tree-data-ref.c (subscript_dependence_tester_1): Call free_conflict_function.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "tree-gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef LOCAL_ALIGNMENT
73 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
74 #endif
75
76 #ifndef STACK_ALIGNMENT_NEEDED
77 #define STACK_ALIGNMENT_NEEDED 1
78 #endif
79
80 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
81
82 /* Some systems use __main in a way incompatible with its use in gcc, in these
83 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
84 give the same symbol without quotes for an alternative entry point. You
85 must define both, or neither. */
86 #ifndef NAME__MAIN
87 #define NAME__MAIN "__main"
88 #endif
89
90 /* Round a value to the lowest integer less than it that is a multiple of
91 the required alignment. Avoid using division in case the value is
92 negative. Assume the alignment is a power of two. */
93 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94
95 /* Similar, but round to the next highest integer that meets the
96 alignment. */
97 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98
99 /* Nonzero if function being compiled doesn't contain any calls
100 (ignoring the prologue and epilogue). This is set prior to
101 local register allocation and is valid for the remaining
102 compiler passes. */
103 int current_function_is_leaf;
104
105 /* Nonzero if function being compiled doesn't modify the stack pointer
106 (ignoring the prologue and epilogue). This is only valid after
107 pass_stack_ptr_mod has run. */
108 int current_function_sp_is_unchanging;
109
110 /* Nonzero if the function being compiled is a leaf function which only
111 uses leaf registers. This is valid after reload (specifically after
112 sched2) and is useful only if the port defines LEAF_REGISTERS. */
113 int current_function_uses_only_leaf_regs;
114
115 /* Nonzero once virtual register instantiation has been done.
116 assign_stack_local uses frame_pointer_rtx when this is nonzero.
117 calls.c:emit_library_call_value_1 uses it to set up
118 post-instantiation libcalls. */
119 int virtuals_instantiated;
120
121 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
122 static GTY(()) int funcdef_no;
123
124 /* These variables hold pointers to functions to create and destroy
125 target specific, per-function data structures. */
126 struct machine_function * (*init_machine_status) (void);
127
128 /* The currently compiled function. */
129 struct function *cfun = 0;
130
131 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
132 static VEC(int,heap) *prologue;
133 static VEC(int,heap) *epilogue;
134
135 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
136 in this function. */
137 static VEC(int,heap) *sibcall_epilogue;
138 \f
139 /* In order to evaluate some expressions, such as function calls returning
140 structures in memory, we need to temporarily allocate stack locations.
141 We record each allocated temporary in the following structure.
142
143 Associated with each temporary slot is a nesting level. When we pop up
144 one level, all temporaries associated with the previous level are freed.
145 Normally, all temporaries are freed after the execution of the statement
146 in which they were created. However, if we are inside a ({...}) grouping,
147 the result may be in a temporary and hence must be preserved. If the
148 result could be in a temporary, we preserve it if we can determine which
149 one it is in. If we cannot determine which temporary may contain the
150 result, all temporaries are preserved. A temporary is preserved by
151 pretending it was allocated at the previous nesting level.
152
153 Automatic variables are also assigned temporary slots, at the nesting
154 level where they are defined. They are marked a "kept" so that
155 free_temp_slots will not free them. */
156
157 struct temp_slot GTY(())
158 {
159 /* Points to next temporary slot. */
160 struct temp_slot *next;
161 /* Points to previous temporary slot. */
162 struct temp_slot *prev;
163
164 /* The rtx to used to reference the slot. */
165 rtx slot;
166 /* The rtx used to represent the address if not the address of the
167 slot above. May be an EXPR_LIST if multiple addresses exist. */
168 rtx address;
169 /* The alignment (in bits) of the slot. */
170 unsigned int align;
171 /* The size, in units, of the slot. */
172 HOST_WIDE_INT size;
173 /* The type of the object in the slot, or zero if it doesn't correspond
174 to a type. We use this to determine whether a slot can be reused.
175 It can be reused if objects of the type of the new slot will always
176 conflict with objects of the type of the old slot. */
177 tree type;
178 /* Nonzero if this temporary is currently in use. */
179 char in_use;
180 /* Nonzero if this temporary has its address taken. */
181 char addr_taken;
182 /* Nesting level at which this slot is being used. */
183 int level;
184 /* Nonzero if this should survive a call to free_temp_slots. */
185 int keep;
186 /* The offset of the slot from the frame_pointer, including extra space
187 for alignment. This info is for combine_temp_slots. */
188 HOST_WIDE_INT base_offset;
189 /* The size of the slot, including extra space for alignment. This
190 info is for combine_temp_slots. */
191 HOST_WIDE_INT full_size;
192 };
193 \f
194 /* Forward declarations. */
195
196 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
197 struct function *);
198 static struct temp_slot *find_temp_slot_from_address (rtx);
199 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
200 static void pad_below (struct args_size *, enum machine_mode, tree);
201 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
202 static int all_blocks (tree, tree *);
203 static tree *get_block_vector (tree, int *);
204 extern tree debug_find_var_in_block_tree (tree, tree);
205 /* We always define `record_insns' even if it's not used so that we
206 can always export `prologue_epilogue_contains'. */
207 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
208 static int contains (const_rtx, VEC(int,heap) **);
209 #ifdef HAVE_return
210 static void emit_return_into_block (basic_block);
211 #endif
212 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
213 static rtx keep_stack_depressed (rtx);
214 #endif
215 static void prepare_function_start (void);
216 static void do_clobber_return_reg (rtx, void *);
217 static void do_use_return_reg (rtx, void *);
218 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
219 \f
220 /* Pointer to chain of `struct function' for containing functions. */
221 struct function *outer_function_chain;
222
223 /* Given a function decl for a containing function,
224 return the `struct function' for it. */
225
226 struct function *
227 find_function_data (tree decl)
228 {
229 struct function *p;
230
231 for (p = outer_function_chain; p; p = p->outer)
232 if (p->decl == decl)
233 return p;
234
235 gcc_unreachable ();
236 }
237
238 /* Save the current context for compilation of a nested function.
239 This is called from language-specific code. The caller should use
240 the enter_nested langhook to save any language-specific state,
241 since this function knows only about language-independent
242 variables. */
243
244 void
245 push_function_context_to (tree context ATTRIBUTE_UNUSED)
246 {
247 struct function *p;
248
249 if (cfun == 0)
250 allocate_struct_function (NULL, false);
251 p = cfun;
252
253 p->outer = outer_function_chain;
254 outer_function_chain = p;
255
256 lang_hooks.function.enter_nested (p);
257
258 set_cfun (NULL);
259 }
260
261 void
262 push_function_context (void)
263 {
264 push_function_context_to (current_function_decl);
265 }
266
267 /* Restore the last saved context, at the end of a nested function.
268 This function is called from language-specific code. */
269
270 void
271 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
272 {
273 struct function *p = outer_function_chain;
274
275 set_cfun (p);
276 outer_function_chain = p->outer;
277
278 current_function_decl = p->decl;
279
280 lang_hooks.function.leave_nested (p);
281
282 /* Reset variables that have known state during rtx generation. */
283 virtuals_instantiated = 0;
284 generating_concat_p = 1;
285 }
286
287 void
288 pop_function_context (void)
289 {
290 pop_function_context_from (current_function_decl);
291 }
292
293 /* Clear out all parts of the state in F that can safely be discarded
294 after the function has been parsed, but not compiled, to let
295 garbage collection reclaim the memory. */
296
297 void
298 free_after_parsing (struct function *f)
299 {
300 /* f->expr->forced_labels is used by code generation. */
301 /* f->emit->regno_reg_rtx is used by code generation. */
302 /* f->varasm is used by code generation. */
303 /* f->eh->eh_return_stub_label is used by code generation. */
304
305 lang_hooks.function.final (f);
306 }
307
308 /* Clear out all parts of the state in F that can safely be discarded
309 after the function has been compiled, to let garbage collection
310 reclaim the memory. */
311
312 void
313 free_after_compilation (struct function *f)
314 {
315 VEC_free (int, heap, prologue);
316 VEC_free (int, heap, epilogue);
317 VEC_free (int, heap, sibcall_epilogue);
318
319 f->eh = NULL;
320 f->expr = NULL;
321 f->emit = NULL;
322 f->varasm = NULL;
323 f->machine = NULL;
324 f->cfg = NULL;
325
326 f->x_avail_temp_slots = NULL;
327 f->x_used_temp_slots = NULL;
328 f->arg_offset_rtx = NULL;
329 f->return_rtx = NULL;
330 f->internal_arg_pointer = NULL;
331 f->x_nonlocal_goto_handler_labels = NULL;
332 f->x_return_label = NULL;
333 f->x_naked_return_label = NULL;
334 f->x_stack_slot_list = NULL;
335 f->x_stack_check_probe_note = NULL;
336 f->x_arg_pointer_save_area = NULL;
337 f->x_parm_birth_insn = NULL;
338 f->epilogue_delay_list = NULL;
339 }
340 \f
341 /* Allocate fixed slots in the stack frame of the current function. */
342
343 /* Return size needed for stack frame based on slots so far allocated in
344 function F.
345 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
346 the caller may have to do that. */
347
348 static HOST_WIDE_INT
349 get_func_frame_size (struct function *f)
350 {
351 if (FRAME_GROWS_DOWNWARD)
352 return -f->x_frame_offset;
353 else
354 return f->x_frame_offset;
355 }
356
357 /* Return size needed for stack frame based on slots so far allocated.
358 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
359 the caller may have to do that. */
360
361 HOST_WIDE_INT
362 get_frame_size (void)
363 {
364 return get_func_frame_size (cfun);
365 }
366
367 /* Issue an error message and return TRUE if frame OFFSET overflows in
368 the signed target pointer arithmetics for function FUNC. Otherwise
369 return FALSE. */
370
371 bool
372 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
373 {
374 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
375
376 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
377 /* Leave room for the fixed part of the frame. */
378 - 64 * UNITS_PER_WORD)
379 {
380 error ("%Jtotal size of local objects too large", func);
381 return TRUE;
382 }
383
384 return FALSE;
385 }
386
387 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
388 with machine mode MODE.
389
390 ALIGN controls the amount of alignment for the address of the slot:
391 0 means according to MODE,
392 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
393 -2 means use BITS_PER_UNIT,
394 positive specifies alignment boundary in bits.
395
396 We do not round to stack_boundary here.
397
398 FUNCTION specifies the function to allocate in. */
399
400 static rtx
401 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
402 struct function *function)
403 {
404 rtx x, addr;
405 int bigend_correction = 0;
406 unsigned int alignment;
407 int frame_off, frame_alignment, frame_phase;
408
409 if (align == 0)
410 {
411 tree type;
412
413 if (mode == BLKmode)
414 alignment = BIGGEST_ALIGNMENT;
415 else
416 alignment = GET_MODE_ALIGNMENT (mode);
417
418 /* Allow the target to (possibly) increase the alignment of this
419 stack slot. */
420 type = lang_hooks.types.type_for_mode (mode, 0);
421 if (type)
422 alignment = LOCAL_ALIGNMENT (type, alignment);
423
424 alignment /= BITS_PER_UNIT;
425 }
426 else if (align == -1)
427 {
428 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
429 size = CEIL_ROUND (size, alignment);
430 }
431 else if (align == -2)
432 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
433 else
434 alignment = align / BITS_PER_UNIT;
435
436 if (FRAME_GROWS_DOWNWARD)
437 function->x_frame_offset -= size;
438
439 /* Ignore alignment we can't do with expected alignment of the boundary. */
440 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
441 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
442
443 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
444 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
445
446 /* Calculate how many bytes the start of local variables is off from
447 stack alignment. */
448 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
449 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
450 frame_phase = frame_off ? frame_alignment - frame_off : 0;
451
452 /* Round the frame offset to the specified alignment. The default is
453 to always honor requests to align the stack but a port may choose to
454 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
455 if (STACK_ALIGNMENT_NEEDED
456 || mode != BLKmode
457 || size != 0)
458 {
459 /* We must be careful here, since FRAME_OFFSET might be negative and
460 division with a negative dividend isn't as well defined as we might
461 like. So we instead assume that ALIGNMENT is a power of two and
462 use logical operations which are unambiguous. */
463 if (FRAME_GROWS_DOWNWARD)
464 function->x_frame_offset
465 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
466 (unsigned HOST_WIDE_INT) alignment)
467 + frame_phase);
468 else
469 function->x_frame_offset
470 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
471 (unsigned HOST_WIDE_INT) alignment)
472 + frame_phase);
473 }
474
475 /* On a big-endian machine, if we are allocating more space than we will use,
476 use the least significant bytes of those that are allocated. */
477 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
478 bigend_correction = size - GET_MODE_SIZE (mode);
479
480 /* If we have already instantiated virtual registers, return the actual
481 address relative to the frame pointer. */
482 if (function == cfun && virtuals_instantiated)
483 addr = plus_constant (frame_pointer_rtx,
484 trunc_int_for_mode
485 (frame_offset + bigend_correction
486 + STARTING_FRAME_OFFSET, Pmode));
487 else
488 addr = plus_constant (virtual_stack_vars_rtx,
489 trunc_int_for_mode
490 (function->x_frame_offset + bigend_correction,
491 Pmode));
492
493 if (!FRAME_GROWS_DOWNWARD)
494 function->x_frame_offset += size;
495
496 x = gen_rtx_MEM (mode, addr);
497 MEM_NOTRAP_P (x) = 1;
498
499 function->x_stack_slot_list
500 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
501
502 if (frame_offset_overflow (function->x_frame_offset, function->decl))
503 function->x_frame_offset = 0;
504
505 return x;
506 }
507
508 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
509 current function. */
510
511 rtx
512 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
513 {
514 return assign_stack_local_1 (mode, size, align, cfun);
515 }
516
517 \f
518 /* Removes temporary slot TEMP from LIST. */
519
520 static void
521 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
522 {
523 if (temp->next)
524 temp->next->prev = temp->prev;
525 if (temp->prev)
526 temp->prev->next = temp->next;
527 else
528 *list = temp->next;
529
530 temp->prev = temp->next = NULL;
531 }
532
533 /* Inserts temporary slot TEMP to LIST. */
534
535 static void
536 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
537 {
538 temp->next = *list;
539 if (*list)
540 (*list)->prev = temp;
541 temp->prev = NULL;
542 *list = temp;
543 }
544
545 /* Returns the list of used temp slots at LEVEL. */
546
547 static struct temp_slot **
548 temp_slots_at_level (int level)
549 {
550 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
551 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
552
553 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
554 }
555
556 /* Returns the maximal temporary slot level. */
557
558 static int
559 max_slot_level (void)
560 {
561 if (!used_temp_slots)
562 return -1;
563
564 return VEC_length (temp_slot_p, used_temp_slots) - 1;
565 }
566
567 /* Moves temporary slot TEMP to LEVEL. */
568
569 static void
570 move_slot_to_level (struct temp_slot *temp, int level)
571 {
572 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
573 insert_slot_to_list (temp, temp_slots_at_level (level));
574 temp->level = level;
575 }
576
577 /* Make temporary slot TEMP available. */
578
579 static void
580 make_slot_available (struct temp_slot *temp)
581 {
582 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
583 insert_slot_to_list (temp, &avail_temp_slots);
584 temp->in_use = 0;
585 temp->level = -1;
586 }
587 \f
588 /* Allocate a temporary stack slot and record it for possible later
589 reuse.
590
591 MODE is the machine mode to be given to the returned rtx.
592
593 SIZE is the size in units of the space required. We do no rounding here
594 since assign_stack_local will do any required rounding.
595
596 KEEP is 1 if this slot is to be retained after a call to
597 free_temp_slots. Automatic variables for a block are allocated
598 with this flag. KEEP values of 2 or 3 were needed respectively
599 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
600 or for SAVE_EXPRs, but they are now unused.
601
602 TYPE is the type that will be used for the stack slot. */
603
604 rtx
605 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
606 int keep, tree type)
607 {
608 unsigned int align;
609 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
610 rtx slot;
611
612 /* If SIZE is -1 it means that somebody tried to allocate a temporary
613 of a variable size. */
614 gcc_assert (size != -1);
615
616 /* These are now unused. */
617 gcc_assert (keep <= 1);
618
619 if (mode == BLKmode)
620 align = BIGGEST_ALIGNMENT;
621 else
622 align = GET_MODE_ALIGNMENT (mode);
623
624 if (! type)
625 type = lang_hooks.types.type_for_mode (mode, 0);
626
627 if (type)
628 align = LOCAL_ALIGNMENT (type, align);
629
630 /* Try to find an available, already-allocated temporary of the proper
631 mode which meets the size and alignment requirements. Choose the
632 smallest one with the closest alignment.
633
634 If assign_stack_temp is called outside of the tree->rtl expansion,
635 we cannot reuse the stack slots (that may still refer to
636 VIRTUAL_STACK_VARS_REGNUM). */
637 if (!virtuals_instantiated)
638 {
639 for (p = avail_temp_slots; p; p = p->next)
640 {
641 if (p->align >= align && p->size >= size
642 && GET_MODE (p->slot) == mode
643 && objects_must_conflict_p (p->type, type)
644 && (best_p == 0 || best_p->size > p->size
645 || (best_p->size == p->size && best_p->align > p->align)))
646 {
647 if (p->align == align && p->size == size)
648 {
649 selected = p;
650 cut_slot_from_list (selected, &avail_temp_slots);
651 best_p = 0;
652 break;
653 }
654 best_p = p;
655 }
656 }
657 }
658
659 /* Make our best, if any, the one to use. */
660 if (best_p)
661 {
662 selected = best_p;
663 cut_slot_from_list (selected, &avail_temp_slots);
664
665 /* If there are enough aligned bytes left over, make them into a new
666 temp_slot so that the extra bytes don't get wasted. Do this only
667 for BLKmode slots, so that we can be sure of the alignment. */
668 if (GET_MODE (best_p->slot) == BLKmode)
669 {
670 int alignment = best_p->align / BITS_PER_UNIT;
671 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
672
673 if (best_p->size - rounded_size >= alignment)
674 {
675 p = ggc_alloc (sizeof (struct temp_slot));
676 p->in_use = p->addr_taken = 0;
677 p->size = best_p->size - rounded_size;
678 p->base_offset = best_p->base_offset + rounded_size;
679 p->full_size = best_p->full_size - rounded_size;
680 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
681 p->align = best_p->align;
682 p->address = 0;
683 p->type = best_p->type;
684 insert_slot_to_list (p, &avail_temp_slots);
685
686 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
687 stack_slot_list);
688
689 best_p->size = rounded_size;
690 best_p->full_size = rounded_size;
691 }
692 }
693 }
694
695 /* If we still didn't find one, make a new temporary. */
696 if (selected == 0)
697 {
698 HOST_WIDE_INT frame_offset_old = frame_offset;
699
700 p = ggc_alloc (sizeof (struct temp_slot));
701
702 /* We are passing an explicit alignment request to assign_stack_local.
703 One side effect of that is assign_stack_local will not round SIZE
704 to ensure the frame offset remains suitably aligned.
705
706 So for requests which depended on the rounding of SIZE, we go ahead
707 and round it now. We also make sure ALIGNMENT is at least
708 BIGGEST_ALIGNMENT. */
709 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
710 p->slot = assign_stack_local (mode,
711 (mode == BLKmode
712 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
713 : size),
714 align);
715
716 p->align = align;
717
718 /* The following slot size computation is necessary because we don't
719 know the actual size of the temporary slot until assign_stack_local
720 has performed all the frame alignment and size rounding for the
721 requested temporary. Note that extra space added for alignment
722 can be either above or below this stack slot depending on which
723 way the frame grows. We include the extra space if and only if it
724 is above this slot. */
725 if (FRAME_GROWS_DOWNWARD)
726 p->size = frame_offset_old - frame_offset;
727 else
728 p->size = size;
729
730 /* Now define the fields used by combine_temp_slots. */
731 if (FRAME_GROWS_DOWNWARD)
732 {
733 p->base_offset = frame_offset;
734 p->full_size = frame_offset_old - frame_offset;
735 }
736 else
737 {
738 p->base_offset = frame_offset_old;
739 p->full_size = frame_offset - frame_offset_old;
740 }
741 p->address = 0;
742
743 selected = p;
744 }
745
746 p = selected;
747 p->in_use = 1;
748 p->addr_taken = 0;
749 p->type = type;
750 p->level = temp_slot_level;
751 p->keep = keep;
752
753 pp = temp_slots_at_level (p->level);
754 insert_slot_to_list (p, pp);
755
756 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
757 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
758 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
759
760 /* If we know the alias set for the memory that will be used, use
761 it. If there's no TYPE, then we don't know anything about the
762 alias set for the memory. */
763 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
764 set_mem_align (slot, align);
765
766 /* If a type is specified, set the relevant flags. */
767 if (type != 0)
768 {
769 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
770 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
771 || TREE_CODE (type) == COMPLEX_TYPE));
772 }
773 MEM_NOTRAP_P (slot) = 1;
774
775 return slot;
776 }
777
778 /* Allocate a temporary stack slot and record it for possible later
779 reuse. First three arguments are same as in preceding function. */
780
781 rtx
782 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
783 {
784 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
785 }
786 \f
787 /* Assign a temporary.
788 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
789 and so that should be used in error messages. In either case, we
790 allocate of the given type.
791 KEEP is as for assign_stack_temp.
792 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
793 it is 0 if a register is OK.
794 DONT_PROMOTE is 1 if we should not promote values in register
795 to wider modes. */
796
797 rtx
798 assign_temp (tree type_or_decl, int keep, int memory_required,
799 int dont_promote ATTRIBUTE_UNUSED)
800 {
801 tree type, decl;
802 enum machine_mode mode;
803 #ifdef PROMOTE_MODE
804 int unsignedp;
805 #endif
806
807 if (DECL_P (type_or_decl))
808 decl = type_or_decl, type = TREE_TYPE (decl);
809 else
810 decl = NULL, type = type_or_decl;
811
812 mode = TYPE_MODE (type);
813 #ifdef PROMOTE_MODE
814 unsignedp = TYPE_UNSIGNED (type);
815 #endif
816
817 if (mode == BLKmode || memory_required)
818 {
819 HOST_WIDE_INT size = int_size_in_bytes (type);
820 rtx tmp;
821
822 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
823 problems with allocating the stack space. */
824 if (size == 0)
825 size = 1;
826
827 /* Unfortunately, we don't yet know how to allocate variable-sized
828 temporaries. However, sometimes we can find a fixed upper limit on
829 the size, so try that instead. */
830 else if (size == -1)
831 size = max_int_size_in_bytes (type);
832
833 /* The size of the temporary may be too large to fit into an integer. */
834 /* ??? Not sure this should happen except for user silliness, so limit
835 this to things that aren't compiler-generated temporaries. The
836 rest of the time we'll die in assign_stack_temp_for_type. */
837 if (decl && size == -1
838 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
839 {
840 error ("size of variable %q+D is too large", decl);
841 size = 1;
842 }
843
844 tmp = assign_stack_temp_for_type (mode, size, keep, type);
845 return tmp;
846 }
847
848 #ifdef PROMOTE_MODE
849 if (! dont_promote)
850 mode = promote_mode (type, mode, &unsignedp, 0);
851 #endif
852
853 return gen_reg_rtx (mode);
854 }
855 \f
856 /* Combine temporary stack slots which are adjacent on the stack.
857
858 This allows for better use of already allocated stack space. This is only
859 done for BLKmode slots because we can be sure that we won't have alignment
860 problems in this case. */
861
862 static void
863 combine_temp_slots (void)
864 {
865 struct temp_slot *p, *q, *next, *next_q;
866 int num_slots;
867
868 /* We can't combine slots, because the information about which slot
869 is in which alias set will be lost. */
870 if (flag_strict_aliasing)
871 return;
872
873 /* If there are a lot of temp slots, don't do anything unless
874 high levels of optimization. */
875 if (! flag_expensive_optimizations)
876 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
877 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
878 return;
879
880 for (p = avail_temp_slots; p; p = next)
881 {
882 int delete_p = 0;
883
884 next = p->next;
885
886 if (GET_MODE (p->slot) != BLKmode)
887 continue;
888
889 for (q = p->next; q; q = next_q)
890 {
891 int delete_q = 0;
892
893 next_q = q->next;
894
895 if (GET_MODE (q->slot) != BLKmode)
896 continue;
897
898 if (p->base_offset + p->full_size == q->base_offset)
899 {
900 /* Q comes after P; combine Q into P. */
901 p->size += q->size;
902 p->full_size += q->full_size;
903 delete_q = 1;
904 }
905 else if (q->base_offset + q->full_size == p->base_offset)
906 {
907 /* P comes after Q; combine P into Q. */
908 q->size += p->size;
909 q->full_size += p->full_size;
910 delete_p = 1;
911 break;
912 }
913 if (delete_q)
914 cut_slot_from_list (q, &avail_temp_slots);
915 }
916
917 /* Either delete P or advance past it. */
918 if (delete_p)
919 cut_slot_from_list (p, &avail_temp_slots);
920 }
921 }
922 \f
923 /* Find the temp slot corresponding to the object at address X. */
924
925 static struct temp_slot *
926 find_temp_slot_from_address (rtx x)
927 {
928 struct temp_slot *p;
929 rtx next;
930 int i;
931
932 for (i = max_slot_level (); i >= 0; i--)
933 for (p = *temp_slots_at_level (i); p; p = p->next)
934 {
935 if (XEXP (p->slot, 0) == x
936 || p->address == x
937 || (GET_CODE (x) == PLUS
938 && XEXP (x, 0) == virtual_stack_vars_rtx
939 && GET_CODE (XEXP (x, 1)) == CONST_INT
940 && INTVAL (XEXP (x, 1)) >= p->base_offset
941 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
942 return p;
943
944 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
945 for (next = p->address; next; next = XEXP (next, 1))
946 if (XEXP (next, 0) == x)
947 return p;
948 }
949
950 /* If we have a sum involving a register, see if it points to a temp
951 slot. */
952 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
953 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
954 return p;
955 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
956 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
957 return p;
958
959 return 0;
960 }
961
962 /* Indicate that NEW is an alternate way of referring to the temp slot
963 that previously was known by OLD. */
964
965 void
966 update_temp_slot_address (rtx old, rtx new)
967 {
968 struct temp_slot *p;
969
970 if (rtx_equal_p (old, new))
971 return;
972
973 p = find_temp_slot_from_address (old);
974
975 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
976 is a register, see if one operand of the PLUS is a temporary
977 location. If so, NEW points into it. Otherwise, if both OLD and
978 NEW are a PLUS and if there is a register in common between them.
979 If so, try a recursive call on those values. */
980 if (p == 0)
981 {
982 if (GET_CODE (old) != PLUS)
983 return;
984
985 if (REG_P (new))
986 {
987 update_temp_slot_address (XEXP (old, 0), new);
988 update_temp_slot_address (XEXP (old, 1), new);
989 return;
990 }
991 else if (GET_CODE (new) != PLUS)
992 return;
993
994 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
995 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
996 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
997 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
998 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
999 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1000 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1001 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1002
1003 return;
1004 }
1005
1006 /* Otherwise add an alias for the temp's address. */
1007 else if (p->address == 0)
1008 p->address = new;
1009 else
1010 {
1011 if (GET_CODE (p->address) != EXPR_LIST)
1012 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1013
1014 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1015 }
1016 }
1017
1018 /* If X could be a reference to a temporary slot, mark the fact that its
1019 address was taken. */
1020
1021 void
1022 mark_temp_addr_taken (rtx x)
1023 {
1024 struct temp_slot *p;
1025
1026 if (x == 0)
1027 return;
1028
1029 /* If X is not in memory or is at a constant address, it cannot be in
1030 a temporary slot. */
1031 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1032 return;
1033
1034 p = find_temp_slot_from_address (XEXP (x, 0));
1035 if (p != 0)
1036 p->addr_taken = 1;
1037 }
1038
1039 /* If X could be a reference to a temporary slot, mark that slot as
1040 belonging to the to one level higher than the current level. If X
1041 matched one of our slots, just mark that one. Otherwise, we can't
1042 easily predict which it is, so upgrade all of them. Kept slots
1043 need not be touched.
1044
1045 This is called when an ({...}) construct occurs and a statement
1046 returns a value in memory. */
1047
1048 void
1049 preserve_temp_slots (rtx x)
1050 {
1051 struct temp_slot *p = 0, *next;
1052
1053 /* If there is no result, we still might have some objects whose address
1054 were taken, so we need to make sure they stay around. */
1055 if (x == 0)
1056 {
1057 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1058 {
1059 next = p->next;
1060
1061 if (p->addr_taken)
1062 move_slot_to_level (p, temp_slot_level - 1);
1063 }
1064
1065 return;
1066 }
1067
1068 /* If X is a register that is being used as a pointer, see if we have
1069 a temporary slot we know it points to. To be consistent with
1070 the code below, we really should preserve all non-kept slots
1071 if we can't find a match, but that seems to be much too costly. */
1072 if (REG_P (x) && REG_POINTER (x))
1073 p = find_temp_slot_from_address (x);
1074
1075 /* If X is not in memory or is at a constant address, it cannot be in
1076 a temporary slot, but it can contain something whose address was
1077 taken. */
1078 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1079 {
1080 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1081 {
1082 next = p->next;
1083
1084 if (p->addr_taken)
1085 move_slot_to_level (p, temp_slot_level - 1);
1086 }
1087
1088 return;
1089 }
1090
1091 /* First see if we can find a match. */
1092 if (p == 0)
1093 p = find_temp_slot_from_address (XEXP (x, 0));
1094
1095 if (p != 0)
1096 {
1097 /* Move everything at our level whose address was taken to our new
1098 level in case we used its address. */
1099 struct temp_slot *q;
1100
1101 if (p->level == temp_slot_level)
1102 {
1103 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1104 {
1105 next = q->next;
1106
1107 if (p != q && q->addr_taken)
1108 move_slot_to_level (q, temp_slot_level - 1);
1109 }
1110
1111 move_slot_to_level (p, temp_slot_level - 1);
1112 p->addr_taken = 0;
1113 }
1114 return;
1115 }
1116
1117 /* Otherwise, preserve all non-kept slots at this level. */
1118 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1119 {
1120 next = p->next;
1121
1122 if (!p->keep)
1123 move_slot_to_level (p, temp_slot_level - 1);
1124 }
1125 }
1126
1127 /* Free all temporaries used so far. This is normally called at the
1128 end of generating code for a statement. */
1129
1130 void
1131 free_temp_slots (void)
1132 {
1133 struct temp_slot *p, *next;
1134
1135 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1136 {
1137 next = p->next;
1138
1139 if (!p->keep)
1140 make_slot_available (p);
1141 }
1142
1143 combine_temp_slots ();
1144 }
1145
1146 /* Push deeper into the nesting level for stack temporaries. */
1147
1148 void
1149 push_temp_slots (void)
1150 {
1151 temp_slot_level++;
1152 }
1153
1154 /* Pop a temporary nesting level. All slots in use in the current level
1155 are freed. */
1156
1157 void
1158 pop_temp_slots (void)
1159 {
1160 struct temp_slot *p, *next;
1161
1162 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1163 {
1164 next = p->next;
1165 make_slot_available (p);
1166 }
1167
1168 combine_temp_slots ();
1169
1170 temp_slot_level--;
1171 }
1172
1173 /* Initialize temporary slots. */
1174
1175 void
1176 init_temp_slots (void)
1177 {
1178 /* We have not allocated any temporaries yet. */
1179 avail_temp_slots = 0;
1180 used_temp_slots = 0;
1181 temp_slot_level = 0;
1182 }
1183 \f
1184 /* These routines are responsible for converting virtual register references
1185 to the actual hard register references once RTL generation is complete.
1186
1187 The following four variables are used for communication between the
1188 routines. They contain the offsets of the virtual registers from their
1189 respective hard registers. */
1190
1191 static int in_arg_offset;
1192 static int var_offset;
1193 static int dynamic_offset;
1194 static int out_arg_offset;
1195 static int cfa_offset;
1196
1197 /* In most machines, the stack pointer register is equivalent to the bottom
1198 of the stack. */
1199
1200 #ifndef STACK_POINTER_OFFSET
1201 #define STACK_POINTER_OFFSET 0
1202 #endif
1203
1204 /* If not defined, pick an appropriate default for the offset of dynamically
1205 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1206 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1207
1208 #ifndef STACK_DYNAMIC_OFFSET
1209
1210 /* The bottom of the stack points to the actual arguments. If
1211 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1212 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1213 stack space for register parameters is not pushed by the caller, but
1214 rather part of the fixed stack areas and hence not included in
1215 `current_function_outgoing_args_size'. Nevertheless, we must allow
1216 for it when allocating stack dynamic objects. */
1217
1218 #if defined(REG_PARM_STACK_SPACE)
1219 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1220 ((ACCUMULATE_OUTGOING_ARGS \
1221 ? (current_function_outgoing_args_size \
1222 + (OUTGOING_REG_PARM_STACK_SPACE ? 0 : REG_PARM_STACK_SPACE (FNDECL))) \
1223 : 0) + (STACK_POINTER_OFFSET))
1224 #else
1225 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1226 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1227 + (STACK_POINTER_OFFSET))
1228 #endif
1229 #endif
1230
1231 \f
1232 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1233 is a virtual register, return the equivalent hard register and set the
1234 offset indirectly through the pointer. Otherwise, return 0. */
1235
1236 static rtx
1237 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1238 {
1239 rtx new;
1240 HOST_WIDE_INT offset;
1241
1242 if (x == virtual_incoming_args_rtx)
1243 new = arg_pointer_rtx, offset = in_arg_offset;
1244 else if (x == virtual_stack_vars_rtx)
1245 new = frame_pointer_rtx, offset = var_offset;
1246 else if (x == virtual_stack_dynamic_rtx)
1247 new = stack_pointer_rtx, offset = dynamic_offset;
1248 else if (x == virtual_outgoing_args_rtx)
1249 new = stack_pointer_rtx, offset = out_arg_offset;
1250 else if (x == virtual_cfa_rtx)
1251 {
1252 #ifdef FRAME_POINTER_CFA_OFFSET
1253 new = frame_pointer_rtx;
1254 #else
1255 new = arg_pointer_rtx;
1256 #endif
1257 offset = cfa_offset;
1258 }
1259 else
1260 return NULL_RTX;
1261
1262 *poffset = offset;
1263 return new;
1264 }
1265
1266 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1267 Instantiate any virtual registers present inside of *LOC. The expression
1268 is simplified, as much as possible, but is not to be considered "valid"
1269 in any sense implied by the target. If any change is made, set CHANGED
1270 to true. */
1271
1272 static int
1273 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1274 {
1275 HOST_WIDE_INT offset;
1276 bool *changed = (bool *) data;
1277 rtx x, new;
1278
1279 x = *loc;
1280 if (x == 0)
1281 return 0;
1282
1283 switch (GET_CODE (x))
1284 {
1285 case REG:
1286 new = instantiate_new_reg (x, &offset);
1287 if (new)
1288 {
1289 *loc = plus_constant (new, offset);
1290 if (changed)
1291 *changed = true;
1292 }
1293 return -1;
1294
1295 case PLUS:
1296 new = instantiate_new_reg (XEXP (x, 0), &offset);
1297 if (new)
1298 {
1299 new = plus_constant (new, offset);
1300 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1301 if (changed)
1302 *changed = true;
1303 return -1;
1304 }
1305
1306 /* FIXME -- from old code */
1307 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1308 we can commute the PLUS and SUBREG because pointers into the
1309 frame are well-behaved. */
1310 break;
1311
1312 default:
1313 break;
1314 }
1315
1316 return 0;
1317 }
1318
1319 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1320 matches the predicate for insn CODE operand OPERAND. */
1321
1322 static int
1323 safe_insn_predicate (int code, int operand, rtx x)
1324 {
1325 const struct insn_operand_data *op_data;
1326
1327 if (code < 0)
1328 return true;
1329
1330 op_data = &insn_data[code].operand[operand];
1331 if (op_data->predicate == NULL)
1332 return true;
1333
1334 return op_data->predicate (x, op_data->mode);
1335 }
1336
1337 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1338 registers present inside of insn. The result will be a valid insn. */
1339
1340 static void
1341 instantiate_virtual_regs_in_insn (rtx insn)
1342 {
1343 HOST_WIDE_INT offset;
1344 int insn_code, i;
1345 bool any_change = false;
1346 rtx set, new, x, seq;
1347
1348 /* There are some special cases to be handled first. */
1349 set = single_set (insn);
1350 if (set)
1351 {
1352 /* We're allowed to assign to a virtual register. This is interpreted
1353 to mean that the underlying register gets assigned the inverse
1354 transformation. This is used, for example, in the handling of
1355 non-local gotos. */
1356 new = instantiate_new_reg (SET_DEST (set), &offset);
1357 if (new)
1358 {
1359 start_sequence ();
1360
1361 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1362 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1363 GEN_INT (-offset));
1364 x = force_operand (x, new);
1365 if (x != new)
1366 emit_move_insn (new, x);
1367
1368 seq = get_insns ();
1369 end_sequence ();
1370
1371 emit_insn_before (seq, insn);
1372 delete_insn (insn);
1373 return;
1374 }
1375
1376 /* Handle a straight copy from a virtual register by generating a
1377 new add insn. The difference between this and falling through
1378 to the generic case is avoiding a new pseudo and eliminating a
1379 move insn in the initial rtl stream. */
1380 new = instantiate_new_reg (SET_SRC (set), &offset);
1381 if (new && offset != 0
1382 && REG_P (SET_DEST (set))
1383 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1384 {
1385 start_sequence ();
1386
1387 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1388 new, GEN_INT (offset), SET_DEST (set),
1389 1, OPTAB_LIB_WIDEN);
1390 if (x != SET_DEST (set))
1391 emit_move_insn (SET_DEST (set), x);
1392
1393 seq = get_insns ();
1394 end_sequence ();
1395
1396 emit_insn_before (seq, insn);
1397 delete_insn (insn);
1398 return;
1399 }
1400
1401 extract_insn (insn);
1402 insn_code = INSN_CODE (insn);
1403
1404 /* Handle a plus involving a virtual register by determining if the
1405 operands remain valid if they're modified in place. */
1406 if (GET_CODE (SET_SRC (set)) == PLUS
1407 && recog_data.n_operands >= 3
1408 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1409 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1410 && GET_CODE (recog_data.operand[2]) == CONST_INT
1411 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1412 {
1413 offset += INTVAL (recog_data.operand[2]);
1414
1415 /* If the sum is zero, then replace with a plain move. */
1416 if (offset == 0
1417 && REG_P (SET_DEST (set))
1418 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1419 {
1420 start_sequence ();
1421 emit_move_insn (SET_DEST (set), new);
1422 seq = get_insns ();
1423 end_sequence ();
1424
1425 emit_insn_before (seq, insn);
1426 delete_insn (insn);
1427 return;
1428 }
1429
1430 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1431
1432 /* Using validate_change and apply_change_group here leaves
1433 recog_data in an invalid state. Since we know exactly what
1434 we want to check, do those two by hand. */
1435 if (safe_insn_predicate (insn_code, 1, new)
1436 && safe_insn_predicate (insn_code, 2, x))
1437 {
1438 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1439 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1440 any_change = true;
1441
1442 /* Fall through into the regular operand fixup loop in
1443 order to take care of operands other than 1 and 2. */
1444 }
1445 }
1446 }
1447 else
1448 {
1449 extract_insn (insn);
1450 insn_code = INSN_CODE (insn);
1451 }
1452
1453 /* In the general case, we expect virtual registers to appear only in
1454 operands, and then only as either bare registers or inside memories. */
1455 for (i = 0; i < recog_data.n_operands; ++i)
1456 {
1457 x = recog_data.operand[i];
1458 switch (GET_CODE (x))
1459 {
1460 case MEM:
1461 {
1462 rtx addr = XEXP (x, 0);
1463 bool changed = false;
1464
1465 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1466 if (!changed)
1467 continue;
1468
1469 start_sequence ();
1470 x = replace_equiv_address (x, addr);
1471 seq = get_insns ();
1472 end_sequence ();
1473 if (seq)
1474 emit_insn_before (seq, insn);
1475 }
1476 break;
1477
1478 case REG:
1479 new = instantiate_new_reg (x, &offset);
1480 if (new == NULL)
1481 continue;
1482 if (offset == 0)
1483 x = new;
1484 else
1485 {
1486 start_sequence ();
1487
1488 /* Careful, special mode predicates may have stuff in
1489 insn_data[insn_code].operand[i].mode that isn't useful
1490 to us for computing a new value. */
1491 /* ??? Recognize address_operand and/or "p" constraints
1492 to see if (plus new offset) is a valid before we put
1493 this through expand_simple_binop. */
1494 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1495 GEN_INT (offset), NULL_RTX,
1496 1, OPTAB_LIB_WIDEN);
1497 seq = get_insns ();
1498 end_sequence ();
1499 emit_insn_before (seq, insn);
1500 }
1501 break;
1502
1503 case SUBREG:
1504 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1505 if (new == NULL)
1506 continue;
1507 if (offset != 0)
1508 {
1509 start_sequence ();
1510 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1511 GEN_INT (offset), NULL_RTX,
1512 1, OPTAB_LIB_WIDEN);
1513 seq = get_insns ();
1514 end_sequence ();
1515 emit_insn_before (seq, insn);
1516 }
1517 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1518 GET_MODE (new), SUBREG_BYTE (x));
1519 break;
1520
1521 default:
1522 continue;
1523 }
1524
1525 /* At this point, X contains the new value for the operand.
1526 Validate the new value vs the insn predicate. Note that
1527 asm insns will have insn_code -1 here. */
1528 if (!safe_insn_predicate (insn_code, i, x))
1529 {
1530 start_sequence ();
1531 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1532 seq = get_insns ();
1533 end_sequence ();
1534 if (seq)
1535 emit_insn_before (seq, insn);
1536 }
1537
1538 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1539 any_change = true;
1540 }
1541
1542 if (any_change)
1543 {
1544 /* Propagate operand changes into the duplicates. */
1545 for (i = 0; i < recog_data.n_dups; ++i)
1546 *recog_data.dup_loc[i]
1547 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1548
1549 /* Force re-recognition of the instruction for validation. */
1550 INSN_CODE (insn) = -1;
1551 }
1552
1553 if (asm_noperands (PATTERN (insn)) >= 0)
1554 {
1555 if (!check_asm_operands (PATTERN (insn)))
1556 {
1557 error_for_asm (insn, "impossible constraint in %<asm%>");
1558 delete_insn (insn);
1559 }
1560 }
1561 else
1562 {
1563 if (recog_memoized (insn) < 0)
1564 fatal_insn_not_found (insn);
1565 }
1566 }
1567
1568 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1569 do any instantiation required. */
1570
1571 static void
1572 instantiate_decl (rtx x)
1573 {
1574 rtx addr;
1575
1576 if (x == 0)
1577 return;
1578
1579 /* If this is a CONCAT, recurse for the pieces. */
1580 if (GET_CODE (x) == CONCAT)
1581 {
1582 instantiate_decl (XEXP (x, 0));
1583 instantiate_decl (XEXP (x, 1));
1584 return;
1585 }
1586
1587 /* If this is not a MEM, no need to do anything. Similarly if the
1588 address is a constant or a register that is not a virtual register. */
1589 if (!MEM_P (x))
1590 return;
1591
1592 addr = XEXP (x, 0);
1593 if (CONSTANT_P (addr)
1594 || (REG_P (addr)
1595 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1596 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1597 return;
1598
1599 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1600 }
1601
1602 /* Helper for instantiate_decls called via walk_tree: Process all decls
1603 in the given DECL_VALUE_EXPR. */
1604
1605 static tree
1606 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1607 {
1608 tree t = *tp;
1609 if (! EXPR_P (t) && ! GIMPLE_STMT_P (t))
1610 {
1611 *walk_subtrees = 0;
1612 if (DECL_P (t) && DECL_RTL_SET_P (t))
1613 instantiate_decl (DECL_RTL (t));
1614 }
1615 return NULL;
1616 }
1617
1618 /* Subroutine of instantiate_decls: Process all decls in the given
1619 BLOCK node and all its subblocks. */
1620
1621 static void
1622 instantiate_decls_1 (tree let)
1623 {
1624 tree t;
1625
1626 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1627 {
1628 if (DECL_RTL_SET_P (t))
1629 instantiate_decl (DECL_RTL (t));
1630 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1631 {
1632 tree v = DECL_VALUE_EXPR (t);
1633 walk_tree (&v, instantiate_expr, NULL, NULL);
1634 }
1635 }
1636
1637 /* Process all subblocks. */
1638 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1639 instantiate_decls_1 (t);
1640 }
1641
1642 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1643 all virtual registers in their DECL_RTL's. */
1644
1645 static void
1646 instantiate_decls (tree fndecl)
1647 {
1648 tree decl;
1649
1650 /* Process all parameters of the function. */
1651 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1652 {
1653 instantiate_decl (DECL_RTL (decl));
1654 instantiate_decl (DECL_INCOMING_RTL (decl));
1655 if (DECL_HAS_VALUE_EXPR_P (decl))
1656 {
1657 tree v = DECL_VALUE_EXPR (decl);
1658 walk_tree (&v, instantiate_expr, NULL, NULL);
1659 }
1660 }
1661
1662 /* Now process all variables defined in the function or its subblocks. */
1663 instantiate_decls_1 (DECL_INITIAL (fndecl));
1664 }
1665
1666 /* Pass through the INSNS of function FNDECL and convert virtual register
1667 references to hard register references. */
1668
1669 static unsigned int
1670 instantiate_virtual_regs (void)
1671 {
1672 rtx insn;
1673
1674 /* Compute the offsets to use for this function. */
1675 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1676 var_offset = STARTING_FRAME_OFFSET;
1677 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1678 out_arg_offset = STACK_POINTER_OFFSET;
1679 #ifdef FRAME_POINTER_CFA_OFFSET
1680 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1681 #else
1682 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1683 #endif
1684
1685 /* Initialize recognition, indicating that volatile is OK. */
1686 init_recog ();
1687
1688 /* Scan through all the insns, instantiating every virtual register still
1689 present. */
1690 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1691 if (INSN_P (insn))
1692 {
1693 /* These patterns in the instruction stream can never be recognized.
1694 Fortunately, they shouldn't contain virtual registers either. */
1695 if (GET_CODE (PATTERN (insn)) == USE
1696 || GET_CODE (PATTERN (insn)) == CLOBBER
1697 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1698 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1699 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1700 continue;
1701
1702 instantiate_virtual_regs_in_insn (insn);
1703
1704 if (INSN_DELETED_P (insn))
1705 continue;
1706
1707 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1708
1709 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1710 if (GET_CODE (insn) == CALL_INSN)
1711 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1712 instantiate_virtual_regs_in_rtx, NULL);
1713 }
1714
1715 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1716 instantiate_decls (current_function_decl);
1717
1718 /* Indicate that, from now on, assign_stack_local should use
1719 frame_pointer_rtx. */
1720 virtuals_instantiated = 1;
1721 return 0;
1722 }
1723
1724 struct tree_opt_pass pass_instantiate_virtual_regs =
1725 {
1726 "vregs", /* name */
1727 NULL, /* gate */
1728 instantiate_virtual_regs, /* execute */
1729 NULL, /* sub */
1730 NULL, /* next */
1731 0, /* static_pass_number */
1732 0, /* tv_id */
1733 0, /* properties_required */
1734 0, /* properties_provided */
1735 0, /* properties_destroyed */
1736 0, /* todo_flags_start */
1737 TODO_dump_func, /* todo_flags_finish */
1738 0 /* letter */
1739 };
1740
1741 \f
1742 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1743 This means a type for which function calls must pass an address to the
1744 function or get an address back from the function.
1745 EXP may be a type node or an expression (whose type is tested). */
1746
1747 int
1748 aggregate_value_p (const_tree exp, const_tree fntype)
1749 {
1750 int i, regno, nregs;
1751 rtx reg;
1752
1753 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1754
1755 /* DECL node associated with FNTYPE when relevant, which we might need to
1756 check for by-invisible-reference returns, typically for CALL_EXPR input
1757 EXPressions. */
1758 const_tree fndecl = NULL_TREE;
1759
1760 if (fntype)
1761 switch (TREE_CODE (fntype))
1762 {
1763 case CALL_EXPR:
1764 fndecl = get_callee_fndecl (fntype);
1765 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1766 break;
1767 case FUNCTION_DECL:
1768 fndecl = fntype;
1769 fntype = TREE_TYPE (fndecl);
1770 break;
1771 case FUNCTION_TYPE:
1772 case METHOD_TYPE:
1773 break;
1774 case IDENTIFIER_NODE:
1775 fntype = 0;
1776 break;
1777 default:
1778 /* We don't expect other rtl types here. */
1779 gcc_unreachable ();
1780 }
1781
1782 if (TREE_CODE (type) == VOID_TYPE)
1783 return 0;
1784
1785 /* If the front end has decided that this needs to be passed by
1786 reference, do so. */
1787 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1788 && DECL_BY_REFERENCE (exp))
1789 return 1;
1790
1791 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1792 called function RESULT_DECL, meaning the function returns in memory by
1793 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1794 on the function type, which used to be the way to request such a return
1795 mechanism but might now be causing troubles at gimplification time if
1796 temporaries with the function type need to be created. */
1797 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1798 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1799 return 1;
1800
1801 if (targetm.calls.return_in_memory (type, fntype))
1802 return 1;
1803 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1804 and thus can't be returned in registers. */
1805 if (TREE_ADDRESSABLE (type))
1806 return 1;
1807 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1808 return 1;
1809 /* Make sure we have suitable call-clobbered regs to return
1810 the value in; if not, we must return it in memory. */
1811 reg = hard_function_value (type, 0, fntype, 0);
1812
1813 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1814 it is OK. */
1815 if (!REG_P (reg))
1816 return 0;
1817
1818 regno = REGNO (reg);
1819 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1820 for (i = 0; i < nregs; i++)
1821 if (! call_used_regs[regno + i])
1822 return 1;
1823 return 0;
1824 }
1825 \f
1826 /* Return true if we should assign DECL a pseudo register; false if it
1827 should live on the local stack. */
1828
1829 bool
1830 use_register_for_decl (const_tree decl)
1831 {
1832 /* Honor volatile. */
1833 if (TREE_SIDE_EFFECTS (decl))
1834 return false;
1835
1836 /* Honor addressability. */
1837 if (TREE_ADDRESSABLE (decl))
1838 return false;
1839
1840 /* Only register-like things go in registers. */
1841 if (DECL_MODE (decl) == BLKmode)
1842 return false;
1843
1844 /* If -ffloat-store specified, don't put explicit float variables
1845 into registers. */
1846 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1847 propagates values across these stores, and it probably shouldn't. */
1848 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1849 return false;
1850
1851 /* If we're not interested in tracking debugging information for
1852 this decl, then we can certainly put it in a register. */
1853 if (DECL_IGNORED_P (decl))
1854 return true;
1855
1856 return (optimize || DECL_REGISTER (decl));
1857 }
1858
1859 /* Return true if TYPE should be passed by invisible reference. */
1860
1861 bool
1862 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1863 tree type, bool named_arg)
1864 {
1865 if (type)
1866 {
1867 /* If this type contains non-trivial constructors, then it is
1868 forbidden for the middle-end to create any new copies. */
1869 if (TREE_ADDRESSABLE (type))
1870 return true;
1871
1872 /* GCC post 3.4 passes *all* variable sized types by reference. */
1873 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1874 return true;
1875 }
1876
1877 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1878 }
1879
1880 /* Return true if TYPE, which is passed by reference, should be callee
1881 copied instead of caller copied. */
1882
1883 bool
1884 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1885 tree type, bool named_arg)
1886 {
1887 if (type && TREE_ADDRESSABLE (type))
1888 return false;
1889 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1890 }
1891
1892 /* Structures to communicate between the subroutines of assign_parms.
1893 The first holds data persistent across all parameters, the second
1894 is cleared out for each parameter. */
1895
1896 struct assign_parm_data_all
1897 {
1898 CUMULATIVE_ARGS args_so_far;
1899 struct args_size stack_args_size;
1900 tree function_result_decl;
1901 tree orig_fnargs;
1902 rtx first_conversion_insn;
1903 rtx last_conversion_insn;
1904 HOST_WIDE_INT pretend_args_size;
1905 HOST_WIDE_INT extra_pretend_bytes;
1906 int reg_parm_stack_space;
1907 };
1908
1909 struct assign_parm_data_one
1910 {
1911 tree nominal_type;
1912 tree passed_type;
1913 rtx entry_parm;
1914 rtx stack_parm;
1915 enum machine_mode nominal_mode;
1916 enum machine_mode passed_mode;
1917 enum machine_mode promoted_mode;
1918 struct locate_and_pad_arg_data locate;
1919 int partial;
1920 BOOL_BITFIELD named_arg : 1;
1921 BOOL_BITFIELD passed_pointer : 1;
1922 BOOL_BITFIELD on_stack : 1;
1923 BOOL_BITFIELD loaded_in_reg : 1;
1924 };
1925
1926 /* A subroutine of assign_parms. Initialize ALL. */
1927
1928 static void
1929 assign_parms_initialize_all (struct assign_parm_data_all *all)
1930 {
1931 tree fntype;
1932
1933 memset (all, 0, sizeof (*all));
1934
1935 fntype = TREE_TYPE (current_function_decl);
1936
1937 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1938 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1939 #else
1940 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1941 current_function_decl, -1);
1942 #endif
1943
1944 #ifdef REG_PARM_STACK_SPACE
1945 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1946 #endif
1947 }
1948
1949 /* If ARGS contains entries with complex types, split the entry into two
1950 entries of the component type. Return a new list of substitutions are
1951 needed, else the old list. */
1952
1953 static tree
1954 split_complex_args (tree args)
1955 {
1956 tree p;
1957
1958 /* Before allocating memory, check for the common case of no complex. */
1959 for (p = args; p; p = TREE_CHAIN (p))
1960 {
1961 tree type = TREE_TYPE (p);
1962 if (TREE_CODE (type) == COMPLEX_TYPE
1963 && targetm.calls.split_complex_arg (type))
1964 goto found;
1965 }
1966 return args;
1967
1968 found:
1969 args = copy_list (args);
1970
1971 for (p = args; p; p = TREE_CHAIN (p))
1972 {
1973 tree type = TREE_TYPE (p);
1974 if (TREE_CODE (type) == COMPLEX_TYPE
1975 && targetm.calls.split_complex_arg (type))
1976 {
1977 tree decl;
1978 tree subtype = TREE_TYPE (type);
1979 bool addressable = TREE_ADDRESSABLE (p);
1980
1981 /* Rewrite the PARM_DECL's type with its component. */
1982 TREE_TYPE (p) = subtype;
1983 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1984 DECL_MODE (p) = VOIDmode;
1985 DECL_SIZE (p) = NULL;
1986 DECL_SIZE_UNIT (p) = NULL;
1987 /* If this arg must go in memory, put it in a pseudo here.
1988 We can't allow it to go in memory as per normal parms,
1989 because the usual place might not have the imag part
1990 adjacent to the real part. */
1991 DECL_ARTIFICIAL (p) = addressable;
1992 DECL_IGNORED_P (p) = addressable;
1993 TREE_ADDRESSABLE (p) = 0;
1994 layout_decl (p, 0);
1995
1996 /* Build a second synthetic decl. */
1997 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1998 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1999 DECL_ARTIFICIAL (decl) = addressable;
2000 DECL_IGNORED_P (decl) = addressable;
2001 layout_decl (decl, 0);
2002
2003 /* Splice it in; skip the new decl. */
2004 TREE_CHAIN (decl) = TREE_CHAIN (p);
2005 TREE_CHAIN (p) = decl;
2006 p = decl;
2007 }
2008 }
2009
2010 return args;
2011 }
2012
2013 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2014 the hidden struct return argument, and (abi willing) complex args.
2015 Return the new parameter list. */
2016
2017 static tree
2018 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2019 {
2020 tree fndecl = current_function_decl;
2021 tree fntype = TREE_TYPE (fndecl);
2022 tree fnargs = DECL_ARGUMENTS (fndecl);
2023
2024 /* If struct value address is treated as the first argument, make it so. */
2025 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2026 && ! current_function_returns_pcc_struct
2027 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2028 {
2029 tree type = build_pointer_type (TREE_TYPE (fntype));
2030 tree decl;
2031
2032 decl = build_decl (PARM_DECL, NULL_TREE, type);
2033 DECL_ARG_TYPE (decl) = type;
2034 DECL_ARTIFICIAL (decl) = 1;
2035 DECL_IGNORED_P (decl) = 1;
2036
2037 TREE_CHAIN (decl) = fnargs;
2038 fnargs = decl;
2039 all->function_result_decl = decl;
2040 }
2041
2042 all->orig_fnargs = fnargs;
2043
2044 /* If the target wants to split complex arguments into scalars, do so. */
2045 if (targetm.calls.split_complex_arg)
2046 fnargs = split_complex_args (fnargs);
2047
2048 return fnargs;
2049 }
2050
2051 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2052 data for the parameter. Incorporate ABI specifics such as pass-by-
2053 reference and type promotion. */
2054
2055 static void
2056 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2057 struct assign_parm_data_one *data)
2058 {
2059 tree nominal_type, passed_type;
2060 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2061
2062 memset (data, 0, sizeof (*data));
2063
2064 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2065 if (!current_function_stdarg)
2066 data->named_arg = 1; /* No varadic parms. */
2067 else if (TREE_CHAIN (parm))
2068 data->named_arg = 1; /* Not the last non-varadic parm. */
2069 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2070 data->named_arg = 1; /* Only varadic ones are unnamed. */
2071 else
2072 data->named_arg = 0; /* Treat as varadic. */
2073
2074 nominal_type = TREE_TYPE (parm);
2075 passed_type = DECL_ARG_TYPE (parm);
2076
2077 /* Look out for errors propagating this far. Also, if the parameter's
2078 type is void then its value doesn't matter. */
2079 if (TREE_TYPE (parm) == error_mark_node
2080 /* This can happen after weird syntax errors
2081 or if an enum type is defined among the parms. */
2082 || TREE_CODE (parm) != PARM_DECL
2083 || passed_type == NULL
2084 || VOID_TYPE_P (nominal_type))
2085 {
2086 nominal_type = passed_type = void_type_node;
2087 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2088 goto egress;
2089 }
2090
2091 /* Find mode of arg as it is passed, and mode of arg as it should be
2092 during execution of this function. */
2093 passed_mode = TYPE_MODE (passed_type);
2094 nominal_mode = TYPE_MODE (nominal_type);
2095
2096 /* If the parm is to be passed as a transparent union, use the type of
2097 the first field for the tests below. We have already verified that
2098 the modes are the same. */
2099 if (TREE_CODE (passed_type) == UNION_TYPE
2100 && TYPE_TRANSPARENT_UNION (passed_type))
2101 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2102
2103 /* See if this arg was passed by invisible reference. */
2104 if (pass_by_reference (&all->args_so_far, passed_mode,
2105 passed_type, data->named_arg))
2106 {
2107 passed_type = nominal_type = build_pointer_type (passed_type);
2108 data->passed_pointer = true;
2109 passed_mode = nominal_mode = Pmode;
2110 }
2111
2112 /* Find mode as it is passed by the ABI. */
2113 promoted_mode = passed_mode;
2114 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2115 {
2116 int unsignedp = TYPE_UNSIGNED (passed_type);
2117 promoted_mode = promote_mode (passed_type, promoted_mode,
2118 &unsignedp, 1);
2119 }
2120
2121 egress:
2122 data->nominal_type = nominal_type;
2123 data->passed_type = passed_type;
2124 data->nominal_mode = nominal_mode;
2125 data->passed_mode = passed_mode;
2126 data->promoted_mode = promoted_mode;
2127 }
2128
2129 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2130
2131 static void
2132 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2133 struct assign_parm_data_one *data, bool no_rtl)
2134 {
2135 int varargs_pretend_bytes = 0;
2136
2137 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2138 data->promoted_mode,
2139 data->passed_type,
2140 &varargs_pretend_bytes, no_rtl);
2141
2142 /* If the back-end has requested extra stack space, record how much is
2143 needed. Do not change pretend_args_size otherwise since it may be
2144 nonzero from an earlier partial argument. */
2145 if (varargs_pretend_bytes > 0)
2146 all->pretend_args_size = varargs_pretend_bytes;
2147 }
2148
2149 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2150 the incoming location of the current parameter. */
2151
2152 static void
2153 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2154 struct assign_parm_data_one *data)
2155 {
2156 HOST_WIDE_INT pretend_bytes = 0;
2157 rtx entry_parm;
2158 bool in_regs;
2159
2160 if (data->promoted_mode == VOIDmode)
2161 {
2162 data->entry_parm = data->stack_parm = const0_rtx;
2163 return;
2164 }
2165
2166 #ifdef FUNCTION_INCOMING_ARG
2167 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2168 data->passed_type, data->named_arg);
2169 #else
2170 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2171 data->passed_type, data->named_arg);
2172 #endif
2173
2174 if (entry_parm == 0)
2175 data->promoted_mode = data->passed_mode;
2176
2177 /* Determine parm's home in the stack, in case it arrives in the stack
2178 or we should pretend it did. Compute the stack position and rtx where
2179 the argument arrives and its size.
2180
2181 There is one complexity here: If this was a parameter that would
2182 have been passed in registers, but wasn't only because it is
2183 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2184 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2185 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2186 as it was the previous time. */
2187 in_regs = entry_parm != 0;
2188 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2189 in_regs = true;
2190 #endif
2191 if (!in_regs && !data->named_arg)
2192 {
2193 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2194 {
2195 rtx tem;
2196 #ifdef FUNCTION_INCOMING_ARG
2197 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2198 data->passed_type, true);
2199 #else
2200 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2201 data->passed_type, true);
2202 #endif
2203 in_regs = tem != NULL;
2204 }
2205 }
2206
2207 /* If this parameter was passed both in registers and in the stack, use
2208 the copy on the stack. */
2209 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2210 data->passed_type))
2211 entry_parm = 0;
2212
2213 if (entry_parm)
2214 {
2215 int partial;
2216
2217 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2218 data->promoted_mode,
2219 data->passed_type,
2220 data->named_arg);
2221 data->partial = partial;
2222
2223 /* The caller might already have allocated stack space for the
2224 register parameters. */
2225 if (partial != 0 && all->reg_parm_stack_space == 0)
2226 {
2227 /* Part of this argument is passed in registers and part
2228 is passed on the stack. Ask the prologue code to extend
2229 the stack part so that we can recreate the full value.
2230
2231 PRETEND_BYTES is the size of the registers we need to store.
2232 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2233 stack space that the prologue should allocate.
2234
2235 Internally, gcc assumes that the argument pointer is aligned
2236 to STACK_BOUNDARY bits. This is used both for alignment
2237 optimizations (see init_emit) and to locate arguments that are
2238 aligned to more than PARM_BOUNDARY bits. We must preserve this
2239 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2240 a stack boundary. */
2241
2242 /* We assume at most one partial arg, and it must be the first
2243 argument on the stack. */
2244 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2245
2246 pretend_bytes = partial;
2247 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2248
2249 /* We want to align relative to the actual stack pointer, so
2250 don't include this in the stack size until later. */
2251 all->extra_pretend_bytes = all->pretend_args_size;
2252 }
2253 }
2254
2255 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2256 entry_parm ? data->partial : 0, current_function_decl,
2257 &all->stack_args_size, &data->locate);
2258
2259 /* Adjust offsets to include the pretend args. */
2260 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2261 data->locate.slot_offset.constant += pretend_bytes;
2262 data->locate.offset.constant += pretend_bytes;
2263
2264 data->entry_parm = entry_parm;
2265 }
2266
2267 /* A subroutine of assign_parms. If there is actually space on the stack
2268 for this parm, count it in stack_args_size and return true. */
2269
2270 static bool
2271 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2272 struct assign_parm_data_one *data)
2273 {
2274 /* Trivially true if we've no incoming register. */
2275 if (data->entry_parm == NULL)
2276 ;
2277 /* Also true if we're partially in registers and partially not,
2278 since we've arranged to drop the entire argument on the stack. */
2279 else if (data->partial != 0)
2280 ;
2281 /* Also true if the target says that it's passed in both registers
2282 and on the stack. */
2283 else if (GET_CODE (data->entry_parm) == PARALLEL
2284 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2285 ;
2286 /* Also true if the target says that there's stack allocated for
2287 all register parameters. */
2288 else if (all->reg_parm_stack_space > 0)
2289 ;
2290 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2291 else
2292 return false;
2293
2294 all->stack_args_size.constant += data->locate.size.constant;
2295 if (data->locate.size.var)
2296 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2297
2298 return true;
2299 }
2300
2301 /* A subroutine of assign_parms. Given that this parameter is allocated
2302 stack space by the ABI, find it. */
2303
2304 static void
2305 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2306 {
2307 rtx offset_rtx, stack_parm;
2308 unsigned int align, boundary;
2309
2310 /* If we're passing this arg using a reg, make its stack home the
2311 aligned stack slot. */
2312 if (data->entry_parm)
2313 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2314 else
2315 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2316
2317 stack_parm = current_function_internal_arg_pointer;
2318 if (offset_rtx != const0_rtx)
2319 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2320 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2321
2322 set_mem_attributes (stack_parm, parm, 1);
2323
2324 boundary = data->locate.boundary;
2325 align = BITS_PER_UNIT;
2326
2327 /* If we're padding upward, we know that the alignment of the slot
2328 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2329 intentionally forcing upward padding. Otherwise we have to come
2330 up with a guess at the alignment based on OFFSET_RTX. */
2331 if (data->locate.where_pad != downward || data->entry_parm)
2332 align = boundary;
2333 else if (GET_CODE (offset_rtx) == CONST_INT)
2334 {
2335 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2336 align = align & -align;
2337 }
2338 set_mem_align (stack_parm, align);
2339
2340 if (data->entry_parm)
2341 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2342
2343 data->stack_parm = stack_parm;
2344 }
2345
2346 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2347 always valid and contiguous. */
2348
2349 static void
2350 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2351 {
2352 rtx entry_parm = data->entry_parm;
2353 rtx stack_parm = data->stack_parm;
2354
2355 /* If this parm was passed part in regs and part in memory, pretend it
2356 arrived entirely in memory by pushing the register-part onto the stack.
2357 In the special case of a DImode or DFmode that is split, we could put
2358 it together in a pseudoreg directly, but for now that's not worth
2359 bothering with. */
2360 if (data->partial != 0)
2361 {
2362 /* Handle calls that pass values in multiple non-contiguous
2363 locations. The Irix 6 ABI has examples of this. */
2364 if (GET_CODE (entry_parm) == PARALLEL)
2365 emit_group_store (validize_mem (stack_parm), entry_parm,
2366 data->passed_type,
2367 int_size_in_bytes (data->passed_type));
2368 else
2369 {
2370 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2371 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2372 data->partial / UNITS_PER_WORD);
2373 }
2374
2375 entry_parm = stack_parm;
2376 }
2377
2378 /* If we didn't decide this parm came in a register, by default it came
2379 on the stack. */
2380 else if (entry_parm == NULL)
2381 entry_parm = stack_parm;
2382
2383 /* When an argument is passed in multiple locations, we can't make use
2384 of this information, but we can save some copying if the whole argument
2385 is passed in a single register. */
2386 else if (GET_CODE (entry_parm) == PARALLEL
2387 && data->nominal_mode != BLKmode
2388 && data->passed_mode != BLKmode)
2389 {
2390 size_t i, len = XVECLEN (entry_parm, 0);
2391
2392 for (i = 0; i < len; i++)
2393 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2394 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2395 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2396 == data->passed_mode)
2397 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2398 {
2399 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2400 break;
2401 }
2402 }
2403
2404 data->entry_parm = entry_parm;
2405 }
2406
2407 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2408 always valid and properly aligned. */
2409
2410 static void
2411 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2412 {
2413 rtx stack_parm = data->stack_parm;
2414
2415 /* If we can't trust the parm stack slot to be aligned enough for its
2416 ultimate type, don't use that slot after entry. We'll make another
2417 stack slot, if we need one. */
2418 if (stack_parm
2419 && ((STRICT_ALIGNMENT
2420 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2421 || (data->nominal_type
2422 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2423 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2424 stack_parm = NULL;
2425
2426 /* If parm was passed in memory, and we need to convert it on entry,
2427 don't store it back in that same slot. */
2428 else if (data->entry_parm == stack_parm
2429 && data->nominal_mode != BLKmode
2430 && data->nominal_mode != data->passed_mode)
2431 stack_parm = NULL;
2432
2433 /* If stack protection is in effect for this function, don't leave any
2434 pointers in their passed stack slots. */
2435 else if (cfun->stack_protect_guard
2436 && (flag_stack_protect == 2
2437 || data->passed_pointer
2438 || POINTER_TYPE_P (data->nominal_type)))
2439 stack_parm = NULL;
2440
2441 data->stack_parm = stack_parm;
2442 }
2443
2444 /* A subroutine of assign_parms. Return true if the current parameter
2445 should be stored as a BLKmode in the current frame. */
2446
2447 static bool
2448 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2449 {
2450 if (data->nominal_mode == BLKmode)
2451 return true;
2452 if (GET_CODE (data->entry_parm) == PARALLEL)
2453 return true;
2454
2455 #ifdef BLOCK_REG_PADDING
2456 /* Only assign_parm_setup_block knows how to deal with register arguments
2457 that are padded at the least significant end. */
2458 if (REG_P (data->entry_parm)
2459 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2460 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2461 == (BYTES_BIG_ENDIAN ? upward : downward)))
2462 return true;
2463 #endif
2464
2465 return false;
2466 }
2467
2468 /* A subroutine of assign_parms. Arrange for the parameter to be
2469 present and valid in DATA->STACK_RTL. */
2470
2471 static void
2472 assign_parm_setup_block (struct assign_parm_data_all *all,
2473 tree parm, struct assign_parm_data_one *data)
2474 {
2475 rtx entry_parm = data->entry_parm;
2476 rtx stack_parm = data->stack_parm;
2477 HOST_WIDE_INT size;
2478 HOST_WIDE_INT size_stored;
2479 rtx orig_entry_parm = entry_parm;
2480
2481 if (GET_CODE (entry_parm) == PARALLEL)
2482 entry_parm = emit_group_move_into_temps (entry_parm);
2483
2484 /* If we've a non-block object that's nevertheless passed in parts,
2485 reconstitute it in register operations rather than on the stack. */
2486 if (GET_CODE (entry_parm) == PARALLEL
2487 && data->nominal_mode != BLKmode)
2488 {
2489 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2490
2491 if ((XVECLEN (entry_parm, 0) > 1
2492 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2493 && use_register_for_decl (parm))
2494 {
2495 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2496
2497 push_to_sequence2 (all->first_conversion_insn,
2498 all->last_conversion_insn);
2499
2500 /* For values returned in multiple registers, handle possible
2501 incompatible calls to emit_group_store.
2502
2503 For example, the following would be invalid, and would have to
2504 be fixed by the conditional below:
2505
2506 emit_group_store ((reg:SF), (parallel:DF))
2507 emit_group_store ((reg:SI), (parallel:DI))
2508
2509 An example of this are doubles in e500 v2:
2510 (parallel:DF (expr_list (reg:SI) (const_int 0))
2511 (expr_list (reg:SI) (const_int 4))). */
2512 if (data->nominal_mode != data->passed_mode)
2513 {
2514 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2515 emit_group_store (t, entry_parm, NULL_TREE,
2516 GET_MODE_SIZE (GET_MODE (entry_parm)));
2517 convert_move (parmreg, t, 0);
2518 }
2519 else
2520 emit_group_store (parmreg, entry_parm, data->nominal_type,
2521 int_size_in_bytes (data->nominal_type));
2522
2523 all->first_conversion_insn = get_insns ();
2524 all->last_conversion_insn = get_last_insn ();
2525 end_sequence ();
2526
2527 SET_DECL_RTL (parm, parmreg);
2528 return;
2529 }
2530 }
2531
2532 size = int_size_in_bytes (data->passed_type);
2533 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2534 if (stack_parm == 0)
2535 {
2536 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2537 stack_parm = assign_stack_local (BLKmode, size_stored,
2538 DECL_ALIGN (parm));
2539 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2540 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2541 set_mem_attributes (stack_parm, parm, 1);
2542 }
2543
2544 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2545 calls that pass values in multiple non-contiguous locations. */
2546 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2547 {
2548 rtx mem;
2549
2550 /* Note that we will be storing an integral number of words.
2551 So we have to be careful to ensure that we allocate an
2552 integral number of words. We do this above when we call
2553 assign_stack_local if space was not allocated in the argument
2554 list. If it was, this will not work if PARM_BOUNDARY is not
2555 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2556 if it becomes a problem. Exception is when BLKmode arrives
2557 with arguments not conforming to word_mode. */
2558
2559 if (data->stack_parm == 0)
2560 ;
2561 else if (GET_CODE (entry_parm) == PARALLEL)
2562 ;
2563 else
2564 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2565
2566 mem = validize_mem (stack_parm);
2567
2568 /* Handle values in multiple non-contiguous locations. */
2569 if (GET_CODE (entry_parm) == PARALLEL)
2570 {
2571 push_to_sequence2 (all->first_conversion_insn,
2572 all->last_conversion_insn);
2573 emit_group_store (mem, entry_parm, data->passed_type, size);
2574 all->first_conversion_insn = get_insns ();
2575 all->last_conversion_insn = get_last_insn ();
2576 end_sequence ();
2577 }
2578
2579 else if (size == 0)
2580 ;
2581
2582 /* If SIZE is that of a mode no bigger than a word, just use
2583 that mode's store operation. */
2584 else if (size <= UNITS_PER_WORD)
2585 {
2586 enum machine_mode mode
2587 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2588
2589 if (mode != BLKmode
2590 #ifdef BLOCK_REG_PADDING
2591 && (size == UNITS_PER_WORD
2592 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2593 != (BYTES_BIG_ENDIAN ? upward : downward)))
2594 #endif
2595 )
2596 {
2597 rtx reg;
2598
2599 /* We are really truncating a word_mode value containing
2600 SIZE bytes into a value of mode MODE. If such an
2601 operation requires no actual instructions, we can refer
2602 to the value directly in mode MODE, otherwise we must
2603 start with the register in word_mode and explicitly
2604 convert it. */
2605 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2606 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2607 else
2608 {
2609 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2610 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2611 }
2612 emit_move_insn (change_address (mem, mode, 0), reg);
2613 }
2614
2615 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2616 machine must be aligned to the left before storing
2617 to memory. Note that the previous test doesn't
2618 handle all cases (e.g. SIZE == 3). */
2619 else if (size != UNITS_PER_WORD
2620 #ifdef BLOCK_REG_PADDING
2621 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2622 == downward)
2623 #else
2624 && BYTES_BIG_ENDIAN
2625 #endif
2626 )
2627 {
2628 rtx tem, x;
2629 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2630 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2631
2632 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2633 build_int_cst (NULL_TREE, by),
2634 NULL_RTX, 1);
2635 tem = change_address (mem, word_mode, 0);
2636 emit_move_insn (tem, x);
2637 }
2638 else
2639 move_block_from_reg (REGNO (entry_parm), mem,
2640 size_stored / UNITS_PER_WORD);
2641 }
2642 else
2643 move_block_from_reg (REGNO (entry_parm), mem,
2644 size_stored / UNITS_PER_WORD);
2645 }
2646 else if (data->stack_parm == 0)
2647 {
2648 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2649 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2650 BLOCK_OP_NORMAL);
2651 all->first_conversion_insn = get_insns ();
2652 all->last_conversion_insn = get_last_insn ();
2653 end_sequence ();
2654 }
2655
2656 data->stack_parm = stack_parm;
2657 SET_DECL_RTL (parm, stack_parm);
2658 }
2659
2660 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2661 parameter. Get it there. Perform all ABI specified conversions. */
2662
2663 static void
2664 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2665 struct assign_parm_data_one *data)
2666 {
2667 rtx parmreg;
2668 enum machine_mode promoted_nominal_mode;
2669 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2670 bool did_conversion = false;
2671
2672 /* Store the parm in a pseudoregister during the function, but we may
2673 need to do it in a wider mode. */
2674
2675 /* This is not really promoting for a call. However we need to be
2676 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2677 promoted_nominal_mode
2678 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2679
2680 parmreg = gen_reg_rtx (promoted_nominal_mode);
2681
2682 if (!DECL_ARTIFICIAL (parm))
2683 mark_user_reg (parmreg);
2684
2685 /* If this was an item that we received a pointer to,
2686 set DECL_RTL appropriately. */
2687 if (data->passed_pointer)
2688 {
2689 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2690 set_mem_attributes (x, parm, 1);
2691 SET_DECL_RTL (parm, x);
2692 }
2693 else
2694 SET_DECL_RTL (parm, parmreg);
2695
2696 /* Copy the value into the register. */
2697 if (data->nominal_mode != data->passed_mode
2698 || promoted_nominal_mode != data->promoted_mode)
2699 {
2700 int save_tree_used;
2701
2702 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2703 mode, by the caller. We now have to convert it to
2704 NOMINAL_MODE, if different. However, PARMREG may be in
2705 a different mode than NOMINAL_MODE if it is being stored
2706 promoted.
2707
2708 If ENTRY_PARM is a hard register, it might be in a register
2709 not valid for operating in its mode (e.g., an odd-numbered
2710 register for a DFmode). In that case, moves are the only
2711 thing valid, so we can't do a convert from there. This
2712 occurs when the calling sequence allow such misaligned
2713 usages.
2714
2715 In addition, the conversion may involve a call, which could
2716 clobber parameters which haven't been copied to pseudo
2717 registers yet. Therefore, we must first copy the parm to
2718 a pseudo reg here, and save the conversion until after all
2719 parameters have been moved. */
2720
2721 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2722
2723 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2724
2725 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2726 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2727
2728 if (GET_CODE (tempreg) == SUBREG
2729 && GET_MODE (tempreg) == data->nominal_mode
2730 && REG_P (SUBREG_REG (tempreg))
2731 && data->nominal_mode == data->passed_mode
2732 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2733 && GET_MODE_SIZE (GET_MODE (tempreg))
2734 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2735 {
2736 /* The argument is already sign/zero extended, so note it
2737 into the subreg. */
2738 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2739 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2740 }
2741
2742 /* TREE_USED gets set erroneously during expand_assignment. */
2743 save_tree_used = TREE_USED (parm);
2744 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2745 TREE_USED (parm) = save_tree_used;
2746 all->first_conversion_insn = get_insns ();
2747 all->last_conversion_insn = get_last_insn ();
2748 end_sequence ();
2749
2750 did_conversion = true;
2751 }
2752 else
2753 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2754
2755 /* If we were passed a pointer but the actual value can safely live
2756 in a register, put it in one. */
2757 if (data->passed_pointer
2758 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2759 /* If by-reference argument was promoted, demote it. */
2760 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2761 || use_register_for_decl (parm)))
2762 {
2763 /* We can't use nominal_mode, because it will have been set to
2764 Pmode above. We must use the actual mode of the parm. */
2765 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2766 mark_user_reg (parmreg);
2767
2768 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2769 {
2770 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2771 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2772
2773 push_to_sequence2 (all->first_conversion_insn,
2774 all->last_conversion_insn);
2775 emit_move_insn (tempreg, DECL_RTL (parm));
2776 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2777 emit_move_insn (parmreg, tempreg);
2778 all->first_conversion_insn = get_insns ();
2779 all->last_conversion_insn = get_last_insn ();
2780 end_sequence ();
2781
2782 did_conversion = true;
2783 }
2784 else
2785 emit_move_insn (parmreg, DECL_RTL (parm));
2786
2787 SET_DECL_RTL (parm, parmreg);
2788
2789 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2790 now the parm. */
2791 data->stack_parm = NULL;
2792 }
2793
2794 /* Mark the register as eliminable if we did no conversion and it was
2795 copied from memory at a fixed offset, and the arg pointer was not
2796 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2797 offset formed an invalid address, such memory-equivalences as we
2798 make here would screw up life analysis for it. */
2799 if (data->nominal_mode == data->passed_mode
2800 && !did_conversion
2801 && data->stack_parm != 0
2802 && MEM_P (data->stack_parm)
2803 && data->locate.offset.var == 0
2804 && reg_mentioned_p (virtual_incoming_args_rtx,
2805 XEXP (data->stack_parm, 0)))
2806 {
2807 rtx linsn = get_last_insn ();
2808 rtx sinsn, set;
2809
2810 /* Mark complex types separately. */
2811 if (GET_CODE (parmreg) == CONCAT)
2812 {
2813 enum machine_mode submode
2814 = GET_MODE_INNER (GET_MODE (parmreg));
2815 int regnor = REGNO (XEXP (parmreg, 0));
2816 int regnoi = REGNO (XEXP (parmreg, 1));
2817 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2818 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2819 GET_MODE_SIZE (submode));
2820
2821 /* Scan backwards for the set of the real and
2822 imaginary parts. */
2823 for (sinsn = linsn; sinsn != 0;
2824 sinsn = prev_nonnote_insn (sinsn))
2825 {
2826 set = single_set (sinsn);
2827 if (set == 0)
2828 continue;
2829
2830 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2831 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2832 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2833 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2834 }
2835 }
2836 else if ((set = single_set (linsn)) != 0
2837 && SET_DEST (set) == parmreg)
2838 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2839 }
2840
2841 /* For pointer data type, suggest pointer register. */
2842 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2843 mark_reg_pointer (parmreg,
2844 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2845 }
2846
2847 /* A subroutine of assign_parms. Allocate stack space to hold the current
2848 parameter. Get it there. Perform all ABI specified conversions. */
2849
2850 static void
2851 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2852 struct assign_parm_data_one *data)
2853 {
2854 /* Value must be stored in the stack slot STACK_PARM during function
2855 execution. */
2856 bool to_conversion = false;
2857
2858 if (data->promoted_mode != data->nominal_mode)
2859 {
2860 /* Conversion is required. */
2861 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2862
2863 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2864
2865 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2866 to_conversion = true;
2867
2868 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2869 TYPE_UNSIGNED (TREE_TYPE (parm)));
2870
2871 if (data->stack_parm)
2872 /* ??? This may need a big-endian conversion on sparc64. */
2873 data->stack_parm
2874 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2875 }
2876
2877 if (data->entry_parm != data->stack_parm)
2878 {
2879 rtx src, dest;
2880
2881 if (data->stack_parm == 0)
2882 {
2883 data->stack_parm
2884 = assign_stack_local (GET_MODE (data->entry_parm),
2885 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2886 TYPE_ALIGN (data->passed_type));
2887 set_mem_attributes (data->stack_parm, parm, 1);
2888 }
2889
2890 dest = validize_mem (data->stack_parm);
2891 src = validize_mem (data->entry_parm);
2892
2893 if (MEM_P (src))
2894 {
2895 /* Use a block move to handle potentially misaligned entry_parm. */
2896 if (!to_conversion)
2897 push_to_sequence2 (all->first_conversion_insn,
2898 all->last_conversion_insn);
2899 to_conversion = true;
2900
2901 emit_block_move (dest, src,
2902 GEN_INT (int_size_in_bytes (data->passed_type)),
2903 BLOCK_OP_NORMAL);
2904 }
2905 else
2906 emit_move_insn (dest, src);
2907 }
2908
2909 if (to_conversion)
2910 {
2911 all->first_conversion_insn = get_insns ();
2912 all->last_conversion_insn = get_last_insn ();
2913 end_sequence ();
2914 }
2915
2916 SET_DECL_RTL (parm, data->stack_parm);
2917 }
2918
2919 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2920 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2921
2922 static void
2923 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2924 {
2925 tree parm;
2926 tree orig_fnargs = all->orig_fnargs;
2927
2928 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2929 {
2930 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2931 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2932 {
2933 rtx tmp, real, imag;
2934 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2935
2936 real = DECL_RTL (fnargs);
2937 imag = DECL_RTL (TREE_CHAIN (fnargs));
2938 if (inner != GET_MODE (real))
2939 {
2940 real = gen_lowpart_SUBREG (inner, real);
2941 imag = gen_lowpart_SUBREG (inner, imag);
2942 }
2943
2944 if (TREE_ADDRESSABLE (parm))
2945 {
2946 rtx rmem, imem;
2947 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2948
2949 /* split_complex_arg put the real and imag parts in
2950 pseudos. Move them to memory. */
2951 tmp = assign_stack_local (DECL_MODE (parm), size,
2952 TYPE_ALIGN (TREE_TYPE (parm)));
2953 set_mem_attributes (tmp, parm, 1);
2954 rmem = adjust_address_nv (tmp, inner, 0);
2955 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2956 push_to_sequence2 (all->first_conversion_insn,
2957 all->last_conversion_insn);
2958 emit_move_insn (rmem, real);
2959 emit_move_insn (imem, imag);
2960 all->first_conversion_insn = get_insns ();
2961 all->last_conversion_insn = get_last_insn ();
2962 end_sequence ();
2963 }
2964 else
2965 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2966 SET_DECL_RTL (parm, tmp);
2967
2968 real = DECL_INCOMING_RTL (fnargs);
2969 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2970 if (inner != GET_MODE (real))
2971 {
2972 real = gen_lowpart_SUBREG (inner, real);
2973 imag = gen_lowpart_SUBREG (inner, imag);
2974 }
2975 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2976 set_decl_incoming_rtl (parm, tmp, false);
2977 fnargs = TREE_CHAIN (fnargs);
2978 }
2979 else
2980 {
2981 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2982 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
2983
2984 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2985 instead of the copy of decl, i.e. FNARGS. */
2986 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2987 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2988 }
2989
2990 fnargs = TREE_CHAIN (fnargs);
2991 }
2992 }
2993
2994 /* Assign RTL expressions to the function's parameters. This may involve
2995 copying them into registers and using those registers as the DECL_RTL. */
2996
2997 static void
2998 assign_parms (tree fndecl)
2999 {
3000 struct assign_parm_data_all all;
3001 tree fnargs, parm;
3002
3003 current_function_internal_arg_pointer
3004 = targetm.calls.internal_arg_pointer ();
3005
3006 assign_parms_initialize_all (&all);
3007 fnargs = assign_parms_augmented_arg_list (&all);
3008
3009 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3010 {
3011 struct assign_parm_data_one data;
3012
3013 /* Extract the type of PARM; adjust it according to ABI. */
3014 assign_parm_find_data_types (&all, parm, &data);
3015
3016 /* Early out for errors and void parameters. */
3017 if (data.passed_mode == VOIDmode)
3018 {
3019 SET_DECL_RTL (parm, const0_rtx);
3020 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3021 continue;
3022 }
3023
3024 if (current_function_stdarg && !TREE_CHAIN (parm))
3025 assign_parms_setup_varargs (&all, &data, false);
3026
3027 /* Find out where the parameter arrives in this function. */
3028 assign_parm_find_entry_rtl (&all, &data);
3029
3030 /* Find out where stack space for this parameter might be. */
3031 if (assign_parm_is_stack_parm (&all, &data))
3032 {
3033 assign_parm_find_stack_rtl (parm, &data);
3034 assign_parm_adjust_entry_rtl (&data);
3035 }
3036
3037 /* Record permanently how this parm was passed. */
3038 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3039
3040 /* Update info on where next arg arrives in registers. */
3041 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3042 data.passed_type, data.named_arg);
3043
3044 assign_parm_adjust_stack_rtl (&data);
3045
3046 if (assign_parm_setup_block_p (&data))
3047 assign_parm_setup_block (&all, parm, &data);
3048 else if (data.passed_pointer || use_register_for_decl (parm))
3049 assign_parm_setup_reg (&all, parm, &data);
3050 else
3051 assign_parm_setup_stack (&all, parm, &data);
3052 }
3053
3054 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3055 assign_parms_unsplit_complex (&all, fnargs);
3056
3057 /* Output all parameter conversion instructions (possibly including calls)
3058 now that all parameters have been copied out of hard registers. */
3059 emit_insn (all.first_conversion_insn);
3060
3061 /* If we are receiving a struct value address as the first argument, set up
3062 the RTL for the function result. As this might require code to convert
3063 the transmitted address to Pmode, we do this here to ensure that possible
3064 preliminary conversions of the address have been emitted already. */
3065 if (all.function_result_decl)
3066 {
3067 tree result = DECL_RESULT (current_function_decl);
3068 rtx addr = DECL_RTL (all.function_result_decl);
3069 rtx x;
3070
3071 if (DECL_BY_REFERENCE (result))
3072 x = addr;
3073 else
3074 {
3075 addr = convert_memory_address (Pmode, addr);
3076 x = gen_rtx_MEM (DECL_MODE (result), addr);
3077 set_mem_attributes (x, result, 1);
3078 }
3079 SET_DECL_RTL (result, x);
3080 }
3081
3082 /* We have aligned all the args, so add space for the pretend args. */
3083 current_function_pretend_args_size = all.pretend_args_size;
3084 all.stack_args_size.constant += all.extra_pretend_bytes;
3085 current_function_args_size = all.stack_args_size.constant;
3086
3087 /* Adjust function incoming argument size for alignment and
3088 minimum length. */
3089
3090 #ifdef REG_PARM_STACK_SPACE
3091 current_function_args_size = MAX (current_function_args_size,
3092 REG_PARM_STACK_SPACE (fndecl));
3093 #endif
3094
3095 current_function_args_size = CEIL_ROUND (current_function_args_size,
3096 PARM_BOUNDARY / BITS_PER_UNIT);
3097
3098 #ifdef ARGS_GROW_DOWNWARD
3099 current_function_arg_offset_rtx
3100 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3101 : expand_expr (size_diffop (all.stack_args_size.var,
3102 size_int (-all.stack_args_size.constant)),
3103 NULL_RTX, VOIDmode, 0));
3104 #else
3105 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3106 #endif
3107
3108 /* See how many bytes, if any, of its args a function should try to pop
3109 on return. */
3110
3111 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3112 current_function_args_size);
3113
3114 /* For stdarg.h function, save info about
3115 regs and stack space used by the named args. */
3116
3117 current_function_args_info = all.args_so_far;
3118
3119 /* Set the rtx used for the function return value. Put this in its
3120 own variable so any optimizers that need this information don't have
3121 to include tree.h. Do this here so it gets done when an inlined
3122 function gets output. */
3123
3124 current_function_return_rtx
3125 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3126 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3127
3128 /* If scalar return value was computed in a pseudo-reg, or was a named
3129 return value that got dumped to the stack, copy that to the hard
3130 return register. */
3131 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3132 {
3133 tree decl_result = DECL_RESULT (fndecl);
3134 rtx decl_rtl = DECL_RTL (decl_result);
3135
3136 if (REG_P (decl_rtl)
3137 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3138 : DECL_REGISTER (decl_result))
3139 {
3140 rtx real_decl_rtl;
3141
3142 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3143 fndecl, true);
3144 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3145 /* The delay slot scheduler assumes that current_function_return_rtx
3146 holds the hard register containing the return value, not a
3147 temporary pseudo. */
3148 current_function_return_rtx = real_decl_rtl;
3149 }
3150 }
3151 }
3152
3153 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3154 For all seen types, gimplify their sizes. */
3155
3156 static tree
3157 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3158 {
3159 tree t = *tp;
3160
3161 *walk_subtrees = 0;
3162 if (TYPE_P (t))
3163 {
3164 if (POINTER_TYPE_P (t))
3165 *walk_subtrees = 1;
3166 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3167 && !TYPE_SIZES_GIMPLIFIED (t))
3168 {
3169 gimplify_type_sizes (t, (tree *) data);
3170 *walk_subtrees = 1;
3171 }
3172 }
3173
3174 return NULL;
3175 }
3176
3177 /* Gimplify the parameter list for current_function_decl. This involves
3178 evaluating SAVE_EXPRs of variable sized parameters and generating code
3179 to implement callee-copies reference parameters. Returns a list of
3180 statements to add to the beginning of the function, or NULL if nothing
3181 to do. */
3182
3183 tree
3184 gimplify_parameters (void)
3185 {
3186 struct assign_parm_data_all all;
3187 tree fnargs, parm, stmts = NULL;
3188
3189 assign_parms_initialize_all (&all);
3190 fnargs = assign_parms_augmented_arg_list (&all);
3191
3192 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3193 {
3194 struct assign_parm_data_one data;
3195
3196 /* Extract the type of PARM; adjust it according to ABI. */
3197 assign_parm_find_data_types (&all, parm, &data);
3198
3199 /* Early out for errors and void parameters. */
3200 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3201 continue;
3202
3203 /* Update info on where next arg arrives in registers. */
3204 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3205 data.passed_type, data.named_arg);
3206
3207 /* ??? Once upon a time variable_size stuffed parameter list
3208 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3209 turned out to be less than manageable in the gimple world.
3210 Now we have to hunt them down ourselves. */
3211 walk_tree_without_duplicates (&data.passed_type,
3212 gimplify_parm_type, &stmts);
3213
3214 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3215 {
3216 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3217 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3218 }
3219
3220 if (data.passed_pointer)
3221 {
3222 tree type = TREE_TYPE (data.passed_type);
3223 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3224 type, data.named_arg))
3225 {
3226 tree local, t;
3227
3228 /* For constant sized objects, this is trivial; for
3229 variable-sized objects, we have to play games. */
3230 if (TREE_CONSTANT (DECL_SIZE (parm)))
3231 {
3232 local = create_tmp_var (type, get_name (parm));
3233 DECL_IGNORED_P (local) = 0;
3234 }
3235 else
3236 {
3237 tree ptr_type, addr;
3238
3239 ptr_type = build_pointer_type (type);
3240 addr = create_tmp_var (ptr_type, get_name (parm));
3241 DECL_IGNORED_P (addr) = 0;
3242 local = build_fold_indirect_ref (addr);
3243
3244 t = built_in_decls[BUILT_IN_ALLOCA];
3245 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3246 t = fold_convert (ptr_type, t);
3247 t = build_gimple_modify_stmt (addr, t);
3248 gimplify_and_add (t, &stmts);
3249 }
3250
3251 t = build_gimple_modify_stmt (local, parm);
3252 gimplify_and_add (t, &stmts);
3253
3254 SET_DECL_VALUE_EXPR (parm, local);
3255 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3256 }
3257 }
3258 }
3259
3260 return stmts;
3261 }
3262 \f
3263 /* Compute the size and offset from the start of the stacked arguments for a
3264 parm passed in mode PASSED_MODE and with type TYPE.
3265
3266 INITIAL_OFFSET_PTR points to the current offset into the stacked
3267 arguments.
3268
3269 The starting offset and size for this parm are returned in
3270 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3271 nonzero, the offset is that of stack slot, which is returned in
3272 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3273 padding required from the initial offset ptr to the stack slot.
3274
3275 IN_REGS is nonzero if the argument will be passed in registers. It will
3276 never be set if REG_PARM_STACK_SPACE is not defined.
3277
3278 FNDECL is the function in which the argument was defined.
3279
3280 There are two types of rounding that are done. The first, controlled by
3281 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3282 list to be aligned to the specific boundary (in bits). This rounding
3283 affects the initial and starting offsets, but not the argument size.
3284
3285 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3286 optionally rounds the size of the parm to PARM_BOUNDARY. The
3287 initial offset is not affected by this rounding, while the size always
3288 is and the starting offset may be. */
3289
3290 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3291 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3292 callers pass in the total size of args so far as
3293 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3294
3295 void
3296 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3297 int partial, tree fndecl ATTRIBUTE_UNUSED,
3298 struct args_size *initial_offset_ptr,
3299 struct locate_and_pad_arg_data *locate)
3300 {
3301 tree sizetree;
3302 enum direction where_pad;
3303 unsigned int boundary;
3304 int reg_parm_stack_space = 0;
3305 int part_size_in_regs;
3306
3307 #ifdef REG_PARM_STACK_SPACE
3308 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3309
3310 /* If we have found a stack parm before we reach the end of the
3311 area reserved for registers, skip that area. */
3312 if (! in_regs)
3313 {
3314 if (reg_parm_stack_space > 0)
3315 {
3316 if (initial_offset_ptr->var)
3317 {
3318 initial_offset_ptr->var
3319 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3320 ssize_int (reg_parm_stack_space));
3321 initial_offset_ptr->constant = 0;
3322 }
3323 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3324 initial_offset_ptr->constant = reg_parm_stack_space;
3325 }
3326 }
3327 #endif /* REG_PARM_STACK_SPACE */
3328
3329 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3330
3331 sizetree
3332 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3333 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3334 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3335 locate->where_pad = where_pad;
3336 locate->boundary = boundary;
3337
3338 /* Remember if the outgoing parameter requires extra alignment on the
3339 calling function side. */
3340 if (boundary > PREFERRED_STACK_BOUNDARY)
3341 boundary = PREFERRED_STACK_BOUNDARY;
3342 if (cfun->stack_alignment_needed < boundary)
3343 cfun->stack_alignment_needed = boundary;
3344
3345 #ifdef ARGS_GROW_DOWNWARD
3346 locate->slot_offset.constant = -initial_offset_ptr->constant;
3347 if (initial_offset_ptr->var)
3348 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3349 initial_offset_ptr->var);
3350
3351 {
3352 tree s2 = sizetree;
3353 if (where_pad != none
3354 && (!host_integerp (sizetree, 1)
3355 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3356 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3357 SUB_PARM_SIZE (locate->slot_offset, s2);
3358 }
3359
3360 locate->slot_offset.constant += part_size_in_regs;
3361
3362 if (!in_regs
3363 #ifdef REG_PARM_STACK_SPACE
3364 || REG_PARM_STACK_SPACE (fndecl) > 0
3365 #endif
3366 )
3367 pad_to_arg_alignment (&locate->slot_offset, boundary,
3368 &locate->alignment_pad);
3369
3370 locate->size.constant = (-initial_offset_ptr->constant
3371 - locate->slot_offset.constant);
3372 if (initial_offset_ptr->var)
3373 locate->size.var = size_binop (MINUS_EXPR,
3374 size_binop (MINUS_EXPR,
3375 ssize_int (0),
3376 initial_offset_ptr->var),
3377 locate->slot_offset.var);
3378
3379 /* Pad_below needs the pre-rounded size to know how much to pad
3380 below. */
3381 locate->offset = locate->slot_offset;
3382 if (where_pad == downward)
3383 pad_below (&locate->offset, passed_mode, sizetree);
3384
3385 #else /* !ARGS_GROW_DOWNWARD */
3386 if (!in_regs
3387 #ifdef REG_PARM_STACK_SPACE
3388 || REG_PARM_STACK_SPACE (fndecl) > 0
3389 #endif
3390 )
3391 pad_to_arg_alignment (initial_offset_ptr, boundary,
3392 &locate->alignment_pad);
3393 locate->slot_offset = *initial_offset_ptr;
3394
3395 #ifdef PUSH_ROUNDING
3396 if (passed_mode != BLKmode)
3397 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3398 #endif
3399
3400 /* Pad_below needs the pre-rounded size to know how much to pad below
3401 so this must be done before rounding up. */
3402 locate->offset = locate->slot_offset;
3403 if (where_pad == downward)
3404 pad_below (&locate->offset, passed_mode, sizetree);
3405
3406 if (where_pad != none
3407 && (!host_integerp (sizetree, 1)
3408 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3409 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3410
3411 ADD_PARM_SIZE (locate->size, sizetree);
3412
3413 locate->size.constant -= part_size_in_regs;
3414 #endif /* ARGS_GROW_DOWNWARD */
3415 }
3416
3417 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3418 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3419
3420 static void
3421 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3422 struct args_size *alignment_pad)
3423 {
3424 tree save_var = NULL_TREE;
3425 HOST_WIDE_INT save_constant = 0;
3426 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3427 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3428
3429 #ifdef SPARC_STACK_BOUNDARY_HACK
3430 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3431 the real alignment of %sp. However, when it does this, the
3432 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3433 if (SPARC_STACK_BOUNDARY_HACK)
3434 sp_offset = 0;
3435 #endif
3436
3437 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3438 {
3439 save_var = offset_ptr->var;
3440 save_constant = offset_ptr->constant;
3441 }
3442
3443 alignment_pad->var = NULL_TREE;
3444 alignment_pad->constant = 0;
3445
3446 if (boundary > BITS_PER_UNIT)
3447 {
3448 if (offset_ptr->var)
3449 {
3450 tree sp_offset_tree = ssize_int (sp_offset);
3451 tree offset = size_binop (PLUS_EXPR,
3452 ARGS_SIZE_TREE (*offset_ptr),
3453 sp_offset_tree);
3454 #ifdef ARGS_GROW_DOWNWARD
3455 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3456 #else
3457 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3458 #endif
3459
3460 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3461 /* ARGS_SIZE_TREE includes constant term. */
3462 offset_ptr->constant = 0;
3463 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3464 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3465 save_var);
3466 }
3467 else
3468 {
3469 offset_ptr->constant = -sp_offset +
3470 #ifdef ARGS_GROW_DOWNWARD
3471 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3472 #else
3473 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3474 #endif
3475 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3476 alignment_pad->constant = offset_ptr->constant - save_constant;
3477 }
3478 }
3479 }
3480
3481 static void
3482 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3483 {
3484 if (passed_mode != BLKmode)
3485 {
3486 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3487 offset_ptr->constant
3488 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3489 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3490 - GET_MODE_SIZE (passed_mode));
3491 }
3492 else
3493 {
3494 if (TREE_CODE (sizetree) != INTEGER_CST
3495 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3496 {
3497 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3498 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3499 /* Add it in. */
3500 ADD_PARM_SIZE (*offset_ptr, s2);
3501 SUB_PARM_SIZE (*offset_ptr, sizetree);
3502 }
3503 }
3504 }
3505 \f
3506
3507 /* True if register REGNO was alive at a place where `setjmp' was
3508 called and was set more than once or is an argument. Such regs may
3509 be clobbered by `longjmp'. */
3510
3511 static bool
3512 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3513 {
3514 /* There appear to be cases where some local vars never reach the
3515 backend but have bogus regnos. */
3516 if (regno >= max_reg_num ())
3517 return false;
3518
3519 return ((REG_N_SETS (regno) > 1
3520 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3521 && REGNO_REG_SET_P (setjmp_crosses, regno));
3522 }
3523
3524 /* Walk the tree of blocks describing the binding levels within a
3525 function and warn about variables the might be killed by setjmp or
3526 vfork. This is done after calling flow_analysis before register
3527 allocation since that will clobber the pseudo-regs to hard
3528 regs. */
3529
3530 static void
3531 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3532 {
3533 tree decl, sub;
3534
3535 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3536 {
3537 if (TREE_CODE (decl) == VAR_DECL
3538 && DECL_RTL_SET_P (decl)
3539 && REG_P (DECL_RTL (decl))
3540 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3541 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3542 " %<longjmp%> or %<vfork%>", decl);
3543 }
3544
3545 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3546 setjmp_vars_warning (setjmp_crosses, sub);
3547 }
3548
3549 /* Do the appropriate part of setjmp_vars_warning
3550 but for arguments instead of local variables. */
3551
3552 static void
3553 setjmp_args_warning (bitmap setjmp_crosses)
3554 {
3555 tree decl;
3556 for (decl = DECL_ARGUMENTS (current_function_decl);
3557 decl; decl = TREE_CHAIN (decl))
3558 if (DECL_RTL (decl) != 0
3559 && REG_P (DECL_RTL (decl))
3560 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3561 warning (OPT_Wclobbered,
3562 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3563 decl);
3564 }
3565
3566 /* Generate warning messages for variables live across setjmp. */
3567
3568 void
3569 generate_setjmp_warnings (void)
3570 {
3571 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3572
3573 if (n_basic_blocks == NUM_FIXED_BLOCKS
3574 || bitmap_empty_p (setjmp_crosses))
3575 return;
3576
3577 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3578 setjmp_args_warning (setjmp_crosses);
3579 }
3580
3581 \f
3582 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3583 and create duplicate blocks. */
3584 /* ??? Need an option to either create block fragments or to create
3585 abstract origin duplicates of a source block. It really depends
3586 on what optimization has been performed. */
3587
3588 void
3589 reorder_blocks (void)
3590 {
3591 tree block = DECL_INITIAL (current_function_decl);
3592 VEC(tree,heap) *block_stack;
3593
3594 if (block == NULL_TREE)
3595 return;
3596
3597 block_stack = VEC_alloc (tree, heap, 10);
3598
3599 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3600 clear_block_marks (block);
3601
3602 /* Prune the old trees away, so that they don't get in the way. */
3603 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3604 BLOCK_CHAIN (block) = NULL_TREE;
3605
3606 /* Recreate the block tree from the note nesting. */
3607 reorder_blocks_1 (get_insns (), block, &block_stack);
3608 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3609
3610 VEC_free (tree, heap, block_stack);
3611 }
3612
3613 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3614
3615 void
3616 clear_block_marks (tree block)
3617 {
3618 while (block)
3619 {
3620 TREE_ASM_WRITTEN (block) = 0;
3621 clear_block_marks (BLOCK_SUBBLOCKS (block));
3622 block = BLOCK_CHAIN (block);
3623 }
3624 }
3625
3626 static void
3627 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3628 {
3629 rtx insn;
3630
3631 for (insn = insns; insn; insn = NEXT_INSN (insn))
3632 {
3633 if (NOTE_P (insn))
3634 {
3635 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3636 {
3637 tree block = NOTE_BLOCK (insn);
3638 tree origin;
3639
3640 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3641 ? BLOCK_FRAGMENT_ORIGIN (block)
3642 : block);
3643
3644 /* If we have seen this block before, that means it now
3645 spans multiple address regions. Create a new fragment. */
3646 if (TREE_ASM_WRITTEN (block))
3647 {
3648 tree new_block = copy_node (block);
3649
3650 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3651 BLOCK_FRAGMENT_CHAIN (new_block)
3652 = BLOCK_FRAGMENT_CHAIN (origin);
3653 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3654
3655 NOTE_BLOCK (insn) = new_block;
3656 block = new_block;
3657 }
3658
3659 BLOCK_SUBBLOCKS (block) = 0;
3660 TREE_ASM_WRITTEN (block) = 1;
3661 /* When there's only one block for the entire function,
3662 current_block == block and we mustn't do this, it
3663 will cause infinite recursion. */
3664 if (block != current_block)
3665 {
3666 if (block != origin)
3667 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3668
3669 BLOCK_SUPERCONTEXT (block) = current_block;
3670 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3671 BLOCK_SUBBLOCKS (current_block) = block;
3672 current_block = origin;
3673 }
3674 VEC_safe_push (tree, heap, *p_block_stack, block);
3675 }
3676 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3677 {
3678 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3679 BLOCK_SUBBLOCKS (current_block)
3680 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3681 current_block = BLOCK_SUPERCONTEXT (current_block);
3682 }
3683 }
3684 }
3685 }
3686
3687 /* Reverse the order of elements in the chain T of blocks,
3688 and return the new head of the chain (old last element). */
3689
3690 tree
3691 blocks_nreverse (tree t)
3692 {
3693 tree prev = 0, decl, next;
3694 for (decl = t; decl; decl = next)
3695 {
3696 next = BLOCK_CHAIN (decl);
3697 BLOCK_CHAIN (decl) = prev;
3698 prev = decl;
3699 }
3700 return prev;
3701 }
3702
3703 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3704 non-NULL, list them all into VECTOR, in a depth-first preorder
3705 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3706 blocks. */
3707
3708 static int
3709 all_blocks (tree block, tree *vector)
3710 {
3711 int n_blocks = 0;
3712
3713 while (block)
3714 {
3715 TREE_ASM_WRITTEN (block) = 0;
3716
3717 /* Record this block. */
3718 if (vector)
3719 vector[n_blocks] = block;
3720
3721 ++n_blocks;
3722
3723 /* Record the subblocks, and their subblocks... */
3724 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3725 vector ? vector + n_blocks : 0);
3726 block = BLOCK_CHAIN (block);
3727 }
3728
3729 return n_blocks;
3730 }
3731
3732 /* Return a vector containing all the blocks rooted at BLOCK. The
3733 number of elements in the vector is stored in N_BLOCKS_P. The
3734 vector is dynamically allocated; it is the caller's responsibility
3735 to call `free' on the pointer returned. */
3736
3737 static tree *
3738 get_block_vector (tree block, int *n_blocks_p)
3739 {
3740 tree *block_vector;
3741
3742 *n_blocks_p = all_blocks (block, NULL);
3743 block_vector = XNEWVEC (tree, *n_blocks_p);
3744 all_blocks (block, block_vector);
3745
3746 return block_vector;
3747 }
3748
3749 static GTY(()) int next_block_index = 2;
3750
3751 /* Set BLOCK_NUMBER for all the blocks in FN. */
3752
3753 void
3754 number_blocks (tree fn)
3755 {
3756 int i;
3757 int n_blocks;
3758 tree *block_vector;
3759
3760 /* For SDB and XCOFF debugging output, we start numbering the blocks
3761 from 1 within each function, rather than keeping a running
3762 count. */
3763 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3764 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3765 next_block_index = 1;
3766 #endif
3767
3768 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3769
3770 /* The top-level BLOCK isn't numbered at all. */
3771 for (i = 1; i < n_blocks; ++i)
3772 /* We number the blocks from two. */
3773 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3774
3775 free (block_vector);
3776
3777 return;
3778 }
3779
3780 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3781
3782 tree
3783 debug_find_var_in_block_tree (tree var, tree block)
3784 {
3785 tree t;
3786
3787 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3788 if (t == var)
3789 return block;
3790
3791 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3792 {
3793 tree ret = debug_find_var_in_block_tree (var, t);
3794 if (ret)
3795 return ret;
3796 }
3797
3798 return NULL_TREE;
3799 }
3800 \f
3801 /* Keep track of whether we're in a dummy function context. If we are,
3802 we don't want to invoke the set_current_function hook, because we'll
3803 get into trouble if the hook calls target_reinit () recursively or
3804 when the initial initialization is not yet complete. */
3805
3806 static bool in_dummy_function;
3807
3808 /* Invoke the target hook when setting cfun. */
3809
3810 static void
3811 invoke_set_current_function_hook (tree fndecl)
3812 {
3813 if (!in_dummy_function)
3814 targetm.set_current_function (fndecl);
3815 }
3816
3817 /* cfun should never be set directly; use this function. */
3818
3819 void
3820 set_cfun (struct function *new_cfun)
3821 {
3822 if (cfun != new_cfun)
3823 {
3824 cfun = new_cfun;
3825 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
3826 }
3827 }
3828
3829 /* Keep track of the cfun stack. */
3830
3831 typedef struct function *function_p;
3832
3833 DEF_VEC_P(function_p);
3834 DEF_VEC_ALLOC_P(function_p,heap);
3835
3836 /* Initialized with NOGC, making this poisonous to the garbage collector. */
3837
3838 static VEC(function_p,heap) *cfun_stack;
3839
3840 /* We save the value of in_system_header here when pushing the first
3841 function on the cfun stack, and we restore it from here when
3842 popping the last function. */
3843
3844 static bool saved_in_system_header;
3845
3846 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
3847
3848 void
3849 push_cfun (struct function *new_cfun)
3850 {
3851 if (cfun == NULL)
3852 saved_in_system_header = in_system_header;
3853 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3854 if (new_cfun)
3855 in_system_header = DECL_IN_SYSTEM_HEADER (new_cfun->decl);
3856 set_cfun (new_cfun);
3857 }
3858
3859 /* Pop cfun from the stack. */
3860
3861 void
3862 pop_cfun (void)
3863 {
3864 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
3865 in_system_header = ((new_cfun == NULL) ? saved_in_system_header
3866 : DECL_IN_SYSTEM_HEADER (new_cfun->decl));
3867 set_cfun (new_cfun);
3868 }
3869
3870 /* Return value of funcdef and increase it. */
3871 int
3872 get_next_funcdef_no (void)
3873 {
3874 return funcdef_no++;
3875 }
3876
3877 /* Allocate a function structure for FNDECL and set its contents
3878 to the defaults. Set cfun to the newly-allocated object.
3879 Some of the helper functions invoked during initialization assume
3880 that cfun has already been set. Therefore, assign the new object
3881 directly into cfun and invoke the back end hook explicitly at the
3882 very end, rather than initializing a temporary and calling set_cfun
3883 on it.
3884
3885 ABSTRACT_P is true if this is a function that will never be seen by
3886 the middle-end. Such functions are front-end concepts (like C++
3887 function templates) that do not correspond directly to functions
3888 placed in object files. */
3889
3890 void
3891 allocate_struct_function (tree fndecl, bool abstract_p)
3892 {
3893 tree result;
3894 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3895
3896 cfun = ggc_alloc_cleared (sizeof (struct function));
3897
3898 cfun->stack_alignment_needed = STACK_BOUNDARY;
3899 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3900
3901 current_function_funcdef_no = get_next_funcdef_no ();
3902
3903 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3904
3905 init_eh_for_function ();
3906
3907 lang_hooks.function.init (cfun);
3908 if (init_machine_status)
3909 cfun->machine = (*init_machine_status) ();
3910
3911 if (fndecl != NULL)
3912 {
3913 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3914 cfun->decl = fndecl;
3915
3916 result = DECL_RESULT (fndecl);
3917 if (!abstract_p && aggregate_value_p (result, fndecl))
3918 {
3919 #ifdef PCC_STATIC_STRUCT_RETURN
3920 current_function_returns_pcc_struct = 1;
3921 #endif
3922 current_function_returns_struct = 1;
3923 }
3924
3925 current_function_stdarg
3926 = (fntype
3927 && TYPE_ARG_TYPES (fntype) != 0
3928 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3929 != void_type_node));
3930
3931 /* Assume all registers in stdarg functions need to be saved. */
3932 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3933 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3934 }
3935
3936 invoke_set_current_function_hook (fndecl);
3937 }
3938
3939 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
3940 instead of just setting it. */
3941
3942 void
3943 push_struct_function (tree fndecl)
3944 {
3945 if (cfun == NULL)
3946 saved_in_system_header = in_system_header;
3947 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3948 if (fndecl)
3949 in_system_header = DECL_IN_SYSTEM_HEADER (fndecl);
3950 allocate_struct_function (fndecl, false);
3951 }
3952
3953 /* Reset cfun, and other non-struct-function variables to defaults as
3954 appropriate for emitting rtl at the start of a function. */
3955
3956 static void
3957 prepare_function_start (void)
3958 {
3959 init_emit ();
3960 init_varasm_status (cfun);
3961 init_expr ();
3962
3963 cse_not_expected = ! optimize;
3964
3965 /* Caller save not needed yet. */
3966 caller_save_needed = 0;
3967
3968 /* We haven't done register allocation yet. */
3969 reg_renumber = 0;
3970
3971 /* Indicate that we have not instantiated virtual registers yet. */
3972 virtuals_instantiated = 0;
3973
3974 /* Indicate that we want CONCATs now. */
3975 generating_concat_p = 1;
3976
3977 /* Indicate we have no need of a frame pointer yet. */
3978 frame_pointer_needed = 0;
3979 }
3980
3981 /* Initialize the rtl expansion mechanism so that we can do simple things
3982 like generate sequences. This is used to provide a context during global
3983 initialization of some passes. You must call expand_dummy_function_end
3984 to exit this context. */
3985
3986 void
3987 init_dummy_function_start (void)
3988 {
3989 gcc_assert (!in_dummy_function);
3990 in_dummy_function = true;
3991 push_struct_function (NULL_TREE);
3992 prepare_function_start ();
3993 }
3994
3995 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3996 and initialize static variables for generating RTL for the statements
3997 of the function. */
3998
3999 void
4000 init_function_start (tree subr)
4001 {
4002 if (subr && DECL_STRUCT_FUNCTION (subr))
4003 set_cfun (DECL_STRUCT_FUNCTION (subr));
4004 else
4005 allocate_struct_function (subr, false);
4006 prepare_function_start ();
4007
4008 /* Warn if this value is an aggregate type,
4009 regardless of which calling convention we are using for it. */
4010 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4011 warning (OPT_Waggregate_return, "function returns an aggregate");
4012 }
4013
4014 /* Make sure all values used by the optimization passes have sane
4015 defaults. */
4016 unsigned int
4017 init_function_for_compilation (void)
4018 {
4019 reg_renumber = 0;
4020
4021 /* No prologue/epilogue insns yet. Make sure that these vectors are
4022 empty. */
4023 gcc_assert (VEC_length (int, prologue) == 0);
4024 gcc_assert (VEC_length (int, epilogue) == 0);
4025 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
4026 return 0;
4027 }
4028
4029 struct tree_opt_pass pass_init_function =
4030 {
4031 NULL, /* name */
4032 NULL, /* gate */
4033 init_function_for_compilation, /* execute */
4034 NULL, /* sub */
4035 NULL, /* next */
4036 0, /* static_pass_number */
4037 0, /* tv_id */
4038 0, /* properties_required */
4039 0, /* properties_provided */
4040 0, /* properties_destroyed */
4041 0, /* todo_flags_start */
4042 0, /* todo_flags_finish */
4043 0 /* letter */
4044 };
4045
4046
4047 void
4048 expand_main_function (void)
4049 {
4050 #if (defined(INVOKE__main) \
4051 || (!defined(HAS_INIT_SECTION) \
4052 && !defined(INIT_SECTION_ASM_OP) \
4053 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4054 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4055 #endif
4056 }
4057 \f
4058 /* Expand code to initialize the stack_protect_guard. This is invoked at
4059 the beginning of a function to be protected. */
4060
4061 #ifndef HAVE_stack_protect_set
4062 # define HAVE_stack_protect_set 0
4063 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4064 #endif
4065
4066 void
4067 stack_protect_prologue (void)
4068 {
4069 tree guard_decl = targetm.stack_protect_guard ();
4070 rtx x, y;
4071
4072 /* Avoid expand_expr here, because we don't want guard_decl pulled
4073 into registers unless absolutely necessary. And we know that
4074 cfun->stack_protect_guard is a local stack slot, so this skips
4075 all the fluff. */
4076 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4077 y = validize_mem (DECL_RTL (guard_decl));
4078
4079 /* Allow the target to copy from Y to X without leaking Y into a
4080 register. */
4081 if (HAVE_stack_protect_set)
4082 {
4083 rtx insn = gen_stack_protect_set (x, y);
4084 if (insn)
4085 {
4086 emit_insn (insn);
4087 return;
4088 }
4089 }
4090
4091 /* Otherwise do a straight move. */
4092 emit_move_insn (x, y);
4093 }
4094
4095 /* Expand code to verify the stack_protect_guard. This is invoked at
4096 the end of a function to be protected. */
4097
4098 #ifndef HAVE_stack_protect_test
4099 # define HAVE_stack_protect_test 0
4100 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4101 #endif
4102
4103 void
4104 stack_protect_epilogue (void)
4105 {
4106 tree guard_decl = targetm.stack_protect_guard ();
4107 rtx label = gen_label_rtx ();
4108 rtx x, y, tmp;
4109
4110 /* Avoid expand_expr here, because we don't want guard_decl pulled
4111 into registers unless absolutely necessary. And we know that
4112 cfun->stack_protect_guard is a local stack slot, so this skips
4113 all the fluff. */
4114 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4115 y = validize_mem (DECL_RTL (guard_decl));
4116
4117 /* Allow the target to compare Y with X without leaking either into
4118 a register. */
4119 switch (HAVE_stack_protect_test != 0)
4120 {
4121 case 1:
4122 tmp = gen_stack_protect_test (x, y, label);
4123 if (tmp)
4124 {
4125 emit_insn (tmp);
4126 break;
4127 }
4128 /* FALLTHRU */
4129
4130 default:
4131 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4132 break;
4133 }
4134
4135 /* The noreturn predictor has been moved to the tree level. The rtl-level
4136 predictors estimate this branch about 20%, which isn't enough to get
4137 things moved out of line. Since this is the only extant case of adding
4138 a noreturn function at the rtl level, it doesn't seem worth doing ought
4139 except adding the prediction by hand. */
4140 tmp = get_last_insn ();
4141 if (JUMP_P (tmp))
4142 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4143
4144 expand_expr_stmt (targetm.stack_protect_fail ());
4145 emit_label (label);
4146 }
4147 \f
4148 /* Start the RTL for a new function, and set variables used for
4149 emitting RTL.
4150 SUBR is the FUNCTION_DECL node.
4151 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4152 the function's parameters, which must be run at any return statement. */
4153
4154 void
4155 expand_function_start (tree subr)
4156 {
4157 /* Make sure volatile mem refs aren't considered
4158 valid operands of arithmetic insns. */
4159 init_recog_no_volatile ();
4160
4161 current_function_profile
4162 = (profile_flag
4163 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4164
4165 current_function_limit_stack
4166 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4167
4168 /* Make the label for return statements to jump to. Do not special
4169 case machines with special return instructions -- they will be
4170 handled later during jump, ifcvt, or epilogue creation. */
4171 return_label = gen_label_rtx ();
4172
4173 /* Initialize rtx used to return the value. */
4174 /* Do this before assign_parms so that we copy the struct value address
4175 before any library calls that assign parms might generate. */
4176
4177 /* Decide whether to return the value in memory or in a register. */
4178 if (aggregate_value_p (DECL_RESULT (subr), subr))
4179 {
4180 /* Returning something that won't go in a register. */
4181 rtx value_address = 0;
4182
4183 #ifdef PCC_STATIC_STRUCT_RETURN
4184 if (current_function_returns_pcc_struct)
4185 {
4186 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4187 value_address = assemble_static_space (size);
4188 }
4189 else
4190 #endif
4191 {
4192 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4193 /* Expect to be passed the address of a place to store the value.
4194 If it is passed as an argument, assign_parms will take care of
4195 it. */
4196 if (sv)
4197 {
4198 value_address = gen_reg_rtx (Pmode);
4199 emit_move_insn (value_address, sv);
4200 }
4201 }
4202 if (value_address)
4203 {
4204 rtx x = value_address;
4205 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4206 {
4207 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4208 set_mem_attributes (x, DECL_RESULT (subr), 1);
4209 }
4210 SET_DECL_RTL (DECL_RESULT (subr), x);
4211 }
4212 }
4213 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4214 /* If return mode is void, this decl rtl should not be used. */
4215 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4216 else
4217 {
4218 /* Compute the return values into a pseudo reg, which we will copy
4219 into the true return register after the cleanups are done. */
4220 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4221 if (TYPE_MODE (return_type) != BLKmode
4222 && targetm.calls.return_in_msb (return_type))
4223 /* expand_function_end will insert the appropriate padding in
4224 this case. Use the return value's natural (unpadded) mode
4225 within the function proper. */
4226 SET_DECL_RTL (DECL_RESULT (subr),
4227 gen_reg_rtx (TYPE_MODE (return_type)));
4228 else
4229 {
4230 /* In order to figure out what mode to use for the pseudo, we
4231 figure out what the mode of the eventual return register will
4232 actually be, and use that. */
4233 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4234
4235 /* Structures that are returned in registers are not
4236 aggregate_value_p, so we may see a PARALLEL or a REG. */
4237 if (REG_P (hard_reg))
4238 SET_DECL_RTL (DECL_RESULT (subr),
4239 gen_reg_rtx (GET_MODE (hard_reg)));
4240 else
4241 {
4242 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4243 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4244 }
4245 }
4246
4247 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4248 result to the real return register(s). */
4249 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4250 }
4251
4252 /* Initialize rtx for parameters and local variables.
4253 In some cases this requires emitting insns. */
4254 assign_parms (subr);
4255
4256 /* If function gets a static chain arg, store it. */
4257 if (cfun->static_chain_decl)
4258 {
4259 tree parm = cfun->static_chain_decl;
4260 rtx local = gen_reg_rtx (Pmode);
4261
4262 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4263 SET_DECL_RTL (parm, local);
4264 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4265
4266 emit_move_insn (local, static_chain_incoming_rtx);
4267 }
4268
4269 /* If the function receives a non-local goto, then store the
4270 bits we need to restore the frame pointer. */
4271 if (cfun->nonlocal_goto_save_area)
4272 {
4273 tree t_save;
4274 rtx r_save;
4275
4276 /* ??? We need to do this save early. Unfortunately here is
4277 before the frame variable gets declared. Help out... */
4278 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4279
4280 t_save = build4 (ARRAY_REF, ptr_type_node,
4281 cfun->nonlocal_goto_save_area,
4282 integer_zero_node, NULL_TREE, NULL_TREE);
4283 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4284 r_save = convert_memory_address (Pmode, r_save);
4285
4286 emit_move_insn (r_save, virtual_stack_vars_rtx);
4287 update_nonlocal_goto_save_area ();
4288 }
4289
4290 /* The following was moved from init_function_start.
4291 The move is supposed to make sdb output more accurate. */
4292 /* Indicate the beginning of the function body,
4293 as opposed to parm setup. */
4294 emit_note (NOTE_INSN_FUNCTION_BEG);
4295
4296 gcc_assert (NOTE_P (get_last_insn ()));
4297
4298 parm_birth_insn = get_last_insn ();
4299
4300 if (current_function_profile)
4301 {
4302 #ifdef PROFILE_HOOK
4303 PROFILE_HOOK (current_function_funcdef_no);
4304 #endif
4305 }
4306
4307 /* After the display initializations is where the stack checking
4308 probe should go. */
4309 if(flag_stack_check)
4310 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4311
4312 /* Make sure there is a line number after the function entry setup code. */
4313 force_next_line_note ();
4314 }
4315 \f
4316 /* Undo the effects of init_dummy_function_start. */
4317 void
4318 expand_dummy_function_end (void)
4319 {
4320 gcc_assert (in_dummy_function);
4321
4322 /* End any sequences that failed to be closed due to syntax errors. */
4323 while (in_sequence_p ())
4324 end_sequence ();
4325
4326 /* Outside function body, can't compute type's actual size
4327 until next function's body starts. */
4328
4329 free_after_parsing (cfun);
4330 free_after_compilation (cfun);
4331 pop_cfun ();
4332 in_dummy_function = false;
4333 }
4334
4335 /* Call DOIT for each hard register used as a return value from
4336 the current function. */
4337
4338 void
4339 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4340 {
4341 rtx outgoing = current_function_return_rtx;
4342
4343 if (! outgoing)
4344 return;
4345
4346 if (REG_P (outgoing))
4347 (*doit) (outgoing, arg);
4348 else if (GET_CODE (outgoing) == PARALLEL)
4349 {
4350 int i;
4351
4352 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4353 {
4354 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4355
4356 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4357 (*doit) (x, arg);
4358 }
4359 }
4360 }
4361
4362 static void
4363 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4364 {
4365 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4366 }
4367
4368 void
4369 clobber_return_register (void)
4370 {
4371 diddle_return_value (do_clobber_return_reg, NULL);
4372
4373 /* In case we do use pseudo to return value, clobber it too. */
4374 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4375 {
4376 tree decl_result = DECL_RESULT (current_function_decl);
4377 rtx decl_rtl = DECL_RTL (decl_result);
4378 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4379 {
4380 do_clobber_return_reg (decl_rtl, NULL);
4381 }
4382 }
4383 }
4384
4385 static void
4386 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4387 {
4388 emit_insn (gen_rtx_USE (VOIDmode, reg));
4389 }
4390
4391 static void
4392 use_return_register (void)
4393 {
4394 diddle_return_value (do_use_return_reg, NULL);
4395 }
4396
4397 /* Possibly warn about unused parameters. */
4398 void
4399 do_warn_unused_parameter (tree fn)
4400 {
4401 tree decl;
4402
4403 for (decl = DECL_ARGUMENTS (fn);
4404 decl; decl = TREE_CHAIN (decl))
4405 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4406 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4407 && !TREE_NO_WARNING (decl))
4408 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4409 }
4410
4411 static GTY(()) rtx initial_trampoline;
4412
4413 /* Generate RTL for the end of the current function. */
4414
4415 void
4416 expand_function_end (void)
4417 {
4418 rtx clobber_after;
4419
4420 /* If arg_pointer_save_area was referenced only from a nested
4421 function, we will not have initialized it yet. Do that now. */
4422 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4423 get_arg_pointer_save_area (cfun);
4424
4425 /* If we are doing stack checking and this function makes calls,
4426 do a stack probe at the start of the function to ensure we have enough
4427 space for another stack frame. */
4428 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4429 {
4430 rtx insn, seq;
4431
4432 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4433 if (CALL_P (insn))
4434 {
4435 start_sequence ();
4436 probe_stack_range (STACK_CHECK_PROTECT,
4437 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4438 seq = get_insns ();
4439 end_sequence ();
4440 emit_insn_before (seq, stack_check_probe_note);
4441 break;
4442 }
4443 }
4444
4445 /* End any sequences that failed to be closed due to syntax errors. */
4446 while (in_sequence_p ())
4447 end_sequence ();
4448
4449 clear_pending_stack_adjust ();
4450 do_pending_stack_adjust ();
4451
4452 /* Output a linenumber for the end of the function.
4453 SDB depends on this. */
4454 force_next_line_note ();
4455 set_curr_insn_source_location (input_location);
4456
4457 /* Before the return label (if any), clobber the return
4458 registers so that they are not propagated live to the rest of
4459 the function. This can only happen with functions that drop
4460 through; if there had been a return statement, there would
4461 have either been a return rtx, or a jump to the return label.
4462
4463 We delay actual code generation after the current_function_value_rtx
4464 is computed. */
4465 clobber_after = get_last_insn ();
4466
4467 /* Output the label for the actual return from the function. */
4468 emit_label (return_label);
4469
4470 if (USING_SJLJ_EXCEPTIONS)
4471 {
4472 /* Let except.c know where it should emit the call to unregister
4473 the function context for sjlj exceptions. */
4474 if (flag_exceptions)
4475 sjlj_emit_function_exit_after (get_last_insn ());
4476 }
4477 else
4478 {
4479 /* We want to ensure that instructions that may trap are not
4480 moved into the epilogue by scheduling, because we don't
4481 always emit unwind information for the epilogue. */
4482 if (flag_non_call_exceptions)
4483 emit_insn (gen_blockage ());
4484 }
4485
4486 /* If this is an implementation of throw, do what's necessary to
4487 communicate between __builtin_eh_return and the epilogue. */
4488 expand_eh_return ();
4489
4490 /* If scalar return value was computed in a pseudo-reg, or was a named
4491 return value that got dumped to the stack, copy that to the hard
4492 return register. */
4493 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4494 {
4495 tree decl_result = DECL_RESULT (current_function_decl);
4496 rtx decl_rtl = DECL_RTL (decl_result);
4497
4498 if (REG_P (decl_rtl)
4499 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4500 : DECL_REGISTER (decl_result))
4501 {
4502 rtx real_decl_rtl = current_function_return_rtx;
4503
4504 /* This should be set in assign_parms. */
4505 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4506
4507 /* If this is a BLKmode structure being returned in registers,
4508 then use the mode computed in expand_return. Note that if
4509 decl_rtl is memory, then its mode may have been changed,
4510 but that current_function_return_rtx has not. */
4511 if (GET_MODE (real_decl_rtl) == BLKmode)
4512 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4513
4514 /* If a non-BLKmode return value should be padded at the least
4515 significant end of the register, shift it left by the appropriate
4516 amount. BLKmode results are handled using the group load/store
4517 machinery. */
4518 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4519 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4520 {
4521 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4522 REGNO (real_decl_rtl)),
4523 decl_rtl);
4524 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4525 }
4526 /* If a named return value dumped decl_return to memory, then
4527 we may need to re-do the PROMOTE_MODE signed/unsigned
4528 extension. */
4529 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4530 {
4531 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4532
4533 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4534 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4535 &unsignedp, 1);
4536
4537 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4538 }
4539 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4540 {
4541 /* If expand_function_start has created a PARALLEL for decl_rtl,
4542 move the result to the real return registers. Otherwise, do
4543 a group load from decl_rtl for a named return. */
4544 if (GET_CODE (decl_rtl) == PARALLEL)
4545 emit_group_move (real_decl_rtl, decl_rtl);
4546 else
4547 emit_group_load (real_decl_rtl, decl_rtl,
4548 TREE_TYPE (decl_result),
4549 int_size_in_bytes (TREE_TYPE (decl_result)));
4550 }
4551 /* In the case of complex integer modes smaller than a word, we'll
4552 need to generate some non-trivial bitfield insertions. Do that
4553 on a pseudo and not the hard register. */
4554 else if (GET_CODE (decl_rtl) == CONCAT
4555 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4556 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4557 {
4558 int old_generating_concat_p;
4559 rtx tmp;
4560
4561 old_generating_concat_p = generating_concat_p;
4562 generating_concat_p = 0;
4563 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4564 generating_concat_p = old_generating_concat_p;
4565
4566 emit_move_insn (tmp, decl_rtl);
4567 emit_move_insn (real_decl_rtl, tmp);
4568 }
4569 else
4570 emit_move_insn (real_decl_rtl, decl_rtl);
4571 }
4572 }
4573
4574 /* If returning a structure, arrange to return the address of the value
4575 in a place where debuggers expect to find it.
4576
4577 If returning a structure PCC style,
4578 the caller also depends on this value.
4579 And current_function_returns_pcc_struct is not necessarily set. */
4580 if (current_function_returns_struct
4581 || current_function_returns_pcc_struct)
4582 {
4583 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4584 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4585 rtx outgoing;
4586
4587 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4588 type = TREE_TYPE (type);
4589 else
4590 value_address = XEXP (value_address, 0);
4591
4592 outgoing = targetm.calls.function_value (build_pointer_type (type),
4593 current_function_decl, true);
4594
4595 /* Mark this as a function return value so integrate will delete the
4596 assignment and USE below when inlining this function. */
4597 REG_FUNCTION_VALUE_P (outgoing) = 1;
4598
4599 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4600 value_address = convert_memory_address (GET_MODE (outgoing),
4601 value_address);
4602
4603 emit_move_insn (outgoing, value_address);
4604
4605 /* Show return register used to hold result (in this case the address
4606 of the result. */
4607 current_function_return_rtx = outgoing;
4608 }
4609
4610 /* Emit the actual code to clobber return register. */
4611 {
4612 rtx seq;
4613
4614 start_sequence ();
4615 clobber_return_register ();
4616 expand_naked_return ();
4617 seq = get_insns ();
4618 end_sequence ();
4619
4620 emit_insn_after (seq, clobber_after);
4621 }
4622
4623 /* Output the label for the naked return from the function. */
4624 emit_label (naked_return_label);
4625
4626 /* @@@ This is a kludge. We want to ensure that instructions that
4627 may trap are not moved into the epilogue by scheduling, because
4628 we don't always emit unwind information for the epilogue. */
4629 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4630 emit_insn (gen_blockage ());
4631
4632 /* If stack protection is enabled for this function, check the guard. */
4633 if (cfun->stack_protect_guard)
4634 stack_protect_epilogue ();
4635
4636 /* If we had calls to alloca, and this machine needs
4637 an accurate stack pointer to exit the function,
4638 insert some code to save and restore the stack pointer. */
4639 if (! EXIT_IGNORE_STACK
4640 && current_function_calls_alloca)
4641 {
4642 rtx tem = 0;
4643
4644 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4645 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4646 }
4647
4648 /* ??? This should no longer be necessary since stupid is no longer with
4649 us, but there are some parts of the compiler (eg reload_combine, and
4650 sh mach_dep_reorg) that still try and compute their own lifetime info
4651 instead of using the general framework. */
4652 use_return_register ();
4653 }
4654
4655 rtx
4656 get_arg_pointer_save_area (struct function *f)
4657 {
4658 rtx ret = f->x_arg_pointer_save_area;
4659
4660 if (! ret)
4661 {
4662 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4663 f->x_arg_pointer_save_area = ret;
4664 }
4665
4666 if (f == cfun && ! f->arg_pointer_save_area_init)
4667 {
4668 rtx seq;
4669
4670 /* Save the arg pointer at the beginning of the function. The
4671 generated stack slot may not be a valid memory address, so we
4672 have to check it and fix it if necessary. */
4673 start_sequence ();
4674 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4675 seq = get_insns ();
4676 end_sequence ();
4677
4678 push_topmost_sequence ();
4679 emit_insn_after (seq, entry_of_function ());
4680 pop_topmost_sequence ();
4681 }
4682
4683 return ret;
4684 }
4685 \f
4686 /* Extend a vector that records the INSN_UIDs of INSNS
4687 (a list of one or more insns). */
4688
4689 static void
4690 record_insns (rtx insns, VEC(int,heap) **vecp)
4691 {
4692 rtx tmp;
4693
4694 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4695 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4696 }
4697
4698 /* Set the locator of the insn chain starting at INSN to LOC. */
4699 static void
4700 set_insn_locators (rtx insn, int loc)
4701 {
4702 while (insn != NULL_RTX)
4703 {
4704 if (INSN_P (insn))
4705 INSN_LOCATOR (insn) = loc;
4706 insn = NEXT_INSN (insn);
4707 }
4708 }
4709
4710 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4711 be running after reorg, SEQUENCE rtl is possible. */
4712
4713 static int
4714 contains (const_rtx insn, VEC(int,heap) **vec)
4715 {
4716 int i, j;
4717
4718 if (NONJUMP_INSN_P (insn)
4719 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4720 {
4721 int count = 0;
4722 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4723 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4724 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4725 == VEC_index (int, *vec, j))
4726 count++;
4727 return count;
4728 }
4729 else
4730 {
4731 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4732 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4733 return 1;
4734 }
4735 return 0;
4736 }
4737
4738 int
4739 prologue_epilogue_contains (const_rtx insn)
4740 {
4741 if (contains (insn, &prologue))
4742 return 1;
4743 if (contains (insn, &epilogue))
4744 return 1;
4745 return 0;
4746 }
4747
4748 int
4749 sibcall_epilogue_contains (const_rtx insn)
4750 {
4751 if (sibcall_epilogue)
4752 return contains (insn, &sibcall_epilogue);
4753 return 0;
4754 }
4755
4756 #ifdef HAVE_return
4757 /* Insert gen_return at the end of block BB. This also means updating
4758 block_for_insn appropriately. */
4759
4760 static void
4761 emit_return_into_block (basic_block bb)
4762 {
4763 emit_jump_insn_after (gen_return (), BB_END (bb));
4764 }
4765 #endif /* HAVE_return */
4766
4767 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4768
4769 /* These functions convert the epilogue into a variant that does not
4770 modify the stack pointer. This is used in cases where a function
4771 returns an object whose size is not known until it is computed.
4772 The called function leaves the object on the stack, leaves the
4773 stack depressed, and returns a pointer to the object.
4774
4775 What we need to do is track all modifications and references to the
4776 stack pointer, deleting the modifications and changing the
4777 references to point to the location the stack pointer would have
4778 pointed to had the modifications taken place.
4779
4780 These functions need to be portable so we need to make as few
4781 assumptions about the epilogue as we can. However, the epilogue
4782 basically contains three things: instructions to reset the stack
4783 pointer, instructions to reload registers, possibly including the
4784 frame pointer, and an instruction to return to the caller.
4785
4786 We must be sure of what a relevant epilogue insn is doing. We also
4787 make no attempt to validate the insns we make since if they are
4788 invalid, we probably can't do anything valid. The intent is that
4789 these routines get "smarter" as more and more machines start to use
4790 them and they try operating on different epilogues.
4791
4792 We use the following structure to track what the part of the
4793 epilogue that we've already processed has done. We keep two copies
4794 of the SP equivalence, one for use during the insn we are
4795 processing and one for use in the next insn. The difference is
4796 because one part of a PARALLEL may adjust SP and the other may use
4797 it. */
4798
4799 struct epi_info
4800 {
4801 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4802 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4803 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4804 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4805 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4806 should be set to once we no longer need
4807 its value. */
4808 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4809 for registers. */
4810 };
4811
4812 static void handle_epilogue_set (rtx, struct epi_info *);
4813 static void update_epilogue_consts (rtx, const_rtx, void *);
4814 static void emit_equiv_load (struct epi_info *);
4815
4816 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4817 no modifications to the stack pointer. Return the new list of insns. */
4818
4819 static rtx
4820 keep_stack_depressed (rtx insns)
4821 {
4822 int j;
4823 struct epi_info info;
4824 rtx insn, next;
4825
4826 /* If the epilogue is just a single instruction, it must be OK as is. */
4827 if (NEXT_INSN (insns) == NULL_RTX)
4828 return insns;
4829
4830 /* Otherwise, start a sequence, initialize the information we have, and
4831 process all the insns we were given. */
4832 start_sequence ();
4833
4834 info.sp_equiv_reg = stack_pointer_rtx;
4835 info.sp_offset = 0;
4836 info.equiv_reg_src = 0;
4837
4838 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4839 info.const_equiv[j] = 0;
4840
4841 insn = insns;
4842 next = NULL_RTX;
4843 while (insn != NULL_RTX)
4844 {
4845 next = NEXT_INSN (insn);
4846
4847 if (!INSN_P (insn))
4848 {
4849 add_insn (insn);
4850 insn = next;
4851 continue;
4852 }
4853
4854 /* If this insn references the register that SP is equivalent to and
4855 we have a pending load to that register, we must force out the load
4856 first and then indicate we no longer know what SP's equivalent is. */
4857 if (info.equiv_reg_src != 0
4858 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4859 {
4860 emit_equiv_load (&info);
4861 info.sp_equiv_reg = 0;
4862 }
4863
4864 info.new_sp_equiv_reg = info.sp_equiv_reg;
4865 info.new_sp_offset = info.sp_offset;
4866
4867 /* If this is a (RETURN) and the return address is on the stack,
4868 update the address and change to an indirect jump. */
4869 if (GET_CODE (PATTERN (insn)) == RETURN
4870 || (GET_CODE (PATTERN (insn)) == PARALLEL
4871 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4872 {
4873 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4874 rtx base = 0;
4875 HOST_WIDE_INT offset = 0;
4876 rtx jump_insn, jump_set;
4877
4878 /* If the return address is in a register, we can emit the insn
4879 unchanged. Otherwise, it must be a MEM and we see what the
4880 base register and offset are. In any case, we have to emit any
4881 pending load to the equivalent reg of SP, if any. */
4882 if (REG_P (retaddr))
4883 {
4884 emit_equiv_load (&info);
4885 add_insn (insn);
4886 insn = next;
4887 continue;
4888 }
4889 else
4890 {
4891 rtx ret_ptr;
4892 gcc_assert (MEM_P (retaddr));
4893
4894 ret_ptr = XEXP (retaddr, 0);
4895
4896 if (REG_P (ret_ptr))
4897 {
4898 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4899 offset = 0;
4900 }
4901 else
4902 {
4903 gcc_assert (GET_CODE (ret_ptr) == PLUS
4904 && REG_P (XEXP (ret_ptr, 0))
4905 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4906 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4907 offset = INTVAL (XEXP (ret_ptr, 1));
4908 }
4909 }
4910
4911 /* If the base of the location containing the return pointer
4912 is SP, we must update it with the replacement address. Otherwise,
4913 just build the necessary MEM. */
4914 retaddr = plus_constant (base, offset);
4915 if (base == stack_pointer_rtx)
4916 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4917 plus_constant (info.sp_equiv_reg,
4918 info.sp_offset));
4919
4920 retaddr = gen_rtx_MEM (Pmode, retaddr);
4921 MEM_NOTRAP_P (retaddr) = 1;
4922
4923 /* If there is a pending load to the equivalent register for SP
4924 and we reference that register, we must load our address into
4925 a scratch register and then do that load. */
4926 if (info.equiv_reg_src
4927 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4928 {
4929 unsigned int regno;
4930 rtx reg;
4931
4932 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4933 if (HARD_REGNO_MODE_OK (regno, Pmode)
4934 && !fixed_regs[regno]
4935 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4936 && !REGNO_REG_SET_P
4937 (DF_LR_IN (EXIT_BLOCK_PTR), regno)
4938 && !refers_to_regno_p (regno,
4939 end_hard_regno (Pmode, regno),
4940 info.equiv_reg_src, NULL)
4941 && info.const_equiv[regno] == 0)
4942 break;
4943
4944 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4945
4946 reg = gen_rtx_REG (Pmode, regno);
4947 emit_move_insn (reg, retaddr);
4948 retaddr = reg;
4949 }
4950
4951 emit_equiv_load (&info);
4952 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4953
4954 /* Show the SET in the above insn is a RETURN. */
4955 jump_set = single_set (jump_insn);
4956 gcc_assert (jump_set);
4957 SET_IS_RETURN_P (jump_set) = 1;
4958 }
4959
4960 /* If SP is not mentioned in the pattern and its equivalent register, if
4961 any, is not modified, just emit it. Otherwise, if neither is set,
4962 replace the reference to SP and emit the insn. If none of those are
4963 true, handle each SET individually. */
4964 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4965 && (info.sp_equiv_reg == stack_pointer_rtx
4966 || !reg_set_p (info.sp_equiv_reg, insn)))
4967 add_insn (insn);
4968 else if (! reg_set_p (stack_pointer_rtx, insn)
4969 && (info.sp_equiv_reg == stack_pointer_rtx
4970 || !reg_set_p (info.sp_equiv_reg, insn)))
4971 {
4972 int changed;
4973
4974 changed = validate_replace_rtx (stack_pointer_rtx,
4975 plus_constant (info.sp_equiv_reg,
4976 info.sp_offset),
4977 insn);
4978 gcc_assert (changed);
4979
4980 add_insn (insn);
4981 }
4982 else if (GET_CODE (PATTERN (insn)) == SET)
4983 handle_epilogue_set (PATTERN (insn), &info);
4984 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4985 {
4986 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4987 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4988 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4989 }
4990 else
4991 add_insn (insn);
4992
4993 info.sp_equiv_reg = info.new_sp_equiv_reg;
4994 info.sp_offset = info.new_sp_offset;
4995
4996 /* Now update any constants this insn sets. */
4997 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4998 insn = next;
4999 }
5000
5001 insns = get_insns ();
5002 end_sequence ();
5003 return insns;
5004 }
5005
5006 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
5007 structure that contains information about what we've seen so far. We
5008 process this SET by either updating that data or by emitting one or
5009 more insns. */
5010
5011 static void
5012 handle_epilogue_set (rtx set, struct epi_info *p)
5013 {
5014 /* First handle the case where we are setting SP. Record what it is being
5015 set from, which we must be able to determine */
5016 if (reg_set_p (stack_pointer_rtx, set))
5017 {
5018 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
5019
5020 if (GET_CODE (SET_SRC (set)) == PLUS)
5021 {
5022 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
5023 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
5024 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
5025 else
5026 {
5027 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
5028 && (REGNO (XEXP (SET_SRC (set), 1))
5029 < FIRST_PSEUDO_REGISTER)
5030 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
5031 p->new_sp_offset
5032 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
5033 }
5034 }
5035 else
5036 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
5037
5038 /* If we are adjusting SP, we adjust from the old data. */
5039 if (p->new_sp_equiv_reg == stack_pointer_rtx)
5040 {
5041 p->new_sp_equiv_reg = p->sp_equiv_reg;
5042 p->new_sp_offset += p->sp_offset;
5043 }
5044
5045 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
5046
5047 return;
5048 }
5049
5050 /* Next handle the case where we are setting SP's equivalent
5051 register. We must not already have a value to set it to. We
5052 could update, but there seems little point in handling that case.
5053 Note that we have to allow for the case where we are setting the
5054 register set in the previous part of a PARALLEL inside a single
5055 insn. But use the old offset for any updates within this insn.
5056 We must allow for the case where the register is being set in a
5057 different (usually wider) mode than Pmode). */
5058 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
5059 {
5060 gcc_assert (!p->equiv_reg_src
5061 && REG_P (p->new_sp_equiv_reg)
5062 && REG_P (SET_DEST (set))
5063 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
5064 <= BITS_PER_WORD)
5065 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
5066 p->equiv_reg_src
5067 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5068 plus_constant (p->sp_equiv_reg,
5069 p->sp_offset));
5070 }
5071
5072 /* Otherwise, replace any references to SP in the insn to its new value
5073 and emit the insn. */
5074 else
5075 {
5076 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5077 plus_constant (p->sp_equiv_reg,
5078 p->sp_offset));
5079 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5080 plus_constant (p->sp_equiv_reg,
5081 p->sp_offset));
5082 emit_insn (set);
5083 }
5084 }
5085
5086 /* Update the tracking information for registers set to constants. */
5087
5088 static void
5089 update_epilogue_consts (rtx dest, const_rtx x, void *data)
5090 {
5091 struct epi_info *p = (struct epi_info *) data;
5092 rtx new;
5093
5094 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5095 return;
5096
5097 /* If we are either clobbering a register or doing a partial set,
5098 show we don't know the value. */
5099 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5100 p->const_equiv[REGNO (dest)] = 0;
5101
5102 /* If we are setting it to a constant, record that constant. */
5103 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5104 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5105
5106 /* If this is a binary operation between a register we have been tracking
5107 and a constant, see if we can compute a new constant value. */
5108 else if (ARITHMETIC_P (SET_SRC (x))
5109 && REG_P (XEXP (SET_SRC (x), 0))
5110 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5111 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5112 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5113 && 0 != (new = simplify_binary_operation
5114 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5115 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5116 XEXP (SET_SRC (x), 1)))
5117 && GET_CODE (new) == CONST_INT)
5118 p->const_equiv[REGNO (dest)] = new;
5119
5120 /* Otherwise, we can't do anything with this value. */
5121 else
5122 p->const_equiv[REGNO (dest)] = 0;
5123 }
5124
5125 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5126
5127 static void
5128 emit_equiv_load (struct epi_info *p)
5129 {
5130 if (p->equiv_reg_src != 0)
5131 {
5132 rtx dest = p->sp_equiv_reg;
5133
5134 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5135 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5136 REGNO (p->sp_equiv_reg));
5137
5138 emit_move_insn (dest, p->equiv_reg_src);
5139 p->equiv_reg_src = 0;
5140 }
5141 }
5142 #endif
5143
5144 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5145 this into place with notes indicating where the prologue ends and where
5146 the epilogue begins. Update the basic block information when possible. */
5147
5148 static void
5149 thread_prologue_and_epilogue_insns (void)
5150 {
5151 int inserted = 0;
5152 edge e;
5153 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5154 rtx seq;
5155 #endif
5156 #if defined (HAVE_epilogue) || defined(HAVE_return)
5157 rtx epilogue_end = NULL_RTX;
5158 #endif
5159 edge_iterator ei;
5160
5161 #ifdef HAVE_prologue
5162 if (HAVE_prologue)
5163 {
5164 start_sequence ();
5165 seq = gen_prologue ();
5166 emit_insn (seq);
5167
5168 /* Insert an explicit USE for the frame pointer
5169 if the profiling is on and the frame pointer is required. */
5170 if (current_function_profile && frame_pointer_needed)
5171 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
5172
5173 /* Retain a map of the prologue insns. */
5174 record_insns (seq, &prologue);
5175 emit_note (NOTE_INSN_PROLOGUE_END);
5176
5177 #ifndef PROFILE_BEFORE_PROLOGUE
5178 /* Ensure that instructions are not moved into the prologue when
5179 profiling is on. The call to the profiling routine can be
5180 emitted within the live range of a call-clobbered register. */
5181 if (current_function_profile)
5182 emit_insn (gen_blockage ());
5183 #endif
5184
5185 seq = get_insns ();
5186 end_sequence ();
5187 set_insn_locators (seq, prologue_locator);
5188
5189 /* Can't deal with multiple successors of the entry block
5190 at the moment. Function should always have at least one
5191 entry point. */
5192 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5193
5194 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5195 inserted = 1;
5196 }
5197 #endif
5198
5199 /* If the exit block has no non-fake predecessors, we don't need
5200 an epilogue. */
5201 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5202 if ((e->flags & EDGE_FAKE) == 0)
5203 break;
5204 if (e == NULL)
5205 goto epilogue_done;
5206
5207 #ifdef HAVE_return
5208 if (optimize && HAVE_return)
5209 {
5210 /* If we're allowed to generate a simple return instruction,
5211 then by definition we don't need a full epilogue. Examine
5212 the block that falls through to EXIT. If it does not
5213 contain any code, examine its predecessors and try to
5214 emit (conditional) return instructions. */
5215
5216 basic_block last;
5217 rtx label;
5218
5219 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5220 if (e->flags & EDGE_FALLTHRU)
5221 break;
5222 if (e == NULL)
5223 goto epilogue_done;
5224 last = e->src;
5225
5226 /* Verify that there are no active instructions in the last block. */
5227 label = BB_END (last);
5228 while (label && !LABEL_P (label))
5229 {
5230 if (active_insn_p (label))
5231 break;
5232 label = PREV_INSN (label);
5233 }
5234
5235 if (BB_HEAD (last) == label && LABEL_P (label))
5236 {
5237 edge_iterator ei2;
5238
5239 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5240 {
5241 basic_block bb = e->src;
5242 rtx jump;
5243
5244 if (bb == ENTRY_BLOCK_PTR)
5245 {
5246 ei_next (&ei2);
5247 continue;
5248 }
5249
5250 jump = BB_END (bb);
5251 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5252 {
5253 ei_next (&ei2);
5254 continue;
5255 }
5256
5257 /* If we have an unconditional jump, we can replace that
5258 with a simple return instruction. */
5259 if (simplejump_p (jump))
5260 {
5261 emit_return_into_block (bb);
5262 delete_insn (jump);
5263 }
5264
5265 /* If we have a conditional jump, we can try to replace
5266 that with a conditional return instruction. */
5267 else if (condjump_p (jump))
5268 {
5269 if (! redirect_jump (jump, 0, 0))
5270 {
5271 ei_next (&ei2);
5272 continue;
5273 }
5274
5275 /* If this block has only one successor, it both jumps
5276 and falls through to the fallthru block, so we can't
5277 delete the edge. */
5278 if (single_succ_p (bb))
5279 {
5280 ei_next (&ei2);
5281 continue;
5282 }
5283 }
5284 else
5285 {
5286 ei_next (&ei2);
5287 continue;
5288 }
5289
5290 /* Fix up the CFG for the successful change we just made. */
5291 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5292 }
5293
5294 /* Emit a return insn for the exit fallthru block. Whether
5295 this is still reachable will be determined later. */
5296
5297 emit_barrier_after (BB_END (last));
5298 emit_return_into_block (last);
5299 epilogue_end = BB_END (last);
5300 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5301 goto epilogue_done;
5302 }
5303 }
5304 #endif
5305 /* Find the edge that falls through to EXIT. Other edges may exist
5306 due to RETURN instructions, but those don't need epilogues.
5307 There really shouldn't be a mixture -- either all should have
5308 been converted or none, however... */
5309
5310 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5311 if (e->flags & EDGE_FALLTHRU)
5312 break;
5313 if (e == NULL)
5314 goto epilogue_done;
5315
5316 #ifdef HAVE_epilogue
5317 if (HAVE_epilogue)
5318 {
5319 start_sequence ();
5320 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5321
5322 seq = gen_epilogue ();
5323
5324 #ifdef INCOMING_RETURN_ADDR_RTX
5325 /* If this function returns with the stack depressed and we can support
5326 it, massage the epilogue to actually do that. */
5327 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5328 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5329 seq = keep_stack_depressed (seq);
5330 #endif
5331
5332 emit_jump_insn (seq);
5333
5334 /* Retain a map of the epilogue insns. */
5335 record_insns (seq, &epilogue);
5336 set_insn_locators (seq, epilogue_locator);
5337
5338 seq = get_insns ();
5339 end_sequence ();
5340
5341 insert_insn_on_edge (seq, e);
5342 inserted = 1;
5343 }
5344 else
5345 #endif
5346 {
5347 basic_block cur_bb;
5348
5349 if (! next_active_insn (BB_END (e->src)))
5350 goto epilogue_done;
5351 /* We have a fall-through edge to the exit block, the source is not
5352 at the end of the function, and there will be an assembler epilogue
5353 at the end of the function.
5354 We can't use force_nonfallthru here, because that would try to
5355 use return. Inserting a jump 'by hand' is extremely messy, so
5356 we take advantage of cfg_layout_finalize using
5357 fixup_fallthru_exit_predecessor. */
5358 cfg_layout_initialize (0);
5359 FOR_EACH_BB (cur_bb)
5360 if (cur_bb->index >= NUM_FIXED_BLOCKS
5361 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5362 cur_bb->aux = cur_bb->next_bb;
5363 cfg_layout_finalize ();
5364 }
5365 epilogue_done:
5366
5367 if (inserted)
5368 {
5369 commit_edge_insertions ();
5370
5371 /* The epilogue insns we inserted may cause the exit edge to no longer
5372 be fallthru. */
5373 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5374 {
5375 if (((e->flags & EDGE_FALLTHRU) != 0)
5376 && returnjump_p (BB_END (e->src)))
5377 e->flags &= ~EDGE_FALLTHRU;
5378 }
5379 }
5380
5381 #ifdef HAVE_sibcall_epilogue
5382 /* Emit sibling epilogues before any sibling call sites. */
5383 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5384 {
5385 basic_block bb = e->src;
5386 rtx insn = BB_END (bb);
5387
5388 if (!CALL_P (insn)
5389 || ! SIBLING_CALL_P (insn))
5390 {
5391 ei_next (&ei);
5392 continue;
5393 }
5394
5395 start_sequence ();
5396 emit_insn (gen_sibcall_epilogue ());
5397 seq = get_insns ();
5398 end_sequence ();
5399
5400 /* Retain a map of the epilogue insns. Used in life analysis to
5401 avoid getting rid of sibcall epilogue insns. Do this before we
5402 actually emit the sequence. */
5403 record_insns (seq, &sibcall_epilogue);
5404 set_insn_locators (seq, epilogue_locator);
5405
5406 emit_insn_before (seq, insn);
5407 ei_next (&ei);
5408 }
5409 #endif
5410
5411 #ifdef HAVE_epilogue
5412 if (epilogue_end)
5413 {
5414 rtx insn, next;
5415
5416 /* Similarly, move any line notes that appear after the epilogue.
5417 There is no need, however, to be quite so anal about the existence
5418 of such a note. Also possibly move
5419 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5420 info generation. */
5421 for (insn = epilogue_end; insn; insn = next)
5422 {
5423 next = NEXT_INSN (insn);
5424 if (NOTE_P (insn)
5425 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5426 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5427 }
5428 }
5429 #endif
5430
5431 /* Threading the prologue and epilogue changes the artificial refs
5432 in the entry and exit blocks. */
5433 epilogue_completed = 1;
5434 df_update_entry_exit_and_calls ();
5435 }
5436
5437 /* Reposition the prologue-end and epilogue-begin notes after instruction
5438 scheduling and delayed branch scheduling. */
5439
5440 void
5441 reposition_prologue_and_epilogue_notes (void)
5442 {
5443 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5444 rtx insn, last, note;
5445 int len;
5446
5447 if ((len = VEC_length (int, prologue)) > 0)
5448 {
5449 last = 0, note = 0;
5450
5451 /* Scan from the beginning until we reach the last prologue insn.
5452 We apparently can't depend on basic_block_{head,end} after
5453 reorg has run. */
5454 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5455 {
5456 if (NOTE_P (insn))
5457 {
5458 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5459 note = insn;
5460 }
5461 else if (contains (insn, &prologue))
5462 {
5463 last = insn;
5464 if (--len == 0)
5465 break;
5466 }
5467 }
5468
5469 if (last)
5470 {
5471 /* Find the prologue-end note if we haven't already, and
5472 move it to just after the last prologue insn. */
5473 if (note == 0)
5474 {
5475 for (note = last; (note = NEXT_INSN (note));)
5476 if (NOTE_P (note)
5477 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5478 break;
5479 }
5480
5481 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5482 if (LABEL_P (last))
5483 last = NEXT_INSN (last);
5484 reorder_insns (note, note, last);
5485 }
5486 }
5487
5488 if ((len = VEC_length (int, epilogue)) > 0)
5489 {
5490 last = 0, note = 0;
5491
5492 /* Scan from the end until we reach the first epilogue insn.
5493 We apparently can't depend on basic_block_{head,end} after
5494 reorg has run. */
5495 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5496 {
5497 if (NOTE_P (insn))
5498 {
5499 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5500 note = insn;
5501 }
5502 else if (contains (insn, &epilogue))
5503 {
5504 last = insn;
5505 if (--len == 0)
5506 break;
5507 }
5508 }
5509
5510 if (last)
5511 {
5512 /* Find the epilogue-begin note if we haven't already, and
5513 move it to just before the first epilogue insn. */
5514 if (note == 0)
5515 {
5516 for (note = insn; (note = PREV_INSN (note));)
5517 if (NOTE_P (note)
5518 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5519 break;
5520 }
5521
5522 if (PREV_INSN (last) != note)
5523 reorder_insns (note, note, PREV_INSN (last));
5524 }
5525 }
5526 #endif /* HAVE_prologue or HAVE_epilogue */
5527 }
5528
5529 /* Returns the name of the current function. */
5530 const char *
5531 current_function_name (void)
5532 {
5533 return lang_hooks.decl_printable_name (cfun->decl, 2);
5534 }
5535
5536 /* Returns the raw (mangled) name of the current function. */
5537 const char *
5538 current_function_assembler_name (void)
5539 {
5540 return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
5541 }
5542 \f
5543
5544 static unsigned int
5545 rest_of_handle_check_leaf_regs (void)
5546 {
5547 #ifdef LEAF_REGISTERS
5548 current_function_uses_only_leaf_regs
5549 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5550 #endif
5551 return 0;
5552 }
5553
5554 /* Insert a TYPE into the used types hash table of CFUN. */
5555 static void
5556 used_types_insert_helper (tree type, struct function *func)
5557 {
5558 if (type != NULL && func != NULL)
5559 {
5560 void **slot;
5561
5562 if (func->used_types_hash == NULL)
5563 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5564 htab_eq_pointer, NULL);
5565 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5566 if (*slot == NULL)
5567 *slot = type;
5568 }
5569 }
5570
5571 /* Given a type, insert it into the used hash table in cfun. */
5572 void
5573 used_types_insert (tree t)
5574 {
5575 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5576 t = TREE_TYPE (t);
5577 t = TYPE_MAIN_VARIANT (t);
5578 if (debug_info_level > DINFO_LEVEL_NONE)
5579 used_types_insert_helper (t, cfun);
5580 }
5581
5582 struct tree_opt_pass pass_leaf_regs =
5583 {
5584 NULL, /* name */
5585 NULL, /* gate */
5586 rest_of_handle_check_leaf_regs, /* execute */
5587 NULL, /* sub */
5588 NULL, /* next */
5589 0, /* static_pass_number */
5590 0, /* tv_id */
5591 0, /* properties_required */
5592 0, /* properties_provided */
5593 0, /* properties_destroyed */
5594 0, /* todo_flags_start */
5595 0, /* todo_flags_finish */
5596 0 /* letter */
5597 };
5598
5599 static unsigned int
5600 rest_of_handle_thread_prologue_and_epilogue (void)
5601 {
5602 if (optimize)
5603 cleanup_cfg (CLEANUP_EXPENSIVE);
5604 /* On some machines, the prologue and epilogue code, or parts thereof,
5605 can be represented as RTL. Doing so lets us schedule insns between
5606 it and the rest of the code and also allows delayed branch
5607 scheduling to operate in the epilogue. */
5608
5609 thread_prologue_and_epilogue_insns ();
5610 return 0;
5611 }
5612
5613 struct tree_opt_pass pass_thread_prologue_and_epilogue =
5614 {
5615 "pro_and_epilogue", /* name */
5616 NULL, /* gate */
5617 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5618 NULL, /* sub */
5619 NULL, /* next */
5620 0, /* static_pass_number */
5621 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5622 0, /* properties_required */
5623 0, /* properties_provided */
5624 0, /* properties_destroyed */
5625 TODO_verify_flow, /* todo_flags_start */
5626 TODO_dump_func |
5627 TODO_df_verify |
5628 TODO_df_finish | TODO_verify_rtl_sharing |
5629 TODO_ggc_collect, /* todo_flags_finish */
5630 'w' /* letter */
5631 };
5632 \f
5633
5634 /* This mini-pass fixes fall-out from SSA in asm statements that have
5635 in-out constraints. Say you start with
5636
5637 orig = inout;
5638 asm ("": "+mr" (inout));
5639 use (orig);
5640
5641 which is transformed very early to use explicit output and match operands:
5642
5643 orig = inout;
5644 asm ("": "=mr" (inout) : "0" (inout));
5645 use (orig);
5646
5647 Or, after SSA and copyprop,
5648
5649 asm ("": "=mr" (inout_2) : "0" (inout_1));
5650 use (inout_1);
5651
5652 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5653 they represent two separate values, so they will get different pseudo
5654 registers during expansion. Then, since the two operands need to match
5655 per the constraints, but use different pseudo registers, reload can
5656 only register a reload for these operands. But reloads can only be
5657 satisfied by hardregs, not by memory, so we need a register for this
5658 reload, just because we are presented with non-matching operands.
5659 So, even though we allow memory for this operand, no memory can be
5660 used for it, just because the two operands don't match. This can
5661 cause reload failures on register-starved targets.
5662
5663 So it's a symptom of reload not being able to use memory for reloads
5664 or, alternatively it's also a symptom of both operands not coming into
5665 reload as matching (in which case the pseudo could go to memory just
5666 fine, as the alternative allows it, and no reload would be necessary).
5667 We fix the latter problem here, by transforming
5668
5669 asm ("": "=mr" (inout_2) : "0" (inout_1));
5670
5671 back to
5672
5673 inout_2 = inout_1;
5674 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5675
5676 static void
5677 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5678 {
5679 int i;
5680 bool changed = false;
5681 rtx op = SET_SRC (p_sets[0]);
5682 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5683 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5684
5685 for (i = 0; i < ninputs; i++)
5686 {
5687 rtx input, output, insns;
5688 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5689 char *end;
5690 int match, j;
5691
5692 match = strtoul (constraint, &end, 10);
5693 if (end == constraint)
5694 continue;
5695
5696 gcc_assert (match < noutputs);
5697 output = SET_DEST (p_sets[match]);
5698 input = RTVEC_ELT (inputs, i);
5699 /* Only do the transformation for pseudos. */
5700 if (! REG_P (output)
5701 || rtx_equal_p (output, input)
5702 || (GET_MODE (input) != VOIDmode
5703 && GET_MODE (input) != GET_MODE (output)))
5704 continue;
5705
5706 /* We can't do anything if the output is also used as input,
5707 as we're going to overwrite it. */
5708 for (j = 0; j < ninputs; j++)
5709 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5710 break;
5711 if (j != ninputs)
5712 continue;
5713
5714 start_sequence ();
5715 emit_move_insn (output, input);
5716 insns = get_insns ();
5717 end_sequence ();
5718 emit_insn_before (insns, insn);
5719
5720 /* Now replace all mentions of the input with output. We can't
5721 just replace the occurence in inputs[i], as the register might
5722 also be used in some other input (or even in an address of an
5723 output), which would mean possibly increasing the number of
5724 inputs by one (namely 'output' in addition), which might pose
5725 a too complicated problem for reload to solve. E.g. this situation:
5726
5727 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5728
5729 Here 'input' is used in two occurrences as input (once for the
5730 input operand, once for the address in the second output operand).
5731 If we would replace only the occurence of the input operand (to
5732 make the matching) we would be left with this:
5733
5734 output = input
5735 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5736
5737 Now we suddenly have two different input values (containing the same
5738 value, but different pseudos) where we formerly had only one.
5739 With more complicated asms this might lead to reload failures
5740 which wouldn't have happen without this pass. So, iterate over
5741 all operands and replace all occurrences of the register used. */
5742 for (j = 0; j < noutputs; j++)
5743 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5744 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5745 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5746 input, output);
5747 for (j = 0; j < ninputs; j++)
5748 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5749 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5750 input, output);
5751
5752 changed = true;
5753 }
5754
5755 if (changed)
5756 df_insn_rescan (insn);
5757 }
5758
5759 static unsigned
5760 rest_of_match_asm_constraints (void)
5761 {
5762 basic_block bb;
5763 rtx insn, pat, *p_sets;
5764 int noutputs;
5765
5766 if (!cfun->has_asm_statement)
5767 return 0;
5768
5769 df_set_flags (DF_DEFER_INSN_RESCAN);
5770 FOR_EACH_BB (bb)
5771 {
5772 FOR_BB_INSNS (bb, insn)
5773 {
5774 if (!INSN_P (insn))
5775 continue;
5776
5777 pat = PATTERN (insn);
5778 if (GET_CODE (pat) == PARALLEL)
5779 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5780 else if (GET_CODE (pat) == SET)
5781 p_sets = &PATTERN (insn), noutputs = 1;
5782 else
5783 continue;
5784
5785 if (GET_CODE (*p_sets) == SET
5786 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5787 match_asm_constraints_1 (insn, p_sets, noutputs);
5788 }
5789 }
5790
5791 return TODO_df_finish;
5792 }
5793
5794 struct tree_opt_pass pass_match_asm_constraints =
5795 {
5796 "asmcons", /* name */
5797 NULL, /* gate */
5798 rest_of_match_asm_constraints, /* execute */
5799 NULL, /* sub */
5800 NULL, /* next */
5801 0, /* static_pass_number */
5802 0, /* tv_id */
5803 0, /* properties_required */
5804 0, /* properties_provided */
5805 0, /* properties_destroyed */
5806 0, /* todo_flags_start */
5807 TODO_dump_func, /* todo_flags_finish */
5808 0 /* letter */
5809 };
5810
5811
5812 #include "gt-function.h"