20020201-1.c: Remove declarations for exit, abort, rand, srand.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "langhooks.h"
58 #include "target.h"
59 #include "common/common-target.h"
60 #include "gimple.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "vecprim.h"
65 #include "params.h"
66 #include "bb-reorder.h"
67
68 /* So we can assign to cfun in this file. */
69 #undef cfun
70
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
74
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
76
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
84
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
89
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
93
94 /* Nonzero once virtual register instantiation has been done.
95 assign_stack_local uses frame_pointer_rtx when this is nonzero.
96 calls.c:emit_library_call_value_1 uses it to set up
97 post-instantiation libcalls. */
98 int virtuals_instantiated;
99
100 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
101 static GTY(()) int funcdef_no;
102
103 /* These variables hold pointers to functions to create and destroy
104 target specific, per-function data structures. */
105 struct machine_function * (*init_machine_status) (void);
106
107 /* The currently compiled function. */
108 struct function *cfun = 0;
109
110 /* These hashes record the prologue and epilogue insns. */
111 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
112 htab_t prologue_insn_hash;
113 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
114 htab_t epilogue_insn_hash;
115 \f
116
117 htab_t types_used_by_vars_hash = NULL;
118 VEC(tree,gc) *types_used_by_cur_var_decl;
119
120 /* Forward declarations. */
121
122 static struct temp_slot *find_temp_slot_from_address (rtx);
123 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
124 static void pad_below (struct args_size *, enum machine_mode, tree);
125 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
126 static int all_blocks (tree, tree *);
127 static tree *get_block_vector (tree, int *);
128 extern tree debug_find_var_in_block_tree (tree, tree);
129 /* We always define `record_insns' even if it's not used so that we
130 can always export `prologue_epilogue_contains'. */
131 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
132 static bool contains (const_rtx, htab_t);
133 static void prepare_function_start (void);
134 static void do_clobber_return_reg (rtx, void *);
135 static void do_use_return_reg (rtx, void *);
136 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
137 \f
138 /* Stack of nested functions. */
139 /* Keep track of the cfun stack. */
140
141 typedef struct function *function_p;
142
143 DEF_VEC_P(function_p);
144 DEF_VEC_ALLOC_P(function_p,heap);
145 static VEC(function_p,heap) *function_context_stack;
146
147 /* Save the current context for compilation of a nested function.
148 This is called from language-specific code. */
149
150 void
151 push_function_context (void)
152 {
153 if (cfun == 0)
154 allocate_struct_function (NULL, false);
155
156 VEC_safe_push (function_p, heap, function_context_stack, cfun);
157 set_cfun (NULL);
158 }
159
160 /* Restore the last saved context, at the end of a nested function.
161 This function is called from language-specific code. */
162
163 void
164 pop_function_context (void)
165 {
166 struct function *p = VEC_pop (function_p, function_context_stack);
167 set_cfun (p);
168 current_function_decl = p->decl;
169
170 /* Reset variables that have known state during rtx generation. */
171 virtuals_instantiated = 0;
172 generating_concat_p = 1;
173 }
174
175 /* Clear out all parts of the state in F that can safely be discarded
176 after the function has been parsed, but not compiled, to let
177 garbage collection reclaim the memory. */
178
179 void
180 free_after_parsing (struct function *f)
181 {
182 f->language = 0;
183 }
184
185 /* Clear out all parts of the state in F that can safely be discarded
186 after the function has been compiled, to let garbage collection
187 reclaim the memory. */
188
189 void
190 free_after_compilation (struct function *f)
191 {
192 prologue_insn_hash = NULL;
193 epilogue_insn_hash = NULL;
194
195 free (crtl->emit.regno_pointer_align);
196
197 memset (crtl, 0, sizeof (struct rtl_data));
198 f->eh = NULL;
199 f->machine = NULL;
200 f->cfg = NULL;
201
202 regno_reg_rtx = NULL;
203 insn_locators_free ();
204 }
205 \f
206 /* Return size needed for stack frame based on slots so far allocated.
207 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
208 the caller may have to do that. */
209
210 HOST_WIDE_INT
211 get_frame_size (void)
212 {
213 if (FRAME_GROWS_DOWNWARD)
214 return -frame_offset;
215 else
216 return frame_offset;
217 }
218
219 /* Issue an error message and return TRUE if frame OFFSET overflows in
220 the signed target pointer arithmetics for function FUNC. Otherwise
221 return FALSE. */
222
223 bool
224 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
225 {
226 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
227
228 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
229 /* Leave room for the fixed part of the frame. */
230 - 64 * UNITS_PER_WORD)
231 {
232 error_at (DECL_SOURCE_LOCATION (func),
233 "total size of local objects too large");
234 return TRUE;
235 }
236
237 return FALSE;
238 }
239
240 /* Return stack slot alignment in bits for TYPE and MODE. */
241
242 static unsigned int
243 get_stack_local_alignment (tree type, enum machine_mode mode)
244 {
245 unsigned int alignment;
246
247 if (mode == BLKmode)
248 alignment = BIGGEST_ALIGNMENT;
249 else
250 alignment = GET_MODE_ALIGNMENT (mode);
251
252 /* Allow the frond-end to (possibly) increase the alignment of this
253 stack slot. */
254 if (! type)
255 type = lang_hooks.types.type_for_mode (mode, 0);
256
257 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
258 }
259
260 /* Determine whether it is possible to fit a stack slot of size SIZE and
261 alignment ALIGNMENT into an area in the stack frame that starts at
262 frame offset START and has a length of LENGTH. If so, store the frame
263 offset to be used for the stack slot in *POFFSET and return true;
264 return false otherwise. This function will extend the frame size when
265 given a start/length pair that lies at the end of the frame. */
266
267 static bool
268 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
269 HOST_WIDE_INT size, unsigned int alignment,
270 HOST_WIDE_INT *poffset)
271 {
272 HOST_WIDE_INT this_frame_offset;
273 int frame_off, frame_alignment, frame_phase;
274
275 /* Calculate how many bytes the start of local variables is off from
276 stack alignment. */
277 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
278 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
279 frame_phase = frame_off ? frame_alignment - frame_off : 0;
280
281 /* Round the frame offset to the specified alignment. */
282
283 /* We must be careful here, since FRAME_OFFSET might be negative and
284 division with a negative dividend isn't as well defined as we might
285 like. So we instead assume that ALIGNMENT is a power of two and
286 use logical operations which are unambiguous. */
287 if (FRAME_GROWS_DOWNWARD)
288 this_frame_offset
289 = (FLOOR_ROUND (start + length - size - frame_phase,
290 (unsigned HOST_WIDE_INT) alignment)
291 + frame_phase);
292 else
293 this_frame_offset
294 = (CEIL_ROUND (start - frame_phase,
295 (unsigned HOST_WIDE_INT) alignment)
296 + frame_phase);
297
298 /* See if it fits. If this space is at the edge of the frame,
299 consider extending the frame to make it fit. Our caller relies on
300 this when allocating a new slot. */
301 if (frame_offset == start && this_frame_offset < frame_offset)
302 frame_offset = this_frame_offset;
303 else if (this_frame_offset < start)
304 return false;
305 else if (start + length == frame_offset
306 && this_frame_offset + size > start + length)
307 frame_offset = this_frame_offset + size;
308 else if (this_frame_offset + size > start + length)
309 return false;
310
311 *poffset = this_frame_offset;
312 return true;
313 }
314
315 /* Create a new frame_space structure describing free space in the stack
316 frame beginning at START and ending at END, and chain it into the
317 function's frame_space_list. */
318
319 static void
320 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
321 {
322 struct frame_space *space = ggc_alloc_frame_space ();
323 space->next = crtl->frame_space_list;
324 crtl->frame_space_list = space;
325 space->start = start;
326 space->length = end - start;
327 }
328
329 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
330 with machine mode MODE.
331
332 ALIGN controls the amount of alignment for the address of the slot:
333 0 means according to MODE,
334 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
335 -2 means use BITS_PER_UNIT,
336 positive specifies alignment boundary in bits.
337
338 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
339 alignment and ASLK_RECORD_PAD bit set if we should remember
340 extra space we allocated for alignment purposes. When we are
341 called from assign_stack_temp_for_type, it is not set so we don't
342 track the same stack slot in two independent lists.
343
344 We do not round to stack_boundary here. */
345
346 rtx
347 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
348 int align, int kind)
349 {
350 rtx x, addr;
351 int bigend_correction = 0;
352 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
353 unsigned int alignment, alignment_in_bits;
354
355 if (align == 0)
356 {
357 alignment = get_stack_local_alignment (NULL, mode);
358 alignment /= BITS_PER_UNIT;
359 }
360 else if (align == -1)
361 {
362 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
363 size = CEIL_ROUND (size, alignment);
364 }
365 else if (align == -2)
366 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
367 else
368 alignment = align / BITS_PER_UNIT;
369
370 alignment_in_bits = alignment * BITS_PER_UNIT;
371
372 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
373 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
374 {
375 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
376 alignment = alignment_in_bits / BITS_PER_UNIT;
377 }
378
379 if (SUPPORTS_STACK_ALIGNMENT)
380 {
381 if (crtl->stack_alignment_estimated < alignment_in_bits)
382 {
383 if (!crtl->stack_realign_processed)
384 crtl->stack_alignment_estimated = alignment_in_bits;
385 else
386 {
387 /* If stack is realigned and stack alignment value
388 hasn't been finalized, it is OK not to increase
389 stack_alignment_estimated. The bigger alignment
390 requirement is recorded in stack_alignment_needed
391 below. */
392 gcc_assert (!crtl->stack_realign_finalized);
393 if (!crtl->stack_realign_needed)
394 {
395 /* It is OK to reduce the alignment as long as the
396 requested size is 0 or the estimated stack
397 alignment >= mode alignment. */
398 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
399 || size == 0
400 || (crtl->stack_alignment_estimated
401 >= GET_MODE_ALIGNMENT (mode)));
402 alignment_in_bits = crtl->stack_alignment_estimated;
403 alignment = alignment_in_bits / BITS_PER_UNIT;
404 }
405 }
406 }
407 }
408
409 if (crtl->stack_alignment_needed < alignment_in_bits)
410 crtl->stack_alignment_needed = alignment_in_bits;
411 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
412 crtl->max_used_stack_slot_alignment = alignment_in_bits;
413
414 if (mode != BLKmode || size != 0)
415 {
416 if (kind & ASLK_RECORD_PAD)
417 {
418 struct frame_space **psp;
419
420 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
421 {
422 struct frame_space *space = *psp;
423 if (!try_fit_stack_local (space->start, space->length, size,
424 alignment, &slot_offset))
425 continue;
426 *psp = space->next;
427 if (slot_offset > space->start)
428 add_frame_space (space->start, slot_offset);
429 if (slot_offset + size < space->start + space->length)
430 add_frame_space (slot_offset + size,
431 space->start + space->length);
432 goto found_space;
433 }
434 }
435 }
436 else if (!STACK_ALIGNMENT_NEEDED)
437 {
438 slot_offset = frame_offset;
439 goto found_space;
440 }
441
442 old_frame_offset = frame_offset;
443
444 if (FRAME_GROWS_DOWNWARD)
445 {
446 frame_offset -= size;
447 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
448
449 if (kind & ASLK_RECORD_PAD)
450 {
451 if (slot_offset > frame_offset)
452 add_frame_space (frame_offset, slot_offset);
453 if (slot_offset + size < old_frame_offset)
454 add_frame_space (slot_offset + size, old_frame_offset);
455 }
456 }
457 else
458 {
459 frame_offset += size;
460 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
461
462 if (kind & ASLK_RECORD_PAD)
463 {
464 if (slot_offset > old_frame_offset)
465 add_frame_space (old_frame_offset, slot_offset);
466 if (slot_offset + size < frame_offset)
467 add_frame_space (slot_offset + size, frame_offset);
468 }
469 }
470
471 found_space:
472 /* On a big-endian machine, if we are allocating more space than we will use,
473 use the least significant bytes of those that are allocated. */
474 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
475 bigend_correction = size - GET_MODE_SIZE (mode);
476
477 /* If we have already instantiated virtual registers, return the actual
478 address relative to the frame pointer. */
479 if (virtuals_instantiated)
480 addr = plus_constant (Pmode, frame_pointer_rtx,
481 trunc_int_for_mode
482 (slot_offset + bigend_correction
483 + STARTING_FRAME_OFFSET, Pmode));
484 else
485 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
486 trunc_int_for_mode
487 (slot_offset + bigend_correction,
488 Pmode));
489
490 x = gen_rtx_MEM (mode, addr);
491 set_mem_align (x, alignment_in_bits);
492 MEM_NOTRAP_P (x) = 1;
493
494 stack_slot_list
495 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
496
497 if (frame_offset_overflow (frame_offset, current_function_decl))
498 frame_offset = 0;
499
500 return x;
501 }
502
503 /* Wrap up assign_stack_local_1 with last parameter as false. */
504
505 rtx
506 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
507 {
508 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
509 }
510 \f
511 /* In order to evaluate some expressions, such as function calls returning
512 structures in memory, we need to temporarily allocate stack locations.
513 We record each allocated temporary in the following structure.
514
515 Associated with each temporary slot is a nesting level. When we pop up
516 one level, all temporaries associated with the previous level are freed.
517 Normally, all temporaries are freed after the execution of the statement
518 in which they were created. However, if we are inside a ({...}) grouping,
519 the result may be in a temporary and hence must be preserved. If the
520 result could be in a temporary, we preserve it if we can determine which
521 one it is in. If we cannot determine which temporary may contain the
522 result, all temporaries are preserved. A temporary is preserved by
523 pretending it was allocated at the previous nesting level. */
524
525 struct GTY(()) temp_slot {
526 /* Points to next temporary slot. */
527 struct temp_slot *next;
528 /* Points to previous temporary slot. */
529 struct temp_slot *prev;
530 /* The rtx to used to reference the slot. */
531 rtx slot;
532 /* The size, in units, of the slot. */
533 HOST_WIDE_INT size;
534 /* The type of the object in the slot, or zero if it doesn't correspond
535 to a type. We use this to determine whether a slot can be reused.
536 It can be reused if objects of the type of the new slot will always
537 conflict with objects of the type of the old slot. */
538 tree type;
539 /* The alignment (in bits) of the slot. */
540 unsigned int align;
541 /* Nonzero if this temporary is currently in use. */
542 char in_use;
543 /* Nesting level at which this slot is being used. */
544 int level;
545 /* The offset of the slot from the frame_pointer, including extra space
546 for alignment. This info is for combine_temp_slots. */
547 HOST_WIDE_INT base_offset;
548 /* The size of the slot, including extra space for alignment. This
549 info is for combine_temp_slots. */
550 HOST_WIDE_INT full_size;
551 };
552
553 /* A table of addresses that represent a stack slot. The table is a mapping
554 from address RTXen to a temp slot. */
555 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
556 static size_t n_temp_slots_in_use;
557
558 /* Entry for the above hash table. */
559 struct GTY(()) temp_slot_address_entry {
560 hashval_t hash;
561 rtx address;
562 struct temp_slot *temp_slot;
563 };
564
565 /* Removes temporary slot TEMP from LIST. */
566
567 static void
568 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
569 {
570 if (temp->next)
571 temp->next->prev = temp->prev;
572 if (temp->prev)
573 temp->prev->next = temp->next;
574 else
575 *list = temp->next;
576
577 temp->prev = temp->next = NULL;
578 }
579
580 /* Inserts temporary slot TEMP to LIST. */
581
582 static void
583 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
584 {
585 temp->next = *list;
586 if (*list)
587 (*list)->prev = temp;
588 temp->prev = NULL;
589 *list = temp;
590 }
591
592 /* Returns the list of used temp slots at LEVEL. */
593
594 static struct temp_slot **
595 temp_slots_at_level (int level)
596 {
597 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
598 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
599
600 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
601 }
602
603 /* Returns the maximal temporary slot level. */
604
605 static int
606 max_slot_level (void)
607 {
608 if (!used_temp_slots)
609 return -1;
610
611 return VEC_length (temp_slot_p, used_temp_slots) - 1;
612 }
613
614 /* Moves temporary slot TEMP to LEVEL. */
615
616 static void
617 move_slot_to_level (struct temp_slot *temp, int level)
618 {
619 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
620 insert_slot_to_list (temp, temp_slots_at_level (level));
621 temp->level = level;
622 }
623
624 /* Make temporary slot TEMP available. */
625
626 static void
627 make_slot_available (struct temp_slot *temp)
628 {
629 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
630 insert_slot_to_list (temp, &avail_temp_slots);
631 temp->in_use = 0;
632 temp->level = -1;
633 n_temp_slots_in_use--;
634 }
635
636 /* Compute the hash value for an address -> temp slot mapping.
637 The value is cached on the mapping entry. */
638 static hashval_t
639 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
640 {
641 int do_not_record = 0;
642 return hash_rtx (t->address, GET_MODE (t->address),
643 &do_not_record, NULL, false);
644 }
645
646 /* Return the hash value for an address -> temp slot mapping. */
647 static hashval_t
648 temp_slot_address_hash (const void *p)
649 {
650 const struct temp_slot_address_entry *t;
651 t = (const struct temp_slot_address_entry *) p;
652 return t->hash;
653 }
654
655 /* Compare two address -> temp slot mapping entries. */
656 static int
657 temp_slot_address_eq (const void *p1, const void *p2)
658 {
659 const struct temp_slot_address_entry *t1, *t2;
660 t1 = (const struct temp_slot_address_entry *) p1;
661 t2 = (const struct temp_slot_address_entry *) p2;
662 return exp_equiv_p (t1->address, t2->address, 0, true);
663 }
664
665 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
666 static void
667 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
668 {
669 void **slot;
670 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
671 t->address = address;
672 t->temp_slot = temp_slot;
673 t->hash = temp_slot_address_compute_hash (t);
674 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
675 *slot = t;
676 }
677
678 /* Remove an address -> temp slot mapping entry if the temp slot is
679 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
680 static int
681 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
682 {
683 const struct temp_slot_address_entry *t;
684 t = (const struct temp_slot_address_entry *) *slot;
685 if (! t->temp_slot->in_use)
686 htab_clear_slot (temp_slot_address_table, slot);
687 return 1;
688 }
689
690 /* Remove all mappings of addresses to unused temp slots. */
691 static void
692 remove_unused_temp_slot_addresses (void)
693 {
694 /* Use quicker clearing if there aren't any active temp slots. */
695 if (n_temp_slots_in_use)
696 htab_traverse (temp_slot_address_table,
697 remove_unused_temp_slot_addresses_1,
698 NULL);
699 else
700 htab_empty (temp_slot_address_table);
701 }
702
703 /* Find the temp slot corresponding to the object at address X. */
704
705 static struct temp_slot *
706 find_temp_slot_from_address (rtx x)
707 {
708 struct temp_slot *p;
709 struct temp_slot_address_entry tmp, *t;
710
711 /* First try the easy way:
712 See if X exists in the address -> temp slot mapping. */
713 tmp.address = x;
714 tmp.temp_slot = NULL;
715 tmp.hash = temp_slot_address_compute_hash (&tmp);
716 t = (struct temp_slot_address_entry *)
717 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
718 if (t)
719 return t->temp_slot;
720
721 /* If we have a sum involving a register, see if it points to a temp
722 slot. */
723 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
724 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
725 return p;
726 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
727 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
728 return p;
729
730 /* Last resort: Address is a virtual stack var address. */
731 if (GET_CODE (x) == PLUS
732 && XEXP (x, 0) == virtual_stack_vars_rtx
733 && CONST_INT_P (XEXP (x, 1)))
734 {
735 int i;
736 for (i = max_slot_level (); i >= 0; i--)
737 for (p = *temp_slots_at_level (i); p; p = p->next)
738 {
739 if (INTVAL (XEXP (x, 1)) >= p->base_offset
740 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
741 return p;
742 }
743 }
744
745 return NULL;
746 }
747 \f
748 /* Allocate a temporary stack slot and record it for possible later
749 reuse.
750
751 MODE is the machine mode to be given to the returned rtx.
752
753 SIZE is the size in units of the space required. We do no rounding here
754 since assign_stack_local will do any required rounding.
755
756 TYPE is the type that will be used for the stack slot. */
757
758 rtx
759 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
760 tree type)
761 {
762 unsigned int align;
763 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
764 rtx slot;
765
766 /* If SIZE is -1 it means that somebody tried to allocate a temporary
767 of a variable size. */
768 gcc_assert (size != -1);
769
770 align = get_stack_local_alignment (type, mode);
771
772 /* Try to find an available, already-allocated temporary of the proper
773 mode which meets the size and alignment requirements. Choose the
774 smallest one with the closest alignment.
775
776 If assign_stack_temp is called outside of the tree->rtl expansion,
777 we cannot reuse the stack slots (that may still refer to
778 VIRTUAL_STACK_VARS_REGNUM). */
779 if (!virtuals_instantiated)
780 {
781 for (p = avail_temp_slots; p; p = p->next)
782 {
783 if (p->align >= align && p->size >= size
784 && GET_MODE (p->slot) == mode
785 && objects_must_conflict_p (p->type, type)
786 && (best_p == 0 || best_p->size > p->size
787 || (best_p->size == p->size && best_p->align > p->align)))
788 {
789 if (p->align == align && p->size == size)
790 {
791 selected = p;
792 cut_slot_from_list (selected, &avail_temp_slots);
793 best_p = 0;
794 break;
795 }
796 best_p = p;
797 }
798 }
799 }
800
801 /* Make our best, if any, the one to use. */
802 if (best_p)
803 {
804 selected = best_p;
805 cut_slot_from_list (selected, &avail_temp_slots);
806
807 /* If there are enough aligned bytes left over, make them into a new
808 temp_slot so that the extra bytes don't get wasted. Do this only
809 for BLKmode slots, so that we can be sure of the alignment. */
810 if (GET_MODE (best_p->slot) == BLKmode)
811 {
812 int alignment = best_p->align / BITS_PER_UNIT;
813 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
814
815 if (best_p->size - rounded_size >= alignment)
816 {
817 p = ggc_alloc_temp_slot ();
818 p->in_use = 0;
819 p->size = best_p->size - rounded_size;
820 p->base_offset = best_p->base_offset + rounded_size;
821 p->full_size = best_p->full_size - rounded_size;
822 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
823 p->align = best_p->align;
824 p->type = best_p->type;
825 insert_slot_to_list (p, &avail_temp_slots);
826
827 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
828 stack_slot_list);
829
830 best_p->size = rounded_size;
831 best_p->full_size = rounded_size;
832 }
833 }
834 }
835
836 /* If we still didn't find one, make a new temporary. */
837 if (selected == 0)
838 {
839 HOST_WIDE_INT frame_offset_old = frame_offset;
840
841 p = ggc_alloc_temp_slot ();
842
843 /* We are passing an explicit alignment request to assign_stack_local.
844 One side effect of that is assign_stack_local will not round SIZE
845 to ensure the frame offset remains suitably aligned.
846
847 So for requests which depended on the rounding of SIZE, we go ahead
848 and round it now. We also make sure ALIGNMENT is at least
849 BIGGEST_ALIGNMENT. */
850 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
851 p->slot = assign_stack_local_1 (mode,
852 (mode == BLKmode
853 ? CEIL_ROUND (size,
854 (int) align
855 / BITS_PER_UNIT)
856 : size),
857 align, 0);
858
859 p->align = align;
860
861 /* The following slot size computation is necessary because we don't
862 know the actual size of the temporary slot until assign_stack_local
863 has performed all the frame alignment and size rounding for the
864 requested temporary. Note that extra space added for alignment
865 can be either above or below this stack slot depending on which
866 way the frame grows. We include the extra space if and only if it
867 is above this slot. */
868 if (FRAME_GROWS_DOWNWARD)
869 p->size = frame_offset_old - frame_offset;
870 else
871 p->size = size;
872
873 /* Now define the fields used by combine_temp_slots. */
874 if (FRAME_GROWS_DOWNWARD)
875 {
876 p->base_offset = frame_offset;
877 p->full_size = frame_offset_old - frame_offset;
878 }
879 else
880 {
881 p->base_offset = frame_offset_old;
882 p->full_size = frame_offset - frame_offset_old;
883 }
884
885 selected = p;
886 }
887
888 p = selected;
889 p->in_use = 1;
890 p->type = type;
891 p->level = temp_slot_level;
892 n_temp_slots_in_use++;
893
894 pp = temp_slots_at_level (p->level);
895 insert_slot_to_list (p, pp);
896 insert_temp_slot_address (XEXP (p->slot, 0), p);
897
898 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
899 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
900 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
901
902 /* If we know the alias set for the memory that will be used, use
903 it. If there's no TYPE, then we don't know anything about the
904 alias set for the memory. */
905 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
906 set_mem_align (slot, align);
907
908 /* If a type is specified, set the relevant flags. */
909 if (type != 0)
910 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
911 MEM_NOTRAP_P (slot) = 1;
912
913 return slot;
914 }
915
916 /* Allocate a temporary stack slot and record it for possible later
917 reuse. First two arguments are same as in preceding function. */
918
919 rtx
920 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
921 {
922 return assign_stack_temp_for_type (mode, size, NULL_TREE);
923 }
924 \f
925 /* Assign a temporary.
926 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
927 and so that should be used in error messages. In either case, we
928 allocate of the given type.
929 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
930 it is 0 if a register is OK.
931 DONT_PROMOTE is 1 if we should not promote values in register
932 to wider modes. */
933
934 rtx
935 assign_temp (tree type_or_decl, int memory_required,
936 int dont_promote ATTRIBUTE_UNUSED)
937 {
938 tree type, decl;
939 enum machine_mode mode;
940 #ifdef PROMOTE_MODE
941 int unsignedp;
942 #endif
943
944 if (DECL_P (type_or_decl))
945 decl = type_or_decl, type = TREE_TYPE (decl);
946 else
947 decl = NULL, type = type_or_decl;
948
949 mode = TYPE_MODE (type);
950 #ifdef PROMOTE_MODE
951 unsignedp = TYPE_UNSIGNED (type);
952 #endif
953
954 if (mode == BLKmode || memory_required)
955 {
956 HOST_WIDE_INT size = int_size_in_bytes (type);
957 rtx tmp;
958
959 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
960 problems with allocating the stack space. */
961 if (size == 0)
962 size = 1;
963
964 /* Unfortunately, we don't yet know how to allocate variable-sized
965 temporaries. However, sometimes we can find a fixed upper limit on
966 the size, so try that instead. */
967 else if (size == -1)
968 size = max_int_size_in_bytes (type);
969
970 /* The size of the temporary may be too large to fit into an integer. */
971 /* ??? Not sure this should happen except for user silliness, so limit
972 this to things that aren't compiler-generated temporaries. The
973 rest of the time we'll die in assign_stack_temp_for_type. */
974 if (decl && size == -1
975 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
976 {
977 error ("size of variable %q+D is too large", decl);
978 size = 1;
979 }
980
981 tmp = assign_stack_temp_for_type (mode, size, type);
982 return tmp;
983 }
984
985 #ifdef PROMOTE_MODE
986 if (! dont_promote)
987 mode = promote_mode (type, mode, &unsignedp);
988 #endif
989
990 return gen_reg_rtx (mode);
991 }
992 \f
993 /* Combine temporary stack slots which are adjacent on the stack.
994
995 This allows for better use of already allocated stack space. This is only
996 done for BLKmode slots because we can be sure that we won't have alignment
997 problems in this case. */
998
999 static void
1000 combine_temp_slots (void)
1001 {
1002 struct temp_slot *p, *q, *next, *next_q;
1003 int num_slots;
1004
1005 /* We can't combine slots, because the information about which slot
1006 is in which alias set will be lost. */
1007 if (flag_strict_aliasing)
1008 return;
1009
1010 /* If there are a lot of temp slots, don't do anything unless
1011 high levels of optimization. */
1012 if (! flag_expensive_optimizations)
1013 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1014 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1015 return;
1016
1017 for (p = avail_temp_slots; p; p = next)
1018 {
1019 int delete_p = 0;
1020
1021 next = p->next;
1022
1023 if (GET_MODE (p->slot) != BLKmode)
1024 continue;
1025
1026 for (q = p->next; q; q = next_q)
1027 {
1028 int delete_q = 0;
1029
1030 next_q = q->next;
1031
1032 if (GET_MODE (q->slot) != BLKmode)
1033 continue;
1034
1035 if (p->base_offset + p->full_size == q->base_offset)
1036 {
1037 /* Q comes after P; combine Q into P. */
1038 p->size += q->size;
1039 p->full_size += q->full_size;
1040 delete_q = 1;
1041 }
1042 else if (q->base_offset + q->full_size == p->base_offset)
1043 {
1044 /* P comes after Q; combine P into Q. */
1045 q->size += p->size;
1046 q->full_size += p->full_size;
1047 delete_p = 1;
1048 break;
1049 }
1050 if (delete_q)
1051 cut_slot_from_list (q, &avail_temp_slots);
1052 }
1053
1054 /* Either delete P or advance past it. */
1055 if (delete_p)
1056 cut_slot_from_list (p, &avail_temp_slots);
1057 }
1058 }
1059 \f
1060 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1061 slot that previously was known by OLD_RTX. */
1062
1063 void
1064 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1065 {
1066 struct temp_slot *p;
1067
1068 if (rtx_equal_p (old_rtx, new_rtx))
1069 return;
1070
1071 p = find_temp_slot_from_address (old_rtx);
1072
1073 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1074 NEW_RTX is a register, see if one operand of the PLUS is a
1075 temporary location. If so, NEW_RTX points into it. Otherwise,
1076 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1077 in common between them. If so, try a recursive call on those
1078 values. */
1079 if (p == 0)
1080 {
1081 if (GET_CODE (old_rtx) != PLUS)
1082 return;
1083
1084 if (REG_P (new_rtx))
1085 {
1086 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1087 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1088 return;
1089 }
1090 else if (GET_CODE (new_rtx) != PLUS)
1091 return;
1092
1093 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1094 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1095 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1096 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1097 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1098 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1099 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1100 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1101
1102 return;
1103 }
1104
1105 /* Otherwise add an alias for the temp's address. */
1106 insert_temp_slot_address (new_rtx, p);
1107 }
1108
1109 /* If X could be a reference to a temporary slot, mark that slot as
1110 belonging to the to one level higher than the current level. If X
1111 matched one of our slots, just mark that one. Otherwise, we can't
1112 easily predict which it is, so upgrade all of them.
1113
1114 This is called when an ({...}) construct occurs and a statement
1115 returns a value in memory. */
1116
1117 void
1118 preserve_temp_slots (rtx x)
1119 {
1120 struct temp_slot *p = 0, *next;
1121
1122 if (x == 0)
1123 return;
1124
1125 /* If X is a register that is being used as a pointer, see if we have
1126 a temporary slot we know it points to. */
1127 if (REG_P (x) && REG_POINTER (x))
1128 p = find_temp_slot_from_address (x);
1129
1130 /* If X is not in memory or is at a constant address, it cannot be in
1131 a temporary slot. */
1132 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1133 return;
1134
1135 /* First see if we can find a match. */
1136 if (p == 0)
1137 p = find_temp_slot_from_address (XEXP (x, 0));
1138
1139 if (p != 0)
1140 {
1141 if (p->level == temp_slot_level)
1142 move_slot_to_level (p, temp_slot_level - 1);
1143 return;
1144 }
1145
1146 /* Otherwise, preserve all non-kept slots at this level. */
1147 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1148 {
1149 next = p->next;
1150 move_slot_to_level (p, temp_slot_level - 1);
1151 }
1152 }
1153
1154 /* Free all temporaries used so far. This is normally called at the
1155 end of generating code for a statement. */
1156
1157 void
1158 free_temp_slots (void)
1159 {
1160 struct temp_slot *p, *next;
1161 bool some_available = false;
1162
1163 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1164 {
1165 next = p->next;
1166 make_slot_available (p);
1167 some_available = true;
1168 }
1169
1170 if (some_available)
1171 {
1172 remove_unused_temp_slot_addresses ();
1173 combine_temp_slots ();
1174 }
1175 }
1176
1177 /* Push deeper into the nesting level for stack temporaries. */
1178
1179 void
1180 push_temp_slots (void)
1181 {
1182 temp_slot_level++;
1183 }
1184
1185 /* Pop a temporary nesting level. All slots in use in the current level
1186 are freed. */
1187
1188 void
1189 pop_temp_slots (void)
1190 {
1191 free_temp_slots ();
1192 temp_slot_level--;
1193 }
1194
1195 /* Initialize temporary slots. */
1196
1197 void
1198 init_temp_slots (void)
1199 {
1200 /* We have not allocated any temporaries yet. */
1201 avail_temp_slots = 0;
1202 used_temp_slots = 0;
1203 temp_slot_level = 0;
1204 n_temp_slots_in_use = 0;
1205
1206 /* Set up the table to map addresses to temp slots. */
1207 if (! temp_slot_address_table)
1208 temp_slot_address_table = htab_create_ggc (32,
1209 temp_slot_address_hash,
1210 temp_slot_address_eq,
1211 NULL);
1212 else
1213 htab_empty (temp_slot_address_table);
1214 }
1215 \f
1216 /* Functions and data structures to keep track of the values hard regs
1217 had at the start of the function. */
1218
1219 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1220 and has_hard_reg_initial_val.. */
1221 typedef struct GTY(()) initial_value_pair {
1222 rtx hard_reg;
1223 rtx pseudo;
1224 } initial_value_pair;
1225 /* ??? This could be a VEC but there is currently no way to define an
1226 opaque VEC type. This could be worked around by defining struct
1227 initial_value_pair in function.h. */
1228 typedef struct GTY(()) initial_value_struct {
1229 int num_entries;
1230 int max_entries;
1231 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1232 } initial_value_struct;
1233
1234 /* If a pseudo represents an initial hard reg (or expression), return
1235 it, else return NULL_RTX. */
1236
1237 rtx
1238 get_hard_reg_initial_reg (rtx reg)
1239 {
1240 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1241 int i;
1242
1243 if (ivs == 0)
1244 return NULL_RTX;
1245
1246 for (i = 0; i < ivs->num_entries; i++)
1247 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1248 return ivs->entries[i].hard_reg;
1249
1250 return NULL_RTX;
1251 }
1252
1253 /* Make sure that there's a pseudo register of mode MODE that stores the
1254 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1255
1256 rtx
1257 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1258 {
1259 struct initial_value_struct *ivs;
1260 rtx rv;
1261
1262 rv = has_hard_reg_initial_val (mode, regno);
1263 if (rv)
1264 return rv;
1265
1266 ivs = crtl->hard_reg_initial_vals;
1267 if (ivs == 0)
1268 {
1269 ivs = ggc_alloc_initial_value_struct ();
1270 ivs->num_entries = 0;
1271 ivs->max_entries = 5;
1272 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1273 crtl->hard_reg_initial_vals = ivs;
1274 }
1275
1276 if (ivs->num_entries >= ivs->max_entries)
1277 {
1278 ivs->max_entries += 5;
1279 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1280 ivs->max_entries);
1281 }
1282
1283 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1284 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1285
1286 return ivs->entries[ivs->num_entries++].pseudo;
1287 }
1288
1289 /* See if get_hard_reg_initial_val has been used to create a pseudo
1290 for the initial value of hard register REGNO in mode MODE. Return
1291 the associated pseudo if so, otherwise return NULL. */
1292
1293 rtx
1294 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1295 {
1296 struct initial_value_struct *ivs;
1297 int i;
1298
1299 ivs = crtl->hard_reg_initial_vals;
1300 if (ivs != 0)
1301 for (i = 0; i < ivs->num_entries; i++)
1302 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1303 && REGNO (ivs->entries[i].hard_reg) == regno)
1304 return ivs->entries[i].pseudo;
1305
1306 return NULL_RTX;
1307 }
1308
1309 unsigned int
1310 emit_initial_value_sets (void)
1311 {
1312 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1313 int i;
1314 rtx seq;
1315
1316 if (ivs == 0)
1317 return 0;
1318
1319 start_sequence ();
1320 for (i = 0; i < ivs->num_entries; i++)
1321 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1322 seq = get_insns ();
1323 end_sequence ();
1324
1325 emit_insn_at_entry (seq);
1326 return 0;
1327 }
1328
1329 /* Return the hardreg-pseudoreg initial values pair entry I and
1330 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1331 bool
1332 initial_value_entry (int i, rtx *hreg, rtx *preg)
1333 {
1334 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1335 if (!ivs || i >= ivs->num_entries)
1336 return false;
1337
1338 *hreg = ivs->entries[i].hard_reg;
1339 *preg = ivs->entries[i].pseudo;
1340 return true;
1341 }
1342 \f
1343 /* These routines are responsible for converting virtual register references
1344 to the actual hard register references once RTL generation is complete.
1345
1346 The following four variables are used for communication between the
1347 routines. They contain the offsets of the virtual registers from their
1348 respective hard registers. */
1349
1350 static int in_arg_offset;
1351 static int var_offset;
1352 static int dynamic_offset;
1353 static int out_arg_offset;
1354 static int cfa_offset;
1355
1356 /* In most machines, the stack pointer register is equivalent to the bottom
1357 of the stack. */
1358
1359 #ifndef STACK_POINTER_OFFSET
1360 #define STACK_POINTER_OFFSET 0
1361 #endif
1362
1363 /* If not defined, pick an appropriate default for the offset of dynamically
1364 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1365 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1366
1367 #ifndef STACK_DYNAMIC_OFFSET
1368
1369 /* The bottom of the stack points to the actual arguments. If
1370 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1371 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1372 stack space for register parameters is not pushed by the caller, but
1373 rather part of the fixed stack areas and hence not included in
1374 `crtl->outgoing_args_size'. Nevertheless, we must allow
1375 for it when allocating stack dynamic objects. */
1376
1377 #if defined(REG_PARM_STACK_SPACE)
1378 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1379 ((ACCUMULATE_OUTGOING_ARGS \
1380 ? (crtl->outgoing_args_size \
1381 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1382 : REG_PARM_STACK_SPACE (FNDECL))) \
1383 : 0) + (STACK_POINTER_OFFSET))
1384 #else
1385 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1386 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1387 + (STACK_POINTER_OFFSET))
1388 #endif
1389 #endif
1390
1391 \f
1392 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1393 is a virtual register, return the equivalent hard register and set the
1394 offset indirectly through the pointer. Otherwise, return 0. */
1395
1396 static rtx
1397 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1398 {
1399 rtx new_rtx;
1400 HOST_WIDE_INT offset;
1401
1402 if (x == virtual_incoming_args_rtx)
1403 {
1404 if (stack_realign_drap)
1405 {
1406 /* Replace virtual_incoming_args_rtx with internal arg
1407 pointer if DRAP is used to realign stack. */
1408 new_rtx = crtl->args.internal_arg_pointer;
1409 offset = 0;
1410 }
1411 else
1412 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1413 }
1414 else if (x == virtual_stack_vars_rtx)
1415 new_rtx = frame_pointer_rtx, offset = var_offset;
1416 else if (x == virtual_stack_dynamic_rtx)
1417 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1418 else if (x == virtual_outgoing_args_rtx)
1419 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1420 else if (x == virtual_cfa_rtx)
1421 {
1422 #ifdef FRAME_POINTER_CFA_OFFSET
1423 new_rtx = frame_pointer_rtx;
1424 #else
1425 new_rtx = arg_pointer_rtx;
1426 #endif
1427 offset = cfa_offset;
1428 }
1429 else if (x == virtual_preferred_stack_boundary_rtx)
1430 {
1431 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1432 offset = 0;
1433 }
1434 else
1435 return NULL_RTX;
1436
1437 *poffset = offset;
1438 return new_rtx;
1439 }
1440
1441 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1442 Instantiate any virtual registers present inside of *LOC. The expression
1443 is simplified, as much as possible, but is not to be considered "valid"
1444 in any sense implied by the target. If any change is made, set CHANGED
1445 to true. */
1446
1447 static int
1448 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1449 {
1450 HOST_WIDE_INT offset;
1451 bool *changed = (bool *) data;
1452 rtx x, new_rtx;
1453
1454 x = *loc;
1455 if (x == 0)
1456 return 0;
1457
1458 switch (GET_CODE (x))
1459 {
1460 case REG:
1461 new_rtx = instantiate_new_reg (x, &offset);
1462 if (new_rtx)
1463 {
1464 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1465 if (changed)
1466 *changed = true;
1467 }
1468 return -1;
1469
1470 case PLUS:
1471 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1472 if (new_rtx)
1473 {
1474 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1475 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1476 if (changed)
1477 *changed = true;
1478 return -1;
1479 }
1480
1481 /* FIXME -- from old code */
1482 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1483 we can commute the PLUS and SUBREG because pointers into the
1484 frame are well-behaved. */
1485 break;
1486
1487 default:
1488 break;
1489 }
1490
1491 return 0;
1492 }
1493
1494 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1495 matches the predicate for insn CODE operand OPERAND. */
1496
1497 static int
1498 safe_insn_predicate (int code, int operand, rtx x)
1499 {
1500 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1501 }
1502
1503 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1504 registers present inside of insn. The result will be a valid insn. */
1505
1506 static void
1507 instantiate_virtual_regs_in_insn (rtx insn)
1508 {
1509 HOST_WIDE_INT offset;
1510 int insn_code, i;
1511 bool any_change = false;
1512 rtx set, new_rtx, x, seq;
1513
1514 /* There are some special cases to be handled first. */
1515 set = single_set (insn);
1516 if (set)
1517 {
1518 /* We're allowed to assign to a virtual register. This is interpreted
1519 to mean that the underlying register gets assigned the inverse
1520 transformation. This is used, for example, in the handling of
1521 non-local gotos. */
1522 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1523 if (new_rtx)
1524 {
1525 start_sequence ();
1526
1527 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1528 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1529 GEN_INT (-offset));
1530 x = force_operand (x, new_rtx);
1531 if (x != new_rtx)
1532 emit_move_insn (new_rtx, x);
1533
1534 seq = get_insns ();
1535 end_sequence ();
1536
1537 emit_insn_before (seq, insn);
1538 delete_insn (insn);
1539 return;
1540 }
1541
1542 /* Handle a straight copy from a virtual register by generating a
1543 new add insn. The difference between this and falling through
1544 to the generic case is avoiding a new pseudo and eliminating a
1545 move insn in the initial rtl stream. */
1546 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1547 if (new_rtx && offset != 0
1548 && REG_P (SET_DEST (set))
1549 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1550 {
1551 start_sequence ();
1552
1553 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1554 new_rtx, GEN_INT (offset), SET_DEST (set),
1555 1, OPTAB_LIB_WIDEN);
1556 if (x != SET_DEST (set))
1557 emit_move_insn (SET_DEST (set), x);
1558
1559 seq = get_insns ();
1560 end_sequence ();
1561
1562 emit_insn_before (seq, insn);
1563 delete_insn (insn);
1564 return;
1565 }
1566
1567 extract_insn (insn);
1568 insn_code = INSN_CODE (insn);
1569
1570 /* Handle a plus involving a virtual register by determining if the
1571 operands remain valid if they're modified in place. */
1572 if (GET_CODE (SET_SRC (set)) == PLUS
1573 && recog_data.n_operands >= 3
1574 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1575 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1576 && CONST_INT_P (recog_data.operand[2])
1577 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1578 {
1579 offset += INTVAL (recog_data.operand[2]);
1580
1581 /* If the sum is zero, then replace with a plain move. */
1582 if (offset == 0
1583 && REG_P (SET_DEST (set))
1584 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1585 {
1586 start_sequence ();
1587 emit_move_insn (SET_DEST (set), new_rtx);
1588 seq = get_insns ();
1589 end_sequence ();
1590
1591 emit_insn_before (seq, insn);
1592 delete_insn (insn);
1593 return;
1594 }
1595
1596 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1597
1598 /* Using validate_change and apply_change_group here leaves
1599 recog_data in an invalid state. Since we know exactly what
1600 we want to check, do those two by hand. */
1601 if (safe_insn_predicate (insn_code, 1, new_rtx)
1602 && safe_insn_predicate (insn_code, 2, x))
1603 {
1604 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1605 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1606 any_change = true;
1607
1608 /* Fall through into the regular operand fixup loop in
1609 order to take care of operands other than 1 and 2. */
1610 }
1611 }
1612 }
1613 else
1614 {
1615 extract_insn (insn);
1616 insn_code = INSN_CODE (insn);
1617 }
1618
1619 /* In the general case, we expect virtual registers to appear only in
1620 operands, and then only as either bare registers or inside memories. */
1621 for (i = 0; i < recog_data.n_operands; ++i)
1622 {
1623 x = recog_data.operand[i];
1624 switch (GET_CODE (x))
1625 {
1626 case MEM:
1627 {
1628 rtx addr = XEXP (x, 0);
1629 bool changed = false;
1630
1631 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1632 if (!changed)
1633 continue;
1634
1635 start_sequence ();
1636 x = replace_equiv_address (x, addr);
1637 /* It may happen that the address with the virtual reg
1638 was valid (e.g. based on the virtual stack reg, which might
1639 be acceptable to the predicates with all offsets), whereas
1640 the address now isn't anymore, for instance when the address
1641 is still offsetted, but the base reg isn't virtual-stack-reg
1642 anymore. Below we would do a force_reg on the whole operand,
1643 but this insn might actually only accept memory. Hence,
1644 before doing that last resort, try to reload the address into
1645 a register, so this operand stays a MEM. */
1646 if (!safe_insn_predicate (insn_code, i, x))
1647 {
1648 addr = force_reg (GET_MODE (addr), addr);
1649 x = replace_equiv_address (x, addr);
1650 }
1651 seq = get_insns ();
1652 end_sequence ();
1653 if (seq)
1654 emit_insn_before (seq, insn);
1655 }
1656 break;
1657
1658 case REG:
1659 new_rtx = instantiate_new_reg (x, &offset);
1660 if (new_rtx == NULL)
1661 continue;
1662 if (offset == 0)
1663 x = new_rtx;
1664 else
1665 {
1666 start_sequence ();
1667
1668 /* Careful, special mode predicates may have stuff in
1669 insn_data[insn_code].operand[i].mode that isn't useful
1670 to us for computing a new value. */
1671 /* ??? Recognize address_operand and/or "p" constraints
1672 to see if (plus new offset) is a valid before we put
1673 this through expand_simple_binop. */
1674 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1675 GEN_INT (offset), NULL_RTX,
1676 1, OPTAB_LIB_WIDEN);
1677 seq = get_insns ();
1678 end_sequence ();
1679 emit_insn_before (seq, insn);
1680 }
1681 break;
1682
1683 case SUBREG:
1684 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1685 if (new_rtx == NULL)
1686 continue;
1687 if (offset != 0)
1688 {
1689 start_sequence ();
1690 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1691 GEN_INT (offset), NULL_RTX,
1692 1, OPTAB_LIB_WIDEN);
1693 seq = get_insns ();
1694 end_sequence ();
1695 emit_insn_before (seq, insn);
1696 }
1697 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1698 GET_MODE (new_rtx), SUBREG_BYTE (x));
1699 gcc_assert (x);
1700 break;
1701
1702 default:
1703 continue;
1704 }
1705
1706 /* At this point, X contains the new value for the operand.
1707 Validate the new value vs the insn predicate. Note that
1708 asm insns will have insn_code -1 here. */
1709 if (!safe_insn_predicate (insn_code, i, x))
1710 {
1711 start_sequence ();
1712 if (REG_P (x))
1713 {
1714 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1715 x = copy_to_reg (x);
1716 }
1717 else
1718 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1719 seq = get_insns ();
1720 end_sequence ();
1721 if (seq)
1722 emit_insn_before (seq, insn);
1723 }
1724
1725 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1726 any_change = true;
1727 }
1728
1729 if (any_change)
1730 {
1731 /* Propagate operand changes into the duplicates. */
1732 for (i = 0; i < recog_data.n_dups; ++i)
1733 *recog_data.dup_loc[i]
1734 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1735
1736 /* Force re-recognition of the instruction for validation. */
1737 INSN_CODE (insn) = -1;
1738 }
1739
1740 if (asm_noperands (PATTERN (insn)) >= 0)
1741 {
1742 if (!check_asm_operands (PATTERN (insn)))
1743 {
1744 error_for_asm (insn, "impossible constraint in %<asm%>");
1745 delete_insn_and_edges (insn);
1746 }
1747 }
1748 else
1749 {
1750 if (recog_memoized (insn) < 0)
1751 fatal_insn_not_found (insn);
1752 }
1753 }
1754
1755 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1756 do any instantiation required. */
1757
1758 void
1759 instantiate_decl_rtl (rtx x)
1760 {
1761 rtx addr;
1762
1763 if (x == 0)
1764 return;
1765
1766 /* If this is a CONCAT, recurse for the pieces. */
1767 if (GET_CODE (x) == CONCAT)
1768 {
1769 instantiate_decl_rtl (XEXP (x, 0));
1770 instantiate_decl_rtl (XEXP (x, 1));
1771 return;
1772 }
1773
1774 /* If this is not a MEM, no need to do anything. Similarly if the
1775 address is a constant or a register that is not a virtual register. */
1776 if (!MEM_P (x))
1777 return;
1778
1779 addr = XEXP (x, 0);
1780 if (CONSTANT_P (addr)
1781 || (REG_P (addr)
1782 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1783 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1784 return;
1785
1786 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1787 }
1788
1789 /* Helper for instantiate_decls called via walk_tree: Process all decls
1790 in the given DECL_VALUE_EXPR. */
1791
1792 static tree
1793 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1794 {
1795 tree t = *tp;
1796 if (! EXPR_P (t))
1797 {
1798 *walk_subtrees = 0;
1799 if (DECL_P (t))
1800 {
1801 if (DECL_RTL_SET_P (t))
1802 instantiate_decl_rtl (DECL_RTL (t));
1803 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1804 && DECL_INCOMING_RTL (t))
1805 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1806 if ((TREE_CODE (t) == VAR_DECL
1807 || TREE_CODE (t) == RESULT_DECL)
1808 && DECL_HAS_VALUE_EXPR_P (t))
1809 {
1810 tree v = DECL_VALUE_EXPR (t);
1811 walk_tree (&v, instantiate_expr, NULL, NULL);
1812 }
1813 }
1814 }
1815 return NULL;
1816 }
1817
1818 /* Subroutine of instantiate_decls: Process all decls in the given
1819 BLOCK node and all its subblocks. */
1820
1821 static void
1822 instantiate_decls_1 (tree let)
1823 {
1824 tree t;
1825
1826 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1827 {
1828 if (DECL_RTL_SET_P (t))
1829 instantiate_decl_rtl (DECL_RTL (t));
1830 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1831 {
1832 tree v = DECL_VALUE_EXPR (t);
1833 walk_tree (&v, instantiate_expr, NULL, NULL);
1834 }
1835 }
1836
1837 /* Process all subblocks. */
1838 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1839 instantiate_decls_1 (t);
1840 }
1841
1842 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1843 all virtual registers in their DECL_RTL's. */
1844
1845 static void
1846 instantiate_decls (tree fndecl)
1847 {
1848 tree decl;
1849 unsigned ix;
1850
1851 /* Process all parameters of the function. */
1852 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1853 {
1854 instantiate_decl_rtl (DECL_RTL (decl));
1855 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1856 if (DECL_HAS_VALUE_EXPR_P (decl))
1857 {
1858 tree v = DECL_VALUE_EXPR (decl);
1859 walk_tree (&v, instantiate_expr, NULL, NULL);
1860 }
1861 }
1862
1863 if ((decl = DECL_RESULT (fndecl))
1864 && TREE_CODE (decl) == RESULT_DECL)
1865 {
1866 if (DECL_RTL_SET_P (decl))
1867 instantiate_decl_rtl (DECL_RTL (decl));
1868 if (DECL_HAS_VALUE_EXPR_P (decl))
1869 {
1870 tree v = DECL_VALUE_EXPR (decl);
1871 walk_tree (&v, instantiate_expr, NULL, NULL);
1872 }
1873 }
1874
1875 /* Now process all variables defined in the function or its subblocks. */
1876 instantiate_decls_1 (DECL_INITIAL (fndecl));
1877
1878 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1879 if (DECL_RTL_SET_P (decl))
1880 instantiate_decl_rtl (DECL_RTL (decl));
1881 VEC_free (tree, gc, cfun->local_decls);
1882 }
1883
1884 /* Pass through the INSNS of function FNDECL and convert virtual register
1885 references to hard register references. */
1886
1887 static unsigned int
1888 instantiate_virtual_regs (void)
1889 {
1890 rtx insn;
1891
1892 /* Compute the offsets to use for this function. */
1893 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1894 var_offset = STARTING_FRAME_OFFSET;
1895 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1896 out_arg_offset = STACK_POINTER_OFFSET;
1897 #ifdef FRAME_POINTER_CFA_OFFSET
1898 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1899 #else
1900 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1901 #endif
1902
1903 /* Initialize recognition, indicating that volatile is OK. */
1904 init_recog ();
1905
1906 /* Scan through all the insns, instantiating every virtual register still
1907 present. */
1908 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1909 if (INSN_P (insn))
1910 {
1911 /* These patterns in the instruction stream can never be recognized.
1912 Fortunately, they shouldn't contain virtual registers either. */
1913 if (GET_CODE (PATTERN (insn)) == USE
1914 || GET_CODE (PATTERN (insn)) == CLOBBER
1915 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1916 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1917 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1918 continue;
1919 else if (DEBUG_INSN_P (insn))
1920 for_each_rtx (&INSN_VAR_LOCATION (insn),
1921 instantiate_virtual_regs_in_rtx, NULL);
1922 else
1923 instantiate_virtual_regs_in_insn (insn);
1924
1925 if (INSN_DELETED_P (insn))
1926 continue;
1927
1928 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1929
1930 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1931 if (CALL_P (insn))
1932 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1933 instantiate_virtual_regs_in_rtx, NULL);
1934 }
1935
1936 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1937 instantiate_decls (current_function_decl);
1938
1939 targetm.instantiate_decls ();
1940
1941 /* Indicate that, from now on, assign_stack_local should use
1942 frame_pointer_rtx. */
1943 virtuals_instantiated = 1;
1944
1945 return 0;
1946 }
1947
1948 struct rtl_opt_pass pass_instantiate_virtual_regs =
1949 {
1950 {
1951 RTL_PASS,
1952 "vregs", /* name */
1953 NULL, /* gate */
1954 instantiate_virtual_regs, /* execute */
1955 NULL, /* sub */
1956 NULL, /* next */
1957 0, /* static_pass_number */
1958 TV_NONE, /* tv_id */
1959 0, /* properties_required */
1960 0, /* properties_provided */
1961 0, /* properties_destroyed */
1962 0, /* todo_flags_start */
1963 0 /* todo_flags_finish */
1964 }
1965 };
1966
1967 \f
1968 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1969 This means a type for which function calls must pass an address to the
1970 function or get an address back from the function.
1971 EXP may be a type node or an expression (whose type is tested). */
1972
1973 int
1974 aggregate_value_p (const_tree exp, const_tree fntype)
1975 {
1976 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1977 int i, regno, nregs;
1978 rtx reg;
1979
1980 if (fntype)
1981 switch (TREE_CODE (fntype))
1982 {
1983 case CALL_EXPR:
1984 {
1985 tree fndecl = get_callee_fndecl (fntype);
1986 fntype = (fndecl
1987 ? TREE_TYPE (fndecl)
1988 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1989 }
1990 break;
1991 case FUNCTION_DECL:
1992 fntype = TREE_TYPE (fntype);
1993 break;
1994 case FUNCTION_TYPE:
1995 case METHOD_TYPE:
1996 break;
1997 case IDENTIFIER_NODE:
1998 fntype = NULL_TREE;
1999 break;
2000 default:
2001 /* We don't expect other tree types here. */
2002 gcc_unreachable ();
2003 }
2004
2005 if (VOID_TYPE_P (type))
2006 return 0;
2007
2008 /* If a record should be passed the same as its first (and only) member
2009 don't pass it as an aggregate. */
2010 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2011 return aggregate_value_p (first_field (type), fntype);
2012
2013 /* If the front end has decided that this needs to be passed by
2014 reference, do so. */
2015 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2016 && DECL_BY_REFERENCE (exp))
2017 return 1;
2018
2019 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2020 if (fntype && TREE_ADDRESSABLE (fntype))
2021 return 1;
2022
2023 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2024 and thus can't be returned in registers. */
2025 if (TREE_ADDRESSABLE (type))
2026 return 1;
2027
2028 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2029 return 1;
2030
2031 if (targetm.calls.return_in_memory (type, fntype))
2032 return 1;
2033
2034 /* Make sure we have suitable call-clobbered regs to return
2035 the value in; if not, we must return it in memory. */
2036 reg = hard_function_value (type, 0, fntype, 0);
2037
2038 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2039 it is OK. */
2040 if (!REG_P (reg))
2041 return 0;
2042
2043 regno = REGNO (reg);
2044 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2045 for (i = 0; i < nregs; i++)
2046 if (! call_used_regs[regno + i])
2047 return 1;
2048
2049 return 0;
2050 }
2051 \f
2052 /* Return true if we should assign DECL a pseudo register; false if it
2053 should live on the local stack. */
2054
2055 bool
2056 use_register_for_decl (const_tree decl)
2057 {
2058 if (!targetm.calls.allocate_stack_slots_for_args())
2059 return true;
2060
2061 /* Honor volatile. */
2062 if (TREE_SIDE_EFFECTS (decl))
2063 return false;
2064
2065 /* Honor addressability. */
2066 if (TREE_ADDRESSABLE (decl))
2067 return false;
2068
2069 /* Only register-like things go in registers. */
2070 if (DECL_MODE (decl) == BLKmode)
2071 return false;
2072
2073 /* If -ffloat-store specified, don't put explicit float variables
2074 into registers. */
2075 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2076 propagates values across these stores, and it probably shouldn't. */
2077 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2078 return false;
2079
2080 /* If we're not interested in tracking debugging information for
2081 this decl, then we can certainly put it in a register. */
2082 if (DECL_IGNORED_P (decl))
2083 return true;
2084
2085 if (optimize)
2086 return true;
2087
2088 if (!DECL_REGISTER (decl))
2089 return false;
2090
2091 switch (TREE_CODE (TREE_TYPE (decl)))
2092 {
2093 case RECORD_TYPE:
2094 case UNION_TYPE:
2095 case QUAL_UNION_TYPE:
2096 /* When not optimizing, disregard register keyword for variables with
2097 types containing methods, otherwise the methods won't be callable
2098 from the debugger. */
2099 if (TYPE_METHODS (TREE_TYPE (decl)))
2100 return false;
2101 break;
2102 default:
2103 break;
2104 }
2105
2106 return true;
2107 }
2108
2109 /* Return true if TYPE should be passed by invisible reference. */
2110
2111 bool
2112 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2113 tree type, bool named_arg)
2114 {
2115 if (type)
2116 {
2117 /* If this type contains non-trivial constructors, then it is
2118 forbidden for the middle-end to create any new copies. */
2119 if (TREE_ADDRESSABLE (type))
2120 return true;
2121
2122 /* GCC post 3.4 passes *all* variable sized types by reference. */
2123 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2124 return true;
2125
2126 /* If a record type should be passed the same as its first (and only)
2127 member, use the type and mode of that member. */
2128 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2129 {
2130 type = TREE_TYPE (first_field (type));
2131 mode = TYPE_MODE (type);
2132 }
2133 }
2134
2135 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2136 type, named_arg);
2137 }
2138
2139 /* Return true if TYPE, which is passed by reference, should be callee
2140 copied instead of caller copied. */
2141
2142 bool
2143 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2144 tree type, bool named_arg)
2145 {
2146 if (type && TREE_ADDRESSABLE (type))
2147 return false;
2148 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2149 named_arg);
2150 }
2151
2152 /* Structures to communicate between the subroutines of assign_parms.
2153 The first holds data persistent across all parameters, the second
2154 is cleared out for each parameter. */
2155
2156 struct assign_parm_data_all
2157 {
2158 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2159 should become a job of the target or otherwise encapsulated. */
2160 CUMULATIVE_ARGS args_so_far_v;
2161 cumulative_args_t args_so_far;
2162 struct args_size stack_args_size;
2163 tree function_result_decl;
2164 tree orig_fnargs;
2165 rtx first_conversion_insn;
2166 rtx last_conversion_insn;
2167 HOST_WIDE_INT pretend_args_size;
2168 HOST_WIDE_INT extra_pretend_bytes;
2169 int reg_parm_stack_space;
2170 };
2171
2172 struct assign_parm_data_one
2173 {
2174 tree nominal_type;
2175 tree passed_type;
2176 rtx entry_parm;
2177 rtx stack_parm;
2178 enum machine_mode nominal_mode;
2179 enum machine_mode passed_mode;
2180 enum machine_mode promoted_mode;
2181 struct locate_and_pad_arg_data locate;
2182 int partial;
2183 BOOL_BITFIELD named_arg : 1;
2184 BOOL_BITFIELD passed_pointer : 1;
2185 BOOL_BITFIELD on_stack : 1;
2186 BOOL_BITFIELD loaded_in_reg : 1;
2187 };
2188
2189 /* A subroutine of assign_parms. Initialize ALL. */
2190
2191 static void
2192 assign_parms_initialize_all (struct assign_parm_data_all *all)
2193 {
2194 tree fntype ATTRIBUTE_UNUSED;
2195
2196 memset (all, 0, sizeof (*all));
2197
2198 fntype = TREE_TYPE (current_function_decl);
2199
2200 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2201 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2202 #else
2203 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2204 current_function_decl, -1);
2205 #endif
2206 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2207
2208 #ifdef REG_PARM_STACK_SPACE
2209 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2210 #endif
2211 }
2212
2213 /* If ARGS contains entries with complex types, split the entry into two
2214 entries of the component type. Return a new list of substitutions are
2215 needed, else the old list. */
2216
2217 static void
2218 split_complex_args (VEC(tree, heap) **args)
2219 {
2220 unsigned i;
2221 tree p;
2222
2223 FOR_EACH_VEC_ELT (tree, *args, i, p)
2224 {
2225 tree type = TREE_TYPE (p);
2226 if (TREE_CODE (type) == COMPLEX_TYPE
2227 && targetm.calls.split_complex_arg (type))
2228 {
2229 tree decl;
2230 tree subtype = TREE_TYPE (type);
2231 bool addressable = TREE_ADDRESSABLE (p);
2232
2233 /* Rewrite the PARM_DECL's type with its component. */
2234 p = copy_node (p);
2235 TREE_TYPE (p) = subtype;
2236 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2237 DECL_MODE (p) = VOIDmode;
2238 DECL_SIZE (p) = NULL;
2239 DECL_SIZE_UNIT (p) = NULL;
2240 /* If this arg must go in memory, put it in a pseudo here.
2241 We can't allow it to go in memory as per normal parms,
2242 because the usual place might not have the imag part
2243 adjacent to the real part. */
2244 DECL_ARTIFICIAL (p) = addressable;
2245 DECL_IGNORED_P (p) = addressable;
2246 TREE_ADDRESSABLE (p) = 0;
2247 layout_decl (p, 0);
2248 VEC_replace (tree, *args, i, p);
2249
2250 /* Build a second synthetic decl. */
2251 decl = build_decl (EXPR_LOCATION (p),
2252 PARM_DECL, NULL_TREE, subtype);
2253 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2254 DECL_ARTIFICIAL (decl) = addressable;
2255 DECL_IGNORED_P (decl) = addressable;
2256 layout_decl (decl, 0);
2257 VEC_safe_insert (tree, heap, *args, ++i, decl);
2258 }
2259 }
2260 }
2261
2262 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2263 the hidden struct return argument, and (abi willing) complex args.
2264 Return the new parameter list. */
2265
2266 static VEC(tree, heap) *
2267 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2268 {
2269 tree fndecl = current_function_decl;
2270 tree fntype = TREE_TYPE (fndecl);
2271 VEC(tree, heap) *fnargs = NULL;
2272 tree arg;
2273
2274 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2275 VEC_safe_push (tree, heap, fnargs, arg);
2276
2277 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2278
2279 /* If struct value address is treated as the first argument, make it so. */
2280 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2281 && ! cfun->returns_pcc_struct
2282 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2283 {
2284 tree type = build_pointer_type (TREE_TYPE (fntype));
2285 tree decl;
2286
2287 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2288 PARM_DECL, get_identifier (".result_ptr"), type);
2289 DECL_ARG_TYPE (decl) = type;
2290 DECL_ARTIFICIAL (decl) = 1;
2291 DECL_NAMELESS (decl) = 1;
2292 TREE_CONSTANT (decl) = 1;
2293
2294 DECL_CHAIN (decl) = all->orig_fnargs;
2295 all->orig_fnargs = decl;
2296 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2297
2298 all->function_result_decl = decl;
2299 }
2300
2301 /* If the target wants to split complex arguments into scalars, do so. */
2302 if (targetm.calls.split_complex_arg)
2303 split_complex_args (&fnargs);
2304
2305 return fnargs;
2306 }
2307
2308 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2309 data for the parameter. Incorporate ABI specifics such as pass-by-
2310 reference and type promotion. */
2311
2312 static void
2313 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2314 struct assign_parm_data_one *data)
2315 {
2316 tree nominal_type, passed_type;
2317 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2318 int unsignedp;
2319
2320 memset (data, 0, sizeof (*data));
2321
2322 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2323 if (!cfun->stdarg)
2324 data->named_arg = 1; /* No variadic parms. */
2325 else if (DECL_CHAIN (parm))
2326 data->named_arg = 1; /* Not the last non-variadic parm. */
2327 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2328 data->named_arg = 1; /* Only variadic ones are unnamed. */
2329 else
2330 data->named_arg = 0; /* Treat as variadic. */
2331
2332 nominal_type = TREE_TYPE (parm);
2333 passed_type = DECL_ARG_TYPE (parm);
2334
2335 /* Look out for errors propagating this far. Also, if the parameter's
2336 type is void then its value doesn't matter. */
2337 if (TREE_TYPE (parm) == error_mark_node
2338 /* This can happen after weird syntax errors
2339 or if an enum type is defined among the parms. */
2340 || TREE_CODE (parm) != PARM_DECL
2341 || passed_type == NULL
2342 || VOID_TYPE_P (nominal_type))
2343 {
2344 nominal_type = passed_type = void_type_node;
2345 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2346 goto egress;
2347 }
2348
2349 /* Find mode of arg as it is passed, and mode of arg as it should be
2350 during execution of this function. */
2351 passed_mode = TYPE_MODE (passed_type);
2352 nominal_mode = TYPE_MODE (nominal_type);
2353
2354 /* If the parm is to be passed as a transparent union or record, use the
2355 type of the first field for the tests below. We have already verified
2356 that the modes are the same. */
2357 if ((TREE_CODE (passed_type) == UNION_TYPE
2358 || TREE_CODE (passed_type) == RECORD_TYPE)
2359 && TYPE_TRANSPARENT_AGGR (passed_type))
2360 passed_type = TREE_TYPE (first_field (passed_type));
2361
2362 /* See if this arg was passed by invisible reference. */
2363 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2364 passed_type, data->named_arg))
2365 {
2366 passed_type = nominal_type = build_pointer_type (passed_type);
2367 data->passed_pointer = true;
2368 passed_mode = nominal_mode = Pmode;
2369 }
2370
2371 /* Find mode as it is passed by the ABI. */
2372 unsignedp = TYPE_UNSIGNED (passed_type);
2373 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2374 TREE_TYPE (current_function_decl), 0);
2375
2376 egress:
2377 data->nominal_type = nominal_type;
2378 data->passed_type = passed_type;
2379 data->nominal_mode = nominal_mode;
2380 data->passed_mode = passed_mode;
2381 data->promoted_mode = promoted_mode;
2382 }
2383
2384 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2385
2386 static void
2387 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2388 struct assign_parm_data_one *data, bool no_rtl)
2389 {
2390 int varargs_pretend_bytes = 0;
2391
2392 targetm.calls.setup_incoming_varargs (all->args_so_far,
2393 data->promoted_mode,
2394 data->passed_type,
2395 &varargs_pretend_bytes, no_rtl);
2396
2397 /* If the back-end has requested extra stack space, record how much is
2398 needed. Do not change pretend_args_size otherwise since it may be
2399 nonzero from an earlier partial argument. */
2400 if (varargs_pretend_bytes > 0)
2401 all->pretend_args_size = varargs_pretend_bytes;
2402 }
2403
2404 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2405 the incoming location of the current parameter. */
2406
2407 static void
2408 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2409 struct assign_parm_data_one *data)
2410 {
2411 HOST_WIDE_INT pretend_bytes = 0;
2412 rtx entry_parm;
2413 bool in_regs;
2414
2415 if (data->promoted_mode == VOIDmode)
2416 {
2417 data->entry_parm = data->stack_parm = const0_rtx;
2418 return;
2419 }
2420
2421 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2422 data->promoted_mode,
2423 data->passed_type,
2424 data->named_arg);
2425
2426 if (entry_parm == 0)
2427 data->promoted_mode = data->passed_mode;
2428
2429 /* Determine parm's home in the stack, in case it arrives in the stack
2430 or we should pretend it did. Compute the stack position and rtx where
2431 the argument arrives and its size.
2432
2433 There is one complexity here: If this was a parameter that would
2434 have been passed in registers, but wasn't only because it is
2435 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2436 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2437 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2438 as it was the previous time. */
2439 in_regs = entry_parm != 0;
2440 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2441 in_regs = true;
2442 #endif
2443 if (!in_regs && !data->named_arg)
2444 {
2445 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2446 {
2447 rtx tem;
2448 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2449 data->promoted_mode,
2450 data->passed_type, true);
2451 in_regs = tem != NULL;
2452 }
2453 }
2454
2455 /* If this parameter was passed both in registers and in the stack, use
2456 the copy on the stack. */
2457 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2458 data->passed_type))
2459 entry_parm = 0;
2460
2461 if (entry_parm)
2462 {
2463 int partial;
2464
2465 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2466 data->promoted_mode,
2467 data->passed_type,
2468 data->named_arg);
2469 data->partial = partial;
2470
2471 /* The caller might already have allocated stack space for the
2472 register parameters. */
2473 if (partial != 0 && all->reg_parm_stack_space == 0)
2474 {
2475 /* Part of this argument is passed in registers and part
2476 is passed on the stack. Ask the prologue code to extend
2477 the stack part so that we can recreate the full value.
2478
2479 PRETEND_BYTES is the size of the registers we need to store.
2480 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2481 stack space that the prologue should allocate.
2482
2483 Internally, gcc assumes that the argument pointer is aligned
2484 to STACK_BOUNDARY bits. This is used both for alignment
2485 optimizations (see init_emit) and to locate arguments that are
2486 aligned to more than PARM_BOUNDARY bits. We must preserve this
2487 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2488 a stack boundary. */
2489
2490 /* We assume at most one partial arg, and it must be the first
2491 argument on the stack. */
2492 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2493
2494 pretend_bytes = partial;
2495 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2496
2497 /* We want to align relative to the actual stack pointer, so
2498 don't include this in the stack size until later. */
2499 all->extra_pretend_bytes = all->pretend_args_size;
2500 }
2501 }
2502
2503 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2504 entry_parm ? data->partial : 0, current_function_decl,
2505 &all->stack_args_size, &data->locate);
2506
2507 /* Update parm_stack_boundary if this parameter is passed in the
2508 stack. */
2509 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2510 crtl->parm_stack_boundary = data->locate.boundary;
2511
2512 /* Adjust offsets to include the pretend args. */
2513 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2514 data->locate.slot_offset.constant += pretend_bytes;
2515 data->locate.offset.constant += pretend_bytes;
2516
2517 data->entry_parm = entry_parm;
2518 }
2519
2520 /* A subroutine of assign_parms. If there is actually space on the stack
2521 for this parm, count it in stack_args_size and return true. */
2522
2523 static bool
2524 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2525 struct assign_parm_data_one *data)
2526 {
2527 /* Trivially true if we've no incoming register. */
2528 if (data->entry_parm == NULL)
2529 ;
2530 /* Also true if we're partially in registers and partially not,
2531 since we've arranged to drop the entire argument on the stack. */
2532 else if (data->partial != 0)
2533 ;
2534 /* Also true if the target says that it's passed in both registers
2535 and on the stack. */
2536 else if (GET_CODE (data->entry_parm) == PARALLEL
2537 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2538 ;
2539 /* Also true if the target says that there's stack allocated for
2540 all register parameters. */
2541 else if (all->reg_parm_stack_space > 0)
2542 ;
2543 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2544 else
2545 return false;
2546
2547 all->stack_args_size.constant += data->locate.size.constant;
2548 if (data->locate.size.var)
2549 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2550
2551 return true;
2552 }
2553
2554 /* A subroutine of assign_parms. Given that this parameter is allocated
2555 stack space by the ABI, find it. */
2556
2557 static void
2558 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2559 {
2560 rtx offset_rtx, stack_parm;
2561 unsigned int align, boundary;
2562
2563 /* If we're passing this arg using a reg, make its stack home the
2564 aligned stack slot. */
2565 if (data->entry_parm)
2566 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2567 else
2568 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2569
2570 stack_parm = crtl->args.internal_arg_pointer;
2571 if (offset_rtx != const0_rtx)
2572 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2573 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2574
2575 if (!data->passed_pointer)
2576 {
2577 set_mem_attributes (stack_parm, parm, 1);
2578 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2579 while promoted mode's size is needed. */
2580 if (data->promoted_mode != BLKmode
2581 && data->promoted_mode != DECL_MODE (parm))
2582 {
2583 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2584 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2585 {
2586 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2587 data->promoted_mode);
2588 if (offset)
2589 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2590 }
2591 }
2592 }
2593
2594 boundary = data->locate.boundary;
2595 align = BITS_PER_UNIT;
2596
2597 /* If we're padding upward, we know that the alignment of the slot
2598 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2599 intentionally forcing upward padding. Otherwise we have to come
2600 up with a guess at the alignment based on OFFSET_RTX. */
2601 if (data->locate.where_pad != downward || data->entry_parm)
2602 align = boundary;
2603 else if (CONST_INT_P (offset_rtx))
2604 {
2605 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2606 align = align & -align;
2607 }
2608 set_mem_align (stack_parm, align);
2609
2610 if (data->entry_parm)
2611 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2612
2613 data->stack_parm = stack_parm;
2614 }
2615
2616 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2617 always valid and contiguous. */
2618
2619 static void
2620 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2621 {
2622 rtx entry_parm = data->entry_parm;
2623 rtx stack_parm = data->stack_parm;
2624
2625 /* If this parm was passed part in regs and part in memory, pretend it
2626 arrived entirely in memory by pushing the register-part onto the stack.
2627 In the special case of a DImode or DFmode that is split, we could put
2628 it together in a pseudoreg directly, but for now that's not worth
2629 bothering with. */
2630 if (data->partial != 0)
2631 {
2632 /* Handle calls that pass values in multiple non-contiguous
2633 locations. The Irix 6 ABI has examples of this. */
2634 if (GET_CODE (entry_parm) == PARALLEL)
2635 emit_group_store (validize_mem (stack_parm), entry_parm,
2636 data->passed_type,
2637 int_size_in_bytes (data->passed_type));
2638 else
2639 {
2640 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2641 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2642 data->partial / UNITS_PER_WORD);
2643 }
2644
2645 entry_parm = stack_parm;
2646 }
2647
2648 /* If we didn't decide this parm came in a register, by default it came
2649 on the stack. */
2650 else if (entry_parm == NULL)
2651 entry_parm = stack_parm;
2652
2653 /* When an argument is passed in multiple locations, we can't make use
2654 of this information, but we can save some copying if the whole argument
2655 is passed in a single register. */
2656 else if (GET_CODE (entry_parm) == PARALLEL
2657 && data->nominal_mode != BLKmode
2658 && data->passed_mode != BLKmode)
2659 {
2660 size_t i, len = XVECLEN (entry_parm, 0);
2661
2662 for (i = 0; i < len; i++)
2663 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2664 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2665 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2666 == data->passed_mode)
2667 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2668 {
2669 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2670 break;
2671 }
2672 }
2673
2674 data->entry_parm = entry_parm;
2675 }
2676
2677 /* A subroutine of assign_parms. Reconstitute any values which were
2678 passed in multiple registers and would fit in a single register. */
2679
2680 static void
2681 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2682 {
2683 rtx entry_parm = data->entry_parm;
2684
2685 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2686 This can be done with register operations rather than on the
2687 stack, even if we will store the reconstituted parameter on the
2688 stack later. */
2689 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2690 {
2691 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2692 emit_group_store (parmreg, entry_parm, data->passed_type,
2693 GET_MODE_SIZE (GET_MODE (entry_parm)));
2694 entry_parm = parmreg;
2695 }
2696
2697 data->entry_parm = entry_parm;
2698 }
2699
2700 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2701 always valid and properly aligned. */
2702
2703 static void
2704 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2705 {
2706 rtx stack_parm = data->stack_parm;
2707
2708 /* If we can't trust the parm stack slot to be aligned enough for its
2709 ultimate type, don't use that slot after entry. We'll make another
2710 stack slot, if we need one. */
2711 if (stack_parm
2712 && ((STRICT_ALIGNMENT
2713 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2714 || (data->nominal_type
2715 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2716 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2717 stack_parm = NULL;
2718
2719 /* If parm was passed in memory, and we need to convert it on entry,
2720 don't store it back in that same slot. */
2721 else if (data->entry_parm == stack_parm
2722 && data->nominal_mode != BLKmode
2723 && data->nominal_mode != data->passed_mode)
2724 stack_parm = NULL;
2725
2726 /* If stack protection is in effect for this function, don't leave any
2727 pointers in their passed stack slots. */
2728 else if (crtl->stack_protect_guard
2729 && (flag_stack_protect == 2
2730 || data->passed_pointer
2731 || POINTER_TYPE_P (data->nominal_type)))
2732 stack_parm = NULL;
2733
2734 data->stack_parm = stack_parm;
2735 }
2736
2737 /* A subroutine of assign_parms. Return true if the current parameter
2738 should be stored as a BLKmode in the current frame. */
2739
2740 static bool
2741 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2742 {
2743 if (data->nominal_mode == BLKmode)
2744 return true;
2745 if (GET_MODE (data->entry_parm) == BLKmode)
2746 return true;
2747
2748 #ifdef BLOCK_REG_PADDING
2749 /* Only assign_parm_setup_block knows how to deal with register arguments
2750 that are padded at the least significant end. */
2751 if (REG_P (data->entry_parm)
2752 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2753 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2754 == (BYTES_BIG_ENDIAN ? upward : downward)))
2755 return true;
2756 #endif
2757
2758 return false;
2759 }
2760
2761 /* A subroutine of assign_parms. Arrange for the parameter to be
2762 present and valid in DATA->STACK_RTL. */
2763
2764 static void
2765 assign_parm_setup_block (struct assign_parm_data_all *all,
2766 tree parm, struct assign_parm_data_one *data)
2767 {
2768 rtx entry_parm = data->entry_parm;
2769 rtx stack_parm = data->stack_parm;
2770 HOST_WIDE_INT size;
2771 HOST_WIDE_INT size_stored;
2772
2773 if (GET_CODE (entry_parm) == PARALLEL)
2774 entry_parm = emit_group_move_into_temps (entry_parm);
2775
2776 size = int_size_in_bytes (data->passed_type);
2777 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2778 if (stack_parm == 0)
2779 {
2780 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2781 stack_parm = assign_stack_local (BLKmode, size_stored,
2782 DECL_ALIGN (parm));
2783 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2784 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2785 set_mem_attributes (stack_parm, parm, 1);
2786 }
2787
2788 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2789 calls that pass values in multiple non-contiguous locations. */
2790 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2791 {
2792 rtx mem;
2793
2794 /* Note that we will be storing an integral number of words.
2795 So we have to be careful to ensure that we allocate an
2796 integral number of words. We do this above when we call
2797 assign_stack_local if space was not allocated in the argument
2798 list. If it was, this will not work if PARM_BOUNDARY is not
2799 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2800 if it becomes a problem. Exception is when BLKmode arrives
2801 with arguments not conforming to word_mode. */
2802
2803 if (data->stack_parm == 0)
2804 ;
2805 else if (GET_CODE (entry_parm) == PARALLEL)
2806 ;
2807 else
2808 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2809
2810 mem = validize_mem (stack_parm);
2811
2812 /* Handle values in multiple non-contiguous locations. */
2813 if (GET_CODE (entry_parm) == PARALLEL)
2814 {
2815 push_to_sequence2 (all->first_conversion_insn,
2816 all->last_conversion_insn);
2817 emit_group_store (mem, entry_parm, data->passed_type, size);
2818 all->first_conversion_insn = get_insns ();
2819 all->last_conversion_insn = get_last_insn ();
2820 end_sequence ();
2821 }
2822
2823 else if (size == 0)
2824 ;
2825
2826 /* If SIZE is that of a mode no bigger than a word, just use
2827 that mode's store operation. */
2828 else if (size <= UNITS_PER_WORD)
2829 {
2830 enum machine_mode mode
2831 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2832
2833 if (mode != BLKmode
2834 #ifdef BLOCK_REG_PADDING
2835 && (size == UNITS_PER_WORD
2836 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2837 != (BYTES_BIG_ENDIAN ? upward : downward)))
2838 #endif
2839 )
2840 {
2841 rtx reg;
2842
2843 /* We are really truncating a word_mode value containing
2844 SIZE bytes into a value of mode MODE. If such an
2845 operation requires no actual instructions, we can refer
2846 to the value directly in mode MODE, otherwise we must
2847 start with the register in word_mode and explicitly
2848 convert it. */
2849 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2850 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2851 else
2852 {
2853 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2854 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2855 }
2856 emit_move_insn (change_address (mem, mode, 0), reg);
2857 }
2858
2859 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2860 machine must be aligned to the left before storing
2861 to memory. Note that the previous test doesn't
2862 handle all cases (e.g. SIZE == 3). */
2863 else if (size != UNITS_PER_WORD
2864 #ifdef BLOCK_REG_PADDING
2865 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2866 == downward)
2867 #else
2868 && BYTES_BIG_ENDIAN
2869 #endif
2870 )
2871 {
2872 rtx tem, x;
2873 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2874 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2875
2876 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2877 tem = change_address (mem, word_mode, 0);
2878 emit_move_insn (tem, x);
2879 }
2880 else
2881 move_block_from_reg (REGNO (entry_parm), mem,
2882 size_stored / UNITS_PER_WORD);
2883 }
2884 else
2885 move_block_from_reg (REGNO (entry_parm), mem,
2886 size_stored / UNITS_PER_WORD);
2887 }
2888 else if (data->stack_parm == 0)
2889 {
2890 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2891 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2892 BLOCK_OP_NORMAL);
2893 all->first_conversion_insn = get_insns ();
2894 all->last_conversion_insn = get_last_insn ();
2895 end_sequence ();
2896 }
2897
2898 data->stack_parm = stack_parm;
2899 SET_DECL_RTL (parm, stack_parm);
2900 }
2901
2902 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2903 parameter. Get it there. Perform all ABI specified conversions. */
2904
2905 static void
2906 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2907 struct assign_parm_data_one *data)
2908 {
2909 rtx parmreg, validated_mem;
2910 rtx equiv_stack_parm;
2911 enum machine_mode promoted_nominal_mode;
2912 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2913 bool did_conversion = false;
2914 bool need_conversion, moved;
2915
2916 /* Store the parm in a pseudoregister during the function, but we may
2917 need to do it in a wider mode. Using 2 here makes the result
2918 consistent with promote_decl_mode and thus expand_expr_real_1. */
2919 promoted_nominal_mode
2920 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2921 TREE_TYPE (current_function_decl), 2);
2922
2923 parmreg = gen_reg_rtx (promoted_nominal_mode);
2924
2925 if (!DECL_ARTIFICIAL (parm))
2926 mark_user_reg (parmreg);
2927
2928 /* If this was an item that we received a pointer to,
2929 set DECL_RTL appropriately. */
2930 if (data->passed_pointer)
2931 {
2932 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2933 set_mem_attributes (x, parm, 1);
2934 SET_DECL_RTL (parm, x);
2935 }
2936 else
2937 SET_DECL_RTL (parm, parmreg);
2938
2939 assign_parm_remove_parallels (data);
2940
2941 /* Copy the value into the register, thus bridging between
2942 assign_parm_find_data_types and expand_expr_real_1. */
2943
2944 equiv_stack_parm = data->stack_parm;
2945 validated_mem = validize_mem (data->entry_parm);
2946
2947 need_conversion = (data->nominal_mode != data->passed_mode
2948 || promoted_nominal_mode != data->promoted_mode);
2949 moved = false;
2950
2951 if (need_conversion
2952 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2953 && data->nominal_mode == data->passed_mode
2954 && data->nominal_mode == GET_MODE (data->entry_parm))
2955 {
2956 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2957 mode, by the caller. We now have to convert it to
2958 NOMINAL_MODE, if different. However, PARMREG may be in
2959 a different mode than NOMINAL_MODE if it is being stored
2960 promoted.
2961
2962 If ENTRY_PARM is a hard register, it might be in a register
2963 not valid for operating in its mode (e.g., an odd-numbered
2964 register for a DFmode). In that case, moves are the only
2965 thing valid, so we can't do a convert from there. This
2966 occurs when the calling sequence allow such misaligned
2967 usages.
2968
2969 In addition, the conversion may involve a call, which could
2970 clobber parameters which haven't been copied to pseudo
2971 registers yet.
2972
2973 First, we try to emit an insn which performs the necessary
2974 conversion. We verify that this insn does not clobber any
2975 hard registers. */
2976
2977 enum insn_code icode;
2978 rtx op0, op1;
2979
2980 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2981 unsignedp);
2982
2983 op0 = parmreg;
2984 op1 = validated_mem;
2985 if (icode != CODE_FOR_nothing
2986 && insn_operand_matches (icode, 0, op0)
2987 && insn_operand_matches (icode, 1, op1))
2988 {
2989 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2990 rtx insn, insns, t = op1;
2991 HARD_REG_SET hardregs;
2992
2993 start_sequence ();
2994 /* If op1 is a hard register that is likely spilled, first
2995 force it into a pseudo, otherwise combiner might extend
2996 its lifetime too much. */
2997 if (GET_CODE (t) == SUBREG)
2998 t = SUBREG_REG (t);
2999 if (REG_P (t)
3000 && HARD_REGISTER_P (t)
3001 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3002 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3003 {
3004 t = gen_reg_rtx (GET_MODE (op1));
3005 emit_move_insn (t, op1);
3006 }
3007 else
3008 t = op1;
3009 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3010 data->passed_mode, unsignedp);
3011 emit_insn (insn);
3012 insns = get_insns ();
3013
3014 moved = true;
3015 CLEAR_HARD_REG_SET (hardregs);
3016 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3017 {
3018 if (INSN_P (insn))
3019 note_stores (PATTERN (insn), record_hard_reg_sets,
3020 &hardregs);
3021 if (!hard_reg_set_empty_p (hardregs))
3022 moved = false;
3023 }
3024
3025 end_sequence ();
3026
3027 if (moved)
3028 {
3029 emit_insn (insns);
3030 if (equiv_stack_parm != NULL_RTX)
3031 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3032 equiv_stack_parm);
3033 }
3034 }
3035 }
3036
3037 if (moved)
3038 /* Nothing to do. */
3039 ;
3040 else if (need_conversion)
3041 {
3042 /* We did not have an insn to convert directly, or the sequence
3043 generated appeared unsafe. We must first copy the parm to a
3044 pseudo reg, and save the conversion until after all
3045 parameters have been moved. */
3046
3047 int save_tree_used;
3048 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3049
3050 emit_move_insn (tempreg, validated_mem);
3051
3052 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3053 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3054
3055 if (GET_CODE (tempreg) == SUBREG
3056 && GET_MODE (tempreg) == data->nominal_mode
3057 && REG_P (SUBREG_REG (tempreg))
3058 && data->nominal_mode == data->passed_mode
3059 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3060 && GET_MODE_SIZE (GET_MODE (tempreg))
3061 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3062 {
3063 /* The argument is already sign/zero extended, so note it
3064 into the subreg. */
3065 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3066 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3067 }
3068
3069 /* TREE_USED gets set erroneously during expand_assignment. */
3070 save_tree_used = TREE_USED (parm);
3071 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3072 TREE_USED (parm) = save_tree_used;
3073 all->first_conversion_insn = get_insns ();
3074 all->last_conversion_insn = get_last_insn ();
3075 end_sequence ();
3076
3077 did_conversion = true;
3078 }
3079 else
3080 emit_move_insn (parmreg, validated_mem);
3081
3082 /* If we were passed a pointer but the actual value can safely live
3083 in a register, put it in one. */
3084 if (data->passed_pointer
3085 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3086 /* If by-reference argument was promoted, demote it. */
3087 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3088 || use_register_for_decl (parm)))
3089 {
3090 /* We can't use nominal_mode, because it will have been set to
3091 Pmode above. We must use the actual mode of the parm. */
3092 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3093 mark_user_reg (parmreg);
3094
3095 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3096 {
3097 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3098 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3099
3100 push_to_sequence2 (all->first_conversion_insn,
3101 all->last_conversion_insn);
3102 emit_move_insn (tempreg, DECL_RTL (parm));
3103 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3104 emit_move_insn (parmreg, tempreg);
3105 all->first_conversion_insn = get_insns ();
3106 all->last_conversion_insn = get_last_insn ();
3107 end_sequence ();
3108
3109 did_conversion = true;
3110 }
3111 else
3112 emit_move_insn (parmreg, DECL_RTL (parm));
3113
3114 SET_DECL_RTL (parm, parmreg);
3115
3116 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3117 now the parm. */
3118 data->stack_parm = NULL;
3119 }
3120
3121 /* Mark the register as eliminable if we did no conversion and it was
3122 copied from memory at a fixed offset, and the arg pointer was not
3123 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3124 offset formed an invalid address, such memory-equivalences as we
3125 make here would screw up life analysis for it. */
3126 if (data->nominal_mode == data->passed_mode
3127 && !did_conversion
3128 && data->stack_parm != 0
3129 && MEM_P (data->stack_parm)
3130 && data->locate.offset.var == 0
3131 && reg_mentioned_p (virtual_incoming_args_rtx,
3132 XEXP (data->stack_parm, 0)))
3133 {
3134 rtx linsn = get_last_insn ();
3135 rtx sinsn, set;
3136
3137 /* Mark complex types separately. */
3138 if (GET_CODE (parmreg) == CONCAT)
3139 {
3140 enum machine_mode submode
3141 = GET_MODE_INNER (GET_MODE (parmreg));
3142 int regnor = REGNO (XEXP (parmreg, 0));
3143 int regnoi = REGNO (XEXP (parmreg, 1));
3144 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3145 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3146 GET_MODE_SIZE (submode));
3147
3148 /* Scan backwards for the set of the real and
3149 imaginary parts. */
3150 for (sinsn = linsn; sinsn != 0;
3151 sinsn = prev_nonnote_insn (sinsn))
3152 {
3153 set = single_set (sinsn);
3154 if (set == 0)
3155 continue;
3156
3157 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3158 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3159 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3160 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3161 }
3162 }
3163 else
3164 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3165 }
3166
3167 /* For pointer data type, suggest pointer register. */
3168 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3169 mark_reg_pointer (parmreg,
3170 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3171 }
3172
3173 /* A subroutine of assign_parms. Allocate stack space to hold the current
3174 parameter. Get it there. Perform all ABI specified conversions. */
3175
3176 static void
3177 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3178 struct assign_parm_data_one *data)
3179 {
3180 /* Value must be stored in the stack slot STACK_PARM during function
3181 execution. */
3182 bool to_conversion = false;
3183
3184 assign_parm_remove_parallels (data);
3185
3186 if (data->promoted_mode != data->nominal_mode)
3187 {
3188 /* Conversion is required. */
3189 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3190
3191 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3192
3193 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3194 to_conversion = true;
3195
3196 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3197 TYPE_UNSIGNED (TREE_TYPE (parm)));
3198
3199 if (data->stack_parm)
3200 {
3201 int offset = subreg_lowpart_offset (data->nominal_mode,
3202 GET_MODE (data->stack_parm));
3203 /* ??? This may need a big-endian conversion on sparc64. */
3204 data->stack_parm
3205 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3206 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3207 set_mem_offset (data->stack_parm,
3208 MEM_OFFSET (data->stack_parm) + offset);
3209 }
3210 }
3211
3212 if (data->entry_parm != data->stack_parm)
3213 {
3214 rtx src, dest;
3215
3216 if (data->stack_parm == 0)
3217 {
3218 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3219 GET_MODE (data->entry_parm),
3220 TYPE_ALIGN (data->passed_type));
3221 data->stack_parm
3222 = assign_stack_local (GET_MODE (data->entry_parm),
3223 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3224 align);
3225 set_mem_attributes (data->stack_parm, parm, 1);
3226 }
3227
3228 dest = validize_mem (data->stack_parm);
3229 src = validize_mem (data->entry_parm);
3230
3231 if (MEM_P (src))
3232 {
3233 /* Use a block move to handle potentially misaligned entry_parm. */
3234 if (!to_conversion)
3235 push_to_sequence2 (all->first_conversion_insn,
3236 all->last_conversion_insn);
3237 to_conversion = true;
3238
3239 emit_block_move (dest, src,
3240 GEN_INT (int_size_in_bytes (data->passed_type)),
3241 BLOCK_OP_NORMAL);
3242 }
3243 else
3244 emit_move_insn (dest, src);
3245 }
3246
3247 if (to_conversion)
3248 {
3249 all->first_conversion_insn = get_insns ();
3250 all->last_conversion_insn = get_last_insn ();
3251 end_sequence ();
3252 }
3253
3254 SET_DECL_RTL (parm, data->stack_parm);
3255 }
3256
3257 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3258 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3259
3260 static void
3261 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3262 VEC(tree, heap) *fnargs)
3263 {
3264 tree parm;
3265 tree orig_fnargs = all->orig_fnargs;
3266 unsigned i = 0;
3267
3268 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3269 {
3270 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3271 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3272 {
3273 rtx tmp, real, imag;
3274 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3275
3276 real = DECL_RTL (VEC_index (tree, fnargs, i));
3277 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3278 if (inner != GET_MODE (real))
3279 {
3280 real = gen_lowpart_SUBREG (inner, real);
3281 imag = gen_lowpart_SUBREG (inner, imag);
3282 }
3283
3284 if (TREE_ADDRESSABLE (parm))
3285 {
3286 rtx rmem, imem;
3287 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3288 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3289 DECL_MODE (parm),
3290 TYPE_ALIGN (TREE_TYPE (parm)));
3291
3292 /* split_complex_arg put the real and imag parts in
3293 pseudos. Move them to memory. */
3294 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3295 set_mem_attributes (tmp, parm, 1);
3296 rmem = adjust_address_nv (tmp, inner, 0);
3297 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3298 push_to_sequence2 (all->first_conversion_insn,
3299 all->last_conversion_insn);
3300 emit_move_insn (rmem, real);
3301 emit_move_insn (imem, imag);
3302 all->first_conversion_insn = get_insns ();
3303 all->last_conversion_insn = get_last_insn ();
3304 end_sequence ();
3305 }
3306 else
3307 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3308 SET_DECL_RTL (parm, tmp);
3309
3310 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3311 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3312 if (inner != GET_MODE (real))
3313 {
3314 real = gen_lowpart_SUBREG (inner, real);
3315 imag = gen_lowpart_SUBREG (inner, imag);
3316 }
3317 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3318 set_decl_incoming_rtl (parm, tmp, false);
3319 i++;
3320 }
3321 }
3322 }
3323
3324 /* Assign RTL expressions to the function's parameters. This may involve
3325 copying them into registers and using those registers as the DECL_RTL. */
3326
3327 static void
3328 assign_parms (tree fndecl)
3329 {
3330 struct assign_parm_data_all all;
3331 tree parm;
3332 VEC(tree, heap) *fnargs;
3333 unsigned i;
3334
3335 crtl->args.internal_arg_pointer
3336 = targetm.calls.internal_arg_pointer ();
3337
3338 assign_parms_initialize_all (&all);
3339 fnargs = assign_parms_augmented_arg_list (&all);
3340
3341 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3342 {
3343 struct assign_parm_data_one data;
3344
3345 /* Extract the type of PARM; adjust it according to ABI. */
3346 assign_parm_find_data_types (&all, parm, &data);
3347
3348 /* Early out for errors and void parameters. */
3349 if (data.passed_mode == VOIDmode)
3350 {
3351 SET_DECL_RTL (parm, const0_rtx);
3352 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3353 continue;
3354 }
3355
3356 /* Estimate stack alignment from parameter alignment. */
3357 if (SUPPORTS_STACK_ALIGNMENT)
3358 {
3359 unsigned int align
3360 = targetm.calls.function_arg_boundary (data.promoted_mode,
3361 data.passed_type);
3362 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3363 align);
3364 if (TYPE_ALIGN (data.nominal_type) > align)
3365 align = MINIMUM_ALIGNMENT (data.nominal_type,
3366 TYPE_MODE (data.nominal_type),
3367 TYPE_ALIGN (data.nominal_type));
3368 if (crtl->stack_alignment_estimated < align)
3369 {
3370 gcc_assert (!crtl->stack_realign_processed);
3371 crtl->stack_alignment_estimated = align;
3372 }
3373 }
3374
3375 if (cfun->stdarg && !DECL_CHAIN (parm))
3376 assign_parms_setup_varargs (&all, &data, false);
3377
3378 /* Find out where the parameter arrives in this function. */
3379 assign_parm_find_entry_rtl (&all, &data);
3380
3381 /* Find out where stack space for this parameter might be. */
3382 if (assign_parm_is_stack_parm (&all, &data))
3383 {
3384 assign_parm_find_stack_rtl (parm, &data);
3385 assign_parm_adjust_entry_rtl (&data);
3386 }
3387
3388 /* Record permanently how this parm was passed. */
3389 if (data.passed_pointer)
3390 {
3391 rtx incoming_rtl
3392 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3393 data.entry_parm);
3394 set_decl_incoming_rtl (parm, incoming_rtl, true);
3395 }
3396 else
3397 set_decl_incoming_rtl (parm, data.entry_parm, false);
3398
3399 /* Update info on where next arg arrives in registers. */
3400 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3401 data.passed_type, data.named_arg);
3402
3403 assign_parm_adjust_stack_rtl (&data);
3404
3405 if (assign_parm_setup_block_p (&data))
3406 assign_parm_setup_block (&all, parm, &data);
3407 else if (data.passed_pointer || use_register_for_decl (parm))
3408 assign_parm_setup_reg (&all, parm, &data);
3409 else
3410 assign_parm_setup_stack (&all, parm, &data);
3411 }
3412
3413 if (targetm.calls.split_complex_arg)
3414 assign_parms_unsplit_complex (&all, fnargs);
3415
3416 VEC_free (tree, heap, fnargs);
3417
3418 /* Output all parameter conversion instructions (possibly including calls)
3419 now that all parameters have been copied out of hard registers. */
3420 emit_insn (all.first_conversion_insn);
3421
3422 /* Estimate reload stack alignment from scalar return mode. */
3423 if (SUPPORTS_STACK_ALIGNMENT)
3424 {
3425 if (DECL_RESULT (fndecl))
3426 {
3427 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3428 enum machine_mode mode = TYPE_MODE (type);
3429
3430 if (mode != BLKmode
3431 && mode != VOIDmode
3432 && !AGGREGATE_TYPE_P (type))
3433 {
3434 unsigned int align = GET_MODE_ALIGNMENT (mode);
3435 if (crtl->stack_alignment_estimated < align)
3436 {
3437 gcc_assert (!crtl->stack_realign_processed);
3438 crtl->stack_alignment_estimated = align;
3439 }
3440 }
3441 }
3442 }
3443
3444 /* If we are receiving a struct value address as the first argument, set up
3445 the RTL for the function result. As this might require code to convert
3446 the transmitted address to Pmode, we do this here to ensure that possible
3447 preliminary conversions of the address have been emitted already. */
3448 if (all.function_result_decl)
3449 {
3450 tree result = DECL_RESULT (current_function_decl);
3451 rtx addr = DECL_RTL (all.function_result_decl);
3452 rtx x;
3453
3454 if (DECL_BY_REFERENCE (result))
3455 {
3456 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3457 x = addr;
3458 }
3459 else
3460 {
3461 SET_DECL_VALUE_EXPR (result,
3462 build1 (INDIRECT_REF, TREE_TYPE (result),
3463 all.function_result_decl));
3464 addr = convert_memory_address (Pmode, addr);
3465 x = gen_rtx_MEM (DECL_MODE (result), addr);
3466 set_mem_attributes (x, result, 1);
3467 }
3468
3469 DECL_HAS_VALUE_EXPR_P (result) = 1;
3470
3471 SET_DECL_RTL (result, x);
3472 }
3473
3474 /* We have aligned all the args, so add space for the pretend args. */
3475 crtl->args.pretend_args_size = all.pretend_args_size;
3476 all.stack_args_size.constant += all.extra_pretend_bytes;
3477 crtl->args.size = all.stack_args_size.constant;
3478
3479 /* Adjust function incoming argument size for alignment and
3480 minimum length. */
3481
3482 #ifdef REG_PARM_STACK_SPACE
3483 crtl->args.size = MAX (crtl->args.size,
3484 REG_PARM_STACK_SPACE (fndecl));
3485 #endif
3486
3487 crtl->args.size = CEIL_ROUND (crtl->args.size,
3488 PARM_BOUNDARY / BITS_PER_UNIT);
3489
3490 #ifdef ARGS_GROW_DOWNWARD
3491 crtl->args.arg_offset_rtx
3492 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3493 : expand_expr (size_diffop (all.stack_args_size.var,
3494 size_int (-all.stack_args_size.constant)),
3495 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3496 #else
3497 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3498 #endif
3499
3500 /* See how many bytes, if any, of its args a function should try to pop
3501 on return. */
3502
3503 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3504 TREE_TYPE (fndecl),
3505 crtl->args.size);
3506
3507 /* For stdarg.h function, save info about
3508 regs and stack space used by the named args. */
3509
3510 crtl->args.info = all.args_so_far_v;
3511
3512 /* Set the rtx used for the function return value. Put this in its
3513 own variable so any optimizers that need this information don't have
3514 to include tree.h. Do this here so it gets done when an inlined
3515 function gets output. */
3516
3517 crtl->return_rtx
3518 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3519 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3520
3521 /* If scalar return value was computed in a pseudo-reg, or was a named
3522 return value that got dumped to the stack, copy that to the hard
3523 return register. */
3524 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3525 {
3526 tree decl_result = DECL_RESULT (fndecl);
3527 rtx decl_rtl = DECL_RTL (decl_result);
3528
3529 if (REG_P (decl_rtl)
3530 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3531 : DECL_REGISTER (decl_result))
3532 {
3533 rtx real_decl_rtl;
3534
3535 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3536 fndecl, true);
3537 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3538 /* The delay slot scheduler assumes that crtl->return_rtx
3539 holds the hard register containing the return value, not a
3540 temporary pseudo. */
3541 crtl->return_rtx = real_decl_rtl;
3542 }
3543 }
3544 }
3545
3546 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3547 For all seen types, gimplify their sizes. */
3548
3549 static tree
3550 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3551 {
3552 tree t = *tp;
3553
3554 *walk_subtrees = 0;
3555 if (TYPE_P (t))
3556 {
3557 if (POINTER_TYPE_P (t))
3558 *walk_subtrees = 1;
3559 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3560 && !TYPE_SIZES_GIMPLIFIED (t))
3561 {
3562 gimplify_type_sizes (t, (gimple_seq *) data);
3563 *walk_subtrees = 1;
3564 }
3565 }
3566
3567 return NULL;
3568 }
3569
3570 /* Gimplify the parameter list for current_function_decl. This involves
3571 evaluating SAVE_EXPRs of variable sized parameters and generating code
3572 to implement callee-copies reference parameters. Returns a sequence of
3573 statements to add to the beginning of the function. */
3574
3575 gimple_seq
3576 gimplify_parameters (void)
3577 {
3578 struct assign_parm_data_all all;
3579 tree parm;
3580 gimple_seq stmts = NULL;
3581 VEC(tree, heap) *fnargs;
3582 unsigned i;
3583
3584 assign_parms_initialize_all (&all);
3585 fnargs = assign_parms_augmented_arg_list (&all);
3586
3587 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3588 {
3589 struct assign_parm_data_one data;
3590
3591 /* Extract the type of PARM; adjust it according to ABI. */
3592 assign_parm_find_data_types (&all, parm, &data);
3593
3594 /* Early out for errors and void parameters. */
3595 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3596 continue;
3597
3598 /* Update info on where next arg arrives in registers. */
3599 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3600 data.passed_type, data.named_arg);
3601
3602 /* ??? Once upon a time variable_size stuffed parameter list
3603 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3604 turned out to be less than manageable in the gimple world.
3605 Now we have to hunt them down ourselves. */
3606 walk_tree_without_duplicates (&data.passed_type,
3607 gimplify_parm_type, &stmts);
3608
3609 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3610 {
3611 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3612 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3613 }
3614
3615 if (data.passed_pointer)
3616 {
3617 tree type = TREE_TYPE (data.passed_type);
3618 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3619 type, data.named_arg))
3620 {
3621 tree local, t;
3622
3623 /* For constant-sized objects, this is trivial; for
3624 variable-sized objects, we have to play games. */
3625 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3626 && !(flag_stack_check == GENERIC_STACK_CHECK
3627 && compare_tree_int (DECL_SIZE_UNIT (parm),
3628 STACK_CHECK_MAX_VAR_SIZE) > 0))
3629 {
3630 local = create_tmp_var (type, get_name (parm));
3631 DECL_IGNORED_P (local) = 0;
3632 /* If PARM was addressable, move that flag over
3633 to the local copy, as its address will be taken,
3634 not the PARMs. Keep the parms address taken
3635 as we'll query that flag during gimplification. */
3636 if (TREE_ADDRESSABLE (parm))
3637 TREE_ADDRESSABLE (local) = 1;
3638 else if (TREE_CODE (type) == COMPLEX_TYPE
3639 || TREE_CODE (type) == VECTOR_TYPE)
3640 DECL_GIMPLE_REG_P (local) = 1;
3641 }
3642 else
3643 {
3644 tree ptr_type, addr;
3645
3646 ptr_type = build_pointer_type (type);
3647 addr = create_tmp_reg (ptr_type, get_name (parm));
3648 DECL_IGNORED_P (addr) = 0;
3649 local = build_fold_indirect_ref (addr);
3650
3651 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3652 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3653 size_int (DECL_ALIGN (parm)));
3654
3655 /* The call has been built for a variable-sized object. */
3656 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3657 t = fold_convert (ptr_type, t);
3658 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3659 gimplify_and_add (t, &stmts);
3660 }
3661
3662 gimplify_assign (local, parm, &stmts);
3663
3664 SET_DECL_VALUE_EXPR (parm, local);
3665 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3666 }
3667 }
3668 }
3669
3670 VEC_free (tree, heap, fnargs);
3671
3672 return stmts;
3673 }
3674 \f
3675 /* Compute the size and offset from the start of the stacked arguments for a
3676 parm passed in mode PASSED_MODE and with type TYPE.
3677
3678 INITIAL_OFFSET_PTR points to the current offset into the stacked
3679 arguments.
3680
3681 The starting offset and size for this parm are returned in
3682 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3683 nonzero, the offset is that of stack slot, which is returned in
3684 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3685 padding required from the initial offset ptr to the stack slot.
3686
3687 IN_REGS is nonzero if the argument will be passed in registers. It will
3688 never be set if REG_PARM_STACK_SPACE is not defined.
3689
3690 FNDECL is the function in which the argument was defined.
3691
3692 There are two types of rounding that are done. The first, controlled by
3693 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3694 argument list to be aligned to the specific boundary (in bits). This
3695 rounding affects the initial and starting offsets, but not the argument
3696 size.
3697
3698 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3699 optionally rounds the size of the parm to PARM_BOUNDARY. The
3700 initial offset is not affected by this rounding, while the size always
3701 is and the starting offset may be. */
3702
3703 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3704 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3705 callers pass in the total size of args so far as
3706 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3707
3708 void
3709 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3710 int partial, tree fndecl ATTRIBUTE_UNUSED,
3711 struct args_size *initial_offset_ptr,
3712 struct locate_and_pad_arg_data *locate)
3713 {
3714 tree sizetree;
3715 enum direction where_pad;
3716 unsigned int boundary, round_boundary;
3717 int reg_parm_stack_space = 0;
3718 int part_size_in_regs;
3719
3720 #ifdef REG_PARM_STACK_SPACE
3721 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3722
3723 /* If we have found a stack parm before we reach the end of the
3724 area reserved for registers, skip that area. */
3725 if (! in_regs)
3726 {
3727 if (reg_parm_stack_space > 0)
3728 {
3729 if (initial_offset_ptr->var)
3730 {
3731 initial_offset_ptr->var
3732 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3733 ssize_int (reg_parm_stack_space));
3734 initial_offset_ptr->constant = 0;
3735 }
3736 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3737 initial_offset_ptr->constant = reg_parm_stack_space;
3738 }
3739 }
3740 #endif /* REG_PARM_STACK_SPACE */
3741
3742 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3743
3744 sizetree
3745 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3746 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3747 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3748 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3749 type);
3750 locate->where_pad = where_pad;
3751
3752 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3753 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3754 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3755
3756 locate->boundary = boundary;
3757
3758 if (SUPPORTS_STACK_ALIGNMENT)
3759 {
3760 /* stack_alignment_estimated can't change after stack has been
3761 realigned. */
3762 if (crtl->stack_alignment_estimated < boundary)
3763 {
3764 if (!crtl->stack_realign_processed)
3765 crtl->stack_alignment_estimated = boundary;
3766 else
3767 {
3768 /* If stack is realigned and stack alignment value
3769 hasn't been finalized, it is OK not to increase
3770 stack_alignment_estimated. The bigger alignment
3771 requirement is recorded in stack_alignment_needed
3772 below. */
3773 gcc_assert (!crtl->stack_realign_finalized
3774 && crtl->stack_realign_needed);
3775 }
3776 }
3777 }
3778
3779 /* Remember if the outgoing parameter requires extra alignment on the
3780 calling function side. */
3781 if (crtl->stack_alignment_needed < boundary)
3782 crtl->stack_alignment_needed = boundary;
3783 if (crtl->preferred_stack_boundary < boundary)
3784 crtl->preferred_stack_boundary = boundary;
3785
3786 #ifdef ARGS_GROW_DOWNWARD
3787 locate->slot_offset.constant = -initial_offset_ptr->constant;
3788 if (initial_offset_ptr->var)
3789 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3790 initial_offset_ptr->var);
3791
3792 {
3793 tree s2 = sizetree;
3794 if (where_pad != none
3795 && (!host_integerp (sizetree, 1)
3796 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3797 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3798 SUB_PARM_SIZE (locate->slot_offset, s2);
3799 }
3800
3801 locate->slot_offset.constant += part_size_in_regs;
3802
3803 if (!in_regs
3804 #ifdef REG_PARM_STACK_SPACE
3805 || REG_PARM_STACK_SPACE (fndecl) > 0
3806 #endif
3807 )
3808 pad_to_arg_alignment (&locate->slot_offset, boundary,
3809 &locate->alignment_pad);
3810
3811 locate->size.constant = (-initial_offset_ptr->constant
3812 - locate->slot_offset.constant);
3813 if (initial_offset_ptr->var)
3814 locate->size.var = size_binop (MINUS_EXPR,
3815 size_binop (MINUS_EXPR,
3816 ssize_int (0),
3817 initial_offset_ptr->var),
3818 locate->slot_offset.var);
3819
3820 /* Pad_below needs the pre-rounded size to know how much to pad
3821 below. */
3822 locate->offset = locate->slot_offset;
3823 if (where_pad == downward)
3824 pad_below (&locate->offset, passed_mode, sizetree);
3825
3826 #else /* !ARGS_GROW_DOWNWARD */
3827 if (!in_regs
3828 #ifdef REG_PARM_STACK_SPACE
3829 || REG_PARM_STACK_SPACE (fndecl) > 0
3830 #endif
3831 )
3832 pad_to_arg_alignment (initial_offset_ptr, boundary,
3833 &locate->alignment_pad);
3834 locate->slot_offset = *initial_offset_ptr;
3835
3836 #ifdef PUSH_ROUNDING
3837 if (passed_mode != BLKmode)
3838 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3839 #endif
3840
3841 /* Pad_below needs the pre-rounded size to know how much to pad below
3842 so this must be done before rounding up. */
3843 locate->offset = locate->slot_offset;
3844 if (where_pad == downward)
3845 pad_below (&locate->offset, passed_mode, sizetree);
3846
3847 if (where_pad != none
3848 && (!host_integerp (sizetree, 1)
3849 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3850 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3851
3852 ADD_PARM_SIZE (locate->size, sizetree);
3853
3854 locate->size.constant -= part_size_in_regs;
3855 #endif /* ARGS_GROW_DOWNWARD */
3856
3857 #ifdef FUNCTION_ARG_OFFSET
3858 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3859 #endif
3860 }
3861
3862 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3863 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3864
3865 static void
3866 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3867 struct args_size *alignment_pad)
3868 {
3869 tree save_var = NULL_TREE;
3870 HOST_WIDE_INT save_constant = 0;
3871 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3872 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3873
3874 #ifdef SPARC_STACK_BOUNDARY_HACK
3875 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3876 the real alignment of %sp. However, when it does this, the
3877 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3878 if (SPARC_STACK_BOUNDARY_HACK)
3879 sp_offset = 0;
3880 #endif
3881
3882 if (boundary > PARM_BOUNDARY)
3883 {
3884 save_var = offset_ptr->var;
3885 save_constant = offset_ptr->constant;
3886 }
3887
3888 alignment_pad->var = NULL_TREE;
3889 alignment_pad->constant = 0;
3890
3891 if (boundary > BITS_PER_UNIT)
3892 {
3893 if (offset_ptr->var)
3894 {
3895 tree sp_offset_tree = ssize_int (sp_offset);
3896 tree offset = size_binop (PLUS_EXPR,
3897 ARGS_SIZE_TREE (*offset_ptr),
3898 sp_offset_tree);
3899 #ifdef ARGS_GROW_DOWNWARD
3900 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3901 #else
3902 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3903 #endif
3904
3905 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3906 /* ARGS_SIZE_TREE includes constant term. */
3907 offset_ptr->constant = 0;
3908 if (boundary > PARM_BOUNDARY)
3909 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3910 save_var);
3911 }
3912 else
3913 {
3914 offset_ptr->constant = -sp_offset +
3915 #ifdef ARGS_GROW_DOWNWARD
3916 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3917 #else
3918 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3919 #endif
3920 if (boundary > PARM_BOUNDARY)
3921 alignment_pad->constant = offset_ptr->constant - save_constant;
3922 }
3923 }
3924 }
3925
3926 static void
3927 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3928 {
3929 if (passed_mode != BLKmode)
3930 {
3931 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3932 offset_ptr->constant
3933 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3934 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3935 - GET_MODE_SIZE (passed_mode));
3936 }
3937 else
3938 {
3939 if (TREE_CODE (sizetree) != INTEGER_CST
3940 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3941 {
3942 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3943 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3944 /* Add it in. */
3945 ADD_PARM_SIZE (*offset_ptr, s2);
3946 SUB_PARM_SIZE (*offset_ptr, sizetree);
3947 }
3948 }
3949 }
3950 \f
3951
3952 /* True if register REGNO was alive at a place where `setjmp' was
3953 called and was set more than once or is an argument. Such regs may
3954 be clobbered by `longjmp'. */
3955
3956 static bool
3957 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3958 {
3959 /* There appear to be cases where some local vars never reach the
3960 backend but have bogus regnos. */
3961 if (regno >= max_reg_num ())
3962 return false;
3963
3964 return ((REG_N_SETS (regno) > 1
3965 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3966 && REGNO_REG_SET_P (setjmp_crosses, regno));
3967 }
3968
3969 /* Walk the tree of blocks describing the binding levels within a
3970 function and warn about variables the might be killed by setjmp or
3971 vfork. This is done after calling flow_analysis before register
3972 allocation since that will clobber the pseudo-regs to hard
3973 regs. */
3974
3975 static void
3976 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3977 {
3978 tree decl, sub;
3979
3980 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3981 {
3982 if (TREE_CODE (decl) == VAR_DECL
3983 && DECL_RTL_SET_P (decl)
3984 && REG_P (DECL_RTL (decl))
3985 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3986 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3987 " %<longjmp%> or %<vfork%>", decl);
3988 }
3989
3990 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3991 setjmp_vars_warning (setjmp_crosses, sub);
3992 }
3993
3994 /* Do the appropriate part of setjmp_vars_warning
3995 but for arguments instead of local variables. */
3996
3997 static void
3998 setjmp_args_warning (bitmap setjmp_crosses)
3999 {
4000 tree decl;
4001 for (decl = DECL_ARGUMENTS (current_function_decl);
4002 decl; decl = DECL_CHAIN (decl))
4003 if (DECL_RTL (decl) != 0
4004 && REG_P (DECL_RTL (decl))
4005 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4006 warning (OPT_Wclobbered,
4007 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4008 decl);
4009 }
4010
4011 /* Generate warning messages for variables live across setjmp. */
4012
4013 void
4014 generate_setjmp_warnings (void)
4015 {
4016 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4017
4018 if (n_basic_blocks == NUM_FIXED_BLOCKS
4019 || bitmap_empty_p (setjmp_crosses))
4020 return;
4021
4022 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4023 setjmp_args_warning (setjmp_crosses);
4024 }
4025
4026 \f
4027 /* Reverse the order of elements in the fragment chain T of blocks,
4028 and return the new head of the chain (old last element).
4029 In addition to that clear BLOCK_SAME_RANGE flags when needed
4030 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4031 its super fragment origin. */
4032
4033 static tree
4034 block_fragments_nreverse (tree t)
4035 {
4036 tree prev = 0, block, next, prev_super = 0;
4037 tree super = BLOCK_SUPERCONTEXT (t);
4038 if (BLOCK_FRAGMENT_ORIGIN (super))
4039 super = BLOCK_FRAGMENT_ORIGIN (super);
4040 for (block = t; block; block = next)
4041 {
4042 next = BLOCK_FRAGMENT_CHAIN (block);
4043 BLOCK_FRAGMENT_CHAIN (block) = prev;
4044 if ((prev && !BLOCK_SAME_RANGE (prev))
4045 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4046 != prev_super))
4047 BLOCK_SAME_RANGE (block) = 0;
4048 prev_super = BLOCK_SUPERCONTEXT (block);
4049 BLOCK_SUPERCONTEXT (block) = super;
4050 prev = block;
4051 }
4052 t = BLOCK_FRAGMENT_ORIGIN (t);
4053 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4054 != prev_super)
4055 BLOCK_SAME_RANGE (t) = 0;
4056 BLOCK_SUPERCONTEXT (t) = super;
4057 return prev;
4058 }
4059
4060 /* Reverse the order of elements in the chain T of blocks,
4061 and return the new head of the chain (old last element).
4062 Also do the same on subblocks and reverse the order of elements
4063 in BLOCK_FRAGMENT_CHAIN as well. */
4064
4065 static tree
4066 blocks_nreverse_all (tree t)
4067 {
4068 tree prev = 0, block, next;
4069 for (block = t; block; block = next)
4070 {
4071 next = BLOCK_CHAIN (block);
4072 BLOCK_CHAIN (block) = prev;
4073 if (BLOCK_FRAGMENT_CHAIN (block)
4074 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4075 {
4076 BLOCK_FRAGMENT_CHAIN (block)
4077 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4078 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4079 BLOCK_SAME_RANGE (block) = 0;
4080 }
4081 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4082 prev = block;
4083 }
4084 return prev;
4085 }
4086
4087
4088 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4089 and create duplicate blocks. */
4090 /* ??? Need an option to either create block fragments or to create
4091 abstract origin duplicates of a source block. It really depends
4092 on what optimization has been performed. */
4093
4094 void
4095 reorder_blocks (void)
4096 {
4097 tree block = DECL_INITIAL (current_function_decl);
4098 VEC(tree,heap) *block_stack;
4099
4100 if (block == NULL_TREE)
4101 return;
4102
4103 block_stack = VEC_alloc (tree, heap, 10);
4104
4105 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4106 clear_block_marks (block);
4107
4108 /* Prune the old trees away, so that they don't get in the way. */
4109 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4110 BLOCK_CHAIN (block) = NULL_TREE;
4111
4112 /* Recreate the block tree from the note nesting. */
4113 reorder_blocks_1 (get_insns (), block, &block_stack);
4114 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4115
4116 VEC_free (tree, heap, block_stack);
4117 }
4118
4119 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4120
4121 void
4122 clear_block_marks (tree block)
4123 {
4124 while (block)
4125 {
4126 TREE_ASM_WRITTEN (block) = 0;
4127 clear_block_marks (BLOCK_SUBBLOCKS (block));
4128 block = BLOCK_CHAIN (block);
4129 }
4130 }
4131
4132 static void
4133 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
4134 {
4135 rtx insn;
4136 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4137
4138 for (insn = insns; insn; insn = NEXT_INSN (insn))
4139 {
4140 if (NOTE_P (insn))
4141 {
4142 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4143 {
4144 tree block = NOTE_BLOCK (insn);
4145 tree origin;
4146
4147 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4148 origin = block;
4149
4150 if (prev_end)
4151 BLOCK_SAME_RANGE (prev_end) = 0;
4152 prev_end = NULL_TREE;
4153
4154 /* If we have seen this block before, that means it now
4155 spans multiple address regions. Create a new fragment. */
4156 if (TREE_ASM_WRITTEN (block))
4157 {
4158 tree new_block = copy_node (block);
4159
4160 BLOCK_SAME_RANGE (new_block) = 0;
4161 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4162 BLOCK_FRAGMENT_CHAIN (new_block)
4163 = BLOCK_FRAGMENT_CHAIN (origin);
4164 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4165
4166 NOTE_BLOCK (insn) = new_block;
4167 block = new_block;
4168 }
4169
4170 if (prev_beg == current_block && prev_beg)
4171 BLOCK_SAME_RANGE (block) = 1;
4172
4173 prev_beg = origin;
4174
4175 BLOCK_SUBBLOCKS (block) = 0;
4176 TREE_ASM_WRITTEN (block) = 1;
4177 /* When there's only one block for the entire function,
4178 current_block == block and we mustn't do this, it
4179 will cause infinite recursion. */
4180 if (block != current_block)
4181 {
4182 tree super;
4183 if (block != origin)
4184 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4185 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4186 (origin))
4187 == current_block);
4188 if (VEC_empty (tree, *p_block_stack))
4189 super = current_block;
4190 else
4191 {
4192 super = VEC_last (tree, *p_block_stack);
4193 gcc_assert (super == current_block
4194 || BLOCK_FRAGMENT_ORIGIN (super)
4195 == current_block);
4196 }
4197 BLOCK_SUPERCONTEXT (block) = super;
4198 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4199 BLOCK_SUBBLOCKS (current_block) = block;
4200 current_block = origin;
4201 }
4202 VEC_safe_push (tree, heap, *p_block_stack, block);
4203 }
4204 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4205 {
4206 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
4207 current_block = BLOCK_SUPERCONTEXT (current_block);
4208 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4209 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4210 prev_beg = NULL_TREE;
4211 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4212 ? NOTE_BLOCK (insn) : NULL_TREE;
4213 }
4214 }
4215 else
4216 {
4217 prev_beg = NULL_TREE;
4218 if (prev_end)
4219 BLOCK_SAME_RANGE (prev_end) = 0;
4220 prev_end = NULL_TREE;
4221 }
4222 }
4223 }
4224
4225 /* Reverse the order of elements in the chain T of blocks,
4226 and return the new head of the chain (old last element). */
4227
4228 tree
4229 blocks_nreverse (tree t)
4230 {
4231 tree prev = 0, block, next;
4232 for (block = t; block; block = next)
4233 {
4234 next = BLOCK_CHAIN (block);
4235 BLOCK_CHAIN (block) = prev;
4236 prev = block;
4237 }
4238 return prev;
4239 }
4240
4241 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4242 by modifying the last node in chain 1 to point to chain 2. */
4243
4244 tree
4245 block_chainon (tree op1, tree op2)
4246 {
4247 tree t1;
4248
4249 if (!op1)
4250 return op2;
4251 if (!op2)
4252 return op1;
4253
4254 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4255 continue;
4256 BLOCK_CHAIN (t1) = op2;
4257
4258 #ifdef ENABLE_TREE_CHECKING
4259 {
4260 tree t2;
4261 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4262 gcc_assert (t2 != t1);
4263 }
4264 #endif
4265
4266 return op1;
4267 }
4268
4269 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4270 non-NULL, list them all into VECTOR, in a depth-first preorder
4271 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4272 blocks. */
4273
4274 static int
4275 all_blocks (tree block, tree *vector)
4276 {
4277 int n_blocks = 0;
4278
4279 while (block)
4280 {
4281 TREE_ASM_WRITTEN (block) = 0;
4282
4283 /* Record this block. */
4284 if (vector)
4285 vector[n_blocks] = block;
4286
4287 ++n_blocks;
4288
4289 /* Record the subblocks, and their subblocks... */
4290 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4291 vector ? vector + n_blocks : 0);
4292 block = BLOCK_CHAIN (block);
4293 }
4294
4295 return n_blocks;
4296 }
4297
4298 /* Return a vector containing all the blocks rooted at BLOCK. The
4299 number of elements in the vector is stored in N_BLOCKS_P. The
4300 vector is dynamically allocated; it is the caller's responsibility
4301 to call `free' on the pointer returned. */
4302
4303 static tree *
4304 get_block_vector (tree block, int *n_blocks_p)
4305 {
4306 tree *block_vector;
4307
4308 *n_blocks_p = all_blocks (block, NULL);
4309 block_vector = XNEWVEC (tree, *n_blocks_p);
4310 all_blocks (block, block_vector);
4311
4312 return block_vector;
4313 }
4314
4315 static GTY(()) int next_block_index = 2;
4316
4317 /* Set BLOCK_NUMBER for all the blocks in FN. */
4318
4319 void
4320 number_blocks (tree fn)
4321 {
4322 int i;
4323 int n_blocks;
4324 tree *block_vector;
4325
4326 /* For SDB and XCOFF debugging output, we start numbering the blocks
4327 from 1 within each function, rather than keeping a running
4328 count. */
4329 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4330 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4331 next_block_index = 1;
4332 #endif
4333
4334 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4335
4336 /* The top-level BLOCK isn't numbered at all. */
4337 for (i = 1; i < n_blocks; ++i)
4338 /* We number the blocks from two. */
4339 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4340
4341 free (block_vector);
4342
4343 return;
4344 }
4345
4346 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4347
4348 DEBUG_FUNCTION tree
4349 debug_find_var_in_block_tree (tree var, tree block)
4350 {
4351 tree t;
4352
4353 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4354 if (t == var)
4355 return block;
4356
4357 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4358 {
4359 tree ret = debug_find_var_in_block_tree (var, t);
4360 if (ret)
4361 return ret;
4362 }
4363
4364 return NULL_TREE;
4365 }
4366 \f
4367 /* Keep track of whether we're in a dummy function context. If we are,
4368 we don't want to invoke the set_current_function hook, because we'll
4369 get into trouble if the hook calls target_reinit () recursively or
4370 when the initial initialization is not yet complete. */
4371
4372 static bool in_dummy_function;
4373
4374 /* Invoke the target hook when setting cfun. Update the optimization options
4375 if the function uses different options than the default. */
4376
4377 static void
4378 invoke_set_current_function_hook (tree fndecl)
4379 {
4380 if (!in_dummy_function)
4381 {
4382 tree opts = ((fndecl)
4383 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4384 : optimization_default_node);
4385
4386 if (!opts)
4387 opts = optimization_default_node;
4388
4389 /* Change optimization options if needed. */
4390 if (optimization_current_node != opts)
4391 {
4392 optimization_current_node = opts;
4393 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4394 }
4395
4396 targetm.set_current_function (fndecl);
4397 }
4398 }
4399
4400 /* cfun should never be set directly; use this function. */
4401
4402 void
4403 set_cfun (struct function *new_cfun)
4404 {
4405 if (cfun != new_cfun)
4406 {
4407 cfun = new_cfun;
4408 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4409 }
4410 }
4411
4412 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4413
4414 static VEC(function_p,heap) *cfun_stack;
4415
4416 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4417
4418 void
4419 push_cfun (struct function *new_cfun)
4420 {
4421 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4422 set_cfun (new_cfun);
4423 }
4424
4425 /* Pop cfun from the stack. */
4426
4427 void
4428 pop_cfun (void)
4429 {
4430 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4431 set_cfun (new_cfun);
4432 }
4433
4434 /* Return value of funcdef and increase it. */
4435 int
4436 get_next_funcdef_no (void)
4437 {
4438 return funcdef_no++;
4439 }
4440
4441 /* Return value of funcdef. */
4442 int
4443 get_last_funcdef_no (void)
4444 {
4445 return funcdef_no;
4446 }
4447
4448 /* Allocate a function structure for FNDECL and set its contents
4449 to the defaults. Set cfun to the newly-allocated object.
4450 Some of the helper functions invoked during initialization assume
4451 that cfun has already been set. Therefore, assign the new object
4452 directly into cfun and invoke the back end hook explicitly at the
4453 very end, rather than initializing a temporary and calling set_cfun
4454 on it.
4455
4456 ABSTRACT_P is true if this is a function that will never be seen by
4457 the middle-end. Such functions are front-end concepts (like C++
4458 function templates) that do not correspond directly to functions
4459 placed in object files. */
4460
4461 void
4462 allocate_struct_function (tree fndecl, bool abstract_p)
4463 {
4464 tree result;
4465 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4466
4467 cfun = ggc_alloc_cleared_function ();
4468
4469 init_eh_for_function ();
4470
4471 if (init_machine_status)
4472 cfun->machine = (*init_machine_status) ();
4473
4474 #ifdef OVERRIDE_ABI_FORMAT
4475 OVERRIDE_ABI_FORMAT (fndecl);
4476 #endif
4477
4478 invoke_set_current_function_hook (fndecl);
4479
4480 if (fndecl != NULL_TREE)
4481 {
4482 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4483 cfun->decl = fndecl;
4484 current_function_funcdef_no = get_next_funcdef_no ();
4485
4486 result = DECL_RESULT (fndecl);
4487 if (!abstract_p && aggregate_value_p (result, fndecl))
4488 {
4489 #ifdef PCC_STATIC_STRUCT_RETURN
4490 cfun->returns_pcc_struct = 1;
4491 #endif
4492 cfun->returns_struct = 1;
4493 }
4494
4495 cfun->stdarg = stdarg_p (fntype);
4496
4497 /* Assume all registers in stdarg functions need to be saved. */
4498 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4499 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4500
4501 /* ??? This could be set on a per-function basis by the front-end
4502 but is this worth the hassle? */
4503 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4504 }
4505 }
4506
4507 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4508 instead of just setting it. */
4509
4510 void
4511 push_struct_function (tree fndecl)
4512 {
4513 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4514 allocate_struct_function (fndecl, false);
4515 }
4516
4517 /* Reset crtl and other non-struct-function variables to defaults as
4518 appropriate for emitting rtl at the start of a function. */
4519
4520 static void
4521 prepare_function_start (void)
4522 {
4523 gcc_assert (!crtl->emit.x_last_insn);
4524 init_temp_slots ();
4525 init_emit ();
4526 init_varasm_status ();
4527 init_expr ();
4528 default_rtl_profile ();
4529
4530 if (flag_stack_usage_info)
4531 {
4532 cfun->su = ggc_alloc_cleared_stack_usage ();
4533 cfun->su->static_stack_size = -1;
4534 }
4535
4536 cse_not_expected = ! optimize;
4537
4538 /* Caller save not needed yet. */
4539 caller_save_needed = 0;
4540
4541 /* We haven't done register allocation yet. */
4542 reg_renumber = 0;
4543
4544 /* Indicate that we have not instantiated virtual registers yet. */
4545 virtuals_instantiated = 0;
4546
4547 /* Indicate that we want CONCATs now. */
4548 generating_concat_p = 1;
4549
4550 /* Indicate we have no need of a frame pointer yet. */
4551 frame_pointer_needed = 0;
4552 }
4553
4554 /* Initialize the rtl expansion mechanism so that we can do simple things
4555 like generate sequences. This is used to provide a context during global
4556 initialization of some passes. You must call expand_dummy_function_end
4557 to exit this context. */
4558
4559 void
4560 init_dummy_function_start (void)
4561 {
4562 gcc_assert (!in_dummy_function);
4563 in_dummy_function = true;
4564 push_struct_function (NULL_TREE);
4565 prepare_function_start ();
4566 }
4567
4568 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4569 and initialize static variables for generating RTL for the statements
4570 of the function. */
4571
4572 void
4573 init_function_start (tree subr)
4574 {
4575 if (subr && DECL_STRUCT_FUNCTION (subr))
4576 set_cfun (DECL_STRUCT_FUNCTION (subr));
4577 else
4578 allocate_struct_function (subr, false);
4579 prepare_function_start ();
4580 decide_function_section (subr);
4581
4582 /* Warn if this value is an aggregate type,
4583 regardless of which calling convention we are using for it. */
4584 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4585 warning (OPT_Waggregate_return, "function returns an aggregate");
4586 }
4587
4588
4589 void
4590 expand_main_function (void)
4591 {
4592 #if (defined(INVOKE__main) \
4593 || (!defined(HAS_INIT_SECTION) \
4594 && !defined(INIT_SECTION_ASM_OP) \
4595 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4596 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4597 #endif
4598 }
4599 \f
4600 /* Expand code to initialize the stack_protect_guard. This is invoked at
4601 the beginning of a function to be protected. */
4602
4603 #ifndef HAVE_stack_protect_set
4604 # define HAVE_stack_protect_set 0
4605 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4606 #endif
4607
4608 void
4609 stack_protect_prologue (void)
4610 {
4611 tree guard_decl = targetm.stack_protect_guard ();
4612 rtx x, y;
4613
4614 x = expand_normal (crtl->stack_protect_guard);
4615 y = expand_normal (guard_decl);
4616
4617 /* Allow the target to copy from Y to X without leaking Y into a
4618 register. */
4619 if (HAVE_stack_protect_set)
4620 {
4621 rtx insn = gen_stack_protect_set (x, y);
4622 if (insn)
4623 {
4624 emit_insn (insn);
4625 return;
4626 }
4627 }
4628
4629 /* Otherwise do a straight move. */
4630 emit_move_insn (x, y);
4631 }
4632
4633 /* Expand code to verify the stack_protect_guard. This is invoked at
4634 the end of a function to be protected. */
4635
4636 #ifndef HAVE_stack_protect_test
4637 # define HAVE_stack_protect_test 0
4638 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4639 #endif
4640
4641 void
4642 stack_protect_epilogue (void)
4643 {
4644 tree guard_decl = targetm.stack_protect_guard ();
4645 rtx label = gen_label_rtx ();
4646 rtx x, y, tmp;
4647
4648 x = expand_normal (crtl->stack_protect_guard);
4649 y = expand_normal (guard_decl);
4650
4651 /* Allow the target to compare Y with X without leaking either into
4652 a register. */
4653 switch (HAVE_stack_protect_test != 0)
4654 {
4655 case 1:
4656 tmp = gen_stack_protect_test (x, y, label);
4657 if (tmp)
4658 {
4659 emit_insn (tmp);
4660 break;
4661 }
4662 /* FALLTHRU */
4663
4664 default:
4665 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4666 break;
4667 }
4668
4669 /* The noreturn predictor has been moved to the tree level. The rtl-level
4670 predictors estimate this branch about 20%, which isn't enough to get
4671 things moved out of line. Since this is the only extant case of adding
4672 a noreturn function at the rtl level, it doesn't seem worth doing ought
4673 except adding the prediction by hand. */
4674 tmp = get_last_insn ();
4675 if (JUMP_P (tmp))
4676 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4677
4678 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4679 free_temp_slots ();
4680 emit_label (label);
4681 }
4682 \f
4683 /* Start the RTL for a new function, and set variables used for
4684 emitting RTL.
4685 SUBR is the FUNCTION_DECL node.
4686 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4687 the function's parameters, which must be run at any return statement. */
4688
4689 void
4690 expand_function_start (tree subr)
4691 {
4692 /* Make sure volatile mem refs aren't considered
4693 valid operands of arithmetic insns. */
4694 init_recog_no_volatile ();
4695
4696 crtl->profile
4697 = (profile_flag
4698 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4699
4700 crtl->limit_stack
4701 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4702
4703 /* Make the label for return statements to jump to. Do not special
4704 case machines with special return instructions -- they will be
4705 handled later during jump, ifcvt, or epilogue creation. */
4706 return_label = gen_label_rtx ();
4707
4708 /* Initialize rtx used to return the value. */
4709 /* Do this before assign_parms so that we copy the struct value address
4710 before any library calls that assign parms might generate. */
4711
4712 /* Decide whether to return the value in memory or in a register. */
4713 if (aggregate_value_p (DECL_RESULT (subr), subr))
4714 {
4715 /* Returning something that won't go in a register. */
4716 rtx value_address = 0;
4717
4718 #ifdef PCC_STATIC_STRUCT_RETURN
4719 if (cfun->returns_pcc_struct)
4720 {
4721 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4722 value_address = assemble_static_space (size);
4723 }
4724 else
4725 #endif
4726 {
4727 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4728 /* Expect to be passed the address of a place to store the value.
4729 If it is passed as an argument, assign_parms will take care of
4730 it. */
4731 if (sv)
4732 {
4733 value_address = gen_reg_rtx (Pmode);
4734 emit_move_insn (value_address, sv);
4735 }
4736 }
4737 if (value_address)
4738 {
4739 rtx x = value_address;
4740 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4741 {
4742 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4743 set_mem_attributes (x, DECL_RESULT (subr), 1);
4744 }
4745 SET_DECL_RTL (DECL_RESULT (subr), x);
4746 }
4747 }
4748 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4749 /* If return mode is void, this decl rtl should not be used. */
4750 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4751 else
4752 {
4753 /* Compute the return values into a pseudo reg, which we will copy
4754 into the true return register after the cleanups are done. */
4755 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4756 if (TYPE_MODE (return_type) != BLKmode
4757 && targetm.calls.return_in_msb (return_type))
4758 /* expand_function_end will insert the appropriate padding in
4759 this case. Use the return value's natural (unpadded) mode
4760 within the function proper. */
4761 SET_DECL_RTL (DECL_RESULT (subr),
4762 gen_reg_rtx (TYPE_MODE (return_type)));
4763 else
4764 {
4765 /* In order to figure out what mode to use for the pseudo, we
4766 figure out what the mode of the eventual return register will
4767 actually be, and use that. */
4768 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4769
4770 /* Structures that are returned in registers are not
4771 aggregate_value_p, so we may see a PARALLEL or a REG. */
4772 if (REG_P (hard_reg))
4773 SET_DECL_RTL (DECL_RESULT (subr),
4774 gen_reg_rtx (GET_MODE (hard_reg)));
4775 else
4776 {
4777 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4778 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4779 }
4780 }
4781
4782 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4783 result to the real return register(s). */
4784 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4785 }
4786
4787 /* Initialize rtx for parameters and local variables.
4788 In some cases this requires emitting insns. */
4789 assign_parms (subr);
4790
4791 /* If function gets a static chain arg, store it. */
4792 if (cfun->static_chain_decl)
4793 {
4794 tree parm = cfun->static_chain_decl;
4795 rtx local, chain, insn;
4796
4797 local = gen_reg_rtx (Pmode);
4798 chain = targetm.calls.static_chain (current_function_decl, true);
4799
4800 set_decl_incoming_rtl (parm, chain, false);
4801 SET_DECL_RTL (parm, local);
4802 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4803
4804 insn = emit_move_insn (local, chain);
4805
4806 /* Mark the register as eliminable, similar to parameters. */
4807 if (MEM_P (chain)
4808 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4809 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4810 }
4811
4812 /* If the function receives a non-local goto, then store the
4813 bits we need to restore the frame pointer. */
4814 if (cfun->nonlocal_goto_save_area)
4815 {
4816 tree t_save;
4817 rtx r_save;
4818
4819 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4820 gcc_assert (DECL_RTL_SET_P (var));
4821
4822 t_save = build4 (ARRAY_REF,
4823 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4824 cfun->nonlocal_goto_save_area,
4825 integer_zero_node, NULL_TREE, NULL_TREE);
4826 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4827 gcc_assert (GET_MODE (r_save) == Pmode);
4828
4829 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4830 update_nonlocal_goto_save_area ();
4831 }
4832
4833 /* The following was moved from init_function_start.
4834 The move is supposed to make sdb output more accurate. */
4835 /* Indicate the beginning of the function body,
4836 as opposed to parm setup. */
4837 emit_note (NOTE_INSN_FUNCTION_BEG);
4838
4839 gcc_assert (NOTE_P (get_last_insn ()));
4840
4841 parm_birth_insn = get_last_insn ();
4842
4843 if (crtl->profile)
4844 {
4845 #ifdef PROFILE_HOOK
4846 PROFILE_HOOK (current_function_funcdef_no);
4847 #endif
4848 }
4849
4850 /* If we are doing generic stack checking, the probe should go here. */
4851 if (flag_stack_check == GENERIC_STACK_CHECK)
4852 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4853 }
4854 \f
4855 /* Undo the effects of init_dummy_function_start. */
4856 void
4857 expand_dummy_function_end (void)
4858 {
4859 gcc_assert (in_dummy_function);
4860
4861 /* End any sequences that failed to be closed due to syntax errors. */
4862 while (in_sequence_p ())
4863 end_sequence ();
4864
4865 /* Outside function body, can't compute type's actual size
4866 until next function's body starts. */
4867
4868 free_after_parsing (cfun);
4869 free_after_compilation (cfun);
4870 pop_cfun ();
4871 in_dummy_function = false;
4872 }
4873
4874 /* Call DOIT for each hard register used as a return value from
4875 the current function. */
4876
4877 void
4878 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4879 {
4880 rtx outgoing = crtl->return_rtx;
4881
4882 if (! outgoing)
4883 return;
4884
4885 if (REG_P (outgoing))
4886 (*doit) (outgoing, arg);
4887 else if (GET_CODE (outgoing) == PARALLEL)
4888 {
4889 int i;
4890
4891 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4892 {
4893 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4894
4895 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4896 (*doit) (x, arg);
4897 }
4898 }
4899 }
4900
4901 static void
4902 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4903 {
4904 emit_clobber (reg);
4905 }
4906
4907 void
4908 clobber_return_register (void)
4909 {
4910 diddle_return_value (do_clobber_return_reg, NULL);
4911
4912 /* In case we do use pseudo to return value, clobber it too. */
4913 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4914 {
4915 tree decl_result = DECL_RESULT (current_function_decl);
4916 rtx decl_rtl = DECL_RTL (decl_result);
4917 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4918 {
4919 do_clobber_return_reg (decl_rtl, NULL);
4920 }
4921 }
4922 }
4923
4924 static void
4925 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4926 {
4927 emit_use (reg);
4928 }
4929
4930 static void
4931 use_return_register (void)
4932 {
4933 diddle_return_value (do_use_return_reg, NULL);
4934 }
4935
4936 /* Possibly warn about unused parameters. */
4937 void
4938 do_warn_unused_parameter (tree fn)
4939 {
4940 tree decl;
4941
4942 for (decl = DECL_ARGUMENTS (fn);
4943 decl; decl = DECL_CHAIN (decl))
4944 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4945 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4946 && !TREE_NO_WARNING (decl))
4947 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4948 }
4949
4950 static GTY(()) rtx initial_trampoline;
4951
4952 /* Generate RTL for the end of the current function. */
4953
4954 void
4955 expand_function_end (void)
4956 {
4957 rtx clobber_after;
4958
4959 /* If arg_pointer_save_area was referenced only from a nested
4960 function, we will not have initialized it yet. Do that now. */
4961 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4962 get_arg_pointer_save_area ();
4963
4964 /* If we are doing generic stack checking and this function makes calls,
4965 do a stack probe at the start of the function to ensure we have enough
4966 space for another stack frame. */
4967 if (flag_stack_check == GENERIC_STACK_CHECK)
4968 {
4969 rtx insn, seq;
4970
4971 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4972 if (CALL_P (insn))
4973 {
4974 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4975 start_sequence ();
4976 if (STACK_CHECK_MOVING_SP)
4977 anti_adjust_stack_and_probe (max_frame_size, true);
4978 else
4979 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4980 seq = get_insns ();
4981 end_sequence ();
4982 set_insn_locators (seq, prologue_locator);
4983 emit_insn_before (seq, stack_check_probe_note);
4984 break;
4985 }
4986 }
4987
4988 /* End any sequences that failed to be closed due to syntax errors. */
4989 while (in_sequence_p ())
4990 end_sequence ();
4991
4992 clear_pending_stack_adjust ();
4993 do_pending_stack_adjust ();
4994
4995 /* Output a linenumber for the end of the function.
4996 SDB depends on this. */
4997 set_curr_insn_source_location (input_location);
4998
4999 /* Before the return label (if any), clobber the return
5000 registers so that they are not propagated live to the rest of
5001 the function. This can only happen with functions that drop
5002 through; if there had been a return statement, there would
5003 have either been a return rtx, or a jump to the return label.
5004
5005 We delay actual code generation after the current_function_value_rtx
5006 is computed. */
5007 clobber_after = get_last_insn ();
5008
5009 /* Output the label for the actual return from the function. */
5010 emit_label (return_label);
5011
5012 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5013 {
5014 /* Let except.c know where it should emit the call to unregister
5015 the function context for sjlj exceptions. */
5016 if (flag_exceptions)
5017 sjlj_emit_function_exit_after (get_last_insn ());
5018 }
5019 else
5020 {
5021 /* We want to ensure that instructions that may trap are not
5022 moved into the epilogue by scheduling, because we don't
5023 always emit unwind information for the epilogue. */
5024 if (cfun->can_throw_non_call_exceptions)
5025 emit_insn (gen_blockage ());
5026 }
5027
5028 /* If this is an implementation of throw, do what's necessary to
5029 communicate between __builtin_eh_return and the epilogue. */
5030 expand_eh_return ();
5031
5032 /* If scalar return value was computed in a pseudo-reg, or was a named
5033 return value that got dumped to the stack, copy that to the hard
5034 return register. */
5035 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5036 {
5037 tree decl_result = DECL_RESULT (current_function_decl);
5038 rtx decl_rtl = DECL_RTL (decl_result);
5039
5040 if (REG_P (decl_rtl)
5041 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5042 : DECL_REGISTER (decl_result))
5043 {
5044 rtx real_decl_rtl = crtl->return_rtx;
5045
5046 /* This should be set in assign_parms. */
5047 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5048
5049 /* If this is a BLKmode structure being returned in registers,
5050 then use the mode computed in expand_return. Note that if
5051 decl_rtl is memory, then its mode may have been changed,
5052 but that crtl->return_rtx has not. */
5053 if (GET_MODE (real_decl_rtl) == BLKmode)
5054 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5055
5056 /* If a non-BLKmode return value should be padded at the least
5057 significant end of the register, shift it left by the appropriate
5058 amount. BLKmode results are handled using the group load/store
5059 machinery. */
5060 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5061 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5062 {
5063 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5064 REGNO (real_decl_rtl)),
5065 decl_rtl);
5066 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5067 }
5068 /* If a named return value dumped decl_return to memory, then
5069 we may need to re-do the PROMOTE_MODE signed/unsigned
5070 extension. */
5071 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5072 {
5073 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5074 promote_function_mode (TREE_TYPE (decl_result),
5075 GET_MODE (decl_rtl), &unsignedp,
5076 TREE_TYPE (current_function_decl), 1);
5077
5078 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5079 }
5080 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5081 {
5082 /* If expand_function_start has created a PARALLEL for decl_rtl,
5083 move the result to the real return registers. Otherwise, do
5084 a group load from decl_rtl for a named return. */
5085 if (GET_CODE (decl_rtl) == PARALLEL)
5086 emit_group_move (real_decl_rtl, decl_rtl);
5087 else
5088 emit_group_load (real_decl_rtl, decl_rtl,
5089 TREE_TYPE (decl_result),
5090 int_size_in_bytes (TREE_TYPE (decl_result)));
5091 }
5092 /* In the case of complex integer modes smaller than a word, we'll
5093 need to generate some non-trivial bitfield insertions. Do that
5094 on a pseudo and not the hard register. */
5095 else if (GET_CODE (decl_rtl) == CONCAT
5096 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5097 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5098 {
5099 int old_generating_concat_p;
5100 rtx tmp;
5101
5102 old_generating_concat_p = generating_concat_p;
5103 generating_concat_p = 0;
5104 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5105 generating_concat_p = old_generating_concat_p;
5106
5107 emit_move_insn (tmp, decl_rtl);
5108 emit_move_insn (real_decl_rtl, tmp);
5109 }
5110 else
5111 emit_move_insn (real_decl_rtl, decl_rtl);
5112 }
5113 }
5114
5115 /* If returning a structure, arrange to return the address of the value
5116 in a place where debuggers expect to find it.
5117
5118 If returning a structure PCC style,
5119 the caller also depends on this value.
5120 And cfun->returns_pcc_struct is not necessarily set. */
5121 if (cfun->returns_struct
5122 || cfun->returns_pcc_struct)
5123 {
5124 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5125 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5126 rtx outgoing;
5127
5128 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5129 type = TREE_TYPE (type);
5130 else
5131 value_address = XEXP (value_address, 0);
5132
5133 outgoing = targetm.calls.function_value (build_pointer_type (type),
5134 current_function_decl, true);
5135
5136 /* Mark this as a function return value so integrate will delete the
5137 assignment and USE below when inlining this function. */
5138 REG_FUNCTION_VALUE_P (outgoing) = 1;
5139
5140 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5141 value_address = convert_memory_address (GET_MODE (outgoing),
5142 value_address);
5143
5144 emit_move_insn (outgoing, value_address);
5145
5146 /* Show return register used to hold result (in this case the address
5147 of the result. */
5148 crtl->return_rtx = outgoing;
5149 }
5150
5151 /* Emit the actual code to clobber return register. */
5152 {
5153 rtx seq;
5154
5155 start_sequence ();
5156 clobber_return_register ();
5157 seq = get_insns ();
5158 end_sequence ();
5159
5160 emit_insn_after (seq, clobber_after);
5161 }
5162
5163 /* Output the label for the naked return from the function. */
5164 if (naked_return_label)
5165 emit_label (naked_return_label);
5166
5167 /* @@@ This is a kludge. We want to ensure that instructions that
5168 may trap are not moved into the epilogue by scheduling, because
5169 we don't always emit unwind information for the epilogue. */
5170 if (cfun->can_throw_non_call_exceptions
5171 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5172 emit_insn (gen_blockage ());
5173
5174 /* If stack protection is enabled for this function, check the guard. */
5175 if (crtl->stack_protect_guard)
5176 stack_protect_epilogue ();
5177
5178 /* If we had calls to alloca, and this machine needs
5179 an accurate stack pointer to exit the function,
5180 insert some code to save and restore the stack pointer. */
5181 if (! EXIT_IGNORE_STACK
5182 && cfun->calls_alloca)
5183 {
5184 rtx tem = 0, seq;
5185
5186 start_sequence ();
5187 emit_stack_save (SAVE_FUNCTION, &tem);
5188 seq = get_insns ();
5189 end_sequence ();
5190 emit_insn_before (seq, parm_birth_insn);
5191
5192 emit_stack_restore (SAVE_FUNCTION, tem);
5193 }
5194
5195 /* ??? This should no longer be necessary since stupid is no longer with
5196 us, but there are some parts of the compiler (eg reload_combine, and
5197 sh mach_dep_reorg) that still try and compute their own lifetime info
5198 instead of using the general framework. */
5199 use_return_register ();
5200 }
5201
5202 rtx
5203 get_arg_pointer_save_area (void)
5204 {
5205 rtx ret = arg_pointer_save_area;
5206
5207 if (! ret)
5208 {
5209 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5210 arg_pointer_save_area = ret;
5211 }
5212
5213 if (! crtl->arg_pointer_save_area_init)
5214 {
5215 rtx seq;
5216
5217 /* Save the arg pointer at the beginning of the function. The
5218 generated stack slot may not be a valid memory address, so we
5219 have to check it and fix it if necessary. */
5220 start_sequence ();
5221 emit_move_insn (validize_mem (ret),
5222 crtl->args.internal_arg_pointer);
5223 seq = get_insns ();
5224 end_sequence ();
5225
5226 push_topmost_sequence ();
5227 emit_insn_after (seq, entry_of_function ());
5228 pop_topmost_sequence ();
5229
5230 crtl->arg_pointer_save_area_init = true;
5231 }
5232
5233 return ret;
5234 }
5235 \f
5236 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5237 for the first time. */
5238
5239 static void
5240 record_insns (rtx insns, rtx end, htab_t *hashp)
5241 {
5242 rtx tmp;
5243 htab_t hash = *hashp;
5244
5245 if (hash == NULL)
5246 *hashp = hash
5247 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5248
5249 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5250 {
5251 void **slot = htab_find_slot (hash, tmp, INSERT);
5252 gcc_assert (*slot == NULL);
5253 *slot = tmp;
5254 }
5255 }
5256
5257 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5258 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5259 insn, then record COPY as well. */
5260
5261 void
5262 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5263 {
5264 htab_t hash;
5265 void **slot;
5266
5267 hash = epilogue_insn_hash;
5268 if (!hash || !htab_find (hash, insn))
5269 {
5270 hash = prologue_insn_hash;
5271 if (!hash || !htab_find (hash, insn))
5272 return;
5273 }
5274
5275 slot = htab_find_slot (hash, copy, INSERT);
5276 gcc_assert (*slot == NULL);
5277 *slot = copy;
5278 }
5279
5280 /* Set the locator of the insn chain starting at INSN to LOC. */
5281 static void
5282 set_insn_locators (rtx insn, int loc)
5283 {
5284 while (insn != NULL_RTX)
5285 {
5286 if (INSN_P (insn))
5287 INSN_LOCATOR (insn) = loc;
5288 insn = NEXT_INSN (insn);
5289 }
5290 }
5291
5292 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5293 we can be running after reorg, SEQUENCE rtl is possible. */
5294
5295 static bool
5296 contains (const_rtx insn, htab_t hash)
5297 {
5298 if (hash == NULL)
5299 return false;
5300
5301 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5302 {
5303 int i;
5304 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5305 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5306 return true;
5307 return false;
5308 }
5309
5310 return htab_find (hash, insn) != NULL;
5311 }
5312
5313 int
5314 prologue_epilogue_contains (const_rtx insn)
5315 {
5316 if (contains (insn, prologue_insn_hash))
5317 return 1;
5318 if (contains (insn, epilogue_insn_hash))
5319 return 1;
5320 return 0;
5321 }
5322
5323 #ifdef HAVE_simple_return
5324
5325 /* Return true if INSN requires the stack frame to be set up.
5326 PROLOGUE_USED contains the hard registers used in the function
5327 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5328 prologue to set up for the function. */
5329 bool
5330 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5331 HARD_REG_SET set_up_by_prologue)
5332 {
5333 df_ref *df_rec;
5334 HARD_REG_SET hardregs;
5335 unsigned regno;
5336
5337 if (CALL_P (insn))
5338 return !SIBLING_CALL_P (insn);
5339
5340 /* We need a frame to get the unique CFA expected by the unwinder. */
5341 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5342 return true;
5343
5344 CLEAR_HARD_REG_SET (hardregs);
5345 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5346 {
5347 rtx dreg = DF_REF_REG (*df_rec);
5348
5349 if (!REG_P (dreg))
5350 continue;
5351
5352 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5353 REGNO (dreg));
5354 }
5355 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5356 return true;
5357 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5358 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5359 if (TEST_HARD_REG_BIT (hardregs, regno)
5360 && df_regs_ever_live_p (regno))
5361 return true;
5362
5363 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5364 {
5365 rtx reg = DF_REF_REG (*df_rec);
5366
5367 if (!REG_P (reg))
5368 continue;
5369
5370 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5371 REGNO (reg));
5372 }
5373 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5374 return true;
5375
5376 return false;
5377 }
5378
5379 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5380 and if BB is its only predecessor. Return that block if so,
5381 otherwise return null. */
5382
5383 static basic_block
5384 next_block_for_reg (basic_block bb, int regno, int end_regno)
5385 {
5386 edge e, live_edge;
5387 edge_iterator ei;
5388 bitmap live;
5389 int i;
5390
5391 live_edge = NULL;
5392 FOR_EACH_EDGE (e, ei, bb->succs)
5393 {
5394 live = df_get_live_in (e->dest);
5395 for (i = regno; i < end_regno; i++)
5396 if (REGNO_REG_SET_P (live, i))
5397 {
5398 if (live_edge && live_edge != e)
5399 return NULL;
5400 live_edge = e;
5401 }
5402 }
5403
5404 /* We can sometimes encounter dead code. Don't try to move it
5405 into the exit block. */
5406 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5407 return NULL;
5408
5409 /* Reject targets of abnormal edges. This is needed for correctness
5410 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5411 exception edges even though it is generally treated as call-saved
5412 for the majority of the compilation. Moving across abnormal edges
5413 isn't going to be interesting for shrink-wrap usage anyway. */
5414 if (live_edge->flags & EDGE_ABNORMAL)
5415 return NULL;
5416
5417 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5418 return NULL;
5419
5420 return live_edge->dest;
5421 }
5422
5423 /* Try to move INSN from BB to a successor. Return true on success.
5424 USES and DEFS are the set of registers that are used and defined
5425 after INSN in BB. */
5426
5427 static bool
5428 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5429 const HARD_REG_SET uses,
5430 const HARD_REG_SET defs)
5431 {
5432 rtx set, src, dest;
5433 bitmap live_out, live_in, bb_uses, bb_defs;
5434 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5435 basic_block next_block;
5436
5437 /* Look for a simple register copy. */
5438 set = single_set (insn);
5439 if (!set)
5440 return false;
5441 src = SET_SRC (set);
5442 dest = SET_DEST (set);
5443 if (!REG_P (dest) || !REG_P (src))
5444 return false;
5445
5446 /* Make sure that the source register isn't defined later in BB. */
5447 sregno = REGNO (src);
5448 end_sregno = END_REGNO (src);
5449 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5450 return false;
5451
5452 /* Make sure that the destination register isn't referenced later in BB. */
5453 dregno = REGNO (dest);
5454 end_dregno = END_REGNO (dest);
5455 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5456 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5457 return false;
5458
5459 /* See whether there is a successor block to which we could move INSN. */
5460 next_block = next_block_for_reg (bb, dregno, end_dregno);
5461 if (!next_block)
5462 return false;
5463
5464 /* At this point we are committed to moving INSN, but let's try to
5465 move it as far as we can. */
5466 do
5467 {
5468 live_out = df_get_live_out (bb);
5469 live_in = df_get_live_in (next_block);
5470 bb = next_block;
5471
5472 /* Check whether BB uses DEST or clobbers DEST. We need to add
5473 INSN to BB if so. Either way, DEST is no longer live on entry,
5474 except for any part that overlaps SRC (next loop). */
5475 bb_uses = &DF_LR_BB_INFO (bb)->use;
5476 bb_defs = &DF_LR_BB_INFO (bb)->def;
5477 for (i = dregno; i < end_dregno; i++)
5478 {
5479 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i))
5480 next_block = NULL;
5481 CLEAR_REGNO_REG_SET (live_out, i);
5482 CLEAR_REGNO_REG_SET (live_in, i);
5483 }
5484
5485 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5486 Either way, SRC is now live on entry. */
5487 for (i = sregno; i < end_sregno; i++)
5488 {
5489 if (REGNO_REG_SET_P (bb_defs, i))
5490 next_block = NULL;
5491 SET_REGNO_REG_SET (live_out, i);
5492 SET_REGNO_REG_SET (live_in, i);
5493 }
5494
5495 /* If we don't need to add the move to BB, look for a single
5496 successor block. */
5497 if (next_block)
5498 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5499 }
5500 while (next_block);
5501
5502 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5503 (next loop). */
5504 for (i = dregno; i < end_dregno; i++)
5505 {
5506 CLEAR_REGNO_REG_SET (bb_uses, i);
5507 SET_REGNO_REG_SET (bb_defs, i);
5508 }
5509
5510 /* BB now uses SRC. */
5511 for (i = sregno; i < end_sregno; i++)
5512 SET_REGNO_REG_SET (bb_uses, i);
5513
5514 emit_insn_after (PATTERN (insn), bb_note (bb));
5515 delete_insn (insn);
5516 return true;
5517 }
5518
5519 /* Look for register copies in the first block of the function, and move
5520 them down into successor blocks if the register is used only on one
5521 path. This exposes more opportunities for shrink-wrapping. These
5522 kinds of sets often occur when incoming argument registers are moved
5523 to call-saved registers because their values are live across one or
5524 more calls during the function. */
5525
5526 static void
5527 prepare_shrink_wrap (basic_block entry_block)
5528 {
5529 rtx insn, curr, x;
5530 HARD_REG_SET uses, defs;
5531 df_ref *ref;
5532
5533 CLEAR_HARD_REG_SET (uses);
5534 CLEAR_HARD_REG_SET (defs);
5535 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5536 if (NONDEBUG_INSN_P (insn)
5537 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5538 {
5539 /* Add all defined registers to DEFs. */
5540 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5541 {
5542 x = DF_REF_REG (*ref);
5543 if (REG_P (x) && HARD_REGISTER_P (x))
5544 SET_HARD_REG_BIT (defs, REGNO (x));
5545 }
5546
5547 /* Add all used registers to USESs. */
5548 for (ref = DF_INSN_USES (insn); *ref; ref++)
5549 {
5550 x = DF_REF_REG (*ref);
5551 if (REG_P (x) && HARD_REGISTER_P (x))
5552 SET_HARD_REG_BIT (uses, REGNO (x));
5553 }
5554 }
5555 }
5556
5557 #endif
5558
5559 #ifdef HAVE_return
5560 /* Insert use of return register before the end of BB. */
5561
5562 static void
5563 emit_use_return_register_into_block (basic_block bb)
5564 {
5565 rtx seq;
5566 start_sequence ();
5567 use_return_register ();
5568 seq = get_insns ();
5569 end_sequence ();
5570 emit_insn_before (seq, BB_END (bb));
5571 }
5572
5573
5574 /* Create a return pattern, either simple_return or return, depending on
5575 simple_p. */
5576
5577 static rtx
5578 gen_return_pattern (bool simple_p)
5579 {
5580 #ifdef HAVE_simple_return
5581 return simple_p ? gen_simple_return () : gen_return ();
5582 #else
5583 gcc_assert (!simple_p);
5584 return gen_return ();
5585 #endif
5586 }
5587
5588 /* Insert an appropriate return pattern at the end of block BB. This
5589 also means updating block_for_insn appropriately. SIMPLE_P is
5590 the same as in gen_return_pattern and passed to it. */
5591
5592 static void
5593 emit_return_into_block (bool simple_p, basic_block bb)
5594 {
5595 rtx jump, pat;
5596 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5597 pat = PATTERN (jump);
5598 if (GET_CODE (pat) == PARALLEL)
5599 pat = XVECEXP (pat, 0, 0);
5600 gcc_assert (ANY_RETURN_P (pat));
5601 JUMP_LABEL (jump) = pat;
5602 }
5603 #endif
5604
5605 /* Set JUMP_LABEL for a return insn. */
5606
5607 void
5608 set_return_jump_label (rtx returnjump)
5609 {
5610 rtx pat = PATTERN (returnjump);
5611 if (GET_CODE (pat) == PARALLEL)
5612 pat = XVECEXP (pat, 0, 0);
5613 if (ANY_RETURN_P (pat))
5614 JUMP_LABEL (returnjump) = pat;
5615 else
5616 JUMP_LABEL (returnjump) = ret_rtx;
5617 }
5618
5619 #ifdef HAVE_simple_return
5620 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5621 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5622 static void
5623 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5624 bitmap_head *need_prologue)
5625 {
5626 edge_iterator ei;
5627 edge e;
5628 rtx insn = BB_END (bb);
5629
5630 /* We know BB has a single successor, so there is no need to copy a
5631 simple jump at the end of BB. */
5632 if (simplejump_p (insn))
5633 insn = PREV_INSN (insn);
5634
5635 start_sequence ();
5636 duplicate_insn_chain (BB_HEAD (bb), insn);
5637 if (dump_file)
5638 {
5639 unsigned count = 0;
5640 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5641 if (active_insn_p (insn))
5642 ++count;
5643 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5644 bb->index, copy_bb->index, count);
5645 }
5646 insn = get_insns ();
5647 end_sequence ();
5648 emit_insn_before (insn, before);
5649
5650 /* Redirect all the paths that need no prologue into copy_bb. */
5651 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5652 if (!bitmap_bit_p (need_prologue, e->src->index))
5653 {
5654 redirect_edge_and_branch_force (e, copy_bb);
5655 continue;
5656 }
5657 else
5658 ei_next (&ei);
5659 }
5660 #endif
5661
5662 #if defined (HAVE_return) || defined (HAVE_simple_return)
5663 /* Return true if there are any active insns between HEAD and TAIL. */
5664 static bool
5665 active_insn_between (rtx head, rtx tail)
5666 {
5667 while (tail)
5668 {
5669 if (active_insn_p (tail))
5670 return true;
5671 if (tail == head)
5672 return false;
5673 tail = PREV_INSN (tail);
5674 }
5675 return false;
5676 }
5677
5678 /* LAST_BB is a block that exits, and empty of active instructions.
5679 Examine its predecessors for jumps that can be converted to
5680 (conditional) returns. */
5681 static VEC (edge, heap) *
5682 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5683 VEC (edge, heap) *unconverted ATTRIBUTE_UNUSED)
5684 {
5685 int i;
5686 basic_block bb;
5687 rtx label;
5688 edge_iterator ei;
5689 edge e;
5690 VEC(basic_block,heap) *src_bbs;
5691
5692 src_bbs = VEC_alloc (basic_block, heap, EDGE_COUNT (last_bb->preds));
5693 FOR_EACH_EDGE (e, ei, last_bb->preds)
5694 if (e->src != ENTRY_BLOCK_PTR)
5695 VEC_quick_push (basic_block, src_bbs, e->src);
5696
5697 label = BB_HEAD (last_bb);
5698
5699 FOR_EACH_VEC_ELT (basic_block, src_bbs, i, bb)
5700 {
5701 rtx jump = BB_END (bb);
5702
5703 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5704 continue;
5705
5706 e = find_edge (bb, last_bb);
5707
5708 /* If we have an unconditional jump, we can replace that
5709 with a simple return instruction. */
5710 if (simplejump_p (jump))
5711 {
5712 /* The use of the return register might be present in the exit
5713 fallthru block. Either:
5714 - removing the use is safe, and we should remove the use in
5715 the exit fallthru block, or
5716 - removing the use is not safe, and we should add it here.
5717 For now, we conservatively choose the latter. Either of the
5718 2 helps in crossjumping. */
5719 emit_use_return_register_into_block (bb);
5720
5721 emit_return_into_block (simple_p, bb);
5722 delete_insn (jump);
5723 }
5724
5725 /* If we have a conditional jump branching to the last
5726 block, we can try to replace that with a conditional
5727 return instruction. */
5728 else if (condjump_p (jump))
5729 {
5730 rtx dest;
5731
5732 if (simple_p)
5733 dest = simple_return_rtx;
5734 else
5735 dest = ret_rtx;
5736 if (!redirect_jump (jump, dest, 0))
5737 {
5738 #ifdef HAVE_simple_return
5739 if (simple_p)
5740 {
5741 if (dump_file)
5742 fprintf (dump_file,
5743 "Failed to redirect bb %d branch.\n", bb->index);
5744 VEC_safe_push (edge, heap, unconverted, e);
5745 }
5746 #endif
5747 continue;
5748 }
5749
5750 /* See comment in simplejump_p case above. */
5751 emit_use_return_register_into_block (bb);
5752
5753 /* If this block has only one successor, it both jumps
5754 and falls through to the fallthru block, so we can't
5755 delete the edge. */
5756 if (single_succ_p (bb))
5757 continue;
5758 }
5759 else
5760 {
5761 #ifdef HAVE_simple_return
5762 if (simple_p)
5763 {
5764 if (dump_file)
5765 fprintf (dump_file,
5766 "Failed to redirect bb %d branch.\n", bb->index);
5767 VEC_safe_push (edge, heap, unconverted, e);
5768 }
5769 #endif
5770 continue;
5771 }
5772
5773 /* Fix up the CFG for the successful change we just made. */
5774 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5775 e->flags &= ~EDGE_CROSSING;
5776 }
5777 VEC_free (basic_block, heap, src_bbs);
5778 return unconverted;
5779 }
5780
5781 /* Emit a return insn for the exit fallthru block. */
5782 static basic_block
5783 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5784 {
5785 basic_block last_bb = exit_fallthru_edge->src;
5786
5787 if (JUMP_P (BB_END (last_bb)))
5788 {
5789 last_bb = split_edge (exit_fallthru_edge);
5790 exit_fallthru_edge = single_succ_edge (last_bb);
5791 }
5792 emit_barrier_after (BB_END (last_bb));
5793 emit_return_into_block (simple_p, last_bb);
5794 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5795 return last_bb;
5796 }
5797 #endif
5798
5799
5800 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5801 this into place with notes indicating where the prologue ends and where
5802 the epilogue begins. Update the basic block information when possible.
5803
5804 Notes on epilogue placement:
5805 There are several kinds of edges to the exit block:
5806 * a single fallthru edge from LAST_BB
5807 * possibly, edges from blocks containing sibcalls
5808 * possibly, fake edges from infinite loops
5809
5810 The epilogue is always emitted on the fallthru edge from the last basic
5811 block in the function, LAST_BB, into the exit block.
5812
5813 If LAST_BB is empty except for a label, it is the target of every
5814 other basic block in the function that ends in a return. If a
5815 target has a return or simple_return pattern (possibly with
5816 conditional variants), these basic blocks can be changed so that a
5817 return insn is emitted into them, and their target is adjusted to
5818 the real exit block.
5819
5820 Notes on shrink wrapping: We implement a fairly conservative
5821 version of shrink-wrapping rather than the textbook one. We only
5822 generate a single prologue and a single epilogue. This is
5823 sufficient to catch a number of interesting cases involving early
5824 exits.
5825
5826 First, we identify the blocks that require the prologue to occur before
5827 them. These are the ones that modify a call-saved register, or reference
5828 any of the stack or frame pointer registers. To simplify things, we then
5829 mark everything reachable from these blocks as also requiring a prologue.
5830 This takes care of loops automatically, and avoids the need to examine
5831 whether MEMs reference the frame, since it is sufficient to check for
5832 occurrences of the stack or frame pointer.
5833
5834 We then compute the set of blocks for which the need for a prologue
5835 is anticipatable (borrowing terminology from the shrink-wrapping
5836 description in Muchnick's book). These are the blocks which either
5837 require a prologue themselves, or those that have only successors
5838 where the prologue is anticipatable. The prologue needs to be
5839 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5840 is not. For the moment, we ensure that only one such edge exists.
5841
5842 The epilogue is placed as described above, but we make a
5843 distinction between inserting return and simple_return patterns
5844 when modifying other blocks that end in a return. Blocks that end
5845 in a sibcall omit the sibcall_epilogue if the block is not in
5846 ANTIC. */
5847
5848 static void
5849 thread_prologue_and_epilogue_insns (void)
5850 {
5851 bool inserted;
5852 #ifdef HAVE_simple_return
5853 VEC (edge, heap) *unconverted_simple_returns = NULL;
5854 bool nonempty_prologue;
5855 bitmap_head bb_flags;
5856 unsigned max_grow_size;
5857 #endif
5858 rtx returnjump;
5859 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5860 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5861 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5862 edge_iterator ei;
5863
5864 df_analyze ();
5865
5866 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5867
5868 inserted = false;
5869 seq = NULL_RTX;
5870 epilogue_end = NULL_RTX;
5871 returnjump = NULL_RTX;
5872
5873 /* Can't deal with multiple successors of the entry block at the
5874 moment. Function should always have at least one entry
5875 point. */
5876 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5877 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5878 orig_entry_edge = entry_edge;
5879
5880 split_prologue_seq = NULL_RTX;
5881 if (flag_split_stack
5882 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5883 == NULL))
5884 {
5885 #ifndef HAVE_split_stack_prologue
5886 gcc_unreachable ();
5887 #else
5888 gcc_assert (HAVE_split_stack_prologue);
5889
5890 start_sequence ();
5891 emit_insn (gen_split_stack_prologue ());
5892 split_prologue_seq = get_insns ();
5893 end_sequence ();
5894
5895 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5896 set_insn_locators (split_prologue_seq, prologue_locator);
5897 #endif
5898 }
5899
5900 prologue_seq = NULL_RTX;
5901 #ifdef HAVE_prologue
5902 if (HAVE_prologue)
5903 {
5904 start_sequence ();
5905 seq = gen_prologue ();
5906 emit_insn (seq);
5907
5908 /* Insert an explicit USE for the frame pointer
5909 if the profiling is on and the frame pointer is required. */
5910 if (crtl->profile && frame_pointer_needed)
5911 emit_use (hard_frame_pointer_rtx);
5912
5913 /* Retain a map of the prologue insns. */
5914 record_insns (seq, NULL, &prologue_insn_hash);
5915 emit_note (NOTE_INSN_PROLOGUE_END);
5916
5917 /* Ensure that instructions are not moved into the prologue when
5918 profiling is on. The call to the profiling routine can be
5919 emitted within the live range of a call-clobbered register. */
5920 if (!targetm.profile_before_prologue () && crtl->profile)
5921 emit_insn (gen_blockage ());
5922
5923 prologue_seq = get_insns ();
5924 end_sequence ();
5925 set_insn_locators (prologue_seq, prologue_locator);
5926 }
5927 #endif
5928
5929 #ifdef HAVE_simple_return
5930 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5931
5932 /* Try to perform a kind of shrink-wrapping, making sure the
5933 prologue/epilogue is emitted only around those parts of the
5934 function that require it. */
5935
5936 nonempty_prologue = false;
5937 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5938 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5939 {
5940 nonempty_prologue = true;
5941 break;
5942 }
5943
5944 if (flag_shrink_wrap && HAVE_simple_return
5945 && (targetm.profile_before_prologue () || !crtl->profile)
5946 && nonempty_prologue && !crtl->calls_eh_return)
5947 {
5948 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5949 struct hard_reg_set_container set_up_by_prologue;
5950 rtx p_insn;
5951 VEC(basic_block, heap) *vec;
5952 basic_block bb;
5953 bitmap_head bb_antic_flags;
5954 bitmap_head bb_on_list;
5955 bitmap_head bb_tail;
5956
5957 if (dump_file)
5958 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5959
5960 /* Compute the registers set and used in the prologue. */
5961 CLEAR_HARD_REG_SET (prologue_clobbered);
5962 CLEAR_HARD_REG_SET (prologue_used);
5963 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
5964 {
5965 HARD_REG_SET this_used;
5966 if (!NONDEBUG_INSN_P (p_insn))
5967 continue;
5968
5969 CLEAR_HARD_REG_SET (this_used);
5970 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
5971 &this_used);
5972 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
5973 IOR_HARD_REG_SET (prologue_used, this_used);
5974 note_stores (PATTERN (p_insn), record_hard_reg_sets,
5975 &prologue_clobbered);
5976 }
5977
5978 prepare_shrink_wrap (entry_edge->dest);
5979
5980 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
5981 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
5982 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
5983
5984 /* Find the set of basic blocks that require a stack frame,
5985 and blocks that are too big to be duplicated. */
5986
5987 vec = VEC_alloc (basic_block, heap, n_basic_blocks);
5988
5989 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
5990 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
5991 STACK_POINTER_REGNUM);
5992 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
5993 if (frame_pointer_needed)
5994 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
5995 HARD_FRAME_POINTER_REGNUM);
5996 if (pic_offset_table_rtx)
5997 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
5998 PIC_OFFSET_TABLE_REGNUM);
5999 if (stack_realign_drap && crtl->drap_reg)
6000 add_to_hard_reg_set (&set_up_by_prologue.set,
6001 GET_MODE (crtl->drap_reg),
6002 REGNO (crtl->drap_reg));
6003 if (targetm.set_up_by_prologue)
6004 targetm.set_up_by_prologue (&set_up_by_prologue);
6005
6006 /* We don't use a different max size depending on
6007 optimize_bb_for_speed_p because increasing shrink-wrapping
6008 opportunities by duplicating tail blocks can actually result
6009 in an overall decrease in code size. */
6010 max_grow_size = get_uncond_jump_length ();
6011 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6012
6013 FOR_EACH_BB (bb)
6014 {
6015 rtx insn;
6016 unsigned size = 0;
6017
6018 FOR_BB_INSNS (bb, insn)
6019 if (NONDEBUG_INSN_P (insn))
6020 {
6021 if (requires_stack_frame_p (insn, prologue_used,
6022 set_up_by_prologue.set))
6023 {
6024 if (bb == entry_edge->dest)
6025 goto fail_shrinkwrap;
6026 bitmap_set_bit (&bb_flags, bb->index);
6027 VEC_quick_push (basic_block, vec, bb);
6028 break;
6029 }
6030 else if (size <= max_grow_size)
6031 {
6032 size += get_attr_min_length (insn);
6033 if (size > max_grow_size)
6034 bitmap_set_bit (&bb_on_list, bb->index);
6035 }
6036 }
6037 }
6038
6039 /* Blocks that really need a prologue, or are too big for tails. */
6040 bitmap_ior_into (&bb_on_list, &bb_flags);
6041
6042 /* For every basic block that needs a prologue, mark all blocks
6043 reachable from it, so as to ensure they are also seen as
6044 requiring a prologue. */
6045 while (!VEC_empty (basic_block, vec))
6046 {
6047 basic_block tmp_bb = VEC_pop (basic_block, vec);
6048
6049 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6050 if (e->dest != EXIT_BLOCK_PTR
6051 && bitmap_set_bit (&bb_flags, e->dest->index))
6052 VEC_quick_push (basic_block, vec, e->dest);
6053 }
6054
6055 /* Find the set of basic blocks that need no prologue, have a
6056 single successor, can be duplicated, meet a max size
6057 requirement, and go to the exit via like blocks. */
6058 VEC_quick_push (basic_block, vec, EXIT_BLOCK_PTR);
6059 while (!VEC_empty (basic_block, vec))
6060 {
6061 basic_block tmp_bb = VEC_pop (basic_block, vec);
6062
6063 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6064 if (single_succ_p (e->src)
6065 && !bitmap_bit_p (&bb_on_list, e->src->index)
6066 && can_duplicate_block_p (e->src))
6067 {
6068 edge pe;
6069 edge_iterator pei;
6070
6071 /* If there is predecessor of e->src which doesn't
6072 need prologue and the edge is complex,
6073 we might not be able to redirect the branch
6074 to a copy of e->src. */
6075 FOR_EACH_EDGE (pe, pei, e->src->preds)
6076 if ((pe->flags & EDGE_COMPLEX) != 0
6077 && !bitmap_bit_p (&bb_flags, pe->src->index))
6078 break;
6079 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6080 VEC_quick_push (basic_block, vec, e->src);
6081 }
6082 }
6083
6084 /* Now walk backwards from every block that is marked as needing
6085 a prologue to compute the bb_antic_flags bitmap. Exclude
6086 tail blocks; They can be duplicated to be used on paths not
6087 needing a prologue. */
6088 bitmap_clear (&bb_on_list);
6089 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6090 FOR_EACH_BB (bb)
6091 {
6092 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6093 continue;
6094 FOR_EACH_EDGE (e, ei, bb->preds)
6095 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6096 && bitmap_set_bit (&bb_on_list, e->src->index))
6097 VEC_quick_push (basic_block, vec, e->src);
6098 }
6099 while (!VEC_empty (basic_block, vec))
6100 {
6101 basic_block tmp_bb = VEC_pop (basic_block, vec);
6102 bool all_set = true;
6103
6104 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6105 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6106 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6107 {
6108 all_set = false;
6109 break;
6110 }
6111
6112 if (all_set)
6113 {
6114 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6115 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6116 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6117 && bitmap_set_bit (&bb_on_list, e->src->index))
6118 VEC_quick_push (basic_block, vec, e->src);
6119 }
6120 }
6121 /* Find exactly one edge that leads to a block in ANTIC from
6122 a block that isn't. */
6123 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6124 FOR_EACH_BB (bb)
6125 {
6126 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6127 continue;
6128 FOR_EACH_EDGE (e, ei, bb->preds)
6129 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6130 {
6131 if (entry_edge != orig_entry_edge)
6132 {
6133 entry_edge = orig_entry_edge;
6134 if (dump_file)
6135 fprintf (dump_file, "More than one candidate edge.\n");
6136 goto fail_shrinkwrap;
6137 }
6138 if (dump_file)
6139 fprintf (dump_file, "Found candidate edge for "
6140 "shrink-wrapping, %d->%d.\n", e->src->index,
6141 e->dest->index);
6142 entry_edge = e;
6143 }
6144 }
6145
6146 if (entry_edge != orig_entry_edge)
6147 {
6148 /* Test whether the prologue is known to clobber any register
6149 (other than FP or SP) which are live on the edge. */
6150 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6151 if (frame_pointer_needed)
6152 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6153 CLEAR_HARD_REG_SET (live_on_edge);
6154 reg_set_to_hard_reg_set (&live_on_edge,
6155 df_get_live_in (entry_edge->dest));
6156 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6157 {
6158 entry_edge = orig_entry_edge;
6159 if (dump_file)
6160 fprintf (dump_file,
6161 "Shrink-wrapping aborted due to clobber.\n");
6162 }
6163 }
6164 if (entry_edge != orig_entry_edge)
6165 {
6166 crtl->shrink_wrapped = true;
6167 if (dump_file)
6168 fprintf (dump_file, "Performing shrink-wrapping.\n");
6169
6170 /* Find tail blocks reachable from both blocks needing a
6171 prologue and blocks not needing a prologue. */
6172 if (!bitmap_empty_p (&bb_tail))
6173 FOR_EACH_BB (bb)
6174 {
6175 bool some_pro, some_no_pro;
6176 if (!bitmap_bit_p (&bb_tail, bb->index))
6177 continue;
6178 some_pro = some_no_pro = false;
6179 FOR_EACH_EDGE (e, ei, bb->preds)
6180 {
6181 if (bitmap_bit_p (&bb_flags, e->src->index))
6182 some_pro = true;
6183 else
6184 some_no_pro = true;
6185 }
6186 if (some_pro && some_no_pro)
6187 VEC_quick_push (basic_block, vec, bb);
6188 else
6189 bitmap_clear_bit (&bb_tail, bb->index);
6190 }
6191 /* Find the head of each tail. */
6192 while (!VEC_empty (basic_block, vec))
6193 {
6194 basic_block tbb = VEC_pop (basic_block, vec);
6195
6196 if (!bitmap_bit_p (&bb_tail, tbb->index))
6197 continue;
6198
6199 while (single_succ_p (tbb))
6200 {
6201 tbb = single_succ (tbb);
6202 bitmap_clear_bit (&bb_tail, tbb->index);
6203 }
6204 }
6205 /* Now duplicate the tails. */
6206 if (!bitmap_empty_p (&bb_tail))
6207 FOR_EACH_BB_REVERSE (bb)
6208 {
6209 basic_block copy_bb, tbb;
6210 rtx insert_point;
6211 int eflags;
6212
6213 if (!bitmap_clear_bit (&bb_tail, bb->index))
6214 continue;
6215
6216 /* Create a copy of BB, instructions and all, for
6217 use on paths that don't need a prologue.
6218 Ideal placement of the copy is on a fall-thru edge
6219 or after a block that would jump to the copy. */
6220 FOR_EACH_EDGE (e, ei, bb->preds)
6221 if (!bitmap_bit_p (&bb_flags, e->src->index)
6222 && single_succ_p (e->src))
6223 break;
6224 if (e)
6225 {
6226 copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
6227 NULL_RTX, e->src);
6228 BB_COPY_PARTITION (copy_bb, e->src);
6229 }
6230 else
6231 {
6232 /* Otherwise put the copy at the end of the function. */
6233 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6234 EXIT_BLOCK_PTR->prev_bb);
6235 BB_COPY_PARTITION (copy_bb, bb);
6236 }
6237
6238 insert_point = emit_note_after (NOTE_INSN_DELETED,
6239 BB_END (copy_bb));
6240 emit_barrier_after (BB_END (copy_bb));
6241
6242 tbb = bb;
6243 while (1)
6244 {
6245 dup_block_and_redirect (tbb, copy_bb, insert_point,
6246 &bb_flags);
6247 tbb = single_succ (tbb);
6248 if (tbb == EXIT_BLOCK_PTR)
6249 break;
6250 e = split_block (copy_bb, PREV_INSN (insert_point));
6251 copy_bb = e->dest;
6252 }
6253
6254 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6255 We have yet to add a simple_return to the tails,
6256 as we'd like to first convert_jumps_to_returns in
6257 case the block is no longer used after that. */
6258 eflags = EDGE_FAKE;
6259 if (CALL_P (PREV_INSN (insert_point))
6260 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6261 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6262 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6263
6264 /* verify_flow_info doesn't like a note after a
6265 sibling call. */
6266 delete_insn (insert_point);
6267 if (bitmap_empty_p (&bb_tail))
6268 break;
6269 }
6270 }
6271
6272 fail_shrinkwrap:
6273 bitmap_clear (&bb_tail);
6274 bitmap_clear (&bb_antic_flags);
6275 bitmap_clear (&bb_on_list);
6276 VEC_free (basic_block, heap, vec);
6277 }
6278 #endif
6279
6280 if (split_prologue_seq != NULL_RTX)
6281 {
6282 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6283 inserted = true;
6284 }
6285 if (prologue_seq != NULL_RTX)
6286 {
6287 insert_insn_on_edge (prologue_seq, entry_edge);
6288 inserted = true;
6289 }
6290
6291 /* If the exit block has no non-fake predecessors, we don't need
6292 an epilogue. */
6293 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6294 if ((e->flags & EDGE_FAKE) == 0)
6295 break;
6296 if (e == NULL)
6297 goto epilogue_done;
6298
6299 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6300
6301 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6302
6303 /* If we're allowed to generate a simple return instruction, then by
6304 definition we don't need a full epilogue. If the last basic
6305 block before the exit block does not contain active instructions,
6306 examine its predecessors and try to emit (conditional) return
6307 instructions. */
6308 #ifdef HAVE_simple_return
6309 if (entry_edge != orig_entry_edge)
6310 {
6311 if (optimize)
6312 {
6313 unsigned i, last;
6314
6315 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6316 (but won't remove). Stop at end of current preds. */
6317 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6318 for (i = 0; i < last; i++)
6319 {
6320 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6321 if (LABEL_P (BB_HEAD (e->src))
6322 && !bitmap_bit_p (&bb_flags, e->src->index)
6323 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6324 unconverted_simple_returns
6325 = convert_jumps_to_returns (e->src, true,
6326 unconverted_simple_returns);
6327 }
6328 }
6329
6330 if (exit_fallthru_edge != NULL
6331 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6332 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6333 {
6334 basic_block last_bb;
6335
6336 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6337 returnjump = BB_END (last_bb);
6338 exit_fallthru_edge = NULL;
6339 }
6340 }
6341 #endif
6342 #ifdef HAVE_return
6343 if (HAVE_return)
6344 {
6345 if (exit_fallthru_edge == NULL)
6346 goto epilogue_done;
6347
6348 if (optimize)
6349 {
6350 basic_block last_bb = exit_fallthru_edge->src;
6351
6352 if (LABEL_P (BB_HEAD (last_bb))
6353 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6354 convert_jumps_to_returns (last_bb, false, NULL);
6355
6356 if (EDGE_COUNT (last_bb->preds) != 0
6357 && single_succ_p (last_bb))
6358 {
6359 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6360 epilogue_end = returnjump = BB_END (last_bb);
6361 #ifdef HAVE_simple_return
6362 /* Emitting the return may add a basic block.
6363 Fix bb_flags for the added block. */
6364 if (last_bb != exit_fallthru_edge->src)
6365 bitmap_set_bit (&bb_flags, last_bb->index);
6366 #endif
6367 goto epilogue_done;
6368 }
6369 }
6370 }
6371 #endif
6372
6373 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6374 this marker for the splits of EH_RETURN patterns, and nothing else
6375 uses the flag in the meantime. */
6376 epilogue_completed = 1;
6377
6378 #ifdef HAVE_eh_return
6379 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6380 some targets, these get split to a special version of the epilogue
6381 code. In order to be able to properly annotate these with unwind
6382 info, try to split them now. If we get a valid split, drop an
6383 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6384 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6385 {
6386 rtx prev, last, trial;
6387
6388 if (e->flags & EDGE_FALLTHRU)
6389 continue;
6390 last = BB_END (e->src);
6391 if (!eh_returnjump_p (last))
6392 continue;
6393
6394 prev = PREV_INSN (last);
6395 trial = try_split (PATTERN (last), last, 1);
6396 if (trial == last)
6397 continue;
6398
6399 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6400 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6401 }
6402 #endif
6403
6404 /* If nothing falls through into the exit block, we don't need an
6405 epilogue. */
6406
6407 if (exit_fallthru_edge == NULL)
6408 goto epilogue_done;
6409
6410 #ifdef HAVE_epilogue
6411 if (HAVE_epilogue)
6412 {
6413 start_sequence ();
6414 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6415 seq = gen_epilogue ();
6416 if (seq)
6417 emit_jump_insn (seq);
6418
6419 /* Retain a map of the epilogue insns. */
6420 record_insns (seq, NULL, &epilogue_insn_hash);
6421 set_insn_locators (seq, epilogue_locator);
6422
6423 seq = get_insns ();
6424 returnjump = get_last_insn ();
6425 end_sequence ();
6426
6427 insert_insn_on_edge (seq, exit_fallthru_edge);
6428 inserted = true;
6429
6430 if (JUMP_P (returnjump))
6431 set_return_jump_label (returnjump);
6432 }
6433 else
6434 #endif
6435 {
6436 basic_block cur_bb;
6437
6438 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6439 goto epilogue_done;
6440 /* We have a fall-through edge to the exit block, the source is not
6441 at the end of the function, and there will be an assembler epilogue
6442 at the end of the function.
6443 We can't use force_nonfallthru here, because that would try to
6444 use return. Inserting a jump 'by hand' is extremely messy, so
6445 we take advantage of cfg_layout_finalize using
6446 fixup_fallthru_exit_predecessor. */
6447 cfg_layout_initialize (0);
6448 FOR_EACH_BB (cur_bb)
6449 if (cur_bb->index >= NUM_FIXED_BLOCKS
6450 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6451 cur_bb->aux = cur_bb->next_bb;
6452 cfg_layout_finalize ();
6453 }
6454
6455 epilogue_done:
6456
6457 default_rtl_profile ();
6458
6459 if (inserted)
6460 {
6461 sbitmap blocks;
6462
6463 commit_edge_insertions ();
6464
6465 /* Look for basic blocks within the prologue insns. */
6466 blocks = sbitmap_alloc (last_basic_block);
6467 sbitmap_zero (blocks);
6468 SET_BIT (blocks, entry_edge->dest->index);
6469 SET_BIT (blocks, orig_entry_edge->dest->index);
6470 find_many_sub_basic_blocks (blocks);
6471 sbitmap_free (blocks);
6472
6473 /* The epilogue insns we inserted may cause the exit edge to no longer
6474 be fallthru. */
6475 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6476 {
6477 if (((e->flags & EDGE_FALLTHRU) != 0)
6478 && returnjump_p (BB_END (e->src)))
6479 e->flags &= ~EDGE_FALLTHRU;
6480 }
6481 }
6482
6483 #ifdef HAVE_simple_return
6484 /* If there were branches to an empty LAST_BB which we tried to
6485 convert to conditional simple_returns, but couldn't for some
6486 reason, create a block to hold a simple_return insn and redirect
6487 those remaining edges. */
6488 if (!VEC_empty (edge, unconverted_simple_returns))
6489 {
6490 basic_block simple_return_block_hot = NULL;
6491 basic_block simple_return_block_cold = NULL;
6492 edge pending_edge_hot = NULL;
6493 edge pending_edge_cold = NULL;
6494 basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
6495 int i;
6496
6497 gcc_assert (entry_edge != orig_entry_edge);
6498
6499 /* See if we can reuse the last insn that was emitted for the
6500 epilogue. */
6501 if (returnjump != NULL_RTX
6502 && JUMP_LABEL (returnjump) == simple_return_rtx)
6503 {
6504 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6505 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6506 simple_return_block_hot = e->dest;
6507 else
6508 simple_return_block_cold = e->dest;
6509 }
6510
6511 /* Also check returns we might need to add to tail blocks. */
6512 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6513 if (EDGE_COUNT (e->src->preds) != 0
6514 && (e->flags & EDGE_FAKE) != 0
6515 && !bitmap_bit_p (&bb_flags, e->src->index))
6516 {
6517 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6518 pending_edge_hot = e;
6519 else
6520 pending_edge_cold = e;
6521 }
6522
6523 FOR_EACH_VEC_ELT (edge, unconverted_simple_returns, i, e)
6524 {
6525 basic_block *pdest_bb;
6526 edge pending;
6527
6528 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6529 {
6530 pdest_bb = &simple_return_block_hot;
6531 pending = pending_edge_hot;
6532 }
6533 else
6534 {
6535 pdest_bb = &simple_return_block_cold;
6536 pending = pending_edge_cold;
6537 }
6538
6539 if (*pdest_bb == NULL && pending != NULL)
6540 {
6541 emit_return_into_block (true, pending->src);
6542 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6543 *pdest_bb = pending->src;
6544 }
6545 else if (*pdest_bb == NULL)
6546 {
6547 basic_block bb;
6548 rtx start;
6549
6550 bb = create_basic_block (NULL, NULL, exit_pred);
6551 BB_COPY_PARTITION (bb, e->src);
6552 start = emit_jump_insn_after (gen_simple_return (),
6553 BB_END (bb));
6554 JUMP_LABEL (start) = simple_return_rtx;
6555 emit_barrier_after (start);
6556
6557 *pdest_bb = bb;
6558 make_edge (bb, EXIT_BLOCK_PTR, 0);
6559 }
6560 redirect_edge_and_branch_force (e, *pdest_bb);
6561 }
6562 VEC_free (edge, heap, unconverted_simple_returns);
6563 }
6564
6565 if (entry_edge != orig_entry_edge)
6566 {
6567 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6568 if (EDGE_COUNT (e->src->preds) != 0
6569 && (e->flags & EDGE_FAKE) != 0
6570 && !bitmap_bit_p (&bb_flags, e->src->index))
6571 {
6572 emit_return_into_block (true, e->src);
6573 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6574 }
6575 }
6576 #endif
6577
6578 #ifdef HAVE_sibcall_epilogue
6579 /* Emit sibling epilogues before any sibling call sites. */
6580 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6581 {
6582 basic_block bb = e->src;
6583 rtx insn = BB_END (bb);
6584 rtx ep_seq;
6585
6586 if (!CALL_P (insn)
6587 || ! SIBLING_CALL_P (insn)
6588 #ifdef HAVE_simple_return
6589 || (entry_edge != orig_entry_edge
6590 && !bitmap_bit_p (&bb_flags, bb->index))
6591 #endif
6592 )
6593 {
6594 ei_next (&ei);
6595 continue;
6596 }
6597
6598 ep_seq = gen_sibcall_epilogue ();
6599 if (ep_seq)
6600 {
6601 start_sequence ();
6602 emit_note (NOTE_INSN_EPILOGUE_BEG);
6603 emit_insn (ep_seq);
6604 seq = get_insns ();
6605 end_sequence ();
6606
6607 /* Retain a map of the epilogue insns. Used in life analysis to
6608 avoid getting rid of sibcall epilogue insns. Do this before we
6609 actually emit the sequence. */
6610 record_insns (seq, NULL, &epilogue_insn_hash);
6611 set_insn_locators (seq, epilogue_locator);
6612
6613 emit_insn_before (seq, insn);
6614 }
6615 ei_next (&ei);
6616 }
6617 #endif
6618
6619 #ifdef HAVE_epilogue
6620 if (epilogue_end)
6621 {
6622 rtx insn, next;
6623
6624 /* Similarly, move any line notes that appear after the epilogue.
6625 There is no need, however, to be quite so anal about the existence
6626 of such a note. Also possibly move
6627 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6628 info generation. */
6629 for (insn = epilogue_end; insn; insn = next)
6630 {
6631 next = NEXT_INSN (insn);
6632 if (NOTE_P (insn)
6633 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6634 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6635 }
6636 }
6637 #endif
6638
6639 #ifdef HAVE_simple_return
6640 bitmap_clear (&bb_flags);
6641 #endif
6642
6643 /* Threading the prologue and epilogue changes the artificial refs
6644 in the entry and exit blocks. */
6645 epilogue_completed = 1;
6646 df_update_entry_exit_and_calls ();
6647 }
6648
6649 /* Reposition the prologue-end and epilogue-begin notes after
6650 instruction scheduling. */
6651
6652 void
6653 reposition_prologue_and_epilogue_notes (void)
6654 {
6655 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6656 || defined (HAVE_sibcall_epilogue)
6657 /* Since the hash table is created on demand, the fact that it is
6658 non-null is a signal that it is non-empty. */
6659 if (prologue_insn_hash != NULL)
6660 {
6661 size_t len = htab_elements (prologue_insn_hash);
6662 rtx insn, last = NULL, note = NULL;
6663
6664 /* Scan from the beginning until we reach the last prologue insn. */
6665 /* ??? While we do have the CFG intact, there are two problems:
6666 (1) The prologue can contain loops (typically probing the stack),
6667 which means that the end of the prologue isn't in the first bb.
6668 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6669 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6670 {
6671 if (NOTE_P (insn))
6672 {
6673 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6674 note = insn;
6675 }
6676 else if (contains (insn, prologue_insn_hash))
6677 {
6678 last = insn;
6679 if (--len == 0)
6680 break;
6681 }
6682 }
6683
6684 if (last)
6685 {
6686 if (note == NULL)
6687 {
6688 /* Scan forward looking for the PROLOGUE_END note. It should
6689 be right at the beginning of the block, possibly with other
6690 insn notes that got moved there. */
6691 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6692 {
6693 if (NOTE_P (note)
6694 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6695 break;
6696 }
6697 }
6698
6699 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6700 if (LABEL_P (last))
6701 last = NEXT_INSN (last);
6702 reorder_insns (note, note, last);
6703 }
6704 }
6705
6706 if (epilogue_insn_hash != NULL)
6707 {
6708 edge_iterator ei;
6709 edge e;
6710
6711 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6712 {
6713 rtx insn, first = NULL, note = NULL;
6714 basic_block bb = e->src;
6715
6716 /* Scan from the beginning until we reach the first epilogue insn. */
6717 FOR_BB_INSNS (bb, insn)
6718 {
6719 if (NOTE_P (insn))
6720 {
6721 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6722 {
6723 note = insn;
6724 if (first != NULL)
6725 break;
6726 }
6727 }
6728 else if (first == NULL && contains (insn, epilogue_insn_hash))
6729 {
6730 first = insn;
6731 if (note != NULL)
6732 break;
6733 }
6734 }
6735
6736 if (note)
6737 {
6738 /* If the function has a single basic block, and no real
6739 epilogue insns (e.g. sibcall with no cleanup), the
6740 epilogue note can get scheduled before the prologue
6741 note. If we have frame related prologue insns, having
6742 them scanned during the epilogue will result in a crash.
6743 In this case re-order the epilogue note to just before
6744 the last insn in the block. */
6745 if (first == NULL)
6746 first = BB_END (bb);
6747
6748 if (PREV_INSN (first) != note)
6749 reorder_insns (note, note, PREV_INSN (first));
6750 }
6751 }
6752 }
6753 #endif /* HAVE_prologue or HAVE_epilogue */
6754 }
6755
6756 /* Returns the name of function FN. */
6757 const char *
6758 function_name (struct function *fn)
6759 {
6760 if (fn == NULL)
6761 return "(nofn)";
6762 return lang_hooks.decl_printable_name (fn->decl, 2);
6763 }
6764
6765 /* Returns the name of the current function. */
6766 const char *
6767 current_function_name (void)
6768 {
6769 return function_name (cfun);
6770 }
6771 \f
6772
6773 static unsigned int
6774 rest_of_handle_check_leaf_regs (void)
6775 {
6776 #ifdef LEAF_REGISTERS
6777 crtl->uses_only_leaf_regs
6778 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6779 #endif
6780 return 0;
6781 }
6782
6783 /* Insert a TYPE into the used types hash table of CFUN. */
6784
6785 static void
6786 used_types_insert_helper (tree type, struct function *func)
6787 {
6788 if (type != NULL && func != NULL)
6789 {
6790 void **slot;
6791
6792 if (func->used_types_hash == NULL)
6793 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6794 htab_eq_pointer, NULL);
6795 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6796 if (*slot == NULL)
6797 *slot = type;
6798 }
6799 }
6800
6801 /* Given a type, insert it into the used hash table in cfun. */
6802 void
6803 used_types_insert (tree t)
6804 {
6805 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6806 if (TYPE_NAME (t))
6807 break;
6808 else
6809 t = TREE_TYPE (t);
6810 if (TREE_CODE (t) == ERROR_MARK)
6811 return;
6812 if (TYPE_NAME (t) == NULL_TREE
6813 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6814 t = TYPE_MAIN_VARIANT (t);
6815 if (debug_info_level > DINFO_LEVEL_NONE)
6816 {
6817 if (cfun)
6818 used_types_insert_helper (t, cfun);
6819 else
6820 /* So this might be a type referenced by a global variable.
6821 Record that type so that we can later decide to emit its debug
6822 information. */
6823 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
6824 }
6825 }
6826
6827 /* Helper to Hash a struct types_used_by_vars_entry. */
6828
6829 static hashval_t
6830 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6831 {
6832 gcc_assert (entry && entry->var_decl && entry->type);
6833
6834 return iterative_hash_object (entry->type,
6835 iterative_hash_object (entry->var_decl, 0));
6836 }
6837
6838 /* Hash function of the types_used_by_vars_entry hash table. */
6839
6840 hashval_t
6841 types_used_by_vars_do_hash (const void *x)
6842 {
6843 const struct types_used_by_vars_entry *entry =
6844 (const struct types_used_by_vars_entry *) x;
6845
6846 return hash_types_used_by_vars_entry (entry);
6847 }
6848
6849 /*Equality function of the types_used_by_vars_entry hash table. */
6850
6851 int
6852 types_used_by_vars_eq (const void *x1, const void *x2)
6853 {
6854 const struct types_used_by_vars_entry *e1 =
6855 (const struct types_used_by_vars_entry *) x1;
6856 const struct types_used_by_vars_entry *e2 =
6857 (const struct types_used_by_vars_entry *)x2;
6858
6859 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6860 }
6861
6862 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6863
6864 void
6865 types_used_by_var_decl_insert (tree type, tree var_decl)
6866 {
6867 if (type != NULL && var_decl != NULL)
6868 {
6869 void **slot;
6870 struct types_used_by_vars_entry e;
6871 e.var_decl = var_decl;
6872 e.type = type;
6873 if (types_used_by_vars_hash == NULL)
6874 types_used_by_vars_hash =
6875 htab_create_ggc (37, types_used_by_vars_do_hash,
6876 types_used_by_vars_eq, NULL);
6877 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6878 hash_types_used_by_vars_entry (&e), INSERT);
6879 if (*slot == NULL)
6880 {
6881 struct types_used_by_vars_entry *entry;
6882 entry = ggc_alloc_types_used_by_vars_entry ();
6883 entry->type = type;
6884 entry->var_decl = var_decl;
6885 *slot = entry;
6886 }
6887 }
6888 }
6889
6890 struct rtl_opt_pass pass_leaf_regs =
6891 {
6892 {
6893 RTL_PASS,
6894 "*leaf_regs", /* name */
6895 NULL, /* gate */
6896 rest_of_handle_check_leaf_regs, /* execute */
6897 NULL, /* sub */
6898 NULL, /* next */
6899 0, /* static_pass_number */
6900 TV_NONE, /* tv_id */
6901 0, /* properties_required */
6902 0, /* properties_provided */
6903 0, /* properties_destroyed */
6904 0, /* todo_flags_start */
6905 0 /* todo_flags_finish */
6906 }
6907 };
6908
6909 static unsigned int
6910 rest_of_handle_thread_prologue_and_epilogue (void)
6911 {
6912 if (optimize)
6913 cleanup_cfg (CLEANUP_EXPENSIVE);
6914
6915 /* On some machines, the prologue and epilogue code, or parts thereof,
6916 can be represented as RTL. Doing so lets us schedule insns between
6917 it and the rest of the code and also allows delayed branch
6918 scheduling to operate in the epilogue. */
6919 thread_prologue_and_epilogue_insns ();
6920
6921 /* The stack usage info is finalized during prologue expansion. */
6922 if (flag_stack_usage_info)
6923 output_stack_usage ();
6924
6925 return 0;
6926 }
6927
6928 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
6929 {
6930 {
6931 RTL_PASS,
6932 "pro_and_epilogue", /* name */
6933 NULL, /* gate */
6934 rest_of_handle_thread_prologue_and_epilogue, /* execute */
6935 NULL, /* sub */
6936 NULL, /* next */
6937 0, /* static_pass_number */
6938 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6939 0, /* properties_required */
6940 0, /* properties_provided */
6941 0, /* properties_destroyed */
6942 TODO_verify_flow, /* todo_flags_start */
6943 TODO_df_verify |
6944 TODO_df_finish | TODO_verify_rtl_sharing |
6945 TODO_ggc_collect /* todo_flags_finish */
6946 }
6947 };
6948 \f
6949
6950 /* This mini-pass fixes fall-out from SSA in asm statements that have
6951 in-out constraints. Say you start with
6952
6953 orig = inout;
6954 asm ("": "+mr" (inout));
6955 use (orig);
6956
6957 which is transformed very early to use explicit output and match operands:
6958
6959 orig = inout;
6960 asm ("": "=mr" (inout) : "0" (inout));
6961 use (orig);
6962
6963 Or, after SSA and copyprop,
6964
6965 asm ("": "=mr" (inout_2) : "0" (inout_1));
6966 use (inout_1);
6967
6968 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6969 they represent two separate values, so they will get different pseudo
6970 registers during expansion. Then, since the two operands need to match
6971 per the constraints, but use different pseudo registers, reload can
6972 only register a reload for these operands. But reloads can only be
6973 satisfied by hardregs, not by memory, so we need a register for this
6974 reload, just because we are presented with non-matching operands.
6975 So, even though we allow memory for this operand, no memory can be
6976 used for it, just because the two operands don't match. This can
6977 cause reload failures on register-starved targets.
6978
6979 So it's a symptom of reload not being able to use memory for reloads
6980 or, alternatively it's also a symptom of both operands not coming into
6981 reload as matching (in which case the pseudo could go to memory just
6982 fine, as the alternative allows it, and no reload would be necessary).
6983 We fix the latter problem here, by transforming
6984
6985 asm ("": "=mr" (inout_2) : "0" (inout_1));
6986
6987 back to
6988
6989 inout_2 = inout_1;
6990 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6991
6992 static void
6993 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
6994 {
6995 int i;
6996 bool changed = false;
6997 rtx op = SET_SRC (p_sets[0]);
6998 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6999 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7000 bool *output_matched = XALLOCAVEC (bool, noutputs);
7001
7002 memset (output_matched, 0, noutputs * sizeof (bool));
7003 for (i = 0; i < ninputs; i++)
7004 {
7005 rtx input, output, insns;
7006 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7007 char *end;
7008 int match, j;
7009
7010 if (*constraint == '%')
7011 constraint++;
7012
7013 match = strtoul (constraint, &end, 10);
7014 if (end == constraint)
7015 continue;
7016
7017 gcc_assert (match < noutputs);
7018 output = SET_DEST (p_sets[match]);
7019 input = RTVEC_ELT (inputs, i);
7020 /* Only do the transformation for pseudos. */
7021 if (! REG_P (output)
7022 || rtx_equal_p (output, input)
7023 || (GET_MODE (input) != VOIDmode
7024 && GET_MODE (input) != GET_MODE (output)))
7025 continue;
7026
7027 /* We can't do anything if the output is also used as input,
7028 as we're going to overwrite it. */
7029 for (j = 0; j < ninputs; j++)
7030 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7031 break;
7032 if (j != ninputs)
7033 continue;
7034
7035 /* Avoid changing the same input several times. For
7036 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7037 only change in once (to out1), rather than changing it
7038 first to out1 and afterwards to out2. */
7039 if (i > 0)
7040 {
7041 for (j = 0; j < noutputs; j++)
7042 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7043 break;
7044 if (j != noutputs)
7045 continue;
7046 }
7047 output_matched[match] = true;
7048
7049 start_sequence ();
7050 emit_move_insn (output, input);
7051 insns = get_insns ();
7052 end_sequence ();
7053 emit_insn_before (insns, insn);
7054
7055 /* Now replace all mentions of the input with output. We can't
7056 just replace the occurrence in inputs[i], as the register might
7057 also be used in some other input (or even in an address of an
7058 output), which would mean possibly increasing the number of
7059 inputs by one (namely 'output' in addition), which might pose
7060 a too complicated problem for reload to solve. E.g. this situation:
7061
7062 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7063
7064 Here 'input' is used in two occurrences as input (once for the
7065 input operand, once for the address in the second output operand).
7066 If we would replace only the occurrence of the input operand (to
7067 make the matching) we would be left with this:
7068
7069 output = input
7070 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7071
7072 Now we suddenly have two different input values (containing the same
7073 value, but different pseudos) where we formerly had only one.
7074 With more complicated asms this might lead to reload failures
7075 which wouldn't have happen without this pass. So, iterate over
7076 all operands and replace all occurrences of the register used. */
7077 for (j = 0; j < noutputs; j++)
7078 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7079 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7080 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7081 input, output);
7082 for (j = 0; j < ninputs; j++)
7083 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7084 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7085 input, output);
7086
7087 changed = true;
7088 }
7089
7090 if (changed)
7091 df_insn_rescan (insn);
7092 }
7093
7094 static unsigned
7095 rest_of_match_asm_constraints (void)
7096 {
7097 basic_block bb;
7098 rtx insn, pat, *p_sets;
7099 int noutputs;
7100
7101 if (!crtl->has_asm_statement)
7102 return 0;
7103
7104 df_set_flags (DF_DEFER_INSN_RESCAN);
7105 FOR_EACH_BB (bb)
7106 {
7107 FOR_BB_INSNS (bb, insn)
7108 {
7109 if (!INSN_P (insn))
7110 continue;
7111
7112 pat = PATTERN (insn);
7113 if (GET_CODE (pat) == PARALLEL)
7114 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7115 else if (GET_CODE (pat) == SET)
7116 p_sets = &PATTERN (insn), noutputs = 1;
7117 else
7118 continue;
7119
7120 if (GET_CODE (*p_sets) == SET
7121 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7122 match_asm_constraints_1 (insn, p_sets, noutputs);
7123 }
7124 }
7125
7126 return TODO_df_finish;
7127 }
7128
7129 struct rtl_opt_pass pass_match_asm_constraints =
7130 {
7131 {
7132 RTL_PASS,
7133 "asmcons", /* name */
7134 NULL, /* gate */
7135 rest_of_match_asm_constraints, /* execute */
7136 NULL, /* sub */
7137 NULL, /* next */
7138 0, /* static_pass_number */
7139 TV_NONE, /* tv_id */
7140 0, /* properties_required */
7141 0, /* properties_provided */
7142 0, /* properties_destroyed */
7143 0, /* todo_flags_start */
7144 0 /* todo_flags_finish */
7145 }
7146 };
7147
7148
7149 #include "gt-function.h"