gfortran.h (gfc_default_*_kind): Remove prototypes, add extern variable declaration...
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62
63 #ifndef LOCAL_ALIGNMENT
64 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
65 #endif
66
67 #ifndef STACK_ALIGNMENT_NEEDED
68 #define STACK_ALIGNMENT_NEEDED 1
69 #endif
70
71 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
72
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #endif
80
81 /* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
85
86 /* Similar, but round to the next highest integer that meets the
87 alignment. */
88 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
89
90 /* Nonzero if function being compiled doesn't contain any calls
91 (ignoring the prologue and epilogue). This is set prior to
92 local register allocation and is valid for the remaining
93 compiler passes. */
94 int current_function_is_leaf;
95
96 /* Nonzero if function being compiled doesn't modify the stack pointer
97 (ignoring the prologue and epilogue). This is only valid after
98 life_analysis has run. */
99 int current_function_sp_is_unchanging;
100
101 /* Nonzero if the function being compiled is a leaf function which only
102 uses leaf registers. This is valid after reload (specifically after
103 sched2) and is useful only if the port defines LEAF_REGISTERS. */
104 int current_function_uses_only_leaf_regs;
105
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.c:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
111
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
114
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
118
119 /* The currently compiled function. */
120 struct function *cfun = 0;
121
122 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
123 static GTY(()) varray_type prologue;
124 static GTY(()) varray_type epilogue;
125
126 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
127 in this function. */
128 static GTY(()) varray_type sibcall_epilogue;
129 \f
130 /* In order to evaluate some expressions, such as function calls returning
131 structures in memory, we need to temporarily allocate stack locations.
132 We record each allocated temporary in the following structure.
133
134 Associated with each temporary slot is a nesting level. When we pop up
135 one level, all temporaries associated with the previous level are freed.
136 Normally, all temporaries are freed after the execution of the statement
137 in which they were created. However, if we are inside a ({...}) grouping,
138 the result may be in a temporary and hence must be preserved. If the
139 result could be in a temporary, we preserve it if we can determine which
140 one it is in. If we cannot determine which temporary may contain the
141 result, all temporaries are preserved. A temporary is preserved by
142 pretending it was allocated at the previous nesting level.
143
144 Automatic variables are also assigned temporary slots, at the nesting
145 level where they are defined. They are marked a "kept" so that
146 free_temp_slots will not free them. */
147
148 struct temp_slot GTY(())
149 {
150 /* Points to next temporary slot. */
151 struct temp_slot *next;
152 /* Points to previous temporary slot. */
153 struct temp_slot *prev;
154
155 /* The rtx to used to reference the slot. */
156 rtx slot;
157 /* The rtx used to represent the address if not the address of the
158 slot above. May be an EXPR_LIST if multiple addresses exist. */
159 rtx address;
160 /* The alignment (in bits) of the slot. */
161 unsigned int align;
162 /* The size, in units, of the slot. */
163 HOST_WIDE_INT size;
164 /* The type of the object in the slot, or zero if it doesn't correspond
165 to a type. We use this to determine whether a slot can be reused.
166 It can be reused if objects of the type of the new slot will always
167 conflict with objects of the type of the old slot. */
168 tree type;
169 /* Nonzero if this temporary is currently in use. */
170 char in_use;
171 /* Nonzero if this temporary has its address taken. */
172 char addr_taken;
173 /* Nesting level at which this slot is being used. */
174 int level;
175 /* Nonzero if this should survive a call to free_temp_slots. */
176 int keep;
177 /* The offset of the slot from the frame_pointer, including extra space
178 for alignment. This info is for combine_temp_slots. */
179 HOST_WIDE_INT base_offset;
180 /* The size of the slot, including extra space for alignment. This
181 info is for combine_temp_slots. */
182 HOST_WIDE_INT full_size;
183 };
184 \f
185 /* Forward declarations. */
186
187 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
188 struct function *);
189 static struct temp_slot *find_temp_slot_from_address (rtx);
190 static void instantiate_decls (tree, int);
191 static void instantiate_decls_1 (tree, int);
192 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
193 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
194 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
195 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196 static void pad_below (struct args_size *, enum machine_mode, tree);
197 static void reorder_blocks_1 (rtx, tree, varray_type *);
198 static void reorder_fix_fragments (tree);
199 static int all_blocks (tree, tree *);
200 static tree *get_block_vector (tree, int *);
201 extern tree debug_find_var_in_block_tree (tree, tree);
202 /* We always define `record_insns' even if it's not used so that we
203 can always export `prologue_epilogue_contains'. */
204 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
205 static int contains (rtx, varray_type);
206 #ifdef HAVE_return
207 static void emit_return_into_block (basic_block, rtx);
208 #endif
209 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
210 static rtx keep_stack_depressed (rtx);
211 #endif
212 static void prepare_function_start (tree);
213 static void do_clobber_return_reg (rtx, void *);
214 static void do_use_return_reg (rtx, void *);
215 static void instantiate_virtual_regs_lossage (rtx);
216 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
217 \f
218 /* Pointer to chain of `struct function' for containing functions. */
219 struct function *outer_function_chain;
220
221 /* Given a function decl for a containing function,
222 return the `struct function' for it. */
223
224 struct function *
225 find_function_data (tree decl)
226 {
227 struct function *p;
228
229 for (p = outer_function_chain; p; p = p->outer)
230 if (p->decl == decl)
231 return p;
232
233 abort ();
234 }
235
236 /* Save the current context for compilation of a nested function.
237 This is called from language-specific code. The caller should use
238 the enter_nested langhook to save any language-specific state,
239 since this function knows only about language-independent
240 variables. */
241
242 void
243 push_function_context_to (tree context)
244 {
245 struct function *p;
246
247 if (context)
248 {
249 if (context == current_function_decl)
250 cfun->contains_functions = 1;
251 else
252 {
253 struct function *containing = find_function_data (context);
254 containing->contains_functions = 1;
255 }
256 }
257
258 if (cfun == 0)
259 init_dummy_function_start ();
260 p = cfun;
261
262 p->outer = outer_function_chain;
263 outer_function_chain = p;
264
265 lang_hooks.function.enter_nested (p);
266
267 cfun = 0;
268 }
269
270 void
271 push_function_context (void)
272 {
273 push_function_context_to (current_function_decl);
274 }
275
276 /* Restore the last saved context, at the end of a nested function.
277 This function is called from language-specific code. */
278
279 void
280 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
281 {
282 struct function *p = outer_function_chain;
283
284 cfun = p;
285 outer_function_chain = p->outer;
286
287 current_function_decl = p->decl;
288 reg_renumber = 0;
289
290 restore_emit_status (p);
291
292 lang_hooks.function.leave_nested (p);
293
294 /* Reset variables that have known state during rtx generation. */
295 virtuals_instantiated = 0;
296 generating_concat_p = 1;
297 }
298
299 void
300 pop_function_context (void)
301 {
302 pop_function_context_from (current_function_decl);
303 }
304
305 /* Clear out all parts of the state in F that can safely be discarded
306 after the function has been parsed, but not compiled, to let
307 garbage collection reclaim the memory. */
308
309 void
310 free_after_parsing (struct function *f)
311 {
312 /* f->expr->forced_labels is used by code generation. */
313 /* f->emit->regno_reg_rtx is used by code generation. */
314 /* f->varasm is used by code generation. */
315 /* f->eh->eh_return_stub_label is used by code generation. */
316
317 lang_hooks.function.final (f);
318 }
319
320 /* Clear out all parts of the state in F that can safely be discarded
321 after the function has been compiled, to let garbage collection
322 reclaim the memory. */
323
324 void
325 free_after_compilation (struct function *f)
326 {
327 f->eh = NULL;
328 f->expr = NULL;
329 f->emit = NULL;
330 f->varasm = NULL;
331 f->machine = NULL;
332
333 f->x_avail_temp_slots = NULL;
334 f->x_used_temp_slots = NULL;
335 f->arg_offset_rtx = NULL;
336 f->return_rtx = NULL;
337 f->internal_arg_pointer = NULL;
338 f->x_nonlocal_goto_handler_labels = NULL;
339 f->x_return_label = NULL;
340 f->x_naked_return_label = NULL;
341 f->x_stack_slot_list = NULL;
342 f->x_tail_recursion_reentry = NULL;
343 f->x_arg_pointer_save_area = NULL;
344 f->x_parm_birth_insn = NULL;
345 f->original_arg_vector = NULL;
346 f->original_decl_initial = NULL;
347 f->epilogue_delay_list = NULL;
348 }
349 \f
350 /* Allocate fixed slots in the stack frame of the current function. */
351
352 /* Return size needed for stack frame based on slots so far allocated in
353 function F.
354 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
355 the caller may have to do that. */
356
357 HOST_WIDE_INT
358 get_func_frame_size (struct function *f)
359 {
360 #ifdef FRAME_GROWS_DOWNWARD
361 return -f->x_frame_offset;
362 #else
363 return f->x_frame_offset;
364 #endif
365 }
366
367 /* Return size needed for stack frame based on slots so far allocated.
368 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
369 the caller may have to do that. */
370 HOST_WIDE_INT
371 get_frame_size (void)
372 {
373 return get_func_frame_size (cfun);
374 }
375
376 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
377 with machine mode MODE.
378
379 ALIGN controls the amount of alignment for the address of the slot:
380 0 means according to MODE,
381 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
382 -2 means use BITS_PER_UNIT,
383 positive specifies alignment boundary in bits.
384
385 We do not round to stack_boundary here.
386
387 FUNCTION specifies the function to allocate in. */
388
389 static rtx
390 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
391 struct function *function)
392 {
393 rtx x, addr;
394 int bigend_correction = 0;
395 unsigned int alignment;
396 int frame_off, frame_alignment, frame_phase;
397
398 if (align == 0)
399 {
400 tree type;
401
402 if (mode == BLKmode)
403 alignment = BIGGEST_ALIGNMENT;
404 else
405 alignment = GET_MODE_ALIGNMENT (mode);
406
407 /* Allow the target to (possibly) increase the alignment of this
408 stack slot. */
409 type = lang_hooks.types.type_for_mode (mode, 0);
410 if (type)
411 alignment = LOCAL_ALIGNMENT (type, alignment);
412
413 alignment /= BITS_PER_UNIT;
414 }
415 else if (align == -1)
416 {
417 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
418 size = CEIL_ROUND (size, alignment);
419 }
420 else if (align == -2)
421 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
422 else
423 alignment = align / BITS_PER_UNIT;
424
425 #ifdef FRAME_GROWS_DOWNWARD
426 function->x_frame_offset -= size;
427 #endif
428
429 /* Ignore alignment we can't do with expected alignment of the boundary. */
430 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
431 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
432
433 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
434 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
435
436 /* Calculate how many bytes the start of local variables is off from
437 stack alignment. */
438 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
439 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
440 frame_phase = frame_off ? frame_alignment - frame_off : 0;
441
442 /* Round the frame offset to the specified alignment. The default is
443 to always honor requests to align the stack but a port may choose to
444 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
445 if (STACK_ALIGNMENT_NEEDED
446 || mode != BLKmode
447 || size != 0)
448 {
449 /* We must be careful here, since FRAME_OFFSET might be negative and
450 division with a negative dividend isn't as well defined as we might
451 like. So we instead assume that ALIGNMENT is a power of two and
452 use logical operations which are unambiguous. */
453 #ifdef FRAME_GROWS_DOWNWARD
454 function->x_frame_offset
455 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
456 (unsigned HOST_WIDE_INT) alignment)
457 + frame_phase);
458 #else
459 function->x_frame_offset
460 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
461 (unsigned HOST_WIDE_INT) alignment)
462 + frame_phase);
463 #endif
464 }
465
466 /* On a big-endian machine, if we are allocating more space than we will use,
467 use the least significant bytes of those that are allocated. */
468 if (BYTES_BIG_ENDIAN && mode != BLKmode)
469 bigend_correction = size - GET_MODE_SIZE (mode);
470
471 /* If we have already instantiated virtual registers, return the actual
472 address relative to the frame pointer. */
473 if (function == cfun && virtuals_instantiated)
474 addr = plus_constant (frame_pointer_rtx,
475 trunc_int_for_mode
476 (frame_offset + bigend_correction
477 + STARTING_FRAME_OFFSET, Pmode));
478 else
479 addr = plus_constant (virtual_stack_vars_rtx,
480 trunc_int_for_mode
481 (function->x_frame_offset + bigend_correction,
482 Pmode));
483
484 #ifndef FRAME_GROWS_DOWNWARD
485 function->x_frame_offset += size;
486 #endif
487
488 x = gen_rtx_MEM (mode, addr);
489
490 function->x_stack_slot_list
491 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
492
493 return x;
494 }
495
496 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
497 current function. */
498
499 rtx
500 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
501 {
502 return assign_stack_local_1 (mode, size, align, cfun);
503 }
504
505 \f
506 /* Removes temporary slot TEMP from LIST. */
507
508 static void
509 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
510 {
511 if (temp->next)
512 temp->next->prev = temp->prev;
513 if (temp->prev)
514 temp->prev->next = temp->next;
515 else
516 *list = temp->next;
517
518 temp->prev = temp->next = NULL;
519 }
520
521 /* Inserts temporary slot TEMP to LIST. */
522
523 static void
524 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
525 {
526 temp->next = *list;
527 if (*list)
528 (*list)->prev = temp;
529 temp->prev = NULL;
530 *list = temp;
531 }
532
533 /* Returns the list of used temp slots at LEVEL. */
534
535 static struct temp_slot **
536 temp_slots_at_level (int level)
537 {
538 level++;
539
540 if (!used_temp_slots)
541 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
542
543 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
544 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
545
546 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
547 }
548
549 /* Returns the maximal temporary slot level. */
550
551 static int
552 max_slot_level (void)
553 {
554 if (!used_temp_slots)
555 return -1;
556
557 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
558 }
559
560 /* Moves temporary slot TEMP to LEVEL. */
561
562 static void
563 move_slot_to_level (struct temp_slot *temp, int level)
564 {
565 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
566 insert_slot_to_list (temp, temp_slots_at_level (level));
567 temp->level = level;
568 }
569
570 /* Make temporary slot TEMP available. */
571
572 static void
573 make_slot_available (struct temp_slot *temp)
574 {
575 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
576 insert_slot_to_list (temp, &avail_temp_slots);
577 temp->in_use = 0;
578 temp->level = -1;
579 }
580 \f
581 /* Allocate a temporary stack slot and record it for possible later
582 reuse.
583
584 MODE is the machine mode to be given to the returned rtx.
585
586 SIZE is the size in units of the space required. We do no rounding here
587 since assign_stack_local will do any required rounding.
588
589 KEEP is 1 if this slot is to be retained after a call to
590 free_temp_slots. Automatic variables for a block are allocated
591 with this flag. KEEP values of 2 or 3 were needed respectively
592 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
593 or for SAVE_EXPRs, but they are now unused and will abort.
594
595 TYPE is the type that will be used for the stack slot. */
596
597 rtx
598 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
599 tree type)
600 {
601 unsigned int align;
602 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
603 rtx slot;
604
605 /* If SIZE is -1 it means that somebody tried to allocate a temporary
606 of a variable size. */
607 if (size == -1)
608 abort ();
609
610 /* These are now unused. */
611 if (keep > 1)
612 abort ();
613
614 if (mode == BLKmode)
615 align = BIGGEST_ALIGNMENT;
616 else
617 align = GET_MODE_ALIGNMENT (mode);
618
619 if (! type)
620 type = lang_hooks.types.type_for_mode (mode, 0);
621
622 if (type)
623 align = LOCAL_ALIGNMENT (type, align);
624
625 /* Try to find an available, already-allocated temporary of the proper
626 mode which meets the size and alignment requirements. Choose the
627 smallest one with the closest alignment. */
628 for (p = avail_temp_slots; p; p = p->next)
629 {
630 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
631 && objects_must_conflict_p (p->type, type)
632 && (best_p == 0 || best_p->size > p->size
633 || (best_p->size == p->size && best_p->align > p->align)))
634 {
635 if (p->align == align && p->size == size)
636 {
637 selected = p;
638 cut_slot_from_list (selected, &avail_temp_slots);
639 best_p = 0;
640 break;
641 }
642 best_p = p;
643 }
644 }
645
646 /* Make our best, if any, the one to use. */
647 if (best_p)
648 {
649 selected = best_p;
650 cut_slot_from_list (selected, &avail_temp_slots);
651
652 /* If there are enough aligned bytes left over, make them into a new
653 temp_slot so that the extra bytes don't get wasted. Do this only
654 for BLKmode slots, so that we can be sure of the alignment. */
655 if (GET_MODE (best_p->slot) == BLKmode)
656 {
657 int alignment = best_p->align / BITS_PER_UNIT;
658 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
659
660 if (best_p->size - rounded_size >= alignment)
661 {
662 p = ggc_alloc (sizeof (struct temp_slot));
663 p->in_use = p->addr_taken = 0;
664 p->size = best_p->size - rounded_size;
665 p->base_offset = best_p->base_offset + rounded_size;
666 p->full_size = best_p->full_size - rounded_size;
667 p->slot = gen_rtx_MEM (BLKmode,
668 plus_constant (XEXP (best_p->slot, 0),
669 rounded_size));
670 p->align = best_p->align;
671 p->address = 0;
672 p->type = best_p->type;
673 insert_slot_to_list (p, &avail_temp_slots);
674
675 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
676 stack_slot_list);
677
678 best_p->size = rounded_size;
679 best_p->full_size = rounded_size;
680 }
681 }
682 }
683
684 /* If we still didn't find one, make a new temporary. */
685 if (selected == 0)
686 {
687 HOST_WIDE_INT frame_offset_old = frame_offset;
688
689 p = ggc_alloc (sizeof (struct temp_slot));
690
691 /* We are passing an explicit alignment request to assign_stack_local.
692 One side effect of that is assign_stack_local will not round SIZE
693 to ensure the frame offset remains suitably aligned.
694
695 So for requests which depended on the rounding of SIZE, we go ahead
696 and round it now. We also make sure ALIGNMENT is at least
697 BIGGEST_ALIGNMENT. */
698 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
699 abort ();
700 p->slot = assign_stack_local (mode,
701 (mode == BLKmode
702 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
703 : size),
704 align);
705
706 p->align = align;
707
708 /* The following slot size computation is necessary because we don't
709 know the actual size of the temporary slot until assign_stack_local
710 has performed all the frame alignment and size rounding for the
711 requested temporary. Note that extra space added for alignment
712 can be either above or below this stack slot depending on which
713 way the frame grows. We include the extra space if and only if it
714 is above this slot. */
715 #ifdef FRAME_GROWS_DOWNWARD
716 p->size = frame_offset_old - frame_offset;
717 #else
718 p->size = size;
719 #endif
720
721 /* Now define the fields used by combine_temp_slots. */
722 #ifdef FRAME_GROWS_DOWNWARD
723 p->base_offset = frame_offset;
724 p->full_size = frame_offset_old - frame_offset;
725 #else
726 p->base_offset = frame_offset_old;
727 p->full_size = frame_offset - frame_offset_old;
728 #endif
729 p->address = 0;
730
731 selected = p;
732 }
733
734 p = selected;
735 p->in_use = 1;
736 p->addr_taken = 0;
737 p->type = type;
738 p->level = temp_slot_level;
739 p->keep = keep;
740
741 pp = temp_slots_at_level (p->level);
742 insert_slot_to_list (p, pp);
743
744 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
745 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
746 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
747
748 /* If we know the alias set for the memory that will be used, use
749 it. If there's no TYPE, then we don't know anything about the
750 alias set for the memory. */
751 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
752 set_mem_align (slot, align);
753
754 /* If a type is specified, set the relevant flags. */
755 if (type != 0)
756 {
757 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
758 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
759 }
760
761 return slot;
762 }
763
764 /* Allocate a temporary stack slot and record it for possible later
765 reuse. First three arguments are same as in preceding function. */
766
767 rtx
768 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
769 {
770 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
771 }
772 \f
773 /* Assign a temporary.
774 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
775 and so that should be used in error messages. In either case, we
776 allocate of the given type.
777 KEEP is as for assign_stack_temp.
778 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
779 it is 0 if a register is OK.
780 DONT_PROMOTE is 1 if we should not promote values in register
781 to wider modes. */
782
783 rtx
784 assign_temp (tree type_or_decl, int keep, int memory_required,
785 int dont_promote ATTRIBUTE_UNUSED)
786 {
787 tree type, decl;
788 enum machine_mode mode;
789 #ifdef PROMOTE_MODE
790 int unsignedp;
791 #endif
792
793 if (DECL_P (type_or_decl))
794 decl = type_or_decl, type = TREE_TYPE (decl);
795 else
796 decl = NULL, type = type_or_decl;
797
798 mode = TYPE_MODE (type);
799 #ifdef PROMOTE_MODE
800 unsignedp = TYPE_UNSIGNED (type);
801 #endif
802
803 if (mode == BLKmode || memory_required)
804 {
805 HOST_WIDE_INT size = int_size_in_bytes (type);
806 tree size_tree;
807 rtx tmp;
808
809 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
810 problems with allocating the stack space. */
811 if (size == 0)
812 size = 1;
813
814 /* Unfortunately, we don't yet know how to allocate variable-sized
815 temporaries. However, sometimes we have a fixed upper limit on
816 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
817 instead. This is the case for Chill variable-sized strings. */
818 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
819 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
820 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
821 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
822
823 /* If we still haven't been able to get a size, see if the language
824 can compute a maximum size. */
825 if (size == -1
826 && (size_tree = lang_hooks.types.max_size (type)) != 0
827 && host_integerp (size_tree, 1))
828 size = tree_low_cst (size_tree, 1);
829
830 /* The size of the temporary may be too large to fit into an integer. */
831 /* ??? Not sure this should happen except for user silliness, so limit
832 this to things that aren't compiler-generated temporaries. The
833 rest of the time we'll abort in assign_stack_temp_for_type. */
834 if (decl && size == -1
835 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
836 {
837 error ("%Jsize of variable '%D' is too large", decl, decl);
838 size = 1;
839 }
840
841 tmp = assign_stack_temp_for_type (mode, size, keep, type);
842 return tmp;
843 }
844
845 #ifdef PROMOTE_MODE
846 if (! dont_promote)
847 mode = promote_mode (type, mode, &unsignedp, 0);
848 #endif
849
850 return gen_reg_rtx (mode);
851 }
852 \f
853 /* Combine temporary stack slots which are adjacent on the stack.
854
855 This allows for better use of already allocated stack space. This is only
856 done for BLKmode slots because we can be sure that we won't have alignment
857 problems in this case. */
858
859 void
860 combine_temp_slots (void)
861 {
862 struct temp_slot *p, *q, *next, *next_q;
863 int num_slots;
864
865 /* We can't combine slots, because the information about which slot
866 is in which alias set will be lost. */
867 if (flag_strict_aliasing)
868 return;
869
870 /* If there are a lot of temp slots, don't do anything unless
871 high levels of optimization. */
872 if (! flag_expensive_optimizations)
873 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
874 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
875 return;
876
877 for (p = avail_temp_slots; p; p = next)
878 {
879 int delete_p = 0;
880
881 next = p->next;
882
883 if (GET_MODE (p->slot) != BLKmode)
884 continue;
885
886 for (q = p->next; q; q = next_q)
887 {
888 int delete_q = 0;
889
890 next_q = q->next;
891
892 if (GET_MODE (q->slot) != BLKmode)
893 continue;
894
895 if (p->base_offset + p->full_size == q->base_offset)
896 {
897 /* Q comes after P; combine Q into P. */
898 p->size += q->size;
899 p->full_size += q->full_size;
900 delete_q = 1;
901 }
902 else if (q->base_offset + q->full_size == p->base_offset)
903 {
904 /* P comes after Q; combine P into Q. */
905 q->size += p->size;
906 q->full_size += p->full_size;
907 delete_p = 1;
908 break;
909 }
910 if (delete_q)
911 cut_slot_from_list (q, &avail_temp_slots);
912 }
913
914 /* Either delete P or advance past it. */
915 if (delete_p)
916 cut_slot_from_list (p, &avail_temp_slots);
917 }
918 }
919 \f
920 /* Find the temp slot corresponding to the object at address X. */
921
922 static struct temp_slot *
923 find_temp_slot_from_address (rtx x)
924 {
925 struct temp_slot *p;
926 rtx next;
927 int i;
928
929 for (i = max_slot_level (); i >= 0; i--)
930 for (p = *temp_slots_at_level (i); p; p = p->next)
931 {
932 if (XEXP (p->slot, 0) == x
933 || p->address == x
934 || (GET_CODE (x) == PLUS
935 && XEXP (x, 0) == virtual_stack_vars_rtx
936 && GET_CODE (XEXP (x, 1)) == CONST_INT
937 && INTVAL (XEXP (x, 1)) >= p->base_offset
938 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
939 return p;
940
941 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
942 for (next = p->address; next; next = XEXP (next, 1))
943 if (XEXP (next, 0) == x)
944 return p;
945 }
946
947 /* If we have a sum involving a register, see if it points to a temp
948 slot. */
949 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
950 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
951 return p;
952 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
953 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
954 return p;
955
956 return 0;
957 }
958
959 /* Indicate that NEW is an alternate way of referring to the temp slot
960 that previously was known by OLD. */
961
962 void
963 update_temp_slot_address (rtx old, rtx new)
964 {
965 struct temp_slot *p;
966
967 if (rtx_equal_p (old, new))
968 return;
969
970 p = find_temp_slot_from_address (old);
971
972 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
973 is a register, see if one operand of the PLUS is a temporary
974 location. If so, NEW points into it. Otherwise, if both OLD and
975 NEW are a PLUS and if there is a register in common between them.
976 If so, try a recursive call on those values. */
977 if (p == 0)
978 {
979 if (GET_CODE (old) != PLUS)
980 return;
981
982 if (REG_P (new))
983 {
984 update_temp_slot_address (XEXP (old, 0), new);
985 update_temp_slot_address (XEXP (old, 1), new);
986 return;
987 }
988 else if (GET_CODE (new) != PLUS)
989 return;
990
991 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
992 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
993 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
994 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
995 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
996 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
997 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
998 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
999
1000 return;
1001 }
1002
1003 /* Otherwise add an alias for the temp's address. */
1004 else if (p->address == 0)
1005 p->address = new;
1006 else
1007 {
1008 if (GET_CODE (p->address) != EXPR_LIST)
1009 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1010
1011 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1012 }
1013 }
1014
1015 /* If X could be a reference to a temporary slot, mark the fact that its
1016 address was taken. */
1017
1018 void
1019 mark_temp_addr_taken (rtx x)
1020 {
1021 struct temp_slot *p;
1022
1023 if (x == 0)
1024 return;
1025
1026 /* If X is not in memory or is at a constant address, it cannot be in
1027 a temporary slot. */
1028 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1029 return;
1030
1031 p = find_temp_slot_from_address (XEXP (x, 0));
1032 if (p != 0)
1033 p->addr_taken = 1;
1034 }
1035
1036 /* If X could be a reference to a temporary slot, mark that slot as
1037 belonging to the to one level higher than the current level. If X
1038 matched one of our slots, just mark that one. Otherwise, we can't
1039 easily predict which it is, so upgrade all of them. Kept slots
1040 need not be touched.
1041
1042 This is called when an ({...}) construct occurs and a statement
1043 returns a value in memory. */
1044
1045 void
1046 preserve_temp_slots (rtx x)
1047 {
1048 struct temp_slot *p = 0, *next;
1049
1050 /* If there is no result, we still might have some objects whose address
1051 were taken, so we need to make sure they stay around. */
1052 if (x == 0)
1053 {
1054 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1055 {
1056 next = p->next;
1057
1058 if (p->addr_taken)
1059 move_slot_to_level (p, temp_slot_level - 1);
1060 }
1061
1062 return;
1063 }
1064
1065 /* If X is a register that is being used as a pointer, see if we have
1066 a temporary slot we know it points to. To be consistent with
1067 the code below, we really should preserve all non-kept slots
1068 if we can't find a match, but that seems to be much too costly. */
1069 if (REG_P (x) && REG_POINTER (x))
1070 p = find_temp_slot_from_address (x);
1071
1072 /* If X is not in memory or is at a constant address, it cannot be in
1073 a temporary slot, but it can contain something whose address was
1074 taken. */
1075 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1076 {
1077 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1078 {
1079 next = p->next;
1080
1081 if (p->addr_taken)
1082 move_slot_to_level (p, temp_slot_level - 1);
1083 }
1084
1085 return;
1086 }
1087
1088 /* First see if we can find a match. */
1089 if (p == 0)
1090 p = find_temp_slot_from_address (XEXP (x, 0));
1091
1092 if (p != 0)
1093 {
1094 /* Move everything at our level whose address was taken to our new
1095 level in case we used its address. */
1096 struct temp_slot *q;
1097
1098 if (p->level == temp_slot_level)
1099 {
1100 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1101 {
1102 next = q->next;
1103
1104 if (p != q && q->addr_taken)
1105 move_slot_to_level (q, temp_slot_level - 1);
1106 }
1107
1108 move_slot_to_level (p, temp_slot_level - 1);
1109 p->addr_taken = 0;
1110 }
1111 return;
1112 }
1113
1114 /* Otherwise, preserve all non-kept slots at this level. */
1115 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1116 {
1117 next = p->next;
1118
1119 if (!p->keep)
1120 move_slot_to_level (p, temp_slot_level - 1);
1121 }
1122 }
1123
1124 /* Free all temporaries used so far. This is normally called at the
1125 end of generating code for a statement. */
1126
1127 void
1128 free_temp_slots (void)
1129 {
1130 struct temp_slot *p, *next;
1131
1132 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1133 {
1134 next = p->next;
1135
1136 if (!p->keep)
1137 make_slot_available (p);
1138 }
1139
1140 combine_temp_slots ();
1141 }
1142
1143 /* Push deeper into the nesting level for stack temporaries. */
1144
1145 void
1146 push_temp_slots (void)
1147 {
1148 temp_slot_level++;
1149 }
1150
1151 /* Pop a temporary nesting level. All slots in use in the current level
1152 are freed. */
1153
1154 void
1155 pop_temp_slots (void)
1156 {
1157 struct temp_slot *p, *next;
1158
1159 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1160 {
1161 next = p->next;
1162 make_slot_available (p);
1163 }
1164
1165 combine_temp_slots ();
1166
1167 temp_slot_level--;
1168 }
1169
1170 /* Initialize temporary slots. */
1171
1172 void
1173 init_temp_slots (void)
1174 {
1175 /* We have not allocated any temporaries yet. */
1176 avail_temp_slots = 0;
1177 used_temp_slots = 0;
1178 temp_slot_level = 0;
1179 }
1180 \f
1181 /* These routines are responsible for converting virtual register references
1182 to the actual hard register references once RTL generation is complete.
1183
1184 The following four variables are used for communication between the
1185 routines. They contain the offsets of the virtual registers from their
1186 respective hard registers. */
1187
1188 static int in_arg_offset;
1189 static int var_offset;
1190 static int dynamic_offset;
1191 static int out_arg_offset;
1192 static int cfa_offset;
1193
1194 /* In most machines, the stack pointer register is equivalent to the bottom
1195 of the stack. */
1196
1197 #ifndef STACK_POINTER_OFFSET
1198 #define STACK_POINTER_OFFSET 0
1199 #endif
1200
1201 /* If not defined, pick an appropriate default for the offset of dynamically
1202 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1203 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1204
1205 #ifndef STACK_DYNAMIC_OFFSET
1206
1207 /* The bottom of the stack points to the actual arguments. If
1208 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1209 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1210 stack space for register parameters is not pushed by the caller, but
1211 rather part of the fixed stack areas and hence not included in
1212 `current_function_outgoing_args_size'. Nevertheless, we must allow
1213 for it when allocating stack dynamic objects. */
1214
1215 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1216 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1217 ((ACCUMULATE_OUTGOING_ARGS \
1218 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1219 + (STACK_POINTER_OFFSET)) \
1220
1221 #else
1222 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1223 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1224 + (STACK_POINTER_OFFSET))
1225 #endif
1226 #endif
1227
1228 /* On most machines, the CFA coincides with the first incoming parm. */
1229
1230 #ifndef ARG_POINTER_CFA_OFFSET
1231 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1232 #endif
1233
1234 \f
1235 /* Pass through the INSNS of function FNDECL and convert virtual register
1236 references to hard register references. */
1237
1238 void
1239 instantiate_virtual_regs (void)
1240 {
1241 rtx insn;
1242
1243 /* Compute the offsets to use for this function. */
1244 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1245 var_offset = STARTING_FRAME_OFFSET;
1246 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1247 out_arg_offset = STACK_POINTER_OFFSET;
1248 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1249
1250 /* Scan all variables and parameters of this function. For each that is
1251 in memory, instantiate all virtual registers if the result is a valid
1252 address. If not, we do it later. That will handle most uses of virtual
1253 regs on many machines. */
1254 instantiate_decls (current_function_decl, 1);
1255
1256 /* Initialize recognition, indicating that volatile is OK. */
1257 init_recog ();
1258
1259 /* Scan through all the insns, instantiating every virtual register still
1260 present. */
1261 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1262 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1263 || GET_CODE (insn) == CALL_INSN)
1264 {
1265 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1266 if (INSN_DELETED_P (insn))
1267 continue;
1268 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1269 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1270 if (GET_CODE (insn) == CALL_INSN)
1271 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1272 NULL_RTX, 0);
1273
1274 /* Past this point all ASM statements should match. Verify that
1275 to avoid failures later in the compilation process. */
1276 if (asm_noperands (PATTERN (insn)) >= 0
1277 && ! check_asm_operands (PATTERN (insn)))
1278 instantiate_virtual_regs_lossage (insn);
1279 }
1280
1281 /* Now instantiate the remaining register equivalences for debugging info.
1282 These will not be valid addresses. */
1283 instantiate_decls (current_function_decl, 0);
1284
1285 /* Indicate that, from now on, assign_stack_local should use
1286 frame_pointer_rtx. */
1287 virtuals_instantiated = 1;
1288 }
1289
1290 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1291 all virtual registers in their DECL_RTL's.
1292
1293 If VALID_ONLY, do this only if the resulting address is still valid.
1294 Otherwise, always do it. */
1295
1296 static void
1297 instantiate_decls (tree fndecl, int valid_only)
1298 {
1299 tree decl;
1300
1301 /* Process all parameters of the function. */
1302 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1303 {
1304 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1305 HOST_WIDE_INT size_rtl;
1306
1307 instantiate_decl (DECL_RTL (decl), size, valid_only);
1308
1309 /* If the parameter was promoted, then the incoming RTL mode may be
1310 larger than the declared type size. We must use the larger of
1311 the two sizes. */
1312 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1313 size = MAX (size_rtl, size);
1314 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1315 }
1316
1317 /* Now process all variables defined in the function or its subblocks. */
1318 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1319 }
1320
1321 /* Subroutine of instantiate_decls: Process all decls in the given
1322 BLOCK node and all its subblocks. */
1323
1324 static void
1325 instantiate_decls_1 (tree let, int valid_only)
1326 {
1327 tree t;
1328
1329 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1330 if (DECL_RTL_SET_P (t))
1331 instantiate_decl (DECL_RTL (t),
1332 int_size_in_bytes (TREE_TYPE (t)),
1333 valid_only);
1334
1335 /* Process all subblocks. */
1336 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1337 instantiate_decls_1 (t, valid_only);
1338 }
1339
1340 /* Subroutine of the preceding procedures: Given RTL representing a
1341 decl and the size of the object, do any instantiation required.
1342
1343 If VALID_ONLY is nonzero, it means that the RTL should only be
1344 changed if the new address is valid. */
1345
1346 static void
1347 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1348 {
1349 enum machine_mode mode;
1350 rtx addr;
1351
1352 /* If this is not a MEM, no need to do anything. Similarly if the
1353 address is a constant or a register that is not a virtual register. */
1354
1355 if (x == 0 || !MEM_P (x))
1356 return;
1357
1358 addr = XEXP (x, 0);
1359 if (CONSTANT_P (addr)
1360 || (REG_P (addr)
1361 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1362 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1363 return;
1364
1365 /* If we should only do this if the address is valid, copy the address.
1366 We need to do this so we can undo any changes that might make the
1367 address invalid. This copy is unfortunate, but probably can't be
1368 avoided. */
1369
1370 if (valid_only)
1371 addr = copy_rtx (addr);
1372
1373 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1374
1375 if (valid_only && size >= 0)
1376 {
1377 unsigned HOST_WIDE_INT decl_size = size;
1378
1379 /* Now verify that the resulting address is valid for every integer or
1380 floating-point mode up to and including SIZE bytes long. We do this
1381 since the object might be accessed in any mode and frame addresses
1382 are shared. */
1383
1384 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1385 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1386 mode = GET_MODE_WIDER_MODE (mode))
1387 if (! memory_address_p (mode, addr))
1388 return;
1389
1390 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1391 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1392 mode = GET_MODE_WIDER_MODE (mode))
1393 if (! memory_address_p (mode, addr))
1394 return;
1395 }
1396
1397 /* Put back the address now that we have updated it and we either know
1398 it is valid or we don't care whether it is valid. */
1399
1400 XEXP (x, 0) = addr;
1401 }
1402 \f
1403 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1404 is a virtual register, return the equivalent hard register and set the
1405 offset indirectly through the pointer. Otherwise, return 0. */
1406
1407 static rtx
1408 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1409 {
1410 rtx new;
1411 HOST_WIDE_INT offset;
1412
1413 if (x == virtual_incoming_args_rtx)
1414 new = arg_pointer_rtx, offset = in_arg_offset;
1415 else if (x == virtual_stack_vars_rtx)
1416 new = frame_pointer_rtx, offset = var_offset;
1417 else if (x == virtual_stack_dynamic_rtx)
1418 new = stack_pointer_rtx, offset = dynamic_offset;
1419 else if (x == virtual_outgoing_args_rtx)
1420 new = stack_pointer_rtx, offset = out_arg_offset;
1421 else if (x == virtual_cfa_rtx)
1422 new = arg_pointer_rtx, offset = cfa_offset;
1423 else
1424 return 0;
1425
1426 *poffset = offset;
1427 return new;
1428 }
1429 \f
1430
1431 /* Called when instantiate_virtual_regs has failed to update the instruction.
1432 Usually this means that non-matching instruction has been emit, however for
1433 asm statements it may be the problem in the constraints. */
1434 static void
1435 instantiate_virtual_regs_lossage (rtx insn)
1436 {
1437 if (asm_noperands (PATTERN (insn)) >= 0)
1438 {
1439 error_for_asm (insn, "impossible constraint in `asm'");
1440 delete_insn (insn);
1441 }
1442 else
1443 abort ();
1444 }
1445 /* Given a pointer to a piece of rtx and an optional pointer to the
1446 containing object, instantiate any virtual registers present in it.
1447
1448 If EXTRA_INSNS, we always do the replacement and generate
1449 any extra insns before OBJECT. If it zero, we do nothing if replacement
1450 is not valid.
1451
1452 Return 1 if we either had nothing to do or if we were able to do the
1453 needed replacement. Return 0 otherwise; we only return zero if
1454 EXTRA_INSNS is zero.
1455
1456 We first try some simple transformations to avoid the creation of extra
1457 pseudos. */
1458
1459 static int
1460 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1461 {
1462 rtx x;
1463 RTX_CODE code;
1464 rtx new = 0;
1465 HOST_WIDE_INT offset = 0;
1466 rtx temp;
1467 rtx seq;
1468 int i, j;
1469 const char *fmt;
1470
1471 /* Re-start here to avoid recursion in common cases. */
1472 restart:
1473
1474 x = *loc;
1475 if (x == 0)
1476 return 1;
1477
1478 /* We may have detected and deleted invalid asm statements. */
1479 if (object && INSN_P (object) && INSN_DELETED_P (object))
1480 return 1;
1481
1482 code = GET_CODE (x);
1483
1484 /* Check for some special cases. */
1485 switch (code)
1486 {
1487 case CONST_INT:
1488 case CONST_DOUBLE:
1489 case CONST_VECTOR:
1490 case CONST:
1491 case SYMBOL_REF:
1492 case CODE_LABEL:
1493 case PC:
1494 case CC0:
1495 case ASM_INPUT:
1496 case ADDR_VEC:
1497 case ADDR_DIFF_VEC:
1498 case RETURN:
1499 return 1;
1500
1501 case SET:
1502 /* We are allowed to set the virtual registers. This means that
1503 the actual register should receive the source minus the
1504 appropriate offset. This is used, for example, in the handling
1505 of non-local gotos. */
1506 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1507 {
1508 rtx src = SET_SRC (x);
1509
1510 /* We are setting the register, not using it, so the relevant
1511 offset is the negative of the offset to use were we using
1512 the register. */
1513 offset = - offset;
1514 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1515
1516 /* The only valid sources here are PLUS or REG. Just do
1517 the simplest possible thing to handle them. */
1518 if (!REG_P (src) && GET_CODE (src) != PLUS)
1519 {
1520 instantiate_virtual_regs_lossage (object);
1521 return 1;
1522 }
1523
1524 start_sequence ();
1525 if (!REG_P (src))
1526 temp = force_operand (src, NULL_RTX);
1527 else
1528 temp = src;
1529 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1530 seq = get_insns ();
1531 end_sequence ();
1532
1533 emit_insn_before (seq, object);
1534 SET_DEST (x) = new;
1535
1536 if (! validate_change (object, &SET_SRC (x), temp, 0)
1537 || ! extra_insns)
1538 instantiate_virtual_regs_lossage (object);
1539
1540 return 1;
1541 }
1542
1543 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1544 loc = &SET_SRC (x);
1545 goto restart;
1546
1547 case PLUS:
1548 /* Handle special case of virtual register plus constant. */
1549 if (CONSTANT_P (XEXP (x, 1)))
1550 {
1551 rtx old, new_offset;
1552
1553 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1554 if (GET_CODE (XEXP (x, 0)) == PLUS)
1555 {
1556 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1557 {
1558 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1559 extra_insns);
1560 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1561 }
1562 else
1563 {
1564 loc = &XEXP (x, 0);
1565 goto restart;
1566 }
1567 }
1568
1569 #ifdef POINTERS_EXTEND_UNSIGNED
1570 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1571 we can commute the PLUS and SUBREG because pointers into the
1572 frame are well-behaved. */
1573 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1574 && GET_CODE (XEXP (x, 1)) == CONST_INT
1575 && 0 != (new
1576 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1577 &offset))
1578 && validate_change (object, loc,
1579 plus_constant (gen_lowpart (ptr_mode,
1580 new),
1581 offset
1582 + INTVAL (XEXP (x, 1))),
1583 0))
1584 return 1;
1585 #endif
1586 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1587 {
1588 /* We know the second operand is a constant. Unless the
1589 first operand is a REG (which has been already checked),
1590 it needs to be checked. */
1591 if (!REG_P (XEXP (x, 0)))
1592 {
1593 loc = &XEXP (x, 0);
1594 goto restart;
1595 }
1596 return 1;
1597 }
1598
1599 new_offset = plus_constant (XEXP (x, 1), offset);
1600
1601 /* If the new constant is zero, try to replace the sum with just
1602 the register. */
1603 if (new_offset == const0_rtx
1604 && validate_change (object, loc, new, 0))
1605 return 1;
1606
1607 /* Next try to replace the register and new offset.
1608 There are two changes to validate here and we can't assume that
1609 in the case of old offset equals new just changing the register
1610 will yield a valid insn. In the interests of a little efficiency,
1611 however, we only call validate change once (we don't queue up the
1612 changes and then call apply_change_group). */
1613
1614 old = XEXP (x, 0);
1615 if (offset == 0
1616 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1617 : (XEXP (x, 0) = new,
1618 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1619 {
1620 if (! extra_insns)
1621 {
1622 XEXP (x, 0) = old;
1623 return 0;
1624 }
1625
1626 /* Otherwise copy the new constant into a register and replace
1627 constant with that register. */
1628 temp = gen_reg_rtx (Pmode);
1629 XEXP (x, 0) = new;
1630 if (validate_change (object, &XEXP (x, 1), temp, 0))
1631 emit_insn_before (gen_move_insn (temp, new_offset), object);
1632 else
1633 {
1634 /* If that didn't work, replace this expression with a
1635 register containing the sum. */
1636
1637 XEXP (x, 0) = old;
1638 new = gen_rtx_PLUS (Pmode, new, new_offset);
1639
1640 start_sequence ();
1641 temp = force_operand (new, NULL_RTX);
1642 seq = get_insns ();
1643 end_sequence ();
1644
1645 emit_insn_before (seq, object);
1646 if (! validate_change (object, loc, temp, 0)
1647 && ! validate_replace_rtx (x, temp, object))
1648 {
1649 instantiate_virtual_regs_lossage (object);
1650 return 1;
1651 }
1652 }
1653 }
1654
1655 return 1;
1656 }
1657
1658 /* Fall through to generic two-operand expression case. */
1659 case EXPR_LIST:
1660 case CALL:
1661 case COMPARE:
1662 case MINUS:
1663 case MULT:
1664 case DIV: case UDIV:
1665 case MOD: case UMOD:
1666 case AND: case IOR: case XOR:
1667 case ROTATERT: case ROTATE:
1668 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1669 case NE: case EQ:
1670 case GE: case GT: case GEU: case GTU:
1671 case LE: case LT: case LEU: case LTU:
1672 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1673 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1674 loc = &XEXP (x, 0);
1675 goto restart;
1676
1677 case MEM:
1678 /* Most cases of MEM that convert to valid addresses have already been
1679 handled by our scan of decls. The only special handling we
1680 need here is to make a copy of the rtx to ensure it isn't being
1681 shared if we have to change it to a pseudo.
1682
1683 If the rtx is a simple reference to an address via a virtual register,
1684 it can potentially be shared. In such cases, first try to make it
1685 a valid address, which can also be shared. Otherwise, copy it and
1686 proceed normally.
1687
1688 First check for common cases that need no processing. These are
1689 usually due to instantiation already being done on a previous instance
1690 of a shared rtx. */
1691
1692 temp = XEXP (x, 0);
1693 if (CONSTANT_ADDRESS_P (temp)
1694 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1695 || temp == arg_pointer_rtx
1696 #endif
1697 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1698 || temp == hard_frame_pointer_rtx
1699 #endif
1700 || temp == frame_pointer_rtx)
1701 return 1;
1702
1703 if (GET_CODE (temp) == PLUS
1704 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1705 && (XEXP (temp, 0) == frame_pointer_rtx
1706 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1707 || XEXP (temp, 0) == hard_frame_pointer_rtx
1708 #endif
1709 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1710 || XEXP (temp, 0) == arg_pointer_rtx
1711 #endif
1712 ))
1713 return 1;
1714
1715 if (temp == virtual_stack_vars_rtx
1716 || temp == virtual_incoming_args_rtx
1717 || (GET_CODE (temp) == PLUS
1718 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1719 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1720 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1721 {
1722 /* This MEM may be shared. If the substitution can be done without
1723 the need to generate new pseudos, we want to do it in place
1724 so all copies of the shared rtx benefit. The call below will
1725 only make substitutions if the resulting address is still
1726 valid.
1727
1728 Note that we cannot pass X as the object in the recursive call
1729 since the insn being processed may not allow all valid
1730 addresses. However, if we were not passed on object, we can
1731 only modify X without copying it if X will have a valid
1732 address.
1733
1734 ??? Also note that this can still lose if OBJECT is an insn that
1735 has less restrictions on an address that some other insn.
1736 In that case, we will modify the shared address. This case
1737 doesn't seem very likely, though. One case where this could
1738 happen is in the case of a USE or CLOBBER reference, but we
1739 take care of that below. */
1740
1741 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1742 object ? object : x, 0))
1743 return 1;
1744
1745 /* Otherwise make a copy and process that copy. We copy the entire
1746 RTL expression since it might be a PLUS which could also be
1747 shared. */
1748 *loc = x = copy_rtx (x);
1749 }
1750
1751 /* Fall through to generic unary operation case. */
1752 case PREFETCH:
1753 case SUBREG:
1754 case STRICT_LOW_PART:
1755 case NEG: case NOT:
1756 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1757 case SIGN_EXTEND: case ZERO_EXTEND:
1758 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1759 case FLOAT: case FIX:
1760 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1761 case ABS:
1762 case SQRT:
1763 case FFS:
1764 case CLZ: case CTZ:
1765 case POPCOUNT: case PARITY:
1766 /* These case either have just one operand or we know that we need not
1767 check the rest of the operands. */
1768 loc = &XEXP (x, 0);
1769 goto restart;
1770
1771 case USE:
1772 case CLOBBER:
1773 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1774 go ahead and make the invalid one, but do it to a copy. For a REG,
1775 just make the recursive call, since there's no chance of a problem. */
1776
1777 if ((MEM_P (XEXP (x, 0))
1778 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1779 0))
1780 || (REG_P (XEXP (x, 0))
1781 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1782 return 1;
1783
1784 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1785 loc = &XEXP (x, 0);
1786 goto restart;
1787
1788 case REG:
1789 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1790 in front of this insn and substitute the temporary. */
1791 if ((new = instantiate_new_reg (x, &offset)) != 0)
1792 {
1793 temp = plus_constant (new, offset);
1794 if (!validate_change (object, loc, temp, 0))
1795 {
1796 if (! extra_insns)
1797 return 0;
1798
1799 start_sequence ();
1800 temp = force_operand (temp, NULL_RTX);
1801 seq = get_insns ();
1802 end_sequence ();
1803
1804 emit_insn_before (seq, object);
1805 if (! validate_change (object, loc, temp, 0)
1806 && ! validate_replace_rtx (x, temp, object))
1807 instantiate_virtual_regs_lossage (object);
1808 }
1809 }
1810
1811 return 1;
1812
1813 default:
1814 break;
1815 }
1816
1817 /* Scan all subexpressions. */
1818 fmt = GET_RTX_FORMAT (code);
1819 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1820 if (*fmt == 'e')
1821 {
1822 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1823 return 0;
1824 }
1825 else if (*fmt == 'E')
1826 for (j = 0; j < XVECLEN (x, i); j++)
1827 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1828 extra_insns))
1829 return 0;
1830
1831 return 1;
1832 }
1833 \f
1834 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1835 This means a type for which function calls must pass an address to the
1836 function or get an address back from the function.
1837 EXP may be a type node or an expression (whose type is tested). */
1838
1839 int
1840 aggregate_value_p (tree exp, tree fntype)
1841 {
1842 int i, regno, nregs;
1843 rtx reg;
1844
1845 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1846
1847 if (fntype)
1848 switch (TREE_CODE (fntype))
1849 {
1850 case CALL_EXPR:
1851 fntype = get_callee_fndecl (fntype);
1852 fntype = fntype ? TREE_TYPE (fntype) : 0;
1853 break;
1854 case FUNCTION_DECL:
1855 fntype = TREE_TYPE (fntype);
1856 break;
1857 case FUNCTION_TYPE:
1858 case METHOD_TYPE:
1859 break;
1860 case IDENTIFIER_NODE:
1861 fntype = 0;
1862 break;
1863 default:
1864 /* We don't expect other rtl types here. */
1865 abort();
1866 }
1867
1868 if (TREE_CODE (type) == VOID_TYPE)
1869 return 0;
1870 /* If the front end has decided that this needs to be passed by
1871 reference, do so. */
1872 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1873 && DECL_BY_REFERENCE (exp))
1874 return 1;
1875 if (targetm.calls.return_in_memory (type, fntype))
1876 return 1;
1877 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1878 and thus can't be returned in registers. */
1879 if (TREE_ADDRESSABLE (type))
1880 return 1;
1881 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1882 return 1;
1883 /* Make sure we have suitable call-clobbered regs to return
1884 the value in; if not, we must return it in memory. */
1885 reg = hard_function_value (type, 0, 0);
1886
1887 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1888 it is OK. */
1889 if (!REG_P (reg))
1890 return 0;
1891
1892 regno = REGNO (reg);
1893 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1894 for (i = 0; i < nregs; i++)
1895 if (! call_used_regs[regno + i])
1896 return 1;
1897 return 0;
1898 }
1899 \f
1900 /* Return true if we should assign DECL a pseudo register; false if it
1901 should live on the local stack. */
1902
1903 bool
1904 use_register_for_decl (tree decl)
1905 {
1906 /* Honor volatile. */
1907 if (TREE_SIDE_EFFECTS (decl))
1908 return false;
1909
1910 /* Honor addressability. */
1911 if (TREE_ADDRESSABLE (decl))
1912 return false;
1913
1914 /* Only register-like things go in registers. */
1915 if (DECL_MODE (decl) == BLKmode)
1916 return false;
1917
1918 /* If -ffloat-store specified, don't put explicit float variables
1919 into registers. */
1920 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1921 propagates values across these stores, and it probably shouldn't. */
1922 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1923 return false;
1924
1925 /* Compiler-generated temporaries can always go in registers. */
1926 if (DECL_ARTIFICIAL (decl))
1927 return true;
1928
1929 #ifdef NON_SAVING_SETJMP
1930 /* Protect variables not declared "register" from setjmp. */
1931 if (NON_SAVING_SETJMP
1932 && current_function_calls_setjmp
1933 && !DECL_REGISTER (decl))
1934 return false;
1935 #endif
1936
1937 return (optimize || DECL_REGISTER (decl));
1938 }
1939
1940 /* Return true if TYPE should be passed by invisible reference. */
1941
1942 bool
1943 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1944 tree type, bool named_arg)
1945 {
1946 if (type)
1947 {
1948 /* If this type contains non-trivial constructors, then it is
1949 forbidden for the middle-end to create any new copies. */
1950 if (TREE_ADDRESSABLE (type))
1951 return true;
1952
1953 /* GCC post 3.4 passes *all* variable sized types by reference. */
1954 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1955 return true;
1956 }
1957
1958 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1959 }
1960
1961 /* Structures to communicate between the subroutines of assign_parms.
1962 The first holds data persistent across all parameters, the second
1963 is cleared out for each parameter. */
1964
1965 struct assign_parm_data_all
1966 {
1967 CUMULATIVE_ARGS args_so_far;
1968 struct args_size stack_args_size;
1969 tree function_result_decl;
1970 tree orig_fnargs;
1971 rtx conversion_insns;
1972 HOST_WIDE_INT pretend_args_size;
1973 HOST_WIDE_INT extra_pretend_bytes;
1974 int reg_parm_stack_space;
1975 };
1976
1977 struct assign_parm_data_one
1978 {
1979 tree nominal_type;
1980 tree passed_type;
1981 rtx entry_parm;
1982 rtx stack_parm;
1983 enum machine_mode nominal_mode;
1984 enum machine_mode passed_mode;
1985 enum machine_mode promoted_mode;
1986 struct locate_and_pad_arg_data locate;
1987 int partial;
1988 BOOL_BITFIELD named_arg : 1;
1989 BOOL_BITFIELD last_named : 1;
1990 BOOL_BITFIELD passed_pointer : 1;
1991 BOOL_BITFIELD on_stack : 1;
1992 BOOL_BITFIELD loaded_in_reg : 1;
1993 };
1994
1995 /* A subroutine of assign_parms. Initialize ALL. */
1996
1997 static void
1998 assign_parms_initialize_all (struct assign_parm_data_all *all)
1999 {
2000 tree fntype;
2001
2002 memset (all, 0, sizeof (*all));
2003
2004 fntype = TREE_TYPE (current_function_decl);
2005
2006 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2007 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2008 #else
2009 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2010 current_function_decl, -1);
2011 #endif
2012
2013 #ifdef REG_PARM_STACK_SPACE
2014 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2015 #endif
2016 }
2017
2018 /* If ARGS contains entries with complex types, split the entry into two
2019 entries of the component type. Return a new list of substitutions are
2020 needed, else the old list. */
2021
2022 static tree
2023 split_complex_args (tree args)
2024 {
2025 tree p;
2026
2027 /* Before allocating memory, check for the common case of no complex. */
2028 for (p = args; p; p = TREE_CHAIN (p))
2029 {
2030 tree type = TREE_TYPE (p);
2031 if (TREE_CODE (type) == COMPLEX_TYPE
2032 && targetm.calls.split_complex_arg (type))
2033 goto found;
2034 }
2035 return args;
2036
2037 found:
2038 args = copy_list (args);
2039
2040 for (p = args; p; p = TREE_CHAIN (p))
2041 {
2042 tree type = TREE_TYPE (p);
2043 if (TREE_CODE (type) == COMPLEX_TYPE
2044 && targetm.calls.split_complex_arg (type))
2045 {
2046 tree decl;
2047 tree subtype = TREE_TYPE (type);
2048
2049 /* Rewrite the PARM_DECL's type with its component. */
2050 TREE_TYPE (p) = subtype;
2051 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2052 DECL_MODE (p) = VOIDmode;
2053 DECL_SIZE (p) = NULL;
2054 DECL_SIZE_UNIT (p) = NULL;
2055 layout_decl (p, 0);
2056
2057 /* Build a second synthetic decl. */
2058 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2059 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2060 layout_decl (decl, 0);
2061
2062 /* Splice it in; skip the new decl. */
2063 TREE_CHAIN (decl) = TREE_CHAIN (p);
2064 TREE_CHAIN (p) = decl;
2065 p = decl;
2066 }
2067 }
2068
2069 return args;
2070 }
2071
2072 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2073 the hidden struct return argument, and (abi willing) complex args.
2074 Return the new parameter list. */
2075
2076 static tree
2077 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2078 {
2079 tree fndecl = current_function_decl;
2080 tree fntype = TREE_TYPE (fndecl);
2081 tree fnargs = DECL_ARGUMENTS (fndecl);
2082
2083 /* If struct value address is treated as the first argument, make it so. */
2084 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2085 && ! current_function_returns_pcc_struct
2086 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2087 {
2088 tree type = build_pointer_type (TREE_TYPE (fntype));
2089 tree decl;
2090
2091 decl = build_decl (PARM_DECL, NULL_TREE, type);
2092 DECL_ARG_TYPE (decl) = type;
2093 DECL_ARTIFICIAL (decl) = 1;
2094
2095 TREE_CHAIN (decl) = fnargs;
2096 fnargs = decl;
2097 all->function_result_decl = decl;
2098 }
2099
2100 all->orig_fnargs = fnargs;
2101
2102 /* If the target wants to split complex arguments into scalars, do so. */
2103 if (targetm.calls.split_complex_arg)
2104 fnargs = split_complex_args (fnargs);
2105
2106 return fnargs;
2107 }
2108
2109 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2110 data for the parameter. Incorporate ABI specifics such as pass-by-
2111 reference and type promotion. */
2112
2113 static void
2114 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2115 struct assign_parm_data_one *data)
2116 {
2117 tree nominal_type, passed_type;
2118 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2119
2120 memset (data, 0, sizeof (*data));
2121
2122 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2123 if (current_function_stdarg)
2124 {
2125 tree tem;
2126 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2127 if (DECL_NAME (tem))
2128 break;
2129 if (tem == 0)
2130 data->last_named = true;
2131 }
2132
2133 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2134 most machines, if this is a varargs/stdarg function, then we treat
2135 the last named arg as if it were anonymous too. */
2136 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2137 data->named_arg = 1;
2138 else
2139 data->named_arg = !data->last_named;
2140
2141 nominal_type = TREE_TYPE (parm);
2142 passed_type = DECL_ARG_TYPE (parm);
2143
2144 /* Look out for errors propagating this far. Also, if the parameter's
2145 type is void then its value doesn't matter. */
2146 if (TREE_TYPE (parm) == error_mark_node
2147 /* This can happen after weird syntax errors
2148 or if an enum type is defined among the parms. */
2149 || TREE_CODE (parm) != PARM_DECL
2150 || passed_type == NULL
2151 || VOID_TYPE_P (nominal_type))
2152 {
2153 nominal_type = passed_type = void_type_node;
2154 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2155 goto egress;
2156 }
2157
2158 /* Find mode of arg as it is passed, and mode of arg as it should be
2159 during execution of this function. */
2160 passed_mode = TYPE_MODE (passed_type);
2161 nominal_mode = TYPE_MODE (nominal_type);
2162
2163 /* If the parm is to be passed as a transparent union, use the type of
2164 the first field for the tests below. We have already verified that
2165 the modes are the same. */
2166 if (DECL_TRANSPARENT_UNION (parm)
2167 || (TREE_CODE (passed_type) == UNION_TYPE
2168 && TYPE_TRANSPARENT_UNION (passed_type)))
2169 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2170
2171 /* See if this arg was passed by invisible reference. */
2172 if (pass_by_reference (&all->args_so_far, passed_mode,
2173 passed_type, data->named_arg))
2174 {
2175 passed_type = nominal_type = build_pointer_type (passed_type);
2176 data->passed_pointer = true;
2177 passed_mode = nominal_mode = Pmode;
2178 }
2179
2180 /* Find mode as it is passed by the ABI. */
2181 promoted_mode = passed_mode;
2182 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2183 {
2184 int unsignedp = TYPE_UNSIGNED (passed_type);
2185 promoted_mode = promote_mode (passed_type, promoted_mode,
2186 &unsignedp, 1);
2187 }
2188
2189 egress:
2190 data->nominal_type = nominal_type;
2191 data->passed_type = passed_type;
2192 data->nominal_mode = nominal_mode;
2193 data->passed_mode = passed_mode;
2194 data->promoted_mode = promoted_mode;
2195 }
2196
2197 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2198
2199 static void
2200 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2201 struct assign_parm_data_one *data, bool no_rtl)
2202 {
2203 int varargs_pretend_bytes = 0;
2204
2205 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2206 data->promoted_mode,
2207 data->passed_type,
2208 &varargs_pretend_bytes, no_rtl);
2209
2210 /* If the back-end has requested extra stack space, record how much is
2211 needed. Do not change pretend_args_size otherwise since it may be
2212 nonzero from an earlier partial argument. */
2213 if (varargs_pretend_bytes > 0)
2214 all->pretend_args_size = varargs_pretend_bytes;
2215 }
2216
2217 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2218 the incoming location of the current parameter. */
2219
2220 static void
2221 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2222 struct assign_parm_data_one *data)
2223 {
2224 HOST_WIDE_INT pretend_bytes = 0;
2225 rtx entry_parm;
2226 bool in_regs;
2227
2228 if (data->promoted_mode == VOIDmode)
2229 {
2230 data->entry_parm = data->stack_parm = const0_rtx;
2231 return;
2232 }
2233
2234 #ifdef FUNCTION_INCOMING_ARG
2235 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2236 data->passed_type, data->named_arg);
2237 #else
2238 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2239 data->passed_type, data->named_arg);
2240 #endif
2241
2242 if (entry_parm == 0)
2243 data->promoted_mode = data->passed_mode;
2244
2245 /* Determine parm's home in the stack, in case it arrives in the stack
2246 or we should pretend it did. Compute the stack position and rtx where
2247 the argument arrives and its size.
2248
2249 There is one complexity here: If this was a parameter that would
2250 have been passed in registers, but wasn't only because it is
2251 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2252 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2253 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2254 as it was the previous time. */
2255 in_regs = entry_parm != 0;
2256 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2257 in_regs = true;
2258 #endif
2259 if (!in_regs && !data->named_arg)
2260 {
2261 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2262 {
2263 rtx tem;
2264 #ifdef FUNCTION_INCOMING_ARG
2265 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2266 data->passed_type, true);
2267 #else
2268 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2269 data->passed_type, true);
2270 #endif
2271 in_regs = tem != NULL;
2272 }
2273 }
2274
2275 /* If this parameter was passed both in registers and in the stack, use
2276 the copy on the stack. */
2277 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2278 data->passed_type))
2279 entry_parm = 0;
2280
2281 if (entry_parm)
2282 {
2283 int partial;
2284
2285 partial = FUNCTION_ARG_PARTIAL_NREGS (all->args_so_far,
2286 data->promoted_mode,
2287 data->passed_type,
2288 data->named_arg);
2289 data->partial = partial;
2290
2291 /* The caller might already have allocated stack space for the
2292 register parameters. */
2293 if (partial != 0 && all->reg_parm_stack_space == 0)
2294 {
2295 /* Part of this argument is passed in registers and part
2296 is passed on the stack. Ask the prologue code to extend
2297 the stack part so that we can recreate the full value.
2298
2299 PRETEND_BYTES is the size of the registers we need to store.
2300 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2301 stack space that the prologue should allocate.
2302
2303 Internally, gcc assumes that the argument pointer is aligned
2304 to STACK_BOUNDARY bits. This is used both for alignment
2305 optimizations (see init_emit) and to locate arguments that are
2306 aligned to more than PARM_BOUNDARY bits. We must preserve this
2307 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2308 a stack boundary. */
2309
2310 /* We assume at most one partial arg, and it must be the first
2311 argument on the stack. */
2312 if (all->extra_pretend_bytes || all->pretend_args_size)
2313 abort ();
2314
2315 pretend_bytes = partial * UNITS_PER_WORD;
2316 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2317
2318 /* We want to align relative to the actual stack pointer, so
2319 don't include this in the stack size until later. */
2320 all->extra_pretend_bytes = all->pretend_args_size;
2321 }
2322 }
2323
2324 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2325 entry_parm ? data->partial : 0, current_function_decl,
2326 &all->stack_args_size, &data->locate);
2327
2328 /* Adjust offsets to include the pretend args. */
2329 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2330 data->locate.slot_offset.constant += pretend_bytes;
2331 data->locate.offset.constant += pretend_bytes;
2332
2333 data->entry_parm = entry_parm;
2334 }
2335
2336 /* A subroutine of assign_parms. If there is actually space on the stack
2337 for this parm, count it in stack_args_size and return true. */
2338
2339 static bool
2340 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2341 struct assign_parm_data_one *data)
2342 {
2343 /* Trivially true if we've no incoming register. */
2344 if (data->entry_parm == NULL)
2345 ;
2346 /* Also true if we're partially in registers and partially not,
2347 since we've arranged to drop the entire argument on the stack. */
2348 else if (data->partial != 0)
2349 ;
2350 /* Also true if the target says that it's passed in both registers
2351 and on the stack. */
2352 else if (GET_CODE (data->entry_parm) == PARALLEL
2353 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2354 ;
2355 /* Also true if the target says that there's stack allocated for
2356 all register parameters. */
2357 else if (all->reg_parm_stack_space > 0)
2358 ;
2359 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2360 else
2361 return false;
2362
2363 all->stack_args_size.constant += data->locate.size.constant;
2364 if (data->locate.size.var)
2365 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2366
2367 return true;
2368 }
2369
2370 /* A subroutine of assign_parms. Given that this parameter is allocated
2371 stack space by the ABI, find it. */
2372
2373 static void
2374 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2375 {
2376 rtx offset_rtx, stack_parm;
2377 unsigned int align, boundary;
2378
2379 /* If we're passing this arg using a reg, make its stack home the
2380 aligned stack slot. */
2381 if (data->entry_parm)
2382 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2383 else
2384 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2385
2386 stack_parm = current_function_internal_arg_pointer;
2387 if (offset_rtx != const0_rtx)
2388 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2389 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2390
2391 set_mem_attributes (stack_parm, parm, 1);
2392
2393 boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
2394 align = 0;
2395
2396 /* If we're padding upward, we know that the alignment of the slot
2397 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2398 intentionally forcing upward padding. Otherwise we have to come
2399 up with a guess at the alignment based on OFFSET_RTX. */
2400 if (data->locate.where_pad == upward || data->entry_parm)
2401 align = boundary;
2402 else if (GET_CODE (offset_rtx) == CONST_INT)
2403 {
2404 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2405 align = align & -align;
2406 }
2407 if (align > 0)
2408 set_mem_align (stack_parm, align);
2409
2410 if (data->entry_parm)
2411 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2412
2413 data->stack_parm = stack_parm;
2414 }
2415
2416 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2417 always valid and contiguous. */
2418
2419 static void
2420 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2421 {
2422 rtx entry_parm = data->entry_parm;
2423 rtx stack_parm = data->stack_parm;
2424
2425 /* If this parm was passed part in regs and part in memory, pretend it
2426 arrived entirely in memory by pushing the register-part onto the stack.
2427 In the special case of a DImode or DFmode that is split, we could put
2428 it together in a pseudoreg directly, but for now that's not worth
2429 bothering with. */
2430 if (data->partial != 0)
2431 {
2432 /* Handle calls that pass values in multiple non-contiguous
2433 locations. The Irix 6 ABI has examples of this. */
2434 if (GET_CODE (entry_parm) == PARALLEL)
2435 emit_group_store (validize_mem (stack_parm), entry_parm,
2436 data->passed_type,
2437 int_size_in_bytes (data->passed_type));
2438 else
2439 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2440 data->partial);
2441
2442 entry_parm = stack_parm;
2443 }
2444
2445 /* If we didn't decide this parm came in a register, by default it came
2446 on the stack. */
2447 else if (entry_parm == NULL)
2448 entry_parm = stack_parm;
2449
2450 /* When an argument is passed in multiple locations, we can't make use
2451 of this information, but we can save some copying if the whole argument
2452 is passed in a single register. */
2453 else if (GET_CODE (entry_parm) == PARALLEL
2454 && data->nominal_mode != BLKmode
2455 && data->passed_mode != BLKmode)
2456 {
2457 size_t i, len = XVECLEN (entry_parm, 0);
2458
2459 for (i = 0; i < len; i++)
2460 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2461 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2462 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2463 == data->passed_mode)
2464 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2465 {
2466 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2467 break;
2468 }
2469 }
2470
2471 data->entry_parm = entry_parm;
2472 }
2473
2474 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2475 always valid and properly aligned. */
2476
2477
2478 static void
2479 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2480 {
2481 rtx stack_parm = data->stack_parm;
2482
2483 /* If we can't trust the parm stack slot to be aligned enough for its
2484 ultimate type, don't use that slot after entry. We'll make another
2485 stack slot, if we need one. */
2486 if (STRICT_ALIGNMENT && stack_parm
2487 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2488 stack_parm = NULL;
2489
2490 /* If parm was passed in memory, and we need to convert it on entry,
2491 don't store it back in that same slot. */
2492 else if (data->entry_parm == stack_parm
2493 && data->nominal_mode != BLKmode
2494 && data->nominal_mode != data->passed_mode)
2495 stack_parm = NULL;
2496
2497 data->stack_parm = stack_parm;
2498 }
2499
2500 /* A subroutine of assign_parms. Return true if the current parameter
2501 should be stored as a BLKmode in the current frame. */
2502
2503 static bool
2504 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2505 {
2506 if (data->nominal_mode == BLKmode)
2507 return true;
2508 if (GET_CODE (data->entry_parm) == PARALLEL)
2509 return true;
2510
2511 #ifdef BLOCK_REG_PADDING
2512 if (data->locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
2513 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD)
2514 return true;
2515 #endif
2516
2517 return false;
2518 }
2519
2520 /* A subroutine of assign_parms. Arrange for the parameter to be
2521 present and valid in DATA->STACK_RTL. */
2522
2523 static void
2524 assign_parm_setup_block (tree parm, struct assign_parm_data_one *data)
2525 {
2526 rtx entry_parm = data->entry_parm;
2527 rtx stack_parm = data->stack_parm;
2528
2529 /* If we've a non-block object that's nevertheless passed in parts,
2530 reconstitute it in register operations rather than on the stack. */
2531 if (GET_CODE (entry_parm) == PARALLEL
2532 && data->nominal_mode != BLKmode
2533 && XVECLEN (entry_parm, 0) > 1
2534 && optimize)
2535 {
2536 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2537
2538 emit_group_store (parmreg, entry_parm, data->nominal_type,
2539 int_size_in_bytes (data->nominal_type));
2540 SET_DECL_RTL (parm, parmreg);
2541 return;
2542 }
2543
2544 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2545 calls that pass values in multiple non-contiguous locations. */
2546 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2547 {
2548 HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
2549 HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2550 rtx mem;
2551
2552 /* Note that we will be storing an integral number of words.
2553 So we have to be careful to ensure that we allocate an
2554 integral number of words. We do this below in the
2555 assign_stack_local if space was not allocated in the argument
2556 list. If it was, this will not work if PARM_BOUNDARY is not
2557 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2558 if it becomes a problem. Exception is when BLKmode arrives
2559 with arguments not conforming to word_mode. */
2560
2561 if (stack_parm == 0)
2562 {
2563 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
2564 data->stack_parm = stack_parm;
2565 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2566 set_mem_attributes (stack_parm, parm, 1);
2567 }
2568 else if (GET_CODE (entry_parm) == PARALLEL)
2569 ;
2570 else if (size != 0 && PARM_BOUNDARY % BITS_PER_WORD != 0)
2571 abort ();
2572
2573 mem = validize_mem (stack_parm);
2574
2575 /* Handle values in multiple non-contiguous locations. */
2576 if (GET_CODE (entry_parm) == PARALLEL)
2577 emit_group_store (mem, entry_parm, data->passed_type, size);
2578
2579 else if (size == 0)
2580 ;
2581
2582 /* If SIZE is that of a mode no bigger than a word, just use
2583 that mode's store operation. */
2584 else if (size <= UNITS_PER_WORD)
2585 {
2586 enum machine_mode mode
2587 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2588
2589 if (mode != BLKmode
2590 #ifdef BLOCK_REG_PADDING
2591 && (size == UNITS_PER_WORD
2592 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2593 != (BYTES_BIG_ENDIAN ? upward : downward)))
2594 #endif
2595 )
2596 {
2597 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2598 emit_move_insn (change_address (mem, mode, 0), reg);
2599 }
2600
2601 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2602 machine must be aligned to the left before storing
2603 to memory. Note that the previous test doesn't
2604 handle all cases (e.g. SIZE == 3). */
2605 else if (size != UNITS_PER_WORD
2606 #ifdef BLOCK_REG_PADDING
2607 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2608 == downward)
2609 #else
2610 && BYTES_BIG_ENDIAN
2611 #endif
2612 )
2613 {
2614 rtx tem, x;
2615 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2616 rtx reg = gen_rtx_REG (word_mode, REGNO (data->entry_parm));
2617
2618 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2619 build_int_cst (NULL_TREE, by),
2620 NULL_RTX, 1);
2621 tem = change_address (mem, word_mode, 0);
2622 emit_move_insn (tem, x);
2623 }
2624 else
2625 move_block_from_reg (REGNO (data->entry_parm), mem,
2626 size_stored / UNITS_PER_WORD);
2627 }
2628 else
2629 move_block_from_reg (REGNO (data->entry_parm), mem,
2630 size_stored / UNITS_PER_WORD);
2631 }
2632
2633 SET_DECL_RTL (parm, stack_parm);
2634 }
2635
2636 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2637 parameter. Get it there. Perform all ABI specified conversions. */
2638
2639 static void
2640 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2641 struct assign_parm_data_one *data)
2642 {
2643 rtx parmreg;
2644 enum machine_mode promoted_nominal_mode;
2645 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2646 bool did_conversion = false;
2647
2648 /* Store the parm in a pseudoregister during the function, but we may
2649 need to do it in a wider mode. */
2650
2651 promoted_nominal_mode
2652 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2653
2654 parmreg = gen_reg_rtx (promoted_nominal_mode);
2655
2656 if (!DECL_ARTIFICIAL (parm))
2657 mark_user_reg (parmreg);
2658
2659 /* If this was an item that we received a pointer to,
2660 set DECL_RTL appropriately. */
2661 if (data->passed_pointer)
2662 {
2663 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2664 set_mem_attributes (x, parm, 1);
2665 SET_DECL_RTL (parm, x);
2666 }
2667 else
2668 SET_DECL_RTL (parm, parmreg);
2669
2670 /* Copy the value into the register. */
2671 if (data->nominal_mode != data->passed_mode
2672 || promoted_nominal_mode != data->promoted_mode)
2673 {
2674 int save_tree_used;
2675
2676 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2677 mode, by the caller. We now have to convert it to
2678 NOMINAL_MODE, if different. However, PARMREG may be in
2679 a different mode than NOMINAL_MODE if it is being stored
2680 promoted.
2681
2682 If ENTRY_PARM is a hard register, it might be in a register
2683 not valid for operating in its mode (e.g., an odd-numbered
2684 register for a DFmode). In that case, moves are the only
2685 thing valid, so we can't do a convert from there. This
2686 occurs when the calling sequence allow such misaligned
2687 usages.
2688
2689 In addition, the conversion may involve a call, which could
2690 clobber parameters which haven't been copied to pseudo
2691 registers yet. Therefore, we must first copy the parm to
2692 a pseudo reg here, and save the conversion until after all
2693 parameters have been moved. */
2694
2695 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2696
2697 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2698
2699 push_to_sequence (all->conversion_insns);
2700 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2701
2702 if (GET_CODE (tempreg) == SUBREG
2703 && GET_MODE (tempreg) == data->nominal_mode
2704 && REG_P (SUBREG_REG (tempreg))
2705 && data->nominal_mode == data->passed_mode
2706 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2707 && GET_MODE_SIZE (GET_MODE (tempreg))
2708 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2709 {
2710 /* The argument is already sign/zero extended, so note it
2711 into the subreg. */
2712 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2713 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2714 }
2715
2716 /* TREE_USED gets set erroneously during expand_assignment. */
2717 save_tree_used = TREE_USED (parm);
2718 expand_assignment (parm, make_tree (data->nominal_type, tempreg), 0);
2719 TREE_USED (parm) = save_tree_used;
2720 all->conversion_insns = get_insns ();
2721 end_sequence ();
2722
2723 did_conversion = true;
2724 }
2725 else
2726 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2727
2728 /* If we were passed a pointer but the actual value can safely live
2729 in a register, put it in one. */
2730 if (data->passed_pointer
2731 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2732 /* If by-reference argument was promoted, demote it. */
2733 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2734 || use_register_for_decl (parm)))
2735 {
2736 /* We can't use nominal_mode, because it will have been set to
2737 Pmode above. We must use the actual mode of the parm. */
2738 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2739 mark_user_reg (parmreg);
2740
2741 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2742 {
2743 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2744 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2745
2746 push_to_sequence (all->conversion_insns);
2747 emit_move_insn (tempreg, DECL_RTL (parm));
2748 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2749 emit_move_insn (parmreg, tempreg);
2750 all->conversion_insns = get_insns();
2751 end_sequence ();
2752
2753 did_conversion = true;
2754 }
2755 else
2756 emit_move_insn (parmreg, DECL_RTL (parm));
2757
2758 SET_DECL_RTL (parm, parmreg);
2759
2760 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2761 now the parm. */
2762 data->stack_parm = NULL;
2763 }
2764
2765 /* If we are passed an arg by reference and it is our responsibility
2766 to make a copy, do it now.
2767 PASSED_TYPE and PASSED mode now refer to the pointer, not the
2768 original argument, so we must recreate them in the call to
2769 FUNCTION_ARG_CALLEE_COPIES. */
2770 /* ??? Later add code to handle the case that if the argument isn't
2771 modified, don't do the copy. */
2772
2773 else if (data->passed_pointer)
2774 {
2775 tree type = TREE_TYPE (data->passed_type);
2776
2777 if (FUNCTION_ARG_CALLEE_COPIES (all->args_so_far, TYPE_MODE (type),
2778 type, data->named_arg)
2779 && !TREE_ADDRESSABLE (type))
2780 {
2781 rtx copy;
2782
2783 /* This sequence may involve a library call perhaps clobbering
2784 registers that haven't been copied to pseudos yet. */
2785
2786 push_to_sequence (all->conversion_insns);
2787
2788 if (!COMPLETE_TYPE_P (type)
2789 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2790 {
2791 /* This is a variable sized object. */
2792 copy = allocate_dynamic_stack_space (expr_size (parm), NULL_RTX,
2793 TYPE_ALIGN (type));
2794 copy = gen_rtx_MEM (BLKmode, copy);
2795 }
2796 else
2797 copy = assign_stack_temp (TYPE_MODE (type),
2798 int_size_in_bytes (type), 1);
2799 set_mem_attributes (copy, parm, 1);
2800
2801 store_expr (parm, copy, 0);
2802 emit_move_insn (parmreg, XEXP (copy, 0));
2803 all->conversion_insns = get_insns ();
2804 end_sequence ();
2805
2806 did_conversion = true;
2807 }
2808 }
2809
2810 /* Mark the register as eliminable if we did no conversion and it was
2811 copied from memory at a fixed offset, and the arg pointer was not
2812 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2813 offset formed an invalid address, such memory-equivalences as we
2814 make here would screw up life analysis for it. */
2815 if (data->nominal_mode == data->passed_mode
2816 && !did_conversion
2817 && data->stack_parm != 0
2818 && MEM_P (data->stack_parm)
2819 && data->locate.offset.var == 0
2820 && reg_mentioned_p (virtual_incoming_args_rtx,
2821 XEXP (data->stack_parm, 0)))
2822 {
2823 rtx linsn = get_last_insn ();
2824 rtx sinsn, set;
2825
2826 /* Mark complex types separately. */
2827 if (GET_CODE (parmreg) == CONCAT)
2828 {
2829 enum machine_mode submode
2830 = GET_MODE_INNER (GET_MODE (parmreg));
2831 int regnor = REGNO (gen_realpart (submode, parmreg));
2832 int regnoi = REGNO (gen_imagpart (submode, parmreg));
2833 rtx stackr = gen_realpart (submode, data->stack_parm);
2834 rtx stacki = gen_imagpart (submode, data->stack_parm);
2835
2836 /* Scan backwards for the set of the real and
2837 imaginary parts. */
2838 for (sinsn = linsn; sinsn != 0;
2839 sinsn = prev_nonnote_insn (sinsn))
2840 {
2841 set = single_set (sinsn);
2842 if (set == 0)
2843 continue;
2844
2845 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2846 REG_NOTES (sinsn)
2847 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2848 REG_NOTES (sinsn));
2849 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2850 REG_NOTES (sinsn)
2851 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2852 REG_NOTES (sinsn));
2853 }
2854 }
2855 else if ((set = single_set (linsn)) != 0
2856 && SET_DEST (set) == parmreg)
2857 REG_NOTES (linsn)
2858 = gen_rtx_EXPR_LIST (REG_EQUIV,
2859 data->stack_parm, REG_NOTES (linsn));
2860 }
2861
2862 /* For pointer data type, suggest pointer register. */
2863 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2864 mark_reg_pointer (parmreg,
2865 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2866 }
2867
2868 /* A subroutine of assign_parms. Allocate stack space to hold the current
2869 parameter. Get it there. Perform all ABI specified conversions. */
2870
2871 static void
2872 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2873 struct assign_parm_data_one *data)
2874 {
2875 /* Value must be stored in the stack slot STACK_PARM during function
2876 execution. */
2877
2878 if (data->promoted_mode != data->nominal_mode)
2879 {
2880 /* Conversion is required. */
2881 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2882
2883 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2884
2885 push_to_sequence (all->conversion_insns);
2886 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2887 TYPE_UNSIGNED (TREE_TYPE (parm)));
2888
2889 if (data->stack_parm)
2890 /* ??? This may need a big-endian conversion on sparc64. */
2891 data->stack_parm
2892 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2893
2894 all->conversion_insns = get_insns ();
2895 end_sequence ();
2896 }
2897
2898 if (data->entry_parm != data->stack_parm)
2899 {
2900 if (data->stack_parm == 0)
2901 {
2902 data->stack_parm
2903 = assign_stack_local (GET_MODE (data->entry_parm),
2904 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2905 0);
2906 set_mem_attributes (data->stack_parm, parm, 1);
2907 }
2908
2909 if (data->promoted_mode != data->nominal_mode)
2910 {
2911 push_to_sequence (all->conversion_insns);
2912 emit_move_insn (validize_mem (data->stack_parm),
2913 validize_mem (data->entry_parm));
2914 all->conversion_insns = get_insns ();
2915 end_sequence ();
2916 }
2917 else
2918 emit_move_insn (validize_mem (data->stack_parm),
2919 validize_mem (data->entry_parm));
2920 }
2921
2922 SET_DECL_RTL (parm, data->stack_parm);
2923 }
2924
2925 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2926 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2927
2928 static void
2929 assign_parms_unsplit_complex (tree orig_fnargs, tree fnargs)
2930 {
2931 tree parm;
2932
2933 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2934 {
2935 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2936 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2937 {
2938 rtx tmp, real, imag;
2939 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2940
2941 real = DECL_RTL (fnargs);
2942 imag = DECL_RTL (TREE_CHAIN (fnargs));
2943 if (inner != GET_MODE (real))
2944 {
2945 real = gen_lowpart_SUBREG (inner, real);
2946 imag = gen_lowpart_SUBREG (inner, imag);
2947 }
2948 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2949 SET_DECL_RTL (parm, tmp);
2950
2951 real = DECL_INCOMING_RTL (fnargs);
2952 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2953 if (inner != GET_MODE (real))
2954 {
2955 real = gen_lowpart_SUBREG (inner, real);
2956 imag = gen_lowpart_SUBREG (inner, imag);
2957 }
2958 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2959 set_decl_incoming_rtl (parm, tmp);
2960 fnargs = TREE_CHAIN (fnargs);
2961 }
2962 else
2963 {
2964 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2965 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2966
2967 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2968 instead of the copy of decl, i.e. FNARGS. */
2969 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2970 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2971 }
2972
2973 fnargs = TREE_CHAIN (fnargs);
2974 }
2975 }
2976
2977 /* Assign RTL expressions to the function's parameters. This may involve
2978 copying them into registers and using those registers as the DECL_RTL. */
2979
2980 void
2981 assign_parms (tree fndecl)
2982 {
2983 struct assign_parm_data_all all;
2984 tree fnargs, parm;
2985 rtx internal_arg_pointer;
2986 int varargs_setup = 0;
2987
2988 /* If the reg that the virtual arg pointer will be translated into is
2989 not a fixed reg or is the stack pointer, make a copy of the virtual
2990 arg pointer, and address parms via the copy. The frame pointer is
2991 considered fixed even though it is not marked as such.
2992
2993 The second time through, simply use ap to avoid generating rtx. */
2994
2995 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
2996 || ! (fixed_regs[ARG_POINTER_REGNUM]
2997 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
2998 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
2999 else
3000 internal_arg_pointer = virtual_incoming_args_rtx;
3001 current_function_internal_arg_pointer = internal_arg_pointer;
3002
3003 assign_parms_initialize_all (&all);
3004 fnargs = assign_parms_augmented_arg_list (&all);
3005
3006 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3007 {
3008 struct assign_parm_data_one data;
3009
3010 /* Extract the type of PARM; adjust it according to ABI. */
3011 assign_parm_find_data_types (&all, parm, &data);
3012
3013 /* Early out for errors and void parameters. */
3014 if (data.passed_mode == VOIDmode)
3015 {
3016 SET_DECL_RTL (parm, const0_rtx);
3017 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3018 continue;
3019 }
3020
3021 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3022 for the unnamed dummy argument following the last named argument.
3023 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3024 we only want to do this when we get to the actual last named
3025 argument, which will be the first time LAST_NAMED gets set. */
3026 if (data.last_named && !varargs_setup)
3027 {
3028 varargs_setup = true;
3029 assign_parms_setup_varargs (&all, &data, false);
3030 }
3031
3032 /* Find out where the parameter arrives in this function. */
3033 assign_parm_find_entry_rtl (&all, &data);
3034
3035 /* Find out where stack space for this parameter might be. */
3036 if (assign_parm_is_stack_parm (&all, &data))
3037 {
3038 assign_parm_find_stack_rtl (parm, &data);
3039 assign_parm_adjust_entry_rtl (&data);
3040 }
3041
3042 /* Record permanently how this parm was passed. */
3043 set_decl_incoming_rtl (parm, data.entry_parm);
3044
3045 /* Update info on where next arg arrives in registers. */
3046 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3047 data.passed_type, data.named_arg);
3048
3049 assign_parm_adjust_stack_rtl (&data);
3050
3051 if (assign_parm_setup_block_p (&data))
3052 assign_parm_setup_block (parm, &data);
3053 else if (data.passed_pointer || use_register_for_decl (parm))
3054 assign_parm_setup_reg (&all, parm, &data);
3055 else
3056 assign_parm_setup_stack (&all, parm, &data);
3057 }
3058
3059 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3060 assign_parms_unsplit_complex (all.orig_fnargs, fnargs);
3061
3062 /* Output all parameter conversion instructions (possibly including calls)
3063 now that all parameters have been copied out of hard registers. */
3064 emit_insn (all.conversion_insns);
3065
3066 /* If we are receiving a struct value address as the first argument, set up
3067 the RTL for the function result. As this might require code to convert
3068 the transmitted address to Pmode, we do this here to ensure that possible
3069 preliminary conversions of the address have been emitted already. */
3070 if (all.function_result_decl)
3071 {
3072 tree result = DECL_RESULT (current_function_decl);
3073 rtx addr = DECL_RTL (all.function_result_decl);
3074 rtx x;
3075
3076 if (DECL_BY_REFERENCE (result))
3077 x = addr;
3078 else
3079 {
3080 addr = convert_memory_address (Pmode, addr);
3081 x = gen_rtx_MEM (DECL_MODE (result), addr);
3082 set_mem_attributes (x, result, 1);
3083 }
3084 SET_DECL_RTL (result, x);
3085 }
3086
3087 /* We have aligned all the args, so add space for the pretend args. */
3088 current_function_pretend_args_size = all.pretend_args_size;
3089 all.stack_args_size.constant += all.extra_pretend_bytes;
3090 current_function_args_size = all.stack_args_size.constant;
3091
3092 /* Adjust function incoming argument size for alignment and
3093 minimum length. */
3094
3095 #ifdef REG_PARM_STACK_SPACE
3096 current_function_args_size = MAX (current_function_args_size,
3097 REG_PARM_STACK_SPACE (fndecl));
3098 #endif
3099
3100 current_function_args_size
3101 = ((current_function_args_size + STACK_BYTES - 1)
3102 / STACK_BYTES) * STACK_BYTES;
3103
3104 #ifdef ARGS_GROW_DOWNWARD
3105 current_function_arg_offset_rtx
3106 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3107 : expand_expr (size_diffop (all.stack_args_size.var,
3108 size_int (-all.stack_args_size.constant)),
3109 NULL_RTX, VOIDmode, 0));
3110 #else
3111 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3112 #endif
3113
3114 /* See how many bytes, if any, of its args a function should try to pop
3115 on return. */
3116
3117 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3118 current_function_args_size);
3119
3120 /* For stdarg.h function, save info about
3121 regs and stack space used by the named args. */
3122
3123 current_function_args_info = all.args_so_far;
3124
3125 /* Set the rtx used for the function return value. Put this in its
3126 own variable so any optimizers that need this information don't have
3127 to include tree.h. Do this here so it gets done when an inlined
3128 function gets output. */
3129
3130 current_function_return_rtx
3131 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3132 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3133
3134 /* If scalar return value was computed in a pseudo-reg, or was a named
3135 return value that got dumped to the stack, copy that to the hard
3136 return register. */
3137 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3138 {
3139 tree decl_result = DECL_RESULT (fndecl);
3140 rtx decl_rtl = DECL_RTL (decl_result);
3141
3142 if (REG_P (decl_rtl)
3143 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3144 : DECL_REGISTER (decl_result))
3145 {
3146 rtx real_decl_rtl;
3147
3148 #ifdef FUNCTION_OUTGOING_VALUE
3149 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3150 fndecl);
3151 #else
3152 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3153 fndecl);
3154 #endif
3155 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3156 /* The delay slot scheduler assumes that current_function_return_rtx
3157 holds the hard register containing the return value, not a
3158 temporary pseudo. */
3159 current_function_return_rtx = real_decl_rtl;
3160 }
3161 }
3162 }
3163 \f
3164 /* Indicate whether REGNO is an incoming argument to the current function
3165 that was promoted to a wider mode. If so, return the RTX for the
3166 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3167 that REGNO is promoted from and whether the promotion was signed or
3168 unsigned. */
3169
3170 rtx
3171 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3172 {
3173 tree arg;
3174
3175 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3176 arg = TREE_CHAIN (arg))
3177 if (REG_P (DECL_INCOMING_RTL (arg))
3178 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3179 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3180 {
3181 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3182 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3183
3184 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3185 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3186 && mode != DECL_MODE (arg))
3187 {
3188 *pmode = DECL_MODE (arg);
3189 *punsignedp = unsignedp;
3190 return DECL_INCOMING_RTL (arg);
3191 }
3192 }
3193
3194 return 0;
3195 }
3196
3197 \f
3198 /* Compute the size and offset from the start of the stacked arguments for a
3199 parm passed in mode PASSED_MODE and with type TYPE.
3200
3201 INITIAL_OFFSET_PTR points to the current offset into the stacked
3202 arguments.
3203
3204 The starting offset and size for this parm are returned in
3205 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3206 nonzero, the offset is that of stack slot, which is returned in
3207 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3208 padding required from the initial offset ptr to the stack slot.
3209
3210 IN_REGS is nonzero if the argument will be passed in registers. It will
3211 never be set if REG_PARM_STACK_SPACE is not defined.
3212
3213 FNDECL is the function in which the argument was defined.
3214
3215 There are two types of rounding that are done. The first, controlled by
3216 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3217 list to be aligned to the specific boundary (in bits). This rounding
3218 affects the initial and starting offsets, but not the argument size.
3219
3220 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3221 optionally rounds the size of the parm to PARM_BOUNDARY. The
3222 initial offset is not affected by this rounding, while the size always
3223 is and the starting offset may be. */
3224
3225 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3226 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3227 callers pass in the total size of args so far as
3228 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3229
3230 void
3231 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3232 int partial, tree fndecl ATTRIBUTE_UNUSED,
3233 struct args_size *initial_offset_ptr,
3234 struct locate_and_pad_arg_data *locate)
3235 {
3236 tree sizetree;
3237 enum direction where_pad;
3238 int boundary;
3239 int reg_parm_stack_space = 0;
3240 int part_size_in_regs;
3241
3242 #ifdef REG_PARM_STACK_SPACE
3243 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3244
3245 /* If we have found a stack parm before we reach the end of the
3246 area reserved for registers, skip that area. */
3247 if (! in_regs)
3248 {
3249 if (reg_parm_stack_space > 0)
3250 {
3251 if (initial_offset_ptr->var)
3252 {
3253 initial_offset_ptr->var
3254 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3255 ssize_int (reg_parm_stack_space));
3256 initial_offset_ptr->constant = 0;
3257 }
3258 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3259 initial_offset_ptr->constant = reg_parm_stack_space;
3260 }
3261 }
3262 #endif /* REG_PARM_STACK_SPACE */
3263
3264 part_size_in_regs = 0;
3265 if (reg_parm_stack_space == 0)
3266 part_size_in_regs = ((partial * UNITS_PER_WORD)
3267 / (PARM_BOUNDARY / BITS_PER_UNIT)
3268 * (PARM_BOUNDARY / BITS_PER_UNIT));
3269
3270 sizetree
3271 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3272 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3273 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3274 locate->where_pad = where_pad;
3275
3276 #ifdef ARGS_GROW_DOWNWARD
3277 locate->slot_offset.constant = -initial_offset_ptr->constant;
3278 if (initial_offset_ptr->var)
3279 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3280 initial_offset_ptr->var);
3281
3282 {
3283 tree s2 = sizetree;
3284 if (where_pad != none
3285 && (!host_integerp (sizetree, 1)
3286 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3287 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3288 SUB_PARM_SIZE (locate->slot_offset, s2);
3289 }
3290
3291 locate->slot_offset.constant += part_size_in_regs;
3292
3293 if (!in_regs
3294 #ifdef REG_PARM_STACK_SPACE
3295 || REG_PARM_STACK_SPACE (fndecl) > 0
3296 #endif
3297 )
3298 pad_to_arg_alignment (&locate->slot_offset, boundary,
3299 &locate->alignment_pad);
3300
3301 locate->size.constant = (-initial_offset_ptr->constant
3302 - locate->slot_offset.constant);
3303 if (initial_offset_ptr->var)
3304 locate->size.var = size_binop (MINUS_EXPR,
3305 size_binop (MINUS_EXPR,
3306 ssize_int (0),
3307 initial_offset_ptr->var),
3308 locate->slot_offset.var);
3309
3310 /* Pad_below needs the pre-rounded size to know how much to pad
3311 below. */
3312 locate->offset = locate->slot_offset;
3313 if (where_pad == downward)
3314 pad_below (&locate->offset, passed_mode, sizetree);
3315
3316 #else /* !ARGS_GROW_DOWNWARD */
3317 if (!in_regs
3318 #ifdef REG_PARM_STACK_SPACE
3319 || REG_PARM_STACK_SPACE (fndecl) > 0
3320 #endif
3321 )
3322 pad_to_arg_alignment (initial_offset_ptr, boundary,
3323 &locate->alignment_pad);
3324 locate->slot_offset = *initial_offset_ptr;
3325
3326 #ifdef PUSH_ROUNDING
3327 if (passed_mode != BLKmode)
3328 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3329 #endif
3330
3331 /* Pad_below needs the pre-rounded size to know how much to pad below
3332 so this must be done before rounding up. */
3333 locate->offset = locate->slot_offset;
3334 if (where_pad == downward)
3335 pad_below (&locate->offset, passed_mode, sizetree);
3336
3337 if (where_pad != none
3338 && (!host_integerp (sizetree, 1)
3339 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3340 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3341
3342 ADD_PARM_SIZE (locate->size, sizetree);
3343
3344 locate->size.constant -= part_size_in_regs;
3345 #endif /* ARGS_GROW_DOWNWARD */
3346 }
3347
3348 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3349 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3350
3351 static void
3352 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3353 struct args_size *alignment_pad)
3354 {
3355 tree save_var = NULL_TREE;
3356 HOST_WIDE_INT save_constant = 0;
3357 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3358 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3359
3360 #ifdef SPARC_STACK_BOUNDARY_HACK
3361 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3362 higher than the real alignment of %sp. However, when it does this,
3363 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3364 This is a temporary hack while the sparc port is fixed. */
3365 if (SPARC_STACK_BOUNDARY_HACK)
3366 sp_offset = 0;
3367 #endif
3368
3369 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3370 {
3371 save_var = offset_ptr->var;
3372 save_constant = offset_ptr->constant;
3373 }
3374
3375 alignment_pad->var = NULL_TREE;
3376 alignment_pad->constant = 0;
3377
3378 if (boundary > BITS_PER_UNIT)
3379 {
3380 if (offset_ptr->var)
3381 {
3382 tree sp_offset_tree = ssize_int (sp_offset);
3383 tree offset = size_binop (PLUS_EXPR,
3384 ARGS_SIZE_TREE (*offset_ptr),
3385 sp_offset_tree);
3386 #ifdef ARGS_GROW_DOWNWARD
3387 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3388 #else
3389 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3390 #endif
3391
3392 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3393 /* ARGS_SIZE_TREE includes constant term. */
3394 offset_ptr->constant = 0;
3395 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3396 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3397 save_var);
3398 }
3399 else
3400 {
3401 offset_ptr->constant = -sp_offset +
3402 #ifdef ARGS_GROW_DOWNWARD
3403 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3404 #else
3405 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3406 #endif
3407 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3408 alignment_pad->constant = offset_ptr->constant - save_constant;
3409 }
3410 }
3411 }
3412
3413 static void
3414 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3415 {
3416 if (passed_mode != BLKmode)
3417 {
3418 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3419 offset_ptr->constant
3420 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3421 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3422 - GET_MODE_SIZE (passed_mode));
3423 }
3424 else
3425 {
3426 if (TREE_CODE (sizetree) != INTEGER_CST
3427 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3428 {
3429 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3430 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3431 /* Add it in. */
3432 ADD_PARM_SIZE (*offset_ptr, s2);
3433 SUB_PARM_SIZE (*offset_ptr, sizetree);
3434 }
3435 }
3436 }
3437 \f
3438 /* Walk the tree of blocks describing the binding levels within a function
3439 and warn about variables the might be killed by setjmp or vfork.
3440 This is done after calling flow_analysis and before global_alloc
3441 clobbers the pseudo-regs to hard regs. */
3442
3443 void
3444 setjmp_vars_warning (tree block)
3445 {
3446 tree decl, sub;
3447
3448 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3449 {
3450 if (TREE_CODE (decl) == VAR_DECL
3451 && DECL_RTL_SET_P (decl)
3452 && REG_P (DECL_RTL (decl))
3453 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3454 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
3455 decl, decl);
3456 }
3457
3458 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3459 setjmp_vars_warning (sub);
3460 }
3461
3462 /* Do the appropriate part of setjmp_vars_warning
3463 but for arguments instead of local variables. */
3464
3465 void
3466 setjmp_args_warning (void)
3467 {
3468 tree decl;
3469 for (decl = DECL_ARGUMENTS (current_function_decl);
3470 decl; decl = TREE_CHAIN (decl))
3471 if (DECL_RTL (decl) != 0
3472 && REG_P (DECL_RTL (decl))
3473 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3474 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
3475 decl, decl);
3476 }
3477
3478 \f
3479 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3480 and create duplicate blocks. */
3481 /* ??? Need an option to either create block fragments or to create
3482 abstract origin duplicates of a source block. It really depends
3483 on what optimization has been performed. */
3484
3485 void
3486 reorder_blocks (void)
3487 {
3488 tree block = DECL_INITIAL (current_function_decl);
3489 varray_type block_stack;
3490
3491 if (block == NULL_TREE)
3492 return;
3493
3494 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3495
3496 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3497 clear_block_marks (block);
3498
3499 /* Prune the old trees away, so that they don't get in the way. */
3500 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3501 BLOCK_CHAIN (block) = NULL_TREE;
3502
3503 /* Recreate the block tree from the note nesting. */
3504 reorder_blocks_1 (get_insns (), block, &block_stack);
3505 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3506
3507 /* Remove deleted blocks from the block fragment chains. */
3508 reorder_fix_fragments (block);
3509 }
3510
3511 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3512
3513 void
3514 clear_block_marks (tree block)
3515 {
3516 while (block)
3517 {
3518 TREE_ASM_WRITTEN (block) = 0;
3519 clear_block_marks (BLOCK_SUBBLOCKS (block));
3520 block = BLOCK_CHAIN (block);
3521 }
3522 }
3523
3524 static void
3525 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3526 {
3527 rtx insn;
3528
3529 for (insn = insns; insn; insn = NEXT_INSN (insn))
3530 {
3531 if (NOTE_P (insn))
3532 {
3533 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3534 {
3535 tree block = NOTE_BLOCK (insn);
3536
3537 /* If we have seen this block before, that means it now
3538 spans multiple address regions. Create a new fragment. */
3539 if (TREE_ASM_WRITTEN (block))
3540 {
3541 tree new_block = copy_node (block);
3542 tree origin;
3543
3544 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3545 ? BLOCK_FRAGMENT_ORIGIN (block)
3546 : block);
3547 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3548 BLOCK_FRAGMENT_CHAIN (new_block)
3549 = BLOCK_FRAGMENT_CHAIN (origin);
3550 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3551
3552 NOTE_BLOCK (insn) = new_block;
3553 block = new_block;
3554 }
3555
3556 BLOCK_SUBBLOCKS (block) = 0;
3557 TREE_ASM_WRITTEN (block) = 1;
3558 /* When there's only one block for the entire function,
3559 current_block == block and we mustn't do this, it
3560 will cause infinite recursion. */
3561 if (block != current_block)
3562 {
3563 BLOCK_SUPERCONTEXT (block) = current_block;
3564 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3565 BLOCK_SUBBLOCKS (current_block) = block;
3566 current_block = block;
3567 }
3568 VARRAY_PUSH_TREE (*p_block_stack, block);
3569 }
3570 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3571 {
3572 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3573 VARRAY_POP (*p_block_stack);
3574 BLOCK_SUBBLOCKS (current_block)
3575 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3576 current_block = BLOCK_SUPERCONTEXT (current_block);
3577 }
3578 }
3579 }
3580 }
3581
3582 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3583 appears in the block tree, select one of the fragments to become
3584 the new origin block. */
3585
3586 static void
3587 reorder_fix_fragments (tree block)
3588 {
3589 while (block)
3590 {
3591 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3592 tree new_origin = NULL_TREE;
3593
3594 if (dup_origin)
3595 {
3596 if (! TREE_ASM_WRITTEN (dup_origin))
3597 {
3598 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3599
3600 /* Find the first of the remaining fragments. There must
3601 be at least one -- the current block. */
3602 while (! TREE_ASM_WRITTEN (new_origin))
3603 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3604 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3605 }
3606 }
3607 else if (! dup_origin)
3608 new_origin = block;
3609
3610 /* Re-root the rest of the fragments to the new origin. In the
3611 case that DUP_ORIGIN was null, that means BLOCK was the origin
3612 of a chain of fragments and we want to remove those fragments
3613 that didn't make it to the output. */
3614 if (new_origin)
3615 {
3616 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3617 tree chain = *pp;
3618
3619 while (chain)
3620 {
3621 if (TREE_ASM_WRITTEN (chain))
3622 {
3623 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3624 *pp = chain;
3625 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3626 }
3627 chain = BLOCK_FRAGMENT_CHAIN (chain);
3628 }
3629 *pp = NULL_TREE;
3630 }
3631
3632 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3633 block = BLOCK_CHAIN (block);
3634 }
3635 }
3636
3637 /* Reverse the order of elements in the chain T of blocks,
3638 and return the new head of the chain (old last element). */
3639
3640 tree
3641 blocks_nreverse (tree t)
3642 {
3643 tree prev = 0, decl, next;
3644 for (decl = t; decl; decl = next)
3645 {
3646 next = BLOCK_CHAIN (decl);
3647 BLOCK_CHAIN (decl) = prev;
3648 prev = decl;
3649 }
3650 return prev;
3651 }
3652
3653 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3654 non-NULL, list them all into VECTOR, in a depth-first preorder
3655 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3656 blocks. */
3657
3658 static int
3659 all_blocks (tree block, tree *vector)
3660 {
3661 int n_blocks = 0;
3662
3663 while (block)
3664 {
3665 TREE_ASM_WRITTEN (block) = 0;
3666
3667 /* Record this block. */
3668 if (vector)
3669 vector[n_blocks] = block;
3670
3671 ++n_blocks;
3672
3673 /* Record the subblocks, and their subblocks... */
3674 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3675 vector ? vector + n_blocks : 0);
3676 block = BLOCK_CHAIN (block);
3677 }
3678
3679 return n_blocks;
3680 }
3681
3682 /* Return a vector containing all the blocks rooted at BLOCK. The
3683 number of elements in the vector is stored in N_BLOCKS_P. The
3684 vector is dynamically allocated; it is the caller's responsibility
3685 to call `free' on the pointer returned. */
3686
3687 static tree *
3688 get_block_vector (tree block, int *n_blocks_p)
3689 {
3690 tree *block_vector;
3691
3692 *n_blocks_p = all_blocks (block, NULL);
3693 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3694 all_blocks (block, block_vector);
3695
3696 return block_vector;
3697 }
3698
3699 static GTY(()) int next_block_index = 2;
3700
3701 /* Set BLOCK_NUMBER for all the blocks in FN. */
3702
3703 void
3704 number_blocks (tree fn)
3705 {
3706 int i;
3707 int n_blocks;
3708 tree *block_vector;
3709
3710 /* For SDB and XCOFF debugging output, we start numbering the blocks
3711 from 1 within each function, rather than keeping a running
3712 count. */
3713 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3714 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3715 next_block_index = 1;
3716 #endif
3717
3718 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3719
3720 /* The top-level BLOCK isn't numbered at all. */
3721 for (i = 1; i < n_blocks; ++i)
3722 /* We number the blocks from two. */
3723 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3724
3725 free (block_vector);
3726
3727 return;
3728 }
3729
3730 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3731
3732 tree
3733 debug_find_var_in_block_tree (tree var, tree block)
3734 {
3735 tree t;
3736
3737 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3738 if (t == var)
3739 return block;
3740
3741 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3742 {
3743 tree ret = debug_find_var_in_block_tree (var, t);
3744 if (ret)
3745 return ret;
3746 }
3747
3748 return NULL_TREE;
3749 }
3750 \f
3751 /* Allocate a function structure for FNDECL and set its contents
3752 to the defaults. */
3753
3754 void
3755 allocate_struct_function (tree fndecl)
3756 {
3757 tree result;
3758 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3759
3760 cfun = ggc_alloc_cleared (sizeof (struct function));
3761
3762 cfun->stack_alignment_needed = STACK_BOUNDARY;
3763 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3764
3765 current_function_funcdef_no = funcdef_no++;
3766
3767 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3768
3769 init_eh_for_function ();
3770
3771 lang_hooks.function.init (cfun);
3772 if (init_machine_status)
3773 cfun->machine = (*init_machine_status) ();
3774
3775 if (fndecl == NULL)
3776 return;
3777
3778 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3779 cfun->decl = fndecl;
3780
3781 result = DECL_RESULT (fndecl);
3782 if (aggregate_value_p (result, fndecl))
3783 {
3784 #ifdef PCC_STATIC_STRUCT_RETURN
3785 current_function_returns_pcc_struct = 1;
3786 #endif
3787 current_function_returns_struct = 1;
3788 }
3789
3790 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3791
3792 current_function_stdarg
3793 = (fntype
3794 && TYPE_ARG_TYPES (fntype) != 0
3795 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3796 != void_type_node));
3797 }
3798
3799 /* Reset cfun, and other non-struct-function variables to defaults as
3800 appropriate for emitting rtl at the start of a function. */
3801
3802 static void
3803 prepare_function_start (tree fndecl)
3804 {
3805 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3806 cfun = DECL_STRUCT_FUNCTION (fndecl);
3807 else
3808 allocate_struct_function (fndecl);
3809 init_emit ();
3810 init_varasm_status (cfun);
3811 init_expr ();
3812
3813 cse_not_expected = ! optimize;
3814
3815 /* Caller save not needed yet. */
3816 caller_save_needed = 0;
3817
3818 /* We haven't done register allocation yet. */
3819 reg_renumber = 0;
3820
3821 /* Indicate that we have not instantiated virtual registers yet. */
3822 virtuals_instantiated = 0;
3823
3824 /* Indicate that we want CONCATs now. */
3825 generating_concat_p = 1;
3826
3827 /* Indicate we have no need of a frame pointer yet. */
3828 frame_pointer_needed = 0;
3829 }
3830
3831 /* Initialize the rtl expansion mechanism so that we can do simple things
3832 like generate sequences. This is used to provide a context during global
3833 initialization of some passes. */
3834 void
3835 init_dummy_function_start (void)
3836 {
3837 prepare_function_start (NULL);
3838 }
3839
3840 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3841 and initialize static variables for generating RTL for the statements
3842 of the function. */
3843
3844 void
3845 init_function_start (tree subr)
3846 {
3847 prepare_function_start (subr);
3848
3849 /* Prevent ever trying to delete the first instruction of a
3850 function. Also tell final how to output a linenum before the
3851 function prologue. Note linenums could be missing, e.g. when
3852 compiling a Java .class file. */
3853 if (! DECL_IS_BUILTIN (subr))
3854 emit_line_note (DECL_SOURCE_LOCATION (subr));
3855
3856 /* Make sure first insn is a note even if we don't want linenums.
3857 This makes sure the first insn will never be deleted.
3858 Also, final expects a note to appear there. */
3859 emit_note (NOTE_INSN_DELETED);
3860
3861 /* Warn if this value is an aggregate type,
3862 regardless of which calling convention we are using for it. */
3863 if (warn_aggregate_return
3864 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3865 warning ("function returns an aggregate");
3866 }
3867
3868 /* Make sure all values used by the optimization passes have sane
3869 defaults. */
3870 void
3871 init_function_for_compilation (void)
3872 {
3873 reg_renumber = 0;
3874
3875 /* No prologue/epilogue insns yet. */
3876 VARRAY_GROW (prologue, 0);
3877 VARRAY_GROW (epilogue, 0);
3878 VARRAY_GROW (sibcall_epilogue, 0);
3879 }
3880
3881 /* Expand a call to __main at the beginning of a possible main function. */
3882
3883 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
3884 #undef HAS_INIT_SECTION
3885 #define HAS_INIT_SECTION
3886 #endif
3887
3888 void
3889 expand_main_function (void)
3890 {
3891 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3892 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3893 {
3894 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
3895 rtx tmp, seq;
3896
3897 start_sequence ();
3898 /* Forcibly align the stack. */
3899 #ifdef STACK_GROWS_DOWNWARD
3900 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3901 stack_pointer_rtx, 1, OPTAB_WIDEN);
3902 #else
3903 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3904 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3905 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3906 stack_pointer_rtx, 1, OPTAB_WIDEN);
3907 #endif
3908 if (tmp != stack_pointer_rtx)
3909 emit_move_insn (stack_pointer_rtx, tmp);
3910
3911 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3912 tmp = force_reg (Pmode, const0_rtx);
3913 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
3914 seq = get_insns ();
3915 end_sequence ();
3916
3917 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3918 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3919 break;
3920 if (tmp)
3921 emit_insn_before (seq, tmp);
3922 else
3923 emit_insn (seq);
3924 }
3925 #endif
3926
3927 #ifndef HAS_INIT_SECTION
3928 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3929 #endif
3930 }
3931 \f
3932 /* The PENDING_SIZES represent the sizes of variable-sized types.
3933 Create RTL for the various sizes now (using temporary variables),
3934 so that we can refer to the sizes from the RTL we are generating
3935 for the current function. The PENDING_SIZES are a TREE_LIST. The
3936 TREE_VALUE of each node is a SAVE_EXPR. */
3937
3938 void
3939 expand_pending_sizes (tree pending_sizes)
3940 {
3941 tree tem;
3942
3943 /* Evaluate now the sizes of any types declared among the arguments. */
3944 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
3945 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
3946 }
3947
3948 /* Start the RTL for a new function, and set variables used for
3949 emitting RTL.
3950 SUBR is the FUNCTION_DECL node.
3951 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
3952 the function's parameters, which must be run at any return statement. */
3953
3954 void
3955 expand_function_start (tree subr)
3956 {
3957 /* Make sure volatile mem refs aren't considered
3958 valid operands of arithmetic insns. */
3959 init_recog_no_volatile ();
3960
3961 current_function_profile
3962 = (profile_flag
3963 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
3964
3965 current_function_limit_stack
3966 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
3967
3968 /* Make the label for return statements to jump to. Do not special
3969 case machines with special return instructions -- they will be
3970 handled later during jump, ifcvt, or epilogue creation. */
3971 return_label = gen_label_rtx ();
3972
3973 /* Initialize rtx used to return the value. */
3974 /* Do this before assign_parms so that we copy the struct value address
3975 before any library calls that assign parms might generate. */
3976
3977 /* Decide whether to return the value in memory or in a register. */
3978 if (aggregate_value_p (DECL_RESULT (subr), subr))
3979 {
3980 /* Returning something that won't go in a register. */
3981 rtx value_address = 0;
3982
3983 #ifdef PCC_STATIC_STRUCT_RETURN
3984 if (current_function_returns_pcc_struct)
3985 {
3986 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
3987 value_address = assemble_static_space (size);
3988 }
3989 else
3990 #endif
3991 {
3992 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
3993 /* Expect to be passed the address of a place to store the value.
3994 If it is passed as an argument, assign_parms will take care of
3995 it. */
3996 if (sv)
3997 {
3998 value_address = gen_reg_rtx (Pmode);
3999 emit_move_insn (value_address, sv);
4000 }
4001 }
4002 if (value_address)
4003 {
4004 rtx x = value_address;
4005 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4006 {
4007 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4008 set_mem_attributes (x, DECL_RESULT (subr), 1);
4009 }
4010 SET_DECL_RTL (DECL_RESULT (subr), x);
4011 }
4012 }
4013 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4014 /* If return mode is void, this decl rtl should not be used. */
4015 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4016 else
4017 {
4018 /* Compute the return values into a pseudo reg, which we will copy
4019 into the true return register after the cleanups are done. */
4020
4021 /* In order to figure out what mode to use for the pseudo, we
4022 figure out what the mode of the eventual return register will
4023 actually be, and use that. */
4024 rtx hard_reg
4025 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
4026 subr, 1);
4027
4028 /* Structures that are returned in registers are not aggregate_value_p,
4029 so we may see a PARALLEL or a REG. */
4030 if (REG_P (hard_reg))
4031 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
4032 else if (GET_CODE (hard_reg) == PARALLEL)
4033 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4034 else
4035 abort ();
4036
4037 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4038 result to the real return register(s). */
4039 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4040 }
4041
4042 /* Initialize rtx for parameters and local variables.
4043 In some cases this requires emitting insns. */
4044 assign_parms (subr);
4045
4046 /* If function gets a static chain arg, store it. */
4047 if (cfun->static_chain_decl)
4048 {
4049 tree parm = cfun->static_chain_decl;
4050 rtx local = gen_reg_rtx (Pmode);
4051
4052 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4053 SET_DECL_RTL (parm, local);
4054 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4055
4056 emit_move_insn (local, static_chain_incoming_rtx);
4057 }
4058
4059 /* If the function receives a non-local goto, then store the
4060 bits we need to restore the frame pointer. */
4061 if (cfun->nonlocal_goto_save_area)
4062 {
4063 tree t_save;
4064 rtx r_save;
4065
4066 /* ??? We need to do this save early. Unfortunately here is
4067 before the frame variable gets declared. Help out... */
4068 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4069
4070 t_save = build4 (ARRAY_REF, ptr_type_node,
4071 cfun->nonlocal_goto_save_area,
4072 integer_zero_node, NULL_TREE, NULL_TREE);
4073 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4074 r_save = convert_memory_address (Pmode, r_save);
4075
4076 emit_move_insn (r_save, virtual_stack_vars_rtx);
4077 update_nonlocal_goto_save_area ();
4078 }
4079
4080 /* The following was moved from init_function_start.
4081 The move is supposed to make sdb output more accurate. */
4082 /* Indicate the beginning of the function body,
4083 as opposed to parm setup. */
4084 emit_note (NOTE_INSN_FUNCTION_BEG);
4085
4086 if (!NOTE_P (get_last_insn ()))
4087 emit_note (NOTE_INSN_DELETED);
4088 parm_birth_insn = get_last_insn ();
4089
4090 if (current_function_profile)
4091 {
4092 #ifdef PROFILE_HOOK
4093 PROFILE_HOOK (current_function_funcdef_no);
4094 #endif
4095 }
4096
4097 /* After the display initializations is where the tail-recursion label
4098 should go, if we end up needing one. Ensure we have a NOTE here
4099 since some things (like trampolines) get placed before this. */
4100 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4101
4102 /* Evaluate now the sizes of any types declared among the arguments. */
4103 expand_pending_sizes (nreverse (get_pending_sizes ()));
4104
4105 /* Make sure there is a line number after the function entry setup code. */
4106 force_next_line_note ();
4107 }
4108 \f
4109 /* Undo the effects of init_dummy_function_start. */
4110 void
4111 expand_dummy_function_end (void)
4112 {
4113 /* End any sequences that failed to be closed due to syntax errors. */
4114 while (in_sequence_p ())
4115 end_sequence ();
4116
4117 /* Outside function body, can't compute type's actual size
4118 until next function's body starts. */
4119
4120 free_after_parsing (cfun);
4121 free_after_compilation (cfun);
4122 cfun = 0;
4123 }
4124
4125 /* Call DOIT for each hard register used as a return value from
4126 the current function. */
4127
4128 void
4129 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4130 {
4131 rtx outgoing = current_function_return_rtx;
4132
4133 if (! outgoing)
4134 return;
4135
4136 if (REG_P (outgoing))
4137 (*doit) (outgoing, arg);
4138 else if (GET_CODE (outgoing) == PARALLEL)
4139 {
4140 int i;
4141
4142 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4143 {
4144 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4145
4146 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4147 (*doit) (x, arg);
4148 }
4149 }
4150 }
4151
4152 static void
4153 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4154 {
4155 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4156 }
4157
4158 void
4159 clobber_return_register (void)
4160 {
4161 diddle_return_value (do_clobber_return_reg, NULL);
4162
4163 /* In case we do use pseudo to return value, clobber it too. */
4164 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4165 {
4166 tree decl_result = DECL_RESULT (current_function_decl);
4167 rtx decl_rtl = DECL_RTL (decl_result);
4168 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4169 {
4170 do_clobber_return_reg (decl_rtl, NULL);
4171 }
4172 }
4173 }
4174
4175 static void
4176 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4177 {
4178 emit_insn (gen_rtx_USE (VOIDmode, reg));
4179 }
4180
4181 void
4182 use_return_register (void)
4183 {
4184 diddle_return_value (do_use_return_reg, NULL);
4185 }
4186
4187 /* Possibly warn about unused parameters. */
4188 void
4189 do_warn_unused_parameter (tree fn)
4190 {
4191 tree decl;
4192
4193 for (decl = DECL_ARGUMENTS (fn);
4194 decl; decl = TREE_CHAIN (decl))
4195 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4196 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4197 warning ("%Junused parameter '%D'", decl, decl);
4198 }
4199
4200 static GTY(()) rtx initial_trampoline;
4201
4202 /* Generate RTL for the end of the current function. */
4203
4204 void
4205 expand_function_end (void)
4206 {
4207 rtx clobber_after;
4208
4209 /* If arg_pointer_save_area was referenced only from a nested
4210 function, we will not have initialized it yet. Do that now. */
4211 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4212 get_arg_pointer_save_area (cfun);
4213
4214 /* If we are doing stack checking and this function makes calls,
4215 do a stack probe at the start of the function to ensure we have enough
4216 space for another stack frame. */
4217 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4218 {
4219 rtx insn, seq;
4220
4221 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4222 if (CALL_P (insn))
4223 {
4224 start_sequence ();
4225 probe_stack_range (STACK_CHECK_PROTECT,
4226 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4227 seq = get_insns ();
4228 end_sequence ();
4229 emit_insn_before (seq, tail_recursion_reentry);
4230 break;
4231 }
4232 }
4233
4234 /* Possibly warn about unused parameters.
4235 When frontend does unit-at-a-time, the warning is already
4236 issued at finalization time. */
4237 if (warn_unused_parameter
4238 && !lang_hooks.callgraph.expand_function)
4239 do_warn_unused_parameter (current_function_decl);
4240
4241 /* End any sequences that failed to be closed due to syntax errors. */
4242 while (in_sequence_p ())
4243 end_sequence ();
4244
4245 clear_pending_stack_adjust ();
4246 do_pending_stack_adjust ();
4247
4248 /* @@@ This is a kludge. We want to ensure that instructions that
4249 may trap are not moved into the epilogue by scheduling, because
4250 we don't always emit unwind information for the epilogue.
4251 However, not all machine descriptions define a blockage insn, so
4252 emit an ASM_INPUT to act as one. */
4253 if (flag_non_call_exceptions)
4254 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4255
4256 /* Mark the end of the function body.
4257 If control reaches this insn, the function can drop through
4258 without returning a value. */
4259 emit_note (NOTE_INSN_FUNCTION_END);
4260
4261 /* Must mark the last line number note in the function, so that the test
4262 coverage code can avoid counting the last line twice. This just tells
4263 the code to ignore the immediately following line note, since there
4264 already exists a copy of this note somewhere above. This line number
4265 note is still needed for debugging though, so we can't delete it. */
4266 if (flag_test_coverage)
4267 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4268
4269 /* Output a linenumber for the end of the function.
4270 SDB depends on this. */
4271 force_next_line_note ();
4272 emit_line_note (input_location);
4273
4274 /* Before the return label (if any), clobber the return
4275 registers so that they are not propagated live to the rest of
4276 the function. This can only happen with functions that drop
4277 through; if there had been a return statement, there would
4278 have either been a return rtx, or a jump to the return label.
4279
4280 We delay actual code generation after the current_function_value_rtx
4281 is computed. */
4282 clobber_after = get_last_insn ();
4283
4284 /* Output the label for the actual return from the function,
4285 if one is expected. This happens either because a function epilogue
4286 is used instead of a return instruction, or because a return was done
4287 with a goto in order to run local cleanups, or because of pcc-style
4288 structure returning. */
4289 if (return_label)
4290 emit_label (return_label);
4291
4292 /* Let except.c know where it should emit the call to unregister
4293 the function context for sjlj exceptions. */
4294 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4295 sjlj_emit_function_exit_after (get_last_insn ());
4296
4297 /* If we had calls to alloca, and this machine needs
4298 an accurate stack pointer to exit the function,
4299 insert some code to save and restore the stack pointer. */
4300 if (! EXIT_IGNORE_STACK
4301 && current_function_calls_alloca)
4302 {
4303 rtx tem = 0;
4304
4305 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4306 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4307 }
4308
4309 /* If scalar return value was computed in a pseudo-reg, or was a named
4310 return value that got dumped to the stack, copy that to the hard
4311 return register. */
4312 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4313 {
4314 tree decl_result = DECL_RESULT (current_function_decl);
4315 rtx decl_rtl = DECL_RTL (decl_result);
4316
4317 if (REG_P (decl_rtl)
4318 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4319 : DECL_REGISTER (decl_result))
4320 {
4321 rtx real_decl_rtl = current_function_return_rtx;
4322
4323 /* This should be set in assign_parms. */
4324 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
4325 abort ();
4326
4327 /* If this is a BLKmode structure being returned in registers,
4328 then use the mode computed in expand_return. Note that if
4329 decl_rtl is memory, then its mode may have been changed,
4330 but that current_function_return_rtx has not. */
4331 if (GET_MODE (real_decl_rtl) == BLKmode)
4332 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4333
4334 /* If a named return value dumped decl_return to memory, then
4335 we may need to re-do the PROMOTE_MODE signed/unsigned
4336 extension. */
4337 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4338 {
4339 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4340
4341 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4342 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4343 &unsignedp, 1);
4344
4345 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4346 }
4347 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4348 {
4349 /* If expand_function_start has created a PARALLEL for decl_rtl,
4350 move the result to the real return registers. Otherwise, do
4351 a group load from decl_rtl for a named return. */
4352 if (GET_CODE (decl_rtl) == PARALLEL)
4353 emit_group_move (real_decl_rtl, decl_rtl);
4354 else
4355 emit_group_load (real_decl_rtl, decl_rtl,
4356 TREE_TYPE (decl_result),
4357 int_size_in_bytes (TREE_TYPE (decl_result)));
4358 }
4359 else
4360 emit_move_insn (real_decl_rtl, decl_rtl);
4361 }
4362 }
4363
4364 /* If returning a structure, arrange to return the address of the value
4365 in a place where debuggers expect to find it.
4366
4367 If returning a structure PCC style,
4368 the caller also depends on this value.
4369 And current_function_returns_pcc_struct is not necessarily set. */
4370 if (current_function_returns_struct
4371 || current_function_returns_pcc_struct)
4372 {
4373 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4374 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4375 rtx outgoing;
4376
4377 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4378 type = TREE_TYPE (type);
4379 else
4380 value_address = XEXP (value_address, 0);
4381
4382 #ifdef FUNCTION_OUTGOING_VALUE
4383 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4384 current_function_decl);
4385 #else
4386 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4387 current_function_decl);
4388 #endif
4389
4390 /* Mark this as a function return value so integrate will delete the
4391 assignment and USE below when inlining this function. */
4392 REG_FUNCTION_VALUE_P (outgoing) = 1;
4393
4394 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4395 value_address = convert_memory_address (GET_MODE (outgoing),
4396 value_address);
4397
4398 emit_move_insn (outgoing, value_address);
4399
4400 /* Show return register used to hold result (in this case the address
4401 of the result. */
4402 current_function_return_rtx = outgoing;
4403 }
4404
4405 /* If this is an implementation of throw, do what's necessary to
4406 communicate between __builtin_eh_return and the epilogue. */
4407 expand_eh_return ();
4408
4409 /* Emit the actual code to clobber return register. */
4410 {
4411 rtx seq, after;
4412
4413 start_sequence ();
4414 clobber_return_register ();
4415 seq = get_insns ();
4416 end_sequence ();
4417
4418 after = emit_insn_after (seq, clobber_after);
4419 }
4420
4421 /* Output the label for the naked return from the function, if one is
4422 expected. This is currently used only by __builtin_return. */
4423 if (naked_return_label)
4424 emit_label (naked_return_label);
4425
4426 /* ??? This should no longer be necessary since stupid is no longer with
4427 us, but there are some parts of the compiler (eg reload_combine, and
4428 sh mach_dep_reorg) that still try and compute their own lifetime info
4429 instead of using the general framework. */
4430 use_return_register ();
4431 }
4432
4433 rtx
4434 get_arg_pointer_save_area (struct function *f)
4435 {
4436 rtx ret = f->x_arg_pointer_save_area;
4437
4438 if (! ret)
4439 {
4440 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4441 f->x_arg_pointer_save_area = ret;
4442 }
4443
4444 if (f == cfun && ! f->arg_pointer_save_area_init)
4445 {
4446 rtx seq;
4447
4448 /* Save the arg pointer at the beginning of the function. The
4449 generated stack slot may not be a valid memory address, so we
4450 have to check it and fix it if necessary. */
4451 start_sequence ();
4452 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4453 seq = get_insns ();
4454 end_sequence ();
4455
4456 push_topmost_sequence ();
4457 emit_insn_after (seq, get_insns ());
4458 pop_topmost_sequence ();
4459 }
4460
4461 return ret;
4462 }
4463 \f
4464 /* Extend a vector that records the INSN_UIDs of INSNS
4465 (a list of one or more insns). */
4466
4467 static void
4468 record_insns (rtx insns, varray_type *vecp)
4469 {
4470 int i, len;
4471 rtx tmp;
4472
4473 tmp = insns;
4474 len = 0;
4475 while (tmp != NULL_RTX)
4476 {
4477 len++;
4478 tmp = NEXT_INSN (tmp);
4479 }
4480
4481 i = VARRAY_SIZE (*vecp);
4482 VARRAY_GROW (*vecp, i + len);
4483 tmp = insns;
4484 while (tmp != NULL_RTX)
4485 {
4486 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4487 i++;
4488 tmp = NEXT_INSN (tmp);
4489 }
4490 }
4491
4492 /* Set the locator of the insn chain starting at INSN to LOC. */
4493 static void
4494 set_insn_locators (rtx insn, int loc)
4495 {
4496 while (insn != NULL_RTX)
4497 {
4498 if (INSN_P (insn))
4499 INSN_LOCATOR (insn) = loc;
4500 insn = NEXT_INSN (insn);
4501 }
4502 }
4503
4504 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4505 be running after reorg, SEQUENCE rtl is possible. */
4506
4507 static int
4508 contains (rtx insn, varray_type vec)
4509 {
4510 int i, j;
4511
4512 if (NONJUMP_INSN_P (insn)
4513 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4514 {
4515 int count = 0;
4516 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4517 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4518 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4519 count++;
4520 return count;
4521 }
4522 else
4523 {
4524 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4525 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4526 return 1;
4527 }
4528 return 0;
4529 }
4530
4531 int
4532 prologue_epilogue_contains (rtx insn)
4533 {
4534 if (contains (insn, prologue))
4535 return 1;
4536 if (contains (insn, epilogue))
4537 return 1;
4538 return 0;
4539 }
4540
4541 int
4542 sibcall_epilogue_contains (rtx insn)
4543 {
4544 if (sibcall_epilogue)
4545 return contains (insn, sibcall_epilogue);
4546 return 0;
4547 }
4548
4549 #ifdef HAVE_return
4550 /* Insert gen_return at the end of block BB. This also means updating
4551 block_for_insn appropriately. */
4552
4553 static void
4554 emit_return_into_block (basic_block bb, rtx line_note)
4555 {
4556 emit_jump_insn_after (gen_return (), BB_END (bb));
4557 if (line_note)
4558 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4559 }
4560 #endif /* HAVE_return */
4561
4562 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4563
4564 /* These functions convert the epilogue into a variant that does not modify the
4565 stack pointer. This is used in cases where a function returns an object
4566 whose size is not known until it is computed. The called function leaves the
4567 object on the stack, leaves the stack depressed, and returns a pointer to
4568 the object.
4569
4570 What we need to do is track all modifications and references to the stack
4571 pointer, deleting the modifications and changing the references to point to
4572 the location the stack pointer would have pointed to had the modifications
4573 taken place.
4574
4575 These functions need to be portable so we need to make as few assumptions
4576 about the epilogue as we can. However, the epilogue basically contains
4577 three things: instructions to reset the stack pointer, instructions to
4578 reload registers, possibly including the frame pointer, and an
4579 instruction to return to the caller.
4580
4581 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4582 We also make no attempt to validate the insns we make since if they are
4583 invalid, we probably can't do anything valid. The intent is that these
4584 routines get "smarter" as more and more machines start to use them and
4585 they try operating on different epilogues.
4586
4587 We use the following structure to track what the part of the epilogue that
4588 we've already processed has done. We keep two copies of the SP equivalence,
4589 one for use during the insn we are processing and one for use in the next
4590 insn. The difference is because one part of a PARALLEL may adjust SP
4591 and the other may use it. */
4592
4593 struct epi_info
4594 {
4595 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4596 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4597 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4598 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4599 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4600 should be set to once we no longer need
4601 its value. */
4602 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4603 for registers. */
4604 };
4605
4606 static void handle_epilogue_set (rtx, struct epi_info *);
4607 static void update_epilogue_consts (rtx, rtx, void *);
4608 static void emit_equiv_load (struct epi_info *);
4609
4610 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4611 no modifications to the stack pointer. Return the new list of insns. */
4612
4613 static rtx
4614 keep_stack_depressed (rtx insns)
4615 {
4616 int j;
4617 struct epi_info info;
4618 rtx insn, next;
4619
4620 /* If the epilogue is just a single instruction, it must be OK as is. */
4621 if (NEXT_INSN (insns) == NULL_RTX)
4622 return insns;
4623
4624 /* Otherwise, start a sequence, initialize the information we have, and
4625 process all the insns we were given. */
4626 start_sequence ();
4627
4628 info.sp_equiv_reg = stack_pointer_rtx;
4629 info.sp_offset = 0;
4630 info.equiv_reg_src = 0;
4631
4632 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4633 info.const_equiv[j] = 0;
4634
4635 insn = insns;
4636 next = NULL_RTX;
4637 while (insn != NULL_RTX)
4638 {
4639 next = NEXT_INSN (insn);
4640
4641 if (!INSN_P (insn))
4642 {
4643 add_insn (insn);
4644 insn = next;
4645 continue;
4646 }
4647
4648 /* If this insn references the register that SP is equivalent to and
4649 we have a pending load to that register, we must force out the load
4650 first and then indicate we no longer know what SP's equivalent is. */
4651 if (info.equiv_reg_src != 0
4652 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4653 {
4654 emit_equiv_load (&info);
4655 info.sp_equiv_reg = 0;
4656 }
4657
4658 info.new_sp_equiv_reg = info.sp_equiv_reg;
4659 info.new_sp_offset = info.sp_offset;
4660
4661 /* If this is a (RETURN) and the return address is on the stack,
4662 update the address and change to an indirect jump. */
4663 if (GET_CODE (PATTERN (insn)) == RETURN
4664 || (GET_CODE (PATTERN (insn)) == PARALLEL
4665 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4666 {
4667 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4668 rtx base = 0;
4669 HOST_WIDE_INT offset = 0;
4670 rtx jump_insn, jump_set;
4671
4672 /* If the return address is in a register, we can emit the insn
4673 unchanged. Otherwise, it must be a MEM and we see what the
4674 base register and offset are. In any case, we have to emit any
4675 pending load to the equivalent reg of SP, if any. */
4676 if (REG_P (retaddr))
4677 {
4678 emit_equiv_load (&info);
4679 add_insn (insn);
4680 insn = next;
4681 continue;
4682 }
4683 else if (MEM_P (retaddr)
4684 && REG_P (XEXP (retaddr, 0)))
4685 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
4686 else if (MEM_P (retaddr)
4687 && GET_CODE (XEXP (retaddr, 0)) == PLUS
4688 && REG_P (XEXP (XEXP (retaddr, 0), 0))
4689 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
4690 {
4691 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
4692 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
4693 }
4694 else
4695 abort ();
4696
4697 /* If the base of the location containing the return pointer
4698 is SP, we must update it with the replacement address. Otherwise,
4699 just build the necessary MEM. */
4700 retaddr = plus_constant (base, offset);
4701 if (base == stack_pointer_rtx)
4702 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4703 plus_constant (info.sp_equiv_reg,
4704 info.sp_offset));
4705
4706 retaddr = gen_rtx_MEM (Pmode, retaddr);
4707
4708 /* If there is a pending load to the equivalent register for SP
4709 and we reference that register, we must load our address into
4710 a scratch register and then do that load. */
4711 if (info.equiv_reg_src
4712 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4713 {
4714 unsigned int regno;
4715 rtx reg;
4716
4717 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4718 if (HARD_REGNO_MODE_OK (regno, Pmode)
4719 && !fixed_regs[regno]
4720 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4721 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4722 regno)
4723 && !refers_to_regno_p (regno,
4724 regno + hard_regno_nregs[regno]
4725 [Pmode],
4726 info.equiv_reg_src, NULL)
4727 && info.const_equiv[regno] == 0)
4728 break;
4729
4730 if (regno == FIRST_PSEUDO_REGISTER)
4731 abort ();
4732
4733 reg = gen_rtx_REG (Pmode, regno);
4734 emit_move_insn (reg, retaddr);
4735 retaddr = reg;
4736 }
4737
4738 emit_equiv_load (&info);
4739 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4740
4741 /* Show the SET in the above insn is a RETURN. */
4742 jump_set = single_set (jump_insn);
4743 if (jump_set == 0)
4744 abort ();
4745 else
4746 SET_IS_RETURN_P (jump_set) = 1;
4747 }
4748
4749 /* If SP is not mentioned in the pattern and its equivalent register, if
4750 any, is not modified, just emit it. Otherwise, if neither is set,
4751 replace the reference to SP and emit the insn. If none of those are
4752 true, handle each SET individually. */
4753 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4754 && (info.sp_equiv_reg == stack_pointer_rtx
4755 || !reg_set_p (info.sp_equiv_reg, insn)))
4756 add_insn (insn);
4757 else if (! reg_set_p (stack_pointer_rtx, insn)
4758 && (info.sp_equiv_reg == stack_pointer_rtx
4759 || !reg_set_p (info.sp_equiv_reg, insn)))
4760 {
4761 if (! validate_replace_rtx (stack_pointer_rtx,
4762 plus_constant (info.sp_equiv_reg,
4763 info.sp_offset),
4764 insn))
4765 abort ();
4766
4767 add_insn (insn);
4768 }
4769 else if (GET_CODE (PATTERN (insn)) == SET)
4770 handle_epilogue_set (PATTERN (insn), &info);
4771 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4772 {
4773 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4774 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4775 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4776 }
4777 else
4778 add_insn (insn);
4779
4780 info.sp_equiv_reg = info.new_sp_equiv_reg;
4781 info.sp_offset = info.new_sp_offset;
4782
4783 /* Now update any constants this insn sets. */
4784 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4785 insn = next;
4786 }
4787
4788 insns = get_insns ();
4789 end_sequence ();
4790 return insns;
4791 }
4792
4793 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4794 structure that contains information about what we've seen so far. We
4795 process this SET by either updating that data or by emitting one or
4796 more insns. */
4797
4798 static void
4799 handle_epilogue_set (rtx set, struct epi_info *p)
4800 {
4801 /* First handle the case where we are setting SP. Record what it is being
4802 set from. If unknown, abort. */
4803 if (reg_set_p (stack_pointer_rtx, set))
4804 {
4805 if (SET_DEST (set) != stack_pointer_rtx)
4806 abort ();
4807
4808 if (GET_CODE (SET_SRC (set)) == PLUS)
4809 {
4810 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4811 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4812 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4813 else if (REG_P (XEXP (SET_SRC (set), 1))
4814 && REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER
4815 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0)
4816 p->new_sp_offset
4817 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4818 else
4819 abort ();
4820 }
4821 else
4822 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4823
4824 /* If we are adjusting SP, we adjust from the old data. */
4825 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4826 {
4827 p->new_sp_equiv_reg = p->sp_equiv_reg;
4828 p->new_sp_offset += p->sp_offset;
4829 }
4830
4831 if (p->new_sp_equiv_reg == 0 || !REG_P (p->new_sp_equiv_reg))
4832 abort ();
4833
4834 return;
4835 }
4836
4837 /* Next handle the case where we are setting SP's equivalent register.
4838 If we already have a value to set it to, abort. We could update, but
4839 there seems little point in handling that case. Note that we have
4840 to allow for the case where we are setting the register set in
4841 the previous part of a PARALLEL inside a single insn. But use the
4842 old offset for any updates within this insn. We must allow for the case
4843 where the register is being set in a different (usually wider) mode than
4844 Pmode). */
4845 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4846 {
4847 if (p->equiv_reg_src != 0
4848 || !REG_P (p->new_sp_equiv_reg)
4849 || !REG_P (SET_DEST (set))
4850 || GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD
4851 || REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set)))
4852 abort ();
4853 else
4854 p->equiv_reg_src
4855 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4856 plus_constant (p->sp_equiv_reg,
4857 p->sp_offset));
4858 }
4859
4860 /* Otherwise, replace any references to SP in the insn to its new value
4861 and emit the insn. */
4862 else
4863 {
4864 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4865 plus_constant (p->sp_equiv_reg,
4866 p->sp_offset));
4867 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4868 plus_constant (p->sp_equiv_reg,
4869 p->sp_offset));
4870 emit_insn (set);
4871 }
4872 }
4873
4874 /* Update the tracking information for registers set to constants. */
4875
4876 static void
4877 update_epilogue_consts (rtx dest, rtx x, void *data)
4878 {
4879 struct epi_info *p = (struct epi_info *) data;
4880 rtx new;
4881
4882 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4883 return;
4884
4885 /* If we are either clobbering a register or doing a partial set,
4886 show we don't know the value. */
4887 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4888 p->const_equiv[REGNO (dest)] = 0;
4889
4890 /* If we are setting it to a constant, record that constant. */
4891 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4892 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4893
4894 /* If this is a binary operation between a register we have been tracking
4895 and a constant, see if we can compute a new constant value. */
4896 else if (ARITHMETIC_P (SET_SRC (x))
4897 && REG_P (XEXP (SET_SRC (x), 0))
4898 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4899 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4900 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4901 && 0 != (new = simplify_binary_operation
4902 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4903 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4904 XEXP (SET_SRC (x), 1)))
4905 && GET_CODE (new) == CONST_INT)
4906 p->const_equiv[REGNO (dest)] = new;
4907
4908 /* Otherwise, we can't do anything with this value. */
4909 else
4910 p->const_equiv[REGNO (dest)] = 0;
4911 }
4912
4913 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4914
4915 static void
4916 emit_equiv_load (struct epi_info *p)
4917 {
4918 if (p->equiv_reg_src != 0)
4919 {
4920 rtx dest = p->sp_equiv_reg;
4921
4922 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
4923 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
4924 REGNO (p->sp_equiv_reg));
4925
4926 emit_move_insn (dest, p->equiv_reg_src);
4927 p->equiv_reg_src = 0;
4928 }
4929 }
4930 #endif
4931
4932 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4933 this into place with notes indicating where the prologue ends and where
4934 the epilogue begins. Update the basic block information when possible. */
4935
4936 void
4937 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
4938 {
4939 int inserted = 0;
4940 edge e;
4941 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4942 rtx seq;
4943 #endif
4944 #ifdef HAVE_prologue
4945 rtx prologue_end = NULL_RTX;
4946 #endif
4947 #if defined (HAVE_epilogue) || defined(HAVE_return)
4948 rtx epilogue_end = NULL_RTX;
4949 #endif
4950
4951 #ifdef HAVE_prologue
4952 if (HAVE_prologue)
4953 {
4954 start_sequence ();
4955 seq = gen_prologue ();
4956 emit_insn (seq);
4957
4958 /* Retain a map of the prologue insns. */
4959 record_insns (seq, &prologue);
4960 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
4961
4962 seq = get_insns ();
4963 end_sequence ();
4964 set_insn_locators (seq, prologue_locator);
4965
4966 /* Can't deal with multiple successors of the entry block
4967 at the moment. Function should always have at least one
4968 entry point. */
4969 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
4970 abort ();
4971
4972 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
4973 inserted = 1;
4974 }
4975 #endif
4976
4977 /* If the exit block has no non-fake predecessors, we don't need
4978 an epilogue. */
4979 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
4980 if ((e->flags & EDGE_FAKE) == 0)
4981 break;
4982 if (e == NULL)
4983 goto epilogue_done;
4984
4985 #ifdef HAVE_return
4986 if (optimize && HAVE_return)
4987 {
4988 /* If we're allowed to generate a simple return instruction,
4989 then by definition we don't need a full epilogue. Examine
4990 the block that falls through to EXIT. If it does not
4991 contain any code, examine its predecessors and try to
4992 emit (conditional) return instructions. */
4993
4994 basic_block last;
4995 edge e_next;
4996 rtx label;
4997
4998 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
4999 if (e->flags & EDGE_FALLTHRU)
5000 break;
5001 if (e == NULL)
5002 goto epilogue_done;
5003 last = e->src;
5004
5005 /* Verify that there are no active instructions in the last block. */
5006 label = BB_END (last);
5007 while (label && !LABEL_P (label))
5008 {
5009 if (active_insn_p (label))
5010 break;
5011 label = PREV_INSN (label);
5012 }
5013
5014 if (BB_HEAD (last) == label && LABEL_P (label))
5015 {
5016 rtx epilogue_line_note = NULL_RTX;
5017
5018 /* Locate the line number associated with the closing brace,
5019 if we can find one. */
5020 for (seq = get_last_insn ();
5021 seq && ! active_insn_p (seq);
5022 seq = PREV_INSN (seq))
5023 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5024 {
5025 epilogue_line_note = seq;
5026 break;
5027 }
5028
5029 for (e = last->pred; e; e = e_next)
5030 {
5031 basic_block bb = e->src;
5032 rtx jump;
5033
5034 e_next = e->pred_next;
5035 if (bb == ENTRY_BLOCK_PTR)
5036 continue;
5037
5038 jump = BB_END (bb);
5039 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5040 continue;
5041
5042 /* If we have an unconditional jump, we can replace that
5043 with a simple return instruction. */
5044 if (simplejump_p (jump))
5045 {
5046 emit_return_into_block (bb, epilogue_line_note);
5047 delete_insn (jump);
5048 }
5049
5050 /* If we have a conditional jump, we can try to replace
5051 that with a conditional return instruction. */
5052 else if (condjump_p (jump))
5053 {
5054 if (! redirect_jump (jump, 0, 0))
5055 continue;
5056
5057 /* If this block has only one successor, it both jumps
5058 and falls through to the fallthru block, so we can't
5059 delete the edge. */
5060 if (bb->succ->succ_next == NULL)
5061 continue;
5062 }
5063 else
5064 continue;
5065
5066 /* Fix up the CFG for the successful change we just made. */
5067 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5068 }
5069
5070 /* Emit a return insn for the exit fallthru block. Whether
5071 this is still reachable will be determined later. */
5072
5073 emit_barrier_after (BB_END (last));
5074 emit_return_into_block (last, epilogue_line_note);
5075 epilogue_end = BB_END (last);
5076 last->succ->flags &= ~EDGE_FALLTHRU;
5077 goto epilogue_done;
5078 }
5079 }
5080 #endif
5081 /* Find the edge that falls through to EXIT. Other edges may exist
5082 due to RETURN instructions, but those don't need epilogues.
5083 There really shouldn't be a mixture -- either all should have
5084 been converted or none, however... */
5085
5086 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5087 if (e->flags & EDGE_FALLTHRU)
5088 break;
5089 if (e == NULL)
5090 goto epilogue_done;
5091
5092 #ifdef HAVE_epilogue
5093 if (HAVE_epilogue)
5094 {
5095 start_sequence ();
5096 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5097
5098 seq = gen_epilogue ();
5099
5100 #ifdef INCOMING_RETURN_ADDR_RTX
5101 /* If this function returns with the stack depressed and we can support
5102 it, massage the epilogue to actually do that. */
5103 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5104 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5105 seq = keep_stack_depressed (seq);
5106 #endif
5107
5108 emit_jump_insn (seq);
5109
5110 /* Retain a map of the epilogue insns. */
5111 record_insns (seq, &epilogue);
5112 set_insn_locators (seq, epilogue_locator);
5113
5114 seq = get_insns ();
5115 end_sequence ();
5116
5117 insert_insn_on_edge (seq, e);
5118 inserted = 1;
5119 }
5120 else
5121 #endif
5122 {
5123 basic_block cur_bb;
5124
5125 if (! next_active_insn (BB_END (e->src)))
5126 goto epilogue_done;
5127 /* We have a fall-through edge to the exit block, the source is not
5128 at the end of the function, and there will be an assembler epilogue
5129 at the end of the function.
5130 We can't use force_nonfallthru here, because that would try to
5131 use return. Inserting a jump 'by hand' is extremely messy, so
5132 we take advantage of cfg_layout_finalize using
5133 fixup_fallthru_exit_predecessor. */
5134 cfg_layout_initialize (0);
5135 FOR_EACH_BB (cur_bb)
5136 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5137 cur_bb->rbi->next = cur_bb->next_bb;
5138 cfg_layout_finalize ();
5139 }
5140 epilogue_done:
5141
5142 if (inserted)
5143 commit_edge_insertions ();
5144
5145 #ifdef HAVE_sibcall_epilogue
5146 /* Emit sibling epilogues before any sibling call sites. */
5147 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5148 {
5149 basic_block bb = e->src;
5150 rtx insn = BB_END (bb);
5151 rtx i;
5152 rtx newinsn;
5153
5154 if (!CALL_P (insn)
5155 || ! SIBLING_CALL_P (insn))
5156 continue;
5157
5158 start_sequence ();
5159 emit_insn (gen_sibcall_epilogue ());
5160 seq = get_insns ();
5161 end_sequence ();
5162
5163 /* Retain a map of the epilogue insns. Used in life analysis to
5164 avoid getting rid of sibcall epilogue insns. Do this before we
5165 actually emit the sequence. */
5166 record_insns (seq, &sibcall_epilogue);
5167 set_insn_locators (seq, epilogue_locator);
5168
5169 i = PREV_INSN (insn);
5170 newinsn = emit_insn_before (seq, insn);
5171 }
5172 #endif
5173
5174 #ifdef HAVE_prologue
5175 /* This is probably all useless now that we use locators. */
5176 if (prologue_end)
5177 {
5178 rtx insn, prev;
5179
5180 /* GDB handles `break f' by setting a breakpoint on the first
5181 line note after the prologue. Which means (1) that if
5182 there are line number notes before where we inserted the
5183 prologue we should move them, and (2) we should generate a
5184 note before the end of the first basic block, if there isn't
5185 one already there.
5186
5187 ??? This behavior is completely broken when dealing with
5188 multiple entry functions. We simply place the note always
5189 into first basic block and let alternate entry points
5190 to be missed.
5191 */
5192
5193 for (insn = prologue_end; insn; insn = prev)
5194 {
5195 prev = PREV_INSN (insn);
5196 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5197 {
5198 /* Note that we cannot reorder the first insn in the
5199 chain, since rest_of_compilation relies on that
5200 remaining constant. */
5201 if (prev == NULL)
5202 break;
5203 reorder_insns (insn, insn, prologue_end);
5204 }
5205 }
5206
5207 /* Find the last line number note in the first block. */
5208 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5209 insn != prologue_end && insn;
5210 insn = PREV_INSN (insn))
5211 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5212 break;
5213
5214 /* If we didn't find one, make a copy of the first line number
5215 we run across. */
5216 if (! insn)
5217 {
5218 for (insn = next_active_insn (prologue_end);
5219 insn;
5220 insn = PREV_INSN (insn))
5221 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5222 {
5223 emit_note_copy_after (insn, prologue_end);
5224 break;
5225 }
5226 }
5227 }
5228 #endif
5229 #ifdef HAVE_epilogue
5230 if (epilogue_end)
5231 {
5232 rtx insn, next;
5233
5234 /* Similarly, move any line notes that appear after the epilogue.
5235 There is no need, however, to be quite so anal about the existence
5236 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5237 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5238 info generation. */
5239 for (insn = epilogue_end; insn; insn = next)
5240 {
5241 next = NEXT_INSN (insn);
5242 if (NOTE_P (insn)
5243 && (NOTE_LINE_NUMBER (insn) > 0
5244 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5245 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5246 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5247 }
5248 }
5249 #endif
5250 }
5251
5252 /* Reposition the prologue-end and epilogue-begin notes after instruction
5253 scheduling and delayed branch scheduling. */
5254
5255 void
5256 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5257 {
5258 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5259 rtx insn, last, note;
5260 int len;
5261
5262 if ((len = VARRAY_SIZE (prologue)) > 0)
5263 {
5264 last = 0, note = 0;
5265
5266 /* Scan from the beginning until we reach the last prologue insn.
5267 We apparently can't depend on basic_block_{head,end} after
5268 reorg has run. */
5269 for (insn = f; insn; insn = NEXT_INSN (insn))
5270 {
5271 if (NOTE_P (insn))
5272 {
5273 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5274 note = insn;
5275 }
5276 else if (contains (insn, prologue))
5277 {
5278 last = insn;
5279 if (--len == 0)
5280 break;
5281 }
5282 }
5283
5284 if (last)
5285 {
5286 /* Find the prologue-end note if we haven't already, and
5287 move it to just after the last prologue insn. */
5288 if (note == 0)
5289 {
5290 for (note = last; (note = NEXT_INSN (note));)
5291 if (NOTE_P (note)
5292 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5293 break;
5294 }
5295
5296 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5297 if (LABEL_P (last))
5298 last = NEXT_INSN (last);
5299 reorder_insns (note, note, last);
5300 }
5301 }
5302
5303 if ((len = VARRAY_SIZE (epilogue)) > 0)
5304 {
5305 last = 0, note = 0;
5306
5307 /* Scan from the end until we reach the first epilogue insn.
5308 We apparently can't depend on basic_block_{head,end} after
5309 reorg has run. */
5310 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5311 {
5312 if (NOTE_P (insn))
5313 {
5314 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5315 note = insn;
5316 }
5317 else if (contains (insn, epilogue))
5318 {
5319 last = insn;
5320 if (--len == 0)
5321 break;
5322 }
5323 }
5324
5325 if (last)
5326 {
5327 /* Find the epilogue-begin note if we haven't already, and
5328 move it to just before the first epilogue insn. */
5329 if (note == 0)
5330 {
5331 for (note = insn; (note = PREV_INSN (note));)
5332 if (NOTE_P (note)
5333 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5334 break;
5335 }
5336
5337 if (PREV_INSN (last) != note)
5338 reorder_insns (note, note, PREV_INSN (last));
5339 }
5340 }
5341 #endif /* HAVE_prologue or HAVE_epilogue */
5342 }
5343
5344 /* Called once, at initialization, to initialize function.c. */
5345
5346 void
5347 init_function_once (void)
5348 {
5349 VARRAY_INT_INIT (prologue, 0, "prologue");
5350 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5351 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5352 }
5353
5354 /* Resets insn_block_boundaries array. */
5355
5356 void
5357 reset_block_changes (void)
5358 {
5359 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5360 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5361 }
5362
5363 /* Record the boundary for BLOCK. */
5364 void
5365 record_block_change (tree block)
5366 {
5367 int i, n;
5368 tree last_block;
5369
5370 if (!block)
5371 return;
5372
5373 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5374 VARRAY_POP (cfun->ib_boundaries_block);
5375 n = get_max_uid ();
5376 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5377 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5378
5379 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5380 }
5381
5382 /* Finishes record of boundaries. */
5383 void finalize_block_changes (void)
5384 {
5385 record_block_change (DECL_INITIAL (current_function_decl));
5386 }
5387
5388 /* For INSN return the BLOCK it belongs to. */
5389 void
5390 check_block_change (rtx insn, tree *block)
5391 {
5392 unsigned uid = INSN_UID (insn);
5393
5394 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5395 return;
5396
5397 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5398 }
5399
5400 /* Releases the ib_boundaries_block records. */
5401 void
5402 free_block_changes (void)
5403 {
5404 cfun->ib_boundaries_block = NULL;
5405 }
5406
5407 /* Returns the name of the current function. */
5408 const char *
5409 current_function_name (void)
5410 {
5411 return lang_hooks.decl_printable_name (cfun->decl, 2);
5412 }
5413
5414 #include "gt-function.h"