inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
75
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
85
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
100
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
105
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
110
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
116
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
119
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
123
124 /* The currently compiled function. */
125 struct function *cfun = 0;
126
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
132 \f
133 /* Forward declarations. */
134
135 static struct temp_slot *find_temp_slot_from_address (rtx);
136 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
137 static void pad_below (struct args_size *, enum machine_mode, tree);
138 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
139 static int all_blocks (tree, tree *);
140 static tree *get_block_vector (tree, int *);
141 extern tree debug_find_var_in_block_tree (tree, tree);
142 /* We always define `record_insns' even if it's not used so that we
143 can always export `prologue_epilogue_contains'. */
144 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
145 static bool contains (const_rtx, htab_t);
146 #ifdef HAVE_return
147 static void emit_return_into_block (basic_block);
148 #endif
149 static void prepare_function_start (void);
150 static void do_clobber_return_reg (rtx, void *);
151 static void do_use_return_reg (rtx, void *);
152 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
153 \f
154 /* Stack of nested functions. */
155 /* Keep track of the cfun stack. */
156
157 typedef struct function *function_p;
158
159 DEF_VEC_P(function_p);
160 DEF_VEC_ALLOC_P(function_p,heap);
161 static VEC(function_p,heap) *function_context_stack;
162
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
165
166 void
167 push_function_context (void)
168 {
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
171
172 VEC_safe_push (function_p, heap, function_context_stack, cfun);
173 set_cfun (NULL);
174 }
175
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
178
179 void
180 pop_function_context (void)
181 {
182 struct function *p = VEC_pop (function_p, function_context_stack);
183 set_cfun (p);
184 current_function_decl = p->decl;
185
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
189 }
190
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
194
195 void
196 free_after_parsing (struct function *f)
197 {
198 f->language = 0;
199 }
200
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
204
205 void
206 free_after_compilation (struct function *f)
207 {
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
210
211 if (crtl->emit.regno_pointer_align)
212 free (crtl->emit.regno_pointer_align);
213
214 memset (crtl, 0, sizeof (struct rtl_data));
215 f->eh = NULL;
216 f->machine = NULL;
217 f->cfg = NULL;
218
219 regno_reg_rtx = NULL;
220 insn_locators_free ();
221 }
222 \f
223 /* Return size needed for stack frame based on slots so far allocated.
224 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
225 the caller may have to do that. */
226
227 HOST_WIDE_INT
228 get_frame_size (void)
229 {
230 if (FRAME_GROWS_DOWNWARD)
231 return -frame_offset;
232 else
233 return frame_offset;
234 }
235
236 /* Issue an error message and return TRUE if frame OFFSET overflows in
237 the signed target pointer arithmetics for function FUNC. Otherwise
238 return FALSE. */
239
240 bool
241 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
242 {
243 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
244
245 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
246 /* Leave room for the fixed part of the frame. */
247 - 64 * UNITS_PER_WORD)
248 {
249 error_at (DECL_SOURCE_LOCATION (func),
250 "total size of local objects too large");
251 return TRUE;
252 }
253
254 return FALSE;
255 }
256
257 /* Return stack slot alignment in bits for TYPE and MODE. */
258
259 static unsigned int
260 get_stack_local_alignment (tree type, enum machine_mode mode)
261 {
262 unsigned int alignment;
263
264 if (mode == BLKmode)
265 alignment = BIGGEST_ALIGNMENT;
266 else
267 alignment = GET_MODE_ALIGNMENT (mode);
268
269 /* Allow the frond-end to (possibly) increase the alignment of this
270 stack slot. */
271 if (! type)
272 type = lang_hooks.types.type_for_mode (mode, 0);
273
274 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
275 }
276
277 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
278 with machine mode MODE.
279
280 ALIGN controls the amount of alignment for the address of the slot:
281 0 means according to MODE,
282 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
283 -2 means use BITS_PER_UNIT,
284 positive specifies alignment boundary in bits.
285
286 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
287
288 We do not round to stack_boundary here. */
289
290 rtx
291 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
292 int align,
293 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
294 {
295 rtx x, addr;
296 int bigend_correction = 0;
297 unsigned int alignment, alignment_in_bits;
298 int frame_off, frame_alignment, frame_phase;
299
300 if (align == 0)
301 {
302 alignment = get_stack_local_alignment (NULL, mode);
303 alignment /= BITS_PER_UNIT;
304 }
305 else if (align == -1)
306 {
307 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
308 size = CEIL_ROUND (size, alignment);
309 }
310 else if (align == -2)
311 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
312 else
313 alignment = align / BITS_PER_UNIT;
314
315 alignment_in_bits = alignment * BITS_PER_UNIT;
316
317 if (FRAME_GROWS_DOWNWARD)
318 frame_offset -= size;
319
320 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
321 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
322 {
323 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
324 alignment = alignment_in_bits / BITS_PER_UNIT;
325 }
326
327 if (SUPPORTS_STACK_ALIGNMENT)
328 {
329 if (crtl->stack_alignment_estimated < alignment_in_bits)
330 {
331 if (!crtl->stack_realign_processed)
332 crtl->stack_alignment_estimated = alignment_in_bits;
333 else
334 {
335 /* If stack is realigned and stack alignment value
336 hasn't been finalized, it is OK not to increase
337 stack_alignment_estimated. The bigger alignment
338 requirement is recorded in stack_alignment_needed
339 below. */
340 gcc_assert (!crtl->stack_realign_finalized);
341 if (!crtl->stack_realign_needed)
342 {
343 /* It is OK to reduce the alignment as long as the
344 requested size is 0 or the estimated stack
345 alignment >= mode alignment. */
346 gcc_assert (reduce_alignment_ok
347 || size == 0
348 || (crtl->stack_alignment_estimated
349 >= GET_MODE_ALIGNMENT (mode)));
350 alignment_in_bits = crtl->stack_alignment_estimated;
351 alignment = alignment_in_bits / BITS_PER_UNIT;
352 }
353 }
354 }
355 }
356
357 if (crtl->stack_alignment_needed < alignment_in_bits)
358 crtl->stack_alignment_needed = alignment_in_bits;
359 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
360 crtl->max_used_stack_slot_alignment = alignment_in_bits;
361
362 /* Calculate how many bytes the start of local variables is off from
363 stack alignment. */
364 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
365 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
366 frame_phase = frame_off ? frame_alignment - frame_off : 0;
367
368 /* Round the frame offset to the specified alignment. The default is
369 to always honor requests to align the stack but a port may choose to
370 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
371 if (STACK_ALIGNMENT_NEEDED
372 || mode != BLKmode
373 || size != 0)
374 {
375 /* We must be careful here, since FRAME_OFFSET might be negative and
376 division with a negative dividend isn't as well defined as we might
377 like. So we instead assume that ALIGNMENT is a power of two and
378 use logical operations which are unambiguous. */
379 if (FRAME_GROWS_DOWNWARD)
380 frame_offset
381 = (FLOOR_ROUND (frame_offset - frame_phase,
382 (unsigned HOST_WIDE_INT) alignment)
383 + frame_phase);
384 else
385 frame_offset
386 = (CEIL_ROUND (frame_offset - frame_phase,
387 (unsigned HOST_WIDE_INT) alignment)
388 + frame_phase);
389 }
390
391 /* On a big-endian machine, if we are allocating more space than we will use,
392 use the least significant bytes of those that are allocated. */
393 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
394 bigend_correction = size - GET_MODE_SIZE (mode);
395
396 /* If we have already instantiated virtual registers, return the actual
397 address relative to the frame pointer. */
398 if (virtuals_instantiated)
399 addr = plus_constant (frame_pointer_rtx,
400 trunc_int_for_mode
401 (frame_offset + bigend_correction
402 + STARTING_FRAME_OFFSET, Pmode));
403 else
404 addr = plus_constant (virtual_stack_vars_rtx,
405 trunc_int_for_mode
406 (frame_offset + bigend_correction,
407 Pmode));
408
409 if (!FRAME_GROWS_DOWNWARD)
410 frame_offset += size;
411
412 x = gen_rtx_MEM (mode, addr);
413 set_mem_align (x, alignment_in_bits);
414 MEM_NOTRAP_P (x) = 1;
415
416 stack_slot_list
417 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
418
419 if (frame_offset_overflow (frame_offset, current_function_decl))
420 frame_offset = 0;
421
422 return x;
423 }
424
425 /* Wrap up assign_stack_local_1 with last parameter as false. */
426
427 rtx
428 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
429 {
430 return assign_stack_local_1 (mode, size, align, false);
431 }
432 \f
433 \f
434 /* In order to evaluate some expressions, such as function calls returning
435 structures in memory, we need to temporarily allocate stack locations.
436 We record each allocated temporary in the following structure.
437
438 Associated with each temporary slot is a nesting level. When we pop up
439 one level, all temporaries associated with the previous level are freed.
440 Normally, all temporaries are freed after the execution of the statement
441 in which they were created. However, if we are inside a ({...}) grouping,
442 the result may be in a temporary and hence must be preserved. If the
443 result could be in a temporary, we preserve it if we can determine which
444 one it is in. If we cannot determine which temporary may contain the
445 result, all temporaries are preserved. A temporary is preserved by
446 pretending it was allocated at the previous nesting level.
447
448 Automatic variables are also assigned temporary slots, at the nesting
449 level where they are defined. They are marked a "kept" so that
450 free_temp_slots will not free them. */
451
452 struct GTY(()) temp_slot {
453 /* Points to next temporary slot. */
454 struct temp_slot *next;
455 /* Points to previous temporary slot. */
456 struct temp_slot *prev;
457 /* The rtx to used to reference the slot. */
458 rtx slot;
459 /* The size, in units, of the slot. */
460 HOST_WIDE_INT size;
461 /* The type of the object in the slot, or zero if it doesn't correspond
462 to a type. We use this to determine whether a slot can be reused.
463 It can be reused if objects of the type of the new slot will always
464 conflict with objects of the type of the old slot. */
465 tree type;
466 /* The alignment (in bits) of the slot. */
467 unsigned int align;
468 /* Nonzero if this temporary is currently in use. */
469 char in_use;
470 /* Nonzero if this temporary has its address taken. */
471 char addr_taken;
472 /* Nesting level at which this slot is being used. */
473 int level;
474 /* Nonzero if this should survive a call to free_temp_slots. */
475 int keep;
476 /* The offset of the slot from the frame_pointer, including extra space
477 for alignment. This info is for combine_temp_slots. */
478 HOST_WIDE_INT base_offset;
479 /* The size of the slot, including extra space for alignment. This
480 info is for combine_temp_slots. */
481 HOST_WIDE_INT full_size;
482 };
483
484 /* A table of addresses that represent a stack slot. The table is a mapping
485 from address RTXen to a temp slot. */
486 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
487
488 /* Entry for the above hash table. */
489 struct GTY(()) temp_slot_address_entry {
490 hashval_t hash;
491 rtx address;
492 struct temp_slot *temp_slot;
493 };
494
495 /* Removes temporary slot TEMP from LIST. */
496
497 static void
498 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
499 {
500 if (temp->next)
501 temp->next->prev = temp->prev;
502 if (temp->prev)
503 temp->prev->next = temp->next;
504 else
505 *list = temp->next;
506
507 temp->prev = temp->next = NULL;
508 }
509
510 /* Inserts temporary slot TEMP to LIST. */
511
512 static void
513 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
514 {
515 temp->next = *list;
516 if (*list)
517 (*list)->prev = temp;
518 temp->prev = NULL;
519 *list = temp;
520 }
521
522 /* Returns the list of used temp slots at LEVEL. */
523
524 static struct temp_slot **
525 temp_slots_at_level (int level)
526 {
527 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
528 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
529
530 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
531 }
532
533 /* Returns the maximal temporary slot level. */
534
535 static int
536 max_slot_level (void)
537 {
538 if (!used_temp_slots)
539 return -1;
540
541 return VEC_length (temp_slot_p, used_temp_slots) - 1;
542 }
543
544 /* Moves temporary slot TEMP to LEVEL. */
545
546 static void
547 move_slot_to_level (struct temp_slot *temp, int level)
548 {
549 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
550 insert_slot_to_list (temp, temp_slots_at_level (level));
551 temp->level = level;
552 }
553
554 /* Make temporary slot TEMP available. */
555
556 static void
557 make_slot_available (struct temp_slot *temp)
558 {
559 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
560 insert_slot_to_list (temp, &avail_temp_slots);
561 temp->in_use = 0;
562 temp->level = -1;
563 }
564
565 /* Compute the hash value for an address -> temp slot mapping.
566 The value is cached on the mapping entry. */
567 static hashval_t
568 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
569 {
570 int do_not_record = 0;
571 return hash_rtx (t->address, GET_MODE (t->address),
572 &do_not_record, NULL, false);
573 }
574
575 /* Return the hash value for an address -> temp slot mapping. */
576 static hashval_t
577 temp_slot_address_hash (const void *p)
578 {
579 const struct temp_slot_address_entry *t;
580 t = (const struct temp_slot_address_entry *) p;
581 return t->hash;
582 }
583
584 /* Compare two address -> temp slot mapping entries. */
585 static int
586 temp_slot_address_eq (const void *p1, const void *p2)
587 {
588 const struct temp_slot_address_entry *t1, *t2;
589 t1 = (const struct temp_slot_address_entry *) p1;
590 t2 = (const struct temp_slot_address_entry *) p2;
591 return exp_equiv_p (t1->address, t2->address, 0, true);
592 }
593
594 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
595 static void
596 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
597 {
598 void **slot;
599 struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
600 t->address = address;
601 t->temp_slot = temp_slot;
602 t->hash = temp_slot_address_compute_hash (t);
603 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
604 *slot = t;
605 }
606
607 /* Remove an address -> temp slot mapping entry if the temp slot is
608 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
609 static int
610 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
611 {
612 const struct temp_slot_address_entry *t;
613 t = (const struct temp_slot_address_entry *) *slot;
614 if (! t->temp_slot->in_use)
615 *slot = NULL;
616 return 1;
617 }
618
619 /* Remove all mappings of addresses to unused temp slots. */
620 static void
621 remove_unused_temp_slot_addresses (void)
622 {
623 htab_traverse (temp_slot_address_table,
624 remove_unused_temp_slot_addresses_1,
625 NULL);
626 }
627
628 /* Find the temp slot corresponding to the object at address X. */
629
630 static struct temp_slot *
631 find_temp_slot_from_address (rtx x)
632 {
633 struct temp_slot *p;
634 struct temp_slot_address_entry tmp, *t;
635
636 /* First try the easy way:
637 See if X exists in the address -> temp slot mapping. */
638 tmp.address = x;
639 tmp.temp_slot = NULL;
640 tmp.hash = temp_slot_address_compute_hash (&tmp);
641 t = (struct temp_slot_address_entry *)
642 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
643 if (t)
644 return t->temp_slot;
645
646 /* If we have a sum involving a register, see if it points to a temp
647 slot. */
648 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
649 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
650 return p;
651 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
652 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
653 return p;
654
655 /* Last resort: Address is a virtual stack var address. */
656 if (GET_CODE (x) == PLUS
657 && XEXP (x, 0) == virtual_stack_vars_rtx
658 && CONST_INT_P (XEXP (x, 1)))
659 {
660 int i;
661 for (i = max_slot_level (); i >= 0; i--)
662 for (p = *temp_slots_at_level (i); p; p = p->next)
663 {
664 if (INTVAL (XEXP (x, 1)) >= p->base_offset
665 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
666 return p;
667 }
668 }
669
670 return NULL;
671 }
672 \f
673 /* Allocate a temporary stack slot and record it for possible later
674 reuse.
675
676 MODE is the machine mode to be given to the returned rtx.
677
678 SIZE is the size in units of the space required. We do no rounding here
679 since assign_stack_local will do any required rounding.
680
681 KEEP is 1 if this slot is to be retained after a call to
682 free_temp_slots. Automatic variables for a block are allocated
683 with this flag. KEEP values of 2 or 3 were needed respectively
684 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
685 or for SAVE_EXPRs, but they are now unused.
686
687 TYPE is the type that will be used for the stack slot. */
688
689 rtx
690 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
691 int keep, tree type)
692 {
693 unsigned int align;
694 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
695 rtx slot;
696
697 /* If SIZE is -1 it means that somebody tried to allocate a temporary
698 of a variable size. */
699 gcc_assert (size != -1);
700
701 /* These are now unused. */
702 gcc_assert (keep <= 1);
703
704 align = get_stack_local_alignment (type, mode);
705
706 /* Try to find an available, already-allocated temporary of the proper
707 mode which meets the size and alignment requirements. Choose the
708 smallest one with the closest alignment.
709
710 If assign_stack_temp is called outside of the tree->rtl expansion,
711 we cannot reuse the stack slots (that may still refer to
712 VIRTUAL_STACK_VARS_REGNUM). */
713 if (!virtuals_instantiated)
714 {
715 for (p = avail_temp_slots; p; p = p->next)
716 {
717 if (p->align >= align && p->size >= size
718 && GET_MODE (p->slot) == mode
719 && objects_must_conflict_p (p->type, type)
720 && (best_p == 0 || best_p->size > p->size
721 || (best_p->size == p->size && best_p->align > p->align)))
722 {
723 if (p->align == align && p->size == size)
724 {
725 selected = p;
726 cut_slot_from_list (selected, &avail_temp_slots);
727 best_p = 0;
728 break;
729 }
730 best_p = p;
731 }
732 }
733 }
734
735 /* Make our best, if any, the one to use. */
736 if (best_p)
737 {
738 selected = best_p;
739 cut_slot_from_list (selected, &avail_temp_slots);
740
741 /* If there are enough aligned bytes left over, make them into a new
742 temp_slot so that the extra bytes don't get wasted. Do this only
743 for BLKmode slots, so that we can be sure of the alignment. */
744 if (GET_MODE (best_p->slot) == BLKmode)
745 {
746 int alignment = best_p->align / BITS_PER_UNIT;
747 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
748
749 if (best_p->size - rounded_size >= alignment)
750 {
751 p = GGC_NEW (struct temp_slot);
752 p->in_use = p->addr_taken = 0;
753 p->size = best_p->size - rounded_size;
754 p->base_offset = best_p->base_offset + rounded_size;
755 p->full_size = best_p->full_size - rounded_size;
756 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
757 p->align = best_p->align;
758 p->type = best_p->type;
759 insert_slot_to_list (p, &avail_temp_slots);
760
761 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
762 stack_slot_list);
763
764 best_p->size = rounded_size;
765 best_p->full_size = rounded_size;
766 }
767 }
768 }
769
770 /* If we still didn't find one, make a new temporary. */
771 if (selected == 0)
772 {
773 HOST_WIDE_INT frame_offset_old = frame_offset;
774
775 p = GGC_NEW (struct temp_slot);
776
777 /* We are passing an explicit alignment request to assign_stack_local.
778 One side effect of that is assign_stack_local will not round SIZE
779 to ensure the frame offset remains suitably aligned.
780
781 So for requests which depended on the rounding of SIZE, we go ahead
782 and round it now. We also make sure ALIGNMENT is at least
783 BIGGEST_ALIGNMENT. */
784 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
785 p->slot = assign_stack_local (mode,
786 (mode == BLKmode
787 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
788 : size),
789 align);
790
791 p->align = align;
792
793 /* The following slot size computation is necessary because we don't
794 know the actual size of the temporary slot until assign_stack_local
795 has performed all the frame alignment and size rounding for the
796 requested temporary. Note that extra space added for alignment
797 can be either above or below this stack slot depending on which
798 way the frame grows. We include the extra space if and only if it
799 is above this slot. */
800 if (FRAME_GROWS_DOWNWARD)
801 p->size = frame_offset_old - frame_offset;
802 else
803 p->size = size;
804
805 /* Now define the fields used by combine_temp_slots. */
806 if (FRAME_GROWS_DOWNWARD)
807 {
808 p->base_offset = frame_offset;
809 p->full_size = frame_offset_old - frame_offset;
810 }
811 else
812 {
813 p->base_offset = frame_offset_old;
814 p->full_size = frame_offset - frame_offset_old;
815 }
816
817 selected = p;
818 }
819
820 p = selected;
821 p->in_use = 1;
822 p->addr_taken = 0;
823 p->type = type;
824 p->level = temp_slot_level;
825 p->keep = keep;
826
827 pp = temp_slots_at_level (p->level);
828 insert_slot_to_list (p, pp);
829 insert_temp_slot_address (XEXP (p->slot, 0), p);
830
831 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
832 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
833 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
834
835 /* If we know the alias set for the memory that will be used, use
836 it. If there's no TYPE, then we don't know anything about the
837 alias set for the memory. */
838 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
839 set_mem_align (slot, align);
840
841 /* If a type is specified, set the relevant flags. */
842 if (type != 0)
843 {
844 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
845 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
846 || TREE_CODE (type) == COMPLEX_TYPE));
847 }
848 MEM_NOTRAP_P (slot) = 1;
849
850 return slot;
851 }
852
853 /* Allocate a temporary stack slot and record it for possible later
854 reuse. First three arguments are same as in preceding function. */
855
856 rtx
857 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
858 {
859 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
860 }
861 \f
862 /* Assign a temporary.
863 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
864 and so that should be used in error messages. In either case, we
865 allocate of the given type.
866 KEEP is as for assign_stack_temp.
867 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
868 it is 0 if a register is OK.
869 DONT_PROMOTE is 1 if we should not promote values in register
870 to wider modes. */
871
872 rtx
873 assign_temp (tree type_or_decl, int keep, int memory_required,
874 int dont_promote ATTRIBUTE_UNUSED)
875 {
876 tree type, decl;
877 enum machine_mode mode;
878 #ifdef PROMOTE_MODE
879 int unsignedp;
880 #endif
881
882 if (DECL_P (type_or_decl))
883 decl = type_or_decl, type = TREE_TYPE (decl);
884 else
885 decl = NULL, type = type_or_decl;
886
887 mode = TYPE_MODE (type);
888 #ifdef PROMOTE_MODE
889 unsignedp = TYPE_UNSIGNED (type);
890 #endif
891
892 if (mode == BLKmode || memory_required)
893 {
894 HOST_WIDE_INT size = int_size_in_bytes (type);
895 rtx tmp;
896
897 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
898 problems with allocating the stack space. */
899 if (size == 0)
900 size = 1;
901
902 /* Unfortunately, we don't yet know how to allocate variable-sized
903 temporaries. However, sometimes we can find a fixed upper limit on
904 the size, so try that instead. */
905 else if (size == -1)
906 size = max_int_size_in_bytes (type);
907
908 /* The size of the temporary may be too large to fit into an integer. */
909 /* ??? Not sure this should happen except for user silliness, so limit
910 this to things that aren't compiler-generated temporaries. The
911 rest of the time we'll die in assign_stack_temp_for_type. */
912 if (decl && size == -1
913 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
914 {
915 error ("size of variable %q+D is too large", decl);
916 size = 1;
917 }
918
919 tmp = assign_stack_temp_for_type (mode, size, keep, type);
920 return tmp;
921 }
922
923 #ifdef PROMOTE_MODE
924 if (! dont_promote)
925 mode = promote_mode (type, mode, &unsignedp);
926 #endif
927
928 return gen_reg_rtx (mode);
929 }
930 \f
931 /* Combine temporary stack slots which are adjacent on the stack.
932
933 This allows for better use of already allocated stack space. This is only
934 done for BLKmode slots because we can be sure that we won't have alignment
935 problems in this case. */
936
937 static void
938 combine_temp_slots (void)
939 {
940 struct temp_slot *p, *q, *next, *next_q;
941 int num_slots;
942
943 /* We can't combine slots, because the information about which slot
944 is in which alias set will be lost. */
945 if (flag_strict_aliasing)
946 return;
947
948 /* If there are a lot of temp slots, don't do anything unless
949 high levels of optimization. */
950 if (! flag_expensive_optimizations)
951 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
952 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
953 return;
954
955 for (p = avail_temp_slots; p; p = next)
956 {
957 int delete_p = 0;
958
959 next = p->next;
960
961 if (GET_MODE (p->slot) != BLKmode)
962 continue;
963
964 for (q = p->next; q; q = next_q)
965 {
966 int delete_q = 0;
967
968 next_q = q->next;
969
970 if (GET_MODE (q->slot) != BLKmode)
971 continue;
972
973 if (p->base_offset + p->full_size == q->base_offset)
974 {
975 /* Q comes after P; combine Q into P. */
976 p->size += q->size;
977 p->full_size += q->full_size;
978 delete_q = 1;
979 }
980 else if (q->base_offset + q->full_size == p->base_offset)
981 {
982 /* P comes after Q; combine P into Q. */
983 q->size += p->size;
984 q->full_size += p->full_size;
985 delete_p = 1;
986 break;
987 }
988 if (delete_q)
989 cut_slot_from_list (q, &avail_temp_slots);
990 }
991
992 /* Either delete P or advance past it. */
993 if (delete_p)
994 cut_slot_from_list (p, &avail_temp_slots);
995 }
996 }
997 \f
998 /* Indicate that NEW_RTX is an alternate way of referring to the temp
999 slot that previously was known by OLD_RTX. */
1000
1001 void
1002 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1003 {
1004 struct temp_slot *p;
1005
1006 if (rtx_equal_p (old_rtx, new_rtx))
1007 return;
1008
1009 p = find_temp_slot_from_address (old_rtx);
1010
1011 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1012 NEW_RTX is a register, see if one operand of the PLUS is a
1013 temporary location. If so, NEW_RTX points into it. Otherwise,
1014 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1015 in common between them. If so, try a recursive call on those
1016 values. */
1017 if (p == 0)
1018 {
1019 if (GET_CODE (old_rtx) != PLUS)
1020 return;
1021
1022 if (REG_P (new_rtx))
1023 {
1024 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1025 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1026 return;
1027 }
1028 else if (GET_CODE (new_rtx) != PLUS)
1029 return;
1030
1031 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1032 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1033 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1034 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1035 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1036 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1037 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1038 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1039
1040 return;
1041 }
1042
1043 /* Otherwise add an alias for the temp's address. */
1044 insert_temp_slot_address (new_rtx, p);
1045 }
1046
1047 /* If X could be a reference to a temporary slot, mark the fact that its
1048 address was taken. */
1049
1050 void
1051 mark_temp_addr_taken (rtx x)
1052 {
1053 struct temp_slot *p;
1054
1055 if (x == 0)
1056 return;
1057
1058 /* If X is not in memory or is at a constant address, it cannot be in
1059 a temporary slot. */
1060 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1061 return;
1062
1063 p = find_temp_slot_from_address (XEXP (x, 0));
1064 if (p != 0)
1065 p->addr_taken = 1;
1066 }
1067
1068 /* If X could be a reference to a temporary slot, mark that slot as
1069 belonging to the to one level higher than the current level. If X
1070 matched one of our slots, just mark that one. Otherwise, we can't
1071 easily predict which it is, so upgrade all of them. Kept slots
1072 need not be touched.
1073
1074 This is called when an ({...}) construct occurs and a statement
1075 returns a value in memory. */
1076
1077 void
1078 preserve_temp_slots (rtx x)
1079 {
1080 struct temp_slot *p = 0, *next;
1081
1082 /* If there is no result, we still might have some objects whose address
1083 were taken, so we need to make sure they stay around. */
1084 if (x == 0)
1085 {
1086 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1087 {
1088 next = p->next;
1089
1090 if (p->addr_taken)
1091 move_slot_to_level (p, temp_slot_level - 1);
1092 }
1093
1094 return;
1095 }
1096
1097 /* If X is a register that is being used as a pointer, see if we have
1098 a temporary slot we know it points to. To be consistent with
1099 the code below, we really should preserve all non-kept slots
1100 if we can't find a match, but that seems to be much too costly. */
1101 if (REG_P (x) && REG_POINTER (x))
1102 p = find_temp_slot_from_address (x);
1103
1104 /* If X is not in memory or is at a constant address, it cannot be in
1105 a temporary slot, but it can contain something whose address was
1106 taken. */
1107 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1108 {
1109 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1110 {
1111 next = p->next;
1112
1113 if (p->addr_taken)
1114 move_slot_to_level (p, temp_slot_level - 1);
1115 }
1116
1117 return;
1118 }
1119
1120 /* First see if we can find a match. */
1121 if (p == 0)
1122 p = find_temp_slot_from_address (XEXP (x, 0));
1123
1124 if (p != 0)
1125 {
1126 /* Move everything at our level whose address was taken to our new
1127 level in case we used its address. */
1128 struct temp_slot *q;
1129
1130 if (p->level == temp_slot_level)
1131 {
1132 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1133 {
1134 next = q->next;
1135
1136 if (p != q && q->addr_taken)
1137 move_slot_to_level (q, temp_slot_level - 1);
1138 }
1139
1140 move_slot_to_level (p, temp_slot_level - 1);
1141 p->addr_taken = 0;
1142 }
1143 return;
1144 }
1145
1146 /* Otherwise, preserve all non-kept slots at this level. */
1147 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1148 {
1149 next = p->next;
1150
1151 if (!p->keep)
1152 move_slot_to_level (p, temp_slot_level - 1);
1153 }
1154 }
1155
1156 /* Free all temporaries used so far. This is normally called at the
1157 end of generating code for a statement. */
1158
1159 void
1160 free_temp_slots (void)
1161 {
1162 struct temp_slot *p, *next;
1163
1164 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1165 {
1166 next = p->next;
1167
1168 if (!p->keep)
1169 make_slot_available (p);
1170 }
1171
1172 remove_unused_temp_slot_addresses ();
1173 combine_temp_slots ();
1174 }
1175
1176 /* Push deeper into the nesting level for stack temporaries. */
1177
1178 void
1179 push_temp_slots (void)
1180 {
1181 temp_slot_level++;
1182 }
1183
1184 /* Pop a temporary nesting level. All slots in use in the current level
1185 are freed. */
1186
1187 void
1188 pop_temp_slots (void)
1189 {
1190 struct temp_slot *p, *next;
1191
1192 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1193 {
1194 next = p->next;
1195 make_slot_available (p);
1196 }
1197
1198 remove_unused_temp_slot_addresses ();
1199 combine_temp_slots ();
1200
1201 temp_slot_level--;
1202 }
1203
1204 /* Initialize temporary slots. */
1205
1206 void
1207 init_temp_slots (void)
1208 {
1209 /* We have not allocated any temporaries yet. */
1210 avail_temp_slots = 0;
1211 used_temp_slots = 0;
1212 temp_slot_level = 0;
1213
1214 /* Set up the table to map addresses to temp slots. */
1215 if (! temp_slot_address_table)
1216 temp_slot_address_table = htab_create_ggc (32,
1217 temp_slot_address_hash,
1218 temp_slot_address_eq,
1219 NULL);
1220 else
1221 htab_empty (temp_slot_address_table);
1222 }
1223 \f
1224 /* These routines are responsible for converting virtual register references
1225 to the actual hard register references once RTL generation is complete.
1226
1227 The following four variables are used for communication between the
1228 routines. They contain the offsets of the virtual registers from their
1229 respective hard registers. */
1230
1231 static int in_arg_offset;
1232 static int var_offset;
1233 static int dynamic_offset;
1234 static int out_arg_offset;
1235 static int cfa_offset;
1236
1237 /* In most machines, the stack pointer register is equivalent to the bottom
1238 of the stack. */
1239
1240 #ifndef STACK_POINTER_OFFSET
1241 #define STACK_POINTER_OFFSET 0
1242 #endif
1243
1244 /* If not defined, pick an appropriate default for the offset of dynamically
1245 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1246 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1247
1248 #ifndef STACK_DYNAMIC_OFFSET
1249
1250 /* The bottom of the stack points to the actual arguments. If
1251 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1252 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1253 stack space for register parameters is not pushed by the caller, but
1254 rather part of the fixed stack areas and hence not included in
1255 `crtl->outgoing_args_size'. Nevertheless, we must allow
1256 for it when allocating stack dynamic objects. */
1257
1258 #if defined(REG_PARM_STACK_SPACE)
1259 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1260 ((ACCUMULATE_OUTGOING_ARGS \
1261 ? (crtl->outgoing_args_size \
1262 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1263 : REG_PARM_STACK_SPACE (FNDECL))) \
1264 : 0) + (STACK_POINTER_OFFSET))
1265 #else
1266 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1267 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1268 + (STACK_POINTER_OFFSET))
1269 #endif
1270 #endif
1271
1272 \f
1273 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1274 is a virtual register, return the equivalent hard register and set the
1275 offset indirectly through the pointer. Otherwise, return 0. */
1276
1277 static rtx
1278 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1279 {
1280 rtx new_rtx;
1281 HOST_WIDE_INT offset;
1282
1283 if (x == virtual_incoming_args_rtx)
1284 {
1285 if (stack_realign_drap)
1286 {
1287 /* Replace virtual_incoming_args_rtx with internal arg
1288 pointer if DRAP is used to realign stack. */
1289 new_rtx = crtl->args.internal_arg_pointer;
1290 offset = 0;
1291 }
1292 else
1293 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1294 }
1295 else if (x == virtual_stack_vars_rtx)
1296 new_rtx = frame_pointer_rtx, offset = var_offset;
1297 else if (x == virtual_stack_dynamic_rtx)
1298 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1299 else if (x == virtual_outgoing_args_rtx)
1300 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1301 else if (x == virtual_cfa_rtx)
1302 {
1303 #ifdef FRAME_POINTER_CFA_OFFSET
1304 new_rtx = frame_pointer_rtx;
1305 #else
1306 new_rtx = arg_pointer_rtx;
1307 #endif
1308 offset = cfa_offset;
1309 }
1310 else
1311 return NULL_RTX;
1312
1313 *poffset = offset;
1314 return new_rtx;
1315 }
1316
1317 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1318 Instantiate any virtual registers present inside of *LOC. The expression
1319 is simplified, as much as possible, but is not to be considered "valid"
1320 in any sense implied by the target. If any change is made, set CHANGED
1321 to true. */
1322
1323 static int
1324 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1325 {
1326 HOST_WIDE_INT offset;
1327 bool *changed = (bool *) data;
1328 rtx x, new_rtx;
1329
1330 x = *loc;
1331 if (x == 0)
1332 return 0;
1333
1334 switch (GET_CODE (x))
1335 {
1336 case REG:
1337 new_rtx = instantiate_new_reg (x, &offset);
1338 if (new_rtx)
1339 {
1340 *loc = plus_constant (new_rtx, offset);
1341 if (changed)
1342 *changed = true;
1343 }
1344 return -1;
1345
1346 case PLUS:
1347 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1348 if (new_rtx)
1349 {
1350 new_rtx = plus_constant (new_rtx, offset);
1351 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1352 if (changed)
1353 *changed = true;
1354 return -1;
1355 }
1356
1357 /* FIXME -- from old code */
1358 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1359 we can commute the PLUS and SUBREG because pointers into the
1360 frame are well-behaved. */
1361 break;
1362
1363 default:
1364 break;
1365 }
1366
1367 return 0;
1368 }
1369
1370 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1371 matches the predicate for insn CODE operand OPERAND. */
1372
1373 static int
1374 safe_insn_predicate (int code, int operand, rtx x)
1375 {
1376 const struct insn_operand_data *op_data;
1377
1378 if (code < 0)
1379 return true;
1380
1381 op_data = &insn_data[code].operand[operand];
1382 if (op_data->predicate == NULL)
1383 return true;
1384
1385 return op_data->predicate (x, op_data->mode);
1386 }
1387
1388 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1389 registers present inside of insn. The result will be a valid insn. */
1390
1391 static void
1392 instantiate_virtual_regs_in_insn (rtx insn)
1393 {
1394 HOST_WIDE_INT offset;
1395 int insn_code, i;
1396 bool any_change = false;
1397 rtx set, new_rtx, x, seq;
1398
1399 /* There are some special cases to be handled first. */
1400 set = single_set (insn);
1401 if (set)
1402 {
1403 /* We're allowed to assign to a virtual register. This is interpreted
1404 to mean that the underlying register gets assigned the inverse
1405 transformation. This is used, for example, in the handling of
1406 non-local gotos. */
1407 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1408 if (new_rtx)
1409 {
1410 start_sequence ();
1411
1412 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1413 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1414 GEN_INT (-offset));
1415 x = force_operand (x, new_rtx);
1416 if (x != new_rtx)
1417 emit_move_insn (new_rtx, x);
1418
1419 seq = get_insns ();
1420 end_sequence ();
1421
1422 emit_insn_before (seq, insn);
1423 delete_insn (insn);
1424 return;
1425 }
1426
1427 /* Handle a straight copy from a virtual register by generating a
1428 new add insn. The difference between this and falling through
1429 to the generic case is avoiding a new pseudo and eliminating a
1430 move insn in the initial rtl stream. */
1431 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1432 if (new_rtx && offset != 0
1433 && REG_P (SET_DEST (set))
1434 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1435 {
1436 start_sequence ();
1437
1438 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1439 new_rtx, GEN_INT (offset), SET_DEST (set),
1440 1, OPTAB_LIB_WIDEN);
1441 if (x != SET_DEST (set))
1442 emit_move_insn (SET_DEST (set), x);
1443
1444 seq = get_insns ();
1445 end_sequence ();
1446
1447 emit_insn_before (seq, insn);
1448 delete_insn (insn);
1449 return;
1450 }
1451
1452 extract_insn (insn);
1453 insn_code = INSN_CODE (insn);
1454
1455 /* Handle a plus involving a virtual register by determining if the
1456 operands remain valid if they're modified in place. */
1457 if (GET_CODE (SET_SRC (set)) == PLUS
1458 && recog_data.n_operands >= 3
1459 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1460 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1461 && CONST_INT_P (recog_data.operand[2])
1462 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1463 {
1464 offset += INTVAL (recog_data.operand[2]);
1465
1466 /* If the sum is zero, then replace with a plain move. */
1467 if (offset == 0
1468 && REG_P (SET_DEST (set))
1469 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1470 {
1471 start_sequence ();
1472 emit_move_insn (SET_DEST (set), new_rtx);
1473 seq = get_insns ();
1474 end_sequence ();
1475
1476 emit_insn_before (seq, insn);
1477 delete_insn (insn);
1478 return;
1479 }
1480
1481 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1482
1483 /* Using validate_change and apply_change_group here leaves
1484 recog_data in an invalid state. Since we know exactly what
1485 we want to check, do those two by hand. */
1486 if (safe_insn_predicate (insn_code, 1, new_rtx)
1487 && safe_insn_predicate (insn_code, 2, x))
1488 {
1489 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1490 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1491 any_change = true;
1492
1493 /* Fall through into the regular operand fixup loop in
1494 order to take care of operands other than 1 and 2. */
1495 }
1496 }
1497 }
1498 else
1499 {
1500 extract_insn (insn);
1501 insn_code = INSN_CODE (insn);
1502 }
1503
1504 /* In the general case, we expect virtual registers to appear only in
1505 operands, and then only as either bare registers or inside memories. */
1506 for (i = 0; i < recog_data.n_operands; ++i)
1507 {
1508 x = recog_data.operand[i];
1509 switch (GET_CODE (x))
1510 {
1511 case MEM:
1512 {
1513 rtx addr = XEXP (x, 0);
1514 bool changed = false;
1515
1516 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1517 if (!changed)
1518 continue;
1519
1520 start_sequence ();
1521 x = replace_equiv_address (x, addr);
1522 /* It may happen that the address with the virtual reg
1523 was valid (e.g. based on the virtual stack reg, which might
1524 be acceptable to the predicates with all offsets), whereas
1525 the address now isn't anymore, for instance when the address
1526 is still offsetted, but the base reg isn't virtual-stack-reg
1527 anymore. Below we would do a force_reg on the whole operand,
1528 but this insn might actually only accept memory. Hence,
1529 before doing that last resort, try to reload the address into
1530 a register, so this operand stays a MEM. */
1531 if (!safe_insn_predicate (insn_code, i, x))
1532 {
1533 addr = force_reg (GET_MODE (addr), addr);
1534 x = replace_equiv_address (x, addr);
1535 }
1536 seq = get_insns ();
1537 end_sequence ();
1538 if (seq)
1539 emit_insn_before (seq, insn);
1540 }
1541 break;
1542
1543 case REG:
1544 new_rtx = instantiate_new_reg (x, &offset);
1545 if (new_rtx == NULL)
1546 continue;
1547 if (offset == 0)
1548 x = new_rtx;
1549 else
1550 {
1551 start_sequence ();
1552
1553 /* Careful, special mode predicates may have stuff in
1554 insn_data[insn_code].operand[i].mode that isn't useful
1555 to us for computing a new value. */
1556 /* ??? Recognize address_operand and/or "p" constraints
1557 to see if (plus new offset) is a valid before we put
1558 this through expand_simple_binop. */
1559 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1560 GEN_INT (offset), NULL_RTX,
1561 1, OPTAB_LIB_WIDEN);
1562 seq = get_insns ();
1563 end_sequence ();
1564 emit_insn_before (seq, insn);
1565 }
1566 break;
1567
1568 case SUBREG:
1569 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1570 if (new_rtx == NULL)
1571 continue;
1572 if (offset != 0)
1573 {
1574 start_sequence ();
1575 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1576 GEN_INT (offset), NULL_RTX,
1577 1, OPTAB_LIB_WIDEN);
1578 seq = get_insns ();
1579 end_sequence ();
1580 emit_insn_before (seq, insn);
1581 }
1582 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1583 GET_MODE (new_rtx), SUBREG_BYTE (x));
1584 gcc_assert (x);
1585 break;
1586
1587 default:
1588 continue;
1589 }
1590
1591 /* At this point, X contains the new value for the operand.
1592 Validate the new value vs the insn predicate. Note that
1593 asm insns will have insn_code -1 here. */
1594 if (!safe_insn_predicate (insn_code, i, x))
1595 {
1596 start_sequence ();
1597 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1598 seq = get_insns ();
1599 end_sequence ();
1600 if (seq)
1601 emit_insn_before (seq, insn);
1602 }
1603
1604 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1605 any_change = true;
1606 }
1607
1608 if (any_change)
1609 {
1610 /* Propagate operand changes into the duplicates. */
1611 for (i = 0; i < recog_data.n_dups; ++i)
1612 *recog_data.dup_loc[i]
1613 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1614
1615 /* Force re-recognition of the instruction for validation. */
1616 INSN_CODE (insn) = -1;
1617 }
1618
1619 if (asm_noperands (PATTERN (insn)) >= 0)
1620 {
1621 if (!check_asm_operands (PATTERN (insn)))
1622 {
1623 error_for_asm (insn, "impossible constraint in %<asm%>");
1624 delete_insn (insn);
1625 }
1626 }
1627 else
1628 {
1629 if (recog_memoized (insn) < 0)
1630 fatal_insn_not_found (insn);
1631 }
1632 }
1633
1634 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1635 do any instantiation required. */
1636
1637 void
1638 instantiate_decl_rtl (rtx x)
1639 {
1640 rtx addr;
1641
1642 if (x == 0)
1643 return;
1644
1645 /* If this is a CONCAT, recurse for the pieces. */
1646 if (GET_CODE (x) == CONCAT)
1647 {
1648 instantiate_decl_rtl (XEXP (x, 0));
1649 instantiate_decl_rtl (XEXP (x, 1));
1650 return;
1651 }
1652
1653 /* If this is not a MEM, no need to do anything. Similarly if the
1654 address is a constant or a register that is not a virtual register. */
1655 if (!MEM_P (x))
1656 return;
1657
1658 addr = XEXP (x, 0);
1659 if (CONSTANT_P (addr)
1660 || (REG_P (addr)
1661 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1662 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1663 return;
1664
1665 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1666 }
1667
1668 /* Helper for instantiate_decls called via walk_tree: Process all decls
1669 in the given DECL_VALUE_EXPR. */
1670
1671 static tree
1672 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1673 {
1674 tree t = *tp;
1675 if (! EXPR_P (t))
1676 {
1677 *walk_subtrees = 0;
1678 if (DECL_P (t) && DECL_RTL_SET_P (t))
1679 instantiate_decl_rtl (DECL_RTL (t));
1680 }
1681 return NULL;
1682 }
1683
1684 /* Subroutine of instantiate_decls: Process all decls in the given
1685 BLOCK node and all its subblocks. */
1686
1687 static void
1688 instantiate_decls_1 (tree let)
1689 {
1690 tree t;
1691
1692 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1693 {
1694 if (DECL_RTL_SET_P (t))
1695 instantiate_decl_rtl (DECL_RTL (t));
1696 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1697 {
1698 tree v = DECL_VALUE_EXPR (t);
1699 walk_tree (&v, instantiate_expr, NULL, NULL);
1700 }
1701 }
1702
1703 /* Process all subblocks. */
1704 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1705 instantiate_decls_1 (t);
1706 }
1707
1708 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1709 all virtual registers in their DECL_RTL's. */
1710
1711 static void
1712 instantiate_decls (tree fndecl)
1713 {
1714 tree decl, t, next;
1715
1716 /* Process all parameters of the function. */
1717 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1718 {
1719 instantiate_decl_rtl (DECL_RTL (decl));
1720 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1721 if (DECL_HAS_VALUE_EXPR_P (decl))
1722 {
1723 tree v = DECL_VALUE_EXPR (decl);
1724 walk_tree (&v, instantiate_expr, NULL, NULL);
1725 }
1726 }
1727
1728 /* Now process all variables defined in the function or its subblocks. */
1729 instantiate_decls_1 (DECL_INITIAL (fndecl));
1730
1731 t = cfun->local_decls;
1732 cfun->local_decls = NULL_TREE;
1733 for (; t; t = next)
1734 {
1735 next = TREE_CHAIN (t);
1736 decl = TREE_VALUE (t);
1737 if (DECL_RTL_SET_P (decl))
1738 instantiate_decl_rtl (DECL_RTL (decl));
1739 ggc_free (t);
1740 }
1741 }
1742
1743 /* Pass through the INSNS of function FNDECL and convert virtual register
1744 references to hard register references. */
1745
1746 static unsigned int
1747 instantiate_virtual_regs (void)
1748 {
1749 rtx insn;
1750
1751 /* Compute the offsets to use for this function. */
1752 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1753 var_offset = STARTING_FRAME_OFFSET;
1754 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1755 out_arg_offset = STACK_POINTER_OFFSET;
1756 #ifdef FRAME_POINTER_CFA_OFFSET
1757 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1758 #else
1759 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1760 #endif
1761
1762 /* Initialize recognition, indicating that volatile is OK. */
1763 init_recog ();
1764
1765 /* Scan through all the insns, instantiating every virtual register still
1766 present. */
1767 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1768 if (INSN_P (insn))
1769 {
1770 /* These patterns in the instruction stream can never be recognized.
1771 Fortunately, they shouldn't contain virtual registers either. */
1772 if (GET_CODE (PATTERN (insn)) == USE
1773 || GET_CODE (PATTERN (insn)) == CLOBBER
1774 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1775 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1776 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1777 continue;
1778
1779 instantiate_virtual_regs_in_insn (insn);
1780
1781 if (INSN_DELETED_P (insn))
1782 continue;
1783
1784 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1785
1786 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1787 if (CALL_P (insn))
1788 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1789 instantiate_virtual_regs_in_rtx, NULL);
1790 }
1791
1792 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1793 instantiate_decls (current_function_decl);
1794
1795 targetm.instantiate_decls ();
1796
1797 /* Indicate that, from now on, assign_stack_local should use
1798 frame_pointer_rtx. */
1799 virtuals_instantiated = 1;
1800 return 0;
1801 }
1802
1803 struct rtl_opt_pass pass_instantiate_virtual_regs =
1804 {
1805 {
1806 RTL_PASS,
1807 "vregs", /* name */
1808 NULL, /* gate */
1809 instantiate_virtual_regs, /* execute */
1810 NULL, /* sub */
1811 NULL, /* next */
1812 0, /* static_pass_number */
1813 TV_NONE, /* tv_id */
1814 0, /* properties_required */
1815 0, /* properties_provided */
1816 0, /* properties_destroyed */
1817 0, /* todo_flags_start */
1818 TODO_dump_func /* todo_flags_finish */
1819 }
1820 };
1821
1822 \f
1823 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1824 This means a type for which function calls must pass an address to the
1825 function or get an address back from the function.
1826 EXP may be a type node or an expression (whose type is tested). */
1827
1828 int
1829 aggregate_value_p (const_tree exp, const_tree fntype)
1830 {
1831 int i, regno, nregs;
1832 rtx reg;
1833
1834 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1835
1836 /* DECL node associated with FNTYPE when relevant, which we might need to
1837 check for by-invisible-reference returns, typically for CALL_EXPR input
1838 EXPressions. */
1839 const_tree fndecl = NULL_TREE;
1840
1841 if (fntype)
1842 switch (TREE_CODE (fntype))
1843 {
1844 case CALL_EXPR:
1845 fndecl = get_callee_fndecl (fntype);
1846 fntype = (fndecl
1847 ? TREE_TYPE (fndecl)
1848 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1849 break;
1850 case FUNCTION_DECL:
1851 fndecl = fntype;
1852 fntype = TREE_TYPE (fndecl);
1853 break;
1854 case FUNCTION_TYPE:
1855 case METHOD_TYPE:
1856 break;
1857 case IDENTIFIER_NODE:
1858 fntype = 0;
1859 break;
1860 default:
1861 /* We don't expect other rtl types here. */
1862 gcc_unreachable ();
1863 }
1864
1865 if (TREE_CODE (type) == VOID_TYPE)
1866 return 0;
1867
1868 /* If the front end has decided that this needs to be passed by
1869 reference, do so. */
1870 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1871 && DECL_BY_REFERENCE (exp))
1872 return 1;
1873
1874 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1875 called function RESULT_DECL, meaning the function returns in memory by
1876 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1877 on the function type, which used to be the way to request such a return
1878 mechanism but might now be causing troubles at gimplification time if
1879 temporaries with the function type need to be created. */
1880 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1881 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1882 return 1;
1883
1884 if (targetm.calls.return_in_memory (type, fntype))
1885 return 1;
1886 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1887 and thus can't be returned in registers. */
1888 if (TREE_ADDRESSABLE (type))
1889 return 1;
1890 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1891 return 1;
1892 /* Make sure we have suitable call-clobbered regs to return
1893 the value in; if not, we must return it in memory. */
1894 reg = hard_function_value (type, 0, fntype, 0);
1895
1896 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1897 it is OK. */
1898 if (!REG_P (reg))
1899 return 0;
1900
1901 regno = REGNO (reg);
1902 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1903 for (i = 0; i < nregs; i++)
1904 if (! call_used_regs[regno + i])
1905 return 1;
1906 return 0;
1907 }
1908 \f
1909 /* Return true if we should assign DECL a pseudo register; false if it
1910 should live on the local stack. */
1911
1912 bool
1913 use_register_for_decl (const_tree decl)
1914 {
1915 if (!targetm.calls.allocate_stack_slots_for_args())
1916 return true;
1917
1918 /* Honor volatile. */
1919 if (TREE_SIDE_EFFECTS (decl))
1920 return false;
1921
1922 /* Honor addressability. */
1923 if (TREE_ADDRESSABLE (decl))
1924 return false;
1925
1926 /* Only register-like things go in registers. */
1927 if (DECL_MODE (decl) == BLKmode)
1928 return false;
1929
1930 /* If -ffloat-store specified, don't put explicit float variables
1931 into registers. */
1932 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1933 propagates values across these stores, and it probably shouldn't. */
1934 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1935 return false;
1936
1937 /* If we're not interested in tracking debugging information for
1938 this decl, then we can certainly put it in a register. */
1939 if (DECL_IGNORED_P (decl))
1940 return true;
1941
1942 if (optimize)
1943 return true;
1944
1945 if (!DECL_REGISTER (decl))
1946 return false;
1947
1948 switch (TREE_CODE (TREE_TYPE (decl)))
1949 {
1950 case RECORD_TYPE:
1951 case UNION_TYPE:
1952 case QUAL_UNION_TYPE:
1953 /* When not optimizing, disregard register keyword for variables with
1954 types containing methods, otherwise the methods won't be callable
1955 from the debugger. */
1956 if (TYPE_METHODS (TREE_TYPE (decl)))
1957 return false;
1958 break;
1959 default:
1960 break;
1961 }
1962
1963 return true;
1964 }
1965
1966 /* Return true if TYPE should be passed by invisible reference. */
1967
1968 bool
1969 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1970 tree type, bool named_arg)
1971 {
1972 if (type)
1973 {
1974 /* If this type contains non-trivial constructors, then it is
1975 forbidden for the middle-end to create any new copies. */
1976 if (TREE_ADDRESSABLE (type))
1977 return true;
1978
1979 /* GCC post 3.4 passes *all* variable sized types by reference. */
1980 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1981 return true;
1982 }
1983
1984 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1985 }
1986
1987 /* Return true if TYPE, which is passed by reference, should be callee
1988 copied instead of caller copied. */
1989
1990 bool
1991 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1992 tree type, bool named_arg)
1993 {
1994 if (type && TREE_ADDRESSABLE (type))
1995 return false;
1996 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1997 }
1998
1999 /* Structures to communicate between the subroutines of assign_parms.
2000 The first holds data persistent across all parameters, the second
2001 is cleared out for each parameter. */
2002
2003 struct assign_parm_data_all
2004 {
2005 CUMULATIVE_ARGS args_so_far;
2006 struct args_size stack_args_size;
2007 tree function_result_decl;
2008 tree orig_fnargs;
2009 rtx first_conversion_insn;
2010 rtx last_conversion_insn;
2011 HOST_WIDE_INT pretend_args_size;
2012 HOST_WIDE_INT extra_pretend_bytes;
2013 int reg_parm_stack_space;
2014 };
2015
2016 struct assign_parm_data_one
2017 {
2018 tree nominal_type;
2019 tree passed_type;
2020 rtx entry_parm;
2021 rtx stack_parm;
2022 enum machine_mode nominal_mode;
2023 enum machine_mode passed_mode;
2024 enum machine_mode promoted_mode;
2025 struct locate_and_pad_arg_data locate;
2026 int partial;
2027 BOOL_BITFIELD named_arg : 1;
2028 BOOL_BITFIELD passed_pointer : 1;
2029 BOOL_BITFIELD on_stack : 1;
2030 BOOL_BITFIELD loaded_in_reg : 1;
2031 };
2032
2033 /* A subroutine of assign_parms. Initialize ALL. */
2034
2035 static void
2036 assign_parms_initialize_all (struct assign_parm_data_all *all)
2037 {
2038 tree fntype;
2039
2040 memset (all, 0, sizeof (*all));
2041
2042 fntype = TREE_TYPE (current_function_decl);
2043
2044 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2045 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2046 #else
2047 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2048 current_function_decl, -1);
2049 #endif
2050
2051 #ifdef REG_PARM_STACK_SPACE
2052 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2053 #endif
2054 }
2055
2056 /* If ARGS contains entries with complex types, split the entry into two
2057 entries of the component type. Return a new list of substitutions are
2058 needed, else the old list. */
2059
2060 static tree
2061 split_complex_args (tree args)
2062 {
2063 tree p;
2064
2065 /* Before allocating memory, check for the common case of no complex. */
2066 for (p = args; p; p = TREE_CHAIN (p))
2067 {
2068 tree type = TREE_TYPE (p);
2069 if (TREE_CODE (type) == COMPLEX_TYPE
2070 && targetm.calls.split_complex_arg (type))
2071 goto found;
2072 }
2073 return args;
2074
2075 found:
2076 args = copy_list (args);
2077
2078 for (p = args; p; p = TREE_CHAIN (p))
2079 {
2080 tree type = TREE_TYPE (p);
2081 if (TREE_CODE (type) == COMPLEX_TYPE
2082 && targetm.calls.split_complex_arg (type))
2083 {
2084 tree decl;
2085 tree subtype = TREE_TYPE (type);
2086 bool addressable = TREE_ADDRESSABLE (p);
2087
2088 /* Rewrite the PARM_DECL's type with its component. */
2089 TREE_TYPE (p) = subtype;
2090 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2091 DECL_MODE (p) = VOIDmode;
2092 DECL_SIZE (p) = NULL;
2093 DECL_SIZE_UNIT (p) = NULL;
2094 /* If this arg must go in memory, put it in a pseudo here.
2095 We can't allow it to go in memory as per normal parms,
2096 because the usual place might not have the imag part
2097 adjacent to the real part. */
2098 DECL_ARTIFICIAL (p) = addressable;
2099 DECL_IGNORED_P (p) = addressable;
2100 TREE_ADDRESSABLE (p) = 0;
2101 layout_decl (p, 0);
2102
2103 /* Build a second synthetic decl. */
2104 decl = build_decl (EXPR_LOCATION (p),
2105 PARM_DECL, NULL_TREE, subtype);
2106 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2107 DECL_ARTIFICIAL (decl) = addressable;
2108 DECL_IGNORED_P (decl) = addressable;
2109 layout_decl (decl, 0);
2110
2111 /* Splice it in; skip the new decl. */
2112 TREE_CHAIN (decl) = TREE_CHAIN (p);
2113 TREE_CHAIN (p) = decl;
2114 p = decl;
2115 }
2116 }
2117
2118 return args;
2119 }
2120
2121 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2122 the hidden struct return argument, and (abi willing) complex args.
2123 Return the new parameter list. */
2124
2125 static tree
2126 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2127 {
2128 tree fndecl = current_function_decl;
2129 tree fntype = TREE_TYPE (fndecl);
2130 tree fnargs = DECL_ARGUMENTS (fndecl);
2131
2132 /* If struct value address is treated as the first argument, make it so. */
2133 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2134 && ! cfun->returns_pcc_struct
2135 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2136 {
2137 tree type = build_pointer_type (TREE_TYPE (fntype));
2138 tree decl;
2139
2140 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2141 PARM_DECL, NULL_TREE, type);
2142 DECL_ARG_TYPE (decl) = type;
2143 DECL_ARTIFICIAL (decl) = 1;
2144 DECL_IGNORED_P (decl) = 1;
2145
2146 TREE_CHAIN (decl) = fnargs;
2147 fnargs = decl;
2148 all->function_result_decl = decl;
2149 }
2150
2151 all->orig_fnargs = fnargs;
2152
2153 /* If the target wants to split complex arguments into scalars, do so. */
2154 if (targetm.calls.split_complex_arg)
2155 fnargs = split_complex_args (fnargs);
2156
2157 return fnargs;
2158 }
2159
2160 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2161 data for the parameter. Incorporate ABI specifics such as pass-by-
2162 reference and type promotion. */
2163
2164 static void
2165 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2166 struct assign_parm_data_one *data)
2167 {
2168 tree nominal_type, passed_type;
2169 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2170 int unsignedp;
2171
2172 memset (data, 0, sizeof (*data));
2173
2174 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2175 if (!cfun->stdarg)
2176 data->named_arg = 1; /* No variadic parms. */
2177 else if (TREE_CHAIN (parm))
2178 data->named_arg = 1; /* Not the last non-variadic parm. */
2179 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2180 data->named_arg = 1; /* Only variadic ones are unnamed. */
2181 else
2182 data->named_arg = 0; /* Treat as variadic. */
2183
2184 nominal_type = TREE_TYPE (parm);
2185 passed_type = DECL_ARG_TYPE (parm);
2186
2187 /* Look out for errors propagating this far. Also, if the parameter's
2188 type is void then its value doesn't matter. */
2189 if (TREE_TYPE (parm) == error_mark_node
2190 /* This can happen after weird syntax errors
2191 or if an enum type is defined among the parms. */
2192 || TREE_CODE (parm) != PARM_DECL
2193 || passed_type == NULL
2194 || VOID_TYPE_P (nominal_type))
2195 {
2196 nominal_type = passed_type = void_type_node;
2197 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2198 goto egress;
2199 }
2200
2201 /* Find mode of arg as it is passed, and mode of arg as it should be
2202 during execution of this function. */
2203 passed_mode = TYPE_MODE (passed_type);
2204 nominal_mode = TYPE_MODE (nominal_type);
2205
2206 /* If the parm is to be passed as a transparent union, use the type of
2207 the first field for the tests below. We have already verified that
2208 the modes are the same. */
2209 if (TREE_CODE (passed_type) == UNION_TYPE
2210 && TYPE_TRANSPARENT_UNION (passed_type))
2211 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2212
2213 /* See if this arg was passed by invisible reference. */
2214 if (pass_by_reference (&all->args_so_far, passed_mode,
2215 passed_type, data->named_arg))
2216 {
2217 passed_type = nominal_type = build_pointer_type (passed_type);
2218 data->passed_pointer = true;
2219 passed_mode = nominal_mode = Pmode;
2220 }
2221
2222 /* Find mode as it is passed by the ABI. */
2223 unsignedp = TYPE_UNSIGNED (passed_type);
2224 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2225 TREE_TYPE (current_function_decl), 0);
2226
2227 egress:
2228 data->nominal_type = nominal_type;
2229 data->passed_type = passed_type;
2230 data->nominal_mode = nominal_mode;
2231 data->passed_mode = passed_mode;
2232 data->promoted_mode = promoted_mode;
2233 }
2234
2235 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2236
2237 static void
2238 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2239 struct assign_parm_data_one *data, bool no_rtl)
2240 {
2241 int varargs_pretend_bytes = 0;
2242
2243 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2244 data->promoted_mode,
2245 data->passed_type,
2246 &varargs_pretend_bytes, no_rtl);
2247
2248 /* If the back-end has requested extra stack space, record how much is
2249 needed. Do not change pretend_args_size otherwise since it may be
2250 nonzero from an earlier partial argument. */
2251 if (varargs_pretend_bytes > 0)
2252 all->pretend_args_size = varargs_pretend_bytes;
2253 }
2254
2255 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2256 the incoming location of the current parameter. */
2257
2258 static void
2259 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2260 struct assign_parm_data_one *data)
2261 {
2262 HOST_WIDE_INT pretend_bytes = 0;
2263 rtx entry_parm;
2264 bool in_regs;
2265
2266 if (data->promoted_mode == VOIDmode)
2267 {
2268 data->entry_parm = data->stack_parm = const0_rtx;
2269 return;
2270 }
2271
2272 #ifdef FUNCTION_INCOMING_ARG
2273 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2274 data->passed_type, data->named_arg);
2275 #else
2276 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2277 data->passed_type, data->named_arg);
2278 #endif
2279
2280 if (entry_parm == 0)
2281 data->promoted_mode = data->passed_mode;
2282
2283 /* Determine parm's home in the stack, in case it arrives in the stack
2284 or we should pretend it did. Compute the stack position and rtx where
2285 the argument arrives and its size.
2286
2287 There is one complexity here: If this was a parameter that would
2288 have been passed in registers, but wasn't only because it is
2289 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2290 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2291 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2292 as it was the previous time. */
2293 in_regs = entry_parm != 0;
2294 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2295 in_regs = true;
2296 #endif
2297 if (!in_regs && !data->named_arg)
2298 {
2299 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2300 {
2301 rtx tem;
2302 #ifdef FUNCTION_INCOMING_ARG
2303 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2304 data->passed_type, true);
2305 #else
2306 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2307 data->passed_type, true);
2308 #endif
2309 in_regs = tem != NULL;
2310 }
2311 }
2312
2313 /* If this parameter was passed both in registers and in the stack, use
2314 the copy on the stack. */
2315 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2316 data->passed_type))
2317 entry_parm = 0;
2318
2319 if (entry_parm)
2320 {
2321 int partial;
2322
2323 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2324 data->promoted_mode,
2325 data->passed_type,
2326 data->named_arg);
2327 data->partial = partial;
2328
2329 /* The caller might already have allocated stack space for the
2330 register parameters. */
2331 if (partial != 0 && all->reg_parm_stack_space == 0)
2332 {
2333 /* Part of this argument is passed in registers and part
2334 is passed on the stack. Ask the prologue code to extend
2335 the stack part so that we can recreate the full value.
2336
2337 PRETEND_BYTES is the size of the registers we need to store.
2338 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2339 stack space that the prologue should allocate.
2340
2341 Internally, gcc assumes that the argument pointer is aligned
2342 to STACK_BOUNDARY bits. This is used both for alignment
2343 optimizations (see init_emit) and to locate arguments that are
2344 aligned to more than PARM_BOUNDARY bits. We must preserve this
2345 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2346 a stack boundary. */
2347
2348 /* We assume at most one partial arg, and it must be the first
2349 argument on the stack. */
2350 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2351
2352 pretend_bytes = partial;
2353 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2354
2355 /* We want to align relative to the actual stack pointer, so
2356 don't include this in the stack size until later. */
2357 all->extra_pretend_bytes = all->pretend_args_size;
2358 }
2359 }
2360
2361 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2362 entry_parm ? data->partial : 0, current_function_decl,
2363 &all->stack_args_size, &data->locate);
2364
2365 /* Update parm_stack_boundary if this parameter is passed in the
2366 stack. */
2367 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2368 crtl->parm_stack_boundary = data->locate.boundary;
2369
2370 /* Adjust offsets to include the pretend args. */
2371 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2372 data->locate.slot_offset.constant += pretend_bytes;
2373 data->locate.offset.constant += pretend_bytes;
2374
2375 data->entry_parm = entry_parm;
2376 }
2377
2378 /* A subroutine of assign_parms. If there is actually space on the stack
2379 for this parm, count it in stack_args_size and return true. */
2380
2381 static bool
2382 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2383 struct assign_parm_data_one *data)
2384 {
2385 /* Trivially true if we've no incoming register. */
2386 if (data->entry_parm == NULL)
2387 ;
2388 /* Also true if we're partially in registers and partially not,
2389 since we've arranged to drop the entire argument on the stack. */
2390 else if (data->partial != 0)
2391 ;
2392 /* Also true if the target says that it's passed in both registers
2393 and on the stack. */
2394 else if (GET_CODE (data->entry_parm) == PARALLEL
2395 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2396 ;
2397 /* Also true if the target says that there's stack allocated for
2398 all register parameters. */
2399 else if (all->reg_parm_stack_space > 0)
2400 ;
2401 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2402 else
2403 return false;
2404
2405 all->stack_args_size.constant += data->locate.size.constant;
2406 if (data->locate.size.var)
2407 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2408
2409 return true;
2410 }
2411
2412 /* A subroutine of assign_parms. Given that this parameter is allocated
2413 stack space by the ABI, find it. */
2414
2415 static void
2416 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2417 {
2418 rtx offset_rtx, stack_parm;
2419 unsigned int align, boundary;
2420
2421 /* If we're passing this arg using a reg, make its stack home the
2422 aligned stack slot. */
2423 if (data->entry_parm)
2424 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2425 else
2426 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2427
2428 stack_parm = crtl->args.internal_arg_pointer;
2429 if (offset_rtx != const0_rtx)
2430 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2431 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2432
2433 set_mem_attributes (stack_parm, parm, 1);
2434 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2435 while promoted mode's size is needed. */
2436 if (data->promoted_mode != BLKmode
2437 && data->promoted_mode != DECL_MODE (parm))
2438 {
2439 set_mem_size (stack_parm, GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2440 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2441 {
2442 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2443 data->promoted_mode);
2444 if (offset)
2445 set_mem_offset (stack_parm,
2446 plus_constant (MEM_OFFSET (stack_parm), -offset));
2447 }
2448 }
2449
2450 boundary = data->locate.boundary;
2451 align = BITS_PER_UNIT;
2452
2453 /* If we're padding upward, we know that the alignment of the slot
2454 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2455 intentionally forcing upward padding. Otherwise we have to come
2456 up with a guess at the alignment based on OFFSET_RTX. */
2457 if (data->locate.where_pad != downward || data->entry_parm)
2458 align = boundary;
2459 else if (CONST_INT_P (offset_rtx))
2460 {
2461 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2462 align = align & -align;
2463 }
2464 set_mem_align (stack_parm, align);
2465
2466 if (data->entry_parm)
2467 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2468
2469 data->stack_parm = stack_parm;
2470 }
2471
2472 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2473 always valid and contiguous. */
2474
2475 static void
2476 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2477 {
2478 rtx entry_parm = data->entry_parm;
2479 rtx stack_parm = data->stack_parm;
2480
2481 /* If this parm was passed part in regs and part in memory, pretend it
2482 arrived entirely in memory by pushing the register-part onto the stack.
2483 In the special case of a DImode or DFmode that is split, we could put
2484 it together in a pseudoreg directly, but for now that's not worth
2485 bothering with. */
2486 if (data->partial != 0)
2487 {
2488 /* Handle calls that pass values in multiple non-contiguous
2489 locations. The Irix 6 ABI has examples of this. */
2490 if (GET_CODE (entry_parm) == PARALLEL)
2491 emit_group_store (validize_mem (stack_parm), entry_parm,
2492 data->passed_type,
2493 int_size_in_bytes (data->passed_type));
2494 else
2495 {
2496 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2497 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2498 data->partial / UNITS_PER_WORD);
2499 }
2500
2501 entry_parm = stack_parm;
2502 }
2503
2504 /* If we didn't decide this parm came in a register, by default it came
2505 on the stack. */
2506 else if (entry_parm == NULL)
2507 entry_parm = stack_parm;
2508
2509 /* When an argument is passed in multiple locations, we can't make use
2510 of this information, but we can save some copying if the whole argument
2511 is passed in a single register. */
2512 else if (GET_CODE (entry_parm) == PARALLEL
2513 && data->nominal_mode != BLKmode
2514 && data->passed_mode != BLKmode)
2515 {
2516 size_t i, len = XVECLEN (entry_parm, 0);
2517
2518 for (i = 0; i < len; i++)
2519 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2520 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2521 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2522 == data->passed_mode)
2523 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2524 {
2525 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2526 break;
2527 }
2528 }
2529
2530 data->entry_parm = entry_parm;
2531 }
2532
2533 /* A subroutine of assign_parms. Reconstitute any values which were
2534 passed in multiple registers and would fit in a single register. */
2535
2536 static void
2537 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2538 {
2539 rtx entry_parm = data->entry_parm;
2540
2541 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2542 This can be done with register operations rather than on the
2543 stack, even if we will store the reconstituted parameter on the
2544 stack later. */
2545 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2546 {
2547 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2548 emit_group_store (parmreg, entry_parm, data->passed_type,
2549 GET_MODE_SIZE (GET_MODE (entry_parm)));
2550 entry_parm = parmreg;
2551 }
2552
2553 data->entry_parm = entry_parm;
2554 }
2555
2556 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2557 always valid and properly aligned. */
2558
2559 static void
2560 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2561 {
2562 rtx stack_parm = data->stack_parm;
2563
2564 /* If we can't trust the parm stack slot to be aligned enough for its
2565 ultimate type, don't use that slot after entry. We'll make another
2566 stack slot, if we need one. */
2567 if (stack_parm
2568 && ((STRICT_ALIGNMENT
2569 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2570 || (data->nominal_type
2571 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2572 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2573 stack_parm = NULL;
2574
2575 /* If parm was passed in memory, and we need to convert it on entry,
2576 don't store it back in that same slot. */
2577 else if (data->entry_parm == stack_parm
2578 && data->nominal_mode != BLKmode
2579 && data->nominal_mode != data->passed_mode)
2580 stack_parm = NULL;
2581
2582 /* If stack protection is in effect for this function, don't leave any
2583 pointers in their passed stack slots. */
2584 else if (crtl->stack_protect_guard
2585 && (flag_stack_protect == 2
2586 || data->passed_pointer
2587 || POINTER_TYPE_P (data->nominal_type)))
2588 stack_parm = NULL;
2589
2590 data->stack_parm = stack_parm;
2591 }
2592
2593 /* A subroutine of assign_parms. Return true if the current parameter
2594 should be stored as a BLKmode in the current frame. */
2595
2596 static bool
2597 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2598 {
2599 if (data->nominal_mode == BLKmode)
2600 return true;
2601 if (GET_MODE (data->entry_parm) == BLKmode)
2602 return true;
2603
2604 #ifdef BLOCK_REG_PADDING
2605 /* Only assign_parm_setup_block knows how to deal with register arguments
2606 that are padded at the least significant end. */
2607 if (REG_P (data->entry_parm)
2608 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2609 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2610 == (BYTES_BIG_ENDIAN ? upward : downward)))
2611 return true;
2612 #endif
2613
2614 return false;
2615 }
2616
2617 /* A subroutine of assign_parms. Arrange for the parameter to be
2618 present and valid in DATA->STACK_RTL. */
2619
2620 static void
2621 assign_parm_setup_block (struct assign_parm_data_all *all,
2622 tree parm, struct assign_parm_data_one *data)
2623 {
2624 rtx entry_parm = data->entry_parm;
2625 rtx stack_parm = data->stack_parm;
2626 HOST_WIDE_INT size;
2627 HOST_WIDE_INT size_stored;
2628
2629 if (GET_CODE (entry_parm) == PARALLEL)
2630 entry_parm = emit_group_move_into_temps (entry_parm);
2631
2632 size = int_size_in_bytes (data->passed_type);
2633 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2634 if (stack_parm == 0)
2635 {
2636 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2637 stack_parm = assign_stack_local (BLKmode, size_stored,
2638 DECL_ALIGN (parm));
2639 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2640 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2641 set_mem_attributes (stack_parm, parm, 1);
2642 }
2643
2644 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2645 calls that pass values in multiple non-contiguous locations. */
2646 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2647 {
2648 rtx mem;
2649
2650 /* Note that we will be storing an integral number of words.
2651 So we have to be careful to ensure that we allocate an
2652 integral number of words. We do this above when we call
2653 assign_stack_local if space was not allocated in the argument
2654 list. If it was, this will not work if PARM_BOUNDARY is not
2655 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2656 if it becomes a problem. Exception is when BLKmode arrives
2657 with arguments not conforming to word_mode. */
2658
2659 if (data->stack_parm == 0)
2660 ;
2661 else if (GET_CODE (entry_parm) == PARALLEL)
2662 ;
2663 else
2664 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2665
2666 mem = validize_mem (stack_parm);
2667
2668 /* Handle values in multiple non-contiguous locations. */
2669 if (GET_CODE (entry_parm) == PARALLEL)
2670 {
2671 push_to_sequence2 (all->first_conversion_insn,
2672 all->last_conversion_insn);
2673 emit_group_store (mem, entry_parm, data->passed_type, size);
2674 all->first_conversion_insn = get_insns ();
2675 all->last_conversion_insn = get_last_insn ();
2676 end_sequence ();
2677 }
2678
2679 else if (size == 0)
2680 ;
2681
2682 /* If SIZE is that of a mode no bigger than a word, just use
2683 that mode's store operation. */
2684 else if (size <= UNITS_PER_WORD)
2685 {
2686 enum machine_mode mode
2687 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2688
2689 if (mode != BLKmode
2690 #ifdef BLOCK_REG_PADDING
2691 && (size == UNITS_PER_WORD
2692 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2693 != (BYTES_BIG_ENDIAN ? upward : downward)))
2694 #endif
2695 )
2696 {
2697 rtx reg;
2698
2699 /* We are really truncating a word_mode value containing
2700 SIZE bytes into a value of mode MODE. If such an
2701 operation requires no actual instructions, we can refer
2702 to the value directly in mode MODE, otherwise we must
2703 start with the register in word_mode and explicitly
2704 convert it. */
2705 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2706 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2707 else
2708 {
2709 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2710 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2711 }
2712 emit_move_insn (change_address (mem, mode, 0), reg);
2713 }
2714
2715 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2716 machine must be aligned to the left before storing
2717 to memory. Note that the previous test doesn't
2718 handle all cases (e.g. SIZE == 3). */
2719 else if (size != UNITS_PER_WORD
2720 #ifdef BLOCK_REG_PADDING
2721 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2722 == downward)
2723 #else
2724 && BYTES_BIG_ENDIAN
2725 #endif
2726 )
2727 {
2728 rtx tem, x;
2729 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2730 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2731
2732 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2733 build_int_cst (NULL_TREE, by),
2734 NULL_RTX, 1);
2735 tem = change_address (mem, word_mode, 0);
2736 emit_move_insn (tem, x);
2737 }
2738 else
2739 move_block_from_reg (REGNO (entry_parm), mem,
2740 size_stored / UNITS_PER_WORD);
2741 }
2742 else
2743 move_block_from_reg (REGNO (entry_parm), mem,
2744 size_stored / UNITS_PER_WORD);
2745 }
2746 else if (data->stack_parm == 0)
2747 {
2748 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2749 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2750 BLOCK_OP_NORMAL);
2751 all->first_conversion_insn = get_insns ();
2752 all->last_conversion_insn = get_last_insn ();
2753 end_sequence ();
2754 }
2755
2756 data->stack_parm = stack_parm;
2757 SET_DECL_RTL (parm, stack_parm);
2758 }
2759
2760 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2761 parameter. Get it there. Perform all ABI specified conversions. */
2762
2763 static void
2764 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2765 struct assign_parm_data_one *data)
2766 {
2767 rtx parmreg;
2768 enum machine_mode promoted_nominal_mode;
2769 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2770 bool did_conversion = false;
2771
2772 /* Store the parm in a pseudoregister during the function, but we may
2773 need to do it in a wider mode. Using 2 here makes the result
2774 consistent with promote_decl_mode and thus expand_expr_real_1. */
2775 promoted_nominal_mode
2776 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2777 TREE_TYPE (current_function_decl), 2);
2778
2779 parmreg = gen_reg_rtx (promoted_nominal_mode);
2780
2781 if (!DECL_ARTIFICIAL (parm))
2782 mark_user_reg (parmreg);
2783
2784 /* If this was an item that we received a pointer to,
2785 set DECL_RTL appropriately. */
2786 if (data->passed_pointer)
2787 {
2788 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2789 set_mem_attributes (x, parm, 1);
2790 SET_DECL_RTL (parm, x);
2791 }
2792 else
2793 SET_DECL_RTL (parm, parmreg);
2794
2795 assign_parm_remove_parallels (data);
2796
2797 /* Copy the value into the register, thus bridging between
2798 assign_parm_find_data_types and expand_expr_real_1. */
2799 if (data->nominal_mode != data->passed_mode
2800 || promoted_nominal_mode != data->promoted_mode)
2801 {
2802 int save_tree_used;
2803
2804 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2805 mode, by the caller. We now have to convert it to
2806 NOMINAL_MODE, if different. However, PARMREG may be in
2807 a different mode than NOMINAL_MODE if it is being stored
2808 promoted.
2809
2810 If ENTRY_PARM is a hard register, it might be in a register
2811 not valid for operating in its mode (e.g., an odd-numbered
2812 register for a DFmode). In that case, moves are the only
2813 thing valid, so we can't do a convert from there. This
2814 occurs when the calling sequence allow such misaligned
2815 usages.
2816
2817 In addition, the conversion may involve a call, which could
2818 clobber parameters which haven't been copied to pseudo
2819 registers yet. Therefore, we must first copy the parm to
2820 a pseudo reg here, and save the conversion until after all
2821 parameters have been moved. */
2822
2823 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2824
2825 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2826
2827 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2828 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2829
2830 if (GET_CODE (tempreg) == SUBREG
2831 && GET_MODE (tempreg) == data->nominal_mode
2832 && REG_P (SUBREG_REG (tempreg))
2833 && data->nominal_mode == data->passed_mode
2834 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2835 && GET_MODE_SIZE (GET_MODE (tempreg))
2836 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2837 {
2838 /* The argument is already sign/zero extended, so note it
2839 into the subreg. */
2840 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2841 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2842 }
2843
2844 /* TREE_USED gets set erroneously during expand_assignment. */
2845 save_tree_used = TREE_USED (parm);
2846 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2847 TREE_USED (parm) = save_tree_used;
2848 all->first_conversion_insn = get_insns ();
2849 all->last_conversion_insn = get_last_insn ();
2850 end_sequence ();
2851
2852 did_conversion = true;
2853 }
2854 else
2855 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2856
2857 /* If we were passed a pointer but the actual value can safely live
2858 in a register, put it in one. */
2859 if (data->passed_pointer
2860 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2861 /* If by-reference argument was promoted, demote it. */
2862 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2863 || use_register_for_decl (parm)))
2864 {
2865 /* We can't use nominal_mode, because it will have been set to
2866 Pmode above. We must use the actual mode of the parm. */
2867 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2868 mark_user_reg (parmreg);
2869
2870 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2871 {
2872 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2873 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2874
2875 push_to_sequence2 (all->first_conversion_insn,
2876 all->last_conversion_insn);
2877 emit_move_insn (tempreg, DECL_RTL (parm));
2878 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2879 emit_move_insn (parmreg, tempreg);
2880 all->first_conversion_insn = get_insns ();
2881 all->last_conversion_insn = get_last_insn ();
2882 end_sequence ();
2883
2884 did_conversion = true;
2885 }
2886 else
2887 emit_move_insn (parmreg, DECL_RTL (parm));
2888
2889 SET_DECL_RTL (parm, parmreg);
2890
2891 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2892 now the parm. */
2893 data->stack_parm = NULL;
2894 }
2895
2896 /* Mark the register as eliminable if we did no conversion and it was
2897 copied from memory at a fixed offset, and the arg pointer was not
2898 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2899 offset formed an invalid address, such memory-equivalences as we
2900 make here would screw up life analysis for it. */
2901 if (data->nominal_mode == data->passed_mode
2902 && !did_conversion
2903 && data->stack_parm != 0
2904 && MEM_P (data->stack_parm)
2905 && data->locate.offset.var == 0
2906 && reg_mentioned_p (virtual_incoming_args_rtx,
2907 XEXP (data->stack_parm, 0)))
2908 {
2909 rtx linsn = get_last_insn ();
2910 rtx sinsn, set;
2911
2912 /* Mark complex types separately. */
2913 if (GET_CODE (parmreg) == CONCAT)
2914 {
2915 enum machine_mode submode
2916 = GET_MODE_INNER (GET_MODE (parmreg));
2917 int regnor = REGNO (XEXP (parmreg, 0));
2918 int regnoi = REGNO (XEXP (parmreg, 1));
2919 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2920 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2921 GET_MODE_SIZE (submode));
2922
2923 /* Scan backwards for the set of the real and
2924 imaginary parts. */
2925 for (sinsn = linsn; sinsn != 0;
2926 sinsn = prev_nonnote_insn (sinsn))
2927 {
2928 set = single_set (sinsn);
2929 if (set == 0)
2930 continue;
2931
2932 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2933 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2934 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2935 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2936 }
2937 }
2938 else if ((set = single_set (linsn)) != 0
2939 && SET_DEST (set) == parmreg)
2940 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2941 }
2942
2943 /* For pointer data type, suggest pointer register. */
2944 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2945 mark_reg_pointer (parmreg,
2946 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2947 }
2948
2949 /* A subroutine of assign_parms. Allocate stack space to hold the current
2950 parameter. Get it there. Perform all ABI specified conversions. */
2951
2952 static void
2953 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2954 struct assign_parm_data_one *data)
2955 {
2956 /* Value must be stored in the stack slot STACK_PARM during function
2957 execution. */
2958 bool to_conversion = false;
2959
2960 assign_parm_remove_parallels (data);
2961
2962 if (data->promoted_mode != data->nominal_mode)
2963 {
2964 /* Conversion is required. */
2965 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2966
2967 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2968
2969 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2970 to_conversion = true;
2971
2972 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2973 TYPE_UNSIGNED (TREE_TYPE (parm)));
2974
2975 if (data->stack_parm)
2976 {
2977 int offset = subreg_lowpart_offset (data->nominal_mode,
2978 GET_MODE (data->stack_parm));
2979 /* ??? This may need a big-endian conversion on sparc64. */
2980 data->stack_parm
2981 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2982 if (offset && MEM_OFFSET (data->stack_parm))
2983 set_mem_offset (data->stack_parm,
2984 plus_constant (MEM_OFFSET (data->stack_parm),
2985 offset));
2986 }
2987 }
2988
2989 if (data->entry_parm != data->stack_parm)
2990 {
2991 rtx src, dest;
2992
2993 if (data->stack_parm == 0)
2994 {
2995 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
2996 GET_MODE (data->entry_parm),
2997 TYPE_ALIGN (data->passed_type));
2998 data->stack_parm
2999 = assign_stack_local (GET_MODE (data->entry_parm),
3000 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3001 align);
3002 set_mem_attributes (data->stack_parm, parm, 1);
3003 }
3004
3005 dest = validize_mem (data->stack_parm);
3006 src = validize_mem (data->entry_parm);
3007
3008 if (MEM_P (src))
3009 {
3010 /* Use a block move to handle potentially misaligned entry_parm. */
3011 if (!to_conversion)
3012 push_to_sequence2 (all->first_conversion_insn,
3013 all->last_conversion_insn);
3014 to_conversion = true;
3015
3016 emit_block_move (dest, src,
3017 GEN_INT (int_size_in_bytes (data->passed_type)),
3018 BLOCK_OP_NORMAL);
3019 }
3020 else
3021 emit_move_insn (dest, src);
3022 }
3023
3024 if (to_conversion)
3025 {
3026 all->first_conversion_insn = get_insns ();
3027 all->last_conversion_insn = get_last_insn ();
3028 end_sequence ();
3029 }
3030
3031 SET_DECL_RTL (parm, data->stack_parm);
3032 }
3033
3034 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3035 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3036
3037 static void
3038 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
3039 {
3040 tree parm;
3041 tree orig_fnargs = all->orig_fnargs;
3042
3043 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
3044 {
3045 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3046 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3047 {
3048 rtx tmp, real, imag;
3049 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3050
3051 real = DECL_RTL (fnargs);
3052 imag = DECL_RTL (TREE_CHAIN (fnargs));
3053 if (inner != GET_MODE (real))
3054 {
3055 real = gen_lowpart_SUBREG (inner, real);
3056 imag = gen_lowpart_SUBREG (inner, imag);
3057 }
3058
3059 if (TREE_ADDRESSABLE (parm))
3060 {
3061 rtx rmem, imem;
3062 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3063 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3064 DECL_MODE (parm),
3065 TYPE_ALIGN (TREE_TYPE (parm)));
3066
3067 /* split_complex_arg put the real and imag parts in
3068 pseudos. Move them to memory. */
3069 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3070 set_mem_attributes (tmp, parm, 1);
3071 rmem = adjust_address_nv (tmp, inner, 0);
3072 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3073 push_to_sequence2 (all->first_conversion_insn,
3074 all->last_conversion_insn);
3075 emit_move_insn (rmem, real);
3076 emit_move_insn (imem, imag);
3077 all->first_conversion_insn = get_insns ();
3078 all->last_conversion_insn = get_last_insn ();
3079 end_sequence ();
3080 }
3081 else
3082 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3083 SET_DECL_RTL (parm, tmp);
3084
3085 real = DECL_INCOMING_RTL (fnargs);
3086 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3087 if (inner != GET_MODE (real))
3088 {
3089 real = gen_lowpart_SUBREG (inner, real);
3090 imag = gen_lowpart_SUBREG (inner, imag);
3091 }
3092 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3093 set_decl_incoming_rtl (parm, tmp, false);
3094 fnargs = TREE_CHAIN (fnargs);
3095 }
3096 else
3097 {
3098 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3099 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
3100
3101 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3102 instead of the copy of decl, i.e. FNARGS. */
3103 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3104 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3105 }
3106
3107 fnargs = TREE_CHAIN (fnargs);
3108 }
3109 }
3110
3111 /* Assign RTL expressions to the function's parameters. This may involve
3112 copying them into registers and using those registers as the DECL_RTL. */
3113
3114 static void
3115 assign_parms (tree fndecl)
3116 {
3117 struct assign_parm_data_all all;
3118 tree fnargs, parm;
3119
3120 crtl->args.internal_arg_pointer
3121 = targetm.calls.internal_arg_pointer ();
3122
3123 assign_parms_initialize_all (&all);
3124 fnargs = assign_parms_augmented_arg_list (&all);
3125
3126 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3127 {
3128 struct assign_parm_data_one data;
3129
3130 /* Extract the type of PARM; adjust it according to ABI. */
3131 assign_parm_find_data_types (&all, parm, &data);
3132
3133 /* Early out for errors and void parameters. */
3134 if (data.passed_mode == VOIDmode)
3135 {
3136 SET_DECL_RTL (parm, const0_rtx);
3137 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3138 continue;
3139 }
3140
3141 /* Estimate stack alignment from parameter alignment. */
3142 if (SUPPORTS_STACK_ALIGNMENT)
3143 {
3144 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3145 data.passed_type);
3146 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3147 align);
3148 if (TYPE_ALIGN (data.nominal_type) > align)
3149 align = MINIMUM_ALIGNMENT (data.nominal_type,
3150 TYPE_MODE (data.nominal_type),
3151 TYPE_ALIGN (data.nominal_type));
3152 if (crtl->stack_alignment_estimated < align)
3153 {
3154 gcc_assert (!crtl->stack_realign_processed);
3155 crtl->stack_alignment_estimated = align;
3156 }
3157 }
3158
3159 if (cfun->stdarg && !TREE_CHAIN (parm))
3160 assign_parms_setup_varargs (&all, &data, false);
3161
3162 /* Find out where the parameter arrives in this function. */
3163 assign_parm_find_entry_rtl (&all, &data);
3164
3165 /* Find out where stack space for this parameter might be. */
3166 if (assign_parm_is_stack_parm (&all, &data))
3167 {
3168 assign_parm_find_stack_rtl (parm, &data);
3169 assign_parm_adjust_entry_rtl (&data);
3170 }
3171
3172 /* Record permanently how this parm was passed. */
3173 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3174
3175 /* Update info on where next arg arrives in registers. */
3176 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3177 data.passed_type, data.named_arg);
3178
3179 assign_parm_adjust_stack_rtl (&data);
3180
3181 if (assign_parm_setup_block_p (&data))
3182 assign_parm_setup_block (&all, parm, &data);
3183 else if (data.passed_pointer || use_register_for_decl (parm))
3184 assign_parm_setup_reg (&all, parm, &data);
3185 else
3186 assign_parm_setup_stack (&all, parm, &data);
3187 }
3188
3189 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3190 assign_parms_unsplit_complex (&all, fnargs);
3191
3192 /* Output all parameter conversion instructions (possibly including calls)
3193 now that all parameters have been copied out of hard registers. */
3194 emit_insn (all.first_conversion_insn);
3195
3196 /* Estimate reload stack alignment from scalar return mode. */
3197 if (SUPPORTS_STACK_ALIGNMENT)
3198 {
3199 if (DECL_RESULT (fndecl))
3200 {
3201 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3202 enum machine_mode mode = TYPE_MODE (type);
3203
3204 if (mode != BLKmode
3205 && mode != VOIDmode
3206 && !AGGREGATE_TYPE_P (type))
3207 {
3208 unsigned int align = GET_MODE_ALIGNMENT (mode);
3209 if (crtl->stack_alignment_estimated < align)
3210 {
3211 gcc_assert (!crtl->stack_realign_processed);
3212 crtl->stack_alignment_estimated = align;
3213 }
3214 }
3215 }
3216 }
3217
3218 /* If we are receiving a struct value address as the first argument, set up
3219 the RTL for the function result. As this might require code to convert
3220 the transmitted address to Pmode, we do this here to ensure that possible
3221 preliminary conversions of the address have been emitted already. */
3222 if (all.function_result_decl)
3223 {
3224 tree result = DECL_RESULT (current_function_decl);
3225 rtx addr = DECL_RTL (all.function_result_decl);
3226 rtx x;
3227
3228 if (DECL_BY_REFERENCE (result))
3229 x = addr;
3230 else
3231 {
3232 addr = convert_memory_address (Pmode, addr);
3233 x = gen_rtx_MEM (DECL_MODE (result), addr);
3234 set_mem_attributes (x, result, 1);
3235 }
3236 SET_DECL_RTL (result, x);
3237 }
3238
3239 /* We have aligned all the args, so add space for the pretend args. */
3240 crtl->args.pretend_args_size = all.pretend_args_size;
3241 all.stack_args_size.constant += all.extra_pretend_bytes;
3242 crtl->args.size = all.stack_args_size.constant;
3243
3244 /* Adjust function incoming argument size for alignment and
3245 minimum length. */
3246
3247 #ifdef REG_PARM_STACK_SPACE
3248 crtl->args.size = MAX (crtl->args.size,
3249 REG_PARM_STACK_SPACE (fndecl));
3250 #endif
3251
3252 crtl->args.size = CEIL_ROUND (crtl->args.size,
3253 PARM_BOUNDARY / BITS_PER_UNIT);
3254
3255 #ifdef ARGS_GROW_DOWNWARD
3256 crtl->args.arg_offset_rtx
3257 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3258 : expand_expr (size_diffop (all.stack_args_size.var,
3259 size_int (-all.stack_args_size.constant)),
3260 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3261 #else
3262 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3263 #endif
3264
3265 /* See how many bytes, if any, of its args a function should try to pop
3266 on return. */
3267
3268 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3269 crtl->args.size);
3270
3271 /* For stdarg.h function, save info about
3272 regs and stack space used by the named args. */
3273
3274 crtl->args.info = all.args_so_far;
3275
3276 /* Set the rtx used for the function return value. Put this in its
3277 own variable so any optimizers that need this information don't have
3278 to include tree.h. Do this here so it gets done when an inlined
3279 function gets output. */
3280
3281 crtl->return_rtx
3282 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3283 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3284
3285 /* If scalar return value was computed in a pseudo-reg, or was a named
3286 return value that got dumped to the stack, copy that to the hard
3287 return register. */
3288 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3289 {
3290 tree decl_result = DECL_RESULT (fndecl);
3291 rtx decl_rtl = DECL_RTL (decl_result);
3292
3293 if (REG_P (decl_rtl)
3294 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3295 : DECL_REGISTER (decl_result))
3296 {
3297 rtx real_decl_rtl;
3298
3299 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3300 fndecl, true);
3301 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3302 /* The delay slot scheduler assumes that crtl->return_rtx
3303 holds the hard register containing the return value, not a
3304 temporary pseudo. */
3305 crtl->return_rtx = real_decl_rtl;
3306 }
3307 }
3308 }
3309
3310 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3311 For all seen types, gimplify their sizes. */
3312
3313 static tree
3314 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3315 {
3316 tree t = *tp;
3317
3318 *walk_subtrees = 0;
3319 if (TYPE_P (t))
3320 {
3321 if (POINTER_TYPE_P (t))
3322 *walk_subtrees = 1;
3323 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3324 && !TYPE_SIZES_GIMPLIFIED (t))
3325 {
3326 gimplify_type_sizes (t, (gimple_seq *) data);
3327 *walk_subtrees = 1;
3328 }
3329 }
3330
3331 return NULL;
3332 }
3333
3334 /* Gimplify the parameter list for current_function_decl. This involves
3335 evaluating SAVE_EXPRs of variable sized parameters and generating code
3336 to implement callee-copies reference parameters. Returns a sequence of
3337 statements to add to the beginning of the function. */
3338
3339 gimple_seq
3340 gimplify_parameters (void)
3341 {
3342 struct assign_parm_data_all all;
3343 tree fnargs, parm;
3344 gimple_seq stmts = NULL;
3345
3346 assign_parms_initialize_all (&all);
3347 fnargs = assign_parms_augmented_arg_list (&all);
3348
3349 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3350 {
3351 struct assign_parm_data_one data;
3352
3353 /* Extract the type of PARM; adjust it according to ABI. */
3354 assign_parm_find_data_types (&all, parm, &data);
3355
3356 /* Early out for errors and void parameters. */
3357 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3358 continue;
3359
3360 /* Update info on where next arg arrives in registers. */
3361 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3362 data.passed_type, data.named_arg);
3363
3364 /* ??? Once upon a time variable_size stuffed parameter list
3365 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3366 turned out to be less than manageable in the gimple world.
3367 Now we have to hunt them down ourselves. */
3368 walk_tree_without_duplicates (&data.passed_type,
3369 gimplify_parm_type, &stmts);
3370
3371 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3372 {
3373 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3374 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3375 }
3376
3377 if (data.passed_pointer)
3378 {
3379 tree type = TREE_TYPE (data.passed_type);
3380 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3381 type, data.named_arg))
3382 {
3383 tree local, t;
3384
3385 /* For constant-sized objects, this is trivial; for
3386 variable-sized objects, we have to play games. */
3387 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3388 && !(flag_stack_check == GENERIC_STACK_CHECK
3389 && compare_tree_int (DECL_SIZE_UNIT (parm),
3390 STACK_CHECK_MAX_VAR_SIZE) > 0))
3391 {
3392 local = create_tmp_var (type, get_name (parm));
3393 DECL_IGNORED_P (local) = 0;
3394 /* If PARM was addressable, move that flag over
3395 to the local copy, as its address will be taken,
3396 not the PARMs. */
3397 if (TREE_ADDRESSABLE (parm))
3398 {
3399 TREE_ADDRESSABLE (parm) = 0;
3400 TREE_ADDRESSABLE (local) = 1;
3401 }
3402 }
3403 else
3404 {
3405 tree ptr_type, addr;
3406
3407 ptr_type = build_pointer_type (type);
3408 addr = create_tmp_var (ptr_type, get_name (parm));
3409 DECL_IGNORED_P (addr) = 0;
3410 local = build_fold_indirect_ref (addr);
3411
3412 t = built_in_decls[BUILT_IN_ALLOCA];
3413 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3414 t = fold_convert (ptr_type, t);
3415 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3416 gimplify_and_add (t, &stmts);
3417 }
3418
3419 gimplify_assign (local, parm, &stmts);
3420
3421 SET_DECL_VALUE_EXPR (parm, local);
3422 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3423 }
3424 }
3425 }
3426
3427 return stmts;
3428 }
3429 \f
3430 /* Compute the size and offset from the start of the stacked arguments for a
3431 parm passed in mode PASSED_MODE and with type TYPE.
3432
3433 INITIAL_OFFSET_PTR points to the current offset into the stacked
3434 arguments.
3435
3436 The starting offset and size for this parm are returned in
3437 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3438 nonzero, the offset is that of stack slot, which is returned in
3439 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3440 padding required from the initial offset ptr to the stack slot.
3441
3442 IN_REGS is nonzero if the argument will be passed in registers. It will
3443 never be set if REG_PARM_STACK_SPACE is not defined.
3444
3445 FNDECL is the function in which the argument was defined.
3446
3447 There are two types of rounding that are done. The first, controlled by
3448 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3449 list to be aligned to the specific boundary (in bits). This rounding
3450 affects the initial and starting offsets, but not the argument size.
3451
3452 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3453 optionally rounds the size of the parm to PARM_BOUNDARY. The
3454 initial offset is not affected by this rounding, while the size always
3455 is and the starting offset may be. */
3456
3457 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3458 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3459 callers pass in the total size of args so far as
3460 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3461
3462 void
3463 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3464 int partial, tree fndecl ATTRIBUTE_UNUSED,
3465 struct args_size *initial_offset_ptr,
3466 struct locate_and_pad_arg_data *locate)
3467 {
3468 tree sizetree;
3469 enum direction where_pad;
3470 unsigned int boundary;
3471 int reg_parm_stack_space = 0;
3472 int part_size_in_regs;
3473
3474 #ifdef REG_PARM_STACK_SPACE
3475 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3476
3477 /* If we have found a stack parm before we reach the end of the
3478 area reserved for registers, skip that area. */
3479 if (! in_regs)
3480 {
3481 if (reg_parm_stack_space > 0)
3482 {
3483 if (initial_offset_ptr->var)
3484 {
3485 initial_offset_ptr->var
3486 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3487 ssize_int (reg_parm_stack_space));
3488 initial_offset_ptr->constant = 0;
3489 }
3490 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3491 initial_offset_ptr->constant = reg_parm_stack_space;
3492 }
3493 }
3494 #endif /* REG_PARM_STACK_SPACE */
3495
3496 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3497
3498 sizetree
3499 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3500 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3501 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3502 locate->where_pad = where_pad;
3503
3504 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3505 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3506 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3507
3508 locate->boundary = boundary;
3509
3510 if (SUPPORTS_STACK_ALIGNMENT)
3511 {
3512 /* stack_alignment_estimated can't change after stack has been
3513 realigned. */
3514 if (crtl->stack_alignment_estimated < boundary)
3515 {
3516 if (!crtl->stack_realign_processed)
3517 crtl->stack_alignment_estimated = boundary;
3518 else
3519 {
3520 /* If stack is realigned and stack alignment value
3521 hasn't been finalized, it is OK not to increase
3522 stack_alignment_estimated. The bigger alignment
3523 requirement is recorded in stack_alignment_needed
3524 below. */
3525 gcc_assert (!crtl->stack_realign_finalized
3526 && crtl->stack_realign_needed);
3527 }
3528 }
3529 }
3530
3531 /* Remember if the outgoing parameter requires extra alignment on the
3532 calling function side. */
3533 if (crtl->stack_alignment_needed < boundary)
3534 crtl->stack_alignment_needed = boundary;
3535 if (crtl->preferred_stack_boundary < boundary)
3536 crtl->preferred_stack_boundary = boundary;
3537
3538 #ifdef ARGS_GROW_DOWNWARD
3539 locate->slot_offset.constant = -initial_offset_ptr->constant;
3540 if (initial_offset_ptr->var)
3541 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3542 initial_offset_ptr->var);
3543
3544 {
3545 tree s2 = sizetree;
3546 if (where_pad != none
3547 && (!host_integerp (sizetree, 1)
3548 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3549 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3550 SUB_PARM_SIZE (locate->slot_offset, s2);
3551 }
3552
3553 locate->slot_offset.constant += part_size_in_regs;
3554
3555 if (!in_regs
3556 #ifdef REG_PARM_STACK_SPACE
3557 || REG_PARM_STACK_SPACE (fndecl) > 0
3558 #endif
3559 )
3560 pad_to_arg_alignment (&locate->slot_offset, boundary,
3561 &locate->alignment_pad);
3562
3563 locate->size.constant = (-initial_offset_ptr->constant
3564 - locate->slot_offset.constant);
3565 if (initial_offset_ptr->var)
3566 locate->size.var = size_binop (MINUS_EXPR,
3567 size_binop (MINUS_EXPR,
3568 ssize_int (0),
3569 initial_offset_ptr->var),
3570 locate->slot_offset.var);
3571
3572 /* Pad_below needs the pre-rounded size to know how much to pad
3573 below. */
3574 locate->offset = locate->slot_offset;
3575 if (where_pad == downward)
3576 pad_below (&locate->offset, passed_mode, sizetree);
3577
3578 #else /* !ARGS_GROW_DOWNWARD */
3579 if (!in_regs
3580 #ifdef REG_PARM_STACK_SPACE
3581 || REG_PARM_STACK_SPACE (fndecl) > 0
3582 #endif
3583 )
3584 pad_to_arg_alignment (initial_offset_ptr, boundary,
3585 &locate->alignment_pad);
3586 locate->slot_offset = *initial_offset_ptr;
3587
3588 #ifdef PUSH_ROUNDING
3589 if (passed_mode != BLKmode)
3590 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3591 #endif
3592
3593 /* Pad_below needs the pre-rounded size to know how much to pad below
3594 so this must be done before rounding up. */
3595 locate->offset = locate->slot_offset;
3596 if (where_pad == downward)
3597 pad_below (&locate->offset, passed_mode, sizetree);
3598
3599 if (where_pad != none
3600 && (!host_integerp (sizetree, 1)
3601 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3602 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3603
3604 ADD_PARM_SIZE (locate->size, sizetree);
3605
3606 locate->size.constant -= part_size_in_regs;
3607 #endif /* ARGS_GROW_DOWNWARD */
3608
3609 #ifdef FUNCTION_ARG_OFFSET
3610 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3611 #endif
3612 }
3613
3614 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3615 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3616
3617 static void
3618 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3619 struct args_size *alignment_pad)
3620 {
3621 tree save_var = NULL_TREE;
3622 HOST_WIDE_INT save_constant = 0;
3623 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3624 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3625
3626 #ifdef SPARC_STACK_BOUNDARY_HACK
3627 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3628 the real alignment of %sp. However, when it does this, the
3629 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3630 if (SPARC_STACK_BOUNDARY_HACK)
3631 sp_offset = 0;
3632 #endif
3633
3634 if (boundary > PARM_BOUNDARY)
3635 {
3636 save_var = offset_ptr->var;
3637 save_constant = offset_ptr->constant;
3638 }
3639
3640 alignment_pad->var = NULL_TREE;
3641 alignment_pad->constant = 0;
3642
3643 if (boundary > BITS_PER_UNIT)
3644 {
3645 if (offset_ptr->var)
3646 {
3647 tree sp_offset_tree = ssize_int (sp_offset);
3648 tree offset = size_binop (PLUS_EXPR,
3649 ARGS_SIZE_TREE (*offset_ptr),
3650 sp_offset_tree);
3651 #ifdef ARGS_GROW_DOWNWARD
3652 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3653 #else
3654 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3655 #endif
3656
3657 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3658 /* ARGS_SIZE_TREE includes constant term. */
3659 offset_ptr->constant = 0;
3660 if (boundary > PARM_BOUNDARY)
3661 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3662 save_var);
3663 }
3664 else
3665 {
3666 offset_ptr->constant = -sp_offset +
3667 #ifdef ARGS_GROW_DOWNWARD
3668 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3669 #else
3670 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3671 #endif
3672 if (boundary > PARM_BOUNDARY)
3673 alignment_pad->constant = offset_ptr->constant - save_constant;
3674 }
3675 }
3676 }
3677
3678 static void
3679 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3680 {
3681 if (passed_mode != BLKmode)
3682 {
3683 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3684 offset_ptr->constant
3685 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3686 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3687 - GET_MODE_SIZE (passed_mode));
3688 }
3689 else
3690 {
3691 if (TREE_CODE (sizetree) != INTEGER_CST
3692 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3693 {
3694 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3695 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3696 /* Add it in. */
3697 ADD_PARM_SIZE (*offset_ptr, s2);
3698 SUB_PARM_SIZE (*offset_ptr, sizetree);
3699 }
3700 }
3701 }
3702 \f
3703
3704 /* True if register REGNO was alive at a place where `setjmp' was
3705 called and was set more than once or is an argument. Such regs may
3706 be clobbered by `longjmp'. */
3707
3708 static bool
3709 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3710 {
3711 /* There appear to be cases where some local vars never reach the
3712 backend but have bogus regnos. */
3713 if (regno >= max_reg_num ())
3714 return false;
3715
3716 return ((REG_N_SETS (regno) > 1
3717 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3718 && REGNO_REG_SET_P (setjmp_crosses, regno));
3719 }
3720
3721 /* Walk the tree of blocks describing the binding levels within a
3722 function and warn about variables the might be killed by setjmp or
3723 vfork. This is done after calling flow_analysis before register
3724 allocation since that will clobber the pseudo-regs to hard
3725 regs. */
3726
3727 static void
3728 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3729 {
3730 tree decl, sub;
3731
3732 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3733 {
3734 if (TREE_CODE (decl) == VAR_DECL
3735 && DECL_RTL_SET_P (decl)
3736 && REG_P (DECL_RTL (decl))
3737 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3738 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3739 " %<longjmp%> or %<vfork%>", decl);
3740 }
3741
3742 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3743 setjmp_vars_warning (setjmp_crosses, sub);
3744 }
3745
3746 /* Do the appropriate part of setjmp_vars_warning
3747 but for arguments instead of local variables. */
3748
3749 static void
3750 setjmp_args_warning (bitmap setjmp_crosses)
3751 {
3752 tree decl;
3753 for (decl = DECL_ARGUMENTS (current_function_decl);
3754 decl; decl = TREE_CHAIN (decl))
3755 if (DECL_RTL (decl) != 0
3756 && REG_P (DECL_RTL (decl))
3757 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3758 warning (OPT_Wclobbered,
3759 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3760 decl);
3761 }
3762
3763 /* Generate warning messages for variables live across setjmp. */
3764
3765 void
3766 generate_setjmp_warnings (void)
3767 {
3768 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3769
3770 if (n_basic_blocks == NUM_FIXED_BLOCKS
3771 || bitmap_empty_p (setjmp_crosses))
3772 return;
3773
3774 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3775 setjmp_args_warning (setjmp_crosses);
3776 }
3777
3778 \f
3779 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3780 and create duplicate blocks. */
3781 /* ??? Need an option to either create block fragments or to create
3782 abstract origin duplicates of a source block. It really depends
3783 on what optimization has been performed. */
3784
3785 void
3786 reorder_blocks (void)
3787 {
3788 tree block = DECL_INITIAL (current_function_decl);
3789 VEC(tree,heap) *block_stack;
3790
3791 if (block == NULL_TREE)
3792 return;
3793
3794 block_stack = VEC_alloc (tree, heap, 10);
3795
3796 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3797 clear_block_marks (block);
3798
3799 /* Prune the old trees away, so that they don't get in the way. */
3800 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3801 BLOCK_CHAIN (block) = NULL_TREE;
3802
3803 /* Recreate the block tree from the note nesting. */
3804 reorder_blocks_1 (get_insns (), block, &block_stack);
3805 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3806
3807 VEC_free (tree, heap, block_stack);
3808 }
3809
3810 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3811
3812 void
3813 clear_block_marks (tree block)
3814 {
3815 while (block)
3816 {
3817 TREE_ASM_WRITTEN (block) = 0;
3818 clear_block_marks (BLOCK_SUBBLOCKS (block));
3819 block = BLOCK_CHAIN (block);
3820 }
3821 }
3822
3823 static void
3824 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3825 {
3826 rtx insn;
3827
3828 for (insn = insns; insn; insn = NEXT_INSN (insn))
3829 {
3830 if (NOTE_P (insn))
3831 {
3832 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3833 {
3834 tree block = NOTE_BLOCK (insn);
3835 tree origin;
3836
3837 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3838 ? BLOCK_FRAGMENT_ORIGIN (block)
3839 : block);
3840
3841 /* If we have seen this block before, that means it now
3842 spans multiple address regions. Create a new fragment. */
3843 if (TREE_ASM_WRITTEN (block))
3844 {
3845 tree new_block = copy_node (block);
3846
3847 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3848 BLOCK_FRAGMENT_CHAIN (new_block)
3849 = BLOCK_FRAGMENT_CHAIN (origin);
3850 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3851
3852 NOTE_BLOCK (insn) = new_block;
3853 block = new_block;
3854 }
3855
3856 BLOCK_SUBBLOCKS (block) = 0;
3857 TREE_ASM_WRITTEN (block) = 1;
3858 /* When there's only one block for the entire function,
3859 current_block == block and we mustn't do this, it
3860 will cause infinite recursion. */
3861 if (block != current_block)
3862 {
3863 if (block != origin)
3864 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3865
3866 BLOCK_SUPERCONTEXT (block) = current_block;
3867 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3868 BLOCK_SUBBLOCKS (current_block) = block;
3869 current_block = origin;
3870 }
3871 VEC_safe_push (tree, heap, *p_block_stack, block);
3872 }
3873 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3874 {
3875 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3876 BLOCK_SUBBLOCKS (current_block)
3877 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3878 current_block = BLOCK_SUPERCONTEXT (current_block);
3879 }
3880 }
3881 }
3882 }
3883
3884 /* Reverse the order of elements in the chain T of blocks,
3885 and return the new head of the chain (old last element). */
3886
3887 tree
3888 blocks_nreverse (tree t)
3889 {
3890 tree prev = 0, decl, next;
3891 for (decl = t; decl; decl = next)
3892 {
3893 next = BLOCK_CHAIN (decl);
3894 BLOCK_CHAIN (decl) = prev;
3895 prev = decl;
3896 }
3897 return prev;
3898 }
3899
3900 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3901 non-NULL, list them all into VECTOR, in a depth-first preorder
3902 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3903 blocks. */
3904
3905 static int
3906 all_blocks (tree block, tree *vector)
3907 {
3908 int n_blocks = 0;
3909
3910 while (block)
3911 {
3912 TREE_ASM_WRITTEN (block) = 0;
3913
3914 /* Record this block. */
3915 if (vector)
3916 vector[n_blocks] = block;
3917
3918 ++n_blocks;
3919
3920 /* Record the subblocks, and their subblocks... */
3921 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3922 vector ? vector + n_blocks : 0);
3923 block = BLOCK_CHAIN (block);
3924 }
3925
3926 return n_blocks;
3927 }
3928
3929 /* Return a vector containing all the blocks rooted at BLOCK. The
3930 number of elements in the vector is stored in N_BLOCKS_P. The
3931 vector is dynamically allocated; it is the caller's responsibility
3932 to call `free' on the pointer returned. */
3933
3934 static tree *
3935 get_block_vector (tree block, int *n_blocks_p)
3936 {
3937 tree *block_vector;
3938
3939 *n_blocks_p = all_blocks (block, NULL);
3940 block_vector = XNEWVEC (tree, *n_blocks_p);
3941 all_blocks (block, block_vector);
3942
3943 return block_vector;
3944 }
3945
3946 static GTY(()) int next_block_index = 2;
3947
3948 /* Set BLOCK_NUMBER for all the blocks in FN. */
3949
3950 void
3951 number_blocks (tree fn)
3952 {
3953 int i;
3954 int n_blocks;
3955 tree *block_vector;
3956
3957 /* For SDB and XCOFF debugging output, we start numbering the blocks
3958 from 1 within each function, rather than keeping a running
3959 count. */
3960 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3961 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3962 next_block_index = 1;
3963 #endif
3964
3965 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3966
3967 /* The top-level BLOCK isn't numbered at all. */
3968 for (i = 1; i < n_blocks; ++i)
3969 /* We number the blocks from two. */
3970 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3971
3972 free (block_vector);
3973
3974 return;
3975 }
3976
3977 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3978
3979 tree
3980 debug_find_var_in_block_tree (tree var, tree block)
3981 {
3982 tree t;
3983
3984 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3985 if (t == var)
3986 return block;
3987
3988 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3989 {
3990 tree ret = debug_find_var_in_block_tree (var, t);
3991 if (ret)
3992 return ret;
3993 }
3994
3995 return NULL_TREE;
3996 }
3997 \f
3998 /* Keep track of whether we're in a dummy function context. If we are,
3999 we don't want to invoke the set_current_function hook, because we'll
4000 get into trouble if the hook calls target_reinit () recursively or
4001 when the initial initialization is not yet complete. */
4002
4003 static bool in_dummy_function;
4004
4005 /* Invoke the target hook when setting cfun. Update the optimization options
4006 if the function uses different options than the default. */
4007
4008 static void
4009 invoke_set_current_function_hook (tree fndecl)
4010 {
4011 if (!in_dummy_function)
4012 {
4013 tree opts = ((fndecl)
4014 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4015 : optimization_default_node);
4016
4017 if (!opts)
4018 opts = optimization_default_node;
4019
4020 /* Change optimization options if needed. */
4021 if (optimization_current_node != opts)
4022 {
4023 optimization_current_node = opts;
4024 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4025 }
4026
4027 targetm.set_current_function (fndecl);
4028 }
4029 }
4030
4031 /* cfun should never be set directly; use this function. */
4032
4033 void
4034 set_cfun (struct function *new_cfun)
4035 {
4036 if (cfun != new_cfun)
4037 {
4038 cfun = new_cfun;
4039 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4040 }
4041 }
4042
4043 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4044
4045 static VEC(function_p,heap) *cfun_stack;
4046
4047 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4048
4049 void
4050 push_cfun (struct function *new_cfun)
4051 {
4052 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4053 set_cfun (new_cfun);
4054 }
4055
4056 /* Pop cfun from the stack. */
4057
4058 void
4059 pop_cfun (void)
4060 {
4061 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4062 set_cfun (new_cfun);
4063 }
4064
4065 /* Return value of funcdef and increase it. */
4066 int
4067 get_next_funcdef_no (void)
4068 {
4069 return funcdef_no++;
4070 }
4071
4072 /* Allocate a function structure for FNDECL and set its contents
4073 to the defaults. Set cfun to the newly-allocated object.
4074 Some of the helper functions invoked during initialization assume
4075 that cfun has already been set. Therefore, assign the new object
4076 directly into cfun and invoke the back end hook explicitly at the
4077 very end, rather than initializing a temporary and calling set_cfun
4078 on it.
4079
4080 ABSTRACT_P is true if this is a function that will never be seen by
4081 the middle-end. Such functions are front-end concepts (like C++
4082 function templates) that do not correspond directly to functions
4083 placed in object files. */
4084
4085 void
4086 allocate_struct_function (tree fndecl, bool abstract_p)
4087 {
4088 tree result;
4089 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4090
4091 cfun = GGC_CNEW (struct function);
4092
4093 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
4094
4095 init_eh_for_function ();
4096
4097 if (init_machine_status)
4098 cfun->machine = (*init_machine_status) ();
4099
4100 #ifdef OVERRIDE_ABI_FORMAT
4101 OVERRIDE_ABI_FORMAT (fndecl);
4102 #endif
4103
4104 invoke_set_current_function_hook (fndecl);
4105
4106 if (fndecl != NULL_TREE)
4107 {
4108 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4109 cfun->decl = fndecl;
4110 current_function_funcdef_no = get_next_funcdef_no ();
4111
4112 result = DECL_RESULT (fndecl);
4113 if (!abstract_p && aggregate_value_p (result, fndecl))
4114 {
4115 #ifdef PCC_STATIC_STRUCT_RETURN
4116 cfun->returns_pcc_struct = 1;
4117 #endif
4118 cfun->returns_struct = 1;
4119 }
4120
4121 cfun->stdarg
4122 = (fntype
4123 && TYPE_ARG_TYPES (fntype) != 0
4124 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4125 != void_type_node));
4126
4127 /* Assume all registers in stdarg functions need to be saved. */
4128 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4129 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4130 }
4131 }
4132
4133 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4134 instead of just setting it. */
4135
4136 void
4137 push_struct_function (tree fndecl)
4138 {
4139 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4140 allocate_struct_function (fndecl, false);
4141 }
4142
4143 /* Reset cfun, and other non-struct-function variables to defaults as
4144 appropriate for emitting rtl at the start of a function. */
4145
4146 static void
4147 prepare_function_start (void)
4148 {
4149 gcc_assert (!crtl->emit.x_last_insn);
4150 init_temp_slots ();
4151 init_emit ();
4152 init_varasm_status ();
4153 init_expr ();
4154 default_rtl_profile ();
4155
4156 cse_not_expected = ! optimize;
4157
4158 /* Caller save not needed yet. */
4159 caller_save_needed = 0;
4160
4161 /* We haven't done register allocation yet. */
4162 reg_renumber = 0;
4163
4164 /* Indicate that we have not instantiated virtual registers yet. */
4165 virtuals_instantiated = 0;
4166
4167 /* Indicate that we want CONCATs now. */
4168 generating_concat_p = 1;
4169
4170 /* Indicate we have no need of a frame pointer yet. */
4171 frame_pointer_needed = 0;
4172 }
4173
4174 /* Initialize the rtl expansion mechanism so that we can do simple things
4175 like generate sequences. This is used to provide a context during global
4176 initialization of some passes. You must call expand_dummy_function_end
4177 to exit this context. */
4178
4179 void
4180 init_dummy_function_start (void)
4181 {
4182 gcc_assert (!in_dummy_function);
4183 in_dummy_function = true;
4184 push_struct_function (NULL_TREE);
4185 prepare_function_start ();
4186 }
4187
4188 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4189 and initialize static variables for generating RTL for the statements
4190 of the function. */
4191
4192 void
4193 init_function_start (tree subr)
4194 {
4195 if (subr && DECL_STRUCT_FUNCTION (subr))
4196 set_cfun (DECL_STRUCT_FUNCTION (subr));
4197 else
4198 allocate_struct_function (subr, false);
4199 prepare_function_start ();
4200
4201 /* Warn if this value is an aggregate type,
4202 regardless of which calling convention we are using for it. */
4203 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4204 warning (OPT_Waggregate_return, "function returns an aggregate");
4205 }
4206
4207 /* Make sure all values used by the optimization passes have sane defaults. */
4208 unsigned int
4209 init_function_for_compilation (void)
4210 {
4211 reg_renumber = 0;
4212 return 0;
4213 }
4214
4215 struct rtl_opt_pass pass_init_function =
4216 {
4217 {
4218 RTL_PASS,
4219 NULL, /* name */
4220 NULL, /* gate */
4221 init_function_for_compilation, /* execute */
4222 NULL, /* sub */
4223 NULL, /* next */
4224 0, /* static_pass_number */
4225 TV_NONE, /* tv_id */
4226 0, /* properties_required */
4227 0, /* properties_provided */
4228 0, /* properties_destroyed */
4229 0, /* todo_flags_start */
4230 0 /* todo_flags_finish */
4231 }
4232 };
4233
4234
4235 void
4236 expand_main_function (void)
4237 {
4238 #if (defined(INVOKE__main) \
4239 || (!defined(HAS_INIT_SECTION) \
4240 && !defined(INIT_SECTION_ASM_OP) \
4241 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4242 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4243 #endif
4244 }
4245 \f
4246 /* Expand code to initialize the stack_protect_guard. This is invoked at
4247 the beginning of a function to be protected. */
4248
4249 #ifndef HAVE_stack_protect_set
4250 # define HAVE_stack_protect_set 0
4251 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4252 #endif
4253
4254 void
4255 stack_protect_prologue (void)
4256 {
4257 tree guard_decl = targetm.stack_protect_guard ();
4258 rtx x, y;
4259
4260 /* Avoid expand_expr here, because we don't want guard_decl pulled
4261 into registers unless absolutely necessary. And we know that
4262 crtl->stack_protect_guard is a local stack slot, so this skips
4263 all the fluff. */
4264 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4265 y = validize_mem (DECL_RTL (guard_decl));
4266
4267 /* Allow the target to copy from Y to X without leaking Y into a
4268 register. */
4269 if (HAVE_stack_protect_set)
4270 {
4271 rtx insn = gen_stack_protect_set (x, y);
4272 if (insn)
4273 {
4274 emit_insn (insn);
4275 return;
4276 }
4277 }
4278
4279 /* Otherwise do a straight move. */
4280 emit_move_insn (x, y);
4281 }
4282
4283 /* Expand code to verify the stack_protect_guard. This is invoked at
4284 the end of a function to be protected. */
4285
4286 #ifndef HAVE_stack_protect_test
4287 # define HAVE_stack_protect_test 0
4288 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4289 #endif
4290
4291 void
4292 stack_protect_epilogue (void)
4293 {
4294 tree guard_decl = targetm.stack_protect_guard ();
4295 rtx label = gen_label_rtx ();
4296 rtx x, y, tmp;
4297
4298 /* Avoid expand_expr here, because we don't want guard_decl pulled
4299 into registers unless absolutely necessary. And we know that
4300 crtl->stack_protect_guard is a local stack slot, so this skips
4301 all the fluff. */
4302 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4303 y = validize_mem (DECL_RTL (guard_decl));
4304
4305 /* Allow the target to compare Y with X without leaking either into
4306 a register. */
4307 switch (HAVE_stack_protect_test != 0)
4308 {
4309 case 1:
4310 tmp = gen_stack_protect_test (x, y, label);
4311 if (tmp)
4312 {
4313 emit_insn (tmp);
4314 break;
4315 }
4316 /* FALLTHRU */
4317
4318 default:
4319 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4320 break;
4321 }
4322
4323 /* The noreturn predictor has been moved to the tree level. The rtl-level
4324 predictors estimate this branch about 20%, which isn't enough to get
4325 things moved out of line. Since this is the only extant case of adding
4326 a noreturn function at the rtl level, it doesn't seem worth doing ought
4327 except adding the prediction by hand. */
4328 tmp = get_last_insn ();
4329 if (JUMP_P (tmp))
4330 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4331
4332 expand_expr_stmt (targetm.stack_protect_fail ());
4333 emit_label (label);
4334 }
4335 \f
4336 /* Start the RTL for a new function, and set variables used for
4337 emitting RTL.
4338 SUBR is the FUNCTION_DECL node.
4339 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4340 the function's parameters, which must be run at any return statement. */
4341
4342 void
4343 expand_function_start (tree subr)
4344 {
4345 /* Make sure volatile mem refs aren't considered
4346 valid operands of arithmetic insns. */
4347 init_recog_no_volatile ();
4348
4349 crtl->profile
4350 = (profile_flag
4351 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4352
4353 crtl->limit_stack
4354 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4355
4356 /* Make the label for return statements to jump to. Do not special
4357 case machines with special return instructions -- they will be
4358 handled later during jump, ifcvt, or epilogue creation. */
4359 return_label = gen_label_rtx ();
4360
4361 /* Initialize rtx used to return the value. */
4362 /* Do this before assign_parms so that we copy the struct value address
4363 before any library calls that assign parms might generate. */
4364
4365 /* Decide whether to return the value in memory or in a register. */
4366 if (aggregate_value_p (DECL_RESULT (subr), subr))
4367 {
4368 /* Returning something that won't go in a register. */
4369 rtx value_address = 0;
4370
4371 #ifdef PCC_STATIC_STRUCT_RETURN
4372 if (cfun->returns_pcc_struct)
4373 {
4374 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4375 value_address = assemble_static_space (size);
4376 }
4377 else
4378 #endif
4379 {
4380 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4381 /* Expect to be passed the address of a place to store the value.
4382 If it is passed as an argument, assign_parms will take care of
4383 it. */
4384 if (sv)
4385 {
4386 value_address = gen_reg_rtx (Pmode);
4387 emit_move_insn (value_address, sv);
4388 }
4389 }
4390 if (value_address)
4391 {
4392 rtx x = value_address;
4393 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4394 {
4395 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4396 set_mem_attributes (x, DECL_RESULT (subr), 1);
4397 }
4398 SET_DECL_RTL (DECL_RESULT (subr), x);
4399 }
4400 }
4401 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4402 /* If return mode is void, this decl rtl should not be used. */
4403 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4404 else
4405 {
4406 /* Compute the return values into a pseudo reg, which we will copy
4407 into the true return register after the cleanups are done. */
4408 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4409 if (TYPE_MODE (return_type) != BLKmode
4410 && targetm.calls.return_in_msb (return_type))
4411 /* expand_function_end will insert the appropriate padding in
4412 this case. Use the return value's natural (unpadded) mode
4413 within the function proper. */
4414 SET_DECL_RTL (DECL_RESULT (subr),
4415 gen_reg_rtx (TYPE_MODE (return_type)));
4416 else
4417 {
4418 /* In order to figure out what mode to use for the pseudo, we
4419 figure out what the mode of the eventual return register will
4420 actually be, and use that. */
4421 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4422
4423 /* Structures that are returned in registers are not
4424 aggregate_value_p, so we may see a PARALLEL or a REG. */
4425 if (REG_P (hard_reg))
4426 SET_DECL_RTL (DECL_RESULT (subr),
4427 gen_reg_rtx (GET_MODE (hard_reg)));
4428 else
4429 {
4430 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4431 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4432 }
4433 }
4434
4435 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4436 result to the real return register(s). */
4437 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4438 }
4439
4440 /* Initialize rtx for parameters and local variables.
4441 In some cases this requires emitting insns. */
4442 assign_parms (subr);
4443
4444 /* If function gets a static chain arg, store it. */
4445 if (cfun->static_chain_decl)
4446 {
4447 tree parm = cfun->static_chain_decl;
4448 rtx local = gen_reg_rtx (Pmode);
4449
4450 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4451 SET_DECL_RTL (parm, local);
4452 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4453
4454 emit_move_insn (local, static_chain_incoming_rtx);
4455 }
4456
4457 /* If the function receives a non-local goto, then store the
4458 bits we need to restore the frame pointer. */
4459 if (cfun->nonlocal_goto_save_area)
4460 {
4461 tree t_save;
4462 rtx r_save;
4463
4464 /* ??? We need to do this save early. Unfortunately here is
4465 before the frame variable gets declared. Help out... */
4466 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4467 if (!DECL_RTL_SET_P (var))
4468 expand_decl (var);
4469
4470 t_save = build4 (ARRAY_REF, ptr_type_node,
4471 cfun->nonlocal_goto_save_area,
4472 integer_zero_node, NULL_TREE, NULL_TREE);
4473 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4474 r_save = convert_memory_address (Pmode, r_save);
4475
4476 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4477 update_nonlocal_goto_save_area ();
4478 }
4479
4480 /* The following was moved from init_function_start.
4481 The move is supposed to make sdb output more accurate. */
4482 /* Indicate the beginning of the function body,
4483 as opposed to parm setup. */
4484 emit_note (NOTE_INSN_FUNCTION_BEG);
4485
4486 gcc_assert (NOTE_P (get_last_insn ()));
4487
4488 parm_birth_insn = get_last_insn ();
4489
4490 if (crtl->profile)
4491 {
4492 #ifdef PROFILE_HOOK
4493 PROFILE_HOOK (current_function_funcdef_no);
4494 #endif
4495 }
4496
4497 /* After the display initializations is where the stack checking
4498 probe should go. */
4499 if(flag_stack_check)
4500 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4501
4502 /* Make sure there is a line number after the function entry setup code. */
4503 force_next_line_note ();
4504 }
4505 \f
4506 /* Undo the effects of init_dummy_function_start. */
4507 void
4508 expand_dummy_function_end (void)
4509 {
4510 gcc_assert (in_dummy_function);
4511
4512 /* End any sequences that failed to be closed due to syntax errors. */
4513 while (in_sequence_p ())
4514 end_sequence ();
4515
4516 /* Outside function body, can't compute type's actual size
4517 until next function's body starts. */
4518
4519 free_after_parsing (cfun);
4520 free_after_compilation (cfun);
4521 pop_cfun ();
4522 in_dummy_function = false;
4523 }
4524
4525 /* Call DOIT for each hard register used as a return value from
4526 the current function. */
4527
4528 void
4529 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4530 {
4531 rtx outgoing = crtl->return_rtx;
4532
4533 if (! outgoing)
4534 return;
4535
4536 if (REG_P (outgoing))
4537 (*doit) (outgoing, arg);
4538 else if (GET_CODE (outgoing) == PARALLEL)
4539 {
4540 int i;
4541
4542 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4543 {
4544 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4545
4546 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4547 (*doit) (x, arg);
4548 }
4549 }
4550 }
4551
4552 static void
4553 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4554 {
4555 emit_clobber (reg);
4556 }
4557
4558 void
4559 clobber_return_register (void)
4560 {
4561 diddle_return_value (do_clobber_return_reg, NULL);
4562
4563 /* In case we do use pseudo to return value, clobber it too. */
4564 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4565 {
4566 tree decl_result = DECL_RESULT (current_function_decl);
4567 rtx decl_rtl = DECL_RTL (decl_result);
4568 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4569 {
4570 do_clobber_return_reg (decl_rtl, NULL);
4571 }
4572 }
4573 }
4574
4575 static void
4576 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4577 {
4578 emit_use (reg);
4579 }
4580
4581 static void
4582 use_return_register (void)
4583 {
4584 diddle_return_value (do_use_return_reg, NULL);
4585 }
4586
4587 /* Possibly warn about unused parameters. */
4588 void
4589 do_warn_unused_parameter (tree fn)
4590 {
4591 tree decl;
4592
4593 for (decl = DECL_ARGUMENTS (fn);
4594 decl; decl = TREE_CHAIN (decl))
4595 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4596 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4597 && !TREE_NO_WARNING (decl))
4598 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4599 }
4600
4601 static GTY(()) rtx initial_trampoline;
4602
4603 /* Generate RTL for the end of the current function. */
4604
4605 void
4606 expand_function_end (void)
4607 {
4608 rtx clobber_after;
4609
4610 /* If arg_pointer_save_area was referenced only from a nested
4611 function, we will not have initialized it yet. Do that now. */
4612 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4613 get_arg_pointer_save_area ();
4614
4615 /* If we are doing generic stack checking and this function makes calls,
4616 do a stack probe at the start of the function to ensure we have enough
4617 space for another stack frame. */
4618 if (flag_stack_check == GENERIC_STACK_CHECK)
4619 {
4620 rtx insn, seq;
4621
4622 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4623 if (CALL_P (insn))
4624 {
4625 start_sequence ();
4626 probe_stack_range (STACK_OLD_CHECK_PROTECT,
4627 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4628 seq = get_insns ();
4629 end_sequence ();
4630 emit_insn_before (seq, stack_check_probe_note);
4631 break;
4632 }
4633 }
4634
4635 /* End any sequences that failed to be closed due to syntax errors. */
4636 while (in_sequence_p ())
4637 end_sequence ();
4638
4639 clear_pending_stack_adjust ();
4640 do_pending_stack_adjust ();
4641
4642 /* Output a linenumber for the end of the function.
4643 SDB depends on this. */
4644 force_next_line_note ();
4645 set_curr_insn_source_location (input_location);
4646
4647 /* Before the return label (if any), clobber the return
4648 registers so that they are not propagated live to the rest of
4649 the function. This can only happen with functions that drop
4650 through; if there had been a return statement, there would
4651 have either been a return rtx, or a jump to the return label.
4652
4653 We delay actual code generation after the current_function_value_rtx
4654 is computed. */
4655 clobber_after = get_last_insn ();
4656
4657 /* Output the label for the actual return from the function. */
4658 emit_label (return_label);
4659
4660 if (USING_SJLJ_EXCEPTIONS)
4661 {
4662 /* Let except.c know where it should emit the call to unregister
4663 the function context for sjlj exceptions. */
4664 if (flag_exceptions)
4665 sjlj_emit_function_exit_after (get_last_insn ());
4666 }
4667 else
4668 {
4669 /* We want to ensure that instructions that may trap are not
4670 moved into the epilogue by scheduling, because we don't
4671 always emit unwind information for the epilogue. */
4672 if (flag_non_call_exceptions)
4673 emit_insn (gen_blockage ());
4674 }
4675
4676 /* If this is an implementation of throw, do what's necessary to
4677 communicate between __builtin_eh_return and the epilogue. */
4678 expand_eh_return ();
4679
4680 /* If scalar return value was computed in a pseudo-reg, or was a named
4681 return value that got dumped to the stack, copy that to the hard
4682 return register. */
4683 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4684 {
4685 tree decl_result = DECL_RESULT (current_function_decl);
4686 rtx decl_rtl = DECL_RTL (decl_result);
4687
4688 if (REG_P (decl_rtl)
4689 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4690 : DECL_REGISTER (decl_result))
4691 {
4692 rtx real_decl_rtl = crtl->return_rtx;
4693
4694 /* This should be set in assign_parms. */
4695 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4696
4697 /* If this is a BLKmode structure being returned in registers,
4698 then use the mode computed in expand_return. Note that if
4699 decl_rtl is memory, then its mode may have been changed,
4700 but that crtl->return_rtx has not. */
4701 if (GET_MODE (real_decl_rtl) == BLKmode)
4702 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4703
4704 /* If a non-BLKmode return value should be padded at the least
4705 significant end of the register, shift it left by the appropriate
4706 amount. BLKmode results are handled using the group load/store
4707 machinery. */
4708 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4709 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4710 {
4711 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4712 REGNO (real_decl_rtl)),
4713 decl_rtl);
4714 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4715 }
4716 /* If a named return value dumped decl_return to memory, then
4717 we may need to re-do the PROMOTE_MODE signed/unsigned
4718 extension. */
4719 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4720 {
4721 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4722 promote_function_mode (TREE_TYPE (decl_result),
4723 GET_MODE (decl_rtl), &unsignedp,
4724 TREE_TYPE (current_function_decl), 1);
4725
4726 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4727 }
4728 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4729 {
4730 /* If expand_function_start has created a PARALLEL for decl_rtl,
4731 move the result to the real return registers. Otherwise, do
4732 a group load from decl_rtl for a named return. */
4733 if (GET_CODE (decl_rtl) == PARALLEL)
4734 emit_group_move (real_decl_rtl, decl_rtl);
4735 else
4736 emit_group_load (real_decl_rtl, decl_rtl,
4737 TREE_TYPE (decl_result),
4738 int_size_in_bytes (TREE_TYPE (decl_result)));
4739 }
4740 /* In the case of complex integer modes smaller than a word, we'll
4741 need to generate some non-trivial bitfield insertions. Do that
4742 on a pseudo and not the hard register. */
4743 else if (GET_CODE (decl_rtl) == CONCAT
4744 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4745 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4746 {
4747 int old_generating_concat_p;
4748 rtx tmp;
4749
4750 old_generating_concat_p = generating_concat_p;
4751 generating_concat_p = 0;
4752 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4753 generating_concat_p = old_generating_concat_p;
4754
4755 emit_move_insn (tmp, decl_rtl);
4756 emit_move_insn (real_decl_rtl, tmp);
4757 }
4758 else
4759 emit_move_insn (real_decl_rtl, decl_rtl);
4760 }
4761 }
4762
4763 /* If returning a structure, arrange to return the address of the value
4764 in a place where debuggers expect to find it.
4765
4766 If returning a structure PCC style,
4767 the caller also depends on this value.
4768 And cfun->returns_pcc_struct is not necessarily set. */
4769 if (cfun->returns_struct
4770 || cfun->returns_pcc_struct)
4771 {
4772 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4773 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4774 rtx outgoing;
4775
4776 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4777 type = TREE_TYPE (type);
4778 else
4779 value_address = XEXP (value_address, 0);
4780
4781 outgoing = targetm.calls.function_value (build_pointer_type (type),
4782 current_function_decl, true);
4783
4784 /* Mark this as a function return value so integrate will delete the
4785 assignment and USE below when inlining this function. */
4786 REG_FUNCTION_VALUE_P (outgoing) = 1;
4787
4788 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4789 value_address = convert_memory_address (GET_MODE (outgoing),
4790 value_address);
4791
4792 emit_move_insn (outgoing, value_address);
4793
4794 /* Show return register used to hold result (in this case the address
4795 of the result. */
4796 crtl->return_rtx = outgoing;
4797 }
4798
4799 /* Emit the actual code to clobber return register. */
4800 {
4801 rtx seq;
4802
4803 start_sequence ();
4804 clobber_return_register ();
4805 seq = get_insns ();
4806 end_sequence ();
4807
4808 emit_insn_after (seq, clobber_after);
4809 }
4810
4811 /* Output the label for the naked return from the function. */
4812 if (naked_return_label)
4813 emit_label (naked_return_label);
4814
4815 /* @@@ This is a kludge. We want to ensure that instructions that
4816 may trap are not moved into the epilogue by scheduling, because
4817 we don't always emit unwind information for the epilogue. */
4818 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4819 emit_insn (gen_blockage ());
4820
4821 /* If stack protection is enabled for this function, check the guard. */
4822 if (crtl->stack_protect_guard)
4823 stack_protect_epilogue ();
4824
4825 /* If we had calls to alloca, and this machine needs
4826 an accurate stack pointer to exit the function,
4827 insert some code to save and restore the stack pointer. */
4828 if (! EXIT_IGNORE_STACK
4829 && cfun->calls_alloca)
4830 {
4831 rtx tem = 0;
4832
4833 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4834 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4835 }
4836
4837 /* ??? This should no longer be necessary since stupid is no longer with
4838 us, but there are some parts of the compiler (eg reload_combine, and
4839 sh mach_dep_reorg) that still try and compute their own lifetime info
4840 instead of using the general framework. */
4841 use_return_register ();
4842 }
4843
4844 rtx
4845 get_arg_pointer_save_area (void)
4846 {
4847 rtx ret = arg_pointer_save_area;
4848
4849 if (! ret)
4850 {
4851 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4852 arg_pointer_save_area = ret;
4853 }
4854
4855 if (! crtl->arg_pointer_save_area_init)
4856 {
4857 rtx seq;
4858
4859 /* Save the arg pointer at the beginning of the function. The
4860 generated stack slot may not be a valid memory address, so we
4861 have to check it and fix it if necessary. */
4862 start_sequence ();
4863 emit_move_insn (validize_mem (ret),
4864 crtl->args.internal_arg_pointer);
4865 seq = get_insns ();
4866 end_sequence ();
4867
4868 push_topmost_sequence ();
4869 emit_insn_after (seq, entry_of_function ());
4870 pop_topmost_sequence ();
4871 }
4872
4873 return ret;
4874 }
4875 \f
4876 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4877 for the first time. */
4878
4879 static void
4880 record_insns (rtx insns, rtx end, htab_t *hashp)
4881 {
4882 rtx tmp;
4883 htab_t hash = *hashp;
4884
4885 if (hash == NULL)
4886 *hashp = hash
4887 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
4888
4889 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
4890 {
4891 void **slot = htab_find_slot (hash, tmp, INSERT);
4892 gcc_assert (*slot == NULL);
4893 *slot = tmp;
4894 }
4895 }
4896
4897 /* INSN has been duplicated as COPY, as part of duping a basic block.
4898 If INSN is an epilogue insn, then record COPY as epilogue as well. */
4899
4900 void
4901 maybe_copy_epilogue_insn (rtx insn, rtx copy)
4902 {
4903 void **slot;
4904
4905 if (epilogue_insn_hash == NULL
4906 || htab_find (epilogue_insn_hash, insn) == NULL)
4907 return;
4908
4909 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
4910 gcc_assert (*slot == NULL);
4911 *slot = copy;
4912 }
4913
4914 /* Set the locator of the insn chain starting at INSN to LOC. */
4915 static void
4916 set_insn_locators (rtx insn, int loc)
4917 {
4918 while (insn != NULL_RTX)
4919 {
4920 if (INSN_P (insn))
4921 INSN_LOCATOR (insn) = loc;
4922 insn = NEXT_INSN (insn);
4923 }
4924 }
4925
4926 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
4927 we can be running after reorg, SEQUENCE rtl is possible. */
4928
4929 static bool
4930 contains (const_rtx insn, htab_t hash)
4931 {
4932 if (hash == NULL)
4933 return false;
4934
4935 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4936 {
4937 int i;
4938 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4939 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
4940 return true;
4941 return false;
4942 }
4943
4944 return htab_find (hash, insn) != NULL;
4945 }
4946
4947 int
4948 prologue_epilogue_contains (const_rtx insn)
4949 {
4950 if (contains (insn, prologue_insn_hash))
4951 return 1;
4952 if (contains (insn, epilogue_insn_hash))
4953 return 1;
4954 return 0;
4955 }
4956
4957 #ifdef HAVE_return
4958 /* Insert gen_return at the end of block BB. This also means updating
4959 block_for_insn appropriately. */
4960
4961 static void
4962 emit_return_into_block (basic_block bb)
4963 {
4964 emit_jump_insn_after (gen_return (), BB_END (bb));
4965 }
4966 #endif /* HAVE_return */
4967
4968 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4969 this into place with notes indicating where the prologue ends and where
4970 the epilogue begins. Update the basic block information when possible. */
4971
4972 static void
4973 thread_prologue_and_epilogue_insns (void)
4974 {
4975 int inserted = 0;
4976 edge e;
4977 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4978 rtx seq;
4979 #endif
4980 #if defined (HAVE_epilogue) || defined(HAVE_return)
4981 rtx epilogue_end = NULL_RTX;
4982 #endif
4983 edge_iterator ei;
4984
4985 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
4986 #ifdef HAVE_prologue
4987 if (HAVE_prologue)
4988 {
4989 start_sequence ();
4990 seq = gen_prologue ();
4991 emit_insn (seq);
4992
4993 /* Insert an explicit USE for the frame pointer
4994 if the profiling is on and the frame pointer is required. */
4995 if (crtl->profile && frame_pointer_needed)
4996 emit_use (hard_frame_pointer_rtx);
4997
4998 /* Retain a map of the prologue insns. */
4999 record_insns (seq, NULL, &prologue_insn_hash);
5000 emit_note (NOTE_INSN_PROLOGUE_END);
5001
5002 #ifndef PROFILE_BEFORE_PROLOGUE
5003 /* Ensure that instructions are not moved into the prologue when
5004 profiling is on. The call to the profiling routine can be
5005 emitted within the live range of a call-clobbered register. */
5006 if (crtl->profile)
5007 emit_insn (gen_blockage ());
5008 #endif
5009
5010 seq = get_insns ();
5011 end_sequence ();
5012 set_insn_locators (seq, prologue_locator);
5013
5014 /* Can't deal with multiple successors of the entry block
5015 at the moment. Function should always have at least one
5016 entry point. */
5017 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5018
5019 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5020 inserted = 1;
5021 }
5022 #endif
5023
5024 /* If the exit block has no non-fake predecessors, we don't need
5025 an epilogue. */
5026 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5027 if ((e->flags & EDGE_FAKE) == 0)
5028 break;
5029 if (e == NULL)
5030 goto epilogue_done;
5031
5032 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5033 #ifdef HAVE_return
5034 if (optimize && HAVE_return)
5035 {
5036 /* If we're allowed to generate a simple return instruction,
5037 then by definition we don't need a full epilogue. Examine
5038 the block that falls through to EXIT. If it does not
5039 contain any code, examine its predecessors and try to
5040 emit (conditional) return instructions. */
5041
5042 basic_block last;
5043 rtx label;
5044
5045 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5046 if (e->flags & EDGE_FALLTHRU)
5047 break;
5048 if (e == NULL)
5049 goto epilogue_done;
5050 last = e->src;
5051
5052 /* Verify that there are no active instructions in the last block. */
5053 label = BB_END (last);
5054 while (label && !LABEL_P (label))
5055 {
5056 if (active_insn_p (label))
5057 break;
5058 label = PREV_INSN (label);
5059 }
5060
5061 if (BB_HEAD (last) == label && LABEL_P (label))
5062 {
5063 edge_iterator ei2;
5064
5065 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5066 {
5067 basic_block bb = e->src;
5068 rtx jump;
5069
5070 if (bb == ENTRY_BLOCK_PTR)
5071 {
5072 ei_next (&ei2);
5073 continue;
5074 }
5075
5076 jump = BB_END (bb);
5077 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5078 {
5079 ei_next (&ei2);
5080 continue;
5081 }
5082
5083 /* If we have an unconditional jump, we can replace that
5084 with a simple return instruction. */
5085 if (simplejump_p (jump))
5086 {
5087 emit_return_into_block (bb);
5088 delete_insn (jump);
5089 }
5090
5091 /* If we have a conditional jump, we can try to replace
5092 that with a conditional return instruction. */
5093 else if (condjump_p (jump))
5094 {
5095 if (! redirect_jump (jump, 0, 0))
5096 {
5097 ei_next (&ei2);
5098 continue;
5099 }
5100
5101 /* If this block has only one successor, it both jumps
5102 and falls through to the fallthru block, so we can't
5103 delete the edge. */
5104 if (single_succ_p (bb))
5105 {
5106 ei_next (&ei2);
5107 continue;
5108 }
5109 }
5110 else
5111 {
5112 ei_next (&ei2);
5113 continue;
5114 }
5115
5116 /* Fix up the CFG for the successful change we just made. */
5117 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5118 }
5119
5120 /* Emit a return insn for the exit fallthru block. Whether
5121 this is still reachable will be determined later. */
5122
5123 emit_barrier_after (BB_END (last));
5124 emit_return_into_block (last);
5125 epilogue_end = BB_END (last);
5126 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5127 goto epilogue_done;
5128 }
5129 }
5130 #endif
5131
5132 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5133 this marker for the splits of EH_RETURN patterns, and nothing else
5134 uses the flag in the meantime. */
5135 epilogue_completed = 1;
5136
5137 #ifdef HAVE_eh_return
5138 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5139 some targets, these get split to a special version of the epilogue
5140 code. In order to be able to properly annotate these with unwind
5141 info, try to split them now. If we get a valid split, drop an
5142 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5143 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5144 {
5145 rtx prev, last, trial;
5146
5147 if (e->flags & EDGE_FALLTHRU)
5148 continue;
5149 last = BB_END (e->src);
5150 if (!eh_returnjump_p (last))
5151 continue;
5152
5153 prev = PREV_INSN (last);
5154 trial = try_split (PATTERN (last), last, 1);
5155 if (trial == last)
5156 continue;
5157
5158 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5159 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5160 }
5161 #endif
5162
5163 /* Find the edge that falls through to EXIT. Other edges may exist
5164 due to RETURN instructions, but those don't need epilogues.
5165 There really shouldn't be a mixture -- either all should have
5166 been converted or none, however... */
5167
5168 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5169 if (e->flags & EDGE_FALLTHRU)
5170 break;
5171 if (e == NULL)
5172 goto epilogue_done;
5173
5174 #ifdef HAVE_epilogue
5175 if (HAVE_epilogue)
5176 {
5177 start_sequence ();
5178 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5179 seq = gen_epilogue ();
5180 emit_jump_insn (seq);
5181
5182 /* Retain a map of the epilogue insns. */
5183 record_insns (seq, NULL, &epilogue_insn_hash);
5184 set_insn_locators (seq, epilogue_locator);
5185
5186 seq = get_insns ();
5187 end_sequence ();
5188
5189 insert_insn_on_edge (seq, e);
5190 inserted = 1;
5191 }
5192 else
5193 #endif
5194 {
5195 basic_block cur_bb;
5196
5197 if (! next_active_insn (BB_END (e->src)))
5198 goto epilogue_done;
5199 /* We have a fall-through edge to the exit block, the source is not
5200 at the end of the function, and there will be an assembler epilogue
5201 at the end of the function.
5202 We can't use force_nonfallthru here, because that would try to
5203 use return. Inserting a jump 'by hand' is extremely messy, so
5204 we take advantage of cfg_layout_finalize using
5205 fixup_fallthru_exit_predecessor. */
5206 cfg_layout_initialize (0);
5207 FOR_EACH_BB (cur_bb)
5208 if (cur_bb->index >= NUM_FIXED_BLOCKS
5209 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5210 cur_bb->aux = cur_bb->next_bb;
5211 cfg_layout_finalize ();
5212 }
5213 epilogue_done:
5214 default_rtl_profile ();
5215
5216 if (inserted)
5217 {
5218 commit_edge_insertions ();
5219
5220 /* The epilogue insns we inserted may cause the exit edge to no longer
5221 be fallthru. */
5222 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5223 {
5224 if (((e->flags & EDGE_FALLTHRU) != 0)
5225 && returnjump_p (BB_END (e->src)))
5226 e->flags &= ~EDGE_FALLTHRU;
5227 }
5228 }
5229
5230 #ifdef HAVE_sibcall_epilogue
5231 /* Emit sibling epilogues before any sibling call sites. */
5232 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5233 {
5234 basic_block bb = e->src;
5235 rtx insn = BB_END (bb);
5236
5237 if (!CALL_P (insn)
5238 || ! SIBLING_CALL_P (insn))
5239 {
5240 ei_next (&ei);
5241 continue;
5242 }
5243
5244 start_sequence ();
5245 emit_note (NOTE_INSN_EPILOGUE_BEG);
5246 emit_insn (gen_sibcall_epilogue ());
5247 seq = get_insns ();
5248 end_sequence ();
5249
5250 /* Retain a map of the epilogue insns. Used in life analysis to
5251 avoid getting rid of sibcall epilogue insns. Do this before we
5252 actually emit the sequence. */
5253 record_insns (seq, NULL, &epilogue_insn_hash);
5254 set_insn_locators (seq, epilogue_locator);
5255
5256 emit_insn_before (seq, insn);
5257 ei_next (&ei);
5258 }
5259 #endif
5260
5261 #ifdef HAVE_epilogue
5262 if (epilogue_end)
5263 {
5264 rtx insn, next;
5265
5266 /* Similarly, move any line notes that appear after the epilogue.
5267 There is no need, however, to be quite so anal about the existence
5268 of such a note. Also possibly move
5269 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5270 info generation. */
5271 for (insn = epilogue_end; insn; insn = next)
5272 {
5273 next = NEXT_INSN (insn);
5274 if (NOTE_P (insn)
5275 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5276 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5277 }
5278 }
5279 #endif
5280
5281 /* Threading the prologue and epilogue changes the artificial refs
5282 in the entry and exit blocks. */
5283 epilogue_completed = 1;
5284 df_update_entry_exit_and_calls ();
5285 }
5286
5287 /* Reposition the prologue-end and epilogue-begin notes after
5288 instruction scheduling. */
5289
5290 void
5291 reposition_prologue_and_epilogue_notes (void)
5292 {
5293 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5294 || defined (HAVE_sibcall_epilogue)
5295 /* Since the hash table is created on demand, the fact that it is
5296 non-null is a signal that it is non-empty. */
5297 if (prologue_insn_hash != NULL)
5298 {
5299 size_t len = htab_elements (prologue_insn_hash);
5300 rtx insn, last = NULL, note = NULL;
5301
5302 /* Scan from the beginning until we reach the last prologue insn. */
5303 /* ??? While we do have the CFG intact, there are two problems:
5304 (1) The prologue can contain loops (typically probing the stack),
5305 which means that the end of the prologue isn't in the first bb.
5306 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5307 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5308 {
5309 if (NOTE_P (insn))
5310 {
5311 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5312 note = insn;
5313 }
5314 else if (contains (insn, prologue_insn_hash))
5315 {
5316 last = insn;
5317 if (--len == 0)
5318 break;
5319 }
5320 }
5321
5322 if (last)
5323 {
5324 if (note == NULL)
5325 {
5326 /* Scan forward looking for the PROLOGUE_END note. It should
5327 be right at the beginning of the block, possibly with other
5328 insn notes that got moved there. */
5329 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5330 {
5331 if (NOTE_P (note)
5332 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5333 break;
5334 }
5335 }
5336
5337 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5338 if (LABEL_P (last))
5339 last = NEXT_INSN (last);
5340 reorder_insns (note, note, last);
5341 }
5342 }
5343
5344 if (epilogue_insn_hash != NULL)
5345 {
5346 edge_iterator ei;
5347 edge e;
5348
5349 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5350 {
5351 rtx insn, first = NULL, note = NULL;
5352 basic_block bb = e->src;
5353
5354 /* Scan from the beginning until we reach the first epilogue insn. */
5355 FOR_BB_INSNS (bb, insn)
5356 {
5357 if (NOTE_P (insn))
5358 {
5359 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5360 {
5361 note = insn;
5362 if (first != NULL)
5363 break;
5364 }
5365 }
5366 else if (first == NULL && contains (insn, epilogue_insn_hash))
5367 {
5368 first = insn;
5369 if (note != NULL)
5370 break;
5371 }
5372 }
5373
5374 if (note)
5375 {
5376 /* If the function has a single basic block, and no real
5377 epilogue insns (e.g. sibcall with no cleanup), the
5378 epilogue note can get scheduled before the prologue
5379 note. If we have frame related prologue insns, having
5380 them scanned during the epilogue will result in a crash.
5381 In this case re-order the epilogue note to just before
5382 the last insn in the block. */
5383 if (first == NULL)
5384 first = BB_END (bb);
5385
5386 if (PREV_INSN (first) != note)
5387 reorder_insns (note, note, PREV_INSN (first));
5388 }
5389 }
5390 }
5391 #endif /* HAVE_prologue or HAVE_epilogue */
5392 }
5393
5394 /* Returns the name of the current function. */
5395 const char *
5396 current_function_name (void)
5397 {
5398 return lang_hooks.decl_printable_name (cfun->decl, 2);
5399 }
5400 \f
5401
5402 static unsigned int
5403 rest_of_handle_check_leaf_regs (void)
5404 {
5405 #ifdef LEAF_REGISTERS
5406 current_function_uses_only_leaf_regs
5407 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5408 #endif
5409 return 0;
5410 }
5411
5412 /* Insert a TYPE into the used types hash table of CFUN. */
5413 static void
5414 used_types_insert_helper (tree type, struct function *func)
5415 {
5416 if (type != NULL && func != NULL)
5417 {
5418 void **slot;
5419
5420 if (func->used_types_hash == NULL)
5421 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5422 htab_eq_pointer, NULL);
5423 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5424 if (*slot == NULL)
5425 *slot = type;
5426 }
5427 }
5428
5429 /* Given a type, insert it into the used hash table in cfun. */
5430 void
5431 used_types_insert (tree t)
5432 {
5433 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5434 t = TREE_TYPE (t);
5435 t = TYPE_MAIN_VARIANT (t);
5436 if (debug_info_level > DINFO_LEVEL_NONE)
5437 used_types_insert_helper (t, cfun);
5438 }
5439
5440 struct rtl_opt_pass pass_leaf_regs =
5441 {
5442 {
5443 RTL_PASS,
5444 NULL, /* name */
5445 NULL, /* gate */
5446 rest_of_handle_check_leaf_regs, /* execute */
5447 NULL, /* sub */
5448 NULL, /* next */
5449 0, /* static_pass_number */
5450 TV_NONE, /* tv_id */
5451 0, /* properties_required */
5452 0, /* properties_provided */
5453 0, /* properties_destroyed */
5454 0, /* todo_flags_start */
5455 0 /* todo_flags_finish */
5456 }
5457 };
5458
5459 static unsigned int
5460 rest_of_handle_thread_prologue_and_epilogue (void)
5461 {
5462 if (optimize)
5463 cleanup_cfg (CLEANUP_EXPENSIVE);
5464 /* On some machines, the prologue and epilogue code, or parts thereof,
5465 can be represented as RTL. Doing so lets us schedule insns between
5466 it and the rest of the code and also allows delayed branch
5467 scheduling to operate in the epilogue. */
5468
5469 thread_prologue_and_epilogue_insns ();
5470 return 0;
5471 }
5472
5473 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5474 {
5475 {
5476 RTL_PASS,
5477 "pro_and_epilogue", /* name */
5478 NULL, /* gate */
5479 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5480 NULL, /* sub */
5481 NULL, /* next */
5482 0, /* static_pass_number */
5483 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5484 0, /* properties_required */
5485 0, /* properties_provided */
5486 0, /* properties_destroyed */
5487 TODO_verify_flow, /* todo_flags_start */
5488 TODO_dump_func |
5489 TODO_df_verify |
5490 TODO_df_finish | TODO_verify_rtl_sharing |
5491 TODO_ggc_collect /* todo_flags_finish */
5492 }
5493 };
5494 \f
5495
5496 /* This mini-pass fixes fall-out from SSA in asm statements that have
5497 in-out constraints. Say you start with
5498
5499 orig = inout;
5500 asm ("": "+mr" (inout));
5501 use (orig);
5502
5503 which is transformed very early to use explicit output and match operands:
5504
5505 orig = inout;
5506 asm ("": "=mr" (inout) : "0" (inout));
5507 use (orig);
5508
5509 Or, after SSA and copyprop,
5510
5511 asm ("": "=mr" (inout_2) : "0" (inout_1));
5512 use (inout_1);
5513
5514 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5515 they represent two separate values, so they will get different pseudo
5516 registers during expansion. Then, since the two operands need to match
5517 per the constraints, but use different pseudo registers, reload can
5518 only register a reload for these operands. But reloads can only be
5519 satisfied by hardregs, not by memory, so we need a register for this
5520 reload, just because we are presented with non-matching operands.
5521 So, even though we allow memory for this operand, no memory can be
5522 used for it, just because the two operands don't match. This can
5523 cause reload failures on register-starved targets.
5524
5525 So it's a symptom of reload not being able to use memory for reloads
5526 or, alternatively it's also a symptom of both operands not coming into
5527 reload as matching (in which case the pseudo could go to memory just
5528 fine, as the alternative allows it, and no reload would be necessary).
5529 We fix the latter problem here, by transforming
5530
5531 asm ("": "=mr" (inout_2) : "0" (inout_1));
5532
5533 back to
5534
5535 inout_2 = inout_1;
5536 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5537
5538 static void
5539 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5540 {
5541 int i;
5542 bool changed = false;
5543 rtx op = SET_SRC (p_sets[0]);
5544 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5545 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5546 bool *output_matched = XALLOCAVEC (bool, noutputs);
5547
5548 memset (output_matched, 0, noutputs * sizeof (bool));
5549 for (i = 0; i < ninputs; i++)
5550 {
5551 rtx input, output, insns;
5552 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5553 char *end;
5554 int match, j;
5555
5556 if (*constraint == '%')
5557 constraint++;
5558
5559 match = strtoul (constraint, &end, 10);
5560 if (end == constraint)
5561 continue;
5562
5563 gcc_assert (match < noutputs);
5564 output = SET_DEST (p_sets[match]);
5565 input = RTVEC_ELT (inputs, i);
5566 /* Only do the transformation for pseudos. */
5567 if (! REG_P (output)
5568 || rtx_equal_p (output, input)
5569 || (GET_MODE (input) != VOIDmode
5570 && GET_MODE (input) != GET_MODE (output)))
5571 continue;
5572
5573 /* We can't do anything if the output is also used as input,
5574 as we're going to overwrite it. */
5575 for (j = 0; j < ninputs; j++)
5576 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5577 break;
5578 if (j != ninputs)
5579 continue;
5580
5581 /* Avoid changing the same input several times. For
5582 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5583 only change in once (to out1), rather than changing it
5584 first to out1 and afterwards to out2. */
5585 if (i > 0)
5586 {
5587 for (j = 0; j < noutputs; j++)
5588 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5589 break;
5590 if (j != noutputs)
5591 continue;
5592 }
5593 output_matched[match] = true;
5594
5595 start_sequence ();
5596 emit_move_insn (output, input);
5597 insns = get_insns ();
5598 end_sequence ();
5599 emit_insn_before (insns, insn);
5600
5601 /* Now replace all mentions of the input with output. We can't
5602 just replace the occurrence in inputs[i], as the register might
5603 also be used in some other input (or even in an address of an
5604 output), which would mean possibly increasing the number of
5605 inputs by one (namely 'output' in addition), which might pose
5606 a too complicated problem for reload to solve. E.g. this situation:
5607
5608 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5609
5610 Here 'input' is used in two occurrences as input (once for the
5611 input operand, once for the address in the second output operand).
5612 If we would replace only the occurrence of the input operand (to
5613 make the matching) we would be left with this:
5614
5615 output = input
5616 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5617
5618 Now we suddenly have two different input values (containing the same
5619 value, but different pseudos) where we formerly had only one.
5620 With more complicated asms this might lead to reload failures
5621 which wouldn't have happen without this pass. So, iterate over
5622 all operands and replace all occurrences of the register used. */
5623 for (j = 0; j < noutputs; j++)
5624 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5625 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5626 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5627 input, output);
5628 for (j = 0; j < ninputs; j++)
5629 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5630 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5631 input, output);
5632
5633 changed = true;
5634 }
5635
5636 if (changed)
5637 df_insn_rescan (insn);
5638 }
5639
5640 static unsigned
5641 rest_of_match_asm_constraints (void)
5642 {
5643 basic_block bb;
5644 rtx insn, pat, *p_sets;
5645 int noutputs;
5646
5647 if (!crtl->has_asm_statement)
5648 return 0;
5649
5650 df_set_flags (DF_DEFER_INSN_RESCAN);
5651 FOR_EACH_BB (bb)
5652 {
5653 FOR_BB_INSNS (bb, insn)
5654 {
5655 if (!INSN_P (insn))
5656 continue;
5657
5658 pat = PATTERN (insn);
5659 if (GET_CODE (pat) == PARALLEL)
5660 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5661 else if (GET_CODE (pat) == SET)
5662 p_sets = &PATTERN (insn), noutputs = 1;
5663 else
5664 continue;
5665
5666 if (GET_CODE (*p_sets) == SET
5667 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5668 match_asm_constraints_1 (insn, p_sets, noutputs);
5669 }
5670 }
5671
5672 return TODO_df_finish;
5673 }
5674
5675 struct rtl_opt_pass pass_match_asm_constraints =
5676 {
5677 {
5678 RTL_PASS,
5679 "asmcons", /* name */
5680 NULL, /* gate */
5681 rest_of_match_asm_constraints, /* execute */
5682 NULL, /* sub */
5683 NULL, /* next */
5684 0, /* static_pass_number */
5685 TV_NONE, /* tv_id */
5686 0, /* properties_required */
5687 0, /* properties_provided */
5688 0, /* properties_destroyed */
5689 0, /* todo_flags_start */
5690 TODO_dump_func /* todo_flags_finish */
5691 }
5692 };
5693
5694
5695 #include "gt-function.h"