Support for aliasing with variable strides
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "regs.h"
50 #include "emit-rtl.h"
51 #include "recog.h"
52 #include "rtl-error.h"
53 #include "alias.h"
54 #include "fold-const.h"
55 #include "stor-layout.h"
56 #include "varasm.h"
57 #include "except.h"
58 #include "dojump.h"
59 #include "explow.h"
60 #include "calls.h"
61 #include "expr.h"
62 #include "optabs-tree.h"
63 #include "output.h"
64 #include "langhooks.h"
65 #include "common/common-target.h"
66 #include "gimplify.h"
67 #include "tree-pass.h"
68 #include "cfgrtl.h"
69 #include "cfganal.h"
70 #include "cfgbuild.h"
71 #include "cfgcleanup.h"
72 #include "cfgexpand.h"
73 #include "shrink-wrap.h"
74 #include "toplev.h"
75 #include "rtl-iter.h"
76 #include "tree-chkp.h"
77 #include "rtl-chkp.h"
78 #include "tree-dfa.h"
79 #include "tree-ssa.h"
80 #include "stringpool.h"
81 #include "attribs.h"
82
83 /* So we can assign to cfun in this file. */
84 #undef cfun
85
86 #ifndef STACK_ALIGNMENT_NEEDED
87 #define STACK_ALIGNMENT_NEEDED 1
88 #endif
89
90 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
91
92 /* Round a value to the lowest integer less than it that is a multiple of
93 the required alignment. Avoid using division in case the value is
94 negative. Assume the alignment is a power of two. */
95 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
96
97 /* Similar, but round to the next highest integer that meets the
98 alignment. */
99 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
100
101 /* Nonzero once virtual register instantiation has been done.
102 assign_stack_local uses frame_pointer_rtx when this is nonzero.
103 calls.c:emit_library_call_value_1 uses it to set up
104 post-instantiation libcalls. */
105 int virtuals_instantiated;
106
107 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
108 static GTY(()) int funcdef_no;
109
110 /* These variables hold pointers to functions to create and destroy
111 target specific, per-function data structures. */
112 struct machine_function * (*init_machine_status) (void);
113
114 /* The currently compiled function. */
115 struct function *cfun = 0;
116
117 /* These hashes record the prologue and epilogue insns. */
118
119 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
120 {
121 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
122 static bool equal (rtx a, rtx b) { return a == b; }
123 };
124
125 static GTY((cache))
126 hash_table<insn_cache_hasher> *prologue_insn_hash;
127 static GTY((cache))
128 hash_table<insn_cache_hasher> *epilogue_insn_hash;
129 \f
130
131 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
132 vec<tree, va_gc> *types_used_by_cur_var_decl;
133
134 /* Forward declarations. */
135
136 static struct temp_slot *find_temp_slot_from_address (rtx);
137 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
138 static void pad_below (struct args_size *, machine_mode, tree);
139 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
140 static int all_blocks (tree, tree *);
141 static tree *get_block_vector (tree, int *);
142 extern tree debug_find_var_in_block_tree (tree, tree);
143 /* We always define `record_insns' even if it's not used so that we
144 can always export `prologue_epilogue_contains'. */
145 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
146 ATTRIBUTE_UNUSED;
147 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
148 static void prepare_function_start (void);
149 static void do_clobber_return_reg (rtx, void *);
150 static void do_use_return_reg (rtx, void *);
151
152 \f
153 /* Stack of nested functions. */
154 /* Keep track of the cfun stack. */
155
156 static vec<function *> function_context_stack;
157
158 /* Save the current context for compilation of a nested function.
159 This is called from language-specific code. */
160
161 void
162 push_function_context (void)
163 {
164 if (cfun == 0)
165 allocate_struct_function (NULL, false);
166
167 function_context_stack.safe_push (cfun);
168 set_cfun (NULL);
169 }
170
171 /* Restore the last saved context, at the end of a nested function.
172 This function is called from language-specific code. */
173
174 void
175 pop_function_context (void)
176 {
177 struct function *p = function_context_stack.pop ();
178 set_cfun (p);
179 current_function_decl = p->decl;
180
181 /* Reset variables that have known state during rtx generation. */
182 virtuals_instantiated = 0;
183 generating_concat_p = 1;
184 }
185
186 /* Clear out all parts of the state in F that can safely be discarded
187 after the function has been parsed, but not compiled, to let
188 garbage collection reclaim the memory. */
189
190 void
191 free_after_parsing (struct function *f)
192 {
193 f->language = 0;
194 }
195
196 /* Clear out all parts of the state in F that can safely be discarded
197 after the function has been compiled, to let garbage collection
198 reclaim the memory. */
199
200 void
201 free_after_compilation (struct function *f)
202 {
203 prologue_insn_hash = NULL;
204 epilogue_insn_hash = NULL;
205
206 free (crtl->emit.regno_pointer_align);
207
208 memset (crtl, 0, sizeof (struct rtl_data));
209 f->eh = NULL;
210 f->machine = NULL;
211 f->cfg = NULL;
212 f->curr_properties &= ~PROP_cfg;
213
214 regno_reg_rtx = NULL;
215 }
216 \f
217 /* Return size needed for stack frame based on slots so far allocated.
218 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
219 the caller may have to do that. */
220
221 poly_int64
222 get_frame_size (void)
223 {
224 if (FRAME_GROWS_DOWNWARD)
225 return -frame_offset;
226 else
227 return frame_offset;
228 }
229
230 /* Issue an error message and return TRUE if frame OFFSET overflows in
231 the signed target pointer arithmetics for function FUNC. Otherwise
232 return FALSE. */
233
234 bool
235 frame_offset_overflow (poly_int64 offset, tree func)
236 {
237 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
238 unsigned HOST_WIDE_INT limit
239 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
240 /* Leave room for the fixed part of the frame. */
241 - 64 * UNITS_PER_WORD);
242
243 if (!coeffs_in_range_p (size, 0U, limit))
244 {
245 error_at (DECL_SOURCE_LOCATION (func),
246 "total size of local objects too large");
247 return true;
248 }
249
250 return false;
251 }
252
253 /* Return the minimum spill slot alignment for a register of mode MODE. */
254
255 unsigned int
256 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
257 {
258 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
259 }
260
261 /* Return stack slot alignment in bits for TYPE and MODE. */
262
263 static unsigned int
264 get_stack_local_alignment (tree type, machine_mode mode)
265 {
266 unsigned int alignment;
267
268 if (mode == BLKmode)
269 alignment = BIGGEST_ALIGNMENT;
270 else
271 alignment = GET_MODE_ALIGNMENT (mode);
272
273 /* Allow the frond-end to (possibly) increase the alignment of this
274 stack slot. */
275 if (! type)
276 type = lang_hooks.types.type_for_mode (mode, 0);
277
278 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
279 }
280
281 /* Determine whether it is possible to fit a stack slot of size SIZE and
282 alignment ALIGNMENT into an area in the stack frame that starts at
283 frame offset START and has a length of LENGTH. If so, store the frame
284 offset to be used for the stack slot in *POFFSET and return true;
285 return false otherwise. This function will extend the frame size when
286 given a start/length pair that lies at the end of the frame. */
287
288 static bool
289 try_fit_stack_local (poly_int64 start, poly_int64 length,
290 poly_int64 size, unsigned int alignment,
291 poly_int64_pod *poffset)
292 {
293 poly_int64 this_frame_offset;
294 int frame_off, frame_alignment, frame_phase;
295
296 /* Calculate how many bytes the start of local variables is off from
297 stack alignment. */
298 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
299 frame_off = targetm.starting_frame_offset () % frame_alignment;
300 frame_phase = frame_off ? frame_alignment - frame_off : 0;
301
302 /* Round the frame offset to the specified alignment. */
303
304 if (FRAME_GROWS_DOWNWARD)
305 this_frame_offset
306 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
307 + frame_phase);
308 else
309 this_frame_offset
310 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
311
312 /* See if it fits. If this space is at the edge of the frame,
313 consider extending the frame to make it fit. Our caller relies on
314 this when allocating a new slot. */
315 if (maybe_lt (this_frame_offset, start))
316 {
317 if (known_eq (frame_offset, start))
318 frame_offset = this_frame_offset;
319 else
320 return false;
321 }
322 else if (maybe_gt (this_frame_offset + size, start + length))
323 {
324 if (known_eq (frame_offset, start + length))
325 frame_offset = this_frame_offset + size;
326 else
327 return false;
328 }
329
330 *poffset = this_frame_offset;
331 return true;
332 }
333
334 /* Create a new frame_space structure describing free space in the stack
335 frame beginning at START and ending at END, and chain it into the
336 function's frame_space_list. */
337
338 static void
339 add_frame_space (poly_int64 start, poly_int64 end)
340 {
341 struct frame_space *space = ggc_alloc<frame_space> ();
342 space->next = crtl->frame_space_list;
343 crtl->frame_space_list = space;
344 space->start = start;
345 space->length = end - start;
346 }
347
348 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
349 with machine mode MODE.
350
351 ALIGN controls the amount of alignment for the address of the slot:
352 0 means according to MODE,
353 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
354 -2 means use BITS_PER_UNIT,
355 positive specifies alignment boundary in bits.
356
357 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
358 alignment and ASLK_RECORD_PAD bit set if we should remember
359 extra space we allocated for alignment purposes. When we are
360 called from assign_stack_temp_for_type, it is not set so we don't
361 track the same stack slot in two independent lists.
362
363 We do not round to stack_boundary here. */
364
365 rtx
366 assign_stack_local_1 (machine_mode mode, poly_int64 size,
367 int align, int kind)
368 {
369 rtx x, addr;
370 poly_int64 bigend_correction = 0;
371 poly_int64 slot_offset = 0, old_frame_offset;
372 unsigned int alignment, alignment_in_bits;
373
374 if (align == 0)
375 {
376 alignment = get_stack_local_alignment (NULL, mode);
377 alignment /= BITS_PER_UNIT;
378 }
379 else if (align == -1)
380 {
381 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
382 size = aligned_upper_bound (size, alignment);
383 }
384 else if (align == -2)
385 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
386 else
387 alignment = align / BITS_PER_UNIT;
388
389 alignment_in_bits = alignment * BITS_PER_UNIT;
390
391 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
392 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
393 {
394 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
395 alignment = alignment_in_bits / BITS_PER_UNIT;
396 }
397
398 if (SUPPORTS_STACK_ALIGNMENT)
399 {
400 if (crtl->stack_alignment_estimated < alignment_in_bits)
401 {
402 if (!crtl->stack_realign_processed)
403 crtl->stack_alignment_estimated = alignment_in_bits;
404 else
405 {
406 /* If stack is realigned and stack alignment value
407 hasn't been finalized, it is OK not to increase
408 stack_alignment_estimated. The bigger alignment
409 requirement is recorded in stack_alignment_needed
410 below. */
411 gcc_assert (!crtl->stack_realign_finalized);
412 if (!crtl->stack_realign_needed)
413 {
414 /* It is OK to reduce the alignment as long as the
415 requested size is 0 or the estimated stack
416 alignment >= mode alignment. */
417 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
418 || known_eq (size, 0)
419 || (crtl->stack_alignment_estimated
420 >= GET_MODE_ALIGNMENT (mode)));
421 alignment_in_bits = crtl->stack_alignment_estimated;
422 alignment = alignment_in_bits / BITS_PER_UNIT;
423 }
424 }
425 }
426 }
427
428 if (crtl->stack_alignment_needed < alignment_in_bits)
429 crtl->stack_alignment_needed = alignment_in_bits;
430 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
431 crtl->max_used_stack_slot_alignment = alignment_in_bits;
432
433 if (mode != BLKmode || maybe_ne (size, 0))
434 {
435 if (kind & ASLK_RECORD_PAD)
436 {
437 struct frame_space **psp;
438
439 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
440 {
441 struct frame_space *space = *psp;
442 if (!try_fit_stack_local (space->start, space->length, size,
443 alignment, &slot_offset))
444 continue;
445 *psp = space->next;
446 if (known_gt (slot_offset, space->start))
447 add_frame_space (space->start, slot_offset);
448 if (known_lt (slot_offset + size, space->start + space->length))
449 add_frame_space (slot_offset + size,
450 space->start + space->length);
451 goto found_space;
452 }
453 }
454 }
455 else if (!STACK_ALIGNMENT_NEEDED)
456 {
457 slot_offset = frame_offset;
458 goto found_space;
459 }
460
461 old_frame_offset = frame_offset;
462
463 if (FRAME_GROWS_DOWNWARD)
464 {
465 frame_offset -= size;
466 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
467
468 if (kind & ASLK_RECORD_PAD)
469 {
470 if (known_gt (slot_offset, frame_offset))
471 add_frame_space (frame_offset, slot_offset);
472 if (known_lt (slot_offset + size, old_frame_offset))
473 add_frame_space (slot_offset + size, old_frame_offset);
474 }
475 }
476 else
477 {
478 frame_offset += size;
479 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
480
481 if (kind & ASLK_RECORD_PAD)
482 {
483 if (known_gt (slot_offset, old_frame_offset))
484 add_frame_space (old_frame_offset, slot_offset);
485 if (known_lt (slot_offset + size, frame_offset))
486 add_frame_space (slot_offset + size, frame_offset);
487 }
488 }
489
490 found_space:
491 /* On a big-endian machine, if we are allocating more space than we will use,
492 use the least significant bytes of those that are allocated. */
493 if (mode != BLKmode)
494 {
495 /* The slot size can sometimes be smaller than the mode size;
496 e.g. the rs6000 port allocates slots with a vector mode
497 that have the size of only one element. However, the slot
498 size must always be ordered wrt to the mode size, in the
499 same way as for a subreg. */
500 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
501 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
502 bigend_correction = size - GET_MODE_SIZE (mode);
503 }
504
505 /* If we have already instantiated virtual registers, return the actual
506 address relative to the frame pointer. */
507 if (virtuals_instantiated)
508 addr = plus_constant (Pmode, frame_pointer_rtx,
509 trunc_int_for_mode
510 (slot_offset + bigend_correction
511 + targetm.starting_frame_offset (), Pmode));
512 else
513 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
514 trunc_int_for_mode
515 (slot_offset + bigend_correction,
516 Pmode));
517
518 x = gen_rtx_MEM (mode, addr);
519 set_mem_align (x, alignment_in_bits);
520 MEM_NOTRAP_P (x) = 1;
521
522 vec_safe_push (stack_slot_list, x);
523
524 if (frame_offset_overflow (frame_offset, current_function_decl))
525 frame_offset = 0;
526
527 return x;
528 }
529
530 /* Wrap up assign_stack_local_1 with last parameter as false. */
531
532 rtx
533 assign_stack_local (machine_mode mode, poly_int64 size, int align)
534 {
535 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
536 }
537 \f
538 /* In order to evaluate some expressions, such as function calls returning
539 structures in memory, we need to temporarily allocate stack locations.
540 We record each allocated temporary in the following structure.
541
542 Associated with each temporary slot is a nesting level. When we pop up
543 one level, all temporaries associated with the previous level are freed.
544 Normally, all temporaries are freed after the execution of the statement
545 in which they were created. However, if we are inside a ({...}) grouping,
546 the result may be in a temporary and hence must be preserved. If the
547 result could be in a temporary, we preserve it if we can determine which
548 one it is in. If we cannot determine which temporary may contain the
549 result, all temporaries are preserved. A temporary is preserved by
550 pretending it was allocated at the previous nesting level. */
551
552 struct GTY(()) temp_slot {
553 /* Points to next temporary slot. */
554 struct temp_slot *next;
555 /* Points to previous temporary slot. */
556 struct temp_slot *prev;
557 /* The rtx to used to reference the slot. */
558 rtx slot;
559 /* The size, in units, of the slot. */
560 poly_int64 size;
561 /* The type of the object in the slot, or zero if it doesn't correspond
562 to a type. We use this to determine whether a slot can be reused.
563 It can be reused if objects of the type of the new slot will always
564 conflict with objects of the type of the old slot. */
565 tree type;
566 /* The alignment (in bits) of the slot. */
567 unsigned int align;
568 /* Nonzero if this temporary is currently in use. */
569 char in_use;
570 /* Nesting level at which this slot is being used. */
571 int level;
572 /* The offset of the slot from the frame_pointer, including extra space
573 for alignment. This info is for combine_temp_slots. */
574 poly_int64 base_offset;
575 /* The size of the slot, including extra space for alignment. This
576 info is for combine_temp_slots. */
577 poly_int64 full_size;
578 };
579
580 /* Entry for the below hash table. */
581 struct GTY((for_user)) temp_slot_address_entry {
582 hashval_t hash;
583 rtx address;
584 struct temp_slot *temp_slot;
585 };
586
587 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
588 {
589 static hashval_t hash (temp_slot_address_entry *);
590 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
591 };
592
593 /* A table of addresses that represent a stack slot. The table is a mapping
594 from address RTXen to a temp slot. */
595 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
596 static size_t n_temp_slots_in_use;
597
598 /* Removes temporary slot TEMP from LIST. */
599
600 static void
601 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
602 {
603 if (temp->next)
604 temp->next->prev = temp->prev;
605 if (temp->prev)
606 temp->prev->next = temp->next;
607 else
608 *list = temp->next;
609
610 temp->prev = temp->next = NULL;
611 }
612
613 /* Inserts temporary slot TEMP to LIST. */
614
615 static void
616 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
617 {
618 temp->next = *list;
619 if (*list)
620 (*list)->prev = temp;
621 temp->prev = NULL;
622 *list = temp;
623 }
624
625 /* Returns the list of used temp slots at LEVEL. */
626
627 static struct temp_slot **
628 temp_slots_at_level (int level)
629 {
630 if (level >= (int) vec_safe_length (used_temp_slots))
631 vec_safe_grow_cleared (used_temp_slots, level + 1);
632
633 return &(*used_temp_slots)[level];
634 }
635
636 /* Returns the maximal temporary slot level. */
637
638 static int
639 max_slot_level (void)
640 {
641 if (!used_temp_slots)
642 return -1;
643
644 return used_temp_slots->length () - 1;
645 }
646
647 /* Moves temporary slot TEMP to LEVEL. */
648
649 static void
650 move_slot_to_level (struct temp_slot *temp, int level)
651 {
652 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
653 insert_slot_to_list (temp, temp_slots_at_level (level));
654 temp->level = level;
655 }
656
657 /* Make temporary slot TEMP available. */
658
659 static void
660 make_slot_available (struct temp_slot *temp)
661 {
662 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
663 insert_slot_to_list (temp, &avail_temp_slots);
664 temp->in_use = 0;
665 temp->level = -1;
666 n_temp_slots_in_use--;
667 }
668
669 /* Compute the hash value for an address -> temp slot mapping.
670 The value is cached on the mapping entry. */
671 static hashval_t
672 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
673 {
674 int do_not_record = 0;
675 return hash_rtx (t->address, GET_MODE (t->address),
676 &do_not_record, NULL, false);
677 }
678
679 /* Return the hash value for an address -> temp slot mapping. */
680 hashval_t
681 temp_address_hasher::hash (temp_slot_address_entry *t)
682 {
683 return t->hash;
684 }
685
686 /* Compare two address -> temp slot mapping entries. */
687 bool
688 temp_address_hasher::equal (temp_slot_address_entry *t1,
689 temp_slot_address_entry *t2)
690 {
691 return exp_equiv_p (t1->address, t2->address, 0, true);
692 }
693
694 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
695 static void
696 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
697 {
698 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
699 t->address = address;
700 t->temp_slot = temp_slot;
701 t->hash = temp_slot_address_compute_hash (t);
702 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
703 }
704
705 /* Remove an address -> temp slot mapping entry if the temp slot is
706 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
707 int
708 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
709 {
710 const struct temp_slot_address_entry *t = *slot;
711 if (! t->temp_slot->in_use)
712 temp_slot_address_table->clear_slot (slot);
713 return 1;
714 }
715
716 /* Remove all mappings of addresses to unused temp slots. */
717 static void
718 remove_unused_temp_slot_addresses (void)
719 {
720 /* Use quicker clearing if there aren't any active temp slots. */
721 if (n_temp_slots_in_use)
722 temp_slot_address_table->traverse
723 <void *, remove_unused_temp_slot_addresses_1> (NULL);
724 else
725 temp_slot_address_table->empty ();
726 }
727
728 /* Find the temp slot corresponding to the object at address X. */
729
730 static struct temp_slot *
731 find_temp_slot_from_address (rtx x)
732 {
733 struct temp_slot *p;
734 struct temp_slot_address_entry tmp, *t;
735
736 /* First try the easy way:
737 See if X exists in the address -> temp slot mapping. */
738 tmp.address = x;
739 tmp.temp_slot = NULL;
740 tmp.hash = temp_slot_address_compute_hash (&tmp);
741 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
742 if (t)
743 return t->temp_slot;
744
745 /* If we have a sum involving a register, see if it points to a temp
746 slot. */
747 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
748 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
749 return p;
750 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
751 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
752 return p;
753
754 /* Last resort: Address is a virtual stack var address. */
755 poly_int64 offset;
756 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
757 {
758 int i;
759 for (i = max_slot_level (); i >= 0; i--)
760 for (p = *temp_slots_at_level (i); p; p = p->next)
761 if (known_in_range_p (offset, p->base_offset, p->full_size))
762 return p;
763 }
764
765 return NULL;
766 }
767 \f
768 /* Allocate a temporary stack slot and record it for possible later
769 reuse.
770
771 MODE is the machine mode to be given to the returned rtx.
772
773 SIZE is the size in units of the space required. We do no rounding here
774 since assign_stack_local will do any required rounding.
775
776 TYPE is the type that will be used for the stack slot. */
777
778 rtx
779 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
780 {
781 unsigned int align;
782 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
783 rtx slot;
784
785 gcc_assert (known_size_p (size));
786
787 align = get_stack_local_alignment (type, mode);
788
789 /* Try to find an available, already-allocated temporary of the proper
790 mode which meets the size and alignment requirements. Choose the
791 smallest one with the closest alignment.
792
793 If assign_stack_temp is called outside of the tree->rtl expansion,
794 we cannot reuse the stack slots (that may still refer to
795 VIRTUAL_STACK_VARS_REGNUM). */
796 if (!virtuals_instantiated)
797 {
798 for (p = avail_temp_slots; p; p = p->next)
799 {
800 if (p->align >= align
801 && known_ge (p->size, size)
802 && GET_MODE (p->slot) == mode
803 && objects_must_conflict_p (p->type, type)
804 && (best_p == 0
805 || (known_eq (best_p->size, p->size)
806 ? best_p->align > p->align
807 : known_ge (best_p->size, p->size))))
808 {
809 if (p->align == align && known_eq (p->size, size))
810 {
811 selected = p;
812 cut_slot_from_list (selected, &avail_temp_slots);
813 best_p = 0;
814 break;
815 }
816 best_p = p;
817 }
818 }
819 }
820
821 /* Make our best, if any, the one to use. */
822 if (best_p)
823 {
824 selected = best_p;
825 cut_slot_from_list (selected, &avail_temp_slots);
826
827 /* If there are enough aligned bytes left over, make them into a new
828 temp_slot so that the extra bytes don't get wasted. Do this only
829 for BLKmode slots, so that we can be sure of the alignment. */
830 if (GET_MODE (best_p->slot) == BLKmode)
831 {
832 int alignment = best_p->align / BITS_PER_UNIT;
833 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
834
835 if (known_ge (best_p->size - rounded_size, alignment))
836 {
837 p = ggc_alloc<temp_slot> ();
838 p->in_use = 0;
839 p->size = best_p->size - rounded_size;
840 p->base_offset = best_p->base_offset + rounded_size;
841 p->full_size = best_p->full_size - rounded_size;
842 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
843 p->align = best_p->align;
844 p->type = best_p->type;
845 insert_slot_to_list (p, &avail_temp_slots);
846
847 vec_safe_push (stack_slot_list, p->slot);
848
849 best_p->size = rounded_size;
850 best_p->full_size = rounded_size;
851 }
852 }
853 }
854
855 /* If we still didn't find one, make a new temporary. */
856 if (selected == 0)
857 {
858 poly_int64 frame_offset_old = frame_offset;
859
860 p = ggc_alloc<temp_slot> ();
861
862 /* We are passing an explicit alignment request to assign_stack_local.
863 One side effect of that is assign_stack_local will not round SIZE
864 to ensure the frame offset remains suitably aligned.
865
866 So for requests which depended on the rounding of SIZE, we go ahead
867 and round it now. We also make sure ALIGNMENT is at least
868 BIGGEST_ALIGNMENT. */
869 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
870 p->slot = assign_stack_local_1 (mode,
871 (mode == BLKmode
872 ? aligned_upper_bound (size,
873 (int) align
874 / BITS_PER_UNIT)
875 : size),
876 align, 0);
877
878 p->align = align;
879
880 /* The following slot size computation is necessary because we don't
881 know the actual size of the temporary slot until assign_stack_local
882 has performed all the frame alignment and size rounding for the
883 requested temporary. Note that extra space added for alignment
884 can be either above or below this stack slot depending on which
885 way the frame grows. We include the extra space if and only if it
886 is above this slot. */
887 if (FRAME_GROWS_DOWNWARD)
888 p->size = frame_offset_old - frame_offset;
889 else
890 p->size = size;
891
892 /* Now define the fields used by combine_temp_slots. */
893 if (FRAME_GROWS_DOWNWARD)
894 {
895 p->base_offset = frame_offset;
896 p->full_size = frame_offset_old - frame_offset;
897 }
898 else
899 {
900 p->base_offset = frame_offset_old;
901 p->full_size = frame_offset - frame_offset_old;
902 }
903
904 selected = p;
905 }
906
907 p = selected;
908 p->in_use = 1;
909 p->type = type;
910 p->level = temp_slot_level;
911 n_temp_slots_in_use++;
912
913 pp = temp_slots_at_level (p->level);
914 insert_slot_to_list (p, pp);
915 insert_temp_slot_address (XEXP (p->slot, 0), p);
916
917 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
918 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
919 vec_safe_push (stack_slot_list, slot);
920
921 /* If we know the alias set for the memory that will be used, use
922 it. If there's no TYPE, then we don't know anything about the
923 alias set for the memory. */
924 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
925 set_mem_align (slot, align);
926
927 /* If a type is specified, set the relevant flags. */
928 if (type != 0)
929 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
930 MEM_NOTRAP_P (slot) = 1;
931
932 return slot;
933 }
934
935 /* Allocate a temporary stack slot and record it for possible later
936 reuse. First two arguments are same as in preceding function. */
937
938 rtx
939 assign_stack_temp (machine_mode mode, poly_int64 size)
940 {
941 return assign_stack_temp_for_type (mode, size, NULL_TREE);
942 }
943 \f
944 /* Assign a temporary.
945 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
946 and so that should be used in error messages. In either case, we
947 allocate of the given type.
948 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
949 it is 0 if a register is OK.
950 DONT_PROMOTE is 1 if we should not promote values in register
951 to wider modes. */
952
953 rtx
954 assign_temp (tree type_or_decl, int memory_required,
955 int dont_promote ATTRIBUTE_UNUSED)
956 {
957 tree type, decl;
958 machine_mode mode;
959 #ifdef PROMOTE_MODE
960 int unsignedp;
961 #endif
962
963 if (DECL_P (type_or_decl))
964 decl = type_or_decl, type = TREE_TYPE (decl);
965 else
966 decl = NULL, type = type_or_decl;
967
968 mode = TYPE_MODE (type);
969 #ifdef PROMOTE_MODE
970 unsignedp = TYPE_UNSIGNED (type);
971 #endif
972
973 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
974 end. See also create_tmp_var for the gimplification-time check. */
975 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
976
977 if (mode == BLKmode || memory_required)
978 {
979 HOST_WIDE_INT size = int_size_in_bytes (type);
980 rtx tmp;
981
982 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
983 problems with allocating the stack space. */
984 if (size == 0)
985 size = 1;
986
987 /* Unfortunately, we don't yet know how to allocate variable-sized
988 temporaries. However, sometimes we can find a fixed upper limit on
989 the size, so try that instead. */
990 else if (size == -1)
991 size = max_int_size_in_bytes (type);
992
993 /* The size of the temporary may be too large to fit into an integer. */
994 /* ??? Not sure this should happen except for user silliness, so limit
995 this to things that aren't compiler-generated temporaries. The
996 rest of the time we'll die in assign_stack_temp_for_type. */
997 if (decl && size == -1
998 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
999 {
1000 error ("size of variable %q+D is too large", decl);
1001 size = 1;
1002 }
1003
1004 tmp = assign_stack_temp_for_type (mode, size, type);
1005 return tmp;
1006 }
1007
1008 #ifdef PROMOTE_MODE
1009 if (! dont_promote)
1010 mode = promote_mode (type, mode, &unsignedp);
1011 #endif
1012
1013 return gen_reg_rtx (mode);
1014 }
1015 \f
1016 /* Combine temporary stack slots which are adjacent on the stack.
1017
1018 This allows for better use of already allocated stack space. This is only
1019 done for BLKmode slots because we can be sure that we won't have alignment
1020 problems in this case. */
1021
1022 static void
1023 combine_temp_slots (void)
1024 {
1025 struct temp_slot *p, *q, *next, *next_q;
1026 int num_slots;
1027
1028 /* We can't combine slots, because the information about which slot
1029 is in which alias set will be lost. */
1030 if (flag_strict_aliasing)
1031 return;
1032
1033 /* If there are a lot of temp slots, don't do anything unless
1034 high levels of optimization. */
1035 if (! flag_expensive_optimizations)
1036 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1037 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1038 return;
1039
1040 for (p = avail_temp_slots; p; p = next)
1041 {
1042 int delete_p = 0;
1043
1044 next = p->next;
1045
1046 if (GET_MODE (p->slot) != BLKmode)
1047 continue;
1048
1049 for (q = p->next; q; q = next_q)
1050 {
1051 int delete_q = 0;
1052
1053 next_q = q->next;
1054
1055 if (GET_MODE (q->slot) != BLKmode)
1056 continue;
1057
1058 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1059 {
1060 /* Q comes after P; combine Q into P. */
1061 p->size += q->size;
1062 p->full_size += q->full_size;
1063 delete_q = 1;
1064 }
1065 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1066 {
1067 /* P comes after Q; combine P into Q. */
1068 q->size += p->size;
1069 q->full_size += p->full_size;
1070 delete_p = 1;
1071 break;
1072 }
1073 if (delete_q)
1074 cut_slot_from_list (q, &avail_temp_slots);
1075 }
1076
1077 /* Either delete P or advance past it. */
1078 if (delete_p)
1079 cut_slot_from_list (p, &avail_temp_slots);
1080 }
1081 }
1082 \f
1083 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1084 slot that previously was known by OLD_RTX. */
1085
1086 void
1087 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1088 {
1089 struct temp_slot *p;
1090
1091 if (rtx_equal_p (old_rtx, new_rtx))
1092 return;
1093
1094 p = find_temp_slot_from_address (old_rtx);
1095
1096 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1097 NEW_RTX is a register, see if one operand of the PLUS is a
1098 temporary location. If so, NEW_RTX points into it. Otherwise,
1099 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1100 in common between them. If so, try a recursive call on those
1101 values. */
1102 if (p == 0)
1103 {
1104 if (GET_CODE (old_rtx) != PLUS)
1105 return;
1106
1107 if (REG_P (new_rtx))
1108 {
1109 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1110 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1111 return;
1112 }
1113 else if (GET_CODE (new_rtx) != PLUS)
1114 return;
1115
1116 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1117 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1118 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1119 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1120 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1121 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1122 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1123 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1124
1125 return;
1126 }
1127
1128 /* Otherwise add an alias for the temp's address. */
1129 insert_temp_slot_address (new_rtx, p);
1130 }
1131
1132 /* If X could be a reference to a temporary slot, mark that slot as
1133 belonging to the to one level higher than the current level. If X
1134 matched one of our slots, just mark that one. Otherwise, we can't
1135 easily predict which it is, so upgrade all of them.
1136
1137 This is called when an ({...}) construct occurs and a statement
1138 returns a value in memory. */
1139
1140 void
1141 preserve_temp_slots (rtx x)
1142 {
1143 struct temp_slot *p = 0, *next;
1144
1145 if (x == 0)
1146 return;
1147
1148 /* If X is a register that is being used as a pointer, see if we have
1149 a temporary slot we know it points to. */
1150 if (REG_P (x) && REG_POINTER (x))
1151 p = find_temp_slot_from_address (x);
1152
1153 /* If X is not in memory or is at a constant address, it cannot be in
1154 a temporary slot. */
1155 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1156 return;
1157
1158 /* First see if we can find a match. */
1159 if (p == 0)
1160 p = find_temp_slot_from_address (XEXP (x, 0));
1161
1162 if (p != 0)
1163 {
1164 if (p->level == temp_slot_level)
1165 move_slot_to_level (p, temp_slot_level - 1);
1166 return;
1167 }
1168
1169 /* Otherwise, preserve all non-kept slots at this level. */
1170 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1171 {
1172 next = p->next;
1173 move_slot_to_level (p, temp_slot_level - 1);
1174 }
1175 }
1176
1177 /* Free all temporaries used so far. This is normally called at the
1178 end of generating code for a statement. */
1179
1180 void
1181 free_temp_slots (void)
1182 {
1183 struct temp_slot *p, *next;
1184 bool some_available = false;
1185
1186 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1187 {
1188 next = p->next;
1189 make_slot_available (p);
1190 some_available = true;
1191 }
1192
1193 if (some_available)
1194 {
1195 remove_unused_temp_slot_addresses ();
1196 combine_temp_slots ();
1197 }
1198 }
1199
1200 /* Push deeper into the nesting level for stack temporaries. */
1201
1202 void
1203 push_temp_slots (void)
1204 {
1205 temp_slot_level++;
1206 }
1207
1208 /* Pop a temporary nesting level. All slots in use in the current level
1209 are freed. */
1210
1211 void
1212 pop_temp_slots (void)
1213 {
1214 free_temp_slots ();
1215 temp_slot_level--;
1216 }
1217
1218 /* Initialize temporary slots. */
1219
1220 void
1221 init_temp_slots (void)
1222 {
1223 /* We have not allocated any temporaries yet. */
1224 avail_temp_slots = 0;
1225 vec_alloc (used_temp_slots, 0);
1226 temp_slot_level = 0;
1227 n_temp_slots_in_use = 0;
1228
1229 /* Set up the table to map addresses to temp slots. */
1230 if (! temp_slot_address_table)
1231 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1232 else
1233 temp_slot_address_table->empty ();
1234 }
1235 \f
1236 /* Functions and data structures to keep track of the values hard regs
1237 had at the start of the function. */
1238
1239 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1240 and has_hard_reg_initial_val.. */
1241 struct GTY(()) initial_value_pair {
1242 rtx hard_reg;
1243 rtx pseudo;
1244 };
1245 /* ??? This could be a VEC but there is currently no way to define an
1246 opaque VEC type. This could be worked around by defining struct
1247 initial_value_pair in function.h. */
1248 struct GTY(()) initial_value_struct {
1249 int num_entries;
1250 int max_entries;
1251 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1252 };
1253
1254 /* If a pseudo represents an initial hard reg (or expression), return
1255 it, else return NULL_RTX. */
1256
1257 rtx
1258 get_hard_reg_initial_reg (rtx reg)
1259 {
1260 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1261 int i;
1262
1263 if (ivs == 0)
1264 return NULL_RTX;
1265
1266 for (i = 0; i < ivs->num_entries; i++)
1267 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1268 return ivs->entries[i].hard_reg;
1269
1270 return NULL_RTX;
1271 }
1272
1273 /* Make sure that there's a pseudo register of mode MODE that stores the
1274 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1275
1276 rtx
1277 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1278 {
1279 struct initial_value_struct *ivs;
1280 rtx rv;
1281
1282 rv = has_hard_reg_initial_val (mode, regno);
1283 if (rv)
1284 return rv;
1285
1286 ivs = crtl->hard_reg_initial_vals;
1287 if (ivs == 0)
1288 {
1289 ivs = ggc_alloc<initial_value_struct> ();
1290 ivs->num_entries = 0;
1291 ivs->max_entries = 5;
1292 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1293 crtl->hard_reg_initial_vals = ivs;
1294 }
1295
1296 if (ivs->num_entries >= ivs->max_entries)
1297 {
1298 ivs->max_entries += 5;
1299 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1300 ivs->max_entries);
1301 }
1302
1303 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1304 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1305
1306 return ivs->entries[ivs->num_entries++].pseudo;
1307 }
1308
1309 /* See if get_hard_reg_initial_val has been used to create a pseudo
1310 for the initial value of hard register REGNO in mode MODE. Return
1311 the associated pseudo if so, otherwise return NULL. */
1312
1313 rtx
1314 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1315 {
1316 struct initial_value_struct *ivs;
1317 int i;
1318
1319 ivs = crtl->hard_reg_initial_vals;
1320 if (ivs != 0)
1321 for (i = 0; i < ivs->num_entries; i++)
1322 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1323 && REGNO (ivs->entries[i].hard_reg) == regno)
1324 return ivs->entries[i].pseudo;
1325
1326 return NULL_RTX;
1327 }
1328
1329 unsigned int
1330 emit_initial_value_sets (void)
1331 {
1332 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1333 int i;
1334 rtx_insn *seq;
1335
1336 if (ivs == 0)
1337 return 0;
1338
1339 start_sequence ();
1340 for (i = 0; i < ivs->num_entries; i++)
1341 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1342 seq = get_insns ();
1343 end_sequence ();
1344
1345 emit_insn_at_entry (seq);
1346 return 0;
1347 }
1348
1349 /* Return the hardreg-pseudoreg initial values pair entry I and
1350 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1351 bool
1352 initial_value_entry (int i, rtx *hreg, rtx *preg)
1353 {
1354 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1355 if (!ivs || i >= ivs->num_entries)
1356 return false;
1357
1358 *hreg = ivs->entries[i].hard_reg;
1359 *preg = ivs->entries[i].pseudo;
1360 return true;
1361 }
1362 \f
1363 /* These routines are responsible for converting virtual register references
1364 to the actual hard register references once RTL generation is complete.
1365
1366 The following four variables are used for communication between the
1367 routines. They contain the offsets of the virtual registers from their
1368 respective hard registers. */
1369
1370 static poly_int64 in_arg_offset;
1371 static poly_int64 var_offset;
1372 static poly_int64 dynamic_offset;
1373 static poly_int64 out_arg_offset;
1374 static poly_int64 cfa_offset;
1375
1376 /* In most machines, the stack pointer register is equivalent to the bottom
1377 of the stack. */
1378
1379 #ifndef STACK_POINTER_OFFSET
1380 #define STACK_POINTER_OFFSET 0
1381 #endif
1382
1383 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1384 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1385 #endif
1386
1387 /* If not defined, pick an appropriate default for the offset of dynamically
1388 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1389 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1390
1391 #ifndef STACK_DYNAMIC_OFFSET
1392
1393 /* The bottom of the stack points to the actual arguments. If
1394 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1395 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1396 stack space for register parameters is not pushed by the caller, but
1397 rather part of the fixed stack areas and hence not included in
1398 `crtl->outgoing_args_size'. Nevertheless, we must allow
1399 for it when allocating stack dynamic objects. */
1400
1401 #ifdef INCOMING_REG_PARM_STACK_SPACE
1402 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1403 ((ACCUMULATE_OUTGOING_ARGS \
1404 ? (crtl->outgoing_args_size \
1405 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1406 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1407 : 0) + (STACK_POINTER_OFFSET))
1408 #else
1409 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1410 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1411 + (STACK_POINTER_OFFSET))
1412 #endif
1413 #endif
1414
1415 \f
1416 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1417 is a virtual register, return the equivalent hard register and set the
1418 offset indirectly through the pointer. Otherwise, return 0. */
1419
1420 static rtx
1421 instantiate_new_reg (rtx x, poly_int64_pod *poffset)
1422 {
1423 rtx new_rtx;
1424 poly_int64 offset;
1425
1426 if (x == virtual_incoming_args_rtx)
1427 {
1428 if (stack_realign_drap)
1429 {
1430 /* Replace virtual_incoming_args_rtx with internal arg
1431 pointer if DRAP is used to realign stack. */
1432 new_rtx = crtl->args.internal_arg_pointer;
1433 offset = 0;
1434 }
1435 else
1436 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1437 }
1438 else if (x == virtual_stack_vars_rtx)
1439 new_rtx = frame_pointer_rtx, offset = var_offset;
1440 else if (x == virtual_stack_dynamic_rtx)
1441 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1442 else if (x == virtual_outgoing_args_rtx)
1443 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1444 else if (x == virtual_cfa_rtx)
1445 {
1446 #ifdef FRAME_POINTER_CFA_OFFSET
1447 new_rtx = frame_pointer_rtx;
1448 #else
1449 new_rtx = arg_pointer_rtx;
1450 #endif
1451 offset = cfa_offset;
1452 }
1453 else if (x == virtual_preferred_stack_boundary_rtx)
1454 {
1455 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1456 offset = 0;
1457 }
1458 else
1459 return NULL_RTX;
1460
1461 *poffset = offset;
1462 return new_rtx;
1463 }
1464
1465 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1466 registers present inside of *LOC. The expression is simplified,
1467 as much as possible, but is not to be considered "valid" in any sense
1468 implied by the target. Return true if any change is made. */
1469
1470 static bool
1471 instantiate_virtual_regs_in_rtx (rtx *loc)
1472 {
1473 if (!*loc)
1474 return false;
1475 bool changed = false;
1476 subrtx_ptr_iterator::array_type array;
1477 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1478 {
1479 rtx *loc = *iter;
1480 if (rtx x = *loc)
1481 {
1482 rtx new_rtx;
1483 poly_int64 offset;
1484 switch (GET_CODE (x))
1485 {
1486 case REG:
1487 new_rtx = instantiate_new_reg (x, &offset);
1488 if (new_rtx)
1489 {
1490 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1491 changed = true;
1492 }
1493 iter.skip_subrtxes ();
1494 break;
1495
1496 case PLUS:
1497 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1498 if (new_rtx)
1499 {
1500 XEXP (x, 0) = new_rtx;
1501 *loc = plus_constant (GET_MODE (x), x, offset, true);
1502 changed = true;
1503 iter.skip_subrtxes ();
1504 break;
1505 }
1506
1507 /* FIXME -- from old code */
1508 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1509 we can commute the PLUS and SUBREG because pointers into the
1510 frame are well-behaved. */
1511 break;
1512
1513 default:
1514 break;
1515 }
1516 }
1517 }
1518 return changed;
1519 }
1520
1521 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1522 matches the predicate for insn CODE operand OPERAND. */
1523
1524 static int
1525 safe_insn_predicate (int code, int operand, rtx x)
1526 {
1527 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1528 }
1529
1530 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1531 registers present inside of insn. The result will be a valid insn. */
1532
1533 static void
1534 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1535 {
1536 poly_int64 offset;
1537 int insn_code, i;
1538 bool any_change = false;
1539 rtx set, new_rtx, x;
1540 rtx_insn *seq;
1541
1542 /* There are some special cases to be handled first. */
1543 set = single_set (insn);
1544 if (set)
1545 {
1546 /* We're allowed to assign to a virtual register. This is interpreted
1547 to mean that the underlying register gets assigned the inverse
1548 transformation. This is used, for example, in the handling of
1549 non-local gotos. */
1550 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1551 if (new_rtx)
1552 {
1553 start_sequence ();
1554
1555 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1556 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1557 gen_int_mode (-offset, GET_MODE (new_rtx)));
1558 x = force_operand (x, new_rtx);
1559 if (x != new_rtx)
1560 emit_move_insn (new_rtx, x);
1561
1562 seq = get_insns ();
1563 end_sequence ();
1564
1565 emit_insn_before (seq, insn);
1566 delete_insn (insn);
1567 return;
1568 }
1569
1570 /* Handle a straight copy from a virtual register by generating a
1571 new add insn. The difference between this and falling through
1572 to the generic case is avoiding a new pseudo and eliminating a
1573 move insn in the initial rtl stream. */
1574 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1575 if (new_rtx
1576 && maybe_ne (offset, 0)
1577 && REG_P (SET_DEST (set))
1578 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1579 {
1580 start_sequence ();
1581
1582 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1583 gen_int_mode (offset,
1584 GET_MODE (SET_DEST (set))),
1585 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1586 if (x != SET_DEST (set))
1587 emit_move_insn (SET_DEST (set), x);
1588
1589 seq = get_insns ();
1590 end_sequence ();
1591
1592 emit_insn_before (seq, insn);
1593 delete_insn (insn);
1594 return;
1595 }
1596
1597 extract_insn (insn);
1598 insn_code = INSN_CODE (insn);
1599
1600 /* Handle a plus involving a virtual register by determining if the
1601 operands remain valid if they're modified in place. */
1602 poly_int64 delta;
1603 if (GET_CODE (SET_SRC (set)) == PLUS
1604 && recog_data.n_operands >= 3
1605 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1606 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1607 && poly_int_rtx_p (recog_data.operand[2], &delta)
1608 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1609 {
1610 offset += delta;
1611
1612 /* If the sum is zero, then replace with a plain move. */
1613 if (known_eq (offset, 0)
1614 && REG_P (SET_DEST (set))
1615 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1616 {
1617 start_sequence ();
1618 emit_move_insn (SET_DEST (set), new_rtx);
1619 seq = get_insns ();
1620 end_sequence ();
1621
1622 emit_insn_before (seq, insn);
1623 delete_insn (insn);
1624 return;
1625 }
1626
1627 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1628
1629 /* Using validate_change and apply_change_group here leaves
1630 recog_data in an invalid state. Since we know exactly what
1631 we want to check, do those two by hand. */
1632 if (safe_insn_predicate (insn_code, 1, new_rtx)
1633 && safe_insn_predicate (insn_code, 2, x))
1634 {
1635 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1636 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1637 any_change = true;
1638
1639 /* Fall through into the regular operand fixup loop in
1640 order to take care of operands other than 1 and 2. */
1641 }
1642 }
1643 }
1644 else
1645 {
1646 extract_insn (insn);
1647 insn_code = INSN_CODE (insn);
1648 }
1649
1650 /* In the general case, we expect virtual registers to appear only in
1651 operands, and then only as either bare registers or inside memories. */
1652 for (i = 0; i < recog_data.n_operands; ++i)
1653 {
1654 x = recog_data.operand[i];
1655 switch (GET_CODE (x))
1656 {
1657 case MEM:
1658 {
1659 rtx addr = XEXP (x, 0);
1660
1661 if (!instantiate_virtual_regs_in_rtx (&addr))
1662 continue;
1663
1664 start_sequence ();
1665 x = replace_equiv_address (x, addr, true);
1666 /* It may happen that the address with the virtual reg
1667 was valid (e.g. based on the virtual stack reg, which might
1668 be acceptable to the predicates with all offsets), whereas
1669 the address now isn't anymore, for instance when the address
1670 is still offsetted, but the base reg isn't virtual-stack-reg
1671 anymore. Below we would do a force_reg on the whole operand,
1672 but this insn might actually only accept memory. Hence,
1673 before doing that last resort, try to reload the address into
1674 a register, so this operand stays a MEM. */
1675 if (!safe_insn_predicate (insn_code, i, x))
1676 {
1677 addr = force_reg (GET_MODE (addr), addr);
1678 x = replace_equiv_address (x, addr, true);
1679 }
1680 seq = get_insns ();
1681 end_sequence ();
1682 if (seq)
1683 emit_insn_before (seq, insn);
1684 }
1685 break;
1686
1687 case REG:
1688 new_rtx = instantiate_new_reg (x, &offset);
1689 if (new_rtx == NULL)
1690 continue;
1691 if (known_eq (offset, 0))
1692 x = new_rtx;
1693 else
1694 {
1695 start_sequence ();
1696
1697 /* Careful, special mode predicates may have stuff in
1698 insn_data[insn_code].operand[i].mode that isn't useful
1699 to us for computing a new value. */
1700 /* ??? Recognize address_operand and/or "p" constraints
1701 to see if (plus new offset) is a valid before we put
1702 this through expand_simple_binop. */
1703 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1704 gen_int_mode (offset, GET_MODE (x)),
1705 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1706 seq = get_insns ();
1707 end_sequence ();
1708 emit_insn_before (seq, insn);
1709 }
1710 break;
1711
1712 case SUBREG:
1713 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1714 if (new_rtx == NULL)
1715 continue;
1716 if (maybe_ne (offset, 0))
1717 {
1718 start_sequence ();
1719 new_rtx = expand_simple_binop
1720 (GET_MODE (new_rtx), PLUS, new_rtx,
1721 gen_int_mode (offset, GET_MODE (new_rtx)),
1722 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1723 seq = get_insns ();
1724 end_sequence ();
1725 emit_insn_before (seq, insn);
1726 }
1727 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1728 GET_MODE (new_rtx), SUBREG_BYTE (x));
1729 gcc_assert (x);
1730 break;
1731
1732 default:
1733 continue;
1734 }
1735
1736 /* At this point, X contains the new value for the operand.
1737 Validate the new value vs the insn predicate. Note that
1738 asm insns will have insn_code -1 here. */
1739 if (!safe_insn_predicate (insn_code, i, x))
1740 {
1741 start_sequence ();
1742 if (REG_P (x))
1743 {
1744 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1745 x = copy_to_reg (x);
1746 }
1747 else
1748 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1749 seq = get_insns ();
1750 end_sequence ();
1751 if (seq)
1752 emit_insn_before (seq, insn);
1753 }
1754
1755 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1756 any_change = true;
1757 }
1758
1759 if (any_change)
1760 {
1761 /* Propagate operand changes into the duplicates. */
1762 for (i = 0; i < recog_data.n_dups; ++i)
1763 *recog_data.dup_loc[i]
1764 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1765
1766 /* Force re-recognition of the instruction for validation. */
1767 INSN_CODE (insn) = -1;
1768 }
1769
1770 if (asm_noperands (PATTERN (insn)) >= 0)
1771 {
1772 if (!check_asm_operands (PATTERN (insn)))
1773 {
1774 error_for_asm (insn, "impossible constraint in %<asm%>");
1775 /* For asm goto, instead of fixing up all the edges
1776 just clear the template and clear input operands
1777 (asm goto doesn't have any output operands). */
1778 if (JUMP_P (insn))
1779 {
1780 rtx asm_op = extract_asm_operands (PATTERN (insn));
1781 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1782 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1783 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1784 }
1785 else
1786 delete_insn (insn);
1787 }
1788 }
1789 else
1790 {
1791 if (recog_memoized (insn) < 0)
1792 fatal_insn_not_found (insn);
1793 }
1794 }
1795
1796 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1797 do any instantiation required. */
1798
1799 void
1800 instantiate_decl_rtl (rtx x)
1801 {
1802 rtx addr;
1803
1804 if (x == 0)
1805 return;
1806
1807 /* If this is a CONCAT, recurse for the pieces. */
1808 if (GET_CODE (x) == CONCAT)
1809 {
1810 instantiate_decl_rtl (XEXP (x, 0));
1811 instantiate_decl_rtl (XEXP (x, 1));
1812 return;
1813 }
1814
1815 /* If this is not a MEM, no need to do anything. Similarly if the
1816 address is a constant or a register that is not a virtual register. */
1817 if (!MEM_P (x))
1818 return;
1819
1820 addr = XEXP (x, 0);
1821 if (CONSTANT_P (addr)
1822 || (REG_P (addr)
1823 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1824 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1825 return;
1826
1827 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1828 }
1829
1830 /* Helper for instantiate_decls called via walk_tree: Process all decls
1831 in the given DECL_VALUE_EXPR. */
1832
1833 static tree
1834 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1835 {
1836 tree t = *tp;
1837 if (! EXPR_P (t))
1838 {
1839 *walk_subtrees = 0;
1840 if (DECL_P (t))
1841 {
1842 if (DECL_RTL_SET_P (t))
1843 instantiate_decl_rtl (DECL_RTL (t));
1844 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1845 && DECL_INCOMING_RTL (t))
1846 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1847 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1848 && DECL_HAS_VALUE_EXPR_P (t))
1849 {
1850 tree v = DECL_VALUE_EXPR (t);
1851 walk_tree (&v, instantiate_expr, NULL, NULL);
1852 }
1853 }
1854 }
1855 return NULL;
1856 }
1857
1858 /* Subroutine of instantiate_decls: Process all decls in the given
1859 BLOCK node and all its subblocks. */
1860
1861 static void
1862 instantiate_decls_1 (tree let)
1863 {
1864 tree t;
1865
1866 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1867 {
1868 if (DECL_RTL_SET_P (t))
1869 instantiate_decl_rtl (DECL_RTL (t));
1870 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1871 {
1872 tree v = DECL_VALUE_EXPR (t);
1873 walk_tree (&v, instantiate_expr, NULL, NULL);
1874 }
1875 }
1876
1877 /* Process all subblocks. */
1878 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1879 instantiate_decls_1 (t);
1880 }
1881
1882 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1883 all virtual registers in their DECL_RTL's. */
1884
1885 static void
1886 instantiate_decls (tree fndecl)
1887 {
1888 tree decl;
1889 unsigned ix;
1890
1891 /* Process all parameters of the function. */
1892 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1893 {
1894 instantiate_decl_rtl (DECL_RTL (decl));
1895 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1896 if (DECL_HAS_VALUE_EXPR_P (decl))
1897 {
1898 tree v = DECL_VALUE_EXPR (decl);
1899 walk_tree (&v, instantiate_expr, NULL, NULL);
1900 }
1901 }
1902
1903 if ((decl = DECL_RESULT (fndecl))
1904 && TREE_CODE (decl) == RESULT_DECL)
1905 {
1906 if (DECL_RTL_SET_P (decl))
1907 instantiate_decl_rtl (DECL_RTL (decl));
1908 if (DECL_HAS_VALUE_EXPR_P (decl))
1909 {
1910 tree v = DECL_VALUE_EXPR (decl);
1911 walk_tree (&v, instantiate_expr, NULL, NULL);
1912 }
1913 }
1914
1915 /* Process the saved static chain if it exists. */
1916 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1917 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1918 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1919
1920 /* Now process all variables defined in the function or its subblocks. */
1921 if (DECL_INITIAL (fndecl))
1922 instantiate_decls_1 (DECL_INITIAL (fndecl));
1923
1924 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1925 if (DECL_RTL_SET_P (decl))
1926 instantiate_decl_rtl (DECL_RTL (decl));
1927 vec_free (cfun->local_decls);
1928 }
1929
1930 /* Pass through the INSNS of function FNDECL and convert virtual register
1931 references to hard register references. */
1932
1933 static unsigned int
1934 instantiate_virtual_regs (void)
1935 {
1936 rtx_insn *insn;
1937
1938 /* Compute the offsets to use for this function. */
1939 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1940 var_offset = targetm.starting_frame_offset ();
1941 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1942 out_arg_offset = STACK_POINTER_OFFSET;
1943 #ifdef FRAME_POINTER_CFA_OFFSET
1944 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1945 #else
1946 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1947 #endif
1948
1949 /* Initialize recognition, indicating that volatile is OK. */
1950 init_recog ();
1951
1952 /* Scan through all the insns, instantiating every virtual register still
1953 present. */
1954 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1955 if (INSN_P (insn))
1956 {
1957 /* These patterns in the instruction stream can never be recognized.
1958 Fortunately, they shouldn't contain virtual registers either. */
1959 if (GET_CODE (PATTERN (insn)) == USE
1960 || GET_CODE (PATTERN (insn)) == CLOBBER
1961 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1962 || DEBUG_MARKER_INSN_P (insn))
1963 continue;
1964 else if (DEBUG_BIND_INSN_P (insn))
1965 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1966 else
1967 instantiate_virtual_regs_in_insn (insn);
1968
1969 if (insn->deleted ())
1970 continue;
1971
1972 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1973
1974 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1975 if (CALL_P (insn))
1976 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1977 }
1978
1979 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1980 instantiate_decls (current_function_decl);
1981
1982 targetm.instantiate_decls ();
1983
1984 /* Indicate that, from now on, assign_stack_local should use
1985 frame_pointer_rtx. */
1986 virtuals_instantiated = 1;
1987
1988 return 0;
1989 }
1990
1991 namespace {
1992
1993 const pass_data pass_data_instantiate_virtual_regs =
1994 {
1995 RTL_PASS, /* type */
1996 "vregs", /* name */
1997 OPTGROUP_NONE, /* optinfo_flags */
1998 TV_NONE, /* tv_id */
1999 0, /* properties_required */
2000 0, /* properties_provided */
2001 0, /* properties_destroyed */
2002 0, /* todo_flags_start */
2003 0, /* todo_flags_finish */
2004 };
2005
2006 class pass_instantiate_virtual_regs : public rtl_opt_pass
2007 {
2008 public:
2009 pass_instantiate_virtual_regs (gcc::context *ctxt)
2010 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2011 {}
2012
2013 /* opt_pass methods: */
2014 virtual unsigned int execute (function *)
2015 {
2016 return instantiate_virtual_regs ();
2017 }
2018
2019 }; // class pass_instantiate_virtual_regs
2020
2021 } // anon namespace
2022
2023 rtl_opt_pass *
2024 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2025 {
2026 return new pass_instantiate_virtual_regs (ctxt);
2027 }
2028
2029 \f
2030 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2031 This means a type for which function calls must pass an address to the
2032 function or get an address back from the function.
2033 EXP may be a type node or an expression (whose type is tested). */
2034
2035 int
2036 aggregate_value_p (const_tree exp, const_tree fntype)
2037 {
2038 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2039 int i, regno, nregs;
2040 rtx reg;
2041
2042 if (fntype)
2043 switch (TREE_CODE (fntype))
2044 {
2045 case CALL_EXPR:
2046 {
2047 tree fndecl = get_callee_fndecl (fntype);
2048 if (fndecl)
2049 fntype = TREE_TYPE (fndecl);
2050 else if (CALL_EXPR_FN (fntype))
2051 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2052 else
2053 /* For internal functions, assume nothing needs to be
2054 returned in memory. */
2055 return 0;
2056 }
2057 break;
2058 case FUNCTION_DECL:
2059 fntype = TREE_TYPE (fntype);
2060 break;
2061 case FUNCTION_TYPE:
2062 case METHOD_TYPE:
2063 break;
2064 case IDENTIFIER_NODE:
2065 fntype = NULL_TREE;
2066 break;
2067 default:
2068 /* We don't expect other tree types here. */
2069 gcc_unreachable ();
2070 }
2071
2072 if (VOID_TYPE_P (type))
2073 return 0;
2074
2075 /* If a record should be passed the same as its first (and only) member
2076 don't pass it as an aggregate. */
2077 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2078 return aggregate_value_p (first_field (type), fntype);
2079
2080 /* If the front end has decided that this needs to be passed by
2081 reference, do so. */
2082 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2083 && DECL_BY_REFERENCE (exp))
2084 return 1;
2085
2086 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2087 if (fntype && TREE_ADDRESSABLE (fntype))
2088 return 1;
2089
2090 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2091 and thus can't be returned in registers. */
2092 if (TREE_ADDRESSABLE (type))
2093 return 1;
2094
2095 if (TYPE_EMPTY_P (type))
2096 return 0;
2097
2098 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2099 return 1;
2100
2101 if (targetm.calls.return_in_memory (type, fntype))
2102 return 1;
2103
2104 /* Make sure we have suitable call-clobbered regs to return
2105 the value in; if not, we must return it in memory. */
2106 reg = hard_function_value (type, 0, fntype, 0);
2107
2108 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2109 it is OK. */
2110 if (!REG_P (reg))
2111 return 0;
2112
2113 regno = REGNO (reg);
2114 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2115 for (i = 0; i < nregs; i++)
2116 if (! call_used_regs[regno + i])
2117 return 1;
2118
2119 return 0;
2120 }
2121 \f
2122 /* Return true if we should assign DECL a pseudo register; false if it
2123 should live on the local stack. */
2124
2125 bool
2126 use_register_for_decl (const_tree decl)
2127 {
2128 if (TREE_CODE (decl) == SSA_NAME)
2129 {
2130 /* We often try to use the SSA_NAME, instead of its underlying
2131 decl, to get type information and guide decisions, to avoid
2132 differences of behavior between anonymous and named
2133 variables, but in this one case we have to go for the actual
2134 variable if there is one. The main reason is that, at least
2135 at -O0, we want to place user variables on the stack, but we
2136 don't mind using pseudos for anonymous or ignored temps.
2137 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2138 should go in pseudos, whereas their corresponding variables
2139 might have to go on the stack. So, disregarding the decl
2140 here would negatively impact debug info at -O0, enable
2141 coalescing between SSA_NAMEs that ought to get different
2142 stack/pseudo assignments, and get the incoming argument
2143 processing thoroughly confused by PARM_DECLs expected to live
2144 in stack slots but assigned to pseudos. */
2145 if (!SSA_NAME_VAR (decl))
2146 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2147 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2148
2149 decl = SSA_NAME_VAR (decl);
2150 }
2151
2152 /* Honor volatile. */
2153 if (TREE_SIDE_EFFECTS (decl))
2154 return false;
2155
2156 /* Honor addressability. */
2157 if (TREE_ADDRESSABLE (decl))
2158 return false;
2159
2160 /* RESULT_DECLs are a bit special in that they're assigned without
2161 regard to use_register_for_decl, but we generally only store in
2162 them. If we coalesce their SSA NAMEs, we'd better return a
2163 result that matches the assignment in expand_function_start. */
2164 if (TREE_CODE (decl) == RESULT_DECL)
2165 {
2166 /* If it's not an aggregate, we're going to use a REG or a
2167 PARALLEL containing a REG. */
2168 if (!aggregate_value_p (decl, current_function_decl))
2169 return true;
2170
2171 /* If expand_function_start determines the return value, we'll
2172 use MEM if it's not by reference. */
2173 if (cfun->returns_pcc_struct
2174 || (targetm.calls.struct_value_rtx
2175 (TREE_TYPE (current_function_decl), 1)))
2176 return DECL_BY_REFERENCE (decl);
2177
2178 /* Otherwise, we're taking an extra all.function_result_decl
2179 argument. It's set up in assign_parms_augmented_arg_list,
2180 under the (negated) conditions above, and then it's used to
2181 set up the RESULT_DECL rtl in assign_params, after looping
2182 over all parameters. Now, if the RESULT_DECL is not by
2183 reference, we'll use a MEM either way. */
2184 if (!DECL_BY_REFERENCE (decl))
2185 return false;
2186
2187 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2188 the function_result_decl's assignment. Since it's a pointer,
2189 we can short-circuit a number of the tests below, and we must
2190 duplicat e them because we don't have the
2191 function_result_decl to test. */
2192 if (!targetm.calls.allocate_stack_slots_for_args ())
2193 return true;
2194 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2195 if (optimize)
2196 return true;
2197 /* We don't set DECL_REGISTER for the function_result_decl. */
2198 return false;
2199 }
2200
2201 /* Decl is implicitly addressible by bound stores and loads
2202 if it is an aggregate holding bounds. */
2203 if (chkp_function_instrumented_p (current_function_decl)
2204 && TREE_TYPE (decl)
2205 && !BOUNDED_P (decl)
2206 && chkp_type_has_pointer (TREE_TYPE (decl)))
2207 return false;
2208
2209 /* Only register-like things go in registers. */
2210 if (DECL_MODE (decl) == BLKmode)
2211 return false;
2212
2213 /* If -ffloat-store specified, don't put explicit float variables
2214 into registers. */
2215 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2216 propagates values across these stores, and it probably shouldn't. */
2217 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2218 return false;
2219
2220 if (!targetm.calls.allocate_stack_slots_for_args ())
2221 return true;
2222
2223 /* If we're not interested in tracking debugging information for
2224 this decl, then we can certainly put it in a register. */
2225 if (DECL_IGNORED_P (decl))
2226 return true;
2227
2228 if (optimize)
2229 return true;
2230
2231 if (!DECL_REGISTER (decl))
2232 return false;
2233
2234 /* When not optimizing, disregard register keyword for types that
2235 could have methods, otherwise the methods won't be callable from
2236 the debugger. */
2237 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2238 return false;
2239
2240 return true;
2241 }
2242
2243 /* Structures to communicate between the subroutines of assign_parms.
2244 The first holds data persistent across all parameters, the second
2245 is cleared out for each parameter. */
2246
2247 struct assign_parm_data_all
2248 {
2249 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2250 should become a job of the target or otherwise encapsulated. */
2251 CUMULATIVE_ARGS args_so_far_v;
2252 cumulative_args_t args_so_far;
2253 struct args_size stack_args_size;
2254 tree function_result_decl;
2255 tree orig_fnargs;
2256 rtx_insn *first_conversion_insn;
2257 rtx_insn *last_conversion_insn;
2258 HOST_WIDE_INT pretend_args_size;
2259 HOST_WIDE_INT extra_pretend_bytes;
2260 int reg_parm_stack_space;
2261 };
2262
2263 struct assign_parm_data_one
2264 {
2265 tree nominal_type;
2266 tree passed_type;
2267 rtx entry_parm;
2268 rtx stack_parm;
2269 machine_mode nominal_mode;
2270 machine_mode passed_mode;
2271 machine_mode promoted_mode;
2272 struct locate_and_pad_arg_data locate;
2273 int partial;
2274 BOOL_BITFIELD named_arg : 1;
2275 BOOL_BITFIELD passed_pointer : 1;
2276 BOOL_BITFIELD on_stack : 1;
2277 BOOL_BITFIELD loaded_in_reg : 1;
2278 };
2279
2280 struct bounds_parm_data
2281 {
2282 assign_parm_data_one parm_data;
2283 tree bounds_parm;
2284 tree ptr_parm;
2285 rtx ptr_entry;
2286 int bound_no;
2287 };
2288
2289 /* A subroutine of assign_parms. Initialize ALL. */
2290
2291 static void
2292 assign_parms_initialize_all (struct assign_parm_data_all *all)
2293 {
2294 tree fntype ATTRIBUTE_UNUSED;
2295
2296 memset (all, 0, sizeof (*all));
2297
2298 fntype = TREE_TYPE (current_function_decl);
2299
2300 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2301 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2302 #else
2303 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2304 current_function_decl, -1);
2305 #endif
2306 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2307
2308 #ifdef INCOMING_REG_PARM_STACK_SPACE
2309 all->reg_parm_stack_space
2310 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2311 #endif
2312 }
2313
2314 /* If ARGS contains entries with complex types, split the entry into two
2315 entries of the component type. Return a new list of substitutions are
2316 needed, else the old list. */
2317
2318 static void
2319 split_complex_args (vec<tree> *args)
2320 {
2321 unsigned i;
2322 tree p;
2323
2324 FOR_EACH_VEC_ELT (*args, i, p)
2325 {
2326 tree type = TREE_TYPE (p);
2327 if (TREE_CODE (type) == COMPLEX_TYPE
2328 && targetm.calls.split_complex_arg (type))
2329 {
2330 tree decl;
2331 tree subtype = TREE_TYPE (type);
2332 bool addressable = TREE_ADDRESSABLE (p);
2333
2334 /* Rewrite the PARM_DECL's type with its component. */
2335 p = copy_node (p);
2336 TREE_TYPE (p) = subtype;
2337 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2338 SET_DECL_MODE (p, VOIDmode);
2339 DECL_SIZE (p) = NULL;
2340 DECL_SIZE_UNIT (p) = NULL;
2341 /* If this arg must go in memory, put it in a pseudo here.
2342 We can't allow it to go in memory as per normal parms,
2343 because the usual place might not have the imag part
2344 adjacent to the real part. */
2345 DECL_ARTIFICIAL (p) = addressable;
2346 DECL_IGNORED_P (p) = addressable;
2347 TREE_ADDRESSABLE (p) = 0;
2348 layout_decl (p, 0);
2349 (*args)[i] = p;
2350
2351 /* Build a second synthetic decl. */
2352 decl = build_decl (EXPR_LOCATION (p),
2353 PARM_DECL, NULL_TREE, subtype);
2354 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2355 DECL_ARTIFICIAL (decl) = addressable;
2356 DECL_IGNORED_P (decl) = addressable;
2357 layout_decl (decl, 0);
2358 args->safe_insert (++i, decl);
2359 }
2360 }
2361 }
2362
2363 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2364 the hidden struct return argument, and (abi willing) complex args.
2365 Return the new parameter list. */
2366
2367 static vec<tree>
2368 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2369 {
2370 tree fndecl = current_function_decl;
2371 tree fntype = TREE_TYPE (fndecl);
2372 vec<tree> fnargs = vNULL;
2373 tree arg;
2374
2375 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2376 fnargs.safe_push (arg);
2377
2378 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2379
2380 /* If struct value address is treated as the first argument, make it so. */
2381 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2382 && ! cfun->returns_pcc_struct
2383 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2384 {
2385 tree type = build_pointer_type (TREE_TYPE (fntype));
2386 tree decl;
2387
2388 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2389 PARM_DECL, get_identifier (".result_ptr"), type);
2390 DECL_ARG_TYPE (decl) = type;
2391 DECL_ARTIFICIAL (decl) = 1;
2392 DECL_NAMELESS (decl) = 1;
2393 TREE_CONSTANT (decl) = 1;
2394 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2395 changes, the end of the RESULT_DECL handling block in
2396 use_register_for_decl must be adjusted to match. */
2397
2398 DECL_CHAIN (decl) = all->orig_fnargs;
2399 all->orig_fnargs = decl;
2400 fnargs.safe_insert (0, decl);
2401
2402 all->function_result_decl = decl;
2403
2404 /* If function is instrumented then bounds of the
2405 passed structure address is the second argument. */
2406 if (chkp_function_instrumented_p (fndecl))
2407 {
2408 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2409 PARM_DECL, get_identifier (".result_bnd"),
2410 pointer_bounds_type_node);
2411 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2412 DECL_ARTIFICIAL (decl) = 1;
2413 DECL_NAMELESS (decl) = 1;
2414 TREE_CONSTANT (decl) = 1;
2415
2416 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2417 DECL_CHAIN (all->orig_fnargs) = decl;
2418 fnargs.safe_insert (1, decl);
2419 }
2420 }
2421
2422 /* If the target wants to split complex arguments into scalars, do so. */
2423 if (targetm.calls.split_complex_arg)
2424 split_complex_args (&fnargs);
2425
2426 return fnargs;
2427 }
2428
2429 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2430 data for the parameter. Incorporate ABI specifics such as pass-by-
2431 reference and type promotion. */
2432
2433 static void
2434 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2435 struct assign_parm_data_one *data)
2436 {
2437 tree nominal_type, passed_type;
2438 machine_mode nominal_mode, passed_mode, promoted_mode;
2439 int unsignedp;
2440
2441 memset (data, 0, sizeof (*data));
2442
2443 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2444 if (!cfun->stdarg)
2445 data->named_arg = 1; /* No variadic parms. */
2446 else if (DECL_CHAIN (parm))
2447 data->named_arg = 1; /* Not the last non-variadic parm. */
2448 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2449 data->named_arg = 1; /* Only variadic ones are unnamed. */
2450 else
2451 data->named_arg = 0; /* Treat as variadic. */
2452
2453 nominal_type = TREE_TYPE (parm);
2454 passed_type = DECL_ARG_TYPE (parm);
2455
2456 /* Look out for errors propagating this far. Also, if the parameter's
2457 type is void then its value doesn't matter. */
2458 if (TREE_TYPE (parm) == error_mark_node
2459 /* This can happen after weird syntax errors
2460 or if an enum type is defined among the parms. */
2461 || TREE_CODE (parm) != PARM_DECL
2462 || passed_type == NULL
2463 || VOID_TYPE_P (nominal_type))
2464 {
2465 nominal_type = passed_type = void_type_node;
2466 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2467 goto egress;
2468 }
2469
2470 /* Find mode of arg as it is passed, and mode of arg as it should be
2471 during execution of this function. */
2472 passed_mode = TYPE_MODE (passed_type);
2473 nominal_mode = TYPE_MODE (nominal_type);
2474
2475 /* If the parm is to be passed as a transparent union or record, use the
2476 type of the first field for the tests below. We have already verified
2477 that the modes are the same. */
2478 if ((TREE_CODE (passed_type) == UNION_TYPE
2479 || TREE_CODE (passed_type) == RECORD_TYPE)
2480 && TYPE_TRANSPARENT_AGGR (passed_type))
2481 passed_type = TREE_TYPE (first_field (passed_type));
2482
2483 /* See if this arg was passed by invisible reference. */
2484 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2485 passed_type, data->named_arg))
2486 {
2487 passed_type = nominal_type = build_pointer_type (passed_type);
2488 data->passed_pointer = true;
2489 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2490 }
2491
2492 /* Find mode as it is passed by the ABI. */
2493 unsignedp = TYPE_UNSIGNED (passed_type);
2494 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2495 TREE_TYPE (current_function_decl), 0);
2496
2497 egress:
2498 data->nominal_type = nominal_type;
2499 data->passed_type = passed_type;
2500 data->nominal_mode = nominal_mode;
2501 data->passed_mode = passed_mode;
2502 data->promoted_mode = promoted_mode;
2503 }
2504
2505 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2506
2507 static void
2508 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2509 struct assign_parm_data_one *data, bool no_rtl)
2510 {
2511 int varargs_pretend_bytes = 0;
2512
2513 targetm.calls.setup_incoming_varargs (all->args_so_far,
2514 data->promoted_mode,
2515 data->passed_type,
2516 &varargs_pretend_bytes, no_rtl);
2517
2518 /* If the back-end has requested extra stack space, record how much is
2519 needed. Do not change pretend_args_size otherwise since it may be
2520 nonzero from an earlier partial argument. */
2521 if (varargs_pretend_bytes > 0)
2522 all->pretend_args_size = varargs_pretend_bytes;
2523 }
2524
2525 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2526 the incoming location of the current parameter. */
2527
2528 static void
2529 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2530 struct assign_parm_data_one *data)
2531 {
2532 HOST_WIDE_INT pretend_bytes = 0;
2533 rtx entry_parm;
2534 bool in_regs;
2535
2536 if (data->promoted_mode == VOIDmode)
2537 {
2538 data->entry_parm = data->stack_parm = const0_rtx;
2539 return;
2540 }
2541
2542 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2543 data->passed_type);
2544
2545 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2546 data->promoted_mode,
2547 data->passed_type,
2548 data->named_arg);
2549
2550 if (entry_parm == 0)
2551 data->promoted_mode = data->passed_mode;
2552
2553 /* Determine parm's home in the stack, in case it arrives in the stack
2554 or we should pretend it did. Compute the stack position and rtx where
2555 the argument arrives and its size.
2556
2557 There is one complexity here: If this was a parameter that would
2558 have been passed in registers, but wasn't only because it is
2559 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2560 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2561 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2562 as it was the previous time. */
2563 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2564 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2565 in_regs = true;
2566 #endif
2567 if (!in_regs && !data->named_arg)
2568 {
2569 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2570 {
2571 rtx tem;
2572 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2573 data->promoted_mode,
2574 data->passed_type, true);
2575 in_regs = tem != NULL;
2576 }
2577 }
2578
2579 /* If this parameter was passed both in registers and in the stack, use
2580 the copy on the stack. */
2581 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2582 data->passed_type))
2583 entry_parm = 0;
2584
2585 if (entry_parm)
2586 {
2587 int partial;
2588
2589 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2590 data->promoted_mode,
2591 data->passed_type,
2592 data->named_arg);
2593 data->partial = partial;
2594
2595 /* The caller might already have allocated stack space for the
2596 register parameters. */
2597 if (partial != 0 && all->reg_parm_stack_space == 0)
2598 {
2599 /* Part of this argument is passed in registers and part
2600 is passed on the stack. Ask the prologue code to extend
2601 the stack part so that we can recreate the full value.
2602
2603 PRETEND_BYTES is the size of the registers we need to store.
2604 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2605 stack space that the prologue should allocate.
2606
2607 Internally, gcc assumes that the argument pointer is aligned
2608 to STACK_BOUNDARY bits. This is used both for alignment
2609 optimizations (see init_emit) and to locate arguments that are
2610 aligned to more than PARM_BOUNDARY bits. We must preserve this
2611 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2612 a stack boundary. */
2613
2614 /* We assume at most one partial arg, and it must be the first
2615 argument on the stack. */
2616 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2617
2618 pretend_bytes = partial;
2619 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2620
2621 /* We want to align relative to the actual stack pointer, so
2622 don't include this in the stack size until later. */
2623 all->extra_pretend_bytes = all->pretend_args_size;
2624 }
2625 }
2626
2627 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2628 all->reg_parm_stack_space,
2629 entry_parm ? data->partial : 0, current_function_decl,
2630 &all->stack_args_size, &data->locate);
2631
2632 /* Update parm_stack_boundary if this parameter is passed in the
2633 stack. */
2634 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2635 crtl->parm_stack_boundary = data->locate.boundary;
2636
2637 /* Adjust offsets to include the pretend args. */
2638 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2639 data->locate.slot_offset.constant += pretend_bytes;
2640 data->locate.offset.constant += pretend_bytes;
2641
2642 data->entry_parm = entry_parm;
2643 }
2644
2645 /* A subroutine of assign_parms. If there is actually space on the stack
2646 for this parm, count it in stack_args_size and return true. */
2647
2648 static bool
2649 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2650 struct assign_parm_data_one *data)
2651 {
2652 /* Bounds are never passed on the stack to keep compatibility
2653 with not instrumented code. */
2654 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2655 return false;
2656 /* Trivially true if we've no incoming register. */
2657 else if (data->entry_parm == NULL)
2658 ;
2659 /* Also true if we're partially in registers and partially not,
2660 since we've arranged to drop the entire argument on the stack. */
2661 else if (data->partial != 0)
2662 ;
2663 /* Also true if the target says that it's passed in both registers
2664 and on the stack. */
2665 else if (GET_CODE (data->entry_parm) == PARALLEL
2666 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2667 ;
2668 /* Also true if the target says that there's stack allocated for
2669 all register parameters. */
2670 else if (all->reg_parm_stack_space > 0)
2671 ;
2672 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2673 else
2674 return false;
2675
2676 all->stack_args_size.constant += data->locate.size.constant;
2677 if (data->locate.size.var)
2678 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2679
2680 return true;
2681 }
2682
2683 /* A subroutine of assign_parms. Given that this parameter is allocated
2684 stack space by the ABI, find it. */
2685
2686 static void
2687 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2688 {
2689 rtx offset_rtx, stack_parm;
2690 unsigned int align, boundary;
2691
2692 /* If we're passing this arg using a reg, make its stack home the
2693 aligned stack slot. */
2694 if (data->entry_parm)
2695 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2696 else
2697 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2698
2699 stack_parm = crtl->args.internal_arg_pointer;
2700 if (offset_rtx != const0_rtx)
2701 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2702 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2703
2704 if (!data->passed_pointer)
2705 {
2706 set_mem_attributes (stack_parm, parm, 1);
2707 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2708 while promoted mode's size is needed. */
2709 if (data->promoted_mode != BLKmode
2710 && data->promoted_mode != DECL_MODE (parm))
2711 {
2712 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2713 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2714 {
2715 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2716 data->promoted_mode);
2717 if (maybe_ne (offset, 0))
2718 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2719 }
2720 }
2721 }
2722
2723 boundary = data->locate.boundary;
2724 align = BITS_PER_UNIT;
2725
2726 /* If we're padding upward, we know that the alignment of the slot
2727 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2728 intentionally forcing upward padding. Otherwise we have to come
2729 up with a guess at the alignment based on OFFSET_RTX. */
2730 poly_int64 offset;
2731 if (data->locate.where_pad != PAD_DOWNWARD || data->entry_parm)
2732 align = boundary;
2733 else if (poly_int_rtx_p (offset_rtx, &offset))
2734 {
2735 align = least_bit_hwi (boundary);
2736 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2737 if (offset_align != 0)
2738 align = MIN (align, offset_align);
2739 }
2740 set_mem_align (stack_parm, align);
2741
2742 if (data->entry_parm)
2743 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2744
2745 data->stack_parm = stack_parm;
2746 }
2747
2748 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2749 always valid and contiguous. */
2750
2751 static void
2752 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2753 {
2754 rtx entry_parm = data->entry_parm;
2755 rtx stack_parm = data->stack_parm;
2756
2757 /* If this parm was passed part in regs and part in memory, pretend it
2758 arrived entirely in memory by pushing the register-part onto the stack.
2759 In the special case of a DImode or DFmode that is split, we could put
2760 it together in a pseudoreg directly, but for now that's not worth
2761 bothering with. */
2762 if (data->partial != 0)
2763 {
2764 /* Handle calls that pass values in multiple non-contiguous
2765 locations. The Irix 6 ABI has examples of this. */
2766 if (GET_CODE (entry_parm) == PARALLEL)
2767 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2768 data->passed_type,
2769 int_size_in_bytes (data->passed_type));
2770 else
2771 {
2772 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2773 move_block_from_reg (REGNO (entry_parm),
2774 validize_mem (copy_rtx (stack_parm)),
2775 data->partial / UNITS_PER_WORD);
2776 }
2777
2778 entry_parm = stack_parm;
2779 }
2780
2781 /* If we didn't decide this parm came in a register, by default it came
2782 on the stack. */
2783 else if (entry_parm == NULL)
2784 entry_parm = stack_parm;
2785
2786 /* When an argument is passed in multiple locations, we can't make use
2787 of this information, but we can save some copying if the whole argument
2788 is passed in a single register. */
2789 else if (GET_CODE (entry_parm) == PARALLEL
2790 && data->nominal_mode != BLKmode
2791 && data->passed_mode != BLKmode)
2792 {
2793 size_t i, len = XVECLEN (entry_parm, 0);
2794
2795 for (i = 0; i < len; i++)
2796 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2797 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2798 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2799 == data->passed_mode)
2800 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2801 {
2802 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2803 break;
2804 }
2805 }
2806
2807 data->entry_parm = entry_parm;
2808 }
2809
2810 /* A subroutine of assign_parms. Reconstitute any values which were
2811 passed in multiple registers and would fit in a single register. */
2812
2813 static void
2814 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2815 {
2816 rtx entry_parm = data->entry_parm;
2817
2818 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2819 This can be done with register operations rather than on the
2820 stack, even if we will store the reconstituted parameter on the
2821 stack later. */
2822 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2823 {
2824 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2825 emit_group_store (parmreg, entry_parm, data->passed_type,
2826 GET_MODE_SIZE (GET_MODE (entry_parm)));
2827 entry_parm = parmreg;
2828 }
2829
2830 data->entry_parm = entry_parm;
2831 }
2832
2833 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2834 always valid and properly aligned. */
2835
2836 static void
2837 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2838 {
2839 rtx stack_parm = data->stack_parm;
2840
2841 /* If we can't trust the parm stack slot to be aligned enough for its
2842 ultimate type, don't use that slot after entry. We'll make another
2843 stack slot, if we need one. */
2844 if (stack_parm
2845 && ((STRICT_ALIGNMENT
2846 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2847 || (data->nominal_type
2848 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2849 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2850 stack_parm = NULL;
2851
2852 /* If parm was passed in memory, and we need to convert it on entry,
2853 don't store it back in that same slot. */
2854 else if (data->entry_parm == stack_parm
2855 && data->nominal_mode != BLKmode
2856 && data->nominal_mode != data->passed_mode)
2857 stack_parm = NULL;
2858
2859 /* If stack protection is in effect for this function, don't leave any
2860 pointers in their passed stack slots. */
2861 else if (crtl->stack_protect_guard
2862 && (flag_stack_protect == 2
2863 || data->passed_pointer
2864 || POINTER_TYPE_P (data->nominal_type)))
2865 stack_parm = NULL;
2866
2867 data->stack_parm = stack_parm;
2868 }
2869
2870 /* A subroutine of assign_parms. Return true if the current parameter
2871 should be stored as a BLKmode in the current frame. */
2872
2873 static bool
2874 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2875 {
2876 if (data->nominal_mode == BLKmode)
2877 return true;
2878 if (GET_MODE (data->entry_parm) == BLKmode)
2879 return true;
2880
2881 #ifdef BLOCK_REG_PADDING
2882 /* Only assign_parm_setup_block knows how to deal with register arguments
2883 that are padded at the least significant end. */
2884 if (REG_P (data->entry_parm)
2885 && known_lt (GET_MODE_SIZE (data->promoted_mode), UNITS_PER_WORD)
2886 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2887 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2888 return true;
2889 #endif
2890
2891 return false;
2892 }
2893
2894 /* A subroutine of assign_parms. Arrange for the parameter to be
2895 present and valid in DATA->STACK_RTL. */
2896
2897 static void
2898 assign_parm_setup_block (struct assign_parm_data_all *all,
2899 tree parm, struct assign_parm_data_one *data)
2900 {
2901 rtx entry_parm = data->entry_parm;
2902 rtx stack_parm = data->stack_parm;
2903 rtx target_reg = NULL_RTX;
2904 bool in_conversion_seq = false;
2905 HOST_WIDE_INT size;
2906 HOST_WIDE_INT size_stored;
2907
2908 if (GET_CODE (entry_parm) == PARALLEL)
2909 entry_parm = emit_group_move_into_temps (entry_parm);
2910
2911 /* If we want the parameter in a pseudo, don't use a stack slot. */
2912 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2913 {
2914 tree def = ssa_default_def (cfun, parm);
2915 gcc_assert (def);
2916 machine_mode mode = promote_ssa_mode (def, NULL);
2917 rtx reg = gen_reg_rtx (mode);
2918 if (GET_CODE (reg) != CONCAT)
2919 stack_parm = reg;
2920 else
2921 {
2922 target_reg = reg;
2923 /* Avoid allocating a stack slot, if there isn't one
2924 preallocated by the ABI. It might seem like we should
2925 always prefer a pseudo, but converting between
2926 floating-point and integer modes goes through the stack
2927 on various machines, so it's better to use the reserved
2928 stack slot than to risk wasting it and allocating more
2929 for the conversion. */
2930 if (stack_parm == NULL_RTX)
2931 {
2932 int save = generating_concat_p;
2933 generating_concat_p = 0;
2934 stack_parm = gen_reg_rtx (mode);
2935 generating_concat_p = save;
2936 }
2937 }
2938 data->stack_parm = NULL;
2939 }
2940
2941 size = int_size_in_bytes (data->passed_type);
2942 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2943 if (stack_parm == 0)
2944 {
2945 SET_DECL_ALIGN (parm, MAX (DECL_ALIGN (parm), BITS_PER_WORD));
2946 stack_parm = assign_stack_local (BLKmode, size_stored,
2947 DECL_ALIGN (parm));
2948 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2949 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2950 set_mem_attributes (stack_parm, parm, 1);
2951 }
2952
2953 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2954 calls that pass values in multiple non-contiguous locations. */
2955 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2956 {
2957 rtx mem;
2958
2959 /* Note that we will be storing an integral number of words.
2960 So we have to be careful to ensure that we allocate an
2961 integral number of words. We do this above when we call
2962 assign_stack_local if space was not allocated in the argument
2963 list. If it was, this will not work if PARM_BOUNDARY is not
2964 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2965 if it becomes a problem. Exception is when BLKmode arrives
2966 with arguments not conforming to word_mode. */
2967
2968 if (data->stack_parm == 0)
2969 ;
2970 else if (GET_CODE (entry_parm) == PARALLEL)
2971 ;
2972 else
2973 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2974
2975 mem = validize_mem (copy_rtx (stack_parm));
2976
2977 /* Handle values in multiple non-contiguous locations. */
2978 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2979 emit_group_store (mem, entry_parm, data->passed_type, size);
2980 else if (GET_CODE (entry_parm) == PARALLEL)
2981 {
2982 push_to_sequence2 (all->first_conversion_insn,
2983 all->last_conversion_insn);
2984 emit_group_store (mem, entry_parm, data->passed_type, size);
2985 all->first_conversion_insn = get_insns ();
2986 all->last_conversion_insn = get_last_insn ();
2987 end_sequence ();
2988 in_conversion_seq = true;
2989 }
2990
2991 else if (size == 0)
2992 ;
2993
2994 /* If SIZE is that of a mode no bigger than a word, just use
2995 that mode's store operation. */
2996 else if (size <= UNITS_PER_WORD)
2997 {
2998 unsigned int bits = size * BITS_PER_UNIT;
2999 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
3000
3001 if (mode != BLKmode
3002 #ifdef BLOCK_REG_PADDING
3003 && (size == UNITS_PER_WORD
3004 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
3005 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
3006 #endif
3007 )
3008 {
3009 rtx reg;
3010
3011 /* We are really truncating a word_mode value containing
3012 SIZE bytes into a value of mode MODE. If such an
3013 operation requires no actual instructions, we can refer
3014 to the value directly in mode MODE, otherwise we must
3015 start with the register in word_mode and explicitly
3016 convert it. */
3017 if (targetm.truly_noop_truncation (size * BITS_PER_UNIT,
3018 BITS_PER_WORD))
3019 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3020 else
3021 {
3022 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3023 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3024 }
3025 emit_move_insn (change_address (mem, mode, 0), reg);
3026 }
3027
3028 #ifdef BLOCK_REG_PADDING
3029 /* Storing the register in memory as a full word, as
3030 move_block_from_reg below would do, and then using the
3031 MEM in a smaller mode, has the effect of shifting right
3032 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3033 shifting must be explicit. */
3034 else if (!MEM_P (mem))
3035 {
3036 rtx x;
3037
3038 /* If the assert below fails, we should have taken the
3039 mode != BLKmode path above, unless we have downward
3040 padding of smaller-than-word arguments on a machine
3041 with little-endian bytes, which would likely require
3042 additional changes to work correctly. */
3043 gcc_checking_assert (BYTES_BIG_ENDIAN
3044 && (BLOCK_REG_PADDING (mode,
3045 data->passed_type, 1)
3046 == PAD_UPWARD));
3047
3048 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3049
3050 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3051 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3052 NULL_RTX, 1);
3053 x = force_reg (word_mode, x);
3054 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3055
3056 emit_move_insn (mem, x);
3057 }
3058 #endif
3059
3060 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3061 machine must be aligned to the left before storing
3062 to memory. Note that the previous test doesn't
3063 handle all cases (e.g. SIZE == 3). */
3064 else if (size != UNITS_PER_WORD
3065 #ifdef BLOCK_REG_PADDING
3066 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
3067 == PAD_DOWNWARD)
3068 #else
3069 && BYTES_BIG_ENDIAN
3070 #endif
3071 )
3072 {
3073 rtx tem, x;
3074 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3075 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3076
3077 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3078 tem = change_address (mem, word_mode, 0);
3079 emit_move_insn (tem, x);
3080 }
3081 else
3082 move_block_from_reg (REGNO (entry_parm), mem,
3083 size_stored / UNITS_PER_WORD);
3084 }
3085 else if (!MEM_P (mem))
3086 {
3087 gcc_checking_assert (size > UNITS_PER_WORD);
3088 #ifdef BLOCK_REG_PADDING
3089 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3090 data->passed_type, 0)
3091 == PAD_UPWARD);
3092 #endif
3093 emit_move_insn (mem, entry_parm);
3094 }
3095 else
3096 move_block_from_reg (REGNO (entry_parm), mem,
3097 size_stored / UNITS_PER_WORD);
3098 }
3099 else if (data->stack_parm == 0)
3100 {
3101 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3102 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3103 BLOCK_OP_NORMAL);
3104 all->first_conversion_insn = get_insns ();
3105 all->last_conversion_insn = get_last_insn ();
3106 end_sequence ();
3107 in_conversion_seq = true;
3108 }
3109
3110 if (target_reg)
3111 {
3112 if (!in_conversion_seq)
3113 emit_move_insn (target_reg, stack_parm);
3114 else
3115 {
3116 push_to_sequence2 (all->first_conversion_insn,
3117 all->last_conversion_insn);
3118 emit_move_insn (target_reg, stack_parm);
3119 all->first_conversion_insn = get_insns ();
3120 all->last_conversion_insn = get_last_insn ();
3121 end_sequence ();
3122 }
3123 stack_parm = target_reg;
3124 }
3125
3126 data->stack_parm = stack_parm;
3127 set_parm_rtl (parm, stack_parm);
3128 }
3129
3130 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3131 parameter. Get it there. Perform all ABI specified conversions. */
3132
3133 static void
3134 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3135 struct assign_parm_data_one *data)
3136 {
3137 rtx parmreg, validated_mem;
3138 rtx equiv_stack_parm;
3139 machine_mode promoted_nominal_mode;
3140 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3141 bool did_conversion = false;
3142 bool need_conversion, moved;
3143 rtx rtl;
3144
3145 /* Store the parm in a pseudoregister during the function, but we may
3146 need to do it in a wider mode. Using 2 here makes the result
3147 consistent with promote_decl_mode and thus expand_expr_real_1. */
3148 promoted_nominal_mode
3149 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3150 TREE_TYPE (current_function_decl), 2);
3151
3152 parmreg = gen_reg_rtx (promoted_nominal_mode);
3153 if (!DECL_ARTIFICIAL (parm))
3154 mark_user_reg (parmreg);
3155
3156 /* If this was an item that we received a pointer to,
3157 set rtl appropriately. */
3158 if (data->passed_pointer)
3159 {
3160 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3161 set_mem_attributes (rtl, parm, 1);
3162 }
3163 else
3164 rtl = parmreg;
3165
3166 assign_parm_remove_parallels (data);
3167
3168 /* Copy the value into the register, thus bridging between
3169 assign_parm_find_data_types and expand_expr_real_1. */
3170
3171 equiv_stack_parm = data->stack_parm;
3172 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3173
3174 need_conversion = (data->nominal_mode != data->passed_mode
3175 || promoted_nominal_mode != data->promoted_mode);
3176 moved = false;
3177
3178 if (need_conversion
3179 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3180 && data->nominal_mode == data->passed_mode
3181 && data->nominal_mode == GET_MODE (data->entry_parm))
3182 {
3183 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3184 mode, by the caller. We now have to convert it to
3185 NOMINAL_MODE, if different. However, PARMREG may be in
3186 a different mode than NOMINAL_MODE if it is being stored
3187 promoted.
3188
3189 If ENTRY_PARM is a hard register, it might be in a register
3190 not valid for operating in its mode (e.g., an odd-numbered
3191 register for a DFmode). In that case, moves are the only
3192 thing valid, so we can't do a convert from there. This
3193 occurs when the calling sequence allow such misaligned
3194 usages.
3195
3196 In addition, the conversion may involve a call, which could
3197 clobber parameters which haven't been copied to pseudo
3198 registers yet.
3199
3200 First, we try to emit an insn which performs the necessary
3201 conversion. We verify that this insn does not clobber any
3202 hard registers. */
3203
3204 enum insn_code icode;
3205 rtx op0, op1;
3206
3207 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3208 unsignedp);
3209
3210 op0 = parmreg;
3211 op1 = validated_mem;
3212 if (icode != CODE_FOR_nothing
3213 && insn_operand_matches (icode, 0, op0)
3214 && insn_operand_matches (icode, 1, op1))
3215 {
3216 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3217 rtx_insn *insn, *insns;
3218 rtx t = op1;
3219 HARD_REG_SET hardregs;
3220
3221 start_sequence ();
3222 /* If op1 is a hard register that is likely spilled, first
3223 force it into a pseudo, otherwise combiner might extend
3224 its lifetime too much. */
3225 if (GET_CODE (t) == SUBREG)
3226 t = SUBREG_REG (t);
3227 if (REG_P (t)
3228 && HARD_REGISTER_P (t)
3229 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3230 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3231 {
3232 t = gen_reg_rtx (GET_MODE (op1));
3233 emit_move_insn (t, op1);
3234 }
3235 else
3236 t = op1;
3237 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3238 data->passed_mode, unsignedp);
3239 emit_insn (pat);
3240 insns = get_insns ();
3241
3242 moved = true;
3243 CLEAR_HARD_REG_SET (hardregs);
3244 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3245 {
3246 if (INSN_P (insn))
3247 note_stores (PATTERN (insn), record_hard_reg_sets,
3248 &hardregs);
3249 if (!hard_reg_set_empty_p (hardregs))
3250 moved = false;
3251 }
3252
3253 end_sequence ();
3254
3255 if (moved)
3256 {
3257 emit_insn (insns);
3258 if (equiv_stack_parm != NULL_RTX)
3259 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3260 equiv_stack_parm);
3261 }
3262 }
3263 }
3264
3265 if (moved)
3266 /* Nothing to do. */
3267 ;
3268 else if (need_conversion)
3269 {
3270 /* We did not have an insn to convert directly, or the sequence
3271 generated appeared unsafe. We must first copy the parm to a
3272 pseudo reg, and save the conversion until after all
3273 parameters have been moved. */
3274
3275 int save_tree_used;
3276 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3277
3278 emit_move_insn (tempreg, validated_mem);
3279
3280 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3281 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3282
3283 if (partial_subreg_p (tempreg)
3284 && GET_MODE (tempreg) == data->nominal_mode
3285 && REG_P (SUBREG_REG (tempreg))
3286 && data->nominal_mode == data->passed_mode
3287 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3288 {
3289 /* The argument is already sign/zero extended, so note it
3290 into the subreg. */
3291 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3292 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3293 }
3294
3295 /* TREE_USED gets set erroneously during expand_assignment. */
3296 save_tree_used = TREE_USED (parm);
3297 SET_DECL_RTL (parm, rtl);
3298 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3299 SET_DECL_RTL (parm, NULL_RTX);
3300 TREE_USED (parm) = save_tree_used;
3301 all->first_conversion_insn = get_insns ();
3302 all->last_conversion_insn = get_last_insn ();
3303 end_sequence ();
3304
3305 did_conversion = true;
3306 }
3307 else
3308 emit_move_insn (parmreg, validated_mem);
3309
3310 /* If we were passed a pointer but the actual value can safely live
3311 in a register, retrieve it and use it directly. */
3312 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3313 {
3314 /* We can't use nominal_mode, because it will have been set to
3315 Pmode above. We must use the actual mode of the parm. */
3316 if (use_register_for_decl (parm))
3317 {
3318 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3319 mark_user_reg (parmreg);
3320 }
3321 else
3322 {
3323 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3324 TYPE_MODE (TREE_TYPE (parm)),
3325 TYPE_ALIGN (TREE_TYPE (parm)));
3326 parmreg
3327 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3328 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3329 align);
3330 set_mem_attributes (parmreg, parm, 1);
3331 }
3332
3333 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3334 the debug info in case it is not legitimate. */
3335 if (GET_MODE (parmreg) != GET_MODE (rtl))
3336 {
3337 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3338 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3339
3340 push_to_sequence2 (all->first_conversion_insn,
3341 all->last_conversion_insn);
3342 emit_move_insn (tempreg, rtl);
3343 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3344 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3345 tempreg);
3346 all->first_conversion_insn = get_insns ();
3347 all->last_conversion_insn = get_last_insn ();
3348 end_sequence ();
3349
3350 did_conversion = true;
3351 }
3352 else
3353 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3354
3355 rtl = parmreg;
3356
3357 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3358 now the parm. */
3359 data->stack_parm = NULL;
3360 }
3361
3362 set_parm_rtl (parm, rtl);
3363
3364 /* Mark the register as eliminable if we did no conversion and it was
3365 copied from memory at a fixed offset, and the arg pointer was not
3366 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3367 offset formed an invalid address, such memory-equivalences as we
3368 make here would screw up life analysis for it. */
3369 if (data->nominal_mode == data->passed_mode
3370 && !did_conversion
3371 && data->stack_parm != 0
3372 && MEM_P (data->stack_parm)
3373 && data->locate.offset.var == 0
3374 && reg_mentioned_p (virtual_incoming_args_rtx,
3375 XEXP (data->stack_parm, 0)))
3376 {
3377 rtx_insn *linsn = get_last_insn ();
3378 rtx_insn *sinsn;
3379 rtx set;
3380
3381 /* Mark complex types separately. */
3382 if (GET_CODE (parmreg) == CONCAT)
3383 {
3384 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3385 int regnor = REGNO (XEXP (parmreg, 0));
3386 int regnoi = REGNO (XEXP (parmreg, 1));
3387 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3388 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3389 GET_MODE_SIZE (submode));
3390
3391 /* Scan backwards for the set of the real and
3392 imaginary parts. */
3393 for (sinsn = linsn; sinsn != 0;
3394 sinsn = prev_nonnote_insn (sinsn))
3395 {
3396 set = single_set (sinsn);
3397 if (set == 0)
3398 continue;
3399
3400 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3401 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3402 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3403 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3404 }
3405 }
3406 else
3407 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3408 }
3409
3410 /* For pointer data type, suggest pointer register. */
3411 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3412 mark_reg_pointer (parmreg,
3413 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3414 }
3415
3416 /* A subroutine of assign_parms. Allocate stack space to hold the current
3417 parameter. Get it there. Perform all ABI specified conversions. */
3418
3419 static void
3420 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3421 struct assign_parm_data_one *data)
3422 {
3423 /* Value must be stored in the stack slot STACK_PARM during function
3424 execution. */
3425 bool to_conversion = false;
3426
3427 assign_parm_remove_parallels (data);
3428
3429 if (data->promoted_mode != data->nominal_mode)
3430 {
3431 /* Conversion is required. */
3432 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3433
3434 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3435
3436 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3437 to_conversion = true;
3438
3439 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3440 TYPE_UNSIGNED (TREE_TYPE (parm)));
3441
3442 if (data->stack_parm)
3443 {
3444 poly_int64 offset
3445 = subreg_lowpart_offset (data->nominal_mode,
3446 GET_MODE (data->stack_parm));
3447 /* ??? This may need a big-endian conversion on sparc64. */
3448 data->stack_parm
3449 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3450 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3451 set_mem_offset (data->stack_parm,
3452 MEM_OFFSET (data->stack_parm) + offset);
3453 }
3454 }
3455
3456 if (data->entry_parm != data->stack_parm)
3457 {
3458 rtx src, dest;
3459
3460 if (data->stack_parm == 0)
3461 {
3462 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3463 GET_MODE (data->entry_parm),
3464 TYPE_ALIGN (data->passed_type));
3465 data->stack_parm
3466 = assign_stack_local (GET_MODE (data->entry_parm),
3467 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3468 align);
3469 set_mem_attributes (data->stack_parm, parm, 1);
3470 }
3471
3472 dest = validize_mem (copy_rtx (data->stack_parm));
3473 src = validize_mem (copy_rtx (data->entry_parm));
3474
3475 if (MEM_P (src))
3476 {
3477 /* Use a block move to handle potentially misaligned entry_parm. */
3478 if (!to_conversion)
3479 push_to_sequence2 (all->first_conversion_insn,
3480 all->last_conversion_insn);
3481 to_conversion = true;
3482
3483 emit_block_move (dest, src,
3484 GEN_INT (int_size_in_bytes (data->passed_type)),
3485 BLOCK_OP_NORMAL);
3486 }
3487 else
3488 {
3489 if (!REG_P (src))
3490 src = force_reg (GET_MODE (src), src);
3491 emit_move_insn (dest, src);
3492 }
3493 }
3494
3495 if (to_conversion)
3496 {
3497 all->first_conversion_insn = get_insns ();
3498 all->last_conversion_insn = get_last_insn ();
3499 end_sequence ();
3500 }
3501
3502 set_parm_rtl (parm, data->stack_parm);
3503 }
3504
3505 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3506 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3507
3508 static void
3509 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3510 vec<tree> fnargs)
3511 {
3512 tree parm;
3513 tree orig_fnargs = all->orig_fnargs;
3514 unsigned i = 0;
3515
3516 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3517 {
3518 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3519 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3520 {
3521 rtx tmp, real, imag;
3522 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3523
3524 real = DECL_RTL (fnargs[i]);
3525 imag = DECL_RTL (fnargs[i + 1]);
3526 if (inner != GET_MODE (real))
3527 {
3528 real = gen_lowpart_SUBREG (inner, real);
3529 imag = gen_lowpart_SUBREG (inner, imag);
3530 }
3531
3532 if (TREE_ADDRESSABLE (parm))
3533 {
3534 rtx rmem, imem;
3535 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3536 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3537 DECL_MODE (parm),
3538 TYPE_ALIGN (TREE_TYPE (parm)));
3539
3540 /* split_complex_arg put the real and imag parts in
3541 pseudos. Move them to memory. */
3542 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3543 set_mem_attributes (tmp, parm, 1);
3544 rmem = adjust_address_nv (tmp, inner, 0);
3545 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3546 push_to_sequence2 (all->first_conversion_insn,
3547 all->last_conversion_insn);
3548 emit_move_insn (rmem, real);
3549 emit_move_insn (imem, imag);
3550 all->first_conversion_insn = get_insns ();
3551 all->last_conversion_insn = get_last_insn ();
3552 end_sequence ();
3553 }
3554 else
3555 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3556 set_parm_rtl (parm, tmp);
3557
3558 real = DECL_INCOMING_RTL (fnargs[i]);
3559 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3560 if (inner != GET_MODE (real))
3561 {
3562 real = gen_lowpart_SUBREG (inner, real);
3563 imag = gen_lowpart_SUBREG (inner, imag);
3564 }
3565 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3566 set_decl_incoming_rtl (parm, tmp, false);
3567 i++;
3568 }
3569 }
3570 }
3571
3572 /* Load bounds of PARM from bounds table. */
3573 static void
3574 assign_parm_load_bounds (struct assign_parm_data_one *data,
3575 tree parm,
3576 rtx entry,
3577 unsigned bound_no)
3578 {
3579 bitmap_iterator bi;
3580 unsigned i, offs = 0;
3581 int bnd_no = -1;
3582 rtx slot = NULL, ptr = NULL;
3583
3584 if (parm)
3585 {
3586 bitmap slots;
3587 bitmap_obstack_initialize (NULL);
3588 slots = BITMAP_ALLOC (NULL);
3589 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3590 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3591 {
3592 if (bound_no)
3593 bound_no--;
3594 else
3595 {
3596 bnd_no = i;
3597 break;
3598 }
3599 }
3600 BITMAP_FREE (slots);
3601 bitmap_obstack_release (NULL);
3602 }
3603
3604 /* We may have bounds not associated with any pointer. */
3605 if (bnd_no != -1)
3606 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3607
3608 /* Find associated pointer. */
3609 if (bnd_no == -1)
3610 {
3611 /* If bounds are not associated with any bounds,
3612 then it is passed in a register or special slot. */
3613 gcc_assert (data->entry_parm);
3614 ptr = const0_rtx;
3615 }
3616 else if (MEM_P (entry))
3617 slot = adjust_address (entry, Pmode, offs);
3618 else if (REG_P (entry))
3619 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3620 else if (GET_CODE (entry) == PARALLEL)
3621 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3622 else
3623 gcc_unreachable ();
3624 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3625 data->entry_parm);
3626 }
3627
3628 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3629
3630 static void
3631 assign_bounds (vec<bounds_parm_data> &bndargs,
3632 struct assign_parm_data_all &all,
3633 bool assign_regs, bool assign_special,
3634 bool assign_bt)
3635 {
3636 unsigned i, pass;
3637 bounds_parm_data *pbdata;
3638
3639 if (!bndargs.exists ())
3640 return;
3641
3642 /* We make few passes to store input bounds. Firstly handle bounds
3643 passed in registers. After that we load bounds passed in special
3644 slots. Finally we load bounds from Bounds Table. */
3645 for (pass = 0; pass < 3; pass++)
3646 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3647 {
3648 /* Pass 0 => regs only. */
3649 if (pass == 0
3650 && (!assign_regs
3651 ||(!pbdata->parm_data.entry_parm
3652 || GET_CODE (pbdata->parm_data.entry_parm) != REG)))
3653 continue;
3654 /* Pass 1 => slots only. */
3655 else if (pass == 1
3656 && (!assign_special
3657 || (!pbdata->parm_data.entry_parm
3658 || GET_CODE (pbdata->parm_data.entry_parm) == REG)))
3659 continue;
3660 /* Pass 2 => BT only. */
3661 else if (pass == 2
3662 && (!assign_bt
3663 || pbdata->parm_data.entry_parm))
3664 continue;
3665
3666 if (!pbdata->parm_data.entry_parm
3667 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3668 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3669 pbdata->ptr_entry, pbdata->bound_no);
3670
3671 set_decl_incoming_rtl (pbdata->bounds_parm,
3672 pbdata->parm_data.entry_parm, false);
3673
3674 if (assign_parm_setup_block_p (&pbdata->parm_data))
3675 assign_parm_setup_block (&all, pbdata->bounds_parm,
3676 &pbdata->parm_data);
3677 else if (pbdata->parm_data.passed_pointer
3678 || use_register_for_decl (pbdata->bounds_parm))
3679 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3680 &pbdata->parm_data);
3681 else
3682 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3683 &pbdata->parm_data);
3684 }
3685 }
3686
3687 /* Assign RTL expressions to the function's parameters. This may involve
3688 copying them into registers and using those registers as the DECL_RTL. */
3689
3690 static void
3691 assign_parms (tree fndecl)
3692 {
3693 struct assign_parm_data_all all;
3694 tree parm;
3695 vec<tree> fnargs;
3696 unsigned i, bound_no = 0;
3697 tree last_arg = NULL;
3698 rtx last_arg_entry = NULL;
3699 vec<bounds_parm_data> bndargs = vNULL;
3700 bounds_parm_data bdata;
3701
3702 crtl->args.internal_arg_pointer
3703 = targetm.calls.internal_arg_pointer ();
3704
3705 assign_parms_initialize_all (&all);
3706 fnargs = assign_parms_augmented_arg_list (&all);
3707
3708 FOR_EACH_VEC_ELT (fnargs, i, parm)
3709 {
3710 struct assign_parm_data_one data;
3711
3712 /* Extract the type of PARM; adjust it according to ABI. */
3713 assign_parm_find_data_types (&all, parm, &data);
3714
3715 /* Early out for errors and void parameters. */
3716 if (data.passed_mode == VOIDmode)
3717 {
3718 SET_DECL_RTL (parm, const0_rtx);
3719 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3720 continue;
3721 }
3722
3723 /* Estimate stack alignment from parameter alignment. */
3724 if (SUPPORTS_STACK_ALIGNMENT)
3725 {
3726 unsigned int align
3727 = targetm.calls.function_arg_boundary (data.promoted_mode,
3728 data.passed_type);
3729 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3730 align);
3731 if (TYPE_ALIGN (data.nominal_type) > align)
3732 align = MINIMUM_ALIGNMENT (data.nominal_type,
3733 TYPE_MODE (data.nominal_type),
3734 TYPE_ALIGN (data.nominal_type));
3735 if (crtl->stack_alignment_estimated < align)
3736 {
3737 gcc_assert (!crtl->stack_realign_processed);
3738 crtl->stack_alignment_estimated = align;
3739 }
3740 }
3741
3742 /* Find out where the parameter arrives in this function. */
3743 assign_parm_find_entry_rtl (&all, &data);
3744
3745 /* Find out where stack space for this parameter might be. */
3746 if (assign_parm_is_stack_parm (&all, &data))
3747 {
3748 assign_parm_find_stack_rtl (parm, &data);
3749 assign_parm_adjust_entry_rtl (&data);
3750 }
3751 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3752 {
3753 /* Remember where last non bounds arg was passed in case
3754 we have to load associated bounds for it from Bounds
3755 Table. */
3756 last_arg = parm;
3757 last_arg_entry = data.entry_parm;
3758 bound_no = 0;
3759 }
3760 /* Record permanently how this parm was passed. */
3761 if (data.passed_pointer)
3762 {
3763 rtx incoming_rtl
3764 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3765 data.entry_parm);
3766 set_decl_incoming_rtl (parm, incoming_rtl, true);
3767 }
3768 else
3769 set_decl_incoming_rtl (parm, data.entry_parm, false);
3770
3771 assign_parm_adjust_stack_rtl (&data);
3772
3773 /* Bounds should be loaded in the particular order to
3774 have registers allocated correctly. Collect info about
3775 input bounds and load them later. */
3776 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3777 {
3778 /* Expect bounds in instrumented functions only. */
3779 gcc_assert (chkp_function_instrumented_p (fndecl));
3780
3781 bdata.parm_data = data;
3782 bdata.bounds_parm = parm;
3783 bdata.ptr_parm = last_arg;
3784 bdata.ptr_entry = last_arg_entry;
3785 bdata.bound_no = bound_no;
3786 bndargs.safe_push (bdata);
3787 }
3788 else
3789 {
3790 if (assign_parm_setup_block_p (&data))
3791 assign_parm_setup_block (&all, parm, &data);
3792 else if (data.passed_pointer || use_register_for_decl (parm))
3793 assign_parm_setup_reg (&all, parm, &data);
3794 else
3795 assign_parm_setup_stack (&all, parm, &data);
3796 }
3797
3798 if (cfun->stdarg && !DECL_CHAIN (parm))
3799 {
3800 int pretend_bytes = 0;
3801
3802 assign_parms_setup_varargs (&all, &data, false);
3803
3804 if (chkp_function_instrumented_p (fndecl))
3805 {
3806 /* We expect this is the last parm. Otherwise it is wrong
3807 to assign bounds right now. */
3808 gcc_assert (i == (fnargs.length () - 1));
3809 assign_bounds (bndargs, all, true, false, false);
3810 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3811 data.promoted_mode,
3812 data.passed_type,
3813 &pretend_bytes,
3814 false);
3815 assign_bounds (bndargs, all, false, true, true);
3816 bndargs.release ();
3817 }
3818 }
3819
3820 /* Update info on where next arg arrives in registers. */
3821 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3822 data.passed_type, data.named_arg);
3823
3824 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3825 bound_no++;
3826 }
3827
3828 assign_bounds (bndargs, all, true, true, true);
3829 bndargs.release ();
3830
3831 if (targetm.calls.split_complex_arg)
3832 assign_parms_unsplit_complex (&all, fnargs);
3833
3834 fnargs.release ();
3835
3836 /* Output all parameter conversion instructions (possibly including calls)
3837 now that all parameters have been copied out of hard registers. */
3838 emit_insn (all.first_conversion_insn);
3839
3840 /* Estimate reload stack alignment from scalar return mode. */
3841 if (SUPPORTS_STACK_ALIGNMENT)
3842 {
3843 if (DECL_RESULT (fndecl))
3844 {
3845 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3846 machine_mode mode = TYPE_MODE (type);
3847
3848 if (mode != BLKmode
3849 && mode != VOIDmode
3850 && !AGGREGATE_TYPE_P (type))
3851 {
3852 unsigned int align = GET_MODE_ALIGNMENT (mode);
3853 if (crtl->stack_alignment_estimated < align)
3854 {
3855 gcc_assert (!crtl->stack_realign_processed);
3856 crtl->stack_alignment_estimated = align;
3857 }
3858 }
3859 }
3860 }
3861
3862 /* If we are receiving a struct value address as the first argument, set up
3863 the RTL for the function result. As this might require code to convert
3864 the transmitted address to Pmode, we do this here to ensure that possible
3865 preliminary conversions of the address have been emitted already. */
3866 if (all.function_result_decl)
3867 {
3868 tree result = DECL_RESULT (current_function_decl);
3869 rtx addr = DECL_RTL (all.function_result_decl);
3870 rtx x;
3871
3872 if (DECL_BY_REFERENCE (result))
3873 {
3874 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3875 x = addr;
3876 }
3877 else
3878 {
3879 SET_DECL_VALUE_EXPR (result,
3880 build1 (INDIRECT_REF, TREE_TYPE (result),
3881 all.function_result_decl));
3882 addr = convert_memory_address (Pmode, addr);
3883 x = gen_rtx_MEM (DECL_MODE (result), addr);
3884 set_mem_attributes (x, result, 1);
3885 }
3886
3887 DECL_HAS_VALUE_EXPR_P (result) = 1;
3888
3889 set_parm_rtl (result, x);
3890 }
3891
3892 /* We have aligned all the args, so add space for the pretend args. */
3893 crtl->args.pretend_args_size = all.pretend_args_size;
3894 all.stack_args_size.constant += all.extra_pretend_bytes;
3895 crtl->args.size = all.stack_args_size.constant;
3896
3897 /* Adjust function incoming argument size for alignment and
3898 minimum length. */
3899
3900 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3901 crtl->args.size = aligned_upper_bound (crtl->args.size,
3902 PARM_BOUNDARY / BITS_PER_UNIT);
3903
3904 if (ARGS_GROW_DOWNWARD)
3905 {
3906 crtl->args.arg_offset_rtx
3907 = (all.stack_args_size.var == 0
3908 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3909 : expand_expr (size_diffop (all.stack_args_size.var,
3910 size_int (-all.stack_args_size.constant)),
3911 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3912 }
3913 else
3914 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3915
3916 /* See how many bytes, if any, of its args a function should try to pop
3917 on return. */
3918
3919 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3920 TREE_TYPE (fndecl),
3921 crtl->args.size);
3922
3923 /* For stdarg.h function, save info about
3924 regs and stack space used by the named args. */
3925
3926 crtl->args.info = all.args_so_far_v;
3927
3928 /* Set the rtx used for the function return value. Put this in its
3929 own variable so any optimizers that need this information don't have
3930 to include tree.h. Do this here so it gets done when an inlined
3931 function gets output. */
3932
3933 crtl->return_rtx
3934 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3935 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3936
3937 /* If scalar return value was computed in a pseudo-reg, or was a named
3938 return value that got dumped to the stack, copy that to the hard
3939 return register. */
3940 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3941 {
3942 tree decl_result = DECL_RESULT (fndecl);
3943 rtx decl_rtl = DECL_RTL (decl_result);
3944
3945 if (REG_P (decl_rtl)
3946 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3947 : DECL_REGISTER (decl_result))
3948 {
3949 rtx real_decl_rtl;
3950
3951 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3952 fndecl, true);
3953 if (chkp_function_instrumented_p (fndecl))
3954 crtl->return_bnd
3955 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3956 fndecl, true);
3957 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3958 /* The delay slot scheduler assumes that crtl->return_rtx
3959 holds the hard register containing the return value, not a
3960 temporary pseudo. */
3961 crtl->return_rtx = real_decl_rtl;
3962 }
3963 }
3964 }
3965
3966 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3967 For all seen types, gimplify their sizes. */
3968
3969 static tree
3970 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3971 {
3972 tree t = *tp;
3973
3974 *walk_subtrees = 0;
3975 if (TYPE_P (t))
3976 {
3977 if (POINTER_TYPE_P (t))
3978 *walk_subtrees = 1;
3979 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3980 && !TYPE_SIZES_GIMPLIFIED (t))
3981 {
3982 gimplify_type_sizes (t, (gimple_seq *) data);
3983 *walk_subtrees = 1;
3984 }
3985 }
3986
3987 return NULL;
3988 }
3989
3990 /* Gimplify the parameter list for current_function_decl. This involves
3991 evaluating SAVE_EXPRs of variable sized parameters and generating code
3992 to implement callee-copies reference parameters. Returns a sequence of
3993 statements to add to the beginning of the function. */
3994
3995 gimple_seq
3996 gimplify_parameters (void)
3997 {
3998 struct assign_parm_data_all all;
3999 tree parm;
4000 gimple_seq stmts = NULL;
4001 vec<tree> fnargs;
4002 unsigned i;
4003
4004 assign_parms_initialize_all (&all);
4005 fnargs = assign_parms_augmented_arg_list (&all);
4006
4007 FOR_EACH_VEC_ELT (fnargs, i, parm)
4008 {
4009 struct assign_parm_data_one data;
4010
4011 /* Extract the type of PARM; adjust it according to ABI. */
4012 assign_parm_find_data_types (&all, parm, &data);
4013
4014 /* Early out for errors and void parameters. */
4015 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
4016 continue;
4017
4018 /* Update info on where next arg arrives in registers. */
4019 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
4020 data.passed_type, data.named_arg);
4021
4022 /* ??? Once upon a time variable_size stuffed parameter list
4023 SAVE_EXPRs (amongst others) onto a pending sizes list. This
4024 turned out to be less than manageable in the gimple world.
4025 Now we have to hunt them down ourselves. */
4026 walk_tree_without_duplicates (&data.passed_type,
4027 gimplify_parm_type, &stmts);
4028
4029 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
4030 {
4031 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
4032 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
4033 }
4034
4035 if (data.passed_pointer)
4036 {
4037 tree type = TREE_TYPE (data.passed_type);
4038 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
4039 type, data.named_arg))
4040 {
4041 tree local, t;
4042
4043 /* For constant-sized objects, this is trivial; for
4044 variable-sized objects, we have to play games. */
4045 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
4046 && !(flag_stack_check == GENERIC_STACK_CHECK
4047 && compare_tree_int (DECL_SIZE_UNIT (parm),
4048 STACK_CHECK_MAX_VAR_SIZE) > 0))
4049 {
4050 local = create_tmp_var (type, get_name (parm));
4051 DECL_IGNORED_P (local) = 0;
4052 /* If PARM was addressable, move that flag over
4053 to the local copy, as its address will be taken,
4054 not the PARMs. Keep the parms address taken
4055 as we'll query that flag during gimplification. */
4056 if (TREE_ADDRESSABLE (parm))
4057 TREE_ADDRESSABLE (local) = 1;
4058 else if (TREE_CODE (type) == COMPLEX_TYPE
4059 || TREE_CODE (type) == VECTOR_TYPE)
4060 DECL_GIMPLE_REG_P (local) = 1;
4061 }
4062 else
4063 {
4064 tree ptr_type, addr;
4065
4066 ptr_type = build_pointer_type (type);
4067 addr = create_tmp_reg (ptr_type, get_name (parm));
4068 DECL_IGNORED_P (addr) = 0;
4069 local = build_fold_indirect_ref (addr);
4070
4071 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
4072 DECL_ALIGN (parm),
4073 max_int_size_in_bytes (type));
4074 /* The call has been built for a variable-sized object. */
4075 CALL_ALLOCA_FOR_VAR_P (t) = 1;
4076 t = fold_convert (ptr_type, t);
4077 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
4078 gimplify_and_add (t, &stmts);
4079 }
4080
4081 gimplify_assign (local, parm, &stmts);
4082
4083 SET_DECL_VALUE_EXPR (parm, local);
4084 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4085 }
4086 }
4087 }
4088
4089 fnargs.release ();
4090
4091 return stmts;
4092 }
4093 \f
4094 /* Compute the size and offset from the start of the stacked arguments for a
4095 parm passed in mode PASSED_MODE and with type TYPE.
4096
4097 INITIAL_OFFSET_PTR points to the current offset into the stacked
4098 arguments.
4099
4100 The starting offset and size for this parm are returned in
4101 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4102 nonzero, the offset is that of stack slot, which is returned in
4103 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4104 padding required from the initial offset ptr to the stack slot.
4105
4106 IN_REGS is nonzero if the argument will be passed in registers. It will
4107 never be set if REG_PARM_STACK_SPACE is not defined.
4108
4109 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4110 for arguments which are passed in registers.
4111
4112 FNDECL is the function in which the argument was defined.
4113
4114 There are two types of rounding that are done. The first, controlled by
4115 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4116 argument list to be aligned to the specific boundary (in bits). This
4117 rounding affects the initial and starting offsets, but not the argument
4118 size.
4119
4120 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4121 optionally rounds the size of the parm to PARM_BOUNDARY. The
4122 initial offset is not affected by this rounding, while the size always
4123 is and the starting offset may be. */
4124
4125 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4126 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4127 callers pass in the total size of args so far as
4128 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4129
4130 void
4131 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4132 int reg_parm_stack_space, int partial,
4133 tree fndecl ATTRIBUTE_UNUSED,
4134 struct args_size *initial_offset_ptr,
4135 struct locate_and_pad_arg_data *locate)
4136 {
4137 tree sizetree;
4138 pad_direction where_pad;
4139 unsigned int boundary, round_boundary;
4140 int part_size_in_regs;
4141
4142 /* If we have found a stack parm before we reach the end of the
4143 area reserved for registers, skip that area. */
4144 if (! in_regs)
4145 {
4146 if (reg_parm_stack_space > 0)
4147 {
4148 if (initial_offset_ptr->var
4149 || !ordered_p (initial_offset_ptr->constant,
4150 reg_parm_stack_space))
4151 {
4152 initial_offset_ptr->var
4153 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4154 ssize_int (reg_parm_stack_space));
4155 initial_offset_ptr->constant = 0;
4156 }
4157 else
4158 initial_offset_ptr->constant
4159 = ordered_max (initial_offset_ptr->constant,
4160 reg_parm_stack_space);
4161 }
4162 }
4163
4164 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4165
4166 sizetree = (type
4167 ? arg_size_in_bytes (type)
4168 : size_int (GET_MODE_SIZE (passed_mode)));
4169 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4170 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4171 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4172 type);
4173 locate->where_pad = where_pad;
4174
4175 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4176 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4177 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4178
4179 locate->boundary = boundary;
4180
4181 if (SUPPORTS_STACK_ALIGNMENT)
4182 {
4183 /* stack_alignment_estimated can't change after stack has been
4184 realigned. */
4185 if (crtl->stack_alignment_estimated < boundary)
4186 {
4187 if (!crtl->stack_realign_processed)
4188 crtl->stack_alignment_estimated = boundary;
4189 else
4190 {
4191 /* If stack is realigned and stack alignment value
4192 hasn't been finalized, it is OK not to increase
4193 stack_alignment_estimated. The bigger alignment
4194 requirement is recorded in stack_alignment_needed
4195 below. */
4196 gcc_assert (!crtl->stack_realign_finalized
4197 && crtl->stack_realign_needed);
4198 }
4199 }
4200 }
4201
4202 /* Remember if the outgoing parameter requires extra alignment on the
4203 calling function side. */
4204 if (crtl->stack_alignment_needed < boundary)
4205 crtl->stack_alignment_needed = boundary;
4206 if (crtl->preferred_stack_boundary < boundary)
4207 crtl->preferred_stack_boundary = boundary;
4208
4209 if (ARGS_GROW_DOWNWARD)
4210 {
4211 locate->slot_offset.constant = -initial_offset_ptr->constant;
4212 if (initial_offset_ptr->var)
4213 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4214 initial_offset_ptr->var);
4215
4216 {
4217 tree s2 = sizetree;
4218 if (where_pad != PAD_NONE
4219 && (!tree_fits_uhwi_p (sizetree)
4220 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4221 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4222 SUB_PARM_SIZE (locate->slot_offset, s2);
4223 }
4224
4225 locate->slot_offset.constant += part_size_in_regs;
4226
4227 if (!in_regs || reg_parm_stack_space > 0)
4228 pad_to_arg_alignment (&locate->slot_offset, boundary,
4229 &locate->alignment_pad);
4230
4231 locate->size.constant = (-initial_offset_ptr->constant
4232 - locate->slot_offset.constant);
4233 if (initial_offset_ptr->var)
4234 locate->size.var = size_binop (MINUS_EXPR,
4235 size_binop (MINUS_EXPR,
4236 ssize_int (0),
4237 initial_offset_ptr->var),
4238 locate->slot_offset.var);
4239
4240 /* Pad_below needs the pre-rounded size to know how much to pad
4241 below. */
4242 locate->offset = locate->slot_offset;
4243 if (where_pad == PAD_DOWNWARD)
4244 pad_below (&locate->offset, passed_mode, sizetree);
4245
4246 }
4247 else
4248 {
4249 if (!in_regs || reg_parm_stack_space > 0)
4250 pad_to_arg_alignment (initial_offset_ptr, boundary,
4251 &locate->alignment_pad);
4252 locate->slot_offset = *initial_offset_ptr;
4253
4254 #ifdef PUSH_ROUNDING
4255 if (passed_mode != BLKmode)
4256 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4257 #endif
4258
4259 /* Pad_below needs the pre-rounded size to know how much to pad below
4260 so this must be done before rounding up. */
4261 locate->offset = locate->slot_offset;
4262 if (where_pad == PAD_DOWNWARD)
4263 pad_below (&locate->offset, passed_mode, sizetree);
4264
4265 if (where_pad != PAD_NONE
4266 && (!tree_fits_uhwi_p (sizetree)
4267 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4268 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4269
4270 ADD_PARM_SIZE (locate->size, sizetree);
4271
4272 locate->size.constant -= part_size_in_regs;
4273 }
4274
4275 locate->offset.constant
4276 += targetm.calls.function_arg_offset (passed_mode, type);
4277 }
4278
4279 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4280 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4281
4282 static void
4283 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4284 struct args_size *alignment_pad)
4285 {
4286 tree save_var = NULL_TREE;
4287 poly_int64 save_constant = 0;
4288 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4289 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4290
4291 #ifdef SPARC_STACK_BOUNDARY_HACK
4292 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4293 the real alignment of %sp. However, when it does this, the
4294 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4295 if (SPARC_STACK_BOUNDARY_HACK)
4296 sp_offset = 0;
4297 #endif
4298
4299 if (boundary > PARM_BOUNDARY)
4300 {
4301 save_var = offset_ptr->var;
4302 save_constant = offset_ptr->constant;
4303 }
4304
4305 alignment_pad->var = NULL_TREE;
4306 alignment_pad->constant = 0;
4307
4308 if (boundary > BITS_PER_UNIT)
4309 {
4310 int misalign;
4311 if (offset_ptr->var
4312 || !known_misalignment (offset_ptr->constant + sp_offset,
4313 boundary_in_bytes, &misalign))
4314 {
4315 tree sp_offset_tree = ssize_int (sp_offset);
4316 tree offset = size_binop (PLUS_EXPR,
4317 ARGS_SIZE_TREE (*offset_ptr),
4318 sp_offset_tree);
4319 tree rounded;
4320 if (ARGS_GROW_DOWNWARD)
4321 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4322 else
4323 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4324
4325 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4326 /* ARGS_SIZE_TREE includes constant term. */
4327 offset_ptr->constant = 0;
4328 if (boundary > PARM_BOUNDARY)
4329 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4330 save_var);
4331 }
4332 else
4333 {
4334 if (ARGS_GROW_DOWNWARD)
4335 offset_ptr->constant -= misalign;
4336 else
4337 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4338
4339 if (boundary > PARM_BOUNDARY)
4340 alignment_pad->constant = offset_ptr->constant - save_constant;
4341 }
4342 }
4343 }
4344
4345 static void
4346 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4347 {
4348 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4349 int misalign;
4350 if (passed_mode != BLKmode
4351 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4352 offset_ptr->constant += -misalign & (align - 1);
4353 else
4354 {
4355 if (TREE_CODE (sizetree) != INTEGER_CST
4356 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4357 {
4358 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4359 tree s2 = round_up (sizetree, align);
4360 /* Add it in. */
4361 ADD_PARM_SIZE (*offset_ptr, s2);
4362 SUB_PARM_SIZE (*offset_ptr, sizetree);
4363 }
4364 }
4365 }
4366 \f
4367
4368 /* True if register REGNO was alive at a place where `setjmp' was
4369 called and was set more than once or is an argument. Such regs may
4370 be clobbered by `longjmp'. */
4371
4372 static bool
4373 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4374 {
4375 /* There appear to be cases where some local vars never reach the
4376 backend but have bogus regnos. */
4377 if (regno >= max_reg_num ())
4378 return false;
4379
4380 return ((REG_N_SETS (regno) > 1
4381 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4382 regno))
4383 && REGNO_REG_SET_P (setjmp_crosses, regno));
4384 }
4385
4386 /* Walk the tree of blocks describing the binding levels within a
4387 function and warn about variables the might be killed by setjmp or
4388 vfork. This is done after calling flow_analysis before register
4389 allocation since that will clobber the pseudo-regs to hard
4390 regs. */
4391
4392 static void
4393 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4394 {
4395 tree decl, sub;
4396
4397 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4398 {
4399 if (VAR_P (decl)
4400 && DECL_RTL_SET_P (decl)
4401 && REG_P (DECL_RTL (decl))
4402 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4403 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4404 " %<longjmp%> or %<vfork%>", decl);
4405 }
4406
4407 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4408 setjmp_vars_warning (setjmp_crosses, sub);
4409 }
4410
4411 /* Do the appropriate part of setjmp_vars_warning
4412 but for arguments instead of local variables. */
4413
4414 static void
4415 setjmp_args_warning (bitmap setjmp_crosses)
4416 {
4417 tree decl;
4418 for (decl = DECL_ARGUMENTS (current_function_decl);
4419 decl; decl = DECL_CHAIN (decl))
4420 if (DECL_RTL (decl) != 0
4421 && REG_P (DECL_RTL (decl))
4422 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4423 warning (OPT_Wclobbered,
4424 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4425 decl);
4426 }
4427
4428 /* Generate warning messages for variables live across setjmp. */
4429
4430 void
4431 generate_setjmp_warnings (void)
4432 {
4433 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4434
4435 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4436 || bitmap_empty_p (setjmp_crosses))
4437 return;
4438
4439 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4440 setjmp_args_warning (setjmp_crosses);
4441 }
4442
4443 \f
4444 /* Reverse the order of elements in the fragment chain T of blocks,
4445 and return the new head of the chain (old last element).
4446 In addition to that clear BLOCK_SAME_RANGE flags when needed
4447 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4448 its super fragment origin. */
4449
4450 static tree
4451 block_fragments_nreverse (tree t)
4452 {
4453 tree prev = 0, block, next, prev_super = 0;
4454 tree super = BLOCK_SUPERCONTEXT (t);
4455 if (BLOCK_FRAGMENT_ORIGIN (super))
4456 super = BLOCK_FRAGMENT_ORIGIN (super);
4457 for (block = t; block; block = next)
4458 {
4459 next = BLOCK_FRAGMENT_CHAIN (block);
4460 BLOCK_FRAGMENT_CHAIN (block) = prev;
4461 if ((prev && !BLOCK_SAME_RANGE (prev))
4462 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4463 != prev_super))
4464 BLOCK_SAME_RANGE (block) = 0;
4465 prev_super = BLOCK_SUPERCONTEXT (block);
4466 BLOCK_SUPERCONTEXT (block) = super;
4467 prev = block;
4468 }
4469 t = BLOCK_FRAGMENT_ORIGIN (t);
4470 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4471 != prev_super)
4472 BLOCK_SAME_RANGE (t) = 0;
4473 BLOCK_SUPERCONTEXT (t) = super;
4474 return prev;
4475 }
4476
4477 /* Reverse the order of elements in the chain T of blocks,
4478 and return the new head of the chain (old last element).
4479 Also do the same on subblocks and reverse the order of elements
4480 in BLOCK_FRAGMENT_CHAIN as well. */
4481
4482 static tree
4483 blocks_nreverse_all (tree t)
4484 {
4485 tree prev = 0, block, next;
4486 for (block = t; block; block = next)
4487 {
4488 next = BLOCK_CHAIN (block);
4489 BLOCK_CHAIN (block) = prev;
4490 if (BLOCK_FRAGMENT_CHAIN (block)
4491 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4492 {
4493 BLOCK_FRAGMENT_CHAIN (block)
4494 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4495 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4496 BLOCK_SAME_RANGE (block) = 0;
4497 }
4498 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4499 prev = block;
4500 }
4501 return prev;
4502 }
4503
4504
4505 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4506 and create duplicate blocks. */
4507 /* ??? Need an option to either create block fragments or to create
4508 abstract origin duplicates of a source block. It really depends
4509 on what optimization has been performed. */
4510
4511 void
4512 reorder_blocks (void)
4513 {
4514 tree block = DECL_INITIAL (current_function_decl);
4515
4516 if (block == NULL_TREE)
4517 return;
4518
4519 auto_vec<tree, 10> block_stack;
4520
4521 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4522 clear_block_marks (block);
4523
4524 /* Prune the old trees away, so that they don't get in the way. */
4525 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4526 BLOCK_CHAIN (block) = NULL_TREE;
4527
4528 /* Recreate the block tree from the note nesting. */
4529 reorder_blocks_1 (get_insns (), block, &block_stack);
4530 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4531 }
4532
4533 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4534
4535 void
4536 clear_block_marks (tree block)
4537 {
4538 while (block)
4539 {
4540 TREE_ASM_WRITTEN (block) = 0;
4541 clear_block_marks (BLOCK_SUBBLOCKS (block));
4542 block = BLOCK_CHAIN (block);
4543 }
4544 }
4545
4546 static void
4547 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4548 vec<tree> *p_block_stack)
4549 {
4550 rtx_insn *insn;
4551 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4552
4553 for (insn = insns; insn; insn = NEXT_INSN (insn))
4554 {
4555 if (NOTE_P (insn))
4556 {
4557 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4558 {
4559 tree block = NOTE_BLOCK (insn);
4560 tree origin;
4561
4562 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4563 origin = block;
4564
4565 if (prev_end)
4566 BLOCK_SAME_RANGE (prev_end) = 0;
4567 prev_end = NULL_TREE;
4568
4569 /* If we have seen this block before, that means it now
4570 spans multiple address regions. Create a new fragment. */
4571 if (TREE_ASM_WRITTEN (block))
4572 {
4573 tree new_block = copy_node (block);
4574
4575 BLOCK_SAME_RANGE (new_block) = 0;
4576 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4577 BLOCK_FRAGMENT_CHAIN (new_block)
4578 = BLOCK_FRAGMENT_CHAIN (origin);
4579 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4580
4581 NOTE_BLOCK (insn) = new_block;
4582 block = new_block;
4583 }
4584
4585 if (prev_beg == current_block && prev_beg)
4586 BLOCK_SAME_RANGE (block) = 1;
4587
4588 prev_beg = origin;
4589
4590 BLOCK_SUBBLOCKS (block) = 0;
4591 TREE_ASM_WRITTEN (block) = 1;
4592 /* When there's only one block for the entire function,
4593 current_block == block and we mustn't do this, it
4594 will cause infinite recursion. */
4595 if (block != current_block)
4596 {
4597 tree super;
4598 if (block != origin)
4599 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4600 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4601 (origin))
4602 == current_block);
4603 if (p_block_stack->is_empty ())
4604 super = current_block;
4605 else
4606 {
4607 super = p_block_stack->last ();
4608 gcc_assert (super == current_block
4609 || BLOCK_FRAGMENT_ORIGIN (super)
4610 == current_block);
4611 }
4612 BLOCK_SUPERCONTEXT (block) = super;
4613 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4614 BLOCK_SUBBLOCKS (current_block) = block;
4615 current_block = origin;
4616 }
4617 p_block_stack->safe_push (block);
4618 }
4619 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4620 {
4621 NOTE_BLOCK (insn) = p_block_stack->pop ();
4622 current_block = BLOCK_SUPERCONTEXT (current_block);
4623 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4624 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4625 prev_beg = NULL_TREE;
4626 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4627 ? NOTE_BLOCK (insn) : NULL_TREE;
4628 }
4629 }
4630 else
4631 {
4632 prev_beg = NULL_TREE;
4633 if (prev_end)
4634 BLOCK_SAME_RANGE (prev_end) = 0;
4635 prev_end = NULL_TREE;
4636 }
4637 }
4638 }
4639
4640 /* Reverse the order of elements in the chain T of blocks,
4641 and return the new head of the chain (old last element). */
4642
4643 tree
4644 blocks_nreverse (tree t)
4645 {
4646 tree prev = 0, block, next;
4647 for (block = t; block; block = next)
4648 {
4649 next = BLOCK_CHAIN (block);
4650 BLOCK_CHAIN (block) = prev;
4651 prev = block;
4652 }
4653 return prev;
4654 }
4655
4656 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4657 by modifying the last node in chain 1 to point to chain 2. */
4658
4659 tree
4660 block_chainon (tree op1, tree op2)
4661 {
4662 tree t1;
4663
4664 if (!op1)
4665 return op2;
4666 if (!op2)
4667 return op1;
4668
4669 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4670 continue;
4671 BLOCK_CHAIN (t1) = op2;
4672
4673 #ifdef ENABLE_TREE_CHECKING
4674 {
4675 tree t2;
4676 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4677 gcc_assert (t2 != t1);
4678 }
4679 #endif
4680
4681 return op1;
4682 }
4683
4684 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4685 non-NULL, list them all into VECTOR, in a depth-first preorder
4686 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4687 blocks. */
4688
4689 static int
4690 all_blocks (tree block, tree *vector)
4691 {
4692 int n_blocks = 0;
4693
4694 while (block)
4695 {
4696 TREE_ASM_WRITTEN (block) = 0;
4697
4698 /* Record this block. */
4699 if (vector)
4700 vector[n_blocks] = block;
4701
4702 ++n_blocks;
4703
4704 /* Record the subblocks, and their subblocks... */
4705 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4706 vector ? vector + n_blocks : 0);
4707 block = BLOCK_CHAIN (block);
4708 }
4709
4710 return n_blocks;
4711 }
4712
4713 /* Return a vector containing all the blocks rooted at BLOCK. The
4714 number of elements in the vector is stored in N_BLOCKS_P. The
4715 vector is dynamically allocated; it is the caller's responsibility
4716 to call `free' on the pointer returned. */
4717
4718 static tree *
4719 get_block_vector (tree block, int *n_blocks_p)
4720 {
4721 tree *block_vector;
4722
4723 *n_blocks_p = all_blocks (block, NULL);
4724 block_vector = XNEWVEC (tree, *n_blocks_p);
4725 all_blocks (block, block_vector);
4726
4727 return block_vector;
4728 }
4729
4730 static GTY(()) int next_block_index = 2;
4731
4732 /* Set BLOCK_NUMBER for all the blocks in FN. */
4733
4734 void
4735 number_blocks (tree fn)
4736 {
4737 int i;
4738 int n_blocks;
4739 tree *block_vector;
4740
4741 /* For XCOFF debugging output, we start numbering the blocks
4742 from 1 within each function, rather than keeping a running
4743 count. */
4744 #if defined (XCOFF_DEBUGGING_INFO)
4745 if (write_symbols == XCOFF_DEBUG)
4746 next_block_index = 1;
4747 #endif
4748
4749 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4750
4751 /* The top-level BLOCK isn't numbered at all. */
4752 for (i = 1; i < n_blocks; ++i)
4753 /* We number the blocks from two. */
4754 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4755
4756 free (block_vector);
4757
4758 return;
4759 }
4760
4761 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4762
4763 DEBUG_FUNCTION tree
4764 debug_find_var_in_block_tree (tree var, tree block)
4765 {
4766 tree t;
4767
4768 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4769 if (t == var)
4770 return block;
4771
4772 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4773 {
4774 tree ret = debug_find_var_in_block_tree (var, t);
4775 if (ret)
4776 return ret;
4777 }
4778
4779 return NULL_TREE;
4780 }
4781 \f
4782 /* Keep track of whether we're in a dummy function context. If we are,
4783 we don't want to invoke the set_current_function hook, because we'll
4784 get into trouble if the hook calls target_reinit () recursively or
4785 when the initial initialization is not yet complete. */
4786
4787 static bool in_dummy_function;
4788
4789 /* Invoke the target hook when setting cfun. Update the optimization options
4790 if the function uses different options than the default. */
4791
4792 static void
4793 invoke_set_current_function_hook (tree fndecl)
4794 {
4795 if (!in_dummy_function)
4796 {
4797 tree opts = ((fndecl)
4798 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4799 : optimization_default_node);
4800
4801 if (!opts)
4802 opts = optimization_default_node;
4803
4804 /* Change optimization options if needed. */
4805 if (optimization_current_node != opts)
4806 {
4807 optimization_current_node = opts;
4808 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4809 }
4810
4811 targetm.set_current_function (fndecl);
4812 this_fn_optabs = this_target_optabs;
4813
4814 if (opts != optimization_default_node)
4815 {
4816 init_tree_optimization_optabs (opts);
4817 if (TREE_OPTIMIZATION_OPTABS (opts))
4818 this_fn_optabs = (struct target_optabs *)
4819 TREE_OPTIMIZATION_OPTABS (opts);
4820 }
4821 }
4822 }
4823
4824 /* cfun should never be set directly; use this function. */
4825
4826 void
4827 set_cfun (struct function *new_cfun, bool force)
4828 {
4829 if (cfun != new_cfun || force)
4830 {
4831 cfun = new_cfun;
4832 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4833 redirect_edge_var_map_empty ();
4834 }
4835 }
4836
4837 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4838
4839 static vec<function *> cfun_stack;
4840
4841 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4842 current_function_decl accordingly. */
4843
4844 void
4845 push_cfun (struct function *new_cfun)
4846 {
4847 gcc_assert ((!cfun && !current_function_decl)
4848 || (cfun && current_function_decl == cfun->decl));
4849 cfun_stack.safe_push (cfun);
4850 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4851 set_cfun (new_cfun);
4852 }
4853
4854 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4855
4856 void
4857 pop_cfun (void)
4858 {
4859 struct function *new_cfun = cfun_stack.pop ();
4860 /* When in_dummy_function, we do have a cfun but current_function_decl is
4861 NULL. We also allow pushing NULL cfun and subsequently changing
4862 current_function_decl to something else and have both restored by
4863 pop_cfun. */
4864 gcc_checking_assert (in_dummy_function
4865 || !cfun
4866 || current_function_decl == cfun->decl);
4867 set_cfun (new_cfun);
4868 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4869 }
4870
4871 /* Return value of funcdef and increase it. */
4872 int
4873 get_next_funcdef_no (void)
4874 {
4875 return funcdef_no++;
4876 }
4877
4878 /* Return value of funcdef. */
4879 int
4880 get_last_funcdef_no (void)
4881 {
4882 return funcdef_no;
4883 }
4884
4885 /* Allocate a function structure for FNDECL and set its contents
4886 to the defaults. Set cfun to the newly-allocated object.
4887 Some of the helper functions invoked during initialization assume
4888 that cfun has already been set. Therefore, assign the new object
4889 directly into cfun and invoke the back end hook explicitly at the
4890 very end, rather than initializing a temporary and calling set_cfun
4891 on it.
4892
4893 ABSTRACT_P is true if this is a function that will never be seen by
4894 the middle-end. Such functions are front-end concepts (like C++
4895 function templates) that do not correspond directly to functions
4896 placed in object files. */
4897
4898 void
4899 allocate_struct_function (tree fndecl, bool abstract_p)
4900 {
4901 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4902
4903 cfun = ggc_cleared_alloc<function> ();
4904
4905 init_eh_for_function ();
4906
4907 if (init_machine_status)
4908 cfun->machine = (*init_machine_status) ();
4909
4910 #ifdef OVERRIDE_ABI_FORMAT
4911 OVERRIDE_ABI_FORMAT (fndecl);
4912 #endif
4913
4914 if (fndecl != NULL_TREE)
4915 {
4916 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4917 cfun->decl = fndecl;
4918 current_function_funcdef_no = get_next_funcdef_no ();
4919 }
4920
4921 invoke_set_current_function_hook (fndecl);
4922
4923 if (fndecl != NULL_TREE)
4924 {
4925 tree result = DECL_RESULT (fndecl);
4926
4927 if (!abstract_p)
4928 {
4929 /* Now that we have activated any function-specific attributes
4930 that might affect layout, particularly vector modes, relayout
4931 each of the parameters and the result. */
4932 relayout_decl (result);
4933 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4934 parm = DECL_CHAIN (parm))
4935 relayout_decl (parm);
4936
4937 /* Similarly relayout the function decl. */
4938 targetm.target_option.relayout_function (fndecl);
4939 }
4940
4941 if (!abstract_p && aggregate_value_p (result, fndecl))
4942 {
4943 #ifdef PCC_STATIC_STRUCT_RETURN
4944 cfun->returns_pcc_struct = 1;
4945 #endif
4946 cfun->returns_struct = 1;
4947 }
4948
4949 cfun->stdarg = stdarg_p (fntype);
4950
4951 /* Assume all registers in stdarg functions need to be saved. */
4952 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4953 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4954
4955 /* ??? This could be set on a per-function basis by the front-end
4956 but is this worth the hassle? */
4957 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4958 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4959
4960 if (!profile_flag && !flag_instrument_function_entry_exit)
4961 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4962 }
4963
4964 /* Don't enable begin stmt markers if var-tracking at assignments is
4965 disabled. The markers make little sense without the variable
4966 binding annotations among them. */
4967 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4968 && MAY_HAVE_DEBUG_MARKER_STMTS;
4969 }
4970
4971 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4972 instead of just setting it. */
4973
4974 void
4975 push_struct_function (tree fndecl)
4976 {
4977 /* When in_dummy_function we might be in the middle of a pop_cfun and
4978 current_function_decl and cfun may not match. */
4979 gcc_assert (in_dummy_function
4980 || (!cfun && !current_function_decl)
4981 || (cfun && current_function_decl == cfun->decl));
4982 cfun_stack.safe_push (cfun);
4983 current_function_decl = fndecl;
4984 allocate_struct_function (fndecl, false);
4985 }
4986
4987 /* Reset crtl and other non-struct-function variables to defaults as
4988 appropriate for emitting rtl at the start of a function. */
4989
4990 static void
4991 prepare_function_start (void)
4992 {
4993 gcc_assert (!get_last_insn ());
4994 init_temp_slots ();
4995 init_emit ();
4996 init_varasm_status ();
4997 init_expr ();
4998 default_rtl_profile ();
4999
5000 if (flag_stack_usage_info)
5001 {
5002 cfun->su = ggc_cleared_alloc<stack_usage> ();
5003 cfun->su->static_stack_size = -1;
5004 }
5005
5006 cse_not_expected = ! optimize;
5007
5008 /* Caller save not needed yet. */
5009 caller_save_needed = 0;
5010
5011 /* We haven't done register allocation yet. */
5012 reg_renumber = 0;
5013
5014 /* Indicate that we have not instantiated virtual registers yet. */
5015 virtuals_instantiated = 0;
5016
5017 /* Indicate that we want CONCATs now. */
5018 generating_concat_p = 1;
5019
5020 /* Indicate we have no need of a frame pointer yet. */
5021 frame_pointer_needed = 0;
5022 }
5023
5024 void
5025 push_dummy_function (bool with_decl)
5026 {
5027 tree fn_decl, fn_type, fn_result_decl;
5028
5029 gcc_assert (!in_dummy_function);
5030 in_dummy_function = true;
5031
5032 if (with_decl)
5033 {
5034 fn_type = build_function_type_list (void_type_node, NULL_TREE);
5035 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
5036 fn_type);
5037 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
5038 NULL_TREE, void_type_node);
5039 DECL_RESULT (fn_decl) = fn_result_decl;
5040 }
5041 else
5042 fn_decl = NULL_TREE;
5043
5044 push_struct_function (fn_decl);
5045 }
5046
5047 /* Initialize the rtl expansion mechanism so that we can do simple things
5048 like generate sequences. This is used to provide a context during global
5049 initialization of some passes. You must call expand_dummy_function_end
5050 to exit this context. */
5051
5052 void
5053 init_dummy_function_start (void)
5054 {
5055 push_dummy_function (false);
5056 prepare_function_start ();
5057 }
5058
5059 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5060 and initialize static variables for generating RTL for the statements
5061 of the function. */
5062
5063 void
5064 init_function_start (tree subr)
5065 {
5066 /* Initialize backend, if needed. */
5067 initialize_rtl ();
5068
5069 prepare_function_start ();
5070 decide_function_section (subr);
5071
5072 /* Warn if this value is an aggregate type,
5073 regardless of which calling convention we are using for it. */
5074 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5075 warning (OPT_Waggregate_return, "function returns an aggregate");
5076 }
5077
5078 /* Expand code to verify the stack_protect_guard. This is invoked at
5079 the end of a function to be protected. */
5080
5081 void
5082 stack_protect_epilogue (void)
5083 {
5084 tree guard_decl = targetm.stack_protect_guard ();
5085 rtx_code_label *label = gen_label_rtx ();
5086 rtx x, y;
5087 rtx_insn *seq;
5088
5089 x = expand_normal (crtl->stack_protect_guard);
5090 if (guard_decl)
5091 y = expand_normal (guard_decl);
5092 else
5093 y = const0_rtx;
5094
5095 /* Allow the target to compare Y with X without leaking either into
5096 a register. */
5097 if (targetm.have_stack_protect_test ()
5098 && ((seq = targetm.gen_stack_protect_test (x, y, label)) != NULL_RTX))
5099 emit_insn (seq);
5100 else
5101 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5102
5103 /* The noreturn predictor has been moved to the tree level. The rtl-level
5104 predictors estimate this branch about 20%, which isn't enough to get
5105 things moved out of line. Since this is the only extant case of adding
5106 a noreturn function at the rtl level, it doesn't seem worth doing ought
5107 except adding the prediction by hand. */
5108 rtx_insn *tmp = get_last_insn ();
5109 if (JUMP_P (tmp))
5110 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5111
5112 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5113 free_temp_slots ();
5114 emit_label (label);
5115 }
5116 \f
5117 /* Start the RTL for a new function, and set variables used for
5118 emitting RTL.
5119 SUBR is the FUNCTION_DECL node.
5120 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5121 the function's parameters, which must be run at any return statement. */
5122
5123 void
5124 expand_function_start (tree subr)
5125 {
5126 /* Make sure volatile mem refs aren't considered
5127 valid operands of arithmetic insns. */
5128 init_recog_no_volatile ();
5129
5130 crtl->profile
5131 = (profile_flag
5132 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5133
5134 crtl->limit_stack
5135 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5136
5137 /* Make the label for return statements to jump to. Do not special
5138 case machines with special return instructions -- they will be
5139 handled later during jump, ifcvt, or epilogue creation. */
5140 return_label = gen_label_rtx ();
5141
5142 /* Initialize rtx used to return the value. */
5143 /* Do this before assign_parms so that we copy the struct value address
5144 before any library calls that assign parms might generate. */
5145
5146 /* Decide whether to return the value in memory or in a register. */
5147 tree res = DECL_RESULT (subr);
5148 if (aggregate_value_p (res, subr))
5149 {
5150 /* Returning something that won't go in a register. */
5151 rtx value_address = 0;
5152
5153 #ifdef PCC_STATIC_STRUCT_RETURN
5154 if (cfun->returns_pcc_struct)
5155 {
5156 int size = int_size_in_bytes (TREE_TYPE (res));
5157 value_address = assemble_static_space (size);
5158 }
5159 else
5160 #endif
5161 {
5162 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5163 /* Expect to be passed the address of a place to store the value.
5164 If it is passed as an argument, assign_parms will take care of
5165 it. */
5166 if (sv)
5167 {
5168 value_address = gen_reg_rtx (Pmode);
5169 emit_move_insn (value_address, sv);
5170 }
5171 }
5172 if (value_address)
5173 {
5174 rtx x = value_address;
5175 if (!DECL_BY_REFERENCE (res))
5176 {
5177 x = gen_rtx_MEM (DECL_MODE (res), x);
5178 set_mem_attributes (x, res, 1);
5179 }
5180 set_parm_rtl (res, x);
5181 }
5182 }
5183 else if (DECL_MODE (res) == VOIDmode)
5184 /* If return mode is void, this decl rtl should not be used. */
5185 set_parm_rtl (res, NULL_RTX);
5186 else
5187 {
5188 /* Compute the return values into a pseudo reg, which we will copy
5189 into the true return register after the cleanups are done. */
5190 tree return_type = TREE_TYPE (res);
5191
5192 /* If we may coalesce this result, make sure it has the expected mode
5193 in case it was promoted. But we need not bother about BLKmode. */
5194 machine_mode promoted_mode
5195 = flag_tree_coalesce_vars && is_gimple_reg (res)
5196 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5197 : BLKmode;
5198
5199 if (promoted_mode != BLKmode)
5200 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5201 else if (TYPE_MODE (return_type) != BLKmode
5202 && targetm.calls.return_in_msb (return_type))
5203 /* expand_function_end will insert the appropriate padding in
5204 this case. Use the return value's natural (unpadded) mode
5205 within the function proper. */
5206 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5207 else
5208 {
5209 /* In order to figure out what mode to use for the pseudo, we
5210 figure out what the mode of the eventual return register will
5211 actually be, and use that. */
5212 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5213
5214 /* Structures that are returned in registers are not
5215 aggregate_value_p, so we may see a PARALLEL or a REG. */
5216 if (REG_P (hard_reg))
5217 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5218 else
5219 {
5220 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5221 set_parm_rtl (res, gen_group_rtx (hard_reg));
5222 }
5223 }
5224
5225 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5226 result to the real return register(s). */
5227 DECL_REGISTER (res) = 1;
5228
5229 if (chkp_function_instrumented_p (current_function_decl))
5230 {
5231 tree return_type = TREE_TYPE (res);
5232 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5233 subr, 1);
5234 SET_DECL_BOUNDS_RTL (res, bounds);
5235 }
5236 }
5237
5238 /* Initialize rtx for parameters and local variables.
5239 In some cases this requires emitting insns. */
5240 assign_parms (subr);
5241
5242 /* If function gets a static chain arg, store it. */
5243 if (cfun->static_chain_decl)
5244 {
5245 tree parm = cfun->static_chain_decl;
5246 rtx local, chain;
5247 rtx_insn *insn;
5248 int unsignedp;
5249
5250 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5251 chain = targetm.calls.static_chain (current_function_decl, true);
5252
5253 set_decl_incoming_rtl (parm, chain, false);
5254 set_parm_rtl (parm, local);
5255 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5256
5257 if (GET_MODE (local) != GET_MODE (chain))
5258 {
5259 convert_move (local, chain, unsignedp);
5260 insn = get_last_insn ();
5261 }
5262 else
5263 insn = emit_move_insn (local, chain);
5264
5265 /* Mark the register as eliminable, similar to parameters. */
5266 if (MEM_P (chain)
5267 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5268 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5269
5270 /* If we aren't optimizing, save the static chain onto the stack. */
5271 if (!optimize)
5272 {
5273 tree saved_static_chain_decl
5274 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5275 DECL_NAME (parm), TREE_TYPE (parm));
5276 rtx saved_static_chain_rtx
5277 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5278 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5279 emit_move_insn (saved_static_chain_rtx, chain);
5280 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5281 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5282 }
5283 }
5284
5285 /* The following was moved from init_function_start.
5286 The move was supposed to make sdb output more accurate. */
5287 /* Indicate the beginning of the function body,
5288 as opposed to parm setup. */
5289 emit_note (NOTE_INSN_FUNCTION_BEG);
5290
5291 gcc_assert (NOTE_P (get_last_insn ()));
5292
5293 parm_birth_insn = get_last_insn ();
5294
5295 /* If the function receives a non-local goto, then store the
5296 bits we need to restore the frame pointer. */
5297 if (cfun->nonlocal_goto_save_area)
5298 {
5299 tree t_save;
5300 rtx r_save;
5301
5302 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5303 gcc_assert (DECL_RTL_SET_P (var));
5304
5305 t_save = build4 (ARRAY_REF,
5306 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5307 cfun->nonlocal_goto_save_area,
5308 integer_zero_node, NULL_TREE, NULL_TREE);
5309 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5310 gcc_assert (GET_MODE (r_save) == Pmode);
5311
5312 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5313 update_nonlocal_goto_save_area ();
5314 }
5315
5316 if (crtl->profile)
5317 {
5318 #ifdef PROFILE_HOOK
5319 PROFILE_HOOK (current_function_funcdef_no);
5320 #endif
5321 }
5322
5323 /* If we are doing generic stack checking, the probe should go here. */
5324 if (flag_stack_check == GENERIC_STACK_CHECK)
5325 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5326 }
5327 \f
5328 void
5329 pop_dummy_function (void)
5330 {
5331 pop_cfun ();
5332 in_dummy_function = false;
5333 }
5334
5335 /* Undo the effects of init_dummy_function_start. */
5336 void
5337 expand_dummy_function_end (void)
5338 {
5339 gcc_assert (in_dummy_function);
5340
5341 /* End any sequences that failed to be closed due to syntax errors. */
5342 while (in_sequence_p ())
5343 end_sequence ();
5344
5345 /* Outside function body, can't compute type's actual size
5346 until next function's body starts. */
5347
5348 free_after_parsing (cfun);
5349 free_after_compilation (cfun);
5350 pop_dummy_function ();
5351 }
5352
5353 /* Helper for diddle_return_value. */
5354
5355 void
5356 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5357 {
5358 if (! outgoing)
5359 return;
5360
5361 if (REG_P (outgoing))
5362 (*doit) (outgoing, arg);
5363 else if (GET_CODE (outgoing) == PARALLEL)
5364 {
5365 int i;
5366
5367 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5368 {
5369 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5370
5371 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5372 (*doit) (x, arg);
5373 }
5374 }
5375 }
5376
5377 /* Call DOIT for each hard register used as a return value from
5378 the current function. */
5379
5380 void
5381 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5382 {
5383 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5384 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5385 }
5386
5387 static void
5388 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5389 {
5390 emit_clobber (reg);
5391 }
5392
5393 void
5394 clobber_return_register (void)
5395 {
5396 diddle_return_value (do_clobber_return_reg, NULL);
5397
5398 /* In case we do use pseudo to return value, clobber it too. */
5399 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5400 {
5401 tree decl_result = DECL_RESULT (current_function_decl);
5402 rtx decl_rtl = DECL_RTL (decl_result);
5403 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5404 {
5405 do_clobber_return_reg (decl_rtl, NULL);
5406 }
5407 }
5408 }
5409
5410 static void
5411 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5412 {
5413 emit_use (reg);
5414 }
5415
5416 static void
5417 use_return_register (void)
5418 {
5419 diddle_return_value (do_use_return_reg, NULL);
5420 }
5421
5422 /* Set the location of the insn chain starting at INSN to LOC. */
5423
5424 static void
5425 set_insn_locations (rtx_insn *insn, int loc)
5426 {
5427 while (insn != NULL)
5428 {
5429 if (INSN_P (insn))
5430 INSN_LOCATION (insn) = loc;
5431 insn = NEXT_INSN (insn);
5432 }
5433 }
5434
5435 /* Generate RTL for the end of the current function. */
5436
5437 void
5438 expand_function_end (void)
5439 {
5440 /* If arg_pointer_save_area was referenced only from a nested
5441 function, we will not have initialized it yet. Do that now. */
5442 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5443 get_arg_pointer_save_area ();
5444
5445 /* If we are doing generic stack checking and this function makes calls,
5446 do a stack probe at the start of the function to ensure we have enough
5447 space for another stack frame. */
5448 if (flag_stack_check == GENERIC_STACK_CHECK)
5449 {
5450 rtx_insn *insn, *seq;
5451
5452 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5453 if (CALL_P (insn))
5454 {
5455 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5456 start_sequence ();
5457 if (STACK_CHECK_MOVING_SP)
5458 anti_adjust_stack_and_probe (max_frame_size, true);
5459 else
5460 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5461 seq = get_insns ();
5462 end_sequence ();
5463 set_insn_locations (seq, prologue_location);
5464 emit_insn_before (seq, stack_check_probe_note);
5465 break;
5466 }
5467 }
5468
5469 /* End any sequences that failed to be closed due to syntax errors. */
5470 while (in_sequence_p ())
5471 end_sequence ();
5472
5473 clear_pending_stack_adjust ();
5474 do_pending_stack_adjust ();
5475
5476 /* Output a linenumber for the end of the function.
5477 SDB depended on this. */
5478 set_curr_insn_location (input_location);
5479
5480 /* Before the return label (if any), clobber the return
5481 registers so that they are not propagated live to the rest of
5482 the function. This can only happen with functions that drop
5483 through; if there had been a return statement, there would
5484 have either been a return rtx, or a jump to the return label.
5485
5486 We delay actual code generation after the current_function_value_rtx
5487 is computed. */
5488 rtx_insn *clobber_after = get_last_insn ();
5489
5490 /* Output the label for the actual return from the function. */
5491 emit_label (return_label);
5492
5493 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5494 {
5495 /* Let except.c know where it should emit the call to unregister
5496 the function context for sjlj exceptions. */
5497 if (flag_exceptions)
5498 sjlj_emit_function_exit_after (get_last_insn ());
5499 }
5500 else
5501 {
5502 /* We want to ensure that instructions that may trap are not
5503 moved into the epilogue by scheduling, because we don't
5504 always emit unwind information for the epilogue. */
5505 if (cfun->can_throw_non_call_exceptions)
5506 emit_insn (gen_blockage ());
5507 }
5508
5509 /* If this is an implementation of throw, do what's necessary to
5510 communicate between __builtin_eh_return and the epilogue. */
5511 expand_eh_return ();
5512
5513 /* If scalar return value was computed in a pseudo-reg, or was a named
5514 return value that got dumped to the stack, copy that to the hard
5515 return register. */
5516 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5517 {
5518 tree decl_result = DECL_RESULT (current_function_decl);
5519 rtx decl_rtl = DECL_RTL (decl_result);
5520
5521 if (REG_P (decl_rtl)
5522 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5523 : DECL_REGISTER (decl_result))
5524 {
5525 rtx real_decl_rtl = crtl->return_rtx;
5526 complex_mode cmode;
5527
5528 /* This should be set in assign_parms. */
5529 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5530
5531 /* If this is a BLKmode structure being returned in registers,
5532 then use the mode computed in expand_return. Note that if
5533 decl_rtl is memory, then its mode may have been changed,
5534 but that crtl->return_rtx has not. */
5535 if (GET_MODE (real_decl_rtl) == BLKmode)
5536 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5537
5538 /* If a non-BLKmode return value should be padded at the least
5539 significant end of the register, shift it left by the appropriate
5540 amount. BLKmode results are handled using the group load/store
5541 machinery. */
5542 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5543 && REG_P (real_decl_rtl)
5544 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5545 {
5546 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5547 REGNO (real_decl_rtl)),
5548 decl_rtl);
5549 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5550 }
5551 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5552 {
5553 /* If expand_function_start has created a PARALLEL for decl_rtl,
5554 move the result to the real return registers. Otherwise, do
5555 a group load from decl_rtl for a named return. */
5556 if (GET_CODE (decl_rtl) == PARALLEL)
5557 emit_group_move (real_decl_rtl, decl_rtl);
5558 else
5559 emit_group_load (real_decl_rtl, decl_rtl,
5560 TREE_TYPE (decl_result),
5561 int_size_in_bytes (TREE_TYPE (decl_result)));
5562 }
5563 /* In the case of complex integer modes smaller than a word, we'll
5564 need to generate some non-trivial bitfield insertions. Do that
5565 on a pseudo and not the hard register. */
5566 else if (GET_CODE (decl_rtl) == CONCAT
5567 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5568 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5569 {
5570 int old_generating_concat_p;
5571 rtx tmp;
5572
5573 old_generating_concat_p = generating_concat_p;
5574 generating_concat_p = 0;
5575 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5576 generating_concat_p = old_generating_concat_p;
5577
5578 emit_move_insn (tmp, decl_rtl);
5579 emit_move_insn (real_decl_rtl, tmp);
5580 }
5581 /* If a named return value dumped decl_return to memory, then
5582 we may need to re-do the PROMOTE_MODE signed/unsigned
5583 extension. */
5584 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5585 {
5586 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5587 promote_function_mode (TREE_TYPE (decl_result),
5588 GET_MODE (decl_rtl), &unsignedp,
5589 TREE_TYPE (current_function_decl), 1);
5590
5591 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5592 }
5593 else
5594 emit_move_insn (real_decl_rtl, decl_rtl);
5595 }
5596 }
5597
5598 /* If returning a structure, arrange to return the address of the value
5599 in a place where debuggers expect to find it.
5600
5601 If returning a structure PCC style,
5602 the caller also depends on this value.
5603 And cfun->returns_pcc_struct is not necessarily set. */
5604 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5605 && !targetm.calls.omit_struct_return_reg)
5606 {
5607 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5608 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5609 rtx outgoing;
5610
5611 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5612 type = TREE_TYPE (type);
5613 else
5614 value_address = XEXP (value_address, 0);
5615
5616 outgoing = targetm.calls.function_value (build_pointer_type (type),
5617 current_function_decl, true);
5618
5619 /* Mark this as a function return value so integrate will delete the
5620 assignment and USE below when inlining this function. */
5621 REG_FUNCTION_VALUE_P (outgoing) = 1;
5622
5623 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5624 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5625 value_address = convert_memory_address (mode, value_address);
5626
5627 emit_move_insn (outgoing, value_address);
5628
5629 /* Show return register used to hold result (in this case the address
5630 of the result. */
5631 crtl->return_rtx = outgoing;
5632 }
5633
5634 /* Emit the actual code to clobber return register. Don't emit
5635 it if clobber_after is a barrier, then the previous basic block
5636 certainly doesn't fall thru into the exit block. */
5637 if (!BARRIER_P (clobber_after))
5638 {
5639 start_sequence ();
5640 clobber_return_register ();
5641 rtx_insn *seq = get_insns ();
5642 end_sequence ();
5643
5644 emit_insn_after (seq, clobber_after);
5645 }
5646
5647 /* Output the label for the naked return from the function. */
5648 if (naked_return_label)
5649 emit_label (naked_return_label);
5650
5651 /* @@@ This is a kludge. We want to ensure that instructions that
5652 may trap are not moved into the epilogue by scheduling, because
5653 we don't always emit unwind information for the epilogue. */
5654 if (cfun->can_throw_non_call_exceptions
5655 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5656 emit_insn (gen_blockage ());
5657
5658 /* If stack protection is enabled for this function, check the guard. */
5659 if (crtl->stack_protect_guard && targetm.stack_protect_runtime_enabled_p ())
5660 stack_protect_epilogue ();
5661
5662 /* If we had calls to alloca, and this machine needs
5663 an accurate stack pointer to exit the function,
5664 insert some code to save and restore the stack pointer. */
5665 if (! EXIT_IGNORE_STACK
5666 && cfun->calls_alloca)
5667 {
5668 rtx tem = 0;
5669
5670 start_sequence ();
5671 emit_stack_save (SAVE_FUNCTION, &tem);
5672 rtx_insn *seq = get_insns ();
5673 end_sequence ();
5674 emit_insn_before (seq, parm_birth_insn);
5675
5676 emit_stack_restore (SAVE_FUNCTION, tem);
5677 }
5678
5679 /* ??? This should no longer be necessary since stupid is no longer with
5680 us, but there are some parts of the compiler (eg reload_combine, and
5681 sh mach_dep_reorg) that still try and compute their own lifetime info
5682 instead of using the general framework. */
5683 use_return_register ();
5684 }
5685
5686 rtx
5687 get_arg_pointer_save_area (void)
5688 {
5689 rtx ret = arg_pointer_save_area;
5690
5691 if (! ret)
5692 {
5693 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5694 arg_pointer_save_area = ret;
5695 }
5696
5697 if (! crtl->arg_pointer_save_area_init)
5698 {
5699 /* Save the arg pointer at the beginning of the function. The
5700 generated stack slot may not be a valid memory address, so we
5701 have to check it and fix it if necessary. */
5702 start_sequence ();
5703 emit_move_insn (validize_mem (copy_rtx (ret)),
5704 crtl->args.internal_arg_pointer);
5705 rtx_insn *seq = get_insns ();
5706 end_sequence ();
5707
5708 push_topmost_sequence ();
5709 emit_insn_after (seq, entry_of_function ());
5710 pop_topmost_sequence ();
5711
5712 crtl->arg_pointer_save_area_init = true;
5713 }
5714
5715 return ret;
5716 }
5717 \f
5718
5719 /* If debugging dumps are requested, dump information about how the
5720 target handled -fstack-check=clash for the prologue.
5721
5722 PROBES describes what if any probes were emitted.
5723
5724 RESIDUALS indicates if the prologue had any residual allocation
5725 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5726
5727 void
5728 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5729 {
5730 if (!dump_file)
5731 return;
5732
5733 switch (probes)
5734 {
5735 case NO_PROBE_NO_FRAME:
5736 fprintf (dump_file,
5737 "Stack clash no probe no stack adjustment in prologue.\n");
5738 break;
5739 case NO_PROBE_SMALL_FRAME:
5740 fprintf (dump_file,
5741 "Stack clash no probe small stack adjustment in prologue.\n");
5742 break;
5743 case PROBE_INLINE:
5744 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5745 break;
5746 case PROBE_LOOP:
5747 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5748 break;
5749 }
5750
5751 if (residuals)
5752 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5753 else
5754 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5755
5756 if (frame_pointer_needed)
5757 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5758 else
5759 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5760
5761 if (TREE_THIS_VOLATILE (cfun->decl))
5762 fprintf (dump_file,
5763 "Stack clash noreturn prologue, assuming no implicit"
5764 " probes in caller.\n");
5765 else
5766 fprintf (dump_file,
5767 "Stack clash not noreturn prologue.\n");
5768 }
5769
5770 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5771 for the first time. */
5772
5773 static void
5774 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5775 {
5776 rtx_insn *tmp;
5777 hash_table<insn_cache_hasher> *hash = *hashp;
5778
5779 if (hash == NULL)
5780 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5781
5782 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5783 {
5784 rtx *slot = hash->find_slot (tmp, INSERT);
5785 gcc_assert (*slot == NULL);
5786 *slot = tmp;
5787 }
5788 }
5789
5790 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5791 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5792 insn, then record COPY as well. */
5793
5794 void
5795 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5796 {
5797 hash_table<insn_cache_hasher> *hash;
5798 rtx *slot;
5799
5800 hash = epilogue_insn_hash;
5801 if (!hash || !hash->find (insn))
5802 {
5803 hash = prologue_insn_hash;
5804 if (!hash || !hash->find (insn))
5805 return;
5806 }
5807
5808 slot = hash->find_slot (copy, INSERT);
5809 gcc_assert (*slot == NULL);
5810 *slot = copy;
5811 }
5812
5813 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5814 we can be running after reorg, SEQUENCE rtl is possible. */
5815
5816 static bool
5817 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5818 {
5819 if (hash == NULL)
5820 return false;
5821
5822 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5823 {
5824 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5825 int i;
5826 for (i = seq->len () - 1; i >= 0; i--)
5827 if (hash->find (seq->element (i)))
5828 return true;
5829 return false;
5830 }
5831
5832 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5833 }
5834
5835 int
5836 prologue_contains (const rtx_insn *insn)
5837 {
5838 return contains (insn, prologue_insn_hash);
5839 }
5840
5841 int
5842 epilogue_contains (const rtx_insn *insn)
5843 {
5844 return contains (insn, epilogue_insn_hash);
5845 }
5846
5847 int
5848 prologue_epilogue_contains (const rtx_insn *insn)
5849 {
5850 if (contains (insn, prologue_insn_hash))
5851 return 1;
5852 if (contains (insn, epilogue_insn_hash))
5853 return 1;
5854 return 0;
5855 }
5856
5857 void
5858 record_prologue_seq (rtx_insn *seq)
5859 {
5860 record_insns (seq, NULL, &prologue_insn_hash);
5861 }
5862
5863 void
5864 record_epilogue_seq (rtx_insn *seq)
5865 {
5866 record_insns (seq, NULL, &epilogue_insn_hash);
5867 }
5868
5869 /* Set JUMP_LABEL for a return insn. */
5870
5871 void
5872 set_return_jump_label (rtx_insn *returnjump)
5873 {
5874 rtx pat = PATTERN (returnjump);
5875 if (GET_CODE (pat) == PARALLEL)
5876 pat = XVECEXP (pat, 0, 0);
5877 if (ANY_RETURN_P (pat))
5878 JUMP_LABEL (returnjump) = pat;
5879 else
5880 JUMP_LABEL (returnjump) = ret_rtx;
5881 }
5882
5883 /* Return a sequence to be used as the split prologue for the current
5884 function, or NULL. */
5885
5886 static rtx_insn *
5887 make_split_prologue_seq (void)
5888 {
5889 if (!flag_split_stack
5890 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5891 return NULL;
5892
5893 start_sequence ();
5894 emit_insn (targetm.gen_split_stack_prologue ());
5895 rtx_insn *seq = get_insns ();
5896 end_sequence ();
5897
5898 record_insns (seq, NULL, &prologue_insn_hash);
5899 set_insn_locations (seq, prologue_location);
5900
5901 return seq;
5902 }
5903
5904 /* Return a sequence to be used as the prologue for the current function,
5905 or NULL. */
5906
5907 static rtx_insn *
5908 make_prologue_seq (void)
5909 {
5910 if (!targetm.have_prologue ())
5911 return NULL;
5912
5913 start_sequence ();
5914 rtx_insn *seq = targetm.gen_prologue ();
5915 emit_insn (seq);
5916
5917 /* Insert an explicit USE for the frame pointer
5918 if the profiling is on and the frame pointer is required. */
5919 if (crtl->profile && frame_pointer_needed)
5920 emit_use (hard_frame_pointer_rtx);
5921
5922 /* Retain a map of the prologue insns. */
5923 record_insns (seq, NULL, &prologue_insn_hash);
5924 emit_note (NOTE_INSN_PROLOGUE_END);
5925
5926 /* Ensure that instructions are not moved into the prologue when
5927 profiling is on. The call to the profiling routine can be
5928 emitted within the live range of a call-clobbered register. */
5929 if (!targetm.profile_before_prologue () && crtl->profile)
5930 emit_insn (gen_blockage ());
5931
5932 seq = get_insns ();
5933 end_sequence ();
5934 set_insn_locations (seq, prologue_location);
5935
5936 return seq;
5937 }
5938
5939 /* Return a sequence to be used as the epilogue for the current function,
5940 or NULL. */
5941
5942 static rtx_insn *
5943 make_epilogue_seq (void)
5944 {
5945 if (!targetm.have_epilogue ())
5946 return NULL;
5947
5948 start_sequence ();
5949 emit_note (NOTE_INSN_EPILOGUE_BEG);
5950 rtx_insn *seq = targetm.gen_epilogue ();
5951 if (seq)
5952 emit_jump_insn (seq);
5953
5954 /* Retain a map of the epilogue insns. */
5955 record_insns (seq, NULL, &epilogue_insn_hash);
5956 set_insn_locations (seq, epilogue_location);
5957
5958 seq = get_insns ();
5959 rtx_insn *returnjump = get_last_insn ();
5960 end_sequence ();
5961
5962 if (JUMP_P (returnjump))
5963 set_return_jump_label (returnjump);
5964
5965 return seq;
5966 }
5967
5968
5969 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5970 this into place with notes indicating where the prologue ends and where
5971 the epilogue begins. Update the basic block information when possible.
5972
5973 Notes on epilogue placement:
5974 There are several kinds of edges to the exit block:
5975 * a single fallthru edge from LAST_BB
5976 * possibly, edges from blocks containing sibcalls
5977 * possibly, fake edges from infinite loops
5978
5979 The epilogue is always emitted on the fallthru edge from the last basic
5980 block in the function, LAST_BB, into the exit block.
5981
5982 If LAST_BB is empty except for a label, it is the target of every
5983 other basic block in the function that ends in a return. If a
5984 target has a return or simple_return pattern (possibly with
5985 conditional variants), these basic blocks can be changed so that a
5986 return insn is emitted into them, and their target is adjusted to
5987 the real exit block.
5988
5989 Notes on shrink wrapping: We implement a fairly conservative
5990 version of shrink-wrapping rather than the textbook one. We only
5991 generate a single prologue and a single epilogue. This is
5992 sufficient to catch a number of interesting cases involving early
5993 exits.
5994
5995 First, we identify the blocks that require the prologue to occur before
5996 them. These are the ones that modify a call-saved register, or reference
5997 any of the stack or frame pointer registers. To simplify things, we then
5998 mark everything reachable from these blocks as also requiring a prologue.
5999 This takes care of loops automatically, and avoids the need to examine
6000 whether MEMs reference the frame, since it is sufficient to check for
6001 occurrences of the stack or frame pointer.
6002
6003 We then compute the set of blocks for which the need for a prologue
6004 is anticipatable (borrowing terminology from the shrink-wrapping
6005 description in Muchnick's book). These are the blocks which either
6006 require a prologue themselves, or those that have only successors
6007 where the prologue is anticipatable. The prologue needs to be
6008 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6009 is not. For the moment, we ensure that only one such edge exists.
6010
6011 The epilogue is placed as described above, but we make a
6012 distinction between inserting return and simple_return patterns
6013 when modifying other blocks that end in a return. Blocks that end
6014 in a sibcall omit the sibcall_epilogue if the block is not in
6015 ANTIC. */
6016
6017 void
6018 thread_prologue_and_epilogue_insns (void)
6019 {
6020 df_analyze ();
6021
6022 /* Can't deal with multiple successors of the entry block at the
6023 moment. Function should always have at least one entry
6024 point. */
6025 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6026
6027 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6028 edge orig_entry_edge = entry_edge;
6029
6030 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
6031 rtx_insn *prologue_seq = make_prologue_seq ();
6032 rtx_insn *epilogue_seq = make_epilogue_seq ();
6033
6034 /* Try to perform a kind of shrink-wrapping, making sure the
6035 prologue/epilogue is emitted only around those parts of the
6036 function that require it. */
6037 try_shrink_wrapping (&entry_edge, prologue_seq);
6038
6039 /* If the target can handle splitting the prologue/epilogue into separate
6040 components, try to shrink-wrap these components separately. */
6041 try_shrink_wrapping_separate (entry_edge->dest);
6042
6043 /* If that did anything for any component we now need the generate the
6044 "main" prologue again. Because some targets require some of these
6045 to be called in a specific order (i386 requires the split prologue
6046 to be first, for example), we create all three sequences again here.
6047 If this does not work for some target, that target should not enable
6048 separate shrink-wrapping. */
6049 if (crtl->shrink_wrapped_separate)
6050 {
6051 split_prologue_seq = make_split_prologue_seq ();
6052 prologue_seq = make_prologue_seq ();
6053 epilogue_seq = make_epilogue_seq ();
6054 }
6055
6056 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6057
6058 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6059 this marker for the splits of EH_RETURN patterns, and nothing else
6060 uses the flag in the meantime. */
6061 epilogue_completed = 1;
6062
6063 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6064 some targets, these get split to a special version of the epilogue
6065 code. In order to be able to properly annotate these with unwind
6066 info, try to split them now. If we get a valid split, drop an
6067 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6068 edge e;
6069 edge_iterator ei;
6070 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6071 {
6072 rtx_insn *prev, *last, *trial;
6073
6074 if (e->flags & EDGE_FALLTHRU)
6075 continue;
6076 last = BB_END (e->src);
6077 if (!eh_returnjump_p (last))
6078 continue;
6079
6080 prev = PREV_INSN (last);
6081 trial = try_split (PATTERN (last), last, 1);
6082 if (trial == last)
6083 continue;
6084
6085 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6086 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6087 }
6088
6089 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6090
6091 if (exit_fallthru_edge)
6092 {
6093 if (epilogue_seq)
6094 {
6095 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
6096 commit_edge_insertions ();
6097
6098 /* The epilogue insns we inserted may cause the exit edge to no longer
6099 be fallthru. */
6100 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6101 {
6102 if (((e->flags & EDGE_FALLTHRU) != 0)
6103 && returnjump_p (BB_END (e->src)))
6104 e->flags &= ~EDGE_FALLTHRU;
6105 }
6106 }
6107 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
6108 {
6109 /* We have a fall-through edge to the exit block, the source is not
6110 at the end of the function, and there will be an assembler epilogue
6111 at the end of the function.
6112 We can't use force_nonfallthru here, because that would try to
6113 use return. Inserting a jump 'by hand' is extremely messy, so
6114 we take advantage of cfg_layout_finalize using
6115 fixup_fallthru_exit_predecessor. */
6116 cfg_layout_initialize (0);
6117 basic_block cur_bb;
6118 FOR_EACH_BB_FN (cur_bb, cfun)
6119 if (cur_bb->index >= NUM_FIXED_BLOCKS
6120 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6121 cur_bb->aux = cur_bb->next_bb;
6122 cfg_layout_finalize ();
6123 }
6124 }
6125
6126 /* Insert the prologue. */
6127
6128 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6129
6130 if (split_prologue_seq || prologue_seq)
6131 {
6132 rtx_insn *split_prologue_insn = split_prologue_seq;
6133 if (split_prologue_seq)
6134 {
6135 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
6136 split_prologue_insn = NEXT_INSN (split_prologue_insn);
6137 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6138 }
6139
6140 rtx_insn *prologue_insn = prologue_seq;
6141 if (prologue_seq)
6142 {
6143 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
6144 prologue_insn = NEXT_INSN (prologue_insn);
6145 insert_insn_on_edge (prologue_seq, entry_edge);
6146 }
6147
6148 commit_edge_insertions ();
6149
6150 /* Look for basic blocks within the prologue insns. */
6151 if (split_prologue_insn
6152 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
6153 split_prologue_insn = NULL;
6154 if (prologue_insn
6155 && BLOCK_FOR_INSN (prologue_insn) == NULL)
6156 prologue_insn = NULL;
6157 if (split_prologue_insn || prologue_insn)
6158 {
6159 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6160 bitmap_clear (blocks);
6161 if (split_prologue_insn)
6162 bitmap_set_bit (blocks,
6163 BLOCK_FOR_INSN (split_prologue_insn)->index);
6164 if (prologue_insn)
6165 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
6166 find_many_sub_basic_blocks (blocks);
6167 }
6168 }
6169
6170 default_rtl_profile ();
6171
6172 /* Emit sibling epilogues before any sibling call sites. */
6173 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6174 (e = ei_safe_edge (ei));
6175 ei_next (&ei))
6176 {
6177 /* Skip those already handled, the ones that run without prologue. */
6178 if (e->flags & EDGE_IGNORE)
6179 {
6180 e->flags &= ~EDGE_IGNORE;
6181 continue;
6182 }
6183
6184 rtx_insn *insn = BB_END (e->src);
6185
6186 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6187 continue;
6188
6189 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6190 {
6191 start_sequence ();
6192 emit_note (NOTE_INSN_EPILOGUE_BEG);
6193 emit_insn (ep_seq);
6194 rtx_insn *seq = get_insns ();
6195 end_sequence ();
6196
6197 /* Retain a map of the epilogue insns. Used in life analysis to
6198 avoid getting rid of sibcall epilogue insns. Do this before we
6199 actually emit the sequence. */
6200 record_insns (seq, NULL, &epilogue_insn_hash);
6201 set_insn_locations (seq, epilogue_location);
6202
6203 emit_insn_before (seq, insn);
6204 }
6205 }
6206
6207 if (epilogue_seq)
6208 {
6209 rtx_insn *insn, *next;
6210
6211 /* Similarly, move any line notes that appear after the epilogue.
6212 There is no need, however, to be quite so anal about the existence
6213 of such a note. Also possibly move
6214 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6215 info generation. */
6216 for (insn = epilogue_seq; insn; insn = next)
6217 {
6218 next = NEXT_INSN (insn);
6219 if (NOTE_P (insn)
6220 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6221 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6222 }
6223 }
6224
6225 /* Threading the prologue and epilogue changes the artificial refs
6226 in the entry and exit blocks. */
6227 epilogue_completed = 1;
6228 df_update_entry_exit_and_calls ();
6229 }
6230
6231 /* Reposition the prologue-end and epilogue-begin notes after
6232 instruction scheduling. */
6233
6234 void
6235 reposition_prologue_and_epilogue_notes (void)
6236 {
6237 if (!targetm.have_prologue ()
6238 && !targetm.have_epilogue ()
6239 && !targetm.have_sibcall_epilogue ())
6240 return;
6241
6242 /* Since the hash table is created on demand, the fact that it is
6243 non-null is a signal that it is non-empty. */
6244 if (prologue_insn_hash != NULL)
6245 {
6246 size_t len = prologue_insn_hash->elements ();
6247 rtx_insn *insn, *last = NULL, *note = NULL;
6248
6249 /* Scan from the beginning until we reach the last prologue insn. */
6250 /* ??? While we do have the CFG intact, there are two problems:
6251 (1) The prologue can contain loops (typically probing the stack),
6252 which means that the end of the prologue isn't in the first bb.
6253 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6254 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6255 {
6256 if (NOTE_P (insn))
6257 {
6258 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6259 note = insn;
6260 }
6261 else if (contains (insn, prologue_insn_hash))
6262 {
6263 last = insn;
6264 if (--len == 0)
6265 break;
6266 }
6267 }
6268
6269 if (last)
6270 {
6271 if (note == NULL)
6272 {
6273 /* Scan forward looking for the PROLOGUE_END note. It should
6274 be right at the beginning of the block, possibly with other
6275 insn notes that got moved there. */
6276 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6277 {
6278 if (NOTE_P (note)
6279 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6280 break;
6281 }
6282 }
6283
6284 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6285 if (LABEL_P (last))
6286 last = NEXT_INSN (last);
6287 reorder_insns (note, note, last);
6288 }
6289 }
6290
6291 if (epilogue_insn_hash != NULL)
6292 {
6293 edge_iterator ei;
6294 edge e;
6295
6296 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6297 {
6298 rtx_insn *insn, *first = NULL, *note = NULL;
6299 basic_block bb = e->src;
6300
6301 /* Scan from the beginning until we reach the first epilogue insn. */
6302 FOR_BB_INSNS (bb, insn)
6303 {
6304 if (NOTE_P (insn))
6305 {
6306 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6307 {
6308 note = insn;
6309 if (first != NULL)
6310 break;
6311 }
6312 }
6313 else if (first == NULL && contains (insn, epilogue_insn_hash))
6314 {
6315 first = insn;
6316 if (note != NULL)
6317 break;
6318 }
6319 }
6320
6321 if (note)
6322 {
6323 /* If the function has a single basic block, and no real
6324 epilogue insns (e.g. sibcall with no cleanup), the
6325 epilogue note can get scheduled before the prologue
6326 note. If we have frame related prologue insns, having
6327 them scanned during the epilogue will result in a crash.
6328 In this case re-order the epilogue note to just before
6329 the last insn in the block. */
6330 if (first == NULL)
6331 first = BB_END (bb);
6332
6333 if (PREV_INSN (first) != note)
6334 reorder_insns (note, note, PREV_INSN (first));
6335 }
6336 }
6337 }
6338 }
6339
6340 /* Returns the name of function declared by FNDECL. */
6341 const char *
6342 fndecl_name (tree fndecl)
6343 {
6344 if (fndecl == NULL)
6345 return "(nofn)";
6346 return lang_hooks.decl_printable_name (fndecl, 1);
6347 }
6348
6349 /* Returns the name of function FN. */
6350 const char *
6351 function_name (struct function *fn)
6352 {
6353 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6354 return fndecl_name (fndecl);
6355 }
6356
6357 /* Returns the name of the current function. */
6358 const char *
6359 current_function_name (void)
6360 {
6361 return function_name (cfun);
6362 }
6363 \f
6364
6365 static unsigned int
6366 rest_of_handle_check_leaf_regs (void)
6367 {
6368 #ifdef LEAF_REGISTERS
6369 crtl->uses_only_leaf_regs
6370 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6371 #endif
6372 return 0;
6373 }
6374
6375 /* Insert a TYPE into the used types hash table of CFUN. */
6376
6377 static void
6378 used_types_insert_helper (tree type, struct function *func)
6379 {
6380 if (type != NULL && func != NULL)
6381 {
6382 if (func->used_types_hash == NULL)
6383 func->used_types_hash = hash_set<tree>::create_ggc (37);
6384
6385 func->used_types_hash->add (type);
6386 }
6387 }
6388
6389 /* Given a type, insert it into the used hash table in cfun. */
6390 void
6391 used_types_insert (tree t)
6392 {
6393 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6394 if (TYPE_NAME (t))
6395 break;
6396 else
6397 t = TREE_TYPE (t);
6398 if (TREE_CODE (t) == ERROR_MARK)
6399 return;
6400 if (TYPE_NAME (t) == NULL_TREE
6401 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6402 t = TYPE_MAIN_VARIANT (t);
6403 if (debug_info_level > DINFO_LEVEL_NONE)
6404 {
6405 if (cfun)
6406 used_types_insert_helper (t, cfun);
6407 else
6408 {
6409 /* So this might be a type referenced by a global variable.
6410 Record that type so that we can later decide to emit its
6411 debug information. */
6412 vec_safe_push (types_used_by_cur_var_decl, t);
6413 }
6414 }
6415 }
6416
6417 /* Helper to Hash a struct types_used_by_vars_entry. */
6418
6419 static hashval_t
6420 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6421 {
6422 gcc_assert (entry && entry->var_decl && entry->type);
6423
6424 return iterative_hash_object (entry->type,
6425 iterative_hash_object (entry->var_decl, 0));
6426 }
6427
6428 /* Hash function of the types_used_by_vars_entry hash table. */
6429
6430 hashval_t
6431 used_type_hasher::hash (types_used_by_vars_entry *entry)
6432 {
6433 return hash_types_used_by_vars_entry (entry);
6434 }
6435
6436 /*Equality function of the types_used_by_vars_entry hash table. */
6437
6438 bool
6439 used_type_hasher::equal (types_used_by_vars_entry *e1,
6440 types_used_by_vars_entry *e2)
6441 {
6442 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6443 }
6444
6445 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6446
6447 void
6448 types_used_by_var_decl_insert (tree type, tree var_decl)
6449 {
6450 if (type != NULL && var_decl != NULL)
6451 {
6452 types_used_by_vars_entry **slot;
6453 struct types_used_by_vars_entry e;
6454 e.var_decl = var_decl;
6455 e.type = type;
6456 if (types_used_by_vars_hash == NULL)
6457 types_used_by_vars_hash
6458 = hash_table<used_type_hasher>::create_ggc (37);
6459
6460 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6461 if (*slot == NULL)
6462 {
6463 struct types_used_by_vars_entry *entry;
6464 entry = ggc_alloc<types_used_by_vars_entry> ();
6465 entry->type = type;
6466 entry->var_decl = var_decl;
6467 *slot = entry;
6468 }
6469 }
6470 }
6471
6472 namespace {
6473
6474 const pass_data pass_data_leaf_regs =
6475 {
6476 RTL_PASS, /* type */
6477 "*leaf_regs", /* name */
6478 OPTGROUP_NONE, /* optinfo_flags */
6479 TV_NONE, /* tv_id */
6480 0, /* properties_required */
6481 0, /* properties_provided */
6482 0, /* properties_destroyed */
6483 0, /* todo_flags_start */
6484 0, /* todo_flags_finish */
6485 };
6486
6487 class pass_leaf_regs : public rtl_opt_pass
6488 {
6489 public:
6490 pass_leaf_regs (gcc::context *ctxt)
6491 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6492 {}
6493
6494 /* opt_pass methods: */
6495 virtual unsigned int execute (function *)
6496 {
6497 return rest_of_handle_check_leaf_regs ();
6498 }
6499
6500 }; // class pass_leaf_regs
6501
6502 } // anon namespace
6503
6504 rtl_opt_pass *
6505 make_pass_leaf_regs (gcc::context *ctxt)
6506 {
6507 return new pass_leaf_regs (ctxt);
6508 }
6509
6510 static unsigned int
6511 rest_of_handle_thread_prologue_and_epilogue (void)
6512 {
6513 /* prepare_shrink_wrap is sensitive to the block structure of the control
6514 flow graph, so clean it up first. */
6515 if (optimize)
6516 cleanup_cfg (0);
6517
6518 /* On some machines, the prologue and epilogue code, or parts thereof,
6519 can be represented as RTL. Doing so lets us schedule insns between
6520 it and the rest of the code and also allows delayed branch
6521 scheduling to operate in the epilogue. */
6522 thread_prologue_and_epilogue_insns ();
6523
6524 /* Some non-cold blocks may now be only reachable from cold blocks.
6525 Fix that up. */
6526 fixup_partitions ();
6527
6528 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6529 see PR57320. */
6530 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6531
6532 /* The stack usage info is finalized during prologue expansion. */
6533 if (flag_stack_usage_info)
6534 output_stack_usage ();
6535
6536 return 0;
6537 }
6538
6539 namespace {
6540
6541 const pass_data pass_data_thread_prologue_and_epilogue =
6542 {
6543 RTL_PASS, /* type */
6544 "pro_and_epilogue", /* name */
6545 OPTGROUP_NONE, /* optinfo_flags */
6546 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6547 0, /* properties_required */
6548 0, /* properties_provided */
6549 0, /* properties_destroyed */
6550 0, /* todo_flags_start */
6551 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6552 };
6553
6554 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6555 {
6556 public:
6557 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6558 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6559 {}
6560
6561 /* opt_pass methods: */
6562 virtual unsigned int execute (function *)
6563 {
6564 return rest_of_handle_thread_prologue_and_epilogue ();
6565 }
6566
6567 }; // class pass_thread_prologue_and_epilogue
6568
6569 } // anon namespace
6570
6571 rtl_opt_pass *
6572 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6573 {
6574 return new pass_thread_prologue_and_epilogue (ctxt);
6575 }
6576 \f
6577
6578 /* This mini-pass fixes fall-out from SSA in asm statements that have
6579 in-out constraints. Say you start with
6580
6581 orig = inout;
6582 asm ("": "+mr" (inout));
6583 use (orig);
6584
6585 which is transformed very early to use explicit output and match operands:
6586
6587 orig = inout;
6588 asm ("": "=mr" (inout) : "0" (inout));
6589 use (orig);
6590
6591 Or, after SSA and copyprop,
6592
6593 asm ("": "=mr" (inout_2) : "0" (inout_1));
6594 use (inout_1);
6595
6596 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6597 they represent two separate values, so they will get different pseudo
6598 registers during expansion. Then, since the two operands need to match
6599 per the constraints, but use different pseudo registers, reload can
6600 only register a reload for these operands. But reloads can only be
6601 satisfied by hardregs, not by memory, so we need a register for this
6602 reload, just because we are presented with non-matching operands.
6603 So, even though we allow memory for this operand, no memory can be
6604 used for it, just because the two operands don't match. This can
6605 cause reload failures on register-starved targets.
6606
6607 So it's a symptom of reload not being able to use memory for reloads
6608 or, alternatively it's also a symptom of both operands not coming into
6609 reload as matching (in which case the pseudo could go to memory just
6610 fine, as the alternative allows it, and no reload would be necessary).
6611 We fix the latter problem here, by transforming
6612
6613 asm ("": "=mr" (inout_2) : "0" (inout_1));
6614
6615 back to
6616
6617 inout_2 = inout_1;
6618 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6619
6620 static void
6621 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6622 {
6623 int i;
6624 bool changed = false;
6625 rtx op = SET_SRC (p_sets[0]);
6626 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6627 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6628 bool *output_matched = XALLOCAVEC (bool, noutputs);
6629
6630 memset (output_matched, 0, noutputs * sizeof (bool));
6631 for (i = 0; i < ninputs; i++)
6632 {
6633 rtx input, output;
6634 rtx_insn *insns;
6635 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6636 char *end;
6637 int match, j;
6638
6639 if (*constraint == '%')
6640 constraint++;
6641
6642 match = strtoul (constraint, &end, 10);
6643 if (end == constraint)
6644 continue;
6645
6646 gcc_assert (match < noutputs);
6647 output = SET_DEST (p_sets[match]);
6648 input = RTVEC_ELT (inputs, i);
6649 /* Only do the transformation for pseudos. */
6650 if (! REG_P (output)
6651 || rtx_equal_p (output, input)
6652 || (GET_MODE (input) != VOIDmode
6653 && GET_MODE (input) != GET_MODE (output)))
6654 continue;
6655
6656 /* We can't do anything if the output is also used as input,
6657 as we're going to overwrite it. */
6658 for (j = 0; j < ninputs; j++)
6659 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6660 break;
6661 if (j != ninputs)
6662 continue;
6663
6664 /* Avoid changing the same input several times. For
6665 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6666 only change in once (to out1), rather than changing it
6667 first to out1 and afterwards to out2. */
6668 if (i > 0)
6669 {
6670 for (j = 0; j < noutputs; j++)
6671 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6672 break;
6673 if (j != noutputs)
6674 continue;
6675 }
6676 output_matched[match] = true;
6677
6678 start_sequence ();
6679 emit_move_insn (output, input);
6680 insns = get_insns ();
6681 end_sequence ();
6682 emit_insn_before (insns, insn);
6683
6684 /* Now replace all mentions of the input with output. We can't
6685 just replace the occurrence in inputs[i], as the register might
6686 also be used in some other input (or even in an address of an
6687 output), which would mean possibly increasing the number of
6688 inputs by one (namely 'output' in addition), which might pose
6689 a too complicated problem for reload to solve. E.g. this situation:
6690
6691 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6692
6693 Here 'input' is used in two occurrences as input (once for the
6694 input operand, once for the address in the second output operand).
6695 If we would replace only the occurrence of the input operand (to
6696 make the matching) we would be left with this:
6697
6698 output = input
6699 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6700
6701 Now we suddenly have two different input values (containing the same
6702 value, but different pseudos) where we formerly had only one.
6703 With more complicated asms this might lead to reload failures
6704 which wouldn't have happen without this pass. So, iterate over
6705 all operands and replace all occurrences of the register used. */
6706 for (j = 0; j < noutputs; j++)
6707 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6708 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6709 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6710 input, output);
6711 for (j = 0; j < ninputs; j++)
6712 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6713 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6714 input, output);
6715
6716 changed = true;
6717 }
6718
6719 if (changed)
6720 df_insn_rescan (insn);
6721 }
6722
6723 /* Add the decl D to the local_decls list of FUN. */
6724
6725 void
6726 add_local_decl (struct function *fun, tree d)
6727 {
6728 gcc_assert (VAR_P (d));
6729 vec_safe_push (fun->local_decls, d);
6730 }
6731
6732 namespace {
6733
6734 const pass_data pass_data_match_asm_constraints =
6735 {
6736 RTL_PASS, /* type */
6737 "asmcons", /* name */
6738 OPTGROUP_NONE, /* optinfo_flags */
6739 TV_NONE, /* tv_id */
6740 0, /* properties_required */
6741 0, /* properties_provided */
6742 0, /* properties_destroyed */
6743 0, /* todo_flags_start */
6744 0, /* todo_flags_finish */
6745 };
6746
6747 class pass_match_asm_constraints : public rtl_opt_pass
6748 {
6749 public:
6750 pass_match_asm_constraints (gcc::context *ctxt)
6751 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6752 {}
6753
6754 /* opt_pass methods: */
6755 virtual unsigned int execute (function *);
6756
6757 }; // class pass_match_asm_constraints
6758
6759 unsigned
6760 pass_match_asm_constraints::execute (function *fun)
6761 {
6762 basic_block bb;
6763 rtx_insn *insn;
6764 rtx pat, *p_sets;
6765 int noutputs;
6766
6767 if (!crtl->has_asm_statement)
6768 return 0;
6769
6770 df_set_flags (DF_DEFER_INSN_RESCAN);
6771 FOR_EACH_BB_FN (bb, fun)
6772 {
6773 FOR_BB_INSNS (bb, insn)
6774 {
6775 if (!INSN_P (insn))
6776 continue;
6777
6778 pat = PATTERN (insn);
6779 if (GET_CODE (pat) == PARALLEL)
6780 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6781 else if (GET_CODE (pat) == SET)
6782 p_sets = &PATTERN (insn), noutputs = 1;
6783 else
6784 continue;
6785
6786 if (GET_CODE (*p_sets) == SET
6787 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6788 match_asm_constraints_1 (insn, p_sets, noutputs);
6789 }
6790 }
6791
6792 return TODO_df_finish;
6793 }
6794
6795 } // anon namespace
6796
6797 rtl_opt_pass *
6798 make_pass_match_asm_constraints (gcc::context *ctxt)
6799 {
6800 return new pass_match_asm_constraints (ctxt);
6801 }
6802
6803
6804 #include "gt-function.h"