alias.c: Fix typos in comments.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
35
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
40
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "libfuncs.h"
50 #include "regs.h"
51 #include "hard-reg-set.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "output.h"
55 #include "basic-block.h"
56 #include "obstack.h"
57 #include "toplev.h"
58 #include "hash.h"
59 #include "ggc.h"
60 #include "tm_p.h"
61 #include "integrate.h"
62
63 #ifndef TRAMPOLINE_ALIGNMENT
64 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
65 #endif
66
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
70
71 /* Some systems use __main in a way incompatible with its use in gcc, in these
72 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
73 give the same symbol without quotes for an alternative entry point. You
74 must define both, or neither. */
75 #ifndef NAME__MAIN
76 #define NAME__MAIN "__main"
77 #define SYMBOL__MAIN __main
78 #endif
79
80 /* Round a value to the lowest integer less than it that is a multiple of
81 the required alignment. Avoid using division in case the value is
82 negative. Assume the alignment is a power of two. */
83 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
84
85 /* Similar, but round to the next highest integer that meets the
86 alignment. */
87 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
88
89 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
90 during rtl generation. If they are different register numbers, this is
91 always true. It may also be true if
92 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
93 generation. See fix_lexical_addr for details. */
94
95 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
96 #define NEED_SEPARATE_AP
97 #endif
98
99 /* Nonzero if function being compiled doesn't contain any calls
100 (ignoring the prologue and epilogue). This is set prior to
101 local register allocation and is valid for the remaining
102 compiler passes. */
103 int current_function_is_leaf;
104
105 /* Nonzero if function being compiled doesn't contain any instructions
106 that can throw an exception. This is set prior to final. */
107
108 int current_function_nothrow;
109
110 /* Nonzero if function being compiled doesn't modify the stack pointer
111 (ignoring the prologue and epilogue). This is only valid after
112 life_analysis has run. */
113 int current_function_sp_is_unchanging;
114
115 /* Nonzero if the function being compiled is a leaf function which only
116 uses leaf registers. This is valid after reload (specifically after
117 sched2) and is useful only if the port defines LEAF_REGISTERS. */
118 int current_function_uses_only_leaf_regs;
119
120 /* Nonzero once virtual register instantiation has been done.
121 assign_stack_local uses frame_pointer_rtx when this is nonzero.
122 calls.c:emit_library_call_value_1 uses it to set up
123 post-instantiation libcalls. */
124 int virtuals_instantiated;
125
126 /* These variables hold pointers to functions to create and destroy
127 target specific, per-function data structures. */
128 void (*init_machine_status) PARAMS ((struct function *));
129 void (*free_machine_status) PARAMS ((struct function *));
130 /* This variable holds a pointer to a function to register any
131 data items in the target specific, per-function data structure
132 that will need garbage collection. */
133 void (*mark_machine_status) PARAMS ((struct function *));
134
135 /* Likewise, but for language-specific data. */
136 void (*init_lang_status) PARAMS ((struct function *));
137 void (*save_lang_status) PARAMS ((struct function *));
138 void (*restore_lang_status) PARAMS ((struct function *));
139 void (*mark_lang_status) PARAMS ((struct function *));
140 void (*free_lang_status) PARAMS ((struct function *));
141
142 /* The FUNCTION_DECL for an inline function currently being expanded. */
143 tree inline_function_decl;
144
145 /* The currently compiled function. */
146 struct function *cfun = 0;
147
148 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
149 static varray_type prologue;
150 static varray_type epilogue;
151
152 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
153 in this function. */
154 static varray_type sibcall_epilogue;
155 \f
156 /* In order to evaluate some expressions, such as function calls returning
157 structures in memory, we need to temporarily allocate stack locations.
158 We record each allocated temporary in the following structure.
159
160 Associated with each temporary slot is a nesting level. When we pop up
161 one level, all temporaries associated with the previous level are freed.
162 Normally, all temporaries are freed after the execution of the statement
163 in which they were created. However, if we are inside a ({...}) grouping,
164 the result may be in a temporary and hence must be preserved. If the
165 result could be in a temporary, we preserve it if we can determine which
166 one it is in. If we cannot determine which temporary may contain the
167 result, all temporaries are preserved. A temporary is preserved by
168 pretending it was allocated at the previous nesting level.
169
170 Automatic variables are also assigned temporary slots, at the nesting
171 level where they are defined. They are marked a "kept" so that
172 free_temp_slots will not free them. */
173
174 struct temp_slot
175 {
176 /* Points to next temporary slot. */
177 struct temp_slot *next;
178 /* The rtx to used to reference the slot. */
179 rtx slot;
180 /* The rtx used to represent the address if not the address of the
181 slot above. May be an EXPR_LIST if multiple addresses exist. */
182 rtx address;
183 /* The alignment (in bits) of the slot. */
184 int align;
185 /* The size, in units, of the slot. */
186 HOST_WIDE_INT size;
187 /* The type of the object in the slot, or zero if it doesn't correspond
188 to a type. We use this to determine whether a slot can be reused.
189 It can be reused if objects of the type of the new slot will always
190 conflict with objects of the type of the old slot. */
191 tree type;
192 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
193 tree rtl_expr;
194 /* Non-zero if this temporary is currently in use. */
195 char in_use;
196 /* Non-zero if this temporary has its address taken. */
197 char addr_taken;
198 /* Nesting level at which this slot is being used. */
199 int level;
200 /* Non-zero if this should survive a call to free_temp_slots. */
201 int keep;
202 /* The offset of the slot from the frame_pointer, including extra space
203 for alignment. This info is for combine_temp_slots. */
204 HOST_WIDE_INT base_offset;
205 /* The size of the slot, including extra space for alignment. This
206 info is for combine_temp_slots. */
207 HOST_WIDE_INT full_size;
208 };
209 \f
210 /* This structure is used to record MEMs or pseudos used to replace VAR, any
211 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
212 maintain this list in case two operands of an insn were required to match;
213 in that case we must ensure we use the same replacement. */
214
215 struct fixup_replacement
216 {
217 rtx old;
218 rtx new;
219 struct fixup_replacement *next;
220 };
221
222 struct insns_for_mem_entry {
223 /* The KEY in HE will be a MEM. */
224 struct hash_entry he;
225 /* These are the INSNS which reference the MEM. */
226 rtx insns;
227 };
228
229 /* Forward declarations. */
230
231 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
232 int, struct function *));
233 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
234 HOST_WIDE_INT, int, tree));
235 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
236 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
237 enum machine_mode, enum machine_mode,
238 int, unsigned int, int,
239 struct hash_table *));
240 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
241 enum machine_mode,
242 struct hash_table *));
243 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
244 struct hash_table *));
245 static struct fixup_replacement
246 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
247 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
248 int, int));
249 static void fixup_var_refs_insns_with_hash
250 PARAMS ((struct hash_table *, rtx,
251 enum machine_mode, int));
252 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
253 int, int));
254 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
255 struct fixup_replacement **));
256 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
257 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
258 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
259 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
260 static void instantiate_decls PARAMS ((tree, int));
261 static void instantiate_decls_1 PARAMS ((tree, int));
262 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
263 static rtx instantiate_new_reg PARAMS ((rtx, HOST_WIDE_INT *));
264 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
265 static void delete_handlers PARAMS ((void));
266 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
267 struct args_size *));
268 #ifndef ARGS_GROW_DOWNWARD
269 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
270 tree));
271 #endif
272 static rtx round_trampoline_addr PARAMS ((rtx));
273 static rtx adjust_trampoline_addr PARAMS ((rtx));
274 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
275 static void reorder_blocks_0 PARAMS ((tree));
276 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
277 static void reorder_fix_fragments PARAMS ((tree));
278 static tree blocks_nreverse PARAMS ((tree));
279 static int all_blocks PARAMS ((tree, tree *));
280 static tree *get_block_vector PARAMS ((tree, int *));
281 /* We always define `record_insns' even if its not used so that we
282 can always export `prologue_epilogue_contains'. */
283 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
284 static int contains PARAMS ((rtx, varray_type));
285 #ifdef HAVE_return
286 static void emit_return_into_block PARAMS ((basic_block, rtx));
287 #endif
288 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
289 static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
290 struct hash_table *));
291 static void purge_single_hard_subreg_set PARAMS ((rtx));
292 #ifdef HAVE_epilogue
293 static void keep_stack_depressed PARAMS ((rtx));
294 #endif
295 static int is_addressof PARAMS ((rtx *, void *));
296 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
297 struct hash_table *,
298 hash_table_key));
299 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
300 static bool insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
301 static int insns_for_mem_walk PARAMS ((rtx *, void *));
302 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
303 static void mark_temp_slot PARAMS ((struct temp_slot *));
304 static void mark_function_status PARAMS ((struct function *));
305 static void maybe_mark_struct_function PARAMS ((void *));
306 static void prepare_function_start PARAMS ((void));
307 static void do_clobber_return_reg PARAMS ((rtx, void *));
308 static void do_use_return_reg PARAMS ((rtx, void *));
309 \f
310 /* Pointer to chain of `struct function' for containing functions. */
311 static struct function *outer_function_chain;
312
313 /* Given a function decl for a containing function,
314 return the `struct function' for it. */
315
316 struct function *
317 find_function_data (decl)
318 tree decl;
319 {
320 struct function *p;
321
322 for (p = outer_function_chain; p; p = p->outer)
323 if (p->decl == decl)
324 return p;
325
326 abort ();
327 }
328
329 /* Save the current context for compilation of a nested function.
330 This is called from language-specific code. The caller should use
331 the save_lang_status callback to save any language-specific state,
332 since this function knows only about language-independent
333 variables. */
334
335 void
336 push_function_context_to (context)
337 tree context;
338 {
339 struct function *p;
340
341 if (context)
342 {
343 if (context == current_function_decl)
344 cfun->contains_functions = 1;
345 else
346 {
347 struct function *containing = find_function_data (context);
348 containing->contains_functions = 1;
349 }
350 }
351
352 if (cfun == 0)
353 init_dummy_function_start ();
354 p = cfun;
355
356 p->outer = outer_function_chain;
357 outer_function_chain = p;
358 p->fixup_var_refs_queue = 0;
359
360 if (save_lang_status)
361 (*save_lang_status) (p);
362
363 cfun = 0;
364 }
365
366 void
367 push_function_context ()
368 {
369 push_function_context_to (current_function_decl);
370 }
371
372 /* Restore the last saved context, at the end of a nested function.
373 This function is called from language-specific code. */
374
375 void
376 pop_function_context_from (context)
377 tree context ATTRIBUTE_UNUSED;
378 {
379 struct function *p = outer_function_chain;
380 struct var_refs_queue *queue;
381 struct var_refs_queue *next;
382
383 cfun = p;
384 outer_function_chain = p->outer;
385
386 current_function_decl = p->decl;
387 reg_renumber = 0;
388
389 restore_emit_status (p);
390
391 if (restore_lang_status)
392 (*restore_lang_status) (p);
393
394 /* Finish doing put_var_into_stack for any of our variables
395 which became addressable during the nested function. */
396 for (queue = p->fixup_var_refs_queue; queue; queue = next)
397 {
398 next = queue->next;
399 fixup_var_refs (queue->modified, queue->promoted_mode,
400 queue->unsignedp, 0);
401 free (queue);
402 }
403 p->fixup_var_refs_queue = 0;
404
405 /* Reset variables that have known state during rtx generation. */
406 rtx_equal_function_value_matters = 1;
407 virtuals_instantiated = 0;
408 generating_concat_p = 1;
409 }
410
411 void
412 pop_function_context ()
413 {
414 pop_function_context_from (current_function_decl);
415 }
416
417 /* Clear out all parts of the state in F that can safely be discarded
418 after the function has been parsed, but not compiled, to let
419 garbage collection reclaim the memory. */
420
421 void
422 free_after_parsing (f)
423 struct function *f;
424 {
425 /* f->expr->forced_labels is used by code generation. */
426 /* f->emit->regno_reg_rtx is used by code generation. */
427 /* f->varasm is used by code generation. */
428 /* f->eh->eh_return_stub_label is used by code generation. */
429
430 if (free_lang_status)
431 (*free_lang_status) (f);
432 free_stmt_status (f);
433 }
434
435 /* Clear out all parts of the state in F that can safely be discarded
436 after the function has been compiled, to let garbage collection
437 reclaim the memory. */
438
439 void
440 free_after_compilation (f)
441 struct function *f;
442 {
443 struct temp_slot *ts;
444 struct temp_slot *next;
445
446 free_eh_status (f);
447 free_expr_status (f);
448 free_emit_status (f);
449 free_varasm_status (f);
450
451 if (free_machine_status)
452 (*free_machine_status) (f);
453
454 if (f->x_parm_reg_stack_loc)
455 free (f->x_parm_reg_stack_loc);
456
457 for (ts = f->x_temp_slots; ts; ts = next)
458 {
459 next = ts->next;
460 free (ts);
461 }
462 f->x_temp_slots = NULL;
463
464 f->arg_offset_rtx = NULL;
465 f->return_rtx = NULL;
466 f->internal_arg_pointer = NULL;
467 f->x_nonlocal_labels = NULL;
468 f->x_nonlocal_goto_handler_slots = NULL;
469 f->x_nonlocal_goto_handler_labels = NULL;
470 f->x_nonlocal_goto_stack_level = NULL;
471 f->x_cleanup_label = NULL;
472 f->x_return_label = NULL;
473 f->x_save_expr_regs = NULL;
474 f->x_stack_slot_list = NULL;
475 f->x_rtl_expr_chain = NULL;
476 f->x_tail_recursion_label = NULL;
477 f->x_tail_recursion_reentry = NULL;
478 f->x_arg_pointer_save_area = NULL;
479 f->x_clobber_return_insn = NULL;
480 f->x_context_display = NULL;
481 f->x_trampoline_list = NULL;
482 f->x_parm_birth_insn = NULL;
483 f->x_last_parm_insn = NULL;
484 f->x_parm_reg_stack_loc = NULL;
485 f->fixup_var_refs_queue = NULL;
486 f->original_arg_vector = NULL;
487 f->original_decl_initial = NULL;
488 f->inl_last_parm_insn = NULL;
489 f->epilogue_delay_list = NULL;
490
491 free (f);
492 }
493 \f
494 /* Allocate fixed slots in the stack frame of the current function. */
495
496 /* Return size needed for stack frame based on slots so far allocated in
497 function F.
498 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
499 the caller may have to do that. */
500
501 HOST_WIDE_INT
502 get_func_frame_size (f)
503 struct function *f;
504 {
505 #ifdef FRAME_GROWS_DOWNWARD
506 return -f->x_frame_offset;
507 #else
508 return f->x_frame_offset;
509 #endif
510 }
511
512 /* Return size needed for stack frame based on slots so far allocated.
513 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
514 the caller may have to do that. */
515 HOST_WIDE_INT
516 get_frame_size ()
517 {
518 return get_func_frame_size (cfun);
519 }
520
521 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
522 with machine mode MODE.
523
524 ALIGN controls the amount of alignment for the address of the slot:
525 0 means according to MODE,
526 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
527 positive specifies alignment boundary in bits.
528
529 We do not round to stack_boundary here.
530
531 FUNCTION specifies the function to allocate in. */
532
533 static rtx
534 assign_stack_local_1 (mode, size, align, function)
535 enum machine_mode mode;
536 HOST_WIDE_INT size;
537 int align;
538 struct function *function;
539 {
540 register rtx x, addr;
541 int bigend_correction = 0;
542 int alignment;
543
544 if (align == 0)
545 {
546 tree type;
547
548 if (mode == BLKmode)
549 alignment = BIGGEST_ALIGNMENT;
550 else
551 alignment = GET_MODE_ALIGNMENT (mode);
552
553 /* Allow the target to (possibly) increase the alignment of this
554 stack slot. */
555 type = type_for_mode (mode, 0);
556 if (type)
557 alignment = LOCAL_ALIGNMENT (type, alignment);
558
559 alignment /= BITS_PER_UNIT;
560 }
561 else if (align == -1)
562 {
563 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
564 size = CEIL_ROUND (size, alignment);
565 }
566 else
567 alignment = align / BITS_PER_UNIT;
568
569 #ifdef FRAME_GROWS_DOWNWARD
570 function->x_frame_offset -= size;
571 #endif
572
573 /* Ignore alignment we can't do with expected alignment of the boundary. */
574 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
575 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
576
577 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
578 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
579
580 /* Round frame offset to that alignment.
581 We must be careful here, since FRAME_OFFSET might be negative and
582 division with a negative dividend isn't as well defined as we might
583 like. So we instead assume that ALIGNMENT is a power of two and
584 use logical operations which are unambiguous. */
585 #ifdef FRAME_GROWS_DOWNWARD
586 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
587 #else
588 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
589 #endif
590
591 /* On a big-endian machine, if we are allocating more space than we will use,
592 use the least significant bytes of those that are allocated. */
593 if (BYTES_BIG_ENDIAN && mode != BLKmode)
594 bigend_correction = size - GET_MODE_SIZE (mode);
595
596 /* If we have already instantiated virtual registers, return the actual
597 address relative to the frame pointer. */
598 if (function == cfun && virtuals_instantiated)
599 addr = plus_constant (frame_pointer_rtx,
600 (frame_offset + bigend_correction
601 + STARTING_FRAME_OFFSET));
602 else
603 addr = plus_constant (virtual_stack_vars_rtx,
604 function->x_frame_offset + bigend_correction);
605
606 #ifndef FRAME_GROWS_DOWNWARD
607 function->x_frame_offset += size;
608 #endif
609
610 x = gen_rtx_MEM (mode, addr);
611
612 function->x_stack_slot_list
613 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
614
615 return x;
616 }
617
618 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
619 current function. */
620
621 rtx
622 assign_stack_local (mode, size, align)
623 enum machine_mode mode;
624 HOST_WIDE_INT size;
625 int align;
626 {
627 return assign_stack_local_1 (mode, size, align, cfun);
628 }
629 \f
630 /* Allocate a temporary stack slot and record it for possible later
631 reuse.
632
633 MODE is the machine mode to be given to the returned rtx.
634
635 SIZE is the size in units of the space required. We do no rounding here
636 since assign_stack_local will do any required rounding.
637
638 KEEP is 1 if this slot is to be retained after a call to
639 free_temp_slots. Automatic variables for a block are allocated
640 with this flag. KEEP is 2 if we allocate a longer term temporary,
641 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
642 if we are to allocate something at an inner level to be treated as
643 a variable in the block (e.g., a SAVE_EXPR).
644
645 TYPE is the type that will be used for the stack slot. */
646
647 static rtx
648 assign_stack_temp_for_type (mode, size, keep, type)
649 enum machine_mode mode;
650 HOST_WIDE_INT size;
651 int keep;
652 tree type;
653 {
654 int align;
655 struct temp_slot *p, *best_p = 0;
656
657 /* If SIZE is -1 it means that somebody tried to allocate a temporary
658 of a variable size. */
659 if (size == -1)
660 abort ();
661
662 if (mode == BLKmode)
663 align = BIGGEST_ALIGNMENT;
664 else
665 align = GET_MODE_ALIGNMENT (mode);
666
667 if (! type)
668 type = type_for_mode (mode, 0);
669
670 if (type)
671 align = LOCAL_ALIGNMENT (type, align);
672
673 /* Try to find an available, already-allocated temporary of the proper
674 mode which meets the size and alignment requirements. Choose the
675 smallest one with the closest alignment. */
676 for (p = temp_slots; p; p = p->next)
677 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
678 && ! p->in_use
679 && objects_must_conflict_p (p->type, type)
680 && (best_p == 0 || best_p->size > p->size
681 || (best_p->size == p->size && best_p->align > p->align)))
682 {
683 if (p->align == align && p->size == size)
684 {
685 best_p = 0;
686 break;
687 }
688 best_p = p;
689 }
690
691 /* Make our best, if any, the one to use. */
692 if (best_p)
693 {
694 /* If there are enough aligned bytes left over, make them into a new
695 temp_slot so that the extra bytes don't get wasted. Do this only
696 for BLKmode slots, so that we can be sure of the alignment. */
697 if (GET_MODE (best_p->slot) == BLKmode)
698 {
699 int alignment = best_p->align / BITS_PER_UNIT;
700 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
701
702 if (best_p->size - rounded_size >= alignment)
703 {
704 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
705 p->in_use = p->addr_taken = 0;
706 p->size = best_p->size - rounded_size;
707 p->base_offset = best_p->base_offset + rounded_size;
708 p->full_size = best_p->full_size - rounded_size;
709 p->slot = gen_rtx_MEM (BLKmode,
710 plus_constant (XEXP (best_p->slot, 0),
711 rounded_size));
712 p->align = best_p->align;
713 p->address = 0;
714 p->rtl_expr = 0;
715 p->type = best_p->type;
716 p->next = temp_slots;
717 temp_slots = p;
718
719 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
720 stack_slot_list);
721
722 best_p->size = rounded_size;
723 best_p->full_size = rounded_size;
724 }
725 }
726
727 p = best_p;
728 }
729
730 /* If we still didn't find one, make a new temporary. */
731 if (p == 0)
732 {
733 HOST_WIDE_INT frame_offset_old = frame_offset;
734
735 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
736
737 /* We are passing an explicit alignment request to assign_stack_local.
738 One side effect of that is assign_stack_local will not round SIZE
739 to ensure the frame offset remains suitably aligned.
740
741 So for requests which depended on the rounding of SIZE, we go ahead
742 and round it now. We also make sure ALIGNMENT is at least
743 BIGGEST_ALIGNMENT. */
744 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
745 abort();
746 p->slot = assign_stack_local (mode,
747 (mode == BLKmode
748 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
749 : size),
750 align);
751
752 p->align = align;
753
754 /* The following slot size computation is necessary because we don't
755 know the actual size of the temporary slot until assign_stack_local
756 has performed all the frame alignment and size rounding for the
757 requested temporary. Note that extra space added for alignment
758 can be either above or below this stack slot depending on which
759 way the frame grows. We include the extra space if and only if it
760 is above this slot. */
761 #ifdef FRAME_GROWS_DOWNWARD
762 p->size = frame_offset_old - frame_offset;
763 #else
764 p->size = size;
765 #endif
766
767 /* Now define the fields used by combine_temp_slots. */
768 #ifdef FRAME_GROWS_DOWNWARD
769 p->base_offset = frame_offset;
770 p->full_size = frame_offset_old - frame_offset;
771 #else
772 p->base_offset = frame_offset_old;
773 p->full_size = frame_offset - frame_offset_old;
774 #endif
775 p->address = 0;
776 p->next = temp_slots;
777 temp_slots = p;
778 }
779
780 p->in_use = 1;
781 p->addr_taken = 0;
782 p->rtl_expr = seq_rtl_expr;
783 p->type = type;
784
785 if (keep == 2)
786 {
787 p->level = target_temp_slot_level;
788 p->keep = 0;
789 }
790 else if (keep == 3)
791 {
792 p->level = var_temp_slot_level;
793 p->keep = 0;
794 }
795 else
796 {
797 p->level = temp_slot_level;
798 p->keep = keep;
799 }
800
801 /* We may be reusing an old slot, so clear any MEM flags that may have been
802 set from before. */
803 RTX_UNCHANGING_P (p->slot) = 0;
804 MEM_IN_STRUCT_P (p->slot) = 0;
805 MEM_SCALAR_P (p->slot) = 0;
806 MEM_VOLATILE_P (p->slot) = 0;
807
808 /* If we know the alias set for the memory that will be used, use
809 it. If there's no TYPE, then we don't know anything about the
810 alias set for the memory. */
811 set_mem_alias_set (p->slot, type ? get_alias_set (type) : 0);
812
813 /* If a type is specified, set the relevant flags. */
814 if (type != 0)
815 {
816 RTX_UNCHANGING_P (p->slot) = TYPE_READONLY (type);
817 MEM_VOLATILE_P (p->slot) = TYPE_VOLATILE (type);
818 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
819 }
820
821 return p->slot;
822 }
823
824 /* Allocate a temporary stack slot and record it for possible later
825 reuse. First three arguments are same as in preceding function. */
826
827 rtx
828 assign_stack_temp (mode, size, keep)
829 enum machine_mode mode;
830 HOST_WIDE_INT size;
831 int keep;
832 {
833 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
834 }
835 \f
836 /* Assign a temporary of given TYPE.
837 KEEP is as for assign_stack_temp.
838 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
839 it is 0 if a register is OK.
840 DONT_PROMOTE is 1 if we should not promote values in register
841 to wider modes. */
842
843 rtx
844 assign_temp (type, keep, memory_required, dont_promote)
845 tree type;
846 int keep;
847 int memory_required;
848 int dont_promote ATTRIBUTE_UNUSED;
849 {
850 enum machine_mode mode = TYPE_MODE (type);
851 #ifndef PROMOTE_FOR_CALL_ONLY
852 int unsignedp = TREE_UNSIGNED (type);
853 #endif
854
855 if (mode == BLKmode || memory_required)
856 {
857 HOST_WIDE_INT size = int_size_in_bytes (type);
858 rtx tmp;
859
860 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
861 problems with allocating the stack space. */
862 if (size == 0)
863 size = 1;
864
865 /* Unfortunately, we don't yet know how to allocate variable-sized
866 temporaries. However, sometimes we have a fixed upper limit on
867 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
868 instead. This is the case for Chill variable-sized strings. */
869 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
870 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
871 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
872 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
873
874 tmp = assign_stack_temp_for_type (mode, size, keep, type);
875 return tmp;
876 }
877
878 #ifndef PROMOTE_FOR_CALL_ONLY
879 if (! dont_promote)
880 mode = promote_mode (type, mode, &unsignedp, 0);
881 #endif
882
883 return gen_reg_rtx (mode);
884 }
885 \f
886 /* Combine temporary stack slots which are adjacent on the stack.
887
888 This allows for better use of already allocated stack space. This is only
889 done for BLKmode slots because we can be sure that we won't have alignment
890 problems in this case. */
891
892 void
893 combine_temp_slots ()
894 {
895 struct temp_slot *p, *q;
896 struct temp_slot *prev_p, *prev_q;
897 int num_slots;
898
899 /* We can't combine slots, because the information about which slot
900 is in which alias set will be lost. */
901 if (flag_strict_aliasing)
902 return;
903
904 /* If there are a lot of temp slots, don't do anything unless
905 high levels of optimizaton. */
906 if (! flag_expensive_optimizations)
907 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
908 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
909 return;
910
911 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
912 {
913 int delete_p = 0;
914
915 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
916 for (q = p->next, prev_q = p; q; q = prev_q->next)
917 {
918 int delete_q = 0;
919 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
920 {
921 if (p->base_offset + p->full_size == q->base_offset)
922 {
923 /* Q comes after P; combine Q into P. */
924 p->size += q->size;
925 p->full_size += q->full_size;
926 delete_q = 1;
927 }
928 else if (q->base_offset + q->full_size == p->base_offset)
929 {
930 /* P comes after Q; combine P into Q. */
931 q->size += p->size;
932 q->full_size += p->full_size;
933 delete_p = 1;
934 break;
935 }
936 }
937 /* Either delete Q or advance past it. */
938 if (delete_q)
939 {
940 prev_q->next = q->next;
941 free (q);
942 }
943 else
944 prev_q = q;
945 }
946 /* Either delete P or advance past it. */
947 if (delete_p)
948 {
949 if (prev_p)
950 prev_p->next = p->next;
951 else
952 temp_slots = p->next;
953 }
954 else
955 prev_p = p;
956 }
957 }
958 \f
959 /* Find the temp slot corresponding to the object at address X. */
960
961 static struct temp_slot *
962 find_temp_slot_from_address (x)
963 rtx x;
964 {
965 struct temp_slot *p;
966 rtx next;
967
968 for (p = temp_slots; p; p = p->next)
969 {
970 if (! p->in_use)
971 continue;
972
973 else if (XEXP (p->slot, 0) == x
974 || p->address == x
975 || (GET_CODE (x) == PLUS
976 && XEXP (x, 0) == virtual_stack_vars_rtx
977 && GET_CODE (XEXP (x, 1)) == CONST_INT
978 && INTVAL (XEXP (x, 1)) >= p->base_offset
979 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
980 return p;
981
982 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
983 for (next = p->address; next; next = XEXP (next, 1))
984 if (XEXP (next, 0) == x)
985 return p;
986 }
987
988 /* If we have a sum involving a register, see if it points to a temp
989 slot. */
990 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
991 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
992 return p;
993 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
994 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
995 return p;
996
997 return 0;
998 }
999
1000 /* Indicate that NEW is an alternate way of referring to the temp slot
1001 that previously was known by OLD. */
1002
1003 void
1004 update_temp_slot_address (old, new)
1005 rtx old, new;
1006 {
1007 struct temp_slot *p;
1008
1009 if (rtx_equal_p (old, new))
1010 return;
1011
1012 p = find_temp_slot_from_address (old);
1013
1014 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1015 is a register, see if one operand of the PLUS is a temporary
1016 location. If so, NEW points into it. Otherwise, if both OLD and
1017 NEW are a PLUS and if there is a register in common between them.
1018 If so, try a recursive call on those values. */
1019 if (p == 0)
1020 {
1021 if (GET_CODE (old) != PLUS)
1022 return;
1023
1024 if (GET_CODE (new) == REG)
1025 {
1026 update_temp_slot_address (XEXP (old, 0), new);
1027 update_temp_slot_address (XEXP (old, 1), new);
1028 return;
1029 }
1030 else if (GET_CODE (new) != PLUS)
1031 return;
1032
1033 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1034 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1035 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1036 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1037 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1038 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1039 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1040 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1041
1042 return;
1043 }
1044
1045 /* Otherwise add an alias for the temp's address. */
1046 else if (p->address == 0)
1047 p->address = new;
1048 else
1049 {
1050 if (GET_CODE (p->address) != EXPR_LIST)
1051 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1052
1053 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1054 }
1055 }
1056
1057 /* If X could be a reference to a temporary slot, mark the fact that its
1058 address was taken. */
1059
1060 void
1061 mark_temp_addr_taken (x)
1062 rtx x;
1063 {
1064 struct temp_slot *p;
1065
1066 if (x == 0)
1067 return;
1068
1069 /* If X is not in memory or is at a constant address, it cannot be in
1070 a temporary slot. */
1071 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1072 return;
1073
1074 p = find_temp_slot_from_address (XEXP (x, 0));
1075 if (p != 0)
1076 p->addr_taken = 1;
1077 }
1078
1079 /* If X could be a reference to a temporary slot, mark that slot as
1080 belonging to the to one level higher than the current level. If X
1081 matched one of our slots, just mark that one. Otherwise, we can't
1082 easily predict which it is, so upgrade all of them. Kept slots
1083 need not be touched.
1084
1085 This is called when an ({...}) construct occurs and a statement
1086 returns a value in memory. */
1087
1088 void
1089 preserve_temp_slots (x)
1090 rtx x;
1091 {
1092 struct temp_slot *p = 0;
1093
1094 /* If there is no result, we still might have some objects whose address
1095 were taken, so we need to make sure they stay around. */
1096 if (x == 0)
1097 {
1098 for (p = temp_slots; p; p = p->next)
1099 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1100 p->level--;
1101
1102 return;
1103 }
1104
1105 /* If X is a register that is being used as a pointer, see if we have
1106 a temporary slot we know it points to. To be consistent with
1107 the code below, we really should preserve all non-kept slots
1108 if we can't find a match, but that seems to be much too costly. */
1109 if (GET_CODE (x) == REG && REG_POINTER (x))
1110 p = find_temp_slot_from_address (x);
1111
1112 /* If X is not in memory or is at a constant address, it cannot be in
1113 a temporary slot, but it can contain something whose address was
1114 taken. */
1115 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1116 {
1117 for (p = temp_slots; p; p = p->next)
1118 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1119 p->level--;
1120
1121 return;
1122 }
1123
1124 /* First see if we can find a match. */
1125 if (p == 0)
1126 p = find_temp_slot_from_address (XEXP (x, 0));
1127
1128 if (p != 0)
1129 {
1130 /* Move everything at our level whose address was taken to our new
1131 level in case we used its address. */
1132 struct temp_slot *q;
1133
1134 if (p->level == temp_slot_level)
1135 {
1136 for (q = temp_slots; q; q = q->next)
1137 if (q != p && q->addr_taken && q->level == p->level)
1138 q->level--;
1139
1140 p->level--;
1141 p->addr_taken = 0;
1142 }
1143 return;
1144 }
1145
1146 /* Otherwise, preserve all non-kept slots at this level. */
1147 for (p = temp_slots; p; p = p->next)
1148 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1149 p->level--;
1150 }
1151
1152 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1153 with that RTL_EXPR, promote it into a temporary slot at the present
1154 level so it will not be freed when we free slots made in the
1155 RTL_EXPR. */
1156
1157 void
1158 preserve_rtl_expr_result (x)
1159 rtx x;
1160 {
1161 struct temp_slot *p;
1162
1163 /* If X is not in memory or is at a constant address, it cannot be in
1164 a temporary slot. */
1165 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1166 return;
1167
1168 /* If we can find a match, move it to our level unless it is already at
1169 an upper level. */
1170 p = find_temp_slot_from_address (XEXP (x, 0));
1171 if (p != 0)
1172 {
1173 p->level = MIN (p->level, temp_slot_level);
1174 p->rtl_expr = 0;
1175 }
1176
1177 return;
1178 }
1179
1180 /* Free all temporaries used so far. This is normally called at the end
1181 of generating code for a statement. Don't free any temporaries
1182 currently in use for an RTL_EXPR that hasn't yet been emitted.
1183 We could eventually do better than this since it can be reused while
1184 generating the same RTL_EXPR, but this is complex and probably not
1185 worthwhile. */
1186
1187 void
1188 free_temp_slots ()
1189 {
1190 struct temp_slot *p;
1191
1192 for (p = temp_slots; p; p = p->next)
1193 if (p->in_use && p->level == temp_slot_level && ! p->keep
1194 && p->rtl_expr == 0)
1195 p->in_use = 0;
1196
1197 combine_temp_slots ();
1198 }
1199
1200 /* Free all temporary slots used in T, an RTL_EXPR node. */
1201
1202 void
1203 free_temps_for_rtl_expr (t)
1204 tree t;
1205 {
1206 struct temp_slot *p;
1207
1208 for (p = temp_slots; p; p = p->next)
1209 if (p->rtl_expr == t)
1210 {
1211 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1212 needs to be preserved. This can happen if a temporary in
1213 the RTL_EXPR was addressed; preserve_temp_slots will move
1214 the temporary into a higher level. */
1215 if (temp_slot_level <= p->level)
1216 p->in_use = 0;
1217 else
1218 p->rtl_expr = NULL_TREE;
1219 }
1220
1221 combine_temp_slots ();
1222 }
1223
1224 /* Mark all temporaries ever allocated in this function as not suitable
1225 for reuse until the current level is exited. */
1226
1227 void
1228 mark_all_temps_used ()
1229 {
1230 struct temp_slot *p;
1231
1232 for (p = temp_slots; p; p = p->next)
1233 {
1234 p->in_use = p->keep = 1;
1235 p->level = MIN (p->level, temp_slot_level);
1236 }
1237 }
1238
1239 /* Push deeper into the nesting level for stack temporaries. */
1240
1241 void
1242 push_temp_slots ()
1243 {
1244 temp_slot_level++;
1245 }
1246
1247 /* Likewise, but save the new level as the place to allocate variables
1248 for blocks. */
1249
1250 #if 0
1251 void
1252 push_temp_slots_for_block ()
1253 {
1254 push_temp_slots ();
1255
1256 var_temp_slot_level = temp_slot_level;
1257 }
1258
1259 /* Likewise, but save the new level as the place to allocate temporaries
1260 for TARGET_EXPRs. */
1261
1262 void
1263 push_temp_slots_for_target ()
1264 {
1265 push_temp_slots ();
1266
1267 target_temp_slot_level = temp_slot_level;
1268 }
1269
1270 /* Set and get the value of target_temp_slot_level. The only
1271 permitted use of these functions is to save and restore this value. */
1272
1273 int
1274 get_target_temp_slot_level ()
1275 {
1276 return target_temp_slot_level;
1277 }
1278
1279 void
1280 set_target_temp_slot_level (level)
1281 int level;
1282 {
1283 target_temp_slot_level = level;
1284 }
1285 #endif
1286
1287 /* Pop a temporary nesting level. All slots in use in the current level
1288 are freed. */
1289
1290 void
1291 pop_temp_slots ()
1292 {
1293 struct temp_slot *p;
1294
1295 for (p = temp_slots; p; p = p->next)
1296 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1297 p->in_use = 0;
1298
1299 combine_temp_slots ();
1300
1301 temp_slot_level--;
1302 }
1303
1304 /* Initialize temporary slots. */
1305
1306 void
1307 init_temp_slots ()
1308 {
1309 /* We have not allocated any temporaries yet. */
1310 temp_slots = 0;
1311 temp_slot_level = 0;
1312 var_temp_slot_level = 0;
1313 target_temp_slot_level = 0;
1314 }
1315 \f
1316 /* Retroactively move an auto variable from a register to a stack slot.
1317 This is done when an address-reference to the variable is seen. */
1318
1319 void
1320 put_var_into_stack (decl)
1321 tree decl;
1322 {
1323 register rtx reg;
1324 enum machine_mode promoted_mode, decl_mode;
1325 struct function *function = 0;
1326 tree context;
1327 int can_use_addressof;
1328 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1329 int usedp = (TREE_USED (decl)
1330 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1331
1332 context = decl_function_context (decl);
1333
1334 /* Get the current rtl used for this object and its original mode. */
1335 reg = (TREE_CODE (decl) == SAVE_EXPR
1336 ? SAVE_EXPR_RTL (decl)
1337 : DECL_RTL_IF_SET (decl));
1338
1339 /* No need to do anything if decl has no rtx yet
1340 since in that case caller is setting TREE_ADDRESSABLE
1341 and a stack slot will be assigned when the rtl is made. */
1342 if (reg == 0)
1343 return;
1344
1345 /* Get the declared mode for this object. */
1346 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1347 : DECL_MODE (decl));
1348 /* Get the mode it's actually stored in. */
1349 promoted_mode = GET_MODE (reg);
1350
1351 /* If this variable comes from an outer function, find that
1352 function's saved context. Don't use find_function_data here,
1353 because it might not be in any active function.
1354 FIXME: Is that really supposed to happen?
1355 It does in ObjC at least. */
1356 if (context != current_function_decl && context != inline_function_decl)
1357 for (function = outer_function_chain; function; function = function->outer)
1358 if (function->decl == context)
1359 break;
1360
1361 /* If this is a variable-size object with a pseudo to address it,
1362 put that pseudo into the stack, if the var is nonlocal. */
1363 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1364 && GET_CODE (reg) == MEM
1365 && GET_CODE (XEXP (reg, 0)) == REG
1366 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1367 {
1368 reg = XEXP (reg, 0);
1369 decl_mode = promoted_mode = GET_MODE (reg);
1370 }
1371
1372 can_use_addressof
1373 = (function == 0
1374 && optimize > 0
1375 /* FIXME make it work for promoted modes too */
1376 && decl_mode == promoted_mode
1377 #ifdef NON_SAVING_SETJMP
1378 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1379 #endif
1380 );
1381
1382 /* If we can't use ADDRESSOF, make sure we see through one we already
1383 generated. */
1384 if (! can_use_addressof && GET_CODE (reg) == MEM
1385 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1386 reg = XEXP (XEXP (reg, 0), 0);
1387
1388 /* Now we should have a value that resides in one or more pseudo regs. */
1389
1390 if (GET_CODE (reg) == REG)
1391 {
1392 /* If this variable lives in the current function and we don't need
1393 to put things in the stack for the sake of setjmp, try to keep it
1394 in a register until we know we actually need the address. */
1395 if (can_use_addressof)
1396 gen_mem_addressof (reg, decl);
1397 else
1398 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1399 decl_mode, volatilep, 0, usedp, 0);
1400 }
1401 else if (GET_CODE (reg) == CONCAT)
1402 {
1403 /* A CONCAT contains two pseudos; put them both in the stack.
1404 We do it so they end up consecutive.
1405 We fixup references to the parts only after we fixup references
1406 to the whole CONCAT, lest we do double fixups for the latter
1407 references. */
1408 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1409 tree part_type = type_for_mode (part_mode, 0);
1410 rtx lopart = XEXP (reg, 0);
1411 rtx hipart = XEXP (reg, 1);
1412 #ifdef FRAME_GROWS_DOWNWARD
1413 /* Since part 0 should have a lower address, do it second. */
1414 put_reg_into_stack (function, hipart, part_type, part_mode,
1415 part_mode, volatilep, 0, 0, 0);
1416 put_reg_into_stack (function, lopart, part_type, part_mode,
1417 part_mode, volatilep, 0, 0, 0);
1418 #else
1419 put_reg_into_stack (function, lopart, part_type, part_mode,
1420 part_mode, volatilep, 0, 0, 0);
1421 put_reg_into_stack (function, hipart, part_type, part_mode,
1422 part_mode, volatilep, 0, 0, 0);
1423 #endif
1424
1425 /* Change the CONCAT into a combined MEM for both parts. */
1426 PUT_CODE (reg, MEM);
1427
1428 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1429 already computed alias sets. Here we want to re-generate. */
1430 if (DECL_P (decl))
1431 SET_DECL_RTL (decl, NULL);
1432 set_mem_attributes (reg, decl, 1);
1433 if (DECL_P (decl))
1434 SET_DECL_RTL (decl, reg);
1435
1436 /* The two parts are in memory order already.
1437 Use the lower parts address as ours. */
1438 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1439 /* Prevent sharing of rtl that might lose. */
1440 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1441 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1442 if (usedp)
1443 {
1444 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1445 promoted_mode, 0);
1446 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1447 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1448 }
1449 }
1450 else
1451 return;
1452
1453 if (current_function_check_memory_usage)
1454 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK, VOIDmode,
1455 3, XEXP (reg, 0), Pmode,
1456 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1457 TYPE_MODE (sizetype),
1458 GEN_INT (MEMORY_USE_RW),
1459 TYPE_MODE (integer_type_node));
1460 }
1461
1462 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1463 into the stack frame of FUNCTION (0 means the current function).
1464 DECL_MODE is the machine mode of the user-level data type.
1465 PROMOTED_MODE is the machine mode of the register.
1466 VOLATILE_P is nonzero if this is for a "volatile" decl.
1467 USED_P is nonzero if this reg might have already been used in an insn. */
1468
1469 static void
1470 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1471 original_regno, used_p, ht)
1472 struct function *function;
1473 rtx reg;
1474 tree type;
1475 enum machine_mode promoted_mode, decl_mode;
1476 int volatile_p;
1477 unsigned int original_regno;
1478 int used_p;
1479 struct hash_table *ht;
1480 {
1481 struct function *func = function ? function : cfun;
1482 rtx new = 0;
1483 unsigned int regno = original_regno;
1484
1485 if (regno == 0)
1486 regno = REGNO (reg);
1487
1488 if (regno < func->x_max_parm_reg)
1489 new = func->x_parm_reg_stack_loc[regno];
1490
1491 if (new == 0)
1492 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1493
1494 PUT_CODE (reg, MEM);
1495 PUT_MODE (reg, decl_mode);
1496 XEXP (reg, 0) = XEXP (new, 0);
1497 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1498 MEM_VOLATILE_P (reg) = volatile_p;
1499
1500 /* If this is a memory ref that contains aggregate components,
1501 mark it as such for cse and loop optimize. If we are reusing a
1502 previously generated stack slot, then we need to copy the bit in
1503 case it was set for other reasons. For instance, it is set for
1504 __builtin_va_alist. */
1505 if (type)
1506 {
1507 MEM_SET_IN_STRUCT_P (reg,
1508 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1509 set_mem_alias_set (reg, get_alias_set (type));
1510 }
1511 if (used_p)
1512 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1513 }
1514
1515 /* Make sure that all refs to the variable, previously made
1516 when it was a register, are fixed up to be valid again.
1517 See function above for meaning of arguments. */
1518
1519 static void
1520 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1521 struct function *function;
1522 rtx reg;
1523 tree type;
1524 enum machine_mode promoted_mode;
1525 struct hash_table *ht;
1526 {
1527 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1528
1529 if (function != 0)
1530 {
1531 struct var_refs_queue *temp;
1532
1533 temp
1534 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1535 temp->modified = reg;
1536 temp->promoted_mode = promoted_mode;
1537 temp->unsignedp = unsigned_p;
1538 temp->next = function->fixup_var_refs_queue;
1539 function->fixup_var_refs_queue = temp;
1540 }
1541 else
1542 /* Variable is local; fix it up now. */
1543 fixup_var_refs (reg, promoted_mode, unsigned_p, ht);
1544 }
1545 \f
1546 static void
1547 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1548 rtx var;
1549 enum machine_mode promoted_mode;
1550 int unsignedp;
1551 struct hash_table *ht;
1552 {
1553 tree pending;
1554 rtx first_insn = get_insns ();
1555 struct sequence_stack *stack = seq_stack;
1556 tree rtl_exps = rtl_expr_chain;
1557
1558 /* If there's a hash table, it must record all uses of VAR. */
1559 if (ht)
1560 {
1561 if (stack != 0)
1562 abort ();
1563 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp);
1564 return;
1565 }
1566
1567 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1568 stack == 0);
1569
1570 /* Scan all pending sequences too. */
1571 for (; stack; stack = stack->next)
1572 {
1573 push_to_full_sequence (stack->first, stack->last);
1574 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1575 stack->next != 0);
1576 /* Update remembered end of sequence
1577 in case we added an insn at the end. */
1578 stack->last = get_last_insn ();
1579 end_sequence ();
1580 }
1581
1582 /* Scan all waiting RTL_EXPRs too. */
1583 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1584 {
1585 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1586 if (seq != const0_rtx && seq != 0)
1587 {
1588 push_to_sequence (seq);
1589 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1590 end_sequence ();
1591 }
1592 }
1593 }
1594 \f
1595 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1596 some part of an insn. Return a struct fixup_replacement whose OLD
1597 value is equal to X. Allocate a new structure if no such entry exists. */
1598
1599 static struct fixup_replacement *
1600 find_fixup_replacement (replacements, x)
1601 struct fixup_replacement **replacements;
1602 rtx x;
1603 {
1604 struct fixup_replacement *p;
1605
1606 /* See if we have already replaced this. */
1607 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1608 ;
1609
1610 if (p == 0)
1611 {
1612 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1613 p->old = x;
1614 p->new = 0;
1615 p->next = *replacements;
1616 *replacements = p;
1617 }
1618
1619 return p;
1620 }
1621
1622 /* Scan the insn-chain starting with INSN for refs to VAR
1623 and fix them up. TOPLEVEL is nonzero if this chain is the
1624 main chain of insns for the current function. */
1625
1626 static void
1627 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel)
1628 rtx insn;
1629 rtx var;
1630 enum machine_mode promoted_mode;
1631 int unsignedp;
1632 int toplevel;
1633 {
1634 while (insn)
1635 {
1636 /* fixup_var_refs_insn might modify insn, so save its next
1637 pointer now. */
1638 rtx next = NEXT_INSN (insn);
1639
1640 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1641 the three sequences they (potentially) contain, and process
1642 them recursively. The CALL_INSN itself is not interesting. */
1643
1644 if (GET_CODE (insn) == CALL_INSN
1645 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1646 {
1647 int i;
1648
1649 /* Look at the Normal call, sibling call and tail recursion
1650 sequences attached to the CALL_PLACEHOLDER. */
1651 for (i = 0; i < 3; i++)
1652 {
1653 rtx seq = XEXP (PATTERN (insn), i);
1654 if (seq)
1655 {
1656 push_to_sequence (seq);
1657 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1658 XEXP (PATTERN (insn), i) = get_insns ();
1659 end_sequence ();
1660 }
1661 }
1662 }
1663
1664 else if (INSN_P (insn))
1665 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel);
1666
1667 insn = next;
1668 }
1669 }
1670
1671 /* Look up the insns which reference VAR in HT and fix them up. Other
1672 arguments are the same as fixup_var_refs_insns.
1673
1674 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1675 because the hash table will point straight to the interesting insn
1676 (inside the CALL_PLACEHOLDER). */
1677 static void
1678 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp)
1679 struct hash_table *ht;
1680 rtx var;
1681 enum machine_mode promoted_mode;
1682 int unsignedp;
1683 {
1684 struct insns_for_mem_entry *ime = (struct insns_for_mem_entry *)
1685 hash_lookup (ht, var, /*create=*/0, /*copy=*/0);
1686 rtx insn_list = ime->insns;
1687
1688 while (insn_list)
1689 {
1690 rtx insn = XEXP (insn_list, 0);
1691
1692 if (INSN_P (insn))
1693 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, 1);
1694
1695 insn_list = XEXP (insn_list, 1);
1696 }
1697 }
1698
1699
1700 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1701 the insn under examination, VAR is the variable to fix up
1702 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1703 TOPLEVEL is nonzero if this is the main insn chain for this
1704 function. */
1705 static void
1706 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel)
1707 rtx insn;
1708 rtx var;
1709 enum machine_mode promoted_mode;
1710 int unsignedp;
1711 int toplevel;
1712 {
1713 rtx call_dest = 0;
1714 rtx set, prev, prev_set;
1715 rtx note;
1716
1717 /* Remember the notes in case we delete the insn. */
1718 note = REG_NOTES (insn);
1719
1720 /* If this is a CLOBBER of VAR, delete it.
1721
1722 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1723 and REG_RETVAL notes too. */
1724 if (GET_CODE (PATTERN (insn)) == CLOBBER
1725 && (XEXP (PATTERN (insn), 0) == var
1726 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1727 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1728 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1729 {
1730 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1731 /* The REG_LIBCALL note will go away since we are going to
1732 turn INSN into a NOTE, so just delete the
1733 corresponding REG_RETVAL note. */
1734 remove_note (XEXP (note, 0),
1735 find_reg_note (XEXP (note, 0), REG_RETVAL,
1736 NULL_RTX));
1737
1738 /* In unoptimized compilation, we shouldn't call delete_insn
1739 except in jump.c doing warnings. */
1740 PUT_CODE (insn, NOTE);
1741 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1742 NOTE_SOURCE_FILE (insn) = 0;
1743 }
1744
1745 /* The insn to load VAR from a home in the arglist
1746 is now a no-op. When we see it, just delete it.
1747 Similarly if this is storing VAR from a register from which
1748 it was loaded in the previous insn. This will occur
1749 when an ADDRESSOF was made for an arglist slot. */
1750 else if (toplevel
1751 && (set = single_set (insn)) != 0
1752 && SET_DEST (set) == var
1753 /* If this represents the result of an insn group,
1754 don't delete the insn. */
1755 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1756 && (rtx_equal_p (SET_SRC (set), var)
1757 || (GET_CODE (SET_SRC (set)) == REG
1758 && (prev = prev_nonnote_insn (insn)) != 0
1759 && (prev_set = single_set (prev)) != 0
1760 && SET_DEST (prev_set) == SET_SRC (set)
1761 && rtx_equal_p (SET_SRC (prev_set), var))))
1762 {
1763 /* In unoptimized compilation, we shouldn't call delete_insn
1764 except in jump.c doing warnings. */
1765 PUT_CODE (insn, NOTE);
1766 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1767 NOTE_SOURCE_FILE (insn) = 0;
1768 }
1769 else
1770 {
1771 struct fixup_replacement *replacements = 0;
1772 rtx next_insn = NEXT_INSN (insn);
1773
1774 if (SMALL_REGISTER_CLASSES)
1775 {
1776 /* If the insn that copies the results of a CALL_INSN
1777 into a pseudo now references VAR, we have to use an
1778 intermediate pseudo since we want the life of the
1779 return value register to be only a single insn.
1780
1781 If we don't use an intermediate pseudo, such things as
1782 address computations to make the address of VAR valid
1783 if it is not can be placed between the CALL_INSN and INSN.
1784
1785 To make sure this doesn't happen, we record the destination
1786 of the CALL_INSN and see if the next insn uses both that
1787 and VAR. */
1788
1789 if (call_dest != 0 && GET_CODE (insn) == INSN
1790 && reg_mentioned_p (var, PATTERN (insn))
1791 && reg_mentioned_p (call_dest, PATTERN (insn)))
1792 {
1793 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1794
1795 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1796
1797 PATTERN (insn) = replace_rtx (PATTERN (insn),
1798 call_dest, temp);
1799 }
1800
1801 if (GET_CODE (insn) == CALL_INSN
1802 && GET_CODE (PATTERN (insn)) == SET)
1803 call_dest = SET_DEST (PATTERN (insn));
1804 else if (GET_CODE (insn) == CALL_INSN
1805 && GET_CODE (PATTERN (insn)) == PARALLEL
1806 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1807 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1808 else
1809 call_dest = 0;
1810 }
1811
1812 /* See if we have to do anything to INSN now that VAR is in
1813 memory. If it needs to be loaded into a pseudo, use a single
1814 pseudo for the entire insn in case there is a MATCH_DUP
1815 between two operands. We pass a pointer to the head of
1816 a list of struct fixup_replacements. If fixup_var_refs_1
1817 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1818 it will record them in this list.
1819
1820 If it allocated a pseudo for any replacement, we copy into
1821 it here. */
1822
1823 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1824 &replacements);
1825
1826 /* If this is last_parm_insn, and any instructions were output
1827 after it to fix it up, then we must set last_parm_insn to
1828 the last such instruction emitted. */
1829 if (insn == last_parm_insn)
1830 last_parm_insn = PREV_INSN (next_insn);
1831
1832 while (replacements)
1833 {
1834 struct fixup_replacement *next;
1835
1836 if (GET_CODE (replacements->new) == REG)
1837 {
1838 rtx insert_before;
1839 rtx seq;
1840
1841 /* OLD might be a (subreg (mem)). */
1842 if (GET_CODE (replacements->old) == SUBREG)
1843 replacements->old
1844 = fixup_memory_subreg (replacements->old, insn, 0);
1845 else
1846 replacements->old
1847 = fixup_stack_1 (replacements->old, insn);
1848
1849 insert_before = insn;
1850
1851 /* If we are changing the mode, do a conversion.
1852 This might be wasteful, but combine.c will
1853 eliminate much of the waste. */
1854
1855 if (GET_MODE (replacements->new)
1856 != GET_MODE (replacements->old))
1857 {
1858 start_sequence ();
1859 convert_move (replacements->new,
1860 replacements->old, unsignedp);
1861 seq = gen_sequence ();
1862 end_sequence ();
1863 }
1864 else
1865 seq = gen_move_insn (replacements->new,
1866 replacements->old);
1867
1868 emit_insn_before (seq, insert_before);
1869 }
1870
1871 next = replacements->next;
1872 free (replacements);
1873 replacements = next;
1874 }
1875 }
1876
1877 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1878 But don't touch other insns referred to by reg-notes;
1879 we will get them elsewhere. */
1880 while (note)
1881 {
1882 if (GET_CODE (note) != INSN_LIST)
1883 XEXP (note, 0)
1884 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1885 note = XEXP (note, 1);
1886 }
1887 }
1888 \f
1889 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1890 See if the rtx expression at *LOC in INSN needs to be changed.
1891
1892 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1893 contain a list of original rtx's and replacements. If we find that we need
1894 to modify this insn by replacing a memory reference with a pseudo or by
1895 making a new MEM to implement a SUBREG, we consult that list to see if
1896 we have already chosen a replacement. If none has already been allocated,
1897 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1898 or the SUBREG, as appropriate, to the pseudo. */
1899
1900 static void
1901 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1902 register rtx var;
1903 enum machine_mode promoted_mode;
1904 register rtx *loc;
1905 rtx insn;
1906 struct fixup_replacement **replacements;
1907 {
1908 register int i;
1909 register rtx x = *loc;
1910 RTX_CODE code = GET_CODE (x);
1911 register const char *fmt;
1912 register rtx tem, tem1;
1913 struct fixup_replacement *replacement;
1914
1915 switch (code)
1916 {
1917 case ADDRESSOF:
1918 if (XEXP (x, 0) == var)
1919 {
1920 /* Prevent sharing of rtl that might lose. */
1921 rtx sub = copy_rtx (XEXP (var, 0));
1922
1923 if (! validate_change (insn, loc, sub, 0))
1924 {
1925 rtx y = gen_reg_rtx (GET_MODE (sub));
1926 rtx seq, new_insn;
1927
1928 /* We should be able to replace with a register or all is lost.
1929 Note that we can't use validate_change to verify this, since
1930 we're not caring for replacing all dups simultaneously. */
1931 if (! validate_replace_rtx (*loc, y, insn))
1932 abort ();
1933
1934 /* Careful! First try to recognize a direct move of the
1935 value, mimicking how things are done in gen_reload wrt
1936 PLUS. Consider what happens when insn is a conditional
1937 move instruction and addsi3 clobbers flags. */
1938
1939 start_sequence ();
1940 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1941 seq = gen_sequence ();
1942 end_sequence ();
1943
1944 if (recog_memoized (new_insn) < 0)
1945 {
1946 /* That failed. Fall back on force_operand and hope. */
1947
1948 start_sequence ();
1949 sub = force_operand (sub, y);
1950 if (sub != y)
1951 emit_insn (gen_move_insn (y, sub));
1952 seq = gen_sequence ();
1953 end_sequence ();
1954 }
1955
1956 #ifdef HAVE_cc0
1957 /* Don't separate setter from user. */
1958 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1959 insn = PREV_INSN (insn);
1960 #endif
1961
1962 emit_insn_before (seq, insn);
1963 }
1964 }
1965 return;
1966
1967 case MEM:
1968 if (var == x)
1969 {
1970 /* If we already have a replacement, use it. Otherwise,
1971 try to fix up this address in case it is invalid. */
1972
1973 replacement = find_fixup_replacement (replacements, var);
1974 if (replacement->new)
1975 {
1976 *loc = replacement->new;
1977 return;
1978 }
1979
1980 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1981
1982 /* Unless we are forcing memory to register or we changed the mode,
1983 we can leave things the way they are if the insn is valid. */
1984
1985 INSN_CODE (insn) = -1;
1986 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1987 && recog_memoized (insn) >= 0)
1988 return;
1989
1990 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1991 return;
1992 }
1993
1994 /* If X contains VAR, we need to unshare it here so that we update
1995 each occurrence separately. But all identical MEMs in one insn
1996 must be replaced with the same rtx because of the possibility of
1997 MATCH_DUPs. */
1998
1999 if (reg_mentioned_p (var, x))
2000 {
2001 replacement = find_fixup_replacement (replacements, x);
2002 if (replacement->new == 0)
2003 replacement->new = copy_most_rtx (x, var);
2004
2005 *loc = x = replacement->new;
2006 code = GET_CODE (x);
2007 }
2008 break;
2009
2010 case REG:
2011 case CC0:
2012 case PC:
2013 case CONST_INT:
2014 case CONST:
2015 case SYMBOL_REF:
2016 case LABEL_REF:
2017 case CONST_DOUBLE:
2018 return;
2019
2020 case SIGN_EXTRACT:
2021 case ZERO_EXTRACT:
2022 /* Note that in some cases those types of expressions are altered
2023 by optimize_bit_field, and do not survive to get here. */
2024 if (XEXP (x, 0) == var
2025 || (GET_CODE (XEXP (x, 0)) == SUBREG
2026 && SUBREG_REG (XEXP (x, 0)) == var))
2027 {
2028 /* Get TEM as a valid MEM in the mode presently in the insn.
2029
2030 We don't worry about the possibility of MATCH_DUP here; it
2031 is highly unlikely and would be tricky to handle. */
2032
2033 tem = XEXP (x, 0);
2034 if (GET_CODE (tem) == SUBREG)
2035 {
2036 if (GET_MODE_BITSIZE (GET_MODE (tem))
2037 > GET_MODE_BITSIZE (GET_MODE (var)))
2038 {
2039 replacement = find_fixup_replacement (replacements, var);
2040 if (replacement->new == 0)
2041 replacement->new = gen_reg_rtx (GET_MODE (var));
2042 SUBREG_REG (tem) = replacement->new;
2043
2044 /* The following code works only if we have a MEM, so we
2045 need to handle the subreg here. We directly substitute
2046 it assuming that a subreg must be OK here. We already
2047 scheduled a replacement to copy the mem into the
2048 subreg. */
2049 XEXP (x, 0) = tem;
2050 return;
2051 }
2052 else
2053 tem = fixup_memory_subreg (tem, insn, 0);
2054 }
2055 else
2056 tem = fixup_stack_1 (tem, insn);
2057
2058 /* Unless we want to load from memory, get TEM into the proper mode
2059 for an extract from memory. This can only be done if the
2060 extract is at a constant position and length. */
2061
2062 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2063 && GET_CODE (XEXP (x, 2)) == CONST_INT
2064 && ! mode_dependent_address_p (XEXP (tem, 0))
2065 && ! MEM_VOLATILE_P (tem))
2066 {
2067 enum machine_mode wanted_mode = VOIDmode;
2068 enum machine_mode is_mode = GET_MODE (tem);
2069 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2070
2071 if (GET_CODE (x) == ZERO_EXTRACT)
2072 {
2073 enum machine_mode new_mode
2074 = mode_for_extraction (EP_extzv, 1);
2075 if (new_mode != MAX_MACHINE_MODE)
2076 wanted_mode = new_mode;
2077 }
2078 else if (GET_CODE (x) == SIGN_EXTRACT)
2079 {
2080 enum machine_mode new_mode
2081 = mode_for_extraction (EP_extv, 1);
2082 if (new_mode != MAX_MACHINE_MODE)
2083 wanted_mode = new_mode;
2084 }
2085
2086 /* If we have a narrower mode, we can do something. */
2087 if (wanted_mode != VOIDmode
2088 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2089 {
2090 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2091 rtx old_pos = XEXP (x, 2);
2092 rtx newmem;
2093
2094 /* If the bytes and bits are counted differently, we
2095 must adjust the offset. */
2096 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2097 offset = (GET_MODE_SIZE (is_mode)
2098 - GET_MODE_SIZE (wanted_mode) - offset);
2099
2100 pos %= GET_MODE_BITSIZE (wanted_mode);
2101
2102 newmem = adjust_address_nv (tem, wanted_mode, offset);
2103
2104 /* Make the change and see if the insn remains valid. */
2105 INSN_CODE (insn) = -1;
2106 XEXP (x, 0) = newmem;
2107 XEXP (x, 2) = GEN_INT (pos);
2108
2109 if (recog_memoized (insn) >= 0)
2110 return;
2111
2112 /* Otherwise, restore old position. XEXP (x, 0) will be
2113 restored later. */
2114 XEXP (x, 2) = old_pos;
2115 }
2116 }
2117
2118 /* If we get here, the bitfield extract insn can't accept a memory
2119 reference. Copy the input into a register. */
2120
2121 tem1 = gen_reg_rtx (GET_MODE (tem));
2122 emit_insn_before (gen_move_insn (tem1, tem), insn);
2123 XEXP (x, 0) = tem1;
2124 return;
2125 }
2126 break;
2127
2128 case SUBREG:
2129 if (SUBREG_REG (x) == var)
2130 {
2131 /* If this is a special SUBREG made because VAR was promoted
2132 from a wider mode, replace it with VAR and call ourself
2133 recursively, this time saying that the object previously
2134 had its current mode (by virtue of the SUBREG). */
2135
2136 if (SUBREG_PROMOTED_VAR_P (x))
2137 {
2138 *loc = var;
2139 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2140 return;
2141 }
2142
2143 /* If this SUBREG makes VAR wider, it has become a paradoxical
2144 SUBREG with VAR in memory, but these aren't allowed at this
2145 stage of the compilation. So load VAR into a pseudo and take
2146 a SUBREG of that pseudo. */
2147 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2148 {
2149 replacement = find_fixup_replacement (replacements, var);
2150 if (replacement->new == 0)
2151 replacement->new = gen_reg_rtx (promoted_mode);
2152 SUBREG_REG (x) = replacement->new;
2153 return;
2154 }
2155
2156 /* See if we have already found a replacement for this SUBREG.
2157 If so, use it. Otherwise, make a MEM and see if the insn
2158 is recognized. If not, or if we should force MEM into a register,
2159 make a pseudo for this SUBREG. */
2160 replacement = find_fixup_replacement (replacements, x);
2161 if (replacement->new)
2162 {
2163 *loc = replacement->new;
2164 return;
2165 }
2166
2167 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2168
2169 INSN_CODE (insn) = -1;
2170 if (! flag_force_mem && recog_memoized (insn) >= 0)
2171 return;
2172
2173 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2174 return;
2175 }
2176 break;
2177
2178 case SET:
2179 /* First do special simplification of bit-field references. */
2180 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2181 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2182 optimize_bit_field (x, insn, 0);
2183 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2184 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2185 optimize_bit_field (x, insn, 0);
2186
2187 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2188 into a register and then store it back out. */
2189 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2190 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2191 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2192 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2193 > GET_MODE_SIZE (GET_MODE (var))))
2194 {
2195 replacement = find_fixup_replacement (replacements, var);
2196 if (replacement->new == 0)
2197 replacement->new = gen_reg_rtx (GET_MODE (var));
2198
2199 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2200 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2201 }
2202
2203 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2204 insn into a pseudo and store the low part of the pseudo into VAR. */
2205 if (GET_CODE (SET_DEST (x)) == SUBREG
2206 && SUBREG_REG (SET_DEST (x)) == var
2207 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2208 > GET_MODE_SIZE (GET_MODE (var))))
2209 {
2210 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2211 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2212 tem)),
2213 insn);
2214 break;
2215 }
2216
2217 {
2218 rtx dest = SET_DEST (x);
2219 rtx src = SET_SRC (x);
2220 rtx outerdest = dest;
2221
2222 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2223 || GET_CODE (dest) == SIGN_EXTRACT
2224 || GET_CODE (dest) == ZERO_EXTRACT)
2225 dest = XEXP (dest, 0);
2226
2227 if (GET_CODE (src) == SUBREG)
2228 src = SUBREG_REG (src);
2229
2230 /* If VAR does not appear at the top level of the SET
2231 just scan the lower levels of the tree. */
2232
2233 if (src != var && dest != var)
2234 break;
2235
2236 /* We will need to rerecognize this insn. */
2237 INSN_CODE (insn) = -1;
2238
2239 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2240 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2241 {
2242 /* Since this case will return, ensure we fixup all the
2243 operands here. */
2244 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2245 insn, replacements);
2246 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2247 insn, replacements);
2248 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2249 insn, replacements);
2250
2251 tem = XEXP (outerdest, 0);
2252
2253 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2254 that may appear inside a ZERO_EXTRACT.
2255 This was legitimate when the MEM was a REG. */
2256 if (GET_CODE (tem) == SUBREG
2257 && SUBREG_REG (tem) == var)
2258 tem = fixup_memory_subreg (tem, insn, 0);
2259 else
2260 tem = fixup_stack_1 (tem, insn);
2261
2262 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2263 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2264 && ! mode_dependent_address_p (XEXP (tem, 0))
2265 && ! MEM_VOLATILE_P (tem))
2266 {
2267 enum machine_mode wanted_mode;
2268 enum machine_mode is_mode = GET_MODE (tem);
2269 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2270
2271 wanted_mode = mode_for_extraction (EP_insv, 0);
2272
2273 /* If we have a narrower mode, we can do something. */
2274 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2275 {
2276 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2277 rtx old_pos = XEXP (outerdest, 2);
2278 rtx newmem;
2279
2280 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2281 offset = (GET_MODE_SIZE (is_mode)
2282 - GET_MODE_SIZE (wanted_mode) - offset);
2283
2284 pos %= GET_MODE_BITSIZE (wanted_mode);
2285
2286 newmem = adjust_address_nv (tem, wanted_mode, offset);
2287
2288 /* Make the change and see if the insn remains valid. */
2289 INSN_CODE (insn) = -1;
2290 XEXP (outerdest, 0) = newmem;
2291 XEXP (outerdest, 2) = GEN_INT (pos);
2292
2293 if (recog_memoized (insn) >= 0)
2294 return;
2295
2296 /* Otherwise, restore old position. XEXP (x, 0) will be
2297 restored later. */
2298 XEXP (outerdest, 2) = old_pos;
2299 }
2300 }
2301
2302 /* If we get here, the bit-field store doesn't allow memory
2303 or isn't located at a constant position. Load the value into
2304 a register, do the store, and put it back into memory. */
2305
2306 tem1 = gen_reg_rtx (GET_MODE (tem));
2307 emit_insn_before (gen_move_insn (tem1, tem), insn);
2308 emit_insn_after (gen_move_insn (tem, tem1), insn);
2309 XEXP (outerdest, 0) = tem1;
2310 return;
2311 }
2312
2313 /* STRICT_LOW_PART is a no-op on memory references
2314 and it can cause combinations to be unrecognizable,
2315 so eliminate it. */
2316
2317 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2318 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2319
2320 /* A valid insn to copy VAR into or out of a register
2321 must be left alone, to avoid an infinite loop here.
2322 If the reference to VAR is by a subreg, fix that up,
2323 since SUBREG is not valid for a memref.
2324 Also fix up the address of the stack slot.
2325
2326 Note that we must not try to recognize the insn until
2327 after we know that we have valid addresses and no
2328 (subreg (mem ...) ...) constructs, since these interfere
2329 with determining the validity of the insn. */
2330
2331 if ((SET_SRC (x) == var
2332 || (GET_CODE (SET_SRC (x)) == SUBREG
2333 && SUBREG_REG (SET_SRC (x)) == var))
2334 && (GET_CODE (SET_DEST (x)) == REG
2335 || (GET_CODE (SET_DEST (x)) == SUBREG
2336 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2337 && GET_MODE (var) == promoted_mode
2338 && x == single_set (insn))
2339 {
2340 rtx pat, last;
2341
2342 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2343 if (replacement->new)
2344 SET_SRC (x) = replacement->new;
2345 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2346 SET_SRC (x) = replacement->new
2347 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2348 else
2349 SET_SRC (x) = replacement->new
2350 = fixup_stack_1 (SET_SRC (x), insn);
2351
2352 if (recog_memoized (insn) >= 0)
2353 return;
2354
2355 /* INSN is not valid, but we know that we want to
2356 copy SET_SRC (x) to SET_DEST (x) in some way. So
2357 we generate the move and see whether it requires more
2358 than one insn. If it does, we emit those insns and
2359 delete INSN. Otherwise, we an just replace the pattern
2360 of INSN; we have already verified above that INSN has
2361 no other function that to do X. */
2362
2363 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2364 if (GET_CODE (pat) == SEQUENCE)
2365 {
2366 last = emit_insn_before (pat, insn);
2367
2368 /* INSN might have REG_RETVAL or other important notes, so
2369 we need to store the pattern of the last insn in the
2370 sequence into INSN similarly to the normal case. LAST
2371 should not have REG_NOTES, but we allow them if INSN has
2372 no REG_NOTES. */
2373 if (REG_NOTES (last) && REG_NOTES (insn))
2374 abort ();
2375 if (REG_NOTES (last))
2376 REG_NOTES (insn) = REG_NOTES (last);
2377 PATTERN (insn) = PATTERN (last);
2378
2379 PUT_CODE (last, NOTE);
2380 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2381 NOTE_SOURCE_FILE (last) = 0;
2382 }
2383 else
2384 PATTERN (insn) = pat;
2385
2386 return;
2387 }
2388
2389 if ((SET_DEST (x) == var
2390 || (GET_CODE (SET_DEST (x)) == SUBREG
2391 && SUBREG_REG (SET_DEST (x)) == var))
2392 && (GET_CODE (SET_SRC (x)) == REG
2393 || (GET_CODE (SET_SRC (x)) == SUBREG
2394 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2395 && GET_MODE (var) == promoted_mode
2396 && x == single_set (insn))
2397 {
2398 rtx pat, last;
2399
2400 if (GET_CODE (SET_DEST (x)) == SUBREG)
2401 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2402 else
2403 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2404
2405 if (recog_memoized (insn) >= 0)
2406 return;
2407
2408 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2409 if (GET_CODE (pat) == SEQUENCE)
2410 {
2411 last = emit_insn_before (pat, insn);
2412
2413 /* INSN might have REG_RETVAL or other important notes, so
2414 we need to store the pattern of the last insn in the
2415 sequence into INSN similarly to the normal case. LAST
2416 should not have REG_NOTES, but we allow them if INSN has
2417 no REG_NOTES. */
2418 if (REG_NOTES (last) && REG_NOTES (insn))
2419 abort ();
2420 if (REG_NOTES (last))
2421 REG_NOTES (insn) = REG_NOTES (last);
2422 PATTERN (insn) = PATTERN (last);
2423
2424 PUT_CODE (last, NOTE);
2425 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2426 NOTE_SOURCE_FILE (last) = 0;
2427 }
2428 else
2429 PATTERN (insn) = pat;
2430
2431 return;
2432 }
2433
2434 /* Otherwise, storing into VAR must be handled specially
2435 by storing into a temporary and copying that into VAR
2436 with a new insn after this one. Note that this case
2437 will be used when storing into a promoted scalar since
2438 the insn will now have different modes on the input
2439 and output and hence will be invalid (except for the case
2440 of setting it to a constant, which does not need any
2441 change if it is valid). We generate extra code in that case,
2442 but combine.c will eliminate it. */
2443
2444 if (dest == var)
2445 {
2446 rtx temp;
2447 rtx fixeddest = SET_DEST (x);
2448
2449 /* STRICT_LOW_PART can be discarded, around a MEM. */
2450 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2451 fixeddest = XEXP (fixeddest, 0);
2452 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2453 if (GET_CODE (fixeddest) == SUBREG)
2454 {
2455 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2456 promoted_mode = GET_MODE (fixeddest);
2457 }
2458 else
2459 fixeddest = fixup_stack_1 (fixeddest, insn);
2460
2461 temp = gen_reg_rtx (promoted_mode);
2462
2463 emit_insn_after (gen_move_insn (fixeddest,
2464 gen_lowpart (GET_MODE (fixeddest),
2465 temp)),
2466 insn);
2467
2468 SET_DEST (x) = temp;
2469 }
2470 }
2471
2472 default:
2473 break;
2474 }
2475
2476 /* Nothing special about this RTX; fix its operands. */
2477
2478 fmt = GET_RTX_FORMAT (code);
2479 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2480 {
2481 if (fmt[i] == 'e')
2482 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2483 else if (fmt[i] == 'E')
2484 {
2485 register int j;
2486 for (j = 0; j < XVECLEN (x, i); j++)
2487 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2488 insn, replacements);
2489 }
2490 }
2491 }
2492 \f
2493 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2494 return an rtx (MEM:m1 newaddr) which is equivalent.
2495 If any insns must be emitted to compute NEWADDR, put them before INSN.
2496
2497 UNCRITICAL nonzero means accept paradoxical subregs.
2498 This is used for subregs found inside REG_NOTES. */
2499
2500 static rtx
2501 fixup_memory_subreg (x, insn, uncritical)
2502 rtx x;
2503 rtx insn;
2504 int uncritical;
2505 {
2506 int offset = SUBREG_BYTE (x);
2507 rtx addr = XEXP (SUBREG_REG (x), 0);
2508 enum machine_mode mode = GET_MODE (x);
2509 rtx result;
2510
2511 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2512 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2513 && ! uncritical)
2514 abort ();
2515
2516 if (!flag_force_addr
2517 && memory_address_p (mode, plus_constant (addr, offset)))
2518 /* Shortcut if no insns need be emitted. */
2519 return adjust_address (SUBREG_REG (x), mode, offset);
2520
2521 start_sequence ();
2522 result = adjust_address (SUBREG_REG (x), mode, offset);
2523 emit_insn_before (gen_sequence (), insn);
2524 end_sequence ();
2525 return result;
2526 }
2527
2528 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2529 Replace subexpressions of X in place.
2530 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2531 Otherwise return X, with its contents possibly altered.
2532
2533 If any insns must be emitted to compute NEWADDR, put them before INSN.
2534
2535 UNCRITICAL is as in fixup_memory_subreg. */
2536
2537 static rtx
2538 walk_fixup_memory_subreg (x, insn, uncritical)
2539 register rtx x;
2540 rtx insn;
2541 int uncritical;
2542 {
2543 register enum rtx_code code;
2544 register const char *fmt;
2545 register int i;
2546
2547 if (x == 0)
2548 return 0;
2549
2550 code = GET_CODE (x);
2551
2552 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2553 return fixup_memory_subreg (x, insn, uncritical);
2554
2555 /* Nothing special about this RTX; fix its operands. */
2556
2557 fmt = GET_RTX_FORMAT (code);
2558 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2559 {
2560 if (fmt[i] == 'e')
2561 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2562 else if (fmt[i] == 'E')
2563 {
2564 register int j;
2565 for (j = 0; j < XVECLEN (x, i); j++)
2566 XVECEXP (x, i, j)
2567 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2568 }
2569 }
2570 return x;
2571 }
2572 \f
2573 /* For each memory ref within X, if it refers to a stack slot
2574 with an out of range displacement, put the address in a temp register
2575 (emitting new insns before INSN to load these registers)
2576 and alter the memory ref to use that register.
2577 Replace each such MEM rtx with a copy, to avoid clobberage. */
2578
2579 static rtx
2580 fixup_stack_1 (x, insn)
2581 rtx x;
2582 rtx insn;
2583 {
2584 register int i;
2585 register RTX_CODE code = GET_CODE (x);
2586 register const char *fmt;
2587
2588 if (code == MEM)
2589 {
2590 register rtx ad = XEXP (x, 0);
2591 /* If we have address of a stack slot but it's not valid
2592 (displacement is too large), compute the sum in a register. */
2593 if (GET_CODE (ad) == PLUS
2594 && GET_CODE (XEXP (ad, 0)) == REG
2595 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2596 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2597 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2598 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2599 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2600 #endif
2601 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2602 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2603 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2604 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2605 {
2606 rtx temp, seq;
2607 if (memory_address_p (GET_MODE (x), ad))
2608 return x;
2609
2610 start_sequence ();
2611 temp = copy_to_reg (ad);
2612 seq = gen_sequence ();
2613 end_sequence ();
2614 emit_insn_before (seq, insn);
2615 return replace_equiv_address (x, temp);
2616 }
2617 return x;
2618 }
2619
2620 fmt = GET_RTX_FORMAT (code);
2621 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2622 {
2623 if (fmt[i] == 'e')
2624 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2625 else if (fmt[i] == 'E')
2626 {
2627 register int j;
2628 for (j = 0; j < XVECLEN (x, i); j++)
2629 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2630 }
2631 }
2632 return x;
2633 }
2634 \f
2635 /* Optimization: a bit-field instruction whose field
2636 happens to be a byte or halfword in memory
2637 can be changed to a move instruction.
2638
2639 We call here when INSN is an insn to examine or store into a bit-field.
2640 BODY is the SET-rtx to be altered.
2641
2642 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2643 (Currently this is called only from function.c, and EQUIV_MEM
2644 is always 0.) */
2645
2646 static void
2647 optimize_bit_field (body, insn, equiv_mem)
2648 rtx body;
2649 rtx insn;
2650 rtx *equiv_mem;
2651 {
2652 register rtx bitfield;
2653 int destflag;
2654 rtx seq = 0;
2655 enum machine_mode mode;
2656
2657 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2658 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2659 bitfield = SET_DEST (body), destflag = 1;
2660 else
2661 bitfield = SET_SRC (body), destflag = 0;
2662
2663 /* First check that the field being stored has constant size and position
2664 and is in fact a byte or halfword suitably aligned. */
2665
2666 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2667 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2668 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2669 != BLKmode)
2670 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2671 {
2672 register rtx memref = 0;
2673
2674 /* Now check that the containing word is memory, not a register,
2675 and that it is safe to change the machine mode. */
2676
2677 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2678 memref = XEXP (bitfield, 0);
2679 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2680 && equiv_mem != 0)
2681 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2682 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2683 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2684 memref = SUBREG_REG (XEXP (bitfield, 0));
2685 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2686 && equiv_mem != 0
2687 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2688 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2689
2690 if (memref
2691 && ! mode_dependent_address_p (XEXP (memref, 0))
2692 && ! MEM_VOLATILE_P (memref))
2693 {
2694 /* Now adjust the address, first for any subreg'ing
2695 that we are now getting rid of,
2696 and then for which byte of the word is wanted. */
2697
2698 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2699 rtx insns;
2700
2701 /* Adjust OFFSET to count bits from low-address byte. */
2702 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2703 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2704 - offset - INTVAL (XEXP (bitfield, 1)));
2705
2706 /* Adjust OFFSET to count bytes from low-address byte. */
2707 offset /= BITS_PER_UNIT;
2708 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2709 {
2710 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2711 / UNITS_PER_WORD) * UNITS_PER_WORD;
2712 if (BYTES_BIG_ENDIAN)
2713 offset -= (MIN (UNITS_PER_WORD,
2714 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2715 - MIN (UNITS_PER_WORD,
2716 GET_MODE_SIZE (GET_MODE (memref))));
2717 }
2718
2719 start_sequence ();
2720 memref = adjust_address (memref, mode, offset);
2721 insns = get_insns ();
2722 end_sequence ();
2723 emit_insns_before (insns, insn);
2724
2725 /* Store this memory reference where
2726 we found the bit field reference. */
2727
2728 if (destflag)
2729 {
2730 validate_change (insn, &SET_DEST (body), memref, 1);
2731 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2732 {
2733 rtx src = SET_SRC (body);
2734 while (GET_CODE (src) == SUBREG
2735 && SUBREG_BYTE (src) == 0)
2736 src = SUBREG_REG (src);
2737 if (GET_MODE (src) != GET_MODE (memref))
2738 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2739 validate_change (insn, &SET_SRC (body), src, 1);
2740 }
2741 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2742 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2743 /* This shouldn't happen because anything that didn't have
2744 one of these modes should have got converted explicitly
2745 and then referenced through a subreg.
2746 This is so because the original bit-field was
2747 handled by agg_mode and so its tree structure had
2748 the same mode that memref now has. */
2749 abort ();
2750 }
2751 else
2752 {
2753 rtx dest = SET_DEST (body);
2754
2755 while (GET_CODE (dest) == SUBREG
2756 && SUBREG_BYTE (dest) == 0
2757 && (GET_MODE_CLASS (GET_MODE (dest))
2758 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2759 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2760 <= UNITS_PER_WORD))
2761 dest = SUBREG_REG (dest);
2762
2763 validate_change (insn, &SET_DEST (body), dest, 1);
2764
2765 if (GET_MODE (dest) == GET_MODE (memref))
2766 validate_change (insn, &SET_SRC (body), memref, 1);
2767 else
2768 {
2769 /* Convert the mem ref to the destination mode. */
2770 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2771
2772 start_sequence ();
2773 convert_move (newreg, memref,
2774 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2775 seq = get_insns ();
2776 end_sequence ();
2777
2778 validate_change (insn, &SET_SRC (body), newreg, 1);
2779 }
2780 }
2781
2782 /* See if we can convert this extraction or insertion into
2783 a simple move insn. We might not be able to do so if this
2784 was, for example, part of a PARALLEL.
2785
2786 If we succeed, write out any needed conversions. If we fail,
2787 it is hard to guess why we failed, so don't do anything
2788 special; just let the optimization be suppressed. */
2789
2790 if (apply_change_group () && seq)
2791 emit_insns_before (seq, insn);
2792 }
2793 }
2794 }
2795 \f
2796 /* These routines are responsible for converting virtual register references
2797 to the actual hard register references once RTL generation is complete.
2798
2799 The following four variables are used for communication between the
2800 routines. They contain the offsets of the virtual registers from their
2801 respective hard registers. */
2802
2803 static int in_arg_offset;
2804 static int var_offset;
2805 static int dynamic_offset;
2806 static int out_arg_offset;
2807 static int cfa_offset;
2808
2809 /* In most machines, the stack pointer register is equivalent to the bottom
2810 of the stack. */
2811
2812 #ifndef STACK_POINTER_OFFSET
2813 #define STACK_POINTER_OFFSET 0
2814 #endif
2815
2816 /* If not defined, pick an appropriate default for the offset of dynamically
2817 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2818 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2819
2820 #ifndef STACK_DYNAMIC_OFFSET
2821
2822 /* The bottom of the stack points to the actual arguments. If
2823 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2824 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2825 stack space for register parameters is not pushed by the caller, but
2826 rather part of the fixed stack areas and hence not included in
2827 `current_function_outgoing_args_size'. Nevertheless, we must allow
2828 for it when allocating stack dynamic objects. */
2829
2830 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2831 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2832 ((ACCUMULATE_OUTGOING_ARGS \
2833 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2834 + (STACK_POINTER_OFFSET)) \
2835
2836 #else
2837 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2838 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2839 + (STACK_POINTER_OFFSET))
2840 #endif
2841 #endif
2842
2843 /* On most machines, the CFA coincides with the first incoming parm. */
2844
2845 #ifndef ARG_POINTER_CFA_OFFSET
2846 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2847 #endif
2848
2849 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2850 its address taken. DECL is the decl for the object stored in the
2851 register, for later use if we do need to force REG into the stack.
2852 REG is overwritten by the MEM like in put_reg_into_stack. */
2853
2854 rtx
2855 gen_mem_addressof (reg, decl)
2856 rtx reg;
2857 tree decl;
2858 {
2859 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2860 REGNO (reg), decl);
2861
2862 /* Calculate this before we start messing with decl's RTL. */
2863 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2864
2865 /* If the original REG was a user-variable, then so is the REG whose
2866 address is being taken. Likewise for unchanging. */
2867 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2868 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2869
2870 PUT_CODE (reg, MEM);
2871 XEXP (reg, 0) = r;
2872 if (decl)
2873 {
2874 tree type = TREE_TYPE (decl);
2875 enum machine_mode decl_mode
2876 = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
2877 : DECL_MODE (decl));
2878
2879 PUT_MODE (reg, decl_mode);
2880 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2881 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2882 set_mem_alias_set (reg, set);
2883
2884 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2885 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2886 }
2887 else
2888 {
2889 /* We have no alias information about this newly created MEM. */
2890 set_mem_alias_set (reg, 0);
2891
2892 fixup_var_refs (reg, GET_MODE (reg), 0, 0);
2893 }
2894
2895 return reg;
2896 }
2897
2898 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2899
2900 void
2901 flush_addressof (decl)
2902 tree decl;
2903 {
2904 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2905 && DECL_RTL (decl) != 0
2906 && GET_CODE (DECL_RTL (decl)) == MEM
2907 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2908 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2909 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2910 }
2911
2912 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2913
2914 static void
2915 put_addressof_into_stack (r, ht)
2916 rtx r;
2917 struct hash_table *ht;
2918 {
2919 tree decl, type;
2920 int volatile_p, used_p;
2921
2922 rtx reg = XEXP (r, 0);
2923
2924 if (GET_CODE (reg) != REG)
2925 abort ();
2926
2927 decl = ADDRESSOF_DECL (r);
2928 if (decl)
2929 {
2930 type = TREE_TYPE (decl);
2931 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2932 && TREE_THIS_VOLATILE (decl));
2933 used_p = (TREE_USED (decl)
2934 || (TREE_CODE (decl) != SAVE_EXPR
2935 && DECL_INITIAL (decl) != 0));
2936 }
2937 else
2938 {
2939 type = NULL_TREE;
2940 volatile_p = 0;
2941 used_p = 1;
2942 }
2943
2944 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2945 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2946 }
2947
2948 /* List of replacements made below in purge_addressof_1 when creating
2949 bitfield insertions. */
2950 static rtx purge_bitfield_addressof_replacements;
2951
2952 /* List of replacements made below in purge_addressof_1 for patterns
2953 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2954 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2955 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2956 enough in complex cases, e.g. when some field values can be
2957 extracted by usage MEM with narrower mode. */
2958 static rtx purge_addressof_replacements;
2959
2960 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2961 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2962 the stack. If the function returns FALSE then the replacement could not
2963 be made. */
2964
2965 static bool
2966 purge_addressof_1 (loc, insn, force, store, ht)
2967 rtx *loc;
2968 rtx insn;
2969 int force, store;
2970 struct hash_table *ht;
2971 {
2972 rtx x;
2973 RTX_CODE code;
2974 int i, j;
2975 const char *fmt;
2976 bool result = true;
2977
2978 /* Re-start here to avoid recursion in common cases. */
2979 restart:
2980
2981 x = *loc;
2982 if (x == 0)
2983 return true;
2984
2985 code = GET_CODE (x);
2986
2987 /* If we don't return in any of the cases below, we will recurse inside
2988 the RTX, which will normally result in any ADDRESSOF being forced into
2989 memory. */
2990 if (code == SET)
2991 {
2992 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2993 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2994 return result;
2995 }
2996 else if (code == ADDRESSOF)
2997 {
2998 rtx sub, insns;
2999
3000 if (GET_CODE (XEXP (x, 0)) != MEM)
3001 {
3002 put_addressof_into_stack (x, ht);
3003 return true;
3004 }
3005
3006 /* We must create a copy of the rtx because it was created by
3007 overwriting a REG rtx which is always shared. */
3008 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3009 if (validate_change (insn, loc, sub, 0)
3010 || validate_replace_rtx (x, sub, insn))
3011 return true;
3012
3013 start_sequence ();
3014 sub = force_operand (sub, NULL_RTX);
3015 if (! validate_change (insn, loc, sub, 0)
3016 && ! validate_replace_rtx (x, sub, insn))
3017 abort ();
3018
3019 insns = gen_sequence ();
3020 end_sequence ();
3021 emit_insn_before (insns, insn);
3022 return true;
3023 }
3024
3025 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3026 {
3027 rtx sub = XEXP (XEXP (x, 0), 0);
3028
3029 if (GET_CODE (sub) == MEM)
3030 sub = adjust_address_nv (sub, GET_MODE (x), 0);
3031 else if (GET_CODE (sub) == REG
3032 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3033 ;
3034 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3035 {
3036 int size_x, size_sub;
3037
3038 if (!insn)
3039 {
3040 /* When processing REG_NOTES look at the list of
3041 replacements done on the insn to find the register that X
3042 was replaced by. */
3043 rtx tem;
3044
3045 for (tem = purge_bitfield_addressof_replacements;
3046 tem != NULL_RTX;
3047 tem = XEXP (XEXP (tem, 1), 1))
3048 if (rtx_equal_p (x, XEXP (tem, 0)))
3049 {
3050 *loc = XEXP (XEXP (tem, 1), 0);
3051 return true;
3052 }
3053
3054 /* See comment for purge_addressof_replacements. */
3055 for (tem = purge_addressof_replacements;
3056 tem != NULL_RTX;
3057 tem = XEXP (XEXP (tem, 1), 1))
3058 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3059 {
3060 rtx z = XEXP (XEXP (tem, 1), 0);
3061
3062 if (GET_MODE (x) == GET_MODE (z)
3063 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3064 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3065 abort ();
3066
3067 /* It can happen that the note may speak of things
3068 in a wider (or just different) mode than the
3069 code did. This is especially true of
3070 REG_RETVAL. */
3071
3072 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3073 z = SUBREG_REG (z);
3074
3075 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3076 && (GET_MODE_SIZE (GET_MODE (x))
3077 > GET_MODE_SIZE (GET_MODE (z))))
3078 {
3079 /* This can occur as a result in invalid
3080 pointer casts, e.g. float f; ...
3081 *(long long int *)&f.
3082 ??? We could emit a warning here, but
3083 without a line number that wouldn't be
3084 very helpful. */
3085 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3086 }
3087 else
3088 z = gen_lowpart (GET_MODE (x), z);
3089
3090 *loc = z;
3091 return true;
3092 }
3093
3094 /* Sometimes we may not be able to find the replacement. For
3095 example when the original insn was a MEM in a wider mode,
3096 and the note is part of a sign extension of a narrowed
3097 version of that MEM. Gcc testcase compile/990829-1.c can
3098 generate an example of this siutation. Rather than complain
3099 we return false, which will prompt our caller to remove the
3100 offending note. */
3101 return false;
3102 }
3103
3104 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3105 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3106
3107 /* Don't even consider working with paradoxical subregs,
3108 or the moral equivalent seen here. */
3109 if (size_x <= size_sub
3110 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3111 {
3112 /* Do a bitfield insertion to mirror what would happen
3113 in memory. */
3114
3115 rtx val, seq;
3116
3117 if (store)
3118 {
3119 rtx p = PREV_INSN (insn);
3120
3121 start_sequence ();
3122 val = gen_reg_rtx (GET_MODE (x));
3123 if (! validate_change (insn, loc, val, 0))
3124 {
3125 /* Discard the current sequence and put the
3126 ADDRESSOF on stack. */
3127 end_sequence ();
3128 goto give_up;
3129 }
3130 seq = gen_sequence ();
3131 end_sequence ();
3132 emit_insn_before (seq, insn);
3133 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3134 insn, ht);
3135
3136 start_sequence ();
3137 store_bit_field (sub, size_x, 0, GET_MODE (x),
3138 val, GET_MODE_SIZE (GET_MODE (sub)),
3139 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3140
3141 /* Make sure to unshare any shared rtl that store_bit_field
3142 might have created. */
3143 unshare_all_rtl_again (get_insns ());
3144
3145 seq = gen_sequence ();
3146 end_sequence ();
3147 p = emit_insn_after (seq, insn);
3148 if (NEXT_INSN (insn))
3149 compute_insns_for_mem (NEXT_INSN (insn),
3150 p ? NEXT_INSN (p) : NULL_RTX,
3151 ht);
3152 }
3153 else
3154 {
3155 rtx p = PREV_INSN (insn);
3156
3157 start_sequence ();
3158 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3159 GET_MODE (x), GET_MODE (x),
3160 GET_MODE_SIZE (GET_MODE (sub)),
3161 GET_MODE_SIZE (GET_MODE (sub)));
3162
3163 if (! validate_change (insn, loc, val, 0))
3164 {
3165 /* Discard the current sequence and put the
3166 ADDRESSOF on stack. */
3167 end_sequence ();
3168 goto give_up;
3169 }
3170
3171 seq = gen_sequence ();
3172 end_sequence ();
3173 emit_insn_before (seq, insn);
3174 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3175 insn, ht);
3176 }
3177
3178 /* Remember the replacement so that the same one can be done
3179 on the REG_NOTES. */
3180 purge_bitfield_addressof_replacements
3181 = gen_rtx_EXPR_LIST (VOIDmode, x,
3182 gen_rtx_EXPR_LIST
3183 (VOIDmode, val,
3184 purge_bitfield_addressof_replacements));
3185
3186 /* We replaced with a reg -- all done. */
3187 return true;
3188 }
3189 }
3190
3191 else if (validate_change (insn, loc, sub, 0))
3192 {
3193 /* Remember the replacement so that the same one can be done
3194 on the REG_NOTES. */
3195 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3196 {
3197 rtx tem;
3198
3199 for (tem = purge_addressof_replacements;
3200 tem != NULL_RTX;
3201 tem = XEXP (XEXP (tem, 1), 1))
3202 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3203 {
3204 XEXP (XEXP (tem, 1), 0) = sub;
3205 return true;
3206 }
3207 purge_addressof_replacements
3208 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3209 gen_rtx_EXPR_LIST (VOIDmode, sub,
3210 purge_addressof_replacements));
3211 return true;
3212 }
3213 goto restart;
3214 }
3215 }
3216
3217 give_up:
3218 /* Scan all subexpressions. */
3219 fmt = GET_RTX_FORMAT (code);
3220 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3221 {
3222 if (*fmt == 'e')
3223 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3224 else if (*fmt == 'E')
3225 for (j = 0; j < XVECLEN (x, i); j++)
3226 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3227 }
3228
3229 return result;
3230 }
3231
3232 /* Return a new hash table entry in HT. */
3233
3234 static struct hash_entry *
3235 insns_for_mem_newfunc (he, ht, k)
3236 struct hash_entry *he;
3237 struct hash_table *ht;
3238 hash_table_key k ATTRIBUTE_UNUSED;
3239 {
3240 struct insns_for_mem_entry *ifmhe;
3241 if (he)
3242 return he;
3243
3244 ifmhe = ((struct insns_for_mem_entry *)
3245 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3246 ifmhe->insns = NULL_RTX;
3247
3248 return &ifmhe->he;
3249 }
3250
3251 /* Return a hash value for K, a REG. */
3252
3253 static unsigned long
3254 insns_for_mem_hash (k)
3255 hash_table_key k;
3256 {
3257 /* K is really a RTX. Just use the address as the hash value. */
3258 return (unsigned long) k;
3259 }
3260
3261 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3262
3263 static bool
3264 insns_for_mem_comp (k1, k2)
3265 hash_table_key k1;
3266 hash_table_key k2;
3267 {
3268 return k1 == k2;
3269 }
3270
3271 struct insns_for_mem_walk_info {
3272 /* The hash table that we are using to record which INSNs use which
3273 MEMs. */
3274 struct hash_table *ht;
3275
3276 /* The INSN we are currently proessing. */
3277 rtx insn;
3278
3279 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3280 to find the insns that use the REGs in the ADDRESSOFs. */
3281 int pass;
3282 };
3283
3284 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3285 that might be used in an ADDRESSOF expression, record this INSN in
3286 the hash table given by DATA (which is really a pointer to an
3287 insns_for_mem_walk_info structure). */
3288
3289 static int
3290 insns_for_mem_walk (r, data)
3291 rtx *r;
3292 void *data;
3293 {
3294 struct insns_for_mem_walk_info *ifmwi
3295 = (struct insns_for_mem_walk_info *) data;
3296
3297 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3298 && GET_CODE (XEXP (*r, 0)) == REG)
3299 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3300 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3301 {
3302 /* Lookup this MEM in the hashtable, creating it if necessary. */
3303 struct insns_for_mem_entry *ifme
3304 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3305 *r,
3306 /*create=*/0,
3307 /*copy=*/0);
3308
3309 /* If we have not already recorded this INSN, do so now. Since
3310 we process the INSNs in order, we know that if we have
3311 recorded it it must be at the front of the list. */
3312 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3313 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3314 ifme->insns);
3315 }
3316
3317 return 0;
3318 }
3319
3320 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3321 which REGs in HT. */
3322
3323 static void
3324 compute_insns_for_mem (insns, last_insn, ht)
3325 rtx insns;
3326 rtx last_insn;
3327 struct hash_table *ht;
3328 {
3329 rtx insn;
3330 struct insns_for_mem_walk_info ifmwi;
3331 ifmwi.ht = ht;
3332
3333 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3334 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3335 if (INSN_P (insn))
3336 {
3337 ifmwi.insn = insn;
3338 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3339 }
3340 }
3341
3342 /* Helper function for purge_addressof called through for_each_rtx.
3343 Returns true iff the rtl is an ADDRESSOF. */
3344
3345 static int
3346 is_addressof (rtl, data)
3347 rtx *rtl;
3348 void *data ATTRIBUTE_UNUSED;
3349 {
3350 return GET_CODE (*rtl) == ADDRESSOF;
3351 }
3352
3353 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3354 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3355 stack. */
3356
3357 void
3358 purge_addressof (insns)
3359 rtx insns;
3360 {
3361 rtx insn;
3362 struct hash_table ht;
3363
3364 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3365 requires a fixup pass over the instruction stream to correct
3366 INSNs that depended on the REG being a REG, and not a MEM. But,
3367 these fixup passes are slow. Furthermore, most MEMs are not
3368 mentioned in very many instructions. So, we speed up the process
3369 by pre-calculating which REGs occur in which INSNs; that allows
3370 us to perform the fixup passes much more quickly. */
3371 hash_table_init (&ht,
3372 insns_for_mem_newfunc,
3373 insns_for_mem_hash,
3374 insns_for_mem_comp);
3375 compute_insns_for_mem (insns, NULL_RTX, &ht);
3376
3377 for (insn = insns; insn; insn = NEXT_INSN (insn))
3378 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3379 || GET_CODE (insn) == CALL_INSN)
3380 {
3381 if (! purge_addressof_1 (&PATTERN (insn), insn,
3382 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3383 /* If we could not replace the ADDRESSOFs in the insn,
3384 something is wrong. */
3385 abort ();
3386
3387 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3388 {
3389 /* If we could not replace the ADDRESSOFs in the insn's notes,
3390 we can just remove the offending notes instead. */
3391 rtx note;
3392
3393 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3394 {
3395 /* If we find a REG_RETVAL note then the insn is a libcall.
3396 Such insns must have REG_EQUAL notes as well, in order
3397 for later passes of the compiler to work. So it is not
3398 safe to delete the notes here, and instead we abort. */
3399 if (REG_NOTE_KIND (note) == REG_RETVAL)
3400 abort ();
3401 if (for_each_rtx (&note, is_addressof, NULL))
3402 remove_note (insn, note);
3403 }
3404 }
3405 }
3406
3407 /* Clean up. */
3408 hash_table_free (&ht);
3409 purge_bitfield_addressof_replacements = 0;
3410 purge_addressof_replacements = 0;
3411
3412 /* REGs are shared. purge_addressof will destructively replace a REG
3413 with a MEM, which creates shared MEMs.
3414
3415 Unfortunately, the children of put_reg_into_stack assume that MEMs
3416 referring to the same stack slot are shared (fixup_var_refs and
3417 the associated hash table code).
3418
3419 So, we have to do another unsharing pass after we have flushed any
3420 REGs that had their address taken into the stack.
3421
3422 It may be worth tracking whether or not we converted any REGs into
3423 MEMs to avoid this overhead when it is not needed. */
3424 unshare_all_rtl_again (get_insns ());
3425 }
3426 \f
3427 /* Convert a SET of a hard subreg to a set of the appropriet hard
3428 register. A subroutine of purge_hard_subreg_sets. */
3429
3430 static void
3431 purge_single_hard_subreg_set (pattern)
3432 rtx pattern;
3433 {
3434 rtx reg = SET_DEST (pattern);
3435 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3436 int offset = 0;
3437
3438 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3439 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3440 {
3441 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3442 GET_MODE (SUBREG_REG (reg)),
3443 SUBREG_BYTE (reg),
3444 GET_MODE (reg));
3445 reg = SUBREG_REG (reg);
3446 }
3447
3448
3449 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3450 {
3451 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3452 SET_DEST (pattern) = reg;
3453 }
3454 }
3455
3456 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3457 only such SETs that we expect to see are those left in because
3458 integrate can't handle sets of parts of a return value register.
3459
3460 We don't use alter_subreg because we only want to eliminate subregs
3461 of hard registers. */
3462
3463 void
3464 purge_hard_subreg_sets (insn)
3465 rtx insn;
3466 {
3467 for (; insn; insn = NEXT_INSN (insn))
3468 {
3469 if (INSN_P (insn))
3470 {
3471 rtx pattern = PATTERN (insn);
3472 switch (GET_CODE (pattern))
3473 {
3474 case SET:
3475 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3476 purge_single_hard_subreg_set (pattern);
3477 break;
3478 case PARALLEL:
3479 {
3480 int j;
3481 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3482 {
3483 rtx inner_pattern = XVECEXP (pattern, 0, j);
3484 if (GET_CODE (inner_pattern) == SET
3485 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3486 purge_single_hard_subreg_set (inner_pattern);
3487 }
3488 }
3489 break;
3490 default:
3491 break;
3492 }
3493 }
3494 }
3495 }
3496 \f
3497 /* Pass through the INSNS of function FNDECL and convert virtual register
3498 references to hard register references. */
3499
3500 void
3501 instantiate_virtual_regs (fndecl, insns)
3502 tree fndecl;
3503 rtx insns;
3504 {
3505 rtx insn;
3506 unsigned int i;
3507
3508 /* Compute the offsets to use for this function. */
3509 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3510 var_offset = STARTING_FRAME_OFFSET;
3511 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3512 out_arg_offset = STACK_POINTER_OFFSET;
3513 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3514
3515 /* Scan all variables and parameters of this function. For each that is
3516 in memory, instantiate all virtual registers if the result is a valid
3517 address. If not, we do it later. That will handle most uses of virtual
3518 regs on many machines. */
3519 instantiate_decls (fndecl, 1);
3520
3521 /* Initialize recognition, indicating that volatile is OK. */
3522 init_recog ();
3523
3524 /* Scan through all the insns, instantiating every virtual register still
3525 present. */
3526 for (insn = insns; insn; insn = NEXT_INSN (insn))
3527 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3528 || GET_CODE (insn) == CALL_INSN)
3529 {
3530 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3531 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3532 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3533 if (GET_CODE (insn) == CALL_INSN)
3534 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3535 NULL_RTX, 0);
3536 }
3537
3538 /* Instantiate the stack slots for the parm registers, for later use in
3539 addressof elimination. */
3540 for (i = 0; i < max_parm_reg; ++i)
3541 if (parm_reg_stack_loc[i])
3542 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3543
3544 /* Now instantiate the remaining register equivalences for debugging info.
3545 These will not be valid addresses. */
3546 instantiate_decls (fndecl, 0);
3547
3548 /* Indicate that, from now on, assign_stack_local should use
3549 frame_pointer_rtx. */
3550 virtuals_instantiated = 1;
3551 }
3552
3553 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3554 all virtual registers in their DECL_RTL's.
3555
3556 If VALID_ONLY, do this only if the resulting address is still valid.
3557 Otherwise, always do it. */
3558
3559 static void
3560 instantiate_decls (fndecl, valid_only)
3561 tree fndecl;
3562 int valid_only;
3563 {
3564 tree decl;
3565
3566 /* Process all parameters of the function. */
3567 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3568 {
3569 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3570 HOST_WIDE_INT size_rtl;
3571
3572 instantiate_decl (DECL_RTL (decl), size, valid_only);
3573
3574 /* If the parameter was promoted, then the incoming RTL mode may be
3575 larger than the declared type size. We must use the larger of
3576 the two sizes. */
3577 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3578 size = MAX (size_rtl, size);
3579 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3580 }
3581
3582 /* Now process all variables defined in the function or its subblocks. */
3583 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3584 }
3585
3586 /* Subroutine of instantiate_decls: Process all decls in the given
3587 BLOCK node and all its subblocks. */
3588
3589 static void
3590 instantiate_decls_1 (let, valid_only)
3591 tree let;
3592 int valid_only;
3593 {
3594 tree t;
3595
3596 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3597 if (DECL_RTL_SET_P (t))
3598 instantiate_decl (DECL_RTL (t),
3599 int_size_in_bytes (TREE_TYPE (t)),
3600 valid_only);
3601
3602 /* Process all subblocks. */
3603 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3604 instantiate_decls_1 (t, valid_only);
3605 }
3606
3607 /* Subroutine of the preceding procedures: Given RTL representing a
3608 decl and the size of the object, do any instantiation required.
3609
3610 If VALID_ONLY is non-zero, it means that the RTL should only be
3611 changed if the new address is valid. */
3612
3613 static void
3614 instantiate_decl (x, size, valid_only)
3615 rtx x;
3616 HOST_WIDE_INT size;
3617 int valid_only;
3618 {
3619 enum machine_mode mode;
3620 rtx addr;
3621
3622 /* If this is not a MEM, no need to do anything. Similarly if the
3623 address is a constant or a register that is not a virtual register. */
3624
3625 if (x == 0 || GET_CODE (x) != MEM)
3626 return;
3627
3628 addr = XEXP (x, 0);
3629 if (CONSTANT_P (addr)
3630 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3631 || (GET_CODE (addr) == REG
3632 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3633 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3634 return;
3635
3636 /* If we should only do this if the address is valid, copy the address.
3637 We need to do this so we can undo any changes that might make the
3638 address invalid. This copy is unfortunate, but probably can't be
3639 avoided. */
3640
3641 if (valid_only)
3642 addr = copy_rtx (addr);
3643
3644 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3645
3646 if (valid_only && size >= 0)
3647 {
3648 unsigned HOST_WIDE_INT decl_size = size;
3649
3650 /* Now verify that the resulting address is valid for every integer or
3651 floating-point mode up to and including SIZE bytes long. We do this
3652 since the object might be accessed in any mode and frame addresses
3653 are shared. */
3654
3655 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3656 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3657 mode = GET_MODE_WIDER_MODE (mode))
3658 if (! memory_address_p (mode, addr))
3659 return;
3660
3661 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3662 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3663 mode = GET_MODE_WIDER_MODE (mode))
3664 if (! memory_address_p (mode, addr))
3665 return;
3666 }
3667
3668 /* Put back the address now that we have updated it and we either know
3669 it is valid or we don't care whether it is valid. */
3670
3671 XEXP (x, 0) = addr;
3672 }
3673 \f
3674 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3675 is a virtual register, return the requivalent hard register and set the
3676 offset indirectly through the pointer. Otherwise, return 0. */
3677
3678 static rtx
3679 instantiate_new_reg (x, poffset)
3680 rtx x;
3681 HOST_WIDE_INT *poffset;
3682 {
3683 rtx new;
3684 HOST_WIDE_INT offset;
3685
3686 if (x == virtual_incoming_args_rtx)
3687 new = arg_pointer_rtx, offset = in_arg_offset;
3688 else if (x == virtual_stack_vars_rtx)
3689 new = frame_pointer_rtx, offset = var_offset;
3690 else if (x == virtual_stack_dynamic_rtx)
3691 new = stack_pointer_rtx, offset = dynamic_offset;
3692 else if (x == virtual_outgoing_args_rtx)
3693 new = stack_pointer_rtx, offset = out_arg_offset;
3694 else if (x == virtual_cfa_rtx)
3695 new = arg_pointer_rtx, offset = cfa_offset;
3696 else
3697 return 0;
3698
3699 *poffset = offset;
3700 return new;
3701 }
3702 \f
3703 /* Given a pointer to a piece of rtx and an optional pointer to the
3704 containing object, instantiate any virtual registers present in it.
3705
3706 If EXTRA_INSNS, we always do the replacement and generate
3707 any extra insns before OBJECT. If it zero, we do nothing if replacement
3708 is not valid.
3709
3710 Return 1 if we either had nothing to do or if we were able to do the
3711 needed replacement. Return 0 otherwise; we only return zero if
3712 EXTRA_INSNS is zero.
3713
3714 We first try some simple transformations to avoid the creation of extra
3715 pseudos. */
3716
3717 static int
3718 instantiate_virtual_regs_1 (loc, object, extra_insns)
3719 rtx *loc;
3720 rtx object;
3721 int extra_insns;
3722 {
3723 rtx x;
3724 RTX_CODE code;
3725 rtx new = 0;
3726 HOST_WIDE_INT offset = 0;
3727 rtx temp;
3728 rtx seq;
3729 int i, j;
3730 const char *fmt;
3731
3732 /* Re-start here to avoid recursion in common cases. */
3733 restart:
3734
3735 x = *loc;
3736 if (x == 0)
3737 return 1;
3738
3739 code = GET_CODE (x);
3740
3741 /* Check for some special cases. */
3742 switch (code)
3743 {
3744 case CONST_INT:
3745 case CONST_DOUBLE:
3746 case CONST:
3747 case SYMBOL_REF:
3748 case CODE_LABEL:
3749 case PC:
3750 case CC0:
3751 case ASM_INPUT:
3752 case ADDR_VEC:
3753 case ADDR_DIFF_VEC:
3754 case RETURN:
3755 return 1;
3756
3757 case SET:
3758 /* We are allowed to set the virtual registers. This means that
3759 the actual register should receive the source minus the
3760 appropriate offset. This is used, for example, in the handling
3761 of non-local gotos. */
3762 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3763 {
3764 rtx src = SET_SRC (x);
3765
3766 /* We are setting the register, not using it, so the relevant
3767 offset is the negative of the offset to use were we using
3768 the register. */
3769 offset = - offset;
3770 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3771
3772 /* The only valid sources here are PLUS or REG. Just do
3773 the simplest possible thing to handle them. */
3774 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3775 abort ();
3776
3777 start_sequence ();
3778 if (GET_CODE (src) != REG)
3779 temp = force_operand (src, NULL_RTX);
3780 else
3781 temp = src;
3782 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3783 seq = get_insns ();
3784 end_sequence ();
3785
3786 emit_insns_before (seq, object);
3787 SET_DEST (x) = new;
3788
3789 if (! validate_change (object, &SET_SRC (x), temp, 0)
3790 || ! extra_insns)
3791 abort ();
3792
3793 return 1;
3794 }
3795
3796 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3797 loc = &SET_SRC (x);
3798 goto restart;
3799
3800 case PLUS:
3801 /* Handle special case of virtual register plus constant. */
3802 if (CONSTANT_P (XEXP (x, 1)))
3803 {
3804 rtx old, new_offset;
3805
3806 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3807 if (GET_CODE (XEXP (x, 0)) == PLUS)
3808 {
3809 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3810 {
3811 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3812 extra_insns);
3813 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3814 }
3815 else
3816 {
3817 loc = &XEXP (x, 0);
3818 goto restart;
3819 }
3820 }
3821
3822 #ifdef POINTERS_EXTEND_UNSIGNED
3823 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3824 we can commute the PLUS and SUBREG because pointers into the
3825 frame are well-behaved. */
3826 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3827 && GET_CODE (XEXP (x, 1)) == CONST_INT
3828 && 0 != (new
3829 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3830 &offset))
3831 && validate_change (object, loc,
3832 plus_constant (gen_lowpart (ptr_mode,
3833 new),
3834 offset
3835 + INTVAL (XEXP (x, 1))),
3836 0))
3837 return 1;
3838 #endif
3839 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3840 {
3841 /* We know the second operand is a constant. Unless the
3842 first operand is a REG (which has been already checked),
3843 it needs to be checked. */
3844 if (GET_CODE (XEXP (x, 0)) != REG)
3845 {
3846 loc = &XEXP (x, 0);
3847 goto restart;
3848 }
3849 return 1;
3850 }
3851
3852 new_offset = plus_constant (XEXP (x, 1), offset);
3853
3854 /* If the new constant is zero, try to replace the sum with just
3855 the register. */
3856 if (new_offset == const0_rtx
3857 && validate_change (object, loc, new, 0))
3858 return 1;
3859
3860 /* Next try to replace the register and new offset.
3861 There are two changes to validate here and we can't assume that
3862 in the case of old offset equals new just changing the register
3863 will yield a valid insn. In the interests of a little efficiency,
3864 however, we only call validate change once (we don't queue up the
3865 changes and then call apply_change_group). */
3866
3867 old = XEXP (x, 0);
3868 if (offset == 0
3869 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3870 : (XEXP (x, 0) = new,
3871 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3872 {
3873 if (! extra_insns)
3874 {
3875 XEXP (x, 0) = old;
3876 return 0;
3877 }
3878
3879 /* Otherwise copy the new constant into a register and replace
3880 constant with that register. */
3881 temp = gen_reg_rtx (Pmode);
3882 XEXP (x, 0) = new;
3883 if (validate_change (object, &XEXP (x, 1), temp, 0))
3884 emit_insn_before (gen_move_insn (temp, new_offset), object);
3885 else
3886 {
3887 /* If that didn't work, replace this expression with a
3888 register containing the sum. */
3889
3890 XEXP (x, 0) = old;
3891 new = gen_rtx_PLUS (Pmode, new, new_offset);
3892
3893 start_sequence ();
3894 temp = force_operand (new, NULL_RTX);
3895 seq = get_insns ();
3896 end_sequence ();
3897
3898 emit_insns_before (seq, object);
3899 if (! validate_change (object, loc, temp, 0)
3900 && ! validate_replace_rtx (x, temp, object))
3901 abort ();
3902 }
3903 }
3904
3905 return 1;
3906 }
3907
3908 /* Fall through to generic two-operand expression case. */
3909 case EXPR_LIST:
3910 case CALL:
3911 case COMPARE:
3912 case MINUS:
3913 case MULT:
3914 case DIV: case UDIV:
3915 case MOD: case UMOD:
3916 case AND: case IOR: case XOR:
3917 case ROTATERT: case ROTATE:
3918 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3919 case NE: case EQ:
3920 case GE: case GT: case GEU: case GTU:
3921 case LE: case LT: case LEU: case LTU:
3922 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3923 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3924 loc = &XEXP (x, 0);
3925 goto restart;
3926
3927 case MEM:
3928 /* Most cases of MEM that convert to valid addresses have already been
3929 handled by our scan of decls. The only special handling we
3930 need here is to make a copy of the rtx to ensure it isn't being
3931 shared if we have to change it to a pseudo.
3932
3933 If the rtx is a simple reference to an address via a virtual register,
3934 it can potentially be shared. In such cases, first try to make it
3935 a valid address, which can also be shared. Otherwise, copy it and
3936 proceed normally.
3937
3938 First check for common cases that need no processing. These are
3939 usually due to instantiation already being done on a previous instance
3940 of a shared rtx. */
3941
3942 temp = XEXP (x, 0);
3943 if (CONSTANT_ADDRESS_P (temp)
3944 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3945 || temp == arg_pointer_rtx
3946 #endif
3947 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3948 || temp == hard_frame_pointer_rtx
3949 #endif
3950 || temp == frame_pointer_rtx)
3951 return 1;
3952
3953 if (GET_CODE (temp) == PLUS
3954 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3955 && (XEXP (temp, 0) == frame_pointer_rtx
3956 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3957 || XEXP (temp, 0) == hard_frame_pointer_rtx
3958 #endif
3959 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3960 || XEXP (temp, 0) == arg_pointer_rtx
3961 #endif
3962 ))
3963 return 1;
3964
3965 if (temp == virtual_stack_vars_rtx
3966 || temp == virtual_incoming_args_rtx
3967 || (GET_CODE (temp) == PLUS
3968 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3969 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3970 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3971 {
3972 /* This MEM may be shared. If the substitution can be done without
3973 the need to generate new pseudos, we want to do it in place
3974 so all copies of the shared rtx benefit. The call below will
3975 only make substitutions if the resulting address is still
3976 valid.
3977
3978 Note that we cannot pass X as the object in the recursive call
3979 since the insn being processed may not allow all valid
3980 addresses. However, if we were not passed on object, we can
3981 only modify X without copying it if X will have a valid
3982 address.
3983
3984 ??? Also note that this can still lose if OBJECT is an insn that
3985 has less restrictions on an address that some other insn.
3986 In that case, we will modify the shared address. This case
3987 doesn't seem very likely, though. One case where this could
3988 happen is in the case of a USE or CLOBBER reference, but we
3989 take care of that below. */
3990
3991 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3992 object ? object : x, 0))
3993 return 1;
3994
3995 /* Otherwise make a copy and process that copy. We copy the entire
3996 RTL expression since it might be a PLUS which could also be
3997 shared. */
3998 *loc = x = copy_rtx (x);
3999 }
4000
4001 /* Fall through to generic unary operation case. */
4002 case SUBREG:
4003 case STRICT_LOW_PART:
4004 case NEG: case NOT:
4005 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4006 case SIGN_EXTEND: case ZERO_EXTEND:
4007 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4008 case FLOAT: case FIX:
4009 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4010 case ABS:
4011 case SQRT:
4012 case FFS:
4013 /* These case either have just one operand or we know that we need not
4014 check the rest of the operands. */
4015 loc = &XEXP (x, 0);
4016 goto restart;
4017
4018 case USE:
4019 case CLOBBER:
4020 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4021 go ahead and make the invalid one, but do it to a copy. For a REG,
4022 just make the recursive call, since there's no chance of a problem. */
4023
4024 if ((GET_CODE (XEXP (x, 0)) == MEM
4025 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4026 0))
4027 || (GET_CODE (XEXP (x, 0)) == REG
4028 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4029 return 1;
4030
4031 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4032 loc = &XEXP (x, 0);
4033 goto restart;
4034
4035 case REG:
4036 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4037 in front of this insn and substitute the temporary. */
4038 if ((new = instantiate_new_reg (x, &offset)) != 0)
4039 {
4040 temp = plus_constant (new, offset);
4041 if (!validate_change (object, loc, temp, 0))
4042 {
4043 if (! extra_insns)
4044 return 0;
4045
4046 start_sequence ();
4047 temp = force_operand (temp, NULL_RTX);
4048 seq = get_insns ();
4049 end_sequence ();
4050
4051 emit_insns_before (seq, object);
4052 if (! validate_change (object, loc, temp, 0)
4053 && ! validate_replace_rtx (x, temp, object))
4054 abort ();
4055 }
4056 }
4057
4058 return 1;
4059
4060 case ADDRESSOF:
4061 if (GET_CODE (XEXP (x, 0)) == REG)
4062 return 1;
4063
4064 else if (GET_CODE (XEXP (x, 0)) == MEM)
4065 {
4066 /* If we have a (addressof (mem ..)), do any instantiation inside
4067 since we know we'll be making the inside valid when we finally
4068 remove the ADDRESSOF. */
4069 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4070 return 1;
4071 }
4072 break;
4073
4074 default:
4075 break;
4076 }
4077
4078 /* Scan all subexpressions. */
4079 fmt = GET_RTX_FORMAT (code);
4080 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4081 if (*fmt == 'e')
4082 {
4083 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4084 return 0;
4085 }
4086 else if (*fmt == 'E')
4087 for (j = 0; j < XVECLEN (x, i); j++)
4088 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4089 extra_insns))
4090 return 0;
4091
4092 return 1;
4093 }
4094 \f
4095 /* Optimization: assuming this function does not receive nonlocal gotos,
4096 delete the handlers for such, as well as the insns to establish
4097 and disestablish them. */
4098
4099 static void
4100 delete_handlers ()
4101 {
4102 rtx insn;
4103 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4104 {
4105 /* Delete the handler by turning off the flag that would
4106 prevent jump_optimize from deleting it.
4107 Also permit deletion of the nonlocal labels themselves
4108 if nothing local refers to them. */
4109 if (GET_CODE (insn) == CODE_LABEL)
4110 {
4111 tree t, last_t;
4112
4113 LABEL_PRESERVE_P (insn) = 0;
4114
4115 /* Remove it from the nonlocal_label list, to avoid confusing
4116 flow. */
4117 for (t = nonlocal_labels, last_t = 0; t;
4118 last_t = t, t = TREE_CHAIN (t))
4119 if (DECL_RTL (TREE_VALUE (t)) == insn)
4120 break;
4121 if (t)
4122 {
4123 if (! last_t)
4124 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4125 else
4126 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4127 }
4128 }
4129 if (GET_CODE (insn) == INSN)
4130 {
4131 int can_delete = 0;
4132 rtx t;
4133 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4134 if (reg_mentioned_p (t, PATTERN (insn)))
4135 {
4136 can_delete = 1;
4137 break;
4138 }
4139 if (can_delete
4140 || (nonlocal_goto_stack_level != 0
4141 && reg_mentioned_p (nonlocal_goto_stack_level,
4142 PATTERN (insn))))
4143 delete_insn (insn);
4144 }
4145 }
4146 }
4147 \f
4148 int
4149 max_parm_reg_num ()
4150 {
4151 return max_parm_reg;
4152 }
4153
4154 /* Return the first insn following those generated by `assign_parms'. */
4155
4156 rtx
4157 get_first_nonparm_insn ()
4158 {
4159 if (last_parm_insn)
4160 return NEXT_INSN (last_parm_insn);
4161 return get_insns ();
4162 }
4163
4164 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4165 Crash if there is none. */
4166
4167 rtx
4168 get_first_block_beg ()
4169 {
4170 register rtx searcher;
4171 register rtx insn = get_first_nonparm_insn ();
4172
4173 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4174 if (GET_CODE (searcher) == NOTE
4175 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4176 return searcher;
4177
4178 abort (); /* Invalid call to this function. (See comments above.) */
4179 return NULL_RTX;
4180 }
4181
4182 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4183 This means a type for which function calls must pass an address to the
4184 function or get an address back from the function.
4185 EXP may be a type node or an expression (whose type is tested). */
4186
4187 int
4188 aggregate_value_p (exp)
4189 tree exp;
4190 {
4191 int i, regno, nregs;
4192 rtx reg;
4193
4194 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4195
4196 if (TREE_CODE (type) == VOID_TYPE)
4197 return 0;
4198 if (RETURN_IN_MEMORY (type))
4199 return 1;
4200 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4201 and thus can't be returned in registers. */
4202 if (TREE_ADDRESSABLE (type))
4203 return 1;
4204 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4205 return 1;
4206 /* Make sure we have suitable call-clobbered regs to return
4207 the value in; if not, we must return it in memory. */
4208 reg = hard_function_value (type, 0, 0);
4209
4210 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4211 it is OK. */
4212 if (GET_CODE (reg) != REG)
4213 return 0;
4214
4215 regno = REGNO (reg);
4216 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4217 for (i = 0; i < nregs; i++)
4218 if (! call_used_regs[regno + i])
4219 return 1;
4220 return 0;
4221 }
4222 \f
4223 /* Assign RTL expressions to the function's parameters.
4224 This may involve copying them into registers and using
4225 those registers as the RTL for them. */
4226
4227 void
4228 assign_parms (fndecl)
4229 tree fndecl;
4230 {
4231 register tree parm;
4232 register rtx entry_parm = 0;
4233 register rtx stack_parm = 0;
4234 CUMULATIVE_ARGS args_so_far;
4235 enum machine_mode promoted_mode, passed_mode;
4236 enum machine_mode nominal_mode, promoted_nominal_mode;
4237 int unsignedp;
4238 /* Total space needed so far for args on the stack,
4239 given as a constant and a tree-expression. */
4240 struct args_size stack_args_size;
4241 tree fntype = TREE_TYPE (fndecl);
4242 tree fnargs = DECL_ARGUMENTS (fndecl);
4243 /* This is used for the arg pointer when referring to stack args. */
4244 rtx internal_arg_pointer;
4245 /* This is a dummy PARM_DECL that we used for the function result if
4246 the function returns a structure. */
4247 tree function_result_decl = 0;
4248 #ifdef SETUP_INCOMING_VARARGS
4249 int varargs_setup = 0;
4250 #endif
4251 rtx conversion_insns = 0;
4252 struct args_size alignment_pad;
4253
4254 /* Nonzero if the last arg is named `__builtin_va_alist',
4255 which is used on some machines for old-fashioned non-ANSI varargs.h;
4256 this should be stuck onto the stack as if it had arrived there. */
4257 int hide_last_arg
4258 = (current_function_varargs
4259 && fnargs
4260 && (parm = tree_last (fnargs)) != 0
4261 && DECL_NAME (parm)
4262 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4263 "__builtin_va_alist")));
4264
4265 /* Nonzero if function takes extra anonymous args.
4266 This means the last named arg must be on the stack
4267 right before the anonymous ones. */
4268 int stdarg
4269 = (TYPE_ARG_TYPES (fntype) != 0
4270 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4271 != void_type_node));
4272
4273 current_function_stdarg = stdarg;
4274
4275 /* If the reg that the virtual arg pointer will be translated into is
4276 not a fixed reg or is the stack pointer, make a copy of the virtual
4277 arg pointer, and address parms via the copy. The frame pointer is
4278 considered fixed even though it is not marked as such.
4279
4280 The second time through, simply use ap to avoid generating rtx. */
4281
4282 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4283 || ! (fixed_regs[ARG_POINTER_REGNUM]
4284 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4285 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4286 else
4287 internal_arg_pointer = virtual_incoming_args_rtx;
4288 current_function_internal_arg_pointer = internal_arg_pointer;
4289
4290 stack_args_size.constant = 0;
4291 stack_args_size.var = 0;
4292
4293 /* If struct value address is treated as the first argument, make it so. */
4294 if (aggregate_value_p (DECL_RESULT (fndecl))
4295 && ! current_function_returns_pcc_struct
4296 && struct_value_incoming_rtx == 0)
4297 {
4298 tree type = build_pointer_type (TREE_TYPE (fntype));
4299
4300 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4301
4302 DECL_ARG_TYPE (function_result_decl) = type;
4303 TREE_CHAIN (function_result_decl) = fnargs;
4304 fnargs = function_result_decl;
4305 }
4306
4307 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4308 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4309
4310 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4311 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4312 #else
4313 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4314 #endif
4315
4316 /* We haven't yet found an argument that we must push and pretend the
4317 caller did. */
4318 current_function_pretend_args_size = 0;
4319
4320 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4321 {
4322 struct args_size stack_offset;
4323 struct args_size arg_size;
4324 int passed_pointer = 0;
4325 int did_conversion = 0;
4326 tree passed_type = DECL_ARG_TYPE (parm);
4327 tree nominal_type = TREE_TYPE (parm);
4328 int pretend_named;
4329
4330 /* Set LAST_NAMED if this is last named arg before some
4331 anonymous args. */
4332 int last_named = ((TREE_CHAIN (parm) == 0
4333 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4334 && (stdarg || current_function_varargs));
4335 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4336 most machines, if this is a varargs/stdarg function, then we treat
4337 the last named arg as if it were anonymous too. */
4338 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4339
4340 if (TREE_TYPE (parm) == error_mark_node
4341 /* This can happen after weird syntax errors
4342 or if an enum type is defined among the parms. */
4343 || TREE_CODE (parm) != PARM_DECL
4344 || passed_type == NULL)
4345 {
4346 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4347 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4348 TREE_USED (parm) = 1;
4349 continue;
4350 }
4351
4352 /* For varargs.h function, save info about regs and stack space
4353 used by the individual args, not including the va_alist arg. */
4354 if (hide_last_arg && last_named)
4355 current_function_args_info = args_so_far;
4356
4357 /* Find mode of arg as it is passed, and mode of arg
4358 as it should be during execution of this function. */
4359 passed_mode = TYPE_MODE (passed_type);
4360 nominal_mode = TYPE_MODE (nominal_type);
4361
4362 /* If the parm's mode is VOID, its value doesn't matter,
4363 and avoid the usual things like emit_move_insn that could crash. */
4364 if (nominal_mode == VOIDmode)
4365 {
4366 SET_DECL_RTL (parm, const0_rtx);
4367 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4368 continue;
4369 }
4370
4371 /* If the parm is to be passed as a transparent union, use the
4372 type of the first field for the tests below. We have already
4373 verified that the modes are the same. */
4374 if (DECL_TRANSPARENT_UNION (parm)
4375 || (TREE_CODE (passed_type) == UNION_TYPE
4376 && TYPE_TRANSPARENT_UNION (passed_type)))
4377 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4378
4379 /* See if this arg was passed by invisible reference. It is if
4380 it is an object whose size depends on the contents of the
4381 object itself or if the machine requires these objects be passed
4382 that way. */
4383
4384 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4385 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4386 || TREE_ADDRESSABLE (passed_type)
4387 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4388 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4389 passed_type, named_arg)
4390 #endif
4391 )
4392 {
4393 passed_type = nominal_type = build_pointer_type (passed_type);
4394 passed_pointer = 1;
4395 passed_mode = nominal_mode = Pmode;
4396 }
4397
4398 promoted_mode = passed_mode;
4399
4400 #ifdef PROMOTE_FUNCTION_ARGS
4401 /* Compute the mode in which the arg is actually extended to. */
4402 unsignedp = TREE_UNSIGNED (passed_type);
4403 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4404 #endif
4405
4406 /* Let machine desc say which reg (if any) the parm arrives in.
4407 0 means it arrives on the stack. */
4408 #ifdef FUNCTION_INCOMING_ARG
4409 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4410 passed_type, named_arg);
4411 #else
4412 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4413 passed_type, named_arg);
4414 #endif
4415
4416 if (entry_parm == 0)
4417 promoted_mode = passed_mode;
4418
4419 #ifdef SETUP_INCOMING_VARARGS
4420 /* If this is the last named parameter, do any required setup for
4421 varargs or stdargs. We need to know about the case of this being an
4422 addressable type, in which case we skip the registers it
4423 would have arrived in.
4424
4425 For stdargs, LAST_NAMED will be set for two parameters, the one that
4426 is actually the last named, and the dummy parameter. We only
4427 want to do this action once.
4428
4429 Also, indicate when RTL generation is to be suppressed. */
4430 if (last_named && !varargs_setup)
4431 {
4432 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4433 current_function_pretend_args_size, 0);
4434 varargs_setup = 1;
4435 }
4436 #endif
4437
4438 /* Determine parm's home in the stack,
4439 in case it arrives in the stack or we should pretend it did.
4440
4441 Compute the stack position and rtx where the argument arrives
4442 and its size.
4443
4444 There is one complexity here: If this was a parameter that would
4445 have been passed in registers, but wasn't only because it is
4446 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4447 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4448 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4449 0 as it was the previous time. */
4450
4451 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4452 locate_and_pad_parm (promoted_mode, passed_type,
4453 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4454 1,
4455 #else
4456 #ifdef FUNCTION_INCOMING_ARG
4457 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4458 passed_type,
4459 pretend_named) != 0,
4460 #else
4461 FUNCTION_ARG (args_so_far, promoted_mode,
4462 passed_type,
4463 pretend_named) != 0,
4464 #endif
4465 #endif
4466 fndecl, &stack_args_size, &stack_offset, &arg_size,
4467 &alignment_pad);
4468
4469 {
4470 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4471
4472 if (offset_rtx == const0_rtx)
4473 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4474 else
4475 stack_parm = gen_rtx_MEM (promoted_mode,
4476 gen_rtx_PLUS (Pmode,
4477 internal_arg_pointer,
4478 offset_rtx));
4479
4480 set_mem_attributes (stack_parm, parm, 1);
4481 }
4482
4483 /* If this parameter was passed both in registers and in the stack,
4484 use the copy on the stack. */
4485 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4486 entry_parm = 0;
4487
4488 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4489 /* If this parm was passed part in regs and part in memory,
4490 pretend it arrived entirely in memory
4491 by pushing the register-part onto the stack.
4492
4493 In the special case of a DImode or DFmode that is split,
4494 we could put it together in a pseudoreg directly,
4495 but for now that's not worth bothering with. */
4496
4497 if (entry_parm)
4498 {
4499 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4500 passed_type, named_arg);
4501
4502 if (nregs > 0)
4503 {
4504 current_function_pretend_args_size
4505 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4506 / (PARM_BOUNDARY / BITS_PER_UNIT)
4507 * (PARM_BOUNDARY / BITS_PER_UNIT));
4508
4509 /* Handle calls that pass values in multiple non-contiguous
4510 locations. The Irix 6 ABI has examples of this. */
4511 if (GET_CODE (entry_parm) == PARALLEL)
4512 emit_group_store (validize_mem (stack_parm), entry_parm,
4513 int_size_in_bytes (TREE_TYPE (parm)),
4514 TYPE_ALIGN (TREE_TYPE (parm)));
4515
4516 else
4517 move_block_from_reg (REGNO (entry_parm),
4518 validize_mem (stack_parm), nregs,
4519 int_size_in_bytes (TREE_TYPE (parm)));
4520
4521 entry_parm = stack_parm;
4522 }
4523 }
4524 #endif
4525
4526 /* If we didn't decide this parm came in a register,
4527 by default it came on the stack. */
4528 if (entry_parm == 0)
4529 entry_parm = stack_parm;
4530
4531 /* Record permanently how this parm was passed. */
4532 DECL_INCOMING_RTL (parm) = entry_parm;
4533
4534 /* If there is actually space on the stack for this parm,
4535 count it in stack_args_size; otherwise set stack_parm to 0
4536 to indicate there is no preallocated stack slot for the parm. */
4537
4538 if (entry_parm == stack_parm
4539 || (GET_CODE (entry_parm) == PARALLEL
4540 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4541 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4542 /* On some machines, even if a parm value arrives in a register
4543 there is still an (uninitialized) stack slot allocated for it.
4544
4545 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4546 whether this parameter already has a stack slot allocated,
4547 because an arg block exists only if current_function_args_size
4548 is larger than some threshold, and we haven't calculated that
4549 yet. So, for now, we just assume that stack slots never exist
4550 in this case. */
4551 || REG_PARM_STACK_SPACE (fndecl) > 0
4552 #endif
4553 )
4554 {
4555 stack_args_size.constant += arg_size.constant;
4556 if (arg_size.var)
4557 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4558 }
4559 else
4560 /* No stack slot was pushed for this parm. */
4561 stack_parm = 0;
4562
4563 /* Update info on where next arg arrives in registers. */
4564
4565 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4566 passed_type, named_arg);
4567
4568 /* If we can't trust the parm stack slot to be aligned enough
4569 for its ultimate type, don't use that slot after entry.
4570 We'll make another stack slot, if we need one. */
4571 {
4572 unsigned int thisparm_boundary
4573 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4574
4575 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4576 stack_parm = 0;
4577 }
4578
4579 /* If parm was passed in memory, and we need to convert it on entry,
4580 don't store it back in that same slot. */
4581 if (entry_parm != 0
4582 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4583 stack_parm = 0;
4584
4585 /* When an argument is passed in multiple locations, we can't
4586 make use of this information, but we can save some copying if
4587 the whole argument is passed in a single register. */
4588 if (GET_CODE (entry_parm) == PARALLEL
4589 && nominal_mode != BLKmode && passed_mode != BLKmode)
4590 {
4591 int i, len = XVECLEN (entry_parm, 0);
4592
4593 for (i = 0; i < len; i++)
4594 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4595 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4596 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4597 == passed_mode)
4598 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4599 {
4600 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4601 DECL_INCOMING_RTL (parm) = entry_parm;
4602 break;
4603 }
4604 }
4605
4606 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4607 in the mode in which it arrives.
4608 STACK_PARM is an RTX for a stack slot where the parameter can live
4609 during the function (in case we want to put it there).
4610 STACK_PARM is 0 if no stack slot was pushed for it.
4611
4612 Now output code if necessary to convert ENTRY_PARM to
4613 the type in which this function declares it,
4614 and store that result in an appropriate place,
4615 which may be a pseudo reg, may be STACK_PARM,
4616 or may be a local stack slot if STACK_PARM is 0.
4617
4618 Set DECL_RTL to that place. */
4619
4620 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4621 {
4622 /* If a BLKmode arrives in registers, copy it to a stack slot.
4623 Handle calls that pass values in multiple non-contiguous
4624 locations. The Irix 6 ABI has examples of this. */
4625 if (GET_CODE (entry_parm) == REG
4626 || GET_CODE (entry_parm) == PARALLEL)
4627 {
4628 int size_stored
4629 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4630 UNITS_PER_WORD);
4631
4632 /* Note that we will be storing an integral number of words.
4633 So we have to be careful to ensure that we allocate an
4634 integral number of words. We do this below in the
4635 assign_stack_local if space was not allocated in the argument
4636 list. If it was, this will not work if PARM_BOUNDARY is not
4637 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4638 if it becomes a problem. */
4639
4640 if (stack_parm == 0)
4641 {
4642 stack_parm
4643 = assign_stack_local (GET_MODE (entry_parm),
4644 size_stored, 0);
4645 set_mem_attributes (stack_parm, parm, 1);
4646 }
4647
4648 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4649 abort ();
4650
4651 /* Handle calls that pass values in multiple non-contiguous
4652 locations. The Irix 6 ABI has examples of this. */
4653 if (GET_CODE (entry_parm) == PARALLEL)
4654 emit_group_store (validize_mem (stack_parm), entry_parm,
4655 int_size_in_bytes (TREE_TYPE (parm)),
4656 TYPE_ALIGN (TREE_TYPE (parm)));
4657 else
4658 move_block_from_reg (REGNO (entry_parm),
4659 validize_mem (stack_parm),
4660 size_stored / UNITS_PER_WORD,
4661 int_size_in_bytes (TREE_TYPE (parm)));
4662 }
4663 SET_DECL_RTL (parm, stack_parm);
4664 }
4665 else if (! ((! optimize
4666 && ! DECL_REGISTER (parm)
4667 && ! DECL_INLINE (fndecl))
4668 || TREE_SIDE_EFFECTS (parm)
4669 /* If -ffloat-store specified, don't put explicit
4670 float variables into registers. */
4671 || (flag_float_store
4672 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4673 /* Always assign pseudo to structure return or item passed
4674 by invisible reference. */
4675 || passed_pointer || parm == function_result_decl)
4676 {
4677 /* Store the parm in a pseudoregister during the function, but we
4678 may need to do it in a wider mode. */
4679
4680 register rtx parmreg;
4681 unsigned int regno, regnoi = 0, regnor = 0;
4682
4683 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4684
4685 promoted_nominal_mode
4686 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4687
4688 parmreg = gen_reg_rtx (promoted_nominal_mode);
4689 mark_user_reg (parmreg);
4690
4691 /* If this was an item that we received a pointer to, set DECL_RTL
4692 appropriately. */
4693 if (passed_pointer)
4694 {
4695 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4696 parmreg);
4697 set_mem_attributes (x, parm, 1);
4698 SET_DECL_RTL (parm, x);
4699 }
4700 else
4701 {
4702 SET_DECL_RTL (parm, parmreg);
4703 maybe_set_unchanging (DECL_RTL (parm), parm);
4704 }
4705
4706 /* Copy the value into the register. */
4707 if (nominal_mode != passed_mode
4708 || promoted_nominal_mode != promoted_mode)
4709 {
4710 int save_tree_used;
4711 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4712 mode, by the caller. We now have to convert it to
4713 NOMINAL_MODE, if different. However, PARMREG may be in
4714 a different mode than NOMINAL_MODE if it is being stored
4715 promoted.
4716
4717 If ENTRY_PARM is a hard register, it might be in a register
4718 not valid for operating in its mode (e.g., an odd-numbered
4719 register for a DFmode). In that case, moves are the only
4720 thing valid, so we can't do a convert from there. This
4721 occurs when the calling sequence allow such misaligned
4722 usages.
4723
4724 In addition, the conversion may involve a call, which could
4725 clobber parameters which haven't been copied to pseudo
4726 registers yet. Therefore, we must first copy the parm to
4727 a pseudo reg here, and save the conversion until after all
4728 parameters have been moved. */
4729
4730 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4731
4732 emit_move_insn (tempreg, validize_mem (entry_parm));
4733
4734 push_to_sequence (conversion_insns);
4735 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4736
4737 if (GET_CODE (tempreg) == SUBREG
4738 && GET_MODE (tempreg) == nominal_mode
4739 && GET_CODE (SUBREG_REG (tempreg)) == REG
4740 && nominal_mode == passed_mode
4741 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4742 && GET_MODE_SIZE (GET_MODE (tempreg))
4743 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4744 {
4745 /* The argument is already sign/zero extended, so note it
4746 into the subreg. */
4747 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4748 SUBREG_PROMOTED_UNSIGNED_P (tempreg) = unsignedp;
4749 }
4750
4751 /* TREE_USED gets set erroneously during expand_assignment. */
4752 save_tree_used = TREE_USED (parm);
4753 expand_assignment (parm,
4754 make_tree (nominal_type, tempreg), 0, 0);
4755 TREE_USED (parm) = save_tree_used;
4756 conversion_insns = get_insns ();
4757 did_conversion = 1;
4758 end_sequence ();
4759 }
4760 else
4761 emit_move_insn (parmreg, validize_mem (entry_parm));
4762
4763 /* If we were passed a pointer but the actual value
4764 can safely live in a register, put it in one. */
4765 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4766 && ! ((! optimize
4767 && ! DECL_REGISTER (parm)
4768 && ! DECL_INLINE (fndecl))
4769 || TREE_SIDE_EFFECTS (parm)
4770 /* If -ffloat-store specified, don't put explicit
4771 float variables into registers. */
4772 || (flag_float_store
4773 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4774 {
4775 /* We can't use nominal_mode, because it will have been set to
4776 Pmode above. We must use the actual mode of the parm. */
4777 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4778 mark_user_reg (parmreg);
4779 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4780 {
4781 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4782 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4783 push_to_sequence (conversion_insns);
4784 emit_move_insn (tempreg, DECL_RTL (parm));
4785 SET_DECL_RTL (parm,
4786 convert_to_mode (GET_MODE (parmreg),
4787 tempreg,
4788 unsigned_p));
4789 emit_move_insn (parmreg, DECL_RTL (parm));
4790 conversion_insns = get_insns();
4791 did_conversion = 1;
4792 end_sequence ();
4793 }
4794 else
4795 emit_move_insn (parmreg, DECL_RTL (parm));
4796 SET_DECL_RTL (parm, parmreg);
4797 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4798 now the parm. */
4799 stack_parm = 0;
4800 }
4801 #ifdef FUNCTION_ARG_CALLEE_COPIES
4802 /* If we are passed an arg by reference and it is our responsibility
4803 to make a copy, do it now.
4804 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4805 original argument, so we must recreate them in the call to
4806 FUNCTION_ARG_CALLEE_COPIES. */
4807 /* ??? Later add code to handle the case that if the argument isn't
4808 modified, don't do the copy. */
4809
4810 else if (passed_pointer
4811 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4812 TYPE_MODE (DECL_ARG_TYPE (parm)),
4813 DECL_ARG_TYPE (parm),
4814 named_arg)
4815 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4816 {
4817 rtx copy;
4818 tree type = DECL_ARG_TYPE (parm);
4819
4820 /* This sequence may involve a library call perhaps clobbering
4821 registers that haven't been copied to pseudos yet. */
4822
4823 push_to_sequence (conversion_insns);
4824
4825 if (!COMPLETE_TYPE_P (type)
4826 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4827 /* This is a variable sized object. */
4828 copy = gen_rtx_MEM (BLKmode,
4829 allocate_dynamic_stack_space
4830 (expr_size (parm), NULL_RTX,
4831 TYPE_ALIGN (type)));
4832 else
4833 copy = assign_stack_temp (TYPE_MODE (type),
4834 int_size_in_bytes (type), 1);
4835 set_mem_attributes (copy, parm, 1);
4836
4837 store_expr (parm, copy, 0);
4838 emit_move_insn (parmreg, XEXP (copy, 0));
4839 if (current_function_check_memory_usage)
4840 emit_library_call (chkr_set_right_libfunc,
4841 LCT_CONST_MAKE_BLOCK, VOIDmode, 3,
4842 XEXP (copy, 0), Pmode,
4843 GEN_INT (int_size_in_bytes (type)),
4844 TYPE_MODE (sizetype),
4845 GEN_INT (MEMORY_USE_RW),
4846 TYPE_MODE (integer_type_node));
4847 conversion_insns = get_insns ();
4848 did_conversion = 1;
4849 end_sequence ();
4850 }
4851 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4852
4853 /* In any case, record the parm's desired stack location
4854 in case we later discover it must live in the stack.
4855
4856 If it is a COMPLEX value, store the stack location for both
4857 halves. */
4858
4859 if (GET_CODE (parmreg) == CONCAT)
4860 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4861 else
4862 regno = REGNO (parmreg);
4863
4864 if (regno >= max_parm_reg)
4865 {
4866 rtx *new;
4867 int old_max_parm_reg = max_parm_reg;
4868
4869 /* It's slow to expand this one register at a time,
4870 but it's also rare and we need max_parm_reg to be
4871 precisely correct. */
4872 max_parm_reg = regno + 1;
4873 new = (rtx *) xrealloc (parm_reg_stack_loc,
4874 max_parm_reg * sizeof (rtx));
4875 memset ((char *) (new + old_max_parm_reg), 0,
4876 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4877 parm_reg_stack_loc = new;
4878 }
4879
4880 if (GET_CODE (parmreg) == CONCAT)
4881 {
4882 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4883
4884 regnor = REGNO (gen_realpart (submode, parmreg));
4885 regnoi = REGNO (gen_imagpart (submode, parmreg));
4886
4887 if (stack_parm != 0)
4888 {
4889 parm_reg_stack_loc[regnor]
4890 = gen_realpart (submode, stack_parm);
4891 parm_reg_stack_loc[regnoi]
4892 = gen_imagpart (submode, stack_parm);
4893 }
4894 else
4895 {
4896 parm_reg_stack_loc[regnor] = 0;
4897 parm_reg_stack_loc[regnoi] = 0;
4898 }
4899 }
4900 else
4901 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4902
4903 /* Mark the register as eliminable if we did no conversion
4904 and it was copied from memory at a fixed offset,
4905 and the arg pointer was not copied to a pseudo-reg.
4906 If the arg pointer is a pseudo reg or the offset formed
4907 an invalid address, such memory-equivalences
4908 as we make here would screw up life analysis for it. */
4909 if (nominal_mode == passed_mode
4910 && ! did_conversion
4911 && stack_parm != 0
4912 && GET_CODE (stack_parm) == MEM
4913 && stack_offset.var == 0
4914 && reg_mentioned_p (virtual_incoming_args_rtx,
4915 XEXP (stack_parm, 0)))
4916 {
4917 rtx linsn = get_last_insn ();
4918 rtx sinsn, set;
4919
4920 /* Mark complex types separately. */
4921 if (GET_CODE (parmreg) == CONCAT)
4922 /* Scan backwards for the set of the real and
4923 imaginary parts. */
4924 for (sinsn = linsn; sinsn != 0;
4925 sinsn = prev_nonnote_insn (sinsn))
4926 {
4927 set = single_set (sinsn);
4928 if (set != 0
4929 && SET_DEST (set) == regno_reg_rtx [regnoi])
4930 REG_NOTES (sinsn)
4931 = gen_rtx_EXPR_LIST (REG_EQUIV,
4932 parm_reg_stack_loc[regnoi],
4933 REG_NOTES (sinsn));
4934 else if (set != 0
4935 && SET_DEST (set) == regno_reg_rtx [regnor])
4936 REG_NOTES (sinsn)
4937 = gen_rtx_EXPR_LIST (REG_EQUIV,
4938 parm_reg_stack_loc[regnor],
4939 REG_NOTES (sinsn));
4940 }
4941 else if ((set = single_set (linsn)) != 0
4942 && SET_DEST (set) == parmreg)
4943 REG_NOTES (linsn)
4944 = gen_rtx_EXPR_LIST (REG_EQUIV,
4945 stack_parm, REG_NOTES (linsn));
4946 }
4947
4948 /* For pointer data type, suggest pointer register. */
4949 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4950 mark_reg_pointer (parmreg,
4951 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4952
4953 /* If something wants our address, try to use ADDRESSOF. */
4954 if (TREE_ADDRESSABLE (parm))
4955 {
4956 /* If we end up putting something into the stack,
4957 fixup_var_refs_insns will need to make a pass over
4958 all the instructions. It looks throughs the pending
4959 sequences -- but it can't see the ones in the
4960 CONVERSION_INSNS, if they're not on the sequence
4961 stack. So, we go back to that sequence, just so that
4962 the fixups will happen. */
4963 push_to_sequence (conversion_insns);
4964 put_var_into_stack (parm);
4965 conversion_insns = get_insns ();
4966 end_sequence ();
4967 }
4968 }
4969 else
4970 {
4971 /* Value must be stored in the stack slot STACK_PARM
4972 during function execution. */
4973
4974 if (promoted_mode != nominal_mode)
4975 {
4976 /* Conversion is required. */
4977 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4978
4979 emit_move_insn (tempreg, validize_mem (entry_parm));
4980
4981 push_to_sequence (conversion_insns);
4982 entry_parm = convert_to_mode (nominal_mode, tempreg,
4983 TREE_UNSIGNED (TREE_TYPE (parm)));
4984 if (stack_parm)
4985 /* ??? This may need a big-endian conversion on sparc64. */
4986 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
4987
4988 conversion_insns = get_insns ();
4989 did_conversion = 1;
4990 end_sequence ();
4991 }
4992
4993 if (entry_parm != stack_parm)
4994 {
4995 if (stack_parm == 0)
4996 {
4997 stack_parm
4998 = assign_stack_local (GET_MODE (entry_parm),
4999 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
5000 set_mem_attributes (stack_parm, parm, 1);
5001 }
5002
5003 if (promoted_mode != nominal_mode)
5004 {
5005 push_to_sequence (conversion_insns);
5006 emit_move_insn (validize_mem (stack_parm),
5007 validize_mem (entry_parm));
5008 conversion_insns = get_insns ();
5009 end_sequence ();
5010 }
5011 else
5012 emit_move_insn (validize_mem (stack_parm),
5013 validize_mem (entry_parm));
5014 }
5015 if (current_function_check_memory_usage)
5016 {
5017 push_to_sequence (conversion_insns);
5018 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK,
5019 VOIDmode, 3, XEXP (stack_parm, 0), Pmode,
5020 GEN_INT (GET_MODE_SIZE (GET_MODE
5021 (entry_parm))),
5022 TYPE_MODE (sizetype),
5023 GEN_INT (MEMORY_USE_RW),
5024 TYPE_MODE (integer_type_node));
5025
5026 conversion_insns = get_insns ();
5027 end_sequence ();
5028 }
5029 SET_DECL_RTL (parm, stack_parm);
5030 }
5031
5032 /* If this "parameter" was the place where we are receiving the
5033 function's incoming structure pointer, set up the result. */
5034 if (parm == function_result_decl)
5035 {
5036 tree result = DECL_RESULT (fndecl);
5037 rtx x = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
5038
5039 set_mem_attributes (x, result, 1);
5040 SET_DECL_RTL (result, x);
5041 }
5042 }
5043
5044 /* Output all parameter conversion instructions (possibly including calls)
5045 now that all parameters have been copied out of hard registers. */
5046 emit_insns (conversion_insns);
5047
5048 last_parm_insn = get_last_insn ();
5049
5050 current_function_args_size = stack_args_size.constant;
5051
5052 /* Adjust function incoming argument size for alignment and
5053 minimum length. */
5054
5055 #ifdef REG_PARM_STACK_SPACE
5056 #ifndef MAYBE_REG_PARM_STACK_SPACE
5057 current_function_args_size = MAX (current_function_args_size,
5058 REG_PARM_STACK_SPACE (fndecl));
5059 #endif
5060 #endif
5061
5062 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5063
5064 current_function_args_size
5065 = ((current_function_args_size + STACK_BYTES - 1)
5066 / STACK_BYTES) * STACK_BYTES;
5067
5068 #ifdef ARGS_GROW_DOWNWARD
5069 current_function_arg_offset_rtx
5070 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5071 : expand_expr (size_diffop (stack_args_size.var,
5072 size_int (-stack_args_size.constant)),
5073 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
5074 #else
5075 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5076 #endif
5077
5078 /* See how many bytes, if any, of its args a function should try to pop
5079 on return. */
5080
5081 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5082 current_function_args_size);
5083
5084 /* For stdarg.h function, save info about
5085 regs and stack space used by the named args. */
5086
5087 if (!hide_last_arg)
5088 current_function_args_info = args_so_far;
5089
5090 /* Set the rtx used for the function return value. Put this in its
5091 own variable so any optimizers that need this information don't have
5092 to include tree.h. Do this here so it gets done when an inlined
5093 function gets output. */
5094
5095 current_function_return_rtx
5096 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5097 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5098 }
5099 \f
5100 /* Indicate whether REGNO is an incoming argument to the current function
5101 that was promoted to a wider mode. If so, return the RTX for the
5102 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5103 that REGNO is promoted from and whether the promotion was signed or
5104 unsigned. */
5105
5106 #ifdef PROMOTE_FUNCTION_ARGS
5107
5108 rtx
5109 promoted_input_arg (regno, pmode, punsignedp)
5110 unsigned int regno;
5111 enum machine_mode *pmode;
5112 int *punsignedp;
5113 {
5114 tree arg;
5115
5116 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5117 arg = TREE_CHAIN (arg))
5118 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5119 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5120 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5121 {
5122 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5123 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5124
5125 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5126 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5127 && mode != DECL_MODE (arg))
5128 {
5129 *pmode = DECL_MODE (arg);
5130 *punsignedp = unsignedp;
5131 return DECL_INCOMING_RTL (arg);
5132 }
5133 }
5134
5135 return 0;
5136 }
5137
5138 #endif
5139 \f
5140 /* Compute the size and offset from the start of the stacked arguments for a
5141 parm passed in mode PASSED_MODE and with type TYPE.
5142
5143 INITIAL_OFFSET_PTR points to the current offset into the stacked
5144 arguments.
5145
5146 The starting offset and size for this parm are returned in *OFFSET_PTR
5147 and *ARG_SIZE_PTR, respectively.
5148
5149 IN_REGS is non-zero if the argument will be passed in registers. It will
5150 never be set if REG_PARM_STACK_SPACE is not defined.
5151
5152 FNDECL is the function in which the argument was defined.
5153
5154 There are two types of rounding that are done. The first, controlled by
5155 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5156 list to be aligned to the specific boundary (in bits). This rounding
5157 affects the initial and starting offsets, but not the argument size.
5158
5159 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5160 optionally rounds the size of the parm to PARM_BOUNDARY. The
5161 initial offset is not affected by this rounding, while the size always
5162 is and the starting offset may be. */
5163
5164 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5165 initial_offset_ptr is positive because locate_and_pad_parm's
5166 callers pass in the total size of args so far as
5167 initial_offset_ptr. arg_size_ptr is always positive.*/
5168
5169 void
5170 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5171 initial_offset_ptr, offset_ptr, arg_size_ptr,
5172 alignment_pad)
5173 enum machine_mode passed_mode;
5174 tree type;
5175 int in_regs ATTRIBUTE_UNUSED;
5176 tree fndecl ATTRIBUTE_UNUSED;
5177 struct args_size *initial_offset_ptr;
5178 struct args_size *offset_ptr;
5179 struct args_size *arg_size_ptr;
5180 struct args_size *alignment_pad;
5181
5182 {
5183 tree sizetree
5184 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5185 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5186 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5187
5188 #ifdef REG_PARM_STACK_SPACE
5189 /* If we have found a stack parm before we reach the end of the
5190 area reserved for registers, skip that area. */
5191 if (! in_regs)
5192 {
5193 int reg_parm_stack_space = 0;
5194
5195 #ifdef MAYBE_REG_PARM_STACK_SPACE
5196 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5197 #else
5198 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5199 #endif
5200 if (reg_parm_stack_space > 0)
5201 {
5202 if (initial_offset_ptr->var)
5203 {
5204 initial_offset_ptr->var
5205 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5206 ssize_int (reg_parm_stack_space));
5207 initial_offset_ptr->constant = 0;
5208 }
5209 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5210 initial_offset_ptr->constant = reg_parm_stack_space;
5211 }
5212 }
5213 #endif /* REG_PARM_STACK_SPACE */
5214
5215 arg_size_ptr->var = 0;
5216 arg_size_ptr->constant = 0;
5217 alignment_pad->var = 0;
5218 alignment_pad->constant = 0;
5219
5220 #ifdef ARGS_GROW_DOWNWARD
5221 if (initial_offset_ptr->var)
5222 {
5223 offset_ptr->constant = 0;
5224 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5225 initial_offset_ptr->var);
5226 }
5227 else
5228 {
5229 offset_ptr->constant = -initial_offset_ptr->constant;
5230 offset_ptr->var = 0;
5231 }
5232 if (where_pad != none
5233 && (!host_integerp (sizetree, 1)
5234 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5235 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5236 SUB_PARM_SIZE (*offset_ptr, sizetree);
5237 if (where_pad != downward)
5238 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5239 if (initial_offset_ptr->var)
5240 arg_size_ptr->var = size_binop (MINUS_EXPR,
5241 size_binop (MINUS_EXPR,
5242 ssize_int (0),
5243 initial_offset_ptr->var),
5244 offset_ptr->var);
5245
5246 else
5247 arg_size_ptr->constant = (-initial_offset_ptr->constant
5248 - offset_ptr->constant);
5249
5250 #else /* !ARGS_GROW_DOWNWARD */
5251 if (!in_regs
5252 #ifdef REG_PARM_STACK_SPACE
5253 || REG_PARM_STACK_SPACE (fndecl) > 0
5254 #endif
5255 )
5256 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5257 *offset_ptr = *initial_offset_ptr;
5258
5259 #ifdef PUSH_ROUNDING
5260 if (passed_mode != BLKmode)
5261 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5262 #endif
5263
5264 /* Pad_below needs the pre-rounded size to know how much to pad below
5265 so this must be done before rounding up. */
5266 if (where_pad == downward
5267 /* However, BLKmode args passed in regs have their padding done elsewhere.
5268 The stack slot must be able to hold the entire register. */
5269 && !(in_regs && passed_mode == BLKmode))
5270 pad_below (offset_ptr, passed_mode, sizetree);
5271
5272 if (where_pad != none
5273 && (!host_integerp (sizetree, 1)
5274 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5275 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5276
5277 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5278 #endif /* ARGS_GROW_DOWNWARD */
5279 }
5280
5281 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5282 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5283
5284 static void
5285 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5286 struct args_size *offset_ptr;
5287 int boundary;
5288 struct args_size *alignment_pad;
5289 {
5290 tree save_var = NULL_TREE;
5291 HOST_WIDE_INT save_constant = 0;
5292
5293 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5294
5295 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5296 {
5297 save_var = offset_ptr->var;
5298 save_constant = offset_ptr->constant;
5299 }
5300
5301 alignment_pad->var = NULL_TREE;
5302 alignment_pad->constant = 0;
5303
5304 if (boundary > BITS_PER_UNIT)
5305 {
5306 if (offset_ptr->var)
5307 {
5308 offset_ptr->var =
5309 #ifdef ARGS_GROW_DOWNWARD
5310 round_down
5311 #else
5312 round_up
5313 #endif
5314 (ARGS_SIZE_TREE (*offset_ptr),
5315 boundary / BITS_PER_UNIT);
5316 offset_ptr->constant = 0; /*?*/
5317 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5318 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5319 save_var);
5320 }
5321 else
5322 {
5323 offset_ptr->constant =
5324 #ifdef ARGS_GROW_DOWNWARD
5325 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5326 #else
5327 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5328 #endif
5329 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5330 alignment_pad->constant = offset_ptr->constant - save_constant;
5331 }
5332 }
5333 }
5334
5335 #ifndef ARGS_GROW_DOWNWARD
5336 static void
5337 pad_below (offset_ptr, passed_mode, sizetree)
5338 struct args_size *offset_ptr;
5339 enum machine_mode passed_mode;
5340 tree sizetree;
5341 {
5342 if (passed_mode != BLKmode)
5343 {
5344 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5345 offset_ptr->constant
5346 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5347 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5348 - GET_MODE_SIZE (passed_mode));
5349 }
5350 else
5351 {
5352 if (TREE_CODE (sizetree) != INTEGER_CST
5353 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5354 {
5355 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5356 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5357 /* Add it in. */
5358 ADD_PARM_SIZE (*offset_ptr, s2);
5359 SUB_PARM_SIZE (*offset_ptr, sizetree);
5360 }
5361 }
5362 }
5363 #endif
5364 \f
5365 /* Walk the tree of blocks describing the binding levels within a function
5366 and warn about uninitialized variables.
5367 This is done after calling flow_analysis and before global_alloc
5368 clobbers the pseudo-regs to hard regs. */
5369
5370 void
5371 uninitialized_vars_warning (block)
5372 tree block;
5373 {
5374 register tree decl, sub;
5375 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5376 {
5377 if (warn_uninitialized
5378 && TREE_CODE (decl) == VAR_DECL
5379 /* These warnings are unreliable for and aggregates
5380 because assigning the fields one by one can fail to convince
5381 flow.c that the entire aggregate was initialized.
5382 Unions are troublesome because members may be shorter. */
5383 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5384 && DECL_RTL (decl) != 0
5385 && GET_CODE (DECL_RTL (decl)) == REG
5386 /* Global optimizations can make it difficult to determine if a
5387 particular variable has been initialized. However, a VAR_DECL
5388 with a nonzero DECL_INITIAL had an initializer, so do not
5389 claim it is potentially uninitialized.
5390
5391 We do not care about the actual value in DECL_INITIAL, so we do
5392 not worry that it may be a dangling pointer. */
5393 && DECL_INITIAL (decl) == NULL_TREE
5394 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5395 warning_with_decl (decl,
5396 "`%s' might be used uninitialized in this function");
5397 if (extra_warnings
5398 && TREE_CODE (decl) == VAR_DECL
5399 && DECL_RTL (decl) != 0
5400 && GET_CODE (DECL_RTL (decl)) == REG
5401 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5402 warning_with_decl (decl,
5403 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5404 }
5405 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5406 uninitialized_vars_warning (sub);
5407 }
5408
5409 /* Do the appropriate part of uninitialized_vars_warning
5410 but for arguments instead of local variables. */
5411
5412 void
5413 setjmp_args_warning ()
5414 {
5415 register tree decl;
5416 for (decl = DECL_ARGUMENTS (current_function_decl);
5417 decl; decl = TREE_CHAIN (decl))
5418 if (DECL_RTL (decl) != 0
5419 && GET_CODE (DECL_RTL (decl)) == REG
5420 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5421 warning_with_decl (decl,
5422 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5423 }
5424
5425 /* If this function call setjmp, put all vars into the stack
5426 unless they were declared `register'. */
5427
5428 void
5429 setjmp_protect (block)
5430 tree block;
5431 {
5432 register tree decl, sub;
5433 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5434 if ((TREE_CODE (decl) == VAR_DECL
5435 || TREE_CODE (decl) == PARM_DECL)
5436 && DECL_RTL (decl) != 0
5437 && (GET_CODE (DECL_RTL (decl)) == REG
5438 || (GET_CODE (DECL_RTL (decl)) == MEM
5439 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5440 /* If this variable came from an inline function, it must be
5441 that its life doesn't overlap the setjmp. If there was a
5442 setjmp in the function, it would already be in memory. We
5443 must exclude such variable because their DECL_RTL might be
5444 set to strange things such as virtual_stack_vars_rtx. */
5445 && ! DECL_FROM_INLINE (decl)
5446 && (
5447 #ifdef NON_SAVING_SETJMP
5448 /* If longjmp doesn't restore the registers,
5449 don't put anything in them. */
5450 NON_SAVING_SETJMP
5451 ||
5452 #endif
5453 ! DECL_REGISTER (decl)))
5454 put_var_into_stack (decl);
5455 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5456 setjmp_protect (sub);
5457 }
5458 \f
5459 /* Like the previous function, but for args instead of local variables. */
5460
5461 void
5462 setjmp_protect_args ()
5463 {
5464 register tree decl;
5465 for (decl = DECL_ARGUMENTS (current_function_decl);
5466 decl; decl = TREE_CHAIN (decl))
5467 if ((TREE_CODE (decl) == VAR_DECL
5468 || TREE_CODE (decl) == PARM_DECL)
5469 && DECL_RTL (decl) != 0
5470 && (GET_CODE (DECL_RTL (decl)) == REG
5471 || (GET_CODE (DECL_RTL (decl)) == MEM
5472 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5473 && (
5474 /* If longjmp doesn't restore the registers,
5475 don't put anything in them. */
5476 #ifdef NON_SAVING_SETJMP
5477 NON_SAVING_SETJMP
5478 ||
5479 #endif
5480 ! DECL_REGISTER (decl)))
5481 put_var_into_stack (decl);
5482 }
5483 \f
5484 /* Return the context-pointer register corresponding to DECL,
5485 or 0 if it does not need one. */
5486
5487 rtx
5488 lookup_static_chain (decl)
5489 tree decl;
5490 {
5491 tree context = decl_function_context (decl);
5492 tree link;
5493
5494 if (context == 0
5495 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5496 return 0;
5497
5498 /* We treat inline_function_decl as an alias for the current function
5499 because that is the inline function whose vars, types, etc.
5500 are being merged into the current function.
5501 See expand_inline_function. */
5502 if (context == current_function_decl || context == inline_function_decl)
5503 return virtual_stack_vars_rtx;
5504
5505 for (link = context_display; link; link = TREE_CHAIN (link))
5506 if (TREE_PURPOSE (link) == context)
5507 return RTL_EXPR_RTL (TREE_VALUE (link));
5508
5509 abort ();
5510 }
5511 \f
5512 /* Convert a stack slot address ADDR for variable VAR
5513 (from a containing function)
5514 into an address valid in this function (using a static chain). */
5515
5516 rtx
5517 fix_lexical_addr (addr, var)
5518 rtx addr;
5519 tree var;
5520 {
5521 rtx basereg;
5522 HOST_WIDE_INT displacement;
5523 tree context = decl_function_context (var);
5524 struct function *fp;
5525 rtx base = 0;
5526
5527 /* If this is the present function, we need not do anything. */
5528 if (context == current_function_decl || context == inline_function_decl)
5529 return addr;
5530
5531 fp = find_function_data (context);
5532
5533 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5534 addr = XEXP (XEXP (addr, 0), 0);
5535
5536 /* Decode given address as base reg plus displacement. */
5537 if (GET_CODE (addr) == REG)
5538 basereg = addr, displacement = 0;
5539 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5540 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5541 else
5542 abort ();
5543
5544 /* We accept vars reached via the containing function's
5545 incoming arg pointer and via its stack variables pointer. */
5546 if (basereg == fp->internal_arg_pointer)
5547 {
5548 /* If reached via arg pointer, get the arg pointer value
5549 out of that function's stack frame.
5550
5551 There are two cases: If a separate ap is needed, allocate a
5552 slot in the outer function for it and dereference it that way.
5553 This is correct even if the real ap is actually a pseudo.
5554 Otherwise, just adjust the offset from the frame pointer to
5555 compensate. */
5556
5557 #ifdef NEED_SEPARATE_AP
5558 rtx addr;
5559
5560 addr = get_arg_pointer_save_area (fp);
5561 addr = fix_lexical_addr (XEXP (addr, 0), var);
5562 addr = memory_address (Pmode, addr);
5563
5564 base = gen_rtx_MEM (Pmode, addr);
5565 MEM_ALIAS_SET (base) = get_frame_alias_set ();
5566 base = copy_to_reg (base);
5567 #else
5568 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5569 base = lookup_static_chain (var);
5570 #endif
5571 }
5572
5573 else if (basereg == virtual_stack_vars_rtx)
5574 {
5575 /* This is the same code as lookup_static_chain, duplicated here to
5576 avoid an extra call to decl_function_context. */
5577 tree link;
5578
5579 for (link = context_display; link; link = TREE_CHAIN (link))
5580 if (TREE_PURPOSE (link) == context)
5581 {
5582 base = RTL_EXPR_RTL (TREE_VALUE (link));
5583 break;
5584 }
5585 }
5586
5587 if (base == 0)
5588 abort ();
5589
5590 /* Use same offset, relative to appropriate static chain or argument
5591 pointer. */
5592 return plus_constant (base, displacement);
5593 }
5594 \f
5595 /* Return the address of the trampoline for entering nested fn FUNCTION.
5596 If necessary, allocate a trampoline (in the stack frame)
5597 and emit rtl to initialize its contents (at entry to this function). */
5598
5599 rtx
5600 trampoline_address (function)
5601 tree function;
5602 {
5603 tree link;
5604 tree rtlexp;
5605 rtx tramp;
5606 struct function *fp;
5607 tree fn_context;
5608
5609 /* Find an existing trampoline and return it. */
5610 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5611 if (TREE_PURPOSE (link) == function)
5612 return
5613 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5614
5615 for (fp = outer_function_chain; fp; fp = fp->outer)
5616 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5617 if (TREE_PURPOSE (link) == function)
5618 {
5619 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5620 function);
5621 return adjust_trampoline_addr (tramp);
5622 }
5623
5624 /* None exists; we must make one. */
5625
5626 /* Find the `struct function' for the function containing FUNCTION. */
5627 fp = 0;
5628 fn_context = decl_function_context (function);
5629 if (fn_context != current_function_decl
5630 && fn_context != inline_function_decl)
5631 fp = find_function_data (fn_context);
5632
5633 /* Allocate run-time space for this trampoline
5634 (usually in the defining function's stack frame). */
5635 #ifdef ALLOCATE_TRAMPOLINE
5636 tramp = ALLOCATE_TRAMPOLINE (fp);
5637 #else
5638 /* If rounding needed, allocate extra space
5639 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5640 #ifdef TRAMPOLINE_ALIGNMENT
5641 #define TRAMPOLINE_REAL_SIZE \
5642 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5643 #else
5644 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5645 #endif
5646 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5647 fp ? fp : cfun);
5648 #endif
5649
5650 /* Record the trampoline for reuse and note it for later initialization
5651 by expand_function_end. */
5652 if (fp != 0)
5653 {
5654 rtlexp = make_node (RTL_EXPR);
5655 RTL_EXPR_RTL (rtlexp) = tramp;
5656 fp->x_trampoline_list = tree_cons (function, rtlexp,
5657 fp->x_trampoline_list);
5658 }
5659 else
5660 {
5661 /* Make the RTL_EXPR node temporary, not momentary, so that the
5662 trampoline_list doesn't become garbage. */
5663 rtlexp = make_node (RTL_EXPR);
5664
5665 RTL_EXPR_RTL (rtlexp) = tramp;
5666 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5667 }
5668
5669 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5670 return adjust_trampoline_addr (tramp);
5671 }
5672
5673 /* Given a trampoline address,
5674 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5675
5676 static rtx
5677 round_trampoline_addr (tramp)
5678 rtx tramp;
5679 {
5680 #ifdef TRAMPOLINE_ALIGNMENT
5681 /* Round address up to desired boundary. */
5682 rtx temp = gen_reg_rtx (Pmode);
5683 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5684 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5685
5686 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5687 temp, 0, OPTAB_LIB_WIDEN);
5688 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5689 temp, 0, OPTAB_LIB_WIDEN);
5690 #endif
5691 return tramp;
5692 }
5693
5694 /* Given a trampoline address, round it then apply any
5695 platform-specific adjustments so that the result can be used for a
5696 function call . */
5697
5698 static rtx
5699 adjust_trampoline_addr (tramp)
5700 rtx tramp;
5701 {
5702 tramp = round_trampoline_addr (tramp);
5703 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5704 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5705 #endif
5706 return tramp;
5707 }
5708 \f
5709 /* Put all this function's BLOCK nodes including those that are chained
5710 onto the first block into a vector, and return it.
5711 Also store in each NOTE for the beginning or end of a block
5712 the index of that block in the vector.
5713 The arguments are BLOCK, the chain of top-level blocks of the function,
5714 and INSNS, the insn chain of the function. */
5715
5716 void
5717 identify_blocks ()
5718 {
5719 int n_blocks;
5720 tree *block_vector, *last_block_vector;
5721 tree *block_stack;
5722 tree block = DECL_INITIAL (current_function_decl);
5723
5724 if (block == 0)
5725 return;
5726
5727 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5728 depth-first order. */
5729 block_vector = get_block_vector (block, &n_blocks);
5730 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5731
5732 last_block_vector = identify_blocks_1 (get_insns (),
5733 block_vector + 1,
5734 block_vector + n_blocks,
5735 block_stack);
5736
5737 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5738 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5739 if (0 && last_block_vector != block_vector + n_blocks)
5740 abort ();
5741
5742 free (block_vector);
5743 free (block_stack);
5744 }
5745
5746 /* Subroutine of identify_blocks. Do the block substitution on the
5747 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5748
5749 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5750 BLOCK_VECTOR is incremented for each block seen. */
5751
5752 static tree *
5753 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5754 rtx insns;
5755 tree *block_vector;
5756 tree *end_block_vector;
5757 tree *orig_block_stack;
5758 {
5759 rtx insn;
5760 tree *block_stack = orig_block_stack;
5761
5762 for (insn = insns; insn; insn = NEXT_INSN (insn))
5763 {
5764 if (GET_CODE (insn) == NOTE)
5765 {
5766 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5767 {
5768 tree b;
5769
5770 /* If there are more block notes than BLOCKs, something
5771 is badly wrong. */
5772 if (block_vector == end_block_vector)
5773 abort ();
5774
5775 b = *block_vector++;
5776 NOTE_BLOCK (insn) = b;
5777 *block_stack++ = b;
5778 }
5779 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5780 {
5781 /* If there are more NOTE_INSN_BLOCK_ENDs than
5782 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5783 if (block_stack == orig_block_stack)
5784 abort ();
5785
5786 NOTE_BLOCK (insn) = *--block_stack;
5787 }
5788 }
5789 else if (GET_CODE (insn) == CALL_INSN
5790 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5791 {
5792 rtx cp = PATTERN (insn);
5793
5794 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5795 end_block_vector, block_stack);
5796 if (XEXP (cp, 1))
5797 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5798 end_block_vector, block_stack);
5799 if (XEXP (cp, 2))
5800 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5801 end_block_vector, block_stack);
5802 }
5803 }
5804
5805 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5806 something is badly wrong. */
5807 if (block_stack != orig_block_stack)
5808 abort ();
5809
5810 return block_vector;
5811 }
5812
5813 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
5814 and create duplicate blocks. */
5815 /* ??? Need an option to either create block fragments or to create
5816 abstract origin duplicates of a source block. It really depends
5817 on what optimization has been performed. */
5818
5819 void
5820 reorder_blocks ()
5821 {
5822 tree block = DECL_INITIAL (current_function_decl);
5823 varray_type block_stack;
5824
5825 if (block == NULL_TREE)
5826 return;
5827
5828 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5829
5830 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
5831 reorder_blocks_0 (block);
5832
5833 /* Prune the old trees away, so that they don't get in the way. */
5834 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5835 BLOCK_CHAIN (block) = NULL_TREE;
5836
5837 /* Recreate the block tree from the note nesting. */
5838 reorder_blocks_1 (get_insns (), block, &block_stack);
5839 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5840
5841 /* Remove deleted blocks from the block fragment chains. */
5842 reorder_fix_fragments (block);
5843
5844 VARRAY_FREE (block_stack);
5845 }
5846
5847 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
5848
5849 static void
5850 reorder_blocks_0 (block)
5851 tree block;
5852 {
5853 while (block)
5854 {
5855 TREE_ASM_WRITTEN (block) = 0;
5856 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
5857 block = BLOCK_CHAIN (block);
5858 }
5859 }
5860
5861 static void
5862 reorder_blocks_1 (insns, current_block, p_block_stack)
5863 rtx insns;
5864 tree current_block;
5865 varray_type *p_block_stack;
5866 {
5867 rtx insn;
5868
5869 for (insn = insns; insn; insn = NEXT_INSN (insn))
5870 {
5871 if (GET_CODE (insn) == NOTE)
5872 {
5873 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5874 {
5875 tree block = NOTE_BLOCK (insn);
5876
5877 /* If we have seen this block before, that means it now
5878 spans multiple address regions. Create a new fragment. */
5879 if (TREE_ASM_WRITTEN (block))
5880 {
5881 tree new_block = copy_node (block);
5882 tree origin;
5883
5884 origin = (BLOCK_FRAGMENT_ORIGIN (block)
5885 ? BLOCK_FRAGMENT_ORIGIN (block)
5886 : block);
5887 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
5888 BLOCK_FRAGMENT_CHAIN (new_block)
5889 = BLOCK_FRAGMENT_CHAIN (origin);
5890 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
5891
5892 NOTE_BLOCK (insn) = new_block;
5893 block = new_block;
5894 }
5895
5896 BLOCK_SUBBLOCKS (block) = 0;
5897 TREE_ASM_WRITTEN (block) = 1;
5898 BLOCK_SUPERCONTEXT (block) = current_block;
5899 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5900 BLOCK_SUBBLOCKS (current_block) = block;
5901 current_block = block;
5902 VARRAY_PUSH_TREE (*p_block_stack, block);
5903 }
5904 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5905 {
5906 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5907 VARRAY_POP (*p_block_stack);
5908 BLOCK_SUBBLOCKS (current_block)
5909 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5910 current_block = BLOCK_SUPERCONTEXT (current_block);
5911 }
5912 }
5913 else if (GET_CODE (insn) == CALL_INSN
5914 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5915 {
5916 rtx cp = PATTERN (insn);
5917 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5918 if (XEXP (cp, 1))
5919 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5920 if (XEXP (cp, 2))
5921 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5922 }
5923 }
5924 }
5925
5926 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
5927 appears in the block tree, select one of the fragments to become
5928 the new origin block. */
5929
5930 static void
5931 reorder_fix_fragments (block)
5932 tree block;
5933 {
5934 while (block)
5935 {
5936 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
5937 tree new_origin = NULL_TREE;
5938
5939 if (dup_origin)
5940 {
5941 if (! TREE_ASM_WRITTEN (dup_origin))
5942 {
5943 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
5944
5945 /* Find the first of the remaining fragments. There must
5946 be at least one -- the current block. */
5947 while (! TREE_ASM_WRITTEN (new_origin))
5948 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
5949 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
5950 }
5951 }
5952 else if (! dup_origin)
5953 new_origin = block;
5954
5955 /* Re-root the rest of the fragments to the new origin. In the
5956 case that DUP_ORIGIN was null, that means BLOCK was the origin
5957 of a chain of fragments and we want to remove those fragments
5958 that didn't make it to the output. */
5959 if (new_origin)
5960 {
5961 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
5962 tree chain = *pp;
5963
5964 while (chain)
5965 {
5966 if (TREE_ASM_WRITTEN (chain))
5967 {
5968 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
5969 *pp = chain;
5970 pp = &BLOCK_FRAGMENT_CHAIN (chain);
5971 }
5972 chain = BLOCK_FRAGMENT_CHAIN (chain);
5973 }
5974 *pp = NULL_TREE;
5975 }
5976
5977 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
5978 block = BLOCK_CHAIN (block);
5979 }
5980 }
5981
5982 /* Reverse the order of elements in the chain T of blocks,
5983 and return the new head of the chain (old last element). */
5984
5985 static tree
5986 blocks_nreverse (t)
5987 tree t;
5988 {
5989 register tree prev = 0, decl, next;
5990 for (decl = t; decl; decl = next)
5991 {
5992 next = BLOCK_CHAIN (decl);
5993 BLOCK_CHAIN (decl) = prev;
5994 prev = decl;
5995 }
5996 return prev;
5997 }
5998
5999 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6000 non-NULL, list them all into VECTOR, in a depth-first preorder
6001 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6002 blocks. */
6003
6004 static int
6005 all_blocks (block, vector)
6006 tree block;
6007 tree *vector;
6008 {
6009 int n_blocks = 0;
6010
6011 while (block)
6012 {
6013 TREE_ASM_WRITTEN (block) = 0;
6014
6015 /* Record this block. */
6016 if (vector)
6017 vector[n_blocks] = block;
6018
6019 ++n_blocks;
6020
6021 /* Record the subblocks, and their subblocks... */
6022 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6023 vector ? vector + n_blocks : 0);
6024 block = BLOCK_CHAIN (block);
6025 }
6026
6027 return n_blocks;
6028 }
6029
6030 /* Return a vector containing all the blocks rooted at BLOCK. The
6031 number of elements in the vector is stored in N_BLOCKS_P. The
6032 vector is dynamically allocated; it is the caller's responsibility
6033 to call `free' on the pointer returned. */
6034
6035 static tree *
6036 get_block_vector (block, n_blocks_p)
6037 tree block;
6038 int *n_blocks_p;
6039 {
6040 tree *block_vector;
6041
6042 *n_blocks_p = all_blocks (block, NULL);
6043 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
6044 all_blocks (block, block_vector);
6045
6046 return block_vector;
6047 }
6048
6049 static int next_block_index = 2;
6050
6051 /* Set BLOCK_NUMBER for all the blocks in FN. */
6052
6053 void
6054 number_blocks (fn)
6055 tree fn;
6056 {
6057 int i;
6058 int n_blocks;
6059 tree *block_vector;
6060
6061 /* For SDB and XCOFF debugging output, we start numbering the blocks
6062 from 1 within each function, rather than keeping a running
6063 count. */
6064 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6065 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6066 next_block_index = 1;
6067 #endif
6068
6069 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6070
6071 /* The top-level BLOCK isn't numbered at all. */
6072 for (i = 1; i < n_blocks; ++i)
6073 /* We number the blocks from two. */
6074 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6075
6076 free (block_vector);
6077
6078 return;
6079 }
6080 \f
6081 /* Allocate a function structure and reset its contents to the defaults. */
6082 static void
6083 prepare_function_start ()
6084 {
6085 cfun = (struct function *) xcalloc (1, sizeof (struct function));
6086
6087 init_stmt_for_function ();
6088 init_eh_for_function ();
6089
6090 cse_not_expected = ! optimize;
6091
6092 /* Caller save not needed yet. */
6093 caller_save_needed = 0;
6094
6095 /* No stack slots have been made yet. */
6096 stack_slot_list = 0;
6097
6098 current_function_has_nonlocal_label = 0;
6099 current_function_has_nonlocal_goto = 0;
6100
6101 /* There is no stack slot for handling nonlocal gotos. */
6102 nonlocal_goto_handler_slots = 0;
6103 nonlocal_goto_stack_level = 0;
6104
6105 /* No labels have been declared for nonlocal use. */
6106 nonlocal_labels = 0;
6107 nonlocal_goto_handler_labels = 0;
6108
6109 /* No function calls so far in this function. */
6110 function_call_count = 0;
6111
6112 /* No parm regs have been allocated.
6113 (This is important for output_inline_function.) */
6114 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6115
6116 /* Initialize the RTL mechanism. */
6117 init_emit ();
6118
6119 /* Initialize the queue of pending postincrement and postdecrements,
6120 and some other info in expr.c. */
6121 init_expr ();
6122
6123 /* We haven't done register allocation yet. */
6124 reg_renumber = 0;
6125
6126 init_varasm_status (cfun);
6127
6128 /* Clear out data used for inlining. */
6129 cfun->inlinable = 0;
6130 cfun->original_decl_initial = 0;
6131 cfun->original_arg_vector = 0;
6132
6133 cfun->stack_alignment_needed = STACK_BOUNDARY;
6134 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6135
6136 /* Set if a call to setjmp is seen. */
6137 current_function_calls_setjmp = 0;
6138
6139 /* Set if a call to longjmp is seen. */
6140 current_function_calls_longjmp = 0;
6141
6142 current_function_calls_alloca = 0;
6143 current_function_contains_functions = 0;
6144 current_function_is_leaf = 0;
6145 current_function_nothrow = 0;
6146 current_function_sp_is_unchanging = 0;
6147 current_function_uses_only_leaf_regs = 0;
6148 current_function_has_computed_jump = 0;
6149 current_function_is_thunk = 0;
6150
6151 current_function_returns_pcc_struct = 0;
6152 current_function_returns_struct = 0;
6153 current_function_epilogue_delay_list = 0;
6154 current_function_uses_const_pool = 0;
6155 current_function_uses_pic_offset_table = 0;
6156 current_function_cannot_inline = 0;
6157
6158 /* We have not yet needed to make a label to jump to for tail-recursion. */
6159 tail_recursion_label = 0;
6160
6161 /* We haven't had a need to make a save area for ap yet. */
6162 arg_pointer_save_area = 0;
6163
6164 /* No stack slots allocated yet. */
6165 frame_offset = 0;
6166
6167 /* No SAVE_EXPRs in this function yet. */
6168 save_expr_regs = 0;
6169
6170 /* No RTL_EXPRs in this function yet. */
6171 rtl_expr_chain = 0;
6172
6173 /* Set up to allocate temporaries. */
6174 init_temp_slots ();
6175
6176 /* Indicate that we need to distinguish between the return value of the
6177 present function and the return value of a function being called. */
6178 rtx_equal_function_value_matters = 1;
6179
6180 /* Indicate that we have not instantiated virtual registers yet. */
6181 virtuals_instantiated = 0;
6182
6183 /* Indicate that we want CONCATs now. */
6184 generating_concat_p = 1;
6185
6186 /* Indicate we have no need of a frame pointer yet. */
6187 frame_pointer_needed = 0;
6188
6189 /* By default assume not varargs or stdarg. */
6190 current_function_varargs = 0;
6191 current_function_stdarg = 0;
6192
6193 /* We haven't made any trampolines for this function yet. */
6194 trampoline_list = 0;
6195
6196 init_pending_stack_adjust ();
6197 inhibit_defer_pop = 0;
6198
6199 current_function_outgoing_args_size = 0;
6200
6201 if (init_lang_status)
6202 (*init_lang_status) (cfun);
6203 if (init_machine_status)
6204 (*init_machine_status) (cfun);
6205 }
6206
6207 /* Initialize the rtl expansion mechanism so that we can do simple things
6208 like generate sequences. This is used to provide a context during global
6209 initialization of some passes. */
6210 void
6211 init_dummy_function_start ()
6212 {
6213 prepare_function_start ();
6214 }
6215
6216 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6217 and initialize static variables for generating RTL for the statements
6218 of the function. */
6219
6220 void
6221 init_function_start (subr, filename, line)
6222 tree subr;
6223 const char *filename;
6224 int line;
6225 {
6226 prepare_function_start ();
6227
6228 current_function_name = (*decl_printable_name) (subr, 2);
6229 cfun->decl = subr;
6230
6231 /* Nonzero if this is a nested function that uses a static chain. */
6232
6233 current_function_needs_context
6234 = (decl_function_context (current_function_decl) != 0
6235 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6236
6237 /* Within function body, compute a type's size as soon it is laid out. */
6238 immediate_size_expand++;
6239
6240 /* Prevent ever trying to delete the first instruction of a function.
6241 Also tell final how to output a linenum before the function prologue.
6242 Note linenums could be missing, e.g. when compiling a Java .class file. */
6243 if (line > 0)
6244 emit_line_note (filename, line);
6245
6246 /* Make sure first insn is a note even if we don't want linenums.
6247 This makes sure the first insn will never be deleted.
6248 Also, final expects a note to appear there. */
6249 emit_note (NULL, NOTE_INSN_DELETED);
6250
6251 /* Set flags used by final.c. */
6252 if (aggregate_value_p (DECL_RESULT (subr)))
6253 {
6254 #ifdef PCC_STATIC_STRUCT_RETURN
6255 current_function_returns_pcc_struct = 1;
6256 #endif
6257 current_function_returns_struct = 1;
6258 }
6259
6260 /* Warn if this value is an aggregate type,
6261 regardless of which calling convention we are using for it. */
6262 if (warn_aggregate_return
6263 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6264 warning ("function returns an aggregate");
6265
6266 current_function_returns_pointer
6267 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6268 }
6269
6270 /* Make sure all values used by the optimization passes have sane
6271 defaults. */
6272 void
6273 init_function_for_compilation ()
6274 {
6275 reg_renumber = 0;
6276
6277 /* No prologue/epilogue insns yet. */
6278 VARRAY_GROW (prologue, 0);
6279 VARRAY_GROW (epilogue, 0);
6280 VARRAY_GROW (sibcall_epilogue, 0);
6281 }
6282
6283 /* Indicate that the current function uses extra args
6284 not explicitly mentioned in the argument list in any fashion. */
6285
6286 void
6287 mark_varargs ()
6288 {
6289 current_function_varargs = 1;
6290 }
6291
6292 /* Expand a call to __main at the beginning of a possible main function. */
6293
6294 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6295 #undef HAS_INIT_SECTION
6296 #define HAS_INIT_SECTION
6297 #endif
6298
6299 void
6300 expand_main_function ()
6301 {
6302 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6303 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6304 {
6305 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6306 rtx tmp;
6307
6308 /* Forcibly align the stack. */
6309 #ifdef STACK_GROWS_DOWNWARD
6310 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6311 stack_pointer_rtx, 1, OPTAB_WIDEN);
6312 #else
6313 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6314 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6315 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6316 stack_pointer_rtx, 1, OPTAB_WIDEN);
6317 #endif
6318 if (tmp != stack_pointer_rtx)
6319 emit_move_insn (stack_pointer_rtx, tmp);
6320
6321 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6322 tmp = force_reg (Pmode, const0_rtx);
6323 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6324 }
6325 #endif
6326
6327 #ifndef HAS_INIT_SECTION
6328 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6329 VOIDmode, 0);
6330 #endif
6331 }
6332 \f
6333 extern struct obstack permanent_obstack;
6334
6335 /* The PENDING_SIZES represent the sizes of variable-sized types.
6336 Create RTL for the various sizes now (using temporary variables),
6337 so that we can refer to the sizes from the RTL we are generating
6338 for the current function. The PENDING_SIZES are a TREE_LIST. The
6339 TREE_VALUE of each node is a SAVE_EXPR. */
6340
6341 void
6342 expand_pending_sizes (pending_sizes)
6343 tree pending_sizes;
6344 {
6345 tree tem;
6346
6347 /* Evaluate now the sizes of any types declared among the arguments. */
6348 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6349 {
6350 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6351 EXPAND_MEMORY_USE_BAD);
6352 /* Flush the queue in case this parameter declaration has
6353 side-effects. */
6354 emit_queue ();
6355 }
6356 }
6357
6358 /* Start the RTL for a new function, and set variables used for
6359 emitting RTL.
6360 SUBR is the FUNCTION_DECL node.
6361 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6362 the function's parameters, which must be run at any return statement. */
6363
6364 void
6365 expand_function_start (subr, parms_have_cleanups)
6366 tree subr;
6367 int parms_have_cleanups;
6368 {
6369 tree tem;
6370 rtx last_ptr = NULL_RTX;
6371
6372 /* Make sure volatile mem refs aren't considered
6373 valid operands of arithmetic insns. */
6374 init_recog_no_volatile ();
6375
6376 /* Set this before generating any memory accesses. */
6377 current_function_check_memory_usage
6378 = (flag_check_memory_usage
6379 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6380
6381 current_function_instrument_entry_exit
6382 = (flag_instrument_function_entry_exit
6383 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6384
6385 current_function_limit_stack
6386 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6387
6388 /* If function gets a static chain arg, store it in the stack frame.
6389 Do this first, so it gets the first stack slot offset. */
6390 if (current_function_needs_context)
6391 {
6392 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6393
6394 /* Delay copying static chain if it is not a register to avoid
6395 conflicts with regs used for parameters. */
6396 if (! SMALL_REGISTER_CLASSES
6397 || GET_CODE (static_chain_incoming_rtx) == REG)
6398 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6399 }
6400
6401 /* If the parameters of this function need cleaning up, get a label
6402 for the beginning of the code which executes those cleanups. This must
6403 be done before doing anything with return_label. */
6404 if (parms_have_cleanups)
6405 cleanup_label = gen_label_rtx ();
6406 else
6407 cleanup_label = 0;
6408
6409 /* Make the label for return statements to jump to. Do not special
6410 case machines with special return instructions -- they will be
6411 handled later during jump, ifcvt, or epilogue creation. */
6412 return_label = gen_label_rtx ();
6413
6414 /* Initialize rtx used to return the value. */
6415 /* Do this before assign_parms so that we copy the struct value address
6416 before any library calls that assign parms might generate. */
6417
6418 /* Decide whether to return the value in memory or in a register. */
6419 if (aggregate_value_p (DECL_RESULT (subr)))
6420 {
6421 /* Returning something that won't go in a register. */
6422 register rtx value_address = 0;
6423
6424 #ifdef PCC_STATIC_STRUCT_RETURN
6425 if (current_function_returns_pcc_struct)
6426 {
6427 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6428 value_address = assemble_static_space (size);
6429 }
6430 else
6431 #endif
6432 {
6433 /* Expect to be passed the address of a place to store the value.
6434 If it is passed as an argument, assign_parms will take care of
6435 it. */
6436 if (struct_value_incoming_rtx)
6437 {
6438 value_address = gen_reg_rtx (Pmode);
6439 emit_move_insn (value_address, struct_value_incoming_rtx);
6440 }
6441 }
6442 if (value_address)
6443 {
6444 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6445 set_mem_attributes (x, DECL_RESULT (subr), 1);
6446 SET_DECL_RTL (DECL_RESULT (subr), x);
6447 }
6448 }
6449 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6450 /* If return mode is void, this decl rtl should not be used. */
6451 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6452 else
6453 {
6454 /* Compute the return values into a pseudo reg, which we will copy
6455 into the true return register after the cleanups are done. */
6456
6457 /* In order to figure out what mode to use for the pseudo, we
6458 figure out what the mode of the eventual return register will
6459 actually be, and use that. */
6460 rtx hard_reg
6461 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6462 subr, 1);
6463
6464 /* Structures that are returned in registers are not aggregate_value_p,
6465 so we may see a PARALLEL. Don't play pseudo games with this. */
6466 if (! REG_P (hard_reg))
6467 SET_DECL_RTL (DECL_RESULT (subr), hard_reg);
6468 else
6469 {
6470 /* Create the pseudo. */
6471 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6472
6473 /* Needed because we may need to move this to memory
6474 in case it's a named return value whose address is taken. */
6475 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6476 }
6477 }
6478
6479 /* Initialize rtx for parameters and local variables.
6480 In some cases this requires emitting insns. */
6481
6482 assign_parms (subr);
6483
6484 /* Copy the static chain now if it wasn't a register. The delay is to
6485 avoid conflicts with the parameter passing registers. */
6486
6487 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6488 if (GET_CODE (static_chain_incoming_rtx) != REG)
6489 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6490
6491 /* The following was moved from init_function_start.
6492 The move is supposed to make sdb output more accurate. */
6493 /* Indicate the beginning of the function body,
6494 as opposed to parm setup. */
6495 emit_note (NULL, NOTE_INSN_FUNCTION_BEG);
6496
6497 if (GET_CODE (get_last_insn ()) != NOTE)
6498 emit_note (NULL, NOTE_INSN_DELETED);
6499 parm_birth_insn = get_last_insn ();
6500
6501 context_display = 0;
6502 if (current_function_needs_context)
6503 {
6504 /* Fetch static chain values for containing functions. */
6505 tem = decl_function_context (current_function_decl);
6506 /* Copy the static chain pointer into a pseudo. If we have
6507 small register classes, copy the value from memory if
6508 static_chain_incoming_rtx is a REG. */
6509 if (tem)
6510 {
6511 /* If the static chain originally came in a register, put it back
6512 there, then move it out in the next insn. The reason for
6513 this peculiar code is to satisfy function integration. */
6514 if (SMALL_REGISTER_CLASSES
6515 && GET_CODE (static_chain_incoming_rtx) == REG)
6516 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6517 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6518 }
6519
6520 while (tem)
6521 {
6522 tree rtlexp = make_node (RTL_EXPR);
6523
6524 RTL_EXPR_RTL (rtlexp) = last_ptr;
6525 context_display = tree_cons (tem, rtlexp, context_display);
6526 tem = decl_function_context (tem);
6527 if (tem == 0)
6528 break;
6529 /* Chain thru stack frames, assuming pointer to next lexical frame
6530 is found at the place we always store it. */
6531 #ifdef FRAME_GROWS_DOWNWARD
6532 last_ptr = plus_constant (last_ptr,
6533 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6534 #endif
6535 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6536 MEM_ALIAS_SET (last_ptr) = get_frame_alias_set ();
6537 last_ptr = copy_to_reg (last_ptr);
6538
6539 /* If we are not optimizing, ensure that we know that this
6540 piece of context is live over the entire function. */
6541 if (! optimize)
6542 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6543 save_expr_regs);
6544 }
6545 }
6546
6547 if (current_function_instrument_entry_exit)
6548 {
6549 rtx fun = DECL_RTL (current_function_decl);
6550 if (GET_CODE (fun) == MEM)
6551 fun = XEXP (fun, 0);
6552 else
6553 abort ();
6554 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6555 fun, Pmode,
6556 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6557 0,
6558 hard_frame_pointer_rtx),
6559 Pmode);
6560 }
6561
6562 #ifdef PROFILE_HOOK
6563 if (profile_flag)
6564 PROFILE_HOOK (profile_label_no);
6565 #endif
6566
6567 /* After the display initializations is where the tail-recursion label
6568 should go, if we end up needing one. Ensure we have a NOTE here
6569 since some things (like trampolines) get placed before this. */
6570 tail_recursion_reentry = emit_note (NULL, NOTE_INSN_DELETED);
6571
6572 /* Evaluate now the sizes of any types declared among the arguments. */
6573 expand_pending_sizes (nreverse (get_pending_sizes ()));
6574
6575 /* Make sure there is a line number after the function entry setup code. */
6576 force_next_line_note ();
6577 }
6578 \f
6579 /* Undo the effects of init_dummy_function_start. */
6580 void
6581 expand_dummy_function_end ()
6582 {
6583 /* End any sequences that failed to be closed due to syntax errors. */
6584 while (in_sequence_p ())
6585 end_sequence ();
6586
6587 /* Outside function body, can't compute type's actual size
6588 until next function's body starts. */
6589
6590 free_after_parsing (cfun);
6591 free_after_compilation (cfun);
6592 cfun = 0;
6593 }
6594
6595 /* Call DOIT for each hard register used as a return value from
6596 the current function. */
6597
6598 void
6599 diddle_return_value (doit, arg)
6600 void (*doit) PARAMS ((rtx, void *));
6601 void *arg;
6602 {
6603 rtx outgoing = current_function_return_rtx;
6604
6605 if (! outgoing)
6606 return;
6607
6608 if (GET_CODE (outgoing) == REG)
6609 (*doit) (outgoing, arg);
6610 else if (GET_CODE (outgoing) == PARALLEL)
6611 {
6612 int i;
6613
6614 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6615 {
6616 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6617
6618 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6619 (*doit) (x, arg);
6620 }
6621 }
6622 }
6623
6624 static void
6625 do_clobber_return_reg (reg, arg)
6626 rtx reg;
6627 void *arg ATTRIBUTE_UNUSED;
6628 {
6629 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6630 }
6631
6632 void
6633 clobber_return_register ()
6634 {
6635 diddle_return_value (do_clobber_return_reg, NULL);
6636
6637 /* In case we do use pseudo to return value, clobber it too. */
6638 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6639 {
6640 tree decl_result = DECL_RESULT (current_function_decl);
6641 rtx decl_rtl = DECL_RTL (decl_result);
6642 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6643 {
6644 do_clobber_return_reg (decl_rtl, NULL);
6645 }
6646 }
6647 }
6648
6649 static void
6650 do_use_return_reg (reg, arg)
6651 rtx reg;
6652 void *arg ATTRIBUTE_UNUSED;
6653 {
6654 emit_insn (gen_rtx_USE (VOIDmode, reg));
6655 }
6656
6657 void
6658 use_return_register ()
6659 {
6660 diddle_return_value (do_use_return_reg, NULL);
6661 }
6662
6663 /* Generate RTL for the end of the current function.
6664 FILENAME and LINE are the current position in the source file.
6665
6666 It is up to language-specific callers to do cleanups for parameters--
6667 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6668
6669 void
6670 expand_function_end (filename, line, end_bindings)
6671 const char *filename;
6672 int line;
6673 int end_bindings;
6674 {
6675 tree link;
6676 rtx clobber_after;
6677
6678 #ifdef TRAMPOLINE_TEMPLATE
6679 static rtx initial_trampoline;
6680 #endif
6681
6682 finish_expr_for_function ();
6683
6684 /* If arg_pointer_save_area was referenced only from a nested
6685 function, we will not have initialized it yet. Do that now. */
6686 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6687 get_arg_pointer_save_area (cfun);
6688
6689 #ifdef NON_SAVING_SETJMP
6690 /* Don't put any variables in registers if we call setjmp
6691 on a machine that fails to restore the registers. */
6692 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6693 {
6694 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6695 setjmp_protect (DECL_INITIAL (current_function_decl));
6696
6697 setjmp_protect_args ();
6698 }
6699 #endif
6700
6701 /* Initialize any trampolines required by this function. */
6702 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6703 {
6704 tree function = TREE_PURPOSE (link);
6705 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6706 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6707 #ifdef TRAMPOLINE_TEMPLATE
6708 rtx blktramp;
6709 #endif
6710 rtx seq;
6711
6712 #ifdef TRAMPOLINE_TEMPLATE
6713 /* First make sure this compilation has a template for
6714 initializing trampolines. */
6715 if (initial_trampoline == 0)
6716 {
6717 initial_trampoline
6718 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6719
6720 ggc_add_rtx_root (&initial_trampoline, 1);
6721 }
6722 #endif
6723
6724 /* Generate insns to initialize the trampoline. */
6725 start_sequence ();
6726 tramp = round_trampoline_addr (XEXP (tramp, 0));
6727 #ifdef TRAMPOLINE_TEMPLATE
6728 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6729 emit_block_move (blktramp, initial_trampoline,
6730 GEN_INT (TRAMPOLINE_SIZE),
6731 TRAMPOLINE_ALIGNMENT);
6732 #endif
6733 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6734 seq = get_insns ();
6735 end_sequence ();
6736
6737 /* Put those insns at entry to the containing function (this one). */
6738 emit_insns_before (seq, tail_recursion_reentry);
6739 }
6740
6741 /* If we are doing stack checking and this function makes calls,
6742 do a stack probe at the start of the function to ensure we have enough
6743 space for another stack frame. */
6744 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6745 {
6746 rtx insn, seq;
6747
6748 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6749 if (GET_CODE (insn) == CALL_INSN)
6750 {
6751 start_sequence ();
6752 probe_stack_range (STACK_CHECK_PROTECT,
6753 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6754 seq = get_insns ();
6755 end_sequence ();
6756 emit_insns_before (seq, tail_recursion_reentry);
6757 break;
6758 }
6759 }
6760
6761 /* Warn about unused parms if extra warnings were specified. */
6762 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6763 warning. WARN_UNUSED_PARAMETER is negative when set by
6764 -Wunused. */
6765 if (warn_unused_parameter > 0
6766 || (warn_unused_parameter < 0 && extra_warnings))
6767 {
6768 tree decl;
6769
6770 for (decl = DECL_ARGUMENTS (current_function_decl);
6771 decl; decl = TREE_CHAIN (decl))
6772 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6773 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6774 warning_with_decl (decl, "unused parameter `%s'");
6775 }
6776
6777 /* Delete handlers for nonlocal gotos if nothing uses them. */
6778 if (nonlocal_goto_handler_slots != 0
6779 && ! current_function_has_nonlocal_label)
6780 delete_handlers ();
6781
6782 /* End any sequences that failed to be closed due to syntax errors. */
6783 while (in_sequence_p ())
6784 end_sequence ();
6785
6786 /* Outside function body, can't compute type's actual size
6787 until next function's body starts. */
6788 immediate_size_expand--;
6789
6790 clear_pending_stack_adjust ();
6791 do_pending_stack_adjust ();
6792
6793 /* Mark the end of the function body.
6794 If control reaches this insn, the function can drop through
6795 without returning a value. */
6796 emit_note (NULL, NOTE_INSN_FUNCTION_END);
6797
6798 /* Must mark the last line number note in the function, so that the test
6799 coverage code can avoid counting the last line twice. This just tells
6800 the code to ignore the immediately following line note, since there
6801 already exists a copy of this note somewhere above. This line number
6802 note is still needed for debugging though, so we can't delete it. */
6803 if (flag_test_coverage)
6804 emit_note (NULL, NOTE_INSN_REPEATED_LINE_NUMBER);
6805
6806 /* Output a linenumber for the end of the function.
6807 SDB depends on this. */
6808 emit_line_note_force (filename, line);
6809
6810 /* Before the return label (if any), clobber the return
6811 registers so that they are not propogated live to the rest of
6812 the function. This can only happen with functions that drop
6813 through; if there had been a return statement, there would
6814 have either been a return rtx, or a jump to the return label.
6815
6816 We delay actual code generation after the current_function_value_rtx
6817 is computed. */
6818 clobber_after = get_last_insn ();
6819
6820 /* Output the label for the actual return from the function,
6821 if one is expected. This happens either because a function epilogue
6822 is used instead of a return instruction, or because a return was done
6823 with a goto in order to run local cleanups, or because of pcc-style
6824 structure returning. */
6825 if (return_label)
6826 emit_label (return_label);
6827
6828 /* C++ uses this. */
6829 if (end_bindings)
6830 expand_end_bindings (0, 0, 0);
6831
6832 if (current_function_instrument_entry_exit)
6833 {
6834 rtx fun = DECL_RTL (current_function_decl);
6835 if (GET_CODE (fun) == MEM)
6836 fun = XEXP (fun, 0);
6837 else
6838 abort ();
6839 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6840 fun, Pmode,
6841 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6842 0,
6843 hard_frame_pointer_rtx),
6844 Pmode);
6845 }
6846
6847 /* Let except.c know where it should emit the call to unregister
6848 the function context for sjlj exceptions. */
6849 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6850 sjlj_emit_function_exit_after (get_last_insn ());
6851
6852 /* If we had calls to alloca, and this machine needs
6853 an accurate stack pointer to exit the function,
6854 insert some code to save and restore the stack pointer. */
6855 #ifdef EXIT_IGNORE_STACK
6856 if (! EXIT_IGNORE_STACK)
6857 #endif
6858 if (current_function_calls_alloca)
6859 {
6860 rtx tem = 0;
6861
6862 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6863 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6864 }
6865
6866 /* If scalar return value was computed in a pseudo-reg, or was a named
6867 return value that got dumped to the stack, copy that to the hard
6868 return register. */
6869 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6870 {
6871 tree decl_result = DECL_RESULT (current_function_decl);
6872 rtx decl_rtl = DECL_RTL (decl_result);
6873
6874 if (REG_P (decl_rtl)
6875 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6876 : DECL_REGISTER (decl_result))
6877 {
6878 rtx real_decl_rtl;
6879
6880 #ifdef FUNCTION_OUTGOING_VALUE
6881 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
6882 current_function_decl);
6883 #else
6884 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
6885 current_function_decl);
6886 #endif
6887 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
6888
6889 /* If this is a BLKmode structure being returned in registers,
6890 then use the mode computed in expand_return. Note that if
6891 decl_rtl is memory, then its mode may have been changed,
6892 but that current_function_return_rtx has not. */
6893 if (GET_MODE (real_decl_rtl) == BLKmode)
6894 PUT_MODE (real_decl_rtl, GET_MODE (current_function_return_rtx));
6895
6896 /* If a named return value dumped decl_return to memory, then
6897 we may need to re-do the PROMOTE_MODE signed/unsigned
6898 extension. */
6899 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
6900 {
6901 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
6902
6903 #ifdef PROMOTE_FUNCTION_RETURN
6904 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
6905 &unsignedp, 1);
6906 #endif
6907
6908 convert_move (real_decl_rtl, decl_rtl, unsignedp);
6909 }
6910 else if (GET_CODE (real_decl_rtl) == PARALLEL)
6911 emit_group_load (real_decl_rtl, decl_rtl,
6912 int_size_in_bytes (TREE_TYPE (decl_result)),
6913 TYPE_ALIGN (TREE_TYPE (decl_result)));
6914 else
6915 emit_move_insn (real_decl_rtl, decl_rtl);
6916
6917 /* The delay slot scheduler assumes that current_function_return_rtx
6918 holds the hard register containing the return value, not a
6919 temporary pseudo. */
6920 current_function_return_rtx = real_decl_rtl;
6921 }
6922 }
6923
6924 /* If returning a structure, arrange to return the address of the value
6925 in a place where debuggers expect to find it.
6926
6927 If returning a structure PCC style,
6928 the caller also depends on this value.
6929 And current_function_returns_pcc_struct is not necessarily set. */
6930 if (current_function_returns_struct
6931 || current_function_returns_pcc_struct)
6932 {
6933 rtx value_address
6934 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6935 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6936 #ifdef FUNCTION_OUTGOING_VALUE
6937 rtx outgoing
6938 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6939 current_function_decl);
6940 #else
6941 rtx outgoing
6942 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
6943 #endif
6944
6945 /* Mark this as a function return value so integrate will delete the
6946 assignment and USE below when inlining this function. */
6947 REG_FUNCTION_VALUE_P (outgoing) = 1;
6948
6949 #ifdef POINTERS_EXTEND_UNSIGNED
6950 /* The address may be ptr_mode and OUTGOING may be Pmode. */
6951 if (GET_MODE (outgoing) != GET_MODE (value_address))
6952 value_address = convert_memory_address (GET_MODE (outgoing),
6953 value_address);
6954 #endif
6955
6956 emit_move_insn (outgoing, value_address);
6957
6958 /* Show return register used to hold result (in this case the address
6959 of the result. */
6960 current_function_return_rtx = outgoing;
6961 }
6962
6963 /* If this is an implementation of throw, do what's necessary to
6964 communicate between __builtin_eh_return and the epilogue. */
6965 expand_eh_return ();
6966
6967 /* Emit the actual code to clobber return register. */
6968 {
6969 rtx seq, after;
6970
6971 start_sequence ();
6972 clobber_return_register ();
6973 seq = gen_sequence ();
6974 end_sequence ();
6975
6976 after = emit_insn_after (seq, clobber_after);
6977
6978 if (clobber_after != after)
6979 cfun->x_clobber_return_insn = after;
6980 }
6981
6982 /* ??? This should no longer be necessary since stupid is no longer with
6983 us, but there are some parts of the compiler (eg reload_combine, and
6984 sh mach_dep_reorg) that still try and compute their own lifetime info
6985 instead of using the general framework. */
6986 use_return_register ();
6987
6988 /* Fix up any gotos that jumped out to the outermost
6989 binding level of the function.
6990 Must follow emitting RETURN_LABEL. */
6991
6992 /* If you have any cleanups to do at this point,
6993 and they need to create temporary variables,
6994 then you will lose. */
6995 expand_fixups (get_insns ());
6996 }
6997
6998 rtx
6999 get_arg_pointer_save_area (f)
7000 struct function *f;
7001 {
7002 rtx ret = f->x_arg_pointer_save_area;
7003
7004 if (! ret)
7005 {
7006 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7007 f->x_arg_pointer_save_area = ret;
7008 }
7009
7010 if (f == cfun && ! f->arg_pointer_save_area_init)
7011 {
7012 rtx seq;
7013
7014 /* Save the arg pointer at the beginning of the function. The
7015 generated stack slot may not be a valid memory address, so we
7016 have to check it and fix it if necessary. */
7017 start_sequence ();
7018 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7019 seq = gen_sequence ();
7020 end_sequence ();
7021
7022 push_topmost_sequence ();
7023 emit_insn_after (seq, get_insns ());
7024 pop_topmost_sequence ();
7025 }
7026
7027 return ret;
7028 }
7029 \f
7030 /* Extend a vector that records the INSN_UIDs of INSNS (either a
7031 sequence or a single insn). */
7032
7033 static void
7034 record_insns (insns, vecp)
7035 rtx insns;
7036 varray_type *vecp;
7037 {
7038 if (GET_CODE (insns) == SEQUENCE)
7039 {
7040 int len = XVECLEN (insns, 0);
7041 int i = VARRAY_SIZE (*vecp);
7042
7043 VARRAY_GROW (*vecp, i + len);
7044 while (--len >= 0)
7045 {
7046 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
7047 ++i;
7048 }
7049 }
7050 else
7051 {
7052 int i = VARRAY_SIZE (*vecp);
7053 VARRAY_GROW (*vecp, i + 1);
7054 VARRAY_INT (*vecp, i) = INSN_UID (insns);
7055 }
7056 }
7057
7058 /* Determine how many INSN_UIDs in VEC are part of INSN. */
7059
7060 static int
7061 contains (insn, vec)
7062 rtx insn;
7063 varray_type vec;
7064 {
7065 register int i, j;
7066
7067 if (GET_CODE (insn) == INSN
7068 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7069 {
7070 int count = 0;
7071 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7072 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7073 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7074 count++;
7075 return count;
7076 }
7077 else
7078 {
7079 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7080 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7081 return 1;
7082 }
7083 return 0;
7084 }
7085
7086 int
7087 prologue_epilogue_contains (insn)
7088 rtx insn;
7089 {
7090 if (contains (insn, prologue))
7091 return 1;
7092 if (contains (insn, epilogue))
7093 return 1;
7094 return 0;
7095 }
7096
7097 int
7098 sibcall_epilogue_contains (insn)
7099 rtx insn;
7100 {
7101 if (sibcall_epilogue)
7102 return contains (insn, sibcall_epilogue);
7103 return 0;
7104 }
7105
7106 #ifdef HAVE_return
7107 /* Insert gen_return at the end of block BB. This also means updating
7108 block_for_insn appropriately. */
7109
7110 static void
7111 emit_return_into_block (bb, line_note)
7112 basic_block bb;
7113 rtx line_note;
7114 {
7115 rtx p, end;
7116
7117 p = NEXT_INSN (bb->end);
7118 end = emit_jump_insn_after (gen_return (), bb->end);
7119 if (line_note)
7120 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7121 NOTE_LINE_NUMBER (line_note), PREV_INSN (bb->end));
7122 }
7123 #endif /* HAVE_return */
7124
7125 #ifdef HAVE_epilogue
7126
7127 /* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications
7128 to the stack pointer. */
7129
7130 static void
7131 keep_stack_depressed (seq)
7132 rtx seq;
7133 {
7134 int i;
7135 rtx sp_from_reg = 0;
7136 int sp_modified_unknown = 0;
7137
7138 /* If the epilogue is just a single instruction, it's OK as is */
7139
7140 if (GET_CODE (seq) != SEQUENCE)
7141 return;
7142
7143 /* Scan all insns in SEQ looking for ones that modified the stack
7144 pointer. Record if it modified the stack pointer by copying it
7145 from the frame pointer or if it modified it in some other way.
7146 Then modify any subsequent stack pointer references to take that
7147 into account. We start by only allowing SP to be copied from a
7148 register (presumably FP) and then be subsequently referenced. */
7149
7150 for (i = 0; i < XVECLEN (seq, 0); i++)
7151 {
7152 rtx insn = XVECEXP (seq, 0, i);
7153
7154 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7155 continue;
7156
7157 if (reg_set_p (stack_pointer_rtx, insn))
7158 {
7159 rtx set = single_set (insn);
7160
7161 /* If SP is set as a side-effect, we can't support this. */
7162 if (set == 0)
7163 abort ();
7164
7165 if (GET_CODE (SET_SRC (set)) == REG)
7166 sp_from_reg = SET_SRC (set);
7167 else
7168 sp_modified_unknown = 1;
7169
7170 /* Don't allow the SP modification to happen. */
7171 PUT_CODE (insn, NOTE);
7172 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7173 NOTE_SOURCE_FILE (insn) = 0;
7174 }
7175 else if (reg_referenced_p (stack_pointer_rtx, PATTERN (insn)))
7176 {
7177 if (sp_modified_unknown)
7178 abort ();
7179
7180 else if (sp_from_reg != 0)
7181 PATTERN (insn)
7182 = replace_rtx (PATTERN (insn), stack_pointer_rtx, sp_from_reg);
7183 }
7184 }
7185 }
7186 #endif
7187
7188 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7189 this into place with notes indicating where the prologue ends and where
7190 the epilogue begins. Update the basic block information when possible. */
7191
7192 void
7193 thread_prologue_and_epilogue_insns (f)
7194 rtx f ATTRIBUTE_UNUSED;
7195 {
7196 int inserted = 0;
7197 edge e;
7198 rtx seq;
7199 #ifdef HAVE_prologue
7200 rtx prologue_end = NULL_RTX;
7201 #endif
7202 #if defined (HAVE_epilogue) || defined(HAVE_return)
7203 rtx epilogue_end = NULL_RTX;
7204 #endif
7205
7206 #ifdef HAVE_prologue
7207 if (HAVE_prologue)
7208 {
7209 start_sequence ();
7210 seq = gen_prologue ();
7211 emit_insn (seq);
7212
7213 /* Retain a map of the prologue insns. */
7214 if (GET_CODE (seq) != SEQUENCE)
7215 seq = get_insns ();
7216 record_insns (seq, &prologue);
7217 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7218
7219 seq = gen_sequence ();
7220 end_sequence ();
7221
7222 /* Can't deal with multiple successsors of the entry block
7223 at the moment. Function should always have at least one
7224 entry point. */
7225 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7226 abort ();
7227
7228 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7229 inserted = 1;
7230 }
7231 #endif
7232
7233 /* If the exit block has no non-fake predecessors, we don't need
7234 an epilogue. */
7235 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7236 if ((e->flags & EDGE_FAKE) == 0)
7237 break;
7238 if (e == NULL)
7239 goto epilogue_done;
7240
7241 #ifdef HAVE_return
7242 if (optimize && HAVE_return)
7243 {
7244 /* If we're allowed to generate a simple return instruction,
7245 then by definition we don't need a full epilogue. Examine
7246 the block that falls through to EXIT. If it does not
7247 contain any code, examine its predecessors and try to
7248 emit (conditional) return instructions. */
7249
7250 basic_block last;
7251 edge e_next;
7252 rtx label;
7253
7254 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7255 if (e->flags & EDGE_FALLTHRU)
7256 break;
7257 if (e == NULL)
7258 goto epilogue_done;
7259 last = e->src;
7260
7261 /* Verify that there are no active instructions in the last block. */
7262 label = last->end;
7263 while (label && GET_CODE (label) != CODE_LABEL)
7264 {
7265 if (active_insn_p (label))
7266 break;
7267 label = PREV_INSN (label);
7268 }
7269
7270 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7271 {
7272 rtx epilogue_line_note = NULL_RTX;
7273
7274 /* Locate the line number associated with the closing brace,
7275 if we can find one. */
7276 for (seq = get_last_insn ();
7277 seq && ! active_insn_p (seq);
7278 seq = PREV_INSN (seq))
7279 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7280 {
7281 epilogue_line_note = seq;
7282 break;
7283 }
7284
7285 for (e = last->pred; e; e = e_next)
7286 {
7287 basic_block bb = e->src;
7288 rtx jump;
7289
7290 e_next = e->pred_next;
7291 if (bb == ENTRY_BLOCK_PTR)
7292 continue;
7293
7294 jump = bb->end;
7295 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7296 continue;
7297
7298 /* If we have an unconditional jump, we can replace that
7299 with a simple return instruction. */
7300 if (simplejump_p (jump))
7301 {
7302 emit_return_into_block (bb, epilogue_line_note);
7303 flow_delete_insn (jump);
7304 }
7305
7306 /* If we have a conditional jump, we can try to replace
7307 that with a conditional return instruction. */
7308 else if (condjump_p (jump))
7309 {
7310 rtx ret, *loc;
7311
7312 ret = SET_SRC (PATTERN (jump));
7313 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
7314 loc = &XEXP (ret, 1);
7315 else
7316 loc = &XEXP (ret, 2);
7317 ret = gen_rtx_RETURN (VOIDmode);
7318
7319 if (! validate_change (jump, loc, ret, 0))
7320 continue;
7321 if (JUMP_LABEL (jump))
7322 LABEL_NUSES (JUMP_LABEL (jump))--;
7323
7324 /* If this block has only one successor, it both jumps
7325 and falls through to the fallthru block, so we can't
7326 delete the edge. */
7327 if (bb->succ->succ_next == NULL)
7328 continue;
7329 }
7330 else
7331 continue;
7332
7333 /* Fix up the CFG for the successful change we just made. */
7334 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7335 }
7336
7337 /* Emit a return insn for the exit fallthru block. Whether
7338 this is still reachable will be determined later. */
7339
7340 emit_barrier_after (last->end);
7341 emit_return_into_block (last, epilogue_line_note);
7342 epilogue_end = last->end;
7343 last->succ->flags &= ~EDGE_FALLTHRU;
7344 goto epilogue_done;
7345 }
7346 }
7347 #endif
7348 #ifdef HAVE_epilogue
7349 if (HAVE_epilogue)
7350 {
7351 /* Find the edge that falls through to EXIT. Other edges may exist
7352 due to RETURN instructions, but those don't need epilogues.
7353 There really shouldn't be a mixture -- either all should have
7354 been converted or none, however... */
7355
7356 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7357 if (e->flags & EDGE_FALLTHRU)
7358 break;
7359 if (e == NULL)
7360 goto epilogue_done;
7361
7362 start_sequence ();
7363 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7364
7365 seq = gen_epilogue ();
7366
7367 /* If this function returns with the stack depressed, massage
7368 the epilogue to actually do that. */
7369 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7370 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7371 keep_stack_depressed (seq);
7372
7373 emit_jump_insn (seq);
7374
7375 /* Retain a map of the epilogue insns. */
7376 if (GET_CODE (seq) != SEQUENCE)
7377 seq = get_insns ();
7378 record_insns (seq, &epilogue);
7379
7380 seq = gen_sequence ();
7381 end_sequence ();
7382
7383 insert_insn_on_edge (seq, e);
7384 inserted = 1;
7385 }
7386 #endif
7387 epilogue_done:
7388
7389 if (inserted)
7390 commit_edge_insertions ();
7391
7392 #ifdef HAVE_sibcall_epilogue
7393 /* Emit sibling epilogues before any sibling call sites. */
7394 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7395 {
7396 basic_block bb = e->src;
7397 rtx insn = bb->end;
7398 rtx i;
7399 rtx newinsn;
7400
7401 if (GET_CODE (insn) != CALL_INSN
7402 || ! SIBLING_CALL_P (insn))
7403 continue;
7404
7405 start_sequence ();
7406 seq = gen_sibcall_epilogue ();
7407 end_sequence ();
7408
7409 i = PREV_INSN (insn);
7410 newinsn = emit_insn_before (seq, insn);
7411
7412 /* Retain a map of the epilogue insns. Used in life analysis to
7413 avoid getting rid of sibcall epilogue insns. */
7414 record_insns (GET_CODE (seq) == SEQUENCE
7415 ? seq : newinsn, &sibcall_epilogue);
7416 }
7417 #endif
7418
7419 #ifdef HAVE_prologue
7420 if (prologue_end)
7421 {
7422 rtx insn, prev;
7423
7424 /* GDB handles `break f' by setting a breakpoint on the first
7425 line note after the prologue. Which means (1) that if
7426 there are line number notes before where we inserted the
7427 prologue we should move them, and (2) we should generate a
7428 note before the end of the first basic block, if there isn't
7429 one already there.
7430
7431 ??? This behaviour is completely broken when dealing with
7432 multiple entry functions. We simply place the note always
7433 into first basic block and let alternate entry points
7434 to be missed.
7435 */
7436
7437 for (insn = prologue_end; insn; insn = prev)
7438 {
7439 prev = PREV_INSN (insn);
7440 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7441 {
7442 /* Note that we cannot reorder the first insn in the
7443 chain, since rest_of_compilation relies on that
7444 remaining constant. */
7445 if (prev == NULL)
7446 break;
7447 reorder_insns (insn, insn, prologue_end);
7448 }
7449 }
7450
7451 /* Find the last line number note in the first block. */
7452 for (insn = BASIC_BLOCK (0)->end;
7453 insn != prologue_end && insn;
7454 insn = PREV_INSN (insn))
7455 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7456 break;
7457
7458 /* If we didn't find one, make a copy of the first line number
7459 we run across. */
7460 if (! insn)
7461 {
7462 for (insn = next_active_insn (prologue_end);
7463 insn;
7464 insn = PREV_INSN (insn))
7465 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7466 {
7467 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7468 NOTE_LINE_NUMBER (insn),
7469 prologue_end);
7470 break;
7471 }
7472 }
7473 }
7474 #endif
7475 #ifdef HAVE_epilogue
7476 if (epilogue_end)
7477 {
7478 rtx insn, next;
7479
7480 /* Similarly, move any line notes that appear after the epilogue.
7481 There is no need, however, to be quite so anal about the existance
7482 of such a note. */
7483 for (insn = epilogue_end; insn; insn = next)
7484 {
7485 next = NEXT_INSN (insn);
7486 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7487 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7488 }
7489 }
7490 #endif
7491 }
7492
7493 /* Reposition the prologue-end and epilogue-begin notes after instruction
7494 scheduling and delayed branch scheduling. */
7495
7496 void
7497 reposition_prologue_and_epilogue_notes (f)
7498 rtx f ATTRIBUTE_UNUSED;
7499 {
7500 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7501 int len;
7502
7503 if ((len = VARRAY_SIZE (prologue)) > 0)
7504 {
7505 register rtx insn, note = 0;
7506
7507 /* Scan from the beginning until we reach the last prologue insn.
7508 We apparently can't depend on basic_block_{head,end} after
7509 reorg has run. */
7510 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7511 {
7512 if (GET_CODE (insn) == NOTE)
7513 {
7514 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7515 note = insn;
7516 }
7517 else if ((len -= contains (insn, prologue)) == 0)
7518 {
7519 rtx next;
7520 /* Find the prologue-end note if we haven't already, and
7521 move it to just after the last prologue insn. */
7522 if (note == 0)
7523 {
7524 for (note = insn; (note = NEXT_INSN (note));)
7525 if (GET_CODE (note) == NOTE
7526 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7527 break;
7528 }
7529
7530 next = NEXT_INSN (note);
7531
7532 /* Whether or not we can depend on BLOCK_HEAD,
7533 attempt to keep it up-to-date. */
7534 if (BLOCK_HEAD (0) == note)
7535 BLOCK_HEAD (0) = next;
7536
7537 remove_insn (note);
7538 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7539 if (GET_CODE (insn) == CODE_LABEL)
7540 insn = NEXT_INSN (insn);
7541 add_insn_after (note, insn);
7542 }
7543 }
7544 }
7545
7546 if ((len = VARRAY_SIZE (epilogue)) > 0)
7547 {
7548 register rtx insn, note = 0;
7549
7550 /* Scan from the end until we reach the first epilogue insn.
7551 We apparently can't depend on basic_block_{head,end} after
7552 reorg has run. */
7553 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7554 {
7555 if (GET_CODE (insn) == NOTE)
7556 {
7557 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7558 note = insn;
7559 }
7560 else if ((len -= contains (insn, epilogue)) == 0)
7561 {
7562 /* Find the epilogue-begin note if we haven't already, and
7563 move it to just before the first epilogue insn. */
7564 if (note == 0)
7565 {
7566 for (note = insn; (note = PREV_INSN (note));)
7567 if (GET_CODE (note) == NOTE
7568 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7569 break;
7570 }
7571
7572 /* Whether or not we can depend on BLOCK_HEAD,
7573 attempt to keep it up-to-date. */
7574 if (n_basic_blocks
7575 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7576 BLOCK_HEAD (n_basic_blocks-1) = note;
7577
7578 remove_insn (note);
7579 add_insn_before (note, insn);
7580 }
7581 }
7582 }
7583 #endif /* HAVE_prologue or HAVE_epilogue */
7584 }
7585
7586 /* Mark T for GC. */
7587
7588 static void
7589 mark_temp_slot (t)
7590 struct temp_slot *t;
7591 {
7592 while (t)
7593 {
7594 ggc_mark_rtx (t->slot);
7595 ggc_mark_rtx (t->address);
7596 ggc_mark_tree (t->rtl_expr);
7597 ggc_mark_tree (t->type);
7598
7599 t = t->next;
7600 }
7601 }
7602
7603 /* Mark P for GC. */
7604
7605 static void
7606 mark_function_status (p)
7607 struct function *p;
7608 {
7609 int i;
7610 rtx *r;
7611
7612 if (p == 0)
7613 return;
7614
7615 ggc_mark_rtx (p->arg_offset_rtx);
7616
7617 if (p->x_parm_reg_stack_loc)
7618 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7619 i > 0; --i, ++r)
7620 ggc_mark_rtx (*r);
7621
7622 ggc_mark_rtx (p->return_rtx);
7623 ggc_mark_rtx (p->x_cleanup_label);
7624 ggc_mark_rtx (p->x_return_label);
7625 ggc_mark_rtx (p->x_save_expr_regs);
7626 ggc_mark_rtx (p->x_stack_slot_list);
7627 ggc_mark_rtx (p->x_parm_birth_insn);
7628 ggc_mark_rtx (p->x_tail_recursion_label);
7629 ggc_mark_rtx (p->x_tail_recursion_reentry);
7630 ggc_mark_rtx (p->internal_arg_pointer);
7631 ggc_mark_rtx (p->x_arg_pointer_save_area);
7632 ggc_mark_tree (p->x_rtl_expr_chain);
7633 ggc_mark_rtx (p->x_last_parm_insn);
7634 ggc_mark_tree (p->x_context_display);
7635 ggc_mark_tree (p->x_trampoline_list);
7636 ggc_mark_rtx (p->epilogue_delay_list);
7637 ggc_mark_rtx (p->x_clobber_return_insn);
7638
7639 mark_temp_slot (p->x_temp_slots);
7640
7641 {
7642 struct var_refs_queue *q = p->fixup_var_refs_queue;
7643 while (q)
7644 {
7645 ggc_mark_rtx (q->modified);
7646 q = q->next;
7647 }
7648 }
7649
7650 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7651 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7652 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7653 ggc_mark_tree (p->x_nonlocal_labels);
7654
7655 mark_hard_reg_initial_vals (p);
7656 }
7657
7658 /* Mark the struct function pointed to by *ARG for GC, if it is not
7659 NULL. This is used to mark the current function and the outer
7660 function chain. */
7661 static void
7662 maybe_mark_struct_function (arg)
7663 void *arg;
7664 {
7665 struct function *f = *(struct function **) arg;
7666
7667 if (f == 0)
7668 return;
7669
7670 ggc_mark_struct_function (f);
7671 }
7672
7673 /* Mark a struct function * for GC. This is called from ggc-common.c. */
7674 void
7675 ggc_mark_struct_function (f)
7676 struct function *f;
7677 {
7678 ggc_mark_tree (f->decl);
7679
7680 mark_function_status (f);
7681 mark_eh_status (f->eh);
7682 mark_stmt_status (f->stmt);
7683 mark_expr_status (f->expr);
7684 mark_emit_status (f->emit);
7685 mark_varasm_status (f->varasm);
7686
7687 if (mark_machine_status)
7688 (*mark_machine_status) (f);
7689 if (mark_lang_status)
7690 (*mark_lang_status) (f);
7691
7692 if (f->original_arg_vector)
7693 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7694 if (f->original_decl_initial)
7695 ggc_mark_tree (f->original_decl_initial);
7696 if (f->outer)
7697 ggc_mark_struct_function (f->outer);
7698 }
7699
7700 /* Called once, at initialization, to initialize function.c. */
7701
7702 void
7703 init_function_once ()
7704 {
7705 ggc_add_root (&cfun, 1, sizeof cfun, maybe_mark_struct_function);
7706 ggc_add_root (&outer_function_chain, 1, sizeof outer_function_chain,
7707 maybe_mark_struct_function);
7708
7709 VARRAY_INT_INIT (prologue, 0, "prologue");
7710 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7711 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7712 }