target.h (globalize_decl_name): New.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
31
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "tree-pass.h"
65 #include "predict.h"
66 #include "vecprim.h"
67
68 #ifndef LOCAL_ALIGNMENT
69 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
70 #endif
71
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
75
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
85
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
100
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 life_analysis has run. */
104 int current_function_sp_is_unchanging;
105
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
110
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
116
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
119
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
123
124 /* The currently compiled function. */
125 struct function *cfun = 0;
126
127 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
128 static VEC(int,heap) *prologue;
129 static VEC(int,heap) *epilogue;
130
131 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
132 in this function. */
133 static VEC(int,heap) *sibcall_epilogue;
134 \f
135 /* In order to evaluate some expressions, such as function calls returning
136 structures in memory, we need to temporarily allocate stack locations.
137 We record each allocated temporary in the following structure.
138
139 Associated with each temporary slot is a nesting level. When we pop up
140 one level, all temporaries associated with the previous level are freed.
141 Normally, all temporaries are freed after the execution of the statement
142 in which they were created. However, if we are inside a ({...}) grouping,
143 the result may be in a temporary and hence must be preserved. If the
144 result could be in a temporary, we preserve it if we can determine which
145 one it is in. If we cannot determine which temporary may contain the
146 result, all temporaries are preserved. A temporary is preserved by
147 pretending it was allocated at the previous nesting level.
148
149 Automatic variables are also assigned temporary slots, at the nesting
150 level where they are defined. They are marked a "kept" so that
151 free_temp_slots will not free them. */
152
153 struct temp_slot GTY(())
154 {
155 /* Points to next temporary slot. */
156 struct temp_slot *next;
157 /* Points to previous temporary slot. */
158 struct temp_slot *prev;
159
160 /* The rtx to used to reference the slot. */
161 rtx slot;
162 /* The rtx used to represent the address if not the address of the
163 slot above. May be an EXPR_LIST if multiple addresses exist. */
164 rtx address;
165 /* The alignment (in bits) of the slot. */
166 unsigned int align;
167 /* The size, in units, of the slot. */
168 HOST_WIDE_INT size;
169 /* The type of the object in the slot, or zero if it doesn't correspond
170 to a type. We use this to determine whether a slot can be reused.
171 It can be reused if objects of the type of the new slot will always
172 conflict with objects of the type of the old slot. */
173 tree type;
174 /* Nonzero if this temporary is currently in use. */
175 char in_use;
176 /* Nonzero if this temporary has its address taken. */
177 char addr_taken;
178 /* Nesting level at which this slot is being used. */
179 int level;
180 /* Nonzero if this should survive a call to free_temp_slots. */
181 int keep;
182 /* The offset of the slot from the frame_pointer, including extra space
183 for alignment. This info is for combine_temp_slots. */
184 HOST_WIDE_INT base_offset;
185 /* The size of the slot, including extra space for alignment. This
186 info is for combine_temp_slots. */
187 HOST_WIDE_INT full_size;
188 };
189 \f
190 /* Forward declarations. */
191
192 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
193 struct function *);
194 static struct temp_slot *find_temp_slot_from_address (rtx);
195 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196 static void pad_below (struct args_size *, enum machine_mode, tree);
197 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
198 static int all_blocks (tree, tree *);
199 static tree *get_block_vector (tree, int *);
200 extern tree debug_find_var_in_block_tree (tree, tree);
201 /* We always define `record_insns' even if it's not used so that we
202 can always export `prologue_epilogue_contains'. */
203 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
204 static int contains (rtx, VEC(int,heap) **);
205 #ifdef HAVE_return
206 static void emit_return_into_block (basic_block);
207 #endif
208 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
209 static rtx keep_stack_depressed (rtx);
210 #endif
211 static void prepare_function_start (tree);
212 static void do_clobber_return_reg (rtx, void *);
213 static void do_use_return_reg (rtx, void *);
214 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
215 \f
216 /* Pointer to chain of `struct function' for containing functions. */
217 struct function *outer_function_chain;
218
219 /* Given a function decl for a containing function,
220 return the `struct function' for it. */
221
222 struct function *
223 find_function_data (tree decl)
224 {
225 struct function *p;
226
227 for (p = outer_function_chain; p; p = p->outer)
228 if (p->decl == decl)
229 return p;
230
231 gcc_unreachable ();
232 }
233
234 /* Save the current context for compilation of a nested function.
235 This is called from language-specific code. The caller should use
236 the enter_nested langhook to save any language-specific state,
237 since this function knows only about language-independent
238 variables. */
239
240 void
241 push_function_context_to (tree context ATTRIBUTE_UNUSED)
242 {
243 struct function *p;
244
245 if (cfun == 0)
246 init_dummy_function_start ();
247 p = cfun;
248
249 p->outer = outer_function_chain;
250 outer_function_chain = p;
251
252 lang_hooks.function.enter_nested (p);
253
254 cfun = 0;
255 }
256
257 void
258 push_function_context (void)
259 {
260 push_function_context_to (current_function_decl);
261 }
262
263 /* Restore the last saved context, at the end of a nested function.
264 This function is called from language-specific code. */
265
266 void
267 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
268 {
269 struct function *p = outer_function_chain;
270
271 cfun = p;
272 outer_function_chain = p->outer;
273
274 current_function_decl = p->decl;
275
276 lang_hooks.function.leave_nested (p);
277
278 /* Reset variables that have known state during rtx generation. */
279 virtuals_instantiated = 0;
280 generating_concat_p = 1;
281 }
282
283 void
284 pop_function_context (void)
285 {
286 pop_function_context_from (current_function_decl);
287 }
288
289 /* Clear out all parts of the state in F that can safely be discarded
290 after the function has been parsed, but not compiled, to let
291 garbage collection reclaim the memory. */
292
293 void
294 free_after_parsing (struct function *f)
295 {
296 /* f->expr->forced_labels is used by code generation. */
297 /* f->emit->regno_reg_rtx is used by code generation. */
298 /* f->varasm is used by code generation. */
299 /* f->eh->eh_return_stub_label is used by code generation. */
300
301 lang_hooks.function.final (f);
302 }
303
304 /* Clear out all parts of the state in F that can safely be discarded
305 after the function has been compiled, to let garbage collection
306 reclaim the memory. */
307
308 void
309 free_after_compilation (struct function *f)
310 {
311 VEC_free (int, heap, prologue);
312 VEC_free (int, heap, epilogue);
313 VEC_free (int, heap, sibcall_epilogue);
314
315 f->eh = NULL;
316 f->expr = NULL;
317 f->emit = NULL;
318 f->varasm = NULL;
319 f->machine = NULL;
320 f->cfg = NULL;
321
322 f->x_avail_temp_slots = NULL;
323 f->x_used_temp_slots = NULL;
324 f->arg_offset_rtx = NULL;
325 f->return_rtx = NULL;
326 f->internal_arg_pointer = NULL;
327 f->x_nonlocal_goto_handler_labels = NULL;
328 f->x_return_label = NULL;
329 f->x_naked_return_label = NULL;
330 f->x_stack_slot_list = NULL;
331 f->x_stack_check_probe_note = NULL;
332 f->x_arg_pointer_save_area = NULL;
333 f->x_parm_birth_insn = NULL;
334 f->epilogue_delay_list = NULL;
335 }
336 \f
337 /* Allocate fixed slots in the stack frame of the current function. */
338
339 /* Return size needed for stack frame based on slots so far allocated in
340 function F.
341 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
342 the caller may have to do that. */
343
344 static HOST_WIDE_INT
345 get_func_frame_size (struct function *f)
346 {
347 if (FRAME_GROWS_DOWNWARD)
348 return -f->x_frame_offset;
349 else
350 return f->x_frame_offset;
351 }
352
353 /* Return size needed for stack frame based on slots so far allocated.
354 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
355 the caller may have to do that. */
356
357 HOST_WIDE_INT
358 get_frame_size (void)
359 {
360 return get_func_frame_size (cfun);
361 }
362
363 /* Issue an error message and return TRUE if frame OFFSET overflows in
364 the signed target pointer arithmetics for function FUNC. Otherwise
365 return FALSE. */
366
367 bool
368 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
369 {
370 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
371
372 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
373 /* Leave room for the fixed part of the frame. */
374 - 64 * UNITS_PER_WORD)
375 {
376 error ("%Jtotal size of local objects too large", func);
377 return TRUE;
378 }
379
380 return FALSE;
381 }
382
383 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
384 with machine mode MODE.
385
386 ALIGN controls the amount of alignment for the address of the slot:
387 0 means according to MODE,
388 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
389 -2 means use BITS_PER_UNIT,
390 positive specifies alignment boundary in bits.
391
392 We do not round to stack_boundary here.
393
394 FUNCTION specifies the function to allocate in. */
395
396 static rtx
397 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
398 struct function *function)
399 {
400 rtx x, addr;
401 int bigend_correction = 0;
402 unsigned int alignment;
403 int frame_off, frame_alignment, frame_phase;
404
405 if (align == 0)
406 {
407 tree type;
408
409 if (mode == BLKmode)
410 alignment = BIGGEST_ALIGNMENT;
411 else
412 alignment = GET_MODE_ALIGNMENT (mode);
413
414 /* Allow the target to (possibly) increase the alignment of this
415 stack slot. */
416 type = lang_hooks.types.type_for_mode (mode, 0);
417 if (type)
418 alignment = LOCAL_ALIGNMENT (type, alignment);
419
420 alignment /= BITS_PER_UNIT;
421 }
422 else if (align == -1)
423 {
424 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
425 size = CEIL_ROUND (size, alignment);
426 }
427 else if (align == -2)
428 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
429 else
430 alignment = align / BITS_PER_UNIT;
431
432 if (FRAME_GROWS_DOWNWARD)
433 function->x_frame_offset -= size;
434
435 /* Ignore alignment we can't do with expected alignment of the boundary. */
436 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
437 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
438
439 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
440 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
441
442 /* Calculate how many bytes the start of local variables is off from
443 stack alignment. */
444 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
445 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
446 frame_phase = frame_off ? frame_alignment - frame_off : 0;
447
448 /* Round the frame offset to the specified alignment. The default is
449 to always honor requests to align the stack but a port may choose to
450 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
451 if (STACK_ALIGNMENT_NEEDED
452 || mode != BLKmode
453 || size != 0)
454 {
455 /* We must be careful here, since FRAME_OFFSET might be negative and
456 division with a negative dividend isn't as well defined as we might
457 like. So we instead assume that ALIGNMENT is a power of two and
458 use logical operations which are unambiguous. */
459 if (FRAME_GROWS_DOWNWARD)
460 function->x_frame_offset
461 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
462 (unsigned HOST_WIDE_INT) alignment)
463 + frame_phase);
464 else
465 function->x_frame_offset
466 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
467 (unsigned HOST_WIDE_INT) alignment)
468 + frame_phase);
469 }
470
471 /* On a big-endian machine, if we are allocating more space than we will use,
472 use the least significant bytes of those that are allocated. */
473 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
474 bigend_correction = size - GET_MODE_SIZE (mode);
475
476 /* If we have already instantiated virtual registers, return the actual
477 address relative to the frame pointer. */
478 if (function == cfun && virtuals_instantiated)
479 addr = plus_constant (frame_pointer_rtx,
480 trunc_int_for_mode
481 (frame_offset + bigend_correction
482 + STARTING_FRAME_OFFSET, Pmode));
483 else
484 addr = plus_constant (virtual_stack_vars_rtx,
485 trunc_int_for_mode
486 (function->x_frame_offset + bigend_correction,
487 Pmode));
488
489 if (!FRAME_GROWS_DOWNWARD)
490 function->x_frame_offset += size;
491
492 x = gen_rtx_MEM (mode, addr);
493 MEM_NOTRAP_P (x) = 1;
494
495 function->x_stack_slot_list
496 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
497
498 if (frame_offset_overflow (function->x_frame_offset, function->decl))
499 function->x_frame_offset = 0;
500
501 return x;
502 }
503
504 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
505 current function. */
506
507 rtx
508 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
509 {
510 return assign_stack_local_1 (mode, size, align, cfun);
511 }
512
513 \f
514 /* Removes temporary slot TEMP from LIST. */
515
516 static void
517 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
518 {
519 if (temp->next)
520 temp->next->prev = temp->prev;
521 if (temp->prev)
522 temp->prev->next = temp->next;
523 else
524 *list = temp->next;
525
526 temp->prev = temp->next = NULL;
527 }
528
529 /* Inserts temporary slot TEMP to LIST. */
530
531 static void
532 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
533 {
534 temp->next = *list;
535 if (*list)
536 (*list)->prev = temp;
537 temp->prev = NULL;
538 *list = temp;
539 }
540
541 /* Returns the list of used temp slots at LEVEL. */
542
543 static struct temp_slot **
544 temp_slots_at_level (int level)
545 {
546 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
547 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
548
549 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
550 }
551
552 /* Returns the maximal temporary slot level. */
553
554 static int
555 max_slot_level (void)
556 {
557 if (!used_temp_slots)
558 return -1;
559
560 return VEC_length (temp_slot_p, used_temp_slots) - 1;
561 }
562
563 /* Moves temporary slot TEMP to LEVEL. */
564
565 static void
566 move_slot_to_level (struct temp_slot *temp, int level)
567 {
568 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
569 insert_slot_to_list (temp, temp_slots_at_level (level));
570 temp->level = level;
571 }
572
573 /* Make temporary slot TEMP available. */
574
575 static void
576 make_slot_available (struct temp_slot *temp)
577 {
578 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
579 insert_slot_to_list (temp, &avail_temp_slots);
580 temp->in_use = 0;
581 temp->level = -1;
582 }
583 \f
584 /* Allocate a temporary stack slot and record it for possible later
585 reuse.
586
587 MODE is the machine mode to be given to the returned rtx.
588
589 SIZE is the size in units of the space required. We do no rounding here
590 since assign_stack_local will do any required rounding.
591
592 KEEP is 1 if this slot is to be retained after a call to
593 free_temp_slots. Automatic variables for a block are allocated
594 with this flag. KEEP values of 2 or 3 were needed respectively
595 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
596 or for SAVE_EXPRs, but they are now unused.
597
598 TYPE is the type that will be used for the stack slot. */
599
600 rtx
601 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
602 int keep, tree type)
603 {
604 unsigned int align;
605 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
606 rtx slot;
607
608 /* If SIZE is -1 it means that somebody tried to allocate a temporary
609 of a variable size. */
610 gcc_assert (size != -1);
611
612 /* These are now unused. */
613 gcc_assert (keep <= 1);
614
615 if (mode == BLKmode)
616 align = BIGGEST_ALIGNMENT;
617 else
618 align = GET_MODE_ALIGNMENT (mode);
619
620 if (! type)
621 type = lang_hooks.types.type_for_mode (mode, 0);
622
623 if (type)
624 align = LOCAL_ALIGNMENT (type, align);
625
626 /* Try to find an available, already-allocated temporary of the proper
627 mode which meets the size and alignment requirements. Choose the
628 smallest one with the closest alignment.
629
630 If assign_stack_temp is called outside of the tree->rtl expansion,
631 we cannot reuse the stack slots (that may still refer to
632 VIRTUAL_STACK_VARS_REGNUM). */
633 if (!virtuals_instantiated)
634 {
635 for (p = avail_temp_slots; p; p = p->next)
636 {
637 if (p->align >= align && p->size >= size
638 && GET_MODE (p->slot) == mode
639 && objects_must_conflict_p (p->type, type)
640 && (best_p == 0 || best_p->size > p->size
641 || (best_p->size == p->size && best_p->align > p->align)))
642 {
643 if (p->align == align && p->size == size)
644 {
645 selected = p;
646 cut_slot_from_list (selected, &avail_temp_slots);
647 best_p = 0;
648 break;
649 }
650 best_p = p;
651 }
652 }
653 }
654
655 /* Make our best, if any, the one to use. */
656 if (best_p)
657 {
658 selected = best_p;
659 cut_slot_from_list (selected, &avail_temp_slots);
660
661 /* If there are enough aligned bytes left over, make them into a new
662 temp_slot so that the extra bytes don't get wasted. Do this only
663 for BLKmode slots, so that we can be sure of the alignment. */
664 if (GET_MODE (best_p->slot) == BLKmode)
665 {
666 int alignment = best_p->align / BITS_PER_UNIT;
667 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
668
669 if (best_p->size - rounded_size >= alignment)
670 {
671 p = ggc_alloc (sizeof (struct temp_slot));
672 p->in_use = p->addr_taken = 0;
673 p->size = best_p->size - rounded_size;
674 p->base_offset = best_p->base_offset + rounded_size;
675 p->full_size = best_p->full_size - rounded_size;
676 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
677 p->align = best_p->align;
678 p->address = 0;
679 p->type = best_p->type;
680 insert_slot_to_list (p, &avail_temp_slots);
681
682 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
683 stack_slot_list);
684
685 best_p->size = rounded_size;
686 best_p->full_size = rounded_size;
687 }
688 }
689 }
690
691 /* If we still didn't find one, make a new temporary. */
692 if (selected == 0)
693 {
694 HOST_WIDE_INT frame_offset_old = frame_offset;
695
696 p = ggc_alloc (sizeof (struct temp_slot));
697
698 /* We are passing an explicit alignment request to assign_stack_local.
699 One side effect of that is assign_stack_local will not round SIZE
700 to ensure the frame offset remains suitably aligned.
701
702 So for requests which depended on the rounding of SIZE, we go ahead
703 and round it now. We also make sure ALIGNMENT is at least
704 BIGGEST_ALIGNMENT. */
705 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
706 p->slot = assign_stack_local (mode,
707 (mode == BLKmode
708 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
709 : size),
710 align);
711
712 p->align = align;
713
714 /* The following slot size computation is necessary because we don't
715 know the actual size of the temporary slot until assign_stack_local
716 has performed all the frame alignment and size rounding for the
717 requested temporary. Note that extra space added for alignment
718 can be either above or below this stack slot depending on which
719 way the frame grows. We include the extra space if and only if it
720 is above this slot. */
721 if (FRAME_GROWS_DOWNWARD)
722 p->size = frame_offset_old - frame_offset;
723 else
724 p->size = size;
725
726 /* Now define the fields used by combine_temp_slots. */
727 if (FRAME_GROWS_DOWNWARD)
728 {
729 p->base_offset = frame_offset;
730 p->full_size = frame_offset_old - frame_offset;
731 }
732 else
733 {
734 p->base_offset = frame_offset_old;
735 p->full_size = frame_offset - frame_offset_old;
736 }
737 p->address = 0;
738
739 selected = p;
740 }
741
742 p = selected;
743 p->in_use = 1;
744 p->addr_taken = 0;
745 p->type = type;
746 p->level = temp_slot_level;
747 p->keep = keep;
748
749 pp = temp_slots_at_level (p->level);
750 insert_slot_to_list (p, pp);
751
752 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
753 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
754 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
755
756 /* If we know the alias set for the memory that will be used, use
757 it. If there's no TYPE, then we don't know anything about the
758 alias set for the memory. */
759 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
760 set_mem_align (slot, align);
761
762 /* If a type is specified, set the relevant flags. */
763 if (type != 0)
764 {
765 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
766 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
767 }
768 MEM_NOTRAP_P (slot) = 1;
769
770 return slot;
771 }
772
773 /* Allocate a temporary stack slot and record it for possible later
774 reuse. First three arguments are same as in preceding function. */
775
776 rtx
777 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
778 {
779 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
780 }
781 \f
782 /* Assign a temporary.
783 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
784 and so that should be used in error messages. In either case, we
785 allocate of the given type.
786 KEEP is as for assign_stack_temp.
787 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
788 it is 0 if a register is OK.
789 DONT_PROMOTE is 1 if we should not promote values in register
790 to wider modes. */
791
792 rtx
793 assign_temp (tree type_or_decl, int keep, int memory_required,
794 int dont_promote ATTRIBUTE_UNUSED)
795 {
796 tree type, decl;
797 enum machine_mode mode;
798 #ifdef PROMOTE_MODE
799 int unsignedp;
800 #endif
801
802 if (DECL_P (type_or_decl))
803 decl = type_or_decl, type = TREE_TYPE (decl);
804 else
805 decl = NULL, type = type_or_decl;
806
807 mode = TYPE_MODE (type);
808 #ifdef PROMOTE_MODE
809 unsignedp = TYPE_UNSIGNED (type);
810 #endif
811
812 if (mode == BLKmode || memory_required)
813 {
814 HOST_WIDE_INT size = int_size_in_bytes (type);
815 rtx tmp;
816
817 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
818 problems with allocating the stack space. */
819 if (size == 0)
820 size = 1;
821
822 /* Unfortunately, we don't yet know how to allocate variable-sized
823 temporaries. However, sometimes we can find a fixed upper limit on
824 the size, so try that instead. */
825 else if (size == -1)
826 size = max_int_size_in_bytes (type);
827
828 /* The size of the temporary may be too large to fit into an integer. */
829 /* ??? Not sure this should happen except for user silliness, so limit
830 this to things that aren't compiler-generated temporaries. The
831 rest of the time we'll die in assign_stack_temp_for_type. */
832 if (decl && size == -1
833 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
834 {
835 error ("size of variable %q+D is too large", decl);
836 size = 1;
837 }
838
839 tmp = assign_stack_temp_for_type (mode, size, keep, type);
840 return tmp;
841 }
842
843 #ifdef PROMOTE_MODE
844 if (! dont_promote)
845 mode = promote_mode (type, mode, &unsignedp, 0);
846 #endif
847
848 return gen_reg_rtx (mode);
849 }
850 \f
851 /* Combine temporary stack slots which are adjacent on the stack.
852
853 This allows for better use of already allocated stack space. This is only
854 done for BLKmode slots because we can be sure that we won't have alignment
855 problems in this case. */
856
857 static void
858 combine_temp_slots (void)
859 {
860 struct temp_slot *p, *q, *next, *next_q;
861 int num_slots;
862
863 /* We can't combine slots, because the information about which slot
864 is in which alias set will be lost. */
865 if (flag_strict_aliasing)
866 return;
867
868 /* If there are a lot of temp slots, don't do anything unless
869 high levels of optimization. */
870 if (! flag_expensive_optimizations)
871 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
872 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
873 return;
874
875 for (p = avail_temp_slots; p; p = next)
876 {
877 int delete_p = 0;
878
879 next = p->next;
880
881 if (GET_MODE (p->slot) != BLKmode)
882 continue;
883
884 for (q = p->next; q; q = next_q)
885 {
886 int delete_q = 0;
887
888 next_q = q->next;
889
890 if (GET_MODE (q->slot) != BLKmode)
891 continue;
892
893 if (p->base_offset + p->full_size == q->base_offset)
894 {
895 /* Q comes after P; combine Q into P. */
896 p->size += q->size;
897 p->full_size += q->full_size;
898 delete_q = 1;
899 }
900 else if (q->base_offset + q->full_size == p->base_offset)
901 {
902 /* P comes after Q; combine P into Q. */
903 q->size += p->size;
904 q->full_size += p->full_size;
905 delete_p = 1;
906 break;
907 }
908 if (delete_q)
909 cut_slot_from_list (q, &avail_temp_slots);
910 }
911
912 /* Either delete P or advance past it. */
913 if (delete_p)
914 cut_slot_from_list (p, &avail_temp_slots);
915 }
916 }
917 \f
918 /* Find the temp slot corresponding to the object at address X. */
919
920 static struct temp_slot *
921 find_temp_slot_from_address (rtx x)
922 {
923 struct temp_slot *p;
924 rtx next;
925 int i;
926
927 for (i = max_slot_level (); i >= 0; i--)
928 for (p = *temp_slots_at_level (i); p; p = p->next)
929 {
930 if (XEXP (p->slot, 0) == x
931 || p->address == x
932 || (GET_CODE (x) == PLUS
933 && XEXP (x, 0) == virtual_stack_vars_rtx
934 && GET_CODE (XEXP (x, 1)) == CONST_INT
935 && INTVAL (XEXP (x, 1)) >= p->base_offset
936 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
937 return p;
938
939 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
940 for (next = p->address; next; next = XEXP (next, 1))
941 if (XEXP (next, 0) == x)
942 return p;
943 }
944
945 /* If we have a sum involving a register, see if it points to a temp
946 slot. */
947 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
948 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
949 return p;
950 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
951 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
952 return p;
953
954 return 0;
955 }
956
957 /* Indicate that NEW is an alternate way of referring to the temp slot
958 that previously was known by OLD. */
959
960 void
961 update_temp_slot_address (rtx old, rtx new)
962 {
963 struct temp_slot *p;
964
965 if (rtx_equal_p (old, new))
966 return;
967
968 p = find_temp_slot_from_address (old);
969
970 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
971 is a register, see if one operand of the PLUS is a temporary
972 location. If so, NEW points into it. Otherwise, if both OLD and
973 NEW are a PLUS and if there is a register in common between them.
974 If so, try a recursive call on those values. */
975 if (p == 0)
976 {
977 if (GET_CODE (old) != PLUS)
978 return;
979
980 if (REG_P (new))
981 {
982 update_temp_slot_address (XEXP (old, 0), new);
983 update_temp_slot_address (XEXP (old, 1), new);
984 return;
985 }
986 else if (GET_CODE (new) != PLUS)
987 return;
988
989 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
990 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
991 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
992 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
993 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
994 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
995 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
996 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
997
998 return;
999 }
1000
1001 /* Otherwise add an alias for the temp's address. */
1002 else if (p->address == 0)
1003 p->address = new;
1004 else
1005 {
1006 if (GET_CODE (p->address) != EXPR_LIST)
1007 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1008
1009 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1010 }
1011 }
1012
1013 /* If X could be a reference to a temporary slot, mark the fact that its
1014 address was taken. */
1015
1016 void
1017 mark_temp_addr_taken (rtx x)
1018 {
1019 struct temp_slot *p;
1020
1021 if (x == 0)
1022 return;
1023
1024 /* If X is not in memory or is at a constant address, it cannot be in
1025 a temporary slot. */
1026 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1027 return;
1028
1029 p = find_temp_slot_from_address (XEXP (x, 0));
1030 if (p != 0)
1031 p->addr_taken = 1;
1032 }
1033
1034 /* If X could be a reference to a temporary slot, mark that slot as
1035 belonging to the to one level higher than the current level. If X
1036 matched one of our slots, just mark that one. Otherwise, we can't
1037 easily predict which it is, so upgrade all of them. Kept slots
1038 need not be touched.
1039
1040 This is called when an ({...}) construct occurs and a statement
1041 returns a value in memory. */
1042
1043 void
1044 preserve_temp_slots (rtx x)
1045 {
1046 struct temp_slot *p = 0, *next;
1047
1048 /* If there is no result, we still might have some objects whose address
1049 were taken, so we need to make sure they stay around. */
1050 if (x == 0)
1051 {
1052 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1053 {
1054 next = p->next;
1055
1056 if (p->addr_taken)
1057 move_slot_to_level (p, temp_slot_level - 1);
1058 }
1059
1060 return;
1061 }
1062
1063 /* If X is a register that is being used as a pointer, see if we have
1064 a temporary slot we know it points to. To be consistent with
1065 the code below, we really should preserve all non-kept slots
1066 if we can't find a match, but that seems to be much too costly. */
1067 if (REG_P (x) && REG_POINTER (x))
1068 p = find_temp_slot_from_address (x);
1069
1070 /* If X is not in memory or is at a constant address, it cannot be in
1071 a temporary slot, but it can contain something whose address was
1072 taken. */
1073 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1074 {
1075 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1076 {
1077 next = p->next;
1078
1079 if (p->addr_taken)
1080 move_slot_to_level (p, temp_slot_level - 1);
1081 }
1082
1083 return;
1084 }
1085
1086 /* First see if we can find a match. */
1087 if (p == 0)
1088 p = find_temp_slot_from_address (XEXP (x, 0));
1089
1090 if (p != 0)
1091 {
1092 /* Move everything at our level whose address was taken to our new
1093 level in case we used its address. */
1094 struct temp_slot *q;
1095
1096 if (p->level == temp_slot_level)
1097 {
1098 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1099 {
1100 next = q->next;
1101
1102 if (p != q && q->addr_taken)
1103 move_slot_to_level (q, temp_slot_level - 1);
1104 }
1105
1106 move_slot_to_level (p, temp_slot_level - 1);
1107 p->addr_taken = 0;
1108 }
1109 return;
1110 }
1111
1112 /* Otherwise, preserve all non-kept slots at this level. */
1113 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1114 {
1115 next = p->next;
1116
1117 if (!p->keep)
1118 move_slot_to_level (p, temp_slot_level - 1);
1119 }
1120 }
1121
1122 /* Free all temporaries used so far. This is normally called at the
1123 end of generating code for a statement. */
1124
1125 void
1126 free_temp_slots (void)
1127 {
1128 struct temp_slot *p, *next;
1129
1130 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1131 {
1132 next = p->next;
1133
1134 if (!p->keep)
1135 make_slot_available (p);
1136 }
1137
1138 combine_temp_slots ();
1139 }
1140
1141 /* Push deeper into the nesting level for stack temporaries. */
1142
1143 void
1144 push_temp_slots (void)
1145 {
1146 temp_slot_level++;
1147 }
1148
1149 /* Pop a temporary nesting level. All slots in use in the current level
1150 are freed. */
1151
1152 void
1153 pop_temp_slots (void)
1154 {
1155 struct temp_slot *p, *next;
1156
1157 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1158 {
1159 next = p->next;
1160 make_slot_available (p);
1161 }
1162
1163 combine_temp_slots ();
1164
1165 temp_slot_level--;
1166 }
1167
1168 /* Initialize temporary slots. */
1169
1170 void
1171 init_temp_slots (void)
1172 {
1173 /* We have not allocated any temporaries yet. */
1174 avail_temp_slots = 0;
1175 used_temp_slots = 0;
1176 temp_slot_level = 0;
1177 }
1178 \f
1179 /* These routines are responsible for converting virtual register references
1180 to the actual hard register references once RTL generation is complete.
1181
1182 The following four variables are used for communication between the
1183 routines. They contain the offsets of the virtual registers from their
1184 respective hard registers. */
1185
1186 static int in_arg_offset;
1187 static int var_offset;
1188 static int dynamic_offset;
1189 static int out_arg_offset;
1190 static int cfa_offset;
1191
1192 /* In most machines, the stack pointer register is equivalent to the bottom
1193 of the stack. */
1194
1195 #ifndef STACK_POINTER_OFFSET
1196 #define STACK_POINTER_OFFSET 0
1197 #endif
1198
1199 /* If not defined, pick an appropriate default for the offset of dynamically
1200 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1201 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1202
1203 #ifndef STACK_DYNAMIC_OFFSET
1204
1205 /* The bottom of the stack points to the actual arguments. If
1206 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1207 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1208 stack space for register parameters is not pushed by the caller, but
1209 rather part of the fixed stack areas and hence not included in
1210 `current_function_outgoing_args_size'. Nevertheless, we must allow
1211 for it when allocating stack dynamic objects. */
1212
1213 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1214 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1215 ((ACCUMULATE_OUTGOING_ARGS \
1216 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1217 + (STACK_POINTER_OFFSET)) \
1218
1219 #else
1220 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1221 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1222 + (STACK_POINTER_OFFSET))
1223 #endif
1224 #endif
1225
1226 \f
1227 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1228 is a virtual register, return the equivalent hard register and set the
1229 offset indirectly through the pointer. Otherwise, return 0. */
1230
1231 static rtx
1232 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1233 {
1234 rtx new;
1235 HOST_WIDE_INT offset;
1236
1237 if (x == virtual_incoming_args_rtx)
1238 new = arg_pointer_rtx, offset = in_arg_offset;
1239 else if (x == virtual_stack_vars_rtx)
1240 new = frame_pointer_rtx, offset = var_offset;
1241 else if (x == virtual_stack_dynamic_rtx)
1242 new = stack_pointer_rtx, offset = dynamic_offset;
1243 else if (x == virtual_outgoing_args_rtx)
1244 new = stack_pointer_rtx, offset = out_arg_offset;
1245 else if (x == virtual_cfa_rtx)
1246 {
1247 #ifdef FRAME_POINTER_CFA_OFFSET
1248 new = frame_pointer_rtx;
1249 #else
1250 new = arg_pointer_rtx;
1251 #endif
1252 offset = cfa_offset;
1253 }
1254 else
1255 return NULL_RTX;
1256
1257 *poffset = offset;
1258 return new;
1259 }
1260
1261 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1262 Instantiate any virtual registers present inside of *LOC. The expression
1263 is simplified, as much as possible, but is not to be considered "valid"
1264 in any sense implied by the target. If any change is made, set CHANGED
1265 to true. */
1266
1267 static int
1268 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1269 {
1270 HOST_WIDE_INT offset;
1271 bool *changed = (bool *) data;
1272 rtx x, new;
1273
1274 x = *loc;
1275 if (x == 0)
1276 return 0;
1277
1278 switch (GET_CODE (x))
1279 {
1280 case REG:
1281 new = instantiate_new_reg (x, &offset);
1282 if (new)
1283 {
1284 *loc = plus_constant (new, offset);
1285 if (changed)
1286 *changed = true;
1287 }
1288 return -1;
1289
1290 case PLUS:
1291 new = instantiate_new_reg (XEXP (x, 0), &offset);
1292 if (new)
1293 {
1294 new = plus_constant (new, offset);
1295 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1296 if (changed)
1297 *changed = true;
1298 return -1;
1299 }
1300
1301 /* FIXME -- from old code */
1302 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1303 we can commute the PLUS and SUBREG because pointers into the
1304 frame are well-behaved. */
1305 break;
1306
1307 default:
1308 break;
1309 }
1310
1311 return 0;
1312 }
1313
1314 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1315 matches the predicate for insn CODE operand OPERAND. */
1316
1317 static int
1318 safe_insn_predicate (int code, int operand, rtx x)
1319 {
1320 const struct insn_operand_data *op_data;
1321
1322 if (code < 0)
1323 return true;
1324
1325 op_data = &insn_data[code].operand[operand];
1326 if (op_data->predicate == NULL)
1327 return true;
1328
1329 return op_data->predicate (x, op_data->mode);
1330 }
1331
1332 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1333 registers present inside of insn. The result will be a valid insn. */
1334
1335 static void
1336 instantiate_virtual_regs_in_insn (rtx insn)
1337 {
1338 HOST_WIDE_INT offset;
1339 int insn_code, i;
1340 bool any_change = false;
1341 rtx set, new, x, seq;
1342
1343 /* There are some special cases to be handled first. */
1344 set = single_set (insn);
1345 if (set)
1346 {
1347 /* We're allowed to assign to a virtual register. This is interpreted
1348 to mean that the underlying register gets assigned the inverse
1349 transformation. This is used, for example, in the handling of
1350 non-local gotos. */
1351 new = instantiate_new_reg (SET_DEST (set), &offset);
1352 if (new)
1353 {
1354 start_sequence ();
1355
1356 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1357 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1358 GEN_INT (-offset));
1359 x = force_operand (x, new);
1360 if (x != new)
1361 emit_move_insn (new, x);
1362
1363 seq = get_insns ();
1364 end_sequence ();
1365
1366 emit_insn_before (seq, insn);
1367 delete_insn (insn);
1368 return;
1369 }
1370
1371 /* Handle a straight copy from a virtual register by generating a
1372 new add insn. The difference between this and falling through
1373 to the generic case is avoiding a new pseudo and eliminating a
1374 move insn in the initial rtl stream. */
1375 new = instantiate_new_reg (SET_SRC (set), &offset);
1376 if (new && offset != 0
1377 && REG_P (SET_DEST (set))
1378 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1379 {
1380 start_sequence ();
1381
1382 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1383 new, GEN_INT (offset), SET_DEST (set),
1384 1, OPTAB_LIB_WIDEN);
1385 if (x != SET_DEST (set))
1386 emit_move_insn (SET_DEST (set), x);
1387
1388 seq = get_insns ();
1389 end_sequence ();
1390
1391 emit_insn_before (seq, insn);
1392 delete_insn (insn);
1393 return;
1394 }
1395
1396 extract_insn (insn);
1397 insn_code = INSN_CODE (insn);
1398
1399 /* Handle a plus involving a virtual register by determining if the
1400 operands remain valid if they're modified in place. */
1401 if (GET_CODE (SET_SRC (set)) == PLUS
1402 && recog_data.n_operands >= 3
1403 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1404 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1405 && GET_CODE (recog_data.operand[2]) == CONST_INT
1406 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1407 {
1408 offset += INTVAL (recog_data.operand[2]);
1409
1410 /* If the sum is zero, then replace with a plain move. */
1411 if (offset == 0
1412 && REG_P (SET_DEST (set))
1413 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1414 {
1415 start_sequence ();
1416 emit_move_insn (SET_DEST (set), new);
1417 seq = get_insns ();
1418 end_sequence ();
1419
1420 emit_insn_before (seq, insn);
1421 delete_insn (insn);
1422 return;
1423 }
1424
1425 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1426
1427 /* Using validate_change and apply_change_group here leaves
1428 recog_data in an invalid state. Since we know exactly what
1429 we want to check, do those two by hand. */
1430 if (safe_insn_predicate (insn_code, 1, new)
1431 && safe_insn_predicate (insn_code, 2, x))
1432 {
1433 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1434 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1435 any_change = true;
1436
1437 /* Fall through into the regular operand fixup loop in
1438 order to take care of operands other than 1 and 2. */
1439 }
1440 }
1441 }
1442 else
1443 {
1444 extract_insn (insn);
1445 insn_code = INSN_CODE (insn);
1446 }
1447
1448 /* In the general case, we expect virtual registers to appear only in
1449 operands, and then only as either bare registers or inside memories. */
1450 for (i = 0; i < recog_data.n_operands; ++i)
1451 {
1452 x = recog_data.operand[i];
1453 switch (GET_CODE (x))
1454 {
1455 case MEM:
1456 {
1457 rtx addr = XEXP (x, 0);
1458 bool changed = false;
1459
1460 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1461 if (!changed)
1462 continue;
1463
1464 start_sequence ();
1465 x = replace_equiv_address (x, addr);
1466 seq = get_insns ();
1467 end_sequence ();
1468 if (seq)
1469 emit_insn_before (seq, insn);
1470 }
1471 break;
1472
1473 case REG:
1474 new = instantiate_new_reg (x, &offset);
1475 if (new == NULL)
1476 continue;
1477 if (offset == 0)
1478 x = new;
1479 else
1480 {
1481 start_sequence ();
1482
1483 /* Careful, special mode predicates may have stuff in
1484 insn_data[insn_code].operand[i].mode that isn't useful
1485 to us for computing a new value. */
1486 /* ??? Recognize address_operand and/or "p" constraints
1487 to see if (plus new offset) is a valid before we put
1488 this through expand_simple_binop. */
1489 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1490 GEN_INT (offset), NULL_RTX,
1491 1, OPTAB_LIB_WIDEN);
1492 seq = get_insns ();
1493 end_sequence ();
1494 emit_insn_before (seq, insn);
1495 }
1496 break;
1497
1498 case SUBREG:
1499 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1500 if (new == NULL)
1501 continue;
1502 if (offset != 0)
1503 {
1504 start_sequence ();
1505 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1506 GEN_INT (offset), NULL_RTX,
1507 1, OPTAB_LIB_WIDEN);
1508 seq = get_insns ();
1509 end_sequence ();
1510 emit_insn_before (seq, insn);
1511 }
1512 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1513 GET_MODE (new), SUBREG_BYTE (x));
1514 break;
1515
1516 default:
1517 continue;
1518 }
1519
1520 /* At this point, X contains the new value for the operand.
1521 Validate the new value vs the insn predicate. Note that
1522 asm insns will have insn_code -1 here. */
1523 if (!safe_insn_predicate (insn_code, i, x))
1524 {
1525 start_sequence ();
1526 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1527 seq = get_insns ();
1528 end_sequence ();
1529 if (seq)
1530 emit_insn_before (seq, insn);
1531 }
1532
1533 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1534 any_change = true;
1535 }
1536
1537 if (any_change)
1538 {
1539 /* Propagate operand changes into the duplicates. */
1540 for (i = 0; i < recog_data.n_dups; ++i)
1541 *recog_data.dup_loc[i]
1542 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1543
1544 /* Force re-recognition of the instruction for validation. */
1545 INSN_CODE (insn) = -1;
1546 }
1547
1548 if (asm_noperands (PATTERN (insn)) >= 0)
1549 {
1550 if (!check_asm_operands (PATTERN (insn)))
1551 {
1552 error_for_asm (insn, "impossible constraint in %<asm%>");
1553 delete_insn (insn);
1554 }
1555 }
1556 else
1557 {
1558 if (recog_memoized (insn) < 0)
1559 fatal_insn_not_found (insn);
1560 }
1561 }
1562
1563 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1564 do any instantiation required. */
1565
1566 static void
1567 instantiate_decl (rtx x)
1568 {
1569 rtx addr;
1570
1571 if (x == 0)
1572 return;
1573
1574 /* If this is a CONCAT, recurse for the pieces. */
1575 if (GET_CODE (x) == CONCAT)
1576 {
1577 instantiate_decl (XEXP (x, 0));
1578 instantiate_decl (XEXP (x, 1));
1579 return;
1580 }
1581
1582 /* If this is not a MEM, no need to do anything. Similarly if the
1583 address is a constant or a register that is not a virtual register. */
1584 if (!MEM_P (x))
1585 return;
1586
1587 addr = XEXP (x, 0);
1588 if (CONSTANT_P (addr)
1589 || (REG_P (addr)
1590 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1591 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1592 return;
1593
1594 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1595 }
1596
1597 /* Helper for instantiate_decls called via walk_tree: Process all decls
1598 in the given DECL_VALUE_EXPR. */
1599
1600 static tree
1601 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1602 {
1603 tree t = *tp;
1604 if (! EXPR_P (t) && ! GIMPLE_STMT_P (t))
1605 {
1606 *walk_subtrees = 0;
1607 if (DECL_P (t) && DECL_RTL_SET_P (t))
1608 instantiate_decl (DECL_RTL (t));
1609 }
1610 return NULL;
1611 }
1612
1613 /* Subroutine of instantiate_decls: Process all decls in the given
1614 BLOCK node and all its subblocks. */
1615
1616 static void
1617 instantiate_decls_1 (tree let)
1618 {
1619 tree t;
1620
1621 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1622 {
1623 if (DECL_RTL_SET_P (t))
1624 instantiate_decl (DECL_RTL (t));
1625 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1626 {
1627 tree v = DECL_VALUE_EXPR (t);
1628 walk_tree (&v, instantiate_expr, NULL, NULL);
1629 }
1630 }
1631
1632 /* Process all subblocks. */
1633 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1634 instantiate_decls_1 (t);
1635 }
1636
1637 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1638 all virtual registers in their DECL_RTL's. */
1639
1640 static void
1641 instantiate_decls (tree fndecl)
1642 {
1643 tree decl;
1644
1645 /* Process all parameters of the function. */
1646 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1647 {
1648 instantiate_decl (DECL_RTL (decl));
1649 instantiate_decl (DECL_INCOMING_RTL (decl));
1650 if (DECL_HAS_VALUE_EXPR_P (decl))
1651 {
1652 tree v = DECL_VALUE_EXPR (decl);
1653 walk_tree (&v, instantiate_expr, NULL, NULL);
1654 }
1655 }
1656
1657 /* Now process all variables defined in the function or its subblocks. */
1658 instantiate_decls_1 (DECL_INITIAL (fndecl));
1659 }
1660
1661 /* Pass through the INSNS of function FNDECL and convert virtual register
1662 references to hard register references. */
1663
1664 static unsigned int
1665 instantiate_virtual_regs (void)
1666 {
1667 rtx insn;
1668
1669 /* Compute the offsets to use for this function. */
1670 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1671 var_offset = STARTING_FRAME_OFFSET;
1672 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1673 out_arg_offset = STACK_POINTER_OFFSET;
1674 #ifdef FRAME_POINTER_CFA_OFFSET
1675 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1676 #else
1677 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1678 #endif
1679
1680 /* Initialize recognition, indicating that volatile is OK. */
1681 init_recog ();
1682
1683 /* Scan through all the insns, instantiating every virtual register still
1684 present. */
1685 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1686 if (INSN_P (insn))
1687 {
1688 /* These patterns in the instruction stream can never be recognized.
1689 Fortunately, they shouldn't contain virtual registers either. */
1690 if (GET_CODE (PATTERN (insn)) == USE
1691 || GET_CODE (PATTERN (insn)) == CLOBBER
1692 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1693 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1694 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1695 continue;
1696
1697 instantiate_virtual_regs_in_insn (insn);
1698
1699 if (INSN_DELETED_P (insn))
1700 continue;
1701
1702 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1703
1704 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1705 if (GET_CODE (insn) == CALL_INSN)
1706 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1707 instantiate_virtual_regs_in_rtx, NULL);
1708 }
1709
1710 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1711 instantiate_decls (current_function_decl);
1712
1713 /* Indicate that, from now on, assign_stack_local should use
1714 frame_pointer_rtx. */
1715 virtuals_instantiated = 1;
1716 return 0;
1717 }
1718
1719 struct tree_opt_pass pass_instantiate_virtual_regs =
1720 {
1721 "vregs", /* name */
1722 NULL, /* gate */
1723 instantiate_virtual_regs, /* execute */
1724 NULL, /* sub */
1725 NULL, /* next */
1726 0, /* static_pass_number */
1727 0, /* tv_id */
1728 0, /* properties_required */
1729 0, /* properties_provided */
1730 0, /* properties_destroyed */
1731 0, /* todo_flags_start */
1732 TODO_dump_func, /* todo_flags_finish */
1733 0 /* letter */
1734 };
1735
1736 \f
1737 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1738 This means a type for which function calls must pass an address to the
1739 function or get an address back from the function.
1740 EXP may be a type node or an expression (whose type is tested). */
1741
1742 int
1743 aggregate_value_p (tree exp, tree fntype)
1744 {
1745 int i, regno, nregs;
1746 rtx reg;
1747
1748 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1749
1750 /* DECL node associated with FNTYPE when relevant, which we might need to
1751 check for by-invisible-reference returns, typically for CALL_EXPR input
1752 EXPressions. */
1753 tree fndecl = NULL_TREE;
1754
1755 if (fntype)
1756 switch (TREE_CODE (fntype))
1757 {
1758 case CALL_EXPR:
1759 fndecl = get_callee_fndecl (fntype);
1760 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1761 break;
1762 case FUNCTION_DECL:
1763 fndecl = fntype;
1764 fntype = TREE_TYPE (fndecl);
1765 break;
1766 case FUNCTION_TYPE:
1767 case METHOD_TYPE:
1768 break;
1769 case IDENTIFIER_NODE:
1770 fntype = 0;
1771 break;
1772 default:
1773 /* We don't expect other rtl types here. */
1774 gcc_unreachable ();
1775 }
1776
1777 if (TREE_CODE (type) == VOID_TYPE)
1778 return 0;
1779
1780 /* If the front end has decided that this needs to be passed by
1781 reference, do so. */
1782 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1783 && DECL_BY_REFERENCE (exp))
1784 return 1;
1785
1786 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1787 called function RESULT_DECL, meaning the function returns in memory by
1788 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1789 on the function type, which used to be the way to request such a return
1790 mechanism but might now be causing troubles at gimplification time if
1791 temporaries with the function type need to be created. */
1792 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1793 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1794 return 1;
1795
1796 if (targetm.calls.return_in_memory (type, fntype))
1797 return 1;
1798 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1799 and thus can't be returned in registers. */
1800 if (TREE_ADDRESSABLE (type))
1801 return 1;
1802 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1803 return 1;
1804 /* Make sure we have suitable call-clobbered regs to return
1805 the value in; if not, we must return it in memory. */
1806 reg = hard_function_value (type, 0, fntype, 0);
1807
1808 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1809 it is OK. */
1810 if (!REG_P (reg))
1811 return 0;
1812
1813 regno = REGNO (reg);
1814 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1815 for (i = 0; i < nregs; i++)
1816 if (! call_used_regs[regno + i])
1817 return 1;
1818 return 0;
1819 }
1820 \f
1821 /* Return true if we should assign DECL a pseudo register; false if it
1822 should live on the local stack. */
1823
1824 bool
1825 use_register_for_decl (tree decl)
1826 {
1827 /* Honor volatile. */
1828 if (TREE_SIDE_EFFECTS (decl))
1829 return false;
1830
1831 /* Honor addressability. */
1832 if (TREE_ADDRESSABLE (decl))
1833 return false;
1834
1835 /* Only register-like things go in registers. */
1836 if (DECL_MODE (decl) == BLKmode)
1837 return false;
1838
1839 /* If -ffloat-store specified, don't put explicit float variables
1840 into registers. */
1841 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1842 propagates values across these stores, and it probably shouldn't. */
1843 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1844 return false;
1845
1846 /* If we're not interested in tracking debugging information for
1847 this decl, then we can certainly put it in a register. */
1848 if (DECL_IGNORED_P (decl))
1849 return true;
1850
1851 return (optimize || DECL_REGISTER (decl));
1852 }
1853
1854 /* Return true if TYPE should be passed by invisible reference. */
1855
1856 bool
1857 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1858 tree type, bool named_arg)
1859 {
1860 if (type)
1861 {
1862 /* If this type contains non-trivial constructors, then it is
1863 forbidden for the middle-end to create any new copies. */
1864 if (TREE_ADDRESSABLE (type))
1865 return true;
1866
1867 /* GCC post 3.4 passes *all* variable sized types by reference. */
1868 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1869 return true;
1870 }
1871
1872 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1873 }
1874
1875 /* Return true if TYPE, which is passed by reference, should be callee
1876 copied instead of caller copied. */
1877
1878 bool
1879 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1880 tree type, bool named_arg)
1881 {
1882 if (type && TREE_ADDRESSABLE (type))
1883 return false;
1884 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1885 }
1886
1887 /* Structures to communicate between the subroutines of assign_parms.
1888 The first holds data persistent across all parameters, the second
1889 is cleared out for each parameter. */
1890
1891 struct assign_parm_data_all
1892 {
1893 CUMULATIVE_ARGS args_so_far;
1894 struct args_size stack_args_size;
1895 tree function_result_decl;
1896 tree orig_fnargs;
1897 rtx conversion_insns;
1898 HOST_WIDE_INT pretend_args_size;
1899 HOST_WIDE_INT extra_pretend_bytes;
1900 int reg_parm_stack_space;
1901 };
1902
1903 struct assign_parm_data_one
1904 {
1905 tree nominal_type;
1906 tree passed_type;
1907 rtx entry_parm;
1908 rtx stack_parm;
1909 enum machine_mode nominal_mode;
1910 enum machine_mode passed_mode;
1911 enum machine_mode promoted_mode;
1912 struct locate_and_pad_arg_data locate;
1913 int partial;
1914 BOOL_BITFIELD named_arg : 1;
1915 BOOL_BITFIELD passed_pointer : 1;
1916 BOOL_BITFIELD on_stack : 1;
1917 BOOL_BITFIELD loaded_in_reg : 1;
1918 };
1919
1920 /* A subroutine of assign_parms. Initialize ALL. */
1921
1922 static void
1923 assign_parms_initialize_all (struct assign_parm_data_all *all)
1924 {
1925 tree fntype;
1926
1927 memset (all, 0, sizeof (*all));
1928
1929 fntype = TREE_TYPE (current_function_decl);
1930
1931 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1932 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1933 #else
1934 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1935 current_function_decl, -1);
1936 #endif
1937
1938 #ifdef REG_PARM_STACK_SPACE
1939 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1940 #endif
1941 }
1942
1943 /* If ARGS contains entries with complex types, split the entry into two
1944 entries of the component type. Return a new list of substitutions are
1945 needed, else the old list. */
1946
1947 static tree
1948 split_complex_args (tree args)
1949 {
1950 tree p;
1951
1952 /* Before allocating memory, check for the common case of no complex. */
1953 for (p = args; p; p = TREE_CHAIN (p))
1954 {
1955 tree type = TREE_TYPE (p);
1956 if (TREE_CODE (type) == COMPLEX_TYPE
1957 && targetm.calls.split_complex_arg (type))
1958 goto found;
1959 }
1960 return args;
1961
1962 found:
1963 args = copy_list (args);
1964
1965 for (p = args; p; p = TREE_CHAIN (p))
1966 {
1967 tree type = TREE_TYPE (p);
1968 if (TREE_CODE (type) == COMPLEX_TYPE
1969 && targetm.calls.split_complex_arg (type))
1970 {
1971 tree decl;
1972 tree subtype = TREE_TYPE (type);
1973 bool addressable = TREE_ADDRESSABLE (p);
1974
1975 /* Rewrite the PARM_DECL's type with its component. */
1976 TREE_TYPE (p) = subtype;
1977 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1978 DECL_MODE (p) = VOIDmode;
1979 DECL_SIZE (p) = NULL;
1980 DECL_SIZE_UNIT (p) = NULL;
1981 /* If this arg must go in memory, put it in a pseudo here.
1982 We can't allow it to go in memory as per normal parms,
1983 because the usual place might not have the imag part
1984 adjacent to the real part. */
1985 DECL_ARTIFICIAL (p) = addressable;
1986 DECL_IGNORED_P (p) = addressable;
1987 TREE_ADDRESSABLE (p) = 0;
1988 layout_decl (p, 0);
1989
1990 /* Build a second synthetic decl. */
1991 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1992 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1993 DECL_ARTIFICIAL (decl) = addressable;
1994 DECL_IGNORED_P (decl) = addressable;
1995 layout_decl (decl, 0);
1996
1997 /* Splice it in; skip the new decl. */
1998 TREE_CHAIN (decl) = TREE_CHAIN (p);
1999 TREE_CHAIN (p) = decl;
2000 p = decl;
2001 }
2002 }
2003
2004 return args;
2005 }
2006
2007 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2008 the hidden struct return argument, and (abi willing) complex args.
2009 Return the new parameter list. */
2010
2011 static tree
2012 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2013 {
2014 tree fndecl = current_function_decl;
2015 tree fntype = TREE_TYPE (fndecl);
2016 tree fnargs = DECL_ARGUMENTS (fndecl);
2017
2018 /* If struct value address is treated as the first argument, make it so. */
2019 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2020 && ! current_function_returns_pcc_struct
2021 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2022 {
2023 tree type = build_pointer_type (TREE_TYPE (fntype));
2024 tree decl;
2025
2026 decl = build_decl (PARM_DECL, NULL_TREE, type);
2027 DECL_ARG_TYPE (decl) = type;
2028 DECL_ARTIFICIAL (decl) = 1;
2029 DECL_IGNORED_P (decl) = 1;
2030
2031 TREE_CHAIN (decl) = fnargs;
2032 fnargs = decl;
2033 all->function_result_decl = decl;
2034 }
2035
2036 all->orig_fnargs = fnargs;
2037
2038 /* If the target wants to split complex arguments into scalars, do so. */
2039 if (targetm.calls.split_complex_arg)
2040 fnargs = split_complex_args (fnargs);
2041
2042 return fnargs;
2043 }
2044
2045 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2046 data for the parameter. Incorporate ABI specifics such as pass-by-
2047 reference and type promotion. */
2048
2049 static void
2050 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2051 struct assign_parm_data_one *data)
2052 {
2053 tree nominal_type, passed_type;
2054 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2055
2056 memset (data, 0, sizeof (*data));
2057
2058 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2059 if (!current_function_stdarg)
2060 data->named_arg = 1; /* No varadic parms. */
2061 else if (TREE_CHAIN (parm))
2062 data->named_arg = 1; /* Not the last non-varadic parm. */
2063 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2064 data->named_arg = 1; /* Only varadic ones are unnamed. */
2065 else
2066 data->named_arg = 0; /* Treat as varadic. */
2067
2068 nominal_type = TREE_TYPE (parm);
2069 passed_type = DECL_ARG_TYPE (parm);
2070
2071 /* Look out for errors propagating this far. Also, if the parameter's
2072 type is void then its value doesn't matter. */
2073 if (TREE_TYPE (parm) == error_mark_node
2074 /* This can happen after weird syntax errors
2075 or if an enum type is defined among the parms. */
2076 || TREE_CODE (parm) != PARM_DECL
2077 || passed_type == NULL
2078 || VOID_TYPE_P (nominal_type))
2079 {
2080 nominal_type = passed_type = void_type_node;
2081 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2082 goto egress;
2083 }
2084
2085 /* Find mode of arg as it is passed, and mode of arg as it should be
2086 during execution of this function. */
2087 passed_mode = TYPE_MODE (passed_type);
2088 nominal_mode = TYPE_MODE (nominal_type);
2089
2090 /* If the parm is to be passed as a transparent union, use the type of
2091 the first field for the tests below. We have already verified that
2092 the modes are the same. */
2093 if (TREE_CODE (passed_type) == UNION_TYPE
2094 && TYPE_TRANSPARENT_UNION (passed_type))
2095 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2096
2097 /* See if this arg was passed by invisible reference. */
2098 if (pass_by_reference (&all->args_so_far, passed_mode,
2099 passed_type, data->named_arg))
2100 {
2101 passed_type = nominal_type = build_pointer_type (passed_type);
2102 data->passed_pointer = true;
2103 passed_mode = nominal_mode = Pmode;
2104 }
2105
2106 /* Find mode as it is passed by the ABI. */
2107 promoted_mode = passed_mode;
2108 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2109 {
2110 int unsignedp = TYPE_UNSIGNED (passed_type);
2111 promoted_mode = promote_mode (passed_type, promoted_mode,
2112 &unsignedp, 1);
2113 }
2114
2115 egress:
2116 data->nominal_type = nominal_type;
2117 data->passed_type = passed_type;
2118 data->nominal_mode = nominal_mode;
2119 data->passed_mode = passed_mode;
2120 data->promoted_mode = promoted_mode;
2121 }
2122
2123 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2124
2125 static void
2126 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2127 struct assign_parm_data_one *data, bool no_rtl)
2128 {
2129 int varargs_pretend_bytes = 0;
2130
2131 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2132 data->promoted_mode,
2133 data->passed_type,
2134 &varargs_pretend_bytes, no_rtl);
2135
2136 /* If the back-end has requested extra stack space, record how much is
2137 needed. Do not change pretend_args_size otherwise since it may be
2138 nonzero from an earlier partial argument. */
2139 if (varargs_pretend_bytes > 0)
2140 all->pretend_args_size = varargs_pretend_bytes;
2141 }
2142
2143 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2144 the incoming location of the current parameter. */
2145
2146 static void
2147 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2148 struct assign_parm_data_one *data)
2149 {
2150 HOST_WIDE_INT pretend_bytes = 0;
2151 rtx entry_parm;
2152 bool in_regs;
2153
2154 if (data->promoted_mode == VOIDmode)
2155 {
2156 data->entry_parm = data->stack_parm = const0_rtx;
2157 return;
2158 }
2159
2160 #ifdef FUNCTION_INCOMING_ARG
2161 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2162 data->passed_type, data->named_arg);
2163 #else
2164 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2165 data->passed_type, data->named_arg);
2166 #endif
2167
2168 if (entry_parm == 0)
2169 data->promoted_mode = data->passed_mode;
2170
2171 /* Determine parm's home in the stack, in case it arrives in the stack
2172 or we should pretend it did. Compute the stack position and rtx where
2173 the argument arrives and its size.
2174
2175 There is one complexity here: If this was a parameter that would
2176 have been passed in registers, but wasn't only because it is
2177 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2178 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2179 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2180 as it was the previous time. */
2181 in_regs = entry_parm != 0;
2182 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2183 in_regs = true;
2184 #endif
2185 if (!in_regs && !data->named_arg)
2186 {
2187 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2188 {
2189 rtx tem;
2190 #ifdef FUNCTION_INCOMING_ARG
2191 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2192 data->passed_type, true);
2193 #else
2194 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2195 data->passed_type, true);
2196 #endif
2197 in_regs = tem != NULL;
2198 }
2199 }
2200
2201 /* If this parameter was passed both in registers and in the stack, use
2202 the copy on the stack. */
2203 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2204 data->passed_type))
2205 entry_parm = 0;
2206
2207 if (entry_parm)
2208 {
2209 int partial;
2210
2211 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2212 data->promoted_mode,
2213 data->passed_type,
2214 data->named_arg);
2215 data->partial = partial;
2216
2217 /* The caller might already have allocated stack space for the
2218 register parameters. */
2219 if (partial != 0 && all->reg_parm_stack_space == 0)
2220 {
2221 /* Part of this argument is passed in registers and part
2222 is passed on the stack. Ask the prologue code to extend
2223 the stack part so that we can recreate the full value.
2224
2225 PRETEND_BYTES is the size of the registers we need to store.
2226 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2227 stack space that the prologue should allocate.
2228
2229 Internally, gcc assumes that the argument pointer is aligned
2230 to STACK_BOUNDARY bits. This is used both for alignment
2231 optimizations (see init_emit) and to locate arguments that are
2232 aligned to more than PARM_BOUNDARY bits. We must preserve this
2233 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2234 a stack boundary. */
2235
2236 /* We assume at most one partial arg, and it must be the first
2237 argument on the stack. */
2238 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2239
2240 pretend_bytes = partial;
2241 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2242
2243 /* We want to align relative to the actual stack pointer, so
2244 don't include this in the stack size until later. */
2245 all->extra_pretend_bytes = all->pretend_args_size;
2246 }
2247 }
2248
2249 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2250 entry_parm ? data->partial : 0, current_function_decl,
2251 &all->stack_args_size, &data->locate);
2252
2253 /* Adjust offsets to include the pretend args. */
2254 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2255 data->locate.slot_offset.constant += pretend_bytes;
2256 data->locate.offset.constant += pretend_bytes;
2257
2258 data->entry_parm = entry_parm;
2259 }
2260
2261 /* A subroutine of assign_parms. If there is actually space on the stack
2262 for this parm, count it in stack_args_size and return true. */
2263
2264 static bool
2265 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2266 struct assign_parm_data_one *data)
2267 {
2268 /* Trivially true if we've no incoming register. */
2269 if (data->entry_parm == NULL)
2270 ;
2271 /* Also true if we're partially in registers and partially not,
2272 since we've arranged to drop the entire argument on the stack. */
2273 else if (data->partial != 0)
2274 ;
2275 /* Also true if the target says that it's passed in both registers
2276 and on the stack. */
2277 else if (GET_CODE (data->entry_parm) == PARALLEL
2278 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2279 ;
2280 /* Also true if the target says that there's stack allocated for
2281 all register parameters. */
2282 else if (all->reg_parm_stack_space > 0)
2283 ;
2284 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2285 else
2286 return false;
2287
2288 all->stack_args_size.constant += data->locate.size.constant;
2289 if (data->locate.size.var)
2290 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2291
2292 return true;
2293 }
2294
2295 /* A subroutine of assign_parms. Given that this parameter is allocated
2296 stack space by the ABI, find it. */
2297
2298 static void
2299 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2300 {
2301 rtx offset_rtx, stack_parm;
2302 unsigned int align, boundary;
2303
2304 /* If we're passing this arg using a reg, make its stack home the
2305 aligned stack slot. */
2306 if (data->entry_parm)
2307 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2308 else
2309 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2310
2311 stack_parm = current_function_internal_arg_pointer;
2312 if (offset_rtx != const0_rtx)
2313 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2314 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2315
2316 set_mem_attributes (stack_parm, parm, 1);
2317
2318 boundary = data->locate.boundary;
2319 align = BITS_PER_UNIT;
2320
2321 /* If we're padding upward, we know that the alignment of the slot
2322 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2323 intentionally forcing upward padding. Otherwise we have to come
2324 up with a guess at the alignment based on OFFSET_RTX. */
2325 if (data->locate.where_pad != downward || data->entry_parm)
2326 align = boundary;
2327 else if (GET_CODE (offset_rtx) == CONST_INT)
2328 {
2329 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2330 align = align & -align;
2331 }
2332 set_mem_align (stack_parm, align);
2333
2334 if (data->entry_parm)
2335 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2336
2337 data->stack_parm = stack_parm;
2338 }
2339
2340 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2341 always valid and contiguous. */
2342
2343 static void
2344 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2345 {
2346 rtx entry_parm = data->entry_parm;
2347 rtx stack_parm = data->stack_parm;
2348
2349 /* If this parm was passed part in regs and part in memory, pretend it
2350 arrived entirely in memory by pushing the register-part onto the stack.
2351 In the special case of a DImode or DFmode that is split, we could put
2352 it together in a pseudoreg directly, but for now that's not worth
2353 bothering with. */
2354 if (data->partial != 0)
2355 {
2356 /* Handle calls that pass values in multiple non-contiguous
2357 locations. The Irix 6 ABI has examples of this. */
2358 if (GET_CODE (entry_parm) == PARALLEL)
2359 emit_group_store (validize_mem (stack_parm), entry_parm,
2360 data->passed_type,
2361 int_size_in_bytes (data->passed_type));
2362 else
2363 {
2364 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2365 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2366 data->partial / UNITS_PER_WORD);
2367 }
2368
2369 entry_parm = stack_parm;
2370 }
2371
2372 /* If we didn't decide this parm came in a register, by default it came
2373 on the stack. */
2374 else if (entry_parm == NULL)
2375 entry_parm = stack_parm;
2376
2377 /* When an argument is passed in multiple locations, we can't make use
2378 of this information, but we can save some copying if the whole argument
2379 is passed in a single register. */
2380 else if (GET_CODE (entry_parm) == PARALLEL
2381 && data->nominal_mode != BLKmode
2382 && data->passed_mode != BLKmode)
2383 {
2384 size_t i, len = XVECLEN (entry_parm, 0);
2385
2386 for (i = 0; i < len; i++)
2387 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2388 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2389 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2390 == data->passed_mode)
2391 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2392 {
2393 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2394 break;
2395 }
2396 }
2397
2398 data->entry_parm = entry_parm;
2399 }
2400
2401 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2402 always valid and properly aligned. */
2403
2404 static void
2405 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2406 {
2407 rtx stack_parm = data->stack_parm;
2408
2409 /* If we can't trust the parm stack slot to be aligned enough for its
2410 ultimate type, don't use that slot after entry. We'll make another
2411 stack slot, if we need one. */
2412 if (stack_parm
2413 && ((STRICT_ALIGNMENT
2414 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2415 || (data->nominal_type
2416 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2417 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2418 stack_parm = NULL;
2419
2420 /* If parm was passed in memory, and we need to convert it on entry,
2421 don't store it back in that same slot. */
2422 else if (data->entry_parm == stack_parm
2423 && data->nominal_mode != BLKmode
2424 && data->nominal_mode != data->passed_mode)
2425 stack_parm = NULL;
2426
2427 /* If stack protection is in effect for this function, don't leave any
2428 pointers in their passed stack slots. */
2429 else if (cfun->stack_protect_guard
2430 && (flag_stack_protect == 2
2431 || data->passed_pointer
2432 || POINTER_TYPE_P (data->nominal_type)))
2433 stack_parm = NULL;
2434
2435 data->stack_parm = stack_parm;
2436 }
2437
2438 /* A subroutine of assign_parms. Return true if the current parameter
2439 should be stored as a BLKmode in the current frame. */
2440
2441 static bool
2442 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2443 {
2444 if (data->nominal_mode == BLKmode)
2445 return true;
2446 if (GET_CODE (data->entry_parm) == PARALLEL)
2447 return true;
2448
2449 #ifdef BLOCK_REG_PADDING
2450 /* Only assign_parm_setup_block knows how to deal with register arguments
2451 that are padded at the least significant end. */
2452 if (REG_P (data->entry_parm)
2453 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2454 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2455 == (BYTES_BIG_ENDIAN ? upward : downward)))
2456 return true;
2457 #endif
2458
2459 return false;
2460 }
2461
2462 /* A subroutine of assign_parms. Arrange for the parameter to be
2463 present and valid in DATA->STACK_RTL. */
2464
2465 static void
2466 assign_parm_setup_block (struct assign_parm_data_all *all,
2467 tree parm, struct assign_parm_data_one *data)
2468 {
2469 rtx entry_parm = data->entry_parm;
2470 rtx stack_parm = data->stack_parm;
2471 HOST_WIDE_INT size;
2472 HOST_WIDE_INT size_stored;
2473 rtx orig_entry_parm = entry_parm;
2474
2475 if (GET_CODE (entry_parm) == PARALLEL)
2476 entry_parm = emit_group_move_into_temps (entry_parm);
2477
2478 /* If we've a non-block object that's nevertheless passed in parts,
2479 reconstitute it in register operations rather than on the stack. */
2480 if (GET_CODE (entry_parm) == PARALLEL
2481 && data->nominal_mode != BLKmode)
2482 {
2483 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2484
2485 if ((XVECLEN (entry_parm, 0) > 1
2486 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2487 && use_register_for_decl (parm))
2488 {
2489 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2490
2491 push_to_sequence (all->conversion_insns);
2492
2493 /* For values returned in multiple registers, handle possible
2494 incompatible calls to emit_group_store.
2495
2496 For example, the following would be invalid, and would have to
2497 be fixed by the conditional below:
2498
2499 emit_group_store ((reg:SF), (parallel:DF))
2500 emit_group_store ((reg:SI), (parallel:DI))
2501
2502 An example of this are doubles in e500 v2:
2503 (parallel:DF (expr_list (reg:SI) (const_int 0))
2504 (expr_list (reg:SI) (const_int 4))). */
2505 if (data->nominal_mode != data->passed_mode)
2506 {
2507 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2508 emit_group_store (t, entry_parm, NULL_TREE,
2509 GET_MODE_SIZE (GET_MODE (entry_parm)));
2510 convert_move (parmreg, t, 0);
2511 }
2512 else
2513 emit_group_store (parmreg, entry_parm, data->nominal_type,
2514 int_size_in_bytes (data->nominal_type));
2515
2516 all->conversion_insns = get_insns ();
2517 end_sequence ();
2518
2519 SET_DECL_RTL (parm, parmreg);
2520 return;
2521 }
2522 }
2523
2524 size = int_size_in_bytes (data->passed_type);
2525 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2526 if (stack_parm == 0)
2527 {
2528 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2529 stack_parm = assign_stack_local (BLKmode, size_stored,
2530 DECL_ALIGN (parm));
2531 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2532 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2533 set_mem_attributes (stack_parm, parm, 1);
2534 }
2535
2536 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2537 calls that pass values in multiple non-contiguous locations. */
2538 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2539 {
2540 rtx mem;
2541
2542 /* Note that we will be storing an integral number of words.
2543 So we have to be careful to ensure that we allocate an
2544 integral number of words. We do this above when we call
2545 assign_stack_local if space was not allocated in the argument
2546 list. If it was, this will not work if PARM_BOUNDARY is not
2547 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2548 if it becomes a problem. Exception is when BLKmode arrives
2549 with arguments not conforming to word_mode. */
2550
2551 if (data->stack_parm == 0)
2552 ;
2553 else if (GET_CODE (entry_parm) == PARALLEL)
2554 ;
2555 else
2556 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2557
2558 mem = validize_mem (stack_parm);
2559
2560 /* Handle values in multiple non-contiguous locations. */
2561 if (GET_CODE (entry_parm) == PARALLEL)
2562 {
2563 push_to_sequence (all->conversion_insns);
2564 emit_group_store (mem, entry_parm, data->passed_type, size);
2565 all->conversion_insns = get_insns ();
2566 end_sequence ();
2567 }
2568
2569 else if (size == 0)
2570 ;
2571
2572 /* If SIZE is that of a mode no bigger than a word, just use
2573 that mode's store operation. */
2574 else if (size <= UNITS_PER_WORD)
2575 {
2576 enum machine_mode mode
2577 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2578
2579 if (mode != BLKmode
2580 #ifdef BLOCK_REG_PADDING
2581 && (size == UNITS_PER_WORD
2582 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2583 != (BYTES_BIG_ENDIAN ? upward : downward)))
2584 #endif
2585 )
2586 {
2587 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2588 emit_move_insn (change_address (mem, mode, 0), reg);
2589 }
2590
2591 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2592 machine must be aligned to the left before storing
2593 to memory. Note that the previous test doesn't
2594 handle all cases (e.g. SIZE == 3). */
2595 else if (size != UNITS_PER_WORD
2596 #ifdef BLOCK_REG_PADDING
2597 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2598 == downward)
2599 #else
2600 && BYTES_BIG_ENDIAN
2601 #endif
2602 )
2603 {
2604 rtx tem, x;
2605 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2606 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2607
2608 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2609 build_int_cst (NULL_TREE, by),
2610 NULL_RTX, 1);
2611 tem = change_address (mem, word_mode, 0);
2612 emit_move_insn (tem, x);
2613 }
2614 else
2615 move_block_from_reg (REGNO (entry_parm), mem,
2616 size_stored / UNITS_PER_WORD);
2617 }
2618 else
2619 move_block_from_reg (REGNO (entry_parm), mem,
2620 size_stored / UNITS_PER_WORD);
2621 }
2622 else if (data->stack_parm == 0)
2623 {
2624 push_to_sequence (all->conversion_insns);
2625 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2626 BLOCK_OP_NORMAL);
2627 all->conversion_insns = get_insns ();
2628 end_sequence ();
2629 }
2630
2631 data->stack_parm = stack_parm;
2632 SET_DECL_RTL (parm, stack_parm);
2633 }
2634
2635 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2636 parameter. Get it there. Perform all ABI specified conversions. */
2637
2638 static void
2639 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2640 struct assign_parm_data_one *data)
2641 {
2642 rtx parmreg;
2643 enum machine_mode promoted_nominal_mode;
2644 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2645 bool did_conversion = false;
2646
2647 /* Store the parm in a pseudoregister during the function, but we may
2648 need to do it in a wider mode. */
2649
2650 /* This is not really promoting for a call. However we need to be
2651 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2652 promoted_nominal_mode
2653 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2654
2655 parmreg = gen_reg_rtx (promoted_nominal_mode);
2656
2657 if (!DECL_ARTIFICIAL (parm))
2658 mark_user_reg (parmreg);
2659
2660 /* If this was an item that we received a pointer to,
2661 set DECL_RTL appropriately. */
2662 if (data->passed_pointer)
2663 {
2664 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2665 set_mem_attributes (x, parm, 1);
2666 SET_DECL_RTL (parm, x);
2667 }
2668 else
2669 SET_DECL_RTL (parm, parmreg);
2670
2671 /* Copy the value into the register. */
2672 if (data->nominal_mode != data->passed_mode
2673 || promoted_nominal_mode != data->promoted_mode)
2674 {
2675 int save_tree_used;
2676
2677 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2678 mode, by the caller. We now have to convert it to
2679 NOMINAL_MODE, if different. However, PARMREG may be in
2680 a different mode than NOMINAL_MODE if it is being stored
2681 promoted.
2682
2683 If ENTRY_PARM is a hard register, it might be in a register
2684 not valid for operating in its mode (e.g., an odd-numbered
2685 register for a DFmode). In that case, moves are the only
2686 thing valid, so we can't do a convert from there. This
2687 occurs when the calling sequence allow such misaligned
2688 usages.
2689
2690 In addition, the conversion may involve a call, which could
2691 clobber parameters which haven't been copied to pseudo
2692 registers yet. Therefore, we must first copy the parm to
2693 a pseudo reg here, and save the conversion until after all
2694 parameters have been moved. */
2695
2696 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2697
2698 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2699
2700 push_to_sequence (all->conversion_insns);
2701 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2702
2703 if (GET_CODE (tempreg) == SUBREG
2704 && GET_MODE (tempreg) == data->nominal_mode
2705 && REG_P (SUBREG_REG (tempreg))
2706 && data->nominal_mode == data->passed_mode
2707 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2708 && GET_MODE_SIZE (GET_MODE (tempreg))
2709 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2710 {
2711 /* The argument is already sign/zero extended, so note it
2712 into the subreg. */
2713 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2714 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2715 }
2716
2717 /* TREE_USED gets set erroneously during expand_assignment. */
2718 save_tree_used = TREE_USED (parm);
2719 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2720 TREE_USED (parm) = save_tree_used;
2721 all->conversion_insns = get_insns ();
2722 end_sequence ();
2723
2724 did_conversion = true;
2725 }
2726 else
2727 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2728
2729 /* If we were passed a pointer but the actual value can safely live
2730 in a register, put it in one. */
2731 if (data->passed_pointer
2732 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2733 /* If by-reference argument was promoted, demote it. */
2734 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2735 || use_register_for_decl (parm)))
2736 {
2737 /* We can't use nominal_mode, because it will have been set to
2738 Pmode above. We must use the actual mode of the parm. */
2739 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2740 mark_user_reg (parmreg);
2741
2742 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2743 {
2744 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2745 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2746
2747 push_to_sequence (all->conversion_insns);
2748 emit_move_insn (tempreg, DECL_RTL (parm));
2749 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2750 emit_move_insn (parmreg, tempreg);
2751 all->conversion_insns = get_insns ();
2752 end_sequence ();
2753
2754 did_conversion = true;
2755 }
2756 else
2757 emit_move_insn (parmreg, DECL_RTL (parm));
2758
2759 SET_DECL_RTL (parm, parmreg);
2760
2761 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2762 now the parm. */
2763 data->stack_parm = NULL;
2764 }
2765
2766 /* Mark the register as eliminable if we did no conversion and it was
2767 copied from memory at a fixed offset, and the arg pointer was not
2768 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2769 offset formed an invalid address, such memory-equivalences as we
2770 make here would screw up life analysis for it. */
2771 if (data->nominal_mode == data->passed_mode
2772 && !did_conversion
2773 && data->stack_parm != 0
2774 && MEM_P (data->stack_parm)
2775 && data->locate.offset.var == 0
2776 && reg_mentioned_p (virtual_incoming_args_rtx,
2777 XEXP (data->stack_parm, 0)))
2778 {
2779 rtx linsn = get_last_insn ();
2780 rtx sinsn, set;
2781
2782 /* Mark complex types separately. */
2783 if (GET_CODE (parmreg) == CONCAT)
2784 {
2785 enum machine_mode submode
2786 = GET_MODE_INNER (GET_MODE (parmreg));
2787 int regnor = REGNO (XEXP (parmreg, 0));
2788 int regnoi = REGNO (XEXP (parmreg, 1));
2789 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2790 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2791 GET_MODE_SIZE (submode));
2792
2793 /* Scan backwards for the set of the real and
2794 imaginary parts. */
2795 for (sinsn = linsn; sinsn != 0;
2796 sinsn = prev_nonnote_insn (sinsn))
2797 {
2798 set = single_set (sinsn);
2799 if (set == 0)
2800 continue;
2801
2802 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2803 REG_NOTES (sinsn)
2804 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2805 REG_NOTES (sinsn));
2806 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2807 REG_NOTES (sinsn)
2808 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2809 REG_NOTES (sinsn));
2810 }
2811 }
2812 else if ((set = single_set (linsn)) != 0
2813 && SET_DEST (set) == parmreg)
2814 REG_NOTES (linsn)
2815 = gen_rtx_EXPR_LIST (REG_EQUIV,
2816 data->stack_parm, REG_NOTES (linsn));
2817 }
2818
2819 /* For pointer data type, suggest pointer register. */
2820 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2821 mark_reg_pointer (parmreg,
2822 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2823 }
2824
2825 /* A subroutine of assign_parms. Allocate stack space to hold the current
2826 parameter. Get it there. Perform all ABI specified conversions. */
2827
2828 static void
2829 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2830 struct assign_parm_data_one *data)
2831 {
2832 /* Value must be stored in the stack slot STACK_PARM during function
2833 execution. */
2834 bool to_conversion = false;
2835
2836 if (data->promoted_mode != data->nominal_mode)
2837 {
2838 /* Conversion is required. */
2839 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2840
2841 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2842
2843 push_to_sequence (all->conversion_insns);
2844 to_conversion = true;
2845
2846 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2847 TYPE_UNSIGNED (TREE_TYPE (parm)));
2848
2849 if (data->stack_parm)
2850 /* ??? This may need a big-endian conversion on sparc64. */
2851 data->stack_parm
2852 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2853 }
2854
2855 if (data->entry_parm != data->stack_parm)
2856 {
2857 rtx src, dest;
2858
2859 if (data->stack_parm == 0)
2860 {
2861 data->stack_parm
2862 = assign_stack_local (GET_MODE (data->entry_parm),
2863 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2864 TYPE_ALIGN (data->passed_type));
2865 set_mem_attributes (data->stack_parm, parm, 1);
2866 }
2867
2868 dest = validize_mem (data->stack_parm);
2869 src = validize_mem (data->entry_parm);
2870
2871 if (MEM_P (src))
2872 {
2873 /* Use a block move to handle potentially misaligned entry_parm. */
2874 if (!to_conversion)
2875 push_to_sequence (all->conversion_insns);
2876 to_conversion = true;
2877
2878 emit_block_move (dest, src,
2879 GEN_INT (int_size_in_bytes (data->passed_type)),
2880 BLOCK_OP_NORMAL);
2881 }
2882 else
2883 emit_move_insn (dest, src);
2884 }
2885
2886 if (to_conversion)
2887 {
2888 all->conversion_insns = get_insns ();
2889 end_sequence ();
2890 }
2891
2892 SET_DECL_RTL (parm, data->stack_parm);
2893 }
2894
2895 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2896 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2897
2898 static void
2899 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2900 {
2901 tree parm;
2902 tree orig_fnargs = all->orig_fnargs;
2903
2904 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2905 {
2906 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2907 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2908 {
2909 rtx tmp, real, imag;
2910 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2911
2912 real = DECL_RTL (fnargs);
2913 imag = DECL_RTL (TREE_CHAIN (fnargs));
2914 if (inner != GET_MODE (real))
2915 {
2916 real = gen_lowpart_SUBREG (inner, real);
2917 imag = gen_lowpart_SUBREG (inner, imag);
2918 }
2919
2920 if (TREE_ADDRESSABLE (parm))
2921 {
2922 rtx rmem, imem;
2923 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2924
2925 /* split_complex_arg put the real and imag parts in
2926 pseudos. Move them to memory. */
2927 tmp = assign_stack_local (DECL_MODE (parm), size,
2928 TYPE_ALIGN (TREE_TYPE (parm)));
2929 set_mem_attributes (tmp, parm, 1);
2930 rmem = adjust_address_nv (tmp, inner, 0);
2931 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2932 push_to_sequence (all->conversion_insns);
2933 emit_move_insn (rmem, real);
2934 emit_move_insn (imem, imag);
2935 all->conversion_insns = get_insns ();
2936 end_sequence ();
2937 }
2938 else
2939 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2940 SET_DECL_RTL (parm, tmp);
2941
2942 real = DECL_INCOMING_RTL (fnargs);
2943 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2944 if (inner != GET_MODE (real))
2945 {
2946 real = gen_lowpart_SUBREG (inner, real);
2947 imag = gen_lowpart_SUBREG (inner, imag);
2948 }
2949 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2950 set_decl_incoming_rtl (parm, tmp);
2951 fnargs = TREE_CHAIN (fnargs);
2952 }
2953 else
2954 {
2955 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2956 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2957
2958 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2959 instead of the copy of decl, i.e. FNARGS. */
2960 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2961 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2962 }
2963
2964 fnargs = TREE_CHAIN (fnargs);
2965 }
2966 }
2967
2968 /* Assign RTL expressions to the function's parameters. This may involve
2969 copying them into registers and using those registers as the DECL_RTL. */
2970
2971 static void
2972 assign_parms (tree fndecl)
2973 {
2974 struct assign_parm_data_all all;
2975 tree fnargs, parm;
2976
2977 current_function_internal_arg_pointer
2978 = targetm.calls.internal_arg_pointer ();
2979
2980 assign_parms_initialize_all (&all);
2981 fnargs = assign_parms_augmented_arg_list (&all);
2982
2983 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2984 {
2985 struct assign_parm_data_one data;
2986
2987 /* Extract the type of PARM; adjust it according to ABI. */
2988 assign_parm_find_data_types (&all, parm, &data);
2989
2990 /* Early out for errors and void parameters. */
2991 if (data.passed_mode == VOIDmode)
2992 {
2993 SET_DECL_RTL (parm, const0_rtx);
2994 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2995 continue;
2996 }
2997
2998 if (current_function_stdarg && !TREE_CHAIN (parm))
2999 assign_parms_setup_varargs (&all, &data, false);
3000
3001 /* Find out where the parameter arrives in this function. */
3002 assign_parm_find_entry_rtl (&all, &data);
3003
3004 /* Find out where stack space for this parameter might be. */
3005 if (assign_parm_is_stack_parm (&all, &data))
3006 {
3007 assign_parm_find_stack_rtl (parm, &data);
3008 assign_parm_adjust_entry_rtl (&data);
3009 }
3010
3011 /* Record permanently how this parm was passed. */
3012 set_decl_incoming_rtl (parm, data.entry_parm);
3013
3014 /* Update info on where next arg arrives in registers. */
3015 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3016 data.passed_type, data.named_arg);
3017
3018 assign_parm_adjust_stack_rtl (&data);
3019
3020 if (assign_parm_setup_block_p (&data))
3021 assign_parm_setup_block (&all, parm, &data);
3022 else if (data.passed_pointer || use_register_for_decl (parm))
3023 assign_parm_setup_reg (&all, parm, &data);
3024 else
3025 assign_parm_setup_stack (&all, parm, &data);
3026 }
3027
3028 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3029 assign_parms_unsplit_complex (&all, fnargs);
3030
3031 /* Output all parameter conversion instructions (possibly including calls)
3032 now that all parameters have been copied out of hard registers. */
3033 emit_insn (all.conversion_insns);
3034
3035 /* If we are receiving a struct value address as the first argument, set up
3036 the RTL for the function result. As this might require code to convert
3037 the transmitted address to Pmode, we do this here to ensure that possible
3038 preliminary conversions of the address have been emitted already. */
3039 if (all.function_result_decl)
3040 {
3041 tree result = DECL_RESULT (current_function_decl);
3042 rtx addr = DECL_RTL (all.function_result_decl);
3043 rtx x;
3044
3045 if (DECL_BY_REFERENCE (result))
3046 x = addr;
3047 else
3048 {
3049 addr = convert_memory_address (Pmode, addr);
3050 x = gen_rtx_MEM (DECL_MODE (result), addr);
3051 set_mem_attributes (x, result, 1);
3052 }
3053 SET_DECL_RTL (result, x);
3054 }
3055
3056 /* We have aligned all the args, so add space for the pretend args. */
3057 current_function_pretend_args_size = all.pretend_args_size;
3058 all.stack_args_size.constant += all.extra_pretend_bytes;
3059 current_function_args_size = all.stack_args_size.constant;
3060
3061 /* Adjust function incoming argument size for alignment and
3062 minimum length. */
3063
3064 #ifdef REG_PARM_STACK_SPACE
3065 current_function_args_size = MAX (current_function_args_size,
3066 REG_PARM_STACK_SPACE (fndecl));
3067 #endif
3068
3069 current_function_args_size = CEIL_ROUND (current_function_args_size,
3070 PARM_BOUNDARY / BITS_PER_UNIT);
3071
3072 #ifdef ARGS_GROW_DOWNWARD
3073 current_function_arg_offset_rtx
3074 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3075 : expand_expr (size_diffop (all.stack_args_size.var,
3076 size_int (-all.stack_args_size.constant)),
3077 NULL_RTX, VOIDmode, 0));
3078 #else
3079 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3080 #endif
3081
3082 /* See how many bytes, if any, of its args a function should try to pop
3083 on return. */
3084
3085 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3086 current_function_args_size);
3087
3088 /* For stdarg.h function, save info about
3089 regs and stack space used by the named args. */
3090
3091 current_function_args_info = all.args_so_far;
3092
3093 /* Set the rtx used for the function return value. Put this in its
3094 own variable so any optimizers that need this information don't have
3095 to include tree.h. Do this here so it gets done when an inlined
3096 function gets output. */
3097
3098 current_function_return_rtx
3099 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3100 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3101
3102 /* If scalar return value was computed in a pseudo-reg, or was a named
3103 return value that got dumped to the stack, copy that to the hard
3104 return register. */
3105 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3106 {
3107 tree decl_result = DECL_RESULT (fndecl);
3108 rtx decl_rtl = DECL_RTL (decl_result);
3109
3110 if (REG_P (decl_rtl)
3111 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3112 : DECL_REGISTER (decl_result))
3113 {
3114 rtx real_decl_rtl;
3115
3116 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3117 fndecl, true);
3118 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3119 /* The delay slot scheduler assumes that current_function_return_rtx
3120 holds the hard register containing the return value, not a
3121 temporary pseudo. */
3122 current_function_return_rtx = real_decl_rtl;
3123 }
3124 }
3125 }
3126
3127 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3128 For all seen types, gimplify their sizes. */
3129
3130 static tree
3131 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3132 {
3133 tree t = *tp;
3134
3135 *walk_subtrees = 0;
3136 if (TYPE_P (t))
3137 {
3138 if (POINTER_TYPE_P (t))
3139 *walk_subtrees = 1;
3140 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3141 && !TYPE_SIZES_GIMPLIFIED (t))
3142 {
3143 gimplify_type_sizes (t, (tree *) data);
3144 *walk_subtrees = 1;
3145 }
3146 }
3147
3148 return NULL;
3149 }
3150
3151 /* Gimplify the parameter list for current_function_decl. This involves
3152 evaluating SAVE_EXPRs of variable sized parameters and generating code
3153 to implement callee-copies reference parameters. Returns a list of
3154 statements to add to the beginning of the function, or NULL if nothing
3155 to do. */
3156
3157 tree
3158 gimplify_parameters (void)
3159 {
3160 struct assign_parm_data_all all;
3161 tree fnargs, parm, stmts = NULL;
3162
3163 assign_parms_initialize_all (&all);
3164 fnargs = assign_parms_augmented_arg_list (&all);
3165
3166 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3167 {
3168 struct assign_parm_data_one data;
3169
3170 /* Extract the type of PARM; adjust it according to ABI. */
3171 assign_parm_find_data_types (&all, parm, &data);
3172
3173 /* Early out for errors and void parameters. */
3174 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3175 continue;
3176
3177 /* Update info on where next arg arrives in registers. */
3178 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3179 data.passed_type, data.named_arg);
3180
3181 /* ??? Once upon a time variable_size stuffed parameter list
3182 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3183 turned out to be less than manageable in the gimple world.
3184 Now we have to hunt them down ourselves. */
3185 walk_tree_without_duplicates (&data.passed_type,
3186 gimplify_parm_type, &stmts);
3187
3188 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3189 {
3190 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3191 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3192 }
3193
3194 if (data.passed_pointer)
3195 {
3196 tree type = TREE_TYPE (data.passed_type);
3197 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3198 type, data.named_arg))
3199 {
3200 tree local, t;
3201
3202 /* For constant sized objects, this is trivial; for
3203 variable-sized objects, we have to play games. */
3204 if (TREE_CONSTANT (DECL_SIZE (parm)))
3205 {
3206 local = create_tmp_var (type, get_name (parm));
3207 DECL_IGNORED_P (local) = 0;
3208 }
3209 else
3210 {
3211 tree ptr_type, addr, args;
3212
3213 ptr_type = build_pointer_type (type);
3214 addr = create_tmp_var (ptr_type, get_name (parm));
3215 DECL_IGNORED_P (addr) = 0;
3216 local = build_fold_indirect_ref (addr);
3217
3218 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3219 t = built_in_decls[BUILT_IN_ALLOCA];
3220 t = build_function_call_expr (t, args);
3221 t = fold_convert (ptr_type, t);
3222 t = build2 (GIMPLE_MODIFY_STMT, void_type_node, addr, t);
3223 gimplify_and_add (t, &stmts);
3224 }
3225
3226 t = build2 (GIMPLE_MODIFY_STMT, void_type_node, local, parm);
3227 gimplify_and_add (t, &stmts);
3228
3229 SET_DECL_VALUE_EXPR (parm, local);
3230 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3231 }
3232 }
3233 }
3234
3235 return stmts;
3236 }
3237 \f
3238 /* Indicate whether REGNO is an incoming argument to the current function
3239 that was promoted to a wider mode. If so, return the RTX for the
3240 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3241 that REGNO is promoted from and whether the promotion was signed or
3242 unsigned. */
3243
3244 rtx
3245 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3246 {
3247 tree arg;
3248
3249 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3250 arg = TREE_CHAIN (arg))
3251 if (REG_P (DECL_INCOMING_RTL (arg))
3252 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3253 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3254 {
3255 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3256 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3257
3258 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3259 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3260 && mode != DECL_MODE (arg))
3261 {
3262 *pmode = DECL_MODE (arg);
3263 *punsignedp = unsignedp;
3264 return DECL_INCOMING_RTL (arg);
3265 }
3266 }
3267
3268 return 0;
3269 }
3270
3271 \f
3272 /* Compute the size and offset from the start of the stacked arguments for a
3273 parm passed in mode PASSED_MODE and with type TYPE.
3274
3275 INITIAL_OFFSET_PTR points to the current offset into the stacked
3276 arguments.
3277
3278 The starting offset and size for this parm are returned in
3279 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3280 nonzero, the offset is that of stack slot, which is returned in
3281 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3282 padding required from the initial offset ptr to the stack slot.
3283
3284 IN_REGS is nonzero if the argument will be passed in registers. It will
3285 never be set if REG_PARM_STACK_SPACE is not defined.
3286
3287 FNDECL is the function in which the argument was defined.
3288
3289 There are two types of rounding that are done. The first, controlled by
3290 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3291 list to be aligned to the specific boundary (in bits). This rounding
3292 affects the initial and starting offsets, but not the argument size.
3293
3294 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3295 optionally rounds the size of the parm to PARM_BOUNDARY. The
3296 initial offset is not affected by this rounding, while the size always
3297 is and the starting offset may be. */
3298
3299 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3300 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3301 callers pass in the total size of args so far as
3302 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3303
3304 void
3305 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3306 int partial, tree fndecl ATTRIBUTE_UNUSED,
3307 struct args_size *initial_offset_ptr,
3308 struct locate_and_pad_arg_data *locate)
3309 {
3310 tree sizetree;
3311 enum direction where_pad;
3312 unsigned int boundary;
3313 int reg_parm_stack_space = 0;
3314 int part_size_in_regs;
3315
3316 #ifdef REG_PARM_STACK_SPACE
3317 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3318
3319 /* If we have found a stack parm before we reach the end of the
3320 area reserved for registers, skip that area. */
3321 if (! in_regs)
3322 {
3323 if (reg_parm_stack_space > 0)
3324 {
3325 if (initial_offset_ptr->var)
3326 {
3327 initial_offset_ptr->var
3328 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3329 ssize_int (reg_parm_stack_space));
3330 initial_offset_ptr->constant = 0;
3331 }
3332 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3333 initial_offset_ptr->constant = reg_parm_stack_space;
3334 }
3335 }
3336 #endif /* REG_PARM_STACK_SPACE */
3337
3338 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3339
3340 sizetree
3341 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3342 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3343 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3344 locate->where_pad = where_pad;
3345 locate->boundary = boundary;
3346
3347 /* Remember if the outgoing parameter requires extra alignment on the
3348 calling function side. */
3349 if (boundary > PREFERRED_STACK_BOUNDARY)
3350 boundary = PREFERRED_STACK_BOUNDARY;
3351 if (cfun->stack_alignment_needed < boundary)
3352 cfun->stack_alignment_needed = boundary;
3353
3354 #ifdef ARGS_GROW_DOWNWARD
3355 locate->slot_offset.constant = -initial_offset_ptr->constant;
3356 if (initial_offset_ptr->var)
3357 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3358 initial_offset_ptr->var);
3359
3360 {
3361 tree s2 = sizetree;
3362 if (where_pad != none
3363 && (!host_integerp (sizetree, 1)
3364 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3365 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3366 SUB_PARM_SIZE (locate->slot_offset, s2);
3367 }
3368
3369 locate->slot_offset.constant += part_size_in_regs;
3370
3371 if (!in_regs
3372 #ifdef REG_PARM_STACK_SPACE
3373 || REG_PARM_STACK_SPACE (fndecl) > 0
3374 #endif
3375 )
3376 pad_to_arg_alignment (&locate->slot_offset, boundary,
3377 &locate->alignment_pad);
3378
3379 locate->size.constant = (-initial_offset_ptr->constant
3380 - locate->slot_offset.constant);
3381 if (initial_offset_ptr->var)
3382 locate->size.var = size_binop (MINUS_EXPR,
3383 size_binop (MINUS_EXPR,
3384 ssize_int (0),
3385 initial_offset_ptr->var),
3386 locate->slot_offset.var);
3387
3388 /* Pad_below needs the pre-rounded size to know how much to pad
3389 below. */
3390 locate->offset = locate->slot_offset;
3391 if (where_pad == downward)
3392 pad_below (&locate->offset, passed_mode, sizetree);
3393
3394 #else /* !ARGS_GROW_DOWNWARD */
3395 if (!in_regs
3396 #ifdef REG_PARM_STACK_SPACE
3397 || REG_PARM_STACK_SPACE (fndecl) > 0
3398 #endif
3399 )
3400 pad_to_arg_alignment (initial_offset_ptr, boundary,
3401 &locate->alignment_pad);
3402 locate->slot_offset = *initial_offset_ptr;
3403
3404 #ifdef PUSH_ROUNDING
3405 if (passed_mode != BLKmode)
3406 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3407 #endif
3408
3409 /* Pad_below needs the pre-rounded size to know how much to pad below
3410 so this must be done before rounding up. */
3411 locate->offset = locate->slot_offset;
3412 if (where_pad == downward)
3413 pad_below (&locate->offset, passed_mode, sizetree);
3414
3415 if (where_pad != none
3416 && (!host_integerp (sizetree, 1)
3417 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3418 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3419
3420 ADD_PARM_SIZE (locate->size, sizetree);
3421
3422 locate->size.constant -= part_size_in_regs;
3423 #endif /* ARGS_GROW_DOWNWARD */
3424 }
3425
3426 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3427 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3428
3429 static void
3430 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3431 struct args_size *alignment_pad)
3432 {
3433 tree save_var = NULL_TREE;
3434 HOST_WIDE_INT save_constant = 0;
3435 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3436 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3437
3438 #ifdef SPARC_STACK_BOUNDARY_HACK
3439 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3440 the real alignment of %sp. However, when it does this, the
3441 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3442 if (SPARC_STACK_BOUNDARY_HACK)
3443 sp_offset = 0;
3444 #endif
3445
3446 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3447 {
3448 save_var = offset_ptr->var;
3449 save_constant = offset_ptr->constant;
3450 }
3451
3452 alignment_pad->var = NULL_TREE;
3453 alignment_pad->constant = 0;
3454
3455 if (boundary > BITS_PER_UNIT)
3456 {
3457 if (offset_ptr->var)
3458 {
3459 tree sp_offset_tree = ssize_int (sp_offset);
3460 tree offset = size_binop (PLUS_EXPR,
3461 ARGS_SIZE_TREE (*offset_ptr),
3462 sp_offset_tree);
3463 #ifdef ARGS_GROW_DOWNWARD
3464 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3465 #else
3466 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3467 #endif
3468
3469 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3470 /* ARGS_SIZE_TREE includes constant term. */
3471 offset_ptr->constant = 0;
3472 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3473 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3474 save_var);
3475 }
3476 else
3477 {
3478 offset_ptr->constant = -sp_offset +
3479 #ifdef ARGS_GROW_DOWNWARD
3480 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3481 #else
3482 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3483 #endif
3484 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3485 alignment_pad->constant = offset_ptr->constant - save_constant;
3486 }
3487 }
3488 }
3489
3490 static void
3491 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3492 {
3493 if (passed_mode != BLKmode)
3494 {
3495 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3496 offset_ptr->constant
3497 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3498 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3499 - GET_MODE_SIZE (passed_mode));
3500 }
3501 else
3502 {
3503 if (TREE_CODE (sizetree) != INTEGER_CST
3504 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3505 {
3506 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3507 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3508 /* Add it in. */
3509 ADD_PARM_SIZE (*offset_ptr, s2);
3510 SUB_PARM_SIZE (*offset_ptr, sizetree);
3511 }
3512 }
3513 }
3514 \f
3515 /* Walk the tree of blocks describing the binding levels within a function
3516 and warn about variables the might be killed by setjmp or vfork.
3517 This is done after calling flow_analysis and before global_alloc
3518 clobbers the pseudo-regs to hard regs. */
3519
3520 void
3521 setjmp_vars_warning (tree block)
3522 {
3523 tree decl, sub;
3524
3525 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3526 {
3527 if (TREE_CODE (decl) == VAR_DECL
3528 && DECL_RTL_SET_P (decl)
3529 && REG_P (DECL_RTL (decl))
3530 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3531 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3532 " %<longjmp%> or %<vfork%>", decl);
3533 }
3534
3535 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3536 setjmp_vars_warning (sub);
3537 }
3538
3539 /* Do the appropriate part of setjmp_vars_warning
3540 but for arguments instead of local variables. */
3541
3542 void
3543 setjmp_args_warning (void)
3544 {
3545 tree decl;
3546 for (decl = DECL_ARGUMENTS (current_function_decl);
3547 decl; decl = TREE_CHAIN (decl))
3548 if (DECL_RTL (decl) != 0
3549 && REG_P (DECL_RTL (decl))
3550 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3551 warning (OPT_Wclobbered,
3552 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3553 decl);
3554 }
3555
3556 \f
3557 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3558 and create duplicate blocks. */
3559 /* ??? Need an option to either create block fragments or to create
3560 abstract origin duplicates of a source block. It really depends
3561 on what optimization has been performed. */
3562
3563 void
3564 reorder_blocks (void)
3565 {
3566 tree block = DECL_INITIAL (current_function_decl);
3567 VEC(tree,heap) *block_stack;
3568
3569 if (block == NULL_TREE)
3570 return;
3571
3572 block_stack = VEC_alloc (tree, heap, 10);
3573
3574 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3575 clear_block_marks (block);
3576
3577 /* Prune the old trees away, so that they don't get in the way. */
3578 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3579 BLOCK_CHAIN (block) = NULL_TREE;
3580
3581 /* Recreate the block tree from the note nesting. */
3582 reorder_blocks_1 (get_insns (), block, &block_stack);
3583 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3584
3585 VEC_free (tree, heap, block_stack);
3586 }
3587
3588 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3589
3590 void
3591 clear_block_marks (tree block)
3592 {
3593 while (block)
3594 {
3595 TREE_ASM_WRITTEN (block) = 0;
3596 clear_block_marks (BLOCK_SUBBLOCKS (block));
3597 block = BLOCK_CHAIN (block);
3598 }
3599 }
3600
3601 static void
3602 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3603 {
3604 rtx insn;
3605
3606 for (insn = insns; insn; insn = NEXT_INSN (insn))
3607 {
3608 if (NOTE_P (insn))
3609 {
3610 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3611 {
3612 tree block = NOTE_BLOCK (insn);
3613 tree origin;
3614
3615 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3616 ? BLOCK_FRAGMENT_ORIGIN (block)
3617 : block);
3618
3619 /* If we have seen this block before, that means it now
3620 spans multiple address regions. Create a new fragment. */
3621 if (TREE_ASM_WRITTEN (block))
3622 {
3623 tree new_block = copy_node (block);
3624
3625 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3626 BLOCK_FRAGMENT_CHAIN (new_block)
3627 = BLOCK_FRAGMENT_CHAIN (origin);
3628 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3629
3630 NOTE_BLOCK (insn) = new_block;
3631 block = new_block;
3632 }
3633
3634 BLOCK_SUBBLOCKS (block) = 0;
3635 TREE_ASM_WRITTEN (block) = 1;
3636 /* When there's only one block for the entire function,
3637 current_block == block and we mustn't do this, it
3638 will cause infinite recursion. */
3639 if (block != current_block)
3640 {
3641 if (block != origin)
3642 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3643
3644 BLOCK_SUPERCONTEXT (block) = current_block;
3645 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3646 BLOCK_SUBBLOCKS (current_block) = block;
3647 current_block = origin;
3648 }
3649 VEC_safe_push (tree, heap, *p_block_stack, block);
3650 }
3651 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3652 {
3653 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3654 BLOCK_SUBBLOCKS (current_block)
3655 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3656 current_block = BLOCK_SUPERCONTEXT (current_block);
3657 }
3658 }
3659 }
3660 }
3661
3662 /* Reverse the order of elements in the chain T of blocks,
3663 and return the new head of the chain (old last element). */
3664
3665 tree
3666 blocks_nreverse (tree t)
3667 {
3668 tree prev = 0, decl, next;
3669 for (decl = t; decl; decl = next)
3670 {
3671 next = BLOCK_CHAIN (decl);
3672 BLOCK_CHAIN (decl) = prev;
3673 prev = decl;
3674 }
3675 return prev;
3676 }
3677
3678 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3679 non-NULL, list them all into VECTOR, in a depth-first preorder
3680 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3681 blocks. */
3682
3683 static int
3684 all_blocks (tree block, tree *vector)
3685 {
3686 int n_blocks = 0;
3687
3688 while (block)
3689 {
3690 TREE_ASM_WRITTEN (block) = 0;
3691
3692 /* Record this block. */
3693 if (vector)
3694 vector[n_blocks] = block;
3695
3696 ++n_blocks;
3697
3698 /* Record the subblocks, and their subblocks... */
3699 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3700 vector ? vector + n_blocks : 0);
3701 block = BLOCK_CHAIN (block);
3702 }
3703
3704 return n_blocks;
3705 }
3706
3707 /* Return a vector containing all the blocks rooted at BLOCK. The
3708 number of elements in the vector is stored in N_BLOCKS_P. The
3709 vector is dynamically allocated; it is the caller's responsibility
3710 to call `free' on the pointer returned. */
3711
3712 static tree *
3713 get_block_vector (tree block, int *n_blocks_p)
3714 {
3715 tree *block_vector;
3716
3717 *n_blocks_p = all_blocks (block, NULL);
3718 block_vector = XNEWVEC (tree, *n_blocks_p);
3719 all_blocks (block, block_vector);
3720
3721 return block_vector;
3722 }
3723
3724 static GTY(()) int next_block_index = 2;
3725
3726 /* Set BLOCK_NUMBER for all the blocks in FN. */
3727
3728 void
3729 number_blocks (tree fn)
3730 {
3731 int i;
3732 int n_blocks;
3733 tree *block_vector;
3734
3735 /* For SDB and XCOFF debugging output, we start numbering the blocks
3736 from 1 within each function, rather than keeping a running
3737 count. */
3738 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3739 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3740 next_block_index = 1;
3741 #endif
3742
3743 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3744
3745 /* The top-level BLOCK isn't numbered at all. */
3746 for (i = 1; i < n_blocks; ++i)
3747 /* We number the blocks from two. */
3748 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3749
3750 free (block_vector);
3751
3752 return;
3753 }
3754
3755 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3756
3757 tree
3758 debug_find_var_in_block_tree (tree var, tree block)
3759 {
3760 tree t;
3761
3762 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3763 if (t == var)
3764 return block;
3765
3766 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3767 {
3768 tree ret = debug_find_var_in_block_tree (var, t);
3769 if (ret)
3770 return ret;
3771 }
3772
3773 return NULL_TREE;
3774 }
3775 \f
3776
3777 /* Return value of funcdef and increase it. */
3778 int
3779 get_next_funcdef_no(void)
3780 {
3781 return funcdef_no++;
3782 }
3783
3784 /* Allocate a function structure for FNDECL and set its contents
3785 to the defaults. */
3786
3787 void
3788 allocate_struct_function (tree fndecl)
3789 {
3790 tree result;
3791 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3792
3793 cfun = ggc_alloc_cleared (sizeof (struct function));
3794
3795 cfun->stack_alignment_needed = STACK_BOUNDARY;
3796 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3797
3798 current_function_funcdef_no = get_next_funcdef_no ();
3799
3800 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3801
3802 init_eh_for_function ();
3803
3804 lang_hooks.function.init (cfun);
3805 if (init_machine_status)
3806 cfun->machine = (*init_machine_status) ();
3807
3808 if (fndecl == NULL)
3809 return;
3810
3811 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3812 cfun->decl = fndecl;
3813
3814 result = DECL_RESULT (fndecl);
3815 if (aggregate_value_p (result, fndecl))
3816 {
3817 #ifdef PCC_STATIC_STRUCT_RETURN
3818 current_function_returns_pcc_struct = 1;
3819 #endif
3820 current_function_returns_struct = 1;
3821 }
3822
3823 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3824
3825 current_function_stdarg
3826 = (fntype
3827 && TYPE_ARG_TYPES (fntype) != 0
3828 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3829 != void_type_node));
3830
3831 /* Assume all registers in stdarg functions need to be saved. */
3832 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3833 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3834 }
3835
3836 /* Reset cfun, and other non-struct-function variables to defaults as
3837 appropriate for emitting rtl at the start of a function. */
3838
3839 static void
3840 prepare_function_start (tree fndecl)
3841 {
3842 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3843 cfun = DECL_STRUCT_FUNCTION (fndecl);
3844 else
3845 allocate_struct_function (fndecl);
3846 init_emit ();
3847 init_varasm_status (cfun);
3848 init_expr ();
3849
3850 cse_not_expected = ! optimize;
3851
3852 /* Caller save not needed yet. */
3853 caller_save_needed = 0;
3854
3855 /* We haven't done register allocation yet. */
3856 reg_renumber = 0;
3857
3858 /* Indicate that we have not instantiated virtual registers yet. */
3859 virtuals_instantiated = 0;
3860
3861 /* Indicate that we want CONCATs now. */
3862 generating_concat_p = 1;
3863
3864 /* Indicate we have no need of a frame pointer yet. */
3865 frame_pointer_needed = 0;
3866 }
3867
3868 /* Initialize the rtl expansion mechanism so that we can do simple things
3869 like generate sequences. This is used to provide a context during global
3870 initialization of some passes. */
3871 void
3872 init_dummy_function_start (void)
3873 {
3874 prepare_function_start (NULL);
3875 }
3876
3877 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3878 and initialize static variables for generating RTL for the statements
3879 of the function. */
3880
3881 void
3882 init_function_start (tree subr)
3883 {
3884 prepare_function_start (subr);
3885
3886 /* Prevent ever trying to delete the first instruction of a
3887 function. Also tell final how to output a linenum before the
3888 function prologue. Note linenums could be missing, e.g. when
3889 compiling a Java .class file. */
3890 if (! DECL_IS_BUILTIN (subr))
3891 emit_line_note (DECL_SOURCE_LOCATION (subr));
3892
3893 /* Make sure first insn is a note even if we don't want linenums.
3894 This makes sure the first insn will never be deleted.
3895 Also, final expects a note to appear there. */
3896 emit_note (NOTE_INSN_DELETED);
3897
3898 /* Warn if this value is an aggregate type,
3899 regardless of which calling convention we are using for it. */
3900 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3901 warning (OPT_Waggregate_return, "function returns an aggregate");
3902 }
3903
3904 /* Make sure all values used by the optimization passes have sane
3905 defaults. */
3906 unsigned int
3907 init_function_for_compilation (void)
3908 {
3909 reg_renumber = 0;
3910
3911 /* No prologue/epilogue insns yet. Make sure that these vectors are
3912 empty. */
3913 gcc_assert (VEC_length (int, prologue) == 0);
3914 gcc_assert (VEC_length (int, epilogue) == 0);
3915 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3916 return 0;
3917 }
3918
3919 struct tree_opt_pass pass_init_function =
3920 {
3921 NULL, /* name */
3922 NULL, /* gate */
3923 init_function_for_compilation, /* execute */
3924 NULL, /* sub */
3925 NULL, /* next */
3926 0, /* static_pass_number */
3927 0, /* tv_id */
3928 0, /* properties_required */
3929 0, /* properties_provided */
3930 0, /* properties_destroyed */
3931 0, /* todo_flags_start */
3932 0, /* todo_flags_finish */
3933 0 /* letter */
3934 };
3935
3936
3937 void
3938 expand_main_function (void)
3939 {
3940 #if (defined(INVOKE__main) \
3941 || (!defined(HAS_INIT_SECTION) \
3942 && !defined(INIT_SECTION_ASM_OP) \
3943 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3944 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3945 #endif
3946 }
3947 \f
3948 /* Expand code to initialize the stack_protect_guard. This is invoked at
3949 the beginning of a function to be protected. */
3950
3951 #ifndef HAVE_stack_protect_set
3952 # define HAVE_stack_protect_set 0
3953 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3954 #endif
3955
3956 void
3957 stack_protect_prologue (void)
3958 {
3959 tree guard_decl = targetm.stack_protect_guard ();
3960 rtx x, y;
3961
3962 /* Avoid expand_expr here, because we don't want guard_decl pulled
3963 into registers unless absolutely necessary. And we know that
3964 cfun->stack_protect_guard is a local stack slot, so this skips
3965 all the fluff. */
3966 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3967 y = validize_mem (DECL_RTL (guard_decl));
3968
3969 /* Allow the target to copy from Y to X without leaking Y into a
3970 register. */
3971 if (HAVE_stack_protect_set)
3972 {
3973 rtx insn = gen_stack_protect_set (x, y);
3974 if (insn)
3975 {
3976 emit_insn (insn);
3977 return;
3978 }
3979 }
3980
3981 /* Otherwise do a straight move. */
3982 emit_move_insn (x, y);
3983 }
3984
3985 /* Expand code to verify the stack_protect_guard. This is invoked at
3986 the end of a function to be protected. */
3987
3988 #ifndef HAVE_stack_protect_test
3989 # define HAVE_stack_protect_test 0
3990 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
3991 #endif
3992
3993 void
3994 stack_protect_epilogue (void)
3995 {
3996 tree guard_decl = targetm.stack_protect_guard ();
3997 rtx label = gen_label_rtx ();
3998 rtx x, y, tmp;
3999
4000 /* Avoid expand_expr here, because we don't want guard_decl pulled
4001 into registers unless absolutely necessary. And we know that
4002 cfun->stack_protect_guard is a local stack slot, so this skips
4003 all the fluff. */
4004 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4005 y = validize_mem (DECL_RTL (guard_decl));
4006
4007 /* Allow the target to compare Y with X without leaking either into
4008 a register. */
4009 switch (HAVE_stack_protect_test != 0)
4010 {
4011 case 1:
4012 tmp = gen_stack_protect_test (x, y, label);
4013 if (tmp)
4014 {
4015 emit_insn (tmp);
4016 break;
4017 }
4018 /* FALLTHRU */
4019
4020 default:
4021 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4022 break;
4023 }
4024
4025 /* The noreturn predictor has been moved to the tree level. The rtl-level
4026 predictors estimate this branch about 20%, which isn't enough to get
4027 things moved out of line. Since this is the only extant case of adding
4028 a noreturn function at the rtl level, it doesn't seem worth doing ought
4029 except adding the prediction by hand. */
4030 tmp = get_last_insn ();
4031 if (JUMP_P (tmp))
4032 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4033
4034 expand_expr_stmt (targetm.stack_protect_fail ());
4035 emit_label (label);
4036 }
4037 \f
4038 /* Start the RTL for a new function, and set variables used for
4039 emitting RTL.
4040 SUBR is the FUNCTION_DECL node.
4041 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4042 the function's parameters, which must be run at any return statement. */
4043
4044 void
4045 expand_function_start (tree subr)
4046 {
4047 /* Make sure volatile mem refs aren't considered
4048 valid operands of arithmetic insns. */
4049 init_recog_no_volatile ();
4050
4051 current_function_profile
4052 = (profile_flag
4053 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4054
4055 current_function_limit_stack
4056 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4057
4058 /* Make the label for return statements to jump to. Do not special
4059 case machines with special return instructions -- they will be
4060 handled later during jump, ifcvt, or epilogue creation. */
4061 return_label = gen_label_rtx ();
4062
4063 /* Initialize rtx used to return the value. */
4064 /* Do this before assign_parms so that we copy the struct value address
4065 before any library calls that assign parms might generate. */
4066
4067 /* Decide whether to return the value in memory or in a register. */
4068 if (aggregate_value_p (DECL_RESULT (subr), subr))
4069 {
4070 /* Returning something that won't go in a register. */
4071 rtx value_address = 0;
4072
4073 #ifdef PCC_STATIC_STRUCT_RETURN
4074 if (current_function_returns_pcc_struct)
4075 {
4076 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4077 value_address = assemble_static_space (size);
4078 }
4079 else
4080 #endif
4081 {
4082 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4083 /* Expect to be passed the address of a place to store the value.
4084 If it is passed as an argument, assign_parms will take care of
4085 it. */
4086 if (sv)
4087 {
4088 value_address = gen_reg_rtx (Pmode);
4089 emit_move_insn (value_address, sv);
4090 }
4091 }
4092 if (value_address)
4093 {
4094 rtx x = value_address;
4095 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4096 {
4097 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4098 set_mem_attributes (x, DECL_RESULT (subr), 1);
4099 }
4100 SET_DECL_RTL (DECL_RESULT (subr), x);
4101 }
4102 }
4103 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4104 /* If return mode is void, this decl rtl should not be used. */
4105 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4106 else
4107 {
4108 /* Compute the return values into a pseudo reg, which we will copy
4109 into the true return register after the cleanups are done. */
4110 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4111 if (TYPE_MODE (return_type) != BLKmode
4112 && targetm.calls.return_in_msb (return_type))
4113 /* expand_function_end will insert the appropriate padding in
4114 this case. Use the return value's natural (unpadded) mode
4115 within the function proper. */
4116 SET_DECL_RTL (DECL_RESULT (subr),
4117 gen_reg_rtx (TYPE_MODE (return_type)));
4118 else
4119 {
4120 /* In order to figure out what mode to use for the pseudo, we
4121 figure out what the mode of the eventual return register will
4122 actually be, and use that. */
4123 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4124
4125 /* Structures that are returned in registers are not
4126 aggregate_value_p, so we may see a PARALLEL or a REG. */
4127 if (REG_P (hard_reg))
4128 SET_DECL_RTL (DECL_RESULT (subr),
4129 gen_reg_rtx (GET_MODE (hard_reg)));
4130 else
4131 {
4132 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4133 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4134 }
4135 }
4136
4137 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4138 result to the real return register(s). */
4139 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4140 }
4141
4142 /* Initialize rtx for parameters and local variables.
4143 In some cases this requires emitting insns. */
4144 assign_parms (subr);
4145
4146 /* If function gets a static chain arg, store it. */
4147 if (cfun->static_chain_decl)
4148 {
4149 tree parm = cfun->static_chain_decl;
4150 rtx local = gen_reg_rtx (Pmode);
4151
4152 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4153 SET_DECL_RTL (parm, local);
4154 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4155
4156 emit_move_insn (local, static_chain_incoming_rtx);
4157 }
4158
4159 /* If the function receives a non-local goto, then store the
4160 bits we need to restore the frame pointer. */
4161 if (cfun->nonlocal_goto_save_area)
4162 {
4163 tree t_save;
4164 rtx r_save;
4165
4166 /* ??? We need to do this save early. Unfortunately here is
4167 before the frame variable gets declared. Help out... */
4168 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4169
4170 t_save = build4 (ARRAY_REF, ptr_type_node,
4171 cfun->nonlocal_goto_save_area,
4172 integer_zero_node, NULL_TREE, NULL_TREE);
4173 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4174 r_save = convert_memory_address (Pmode, r_save);
4175
4176 emit_move_insn (r_save, virtual_stack_vars_rtx);
4177 update_nonlocal_goto_save_area ();
4178 }
4179
4180 /* The following was moved from init_function_start.
4181 The move is supposed to make sdb output more accurate. */
4182 /* Indicate the beginning of the function body,
4183 as opposed to parm setup. */
4184 emit_note (NOTE_INSN_FUNCTION_BEG);
4185
4186 gcc_assert (NOTE_P (get_last_insn ()));
4187
4188 parm_birth_insn = get_last_insn ();
4189
4190 if (current_function_profile)
4191 {
4192 #ifdef PROFILE_HOOK
4193 PROFILE_HOOK (current_function_funcdef_no);
4194 #endif
4195 }
4196
4197 /* After the display initializations is where the stack checking
4198 probe should go. */
4199 if(flag_stack_check)
4200 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4201
4202 /* Make sure there is a line number after the function entry setup code. */
4203 force_next_line_note ();
4204 }
4205 \f
4206 /* Undo the effects of init_dummy_function_start. */
4207 void
4208 expand_dummy_function_end (void)
4209 {
4210 /* End any sequences that failed to be closed due to syntax errors. */
4211 while (in_sequence_p ())
4212 end_sequence ();
4213
4214 /* Outside function body, can't compute type's actual size
4215 until next function's body starts. */
4216
4217 free_after_parsing (cfun);
4218 free_after_compilation (cfun);
4219 cfun = 0;
4220 }
4221
4222 /* Call DOIT for each hard register used as a return value from
4223 the current function. */
4224
4225 void
4226 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4227 {
4228 rtx outgoing = current_function_return_rtx;
4229
4230 if (! outgoing)
4231 return;
4232
4233 if (REG_P (outgoing))
4234 (*doit) (outgoing, arg);
4235 else if (GET_CODE (outgoing) == PARALLEL)
4236 {
4237 int i;
4238
4239 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4240 {
4241 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4242
4243 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4244 (*doit) (x, arg);
4245 }
4246 }
4247 }
4248
4249 static void
4250 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4251 {
4252 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4253 }
4254
4255 void
4256 clobber_return_register (void)
4257 {
4258 diddle_return_value (do_clobber_return_reg, NULL);
4259
4260 /* In case we do use pseudo to return value, clobber it too. */
4261 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4262 {
4263 tree decl_result = DECL_RESULT (current_function_decl);
4264 rtx decl_rtl = DECL_RTL (decl_result);
4265 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4266 {
4267 do_clobber_return_reg (decl_rtl, NULL);
4268 }
4269 }
4270 }
4271
4272 static void
4273 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4274 {
4275 emit_insn (gen_rtx_USE (VOIDmode, reg));
4276 }
4277
4278 static void
4279 use_return_register (void)
4280 {
4281 diddle_return_value (do_use_return_reg, NULL);
4282 }
4283
4284 /* Possibly warn about unused parameters. */
4285 void
4286 do_warn_unused_parameter (tree fn)
4287 {
4288 tree decl;
4289
4290 for (decl = DECL_ARGUMENTS (fn);
4291 decl; decl = TREE_CHAIN (decl))
4292 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4293 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4294 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4295 }
4296
4297 static GTY(()) rtx initial_trampoline;
4298
4299 /* Generate RTL for the end of the current function. */
4300
4301 void
4302 expand_function_end (void)
4303 {
4304 rtx clobber_after;
4305
4306 /* If arg_pointer_save_area was referenced only from a nested
4307 function, we will not have initialized it yet. Do that now. */
4308 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4309 get_arg_pointer_save_area (cfun);
4310
4311 /* If we are doing stack checking and this function makes calls,
4312 do a stack probe at the start of the function to ensure we have enough
4313 space for another stack frame. */
4314 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4315 {
4316 rtx insn, seq;
4317
4318 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4319 if (CALL_P (insn))
4320 {
4321 start_sequence ();
4322 probe_stack_range (STACK_CHECK_PROTECT,
4323 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4324 seq = get_insns ();
4325 end_sequence ();
4326 emit_insn_before (seq, stack_check_probe_note);
4327 break;
4328 }
4329 }
4330
4331 /* Possibly warn about unused parameters.
4332 When frontend does unit-at-a-time, the warning is already
4333 issued at finalization time. */
4334 if (warn_unused_parameter
4335 && !lang_hooks.callgraph.expand_function)
4336 do_warn_unused_parameter (current_function_decl);
4337
4338 /* End any sequences that failed to be closed due to syntax errors. */
4339 while (in_sequence_p ())
4340 end_sequence ();
4341
4342 clear_pending_stack_adjust ();
4343 do_pending_stack_adjust ();
4344
4345 /* Output a linenumber for the end of the function.
4346 SDB depends on this. */
4347 force_next_line_note ();
4348 emit_line_note (input_location);
4349
4350 /* Before the return label (if any), clobber the return
4351 registers so that they are not propagated live to the rest of
4352 the function. This can only happen with functions that drop
4353 through; if there had been a return statement, there would
4354 have either been a return rtx, or a jump to the return label.
4355
4356 We delay actual code generation after the current_function_value_rtx
4357 is computed. */
4358 clobber_after = get_last_insn ();
4359
4360 /* Output the label for the actual return from the function. */
4361 emit_label (return_label);
4362
4363 if (USING_SJLJ_EXCEPTIONS)
4364 {
4365 /* Let except.c know where it should emit the call to unregister
4366 the function context for sjlj exceptions. */
4367 if (flag_exceptions)
4368 sjlj_emit_function_exit_after (get_last_insn ());
4369 }
4370 else
4371 {
4372 /* @@@ This is a kludge. We want to ensure that instructions that
4373 may trap are not moved into the epilogue by scheduling, because
4374 we don't always emit unwind information for the epilogue.
4375 However, not all machine descriptions define a blockage insn, so
4376 emit an ASM_INPUT to act as one. */
4377 if (flag_non_call_exceptions)
4378 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4379 }
4380
4381 /* If this is an implementation of throw, do what's necessary to
4382 communicate between __builtin_eh_return and the epilogue. */
4383 expand_eh_return ();
4384
4385 /* If scalar return value was computed in a pseudo-reg, or was a named
4386 return value that got dumped to the stack, copy that to the hard
4387 return register. */
4388 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4389 {
4390 tree decl_result = DECL_RESULT (current_function_decl);
4391 rtx decl_rtl = DECL_RTL (decl_result);
4392
4393 if (REG_P (decl_rtl)
4394 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4395 : DECL_REGISTER (decl_result))
4396 {
4397 rtx real_decl_rtl = current_function_return_rtx;
4398
4399 /* This should be set in assign_parms. */
4400 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4401
4402 /* If this is a BLKmode structure being returned in registers,
4403 then use the mode computed in expand_return. Note that if
4404 decl_rtl is memory, then its mode may have been changed,
4405 but that current_function_return_rtx has not. */
4406 if (GET_MODE (real_decl_rtl) == BLKmode)
4407 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4408
4409 /* If a non-BLKmode return value should be padded at the least
4410 significant end of the register, shift it left by the appropriate
4411 amount. BLKmode results are handled using the group load/store
4412 machinery. */
4413 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4414 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4415 {
4416 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4417 REGNO (real_decl_rtl)),
4418 decl_rtl);
4419 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4420 }
4421 /* If a named return value dumped decl_return to memory, then
4422 we may need to re-do the PROMOTE_MODE signed/unsigned
4423 extension. */
4424 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4425 {
4426 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4427
4428 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4429 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4430 &unsignedp, 1);
4431
4432 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4433 }
4434 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4435 {
4436 /* If expand_function_start has created a PARALLEL for decl_rtl,
4437 move the result to the real return registers. Otherwise, do
4438 a group load from decl_rtl for a named return. */
4439 if (GET_CODE (decl_rtl) == PARALLEL)
4440 emit_group_move (real_decl_rtl, decl_rtl);
4441 else
4442 emit_group_load (real_decl_rtl, decl_rtl,
4443 TREE_TYPE (decl_result),
4444 int_size_in_bytes (TREE_TYPE (decl_result)));
4445 }
4446 /* In the case of complex integer modes smaller than a word, we'll
4447 need to generate some non-trivial bitfield insertions. Do that
4448 on a pseudo and not the hard register. */
4449 else if (GET_CODE (decl_rtl) == CONCAT
4450 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4451 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4452 {
4453 int old_generating_concat_p;
4454 rtx tmp;
4455
4456 old_generating_concat_p = generating_concat_p;
4457 generating_concat_p = 0;
4458 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4459 generating_concat_p = old_generating_concat_p;
4460
4461 emit_move_insn (tmp, decl_rtl);
4462 emit_move_insn (real_decl_rtl, tmp);
4463 }
4464 else
4465 emit_move_insn (real_decl_rtl, decl_rtl);
4466 }
4467 }
4468
4469 /* If returning a structure, arrange to return the address of the value
4470 in a place where debuggers expect to find it.
4471
4472 If returning a structure PCC style,
4473 the caller also depends on this value.
4474 And current_function_returns_pcc_struct is not necessarily set. */
4475 if (current_function_returns_struct
4476 || current_function_returns_pcc_struct)
4477 {
4478 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4479 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4480 rtx outgoing;
4481
4482 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4483 type = TREE_TYPE (type);
4484 else
4485 value_address = XEXP (value_address, 0);
4486
4487 outgoing = targetm.calls.function_value (build_pointer_type (type),
4488 current_function_decl, true);
4489
4490 /* Mark this as a function return value so integrate will delete the
4491 assignment and USE below when inlining this function. */
4492 REG_FUNCTION_VALUE_P (outgoing) = 1;
4493
4494 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4495 value_address = convert_memory_address (GET_MODE (outgoing),
4496 value_address);
4497
4498 emit_move_insn (outgoing, value_address);
4499
4500 /* Show return register used to hold result (in this case the address
4501 of the result. */
4502 current_function_return_rtx = outgoing;
4503 }
4504
4505 /* Emit the actual code to clobber return register. */
4506 {
4507 rtx seq;
4508
4509 start_sequence ();
4510 clobber_return_register ();
4511 expand_naked_return ();
4512 seq = get_insns ();
4513 end_sequence ();
4514
4515 emit_insn_after (seq, clobber_after);
4516 }
4517
4518 /* Output the label for the naked return from the function. */
4519 emit_label (naked_return_label);
4520
4521 /* If stack protection is enabled for this function, check the guard. */
4522 if (cfun->stack_protect_guard)
4523 stack_protect_epilogue ();
4524
4525 /* If we had calls to alloca, and this machine needs
4526 an accurate stack pointer to exit the function,
4527 insert some code to save and restore the stack pointer. */
4528 if (! EXIT_IGNORE_STACK
4529 && current_function_calls_alloca)
4530 {
4531 rtx tem = 0;
4532
4533 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4534 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4535 }
4536
4537 /* ??? This should no longer be necessary since stupid is no longer with
4538 us, but there are some parts of the compiler (eg reload_combine, and
4539 sh mach_dep_reorg) that still try and compute their own lifetime info
4540 instead of using the general framework. */
4541 use_return_register ();
4542 }
4543
4544 rtx
4545 get_arg_pointer_save_area (struct function *f)
4546 {
4547 rtx ret = f->x_arg_pointer_save_area;
4548
4549 if (! ret)
4550 {
4551 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4552 f->x_arg_pointer_save_area = ret;
4553 }
4554
4555 if (f == cfun && ! f->arg_pointer_save_area_init)
4556 {
4557 rtx seq;
4558
4559 /* Save the arg pointer at the beginning of the function. The
4560 generated stack slot may not be a valid memory address, so we
4561 have to check it and fix it if necessary. */
4562 start_sequence ();
4563 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4564 seq = get_insns ();
4565 end_sequence ();
4566
4567 push_topmost_sequence ();
4568 emit_insn_after (seq, entry_of_function ());
4569 pop_topmost_sequence ();
4570 }
4571
4572 return ret;
4573 }
4574 \f
4575 /* Extend a vector that records the INSN_UIDs of INSNS
4576 (a list of one or more insns). */
4577
4578 static void
4579 record_insns (rtx insns, VEC(int,heap) **vecp)
4580 {
4581 rtx tmp;
4582
4583 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4584 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4585 }
4586
4587 /* Set the locator of the insn chain starting at INSN to LOC. */
4588 static void
4589 set_insn_locators (rtx insn, int loc)
4590 {
4591 while (insn != NULL_RTX)
4592 {
4593 if (INSN_P (insn))
4594 INSN_LOCATOR (insn) = loc;
4595 insn = NEXT_INSN (insn);
4596 }
4597 }
4598
4599 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4600 be running after reorg, SEQUENCE rtl is possible. */
4601
4602 static int
4603 contains (rtx insn, VEC(int,heap) **vec)
4604 {
4605 int i, j;
4606
4607 if (NONJUMP_INSN_P (insn)
4608 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4609 {
4610 int count = 0;
4611 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4612 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4613 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4614 == VEC_index (int, *vec, j))
4615 count++;
4616 return count;
4617 }
4618 else
4619 {
4620 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4621 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4622 return 1;
4623 }
4624 return 0;
4625 }
4626
4627 int
4628 prologue_epilogue_contains (rtx insn)
4629 {
4630 if (contains (insn, &prologue))
4631 return 1;
4632 if (contains (insn, &epilogue))
4633 return 1;
4634 return 0;
4635 }
4636
4637 int
4638 sibcall_epilogue_contains (rtx insn)
4639 {
4640 if (sibcall_epilogue)
4641 return contains (insn, &sibcall_epilogue);
4642 return 0;
4643 }
4644
4645 #ifdef HAVE_return
4646 /* Insert gen_return at the end of block BB. This also means updating
4647 block_for_insn appropriately. */
4648
4649 static void
4650 emit_return_into_block (basic_block bb)
4651 {
4652 emit_jump_insn_after (gen_return (), BB_END (bb));
4653 }
4654 #endif /* HAVE_return */
4655
4656 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4657
4658 /* These functions convert the epilogue into a variant that does not
4659 modify the stack pointer. This is used in cases where a function
4660 returns an object whose size is not known until it is computed.
4661 The called function leaves the object on the stack, leaves the
4662 stack depressed, and returns a pointer to the object.
4663
4664 What we need to do is track all modifications and references to the
4665 stack pointer, deleting the modifications and changing the
4666 references to point to the location the stack pointer would have
4667 pointed to had the modifications taken place.
4668
4669 These functions need to be portable so we need to make as few
4670 assumptions about the epilogue as we can. However, the epilogue
4671 basically contains three things: instructions to reset the stack
4672 pointer, instructions to reload registers, possibly including the
4673 frame pointer, and an instruction to return to the caller.
4674
4675 We must be sure of what a relevant epilogue insn is doing. We also
4676 make no attempt to validate the insns we make since if they are
4677 invalid, we probably can't do anything valid. The intent is that
4678 these routines get "smarter" as more and more machines start to use
4679 them and they try operating on different epilogues.
4680
4681 We use the following structure to track what the part of the
4682 epilogue that we've already processed has done. We keep two copies
4683 of the SP equivalence, one for use during the insn we are
4684 processing and one for use in the next insn. The difference is
4685 because one part of a PARALLEL may adjust SP and the other may use
4686 it. */
4687
4688 struct epi_info
4689 {
4690 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4691 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4692 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4693 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4694 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4695 should be set to once we no longer need
4696 its value. */
4697 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4698 for registers. */
4699 };
4700
4701 static void handle_epilogue_set (rtx, struct epi_info *);
4702 static void update_epilogue_consts (rtx, rtx, void *);
4703 static void emit_equiv_load (struct epi_info *);
4704
4705 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4706 no modifications to the stack pointer. Return the new list of insns. */
4707
4708 static rtx
4709 keep_stack_depressed (rtx insns)
4710 {
4711 int j;
4712 struct epi_info info;
4713 rtx insn, next;
4714
4715 /* If the epilogue is just a single instruction, it must be OK as is. */
4716 if (NEXT_INSN (insns) == NULL_RTX)
4717 return insns;
4718
4719 /* Otherwise, start a sequence, initialize the information we have, and
4720 process all the insns we were given. */
4721 start_sequence ();
4722
4723 info.sp_equiv_reg = stack_pointer_rtx;
4724 info.sp_offset = 0;
4725 info.equiv_reg_src = 0;
4726
4727 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4728 info.const_equiv[j] = 0;
4729
4730 insn = insns;
4731 next = NULL_RTX;
4732 while (insn != NULL_RTX)
4733 {
4734 next = NEXT_INSN (insn);
4735
4736 if (!INSN_P (insn))
4737 {
4738 add_insn (insn);
4739 insn = next;
4740 continue;
4741 }
4742
4743 /* If this insn references the register that SP is equivalent to and
4744 we have a pending load to that register, we must force out the load
4745 first and then indicate we no longer know what SP's equivalent is. */
4746 if (info.equiv_reg_src != 0
4747 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4748 {
4749 emit_equiv_load (&info);
4750 info.sp_equiv_reg = 0;
4751 }
4752
4753 info.new_sp_equiv_reg = info.sp_equiv_reg;
4754 info.new_sp_offset = info.sp_offset;
4755
4756 /* If this is a (RETURN) and the return address is on the stack,
4757 update the address and change to an indirect jump. */
4758 if (GET_CODE (PATTERN (insn)) == RETURN
4759 || (GET_CODE (PATTERN (insn)) == PARALLEL
4760 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4761 {
4762 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4763 rtx base = 0;
4764 HOST_WIDE_INT offset = 0;
4765 rtx jump_insn, jump_set;
4766
4767 /* If the return address is in a register, we can emit the insn
4768 unchanged. Otherwise, it must be a MEM and we see what the
4769 base register and offset are. In any case, we have to emit any
4770 pending load to the equivalent reg of SP, if any. */
4771 if (REG_P (retaddr))
4772 {
4773 emit_equiv_load (&info);
4774 add_insn (insn);
4775 insn = next;
4776 continue;
4777 }
4778 else
4779 {
4780 rtx ret_ptr;
4781 gcc_assert (MEM_P (retaddr));
4782
4783 ret_ptr = XEXP (retaddr, 0);
4784
4785 if (REG_P (ret_ptr))
4786 {
4787 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4788 offset = 0;
4789 }
4790 else
4791 {
4792 gcc_assert (GET_CODE (ret_ptr) == PLUS
4793 && REG_P (XEXP (ret_ptr, 0))
4794 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4795 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4796 offset = INTVAL (XEXP (ret_ptr, 1));
4797 }
4798 }
4799
4800 /* If the base of the location containing the return pointer
4801 is SP, we must update it with the replacement address. Otherwise,
4802 just build the necessary MEM. */
4803 retaddr = plus_constant (base, offset);
4804 if (base == stack_pointer_rtx)
4805 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4806 plus_constant (info.sp_equiv_reg,
4807 info.sp_offset));
4808
4809 retaddr = gen_rtx_MEM (Pmode, retaddr);
4810 MEM_NOTRAP_P (retaddr) = 1;
4811
4812 /* If there is a pending load to the equivalent register for SP
4813 and we reference that register, we must load our address into
4814 a scratch register and then do that load. */
4815 if (info.equiv_reg_src
4816 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4817 {
4818 unsigned int regno;
4819 rtx reg;
4820
4821 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4822 if (HARD_REGNO_MODE_OK (regno, Pmode)
4823 && !fixed_regs[regno]
4824 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4825 && !REGNO_REG_SET_P
4826 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4827 && !refers_to_regno_p (regno,
4828 regno + hard_regno_nregs[regno]
4829 [Pmode],
4830 info.equiv_reg_src, NULL)
4831 && info.const_equiv[regno] == 0)
4832 break;
4833
4834 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4835
4836 reg = gen_rtx_REG (Pmode, regno);
4837 emit_move_insn (reg, retaddr);
4838 retaddr = reg;
4839 }
4840
4841 emit_equiv_load (&info);
4842 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4843
4844 /* Show the SET in the above insn is a RETURN. */
4845 jump_set = single_set (jump_insn);
4846 gcc_assert (jump_set);
4847 SET_IS_RETURN_P (jump_set) = 1;
4848 }
4849
4850 /* If SP is not mentioned in the pattern and its equivalent register, if
4851 any, is not modified, just emit it. Otherwise, if neither is set,
4852 replace the reference to SP and emit the insn. If none of those are
4853 true, handle each SET individually. */
4854 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4855 && (info.sp_equiv_reg == stack_pointer_rtx
4856 || !reg_set_p (info.sp_equiv_reg, insn)))
4857 add_insn (insn);
4858 else if (! reg_set_p (stack_pointer_rtx, insn)
4859 && (info.sp_equiv_reg == stack_pointer_rtx
4860 || !reg_set_p (info.sp_equiv_reg, insn)))
4861 {
4862 int changed;
4863
4864 changed = validate_replace_rtx (stack_pointer_rtx,
4865 plus_constant (info.sp_equiv_reg,
4866 info.sp_offset),
4867 insn);
4868 gcc_assert (changed);
4869
4870 add_insn (insn);
4871 }
4872 else if (GET_CODE (PATTERN (insn)) == SET)
4873 handle_epilogue_set (PATTERN (insn), &info);
4874 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4875 {
4876 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4877 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4878 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4879 }
4880 else
4881 add_insn (insn);
4882
4883 info.sp_equiv_reg = info.new_sp_equiv_reg;
4884 info.sp_offset = info.new_sp_offset;
4885
4886 /* Now update any constants this insn sets. */
4887 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4888 insn = next;
4889 }
4890
4891 insns = get_insns ();
4892 end_sequence ();
4893 return insns;
4894 }
4895
4896 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4897 structure that contains information about what we've seen so far. We
4898 process this SET by either updating that data or by emitting one or
4899 more insns. */
4900
4901 static void
4902 handle_epilogue_set (rtx set, struct epi_info *p)
4903 {
4904 /* First handle the case where we are setting SP. Record what it is being
4905 set from, which we must be able to determine */
4906 if (reg_set_p (stack_pointer_rtx, set))
4907 {
4908 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4909
4910 if (GET_CODE (SET_SRC (set)) == PLUS)
4911 {
4912 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4913 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4914 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4915 else
4916 {
4917 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4918 && (REGNO (XEXP (SET_SRC (set), 1))
4919 < FIRST_PSEUDO_REGISTER)
4920 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4921 p->new_sp_offset
4922 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4923 }
4924 }
4925 else
4926 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4927
4928 /* If we are adjusting SP, we adjust from the old data. */
4929 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4930 {
4931 p->new_sp_equiv_reg = p->sp_equiv_reg;
4932 p->new_sp_offset += p->sp_offset;
4933 }
4934
4935 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4936
4937 return;
4938 }
4939
4940 /* Next handle the case where we are setting SP's equivalent
4941 register. We must not already have a value to set it to. We
4942 could update, but there seems little point in handling that case.
4943 Note that we have to allow for the case where we are setting the
4944 register set in the previous part of a PARALLEL inside a single
4945 insn. But use the old offset for any updates within this insn.
4946 We must allow for the case where the register is being set in a
4947 different (usually wider) mode than Pmode). */
4948 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4949 {
4950 gcc_assert (!p->equiv_reg_src
4951 && REG_P (p->new_sp_equiv_reg)
4952 && REG_P (SET_DEST (set))
4953 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4954 <= BITS_PER_WORD)
4955 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4956 p->equiv_reg_src
4957 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4958 plus_constant (p->sp_equiv_reg,
4959 p->sp_offset));
4960 }
4961
4962 /* Otherwise, replace any references to SP in the insn to its new value
4963 and emit the insn. */
4964 else
4965 {
4966 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4967 plus_constant (p->sp_equiv_reg,
4968 p->sp_offset));
4969 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4970 plus_constant (p->sp_equiv_reg,
4971 p->sp_offset));
4972 emit_insn (set);
4973 }
4974 }
4975
4976 /* Update the tracking information for registers set to constants. */
4977
4978 static void
4979 update_epilogue_consts (rtx dest, rtx x, void *data)
4980 {
4981 struct epi_info *p = (struct epi_info *) data;
4982 rtx new;
4983
4984 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4985 return;
4986
4987 /* If we are either clobbering a register or doing a partial set,
4988 show we don't know the value. */
4989 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4990 p->const_equiv[REGNO (dest)] = 0;
4991
4992 /* If we are setting it to a constant, record that constant. */
4993 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4994 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4995
4996 /* If this is a binary operation between a register we have been tracking
4997 and a constant, see if we can compute a new constant value. */
4998 else if (ARITHMETIC_P (SET_SRC (x))
4999 && REG_P (XEXP (SET_SRC (x), 0))
5000 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5001 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5002 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5003 && 0 != (new = simplify_binary_operation
5004 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5005 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5006 XEXP (SET_SRC (x), 1)))
5007 && GET_CODE (new) == CONST_INT)
5008 p->const_equiv[REGNO (dest)] = new;
5009
5010 /* Otherwise, we can't do anything with this value. */
5011 else
5012 p->const_equiv[REGNO (dest)] = 0;
5013 }
5014
5015 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5016
5017 static void
5018 emit_equiv_load (struct epi_info *p)
5019 {
5020 if (p->equiv_reg_src != 0)
5021 {
5022 rtx dest = p->sp_equiv_reg;
5023
5024 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5025 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5026 REGNO (p->sp_equiv_reg));
5027
5028 emit_move_insn (dest, p->equiv_reg_src);
5029 p->equiv_reg_src = 0;
5030 }
5031 }
5032 #endif
5033
5034 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5035 this into place with notes indicating where the prologue ends and where
5036 the epilogue begins. Update the basic block information when possible. */
5037
5038 void
5039 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5040 {
5041 int inserted = 0;
5042 edge e;
5043 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5044 rtx seq;
5045 #endif
5046 #ifdef HAVE_prologue
5047 rtx prologue_end = NULL_RTX;
5048 #endif
5049 #if defined (HAVE_epilogue) || defined(HAVE_return)
5050 rtx epilogue_end = NULL_RTX;
5051 #endif
5052 edge_iterator ei;
5053
5054 #ifdef HAVE_prologue
5055 if (HAVE_prologue)
5056 {
5057 start_sequence ();
5058 seq = gen_prologue ();
5059 emit_insn (seq);
5060
5061 /* Retain a map of the prologue insns. */
5062 record_insns (seq, &prologue);
5063 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5064
5065 seq = get_insns ();
5066 end_sequence ();
5067 set_insn_locators (seq, prologue_locator);
5068
5069 /* Can't deal with multiple successors of the entry block
5070 at the moment. Function should always have at least one
5071 entry point. */
5072 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5073
5074 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5075 inserted = 1;
5076 }
5077 #endif
5078
5079 /* If the exit block has no non-fake predecessors, we don't need
5080 an epilogue. */
5081 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5082 if ((e->flags & EDGE_FAKE) == 0)
5083 break;
5084 if (e == NULL)
5085 goto epilogue_done;
5086
5087 #ifdef HAVE_return
5088 if (optimize && HAVE_return)
5089 {
5090 /* If we're allowed to generate a simple return instruction,
5091 then by definition we don't need a full epilogue. Examine
5092 the block that falls through to EXIT. If it does not
5093 contain any code, examine its predecessors and try to
5094 emit (conditional) return instructions. */
5095
5096 basic_block last;
5097 rtx label;
5098
5099 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5100 if (e->flags & EDGE_FALLTHRU)
5101 break;
5102 if (e == NULL)
5103 goto epilogue_done;
5104 last = e->src;
5105
5106 /* Verify that there are no active instructions in the last block. */
5107 label = BB_END (last);
5108 while (label && !LABEL_P (label))
5109 {
5110 if (active_insn_p (label))
5111 break;
5112 label = PREV_INSN (label);
5113 }
5114
5115 if (BB_HEAD (last) == label && LABEL_P (label))
5116 {
5117 edge_iterator ei2;
5118
5119 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5120 {
5121 basic_block bb = e->src;
5122 rtx jump;
5123
5124 if (bb == ENTRY_BLOCK_PTR)
5125 {
5126 ei_next (&ei2);
5127 continue;
5128 }
5129
5130 jump = BB_END (bb);
5131 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5132 {
5133 ei_next (&ei2);
5134 continue;
5135 }
5136
5137 /* If we have an unconditional jump, we can replace that
5138 with a simple return instruction. */
5139 if (simplejump_p (jump))
5140 {
5141 emit_return_into_block (bb);
5142 delete_insn (jump);
5143 }
5144
5145 /* If we have a conditional jump, we can try to replace
5146 that with a conditional return instruction. */
5147 else if (condjump_p (jump))
5148 {
5149 if (! redirect_jump (jump, 0, 0))
5150 {
5151 ei_next (&ei2);
5152 continue;
5153 }
5154
5155 /* If this block has only one successor, it both jumps
5156 and falls through to the fallthru block, so we can't
5157 delete the edge. */
5158 if (single_succ_p (bb))
5159 {
5160 ei_next (&ei2);
5161 continue;
5162 }
5163 }
5164 else
5165 {
5166 ei_next (&ei2);
5167 continue;
5168 }
5169
5170 /* Fix up the CFG for the successful change we just made. */
5171 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5172 }
5173
5174 /* Emit a return insn for the exit fallthru block. Whether
5175 this is still reachable will be determined later. */
5176
5177 emit_barrier_after (BB_END (last));
5178 emit_return_into_block (last);
5179 epilogue_end = BB_END (last);
5180 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5181 goto epilogue_done;
5182 }
5183 }
5184 #endif
5185 /* Find the edge that falls through to EXIT. Other edges may exist
5186 due to RETURN instructions, but those don't need epilogues.
5187 There really shouldn't be a mixture -- either all should have
5188 been converted or none, however... */
5189
5190 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5191 if (e->flags & EDGE_FALLTHRU)
5192 break;
5193 if (e == NULL)
5194 goto epilogue_done;
5195
5196 #ifdef HAVE_epilogue
5197 if (HAVE_epilogue)
5198 {
5199 start_sequence ();
5200 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5201
5202 seq = gen_epilogue ();
5203
5204 #ifdef INCOMING_RETURN_ADDR_RTX
5205 /* If this function returns with the stack depressed and we can support
5206 it, massage the epilogue to actually do that. */
5207 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5208 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5209 seq = keep_stack_depressed (seq);
5210 #endif
5211
5212 emit_jump_insn (seq);
5213
5214 /* Retain a map of the epilogue insns. */
5215 record_insns (seq, &epilogue);
5216 set_insn_locators (seq, epilogue_locator);
5217
5218 seq = get_insns ();
5219 end_sequence ();
5220
5221 insert_insn_on_edge (seq, e);
5222 inserted = 1;
5223 }
5224 else
5225 #endif
5226 {
5227 basic_block cur_bb;
5228
5229 if (! next_active_insn (BB_END (e->src)))
5230 goto epilogue_done;
5231 /* We have a fall-through edge to the exit block, the source is not
5232 at the end of the function, and there will be an assembler epilogue
5233 at the end of the function.
5234 We can't use force_nonfallthru here, because that would try to
5235 use return. Inserting a jump 'by hand' is extremely messy, so
5236 we take advantage of cfg_layout_finalize using
5237 fixup_fallthru_exit_predecessor. */
5238 cfg_layout_initialize (0);
5239 FOR_EACH_BB (cur_bb)
5240 if (cur_bb->index >= NUM_FIXED_BLOCKS
5241 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5242 cur_bb->aux = cur_bb->next_bb;
5243 cfg_layout_finalize ();
5244 }
5245 epilogue_done:
5246
5247 if (inserted)
5248 commit_edge_insertions ();
5249
5250 #ifdef HAVE_sibcall_epilogue
5251 /* Emit sibling epilogues before any sibling call sites. */
5252 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5253 {
5254 basic_block bb = e->src;
5255 rtx insn = BB_END (bb);
5256
5257 if (!CALL_P (insn)
5258 || ! SIBLING_CALL_P (insn))
5259 {
5260 ei_next (&ei);
5261 continue;
5262 }
5263
5264 start_sequence ();
5265 emit_insn (gen_sibcall_epilogue ());
5266 seq = get_insns ();
5267 end_sequence ();
5268
5269 /* Retain a map of the epilogue insns. Used in life analysis to
5270 avoid getting rid of sibcall epilogue insns. Do this before we
5271 actually emit the sequence. */
5272 record_insns (seq, &sibcall_epilogue);
5273 set_insn_locators (seq, epilogue_locator);
5274
5275 emit_insn_before (seq, insn);
5276 ei_next (&ei);
5277 }
5278 #endif
5279
5280 #ifdef HAVE_epilogue
5281 if (epilogue_end)
5282 {
5283 rtx insn, next;
5284
5285 /* Similarly, move any line notes that appear after the epilogue.
5286 There is no need, however, to be quite so anal about the existence
5287 of such a note. Also possibly move
5288 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5289 info generation. */
5290 for (insn = epilogue_end; insn; insn = next)
5291 {
5292 next = NEXT_INSN (insn);
5293 if (NOTE_P (insn)
5294 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG))
5295 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5296 }
5297 }
5298 #endif
5299 }
5300
5301 /* Reposition the prologue-end and epilogue-begin notes after instruction
5302 scheduling and delayed branch scheduling. */
5303
5304 void
5305 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5306 {
5307 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5308 rtx insn, last, note;
5309 int len;
5310
5311 if ((len = VEC_length (int, prologue)) > 0)
5312 {
5313 last = 0, note = 0;
5314
5315 /* Scan from the beginning until we reach the last prologue insn.
5316 We apparently can't depend on basic_block_{head,end} after
5317 reorg has run. */
5318 for (insn = f; insn; insn = NEXT_INSN (insn))
5319 {
5320 if (NOTE_P (insn))
5321 {
5322 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5323 note = insn;
5324 }
5325 else if (contains (insn, &prologue))
5326 {
5327 last = insn;
5328 if (--len == 0)
5329 break;
5330 }
5331 }
5332
5333 if (last)
5334 {
5335 /* Find the prologue-end note if we haven't already, and
5336 move it to just after the last prologue insn. */
5337 if (note == 0)
5338 {
5339 for (note = last; (note = NEXT_INSN (note));)
5340 if (NOTE_P (note)
5341 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5342 break;
5343 }
5344
5345 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5346 if (LABEL_P (last))
5347 last = NEXT_INSN (last);
5348 reorder_insns (note, note, last);
5349 }
5350 }
5351
5352 if ((len = VEC_length (int, epilogue)) > 0)
5353 {
5354 last = 0, note = 0;
5355
5356 /* Scan from the end until we reach the first epilogue insn.
5357 We apparently can't depend on basic_block_{head,end} after
5358 reorg has run. */
5359 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5360 {
5361 if (NOTE_P (insn))
5362 {
5363 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5364 note = insn;
5365 }
5366 else if (contains (insn, &epilogue))
5367 {
5368 last = insn;
5369 if (--len == 0)
5370 break;
5371 }
5372 }
5373
5374 if (last)
5375 {
5376 /* Find the epilogue-begin note if we haven't already, and
5377 move it to just before the first epilogue insn. */
5378 if (note == 0)
5379 {
5380 for (note = insn; (note = PREV_INSN (note));)
5381 if (NOTE_P (note)
5382 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5383 break;
5384 }
5385
5386 if (PREV_INSN (last) != note)
5387 reorder_insns (note, note, PREV_INSN (last));
5388 }
5389 }
5390 #endif /* HAVE_prologue or HAVE_epilogue */
5391 }
5392
5393 /* Resets insn_block_boundaries array. */
5394
5395 void
5396 reset_block_changes (void)
5397 {
5398 cfun->ib_boundaries_block = VEC_alloc (tree, gc, 100);
5399 VEC_quick_push (tree, cfun->ib_boundaries_block, NULL_TREE);
5400 }
5401
5402 /* Record the boundary for BLOCK. */
5403 void
5404 record_block_change (tree block)
5405 {
5406 int i, n;
5407 tree last_block;
5408
5409 if (!block)
5410 return;
5411
5412 if(!cfun->ib_boundaries_block)
5413 return;
5414
5415 last_block = VEC_pop (tree, cfun->ib_boundaries_block);
5416 n = get_max_uid ();
5417 for (i = VEC_length (tree, cfun->ib_boundaries_block); i < n; i++)
5418 VEC_safe_push (tree, gc, cfun->ib_boundaries_block, last_block);
5419
5420 VEC_safe_push (tree, gc, cfun->ib_boundaries_block, block);
5421 }
5422
5423 /* Finishes record of boundaries. */
5424 void
5425 finalize_block_changes (void)
5426 {
5427 record_block_change (DECL_INITIAL (current_function_decl));
5428 }
5429
5430 /* For INSN return the BLOCK it belongs to. */
5431 void
5432 check_block_change (rtx insn, tree *block)
5433 {
5434 unsigned uid = INSN_UID (insn);
5435
5436 if (uid >= VEC_length (tree, cfun->ib_boundaries_block))
5437 return;
5438
5439 *block = VEC_index (tree, cfun->ib_boundaries_block, uid);
5440 }
5441
5442 /* Releases the ib_boundaries_block records. */
5443 void
5444 free_block_changes (void)
5445 {
5446 VEC_free (tree, gc, cfun->ib_boundaries_block);
5447 }
5448
5449 /* Returns the name of the current function. */
5450 const char *
5451 current_function_name (void)
5452 {
5453 return lang_hooks.decl_printable_name (cfun->decl, 2);
5454 }
5455 \f
5456
5457 static unsigned int
5458 rest_of_handle_check_leaf_regs (void)
5459 {
5460 #ifdef LEAF_REGISTERS
5461 current_function_uses_only_leaf_regs
5462 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5463 #endif
5464 return 0;
5465 }
5466
5467 /* Insert a TYPE into the used types hash table of CFUN. */
5468 static void
5469 used_types_insert_helper (tree type, struct function *func)
5470 {
5471 if (type != NULL && func != NULL)
5472 {
5473 void **slot;
5474
5475 if (func->used_types_hash == NULL)
5476 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5477 htab_eq_pointer, NULL);
5478 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5479 if (*slot == NULL)
5480 *slot = type;
5481 }
5482 }
5483
5484 /* Given a type, insert it into the used hash table in cfun. */
5485 void
5486 used_types_insert (tree t)
5487 {
5488 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5489 t = TREE_TYPE (t);
5490 t = TYPE_MAIN_VARIANT (t);
5491 if (debug_info_level > DINFO_LEVEL_NONE)
5492 used_types_insert_helper (t, cfun);
5493 }
5494
5495 struct tree_opt_pass pass_leaf_regs =
5496 {
5497 NULL, /* name */
5498 NULL, /* gate */
5499 rest_of_handle_check_leaf_regs, /* execute */
5500 NULL, /* sub */
5501 NULL, /* next */
5502 0, /* static_pass_number */
5503 0, /* tv_id */
5504 0, /* properties_required */
5505 0, /* properties_provided */
5506 0, /* properties_destroyed */
5507 0, /* todo_flags_start */
5508 0, /* todo_flags_finish */
5509 0 /* letter */
5510 };
5511
5512
5513 #include "gt-function.h"