lto-cgraph.c (output_profile_summary, [...]): Use gcov streaming; stream hot bb thres...
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "flags.h"
41 #include "except.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "optabs.h"
45 #include "libfuncs.h"
46 #include "regs.h"
47 #include "hard-reg-set.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "output.h"
51 #include "basic-block.h"
52 #include "hashtab.h"
53 #include "ggc.h"
54 #include "tm_p.h"
55 #include "langhooks.h"
56 #include "target.h"
57 #include "common/common-target.h"
58 #include "gimple.h"
59 #include "tree-pass.h"
60 #include "predict.h"
61 #include "df.h"
62 #include "params.h"
63 #include "bb-reorder.h"
64
65 /* So we can assign to cfun in this file. */
66 #undef cfun
67
68 #ifndef STACK_ALIGNMENT_NEEDED
69 #define STACK_ALIGNMENT_NEEDED 1
70 #endif
71
72 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73
74 /* Some systems use __main in a way incompatible with its use in gcc, in these
75 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
76 give the same symbol without quotes for an alternative entry point. You
77 must define both, or neither. */
78 #ifndef NAME__MAIN
79 #define NAME__MAIN "__main"
80 #endif
81
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90
91 /* Nonzero once virtual register instantiation has been done.
92 assign_stack_local uses frame_pointer_rtx when this is nonzero.
93 calls.c:emit_library_call_value_1 uses it to set up
94 post-instantiation libcalls. */
95 int virtuals_instantiated;
96
97 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
98 static GTY(()) int funcdef_no;
99
100 /* These variables hold pointers to functions to create and destroy
101 target specific, per-function data structures. */
102 struct machine_function * (*init_machine_status) (void);
103
104 /* The currently compiled function. */
105 struct function *cfun = 0;
106
107 /* These hashes record the prologue and epilogue insns. */
108 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
109 htab_t prologue_insn_hash;
110 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
111 htab_t epilogue_insn_hash;
112 \f
113
114 htab_t types_used_by_vars_hash = NULL;
115 vec<tree, va_gc> *types_used_by_cur_var_decl;
116
117 /* Forward declarations. */
118
119 static struct temp_slot *find_temp_slot_from_address (rtx);
120 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
121 static void pad_below (struct args_size *, enum machine_mode, tree);
122 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
123 static int all_blocks (tree, tree *);
124 static tree *get_block_vector (tree, int *);
125 extern tree debug_find_var_in_block_tree (tree, tree);
126 /* We always define `record_insns' even if it's not used so that we
127 can always export `prologue_epilogue_contains'. */
128 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
129 static bool contains (const_rtx, htab_t);
130 static void prepare_function_start (void);
131 static void do_clobber_return_reg (rtx, void *);
132 static void do_use_return_reg (rtx, void *);
133 static void set_insn_locations (rtx, int) ATTRIBUTE_UNUSED;
134 \f
135 /* Stack of nested functions. */
136 /* Keep track of the cfun stack. */
137
138 typedef struct function *function_p;
139
140 static vec<function_p> function_context_stack;
141
142 /* Save the current context for compilation of a nested function.
143 This is called from language-specific code. */
144
145 void
146 push_function_context (void)
147 {
148 if (cfun == 0)
149 allocate_struct_function (NULL, false);
150
151 function_context_stack.safe_push (cfun);
152 set_cfun (NULL);
153 }
154
155 /* Restore the last saved context, at the end of a nested function.
156 This function is called from language-specific code. */
157
158 void
159 pop_function_context (void)
160 {
161 struct function *p = function_context_stack.pop ();
162 set_cfun (p);
163 current_function_decl = p->decl;
164
165 /* Reset variables that have known state during rtx generation. */
166 virtuals_instantiated = 0;
167 generating_concat_p = 1;
168 }
169
170 /* Clear out all parts of the state in F that can safely be discarded
171 after the function has been parsed, but not compiled, to let
172 garbage collection reclaim the memory. */
173
174 void
175 free_after_parsing (struct function *f)
176 {
177 f->language = 0;
178 }
179
180 /* Clear out all parts of the state in F that can safely be discarded
181 after the function has been compiled, to let garbage collection
182 reclaim the memory. */
183
184 void
185 free_after_compilation (struct function *f)
186 {
187 prologue_insn_hash = NULL;
188 epilogue_insn_hash = NULL;
189
190 free (crtl->emit.regno_pointer_align);
191
192 memset (crtl, 0, sizeof (struct rtl_data));
193 f->eh = NULL;
194 f->machine = NULL;
195 f->cfg = NULL;
196
197 regno_reg_rtx = NULL;
198 }
199 \f
200 /* Return size needed for stack frame based on slots so far allocated.
201 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
202 the caller may have to do that. */
203
204 HOST_WIDE_INT
205 get_frame_size (void)
206 {
207 if (FRAME_GROWS_DOWNWARD)
208 return -frame_offset;
209 else
210 return frame_offset;
211 }
212
213 /* Issue an error message and return TRUE if frame OFFSET overflows in
214 the signed target pointer arithmetics for function FUNC. Otherwise
215 return FALSE. */
216
217 bool
218 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
219 {
220 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
221
222 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
223 /* Leave room for the fixed part of the frame. */
224 - 64 * UNITS_PER_WORD)
225 {
226 error_at (DECL_SOURCE_LOCATION (func),
227 "total size of local objects too large");
228 return TRUE;
229 }
230
231 return FALSE;
232 }
233
234 /* Return stack slot alignment in bits for TYPE and MODE. */
235
236 static unsigned int
237 get_stack_local_alignment (tree type, enum machine_mode mode)
238 {
239 unsigned int alignment;
240
241 if (mode == BLKmode)
242 alignment = BIGGEST_ALIGNMENT;
243 else
244 alignment = GET_MODE_ALIGNMENT (mode);
245
246 /* Allow the frond-end to (possibly) increase the alignment of this
247 stack slot. */
248 if (! type)
249 type = lang_hooks.types.type_for_mode (mode, 0);
250
251 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
252 }
253
254 /* Determine whether it is possible to fit a stack slot of size SIZE and
255 alignment ALIGNMENT into an area in the stack frame that starts at
256 frame offset START and has a length of LENGTH. If so, store the frame
257 offset to be used for the stack slot in *POFFSET and return true;
258 return false otherwise. This function will extend the frame size when
259 given a start/length pair that lies at the end of the frame. */
260
261 static bool
262 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
263 HOST_WIDE_INT size, unsigned int alignment,
264 HOST_WIDE_INT *poffset)
265 {
266 HOST_WIDE_INT this_frame_offset;
267 int frame_off, frame_alignment, frame_phase;
268
269 /* Calculate how many bytes the start of local variables is off from
270 stack alignment. */
271 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
272 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
273 frame_phase = frame_off ? frame_alignment - frame_off : 0;
274
275 /* Round the frame offset to the specified alignment. */
276
277 /* We must be careful here, since FRAME_OFFSET might be negative and
278 division with a negative dividend isn't as well defined as we might
279 like. So we instead assume that ALIGNMENT is a power of two and
280 use logical operations which are unambiguous. */
281 if (FRAME_GROWS_DOWNWARD)
282 this_frame_offset
283 = (FLOOR_ROUND (start + length - size - frame_phase,
284 (unsigned HOST_WIDE_INT) alignment)
285 + frame_phase);
286 else
287 this_frame_offset
288 = (CEIL_ROUND (start - frame_phase,
289 (unsigned HOST_WIDE_INT) alignment)
290 + frame_phase);
291
292 /* See if it fits. If this space is at the edge of the frame,
293 consider extending the frame to make it fit. Our caller relies on
294 this when allocating a new slot. */
295 if (frame_offset == start && this_frame_offset < frame_offset)
296 frame_offset = this_frame_offset;
297 else if (this_frame_offset < start)
298 return false;
299 else if (start + length == frame_offset
300 && this_frame_offset + size > start + length)
301 frame_offset = this_frame_offset + size;
302 else if (this_frame_offset + size > start + length)
303 return false;
304
305 *poffset = this_frame_offset;
306 return true;
307 }
308
309 /* Create a new frame_space structure describing free space in the stack
310 frame beginning at START and ending at END, and chain it into the
311 function's frame_space_list. */
312
313 static void
314 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
315 {
316 struct frame_space *space = ggc_alloc_frame_space ();
317 space->next = crtl->frame_space_list;
318 crtl->frame_space_list = space;
319 space->start = start;
320 space->length = end - start;
321 }
322
323 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
324 with machine mode MODE.
325
326 ALIGN controls the amount of alignment for the address of the slot:
327 0 means according to MODE,
328 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
329 -2 means use BITS_PER_UNIT,
330 positive specifies alignment boundary in bits.
331
332 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
333 alignment and ASLK_RECORD_PAD bit set if we should remember
334 extra space we allocated for alignment purposes. When we are
335 called from assign_stack_temp_for_type, it is not set so we don't
336 track the same stack slot in two independent lists.
337
338 We do not round to stack_boundary here. */
339
340 rtx
341 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
342 int align, int kind)
343 {
344 rtx x, addr;
345 int bigend_correction = 0;
346 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
347 unsigned int alignment, alignment_in_bits;
348
349 if (align == 0)
350 {
351 alignment = get_stack_local_alignment (NULL, mode);
352 alignment /= BITS_PER_UNIT;
353 }
354 else if (align == -1)
355 {
356 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
357 size = CEIL_ROUND (size, alignment);
358 }
359 else if (align == -2)
360 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
361 else
362 alignment = align / BITS_PER_UNIT;
363
364 alignment_in_bits = alignment * BITS_PER_UNIT;
365
366 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
367 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
368 {
369 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
370 alignment = alignment_in_bits / BITS_PER_UNIT;
371 }
372
373 if (SUPPORTS_STACK_ALIGNMENT)
374 {
375 if (crtl->stack_alignment_estimated < alignment_in_bits)
376 {
377 if (!crtl->stack_realign_processed)
378 crtl->stack_alignment_estimated = alignment_in_bits;
379 else
380 {
381 /* If stack is realigned and stack alignment value
382 hasn't been finalized, it is OK not to increase
383 stack_alignment_estimated. The bigger alignment
384 requirement is recorded in stack_alignment_needed
385 below. */
386 gcc_assert (!crtl->stack_realign_finalized);
387 if (!crtl->stack_realign_needed)
388 {
389 /* It is OK to reduce the alignment as long as the
390 requested size is 0 or the estimated stack
391 alignment >= mode alignment. */
392 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
393 || size == 0
394 || (crtl->stack_alignment_estimated
395 >= GET_MODE_ALIGNMENT (mode)));
396 alignment_in_bits = crtl->stack_alignment_estimated;
397 alignment = alignment_in_bits / BITS_PER_UNIT;
398 }
399 }
400 }
401 }
402
403 if (crtl->stack_alignment_needed < alignment_in_bits)
404 crtl->stack_alignment_needed = alignment_in_bits;
405 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
406 crtl->max_used_stack_slot_alignment = alignment_in_bits;
407
408 if (mode != BLKmode || size != 0)
409 {
410 if (kind & ASLK_RECORD_PAD)
411 {
412 struct frame_space **psp;
413
414 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
415 {
416 struct frame_space *space = *psp;
417 if (!try_fit_stack_local (space->start, space->length, size,
418 alignment, &slot_offset))
419 continue;
420 *psp = space->next;
421 if (slot_offset > space->start)
422 add_frame_space (space->start, slot_offset);
423 if (slot_offset + size < space->start + space->length)
424 add_frame_space (slot_offset + size,
425 space->start + space->length);
426 goto found_space;
427 }
428 }
429 }
430 else if (!STACK_ALIGNMENT_NEEDED)
431 {
432 slot_offset = frame_offset;
433 goto found_space;
434 }
435
436 old_frame_offset = frame_offset;
437
438 if (FRAME_GROWS_DOWNWARD)
439 {
440 frame_offset -= size;
441 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
442
443 if (kind & ASLK_RECORD_PAD)
444 {
445 if (slot_offset > frame_offset)
446 add_frame_space (frame_offset, slot_offset);
447 if (slot_offset + size < old_frame_offset)
448 add_frame_space (slot_offset + size, old_frame_offset);
449 }
450 }
451 else
452 {
453 frame_offset += size;
454 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
455
456 if (kind & ASLK_RECORD_PAD)
457 {
458 if (slot_offset > old_frame_offset)
459 add_frame_space (old_frame_offset, slot_offset);
460 if (slot_offset + size < frame_offset)
461 add_frame_space (slot_offset + size, frame_offset);
462 }
463 }
464
465 found_space:
466 /* On a big-endian machine, if we are allocating more space than we will use,
467 use the least significant bytes of those that are allocated. */
468 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
469 bigend_correction = size - GET_MODE_SIZE (mode);
470
471 /* If we have already instantiated virtual registers, return the actual
472 address relative to the frame pointer. */
473 if (virtuals_instantiated)
474 addr = plus_constant (Pmode, frame_pointer_rtx,
475 trunc_int_for_mode
476 (slot_offset + bigend_correction
477 + STARTING_FRAME_OFFSET, Pmode));
478 else
479 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
480 trunc_int_for_mode
481 (slot_offset + bigend_correction,
482 Pmode));
483
484 x = gen_rtx_MEM (mode, addr);
485 set_mem_align (x, alignment_in_bits);
486 MEM_NOTRAP_P (x) = 1;
487
488 stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
490
491 if (frame_offset_overflow (frame_offset, current_function_decl))
492 frame_offset = 0;
493
494 return x;
495 }
496
497 /* Wrap up assign_stack_local_1 with last parameter as false. */
498
499 rtx
500 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
501 {
502 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
503 }
504 \f
505 /* In order to evaluate some expressions, such as function calls returning
506 structures in memory, we need to temporarily allocate stack locations.
507 We record each allocated temporary in the following structure.
508
509 Associated with each temporary slot is a nesting level. When we pop up
510 one level, all temporaries associated with the previous level are freed.
511 Normally, all temporaries are freed after the execution of the statement
512 in which they were created. However, if we are inside a ({...}) grouping,
513 the result may be in a temporary and hence must be preserved. If the
514 result could be in a temporary, we preserve it if we can determine which
515 one it is in. If we cannot determine which temporary may contain the
516 result, all temporaries are preserved. A temporary is preserved by
517 pretending it was allocated at the previous nesting level. */
518
519 struct GTY(()) temp_slot {
520 /* Points to next temporary slot. */
521 struct temp_slot *next;
522 /* Points to previous temporary slot. */
523 struct temp_slot *prev;
524 /* The rtx to used to reference the slot. */
525 rtx slot;
526 /* The size, in units, of the slot. */
527 HOST_WIDE_INT size;
528 /* The type of the object in the slot, or zero if it doesn't correspond
529 to a type. We use this to determine whether a slot can be reused.
530 It can be reused if objects of the type of the new slot will always
531 conflict with objects of the type of the old slot. */
532 tree type;
533 /* The alignment (in bits) of the slot. */
534 unsigned int align;
535 /* Nonzero if this temporary is currently in use. */
536 char in_use;
537 /* Nesting level at which this slot is being used. */
538 int level;
539 /* The offset of the slot from the frame_pointer, including extra space
540 for alignment. This info is for combine_temp_slots. */
541 HOST_WIDE_INT base_offset;
542 /* The size of the slot, including extra space for alignment. This
543 info is for combine_temp_slots. */
544 HOST_WIDE_INT full_size;
545 };
546
547 /* A table of addresses that represent a stack slot. The table is a mapping
548 from address RTXen to a temp slot. */
549 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
550 static size_t n_temp_slots_in_use;
551
552 /* Entry for the above hash table. */
553 struct GTY(()) temp_slot_address_entry {
554 hashval_t hash;
555 rtx address;
556 struct temp_slot *temp_slot;
557 };
558
559 /* Removes temporary slot TEMP from LIST. */
560
561 static void
562 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
563 {
564 if (temp->next)
565 temp->next->prev = temp->prev;
566 if (temp->prev)
567 temp->prev->next = temp->next;
568 else
569 *list = temp->next;
570
571 temp->prev = temp->next = NULL;
572 }
573
574 /* Inserts temporary slot TEMP to LIST. */
575
576 static void
577 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
578 {
579 temp->next = *list;
580 if (*list)
581 (*list)->prev = temp;
582 temp->prev = NULL;
583 *list = temp;
584 }
585
586 /* Returns the list of used temp slots at LEVEL. */
587
588 static struct temp_slot **
589 temp_slots_at_level (int level)
590 {
591 if (level >= (int) vec_safe_length (used_temp_slots))
592 vec_safe_grow_cleared (used_temp_slots, level + 1);
593
594 return &(*used_temp_slots)[level];
595 }
596
597 /* Returns the maximal temporary slot level. */
598
599 static int
600 max_slot_level (void)
601 {
602 if (!used_temp_slots)
603 return -1;
604
605 return used_temp_slots->length () - 1;
606 }
607
608 /* Moves temporary slot TEMP to LEVEL. */
609
610 static void
611 move_slot_to_level (struct temp_slot *temp, int level)
612 {
613 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
614 insert_slot_to_list (temp, temp_slots_at_level (level));
615 temp->level = level;
616 }
617
618 /* Make temporary slot TEMP available. */
619
620 static void
621 make_slot_available (struct temp_slot *temp)
622 {
623 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
624 insert_slot_to_list (temp, &avail_temp_slots);
625 temp->in_use = 0;
626 temp->level = -1;
627 n_temp_slots_in_use--;
628 }
629
630 /* Compute the hash value for an address -> temp slot mapping.
631 The value is cached on the mapping entry. */
632 static hashval_t
633 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
634 {
635 int do_not_record = 0;
636 return hash_rtx (t->address, GET_MODE (t->address),
637 &do_not_record, NULL, false);
638 }
639
640 /* Return the hash value for an address -> temp slot mapping. */
641 static hashval_t
642 temp_slot_address_hash (const void *p)
643 {
644 const struct temp_slot_address_entry *t;
645 t = (const struct temp_slot_address_entry *) p;
646 return t->hash;
647 }
648
649 /* Compare two address -> temp slot mapping entries. */
650 static int
651 temp_slot_address_eq (const void *p1, const void *p2)
652 {
653 const struct temp_slot_address_entry *t1, *t2;
654 t1 = (const struct temp_slot_address_entry *) p1;
655 t2 = (const struct temp_slot_address_entry *) p2;
656 return exp_equiv_p (t1->address, t2->address, 0, true);
657 }
658
659 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
660 static void
661 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
662 {
663 void **slot;
664 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
665 t->address = address;
666 t->temp_slot = temp_slot;
667 t->hash = temp_slot_address_compute_hash (t);
668 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
669 *slot = t;
670 }
671
672 /* Remove an address -> temp slot mapping entry if the temp slot is
673 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
674 static int
675 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
676 {
677 const struct temp_slot_address_entry *t;
678 t = (const struct temp_slot_address_entry *) *slot;
679 if (! t->temp_slot->in_use)
680 htab_clear_slot (temp_slot_address_table, slot);
681 return 1;
682 }
683
684 /* Remove all mappings of addresses to unused temp slots. */
685 static void
686 remove_unused_temp_slot_addresses (void)
687 {
688 /* Use quicker clearing if there aren't any active temp slots. */
689 if (n_temp_slots_in_use)
690 htab_traverse (temp_slot_address_table,
691 remove_unused_temp_slot_addresses_1,
692 NULL);
693 else
694 htab_empty (temp_slot_address_table);
695 }
696
697 /* Find the temp slot corresponding to the object at address X. */
698
699 static struct temp_slot *
700 find_temp_slot_from_address (rtx x)
701 {
702 struct temp_slot *p;
703 struct temp_slot_address_entry tmp, *t;
704
705 /* First try the easy way:
706 See if X exists in the address -> temp slot mapping. */
707 tmp.address = x;
708 tmp.temp_slot = NULL;
709 tmp.hash = temp_slot_address_compute_hash (&tmp);
710 t = (struct temp_slot_address_entry *)
711 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
712 if (t)
713 return t->temp_slot;
714
715 /* If we have a sum involving a register, see if it points to a temp
716 slot. */
717 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
718 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
719 return p;
720 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
721 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
722 return p;
723
724 /* Last resort: Address is a virtual stack var address. */
725 if (GET_CODE (x) == PLUS
726 && XEXP (x, 0) == virtual_stack_vars_rtx
727 && CONST_INT_P (XEXP (x, 1)))
728 {
729 int i;
730 for (i = max_slot_level (); i >= 0; i--)
731 for (p = *temp_slots_at_level (i); p; p = p->next)
732 {
733 if (INTVAL (XEXP (x, 1)) >= p->base_offset
734 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
735 return p;
736 }
737 }
738
739 return NULL;
740 }
741 \f
742 /* Allocate a temporary stack slot and record it for possible later
743 reuse.
744
745 MODE is the machine mode to be given to the returned rtx.
746
747 SIZE is the size in units of the space required. We do no rounding here
748 since assign_stack_local will do any required rounding.
749
750 TYPE is the type that will be used for the stack slot. */
751
752 rtx
753 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
754 tree type)
755 {
756 unsigned int align;
757 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
758 rtx slot;
759
760 /* If SIZE is -1 it means that somebody tried to allocate a temporary
761 of a variable size. */
762 gcc_assert (size != -1);
763
764 align = get_stack_local_alignment (type, mode);
765
766 /* Try to find an available, already-allocated temporary of the proper
767 mode which meets the size and alignment requirements. Choose the
768 smallest one with the closest alignment.
769
770 If assign_stack_temp is called outside of the tree->rtl expansion,
771 we cannot reuse the stack slots (that may still refer to
772 VIRTUAL_STACK_VARS_REGNUM). */
773 if (!virtuals_instantiated)
774 {
775 for (p = avail_temp_slots; p; p = p->next)
776 {
777 if (p->align >= align && p->size >= size
778 && GET_MODE (p->slot) == mode
779 && objects_must_conflict_p (p->type, type)
780 && (best_p == 0 || best_p->size > p->size
781 || (best_p->size == p->size && best_p->align > p->align)))
782 {
783 if (p->align == align && p->size == size)
784 {
785 selected = p;
786 cut_slot_from_list (selected, &avail_temp_slots);
787 best_p = 0;
788 break;
789 }
790 best_p = p;
791 }
792 }
793 }
794
795 /* Make our best, if any, the one to use. */
796 if (best_p)
797 {
798 selected = best_p;
799 cut_slot_from_list (selected, &avail_temp_slots);
800
801 /* If there are enough aligned bytes left over, make them into a new
802 temp_slot so that the extra bytes don't get wasted. Do this only
803 for BLKmode slots, so that we can be sure of the alignment. */
804 if (GET_MODE (best_p->slot) == BLKmode)
805 {
806 int alignment = best_p->align / BITS_PER_UNIT;
807 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
808
809 if (best_p->size - rounded_size >= alignment)
810 {
811 p = ggc_alloc_temp_slot ();
812 p->in_use = 0;
813 p->size = best_p->size - rounded_size;
814 p->base_offset = best_p->base_offset + rounded_size;
815 p->full_size = best_p->full_size - rounded_size;
816 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
817 p->align = best_p->align;
818 p->type = best_p->type;
819 insert_slot_to_list (p, &avail_temp_slots);
820
821 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
822 stack_slot_list);
823
824 best_p->size = rounded_size;
825 best_p->full_size = rounded_size;
826 }
827 }
828 }
829
830 /* If we still didn't find one, make a new temporary. */
831 if (selected == 0)
832 {
833 HOST_WIDE_INT frame_offset_old = frame_offset;
834
835 p = ggc_alloc_temp_slot ();
836
837 /* We are passing an explicit alignment request to assign_stack_local.
838 One side effect of that is assign_stack_local will not round SIZE
839 to ensure the frame offset remains suitably aligned.
840
841 So for requests which depended on the rounding of SIZE, we go ahead
842 and round it now. We also make sure ALIGNMENT is at least
843 BIGGEST_ALIGNMENT. */
844 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
845 p->slot = assign_stack_local_1 (mode,
846 (mode == BLKmode
847 ? CEIL_ROUND (size,
848 (int) align
849 / BITS_PER_UNIT)
850 : size),
851 align, 0);
852
853 p->align = align;
854
855 /* The following slot size computation is necessary because we don't
856 know the actual size of the temporary slot until assign_stack_local
857 has performed all the frame alignment and size rounding for the
858 requested temporary. Note that extra space added for alignment
859 can be either above or below this stack slot depending on which
860 way the frame grows. We include the extra space if and only if it
861 is above this slot. */
862 if (FRAME_GROWS_DOWNWARD)
863 p->size = frame_offset_old - frame_offset;
864 else
865 p->size = size;
866
867 /* Now define the fields used by combine_temp_slots. */
868 if (FRAME_GROWS_DOWNWARD)
869 {
870 p->base_offset = frame_offset;
871 p->full_size = frame_offset_old - frame_offset;
872 }
873 else
874 {
875 p->base_offset = frame_offset_old;
876 p->full_size = frame_offset - frame_offset_old;
877 }
878
879 selected = p;
880 }
881
882 p = selected;
883 p->in_use = 1;
884 p->type = type;
885 p->level = temp_slot_level;
886 n_temp_slots_in_use++;
887
888 pp = temp_slots_at_level (p->level);
889 insert_slot_to_list (p, pp);
890 insert_temp_slot_address (XEXP (p->slot, 0), p);
891
892 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
893 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
894 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
895
896 /* If we know the alias set for the memory that will be used, use
897 it. If there's no TYPE, then we don't know anything about the
898 alias set for the memory. */
899 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
900 set_mem_align (slot, align);
901
902 /* If a type is specified, set the relevant flags. */
903 if (type != 0)
904 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
905 MEM_NOTRAP_P (slot) = 1;
906
907 return slot;
908 }
909
910 /* Allocate a temporary stack slot and record it for possible later
911 reuse. First two arguments are same as in preceding function. */
912
913 rtx
914 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
915 {
916 return assign_stack_temp_for_type (mode, size, NULL_TREE);
917 }
918 \f
919 /* Assign a temporary.
920 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
921 and so that should be used in error messages. In either case, we
922 allocate of the given type.
923 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
924 it is 0 if a register is OK.
925 DONT_PROMOTE is 1 if we should not promote values in register
926 to wider modes. */
927
928 rtx
929 assign_temp (tree type_or_decl, int memory_required,
930 int dont_promote ATTRIBUTE_UNUSED)
931 {
932 tree type, decl;
933 enum machine_mode mode;
934 #ifdef PROMOTE_MODE
935 int unsignedp;
936 #endif
937
938 if (DECL_P (type_or_decl))
939 decl = type_or_decl, type = TREE_TYPE (decl);
940 else
941 decl = NULL, type = type_or_decl;
942
943 mode = TYPE_MODE (type);
944 #ifdef PROMOTE_MODE
945 unsignedp = TYPE_UNSIGNED (type);
946 #endif
947
948 if (mode == BLKmode || memory_required)
949 {
950 HOST_WIDE_INT size = int_size_in_bytes (type);
951 rtx tmp;
952
953 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
954 problems with allocating the stack space. */
955 if (size == 0)
956 size = 1;
957
958 /* Unfortunately, we don't yet know how to allocate variable-sized
959 temporaries. However, sometimes we can find a fixed upper limit on
960 the size, so try that instead. */
961 else if (size == -1)
962 size = max_int_size_in_bytes (type);
963
964 /* The size of the temporary may be too large to fit into an integer. */
965 /* ??? Not sure this should happen except for user silliness, so limit
966 this to things that aren't compiler-generated temporaries. The
967 rest of the time we'll die in assign_stack_temp_for_type. */
968 if (decl && size == -1
969 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
970 {
971 error ("size of variable %q+D is too large", decl);
972 size = 1;
973 }
974
975 tmp = assign_stack_temp_for_type (mode, size, type);
976 return tmp;
977 }
978
979 #ifdef PROMOTE_MODE
980 if (! dont_promote)
981 mode = promote_mode (type, mode, &unsignedp);
982 #endif
983
984 return gen_reg_rtx (mode);
985 }
986 \f
987 /* Combine temporary stack slots which are adjacent on the stack.
988
989 This allows for better use of already allocated stack space. This is only
990 done for BLKmode slots because we can be sure that we won't have alignment
991 problems in this case. */
992
993 static void
994 combine_temp_slots (void)
995 {
996 struct temp_slot *p, *q, *next, *next_q;
997 int num_slots;
998
999 /* We can't combine slots, because the information about which slot
1000 is in which alias set will be lost. */
1001 if (flag_strict_aliasing)
1002 return;
1003
1004 /* If there are a lot of temp slots, don't do anything unless
1005 high levels of optimization. */
1006 if (! flag_expensive_optimizations)
1007 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1008 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1009 return;
1010
1011 for (p = avail_temp_slots; p; p = next)
1012 {
1013 int delete_p = 0;
1014
1015 next = p->next;
1016
1017 if (GET_MODE (p->slot) != BLKmode)
1018 continue;
1019
1020 for (q = p->next; q; q = next_q)
1021 {
1022 int delete_q = 0;
1023
1024 next_q = q->next;
1025
1026 if (GET_MODE (q->slot) != BLKmode)
1027 continue;
1028
1029 if (p->base_offset + p->full_size == q->base_offset)
1030 {
1031 /* Q comes after P; combine Q into P. */
1032 p->size += q->size;
1033 p->full_size += q->full_size;
1034 delete_q = 1;
1035 }
1036 else if (q->base_offset + q->full_size == p->base_offset)
1037 {
1038 /* P comes after Q; combine P into Q. */
1039 q->size += p->size;
1040 q->full_size += p->full_size;
1041 delete_p = 1;
1042 break;
1043 }
1044 if (delete_q)
1045 cut_slot_from_list (q, &avail_temp_slots);
1046 }
1047
1048 /* Either delete P or advance past it. */
1049 if (delete_p)
1050 cut_slot_from_list (p, &avail_temp_slots);
1051 }
1052 }
1053 \f
1054 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1055 slot that previously was known by OLD_RTX. */
1056
1057 void
1058 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1059 {
1060 struct temp_slot *p;
1061
1062 if (rtx_equal_p (old_rtx, new_rtx))
1063 return;
1064
1065 p = find_temp_slot_from_address (old_rtx);
1066
1067 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1068 NEW_RTX is a register, see if one operand of the PLUS is a
1069 temporary location. If so, NEW_RTX points into it. Otherwise,
1070 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1071 in common between them. If so, try a recursive call on those
1072 values. */
1073 if (p == 0)
1074 {
1075 if (GET_CODE (old_rtx) != PLUS)
1076 return;
1077
1078 if (REG_P (new_rtx))
1079 {
1080 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1081 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1082 return;
1083 }
1084 else if (GET_CODE (new_rtx) != PLUS)
1085 return;
1086
1087 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1088 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1089 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1090 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1091 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1092 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1093 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1094 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1095
1096 return;
1097 }
1098
1099 /* Otherwise add an alias for the temp's address. */
1100 insert_temp_slot_address (new_rtx, p);
1101 }
1102
1103 /* If X could be a reference to a temporary slot, mark that slot as
1104 belonging to the to one level higher than the current level. If X
1105 matched one of our slots, just mark that one. Otherwise, we can't
1106 easily predict which it is, so upgrade all of them.
1107
1108 This is called when an ({...}) construct occurs and a statement
1109 returns a value in memory. */
1110
1111 void
1112 preserve_temp_slots (rtx x)
1113 {
1114 struct temp_slot *p = 0, *next;
1115
1116 if (x == 0)
1117 return;
1118
1119 /* If X is a register that is being used as a pointer, see if we have
1120 a temporary slot we know it points to. */
1121 if (REG_P (x) && REG_POINTER (x))
1122 p = find_temp_slot_from_address (x);
1123
1124 /* If X is not in memory or is at a constant address, it cannot be in
1125 a temporary slot. */
1126 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1127 return;
1128
1129 /* First see if we can find a match. */
1130 if (p == 0)
1131 p = find_temp_slot_from_address (XEXP (x, 0));
1132
1133 if (p != 0)
1134 {
1135 if (p->level == temp_slot_level)
1136 move_slot_to_level (p, temp_slot_level - 1);
1137 return;
1138 }
1139
1140 /* Otherwise, preserve all non-kept slots at this level. */
1141 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1142 {
1143 next = p->next;
1144 move_slot_to_level (p, temp_slot_level - 1);
1145 }
1146 }
1147
1148 /* Free all temporaries used so far. This is normally called at the
1149 end of generating code for a statement. */
1150
1151 void
1152 free_temp_slots (void)
1153 {
1154 struct temp_slot *p, *next;
1155 bool some_available = false;
1156
1157 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1158 {
1159 next = p->next;
1160 make_slot_available (p);
1161 some_available = true;
1162 }
1163
1164 if (some_available)
1165 {
1166 remove_unused_temp_slot_addresses ();
1167 combine_temp_slots ();
1168 }
1169 }
1170
1171 /* Push deeper into the nesting level for stack temporaries. */
1172
1173 void
1174 push_temp_slots (void)
1175 {
1176 temp_slot_level++;
1177 }
1178
1179 /* Pop a temporary nesting level. All slots in use in the current level
1180 are freed. */
1181
1182 void
1183 pop_temp_slots (void)
1184 {
1185 free_temp_slots ();
1186 temp_slot_level--;
1187 }
1188
1189 /* Initialize temporary slots. */
1190
1191 void
1192 init_temp_slots (void)
1193 {
1194 /* We have not allocated any temporaries yet. */
1195 avail_temp_slots = 0;
1196 vec_alloc (used_temp_slots, 0);
1197 temp_slot_level = 0;
1198 n_temp_slots_in_use = 0;
1199
1200 /* Set up the table to map addresses to temp slots. */
1201 if (! temp_slot_address_table)
1202 temp_slot_address_table = htab_create_ggc (32,
1203 temp_slot_address_hash,
1204 temp_slot_address_eq,
1205 NULL);
1206 else
1207 htab_empty (temp_slot_address_table);
1208 }
1209 \f
1210 /* Functions and data structures to keep track of the values hard regs
1211 had at the start of the function. */
1212
1213 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1214 and has_hard_reg_initial_val.. */
1215 typedef struct GTY(()) initial_value_pair {
1216 rtx hard_reg;
1217 rtx pseudo;
1218 } initial_value_pair;
1219 /* ??? This could be a VEC but there is currently no way to define an
1220 opaque VEC type. This could be worked around by defining struct
1221 initial_value_pair in function.h. */
1222 typedef struct GTY(()) initial_value_struct {
1223 int num_entries;
1224 int max_entries;
1225 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1226 } initial_value_struct;
1227
1228 /* If a pseudo represents an initial hard reg (or expression), return
1229 it, else return NULL_RTX. */
1230
1231 rtx
1232 get_hard_reg_initial_reg (rtx reg)
1233 {
1234 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1235 int i;
1236
1237 if (ivs == 0)
1238 return NULL_RTX;
1239
1240 for (i = 0; i < ivs->num_entries; i++)
1241 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1242 return ivs->entries[i].hard_reg;
1243
1244 return NULL_RTX;
1245 }
1246
1247 /* Make sure that there's a pseudo register of mode MODE that stores the
1248 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1249
1250 rtx
1251 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1252 {
1253 struct initial_value_struct *ivs;
1254 rtx rv;
1255
1256 rv = has_hard_reg_initial_val (mode, regno);
1257 if (rv)
1258 return rv;
1259
1260 ivs = crtl->hard_reg_initial_vals;
1261 if (ivs == 0)
1262 {
1263 ivs = ggc_alloc_initial_value_struct ();
1264 ivs->num_entries = 0;
1265 ivs->max_entries = 5;
1266 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1267 crtl->hard_reg_initial_vals = ivs;
1268 }
1269
1270 if (ivs->num_entries >= ivs->max_entries)
1271 {
1272 ivs->max_entries += 5;
1273 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1274 ivs->max_entries);
1275 }
1276
1277 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1278 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1279
1280 return ivs->entries[ivs->num_entries++].pseudo;
1281 }
1282
1283 /* See if get_hard_reg_initial_val has been used to create a pseudo
1284 for the initial value of hard register REGNO in mode MODE. Return
1285 the associated pseudo if so, otherwise return NULL. */
1286
1287 rtx
1288 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1289 {
1290 struct initial_value_struct *ivs;
1291 int i;
1292
1293 ivs = crtl->hard_reg_initial_vals;
1294 if (ivs != 0)
1295 for (i = 0; i < ivs->num_entries; i++)
1296 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1297 && REGNO (ivs->entries[i].hard_reg) == regno)
1298 return ivs->entries[i].pseudo;
1299
1300 return NULL_RTX;
1301 }
1302
1303 unsigned int
1304 emit_initial_value_sets (void)
1305 {
1306 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1307 int i;
1308 rtx seq;
1309
1310 if (ivs == 0)
1311 return 0;
1312
1313 start_sequence ();
1314 for (i = 0; i < ivs->num_entries; i++)
1315 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1316 seq = get_insns ();
1317 end_sequence ();
1318
1319 emit_insn_at_entry (seq);
1320 return 0;
1321 }
1322
1323 /* Return the hardreg-pseudoreg initial values pair entry I and
1324 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1325 bool
1326 initial_value_entry (int i, rtx *hreg, rtx *preg)
1327 {
1328 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1329 if (!ivs || i >= ivs->num_entries)
1330 return false;
1331
1332 *hreg = ivs->entries[i].hard_reg;
1333 *preg = ivs->entries[i].pseudo;
1334 return true;
1335 }
1336 \f
1337 /* These routines are responsible for converting virtual register references
1338 to the actual hard register references once RTL generation is complete.
1339
1340 The following four variables are used for communication between the
1341 routines. They contain the offsets of the virtual registers from their
1342 respective hard registers. */
1343
1344 static int in_arg_offset;
1345 static int var_offset;
1346 static int dynamic_offset;
1347 static int out_arg_offset;
1348 static int cfa_offset;
1349
1350 /* In most machines, the stack pointer register is equivalent to the bottom
1351 of the stack. */
1352
1353 #ifndef STACK_POINTER_OFFSET
1354 #define STACK_POINTER_OFFSET 0
1355 #endif
1356
1357 /* If not defined, pick an appropriate default for the offset of dynamically
1358 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1359 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1360
1361 #ifndef STACK_DYNAMIC_OFFSET
1362
1363 /* The bottom of the stack points to the actual arguments. If
1364 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1365 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1366 stack space for register parameters is not pushed by the caller, but
1367 rather part of the fixed stack areas and hence not included in
1368 `crtl->outgoing_args_size'. Nevertheless, we must allow
1369 for it when allocating stack dynamic objects. */
1370
1371 #if defined(REG_PARM_STACK_SPACE)
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS \
1374 ? (crtl->outgoing_args_size \
1375 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1376 : REG_PARM_STACK_SPACE (FNDECL))) \
1377 : 0) + (STACK_POINTER_OFFSET))
1378 #else
1379 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1380 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1381 + (STACK_POINTER_OFFSET))
1382 #endif
1383 #endif
1384
1385 \f
1386 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1387 is a virtual register, return the equivalent hard register and set the
1388 offset indirectly through the pointer. Otherwise, return 0. */
1389
1390 static rtx
1391 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1392 {
1393 rtx new_rtx;
1394 HOST_WIDE_INT offset;
1395
1396 if (x == virtual_incoming_args_rtx)
1397 {
1398 if (stack_realign_drap)
1399 {
1400 /* Replace virtual_incoming_args_rtx with internal arg
1401 pointer if DRAP is used to realign stack. */
1402 new_rtx = crtl->args.internal_arg_pointer;
1403 offset = 0;
1404 }
1405 else
1406 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1407 }
1408 else if (x == virtual_stack_vars_rtx)
1409 new_rtx = frame_pointer_rtx, offset = var_offset;
1410 else if (x == virtual_stack_dynamic_rtx)
1411 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1412 else if (x == virtual_outgoing_args_rtx)
1413 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1414 else if (x == virtual_cfa_rtx)
1415 {
1416 #ifdef FRAME_POINTER_CFA_OFFSET
1417 new_rtx = frame_pointer_rtx;
1418 #else
1419 new_rtx = arg_pointer_rtx;
1420 #endif
1421 offset = cfa_offset;
1422 }
1423 else if (x == virtual_preferred_stack_boundary_rtx)
1424 {
1425 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1426 offset = 0;
1427 }
1428 else
1429 return NULL_RTX;
1430
1431 *poffset = offset;
1432 return new_rtx;
1433 }
1434
1435 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1436 Instantiate any virtual registers present inside of *LOC. The expression
1437 is simplified, as much as possible, but is not to be considered "valid"
1438 in any sense implied by the target. If any change is made, set CHANGED
1439 to true. */
1440
1441 static int
1442 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1443 {
1444 HOST_WIDE_INT offset;
1445 bool *changed = (bool *) data;
1446 rtx x, new_rtx;
1447
1448 x = *loc;
1449 if (x == 0)
1450 return 0;
1451
1452 switch (GET_CODE (x))
1453 {
1454 case REG:
1455 new_rtx = instantiate_new_reg (x, &offset);
1456 if (new_rtx)
1457 {
1458 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1459 if (changed)
1460 *changed = true;
1461 }
1462 return -1;
1463
1464 case PLUS:
1465 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1466 if (new_rtx)
1467 {
1468 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1469 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1470 if (changed)
1471 *changed = true;
1472 return -1;
1473 }
1474
1475 /* FIXME -- from old code */
1476 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1477 we can commute the PLUS and SUBREG because pointers into the
1478 frame are well-behaved. */
1479 break;
1480
1481 default:
1482 break;
1483 }
1484
1485 return 0;
1486 }
1487
1488 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1489 matches the predicate for insn CODE operand OPERAND. */
1490
1491 static int
1492 safe_insn_predicate (int code, int operand, rtx x)
1493 {
1494 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1495 }
1496
1497 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1498 registers present inside of insn. The result will be a valid insn. */
1499
1500 static void
1501 instantiate_virtual_regs_in_insn (rtx insn)
1502 {
1503 HOST_WIDE_INT offset;
1504 int insn_code, i;
1505 bool any_change = false;
1506 rtx set, new_rtx, x, seq;
1507
1508 /* There are some special cases to be handled first. */
1509 set = single_set (insn);
1510 if (set)
1511 {
1512 /* We're allowed to assign to a virtual register. This is interpreted
1513 to mean that the underlying register gets assigned the inverse
1514 transformation. This is used, for example, in the handling of
1515 non-local gotos. */
1516 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1517 if (new_rtx)
1518 {
1519 start_sequence ();
1520
1521 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1522 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1523 GEN_INT (-offset));
1524 x = force_operand (x, new_rtx);
1525 if (x != new_rtx)
1526 emit_move_insn (new_rtx, x);
1527
1528 seq = get_insns ();
1529 end_sequence ();
1530
1531 emit_insn_before (seq, insn);
1532 delete_insn (insn);
1533 return;
1534 }
1535
1536 /* Handle a straight copy from a virtual register by generating a
1537 new add insn. The difference between this and falling through
1538 to the generic case is avoiding a new pseudo and eliminating a
1539 move insn in the initial rtl stream. */
1540 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1541 if (new_rtx && offset != 0
1542 && REG_P (SET_DEST (set))
1543 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1544 {
1545 start_sequence ();
1546
1547 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1548 new_rtx, GEN_INT (offset), SET_DEST (set),
1549 1, OPTAB_LIB_WIDEN);
1550 if (x != SET_DEST (set))
1551 emit_move_insn (SET_DEST (set), x);
1552
1553 seq = get_insns ();
1554 end_sequence ();
1555
1556 emit_insn_before (seq, insn);
1557 delete_insn (insn);
1558 return;
1559 }
1560
1561 extract_insn (insn);
1562 insn_code = INSN_CODE (insn);
1563
1564 /* Handle a plus involving a virtual register by determining if the
1565 operands remain valid if they're modified in place. */
1566 if (GET_CODE (SET_SRC (set)) == PLUS
1567 && recog_data.n_operands >= 3
1568 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1569 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1570 && CONST_INT_P (recog_data.operand[2])
1571 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1572 {
1573 offset += INTVAL (recog_data.operand[2]);
1574
1575 /* If the sum is zero, then replace with a plain move. */
1576 if (offset == 0
1577 && REG_P (SET_DEST (set))
1578 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1579 {
1580 start_sequence ();
1581 emit_move_insn (SET_DEST (set), new_rtx);
1582 seq = get_insns ();
1583 end_sequence ();
1584
1585 emit_insn_before (seq, insn);
1586 delete_insn (insn);
1587 return;
1588 }
1589
1590 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1591
1592 /* Using validate_change and apply_change_group here leaves
1593 recog_data in an invalid state. Since we know exactly what
1594 we want to check, do those two by hand. */
1595 if (safe_insn_predicate (insn_code, 1, new_rtx)
1596 && safe_insn_predicate (insn_code, 2, x))
1597 {
1598 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1599 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1600 any_change = true;
1601
1602 /* Fall through into the regular operand fixup loop in
1603 order to take care of operands other than 1 and 2. */
1604 }
1605 }
1606 }
1607 else
1608 {
1609 extract_insn (insn);
1610 insn_code = INSN_CODE (insn);
1611 }
1612
1613 /* In the general case, we expect virtual registers to appear only in
1614 operands, and then only as either bare registers or inside memories. */
1615 for (i = 0; i < recog_data.n_operands; ++i)
1616 {
1617 x = recog_data.operand[i];
1618 switch (GET_CODE (x))
1619 {
1620 case MEM:
1621 {
1622 rtx addr = XEXP (x, 0);
1623 bool changed = false;
1624
1625 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1626 if (!changed)
1627 continue;
1628
1629 start_sequence ();
1630 x = replace_equiv_address (x, addr);
1631 /* It may happen that the address with the virtual reg
1632 was valid (e.g. based on the virtual stack reg, which might
1633 be acceptable to the predicates with all offsets), whereas
1634 the address now isn't anymore, for instance when the address
1635 is still offsetted, but the base reg isn't virtual-stack-reg
1636 anymore. Below we would do a force_reg on the whole operand,
1637 but this insn might actually only accept memory. Hence,
1638 before doing that last resort, try to reload the address into
1639 a register, so this operand stays a MEM. */
1640 if (!safe_insn_predicate (insn_code, i, x))
1641 {
1642 addr = force_reg (GET_MODE (addr), addr);
1643 x = replace_equiv_address (x, addr);
1644 }
1645 seq = get_insns ();
1646 end_sequence ();
1647 if (seq)
1648 emit_insn_before (seq, insn);
1649 }
1650 break;
1651
1652 case REG:
1653 new_rtx = instantiate_new_reg (x, &offset);
1654 if (new_rtx == NULL)
1655 continue;
1656 if (offset == 0)
1657 x = new_rtx;
1658 else
1659 {
1660 start_sequence ();
1661
1662 /* Careful, special mode predicates may have stuff in
1663 insn_data[insn_code].operand[i].mode that isn't useful
1664 to us for computing a new value. */
1665 /* ??? Recognize address_operand and/or "p" constraints
1666 to see if (plus new offset) is a valid before we put
1667 this through expand_simple_binop. */
1668 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1669 GEN_INT (offset), NULL_RTX,
1670 1, OPTAB_LIB_WIDEN);
1671 seq = get_insns ();
1672 end_sequence ();
1673 emit_insn_before (seq, insn);
1674 }
1675 break;
1676
1677 case SUBREG:
1678 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1679 if (new_rtx == NULL)
1680 continue;
1681 if (offset != 0)
1682 {
1683 start_sequence ();
1684 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1685 GEN_INT (offset), NULL_RTX,
1686 1, OPTAB_LIB_WIDEN);
1687 seq = get_insns ();
1688 end_sequence ();
1689 emit_insn_before (seq, insn);
1690 }
1691 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1692 GET_MODE (new_rtx), SUBREG_BYTE (x));
1693 gcc_assert (x);
1694 break;
1695
1696 default:
1697 continue;
1698 }
1699
1700 /* At this point, X contains the new value for the operand.
1701 Validate the new value vs the insn predicate. Note that
1702 asm insns will have insn_code -1 here. */
1703 if (!safe_insn_predicate (insn_code, i, x))
1704 {
1705 start_sequence ();
1706 if (REG_P (x))
1707 {
1708 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1709 x = copy_to_reg (x);
1710 }
1711 else
1712 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1713 seq = get_insns ();
1714 end_sequence ();
1715 if (seq)
1716 emit_insn_before (seq, insn);
1717 }
1718
1719 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1720 any_change = true;
1721 }
1722
1723 if (any_change)
1724 {
1725 /* Propagate operand changes into the duplicates. */
1726 for (i = 0; i < recog_data.n_dups; ++i)
1727 *recog_data.dup_loc[i]
1728 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1729
1730 /* Force re-recognition of the instruction for validation. */
1731 INSN_CODE (insn) = -1;
1732 }
1733
1734 if (asm_noperands (PATTERN (insn)) >= 0)
1735 {
1736 if (!check_asm_operands (PATTERN (insn)))
1737 {
1738 error_for_asm (insn, "impossible constraint in %<asm%>");
1739 /* For asm goto, instead of fixing up all the edges
1740 just clear the template and clear input operands
1741 (asm goto doesn't have any output operands). */
1742 if (JUMP_P (insn))
1743 {
1744 rtx asm_op = extract_asm_operands (PATTERN (insn));
1745 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1746 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1747 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1748 }
1749 else
1750 delete_insn (insn);
1751 }
1752 }
1753 else
1754 {
1755 if (recog_memoized (insn) < 0)
1756 fatal_insn_not_found (insn);
1757 }
1758 }
1759
1760 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1761 do any instantiation required. */
1762
1763 void
1764 instantiate_decl_rtl (rtx x)
1765 {
1766 rtx addr;
1767
1768 if (x == 0)
1769 return;
1770
1771 /* If this is a CONCAT, recurse for the pieces. */
1772 if (GET_CODE (x) == CONCAT)
1773 {
1774 instantiate_decl_rtl (XEXP (x, 0));
1775 instantiate_decl_rtl (XEXP (x, 1));
1776 return;
1777 }
1778
1779 /* If this is not a MEM, no need to do anything. Similarly if the
1780 address is a constant or a register that is not a virtual register. */
1781 if (!MEM_P (x))
1782 return;
1783
1784 addr = XEXP (x, 0);
1785 if (CONSTANT_P (addr)
1786 || (REG_P (addr)
1787 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1788 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1789 return;
1790
1791 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1792 }
1793
1794 /* Helper for instantiate_decls called via walk_tree: Process all decls
1795 in the given DECL_VALUE_EXPR. */
1796
1797 static tree
1798 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1799 {
1800 tree t = *tp;
1801 if (! EXPR_P (t))
1802 {
1803 *walk_subtrees = 0;
1804 if (DECL_P (t))
1805 {
1806 if (DECL_RTL_SET_P (t))
1807 instantiate_decl_rtl (DECL_RTL (t));
1808 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1809 && DECL_INCOMING_RTL (t))
1810 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1811 if ((TREE_CODE (t) == VAR_DECL
1812 || TREE_CODE (t) == RESULT_DECL)
1813 && DECL_HAS_VALUE_EXPR_P (t))
1814 {
1815 tree v = DECL_VALUE_EXPR (t);
1816 walk_tree (&v, instantiate_expr, NULL, NULL);
1817 }
1818 }
1819 }
1820 return NULL;
1821 }
1822
1823 /* Subroutine of instantiate_decls: Process all decls in the given
1824 BLOCK node and all its subblocks. */
1825
1826 static void
1827 instantiate_decls_1 (tree let)
1828 {
1829 tree t;
1830
1831 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1832 {
1833 if (DECL_RTL_SET_P (t))
1834 instantiate_decl_rtl (DECL_RTL (t));
1835 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1836 {
1837 tree v = DECL_VALUE_EXPR (t);
1838 walk_tree (&v, instantiate_expr, NULL, NULL);
1839 }
1840 }
1841
1842 /* Process all subblocks. */
1843 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1844 instantiate_decls_1 (t);
1845 }
1846
1847 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1848 all virtual registers in their DECL_RTL's. */
1849
1850 static void
1851 instantiate_decls (tree fndecl)
1852 {
1853 tree decl;
1854 unsigned ix;
1855
1856 /* Process all parameters of the function. */
1857 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1858 {
1859 instantiate_decl_rtl (DECL_RTL (decl));
1860 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1861 if (DECL_HAS_VALUE_EXPR_P (decl))
1862 {
1863 tree v = DECL_VALUE_EXPR (decl);
1864 walk_tree (&v, instantiate_expr, NULL, NULL);
1865 }
1866 }
1867
1868 if ((decl = DECL_RESULT (fndecl))
1869 && TREE_CODE (decl) == RESULT_DECL)
1870 {
1871 if (DECL_RTL_SET_P (decl))
1872 instantiate_decl_rtl (DECL_RTL (decl));
1873 if (DECL_HAS_VALUE_EXPR_P (decl))
1874 {
1875 tree v = DECL_VALUE_EXPR (decl);
1876 walk_tree (&v, instantiate_expr, NULL, NULL);
1877 }
1878 }
1879
1880 /* Now process all variables defined in the function or its subblocks. */
1881 instantiate_decls_1 (DECL_INITIAL (fndecl));
1882
1883 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1884 if (DECL_RTL_SET_P (decl))
1885 instantiate_decl_rtl (DECL_RTL (decl));
1886 vec_free (cfun->local_decls);
1887 }
1888
1889 /* Pass through the INSNS of function FNDECL and convert virtual register
1890 references to hard register references. */
1891
1892 static unsigned int
1893 instantiate_virtual_regs (void)
1894 {
1895 rtx insn;
1896
1897 /* Compute the offsets to use for this function. */
1898 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1899 var_offset = STARTING_FRAME_OFFSET;
1900 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1901 out_arg_offset = STACK_POINTER_OFFSET;
1902 #ifdef FRAME_POINTER_CFA_OFFSET
1903 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1904 #else
1905 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1906 #endif
1907
1908 /* Initialize recognition, indicating that volatile is OK. */
1909 init_recog ();
1910
1911 /* Scan through all the insns, instantiating every virtual register still
1912 present. */
1913 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1914 if (INSN_P (insn))
1915 {
1916 /* These patterns in the instruction stream can never be recognized.
1917 Fortunately, they shouldn't contain virtual registers either. */
1918 if (JUMP_TABLE_DATA_P (insn)
1919 || GET_CODE (PATTERN (insn)) == USE
1920 || GET_CODE (PATTERN (insn)) == CLOBBER
1921 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1922 continue;
1923 else if (DEBUG_INSN_P (insn))
1924 for_each_rtx (&INSN_VAR_LOCATION (insn),
1925 instantiate_virtual_regs_in_rtx, NULL);
1926 else
1927 instantiate_virtual_regs_in_insn (insn);
1928
1929 if (INSN_DELETED_P (insn))
1930 continue;
1931
1932 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1933
1934 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1935 if (CALL_P (insn))
1936 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1937 instantiate_virtual_regs_in_rtx, NULL);
1938 }
1939
1940 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1941 instantiate_decls (current_function_decl);
1942
1943 targetm.instantiate_decls ();
1944
1945 /* Indicate that, from now on, assign_stack_local should use
1946 frame_pointer_rtx. */
1947 virtuals_instantiated = 1;
1948
1949 return 0;
1950 }
1951
1952 struct rtl_opt_pass pass_instantiate_virtual_regs =
1953 {
1954 {
1955 RTL_PASS,
1956 "vregs", /* name */
1957 OPTGROUP_NONE, /* optinfo_flags */
1958 NULL, /* gate */
1959 instantiate_virtual_regs, /* execute */
1960 NULL, /* sub */
1961 NULL, /* next */
1962 0, /* static_pass_number */
1963 TV_NONE, /* tv_id */
1964 0, /* properties_required */
1965 0, /* properties_provided */
1966 0, /* properties_destroyed */
1967 0, /* todo_flags_start */
1968 0 /* todo_flags_finish */
1969 }
1970 };
1971
1972 \f
1973 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1974 This means a type for which function calls must pass an address to the
1975 function or get an address back from the function.
1976 EXP may be a type node or an expression (whose type is tested). */
1977
1978 int
1979 aggregate_value_p (const_tree exp, const_tree fntype)
1980 {
1981 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1982 int i, regno, nregs;
1983 rtx reg;
1984
1985 if (fntype)
1986 switch (TREE_CODE (fntype))
1987 {
1988 case CALL_EXPR:
1989 {
1990 tree fndecl = get_callee_fndecl (fntype);
1991 fntype = (fndecl
1992 ? TREE_TYPE (fndecl)
1993 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1994 }
1995 break;
1996 case FUNCTION_DECL:
1997 fntype = TREE_TYPE (fntype);
1998 break;
1999 case FUNCTION_TYPE:
2000 case METHOD_TYPE:
2001 break;
2002 case IDENTIFIER_NODE:
2003 fntype = NULL_TREE;
2004 break;
2005 default:
2006 /* We don't expect other tree types here. */
2007 gcc_unreachable ();
2008 }
2009
2010 if (VOID_TYPE_P (type))
2011 return 0;
2012
2013 /* If a record should be passed the same as its first (and only) member
2014 don't pass it as an aggregate. */
2015 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2016 return aggregate_value_p (first_field (type), fntype);
2017
2018 /* If the front end has decided that this needs to be passed by
2019 reference, do so. */
2020 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2021 && DECL_BY_REFERENCE (exp))
2022 return 1;
2023
2024 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2025 if (fntype && TREE_ADDRESSABLE (fntype))
2026 return 1;
2027
2028 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2029 and thus can't be returned in registers. */
2030 if (TREE_ADDRESSABLE (type))
2031 return 1;
2032
2033 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2034 return 1;
2035
2036 if (targetm.calls.return_in_memory (type, fntype))
2037 return 1;
2038
2039 /* Make sure we have suitable call-clobbered regs to return
2040 the value in; if not, we must return it in memory. */
2041 reg = hard_function_value (type, 0, fntype, 0);
2042
2043 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2044 it is OK. */
2045 if (!REG_P (reg))
2046 return 0;
2047
2048 regno = REGNO (reg);
2049 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2050 for (i = 0; i < nregs; i++)
2051 if (! call_used_regs[regno + i])
2052 return 1;
2053
2054 return 0;
2055 }
2056 \f
2057 /* Return true if we should assign DECL a pseudo register; false if it
2058 should live on the local stack. */
2059
2060 bool
2061 use_register_for_decl (const_tree decl)
2062 {
2063 if (!targetm.calls.allocate_stack_slots_for_args())
2064 return true;
2065
2066 /* Honor volatile. */
2067 if (TREE_SIDE_EFFECTS (decl))
2068 return false;
2069
2070 /* Honor addressability. */
2071 if (TREE_ADDRESSABLE (decl))
2072 return false;
2073
2074 /* Only register-like things go in registers. */
2075 if (DECL_MODE (decl) == BLKmode)
2076 return false;
2077
2078 /* If -ffloat-store specified, don't put explicit float variables
2079 into registers. */
2080 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2081 propagates values across these stores, and it probably shouldn't. */
2082 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2083 return false;
2084
2085 /* If we're not interested in tracking debugging information for
2086 this decl, then we can certainly put it in a register. */
2087 if (DECL_IGNORED_P (decl))
2088 return true;
2089
2090 if (optimize)
2091 return true;
2092
2093 if (!DECL_REGISTER (decl))
2094 return false;
2095
2096 switch (TREE_CODE (TREE_TYPE (decl)))
2097 {
2098 case RECORD_TYPE:
2099 case UNION_TYPE:
2100 case QUAL_UNION_TYPE:
2101 /* When not optimizing, disregard register keyword for variables with
2102 types containing methods, otherwise the methods won't be callable
2103 from the debugger. */
2104 if (TYPE_METHODS (TREE_TYPE (decl)))
2105 return false;
2106 break;
2107 default:
2108 break;
2109 }
2110
2111 return true;
2112 }
2113
2114 /* Return true if TYPE should be passed by invisible reference. */
2115
2116 bool
2117 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2118 tree type, bool named_arg)
2119 {
2120 if (type)
2121 {
2122 /* If this type contains non-trivial constructors, then it is
2123 forbidden for the middle-end to create any new copies. */
2124 if (TREE_ADDRESSABLE (type))
2125 return true;
2126
2127 /* GCC post 3.4 passes *all* variable sized types by reference. */
2128 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2129 return true;
2130
2131 /* If a record type should be passed the same as its first (and only)
2132 member, use the type and mode of that member. */
2133 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2134 {
2135 type = TREE_TYPE (first_field (type));
2136 mode = TYPE_MODE (type);
2137 }
2138 }
2139
2140 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2141 type, named_arg);
2142 }
2143
2144 /* Return true if TYPE, which is passed by reference, should be callee
2145 copied instead of caller copied. */
2146
2147 bool
2148 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2149 tree type, bool named_arg)
2150 {
2151 if (type && TREE_ADDRESSABLE (type))
2152 return false;
2153 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2154 named_arg);
2155 }
2156
2157 /* Structures to communicate between the subroutines of assign_parms.
2158 The first holds data persistent across all parameters, the second
2159 is cleared out for each parameter. */
2160
2161 struct assign_parm_data_all
2162 {
2163 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2164 should become a job of the target or otherwise encapsulated. */
2165 CUMULATIVE_ARGS args_so_far_v;
2166 cumulative_args_t args_so_far;
2167 struct args_size stack_args_size;
2168 tree function_result_decl;
2169 tree orig_fnargs;
2170 rtx first_conversion_insn;
2171 rtx last_conversion_insn;
2172 HOST_WIDE_INT pretend_args_size;
2173 HOST_WIDE_INT extra_pretend_bytes;
2174 int reg_parm_stack_space;
2175 };
2176
2177 struct assign_parm_data_one
2178 {
2179 tree nominal_type;
2180 tree passed_type;
2181 rtx entry_parm;
2182 rtx stack_parm;
2183 enum machine_mode nominal_mode;
2184 enum machine_mode passed_mode;
2185 enum machine_mode promoted_mode;
2186 struct locate_and_pad_arg_data locate;
2187 int partial;
2188 BOOL_BITFIELD named_arg : 1;
2189 BOOL_BITFIELD passed_pointer : 1;
2190 BOOL_BITFIELD on_stack : 1;
2191 BOOL_BITFIELD loaded_in_reg : 1;
2192 };
2193
2194 /* A subroutine of assign_parms. Initialize ALL. */
2195
2196 static void
2197 assign_parms_initialize_all (struct assign_parm_data_all *all)
2198 {
2199 tree fntype ATTRIBUTE_UNUSED;
2200
2201 memset (all, 0, sizeof (*all));
2202
2203 fntype = TREE_TYPE (current_function_decl);
2204
2205 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2206 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2207 #else
2208 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2209 current_function_decl, -1);
2210 #endif
2211 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2212
2213 #ifdef REG_PARM_STACK_SPACE
2214 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2215 #endif
2216 }
2217
2218 /* If ARGS contains entries with complex types, split the entry into two
2219 entries of the component type. Return a new list of substitutions are
2220 needed, else the old list. */
2221
2222 static void
2223 split_complex_args (vec<tree> *args)
2224 {
2225 unsigned i;
2226 tree p;
2227
2228 FOR_EACH_VEC_ELT (*args, i, p)
2229 {
2230 tree type = TREE_TYPE (p);
2231 if (TREE_CODE (type) == COMPLEX_TYPE
2232 && targetm.calls.split_complex_arg (type))
2233 {
2234 tree decl;
2235 tree subtype = TREE_TYPE (type);
2236 bool addressable = TREE_ADDRESSABLE (p);
2237
2238 /* Rewrite the PARM_DECL's type with its component. */
2239 p = copy_node (p);
2240 TREE_TYPE (p) = subtype;
2241 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2242 DECL_MODE (p) = VOIDmode;
2243 DECL_SIZE (p) = NULL;
2244 DECL_SIZE_UNIT (p) = NULL;
2245 /* If this arg must go in memory, put it in a pseudo here.
2246 We can't allow it to go in memory as per normal parms,
2247 because the usual place might not have the imag part
2248 adjacent to the real part. */
2249 DECL_ARTIFICIAL (p) = addressable;
2250 DECL_IGNORED_P (p) = addressable;
2251 TREE_ADDRESSABLE (p) = 0;
2252 layout_decl (p, 0);
2253 (*args)[i] = p;
2254
2255 /* Build a second synthetic decl. */
2256 decl = build_decl (EXPR_LOCATION (p),
2257 PARM_DECL, NULL_TREE, subtype);
2258 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2259 DECL_ARTIFICIAL (decl) = addressable;
2260 DECL_IGNORED_P (decl) = addressable;
2261 layout_decl (decl, 0);
2262 args->safe_insert (++i, decl);
2263 }
2264 }
2265 }
2266
2267 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2268 the hidden struct return argument, and (abi willing) complex args.
2269 Return the new parameter list. */
2270
2271 static vec<tree>
2272 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2273 {
2274 tree fndecl = current_function_decl;
2275 tree fntype = TREE_TYPE (fndecl);
2276 vec<tree> fnargs = vNULL;
2277 tree arg;
2278
2279 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2280 fnargs.safe_push (arg);
2281
2282 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2283
2284 /* If struct value address is treated as the first argument, make it so. */
2285 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2286 && ! cfun->returns_pcc_struct
2287 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2288 {
2289 tree type = build_pointer_type (TREE_TYPE (fntype));
2290 tree decl;
2291
2292 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2293 PARM_DECL, get_identifier (".result_ptr"), type);
2294 DECL_ARG_TYPE (decl) = type;
2295 DECL_ARTIFICIAL (decl) = 1;
2296 DECL_NAMELESS (decl) = 1;
2297 TREE_CONSTANT (decl) = 1;
2298
2299 DECL_CHAIN (decl) = all->orig_fnargs;
2300 all->orig_fnargs = decl;
2301 fnargs.safe_insert (0, decl);
2302
2303 all->function_result_decl = decl;
2304 }
2305
2306 /* If the target wants to split complex arguments into scalars, do so. */
2307 if (targetm.calls.split_complex_arg)
2308 split_complex_args (&fnargs);
2309
2310 return fnargs;
2311 }
2312
2313 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2314 data for the parameter. Incorporate ABI specifics such as pass-by-
2315 reference and type promotion. */
2316
2317 static void
2318 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2319 struct assign_parm_data_one *data)
2320 {
2321 tree nominal_type, passed_type;
2322 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2323 int unsignedp;
2324
2325 memset (data, 0, sizeof (*data));
2326
2327 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2328 if (!cfun->stdarg)
2329 data->named_arg = 1; /* No variadic parms. */
2330 else if (DECL_CHAIN (parm))
2331 data->named_arg = 1; /* Not the last non-variadic parm. */
2332 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2333 data->named_arg = 1; /* Only variadic ones are unnamed. */
2334 else
2335 data->named_arg = 0; /* Treat as variadic. */
2336
2337 nominal_type = TREE_TYPE (parm);
2338 passed_type = DECL_ARG_TYPE (parm);
2339
2340 /* Look out for errors propagating this far. Also, if the parameter's
2341 type is void then its value doesn't matter. */
2342 if (TREE_TYPE (parm) == error_mark_node
2343 /* This can happen after weird syntax errors
2344 or if an enum type is defined among the parms. */
2345 || TREE_CODE (parm) != PARM_DECL
2346 || passed_type == NULL
2347 || VOID_TYPE_P (nominal_type))
2348 {
2349 nominal_type = passed_type = void_type_node;
2350 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2351 goto egress;
2352 }
2353
2354 /* Find mode of arg as it is passed, and mode of arg as it should be
2355 during execution of this function. */
2356 passed_mode = TYPE_MODE (passed_type);
2357 nominal_mode = TYPE_MODE (nominal_type);
2358
2359 /* If the parm is to be passed as a transparent union or record, use the
2360 type of the first field for the tests below. We have already verified
2361 that the modes are the same. */
2362 if ((TREE_CODE (passed_type) == UNION_TYPE
2363 || TREE_CODE (passed_type) == RECORD_TYPE)
2364 && TYPE_TRANSPARENT_AGGR (passed_type))
2365 passed_type = TREE_TYPE (first_field (passed_type));
2366
2367 /* See if this arg was passed by invisible reference. */
2368 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2369 passed_type, data->named_arg))
2370 {
2371 passed_type = nominal_type = build_pointer_type (passed_type);
2372 data->passed_pointer = true;
2373 passed_mode = nominal_mode = Pmode;
2374 }
2375
2376 /* Find mode as it is passed by the ABI. */
2377 unsignedp = TYPE_UNSIGNED (passed_type);
2378 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2379 TREE_TYPE (current_function_decl), 0);
2380
2381 egress:
2382 data->nominal_type = nominal_type;
2383 data->passed_type = passed_type;
2384 data->nominal_mode = nominal_mode;
2385 data->passed_mode = passed_mode;
2386 data->promoted_mode = promoted_mode;
2387 }
2388
2389 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2390
2391 static void
2392 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2393 struct assign_parm_data_one *data, bool no_rtl)
2394 {
2395 int varargs_pretend_bytes = 0;
2396
2397 targetm.calls.setup_incoming_varargs (all->args_so_far,
2398 data->promoted_mode,
2399 data->passed_type,
2400 &varargs_pretend_bytes, no_rtl);
2401
2402 /* If the back-end has requested extra stack space, record how much is
2403 needed. Do not change pretend_args_size otherwise since it may be
2404 nonzero from an earlier partial argument. */
2405 if (varargs_pretend_bytes > 0)
2406 all->pretend_args_size = varargs_pretend_bytes;
2407 }
2408
2409 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2410 the incoming location of the current parameter. */
2411
2412 static void
2413 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2414 struct assign_parm_data_one *data)
2415 {
2416 HOST_WIDE_INT pretend_bytes = 0;
2417 rtx entry_parm;
2418 bool in_regs;
2419
2420 if (data->promoted_mode == VOIDmode)
2421 {
2422 data->entry_parm = data->stack_parm = const0_rtx;
2423 return;
2424 }
2425
2426 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2427 data->promoted_mode,
2428 data->passed_type,
2429 data->named_arg);
2430
2431 if (entry_parm == 0)
2432 data->promoted_mode = data->passed_mode;
2433
2434 /* Determine parm's home in the stack, in case it arrives in the stack
2435 or we should pretend it did. Compute the stack position and rtx where
2436 the argument arrives and its size.
2437
2438 There is one complexity here: If this was a parameter that would
2439 have been passed in registers, but wasn't only because it is
2440 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2441 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2442 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2443 as it was the previous time. */
2444 in_regs = entry_parm != 0;
2445 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2446 in_regs = true;
2447 #endif
2448 if (!in_regs && !data->named_arg)
2449 {
2450 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2451 {
2452 rtx tem;
2453 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2454 data->promoted_mode,
2455 data->passed_type, true);
2456 in_regs = tem != NULL;
2457 }
2458 }
2459
2460 /* If this parameter was passed both in registers and in the stack, use
2461 the copy on the stack. */
2462 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2463 data->passed_type))
2464 entry_parm = 0;
2465
2466 if (entry_parm)
2467 {
2468 int partial;
2469
2470 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2471 data->promoted_mode,
2472 data->passed_type,
2473 data->named_arg);
2474 data->partial = partial;
2475
2476 /* The caller might already have allocated stack space for the
2477 register parameters. */
2478 if (partial != 0 && all->reg_parm_stack_space == 0)
2479 {
2480 /* Part of this argument is passed in registers and part
2481 is passed on the stack. Ask the prologue code to extend
2482 the stack part so that we can recreate the full value.
2483
2484 PRETEND_BYTES is the size of the registers we need to store.
2485 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2486 stack space that the prologue should allocate.
2487
2488 Internally, gcc assumes that the argument pointer is aligned
2489 to STACK_BOUNDARY bits. This is used both for alignment
2490 optimizations (see init_emit) and to locate arguments that are
2491 aligned to more than PARM_BOUNDARY bits. We must preserve this
2492 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2493 a stack boundary. */
2494
2495 /* We assume at most one partial arg, and it must be the first
2496 argument on the stack. */
2497 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2498
2499 pretend_bytes = partial;
2500 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2501
2502 /* We want to align relative to the actual stack pointer, so
2503 don't include this in the stack size until later. */
2504 all->extra_pretend_bytes = all->pretend_args_size;
2505 }
2506 }
2507
2508 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2509 entry_parm ? data->partial : 0, current_function_decl,
2510 &all->stack_args_size, &data->locate);
2511
2512 /* Update parm_stack_boundary if this parameter is passed in the
2513 stack. */
2514 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2515 crtl->parm_stack_boundary = data->locate.boundary;
2516
2517 /* Adjust offsets to include the pretend args. */
2518 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2519 data->locate.slot_offset.constant += pretend_bytes;
2520 data->locate.offset.constant += pretend_bytes;
2521
2522 data->entry_parm = entry_parm;
2523 }
2524
2525 /* A subroutine of assign_parms. If there is actually space on the stack
2526 for this parm, count it in stack_args_size and return true. */
2527
2528 static bool
2529 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2530 struct assign_parm_data_one *data)
2531 {
2532 /* Trivially true if we've no incoming register. */
2533 if (data->entry_parm == NULL)
2534 ;
2535 /* Also true if we're partially in registers and partially not,
2536 since we've arranged to drop the entire argument on the stack. */
2537 else if (data->partial != 0)
2538 ;
2539 /* Also true if the target says that it's passed in both registers
2540 and on the stack. */
2541 else if (GET_CODE (data->entry_parm) == PARALLEL
2542 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2543 ;
2544 /* Also true if the target says that there's stack allocated for
2545 all register parameters. */
2546 else if (all->reg_parm_stack_space > 0)
2547 ;
2548 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2549 else
2550 return false;
2551
2552 all->stack_args_size.constant += data->locate.size.constant;
2553 if (data->locate.size.var)
2554 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2555
2556 return true;
2557 }
2558
2559 /* A subroutine of assign_parms. Given that this parameter is allocated
2560 stack space by the ABI, find it. */
2561
2562 static void
2563 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2564 {
2565 rtx offset_rtx, stack_parm;
2566 unsigned int align, boundary;
2567
2568 /* If we're passing this arg using a reg, make its stack home the
2569 aligned stack slot. */
2570 if (data->entry_parm)
2571 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2572 else
2573 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2574
2575 stack_parm = crtl->args.internal_arg_pointer;
2576 if (offset_rtx != const0_rtx)
2577 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2578 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2579
2580 if (!data->passed_pointer)
2581 {
2582 set_mem_attributes (stack_parm, parm, 1);
2583 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2584 while promoted mode's size is needed. */
2585 if (data->promoted_mode != BLKmode
2586 && data->promoted_mode != DECL_MODE (parm))
2587 {
2588 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2589 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2590 {
2591 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2592 data->promoted_mode);
2593 if (offset)
2594 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2595 }
2596 }
2597 }
2598
2599 boundary = data->locate.boundary;
2600 align = BITS_PER_UNIT;
2601
2602 /* If we're padding upward, we know that the alignment of the slot
2603 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2604 intentionally forcing upward padding. Otherwise we have to come
2605 up with a guess at the alignment based on OFFSET_RTX. */
2606 if (data->locate.where_pad != downward || data->entry_parm)
2607 align = boundary;
2608 else if (CONST_INT_P (offset_rtx))
2609 {
2610 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2611 align = align & -align;
2612 }
2613 set_mem_align (stack_parm, align);
2614
2615 if (data->entry_parm)
2616 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2617
2618 data->stack_parm = stack_parm;
2619 }
2620
2621 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2622 always valid and contiguous. */
2623
2624 static void
2625 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2626 {
2627 rtx entry_parm = data->entry_parm;
2628 rtx stack_parm = data->stack_parm;
2629
2630 /* If this parm was passed part in regs and part in memory, pretend it
2631 arrived entirely in memory by pushing the register-part onto the stack.
2632 In the special case of a DImode or DFmode that is split, we could put
2633 it together in a pseudoreg directly, but for now that's not worth
2634 bothering with. */
2635 if (data->partial != 0)
2636 {
2637 /* Handle calls that pass values in multiple non-contiguous
2638 locations. The Irix 6 ABI has examples of this. */
2639 if (GET_CODE (entry_parm) == PARALLEL)
2640 emit_group_store (validize_mem (stack_parm), entry_parm,
2641 data->passed_type,
2642 int_size_in_bytes (data->passed_type));
2643 else
2644 {
2645 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2646 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2647 data->partial / UNITS_PER_WORD);
2648 }
2649
2650 entry_parm = stack_parm;
2651 }
2652
2653 /* If we didn't decide this parm came in a register, by default it came
2654 on the stack. */
2655 else if (entry_parm == NULL)
2656 entry_parm = stack_parm;
2657
2658 /* When an argument is passed in multiple locations, we can't make use
2659 of this information, but we can save some copying if the whole argument
2660 is passed in a single register. */
2661 else if (GET_CODE (entry_parm) == PARALLEL
2662 && data->nominal_mode != BLKmode
2663 && data->passed_mode != BLKmode)
2664 {
2665 size_t i, len = XVECLEN (entry_parm, 0);
2666
2667 for (i = 0; i < len; i++)
2668 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2669 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2670 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2671 == data->passed_mode)
2672 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2673 {
2674 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2675 break;
2676 }
2677 }
2678
2679 data->entry_parm = entry_parm;
2680 }
2681
2682 /* A subroutine of assign_parms. Reconstitute any values which were
2683 passed in multiple registers and would fit in a single register. */
2684
2685 static void
2686 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2687 {
2688 rtx entry_parm = data->entry_parm;
2689
2690 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2691 This can be done with register operations rather than on the
2692 stack, even if we will store the reconstituted parameter on the
2693 stack later. */
2694 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2695 {
2696 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2697 emit_group_store (parmreg, entry_parm, data->passed_type,
2698 GET_MODE_SIZE (GET_MODE (entry_parm)));
2699 entry_parm = parmreg;
2700 }
2701
2702 data->entry_parm = entry_parm;
2703 }
2704
2705 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2706 always valid and properly aligned. */
2707
2708 static void
2709 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2710 {
2711 rtx stack_parm = data->stack_parm;
2712
2713 /* If we can't trust the parm stack slot to be aligned enough for its
2714 ultimate type, don't use that slot after entry. We'll make another
2715 stack slot, if we need one. */
2716 if (stack_parm
2717 && ((STRICT_ALIGNMENT
2718 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2719 || (data->nominal_type
2720 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2721 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2722 stack_parm = NULL;
2723
2724 /* If parm was passed in memory, and we need to convert it on entry,
2725 don't store it back in that same slot. */
2726 else if (data->entry_parm == stack_parm
2727 && data->nominal_mode != BLKmode
2728 && data->nominal_mode != data->passed_mode)
2729 stack_parm = NULL;
2730
2731 /* If stack protection is in effect for this function, don't leave any
2732 pointers in their passed stack slots. */
2733 else if (crtl->stack_protect_guard
2734 && (flag_stack_protect == 2
2735 || data->passed_pointer
2736 || POINTER_TYPE_P (data->nominal_type)))
2737 stack_parm = NULL;
2738
2739 data->stack_parm = stack_parm;
2740 }
2741
2742 /* A subroutine of assign_parms. Return true if the current parameter
2743 should be stored as a BLKmode in the current frame. */
2744
2745 static bool
2746 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2747 {
2748 if (data->nominal_mode == BLKmode)
2749 return true;
2750 if (GET_MODE (data->entry_parm) == BLKmode)
2751 return true;
2752
2753 #ifdef BLOCK_REG_PADDING
2754 /* Only assign_parm_setup_block knows how to deal with register arguments
2755 that are padded at the least significant end. */
2756 if (REG_P (data->entry_parm)
2757 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2758 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2759 == (BYTES_BIG_ENDIAN ? upward : downward)))
2760 return true;
2761 #endif
2762
2763 return false;
2764 }
2765
2766 /* A subroutine of assign_parms. Arrange for the parameter to be
2767 present and valid in DATA->STACK_RTL. */
2768
2769 static void
2770 assign_parm_setup_block (struct assign_parm_data_all *all,
2771 tree parm, struct assign_parm_data_one *data)
2772 {
2773 rtx entry_parm = data->entry_parm;
2774 rtx stack_parm = data->stack_parm;
2775 HOST_WIDE_INT size;
2776 HOST_WIDE_INT size_stored;
2777
2778 if (GET_CODE (entry_parm) == PARALLEL)
2779 entry_parm = emit_group_move_into_temps (entry_parm);
2780
2781 size = int_size_in_bytes (data->passed_type);
2782 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2783 if (stack_parm == 0)
2784 {
2785 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2786 stack_parm = assign_stack_local (BLKmode, size_stored,
2787 DECL_ALIGN (parm));
2788 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2789 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2790 set_mem_attributes (stack_parm, parm, 1);
2791 }
2792
2793 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2794 calls that pass values in multiple non-contiguous locations. */
2795 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2796 {
2797 rtx mem;
2798
2799 /* Note that we will be storing an integral number of words.
2800 So we have to be careful to ensure that we allocate an
2801 integral number of words. We do this above when we call
2802 assign_stack_local if space was not allocated in the argument
2803 list. If it was, this will not work if PARM_BOUNDARY is not
2804 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2805 if it becomes a problem. Exception is when BLKmode arrives
2806 with arguments not conforming to word_mode. */
2807
2808 if (data->stack_parm == 0)
2809 ;
2810 else if (GET_CODE (entry_parm) == PARALLEL)
2811 ;
2812 else
2813 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2814
2815 mem = validize_mem (stack_parm);
2816
2817 /* Handle values in multiple non-contiguous locations. */
2818 if (GET_CODE (entry_parm) == PARALLEL)
2819 {
2820 push_to_sequence2 (all->first_conversion_insn,
2821 all->last_conversion_insn);
2822 emit_group_store (mem, entry_parm, data->passed_type, size);
2823 all->first_conversion_insn = get_insns ();
2824 all->last_conversion_insn = get_last_insn ();
2825 end_sequence ();
2826 }
2827
2828 else if (size == 0)
2829 ;
2830
2831 /* If SIZE is that of a mode no bigger than a word, just use
2832 that mode's store operation. */
2833 else if (size <= UNITS_PER_WORD)
2834 {
2835 enum machine_mode mode
2836 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2837
2838 if (mode != BLKmode
2839 #ifdef BLOCK_REG_PADDING
2840 && (size == UNITS_PER_WORD
2841 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2842 != (BYTES_BIG_ENDIAN ? upward : downward)))
2843 #endif
2844 )
2845 {
2846 rtx reg;
2847
2848 /* We are really truncating a word_mode value containing
2849 SIZE bytes into a value of mode MODE. If such an
2850 operation requires no actual instructions, we can refer
2851 to the value directly in mode MODE, otherwise we must
2852 start with the register in word_mode and explicitly
2853 convert it. */
2854 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2855 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2856 else
2857 {
2858 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2859 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2860 }
2861 emit_move_insn (change_address (mem, mode, 0), reg);
2862 }
2863
2864 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2865 machine must be aligned to the left before storing
2866 to memory. Note that the previous test doesn't
2867 handle all cases (e.g. SIZE == 3). */
2868 else if (size != UNITS_PER_WORD
2869 #ifdef BLOCK_REG_PADDING
2870 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2871 == downward)
2872 #else
2873 && BYTES_BIG_ENDIAN
2874 #endif
2875 )
2876 {
2877 rtx tem, x;
2878 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2879 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2880
2881 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2882 tem = change_address (mem, word_mode, 0);
2883 emit_move_insn (tem, x);
2884 }
2885 else
2886 move_block_from_reg (REGNO (entry_parm), mem,
2887 size_stored / UNITS_PER_WORD);
2888 }
2889 else
2890 move_block_from_reg (REGNO (entry_parm), mem,
2891 size_stored / UNITS_PER_WORD);
2892 }
2893 else if (data->stack_parm == 0)
2894 {
2895 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2896 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2897 BLOCK_OP_NORMAL);
2898 all->first_conversion_insn = get_insns ();
2899 all->last_conversion_insn = get_last_insn ();
2900 end_sequence ();
2901 }
2902
2903 data->stack_parm = stack_parm;
2904 SET_DECL_RTL (parm, stack_parm);
2905 }
2906
2907 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2908 parameter. Get it there. Perform all ABI specified conversions. */
2909
2910 static void
2911 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2912 struct assign_parm_data_one *data)
2913 {
2914 rtx parmreg, validated_mem;
2915 rtx equiv_stack_parm;
2916 enum machine_mode promoted_nominal_mode;
2917 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2918 bool did_conversion = false;
2919 bool need_conversion, moved;
2920
2921 /* Store the parm in a pseudoregister during the function, but we may
2922 need to do it in a wider mode. Using 2 here makes the result
2923 consistent with promote_decl_mode and thus expand_expr_real_1. */
2924 promoted_nominal_mode
2925 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2926 TREE_TYPE (current_function_decl), 2);
2927
2928 parmreg = gen_reg_rtx (promoted_nominal_mode);
2929
2930 if (!DECL_ARTIFICIAL (parm))
2931 mark_user_reg (parmreg);
2932
2933 /* If this was an item that we received a pointer to,
2934 set DECL_RTL appropriately. */
2935 if (data->passed_pointer)
2936 {
2937 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2938 set_mem_attributes (x, parm, 1);
2939 SET_DECL_RTL (parm, x);
2940 }
2941 else
2942 SET_DECL_RTL (parm, parmreg);
2943
2944 assign_parm_remove_parallels (data);
2945
2946 /* Copy the value into the register, thus bridging between
2947 assign_parm_find_data_types and expand_expr_real_1. */
2948
2949 equiv_stack_parm = data->stack_parm;
2950 validated_mem = validize_mem (data->entry_parm);
2951
2952 need_conversion = (data->nominal_mode != data->passed_mode
2953 || promoted_nominal_mode != data->promoted_mode);
2954 moved = false;
2955
2956 if (need_conversion
2957 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2958 && data->nominal_mode == data->passed_mode
2959 && data->nominal_mode == GET_MODE (data->entry_parm))
2960 {
2961 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2962 mode, by the caller. We now have to convert it to
2963 NOMINAL_MODE, if different. However, PARMREG may be in
2964 a different mode than NOMINAL_MODE if it is being stored
2965 promoted.
2966
2967 If ENTRY_PARM is a hard register, it might be in a register
2968 not valid for operating in its mode (e.g., an odd-numbered
2969 register for a DFmode). In that case, moves are the only
2970 thing valid, so we can't do a convert from there. This
2971 occurs when the calling sequence allow such misaligned
2972 usages.
2973
2974 In addition, the conversion may involve a call, which could
2975 clobber parameters which haven't been copied to pseudo
2976 registers yet.
2977
2978 First, we try to emit an insn which performs the necessary
2979 conversion. We verify that this insn does not clobber any
2980 hard registers. */
2981
2982 enum insn_code icode;
2983 rtx op0, op1;
2984
2985 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2986 unsignedp);
2987
2988 op0 = parmreg;
2989 op1 = validated_mem;
2990 if (icode != CODE_FOR_nothing
2991 && insn_operand_matches (icode, 0, op0)
2992 && insn_operand_matches (icode, 1, op1))
2993 {
2994 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2995 rtx insn, insns, t = op1;
2996 HARD_REG_SET hardregs;
2997
2998 start_sequence ();
2999 /* If op1 is a hard register that is likely spilled, first
3000 force it into a pseudo, otherwise combiner might extend
3001 its lifetime too much. */
3002 if (GET_CODE (t) == SUBREG)
3003 t = SUBREG_REG (t);
3004 if (REG_P (t)
3005 && HARD_REGISTER_P (t)
3006 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3007 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3008 {
3009 t = gen_reg_rtx (GET_MODE (op1));
3010 emit_move_insn (t, op1);
3011 }
3012 else
3013 t = op1;
3014 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3015 data->passed_mode, unsignedp);
3016 emit_insn (insn);
3017 insns = get_insns ();
3018
3019 moved = true;
3020 CLEAR_HARD_REG_SET (hardregs);
3021 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3022 {
3023 if (INSN_P (insn))
3024 note_stores (PATTERN (insn), record_hard_reg_sets,
3025 &hardregs);
3026 if (!hard_reg_set_empty_p (hardregs))
3027 moved = false;
3028 }
3029
3030 end_sequence ();
3031
3032 if (moved)
3033 {
3034 emit_insn (insns);
3035 if (equiv_stack_parm != NULL_RTX)
3036 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3037 equiv_stack_parm);
3038 }
3039 }
3040 }
3041
3042 if (moved)
3043 /* Nothing to do. */
3044 ;
3045 else if (need_conversion)
3046 {
3047 /* We did not have an insn to convert directly, or the sequence
3048 generated appeared unsafe. We must first copy the parm to a
3049 pseudo reg, and save the conversion until after all
3050 parameters have been moved. */
3051
3052 int save_tree_used;
3053 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3054
3055 emit_move_insn (tempreg, validated_mem);
3056
3057 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3058 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3059
3060 if (GET_CODE (tempreg) == SUBREG
3061 && GET_MODE (tempreg) == data->nominal_mode
3062 && REG_P (SUBREG_REG (tempreg))
3063 && data->nominal_mode == data->passed_mode
3064 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3065 && GET_MODE_SIZE (GET_MODE (tempreg))
3066 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3067 {
3068 /* The argument is already sign/zero extended, so note it
3069 into the subreg. */
3070 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3071 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3072 }
3073
3074 /* TREE_USED gets set erroneously during expand_assignment. */
3075 save_tree_used = TREE_USED (parm);
3076 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3077 TREE_USED (parm) = save_tree_used;
3078 all->first_conversion_insn = get_insns ();
3079 all->last_conversion_insn = get_last_insn ();
3080 end_sequence ();
3081
3082 did_conversion = true;
3083 }
3084 else
3085 emit_move_insn (parmreg, validated_mem);
3086
3087 /* If we were passed a pointer but the actual value can safely live
3088 in a register, put it in one. */
3089 if (data->passed_pointer
3090 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3091 /* If by-reference argument was promoted, demote it. */
3092 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3093 || use_register_for_decl (parm)))
3094 {
3095 /* We can't use nominal_mode, because it will have been set to
3096 Pmode above. We must use the actual mode of the parm. */
3097 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3098 mark_user_reg (parmreg);
3099
3100 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3101 {
3102 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3103 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3104
3105 push_to_sequence2 (all->first_conversion_insn,
3106 all->last_conversion_insn);
3107 emit_move_insn (tempreg, DECL_RTL (parm));
3108 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3109 emit_move_insn (parmreg, tempreg);
3110 all->first_conversion_insn = get_insns ();
3111 all->last_conversion_insn = get_last_insn ();
3112 end_sequence ();
3113
3114 did_conversion = true;
3115 }
3116 else
3117 emit_move_insn (parmreg, DECL_RTL (parm));
3118
3119 SET_DECL_RTL (parm, parmreg);
3120
3121 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3122 now the parm. */
3123 data->stack_parm = NULL;
3124 }
3125
3126 /* Mark the register as eliminable if we did no conversion and it was
3127 copied from memory at a fixed offset, and the arg pointer was not
3128 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3129 offset formed an invalid address, such memory-equivalences as we
3130 make here would screw up life analysis for it. */
3131 if (data->nominal_mode == data->passed_mode
3132 && !did_conversion
3133 && data->stack_parm != 0
3134 && MEM_P (data->stack_parm)
3135 && data->locate.offset.var == 0
3136 && reg_mentioned_p (virtual_incoming_args_rtx,
3137 XEXP (data->stack_parm, 0)))
3138 {
3139 rtx linsn = get_last_insn ();
3140 rtx sinsn, set;
3141
3142 /* Mark complex types separately. */
3143 if (GET_CODE (parmreg) == CONCAT)
3144 {
3145 enum machine_mode submode
3146 = GET_MODE_INNER (GET_MODE (parmreg));
3147 int regnor = REGNO (XEXP (parmreg, 0));
3148 int regnoi = REGNO (XEXP (parmreg, 1));
3149 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3150 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3151 GET_MODE_SIZE (submode));
3152
3153 /* Scan backwards for the set of the real and
3154 imaginary parts. */
3155 for (sinsn = linsn; sinsn != 0;
3156 sinsn = prev_nonnote_insn (sinsn))
3157 {
3158 set = single_set (sinsn);
3159 if (set == 0)
3160 continue;
3161
3162 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3163 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3164 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3165 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3166 }
3167 }
3168 else
3169 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3170 }
3171
3172 /* For pointer data type, suggest pointer register. */
3173 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3174 mark_reg_pointer (parmreg,
3175 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3176 }
3177
3178 /* A subroutine of assign_parms. Allocate stack space to hold the current
3179 parameter. Get it there. Perform all ABI specified conversions. */
3180
3181 static void
3182 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3183 struct assign_parm_data_one *data)
3184 {
3185 /* Value must be stored in the stack slot STACK_PARM during function
3186 execution. */
3187 bool to_conversion = false;
3188
3189 assign_parm_remove_parallels (data);
3190
3191 if (data->promoted_mode != data->nominal_mode)
3192 {
3193 /* Conversion is required. */
3194 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3195
3196 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3197
3198 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3199 to_conversion = true;
3200
3201 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3202 TYPE_UNSIGNED (TREE_TYPE (parm)));
3203
3204 if (data->stack_parm)
3205 {
3206 int offset = subreg_lowpart_offset (data->nominal_mode,
3207 GET_MODE (data->stack_parm));
3208 /* ??? This may need a big-endian conversion on sparc64. */
3209 data->stack_parm
3210 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3211 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3212 set_mem_offset (data->stack_parm,
3213 MEM_OFFSET (data->stack_parm) + offset);
3214 }
3215 }
3216
3217 if (data->entry_parm != data->stack_parm)
3218 {
3219 rtx src, dest;
3220
3221 if (data->stack_parm == 0)
3222 {
3223 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3224 GET_MODE (data->entry_parm),
3225 TYPE_ALIGN (data->passed_type));
3226 data->stack_parm
3227 = assign_stack_local (GET_MODE (data->entry_parm),
3228 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3229 align);
3230 set_mem_attributes (data->stack_parm, parm, 1);
3231 }
3232
3233 dest = validize_mem (data->stack_parm);
3234 src = validize_mem (data->entry_parm);
3235
3236 if (MEM_P (src))
3237 {
3238 /* Use a block move to handle potentially misaligned entry_parm. */
3239 if (!to_conversion)
3240 push_to_sequence2 (all->first_conversion_insn,
3241 all->last_conversion_insn);
3242 to_conversion = true;
3243
3244 emit_block_move (dest, src,
3245 GEN_INT (int_size_in_bytes (data->passed_type)),
3246 BLOCK_OP_NORMAL);
3247 }
3248 else
3249 emit_move_insn (dest, src);
3250 }
3251
3252 if (to_conversion)
3253 {
3254 all->first_conversion_insn = get_insns ();
3255 all->last_conversion_insn = get_last_insn ();
3256 end_sequence ();
3257 }
3258
3259 SET_DECL_RTL (parm, data->stack_parm);
3260 }
3261
3262 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3263 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3264
3265 static void
3266 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3267 vec<tree> fnargs)
3268 {
3269 tree parm;
3270 tree orig_fnargs = all->orig_fnargs;
3271 unsigned i = 0;
3272
3273 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3274 {
3275 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3276 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3277 {
3278 rtx tmp, real, imag;
3279 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3280
3281 real = DECL_RTL (fnargs[i]);
3282 imag = DECL_RTL (fnargs[i + 1]);
3283 if (inner != GET_MODE (real))
3284 {
3285 real = gen_lowpart_SUBREG (inner, real);
3286 imag = gen_lowpart_SUBREG (inner, imag);
3287 }
3288
3289 if (TREE_ADDRESSABLE (parm))
3290 {
3291 rtx rmem, imem;
3292 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3293 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3294 DECL_MODE (parm),
3295 TYPE_ALIGN (TREE_TYPE (parm)));
3296
3297 /* split_complex_arg put the real and imag parts in
3298 pseudos. Move them to memory. */
3299 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3300 set_mem_attributes (tmp, parm, 1);
3301 rmem = adjust_address_nv (tmp, inner, 0);
3302 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3303 push_to_sequence2 (all->first_conversion_insn,
3304 all->last_conversion_insn);
3305 emit_move_insn (rmem, real);
3306 emit_move_insn (imem, imag);
3307 all->first_conversion_insn = get_insns ();
3308 all->last_conversion_insn = get_last_insn ();
3309 end_sequence ();
3310 }
3311 else
3312 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3313 SET_DECL_RTL (parm, tmp);
3314
3315 real = DECL_INCOMING_RTL (fnargs[i]);
3316 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3317 if (inner != GET_MODE (real))
3318 {
3319 real = gen_lowpart_SUBREG (inner, real);
3320 imag = gen_lowpart_SUBREG (inner, imag);
3321 }
3322 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3323 set_decl_incoming_rtl (parm, tmp, false);
3324 i++;
3325 }
3326 }
3327 }
3328
3329 /* Assign RTL expressions to the function's parameters. This may involve
3330 copying them into registers and using those registers as the DECL_RTL. */
3331
3332 static void
3333 assign_parms (tree fndecl)
3334 {
3335 struct assign_parm_data_all all;
3336 tree parm;
3337 vec<tree> fnargs;
3338 unsigned i;
3339
3340 crtl->args.internal_arg_pointer
3341 = targetm.calls.internal_arg_pointer ();
3342
3343 assign_parms_initialize_all (&all);
3344 fnargs = assign_parms_augmented_arg_list (&all);
3345
3346 FOR_EACH_VEC_ELT (fnargs, i, parm)
3347 {
3348 struct assign_parm_data_one data;
3349
3350 /* Extract the type of PARM; adjust it according to ABI. */
3351 assign_parm_find_data_types (&all, parm, &data);
3352
3353 /* Early out for errors and void parameters. */
3354 if (data.passed_mode == VOIDmode)
3355 {
3356 SET_DECL_RTL (parm, const0_rtx);
3357 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3358 continue;
3359 }
3360
3361 /* Estimate stack alignment from parameter alignment. */
3362 if (SUPPORTS_STACK_ALIGNMENT)
3363 {
3364 unsigned int align
3365 = targetm.calls.function_arg_boundary (data.promoted_mode,
3366 data.passed_type);
3367 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3368 align);
3369 if (TYPE_ALIGN (data.nominal_type) > align)
3370 align = MINIMUM_ALIGNMENT (data.nominal_type,
3371 TYPE_MODE (data.nominal_type),
3372 TYPE_ALIGN (data.nominal_type));
3373 if (crtl->stack_alignment_estimated < align)
3374 {
3375 gcc_assert (!crtl->stack_realign_processed);
3376 crtl->stack_alignment_estimated = align;
3377 }
3378 }
3379
3380 if (cfun->stdarg && !DECL_CHAIN (parm))
3381 assign_parms_setup_varargs (&all, &data, false);
3382
3383 /* Find out where the parameter arrives in this function. */
3384 assign_parm_find_entry_rtl (&all, &data);
3385
3386 /* Find out where stack space for this parameter might be. */
3387 if (assign_parm_is_stack_parm (&all, &data))
3388 {
3389 assign_parm_find_stack_rtl (parm, &data);
3390 assign_parm_adjust_entry_rtl (&data);
3391 }
3392
3393 /* Record permanently how this parm was passed. */
3394 if (data.passed_pointer)
3395 {
3396 rtx incoming_rtl
3397 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3398 data.entry_parm);
3399 set_decl_incoming_rtl (parm, incoming_rtl, true);
3400 }
3401 else
3402 set_decl_incoming_rtl (parm, data.entry_parm, false);
3403
3404 /* Update info on where next arg arrives in registers. */
3405 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3406 data.passed_type, data.named_arg);
3407
3408 assign_parm_adjust_stack_rtl (&data);
3409
3410 if (assign_parm_setup_block_p (&data))
3411 assign_parm_setup_block (&all, parm, &data);
3412 else if (data.passed_pointer || use_register_for_decl (parm))
3413 assign_parm_setup_reg (&all, parm, &data);
3414 else
3415 assign_parm_setup_stack (&all, parm, &data);
3416 }
3417
3418 if (targetm.calls.split_complex_arg)
3419 assign_parms_unsplit_complex (&all, fnargs);
3420
3421 fnargs.release ();
3422
3423 /* Output all parameter conversion instructions (possibly including calls)
3424 now that all parameters have been copied out of hard registers. */
3425 emit_insn (all.first_conversion_insn);
3426
3427 /* Estimate reload stack alignment from scalar return mode. */
3428 if (SUPPORTS_STACK_ALIGNMENT)
3429 {
3430 if (DECL_RESULT (fndecl))
3431 {
3432 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3433 enum machine_mode mode = TYPE_MODE (type);
3434
3435 if (mode != BLKmode
3436 && mode != VOIDmode
3437 && !AGGREGATE_TYPE_P (type))
3438 {
3439 unsigned int align = GET_MODE_ALIGNMENT (mode);
3440 if (crtl->stack_alignment_estimated < align)
3441 {
3442 gcc_assert (!crtl->stack_realign_processed);
3443 crtl->stack_alignment_estimated = align;
3444 }
3445 }
3446 }
3447 }
3448
3449 /* If we are receiving a struct value address as the first argument, set up
3450 the RTL for the function result. As this might require code to convert
3451 the transmitted address to Pmode, we do this here to ensure that possible
3452 preliminary conversions of the address have been emitted already. */
3453 if (all.function_result_decl)
3454 {
3455 tree result = DECL_RESULT (current_function_decl);
3456 rtx addr = DECL_RTL (all.function_result_decl);
3457 rtx x;
3458
3459 if (DECL_BY_REFERENCE (result))
3460 {
3461 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3462 x = addr;
3463 }
3464 else
3465 {
3466 SET_DECL_VALUE_EXPR (result,
3467 build1 (INDIRECT_REF, TREE_TYPE (result),
3468 all.function_result_decl));
3469 addr = convert_memory_address (Pmode, addr);
3470 x = gen_rtx_MEM (DECL_MODE (result), addr);
3471 set_mem_attributes (x, result, 1);
3472 }
3473
3474 DECL_HAS_VALUE_EXPR_P (result) = 1;
3475
3476 SET_DECL_RTL (result, x);
3477 }
3478
3479 /* We have aligned all the args, so add space for the pretend args. */
3480 crtl->args.pretend_args_size = all.pretend_args_size;
3481 all.stack_args_size.constant += all.extra_pretend_bytes;
3482 crtl->args.size = all.stack_args_size.constant;
3483
3484 /* Adjust function incoming argument size for alignment and
3485 minimum length. */
3486
3487 #ifdef REG_PARM_STACK_SPACE
3488 crtl->args.size = MAX (crtl->args.size,
3489 REG_PARM_STACK_SPACE (fndecl));
3490 #endif
3491
3492 crtl->args.size = CEIL_ROUND (crtl->args.size,
3493 PARM_BOUNDARY / BITS_PER_UNIT);
3494
3495 #ifdef ARGS_GROW_DOWNWARD
3496 crtl->args.arg_offset_rtx
3497 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3498 : expand_expr (size_diffop (all.stack_args_size.var,
3499 size_int (-all.stack_args_size.constant)),
3500 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3501 #else
3502 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3503 #endif
3504
3505 /* See how many bytes, if any, of its args a function should try to pop
3506 on return. */
3507
3508 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3509 TREE_TYPE (fndecl),
3510 crtl->args.size);
3511
3512 /* For stdarg.h function, save info about
3513 regs and stack space used by the named args. */
3514
3515 crtl->args.info = all.args_so_far_v;
3516
3517 /* Set the rtx used for the function return value. Put this in its
3518 own variable so any optimizers that need this information don't have
3519 to include tree.h. Do this here so it gets done when an inlined
3520 function gets output. */
3521
3522 crtl->return_rtx
3523 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3524 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3525
3526 /* If scalar return value was computed in a pseudo-reg, or was a named
3527 return value that got dumped to the stack, copy that to the hard
3528 return register. */
3529 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3530 {
3531 tree decl_result = DECL_RESULT (fndecl);
3532 rtx decl_rtl = DECL_RTL (decl_result);
3533
3534 if (REG_P (decl_rtl)
3535 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3536 : DECL_REGISTER (decl_result))
3537 {
3538 rtx real_decl_rtl;
3539
3540 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3541 fndecl, true);
3542 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3543 /* The delay slot scheduler assumes that crtl->return_rtx
3544 holds the hard register containing the return value, not a
3545 temporary pseudo. */
3546 crtl->return_rtx = real_decl_rtl;
3547 }
3548 }
3549 }
3550
3551 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3552 For all seen types, gimplify their sizes. */
3553
3554 static tree
3555 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3556 {
3557 tree t = *tp;
3558
3559 *walk_subtrees = 0;
3560 if (TYPE_P (t))
3561 {
3562 if (POINTER_TYPE_P (t))
3563 *walk_subtrees = 1;
3564 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3565 && !TYPE_SIZES_GIMPLIFIED (t))
3566 {
3567 gimplify_type_sizes (t, (gimple_seq *) data);
3568 *walk_subtrees = 1;
3569 }
3570 }
3571
3572 return NULL;
3573 }
3574
3575 /* Gimplify the parameter list for current_function_decl. This involves
3576 evaluating SAVE_EXPRs of variable sized parameters and generating code
3577 to implement callee-copies reference parameters. Returns a sequence of
3578 statements to add to the beginning of the function. */
3579
3580 gimple_seq
3581 gimplify_parameters (void)
3582 {
3583 struct assign_parm_data_all all;
3584 tree parm;
3585 gimple_seq stmts = NULL;
3586 vec<tree> fnargs;
3587 unsigned i;
3588
3589 assign_parms_initialize_all (&all);
3590 fnargs = assign_parms_augmented_arg_list (&all);
3591
3592 FOR_EACH_VEC_ELT (fnargs, i, parm)
3593 {
3594 struct assign_parm_data_one data;
3595
3596 /* Extract the type of PARM; adjust it according to ABI. */
3597 assign_parm_find_data_types (&all, parm, &data);
3598
3599 /* Early out for errors and void parameters. */
3600 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3601 continue;
3602
3603 /* Update info on where next arg arrives in registers. */
3604 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3605 data.passed_type, data.named_arg);
3606
3607 /* ??? Once upon a time variable_size stuffed parameter list
3608 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3609 turned out to be less than manageable in the gimple world.
3610 Now we have to hunt them down ourselves. */
3611 walk_tree_without_duplicates (&data.passed_type,
3612 gimplify_parm_type, &stmts);
3613
3614 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3615 {
3616 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3617 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3618 }
3619
3620 if (data.passed_pointer)
3621 {
3622 tree type = TREE_TYPE (data.passed_type);
3623 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3624 type, data.named_arg))
3625 {
3626 tree local, t;
3627
3628 /* For constant-sized objects, this is trivial; for
3629 variable-sized objects, we have to play games. */
3630 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3631 && !(flag_stack_check == GENERIC_STACK_CHECK
3632 && compare_tree_int (DECL_SIZE_UNIT (parm),
3633 STACK_CHECK_MAX_VAR_SIZE) > 0))
3634 {
3635 local = create_tmp_var (type, get_name (parm));
3636 DECL_IGNORED_P (local) = 0;
3637 /* If PARM was addressable, move that flag over
3638 to the local copy, as its address will be taken,
3639 not the PARMs. Keep the parms address taken
3640 as we'll query that flag during gimplification. */
3641 if (TREE_ADDRESSABLE (parm))
3642 TREE_ADDRESSABLE (local) = 1;
3643 else if (TREE_CODE (type) == COMPLEX_TYPE
3644 || TREE_CODE (type) == VECTOR_TYPE)
3645 DECL_GIMPLE_REG_P (local) = 1;
3646 }
3647 else
3648 {
3649 tree ptr_type, addr;
3650
3651 ptr_type = build_pointer_type (type);
3652 addr = create_tmp_reg (ptr_type, get_name (parm));
3653 DECL_IGNORED_P (addr) = 0;
3654 local = build_fold_indirect_ref (addr);
3655
3656 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3657 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3658 size_int (DECL_ALIGN (parm)));
3659
3660 /* The call has been built for a variable-sized object. */
3661 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3662 t = fold_convert (ptr_type, t);
3663 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3664 gimplify_and_add (t, &stmts);
3665 }
3666
3667 gimplify_assign (local, parm, &stmts);
3668
3669 SET_DECL_VALUE_EXPR (parm, local);
3670 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3671 }
3672 }
3673 }
3674
3675 fnargs.release ();
3676
3677 return stmts;
3678 }
3679 \f
3680 /* Compute the size and offset from the start of the stacked arguments for a
3681 parm passed in mode PASSED_MODE and with type TYPE.
3682
3683 INITIAL_OFFSET_PTR points to the current offset into the stacked
3684 arguments.
3685
3686 The starting offset and size for this parm are returned in
3687 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3688 nonzero, the offset is that of stack slot, which is returned in
3689 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3690 padding required from the initial offset ptr to the stack slot.
3691
3692 IN_REGS is nonzero if the argument will be passed in registers. It will
3693 never be set if REG_PARM_STACK_SPACE is not defined.
3694
3695 FNDECL is the function in which the argument was defined.
3696
3697 There are two types of rounding that are done. The first, controlled by
3698 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3699 argument list to be aligned to the specific boundary (in bits). This
3700 rounding affects the initial and starting offsets, but not the argument
3701 size.
3702
3703 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3704 optionally rounds the size of the parm to PARM_BOUNDARY. The
3705 initial offset is not affected by this rounding, while the size always
3706 is and the starting offset may be. */
3707
3708 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3709 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3710 callers pass in the total size of args so far as
3711 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3712
3713 void
3714 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3715 int partial, tree fndecl ATTRIBUTE_UNUSED,
3716 struct args_size *initial_offset_ptr,
3717 struct locate_and_pad_arg_data *locate)
3718 {
3719 tree sizetree;
3720 enum direction where_pad;
3721 unsigned int boundary, round_boundary;
3722 int reg_parm_stack_space = 0;
3723 int part_size_in_regs;
3724
3725 #ifdef REG_PARM_STACK_SPACE
3726 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3727
3728 /* If we have found a stack parm before we reach the end of the
3729 area reserved for registers, skip that area. */
3730 if (! in_regs)
3731 {
3732 if (reg_parm_stack_space > 0)
3733 {
3734 if (initial_offset_ptr->var)
3735 {
3736 initial_offset_ptr->var
3737 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3738 ssize_int (reg_parm_stack_space));
3739 initial_offset_ptr->constant = 0;
3740 }
3741 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3742 initial_offset_ptr->constant = reg_parm_stack_space;
3743 }
3744 }
3745 #endif /* REG_PARM_STACK_SPACE */
3746
3747 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3748
3749 sizetree
3750 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3751 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3752 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3753 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3754 type);
3755 locate->where_pad = where_pad;
3756
3757 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3758 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3759 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3760
3761 locate->boundary = boundary;
3762
3763 if (SUPPORTS_STACK_ALIGNMENT)
3764 {
3765 /* stack_alignment_estimated can't change after stack has been
3766 realigned. */
3767 if (crtl->stack_alignment_estimated < boundary)
3768 {
3769 if (!crtl->stack_realign_processed)
3770 crtl->stack_alignment_estimated = boundary;
3771 else
3772 {
3773 /* If stack is realigned and stack alignment value
3774 hasn't been finalized, it is OK not to increase
3775 stack_alignment_estimated. The bigger alignment
3776 requirement is recorded in stack_alignment_needed
3777 below. */
3778 gcc_assert (!crtl->stack_realign_finalized
3779 && crtl->stack_realign_needed);
3780 }
3781 }
3782 }
3783
3784 /* Remember if the outgoing parameter requires extra alignment on the
3785 calling function side. */
3786 if (crtl->stack_alignment_needed < boundary)
3787 crtl->stack_alignment_needed = boundary;
3788 if (crtl->preferred_stack_boundary < boundary)
3789 crtl->preferred_stack_boundary = boundary;
3790
3791 #ifdef ARGS_GROW_DOWNWARD
3792 locate->slot_offset.constant = -initial_offset_ptr->constant;
3793 if (initial_offset_ptr->var)
3794 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3795 initial_offset_ptr->var);
3796
3797 {
3798 tree s2 = sizetree;
3799 if (where_pad != none
3800 && (!host_integerp (sizetree, 1)
3801 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3802 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3803 SUB_PARM_SIZE (locate->slot_offset, s2);
3804 }
3805
3806 locate->slot_offset.constant += part_size_in_regs;
3807
3808 if (!in_regs
3809 #ifdef REG_PARM_STACK_SPACE
3810 || REG_PARM_STACK_SPACE (fndecl) > 0
3811 #endif
3812 )
3813 pad_to_arg_alignment (&locate->slot_offset, boundary,
3814 &locate->alignment_pad);
3815
3816 locate->size.constant = (-initial_offset_ptr->constant
3817 - locate->slot_offset.constant);
3818 if (initial_offset_ptr->var)
3819 locate->size.var = size_binop (MINUS_EXPR,
3820 size_binop (MINUS_EXPR,
3821 ssize_int (0),
3822 initial_offset_ptr->var),
3823 locate->slot_offset.var);
3824
3825 /* Pad_below needs the pre-rounded size to know how much to pad
3826 below. */
3827 locate->offset = locate->slot_offset;
3828 if (where_pad == downward)
3829 pad_below (&locate->offset, passed_mode, sizetree);
3830
3831 #else /* !ARGS_GROW_DOWNWARD */
3832 if (!in_regs
3833 #ifdef REG_PARM_STACK_SPACE
3834 || REG_PARM_STACK_SPACE (fndecl) > 0
3835 #endif
3836 )
3837 pad_to_arg_alignment (initial_offset_ptr, boundary,
3838 &locate->alignment_pad);
3839 locate->slot_offset = *initial_offset_ptr;
3840
3841 #ifdef PUSH_ROUNDING
3842 if (passed_mode != BLKmode)
3843 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3844 #endif
3845
3846 /* Pad_below needs the pre-rounded size to know how much to pad below
3847 so this must be done before rounding up. */
3848 locate->offset = locate->slot_offset;
3849 if (where_pad == downward)
3850 pad_below (&locate->offset, passed_mode, sizetree);
3851
3852 if (where_pad != none
3853 && (!host_integerp (sizetree, 1)
3854 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3855 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3856
3857 ADD_PARM_SIZE (locate->size, sizetree);
3858
3859 locate->size.constant -= part_size_in_regs;
3860 #endif /* ARGS_GROW_DOWNWARD */
3861
3862 #ifdef FUNCTION_ARG_OFFSET
3863 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3864 #endif
3865 }
3866
3867 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3868 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3869
3870 static void
3871 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3872 struct args_size *alignment_pad)
3873 {
3874 tree save_var = NULL_TREE;
3875 HOST_WIDE_INT save_constant = 0;
3876 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3877 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3878
3879 #ifdef SPARC_STACK_BOUNDARY_HACK
3880 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3881 the real alignment of %sp. However, when it does this, the
3882 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3883 if (SPARC_STACK_BOUNDARY_HACK)
3884 sp_offset = 0;
3885 #endif
3886
3887 if (boundary > PARM_BOUNDARY)
3888 {
3889 save_var = offset_ptr->var;
3890 save_constant = offset_ptr->constant;
3891 }
3892
3893 alignment_pad->var = NULL_TREE;
3894 alignment_pad->constant = 0;
3895
3896 if (boundary > BITS_PER_UNIT)
3897 {
3898 if (offset_ptr->var)
3899 {
3900 tree sp_offset_tree = ssize_int (sp_offset);
3901 tree offset = size_binop (PLUS_EXPR,
3902 ARGS_SIZE_TREE (*offset_ptr),
3903 sp_offset_tree);
3904 #ifdef ARGS_GROW_DOWNWARD
3905 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3906 #else
3907 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3908 #endif
3909
3910 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3911 /* ARGS_SIZE_TREE includes constant term. */
3912 offset_ptr->constant = 0;
3913 if (boundary > PARM_BOUNDARY)
3914 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3915 save_var);
3916 }
3917 else
3918 {
3919 offset_ptr->constant = -sp_offset +
3920 #ifdef ARGS_GROW_DOWNWARD
3921 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3922 #else
3923 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3924 #endif
3925 if (boundary > PARM_BOUNDARY)
3926 alignment_pad->constant = offset_ptr->constant - save_constant;
3927 }
3928 }
3929 }
3930
3931 static void
3932 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3933 {
3934 if (passed_mode != BLKmode)
3935 {
3936 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3937 offset_ptr->constant
3938 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3939 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3940 - GET_MODE_SIZE (passed_mode));
3941 }
3942 else
3943 {
3944 if (TREE_CODE (sizetree) != INTEGER_CST
3945 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3946 {
3947 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3948 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3949 /* Add it in. */
3950 ADD_PARM_SIZE (*offset_ptr, s2);
3951 SUB_PARM_SIZE (*offset_ptr, sizetree);
3952 }
3953 }
3954 }
3955 \f
3956
3957 /* True if register REGNO was alive at a place where `setjmp' was
3958 called and was set more than once or is an argument. Such regs may
3959 be clobbered by `longjmp'. */
3960
3961 static bool
3962 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3963 {
3964 /* There appear to be cases where some local vars never reach the
3965 backend but have bogus regnos. */
3966 if (regno >= max_reg_num ())
3967 return false;
3968
3969 return ((REG_N_SETS (regno) > 1
3970 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3971 && REGNO_REG_SET_P (setjmp_crosses, regno));
3972 }
3973
3974 /* Walk the tree of blocks describing the binding levels within a
3975 function and warn about variables the might be killed by setjmp or
3976 vfork. This is done after calling flow_analysis before register
3977 allocation since that will clobber the pseudo-regs to hard
3978 regs. */
3979
3980 static void
3981 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3982 {
3983 tree decl, sub;
3984
3985 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3986 {
3987 if (TREE_CODE (decl) == VAR_DECL
3988 && DECL_RTL_SET_P (decl)
3989 && REG_P (DECL_RTL (decl))
3990 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3991 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3992 " %<longjmp%> or %<vfork%>", decl);
3993 }
3994
3995 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3996 setjmp_vars_warning (setjmp_crosses, sub);
3997 }
3998
3999 /* Do the appropriate part of setjmp_vars_warning
4000 but for arguments instead of local variables. */
4001
4002 static void
4003 setjmp_args_warning (bitmap setjmp_crosses)
4004 {
4005 tree decl;
4006 for (decl = DECL_ARGUMENTS (current_function_decl);
4007 decl; decl = DECL_CHAIN (decl))
4008 if (DECL_RTL (decl) != 0
4009 && REG_P (DECL_RTL (decl))
4010 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4011 warning (OPT_Wclobbered,
4012 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4013 decl);
4014 }
4015
4016 /* Generate warning messages for variables live across setjmp. */
4017
4018 void
4019 generate_setjmp_warnings (void)
4020 {
4021 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4022
4023 if (n_basic_blocks == NUM_FIXED_BLOCKS
4024 || bitmap_empty_p (setjmp_crosses))
4025 return;
4026
4027 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4028 setjmp_args_warning (setjmp_crosses);
4029 }
4030
4031 \f
4032 /* Reverse the order of elements in the fragment chain T of blocks,
4033 and return the new head of the chain (old last element).
4034 In addition to that clear BLOCK_SAME_RANGE flags when needed
4035 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4036 its super fragment origin. */
4037
4038 static tree
4039 block_fragments_nreverse (tree t)
4040 {
4041 tree prev = 0, block, next, prev_super = 0;
4042 tree super = BLOCK_SUPERCONTEXT (t);
4043 if (BLOCK_FRAGMENT_ORIGIN (super))
4044 super = BLOCK_FRAGMENT_ORIGIN (super);
4045 for (block = t; block; block = next)
4046 {
4047 next = BLOCK_FRAGMENT_CHAIN (block);
4048 BLOCK_FRAGMENT_CHAIN (block) = prev;
4049 if ((prev && !BLOCK_SAME_RANGE (prev))
4050 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4051 != prev_super))
4052 BLOCK_SAME_RANGE (block) = 0;
4053 prev_super = BLOCK_SUPERCONTEXT (block);
4054 BLOCK_SUPERCONTEXT (block) = super;
4055 prev = block;
4056 }
4057 t = BLOCK_FRAGMENT_ORIGIN (t);
4058 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4059 != prev_super)
4060 BLOCK_SAME_RANGE (t) = 0;
4061 BLOCK_SUPERCONTEXT (t) = super;
4062 return prev;
4063 }
4064
4065 /* Reverse the order of elements in the chain T of blocks,
4066 and return the new head of the chain (old last element).
4067 Also do the same on subblocks and reverse the order of elements
4068 in BLOCK_FRAGMENT_CHAIN as well. */
4069
4070 static tree
4071 blocks_nreverse_all (tree t)
4072 {
4073 tree prev = 0, block, next;
4074 for (block = t; block; block = next)
4075 {
4076 next = BLOCK_CHAIN (block);
4077 BLOCK_CHAIN (block) = prev;
4078 if (BLOCK_FRAGMENT_CHAIN (block)
4079 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4080 {
4081 BLOCK_FRAGMENT_CHAIN (block)
4082 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4083 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4084 BLOCK_SAME_RANGE (block) = 0;
4085 }
4086 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4087 prev = block;
4088 }
4089 return prev;
4090 }
4091
4092
4093 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4094 and create duplicate blocks. */
4095 /* ??? Need an option to either create block fragments or to create
4096 abstract origin duplicates of a source block. It really depends
4097 on what optimization has been performed. */
4098
4099 void
4100 reorder_blocks (void)
4101 {
4102 tree block = DECL_INITIAL (current_function_decl);
4103 vec<tree> block_stack;
4104
4105 if (block == NULL_TREE)
4106 return;
4107
4108 block_stack.create (10);
4109
4110 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4111 clear_block_marks (block);
4112
4113 /* Prune the old trees away, so that they don't get in the way. */
4114 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4115 BLOCK_CHAIN (block) = NULL_TREE;
4116
4117 /* Recreate the block tree from the note nesting. */
4118 reorder_blocks_1 (get_insns (), block, &block_stack);
4119 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4120
4121 block_stack.release ();
4122 }
4123
4124 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4125
4126 void
4127 clear_block_marks (tree block)
4128 {
4129 while (block)
4130 {
4131 TREE_ASM_WRITTEN (block) = 0;
4132 clear_block_marks (BLOCK_SUBBLOCKS (block));
4133 block = BLOCK_CHAIN (block);
4134 }
4135 }
4136
4137 static void
4138 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4139 {
4140 rtx insn;
4141 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4142
4143 for (insn = insns; insn; insn = NEXT_INSN (insn))
4144 {
4145 if (NOTE_P (insn))
4146 {
4147 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4148 {
4149 tree block = NOTE_BLOCK (insn);
4150 tree origin;
4151
4152 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4153 origin = block;
4154
4155 if (prev_end)
4156 BLOCK_SAME_RANGE (prev_end) = 0;
4157 prev_end = NULL_TREE;
4158
4159 /* If we have seen this block before, that means it now
4160 spans multiple address regions. Create a new fragment. */
4161 if (TREE_ASM_WRITTEN (block))
4162 {
4163 tree new_block = copy_node (block);
4164
4165 BLOCK_SAME_RANGE (new_block) = 0;
4166 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4167 BLOCK_FRAGMENT_CHAIN (new_block)
4168 = BLOCK_FRAGMENT_CHAIN (origin);
4169 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4170
4171 NOTE_BLOCK (insn) = new_block;
4172 block = new_block;
4173 }
4174
4175 if (prev_beg == current_block && prev_beg)
4176 BLOCK_SAME_RANGE (block) = 1;
4177
4178 prev_beg = origin;
4179
4180 BLOCK_SUBBLOCKS (block) = 0;
4181 TREE_ASM_WRITTEN (block) = 1;
4182 /* When there's only one block for the entire function,
4183 current_block == block and we mustn't do this, it
4184 will cause infinite recursion. */
4185 if (block != current_block)
4186 {
4187 tree super;
4188 if (block != origin)
4189 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4190 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4191 (origin))
4192 == current_block);
4193 if (p_block_stack->is_empty ())
4194 super = current_block;
4195 else
4196 {
4197 super = p_block_stack->last ();
4198 gcc_assert (super == current_block
4199 || BLOCK_FRAGMENT_ORIGIN (super)
4200 == current_block);
4201 }
4202 BLOCK_SUPERCONTEXT (block) = super;
4203 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4204 BLOCK_SUBBLOCKS (current_block) = block;
4205 current_block = origin;
4206 }
4207 p_block_stack->safe_push (block);
4208 }
4209 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4210 {
4211 NOTE_BLOCK (insn) = p_block_stack->pop ();
4212 current_block = BLOCK_SUPERCONTEXT (current_block);
4213 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4214 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4215 prev_beg = NULL_TREE;
4216 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4217 ? NOTE_BLOCK (insn) : NULL_TREE;
4218 }
4219 }
4220 else
4221 {
4222 prev_beg = NULL_TREE;
4223 if (prev_end)
4224 BLOCK_SAME_RANGE (prev_end) = 0;
4225 prev_end = NULL_TREE;
4226 }
4227 }
4228 }
4229
4230 /* Reverse the order of elements in the chain T of blocks,
4231 and return the new head of the chain (old last element). */
4232
4233 tree
4234 blocks_nreverse (tree t)
4235 {
4236 tree prev = 0, block, next;
4237 for (block = t; block; block = next)
4238 {
4239 next = BLOCK_CHAIN (block);
4240 BLOCK_CHAIN (block) = prev;
4241 prev = block;
4242 }
4243 return prev;
4244 }
4245
4246 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4247 by modifying the last node in chain 1 to point to chain 2. */
4248
4249 tree
4250 block_chainon (tree op1, tree op2)
4251 {
4252 tree t1;
4253
4254 if (!op1)
4255 return op2;
4256 if (!op2)
4257 return op1;
4258
4259 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4260 continue;
4261 BLOCK_CHAIN (t1) = op2;
4262
4263 #ifdef ENABLE_TREE_CHECKING
4264 {
4265 tree t2;
4266 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4267 gcc_assert (t2 != t1);
4268 }
4269 #endif
4270
4271 return op1;
4272 }
4273
4274 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4275 non-NULL, list them all into VECTOR, in a depth-first preorder
4276 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4277 blocks. */
4278
4279 static int
4280 all_blocks (tree block, tree *vector)
4281 {
4282 int n_blocks = 0;
4283
4284 while (block)
4285 {
4286 TREE_ASM_WRITTEN (block) = 0;
4287
4288 /* Record this block. */
4289 if (vector)
4290 vector[n_blocks] = block;
4291
4292 ++n_blocks;
4293
4294 /* Record the subblocks, and their subblocks... */
4295 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4296 vector ? vector + n_blocks : 0);
4297 block = BLOCK_CHAIN (block);
4298 }
4299
4300 return n_blocks;
4301 }
4302
4303 /* Return a vector containing all the blocks rooted at BLOCK. The
4304 number of elements in the vector is stored in N_BLOCKS_P. The
4305 vector is dynamically allocated; it is the caller's responsibility
4306 to call `free' on the pointer returned. */
4307
4308 static tree *
4309 get_block_vector (tree block, int *n_blocks_p)
4310 {
4311 tree *block_vector;
4312
4313 *n_blocks_p = all_blocks (block, NULL);
4314 block_vector = XNEWVEC (tree, *n_blocks_p);
4315 all_blocks (block, block_vector);
4316
4317 return block_vector;
4318 }
4319
4320 static GTY(()) int next_block_index = 2;
4321
4322 /* Set BLOCK_NUMBER for all the blocks in FN. */
4323
4324 void
4325 number_blocks (tree fn)
4326 {
4327 int i;
4328 int n_blocks;
4329 tree *block_vector;
4330
4331 /* For SDB and XCOFF debugging output, we start numbering the blocks
4332 from 1 within each function, rather than keeping a running
4333 count. */
4334 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4335 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4336 next_block_index = 1;
4337 #endif
4338
4339 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4340
4341 /* The top-level BLOCK isn't numbered at all. */
4342 for (i = 1; i < n_blocks; ++i)
4343 /* We number the blocks from two. */
4344 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4345
4346 free (block_vector);
4347
4348 return;
4349 }
4350
4351 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4352
4353 DEBUG_FUNCTION tree
4354 debug_find_var_in_block_tree (tree var, tree block)
4355 {
4356 tree t;
4357
4358 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4359 if (t == var)
4360 return block;
4361
4362 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4363 {
4364 tree ret = debug_find_var_in_block_tree (var, t);
4365 if (ret)
4366 return ret;
4367 }
4368
4369 return NULL_TREE;
4370 }
4371 \f
4372 /* Keep track of whether we're in a dummy function context. If we are,
4373 we don't want to invoke the set_current_function hook, because we'll
4374 get into trouble if the hook calls target_reinit () recursively or
4375 when the initial initialization is not yet complete. */
4376
4377 static bool in_dummy_function;
4378
4379 /* Invoke the target hook when setting cfun. Update the optimization options
4380 if the function uses different options than the default. */
4381
4382 static void
4383 invoke_set_current_function_hook (tree fndecl)
4384 {
4385 if (!in_dummy_function)
4386 {
4387 tree opts = ((fndecl)
4388 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4389 : optimization_default_node);
4390
4391 if (!opts)
4392 opts = optimization_default_node;
4393
4394 /* Change optimization options if needed. */
4395 if (optimization_current_node != opts)
4396 {
4397 optimization_current_node = opts;
4398 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4399 }
4400
4401 targetm.set_current_function (fndecl);
4402 this_fn_optabs = this_target_optabs;
4403
4404 if (opts != optimization_default_node)
4405 {
4406 init_tree_optimization_optabs (opts);
4407 if (TREE_OPTIMIZATION_OPTABS (opts))
4408 this_fn_optabs = (struct target_optabs *)
4409 TREE_OPTIMIZATION_OPTABS (opts);
4410 }
4411 }
4412 }
4413
4414 /* cfun should never be set directly; use this function. */
4415
4416 void
4417 set_cfun (struct function *new_cfun)
4418 {
4419 if (cfun != new_cfun)
4420 {
4421 cfun = new_cfun;
4422 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4423 }
4424 }
4425
4426 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4427
4428 static vec<function_p> cfun_stack;
4429
4430 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4431 current_function_decl accordingly. */
4432
4433 void
4434 push_cfun (struct function *new_cfun)
4435 {
4436 gcc_assert ((!cfun && !current_function_decl)
4437 || (cfun && current_function_decl == cfun->decl));
4438 cfun_stack.safe_push (cfun);
4439 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4440 set_cfun (new_cfun);
4441 }
4442
4443 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4444
4445 void
4446 pop_cfun (void)
4447 {
4448 struct function *new_cfun = cfun_stack.pop ();
4449 /* When in_dummy_function, we do have a cfun but current_function_decl is
4450 NULL. We also allow pushing NULL cfun and subsequently changing
4451 current_function_decl to something else and have both restored by
4452 pop_cfun. */
4453 gcc_checking_assert (in_dummy_function
4454 || !cfun
4455 || current_function_decl == cfun->decl);
4456 set_cfun (new_cfun);
4457 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4458 }
4459
4460 /* Return value of funcdef and increase it. */
4461 int
4462 get_next_funcdef_no (void)
4463 {
4464 return funcdef_no++;
4465 }
4466
4467 /* Return value of funcdef. */
4468 int
4469 get_last_funcdef_no (void)
4470 {
4471 return funcdef_no;
4472 }
4473
4474 /* Allocate a function structure for FNDECL and set its contents
4475 to the defaults. Set cfun to the newly-allocated object.
4476 Some of the helper functions invoked during initialization assume
4477 that cfun has already been set. Therefore, assign the new object
4478 directly into cfun and invoke the back end hook explicitly at the
4479 very end, rather than initializing a temporary and calling set_cfun
4480 on it.
4481
4482 ABSTRACT_P is true if this is a function that will never be seen by
4483 the middle-end. Such functions are front-end concepts (like C++
4484 function templates) that do not correspond directly to functions
4485 placed in object files. */
4486
4487 void
4488 allocate_struct_function (tree fndecl, bool abstract_p)
4489 {
4490 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4491
4492 cfun = ggc_alloc_cleared_function ();
4493
4494 init_eh_for_function ();
4495
4496 if (init_machine_status)
4497 cfun->machine = (*init_machine_status) ();
4498
4499 #ifdef OVERRIDE_ABI_FORMAT
4500 OVERRIDE_ABI_FORMAT (fndecl);
4501 #endif
4502
4503 if (fndecl != NULL_TREE)
4504 {
4505 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4506 cfun->decl = fndecl;
4507 current_function_funcdef_no = get_next_funcdef_no ();
4508 }
4509
4510 invoke_set_current_function_hook (fndecl);
4511
4512 if (fndecl != NULL_TREE)
4513 {
4514 tree result = DECL_RESULT (fndecl);
4515 if (!abstract_p && aggregate_value_p (result, fndecl))
4516 {
4517 #ifdef PCC_STATIC_STRUCT_RETURN
4518 cfun->returns_pcc_struct = 1;
4519 #endif
4520 cfun->returns_struct = 1;
4521 }
4522
4523 cfun->stdarg = stdarg_p (fntype);
4524
4525 /* Assume all registers in stdarg functions need to be saved. */
4526 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4527 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4528
4529 /* ??? This could be set on a per-function basis by the front-end
4530 but is this worth the hassle? */
4531 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4532 }
4533 }
4534
4535 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4536 instead of just setting it. */
4537
4538 void
4539 push_struct_function (tree fndecl)
4540 {
4541 /* When in_dummy_function we might be in the middle of a pop_cfun and
4542 current_function_decl and cfun may not match. */
4543 gcc_assert (in_dummy_function
4544 || (!cfun && !current_function_decl)
4545 || (cfun && current_function_decl == cfun->decl));
4546 cfun_stack.safe_push (cfun);
4547 current_function_decl = fndecl;
4548 allocate_struct_function (fndecl, false);
4549 }
4550
4551 /* Reset crtl and other non-struct-function variables to defaults as
4552 appropriate for emitting rtl at the start of a function. */
4553
4554 static void
4555 prepare_function_start (void)
4556 {
4557 gcc_assert (!crtl->emit.x_last_insn);
4558 init_temp_slots ();
4559 init_emit ();
4560 init_varasm_status ();
4561 init_expr ();
4562 default_rtl_profile ();
4563
4564 if (flag_stack_usage_info)
4565 {
4566 cfun->su = ggc_alloc_cleared_stack_usage ();
4567 cfun->su->static_stack_size = -1;
4568 }
4569
4570 cse_not_expected = ! optimize;
4571
4572 /* Caller save not needed yet. */
4573 caller_save_needed = 0;
4574
4575 /* We haven't done register allocation yet. */
4576 reg_renumber = 0;
4577
4578 /* Indicate that we have not instantiated virtual registers yet. */
4579 virtuals_instantiated = 0;
4580
4581 /* Indicate that we want CONCATs now. */
4582 generating_concat_p = 1;
4583
4584 /* Indicate we have no need of a frame pointer yet. */
4585 frame_pointer_needed = 0;
4586 }
4587
4588 /* Initialize the rtl expansion mechanism so that we can do simple things
4589 like generate sequences. This is used to provide a context during global
4590 initialization of some passes. You must call expand_dummy_function_end
4591 to exit this context. */
4592
4593 void
4594 init_dummy_function_start (void)
4595 {
4596 gcc_assert (!in_dummy_function);
4597 in_dummy_function = true;
4598 push_struct_function (NULL_TREE);
4599 prepare_function_start ();
4600 }
4601
4602 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4603 and initialize static variables for generating RTL for the statements
4604 of the function. */
4605
4606 void
4607 init_function_start (tree subr)
4608 {
4609 if (subr && DECL_STRUCT_FUNCTION (subr))
4610 set_cfun (DECL_STRUCT_FUNCTION (subr));
4611 else
4612 allocate_struct_function (subr, false);
4613 prepare_function_start ();
4614 decide_function_section (subr);
4615
4616 /* Warn if this value is an aggregate type,
4617 regardless of which calling convention we are using for it. */
4618 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4619 warning (OPT_Waggregate_return, "function returns an aggregate");
4620 }
4621
4622
4623 void
4624 expand_main_function (void)
4625 {
4626 #if (defined(INVOKE__main) \
4627 || (!defined(HAS_INIT_SECTION) \
4628 && !defined(INIT_SECTION_ASM_OP) \
4629 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4630 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4631 #endif
4632 }
4633 \f
4634 /* Expand code to initialize the stack_protect_guard. This is invoked at
4635 the beginning of a function to be protected. */
4636
4637 #ifndef HAVE_stack_protect_set
4638 # define HAVE_stack_protect_set 0
4639 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4640 #endif
4641
4642 void
4643 stack_protect_prologue (void)
4644 {
4645 tree guard_decl = targetm.stack_protect_guard ();
4646 rtx x, y;
4647
4648 x = expand_normal (crtl->stack_protect_guard);
4649 y = expand_normal (guard_decl);
4650
4651 /* Allow the target to copy from Y to X without leaking Y into a
4652 register. */
4653 if (HAVE_stack_protect_set)
4654 {
4655 rtx insn = gen_stack_protect_set (x, y);
4656 if (insn)
4657 {
4658 emit_insn (insn);
4659 return;
4660 }
4661 }
4662
4663 /* Otherwise do a straight move. */
4664 emit_move_insn (x, y);
4665 }
4666
4667 /* Expand code to verify the stack_protect_guard. This is invoked at
4668 the end of a function to be protected. */
4669
4670 #ifndef HAVE_stack_protect_test
4671 # define HAVE_stack_protect_test 0
4672 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4673 #endif
4674
4675 void
4676 stack_protect_epilogue (void)
4677 {
4678 tree guard_decl = targetm.stack_protect_guard ();
4679 rtx label = gen_label_rtx ();
4680 rtx x, y, tmp;
4681
4682 x = expand_normal (crtl->stack_protect_guard);
4683 y = expand_normal (guard_decl);
4684
4685 /* Allow the target to compare Y with X without leaking either into
4686 a register. */
4687 switch (HAVE_stack_protect_test != 0)
4688 {
4689 case 1:
4690 tmp = gen_stack_protect_test (x, y, label);
4691 if (tmp)
4692 {
4693 emit_insn (tmp);
4694 break;
4695 }
4696 /* FALLTHRU */
4697
4698 default:
4699 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4700 break;
4701 }
4702
4703 /* The noreturn predictor has been moved to the tree level. The rtl-level
4704 predictors estimate this branch about 20%, which isn't enough to get
4705 things moved out of line. Since this is the only extant case of adding
4706 a noreturn function at the rtl level, it doesn't seem worth doing ought
4707 except adding the prediction by hand. */
4708 tmp = get_last_insn ();
4709 if (JUMP_P (tmp))
4710 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4711
4712 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4713 free_temp_slots ();
4714 emit_label (label);
4715 }
4716 \f
4717 /* Start the RTL for a new function, and set variables used for
4718 emitting RTL.
4719 SUBR is the FUNCTION_DECL node.
4720 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4721 the function's parameters, which must be run at any return statement. */
4722
4723 void
4724 expand_function_start (tree subr)
4725 {
4726 /* Make sure volatile mem refs aren't considered
4727 valid operands of arithmetic insns. */
4728 init_recog_no_volatile ();
4729
4730 crtl->profile
4731 = (profile_flag
4732 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4733
4734 crtl->limit_stack
4735 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4736
4737 /* Make the label for return statements to jump to. Do not special
4738 case machines with special return instructions -- they will be
4739 handled later during jump, ifcvt, or epilogue creation. */
4740 return_label = gen_label_rtx ();
4741
4742 /* Initialize rtx used to return the value. */
4743 /* Do this before assign_parms so that we copy the struct value address
4744 before any library calls that assign parms might generate. */
4745
4746 /* Decide whether to return the value in memory or in a register. */
4747 if (aggregate_value_p (DECL_RESULT (subr), subr))
4748 {
4749 /* Returning something that won't go in a register. */
4750 rtx value_address = 0;
4751
4752 #ifdef PCC_STATIC_STRUCT_RETURN
4753 if (cfun->returns_pcc_struct)
4754 {
4755 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4756 value_address = assemble_static_space (size);
4757 }
4758 else
4759 #endif
4760 {
4761 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4762 /* Expect to be passed the address of a place to store the value.
4763 If it is passed as an argument, assign_parms will take care of
4764 it. */
4765 if (sv)
4766 {
4767 value_address = gen_reg_rtx (Pmode);
4768 emit_move_insn (value_address, sv);
4769 }
4770 }
4771 if (value_address)
4772 {
4773 rtx x = value_address;
4774 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4775 {
4776 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4777 set_mem_attributes (x, DECL_RESULT (subr), 1);
4778 }
4779 SET_DECL_RTL (DECL_RESULT (subr), x);
4780 }
4781 }
4782 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4783 /* If return mode is void, this decl rtl should not be used. */
4784 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4785 else
4786 {
4787 /* Compute the return values into a pseudo reg, which we will copy
4788 into the true return register after the cleanups are done. */
4789 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4790 if (TYPE_MODE (return_type) != BLKmode
4791 && targetm.calls.return_in_msb (return_type))
4792 /* expand_function_end will insert the appropriate padding in
4793 this case. Use the return value's natural (unpadded) mode
4794 within the function proper. */
4795 SET_DECL_RTL (DECL_RESULT (subr),
4796 gen_reg_rtx (TYPE_MODE (return_type)));
4797 else
4798 {
4799 /* In order to figure out what mode to use for the pseudo, we
4800 figure out what the mode of the eventual return register will
4801 actually be, and use that. */
4802 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4803
4804 /* Structures that are returned in registers are not
4805 aggregate_value_p, so we may see a PARALLEL or a REG. */
4806 if (REG_P (hard_reg))
4807 SET_DECL_RTL (DECL_RESULT (subr),
4808 gen_reg_rtx (GET_MODE (hard_reg)));
4809 else
4810 {
4811 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4812 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4813 }
4814 }
4815
4816 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4817 result to the real return register(s). */
4818 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4819 }
4820
4821 /* Initialize rtx for parameters and local variables.
4822 In some cases this requires emitting insns. */
4823 assign_parms (subr);
4824
4825 /* If function gets a static chain arg, store it. */
4826 if (cfun->static_chain_decl)
4827 {
4828 tree parm = cfun->static_chain_decl;
4829 rtx local, chain, insn;
4830
4831 local = gen_reg_rtx (Pmode);
4832 chain = targetm.calls.static_chain (current_function_decl, true);
4833
4834 set_decl_incoming_rtl (parm, chain, false);
4835 SET_DECL_RTL (parm, local);
4836 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4837
4838 insn = emit_move_insn (local, chain);
4839
4840 /* Mark the register as eliminable, similar to parameters. */
4841 if (MEM_P (chain)
4842 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4843 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4844 }
4845
4846 /* If the function receives a non-local goto, then store the
4847 bits we need to restore the frame pointer. */
4848 if (cfun->nonlocal_goto_save_area)
4849 {
4850 tree t_save;
4851 rtx r_save;
4852
4853 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4854 gcc_assert (DECL_RTL_SET_P (var));
4855
4856 t_save = build4 (ARRAY_REF,
4857 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4858 cfun->nonlocal_goto_save_area,
4859 integer_zero_node, NULL_TREE, NULL_TREE);
4860 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4861 gcc_assert (GET_MODE (r_save) == Pmode);
4862
4863 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4864 update_nonlocal_goto_save_area ();
4865 }
4866
4867 /* The following was moved from init_function_start.
4868 The move is supposed to make sdb output more accurate. */
4869 /* Indicate the beginning of the function body,
4870 as opposed to parm setup. */
4871 emit_note (NOTE_INSN_FUNCTION_BEG);
4872
4873 gcc_assert (NOTE_P (get_last_insn ()));
4874
4875 parm_birth_insn = get_last_insn ();
4876
4877 if (crtl->profile)
4878 {
4879 #ifdef PROFILE_HOOK
4880 PROFILE_HOOK (current_function_funcdef_no);
4881 #endif
4882 }
4883
4884 /* If we are doing generic stack checking, the probe should go here. */
4885 if (flag_stack_check == GENERIC_STACK_CHECK)
4886 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4887 }
4888 \f
4889 /* Undo the effects of init_dummy_function_start. */
4890 void
4891 expand_dummy_function_end (void)
4892 {
4893 gcc_assert (in_dummy_function);
4894
4895 /* End any sequences that failed to be closed due to syntax errors. */
4896 while (in_sequence_p ())
4897 end_sequence ();
4898
4899 /* Outside function body, can't compute type's actual size
4900 until next function's body starts. */
4901
4902 free_after_parsing (cfun);
4903 free_after_compilation (cfun);
4904 pop_cfun ();
4905 in_dummy_function = false;
4906 }
4907
4908 /* Call DOIT for each hard register used as a return value from
4909 the current function. */
4910
4911 void
4912 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4913 {
4914 rtx outgoing = crtl->return_rtx;
4915
4916 if (! outgoing)
4917 return;
4918
4919 if (REG_P (outgoing))
4920 (*doit) (outgoing, arg);
4921 else if (GET_CODE (outgoing) == PARALLEL)
4922 {
4923 int i;
4924
4925 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4926 {
4927 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4928
4929 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4930 (*doit) (x, arg);
4931 }
4932 }
4933 }
4934
4935 static void
4936 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4937 {
4938 emit_clobber (reg);
4939 }
4940
4941 void
4942 clobber_return_register (void)
4943 {
4944 diddle_return_value (do_clobber_return_reg, NULL);
4945
4946 /* In case we do use pseudo to return value, clobber it too. */
4947 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4948 {
4949 tree decl_result = DECL_RESULT (current_function_decl);
4950 rtx decl_rtl = DECL_RTL (decl_result);
4951 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4952 {
4953 do_clobber_return_reg (decl_rtl, NULL);
4954 }
4955 }
4956 }
4957
4958 static void
4959 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4960 {
4961 emit_use (reg);
4962 }
4963
4964 static void
4965 use_return_register (void)
4966 {
4967 diddle_return_value (do_use_return_reg, NULL);
4968 }
4969
4970 /* Possibly warn about unused parameters. */
4971 void
4972 do_warn_unused_parameter (tree fn)
4973 {
4974 tree decl;
4975
4976 for (decl = DECL_ARGUMENTS (fn);
4977 decl; decl = DECL_CHAIN (decl))
4978 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4979 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4980 && !TREE_NO_WARNING (decl))
4981 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4982 }
4983
4984 static GTY(()) rtx initial_trampoline;
4985
4986 /* Generate RTL for the end of the current function. */
4987
4988 void
4989 expand_function_end (void)
4990 {
4991 rtx clobber_after;
4992
4993 /* If arg_pointer_save_area was referenced only from a nested
4994 function, we will not have initialized it yet. Do that now. */
4995 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4996 get_arg_pointer_save_area ();
4997
4998 /* If we are doing generic stack checking and this function makes calls,
4999 do a stack probe at the start of the function to ensure we have enough
5000 space for another stack frame. */
5001 if (flag_stack_check == GENERIC_STACK_CHECK)
5002 {
5003 rtx insn, seq;
5004
5005 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5006 if (CALL_P (insn))
5007 {
5008 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5009 start_sequence ();
5010 if (STACK_CHECK_MOVING_SP)
5011 anti_adjust_stack_and_probe (max_frame_size, true);
5012 else
5013 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5014 seq = get_insns ();
5015 end_sequence ();
5016 set_insn_locations (seq, prologue_location);
5017 emit_insn_before (seq, stack_check_probe_note);
5018 break;
5019 }
5020 }
5021
5022 /* End any sequences that failed to be closed due to syntax errors. */
5023 while (in_sequence_p ())
5024 end_sequence ();
5025
5026 clear_pending_stack_adjust ();
5027 do_pending_stack_adjust ();
5028
5029 /* Output a linenumber for the end of the function.
5030 SDB depends on this. */
5031 set_curr_insn_location (input_location);
5032
5033 /* Before the return label (if any), clobber the return
5034 registers so that they are not propagated live to the rest of
5035 the function. This can only happen with functions that drop
5036 through; if there had been a return statement, there would
5037 have either been a return rtx, or a jump to the return label.
5038
5039 We delay actual code generation after the current_function_value_rtx
5040 is computed. */
5041 clobber_after = get_last_insn ();
5042
5043 /* Output the label for the actual return from the function. */
5044 emit_label (return_label);
5045
5046 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5047 {
5048 /* Let except.c know where it should emit the call to unregister
5049 the function context for sjlj exceptions. */
5050 if (flag_exceptions)
5051 sjlj_emit_function_exit_after (get_last_insn ());
5052 }
5053 else
5054 {
5055 /* We want to ensure that instructions that may trap are not
5056 moved into the epilogue by scheduling, because we don't
5057 always emit unwind information for the epilogue. */
5058 if (cfun->can_throw_non_call_exceptions)
5059 emit_insn (gen_blockage ());
5060 }
5061
5062 /* If this is an implementation of throw, do what's necessary to
5063 communicate between __builtin_eh_return and the epilogue. */
5064 expand_eh_return ();
5065
5066 /* If scalar return value was computed in a pseudo-reg, or was a named
5067 return value that got dumped to the stack, copy that to the hard
5068 return register. */
5069 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5070 {
5071 tree decl_result = DECL_RESULT (current_function_decl);
5072 rtx decl_rtl = DECL_RTL (decl_result);
5073
5074 if (REG_P (decl_rtl)
5075 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5076 : DECL_REGISTER (decl_result))
5077 {
5078 rtx real_decl_rtl = crtl->return_rtx;
5079
5080 /* This should be set in assign_parms. */
5081 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5082
5083 /* If this is a BLKmode structure being returned in registers,
5084 then use the mode computed in expand_return. Note that if
5085 decl_rtl is memory, then its mode may have been changed,
5086 but that crtl->return_rtx has not. */
5087 if (GET_MODE (real_decl_rtl) == BLKmode)
5088 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5089
5090 /* If a non-BLKmode return value should be padded at the least
5091 significant end of the register, shift it left by the appropriate
5092 amount. BLKmode results are handled using the group load/store
5093 machinery. */
5094 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5095 && REG_P (real_decl_rtl)
5096 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5097 {
5098 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5099 REGNO (real_decl_rtl)),
5100 decl_rtl);
5101 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5102 }
5103 /* If a named return value dumped decl_return to memory, then
5104 we may need to re-do the PROMOTE_MODE signed/unsigned
5105 extension. */
5106 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5107 {
5108 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5109 promote_function_mode (TREE_TYPE (decl_result),
5110 GET_MODE (decl_rtl), &unsignedp,
5111 TREE_TYPE (current_function_decl), 1);
5112
5113 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5114 }
5115 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5116 {
5117 /* If expand_function_start has created a PARALLEL for decl_rtl,
5118 move the result to the real return registers. Otherwise, do
5119 a group load from decl_rtl for a named return. */
5120 if (GET_CODE (decl_rtl) == PARALLEL)
5121 emit_group_move (real_decl_rtl, decl_rtl);
5122 else
5123 emit_group_load (real_decl_rtl, decl_rtl,
5124 TREE_TYPE (decl_result),
5125 int_size_in_bytes (TREE_TYPE (decl_result)));
5126 }
5127 /* In the case of complex integer modes smaller than a word, we'll
5128 need to generate some non-trivial bitfield insertions. Do that
5129 on a pseudo and not the hard register. */
5130 else if (GET_CODE (decl_rtl) == CONCAT
5131 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5132 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5133 {
5134 int old_generating_concat_p;
5135 rtx tmp;
5136
5137 old_generating_concat_p = generating_concat_p;
5138 generating_concat_p = 0;
5139 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5140 generating_concat_p = old_generating_concat_p;
5141
5142 emit_move_insn (tmp, decl_rtl);
5143 emit_move_insn (real_decl_rtl, tmp);
5144 }
5145 else
5146 emit_move_insn (real_decl_rtl, decl_rtl);
5147 }
5148 }
5149
5150 /* If returning a structure, arrange to return the address of the value
5151 in a place where debuggers expect to find it.
5152
5153 If returning a structure PCC style,
5154 the caller also depends on this value.
5155 And cfun->returns_pcc_struct is not necessarily set. */
5156 if (cfun->returns_struct
5157 || cfun->returns_pcc_struct)
5158 {
5159 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5160 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5161 rtx outgoing;
5162
5163 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5164 type = TREE_TYPE (type);
5165 else
5166 value_address = XEXP (value_address, 0);
5167
5168 outgoing = targetm.calls.function_value (build_pointer_type (type),
5169 current_function_decl, true);
5170
5171 /* Mark this as a function return value so integrate will delete the
5172 assignment and USE below when inlining this function. */
5173 REG_FUNCTION_VALUE_P (outgoing) = 1;
5174
5175 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5176 value_address = convert_memory_address (GET_MODE (outgoing),
5177 value_address);
5178
5179 emit_move_insn (outgoing, value_address);
5180
5181 /* Show return register used to hold result (in this case the address
5182 of the result. */
5183 crtl->return_rtx = outgoing;
5184 }
5185
5186 /* Emit the actual code to clobber return register. */
5187 {
5188 rtx seq;
5189
5190 start_sequence ();
5191 clobber_return_register ();
5192 seq = get_insns ();
5193 end_sequence ();
5194
5195 emit_insn_after (seq, clobber_after);
5196 }
5197
5198 /* Output the label for the naked return from the function. */
5199 if (naked_return_label)
5200 emit_label (naked_return_label);
5201
5202 /* @@@ This is a kludge. We want to ensure that instructions that
5203 may trap are not moved into the epilogue by scheduling, because
5204 we don't always emit unwind information for the epilogue. */
5205 if (cfun->can_throw_non_call_exceptions
5206 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5207 emit_insn (gen_blockage ());
5208
5209 /* If stack protection is enabled for this function, check the guard. */
5210 if (crtl->stack_protect_guard)
5211 stack_protect_epilogue ();
5212
5213 /* If we had calls to alloca, and this machine needs
5214 an accurate stack pointer to exit the function,
5215 insert some code to save and restore the stack pointer. */
5216 if (! EXIT_IGNORE_STACK
5217 && cfun->calls_alloca)
5218 {
5219 rtx tem = 0, seq;
5220
5221 start_sequence ();
5222 emit_stack_save (SAVE_FUNCTION, &tem);
5223 seq = get_insns ();
5224 end_sequence ();
5225 emit_insn_before (seq, parm_birth_insn);
5226
5227 emit_stack_restore (SAVE_FUNCTION, tem);
5228 }
5229
5230 /* ??? This should no longer be necessary since stupid is no longer with
5231 us, but there are some parts of the compiler (eg reload_combine, and
5232 sh mach_dep_reorg) that still try and compute their own lifetime info
5233 instead of using the general framework. */
5234 use_return_register ();
5235 }
5236
5237 rtx
5238 get_arg_pointer_save_area (void)
5239 {
5240 rtx ret = arg_pointer_save_area;
5241
5242 if (! ret)
5243 {
5244 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5245 arg_pointer_save_area = ret;
5246 }
5247
5248 if (! crtl->arg_pointer_save_area_init)
5249 {
5250 rtx seq;
5251
5252 /* Save the arg pointer at the beginning of the function. The
5253 generated stack slot may not be a valid memory address, so we
5254 have to check it and fix it if necessary. */
5255 start_sequence ();
5256 emit_move_insn (validize_mem (ret),
5257 crtl->args.internal_arg_pointer);
5258 seq = get_insns ();
5259 end_sequence ();
5260
5261 push_topmost_sequence ();
5262 emit_insn_after (seq, entry_of_function ());
5263 pop_topmost_sequence ();
5264
5265 crtl->arg_pointer_save_area_init = true;
5266 }
5267
5268 return ret;
5269 }
5270 \f
5271 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5272 for the first time. */
5273
5274 static void
5275 record_insns (rtx insns, rtx end, htab_t *hashp)
5276 {
5277 rtx tmp;
5278 htab_t hash = *hashp;
5279
5280 if (hash == NULL)
5281 *hashp = hash
5282 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5283
5284 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5285 {
5286 void **slot = htab_find_slot (hash, tmp, INSERT);
5287 gcc_assert (*slot == NULL);
5288 *slot = tmp;
5289 }
5290 }
5291
5292 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5293 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5294 insn, then record COPY as well. */
5295
5296 void
5297 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5298 {
5299 htab_t hash;
5300 void **slot;
5301
5302 hash = epilogue_insn_hash;
5303 if (!hash || !htab_find (hash, insn))
5304 {
5305 hash = prologue_insn_hash;
5306 if (!hash || !htab_find (hash, insn))
5307 return;
5308 }
5309
5310 slot = htab_find_slot (hash, copy, INSERT);
5311 gcc_assert (*slot == NULL);
5312 *slot = copy;
5313 }
5314
5315 /* Set the location of the insn chain starting at INSN to LOC. */
5316 static void
5317 set_insn_locations (rtx insn, int loc)
5318 {
5319 while (insn != NULL_RTX)
5320 {
5321 if (INSN_P (insn))
5322 INSN_LOCATION (insn) = loc;
5323 insn = NEXT_INSN (insn);
5324 }
5325 }
5326
5327 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5328 we can be running after reorg, SEQUENCE rtl is possible. */
5329
5330 static bool
5331 contains (const_rtx insn, htab_t hash)
5332 {
5333 if (hash == NULL)
5334 return false;
5335
5336 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5337 {
5338 int i;
5339 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5340 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5341 return true;
5342 return false;
5343 }
5344
5345 return htab_find (hash, insn) != NULL;
5346 }
5347
5348 int
5349 prologue_epilogue_contains (const_rtx insn)
5350 {
5351 if (contains (insn, prologue_insn_hash))
5352 return 1;
5353 if (contains (insn, epilogue_insn_hash))
5354 return 1;
5355 return 0;
5356 }
5357
5358 #ifdef HAVE_simple_return
5359
5360 /* Return true if INSN requires the stack frame to be set up.
5361 PROLOGUE_USED contains the hard registers used in the function
5362 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5363 prologue to set up for the function. */
5364 bool
5365 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5366 HARD_REG_SET set_up_by_prologue)
5367 {
5368 df_ref *df_rec;
5369 HARD_REG_SET hardregs;
5370 unsigned regno;
5371
5372 if (CALL_P (insn))
5373 return !SIBLING_CALL_P (insn);
5374
5375 /* We need a frame to get the unique CFA expected by the unwinder. */
5376 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5377 return true;
5378
5379 CLEAR_HARD_REG_SET (hardregs);
5380 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5381 {
5382 rtx dreg = DF_REF_REG (*df_rec);
5383
5384 if (!REG_P (dreg))
5385 continue;
5386
5387 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5388 REGNO (dreg));
5389 }
5390 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5391 return true;
5392 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5393 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5394 if (TEST_HARD_REG_BIT (hardregs, regno)
5395 && df_regs_ever_live_p (regno))
5396 return true;
5397
5398 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5399 {
5400 rtx reg = DF_REF_REG (*df_rec);
5401
5402 if (!REG_P (reg))
5403 continue;
5404
5405 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5406 REGNO (reg));
5407 }
5408 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5409 return true;
5410
5411 return false;
5412 }
5413
5414 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5415 and if BB is its only predecessor. Return that block if so,
5416 otherwise return null. */
5417
5418 static basic_block
5419 next_block_for_reg (basic_block bb, int regno, int end_regno)
5420 {
5421 edge e, live_edge;
5422 edge_iterator ei;
5423 bitmap live;
5424 int i;
5425
5426 live_edge = NULL;
5427 FOR_EACH_EDGE (e, ei, bb->succs)
5428 {
5429 live = df_get_live_in (e->dest);
5430 for (i = regno; i < end_regno; i++)
5431 if (REGNO_REG_SET_P (live, i))
5432 {
5433 if (live_edge && live_edge != e)
5434 return NULL;
5435 live_edge = e;
5436 }
5437 }
5438
5439 /* We can sometimes encounter dead code. Don't try to move it
5440 into the exit block. */
5441 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5442 return NULL;
5443
5444 /* Reject targets of abnormal edges. This is needed for correctness
5445 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5446 exception edges even though it is generally treated as call-saved
5447 for the majority of the compilation. Moving across abnormal edges
5448 isn't going to be interesting for shrink-wrap usage anyway. */
5449 if (live_edge->flags & EDGE_ABNORMAL)
5450 return NULL;
5451
5452 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5453 return NULL;
5454
5455 return live_edge->dest;
5456 }
5457
5458 /* Try to move INSN from BB to a successor. Return true on success.
5459 USES and DEFS are the set of registers that are used and defined
5460 after INSN in BB. */
5461
5462 static bool
5463 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5464 const HARD_REG_SET uses,
5465 const HARD_REG_SET defs)
5466 {
5467 rtx set, src, dest;
5468 bitmap live_out, live_in, bb_uses, bb_defs;
5469 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5470 basic_block next_block;
5471
5472 /* Look for a simple register copy. */
5473 set = single_set (insn);
5474 if (!set)
5475 return false;
5476 src = SET_SRC (set);
5477 dest = SET_DEST (set);
5478 if (!REG_P (dest) || !REG_P (src))
5479 return false;
5480
5481 /* Make sure that the source register isn't defined later in BB. */
5482 sregno = REGNO (src);
5483 end_sregno = END_REGNO (src);
5484 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5485 return false;
5486
5487 /* Make sure that the destination register isn't referenced later in BB. */
5488 dregno = REGNO (dest);
5489 end_dregno = END_REGNO (dest);
5490 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5491 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5492 return false;
5493
5494 /* See whether there is a successor block to which we could move INSN. */
5495 next_block = next_block_for_reg (bb, dregno, end_dregno);
5496 if (!next_block)
5497 return false;
5498
5499 /* At this point we are committed to moving INSN, but let's try to
5500 move it as far as we can. */
5501 do
5502 {
5503 live_out = df_get_live_out (bb);
5504 live_in = df_get_live_in (next_block);
5505 bb = next_block;
5506
5507 /* Check whether BB uses DEST or clobbers DEST. We need to add
5508 INSN to BB if so. Either way, DEST is no longer live on entry,
5509 except for any part that overlaps SRC (next loop). */
5510 bb_uses = &DF_LR_BB_INFO (bb)->use;
5511 bb_defs = &DF_LR_BB_INFO (bb)->def;
5512 for (i = dregno; i < end_dregno; i++)
5513 {
5514 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i))
5515 next_block = NULL;
5516 CLEAR_REGNO_REG_SET (live_out, i);
5517 CLEAR_REGNO_REG_SET (live_in, i);
5518 }
5519
5520 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5521 Either way, SRC is now live on entry. */
5522 for (i = sregno; i < end_sregno; i++)
5523 {
5524 if (REGNO_REG_SET_P (bb_defs, i))
5525 next_block = NULL;
5526 SET_REGNO_REG_SET (live_out, i);
5527 SET_REGNO_REG_SET (live_in, i);
5528 }
5529
5530 /* If we don't need to add the move to BB, look for a single
5531 successor block. */
5532 if (next_block)
5533 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5534 }
5535 while (next_block);
5536
5537 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5538 (next loop). */
5539 for (i = dregno; i < end_dregno; i++)
5540 {
5541 CLEAR_REGNO_REG_SET (bb_uses, i);
5542 SET_REGNO_REG_SET (bb_defs, i);
5543 }
5544
5545 /* BB now uses SRC. */
5546 for (i = sregno; i < end_sregno; i++)
5547 SET_REGNO_REG_SET (bb_uses, i);
5548
5549 emit_insn_after (PATTERN (insn), bb_note (bb));
5550 delete_insn (insn);
5551 return true;
5552 }
5553
5554 /* Look for register copies in the first block of the function, and move
5555 them down into successor blocks if the register is used only on one
5556 path. This exposes more opportunities for shrink-wrapping. These
5557 kinds of sets often occur when incoming argument registers are moved
5558 to call-saved registers because their values are live across one or
5559 more calls during the function. */
5560
5561 static void
5562 prepare_shrink_wrap (basic_block entry_block)
5563 {
5564 rtx insn, curr, x;
5565 HARD_REG_SET uses, defs;
5566 df_ref *ref;
5567
5568 CLEAR_HARD_REG_SET (uses);
5569 CLEAR_HARD_REG_SET (defs);
5570 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5571 if (NONDEBUG_INSN_P (insn)
5572 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5573 {
5574 /* Add all defined registers to DEFs. */
5575 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5576 {
5577 x = DF_REF_REG (*ref);
5578 if (REG_P (x) && HARD_REGISTER_P (x))
5579 SET_HARD_REG_BIT (defs, REGNO (x));
5580 }
5581
5582 /* Add all used registers to USESs. */
5583 for (ref = DF_INSN_USES (insn); *ref; ref++)
5584 {
5585 x = DF_REF_REG (*ref);
5586 if (REG_P (x) && HARD_REGISTER_P (x))
5587 SET_HARD_REG_BIT (uses, REGNO (x));
5588 }
5589 }
5590 }
5591
5592 #endif
5593
5594 #ifdef HAVE_return
5595 /* Insert use of return register before the end of BB. */
5596
5597 static void
5598 emit_use_return_register_into_block (basic_block bb)
5599 {
5600 rtx seq, insn;
5601 start_sequence ();
5602 use_return_register ();
5603 seq = get_insns ();
5604 end_sequence ();
5605 insn = BB_END (bb);
5606 #ifdef HAVE_cc0
5607 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5608 insn = prev_cc0_setter (insn);
5609 #endif
5610 emit_insn_before (seq, insn);
5611 }
5612
5613
5614 /* Create a return pattern, either simple_return or return, depending on
5615 simple_p. */
5616
5617 static rtx
5618 gen_return_pattern (bool simple_p)
5619 {
5620 #ifdef HAVE_simple_return
5621 return simple_p ? gen_simple_return () : gen_return ();
5622 #else
5623 gcc_assert (!simple_p);
5624 return gen_return ();
5625 #endif
5626 }
5627
5628 /* Insert an appropriate return pattern at the end of block BB. This
5629 also means updating block_for_insn appropriately. SIMPLE_P is
5630 the same as in gen_return_pattern and passed to it. */
5631
5632 static void
5633 emit_return_into_block (bool simple_p, basic_block bb)
5634 {
5635 rtx jump, pat;
5636 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5637 pat = PATTERN (jump);
5638 if (GET_CODE (pat) == PARALLEL)
5639 pat = XVECEXP (pat, 0, 0);
5640 gcc_assert (ANY_RETURN_P (pat));
5641 JUMP_LABEL (jump) = pat;
5642 }
5643 #endif
5644
5645 /* Set JUMP_LABEL for a return insn. */
5646
5647 void
5648 set_return_jump_label (rtx returnjump)
5649 {
5650 rtx pat = PATTERN (returnjump);
5651 if (GET_CODE (pat) == PARALLEL)
5652 pat = XVECEXP (pat, 0, 0);
5653 if (ANY_RETURN_P (pat))
5654 JUMP_LABEL (returnjump) = pat;
5655 else
5656 JUMP_LABEL (returnjump) = ret_rtx;
5657 }
5658
5659 #ifdef HAVE_simple_return
5660 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5661 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5662 static void
5663 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5664 bitmap_head *need_prologue)
5665 {
5666 edge_iterator ei;
5667 edge e;
5668 rtx insn = BB_END (bb);
5669
5670 /* We know BB has a single successor, so there is no need to copy a
5671 simple jump at the end of BB. */
5672 if (simplejump_p (insn))
5673 insn = PREV_INSN (insn);
5674
5675 start_sequence ();
5676 duplicate_insn_chain (BB_HEAD (bb), insn);
5677 if (dump_file)
5678 {
5679 unsigned count = 0;
5680 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5681 if (active_insn_p (insn))
5682 ++count;
5683 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5684 bb->index, copy_bb->index, count);
5685 }
5686 insn = get_insns ();
5687 end_sequence ();
5688 emit_insn_before (insn, before);
5689
5690 /* Redirect all the paths that need no prologue into copy_bb. */
5691 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5692 if (!bitmap_bit_p (need_prologue, e->src->index))
5693 {
5694 int freq = EDGE_FREQUENCY (e);
5695 copy_bb->count += e->count;
5696 copy_bb->frequency += EDGE_FREQUENCY (e);
5697 e->dest->count -= e->count;
5698 if (e->dest->count < 0)
5699 e->dest->count = 0;
5700 e->dest->frequency -= freq;
5701 if (e->dest->frequency < 0)
5702 e->dest->frequency = 0;
5703 redirect_edge_and_branch_force (e, copy_bb);
5704 continue;
5705 }
5706 else
5707 ei_next (&ei);
5708 }
5709 #endif
5710
5711 #if defined (HAVE_return) || defined (HAVE_simple_return)
5712 /* Return true if there are any active insns between HEAD and TAIL. */
5713 static bool
5714 active_insn_between (rtx head, rtx tail)
5715 {
5716 while (tail)
5717 {
5718 if (active_insn_p (tail))
5719 return true;
5720 if (tail == head)
5721 return false;
5722 tail = PREV_INSN (tail);
5723 }
5724 return false;
5725 }
5726
5727 /* LAST_BB is a block that exits, and empty of active instructions.
5728 Examine its predecessors for jumps that can be converted to
5729 (conditional) returns. */
5730 static vec<edge>
5731 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5732 vec<edge> unconverted ATTRIBUTE_UNUSED)
5733 {
5734 int i;
5735 basic_block bb;
5736 rtx label;
5737 edge_iterator ei;
5738 edge e;
5739 vec<basic_block> src_bbs;
5740
5741 src_bbs.create (EDGE_COUNT (last_bb->preds));
5742 FOR_EACH_EDGE (e, ei, last_bb->preds)
5743 if (e->src != ENTRY_BLOCK_PTR)
5744 src_bbs.quick_push (e->src);
5745
5746 label = BB_HEAD (last_bb);
5747
5748 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5749 {
5750 rtx jump = BB_END (bb);
5751
5752 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5753 continue;
5754
5755 e = find_edge (bb, last_bb);
5756
5757 /* If we have an unconditional jump, we can replace that
5758 with a simple return instruction. */
5759 if (simplejump_p (jump))
5760 {
5761 /* The use of the return register might be present in the exit
5762 fallthru block. Either:
5763 - removing the use is safe, and we should remove the use in
5764 the exit fallthru block, or
5765 - removing the use is not safe, and we should add it here.
5766 For now, we conservatively choose the latter. Either of the
5767 2 helps in crossjumping. */
5768 emit_use_return_register_into_block (bb);
5769
5770 emit_return_into_block (simple_p, bb);
5771 delete_insn (jump);
5772 }
5773
5774 /* If we have a conditional jump branching to the last
5775 block, we can try to replace that with a conditional
5776 return instruction. */
5777 else if (condjump_p (jump))
5778 {
5779 rtx dest;
5780
5781 if (simple_p)
5782 dest = simple_return_rtx;
5783 else
5784 dest = ret_rtx;
5785 if (!redirect_jump (jump, dest, 0))
5786 {
5787 #ifdef HAVE_simple_return
5788 if (simple_p)
5789 {
5790 if (dump_file)
5791 fprintf (dump_file,
5792 "Failed to redirect bb %d branch.\n", bb->index);
5793 unconverted.safe_push (e);
5794 }
5795 #endif
5796 continue;
5797 }
5798
5799 /* See comment in simplejump_p case above. */
5800 emit_use_return_register_into_block (bb);
5801
5802 /* If this block has only one successor, it both jumps
5803 and falls through to the fallthru block, so we can't
5804 delete the edge. */
5805 if (single_succ_p (bb))
5806 continue;
5807 }
5808 else
5809 {
5810 #ifdef HAVE_simple_return
5811 if (simple_p)
5812 {
5813 if (dump_file)
5814 fprintf (dump_file,
5815 "Failed to redirect bb %d branch.\n", bb->index);
5816 unconverted.safe_push (e);
5817 }
5818 #endif
5819 continue;
5820 }
5821
5822 /* Fix up the CFG for the successful change we just made. */
5823 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5824 e->flags &= ~EDGE_CROSSING;
5825 }
5826 src_bbs.release ();
5827 return unconverted;
5828 }
5829
5830 /* Emit a return insn for the exit fallthru block. */
5831 static basic_block
5832 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5833 {
5834 basic_block last_bb = exit_fallthru_edge->src;
5835
5836 if (JUMP_P (BB_END (last_bb)))
5837 {
5838 last_bb = split_edge (exit_fallthru_edge);
5839 exit_fallthru_edge = single_succ_edge (last_bb);
5840 }
5841 emit_barrier_after (BB_END (last_bb));
5842 emit_return_into_block (simple_p, last_bb);
5843 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5844 return last_bb;
5845 }
5846 #endif
5847
5848
5849 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5850 this into place with notes indicating where the prologue ends and where
5851 the epilogue begins. Update the basic block information when possible.
5852
5853 Notes on epilogue placement:
5854 There are several kinds of edges to the exit block:
5855 * a single fallthru edge from LAST_BB
5856 * possibly, edges from blocks containing sibcalls
5857 * possibly, fake edges from infinite loops
5858
5859 The epilogue is always emitted on the fallthru edge from the last basic
5860 block in the function, LAST_BB, into the exit block.
5861
5862 If LAST_BB is empty except for a label, it is the target of every
5863 other basic block in the function that ends in a return. If a
5864 target has a return or simple_return pattern (possibly with
5865 conditional variants), these basic blocks can be changed so that a
5866 return insn is emitted into them, and their target is adjusted to
5867 the real exit block.
5868
5869 Notes on shrink wrapping: We implement a fairly conservative
5870 version of shrink-wrapping rather than the textbook one. We only
5871 generate a single prologue and a single epilogue. This is
5872 sufficient to catch a number of interesting cases involving early
5873 exits.
5874
5875 First, we identify the blocks that require the prologue to occur before
5876 them. These are the ones that modify a call-saved register, or reference
5877 any of the stack or frame pointer registers. To simplify things, we then
5878 mark everything reachable from these blocks as also requiring a prologue.
5879 This takes care of loops automatically, and avoids the need to examine
5880 whether MEMs reference the frame, since it is sufficient to check for
5881 occurrences of the stack or frame pointer.
5882
5883 We then compute the set of blocks for which the need for a prologue
5884 is anticipatable (borrowing terminology from the shrink-wrapping
5885 description in Muchnick's book). These are the blocks which either
5886 require a prologue themselves, or those that have only successors
5887 where the prologue is anticipatable. The prologue needs to be
5888 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5889 is not. For the moment, we ensure that only one such edge exists.
5890
5891 The epilogue is placed as described above, but we make a
5892 distinction between inserting return and simple_return patterns
5893 when modifying other blocks that end in a return. Blocks that end
5894 in a sibcall omit the sibcall_epilogue if the block is not in
5895 ANTIC. */
5896
5897 static void
5898 thread_prologue_and_epilogue_insns (void)
5899 {
5900 bool inserted;
5901 #ifdef HAVE_simple_return
5902 vec<edge> unconverted_simple_returns = vNULL;
5903 bool nonempty_prologue;
5904 bitmap_head bb_flags;
5905 unsigned max_grow_size;
5906 #endif
5907 rtx returnjump;
5908 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5909 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5910 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5911 edge_iterator ei;
5912
5913 df_analyze ();
5914
5915 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5916
5917 inserted = false;
5918 seq = NULL_RTX;
5919 epilogue_end = NULL_RTX;
5920 returnjump = NULL_RTX;
5921
5922 /* Can't deal with multiple successors of the entry block at the
5923 moment. Function should always have at least one entry
5924 point. */
5925 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5926 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5927 orig_entry_edge = entry_edge;
5928
5929 split_prologue_seq = NULL_RTX;
5930 if (flag_split_stack
5931 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5932 == NULL))
5933 {
5934 #ifndef HAVE_split_stack_prologue
5935 gcc_unreachable ();
5936 #else
5937 gcc_assert (HAVE_split_stack_prologue);
5938
5939 start_sequence ();
5940 emit_insn (gen_split_stack_prologue ());
5941 split_prologue_seq = get_insns ();
5942 end_sequence ();
5943
5944 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5945 set_insn_locations (split_prologue_seq, prologue_location);
5946 #endif
5947 }
5948
5949 prologue_seq = NULL_RTX;
5950 #ifdef HAVE_prologue
5951 if (HAVE_prologue)
5952 {
5953 start_sequence ();
5954 seq = gen_prologue ();
5955 emit_insn (seq);
5956
5957 /* Insert an explicit USE for the frame pointer
5958 if the profiling is on and the frame pointer is required. */
5959 if (crtl->profile && frame_pointer_needed)
5960 emit_use (hard_frame_pointer_rtx);
5961
5962 /* Retain a map of the prologue insns. */
5963 record_insns (seq, NULL, &prologue_insn_hash);
5964 emit_note (NOTE_INSN_PROLOGUE_END);
5965
5966 /* Ensure that instructions are not moved into the prologue when
5967 profiling is on. The call to the profiling routine can be
5968 emitted within the live range of a call-clobbered register. */
5969 if (!targetm.profile_before_prologue () && crtl->profile)
5970 emit_insn (gen_blockage ());
5971
5972 prologue_seq = get_insns ();
5973 end_sequence ();
5974 set_insn_locations (prologue_seq, prologue_location);
5975 }
5976 #endif
5977
5978 #ifdef HAVE_simple_return
5979 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5980
5981 /* Try to perform a kind of shrink-wrapping, making sure the
5982 prologue/epilogue is emitted only around those parts of the
5983 function that require it. */
5984
5985 nonempty_prologue = false;
5986 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5987 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5988 {
5989 nonempty_prologue = true;
5990 break;
5991 }
5992
5993 if (flag_shrink_wrap && HAVE_simple_return
5994 && (targetm.profile_before_prologue () || !crtl->profile)
5995 && nonempty_prologue && !crtl->calls_eh_return)
5996 {
5997 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5998 struct hard_reg_set_container set_up_by_prologue;
5999 rtx p_insn;
6000 vec<basic_block> vec;
6001 basic_block bb;
6002 bitmap_head bb_antic_flags;
6003 bitmap_head bb_on_list;
6004 bitmap_head bb_tail;
6005
6006 if (dump_file)
6007 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
6008
6009 /* Compute the registers set and used in the prologue. */
6010 CLEAR_HARD_REG_SET (prologue_clobbered);
6011 CLEAR_HARD_REG_SET (prologue_used);
6012 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
6013 {
6014 HARD_REG_SET this_used;
6015 if (!NONDEBUG_INSN_P (p_insn))
6016 continue;
6017
6018 CLEAR_HARD_REG_SET (this_used);
6019 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6020 &this_used);
6021 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6022 IOR_HARD_REG_SET (prologue_used, this_used);
6023 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6024 &prologue_clobbered);
6025 }
6026
6027 prepare_shrink_wrap (entry_edge->dest);
6028
6029 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6030 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6031 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6032
6033 /* Find the set of basic blocks that require a stack frame,
6034 and blocks that are too big to be duplicated. */
6035
6036 vec.create (n_basic_blocks);
6037
6038 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6039 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6040 STACK_POINTER_REGNUM);
6041 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6042 if (frame_pointer_needed)
6043 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6044 HARD_FRAME_POINTER_REGNUM);
6045 if (pic_offset_table_rtx)
6046 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6047 PIC_OFFSET_TABLE_REGNUM);
6048 if (crtl->drap_reg)
6049 add_to_hard_reg_set (&set_up_by_prologue.set,
6050 GET_MODE (crtl->drap_reg),
6051 REGNO (crtl->drap_reg));
6052 if (targetm.set_up_by_prologue)
6053 targetm.set_up_by_prologue (&set_up_by_prologue);
6054
6055 /* We don't use a different max size depending on
6056 optimize_bb_for_speed_p because increasing shrink-wrapping
6057 opportunities by duplicating tail blocks can actually result
6058 in an overall decrease in code size. */
6059 max_grow_size = get_uncond_jump_length ();
6060 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6061
6062 FOR_EACH_BB (bb)
6063 {
6064 rtx insn;
6065 unsigned size = 0;
6066
6067 FOR_BB_INSNS (bb, insn)
6068 if (NONDEBUG_INSN_P (insn))
6069 {
6070 if (requires_stack_frame_p (insn, prologue_used,
6071 set_up_by_prologue.set))
6072 {
6073 if (bb == entry_edge->dest)
6074 goto fail_shrinkwrap;
6075 bitmap_set_bit (&bb_flags, bb->index);
6076 vec.quick_push (bb);
6077 break;
6078 }
6079 else if (size <= max_grow_size)
6080 {
6081 size += get_attr_min_length (insn);
6082 if (size > max_grow_size)
6083 bitmap_set_bit (&bb_on_list, bb->index);
6084 }
6085 }
6086 }
6087
6088 /* Blocks that really need a prologue, or are too big for tails. */
6089 bitmap_ior_into (&bb_on_list, &bb_flags);
6090
6091 /* For every basic block that needs a prologue, mark all blocks
6092 reachable from it, so as to ensure they are also seen as
6093 requiring a prologue. */
6094 while (!vec.is_empty ())
6095 {
6096 basic_block tmp_bb = vec.pop ();
6097
6098 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6099 if (e->dest != EXIT_BLOCK_PTR
6100 && bitmap_set_bit (&bb_flags, e->dest->index))
6101 vec.quick_push (e->dest);
6102 }
6103
6104 /* Find the set of basic blocks that need no prologue, have a
6105 single successor, can be duplicated, meet a max size
6106 requirement, and go to the exit via like blocks. */
6107 vec.quick_push (EXIT_BLOCK_PTR);
6108 while (!vec.is_empty ())
6109 {
6110 basic_block tmp_bb = vec.pop ();
6111
6112 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6113 if (single_succ_p (e->src)
6114 && !bitmap_bit_p (&bb_on_list, e->src->index)
6115 && can_duplicate_block_p (e->src))
6116 {
6117 edge pe;
6118 edge_iterator pei;
6119
6120 /* If there is predecessor of e->src which doesn't
6121 need prologue and the edge is complex,
6122 we might not be able to redirect the branch
6123 to a copy of e->src. */
6124 FOR_EACH_EDGE (pe, pei, e->src->preds)
6125 if ((pe->flags & EDGE_COMPLEX) != 0
6126 && !bitmap_bit_p (&bb_flags, pe->src->index))
6127 break;
6128 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6129 vec.quick_push (e->src);
6130 }
6131 }
6132
6133 /* Now walk backwards from every block that is marked as needing
6134 a prologue to compute the bb_antic_flags bitmap. Exclude
6135 tail blocks; They can be duplicated to be used on paths not
6136 needing a prologue. */
6137 bitmap_clear (&bb_on_list);
6138 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6139 FOR_EACH_BB (bb)
6140 {
6141 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6142 continue;
6143 FOR_EACH_EDGE (e, ei, bb->preds)
6144 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6145 && bitmap_set_bit (&bb_on_list, e->src->index))
6146 vec.quick_push (e->src);
6147 }
6148 while (!vec.is_empty ())
6149 {
6150 basic_block tmp_bb = vec.pop ();
6151 bool all_set = true;
6152
6153 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6154 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6155 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6156 {
6157 all_set = false;
6158 break;
6159 }
6160
6161 if (all_set)
6162 {
6163 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6164 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6165 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6166 && bitmap_set_bit (&bb_on_list, e->src->index))
6167 vec.quick_push (e->src);
6168 }
6169 }
6170 /* Find exactly one edge that leads to a block in ANTIC from
6171 a block that isn't. */
6172 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6173 FOR_EACH_BB (bb)
6174 {
6175 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6176 continue;
6177 FOR_EACH_EDGE (e, ei, bb->preds)
6178 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6179 {
6180 if (entry_edge != orig_entry_edge)
6181 {
6182 entry_edge = orig_entry_edge;
6183 if (dump_file)
6184 fprintf (dump_file, "More than one candidate edge.\n");
6185 goto fail_shrinkwrap;
6186 }
6187 if (dump_file)
6188 fprintf (dump_file, "Found candidate edge for "
6189 "shrink-wrapping, %d->%d.\n", e->src->index,
6190 e->dest->index);
6191 entry_edge = e;
6192 }
6193 }
6194
6195 if (entry_edge != orig_entry_edge)
6196 {
6197 /* Test whether the prologue is known to clobber any register
6198 (other than FP or SP) which are live on the edge. */
6199 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6200 if (frame_pointer_needed)
6201 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6202 REG_SET_TO_HARD_REG_SET (live_on_edge,
6203 df_get_live_in (entry_edge->dest));
6204 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6205 {
6206 entry_edge = orig_entry_edge;
6207 if (dump_file)
6208 fprintf (dump_file,
6209 "Shrink-wrapping aborted due to clobber.\n");
6210 }
6211 }
6212 if (entry_edge != orig_entry_edge)
6213 {
6214 crtl->shrink_wrapped = true;
6215 if (dump_file)
6216 fprintf (dump_file, "Performing shrink-wrapping.\n");
6217
6218 /* Find tail blocks reachable from both blocks needing a
6219 prologue and blocks not needing a prologue. */
6220 if (!bitmap_empty_p (&bb_tail))
6221 FOR_EACH_BB (bb)
6222 {
6223 bool some_pro, some_no_pro;
6224 if (!bitmap_bit_p (&bb_tail, bb->index))
6225 continue;
6226 some_pro = some_no_pro = false;
6227 FOR_EACH_EDGE (e, ei, bb->preds)
6228 {
6229 if (bitmap_bit_p (&bb_flags, e->src->index))
6230 some_pro = true;
6231 else
6232 some_no_pro = true;
6233 }
6234 if (some_pro && some_no_pro)
6235 vec.quick_push (bb);
6236 else
6237 bitmap_clear_bit (&bb_tail, bb->index);
6238 }
6239 /* Find the head of each tail. */
6240 while (!vec.is_empty ())
6241 {
6242 basic_block tbb = vec.pop ();
6243
6244 if (!bitmap_bit_p (&bb_tail, tbb->index))
6245 continue;
6246
6247 while (single_succ_p (tbb))
6248 {
6249 tbb = single_succ (tbb);
6250 bitmap_clear_bit (&bb_tail, tbb->index);
6251 }
6252 }
6253 /* Now duplicate the tails. */
6254 if (!bitmap_empty_p (&bb_tail))
6255 FOR_EACH_BB_REVERSE (bb)
6256 {
6257 basic_block copy_bb, tbb;
6258 rtx insert_point;
6259 int eflags;
6260
6261 if (!bitmap_clear_bit (&bb_tail, bb->index))
6262 continue;
6263
6264 /* Create a copy of BB, instructions and all, for
6265 use on paths that don't need a prologue.
6266 Ideal placement of the copy is on a fall-thru edge
6267 or after a block that would jump to the copy. */
6268 FOR_EACH_EDGE (e, ei, bb->preds)
6269 if (!bitmap_bit_p (&bb_flags, e->src->index)
6270 && single_succ_p (e->src))
6271 break;
6272 if (e)
6273 {
6274 copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
6275 NULL_RTX, e->src);
6276 BB_COPY_PARTITION (copy_bb, e->src);
6277 }
6278 else
6279 {
6280 /* Otherwise put the copy at the end of the function. */
6281 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6282 EXIT_BLOCK_PTR->prev_bb);
6283 BB_COPY_PARTITION (copy_bb, bb);
6284 }
6285
6286 insert_point = emit_note_after (NOTE_INSN_DELETED,
6287 BB_END (copy_bb));
6288 emit_barrier_after (BB_END (copy_bb));
6289
6290 tbb = bb;
6291 while (1)
6292 {
6293 dup_block_and_redirect (tbb, copy_bb, insert_point,
6294 &bb_flags);
6295 tbb = single_succ (tbb);
6296 if (tbb == EXIT_BLOCK_PTR)
6297 break;
6298 e = split_block (copy_bb, PREV_INSN (insert_point));
6299 copy_bb = e->dest;
6300 }
6301
6302 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6303 We have yet to add a simple_return to the tails,
6304 as we'd like to first convert_jumps_to_returns in
6305 case the block is no longer used after that. */
6306 eflags = EDGE_FAKE;
6307 if (CALL_P (PREV_INSN (insert_point))
6308 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6309 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6310 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6311
6312 /* verify_flow_info doesn't like a note after a
6313 sibling call. */
6314 delete_insn (insert_point);
6315 if (bitmap_empty_p (&bb_tail))
6316 break;
6317 }
6318 }
6319
6320 fail_shrinkwrap:
6321 bitmap_clear (&bb_tail);
6322 bitmap_clear (&bb_antic_flags);
6323 bitmap_clear (&bb_on_list);
6324 vec.release ();
6325 }
6326 #endif
6327
6328 if (split_prologue_seq != NULL_RTX)
6329 {
6330 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6331 inserted = true;
6332 }
6333 if (prologue_seq != NULL_RTX)
6334 {
6335 insert_insn_on_edge (prologue_seq, entry_edge);
6336 inserted = true;
6337 }
6338
6339 /* If the exit block has no non-fake predecessors, we don't need
6340 an epilogue. */
6341 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6342 if ((e->flags & EDGE_FAKE) == 0)
6343 break;
6344 if (e == NULL)
6345 goto epilogue_done;
6346
6347 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6348
6349 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6350
6351 /* If we're allowed to generate a simple return instruction, then by
6352 definition we don't need a full epilogue. If the last basic
6353 block before the exit block does not contain active instructions,
6354 examine its predecessors and try to emit (conditional) return
6355 instructions. */
6356 #ifdef HAVE_simple_return
6357 if (entry_edge != orig_entry_edge)
6358 {
6359 if (optimize)
6360 {
6361 unsigned i, last;
6362
6363 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6364 (but won't remove). Stop at end of current preds. */
6365 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6366 for (i = 0; i < last; i++)
6367 {
6368 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6369 if (LABEL_P (BB_HEAD (e->src))
6370 && !bitmap_bit_p (&bb_flags, e->src->index)
6371 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6372 unconverted_simple_returns
6373 = convert_jumps_to_returns (e->src, true,
6374 unconverted_simple_returns);
6375 }
6376 }
6377
6378 if (exit_fallthru_edge != NULL
6379 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6380 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6381 {
6382 basic_block last_bb;
6383
6384 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6385 returnjump = BB_END (last_bb);
6386 exit_fallthru_edge = NULL;
6387 }
6388 }
6389 #endif
6390 #ifdef HAVE_return
6391 if (HAVE_return)
6392 {
6393 if (exit_fallthru_edge == NULL)
6394 goto epilogue_done;
6395
6396 if (optimize)
6397 {
6398 basic_block last_bb = exit_fallthru_edge->src;
6399
6400 if (LABEL_P (BB_HEAD (last_bb))
6401 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6402 convert_jumps_to_returns (last_bb, false, vNULL);
6403
6404 if (EDGE_COUNT (last_bb->preds) != 0
6405 && single_succ_p (last_bb))
6406 {
6407 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6408 epilogue_end = returnjump = BB_END (last_bb);
6409 #ifdef HAVE_simple_return
6410 /* Emitting the return may add a basic block.
6411 Fix bb_flags for the added block. */
6412 if (last_bb != exit_fallthru_edge->src)
6413 bitmap_set_bit (&bb_flags, last_bb->index);
6414 #endif
6415 goto epilogue_done;
6416 }
6417 }
6418 }
6419 #endif
6420
6421 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6422 this marker for the splits of EH_RETURN patterns, and nothing else
6423 uses the flag in the meantime. */
6424 epilogue_completed = 1;
6425
6426 #ifdef HAVE_eh_return
6427 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6428 some targets, these get split to a special version of the epilogue
6429 code. In order to be able to properly annotate these with unwind
6430 info, try to split them now. If we get a valid split, drop an
6431 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6432 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6433 {
6434 rtx prev, last, trial;
6435
6436 if (e->flags & EDGE_FALLTHRU)
6437 continue;
6438 last = BB_END (e->src);
6439 if (!eh_returnjump_p (last))
6440 continue;
6441
6442 prev = PREV_INSN (last);
6443 trial = try_split (PATTERN (last), last, 1);
6444 if (trial == last)
6445 continue;
6446
6447 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6448 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6449 }
6450 #endif
6451
6452 /* If nothing falls through into the exit block, we don't need an
6453 epilogue. */
6454
6455 if (exit_fallthru_edge == NULL)
6456 goto epilogue_done;
6457
6458 #ifdef HAVE_epilogue
6459 if (HAVE_epilogue)
6460 {
6461 start_sequence ();
6462 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6463 seq = gen_epilogue ();
6464 if (seq)
6465 emit_jump_insn (seq);
6466
6467 /* Retain a map of the epilogue insns. */
6468 record_insns (seq, NULL, &epilogue_insn_hash);
6469 set_insn_locations (seq, epilogue_location);
6470
6471 seq = get_insns ();
6472 returnjump = get_last_insn ();
6473 end_sequence ();
6474
6475 insert_insn_on_edge (seq, exit_fallthru_edge);
6476 inserted = true;
6477
6478 if (JUMP_P (returnjump))
6479 set_return_jump_label (returnjump);
6480 }
6481 else
6482 #endif
6483 {
6484 basic_block cur_bb;
6485
6486 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6487 goto epilogue_done;
6488 /* We have a fall-through edge to the exit block, the source is not
6489 at the end of the function, and there will be an assembler epilogue
6490 at the end of the function.
6491 We can't use force_nonfallthru here, because that would try to
6492 use return. Inserting a jump 'by hand' is extremely messy, so
6493 we take advantage of cfg_layout_finalize using
6494 fixup_fallthru_exit_predecessor. */
6495 cfg_layout_initialize (0);
6496 FOR_EACH_BB (cur_bb)
6497 if (cur_bb->index >= NUM_FIXED_BLOCKS
6498 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6499 cur_bb->aux = cur_bb->next_bb;
6500 cfg_layout_finalize ();
6501 }
6502
6503 epilogue_done:
6504
6505 default_rtl_profile ();
6506
6507 if (inserted)
6508 {
6509 sbitmap blocks;
6510
6511 commit_edge_insertions ();
6512
6513 /* Look for basic blocks within the prologue insns. */
6514 blocks = sbitmap_alloc (last_basic_block);
6515 bitmap_clear (blocks);
6516 bitmap_set_bit (blocks, entry_edge->dest->index);
6517 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6518 find_many_sub_basic_blocks (blocks);
6519 sbitmap_free (blocks);
6520
6521 /* The epilogue insns we inserted may cause the exit edge to no longer
6522 be fallthru. */
6523 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6524 {
6525 if (((e->flags & EDGE_FALLTHRU) != 0)
6526 && returnjump_p (BB_END (e->src)))
6527 e->flags &= ~EDGE_FALLTHRU;
6528 }
6529 }
6530
6531 #ifdef HAVE_simple_return
6532 /* If there were branches to an empty LAST_BB which we tried to
6533 convert to conditional simple_returns, but couldn't for some
6534 reason, create a block to hold a simple_return insn and redirect
6535 those remaining edges. */
6536 if (!unconverted_simple_returns.is_empty ())
6537 {
6538 basic_block simple_return_block_hot = NULL;
6539 basic_block simple_return_block_cold = NULL;
6540 edge pending_edge_hot = NULL;
6541 edge pending_edge_cold = NULL;
6542 basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
6543 int i;
6544
6545 gcc_assert (entry_edge != orig_entry_edge);
6546
6547 /* See if we can reuse the last insn that was emitted for the
6548 epilogue. */
6549 if (returnjump != NULL_RTX
6550 && JUMP_LABEL (returnjump) == simple_return_rtx)
6551 {
6552 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6553 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6554 simple_return_block_hot = e->dest;
6555 else
6556 simple_return_block_cold = e->dest;
6557 }
6558
6559 /* Also check returns we might need to add to tail blocks. */
6560 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6561 if (EDGE_COUNT (e->src->preds) != 0
6562 && (e->flags & EDGE_FAKE) != 0
6563 && !bitmap_bit_p (&bb_flags, e->src->index))
6564 {
6565 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6566 pending_edge_hot = e;
6567 else
6568 pending_edge_cold = e;
6569 }
6570
6571 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6572 {
6573 basic_block *pdest_bb;
6574 edge pending;
6575
6576 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6577 {
6578 pdest_bb = &simple_return_block_hot;
6579 pending = pending_edge_hot;
6580 }
6581 else
6582 {
6583 pdest_bb = &simple_return_block_cold;
6584 pending = pending_edge_cold;
6585 }
6586
6587 if (*pdest_bb == NULL && pending != NULL)
6588 {
6589 emit_return_into_block (true, pending->src);
6590 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6591 *pdest_bb = pending->src;
6592 }
6593 else if (*pdest_bb == NULL)
6594 {
6595 basic_block bb;
6596 rtx start;
6597
6598 bb = create_basic_block (NULL, NULL, exit_pred);
6599 BB_COPY_PARTITION (bb, e->src);
6600 start = emit_jump_insn_after (gen_simple_return (),
6601 BB_END (bb));
6602 JUMP_LABEL (start) = simple_return_rtx;
6603 emit_barrier_after (start);
6604
6605 *pdest_bb = bb;
6606 make_edge (bb, EXIT_BLOCK_PTR, 0);
6607 }
6608 redirect_edge_and_branch_force (e, *pdest_bb);
6609 }
6610 unconverted_simple_returns.release ();
6611 }
6612
6613 if (entry_edge != orig_entry_edge)
6614 {
6615 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6616 if (EDGE_COUNT (e->src->preds) != 0
6617 && (e->flags & EDGE_FAKE) != 0
6618 && !bitmap_bit_p (&bb_flags, e->src->index))
6619 {
6620 emit_return_into_block (true, e->src);
6621 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6622 }
6623 }
6624 #endif
6625
6626 #ifdef HAVE_sibcall_epilogue
6627 /* Emit sibling epilogues before any sibling call sites. */
6628 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6629 {
6630 basic_block bb = e->src;
6631 rtx insn = BB_END (bb);
6632 rtx ep_seq;
6633
6634 if (!CALL_P (insn)
6635 || ! SIBLING_CALL_P (insn)
6636 #ifdef HAVE_simple_return
6637 || (entry_edge != orig_entry_edge
6638 && !bitmap_bit_p (&bb_flags, bb->index))
6639 #endif
6640 )
6641 {
6642 ei_next (&ei);
6643 continue;
6644 }
6645
6646 ep_seq = gen_sibcall_epilogue ();
6647 if (ep_seq)
6648 {
6649 start_sequence ();
6650 emit_note (NOTE_INSN_EPILOGUE_BEG);
6651 emit_insn (ep_seq);
6652 seq = get_insns ();
6653 end_sequence ();
6654
6655 /* Retain a map of the epilogue insns. Used in life analysis to
6656 avoid getting rid of sibcall epilogue insns. Do this before we
6657 actually emit the sequence. */
6658 record_insns (seq, NULL, &epilogue_insn_hash);
6659 set_insn_locations (seq, epilogue_location);
6660
6661 emit_insn_before (seq, insn);
6662 }
6663 ei_next (&ei);
6664 }
6665 #endif
6666
6667 #ifdef HAVE_epilogue
6668 if (epilogue_end)
6669 {
6670 rtx insn, next;
6671
6672 /* Similarly, move any line notes that appear after the epilogue.
6673 There is no need, however, to be quite so anal about the existence
6674 of such a note. Also possibly move
6675 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6676 info generation. */
6677 for (insn = epilogue_end; insn; insn = next)
6678 {
6679 next = NEXT_INSN (insn);
6680 if (NOTE_P (insn)
6681 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6682 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6683 }
6684 }
6685 #endif
6686
6687 #ifdef HAVE_simple_return
6688 bitmap_clear (&bb_flags);
6689 #endif
6690
6691 /* Threading the prologue and epilogue changes the artificial refs
6692 in the entry and exit blocks. */
6693 epilogue_completed = 1;
6694 df_update_entry_exit_and_calls ();
6695 }
6696
6697 /* Reposition the prologue-end and epilogue-begin notes after
6698 instruction scheduling. */
6699
6700 void
6701 reposition_prologue_and_epilogue_notes (void)
6702 {
6703 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6704 || defined (HAVE_sibcall_epilogue)
6705 /* Since the hash table is created on demand, the fact that it is
6706 non-null is a signal that it is non-empty. */
6707 if (prologue_insn_hash != NULL)
6708 {
6709 size_t len = htab_elements (prologue_insn_hash);
6710 rtx insn, last = NULL, note = NULL;
6711
6712 /* Scan from the beginning until we reach the last prologue insn. */
6713 /* ??? While we do have the CFG intact, there are two problems:
6714 (1) The prologue can contain loops (typically probing the stack),
6715 which means that the end of the prologue isn't in the first bb.
6716 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6717 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6718 {
6719 if (NOTE_P (insn))
6720 {
6721 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6722 note = insn;
6723 }
6724 else if (contains (insn, prologue_insn_hash))
6725 {
6726 last = insn;
6727 if (--len == 0)
6728 break;
6729 }
6730 }
6731
6732 if (last)
6733 {
6734 if (note == NULL)
6735 {
6736 /* Scan forward looking for the PROLOGUE_END note. It should
6737 be right at the beginning of the block, possibly with other
6738 insn notes that got moved there. */
6739 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6740 {
6741 if (NOTE_P (note)
6742 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6743 break;
6744 }
6745 }
6746
6747 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6748 if (LABEL_P (last))
6749 last = NEXT_INSN (last);
6750 reorder_insns (note, note, last);
6751 }
6752 }
6753
6754 if (epilogue_insn_hash != NULL)
6755 {
6756 edge_iterator ei;
6757 edge e;
6758
6759 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6760 {
6761 rtx insn, first = NULL, note = NULL;
6762 basic_block bb = e->src;
6763
6764 /* Scan from the beginning until we reach the first epilogue insn. */
6765 FOR_BB_INSNS (bb, insn)
6766 {
6767 if (NOTE_P (insn))
6768 {
6769 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6770 {
6771 note = insn;
6772 if (first != NULL)
6773 break;
6774 }
6775 }
6776 else if (first == NULL && contains (insn, epilogue_insn_hash))
6777 {
6778 first = insn;
6779 if (note != NULL)
6780 break;
6781 }
6782 }
6783
6784 if (note)
6785 {
6786 /* If the function has a single basic block, and no real
6787 epilogue insns (e.g. sibcall with no cleanup), the
6788 epilogue note can get scheduled before the prologue
6789 note. If we have frame related prologue insns, having
6790 them scanned during the epilogue will result in a crash.
6791 In this case re-order the epilogue note to just before
6792 the last insn in the block. */
6793 if (first == NULL)
6794 first = BB_END (bb);
6795
6796 if (PREV_INSN (first) != note)
6797 reorder_insns (note, note, PREV_INSN (first));
6798 }
6799 }
6800 }
6801 #endif /* HAVE_prologue or HAVE_epilogue */
6802 }
6803
6804 /* Returns the name of function declared by FNDECL. */
6805 const char *
6806 fndecl_name (tree fndecl)
6807 {
6808 if (fndecl == NULL)
6809 return "(nofn)";
6810 return lang_hooks.decl_printable_name (fndecl, 2);
6811 }
6812
6813 /* Returns the name of function FN. */
6814 const char *
6815 function_name (struct function *fn)
6816 {
6817 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6818 return fndecl_name (fndecl);
6819 }
6820
6821 /* Returns the name of the current function. */
6822 const char *
6823 current_function_name (void)
6824 {
6825 return function_name (cfun);
6826 }
6827 \f
6828
6829 static unsigned int
6830 rest_of_handle_check_leaf_regs (void)
6831 {
6832 #ifdef LEAF_REGISTERS
6833 crtl->uses_only_leaf_regs
6834 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6835 #endif
6836 return 0;
6837 }
6838
6839 /* Insert a TYPE into the used types hash table of CFUN. */
6840
6841 static void
6842 used_types_insert_helper (tree type, struct function *func)
6843 {
6844 if (type != NULL && func != NULL)
6845 {
6846 void **slot;
6847
6848 if (func->used_types_hash == NULL)
6849 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6850 htab_eq_pointer, NULL);
6851 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6852 if (*slot == NULL)
6853 *slot = type;
6854 }
6855 }
6856
6857 /* Given a type, insert it into the used hash table in cfun. */
6858 void
6859 used_types_insert (tree t)
6860 {
6861 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6862 if (TYPE_NAME (t))
6863 break;
6864 else
6865 t = TREE_TYPE (t);
6866 if (TREE_CODE (t) == ERROR_MARK)
6867 return;
6868 if (TYPE_NAME (t) == NULL_TREE
6869 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6870 t = TYPE_MAIN_VARIANT (t);
6871 if (debug_info_level > DINFO_LEVEL_NONE)
6872 {
6873 if (cfun)
6874 used_types_insert_helper (t, cfun);
6875 else
6876 {
6877 /* So this might be a type referenced by a global variable.
6878 Record that type so that we can later decide to emit its
6879 debug information. */
6880 vec_safe_push (types_used_by_cur_var_decl, t);
6881 }
6882 }
6883 }
6884
6885 /* Helper to Hash a struct types_used_by_vars_entry. */
6886
6887 static hashval_t
6888 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6889 {
6890 gcc_assert (entry && entry->var_decl && entry->type);
6891
6892 return iterative_hash_object (entry->type,
6893 iterative_hash_object (entry->var_decl, 0));
6894 }
6895
6896 /* Hash function of the types_used_by_vars_entry hash table. */
6897
6898 hashval_t
6899 types_used_by_vars_do_hash (const void *x)
6900 {
6901 const struct types_used_by_vars_entry *entry =
6902 (const struct types_used_by_vars_entry *) x;
6903
6904 return hash_types_used_by_vars_entry (entry);
6905 }
6906
6907 /*Equality function of the types_used_by_vars_entry hash table. */
6908
6909 int
6910 types_used_by_vars_eq (const void *x1, const void *x2)
6911 {
6912 const struct types_used_by_vars_entry *e1 =
6913 (const struct types_used_by_vars_entry *) x1;
6914 const struct types_used_by_vars_entry *e2 =
6915 (const struct types_used_by_vars_entry *)x2;
6916
6917 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6918 }
6919
6920 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6921
6922 void
6923 types_used_by_var_decl_insert (tree type, tree var_decl)
6924 {
6925 if (type != NULL && var_decl != NULL)
6926 {
6927 void **slot;
6928 struct types_used_by_vars_entry e;
6929 e.var_decl = var_decl;
6930 e.type = type;
6931 if (types_used_by_vars_hash == NULL)
6932 types_used_by_vars_hash =
6933 htab_create_ggc (37, types_used_by_vars_do_hash,
6934 types_used_by_vars_eq, NULL);
6935 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6936 hash_types_used_by_vars_entry (&e), INSERT);
6937 if (*slot == NULL)
6938 {
6939 struct types_used_by_vars_entry *entry;
6940 entry = ggc_alloc_types_used_by_vars_entry ();
6941 entry->type = type;
6942 entry->var_decl = var_decl;
6943 *slot = entry;
6944 }
6945 }
6946 }
6947
6948 struct rtl_opt_pass pass_leaf_regs =
6949 {
6950 {
6951 RTL_PASS,
6952 "*leaf_regs", /* name */
6953 OPTGROUP_NONE, /* optinfo_flags */
6954 NULL, /* gate */
6955 rest_of_handle_check_leaf_regs, /* execute */
6956 NULL, /* sub */
6957 NULL, /* next */
6958 0, /* static_pass_number */
6959 TV_NONE, /* tv_id */
6960 0, /* properties_required */
6961 0, /* properties_provided */
6962 0, /* properties_destroyed */
6963 0, /* todo_flags_start */
6964 0 /* todo_flags_finish */
6965 }
6966 };
6967
6968 static unsigned int
6969 rest_of_handle_thread_prologue_and_epilogue (void)
6970 {
6971 if (optimize)
6972 cleanup_cfg (CLEANUP_EXPENSIVE);
6973
6974 /* On some machines, the prologue and epilogue code, or parts thereof,
6975 can be represented as RTL. Doing so lets us schedule insns between
6976 it and the rest of the code and also allows delayed branch
6977 scheduling to operate in the epilogue. */
6978 thread_prologue_and_epilogue_insns ();
6979
6980 /* The stack usage info is finalized during prologue expansion. */
6981 if (flag_stack_usage_info)
6982 output_stack_usage ();
6983
6984 return 0;
6985 }
6986
6987 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
6988 {
6989 {
6990 RTL_PASS,
6991 "pro_and_epilogue", /* name */
6992 OPTGROUP_NONE, /* optinfo_flags */
6993 NULL, /* gate */
6994 rest_of_handle_thread_prologue_and_epilogue, /* execute */
6995 NULL, /* sub */
6996 NULL, /* next */
6997 0, /* static_pass_number */
6998 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6999 0, /* properties_required */
7000 0, /* properties_provided */
7001 0, /* properties_destroyed */
7002 TODO_verify_flow, /* todo_flags_start */
7003 TODO_df_verify |
7004 TODO_df_finish | TODO_verify_rtl_sharing |
7005 TODO_ggc_collect /* todo_flags_finish */
7006 }
7007 };
7008 \f
7009
7010 /* This mini-pass fixes fall-out from SSA in asm statements that have
7011 in-out constraints. Say you start with
7012
7013 orig = inout;
7014 asm ("": "+mr" (inout));
7015 use (orig);
7016
7017 which is transformed very early to use explicit output and match operands:
7018
7019 orig = inout;
7020 asm ("": "=mr" (inout) : "0" (inout));
7021 use (orig);
7022
7023 Or, after SSA and copyprop,
7024
7025 asm ("": "=mr" (inout_2) : "0" (inout_1));
7026 use (inout_1);
7027
7028 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7029 they represent two separate values, so they will get different pseudo
7030 registers during expansion. Then, since the two operands need to match
7031 per the constraints, but use different pseudo registers, reload can
7032 only register a reload for these operands. But reloads can only be
7033 satisfied by hardregs, not by memory, so we need a register for this
7034 reload, just because we are presented with non-matching operands.
7035 So, even though we allow memory for this operand, no memory can be
7036 used for it, just because the two operands don't match. This can
7037 cause reload failures on register-starved targets.
7038
7039 So it's a symptom of reload not being able to use memory for reloads
7040 or, alternatively it's also a symptom of both operands not coming into
7041 reload as matching (in which case the pseudo could go to memory just
7042 fine, as the alternative allows it, and no reload would be necessary).
7043 We fix the latter problem here, by transforming
7044
7045 asm ("": "=mr" (inout_2) : "0" (inout_1));
7046
7047 back to
7048
7049 inout_2 = inout_1;
7050 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7051
7052 static void
7053 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7054 {
7055 int i;
7056 bool changed = false;
7057 rtx op = SET_SRC (p_sets[0]);
7058 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7059 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7060 bool *output_matched = XALLOCAVEC (bool, noutputs);
7061
7062 memset (output_matched, 0, noutputs * sizeof (bool));
7063 for (i = 0; i < ninputs; i++)
7064 {
7065 rtx input, output, insns;
7066 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7067 char *end;
7068 int match, j;
7069
7070 if (*constraint == '%')
7071 constraint++;
7072
7073 match = strtoul (constraint, &end, 10);
7074 if (end == constraint)
7075 continue;
7076
7077 gcc_assert (match < noutputs);
7078 output = SET_DEST (p_sets[match]);
7079 input = RTVEC_ELT (inputs, i);
7080 /* Only do the transformation for pseudos. */
7081 if (! REG_P (output)
7082 || rtx_equal_p (output, input)
7083 || (GET_MODE (input) != VOIDmode
7084 && GET_MODE (input) != GET_MODE (output)))
7085 continue;
7086
7087 /* We can't do anything if the output is also used as input,
7088 as we're going to overwrite it. */
7089 for (j = 0; j < ninputs; j++)
7090 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7091 break;
7092 if (j != ninputs)
7093 continue;
7094
7095 /* Avoid changing the same input several times. For
7096 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7097 only change in once (to out1), rather than changing it
7098 first to out1 and afterwards to out2. */
7099 if (i > 0)
7100 {
7101 for (j = 0; j < noutputs; j++)
7102 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7103 break;
7104 if (j != noutputs)
7105 continue;
7106 }
7107 output_matched[match] = true;
7108
7109 start_sequence ();
7110 emit_move_insn (output, input);
7111 insns = get_insns ();
7112 end_sequence ();
7113 emit_insn_before (insns, insn);
7114
7115 /* Now replace all mentions of the input with output. We can't
7116 just replace the occurrence in inputs[i], as the register might
7117 also be used in some other input (or even in an address of an
7118 output), which would mean possibly increasing the number of
7119 inputs by one (namely 'output' in addition), which might pose
7120 a too complicated problem for reload to solve. E.g. this situation:
7121
7122 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7123
7124 Here 'input' is used in two occurrences as input (once for the
7125 input operand, once for the address in the second output operand).
7126 If we would replace only the occurrence of the input operand (to
7127 make the matching) we would be left with this:
7128
7129 output = input
7130 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7131
7132 Now we suddenly have two different input values (containing the same
7133 value, but different pseudos) where we formerly had only one.
7134 With more complicated asms this might lead to reload failures
7135 which wouldn't have happen without this pass. So, iterate over
7136 all operands and replace all occurrences of the register used. */
7137 for (j = 0; j < noutputs; j++)
7138 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7139 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7140 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7141 input, output);
7142 for (j = 0; j < ninputs; j++)
7143 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7144 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7145 input, output);
7146
7147 changed = true;
7148 }
7149
7150 if (changed)
7151 df_insn_rescan (insn);
7152 }
7153
7154 static unsigned
7155 rest_of_match_asm_constraints (void)
7156 {
7157 basic_block bb;
7158 rtx insn, pat, *p_sets;
7159 int noutputs;
7160
7161 if (!crtl->has_asm_statement)
7162 return 0;
7163
7164 df_set_flags (DF_DEFER_INSN_RESCAN);
7165 FOR_EACH_BB (bb)
7166 {
7167 FOR_BB_INSNS (bb, insn)
7168 {
7169 if (!INSN_P (insn))
7170 continue;
7171
7172 pat = PATTERN (insn);
7173 if (GET_CODE (pat) == PARALLEL)
7174 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7175 else if (GET_CODE (pat) == SET)
7176 p_sets = &PATTERN (insn), noutputs = 1;
7177 else
7178 continue;
7179
7180 if (GET_CODE (*p_sets) == SET
7181 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7182 match_asm_constraints_1 (insn, p_sets, noutputs);
7183 }
7184 }
7185
7186 return TODO_df_finish;
7187 }
7188
7189 struct rtl_opt_pass pass_match_asm_constraints =
7190 {
7191 {
7192 RTL_PASS,
7193 "asmcons", /* name */
7194 OPTGROUP_NONE, /* optinfo_flags */
7195 NULL, /* gate */
7196 rest_of_match_asm_constraints, /* execute */
7197 NULL, /* sub */
7198 NULL, /* next */
7199 0, /* static_pass_number */
7200 TV_NONE, /* tv_id */
7201 0, /* properties_required */
7202 0, /* properties_provided */
7203 0, /* properties_destroyed */
7204 0, /* todo_flags_start */
7205 0 /* todo_flags_finish */
7206 }
7207 };
7208
7209
7210 #include "gt-function.h"