOST_WIDE_INT size_rtl;
1300
1301 instantiate_decl (DECL_RTL (decl), size, valid_only);
1302
1303 /* If the parameter was promoted, then the incoming RTL mode may be
1304 larger than the declared type size. We must use the larger of
1305 the two sizes. */
1306 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1307 size = MAX (size_rtl, size);
1308 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1309 }
1310
1311 /* Now process all variables defined in the function or its subblocks. */
1312 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1313 }
1314
1315 /* Subroutine of instantiate_decls: Process all decls in the given
1316 BLOCK node and all its subblocks. */
1317
1318 static void
1319 instantiate_decls_1 (tree let, int valid_only)
1320 {
1321 tree t;
1322
1323 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1324 if (DECL_RTL_SET_P (t))
1325 instantiate_decl (DECL_RTL (t),
1326 int_size_in_bytes (TREE_TYPE (t)),
1327 valid_only);
1328
1329 /* Process all subblocks. */
1330 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1331 instantiate_decls_1 (t, valid_only);
1332 }
1333
1334 /* Subroutine of the preceding procedures: Given RTL representing a
1335 decl and the size of the object, do any instantiation required.
1336
1337 If VALID_ONLY is nonzero, it means that the RTL should only be
1338 changed if the new address is valid. */
1339
1340 static void
1341 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1342 {
1343 enum machine_mode mode;
1344 rtx addr;
1345
1346 if (x == 0)
1347 return;
1348
1349 /* If this is a CONCAT, recurse for the pieces. */
1350 if (GET_CODE (x) == CONCAT)
1351 {
1352 instantiate_decl (XEXP (x, 0), size / 2, valid_only);
1353 instantiate_decl (XEXP (x, 1), size / 2, valid_only);
1354 return;
1355 }
1356
1357 /* If this is not a MEM, no need to do anything. Similarly if the
1358 address is a constant or a register that is not a virtual register. */
1359 if (!MEM_P (x))
1360 return;
1361
1362 addr = XEXP (x, 0);
1363 if (CONSTANT_P (addr)
1364 || (REG_P (addr)
1365 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1366 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1367 return;
1368
1369 /* If we should only do this if the address is valid, copy the address.
1370 We need to do this so we can undo any changes that might make the
1371 address invalid. This copy is unfortunate, but probably can't be
1372 avoided. */
1373
1374 if (valid_only)
1375 addr = copy_rtx (addr);
1376
1377 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1378
1379 if (valid_only && size >= 0)
1380 {
1381 unsigned HOST_WIDE_INT decl_size = size;
1382
1383 /* Now verify that the resulting address is valid for every integer or
1384 floating-point mode up to and including SIZE bytes long. We do this
1385 since the object might be accessed in any mode and frame addresses
1386 are shared. */
1387
1388 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1389 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1390 mode = GET_MODE_WIDER_MODE (mode))
1391 if (! memory_address_p (mode, addr))
1392 return;
1393
1394 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1395 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1396 mode = GET_MODE_WIDER_MODE (mode))
1397 if (! memory_address_p (mode, addr))
1398 return;
1399 }
1400
1401 /* Put back the address now that we have updated it and we either know
1402 it is valid or we don't care whether it is valid. */
1403
1404 XEXP (x, 0) = addr;
1405 }
1406 \f
1407 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1408 is a virtual register, return the equivalent hard register and set the
1409 offset indirectly through the pointer. Otherwise, return 0. */
1410
1411 static rtx
1412 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1413 {
1414 rtx new;
1415 HOST_WIDE_INT offset;
1416
1417 if (x == virtual_incoming_args_rtx)
1418 new = arg_pointer_rtx, offset = in_arg_offset;
1419 else if (x == virtual_stack_vars_rtx)
1420 new = frame_pointer_rtx, offset = var_offset;
1421 else if (x == virtual_stack_dynamic_rtx)
1422 new = stack_pointer_rtx, offset = dynamic_offset;
1423 else if (x == virtual_outgoing_args_rtx)
1424 new = stack_pointer_rtx, offset = out_arg_offset;
1425 else if (x == virtual_cfa_rtx)
1426 new = arg_pointer_rtx, offset = cfa_offset;
1427 else
1428 return 0;
1429
1430 *poffset = offset;
1431 return new;
1432 }
1433 \f
1434
1435 /* Called when instantiate_virtual_regs has failed to update the instruction.
1436 Usually this means that non-matching instruction has been emit, however for
1437 asm statements it may be the problem in the constraints. */
1438 static void
1439 instantiate_virtual_regs_lossage (rtx insn)
1440 {
1441 gcc_assert (asm_noperands (PATTERN (insn)) >= 0);
1442 error_for_asm (insn, "impossible constraint in %<asm%>");
1443 delete_insn (insn);
1444 }
1445 /* Given a pointer to a piece of rtx and an optional pointer to the
1446 containing object, instantiate any virtual registers present in it.
1447
1448 If EXTRA_INSNS, we always do the replacement and generate
1449 any extra insns before OBJECT. If it zero, we do nothing if replacement
1450 is not valid.
1451
1452 Return 1 if we either had nothing to do or if we were able to do the
1453 needed replacement. Return 0 otherwise; we only return zero if
1454 EXTRA_INSNS is zero.
1455
1456 We first try some simple transformations to avoid the creation of extra
1457 pseudos. */
1458
1459 static int
1460 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1461 {
1462 rtx x;
1463 RTX_CODE code;
1464 rtx new = 0;
1465 HOST_WIDE_INT offset = 0;
1466 rtx temp;
1467 rtx seq;
1468 int i, j;
1469 const char *fmt;
1470
1471 /* Re-start here to avoid recursion in common cases. */
1472 restart:
1473
1474 x = *loc;
1475 if (x == 0)
1476 return 1;
1477
1478 /* We may have detected and deleted invalid asm statements. */
1479 if (object && INSN_P (object) && INSN_DELETED_P (object))
1480 return 1;
1481
1482 code = GET_CODE (x);
1483
1484 /* Check for some special cases. */
1485 switch (code)
1486 {
1487 case CONST_INT:
1488 case CONST_DOUBLE:
1489 case CONST_VECTOR:
1490 case CONST:
1491 case SYMBOL_REF:
1492 case CODE_LABEL:
1493 case PC:
1494 case CC0:
1495 case ASM_INPUT:
1496 case ADDR_VEC:
1497 case ADDR_DIFF_VEC:
1498 case RETURN:
1499 return 1;
1500
1501 case SET:
1502 /* We are allowed to set the virtual registers. This means that
1503 the actual register should receive the source minus the
1504 appropriate offset. This is used, for example, in the handling
1505 of non-local gotos. */
1506 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1507 {
1508 rtx src = SET_SRC (x);
1509
1510 /* We are setting the register, not using it, so the relevant
1511 offset is the negative of the offset to use were we using
1512 the register. */
1513 offset = - offset;
1514 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1515
1516 /* The only valid sources here are PLUS or REG. Just do
1517 the simplest possible thing to handle them. */
1518 if (!REG_P (src) && GET_CODE (src) != PLUS)
1519 {
1520 instantiate_virtual_regs_lossage (object);
1521 return 1;
1522 }
1523
1524 start_sequence ();
1525 if (!REG_P (src))
1526 temp = force_operand (src, NULL_RTX);
1527 else
1528 temp = src;
1529 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1530 seq = get_insns ();
1531 end_sequence ();
1532
1533 emit_insn_before (seq, object);
1534 SET_DEST (x) = new;
1535
1536 if (! validate_change (object, &SET_SRC (x), temp, 0)
1537 || ! extra_insns)
1538 instantiate_virtual_regs_lossage (object);
1539
1540 return 1;
1541 }
1542
1543 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1544 loc = &SET_SRC (x);
1545 goto restart;
1546
1547 case PLUS:
1548 /* Handle special case of virtual register plus constant. */
1549 if (CONSTANT_P (XEXP (x, 1)))
1550 {
1551 rtx old, new_offset;
1552
1553 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1554 if (GET_CODE (XEXP (x, 0)) == PLUS)
1555 {
1556 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1557 {
1558 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1559 extra_insns);
1560 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1561 }
1562 else
1563 {
1564 loc = &XEXP (x, 0);
1565 goto restart;
1566 }
1567 }
1568
1569 #ifdef POINTERS_EXTEND_UNSIGNED
1570 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1571 we can commute the PLUS and SUBREG because pointers into the
1572 frame are well-behaved. */
1573 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1574 && GET_CODE (XEXP (x, 1)) == CONST_INT
1575 && 0 != (new
1576 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1577 &offset))
1578 && validate_change (object, loc,
1579 plus_constant (gen_lowpart (ptr_mode,
1580 new),
1581 offset
1582 + INTVAL (XEXP (x, 1))),
1583 0))
1584 return 1;
1585 #endif
1586 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1587 {
1588 /* We know the second operand is a constant. Unless the
1589 first operand is a REG (which has been already checked),
1590 it needs to be checked. */
1591 if (!REG_P (XEXP (x, 0)))
1592 {
1593 loc = &XEXP (x, 0);
1594 goto restart;
1595 }
1596 return 1;
1597 }
1598
1599 new_offset = plus_constant (XEXP (x, 1), offset);
1600
1601 /* If the new constant is zero, try to replace the sum with just
1602 the register. */
1603 if (new_offset == const0_rtx
1604 && validate_change (object, loc, new, 0))
1605 return 1;
1606
1607 /* Next try to replace the register and new offset.
1608 There are two changes to validate here and we can't assume that
1609 in the case of old offset equals new just changing the register
1610 will yield a valid insn. In the interests of a little efficiency,
1611 however, we only call validate change once (we don't queue up the
1612 changes and then call apply_change_group). */
1613
1614 old = XEXP (x, 0);
1615 if (offset == 0
1616 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1617 : (XEXP (x, 0) = new,
1618 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1619 {
1620 if (! extra_insns)
1621 {
1622 XEXP (x, 0) = old;
1623 return 0;
1624 }
1625
1626 /* Otherwise copy the new constant into a register and replace
1627 constant with that register. */
1628 temp = gen_reg_rtx (Pmode);
1629 XEXP (x, 0) = new;
1630 if (validate_change (object, &XEXP (x, 1), temp, 0))
1631 emit_insn_before (gen_move_insn (temp, new_offset), object);
1632 else
1633 {
1634 /* If that didn't work, replace this expression with a
1635 register containing the sum. */
1636
1637 XEXP (x, 0) = old;
1638 new = gen_rtx_PLUS (Pmode, new, new_offset);
1639
1640 start_sequence ();
1641 temp = force_operand (new, NULL_RTX);
1642 seq = get_insns ();
1643 end_sequence ();
1644
1645 emit_insn_before (seq, object);
1646 if (! validate_change (object, loc, temp, 0)
1647 && ! validate_replace_rtx (x, temp, object))
1648 {
1649 instantiate_virtual_regs_lossage (object);
1650 return 1;
1651 }
1652 }
1653 }
1654
1655 return 1;
1656 }
1657
1658 /* Fall through to generic two-operand expression case. */
1659 case EXPR_LIST:
1660 case CALL:
1661 case COMPARE:
1662 case MINUS:
1663 case MULT:
1664 case DIV: case UDIV:
1665 case MOD: case UMOD:
1666 case AND: case IOR: case XOR:
1667 case ROTATERT: case ROTATE:
1668 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1669 case NE: case EQ:
1670 case GE: case GT: case GEU: case GTU:
1671 case LE: case LT: case LEU: case LTU:
1672 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1673 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1674 loc = &XEXP (x, 0);
1675 goto restart;
1676
1677 case MEM:
1678 /* Most cases of MEM that convert to valid addresses have already been
1679 handled by our scan of decls. The only special handling we
1680 need here is to make a copy of the rtx to ensure it isn't being
1681 shared if we have to change it to a pseudo.
1682
1683 If the rtx is a simple reference to an address via a virtual register,
1684 it can potentially be shared. In such cases, first try to make it
1685 a valid address, which can also be shared. Otherwise, copy it and
1686 proceed normally.
1687
1688 First check for common cases that need no processing. These are
1689 usually due to instantiation already being done on a previous instance
1690 of a shared rtx. */
1691
1692 temp = XEXP (x, 0);
1693 if (CONSTANT_ADDRESS_P (temp)
1694 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1695 || temp == arg_pointer_rtx
1696 #endif
1697 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1698 || temp == hard_frame_pointer_rtx
1699 #endif
1700 || temp == frame_pointer_rtx)
1701 return 1;
1702
1703 if (GET_CODE (temp) == PLUS
1704 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1705 && (XEXP (temp, 0) == frame_pointer_rtx
1706 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1707 || XEXP (temp, 0) == hard_frame_pointer_rtx
1708 #endif
1709 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1710 || XEXP (temp, 0) == arg_pointer_rtx
1711 #endif
1712 ))
1713 return 1;
1714
1715 if (temp == virtual_stack_vars_rtx
1716 || temp == virtual_incoming_args_rtx
1717 || (GET_CODE (temp) == PLUS
1718 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1719 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1720 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1721 {
1722 /* This MEM may be shared. If the substitution can be done without
1723 the need to generate new pseudos, we want to do it in place
1724 so all copies of the shared rtx benefit. The call below will
1725 only make substitutions if the resulting address is still
1726 valid.
1727
1728 Note that we cannot pass X as the object in the recursive call
1729 since the insn being processed may not allow all valid
1730 addresses. However, if we were not passed on object, we can
1731 only modify X without copying it if X will have a valid
1732 address.
1733
1734 ??? Also note that this can still lose if OBJECT is an insn that
1735 has less restrictions on an address that some other insn.
1736 In that case, we will modify the shared address. This case
1737 doesn't seem very likely, though. One case where this could
1738 happen is in the case of a USE or CLOBBER reference, but we
1739 take care of that below. */
1740
1741 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1742 object ? object : x, 0))
1743 return 1;
1744
1745 /* Otherwise make a copy and process that copy. We copy the entire
1746 RTL expression since it might be a PLUS which could also be
1747 shared. */
1748 *loc = x = copy_rtx (x);
1749 }
1750
1751 /* Fall through to generic unary operation case. */
1752 case PREFETCH:
1753 case SUBREG:
1754 case STRICT_LOW_PART:
1755 case NEG: case NOT:
1756 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1757 case SIGN_EXTEND: case ZERO_EXTEND:
1758 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1759 case FLOAT: case FIX:
1760 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1761 case ABS:
1762 case SQRT:
1763 case FFS:
1764 case CLZ: case CTZ:
1765 case POPCOUNT: case PARITY:
1766 /* These case either have just one operand or we know that we need not
1767 check the rest of the operands. */
1768 loc = &XEXP (x, 0);
1769 goto restart;
1770
1771 case USE:
1772 case CLOBBER:
1773 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1774 go ahead and make the invalid one, but do it to a copy. For a REG,
1775 just make the recursive call, since there's no chance of a problem. */
1776
1777 if ((MEM_P (XEXP (x, 0))
1778 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1779 0))
1780 || (REG_P (XEXP (x, 0))
1781 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1782 return 1;
1783
1784 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1785 loc = &XEXP (x, 0);
1786 goto restart;
1787
1788 case REG:
1789 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1790 in front of this insn and substitute the temporary. */
1791 if ((new = instantiate_new_reg (x, &offset)) != 0)
1792 {
1793 temp = plus_constant (new, offset);
1794 if (!validate_change (object, loc, temp, 0))
1795 {
1796 if (! extra_insns)
1797 return 0;
1798
1799 start_sequence ();
1800 temp = force_operand (temp, NULL_RTX);
1801 seq = get_insns ();
1802 end_sequence ();
1803
1804 emit_insn_before (seq, object);
1805 if (! validate_change (object, loc, temp, 0)
1806 && ! validate_replace_rtx (x, temp, object))
1807 instantiate_virtual_regs_lossage (object);
1808 }
1809 }
1810
1811 return 1;
1812
1813 default:
1814 break;
1815 }
1816
1817 /* Scan all subexpressions. */
1818 fmt = GET_RTX_FORMAT (code);
1819 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1820 if (*fmt == 'e')
1821 {
1822 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1823 return 0;
1824 }
1825 else if (*fmt == 'E')
1826 for (j = 0; j < XVECLEN (x, i); j++)
1827 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1828 extra_insns))
1829 return 0;
1830
1831 return 1;
1832 }
1833 \f
1834 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1835 This means a type for which function calls must pass an address to the
1836 function or get an address back from the function.
1837 EXP may be a type node or an expression (whose type is tested). */
1838
1839 int
1840 aggregate_value_p (tree exp, tree fntype)
1841 {
1842 int i, regno, nregs;
1843 rtx reg;
1844
1845 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1846
1847 if (fntype)
1848 switch (TREE_CODE (fntype))
1849 {
1850 case CALL_EXPR:
1851 fntype = get_callee_fndecl (fntype);
1852 fntype = fntype ? TREE_TYPE (fntype) : 0;
1853 break;
1854 case FUNCTION_DECL:
1855 fntype = TREE_TYPE (fntype);
1856 break;
1857 case FUNCTION_TYPE:
1858 case METHOD_TYPE:
1859 break;
1860 case IDENTIFIER_NODE:
1861 fntype = 0;
1862 break;
1863 default:
1864 /* We don't expect other rtl types here. */
1865 gcc_unreachable ();
1866 }
1867
1868 if (TREE_CODE (type) == VOID_TYPE)
1869 return 0;
1870 /* If the front end has decided that this needs to be passed by
1871 reference, do so. */
1872 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1873 && DECL_BY_REFERENCE (exp))
1874 return 1;
1875 if (targetm.calls.return_in_memory (type, fntype))
1876 return 1;
1877 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1878 and thus can't be returned in registers. */
1879 if (TREE_ADDRESSABLE (type))
1880 return 1;
1881 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1882 return 1;
1883 /* Make sure we have suitable call-clobbered regs to return
1884 the value in; if not, we must return it in memory. */
1885 reg = hard_function_value (type, 0, 0);
1886
1887 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1888 it is OK. */
1889 if (!REG_P (reg))
1890 return 0;
1891
1892 regno = REGNO (reg);
1893 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1894 for (i = 0; i < nregs; i++)
1895 if (! call_used_regs[regno + i])
1896 return 1;
1897 return 0;
1898 }
1899 \f
1900 /* Return true if we should assign DECL a pseudo register; false if it
1901 should live on the local stack. */
1902
1903 bool
1904 use_register_for_decl (tree decl)
1905 {
1906 /* Honor volatile. */
1907 if (TREE_SIDE_EFFECTS (decl))
1908 return false;
1909
1910 /* Honor addressability. */
1911 if (TREE_ADDRESSABLE (decl))
1912 return false;
1913
1914 /* Only register-like things go in registers. */
1915 if (DECL_MODE (decl) == BLKmode)
1916 return false;
1917
1918 /* If -ffloat-store specified, don't put explicit float variables
1919 into registers. */
1920 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1921 propagates values across these stores, and it probably shouldn't. */
1922 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1923 return false;
1924
1925 /* If we're not interested in tracking debugging information for
1926 this decl, then we can certainly put it in a register. */
1927 if (DECL_IGNORED_P (decl))
1928 return true;
1929
1930 return (optimize || DECL_REGISTER (decl));
1931 }
1932
1933 /* Return true if TYPE should be passed by invisible reference. */
1934
1935 bool
1936 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1937 tree type, bool named_arg)
1938 {
1939 if (type)
1940 {
1941 /* If this type contains non-trivial constructors, then it is
1942 forbidden for the middle-end to create any new copies. */
1943 if (TREE_ADDRESSABLE (type))
1944 return true;
1945
1946 /* GCC post 3.4 passes *all* variable sized types by reference. */
1947 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1948 return true;
1949 }
1950
1951 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1952 }
1953
1954 /* Return true if TYPE, which is passed by reference, should be callee
1955 copied instead of caller copied. */
1956
1957 bool
1958 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1959 tree type, bool named_arg)
1960 {
1961 if (type && TREE_ADDRESSABLE (type))
1962 return false;
1963 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1964 }
1965
1966 /* Structures to communicate between the subroutines of assign_parms.
1967 The first holds data persistent across all parameters, the second
1968 is cleared out for each parameter. */
1969
1970 struct assign_parm_data_all
1971 {
1972 CUMULATIVE_ARGS args_so_far;
1973 struct args_size stack_args_size;
1974 tree function_result_decl;
1975 tree orig_fnargs;
1976 rtx conversion_insns;
1977 HOST_WIDE_INT pretend_args_size;
1978 HOST_WIDE_INT extra_pretend_bytes;
1979 int reg_parm_stack_space;
1980 };
1981
1982 struct assign_parm_data_one
1983 {
1984 tree nominal_type;
1985 tree passed_type;
1986 rtx entry_parm;
1987 rtx stack_parm;
1988 enum machine_mode nominal_mode;
1989 enum machine_mode passed_mode;
1990 enum machine_mode promoted_mode;
1991 struct locate_and_pad_arg_data locate;
1992 int partial;
1993 BOOL_BITFIELD named_arg : 1;
1994 BOOL_BITFIELD last_named : 1;
1995 BOOL_BITFIELD passed_pointer : 1;
1996 BOOL_BITFIELD on_stack : 1;
1997 BOOL_BITFIELD loaded_in_reg : 1;
1998 };
1999
2000 /* A subroutine of assign_parms. Initialize ALL. */
2001
2002 static void
2003 assign_parms_initialize_all (struct assign_parm_data_all *all)
2004 {
2005 tree fntype;
2006
2007 memset (all, 0, sizeof (*all));
2008
2009 fntype = TREE_TYPE (current_function_decl);
2010
2011 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2012 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2013 #else
2014 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2015 current_function_decl, -1);
2016 #endif
2017
2018 #ifdef REG_PARM_STACK_SPACE
2019 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2020 #endif
2021 }
2022
2023 /* If ARGS contains entries with complex types, split the entry into two
2024 entries of the component type. Return a new list of substitutions are
2025 needed, else the old list. */
2026
2027 static tree
2028 split_complex_args (tree args)
2029 {
2030 tree p;
2031
2032 /* Before allocating memory, check for the common case of no complex. */
2033 for (p = args; p; p = TREE_CHAIN (p))
2034 {
2035 tree type = TREE_TYPE (p);
2036 if (TREE_CODE (type) == COMPLEX_TYPE
2037 && targetm.calls.split_complex_arg (type))
2038 goto found;
2039 }
2040 return args;
2041
2042 found:
2043 args = copy_list (args);
2044
2045 for (p = args; p; p = TREE_CHAIN (p))
2046 {
2047 tree type = TREE_TYPE (p);
2048 if (TREE_CODE (type) == COMPLEX_TYPE
2049 && targetm.calls.split_complex_arg (type))
2050 {
2051 tree decl;
2052 tree subtype = TREE_TYPE (type);
2053 bool addressable = TREE_ADDRESSABLE (p);
2054
2055 /* Rewrite the PARM_DECL's type with its component. */
2056 TREE_TYPE (p) = subtype;
2057 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2058 DECL_MODE (p) = VOIDmode;
2059 DECL_SIZE (p) = NULL;
2060 DECL_SIZE_UNIT (p) = NULL;
2061 /* If this arg must go in memory, put it in a pseudo here.
2062 We can't allow it to go in memory as per normal parms,
2063 because the usual place might not have the imag part
2064 adjacent to the real part. */
2065 DECL_ARTIFICIAL (p) = addressable;
2066 DECL_IGNORED_P (p) = addressable;
2067 TREE_ADDRESSABLE (p) = 0;
2068 layout_decl (p, 0);
2069
2070 /* Build a second synthetic decl. */
2071 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2072 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2073 DECL_ARTIFICIAL (decl) = addressable;
2074 DECL_IGNORED_P (decl) = addressable;
2075 layout_decl (decl, 0);
2076
2077 /* Splice it in; skip the new decl. */
2078 TREE_CHAIN (decl) = TREE_CHAIN (p);
2079 TREE_CHAIN (p) = decl;
2080 p = decl;
2081 }
2082 }
2083
2084 return args;
2085 }
2086
2087 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2088 the hidden struct return argument, and (abi willing) complex args.
2089 Return the new parameter list. */
2090
2091 static tree
2092 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2093 {
2094 tree fndecl = current_function_decl;
2095 tree fntype = TREE_TYPE (fndecl);
2096 tree fnargs = DECL_ARGUMENTS (fndecl);
2097
2098 /* If struct value address is treated as the first argument, make it so. */
2099 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2100 && ! current_function_returns_pcc_struct
2101 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2102 {
2103 tree type = build_pointer_type (TREE_TYPE (fntype));
2104 tree decl;
2105
2106 decl = build_decl (PARM_DECL, NULL_TREE, type);
2107 DECL_ARG_TYPE (decl) = type;
2108 DECL_ARTIFICIAL (decl) = 1;
2109 DECL_IGNORED_P (decl) = 1;
2110
2111 TREE_CHAIN (decl) = fnargs;
2112 fnargs = decl;
2113 all->function_result_decl = decl;
2114 }
2115
2116 all->orig_fnargs = fnargs;
2117
2118 /* If the target wants to split complex arguments into scalars, do so. */
2119 if (targetm.calls.split_complex_arg)
2120 fnargs = split_complex_args (fnargs);
2121
2122 return fnargs;
2123 }
2124
2125 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2126 data for the parameter. Incorporate ABI specifics such as pass-by-
2127 reference and type promotion. */
2128
2129 static void
2130 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2131 struct assign_parm_data_one *data)
2132 {
2133 tree nominal_type, passed_type;
2134 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2135
2136 memset (data, 0, sizeof (*data));
2137
2138 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2139 if (current_function_stdarg)
2140 {
2141 tree tem;
2142 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2143 if (DECL_NAME (tem))
2144 break;
2145 if (tem == 0)
2146 data->last_named = true;
2147 }
2148
2149 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2150 most machines, if this is a varargs/stdarg function, then we treat
2151 the last named arg as if it were anonymous too. */
2152 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2153 data->named_arg = 1;
2154 else
2155 data->named_arg = !data->last_named;
2156
2157 nominal_type = TREE_TYPE (parm);
2158 passed_type = DECL_ARG_TYPE (parm);
2159
2160 /* Look out for errors propagating this far. Also, if the parameter's
2161 type is void then its value doesn't matter. */
2162 if (TREE_TYPE (parm) == error_mark_node
2163 /* This can happen after weird syntax errors
2164 or if an enum type is defined among the parms. */
2165 || TREE_CODE (parm) != PARM_DECL
2166 || passed_type == NULL
2167 || VOID_TYPE_P (nominal_type))
2168 {
2169 nominal_type = passed_type = void_type_node;
2170 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2171 goto egress;
2172 }
2173
2174 /* Find mode of arg as it is passed, and mode of arg as it should be
2175 during execution of this function. */
2176 passed_mode = TYPE_MODE (passed_type);
2177 nominal_mode = TYPE_MODE (nominal_type);
2178
2179 /* If the parm is to be passed as a transparent union, use the type of
2180 the first field for the tests below. We have already verified that
2181 the modes are the same. */
2182 if (DECL_TRANSPARENT_UNION (parm)
2183 || (TREE_CODE (passed_type) == UNION_TYPE
2184 && TYPE_TRANSPARENT_UNION (passed_type)))
2185 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2186
2187 /* See if this arg was passed by invisible reference. */
2188 if (pass_by_reference (&all->args_so_far, passed_mode,
2189 passed_type, data->named_arg))
2190 {
2191 passed_type = nominal_type = build_pointer_type (passed_type);
2192 data->passed_pointer = true;
2193 passed_mode = nominal_mode = Pmode;
2194 }
2195
2196 /* Find mode as it is passed by the ABI. */
2197 promoted_mode = passed_mode;
2198 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2199 {
2200 int unsignedp = TYPE_UNSIGNED (passed_type);
2201 promoted_mode = promote_mode (passed_type, promoted_mode,
2202 &unsignedp, 1);
2203 }
2204
2205 egress:
2206 data->nominal_type = nominal_type;
2207 data->passed_type = passed_type;
2208 data->nominal_mode = nominal_mode;
2209 data->passed_mode = passed_mode;
2210 data->promoted_mode = promoted_mode;
2211 }
2212
2213 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2214
2215 static void
2216 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2217 struct assign_parm_data_one *data, bool no_rtl)
2218 {
2219 int varargs_pretend_bytes = 0;
2220
2221 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2222 data->promoted_mode,
2223 data->passed_type,
2224 &varargs_pretend_bytes, no_rtl);
2225
2226 /* If the back-end has requested extra stack space, record how much is
2227 needed. Do not change pretend_args_size otherwise since it may be
2228 nonzero from an earlier partial argument. */
2229 if (varargs_pretend_bytes > 0)
2230 all->pretend_args_size = varargs_pretend_bytes;
2231 }
2232
2233 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2234 the incoming location of the current parameter. */
2235
2236 static void
2237 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2238 struct assign_parm_data_one *data)
2239 {
2240 HOST_WIDE_INT pretend_bytes = 0;
2241 rtx entry_parm;
2242 bool in_regs;
2243
2244 if (data->promoted_mode == VOIDmode)
2245 {
2246 data->entry_parm = data->stack_parm = const0_rtx;
2247 return;
2248 }
2249
2250 #ifdef FUNCTION_INCOMING_ARG
2251 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2252 data->passed_type, data->named_arg);
2253 #else
2254 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2255 data->passed_type, data->named_arg);
2256 #endif
2257
2258 if (entry_parm == 0)
2259 data->promoted_mode = data->passed_mode;
2260
2261 /* Determine parm's home in the stack, in case it arrives in the stack
2262 or we should pretend it did. Compute the stack position and rtx where
2263 the argument arrives and its size.
2264
2265 There is one complexity here: If this was a parameter that would
2266 have been passed in registers, but wasn't only because it is
2267 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2268 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2269 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2270 as it was the previous time. */
2271 in_regs = entry_parm != 0;
2272 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2273 in_regs = true;
2274 #endif
2275 if (!in_regs && !data->named_arg)
2276 {
2277 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2278 {
2279 rtx tem;
2280 #ifdef FUNCTION_INCOMING_ARG
2281 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2282 data->passed_type, true);
2283 #else
2284 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2285 data->passed_type, true);
2286 #endif
2287 in_regs = tem != NULL;
2288 }
2289 }
2290
2291 /* If this parameter was passed both in registers and in the stack, use
2292 the copy on the stack. */
2293 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2294 data->passed_type))
2295 entry_parm = 0;
2296
2297 if (entry_parm)
2298 {
2299 int partial;
2300
2301 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2302 data->promoted_mode,
2303 data->passed_type,
2304 data->named_arg);
2305 data->partial = partial;
2306
2307 /* The caller might already have allocated stack space for the
2308 register parameters. */
2309 if (partial != 0 && all->reg_parm_stack_space == 0)
2310 {
2311 /* Part of this argument is passed in registers and part
2312 is passed on the stack. Ask the prologue code to extend
2313 the stack part so that we can recreate the full value.
2314
2315 PRETEND_BYTES is the size of the registers we need to store.
2316 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2317 stack space that the prologue should allocate.
2318
2319 Internally, gcc assumes that the argument pointer is aligned
2320 to STACK_BOUNDARY bits. This is used both for alignment
2321 optimizations (see init_emit) and to locate arguments that are
2322 aligned to more than PARM_BOUNDARY bits. We must preserve this
2323 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2324 a stack boundary. */
2325
2326 /* We assume at most one partial arg, and it must be the first
2327 argument on the stack. */
2328 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2329
2330 pretend_bytes = partial;
2331 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2332
2333 /* We want to align relative to the actual stack pointer, so
2334 don't include this in the stack size until later. */
2335 all->extra_pretend_bytes = all->pretend_args_size;
2336 }
2337 }
2338
2339 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2340 entry_parm ? data->partial : 0, current_function_decl,
2341 &all->stack_args_size, &data->locate);
2342
2343 /* Adjust offsets to include the pretend args. */
2344 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2345 data->locate.slot_offset.constant += pretend_bytes;
2346 data->locate.offset.constant += pretend_bytes;
2347
2348 data->entry_parm = entry_parm;
2349 }
2350
2351 /* A subroutine of assign_parms. If there is actually space on the stack
2352 for this parm, count it in stack_args_size and return true. */
2353
2354 static bool
2355 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2356 struct assign_parm_data_one *data)
2357 {
2358 /* Trivially true if we've no incoming register. */
2359 if (data->entry_parm == NULL)
2360 ;
2361 /* Also true if we're partially in registers and partially not,
2362 since we've arranged to drop the entire argument on the stack. */
2363 else if (data->partial != 0)
2364 ;
2365 /* Also true if the target says that it's passed in both registers
2366 and on the stack. */
2367 else if (GET_CODE (data->entry_parm) == PARALLEL
2368 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2369 ;
2370 /* Also true if the target says that there's stack allocated for
2371 all register parameters. */
2372 else if (all->reg_parm_stack_space > 0)
2373 ;
2374 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2375 else
2376 return false;
2377
2378 all->stack_args_size.constant += data->locate.size.constant;
2379 if (data->locate.size.var)
2380 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2381
2382 return true;
2383 }
2384
2385 /* A subroutine of assign_parms. Given that this parameter is allocated
2386 stack space by the ABI, find it. */
2387
2388 static void
2389 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2390 {
2391 rtx offset_rtx, stack_parm;
2392 unsigned int align, boundary;
2393
2394 /* If we're passing this arg using a reg, make its stack home the
2395 aligned stack slot. */
2396 if (data->entry_parm)
2397 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2398 else
2399 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2400
2401 stack_parm = current_function_internal_arg_pointer;
2402 if (offset_rtx != const0_rtx)
2403 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2404 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2405
2406 set_mem_attributes (stack_parm, parm, 1);
2407
2408 boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
2409 align = 0;
2410
2411 /* If we're padding upward, we know that the alignment of the slot
2412 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2413 intentionally forcing upward padding. Otherwise we have to come
2414 up with a guess at the alignment based on OFFSET_RTX. */
2415 if (data->locate.where_pad == upward || data->entry_parm)
2416 align = boundary;
2417 else if (GET_CODE (offset_rtx) == CONST_INT)
2418 {
2419 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2420 align = align & -align;
2421 }
2422 if (align > 0)
2423 set_mem_align (stack_parm, align);
2424
2425 if (data->entry_parm)
2426 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2427
2428 data->stack_parm = stack_parm;
2429 }
2430
2431 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2432 always valid and contiguous. */
2433
2434 static void
2435 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2436 {
2437 rtx entry_parm = data->entry_parm;
2438 rtx stack_parm = data->stack_parm;
2439
2440 /* If this parm was passed part in regs and part in memory, pretend it
2441 arrived entirely in memory by pushing the register-part onto the stack.
2442 In the special case of a DImode or DFmode that is split, we could put
2443 it together in a pseudoreg directly, but for now that's not worth
2444 bothering with. */
2445 if (data->partial != 0)
2446 {
2447 /* Handle calls that pass values in multiple non-contiguous
2448 locations. The Irix 6 ABI has examples of this. */
2449 if (GET_CODE (entry_parm) == PARALLEL)
2450 emit_group_store (validize_mem (stack_parm), entry_parm,
2451 data->passed_type,
2452 int_size_in_bytes (data->passed_type));
2453 else
2454 {
2455 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2456 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2457 data->partial / UNITS_PER_WORD);
2458 }
2459
2460 entry_parm = stack_parm;
2461 }
2462
2463 /* If we didn't decide this parm came in a register, by default it came
2464 on the stack. */
2465 else if (entry_parm == NULL)
2466 entry_parm = stack_parm;
2467
2468 /* When an argument is passed in multiple locations, we can't make use
2469 of this information, but we can save some copying if the whole argument
2470 is passed in a single register. */
2471 else if (GET_CODE (entry_parm) == PARALLEL
2472 && data->nominal_mode != BLKmode
2473 && data->passed_mode != BLKmode)
2474 {
2475 size_t i, len = XVECLEN (entry_parm, 0);
2476
2477 for (i = 0; i < len; i++)
2478 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2479 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2480 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2481 == data->passed_mode)
2482 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2483 {
2484 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2485 break;
2486 }
2487 }
2488
2489 data->entry_parm = entry_parm;
2490 }
2491
2492 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2493 always valid and properly aligned. */
2494
2495
2496 static void
2497 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2498 {
2499 rtx stack_parm = data->stack_parm;
2500
2501 /* If we can't trust the parm stack slot to be aligned enough for its
2502 ultimate type, don't use that slot after entry. We'll make another
2503 stack slot, if we need one. */
2504 if (STRICT_ALIGNMENT && stack_parm
2505 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2506 stack_parm = NULL;
2507
2508 /* If parm was passed in memory, and we need to convert it on entry,
2509 don't store it back in that same slot. */
2510 else if (data->entry_parm == stack_parm
2511 && data->nominal_mode != BLKmode
2512 && data->nominal_mode != data->passed_mode)
2513 stack_parm = NULL;
2514
2515 data->stack_parm = stack_parm;
2516 }
2517
2518 /* A subroutine of assign_parms. Return true if the current parameter
2519 should be stored as a BLKmode in the current frame. */
2520
2521 static bool
2522 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2523 {
2524 if (data->nominal_mode == BLKmode)
2525 return true;
2526 if (GET_CODE (data->entry_parm) == PARALLEL)
2527 return true;
2528
2529 #ifdef BLOCK_REG_PADDING
2530 /* Only assign_parm_setup_block knows how to deal with register arguments
2531 that are padded at the least significant end. */
2532 if (REG_P (data->entry_parm)
2533 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2534 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2535 == (BYTES_BIG_ENDIAN ? upward : downward)))
2536 return true;
2537 #endif
2538
2539 return false;
2540 }
2541
2542 /* A subroutine of assign_parms. Arrange for the parameter to be
2543 present and valid in DATA->STACK_RTL. */
2544
2545 static void
2546 assign_parm_setup_block (struct assign_parm_data_all *all,
2547 tree parm, struct assign_parm_data_one *data)
2548 {
2549 rtx entry_parm = data->entry_parm;
2550 rtx stack_parm = data->stack_parm;
2551
2552 if (GET_CODE (entry_parm) == PARALLEL)
2553 entry_parm = emit_group_move_into_temps (entry_parm);
2554
2555 /* If we've a non-block object that's nevertheless passed in parts,
2556 reconstitute it in register operations rather than on the stack. */
2557 if (GET_CODE (entry_parm) == PARALLEL
2558 && data->nominal_mode != BLKmode
2559 && XVECLEN (entry_parm, 0) > 1
2560 && use_register_for_decl (parm))
2561 {
2562 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2563
2564 push_to_sequence (all->conversion_insns);
2565
2566 /* For values returned in multiple registers, handle possible
2567 incompatible calls to emit_group_store.
2568
2569 For example, the following would be invalid, and would have to
2570 be fixed by the conditional below:
2571
2572 emit_group_store ((reg:SF), (parallel:DF))
2573 emit_group_store ((reg:SI), (parallel:DI))
2574
2575 An example of this are doubles in e500 v2:
2576 (parallel:DF (expr_list (reg:SI) (const_int 0))
2577 (expr_list (reg:SI) (const_int 4))). */
2578 if (data->nominal_mode != data->passed_mode)
2579 {
2580 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2581 emit_group_store (t, entry_parm, NULL_TREE,
2582 GET_MODE_SIZE (GET_MODE (entry_parm)));
2583 convert_move (parmreg, t, 0);
2584 }
2585 else
2586 emit_group_store (parmreg, entry_parm, data->nominal_type,
2587 int_size_in_bytes (data->nominal_type));
2588
2589 all->conversion_insns = get_insns ();
2590 end_sequence ();
2591
2592 SET_DECL_RTL (parm, parmreg);
2593 return;
2594 }
2595
2596 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2597 calls that pass values in multiple non-contiguous locations. */
2598 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2599 {
2600 HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
2601 HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2602 rtx mem;
2603
2604 /* Note that we will be storing an integral number of words.
2605 So we have to be careful to ensure that we allocate an
2606 integral number of words. We do this below in the
2607 assign_stack_local if space was not allocated in the argument
2608 list. If it was, this will not work if PARM_BOUNDARY is not
2609 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2610 if it becomes a problem. Exception is when BLKmode arrives
2611 with arguments not conforming to word_mode. */
2612
2613 if (stack_parm == 0)
2614 {
2615 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
2616 data->stack_parm = stack_parm;
2617 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2618 set_mem_attributes (stack_parm, parm, 1);
2619 }
2620 else if (GET_CODE (entry_parm) == PARALLEL)
2621 ;
2622 else
2623 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2624
2625 mem = validize_mem (stack_parm);
2626
2627 /* Handle values in multiple non-contiguous locations. */
2628 if (GET_CODE (entry_parm) == PARALLEL)
2629 {
2630 push_to_sequence (all->conversion_insns);
2631 emit_group_store (mem, entry_parm, data->passed_type, size);
2632 all->conversion_insns = get_insns ();
2633 end_sequence ();
2634 }
2635
2636 else if (size == 0)
2637 ;
2638
2639 /* If SIZE is that of a mode no bigger than a word, just use
2640 that mode's store operation. */
2641 else if (size <= UNITS_PER_WORD)
2642 {
2643 enum machine_mode mode
2644 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2645
2646 if (mode != BLKmode
2647 #ifdef BLOCK_REG_PADDING
2648 && (size == UNITS_PER_WORD
2649 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2650 != (BYTES_BIG_ENDIAN ? upward : downward)))
2651 #endif
2652 )
2653 {
2654 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2655 emit_move_insn (change_address (mem, mode, 0), reg);
2656 }
2657
2658 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2659 machine must be aligned to the left before storing
2660 to memory. Note that the previous test doesn't
2661 handle all cases (e.g. SIZE == 3). */
2662 else if (size != UNITS_PER_WORD
2663 #ifdef BLOCK_REG_PADDING
2664 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2665 == downward)
2666 #else
2667 && BYTES_BIG_ENDIAN
2668 #endif
2669 )
2670 {
2671 rtx tem, x;
2672 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2673 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2674
2675 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2676 build_int_cst (NULL_TREE, by),
2677 NULL_RTX, 1);
2678 tem = change_address (mem, word_mode, 0);
2679 emit_move_insn (tem, x);
2680 }
2681 else
2682 move_block_from_reg (REGNO (entry_parm), mem,
2683 size_stored / UNITS_PER_WORD);
2684 }
2685 else
2686 move_block_from_reg (REGNO (entry_parm), mem,
2687 size_stored / UNITS_PER_WORD);
2688 }
2689
2690 SET_DECL_RTL (parm, stack_parm);
2691 }
2692
2693 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2694 parameter. Get it there. Perform all ABI specified conversions. */
2695
2696 static void
2697 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2698 struct assign_parm_data_one *data)
2699 {
2700 rtx parmreg;
2701 enum machine_mode promoted_nominal_mode;
2702 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2703 bool did_conversion = false;
2704
2705 /* Store the parm in a pseudoregister during the function, but we may
2706 need to do it in a wider mode. */
2707
2708 promoted_nominal_mode
2709 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2710
2711 parmreg = gen_reg_rtx (promoted_nominal_mode);
2712
2713 if (!DECL_ARTIFICIAL (parm))
2714 mark_user_reg (parmreg);
2715
2716 /* If this was an item that we received a pointer to,
2717 set DECL_RTL appropriately. */
2718 if (data->passed_pointer)
2719 {
2720 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2721 set_mem_attributes (x, parm, 1);
2722 SET_DECL_RTL (parm, x);
2723 }
2724 else
2725 SET_DECL_RTL (parm, parmreg);
2726
2727 /* Copy the value into the register. */
2728 if (data->nominal_mode != data->passed_mode
2729 || promoted_nominal_mode != data->promoted_mode)
2730 {
2731 int save_tree_used;
2732
2733 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2734 mode, by the caller. We now have to convert it to
2735 NOMINAL_MODE, if different. However, PARMREG may be in
2736 a different mode than NOMINAL_MODE if it is being stored
2737 promoted.
2738
2739 If ENTRY_PARM is a hard register, it might be in a register
2740 not valid for operating in its mode (e.g., an odd-numbered
2741 register for a DFmode). In that case, moves are the only
2742 thing valid, so we can't do a convert from there. This
2743 occurs when the calling sequence allow such misaligned
2744 usages.
2745
2746 In addition, the conversion may involve a call, which could
2747 clobber parameters which haven't been copied to pseudo
2748 registers yet. Therefore, we must first copy the parm to
2749 a pseudo reg here, and save the conversion until after all
2750 parameters have been moved. */
2751
2752 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2753
2754 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2755
2756 push_to_sequence (all->conversion_insns);
2757 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2758
2759 if (GET_CODE (tempreg) == SUBREG
2760 && GET_MODE (tempreg) == data->nominal_mode
2761 && REG_P (SUBREG_REG (tempreg))
2762 && data->nominal_mode == data->passed_mode
2763 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2764 && GET_MODE_SIZE (GET_MODE (tempreg))
2765 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2766 {
2767 /* The argument is already sign/zero extended, so note it
2768 into the subreg. */
2769 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2770 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2771 }
2772
2773 /* TREE_USED gets set erroneously during expand_assignment. */
2774 save_tree_used = TREE_USED (parm);
2775 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2776 TREE_USED (parm) = save_tree_used;
2777 all->conversion_insns = get_insns ();
2778 end_sequence ();
2779
2780 did_conversion = true;
2781 }
2782 else
2783 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2784
2785 /* If we were passed a pointer but the actual value can safely live
2786 in a register, put it in one. */
2787 if (data->passed_pointer
2788 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2789 /* If by-reference argument was promoted, demote it. */
2790 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2791 || use_register_for_decl (parm)))
2792 {
2793 /* We can't use nominal_mode, because it will have been set to
2794 Pmode above. We must use the actual mode of the parm. */
2795 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2796 mark_user_reg (parmreg);
2797
2798 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2799 {
2800 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2801 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2802
2803 push_to_sequence (all->conversion_insns);
2804 emit_move_insn (tempreg, DECL_RTL (parm));
2805 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2806 emit_move_insn (parmreg, tempreg);
2807 all->conversion_insns = get_insns ();
2808 end_sequence ();
2809
2810 did_conversion = true;
2811 }
2812 else
2813 emit_move_insn (parmreg, DECL_RTL (parm));
2814
2815 SET_DECL_RTL (parm, parmreg);
2816
2817 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2818 now the parm. */
2819 data->stack_parm = NULL;
2820 }
2821
2822 /* Mark the register as eliminable if we did no conversion and it was
2823 copied from memory at a fixed offset, and the arg pointer was not
2824 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2825 offset formed an invalid address, such memory-equivalences as we
2826 make here would screw up life analysis for it. */
2827 if (data->nominal_mode == data->passed_mode
2828 && !did_conversion
2829 && data->stack_parm != 0
2830 && MEM_P (data->stack_parm)
2831 && data->locate.offset.var == 0
2832 && reg_mentioned_p (virtual_incoming_args_rtx,
2833 XEXP (data->stack_parm, 0)))
2834 {
2835 rtx linsn = get_last_insn ();
2836 rtx sinsn, set;
2837
2838 /* Mark complex types separately. */
2839 if (GET_CODE (parmreg) == CONCAT)
2840 {
2841 enum machine_mode submode
2842 = GET_MODE_INNER (GET_MODE (parmreg));
2843 int regnor = REGNO (XEXP (parmreg, 0));
2844 int regnoi = REGNO (XEXP (parmreg, 1));
2845 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2846 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2847 GET_MODE_SIZE (submode));
2848
2849 /* Scan backwards for the set of the real and
2850 imaginary parts. */
2851 for (sinsn = linsn; sinsn != 0;
2852 sinsn = prev_nonnote_insn (sinsn))
2853 {
2854 set = single_set (sinsn);
2855 if (set == 0)
2856 continue;
2857
2858 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2859 REG_NOTES (sinsn)
2860 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2861 REG_NOTES (sinsn));
2862 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2863 REG_NOTES (sinsn)
2864 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2865 REG_NOTES (sinsn));
2866 }
2867 }
2868 else if ((set = single_set (linsn)) != 0
2869 && SET_DEST (set) == parmreg)
2870 REG_NOTES (linsn)
2871 = gen_rtx_EXPR_LIST (REG_EQUIV,
2872 data->stack_parm, REG_NOTES (linsn));
2873 }
2874
2875 /* For pointer data type, suggest pointer register. */
2876 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2877 mark_reg_pointer (parmreg,
2878 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2879 }
2880
2881 /* A subroutine of assign_parms. Allocate stack space to hold the current
2882 parameter. Get it there. Perform all ABI specified conversions. */
2883
2884 static void
2885 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2886 struct assign_parm_data_one *data)
2887 {
2888 /* Value must be stored in the stack slot STACK_PARM during function
2889 execution. */
2890
2891 if (data->promoted_mode != data->nominal_mode)
2892 {
2893 /* Conversion is required. */
2894 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2895
2896 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2897
2898 push_to_sequence (all->conversion_insns);
2899 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2900 TYPE_UNSIGNED (TREE_TYPE (parm)));
2901
2902 if (data->stack_parm)
2903 /* ??? This may need a big-endian conversion on sparc64. */
2904 data->stack_parm
2905 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2906
2907 all->conversion_insns = get_insns ();
2908 end_sequence ();
2909 }
2910
2911 if (data->entry_parm != data->stack_parm)
2912 {
2913 if (data->stack_parm == 0)
2914 {
2915 data->stack_parm
2916 = assign_stack_local (GET_MODE (data->entry_parm),
2917 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2918 0);
2919 set_mem_attributes (data->stack_parm, parm, 1);
2920 }
2921
2922 if (data->promoted_mode != data->nominal_mode)
2923 {
2924 push_to_sequence (all->conversion_insns);
2925 emit_move_insn (validize_mem (data->stack_parm),
2926 validize_mem (data->entry_parm));
2927 all->conversion_insns = get_insns ();
2928 end_sequence ();
2929 }
2930 else
2931 emit_move_insn (validize_mem (data->stack_parm),
2932 validize_mem (data->entry_parm));
2933 }
2934
2935 SET_DECL_RTL (parm, data->stack_parm);
2936 }
2937
2938 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2939 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2940
2941 static void
2942 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2943 {
2944 tree parm;
2945 tree orig_fnargs = all->orig_fnargs;
2946
2947 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2948 {
2949 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2950 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2951 {
2952 rtx tmp, real, imag;
2953 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2954
2955 real = DECL_RTL (fnargs);
2956 imag = DECL_RTL (TREE_CHAIN (fnargs));
2957 if (inner != GET_MODE (real))
2958 {
2959 real = gen_lowpart_SUBREG (inner, real);
2960 imag = gen_lowpart_SUBREG (inner, imag);
2961 }
2962
2963 if (TREE_ADDRESSABLE (parm))
2964 {
2965 rtx rmem, imem;
2966 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2967
2968 /* split_complex_arg put the real and imag parts in
2969 pseudos. Move them to memory. */
2970 tmp = assign_stack_local (DECL_MODE (parm), size, 0);
2971 set_mem_attributes (tmp, parm, 1);
2972 rmem = adjust_address_nv (tmp, inner, 0);
2973 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2974 push_to_sequence (all->conversion_insns);
2975 emit_move_insn (rmem, real);
2976 emit_move_insn (imem, imag);
2977 all->conversion_insns = get_insns ();
2978 end_sequence ();
2979 }
2980 else
2981 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2982 SET_DECL_RTL (parm, tmp);
2983
2984 real = DECL_INCOMING_RTL (fnargs);
2985 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2986 if (inner != GET_MODE (real))
2987 {
2988 real = gen_lowpart_SUBREG (inner, real);
2989 imag = gen_lowpart_SUBREG (inner, imag);
2990 }
2991 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2992 set_decl_incoming_rtl (parm, tmp);
2993 fnargs = TREE_CHAIN (fnargs);
2994 }
2995 else
2996 {
2997 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2998 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2999
3000 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3001 instead of the copy of decl, i.e. FNARGS. */
3002 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3003 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3004 }
3005
3006 fnargs = TREE_CHAIN (fnargs);
3007 }
3008 }
3009
3010 /* Assign RTL expressions to the function's parameters. This may involve
3011 copying them into registers and using those registers as the DECL_RTL. */
3012
3013 static void
3014 assign_parms (tree fndecl)
3015 {
3016 struct assign_parm_data_all all;
3017 tree fnargs, parm;
3018 rtx internal_arg_pointer;
3019 int varargs_setup = 0;
3020
3021 /* If the reg that the virtual arg pointer will be translated into is
3022 not a fixed reg or is the stack pointer, make a copy of the virtual
3023 arg pointer, and address parms via the copy. The frame pointer is
3024 considered fixed even though it is not marked as such.
3025
3026 The second time through, simply use ap to avoid generating rtx. */
3027
3028 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3029 || ! (fixed_regs[ARG_POINTER_REGNUM]
3030 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3031 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3032 else
3033 internal_arg_pointer = virtual_incoming_args_rtx;
3034 current_function_internal_arg_pointer = internal_arg_pointer;
3035
3036 assign_parms_initialize_all (&all);
3037 fnargs = assign_parms_augmented_arg_list (&all);
3038
3039 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3040 {
3041 struct assign_parm_data_one data;
3042
3043 /* Extract the type of PARM; adjust it according to ABI. */
3044 assign_parm_find_data_types (&all, parm, &data);
3045
3046 /* Early out for errors and void parameters. */
3047 if (data.passed_mode == VOIDmode)
3048 {
3049 SET_DECL_RTL (parm, const0_rtx);
3050 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3051 continue;
3052 }
3053
3054 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3055 for the unnamed dummy argument following the last named argument.
3056 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3057 we only want to do this when we get to the actual last named
3058 argument, which will be the first time LAST_NAMED gets set. */
3059 if (data.last_named && !varargs_setup)
3060 {
3061 varargs_setup = true;
3062 assign_parms_setup_varargs (&all, &data, false);
3063 }
3064
3065 /* Find out where the parameter arrives in this function. */
3066 assign_parm_find_entry_rtl (&all, &data);
3067
3068 /* Find out where stack space for this parameter might be. */
3069 if (assign_parm_is_stack_parm (&all, &data))
3070 {
3071 assign_parm_find_stack_rtl (parm, &data);
3072 assign_parm_adjust_entry_rtl (&data);
3073 }
3074
3075 /* Record permanently how this parm was passed. */
3076 set_decl_incoming_rtl (parm, data.entry_parm);
3077
3078 /* Update info on where next arg arrives in registers. */
3079 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3080 data.passed_type, data.named_arg);
3081
3082 assign_parm_adjust_stack_rtl (&data);
3083
3084 if (assign_parm_setup_block_p (&data))
3085 assign_parm_setup_block (&all, parm, &data);
3086 else if (data.passed_pointer || use_register_for_decl (parm))
3087 assign_parm_setup_reg (&all, parm, &data);
3088 else
3089 assign_parm_setup_stack (&all, parm, &data);
3090 }
3091
3092 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3093 assign_parms_unsplit_complex (&all, fnargs);
3094
3095 /* Output all parameter conversion instructions (possibly including calls)
3096 now that all parameters have been copied out of hard registers. */
3097 emit_insn (all.conversion_insns);
3098
3099 /* If we are receiving a struct value address as the first argument, set up
3100 the RTL for the function result. As this might require code to convert
3101 the transmitted address to Pmode, we do this here to ensure that possible
3102 preliminary conversions of the address have been emitted already. */
3103 if (all.function_result_decl)
3104 {
3105 tree result = DECL_RESULT (current_function_decl);
3106 rtx addr = DECL_RTL (all.function_result_decl);
3107 rtx x;
3108
3109 if (DECL_BY_REFERENCE (result))
3110 x = addr;
3111 else
3112 {
3113 addr = convert_memory_address (Pmode, addr);
3114 x = gen_rtx_MEM (DECL_MODE (result), addr);
3115 set_mem_attributes (x, result, 1);
3116 }
3117 SET_DECL_RTL (result, x);
3118 }
3119
3120 /* We have aligned all the args, so add space for the pretend args. */
3121 current_function_pretend_args_size = all.pretend_args_size;
3122 all.stack_args_size.constant += all.extra_pretend_bytes;
3123 current_function_args_size = all.stack_args_size.constant;
3124
3125 /* Adjust function incoming argument size for alignment and
3126 minimum length. */
3127
3128 #ifdef REG_PARM_STACK_SPACE
3129 current_function_args_size = MAX (current_function_args_size,
3130 REG_PARM_STACK_SPACE (fndecl));
3131 #endif
3132
3133 current_function_args_size
3134 = ((current_function_args_size + STACK_BYTES - 1)
3135 / STACK_BYTES) * STACK_BYTES;
3136
3137 #ifdef ARGS_GROW_DOWNWARD
3138 current_function_arg_offset_rtx
3139 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3140 : expand_expr (size_diffop (all.stack_args_size.var,
3141 size_int (-all.stack_args_size.constant)),
3142 NULL_RTX, VOIDmode, 0));
3143 #else
3144 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3145 #endif
3146
3147 /* See how many bytes, if any, of its args a function should try to pop
3148 on return. */
3149
3150 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3151 current_function_args_size);
3152
3153 /* For stdarg.h function, save info about
3154 regs and stack space used by the named args. */
3155
3156 current_function_args_info = all.args_so_far;
3157
3158 /* Set the rtx used for the function return value. Put this in its
3159 own variable so any optimizers that need this information don't have
3160 to include tree.h. Do this here so it gets done when an inlined
3161 function gets output. */
3162
3163 current_function_return_rtx
3164 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3165 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3166
3167 /* If scalar return value was computed in a pseudo-reg, or was a named
3168 return value that got dumped to the stack, copy that to the hard
3169 return register. */
3170 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3171 {
3172 tree decl_result = DECL_RESULT (fndecl);
3173 rtx decl_rtl = DECL_RTL (decl_result);
3174
3175 if (REG_P (decl_rtl)
3176 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3177 : DECL_REGISTER (decl_result))
3178 {
3179 rtx real_decl_rtl;
3180
3181 #ifdef FUNCTION_OUTGOING_VALUE
3182 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3183 fndecl);
3184 #else
3185 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3186 fndecl);
3187 #endif
3188 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3189 /* The delay slot scheduler assumes that current_function_return_rtx
3190 holds the hard register containing the return value, not a
3191 temporary pseudo. */
3192 current_function_return_rtx = real_decl_rtl;
3193 }
3194 }
3195 }
3196
3197 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3198 For all seen types, gimplify their sizes. */
3199
3200 static tree
3201 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3202 {
3203 tree t = *tp;
3204
3205 *walk_subtrees = 0;
3206 if (TYPE_P (t))
3207 {
3208 if (POINTER_TYPE_P (t))
3209 *walk_subtrees = 1;
3210 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3211 && !TYPE_SIZES_GIMPLIFIED (t))
3212 {
3213 gimplify_type_sizes (t, (tree *) data);
3214 *walk_subtrees = 1;
3215 }
3216 }
3217
3218 return NULL;
3219 }
3220
3221 /* Gimplify the parameter list for current_function_decl. This involves
3222 evaluating SAVE_EXPRs of variable sized parameters and generating code
3223 to implement callee-copies reference parameters. Returns a list of
3224 statements to add to the beginning of the function, or NULL if nothing
3225 to do. */
3226
3227 tree
3228 gimplify_parameters (void)
3229 {
3230 struct assign_parm_data_all all;
3231 tree fnargs, parm, stmts = NULL;
3232
3233 assign_parms_initialize_all (&all);
3234 fnargs = assign_parms_augmented_arg_list (&all);
3235
3236 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3237 {
3238 struct assign_parm_data_one data;
3239
3240 /* Extract the type of PARM; adjust it according to ABI. */
3241 assign_parm_find_data_types (&all, parm, &data);
3242
3243 /* Early out for errors and void parameters. */
3244 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3245 continue;
3246
3247 /* Update info on where next arg arrives in registers. */
3248 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3249 data.passed_type, data.named_arg);
3250
3251 /* ??? Once upon a time variable_size stuffed parameter list
3252 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3253 turned out to be less than manageable in the gimple world.
3254 Now we have to hunt them down ourselves. */
3255 walk_tree_without_duplicates (&data.passed_type,
3256 gimplify_parm_type, &stmts);
3257
3258 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3259 {
3260 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3261 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3262 }
3263
3264 if (data.passed_pointer)
3265 {
3266 tree type = TREE_TYPE (data.passed_type);
3267 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3268 type, data.named_arg))
3269 {
3270 tree local, t;
3271
3272 /* For constant sized objects, this is trivial; for
3273 variable-sized objects, we have to play games. */
3274 if (TREE_CONSTANT (DECL_SIZE (parm)))
3275 {
3276 local = create_tmp_var (type, get_name (parm));
3277 DECL_IGNORED_P (local) = 0;
3278 }
3279 else
3280 {
3281 tree ptr_type, addr, args;
3282
3283 ptr_type = build_pointer_type (type);
3284 addr = create_tmp_var (ptr_type, get_name (parm));
3285 DECL_IGNORED_P (addr) = 0;
3286 local = build_fold_indirect_ref (addr);
3287
3288 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3289 t = built_in_decls[BUILT_IN_ALLOCA];
3290 t = build_function_call_expr (t, args);
3291 t = fold_convert (ptr_type, t);
3292 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3293 gimplify_and_add (t, &stmts);
3294 }
3295
3296 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3297 gimplify_and_add (t, &stmts);
3298
3299 DECL_VALUE_EXPR (parm) = local;
3300 }
3301 }
3302 }
3303
3304 return stmts;
3305 }
3306 \f
3307 /* Indicate whether REGNO is an incoming argument to the current function
3308 that was promoted to a wider mode. If so, return the RTX for the
3309 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3310 that REGNO is promoted from and whether the promotion was signed or
3311 unsigned. */
3312
3313 rtx
3314 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3315 {
3316 tree arg;
3317
3318 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3319 arg = TREE_CHAIN (arg))
3320 if (REG_P (DECL_INCOMING_RTL (arg))
3321 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3322 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3323 {
3324 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3325 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3326
3327 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3328 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3329 && mode != DECL_MODE (arg))
3330 {
3331 *pmode = DECL_MODE (arg);
3332 *punsignedp = unsignedp;
3333 return DECL_INCOMING_RTL (arg);
3334 }
3335 }
3336
3337 return 0;
3338 }
3339
3340 \f
3341 /* Compute the size and offset from the start of the stacked arguments for a
3342 parm passed in mode PASSED_MODE and with type TYPE.
3343
3344 INITIAL_OFFSET_PTR points to the current offset into the stacked
3345 arguments.
3346
3347 The starting offset and size for this parm are returned in
3348 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3349 nonzero, the offset is that of stack slot, which is returned in
3350 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3351 padding required from the initial offset ptr to the stack slot.
3352
3353 IN_REGS is nonzero if the argument will be passed in registers. It will
3354 never be set if REG_PARM_STACK_SPACE is not defined.
3355
3356 FNDECL is the function in which the argument was defined.
3357
3358 There are two types of rounding that are done. The first, controlled by
3359 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3360 list to be aligned to the specific boundary (in bits). This rounding
3361 affects the initial and starting offsets, but not the argument size.
3362
3363 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3364 optionally rounds the size of the parm to PARM_BOUNDARY. The
3365 initial offset is not affected by this rounding, while the size always
3366 is and the starting offset may be. */
3367
3368 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3369 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3370 callers pass in the total size of args so far as
3371 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3372
3373 void
3374 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3375 int partial, tree fndecl ATTRIBUTE_UNUSED,
3376 struct args_size *initial_offset_ptr,
3377 struct locate_and_pad_arg_data *locate)
3378 {
3379 tree sizetree;
3380 enum direction where_pad;
3381 int boundary;
3382 int reg_parm_stack_space = 0;
3383 int part_size_in_regs;
3384
3385 #ifdef REG_PARM_STACK_SPACE
3386 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3387
3388 /* If we have found a stack parm before we reach the end of the
3389 area reserved for registers, skip that area. */
3390 if (! in_regs)
3391 {
3392 if (reg_parm_stack_space > 0)
3393 {
3394 if (initial_offset_ptr->var)
3395 {
3396 initial_offset_ptr->var
3397 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3398 ssize_int (reg_parm_stack_space));
3399 initial_offset_ptr->constant = 0;
3400 }
3401 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3402 initial_offset_ptr->constant = reg_parm_stack_space;
3403 }
3404 }
3405 #endif /* REG_PARM_STACK_SPACE */
3406
3407 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3408
3409 sizetree
3410 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3411 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3412 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3413 locate->where_pad = where_pad;
3414
3415 #ifdef ARGS_GROW_DOWNWARD
3416 locate->slot_offset.constant = -initial_offset_ptr->constant;
3417 if (initial_offset_ptr->var)
3418 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3419 initial_offset_ptr->var);
3420
3421 {
3422 tree s2 = sizetree;
3423 if (where_pad != none
3424 && (!host_integerp (sizetree, 1)
3425 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3426 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3427 SUB_PARM_SIZE (locate->slot_offset, s2);
3428 }
3429
3430 locate->slot_offset.constant += part_size_in_regs;
3431
3432 if (!in_regs
3433 #ifdef REG_PARM_STACK_SPACE
3434 || REG_PARM_STACK_SPACE (fndecl) > 0
3435 #endif
3436 )
3437 pad_to_arg_alignment (&locate->slot_offset, boundary,
3438 &locate->alignment_pad);
3439
3440 locate->size.constant = (-initial_offset_ptr->constant
3441 - locate->slot_offset.constant);
3442 if (initial_offset_ptr->var)
3443 locate->size.var = size_binop (MINUS_EXPR,
3444 size_binop (MINUS_EXPR,
3445 ssize_int (0),
3446 initial_offset_ptr->var),
3447 locate->slot_offset.var);
3448
3449 /* Pad_below needs the pre-rounded size to know how much to pad
3450 below. */
3451 locate->offset = locate->slot_offset;
3452 if (where_pad == downward)
3453 pad_below (&locate->offset, passed_mode, sizetree);
3454
3455 #else /* !ARGS_GROW_DOWNWARD */
3456 if (!in_regs
3457 #ifdef REG_PARM_STACK_SPACE
3458 || REG_PARM_STACK_SPACE (fndecl) > 0
3459 #endif
3460 )
3461 pad_to_arg_alignment (initial_offset_ptr, boundary,
3462 &locate->alignment_pad);
3463 locate->slot_offset = *initial_offset_ptr;
3464
3465 #ifdef PUSH_ROUNDING
3466 if (passed_mode != BLKmode)
3467 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3468 #endif
3469
3470 /* Pad_below needs the pre-rounded size to know how much to pad below
3471 so this must be done before rounding up. */
3472 locate->offset = locate->slot_offset;
3473 if (where_pad == downward)
3474 pad_below (&locate->offset, passed_mode, sizetree);
3475
3476 if (where_pad != none
3477 && (!host_integerp (sizetree, 1)
3478 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3479 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3480
3481 ADD_PARM_SIZE (locate->size, sizetree);
3482
3483 locate->size.constant -= part_size_in_regs;
3484 #endif /* ARGS_GROW_DOWNWARD */
3485 }
3486
3487 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3488 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3489
3490 static void
3491 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3492 struct args_size *alignment_pad)
3493 {
3494 tree save_var = NULL_TREE;
3495 HOST_WIDE_INT save_constant = 0;
3496 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3497 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3498
3499 #ifdef SPARC_STACK_BOUNDARY_HACK
3500 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3501 higher than the real alignment of %sp. However, when it does this,
3502 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3503 This is a temporary hack while the sparc port is fixed. */
3504 if (SPARC_STACK_BOUNDARY_HACK)
3505 sp_offset = 0;
3506 #endif
3507
3508 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3509 {
3510 save_var = offset_ptr->var;
3511 save_constant = offset_ptr->constant;
3512 }
3513
3514 alignment_pad->var = NULL_TREE;
3515 alignment_pad->constant = 0;
3516
3517 if (boundary > BITS_PER_UNIT)
3518 {
3519 if (offset_ptr->var)
3520 {
3521 tree sp_offset_tree = ssize_int (sp_offset);
3522 tree offset = size_binop (PLUS_EXPR,
3523 ARGS_SIZE_TREE (*offset_ptr),
3524 sp_offset_tree);
3525 #ifdef ARGS_GROW_DOWNWARD
3526 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3527 #else
3528 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3529 #endif
3530
3531 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3532 /* ARGS_SIZE_TREE includes constant term. */
3533 offset_ptr->constant = 0;
3534 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3535 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3536 save_var);
3537 }
3538 else
3539 {
3540 offset_ptr->constant = -sp_offset +
3541 #ifdef ARGS_GROW_DOWNWARD
3542 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3543 #else
3544 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3545 #endif
3546 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3547 alignment_pad->constant = offset_ptr->constant - save_constant;
3548 }
3549 }
3550 }
3551
3552 static void
3553 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3554 {
3555 if (passed_mode != BLKmode)
3556 {
3557 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3558 offset_ptr->constant
3559 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3560 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3561 - GET_MODE_SIZE (passed_mode));
3562 }
3563 else
3564 {
3565 if (TREE_CODE (sizetree) != INTEGER_CST
3566 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3567 {
3568 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3569 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3570 /* Add it in. */
3571 ADD_PARM_SIZE (*offset_ptr, s2);
3572 SUB_PARM_SIZE (*offset_ptr, sizetree);
3573 }
3574 }
3575 }
3576 \f
3577 /* Walk the tree of blocks describing the binding levels within a function
3578 and warn about variables the might be killed by setjmp or vfork.
3579 This is done after calling flow_analysis and before global_alloc
3580 clobbers the pseudo-regs to hard regs. */
3581
3582 void
3583 setjmp_vars_warning (tree block)
3584 {
3585 tree decl, sub;
3586
3587 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3588 {
3589 if (TREE_CODE (decl) == VAR_DECL
3590 && DECL_RTL_SET_P (decl)
3591 && REG_P (DECL_RTL (decl))
3592 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3593 warning ("%Jvariable %qD might be clobbered by %<longjmp%>"
3594 " or %<vfork%>",
3595 decl, decl);
3596 }
3597
3598 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3599 setjmp_vars_warning (sub);
3600 }
3601
3602 /* Do the appropriate part of setjmp_vars_warning
3603 but for arguments instead of local variables. */
3604
3605 void
3606 setjmp_args_warning (void)
3607 {
3608 tree decl;
3609 for (decl = DECL_ARGUMENTS (current_function_decl);
3610 decl; decl = TREE_CHAIN (decl))
3611 if (DECL_RTL (decl) != 0
3612 && REG_P (DECL_RTL (decl))
3613 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3614 warning ("%Jargument %qD might be clobbered by %<longjmp%> or %<vfork%>",
3615 decl, decl);
3616 }
3617
3618 \f
3619 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3620 and create duplicate blocks. */
3621 /* ??? Need an option to either create block fragments or to create
3622 abstract origin duplicates of a source block. It really depends
3623 on what optimization has been performed. */
3624
3625 void
3626 reorder_blocks (void)
3627 {
3628 tree block = DECL_INITIAL (current_function_decl);
3629 varray_type block_stack;
3630
3631 if (block == NULL_TREE)
3632 return;
3633
3634 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3635
3636 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3637 clear_block_marks (block);
3638
3639 /* Prune the old trees away, so that they don't get in the way. */
3640 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3641 BLOCK_CHAIN (block) = NULL_TREE;
3642
3643 /* Recreate the block tree from the note nesting. */
3644 reorder_blocks_1 (get_insns (), block, &block_stack);
3645 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3646
3647 /* Remove deleted blocks from the block fragment chains. */
3648 reorder_fix_fragments (block);
3649 }
3650
3651 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3652
3653 void
3654 clear_block_marks (tree block)
3655 {
3656 while (block)
3657 {
3658 TREE_ASM_WRITTEN (block) = 0;
3659 clear_block_marks (BLOCK_SUBBLOCKS (block));
3660 block = BLOCK_CHAIN (block);
3661 }
3662 }
3663
3664 static void
3665 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3666 {
3667 rtx insn;
3668
3669 for (insn = insns; insn; insn = NEXT_INSN (insn))
3670 {
3671 if (NOTE_P (insn))
3672 {
3673 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3674 {
3675 tree block = NOTE_BLOCK (insn);
3676
3677 /* If we have seen this block before, that means it now
3678 spans multiple address regions. Create a new fragment. */
3679 if (TREE_ASM_WRITTEN (block))
3680 {
3681 tree new_block = copy_node (block);
3682 tree origin;
3683
3684 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3685 ? BLOCK_FRAGMENT_ORIGIN (block)
3686 : block);
3687 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3688 BLOCK_FRAGMENT_CHAIN (new_block)
3689 = BLOCK_FRAGMENT_CHAIN (origin);
3690 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3691
3692 NOTE_BLOCK (insn) = new_block;
3693 block = new_block;
3694 }
3695
3696 BLOCK_SUBBLOCKS (block) = 0;
3697 TREE_ASM_WRITTEN (block) = 1;
3698 /* When there's only one block for the entire function,
3699 current_block == block and we mustn't do this, it
3700 will cause infinite recursion. */
3701 if (block != current_block)
3702 {
3703 BLOCK_SUPERCONTEXT (block) = current_block;
3704 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3705 BLOCK_SUBBLOCKS (current_block) = block;
3706 current_block = block;
3707 }
3708 VARRAY_PUSH_TREE (*p_block_stack, block);
3709 }
3710 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3711 {
3712 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3713 VARRAY_POP (*p_block_stack);
3714 BLOCK_SUBBLOCKS (current_block)
3715 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3716 current_block = BLOCK_SUPERCONTEXT (current_block);
3717 }
3718 }
3719 }
3720 }
3721
3722 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3723 appears in the block tree, select one of the fragments to become
3724 the new origin block. */
3725
3726 static void
3727 reorder_fix_fragments (tree block)
3728 {
3729 while (block)
3730 {
3731 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3732 tree new_origin = NULL_TREE;
3733
3734 if (dup_origin)
3735 {
3736 if (! TREE_ASM_WRITTEN (dup_origin))
3737 {
3738 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3739
3740 /* Find the first of the remaining fragments. There must
3741 be at least one -- the current block. */
3742 while (! TREE_ASM_WRITTEN (new_origin))
3743 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3744 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3745 }
3746 }
3747 else if (! dup_origin)
3748 new_origin = block;
3749
3750 /* Re-root the rest of the fragments to the new origin. In the
3751 case that DUP_ORIGIN was null, that means BLOCK was the origin
3752 of a chain of fragments and we want to remove those fragments
3753 that didn't make it to the output. */
3754 if (new_origin)
3755 {
3756 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3757 tree chain = *pp;
3758
3759 while (chain)
3760 {
3761 if (TREE_ASM_WRITTEN (chain))
3762 {
3763 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3764 *pp = chain;
3765 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3766 }
3767 chain = BLOCK_FRAGMENT_CHAIN (chain);
3768 }
3769 *pp = NULL_TREE;
3770 }
3771
3772 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3773 block = BLOCK_CHAIN (block);
3774 }
3775 }
3776
3777 /* Reverse the order of elements in the chain T of blocks,
3778 and return the new head of the chain (old last element). */
3779
3780 tree
3781 blocks_nreverse (tree t)
3782 {
3783 tree prev = 0, decl, next;
3784 for (decl = t; decl; decl = next)
3785 {
3786 next = BLOCK_CHAIN (decl);
3787 BLOCK_CHAIN (decl) = prev;
3788 prev = decl;
3789 }
3790 return prev;
3791 }
3792
3793 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3794 non-NULL, list them all into VECTOR, in a depth-first preorder
3795 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3796 blocks. */
3797
3798 static int
3799 all_blocks (tree block, tree *vector)
3800 {
3801 int n_blocks = 0;
3802
3803 while (block)
3804 {
3805 TREE_ASM_WRITTEN (block) = 0;
3806
3807 /* Record this block. */
3808 if (vector)
3809 vector[n_blocks] = block;
3810
3811 ++n_blocks;
3812
3813 /* Record the subblocks, and their subblocks... */
3814 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3815 vector ? vector + n_blocks : 0);
3816 block = BLOCK_CHAIN (block);
3817 }
3818
3819 return n_blocks;
3820 }
3821
3822 /* Return a vector containing all the blocks rooted at BLOCK. The
3823 number of elements in the vector is stored in N_BLOCKS_P. The
3824 vector is dynamically allocated; it is the caller's responsibility
3825 to call `free' on the pointer returned. */
3826
3827 static tree *
3828 get_block_vector (tree block, int *n_blocks_p)
3829 {
3830 tree *block_vector;
3831
3832 *n_blocks_p = all_blocks (block, NULL);
3833 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3834 all_blocks (block, block_vector);
3835
3836 return block_vector;
3837 }
3838
3839 static GTY(()) int next_block_index = 2;
3840
3841 /* Set BLOCK_NUMBER for all the blocks in FN. */
3842
3843 void
3844 number_blocks (tree fn)
3845 {
3846 int i;
3847 int n_blocks;
3848 tree *block_vector;
3849
3850 /* For SDB and XCOFF debugging output, we start numbering the blocks
3851 from 1 within each function, rather than keeping a running
3852 count. */
3853 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3854 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3855 next_block_index = 1;
3856 #endif
3857
3858 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3859
3860 /* The top-level BLOCK isn't numbered at all. */
3861 for (i = 1; i < n_blocks; ++i)
3862 /* We number the blocks from two. */
3863 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3864
3865 free (block_vector);
3866
3867 return;
3868 }
3869
3870 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3871
3872 tree
3873 debug_find_var_in_block_tree (tree var, tree block)
3874 {
3875 tree t;
3876
3877 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3878 if (t == var)
3879 return block;
3880
3881 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3882 {
3883 tree ret = debug_find_var_in_block_tree (var, t);
3884 if (ret)
3885 return ret;
3886 }
3887
3888 return NULL_TREE;
3889 }
3890 \f
3891 /* Allocate a function structure for FNDECL and set its contents
3892 to the defaults. */
3893
3894 void
3895 allocate_struct_function (tree fndecl)
3896 {
3897 tree result;
3898 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3899
3900 cfun = ggc_alloc_cleared (sizeof (struct function));
3901
3902 cfun->stack_alignment_needed = STACK_BOUNDARY;
3903 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3904
3905 current_function_funcdef_no = funcdef_no++;
3906
3907 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3908
3909 init_eh_for_function ();
3910
3911 lang_hooks.function.init (cfun);
3912 if (init_machine_status)
3913 cfun->machine = (*init_machine_status) ();
3914
3915 if (fndecl == NULL)
3916 return;
3917
3918 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3919 cfun->decl = fndecl;
3920
3921 result = DECL_RESULT (fndecl);
3922 if (aggregate_value_p (result, fndecl))
3923 {
3924 #ifdef PCC_STATIC_STRUCT_RETURN
3925 current_function_returns_pcc_struct = 1;
3926 #endif
3927 current_function_returns_struct = 1;
3928 }
3929
3930 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3931
3932 current_function_stdarg
3933 = (fntype
3934 && TYPE_ARG_TYPES (fntype) != 0
3935 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3936 != void_type_node));
3937 }
3938
3939 /* Reset cfun, and other non-struct-function variables to defaults as
3940 appropriate for emitting rtl at the start of a function. */
3941
3942 static void
3943 prepare_function_start (tree fndecl)
3944 {
3945 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3946 cfun = DECL_STRUCT_FUNCTION (fndecl);
3947 else
3948 allocate_struct_function (fndecl);
3949 init_emit ();
3950 init_varasm_status (cfun);
3951 init_expr ();
3952
3953 cse_not_expected = ! optimize;
3954
3955 /* Caller save not needed yet. */
3956 caller_save_needed = 0;
3957
3958 /* We haven't done register allocation yet. */
3959 reg_renumber = 0;
3960
3961 /* Indicate that we have not instantiated virtual registers yet. */
3962 virtuals_instantiated = 0;
3963
3964 /* Indicate that we want CONCATs now. */
3965 generating_concat_p = 1;
3966
3967 /* Indicate we have no need of a frame pointer yet. */
3968 frame_pointer_needed = 0;
3969 }
3970
3971 /* Initialize the rtl expansion mechanism so that we can do simple things
3972 like generate sequences. This is used to provide a context during global
3973 initialization of some passes. */
3974 void
3975 init_dummy_function_start (void)
3976 {
3977 prepare_function_start (NULL);
3978 }
3979
3980 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3981 and initialize static variables for generating RTL for the statements
3982 of the function. */
3983
3984 void
3985 init_function_start (tree subr)
3986 {
3987 prepare_function_start (subr);
3988
3989 /* Prevent ever trying to delete the first instruction of a
3990 function. Also tell final how to output a linenum before the
3991 function prologue. Note linenums could be missing, e.g. when
3992 compiling a Java .class file. */
3993 if (! DECL_IS_BUILTIN (subr))
3994 emit_line_note (DECL_SOURCE_LOCATION (subr));
3995
3996 /* Make sure first insn is a note even if we don't want linenums.
3997 This makes sure the first insn will never be deleted.
3998 Also, final expects a note to appear there. */
3999 emit_note (NOTE_INSN_DELETED);
4000
4001 /* Warn if this value is an aggregate type,
4002 regardless of which calling convention we are using for it. */
4003 if (warn_aggregate_return
4004 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4005 warning ("function returns an aggregate");
4006 }
4007
4008 /* Make sure all values used by the optimization passes have sane
4009 defaults. */
4010 void
4011 init_function_for_compilation (void)
4012 {
4013 reg_renumber = 0;
4014
4015 /* No prologue/epilogue insns yet. */
4016 VARRAY_GROW (prologue, 0);
4017 VARRAY_GROW (epilogue, 0);
4018 VARRAY_GROW (sibcall_epilogue, 0);
4019 }
4020
4021 /* Expand a call to __main at the beginning of a possible main function. */
4022
4023 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
4024 #undef HAS_INIT_SECTION
4025 #define HAS_INIT_SECTION
4026 #endif
4027
4028 void
4029 expand_main_function (void)
4030 {
4031 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
4032 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
4033 {
4034 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
4035 rtx tmp, seq;
4036
4037 start_sequence ();
4038 /* Forcibly align the stack. */
4039 #ifdef STACK_GROWS_DOWNWARD
4040 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
4041 stack_pointer_rtx, 1, OPTAB_WIDEN);
4042 #else
4043 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
4044 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
4045 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
4046 stack_pointer_rtx, 1, OPTAB_WIDEN);
4047 #endif
4048 if (tmp != stack_pointer_rtx)
4049 emit_move_insn (stack_pointer_rtx, tmp);
4050
4051 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
4052 tmp = force_reg (Pmode, const0_rtx);
4053 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
4054 seq = get_insns ();
4055 end_sequence ();
4056
4057 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
4058 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
4059 break;
4060 if (tmp)
4061 emit_insn_before (seq, tmp);
4062 else
4063 emit_insn (seq);
4064 }
4065 #endif
4066
4067 #ifndef HAS_INIT_SECTION
4068 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4069 #endif
4070 }
4071 \f
4072 /* Start the RTL for a new function, and set variables used for
4073 emitting RTL.
4074 SUBR is the FUNCTION_DECL node.
4075 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4076 the function's parameters, which must be run at any return statement. */
4077
4078 void
4079 expand_function_start (tree subr)
4080 {
4081 /* Make sure volatile mem refs aren't considered
4082 valid operands of arithmetic insns. */
4083 init_recog_no_volatile ();
4084
4085 current_function_profile
4086 = (profile_flag
4087 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4088
4089 current_function_limit_stack
4090 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4091
4092 /* Make the label for return statements to jump to. Do not special
4093 case machines with special return instructions -- they will be
4094 handled later during jump, ifcvt, or epilogue creation. */
4095 return_label = gen_label_rtx ();
4096
4097 /* Initialize rtx used to return the value. */
4098 /* Do this before assign_parms so that we copy the struct value address
4099 before any library calls that assign parms might generate. */
4100
4101 /* Decide whether to return the value in memory or in a register. */
4102 if (aggregate_value_p (DECL_RESULT (subr), subr))
4103 {
4104 /* Returning something that won't go in a register. */
4105 rtx value_address = 0;
4106
4107 #ifdef PCC_STATIC_STRUCT_RETURN
4108 if (current_function_returns_pcc_struct)
4109 {
4110 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4111 value_address = assemble_static_space (size);
4112 }
4113 else
4114 #endif
4115 {
4116 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4117 /* Expect to be passed the address of a place to store the value.
4118 If it is passed as an argument, assign_parms will take care of
4119 it. */
4120 if (sv)
4121 {
4122 value_address = gen_reg_rtx (Pmode);
4123 emit_move_insn (value_address, sv);
4124 }
4125 }
4126 if (value_address)
4127 {
4128 rtx x = value_address;
4129 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4130 {
4131 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4132 set_mem_attributes (x, DECL_RESULT (subr), 1);
4133 }
4134 SET_DECL_RTL (DECL_RESULT (subr), x);
4135 }
4136 }
4137 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4138 /* If return mode is void, this decl rtl should not be used. */
4139 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4140 else
4141 {
4142 /* Compute the return values into a pseudo reg, which we will copy
4143 into the true return register after the cleanups are done. */
4144 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4145 if (TYPE_MODE (return_type) != BLKmode
4146 && targetm.calls.return_in_msb (return_type))
4147 /* expand_function_end will insert the appropriate padding in
4148 this case. Use the return value's natural (unpadded) mode
4149 within the function proper. */
4150 SET_DECL_RTL (DECL_RESULT (subr),
4151 gen_reg_rtx (TYPE_MODE (return_type)));
4152 else
4153 {
4154 /* In order to figure out what mode to use for the pseudo, we
4155 figure out what the mode of the eventual return register will
4156 actually be, and use that. */
4157 rtx hard_reg = hard_function_value (return_type, subr, 1);
4158
4159 /* Structures that are returned in registers are not
4160 aggregate_value_p, so we may see a PARALLEL or a REG. */
4161 if (REG_P (hard_reg))
4162 SET_DECL_RTL (DECL_RESULT (subr),
4163 gen_reg_rtx (GET_MODE (hard_reg)));
4164 else
4165 {
4166 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4167 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4168 }
4169 }
4170
4171 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4172 result to the real return register(s). */
4173 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4174 }
4175
4176 /* Initialize rtx for parameters and local variables.
4177 In some cases this requires emitting insns. */
4178 assign_parms (subr);
4179
4180 /* If function gets a static chain arg, store it. */
4181 if (cfun->static_chain_decl)
4182 {
4183 tree parm = cfun->static_chain_decl;
4184 rtx local = gen_reg_rtx (Pmode);
4185
4186 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4187 SET_DECL_RTL (parm, local);
4188 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4189
4190 emit_move_insn (local, static_chain_incoming_rtx);
4191 }
4192
4193 /* If the function receives a non-local goto, then store the
4194 bits we need to restore the frame pointer. */
4195 if (cfun->nonlocal_goto_save_area)
4196 {
4197 tree t_save;
4198 rtx r_save;
4199
4200 /* ??? We need to do this save early. Unfortunately here is
4201 before the frame variable gets declared. Help out... */
4202 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4203
4204 t_save = build4 (ARRAY_REF, ptr_type_node,
4205 cfun->nonlocal_goto_save_area,
4206 integer_zero_node, NULL_TREE, NULL_TREE);
4207 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4208 r_save = convert_memory_address (Pmode, r_save);
4209
4210 emit_move_insn (r_save, virtual_stack_vars_rtx);
4211 update_nonlocal_goto_save_area ();
4212 }
4213
4214 /* The following was moved from init_function_start.
4215 The move is supposed to make sdb output more accurate. */
4216 /* Indicate the beginning of the function body,
4217 as opposed to parm setup. */
4218 emit_note (NOTE_INSN_FUNCTION_BEG);
4219
4220 if (!NOTE_P (get_last_insn ()))
4221 emit_note (NOTE_INSN_DELETED);
4222 parm_birth_insn = get_last_insn ();
4223
4224 if (current_function_profile)
4225 {
4226 #ifdef PROFILE_HOOK
4227 PROFILE_HOOK (current_function_funcdef_no);
4228 #endif
4229 }
4230
4231 /* After the display initializations is where the tail-recursion label
4232 should go, if we end up needing one. Ensure we have a NOTE here
4233 since some things (like trampolines) get placed before this. */
4234 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4235
4236 /* Make sure there is a line number after the function entry setup code. */
4237 force_next_line_note ();
4238 }
4239 \f
4240 /* Undo the effects of init_dummy_function_start. */
4241 void
4242 expand_dummy_function_end (void)
4243 {
4244 /* End any sequences that failed to be closed due to syntax errors. */
4245 while (in_sequence_p ())
4246 end_sequence ();
4247
4248 /* Outside function body, can't compute type's actual size
4249 until next function's body starts. */
4250
4251 free_after_parsing (cfun);
4252 free_after_compilation (cfun);
4253 cfun = 0;
4254 }
4255
4256 /* Call DOIT for each hard register used as a return value from
4257 the current function. */
4258
4259 void
4260 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4261 {
4262 rtx outgoing = current_function_return_rtx;
4263
4264 if (! outgoing)
4265 return;
4266
4267 if (REG_P (outgoing))
4268 (*doit) (outgoing, arg);
4269 else if (GET_CODE (outgoing) == PARALLEL)
4270 {
4271 int i;
4272
4273 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4274 {
4275 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4276
4277 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4278 (*doit) (x, arg);
4279 }
4280 }
4281 }
4282
4283 static void
4284 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4285 {
4286 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4287 }
4288
4289 void
4290 clobber_return_register (void)
4291 {
4292 diddle_return_value (do_clobber_return_reg, NULL);
4293
4294 /* In case we do use pseudo to return value, clobber it too. */
4295 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4296 {
4297 tree decl_result = DECL_RESULT (current_function_decl);
4298 rtx decl_rtl = DECL_RTL (decl_result);
4299 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4300 {
4301 do_clobber_return_reg (decl_rtl, NULL);
4302 }
4303 }
4304 }
4305
4306 static void
4307 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4308 {
4309 emit_insn (gen_rtx_USE (VOIDmode, reg));
4310 }
4311
4312 void
4313 use_return_register (void)
4314 {
4315 diddle_return_value (do_use_return_reg, NULL);
4316 }
4317
4318 /* Possibly warn about unused parameters. */
4319 void
4320 do_warn_unused_parameter (tree fn)
4321 {
4322 tree decl;
4323
4324 for (decl = DECL_ARGUMENTS (fn);
4325 decl; decl = TREE_CHAIN (decl))
4326 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4327 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4328 warning ("%Junused parameter %qD", decl, decl);
4329 }
4330
4331 static GTY(()) rtx initial_trampoline;
4332
4333 /* Generate RTL for the end of the current function. */
4334
4335 void
4336 expand_function_end (void)
4337 {
4338 rtx clobber_after;
4339
4340 /* If arg_pointer_save_area was referenced only from a nested
4341 function, we will not have initialized it yet. Do that now. */
4342 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4343 get_arg_pointer_save_area (cfun);
4344
4345 /* If we are doing stack checking and this function makes calls,
4346 do a stack probe at the start of the function to ensure we have enough
4347 space for another stack frame. */
4348 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4349 {
4350 rtx insn, seq;
4351
4352 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4353 if (CALL_P (insn))
4354 {
4355 start_sequence ();
4356 probe_stack_range (STACK_CHECK_PROTECT,
4357 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4358 seq = get_insns ();
4359 end_sequence ();
4360 emit_insn_before (seq, tail_recursion_reentry);
4361 break;
4362 }
4363 }
4364
4365 /* Possibly warn about unused parameters.
4366 When frontend does unit-at-a-time, the warning is already
4367 issued at finalization time. */
4368 if (warn_unused_parameter
4369 && !lang_hooks.callgraph.expand_function)
4370 do_warn_unused_parameter (current_function_decl);
4371
4372 /* End any sequences that failed to be closed due to syntax errors. */
4373 while (in_sequence_p ())
4374 end_sequence ();
4375
4376 clear_pending_stack_adjust ();
4377 do_pending_stack_adjust ();
4378
4379 /* @@@ This is a kludge. We want to ensure that instructions that
4380 may trap are not moved into the epilogue by scheduling, because
4381 we don't always emit unwind information for the epilogue.
4382 However, not all machine descriptions define a blockage insn, so
4383 emit an ASM_INPUT to act as one. */
4384 if (flag_non_call_exceptions)
4385 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4386
4387 /* Mark the end of the function body.
4388 If control reaches this insn, the function can drop through
4389 without returning a value. */
4390 emit_note (NOTE_INSN_FUNCTION_END);
4391
4392 /* Must mark the last line number note in the function, so that the test
4393 coverage code can avoid counting the last line twice. This just tells
4394 the code to ignore the immediately following line note, since there
4395 already exists a copy of this note somewhere above. This line number
4396 note is still needed for debugging though, so we can't delete it. */
4397 if (flag_test_coverage)
4398 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4399
4400 /* Output a linenumber for the end of the function.
4401 SDB depends on this. */
4402 force_next_line_note ();
4403 emit_line_note (input_location);
4404
4405 /* Before the return label (if any), clobber the return
4406 registers so that they are not propagated live to the rest of
4407 the function. This can only happen with functions that drop
4408 through; if there had been a return statement, there would
4409 have either been a return rtx, or a jump to the return label.
4410
4411 We delay actual code generation after the current_function_value_rtx
4412 is computed. */
4413 clobber_after = get_last_insn ();
4414
4415 /* Output the label for the actual return from the function. */
4416 emit_label (return_label);
4417
4418 /* Let except.c know where it should emit the call to unregister
4419 the function context for sjlj exceptions. */
4420 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4421 sjlj_emit_function_exit_after (get_last_insn ());
4422
4423 /* If we had calls to alloca, and this machine needs
4424 an accurate stack pointer to exit the function,
4425 insert some code to save and restore the stack pointer. */
4426 if (! EXIT_IGNORE_STACK
4427 && current_function_calls_alloca)
4428 {
4429 rtx tem = 0;
4430
4431 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4432 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4433 }
4434
4435 /* If scalar return value was computed in a pseudo-reg, or was a named
4436 return value that got dumped to the stack, copy that to the hard
4437 return register. */
4438 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4439 {
4440 tree decl_result = DECL_RESULT (current_function_decl);
4441 rtx decl_rtl = DECL_RTL (decl_result);
4442
4443 if (REG_P (decl_rtl)
4444 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4445 : DECL_REGISTER (decl_result))
4446 {
4447 rtx real_decl_rtl = current_function_return_rtx;
4448
4449 /* This should be set in assign_parms. */
4450 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4451
4452 /* If this is a BLKmode structure being returned in registers,
4453 then use the mode computed in expand_return. Note that if
4454 decl_rtl is memory, then its mode may have been changed,
4455 but that current_function_return_rtx has not. */
4456 if (GET_MODE (real_decl_rtl) == BLKmode)
4457 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4458
4459 /* If a non-BLKmode return value should be padded at the least
4460 significant end of the register, shift it left by the appropriate
4461 amount. BLKmode results are handled using the group load/store
4462 machinery. */
4463 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4464 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4465 {
4466 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4467 REGNO (real_decl_rtl)),
4468 decl_rtl);
4469 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4470 }
4471 /* If a named return value dumped decl_return to memory, then
4472 we may need to re-do the PROMOTE_MODE signed/unsigned
4473 extension. */
4474 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4475 {
4476 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4477
4478 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4479 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4480 &unsignedp, 1);
4481
4482 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4483 }
4484 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4485 {
4486 /* If expand_function_start has created a PARALLEL for decl_rtl,
4487 move the result to the real return registers. Otherwise, do
4488 a group load from decl_rtl for a named return. */
4489 if (GET_CODE (decl_rtl) == PARALLEL)
4490 emit_group_move (real_decl_rtl, decl_rtl);
4491 else
4492 emit_group_load (real_decl_rtl, decl_rtl,
4493 TREE_TYPE (decl_result),
4494 int_size_in_bytes (TREE_TYPE (decl_result)));
4495 }
4496 else
4497 emit_move_insn (real_decl_rtl, decl_rtl);
4498 }
4499 }
4500
4501 /* If returning a structure, arrange to return the address of the value
4502 in a place where debuggers expect to find it.
4503
4504 If returning a structure PCC style,
4505 the caller also depends on this value.
4506 And current_function_returns_pcc_struct is not necessarily set. */
4507 if (current_function_returns_struct
4508 || current_function_returns_pcc_struct)
4509 {
4510 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4511 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4512 rtx outgoing;
4513
4514 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4515 type = TREE_TYPE (type);
4516 else
4517 value_address = XEXP (value_address, 0);
4518
4519 #ifdef FUNCTION_OUTGOING_VALUE
4520 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4521 current_function_decl);
4522 #else
4523 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4524 current_function_decl);
4525 #endif
4526
4527 /* Mark this as a function return value so integrate will delete the
4528 assignment and USE below when inlining this function. */
4529 REG_FUNCTION_VALUE_P (outgoing) = 1;
4530
4531 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4532 value_address = convert_memory_address (GET_MODE (outgoing),
4533 value_address);
4534
4535 emit_move_insn (outgoing, value_address);
4536
4537 /* Show return register used to hold result (in this case the address
4538 of the result. */
4539 current_function_return_rtx = outgoing;
4540 }
4541
4542 /* If this is an implementation of throw, do what's necessary to
4543 communicate between __builtin_eh_return and the epilogue. */
4544 expand_eh_return ();
4545
4546 /* Emit the actual code to clobber return register. */
4547 {
4548 rtx seq;
4549
4550 start_sequence ();
4551 clobber_return_register ();
4552 expand_naked_return ();
4553 seq = get_insns ();
4554 end_sequence ();
4555
4556 emit_insn_after (seq, clobber_after);
4557 }
4558
4559 /* Output the label for the naked return from the function. */
4560 emit_label (naked_return_label);
4561
4562 /* ??? This should no longer be necessary since stupid is no longer with
4563 us, but there are some parts of the compiler (eg reload_combine, and
4564 sh mach_dep_reorg) that still try and compute their own lifetime info
4565 instead of using the general framework. */
4566 use_return_register ();
4567 }
4568
4569 rtx
4570 get_arg_pointer_save_area (struct function *f)
4571 {
4572 rtx ret = f->x_arg_pointer_save_area;
4573
4574 if (! ret)
4575 {
4576 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4577 f->x_arg_pointer_save_area = ret;
4578 }
4579
4580 if (f == cfun && ! f->arg_pointer_save_area_init)
4581 {
4582 rtx seq;
4583
4584 /* Save the arg pointer at the beginning of the function. The
4585 generated stack slot may not be a valid memory address, so we
4586 have to check it and fix it if necessary. */
4587 start_sequence ();
4588 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4589 seq = get_insns ();
4590 end_sequence ();
4591
4592 push_topmost_sequence ();
4593 emit_insn_after (seq, entry_of_function ());
4594 pop_topmost_sequence ();
4595 }
4596
4597 return ret;
4598 }
4599 \f
4600 /* Extend a vector that records the INSN_UIDs of INSNS
4601 (a list of one or more insns). */
4602
4603 static void
4604 record_insns (rtx insns, varray_type *vecp)
4605 {
4606 int i, len;
4607 rtx tmp;
4608
4609 tmp = insns;
4610 len = 0;
4611 while (tmp != NULL_RTX)
4612 {
4613 len++;
4614 tmp = NEXT_INSN (tmp);
4615 }
4616
4617 i = VARRAY_SIZE (*vecp);
4618 VARRAY_GROW (*vecp, i + len);
4619 tmp = insns;
4620 while (tmp != NULL_RTX)
4621 {
4622 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4623 i++;
4624 tmp = NEXT_INSN (tmp);
4625 }
4626 }
4627
4628 /* Set the locator of the insn chain starting at INSN to LOC. */
4629 static void
4630 set_insn_locators (rtx insn, int loc)
4631 {
4632 while (insn != NULL_RTX)
4633 {
4634 if (INSN_P (insn))
4635 INSN_LOCATOR (insn) = loc;
4636 insn = NEXT_INSN (insn);
4637 }
4638 }
4639
4640 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4641 be running after reorg, SEQUENCE rtl is possible. */
4642
4643 static int
4644 contains (rtx insn, varray_type vec)
4645 {
4646 int i, j;
4647
4648 if (NONJUMP_INSN_P (insn)
4649 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4650 {
4651 int count = 0;
4652 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4653 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4654 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4655 count++;
4656 return count;
4657 }
4658 else
4659 {
4660 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4661 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4662 return 1;
4663 }
4664 return 0;
4665 }
4666
4667 int
4668 prologue_epilogue_contains (rtx insn)
4669 {
4670 if (contains (insn, prologue))
4671 return 1;
4672 if (contains (insn, epilogue))
4673 return 1;
4674 return 0;
4675 }
4676
4677 int
4678 sibcall_epilogue_contains (rtx insn)
4679 {
4680 if (sibcall_epilogue)
4681 return contains (insn, sibcall_epilogue);
4682 return 0;
4683 }
4684
4685 #ifdef HAVE_return
4686 /* Insert gen_return at the end of block BB. This also means updating
4687 block_for_insn appropriately. */
4688
4689 static void
4690 emit_return_into_block (basic_block bb, rtx line_note)
4691 {
4692 emit_jump_insn_after (gen_return (), BB_END (bb));
4693 if (line_note)
4694 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4695 }
4696 #endif /* HAVE_return */
4697
4698 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4699
4700 /* These functions convert the epilogue into a variant that does not modify the
4701 stack pointer. This is used in cases where a function returns an object
4702 whose size is not known until it is computed. The called function leaves the
4703 object on the stack, leaves the stack depressed, and returns a pointer to
4704 the object.
4705
4706 What we need to do is track all modifications and references to the stack
4707 pointer, deleting the modifications and changing the references to point to
4708 the location the stack pointer would have pointed to had the modifications
4709 taken place.
4710
4711 These functions need to be portable so we need to make as few assumptions
4712 about the epilogue as we can. However, the epilogue basically contains
4713 three things: instructions to reset the stack pointer, instructions to
4714 reload registers, possibly including the frame pointer, and an
4715 instruction to return to the caller.
4716
4717 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4718 We also make no attempt to validate the insns we make since if they are
4719 invalid, we probably can't do anything valid. The intent is that these
4720 routines get "smarter" as more and more machines start to use them and
4721 they try operating on different epilogues.
4722
4723 We use the following structure to track what the part of the epilogue that
4724 we've already processed has done. We keep two copies of the SP equivalence,
4725 one for use during the insn we are processing and one for use in the next
4726 insn. The difference is because one part of a PARALLEL may adjust SP
4727 and the other may use it. */
4728
4729 struct epi_info
4730 {
4731 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4732 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4733 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4734 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4735 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4736 should be set to once we no longer need
4737 its value. */
4738 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4739 for registers. */
4740 };
4741
4742 static void handle_epilogue_set (rtx, struct epi_info *);
4743 static void update_epilogue_consts (rtx, rtx, void *);
4744 static void emit_equiv_load (struct epi_info *);
4745
4746 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4747 no modifications to the stack pointer. Return the new list of insns. */
4748
4749 static rtx
4750 keep_stack_depressed (rtx insns)
4751 {
4752 int j;
4753 struct epi_info info;
4754 rtx insn, next;
4755
4756 /* If the epilogue is just a single instruction, it must be OK as is. */
4757 if (NEXT_INSN (insns) == NULL_RTX)
4758 return insns;
4759
4760 /* Otherwise, start a sequence, initialize the information we have, and
4761 process all the insns we were given. */
4762 start_sequence ();
4763
4764 info.sp_equiv_reg = stack_pointer_rtx;
4765 info.sp_offset = 0;
4766 info.equiv_reg_src = 0;
4767
4768 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4769 info.const_equiv[j] = 0;
4770
4771 insn = insns;
4772 next = NULL_RTX;
4773 while (insn != NULL_RTX)
4774 {
4775 next = NEXT_INSN (insn);
4776
4777 if (!INSN_P (insn))
4778 {
4779 add_insn (insn);
4780 insn = next;
4781 continue;
4782 }
4783
4784 /* If this insn references the register that SP is equivalent to and
4785 we have a pending load to that register, we must force out the load
4786 first and then indicate we no longer know what SP's equivalent is. */
4787 if (info.equiv_reg_src != 0
4788 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4789 {
4790 emit_equiv_load (&info);
4791 info.sp_equiv_reg = 0;
4792 }
4793
4794 info.new_sp_equiv_reg = info.sp_equiv_reg;
4795 info.new_sp_offset = info.sp_offset;
4796
4797 /* If this is a (RETURN) and the return address is on the stack,
4798 update the address and change to an indirect jump. */
4799 if (GET_CODE (PATTERN (insn)) == RETURN
4800 || (GET_CODE (PATTERN (insn)) == PARALLEL
4801 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4802 {
4803 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4804 rtx base = 0;
4805 HOST_WIDE_INT offset = 0;
4806 rtx jump_insn, jump_set;
4807
4808 /* If the return address is in a register, we can emit the insn
4809 unchanged. Otherwise, it must be a MEM and we see what the
4810 base register and offset are. In any case, we have to emit any
4811 pending load to the equivalent reg of SP, if any. */
4812 if (REG_P (retaddr))
4813 {
4814 emit_equiv_load (&info);
4815 add_insn (insn);
4816 insn = next;
4817 continue;
4818 }
4819 else
4820 {
4821 rtx ret_ptr;
4822 gcc_assert (MEM_P (retaddr));
4823
4824 ret_ptr = XEXP (retaddr, 0);
4825
4826 if (REG_P (ret_ptr))
4827 {
4828 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4829 offset = 0;
4830 }
4831 else
4832 {
4833 gcc_assert (GET_CODE (ret_ptr) == PLUS
4834 && REG_P (XEXP (ret_ptr, 0))
4835 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4836 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4837 offset = INTVAL (XEXP (ret_ptr, 1));
4838 }
4839 }
4840
4841 /* If the base of the location containing the return pointer
4842 is SP, we must update it with the replacement address. Otherwise,
4843 just build the necessary MEM. */
4844 retaddr = plus_constant (base, offset);
4845 if (base == stack_pointer_rtx)
4846 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4847 plus_constant (info.sp_equiv_reg,
4848 info.sp_offset));
4849
4850 retaddr = gen_rtx_MEM (Pmode, retaddr);
4851
4852 /* If there is a pending load to the equivalent register for SP
4853 and we reference that register, we must load our address into
4854 a scratch register and then do that load. */
4855 if (info.equiv_reg_src
4856 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4857 {
4858 unsigned int regno;
4859 rtx reg;
4860
4861 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4862 if (HARD_REGNO_MODE_OK (regno, Pmode)
4863 && !fixed_regs[regno]
4864 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4865 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4866 regno)
4867 && !refers_to_regno_p (regno,
4868 regno + hard_regno_nregs[regno]
4869 [Pmode],
4870 info.equiv_reg_src, NULL)
4871 && info.const_equiv[regno] == 0)
4872 break;
4873
4874 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4875
4876 reg = gen_rtx_REG (Pmode, regno);
4877 emit_move_insn (reg, retaddr);
4878 retaddr = reg;
4879 }
4880
4881 emit_equiv_load (&info);
4882 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4883
4884 /* Show the SET in the above insn is a RETURN. */
4885 jump_set = single_set (jump_insn);
4886 gcc_assert (jump_set);
4887 SET_IS_RETURN_P (jump_set) = 1;
4888 }
4889
4890 /* If SP is not mentioned in the pattern and its equivalent register, if
4891 any, is not modified, just emit it. Otherwise, if neither is set,
4892 replace the reference to SP and emit the insn. If none of those are
4893 true, handle each SET individually. */
4894 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4895 && (info.sp_equiv_reg == stack_pointer_rtx
4896 || !reg_set_p (info.sp_equiv_reg, insn)))
4897 add_insn (insn);
4898 else if (! reg_set_p (stack_pointer_rtx, insn)
4899 && (info.sp_equiv_reg == stack_pointer_rtx
4900 || !reg_set_p (info.sp_equiv_reg, insn)))
4901 {
4902 int changed;
4903
4904 changed = validate_replace_rtx (stack_pointer_rtx,
4905 plus_constant (info.sp_equiv_reg,
4906 info.sp_offset),
4907 insn);
4908 gcc_assert (changed);
4909
4910 add_insn (insn);
4911 }
4912 else if (GET_CODE (PATTERN (insn)) == SET)
4913 handle_epilogue_set (PATTERN (insn), &info);
4914 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4915 {
4916 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4917 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4918 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4919 }
4920 else
4921 add_insn (insn);
4922
4923 info.sp_equiv_reg = info.new_sp_equiv_reg;
4924 info.sp_offset = info.new_sp_offset;
4925
4926 /* Now update any constants this insn sets. */
4927 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4928 insn = next;
4929 }
4930
4931 insns = get_insns ();
4932 end_sequence ();
4933 return insns;
4934 }
4935
4936 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4937 structure that contains information about what we've seen so far. We
4938 process this SET by either updating that data or by emitting one or
4939 more insns. */
4940
4941 static void
4942 handle_epilogue_set (rtx set, struct epi_info *p)
4943 {
4944 /* First handle the case where we are setting SP. Record what it is being
4945 set from. If unknown, abort. */
4946 if (reg_set_p (stack_pointer_rtx, set))
4947 {
4948 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4949
4950 if (GET_CODE (SET_SRC (set)) == PLUS)
4951 {
4952 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4953 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4954 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4955 else
4956 {
4957 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4958 && (REGNO (XEXP (SET_SRC (set), 1))
4959 < FIRST_PSEUDO_REGISTER)
4960 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4961 p->new_sp_offset
4962 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4963 }
4964 }
4965 else
4966 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4967
4968 /* If we are adjusting SP, we adjust from the old data. */
4969 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4970 {
4971 p->new_sp_equiv_reg = p->sp_equiv_reg;
4972 p->new_sp_offset += p->sp_offset;
4973 }
4974
4975 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4976
4977 return;
4978 }
4979
4980 /* Next handle the case where we are setting SP's equivalent register.
4981 If we already have a value to set it to, abort. We could update, but
4982 there seems little point in handling that case. Note that we have
4983 to allow for the case where we are setting the register set in
4984 the previous part of a PARALLEL inside a single insn. But use the
4985 old offset for any updates within this insn. We must allow for the case
4986 where the register is being set in a different (usually wider) mode than
4987 Pmode). */
4988 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4989 {
4990 gcc_assert (!p->equiv_reg_src
4991 && REG_P (p->new_sp_equiv_reg)
4992 && REG_P (SET_DEST (set))
4993 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4994 <= BITS_PER_WORD)
4995 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4996 p->equiv_reg_src
4997 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4998 plus_constant (p->sp_equiv_reg,
4999 p->sp_offset));
5000 }
5001
5002 /* Otherwise, replace any references to SP in the insn to its new value
5003 and emit the insn. */
5004 else
5005 {
5006 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5007 plus_constant (p->sp_equiv_reg,
5008 p->sp_offset));
5009 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5010 plus_constant (p->sp_equiv_reg,
5011 p->sp_offset));
5012 emit_insn (set);
5013 }
5014 }
5015
5016 /* Update the tracking information for registers set to constants. */
5017
5018 static void
5019 update_epilogue_consts (rtx dest, rtx x, void *data)
5020 {
5021 struct epi_info *p = (struct epi_info *) data;
5022 rtx new;
5023
5024 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5025 return;
5026
5027 /* If we are either clobbering a register or doing a partial set,
5028 show we don't know the value. */
5029 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5030 p->const_equiv[REGNO (dest)] = 0;
5031
5032 /* If we are setting it to a constant, record that constant. */
5033 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5034 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5035
5036 /* If this is a binary operation between a register we have been tracking
5037 and a constant, see if we can compute a new constant value. */
5038 else if (ARITHMETIC_P (SET_SRC (x))
5039 && REG_P (XEXP (SET_SRC (x), 0))
5040 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5041 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5042 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5043 && 0 != (new = simplify_binary_operation
5044 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5045 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5046 XEXP (SET_SRC (x), 1)))
5047 && GET_CODE (new) == CONST_INT)
5048 p->const_equiv[REGNO (dest)] = new;
5049
5050 /* Otherwise, we can't do anything with this value. */
5051 else
5052 p->const_equiv[REGNO (dest)] = 0;
5053 }
5054
5055 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5056
5057 static void
5058 emit_equiv_load (struct epi_info *p)
5059 {
5060 if (p->equiv_reg_src != 0)
5061 {
5062 rtx dest = p->sp_equiv_reg;
5063
5064 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5065 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5066 REGNO (p->sp_equiv_reg));
5067
5068 emit_move_insn (dest, p->equiv_reg_src);
5069 p->equiv_reg_src = 0;
5070 }
5071 }
5072 #endif
5073
5074 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5075 this into place with notes indicating where the prologue ends and where
5076 the epilogue begins. Update the basic block information when possible. */
5077
5078 void
5079 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5080 {
5081 int inserted = 0;
5082 edge e;
5083 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5084 rtx seq;
5085 #endif
5086 #ifdef HAVE_prologue
5087 rtx prologue_end = NULL_RTX;
5088 #endif
5089 #if defined (HAVE_epilogue) || defined(HAVE_return)
5090 rtx epilogue_end = NULL_RTX;
5091 #endif
5092 edge_iterator ei;
5093
5094 #ifdef HAVE_prologue
5095 if (HAVE_prologue)
5096 {
5097 start_sequence ();
5098 seq = gen_prologue ();
5099 emit_insn (seq);
5100
5101 /* Retain a map of the prologue insns. */
5102 record_insns (seq, &prologue);
5103 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5104
5105 seq = get_insns ();
5106 end_sequence ();
5107 set_insn_locators (seq, prologue_locator);
5108
5109 /* Can't deal with multiple successors of the entry block
5110 at the moment. Function should always have at least one
5111 entry point. */
5112 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
5113
5114 insert_insn_on_edge (seq, EDGE_SUCC (ENTRY_BLOCK_PTR, 0));
5115 inserted = 1;
5116 }
5117 #endif
5118
5119 /* If the exit block has no non-fake predecessors, we don't need
5120 an epilogue. */
5121 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5122 if ((e->flags & EDGE_FAKE) == 0)
5123 break;
5124 if (e == NULL)
5125 goto epilogue_done;
5126
5127 #ifdef HAVE_return
5128 if (optimize && HAVE_return)
5129 {
5130 /* If we're allowed to generate a simple return instruction,
5131 then by definition we don't need a full epilogue. Examine
5132 the block that falls through to EXIT. If it does not
5133 contain any code, examine its predecessors and try to
5134 emit (conditional) return instructions. */
5135
5136 basic_block last;
5137 rtx label;
5138
5139 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5140 if (e->flags & EDGE_FALLTHRU)
5141 break;
5142 if (e == NULL)
5143 goto epilogue_done;
5144 last = e->src;
5145
5146 /* Verify that there are no active instructions in the last block. */
5147 label = BB_END (last);
5148 while (label && !LABEL_P (label))
5149 {
5150 if (active_insn_p (label))
5151 break;
5152 label = PREV_INSN (label);
5153 }
5154
5155 if (BB_HEAD (last) == label && LABEL_P (label))
5156 {
5157 edge_iterator ei2;
5158 rtx epilogue_line_note = NULL_RTX;
5159
5160 /* Locate the line number associated with the closing brace,
5161 if we can find one. */
5162 for (seq = get_last_insn ();
5163 seq && ! active_insn_p (seq);
5164 seq = PREV_INSN (seq))
5165 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5166 {
5167 epilogue_line_note = seq;
5168 break;
5169 }
5170
5171 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5172 {
5173 basic_block bb = e->src;
5174 rtx jump;
5175
5176 if (bb == ENTRY_BLOCK_PTR)
5177 {
5178 ei_next (&ei2);
5179 continue;
5180 }
5181
5182 jump = BB_END (bb);
5183 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5184 {
5185 ei_next (&ei2);
5186 continue;
5187 }
5188
5189 /* If we have an unconditional jump, we can replace that
5190 with a simple return instruction. */
5191 if (simplejump_p (jump))
5192 {
5193 emit_return_into_block (bb, epilogue_line_note);
5194 delete_insn (jump);
5195 }
5196
5197 /* If we have a conditional jump, we can try to replace
5198 that with a conditional return instruction. */
5199 else if (condjump_p (jump))
5200 {
5201 if (! redirect_jump (jump, 0, 0))
5202 {
5203 ei_next (&ei2);
5204 continue;
5205 }
5206
5207 /* If this block has only one successor, it both jumps
5208 and falls through to the fallthru block, so we can't
5209 delete the edge. */
5210 if (EDGE_COUNT (bb->succs) == 1)
5211 {
5212 ei_next (&ei2);
5213 continue;
5214 }
5215 }
5216 else
5217 {
5218 ei_next (&ei2);
5219 continue;
5220 }
5221
5222 /* Fix up the CFG for the successful change we just made. */
5223 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5224 }
5225
5226 /* Emit a return insn for the exit fallthru block. Whether
5227 this is still reachable will be determined later. */
5228
5229 emit_barrier_after (BB_END (last));
5230 emit_return_into_block (last, epilogue_line_note);
5231 epilogue_end = BB_END (last);
5232 EDGE_SUCC (last, 0)->flags &= ~EDGE_FALLTHRU;
5233 goto epilogue_done;
5234 }
5235 }
5236 #endif
5237 /* Find the edge that falls through to EXIT. Other edges may exist
5238 due to RETURN instructions, but those don't need epilogues.
5239 There really shouldn't be a mixture -- either all should have
5240 been converted or none, however... */
5241
5242 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5243 if (e->flags & EDGE_FALLTHRU)
5244 break;
5245 if (e == NULL)
5246 goto epilogue_done;
5247
5248 #ifdef HAVE_epilogue
5249 if (HAVE_epilogue)
5250 {
5251 start_sequence ();
5252 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5253
5254 seq = gen_epilogue ();
5255
5256 #ifdef INCOMING_RETURN_ADDR_RTX
5257 /* If this function returns with the stack depressed and we can support
5258 it, massage the epilogue to actually do that. */
5259 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5260 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5261 seq = keep_stack_depressed (seq);
5262 #endif
5263
5264 emit_jump_insn (seq);
5265
5266 /* Retain a map of the epilogue insns. */
5267 record_insns (seq, &epilogue);
5268 set_insn_locators (seq, epilogue_locator);
5269
5270 seq = get_insns ();
5271 end_sequence ();
5272
5273 insert_insn_on_edge (seq, e);
5274 inserted = 1;
5275 }
5276 else
5277 #endif
5278 {
5279 basic_block cur_bb;
5280
5281 if (! next_active_insn (BB_END (e->src)))
5282 goto epilogue_done;
5283 /* We have a fall-through edge to the exit block, the source is not
5284 at the end of the function, and there will be an assembler epilogue
5285 at the end of the function.
5286 We can't use force_nonfallthru here, because that would try to
5287 use return. Inserting a jump 'by hand' is extremely messy, so
5288 we take advantage of cfg_layout_finalize using
5289 fixup_fallthru_exit_predecessor. */
5290 cfg_layout_initialize (0);
5291 FOR_EACH_BB (cur_bb)
5292 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5293 cur_bb->rbi->next = cur_bb->next_bb;
5294 cfg_layout_finalize ();
5295 }
5296 epilogue_done:
5297
5298 if (inserted)
5299 commit_edge_insertions ();
5300
5301 #ifdef HAVE_sibcall_epilogue
5302 /* Emit sibling epilogues before any sibling call sites. */
5303 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5304 {
5305 basic_block bb = e->src;
5306 rtx insn = BB_END (bb);
5307 rtx i;
5308 rtx newinsn;
5309
5310 if (!CALL_P (insn)
5311 || ! SIBLING_CALL_P (insn))
5312 {
5313 ei_next (&ei);
5314 continue;
5315 }
5316
5317 start_sequence ();
5318 emit_insn (gen_sibcall_epilogue ());
5319 seq = get_insns ();
5320 end_sequence ();
5321
5322 /* Retain a map of the epilogue insns. Used in life analysis to
5323 avoid getting rid of sibcall epilogue insns. Do this before we
5324 actually emit the sequence. */
5325 record_insns (seq, &sibcall_epilogue);
5326 set_insn_locators (seq, epilogue_locator);
5327
5328 i = PREV_INSN (insn);
5329 newinsn = emit_insn_before (seq, insn);
5330 ei_next (&ei);
5331 }
5332 #endif
5333
5334 #ifdef HAVE_prologue
5335 /* This is probably all useless now that we use locators. */
5336 if (prologue_end)
5337 {
5338 rtx insn, prev;
5339
5340 /* GDB handles `break f' by setting a breakpoint on the first
5341 line note after the prologue. Which means (1) that if
5342 there are line number notes before where we inserted the
5343 prologue we should move them, and (2) we should generate a
5344 note before the end of the first basic block, if there isn't
5345 one already there.
5346
5347 ??? This behavior is completely broken when dealing with
5348 multiple entry functions. We simply place the note always
5349 into first basic block and let alternate entry points
5350 to be missed.
5351 */
5352
5353 for (insn = prologue_end; insn; insn = prev)
5354 {
5355 prev = PREV_INSN (insn);
5356 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5357 {
5358 /* Note that we cannot reorder the first insn in the
5359 chain, since rest_of_compilation relies on that
5360 remaining constant. */
5361 if (prev == NULL)
5362 break;
5363 reorder_insns (insn, insn, prologue_end);
5364 }
5365 }
5366
5367 /* Find the last line number note in the first block. */
5368 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5369 insn != prologue_end && insn;
5370 insn = PREV_INSN (insn))
5371 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5372 break;
5373
5374 /* If we didn't find one, make a copy of the first line number
5375 we run across. */
5376 if (! insn)
5377 {
5378 for (insn = next_active_insn (prologue_end);
5379 insn;
5380 insn = PREV_INSN (insn))
5381 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5382 {
5383 emit_note_copy_after (insn, prologue_end);
5384 break;
5385 }
5386 }
5387 }
5388 #endif
5389 #ifdef HAVE_epilogue
5390 if (epilogue_end)
5391 {
5392 rtx insn, next;
5393
5394 /* Similarly, move any line notes that appear after the epilogue.
5395 There is no need, however, to be quite so anal about the existence
5396 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5397 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5398 info generation. */
5399 for (insn = epilogue_end; insn; insn = next)
5400 {
5401 next = NEXT_INSN (insn);
5402 if (NOTE_P (insn)
5403 && (NOTE_LINE_NUMBER (insn) > 0
5404 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5405 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5406 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5407 }
5408 }
5409 #endif
5410 }
5411
5412 /* Reposition the prologue-end and epilogue-begin notes after instruction
5413 scheduling and delayed branch scheduling. */
5414
5415 void
5416 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5417 {
5418 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5419 rtx insn, last, note;
5420 int len;
5421
5422 if ((len = VARRAY_SIZE (prologue)) > 0)
5423 {
5424 last = 0, note = 0;
5425
5426 /* Scan from the beginning until we reach the last prologue insn.
5427 We apparently can't depend on basic_block_{head,end} after
5428 reorg has run. */
5429 for (insn = f; insn; insn = NEXT_INSN (insn))
5430 {
5431 if (NOTE_P (insn))
5432 {
5433 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5434 note = insn;
5435 }
5436 else if (contains (insn, prologue))
5437 {
5438 last = insn;
5439 if (--len == 0)
5440 break;
5441 }
5442 }
5443
5444 if (last)
5445 {
5446 /* Find the prologue-end note if we haven't already, and
5447 move it to just after the last prologue insn. */
5448 if (note == 0)
5449 {
5450 for (note = last; (note = NEXT_INSN (note));)
5451 if (NOTE_P (note)
5452 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5453 break;
5454 }
5455
5456 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5457 if (LABEL_P (last))
5458 last = NEXT_INSN (last);
5459 reorder_insns (note, note, last);
5460 }
5461 }
5462
5463 if ((len = VARRAY_SIZE (epilogue)) > 0)
5464 {
5465 last = 0, note = 0;
5466
5467 /* Scan from the end until we reach the first epilogue insn.
5468 We apparently can't depend on basic_block_{head,end} after
5469 reorg has run. */
5470 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5471 {
5472 if (NOTE_P (insn))
5473 {
5474 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5475 note = insn;
5476 }
5477 else if (contains (insn, epilogue))
5478 {
5479 last = insn;
5480 if (--len == 0)
5481 break;
5482 }
5483 }
5484
5485 if (last)
5486 {
5487 /* Find the epilogue-begin note if we haven't already, and
5488 move it to just before the first epilogue insn. */
5489 if (note == 0)
5490 {
5491 for (note = insn; (note = PREV_INSN (note));)
5492 if (NOTE_P (note)
5493 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5494 break;
5495 }
5496
5497 if (PREV_INSN (last) != note)
5498 reorder_insns (note, note, PREV_INSN (last));
5499 }
5500 }
5501 #endif /* HAVE_prologue or HAVE_epilogue */
5502 }
5503
5504 /* Called once, at initialization, to initialize function.c. */
5505
5506 void
5507 init_function_once (void)
5508 {
5509 VARRAY_INT_INIT (prologue, 0, "prologue");
5510 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5511 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5512 }
5513
5514 /* Resets insn_block_boundaries array. */
5515
5516 void
5517 reset_block_changes (void)
5518 {
5519 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5520 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5521 }
5522
5523 /* Record the boundary for BLOCK. */
5524 void
5525 record_block_change (tree block)
5526 {
5527 int i, n;
5528 tree last_block;
5529
5530 if (!block)
5531 return;
5532
5533 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5534 VARRAY_POP (cfun->ib_boundaries_block);
5535 n = get_max_uid ();
5536 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5537 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5538
5539 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5540 }
5541
5542 /* Finishes record of boundaries. */
5543 void finalize_block_changes (void)
5544 {
5545 record_block_change (DECL_INITIAL (current_function_decl));
5546 }
5547
5548 /* For INSN return the BLOCK it belongs to. */
5549 void
5550 check_block_change (rtx insn, tree *block)
5551 {
5552 unsigned uid = INSN_UID (insn);
5553
5554 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5555 return;
5556
5557 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5558 }
5559
5560 /* Releases the ib_boundaries_block records. */
5561 void
5562 free_block_changes (void)
5563 {
5564 cfun->ib_boundaries_block = NULL;
5565 }
5566
5567 /* Returns the name of the current function. */
5568 const char *
5569 current_function_name (void)
5570 {
5571 return lang_hooks.decl_printable_name (cfun->decl, 2);
5572 }
5573
5574 #include "gt-function.h"