(push_function_context_to, pop_function_context_from): Save and
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 88, 89, 91-96, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
35
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
40
41 #include "config.h"
42 #include <stdio.h>
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "insn-flags.h"
49 #include "expr.h"
50 #include "insn-codes.h"
51 #include "regs.h"
52 #include "hard-reg-set.h"
53 #include "insn-config.h"
54 #include "recog.h"
55 #include "output.h"
56 #include "basic-block.h"
57 #include "obstack.h"
58 #include "bytecode.h"
59 #include "bc-emit.h"
60
61 /* Some systems use __main in a way incompatible with its use in gcc, in these
62 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
63 give the same symbol without quotes for an alternative entry point. You
64 must define both, or neither. */
65 #ifndef NAME__MAIN
66 #define NAME__MAIN "__main"
67 #define SYMBOL__MAIN __main
68 #endif
69
70 /* Round a value to the lowest integer less than it that is a multiple of
71 the required alignment. Avoid using division in case the value is
72 negative. Assume the alignment is a power of two. */
73 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
74
75 /* Similar, but round to the next highest integer that meets the
76 alignment. */
77 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
78
79 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
80 during rtl generation. If they are different register numbers, this is
81 always true. It may also be true if
82 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
83 generation. See fix_lexical_addr for details. */
84
85 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
86 #define NEED_SEPARATE_AP
87 #endif
88
89 /* Number of bytes of args popped by function being compiled on its return.
90 Zero if no bytes are to be popped.
91 May affect compilation of return insn or of function epilogue. */
92
93 int current_function_pops_args;
94
95 /* Nonzero if function being compiled needs to be given an address
96 where the value should be stored. */
97
98 int current_function_returns_struct;
99
100 /* Nonzero if function being compiled needs to
101 return the address of where it has put a structure value. */
102
103 int current_function_returns_pcc_struct;
104
105 /* Nonzero if function being compiled needs to be passed a static chain. */
106
107 int current_function_needs_context;
108
109 /* Nonzero if function being compiled can call setjmp. */
110
111 int current_function_calls_setjmp;
112
113 /* Nonzero if function being compiled can call longjmp. */
114
115 int current_function_calls_longjmp;
116
117 /* Nonzero if function being compiled receives nonlocal gotos
118 from nested functions. */
119
120 int current_function_has_nonlocal_label;
121
122 /* Nonzero if function being compiled has nonlocal gotos to parent
123 function. */
124
125 int current_function_has_nonlocal_goto;
126
127 /* Nonzero if function being compiled contains nested functions. */
128
129 int current_function_contains_functions;
130
131 /* Nonzero if function being compiled can call alloca,
132 either as a subroutine or builtin. */
133
134 int current_function_calls_alloca;
135
136 /* Nonzero if the current function returns a pointer type */
137
138 int current_function_returns_pointer;
139
140 /* If some insns can be deferred to the delay slots of the epilogue, the
141 delay list for them is recorded here. */
142
143 rtx current_function_epilogue_delay_list;
144
145 /* If function's args have a fixed size, this is that size, in bytes.
146 Otherwise, it is -1.
147 May affect compilation of return insn or of function epilogue. */
148
149 int current_function_args_size;
150
151 /* # bytes the prologue should push and pretend that the caller pushed them.
152 The prologue must do this, but only if parms can be passed in registers. */
153
154 int current_function_pretend_args_size;
155
156 /* # of bytes of outgoing arguments. If ACCUMULATE_OUTGOING_ARGS is
157 defined, the needed space is pushed by the prologue. */
158
159 int current_function_outgoing_args_size;
160
161 /* This is the offset from the arg pointer to the place where the first
162 anonymous arg can be found, if there is one. */
163
164 rtx current_function_arg_offset_rtx;
165
166 /* Nonzero if current function uses varargs.h or equivalent.
167 Zero for functions that use stdarg.h. */
168
169 int current_function_varargs;
170
171 /* Nonzero if current function uses stdarg.h or equivalent.
172 Zero for functions that use varargs.h. */
173
174 int current_function_stdarg;
175
176 /* Quantities of various kinds of registers
177 used for the current function's args. */
178
179 CUMULATIVE_ARGS current_function_args_info;
180
181 /* Name of function now being compiled. */
182
183 char *current_function_name;
184
185 /* If non-zero, an RTL expression for that location at which the current
186 function returns its result. Always equal to
187 DECL_RTL (DECL_RESULT (current_function_decl)), but provided
188 independently of the tree structures. */
189
190 rtx current_function_return_rtx;
191
192 /* Nonzero if the current function uses the constant pool. */
193
194 int current_function_uses_const_pool;
195
196 /* Nonzero if the current function uses pic_offset_table_rtx. */
197 int current_function_uses_pic_offset_table;
198
199 /* The arg pointer hard register, or the pseudo into which it was copied. */
200 rtx current_function_internal_arg_pointer;
201
202 /* The FUNCTION_DECL for an inline function currently being expanded. */
203 tree inline_function_decl;
204
205 /* Number of function calls seen so far in current function. */
206
207 int function_call_count;
208
209 /* List (chain of TREE_LIST) of LABEL_DECLs for all nonlocal labels
210 (labels to which there can be nonlocal gotos from nested functions)
211 in this function. */
212
213 tree nonlocal_labels;
214
215 /* RTX for stack slot that holds the current handler for nonlocal gotos.
216 Zero when function does not have nonlocal labels. */
217
218 rtx nonlocal_goto_handler_slot;
219
220 /* RTX for stack slot that holds the stack pointer value to restore
221 for a nonlocal goto.
222 Zero when function does not have nonlocal labels. */
223
224 rtx nonlocal_goto_stack_level;
225
226 /* Label that will go on parm cleanup code, if any.
227 Jumping to this label runs cleanup code for parameters, if
228 such code must be run. Following this code is the logical return label. */
229
230 rtx cleanup_label;
231
232 /* Label that will go on function epilogue.
233 Jumping to this label serves as a "return" instruction
234 on machines which require execution of the epilogue on all returns. */
235
236 rtx return_label;
237
238 /* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs.
239 So we can mark them all live at the end of the function, if nonopt. */
240 rtx save_expr_regs;
241
242 /* List (chain of EXPR_LISTs) of all stack slots in this function.
243 Made for the sake of unshare_all_rtl. */
244 rtx stack_slot_list;
245
246 /* Chain of all RTL_EXPRs that have insns in them. */
247 tree rtl_expr_chain;
248
249 /* Label to jump back to for tail recursion, or 0 if we have
250 not yet needed one for this function. */
251 rtx tail_recursion_label;
252
253 /* Place after which to insert the tail_recursion_label if we need one. */
254 rtx tail_recursion_reentry;
255
256 /* Location at which to save the argument pointer if it will need to be
257 referenced. There are two cases where this is done: if nonlocal gotos
258 exist, or if vars stored at an offset from the argument pointer will be
259 needed by inner routines. */
260
261 rtx arg_pointer_save_area;
262
263 /* Offset to end of allocated area of stack frame.
264 If stack grows down, this is the address of the last stack slot allocated.
265 If stack grows up, this is the address for the next slot. */
266 HOST_WIDE_INT frame_offset;
267
268 /* List (chain of TREE_LISTs) of static chains for containing functions.
269 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
270 in an RTL_EXPR in the TREE_VALUE. */
271 static tree context_display;
272
273 /* List (chain of TREE_LISTs) of trampolines for nested functions.
274 The trampoline sets up the static chain and jumps to the function.
275 We supply the trampoline's address when the function's address is requested.
276
277 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
278 in an RTL_EXPR in the TREE_VALUE. */
279 static tree trampoline_list;
280
281 /* Insn after which register parms and SAVE_EXPRs are born, if nonopt. */
282 static rtx parm_birth_insn;
283
284 #if 0
285 /* Nonzero if a stack slot has been generated whose address is not
286 actually valid. It means that the generated rtl must all be scanned
287 to detect and correct the invalid addresses where they occur. */
288 static int invalid_stack_slot;
289 #endif
290
291 /* Last insn of those whose job was to put parms into their nominal homes. */
292 static rtx last_parm_insn;
293
294 /* 1 + last pseudo register number used for loading a copy
295 of a parameter of this function. */
296 static int max_parm_reg;
297
298 /* Vector indexed by REGNO, containing location on stack in which
299 to put the parm which is nominally in pseudo register REGNO,
300 if we discover that that parm must go in the stack. */
301 static rtx *parm_reg_stack_loc;
302
303 /* Nonzero once virtual register instantiation has been done.
304 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
305 static int virtuals_instantiated;
306
307 /* These variables hold pointers to functions to
308 save and restore machine-specific data,
309 in push_function_context and pop_function_context. */
310 void (*save_machine_status) PROTO((struct function *));
311 void (*restore_machine_status) PROTO((struct function *));
312
313 /* Nonzero if we need to distinguish between the return value of this function
314 and the return value of a function called by this function. This helps
315 integrate.c */
316
317 extern int rtx_equal_function_value_matters;
318 extern tree sequence_rtl_expr;
319 \f
320 /* In order to evaluate some expressions, such as function calls returning
321 structures in memory, we need to temporarily allocate stack locations.
322 We record each allocated temporary in the following structure.
323
324 Associated with each temporary slot is a nesting level. When we pop up
325 one level, all temporaries associated with the previous level are freed.
326 Normally, all temporaries are freed after the execution of the statement
327 in which they were created. However, if we are inside a ({...}) grouping,
328 the result may be in a temporary and hence must be preserved. If the
329 result could be in a temporary, we preserve it if we can determine which
330 one it is in. If we cannot determine which temporary may contain the
331 result, all temporaries are preserved. A temporary is preserved by
332 pretending it was allocated at the previous nesting level.
333
334 Automatic variables are also assigned temporary slots, at the nesting
335 level where they are defined. They are marked a "kept" so that
336 free_temp_slots will not free them. */
337
338 struct temp_slot
339 {
340 /* Points to next temporary slot. */
341 struct temp_slot *next;
342 /* The rtx to used to reference the slot. */
343 rtx slot;
344 /* The rtx used to represent the address if not the address of the
345 slot above. May be an EXPR_LIST if multiple addresses exist. */
346 rtx address;
347 /* The size, in units, of the slot. */
348 int size;
349 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
350 tree rtl_expr;
351 /* Non-zero if this temporary is currently in use. */
352 char in_use;
353 /* Non-zero if this temporary has its address taken. */
354 char addr_taken;
355 /* Nesting level at which this slot is being used. */
356 int level;
357 /* Non-zero if this should survive a call to free_temp_slots. */
358 int keep;
359 /* The offset of the slot from the frame_pointer, including extra space
360 for alignment. This info is for combine_temp_slots. */
361 int base_offset;
362 /* The size of the slot, including extra space for alignment. This
363 info is for combine_temp_slots. */
364 int full_size;
365 };
366
367 /* List of all temporaries allocated, both available and in use. */
368
369 struct temp_slot *temp_slots;
370
371 /* Current nesting level for temporaries. */
372
373 int temp_slot_level;
374 \f
375 /* The FUNCTION_DECL node for the current function. */
376 static tree this_function_decl;
377
378 /* Callinfo pointer for the current function. */
379 static rtx this_function_callinfo;
380
381 /* The label in the bytecode file of this function's actual bytecode.
382 Not an rtx. */
383 static char *this_function_bytecode;
384
385 /* The call description vector for the current function. */
386 static rtx this_function_calldesc;
387
388 /* Size of the local variables allocated for the current function. */
389 int local_vars_size;
390
391 /* Current depth of the bytecode evaluation stack. */
392 int stack_depth;
393
394 /* Maximum depth of the evaluation stack in this function. */
395 int max_stack_depth;
396
397 /* Current depth in statement expressions. */
398 static int stmt_expr_depth;
399
400 /* This structure is used to record MEMs or pseudos used to replace VAR, any
401 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
402 maintain this list in case two operands of an insn were required to match;
403 in that case we must ensure we use the same replacement. */
404
405 struct fixup_replacement
406 {
407 rtx old;
408 rtx new;
409 struct fixup_replacement *next;
410 };
411
412 /* Forward declarations. */
413
414 static struct temp_slot *find_temp_slot_from_address PROTO((rtx));
415 static void put_reg_into_stack PROTO((struct function *, rtx, tree,
416 enum machine_mode, enum machine_mode,
417 int));
418 static void fixup_var_refs PROTO((rtx, enum machine_mode, int));
419 static struct fixup_replacement
420 *find_fixup_replacement PROTO((struct fixup_replacement **, rtx));
421 static void fixup_var_refs_insns PROTO((rtx, enum machine_mode, int,
422 rtx, int));
423 static void fixup_var_refs_1 PROTO((rtx, enum machine_mode, rtx *, rtx,
424 struct fixup_replacement **));
425 static rtx fixup_memory_subreg PROTO((rtx, rtx, int));
426 static rtx walk_fixup_memory_subreg PROTO((rtx, rtx, int));
427 static rtx fixup_stack_1 PROTO((rtx, rtx));
428 static void optimize_bit_field PROTO((rtx, rtx, rtx *));
429 static void instantiate_decls PROTO((tree, int));
430 static void instantiate_decls_1 PROTO((tree, int));
431 static void instantiate_decl PROTO((rtx, int, int));
432 static int instantiate_virtual_regs_1 PROTO((rtx *, rtx, int));
433 static void delete_handlers PROTO((void));
434 static void pad_to_arg_alignment PROTO((struct args_size *, int));
435 static void pad_below PROTO((struct args_size *, enum machine_mode,
436 tree));
437 static tree round_down PROTO((tree, int));
438 static rtx round_trampoline_addr PROTO((rtx));
439 static tree blocks_nreverse PROTO((tree));
440 static int all_blocks PROTO((tree, tree *));
441 static int *record_insns PROTO((rtx));
442 static int contains PROTO((rtx, int *));
443 \f
444 /* Pointer to chain of `struct function' for containing functions. */
445 struct function *outer_function_chain;
446
447 /* Given a function decl for a containing function,
448 return the `struct function' for it. */
449
450 struct function *
451 find_function_data (decl)
452 tree decl;
453 {
454 struct function *p;
455 for (p = outer_function_chain; p; p = p->next)
456 if (p->decl == decl)
457 return p;
458 abort ();
459 }
460
461 /* Save the current context for compilation of a nested function.
462 This is called from language-specific code.
463 The caller is responsible for saving any language-specific status,
464 since this function knows only about language-independent variables. */
465
466 void
467 push_function_context_to (context)
468 tree context;
469 {
470 struct function *p = (struct function *) xmalloc (sizeof (struct function));
471
472 p->next = outer_function_chain;
473 outer_function_chain = p;
474
475 p->name = current_function_name;
476 p->decl = current_function_decl;
477 p->pops_args = current_function_pops_args;
478 p->returns_struct = current_function_returns_struct;
479 p->returns_pcc_struct = current_function_returns_pcc_struct;
480 p->returns_pointer = current_function_returns_pointer;
481 p->needs_context = current_function_needs_context;
482 p->calls_setjmp = current_function_calls_setjmp;
483 p->calls_longjmp = current_function_calls_longjmp;
484 p->calls_alloca = current_function_calls_alloca;
485 p->has_nonlocal_label = current_function_has_nonlocal_label;
486 p->has_nonlocal_goto = current_function_has_nonlocal_goto;
487 p->contains_functions = current_function_contains_functions;
488 p->args_size = current_function_args_size;
489 p->pretend_args_size = current_function_pretend_args_size;
490 p->arg_offset_rtx = current_function_arg_offset_rtx;
491 p->varargs = current_function_varargs;
492 p->stdarg = current_function_stdarg;
493 p->uses_const_pool = current_function_uses_const_pool;
494 p->uses_pic_offset_table = current_function_uses_pic_offset_table;
495 p->internal_arg_pointer = current_function_internal_arg_pointer;
496 p->max_parm_reg = max_parm_reg;
497 p->parm_reg_stack_loc = parm_reg_stack_loc;
498 p->outgoing_args_size = current_function_outgoing_args_size;
499 p->return_rtx = current_function_return_rtx;
500 p->nonlocal_goto_handler_slot = nonlocal_goto_handler_slot;
501 p->nonlocal_goto_stack_level = nonlocal_goto_stack_level;
502 p->nonlocal_labels = nonlocal_labels;
503 p->cleanup_label = cleanup_label;
504 p->return_label = return_label;
505 p->save_expr_regs = save_expr_regs;
506 p->stack_slot_list = stack_slot_list;
507 p->parm_birth_insn = parm_birth_insn;
508 p->frame_offset = frame_offset;
509 p->tail_recursion_label = tail_recursion_label;
510 p->tail_recursion_reentry = tail_recursion_reentry;
511 p->arg_pointer_save_area = arg_pointer_save_area;
512 p->rtl_expr_chain = rtl_expr_chain;
513 p->last_parm_insn = last_parm_insn;
514 p->context_display = context_display;
515 p->trampoline_list = trampoline_list;
516 p->function_call_count = function_call_count;
517 p->temp_slots = temp_slots;
518 p->temp_slot_level = temp_slot_level;
519 p->fixup_var_refs_queue = 0;
520 p->epilogue_delay_list = current_function_epilogue_delay_list;
521 p->args_info = current_function_args_info;
522
523 save_tree_status (p, context);
524 save_storage_status (p);
525 save_emit_status (p);
526 init_emit ();
527 save_expr_status (p);
528 save_stmt_status (p);
529 save_varasm_status (p);
530
531 if (save_machine_status)
532 (*save_machine_status) (p);
533 }
534
535 void
536 push_function_context ()
537 {
538 push_function_context_to (current_function_decl);
539 }
540
541 /* Restore the last saved context, at the end of a nested function.
542 This function is called from language-specific code. */
543
544 void
545 pop_function_context_from (context)
546 tree context;
547 {
548 struct function *p = outer_function_chain;
549
550 outer_function_chain = p->next;
551
552 current_function_contains_functions
553 = p->contains_functions || p->inline_obstacks
554 || context == current_function_decl;
555 current_function_name = p->name;
556 current_function_decl = p->decl;
557 current_function_pops_args = p->pops_args;
558 current_function_returns_struct = p->returns_struct;
559 current_function_returns_pcc_struct = p->returns_pcc_struct;
560 current_function_returns_pointer = p->returns_pointer;
561 current_function_needs_context = p->needs_context;
562 current_function_calls_setjmp = p->calls_setjmp;
563 current_function_calls_longjmp = p->calls_longjmp;
564 current_function_calls_alloca = p->calls_alloca;
565 current_function_has_nonlocal_label = p->has_nonlocal_label;
566 current_function_has_nonlocal_goto = p->has_nonlocal_goto;
567 current_function_args_size = p->args_size;
568 current_function_pretend_args_size = p->pretend_args_size;
569 current_function_arg_offset_rtx = p->arg_offset_rtx;
570 current_function_varargs = p->varargs;
571 current_function_stdarg = p->stdarg;
572 current_function_uses_const_pool = p->uses_const_pool;
573 current_function_uses_pic_offset_table = p->uses_pic_offset_table;
574 current_function_internal_arg_pointer = p->internal_arg_pointer;
575 max_parm_reg = p->max_parm_reg;
576 parm_reg_stack_loc = p->parm_reg_stack_loc;
577 current_function_outgoing_args_size = p->outgoing_args_size;
578 current_function_return_rtx = p->return_rtx;
579 nonlocal_goto_handler_slot = p->nonlocal_goto_handler_slot;
580 nonlocal_goto_stack_level = p->nonlocal_goto_stack_level;
581 nonlocal_labels = p->nonlocal_labels;
582 cleanup_label = p->cleanup_label;
583 return_label = p->return_label;
584 save_expr_regs = p->save_expr_regs;
585 stack_slot_list = p->stack_slot_list;
586 parm_birth_insn = p->parm_birth_insn;
587 frame_offset = p->frame_offset;
588 tail_recursion_label = p->tail_recursion_label;
589 tail_recursion_reentry = p->tail_recursion_reentry;
590 arg_pointer_save_area = p->arg_pointer_save_area;
591 rtl_expr_chain = p->rtl_expr_chain;
592 last_parm_insn = p->last_parm_insn;
593 context_display = p->context_display;
594 trampoline_list = p->trampoline_list;
595 function_call_count = p->function_call_count;
596 temp_slots = p->temp_slots;
597 temp_slot_level = p->temp_slot_level;
598 current_function_epilogue_delay_list = p->epilogue_delay_list;
599 reg_renumber = 0;
600 current_function_args_info = p->args_info;
601
602 restore_tree_status (p);
603 restore_storage_status (p);
604 restore_expr_status (p);
605 restore_emit_status (p);
606 restore_stmt_status (p);
607 restore_varasm_status (p);
608
609 if (restore_machine_status)
610 (*restore_machine_status) (p);
611
612 /* Finish doing put_var_into_stack for any of our variables
613 which became addressable during the nested function. */
614 {
615 struct var_refs_queue *queue = p->fixup_var_refs_queue;
616 for (; queue; queue = queue->next)
617 fixup_var_refs (queue->modified, queue->promoted_mode, queue->unsignedp);
618 }
619
620 free (p);
621
622 /* Reset variables that have known state during rtx generation. */
623 rtx_equal_function_value_matters = 1;
624 virtuals_instantiated = 0;
625 }
626
627 void pop_function_context ()
628 {
629 pop_function_context_from (current_function_decl);
630 }
631 \f
632 /* Allocate fixed slots in the stack frame of the current function. */
633
634 /* Return size needed for stack frame based on slots so far allocated.
635 This size counts from zero. It is not rounded to STACK_BOUNDARY;
636 the caller may have to do that. */
637
638 HOST_WIDE_INT
639 get_frame_size ()
640 {
641 #ifdef FRAME_GROWS_DOWNWARD
642 return -frame_offset;
643 #else
644 return frame_offset;
645 #endif
646 }
647
648 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
649 with machine mode MODE.
650
651 ALIGN controls the amount of alignment for the address of the slot:
652 0 means according to MODE,
653 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
654 positive specifies alignment boundary in bits.
655
656 We do not round to stack_boundary here. */
657
658 rtx
659 assign_stack_local (mode, size, align)
660 enum machine_mode mode;
661 int size;
662 int align;
663 {
664 register rtx x, addr;
665 int bigend_correction = 0;
666 int alignment;
667
668 if (align == 0)
669 {
670 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
671 if (mode == BLKmode)
672 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
673 }
674 else if (align == -1)
675 {
676 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
677 size = CEIL_ROUND (size, alignment);
678 }
679 else
680 alignment = align / BITS_PER_UNIT;
681
682 /* Round frame offset to that alignment.
683 We must be careful here, since FRAME_OFFSET might be negative and
684 division with a negative dividend isn't as well defined as we might
685 like. So we instead assume that ALIGNMENT is a power of two and
686 use logical operations which are unambiguous. */
687 #ifdef FRAME_GROWS_DOWNWARD
688 frame_offset = FLOOR_ROUND (frame_offset, alignment);
689 #else
690 frame_offset = CEIL_ROUND (frame_offset, alignment);
691 #endif
692
693 /* On a big-endian machine, if we are allocating more space than we will use,
694 use the least significant bytes of those that are allocated. */
695 if (BYTES_BIG_ENDIAN && mode != BLKmode)
696 bigend_correction = size - GET_MODE_SIZE (mode);
697
698 #ifdef FRAME_GROWS_DOWNWARD
699 frame_offset -= size;
700 #endif
701
702 /* If we have already instantiated virtual registers, return the actual
703 address relative to the frame pointer. */
704 if (virtuals_instantiated)
705 addr = plus_constant (frame_pointer_rtx,
706 (frame_offset + bigend_correction
707 + STARTING_FRAME_OFFSET));
708 else
709 addr = plus_constant (virtual_stack_vars_rtx,
710 frame_offset + bigend_correction);
711
712 #ifndef FRAME_GROWS_DOWNWARD
713 frame_offset += size;
714 #endif
715
716 x = gen_rtx (MEM, mode, addr);
717
718 stack_slot_list = gen_rtx (EXPR_LIST, VOIDmode, x, stack_slot_list);
719
720 return x;
721 }
722
723 /* Assign a stack slot in a containing function.
724 First three arguments are same as in preceding function.
725 The last argument specifies the function to allocate in. */
726
727 rtx
728 assign_outer_stack_local (mode, size, align, function)
729 enum machine_mode mode;
730 int size;
731 int align;
732 struct function *function;
733 {
734 register rtx x, addr;
735 int bigend_correction = 0;
736 int alignment;
737
738 /* Allocate in the memory associated with the function in whose frame
739 we are assigning. */
740 push_obstacks (function->function_obstack,
741 function->function_maybepermanent_obstack);
742
743 if (align == 0)
744 {
745 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
746 if (mode == BLKmode)
747 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
748 }
749 else if (align == -1)
750 {
751 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
752 size = CEIL_ROUND (size, alignment);
753 }
754 else
755 alignment = align / BITS_PER_UNIT;
756
757 /* Round frame offset to that alignment. */
758 #ifdef FRAME_GROWS_DOWNWARD
759 function->frame_offset = FLOOR_ROUND (function->frame_offset, alignment);
760 #else
761 function->frame_offset = CEIL_ROUND (function->frame_offset, alignment);
762 #endif
763
764 /* On a big-endian machine, if we are allocating more space than we will use,
765 use the least significant bytes of those that are allocated. */
766 if (BYTES_BIG_ENDIAN && mode != BLKmode)
767 bigend_correction = size - GET_MODE_SIZE (mode);
768
769 #ifdef FRAME_GROWS_DOWNWARD
770 function->frame_offset -= size;
771 #endif
772 addr = plus_constant (virtual_stack_vars_rtx,
773 function->frame_offset + bigend_correction);
774 #ifndef FRAME_GROWS_DOWNWARD
775 function->frame_offset += size;
776 #endif
777
778 x = gen_rtx (MEM, mode, addr);
779
780 function->stack_slot_list
781 = gen_rtx (EXPR_LIST, VOIDmode, x, function->stack_slot_list);
782
783 pop_obstacks ();
784
785 return x;
786 }
787 \f
788 /* Allocate a temporary stack slot and record it for possible later
789 reuse.
790
791 MODE is the machine mode to be given to the returned rtx.
792
793 SIZE is the size in units of the space required. We do no rounding here
794 since assign_stack_local will do any required rounding.
795
796 KEEP is 1 if this slot is to be retained after a call to
797 free_temp_slots. Automatic variables for a block are allocated
798 with this flag. KEEP is 2, if we allocate a longer term temporary,
799 whose lifetime is controlled by CLEANUP_POINT_EXPRs. */
800
801 rtx
802 assign_stack_temp (mode, size, keep)
803 enum machine_mode mode;
804 int size;
805 int keep;
806 {
807 struct temp_slot *p, *best_p = 0;
808
809 /* If SIZE is -1 it means that somebody tried to allocate a temporary
810 of a variable size. */
811 if (size == -1)
812 abort ();
813
814 /* First try to find an available, already-allocated temporary that is the
815 exact size we require. */
816 for (p = temp_slots; p; p = p->next)
817 if (p->size == size && GET_MODE (p->slot) == mode && ! p->in_use)
818 break;
819
820 /* If we didn't find, one, try one that is larger than what we want. We
821 find the smallest such. */
822 if (p == 0)
823 for (p = temp_slots; p; p = p->next)
824 if (p->size > size && GET_MODE (p->slot) == mode && ! p->in_use
825 && (best_p == 0 || best_p->size > p->size))
826 best_p = p;
827
828 /* Make our best, if any, the one to use. */
829 if (best_p)
830 {
831 /* If there are enough aligned bytes left over, make them into a new
832 temp_slot so that the extra bytes don't get wasted. Do this only
833 for BLKmode slots, so that we can be sure of the alignment. */
834 if (GET_MODE (best_p->slot) == BLKmode)
835 {
836 int alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
837 int rounded_size = CEIL_ROUND (size, alignment);
838
839 if (best_p->size - rounded_size >= alignment)
840 {
841 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
842 p->in_use = p->addr_taken = 0;
843 p->size = best_p->size - rounded_size;
844 p->base_offset = best_p->base_offset + rounded_size;
845 p->full_size = best_p->full_size - rounded_size;
846 p->slot = gen_rtx (MEM, BLKmode,
847 plus_constant (XEXP (best_p->slot, 0),
848 rounded_size));
849 p->address = 0;
850 p->rtl_expr = 0;
851 p->next = temp_slots;
852 temp_slots = p;
853
854 stack_slot_list = gen_rtx (EXPR_LIST, VOIDmode, p->slot,
855 stack_slot_list);
856
857 best_p->size = rounded_size;
858 best_p->full_size = rounded_size;
859 }
860 }
861
862 p = best_p;
863 }
864
865 /* If we still didn't find one, make a new temporary. */
866 if (p == 0)
867 {
868 int frame_offset_old = frame_offset;
869 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
870 /* If the temp slot mode doesn't indicate the alignment,
871 use the largest possible, so no one will be disappointed. */
872 p->slot = assign_stack_local (mode, size, mode == BLKmode ? -1 : 0);
873 /* The following slot size computation is necessary because we don't
874 know the actual size of the temporary slot until assign_stack_local
875 has performed all the frame alignment and size rounding for the
876 requested temporary. Note that extra space added for alignment
877 can be either above or below this stack slot depending on which
878 way the frame grows. We include the extra space if and only if it
879 is above this slot. */
880 #ifdef FRAME_GROWS_DOWNWARD
881 p->size = frame_offset_old - frame_offset;
882 #else
883 p->size = size;
884 #endif
885 /* Now define the fields used by combine_temp_slots. */
886 #ifdef FRAME_GROWS_DOWNWARD
887 p->base_offset = frame_offset;
888 p->full_size = frame_offset_old - frame_offset;
889 #else
890 p->base_offset = frame_offset_old;
891 p->full_size = frame_offset - frame_offset_old;
892 #endif
893 p->address = 0;
894 p->next = temp_slots;
895 temp_slots = p;
896 }
897
898 p->in_use = 1;
899 p->addr_taken = 0;
900 p->rtl_expr = sequence_rtl_expr;
901
902 if (keep == 2)
903 {
904 p->level = target_temp_slot_level;
905 p->keep = 0;
906 }
907 else
908 {
909 p->level = temp_slot_level;
910 p->keep = keep;
911 }
912 return p->slot;
913 }
914 \f
915 /* Assign a temporary of given TYPE.
916 KEEP is as for assign_stack_temp.
917 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
918 it is 0 if a register is OK.
919 DONT_PROMOTE is 1 if we should not promote values in register
920 to wider modes. */
921
922 rtx
923 assign_temp (type, keep, memory_required, dont_promote)
924 tree type;
925 int keep;
926 int memory_required;
927 int dont_promote;
928 {
929 enum machine_mode mode = TYPE_MODE (type);
930 int unsignedp = TREE_UNSIGNED (type);
931
932 if (mode == BLKmode || memory_required)
933 {
934 int size = int_size_in_bytes (type);
935 rtx tmp;
936
937 /* Unfortunately, we don't yet know how to allocate variable-sized
938 temporaries. However, sometimes we have a fixed upper limit on
939 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
940 instead. This is the case for Chill variable-sized strings. */
941 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
942 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
943 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
944 size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));
945
946 tmp = assign_stack_temp (mode, size, keep);
947 MEM_IN_STRUCT_P (tmp) = AGGREGATE_TYPE_P (type);
948 return tmp;
949 }
950
951 #ifndef PROMOTE_FOR_CALL_ONLY
952 if (! dont_promote)
953 mode = promote_mode (type, mode, &unsignedp, 0);
954 #endif
955
956 return gen_reg_rtx (mode);
957 }
958 \f
959 /* Combine temporary stack slots which are adjacent on the stack.
960
961 This allows for better use of already allocated stack space. This is only
962 done for BLKmode slots because we can be sure that we won't have alignment
963 problems in this case. */
964
965 void
966 combine_temp_slots ()
967 {
968 struct temp_slot *p, *q;
969 struct temp_slot *prev_p, *prev_q;
970 /* Determine where to free back to after this function. */
971 rtx free_pointer = rtx_alloc (CONST_INT);
972
973 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
974 {
975 int delete_p = 0;
976 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
977 for (q = p->next, prev_q = p; q; q = prev_q->next)
978 {
979 int delete_q = 0;
980 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
981 {
982 if (p->base_offset + p->full_size == q->base_offset)
983 {
984 /* Q comes after P; combine Q into P. */
985 p->size += q->size;
986 p->full_size += q->full_size;
987 delete_q = 1;
988 }
989 else if (q->base_offset + q->full_size == p->base_offset)
990 {
991 /* P comes after Q; combine P into Q. */
992 q->size += p->size;
993 q->full_size += p->full_size;
994 delete_p = 1;
995 break;
996 }
997 }
998 /* Either delete Q or advance past it. */
999 if (delete_q)
1000 prev_q->next = q->next;
1001 else
1002 prev_q = q;
1003 }
1004 /* Either delete P or advance past it. */
1005 if (delete_p)
1006 {
1007 if (prev_p)
1008 prev_p->next = p->next;
1009 else
1010 temp_slots = p->next;
1011 }
1012 else
1013 prev_p = p;
1014 }
1015
1016 /* Free all the RTL made by plus_constant. */
1017 rtx_free (free_pointer);
1018 }
1019 \f
1020 /* Find the temp slot corresponding to the object at address X. */
1021
1022 static struct temp_slot *
1023 find_temp_slot_from_address (x)
1024 rtx x;
1025 {
1026 struct temp_slot *p;
1027 rtx next;
1028
1029 for (p = temp_slots; p; p = p->next)
1030 {
1031 if (! p->in_use)
1032 continue;
1033 else if (XEXP (p->slot, 0) == x
1034 || p->address == x
1035 || (GET_CODE (x) == PLUS
1036 && XEXP (x, 0) == virtual_stack_vars_rtx
1037 && GET_CODE (XEXP (x, 1)) == CONST_INT
1038 && INTVAL (XEXP (x, 1)) >= p->base_offset
1039 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
1040 return p;
1041
1042 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
1043 for (next = p->address; next; next = XEXP (next, 1))
1044 if (XEXP (next, 0) == x)
1045 return p;
1046 }
1047
1048 return 0;
1049 }
1050
1051 /* Indicate that NEW is an alternate way of referring to the temp slot
1052 that previous was known by OLD. */
1053
1054 void
1055 update_temp_slot_address (old, new)
1056 rtx old, new;
1057 {
1058 struct temp_slot *p = find_temp_slot_from_address (old);
1059
1060 /* If none, return. Else add NEW as an alias. */
1061 if (p == 0)
1062 return;
1063 else if (p->address == 0)
1064 p->address = new;
1065 else
1066 {
1067 if (GET_CODE (p->address) != EXPR_LIST)
1068 p->address = gen_rtx (EXPR_LIST, VOIDmode, p->address, NULL_RTX);
1069
1070 p->address = gen_rtx (EXPR_LIST, VOIDmode, new, p->address);
1071 }
1072 }
1073
1074 /* If X could be a reference to a temporary slot, mark the fact that its
1075 address was taken. */
1076
1077 void
1078 mark_temp_addr_taken (x)
1079 rtx x;
1080 {
1081 struct temp_slot *p;
1082
1083 if (x == 0)
1084 return;
1085
1086 /* If X is not in memory or is at a constant address, it cannot be in
1087 a temporary slot. */
1088 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1089 return;
1090
1091 p = find_temp_slot_from_address (XEXP (x, 0));
1092 if (p != 0)
1093 p->addr_taken = 1;
1094 }
1095
1096 /* If X could be a reference to a temporary slot, mark that slot as
1097 belonging to the to one level higher than the current level. If X
1098 matched one of our slots, just mark that one. Otherwise, we can't
1099 easily predict which it is, so upgrade all of them. Kept slots
1100 need not be touched.
1101
1102 This is called when an ({...}) construct occurs and a statement
1103 returns a value in memory. */
1104
1105 void
1106 preserve_temp_slots (x)
1107 rtx x;
1108 {
1109 struct temp_slot *p = 0;
1110
1111 /* If there is no result, we still might have some objects whose address
1112 were taken, so we need to make sure they stay around. */
1113 if (x == 0)
1114 {
1115 for (p = temp_slots; p; p = p->next)
1116 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1117 p->level--;
1118
1119 return;
1120 }
1121
1122 /* If X is a register that is being used as a pointer, see if we have
1123 a temporary slot we know it points to. To be consistent with
1124 the code below, we really should preserve all non-kept slots
1125 if we can't find a match, but that seems to be much too costly. */
1126 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1127 p = find_temp_slot_from_address (x);
1128
1129 /* If X is not in memory or is at a constant address, it cannot be in
1130 a temporary slot, but it can contain something whose address was
1131 taken. */
1132 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1133 {
1134 for (p = temp_slots; p; p = p->next)
1135 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1136 p->level--;
1137
1138 return;
1139 }
1140
1141 /* First see if we can find a match. */
1142 if (p == 0)
1143 p = find_temp_slot_from_address (XEXP (x, 0));
1144
1145 if (p != 0)
1146 {
1147 /* Move everything at our level whose address was taken to our new
1148 level in case we used its address. */
1149 struct temp_slot *q;
1150
1151 if (p->level == temp_slot_level)
1152 {
1153 for (q = temp_slots; q; q = q->next)
1154 if (q != p && q->addr_taken && q->level == p->level)
1155 q->level--;
1156
1157 p->level--;
1158 p->addr_taken = 0;
1159 }
1160 return;
1161 }
1162
1163 /* Otherwise, preserve all non-kept slots at this level. */
1164 for (p = temp_slots; p; p = p->next)
1165 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1166 p->level--;
1167 }
1168
1169 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1170 with that RTL_EXPR, promote it into a temporary slot at the present
1171 level so it will not be freed when we free slots made in the
1172 RTL_EXPR. */
1173
1174 void
1175 preserve_rtl_expr_result (x)
1176 rtx x;
1177 {
1178 struct temp_slot *p;
1179
1180 /* If X is not in memory or is at a constant address, it cannot be in
1181 a temporary slot. */
1182 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1183 return;
1184
1185 /* If we can find a match, move it to our level unless it is already at
1186 an upper level. */
1187 p = find_temp_slot_from_address (XEXP (x, 0));
1188 if (p != 0)
1189 {
1190 p->level = MIN (p->level, temp_slot_level);
1191 p->rtl_expr = 0;
1192 }
1193
1194 return;
1195 }
1196
1197 /* Free all temporaries used so far. This is normally called at the end
1198 of generating code for a statement. Don't free any temporaries
1199 currently in use for an RTL_EXPR that hasn't yet been emitted.
1200 We could eventually do better than this since it can be reused while
1201 generating the same RTL_EXPR, but this is complex and probably not
1202 worthwhile. */
1203
1204 void
1205 free_temp_slots ()
1206 {
1207 struct temp_slot *p;
1208
1209 for (p = temp_slots; p; p = p->next)
1210 if (p->in_use && p->level == temp_slot_level && ! p->keep
1211 && p->rtl_expr == 0)
1212 p->in_use = 0;
1213
1214 combine_temp_slots ();
1215 }
1216
1217 /* Free all temporary slots used in T, an RTL_EXPR node. */
1218
1219 void
1220 free_temps_for_rtl_expr (t)
1221 tree t;
1222 {
1223 struct temp_slot *p;
1224
1225 for (p = temp_slots; p; p = p->next)
1226 if (p->rtl_expr == t)
1227 p->in_use = 0;
1228
1229 combine_temp_slots ();
1230 }
1231
1232 /* Mark all temporaries ever allocated in this functon as not suitable
1233 for reuse until the current level is exited. */
1234
1235 void
1236 mark_all_temps_used ()
1237 {
1238 struct temp_slot *p;
1239
1240 for (p = temp_slots; p; p = p->next)
1241 {
1242 p->in_use = 1;
1243 p->level = MIN (p->level, temp_slot_level);
1244 }
1245 }
1246
1247 /* Push deeper into the nesting level for stack temporaries. */
1248
1249 void
1250 push_temp_slots ()
1251 {
1252 temp_slot_level++;
1253 }
1254
1255 /* Pop a temporary nesting level. All slots in use in the current level
1256 are freed. */
1257
1258 void
1259 pop_temp_slots ()
1260 {
1261 struct temp_slot *p;
1262
1263 for (p = temp_slots; p; p = p->next)
1264 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1265 p->in_use = 0;
1266
1267 combine_temp_slots ();
1268
1269 temp_slot_level--;
1270 }
1271
1272 /* Initialize temporary slots. */
1273
1274 void
1275 init_temp_slots ()
1276 {
1277 /* We have not allocated any temporaries yet. */
1278 temp_slots = 0;
1279 temp_slot_level = 0;
1280 target_temp_slot_level = 0;
1281 }
1282 \f
1283 /* Retroactively move an auto variable from a register to a stack slot.
1284 This is done when an address-reference to the variable is seen. */
1285
1286 void
1287 put_var_into_stack (decl)
1288 tree decl;
1289 {
1290 register rtx reg;
1291 enum machine_mode promoted_mode, decl_mode;
1292 struct function *function = 0;
1293 tree context;
1294
1295 if (output_bytecode)
1296 return;
1297
1298 context = decl_function_context (decl);
1299
1300 /* Get the current rtl used for this object and it's original mode. */
1301 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1302
1303 /* No need to do anything if decl has no rtx yet
1304 since in that case caller is setting TREE_ADDRESSABLE
1305 and a stack slot will be assigned when the rtl is made. */
1306 if (reg == 0)
1307 return;
1308
1309 /* Get the declared mode for this object. */
1310 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1311 : DECL_MODE (decl));
1312 /* Get the mode it's actually stored in. */
1313 promoted_mode = GET_MODE (reg);
1314
1315 /* If this variable comes from an outer function,
1316 find that function's saved context. */
1317 if (context != current_function_decl)
1318 for (function = outer_function_chain; function; function = function->next)
1319 if (function->decl == context)
1320 break;
1321
1322 /* If this is a variable-size object with a pseudo to address it,
1323 put that pseudo into the stack, if the var is nonlocal. */
1324 if (DECL_NONLOCAL (decl)
1325 && GET_CODE (reg) == MEM
1326 && GET_CODE (XEXP (reg, 0)) == REG
1327 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1328 {
1329 reg = XEXP (reg, 0);
1330 decl_mode = promoted_mode = GET_MODE (reg);
1331 }
1332
1333 /* Now we should have a value that resides in one or more pseudo regs. */
1334
1335 if (GET_CODE (reg) == REG)
1336 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1337 promoted_mode, decl_mode, TREE_SIDE_EFFECTS (decl));
1338 else if (GET_CODE (reg) == CONCAT)
1339 {
1340 /* A CONCAT contains two pseudos; put them both in the stack.
1341 We do it so they end up consecutive. */
1342 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1343 tree part_type = TREE_TYPE (TREE_TYPE (decl));
1344 #ifdef FRAME_GROWS_DOWNWARD
1345 /* Since part 0 should have a lower address, do it second. */
1346 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1347 part_mode, TREE_SIDE_EFFECTS (decl));
1348 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1349 part_mode, TREE_SIDE_EFFECTS (decl));
1350 #else
1351 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1352 part_mode, TREE_SIDE_EFFECTS (decl));
1353 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1354 part_mode, TREE_SIDE_EFFECTS (decl));
1355 #endif
1356
1357 /* Change the CONCAT into a combined MEM for both parts. */
1358 PUT_CODE (reg, MEM);
1359 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1360
1361 /* The two parts are in memory order already.
1362 Use the lower parts address as ours. */
1363 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1364 /* Prevent sharing of rtl that might lose. */
1365 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1366 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1367 }
1368 }
1369
1370 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1371 into the stack frame of FUNCTION (0 means the current function).
1372 DECL_MODE is the machine mode of the user-level data type.
1373 PROMOTED_MODE is the machine mode of the register.
1374 VOLATILE_P is nonzero if this is for a "volatile" decl. */
1375
1376 static void
1377 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p)
1378 struct function *function;
1379 rtx reg;
1380 tree type;
1381 enum machine_mode promoted_mode, decl_mode;
1382 int volatile_p;
1383 {
1384 rtx new = 0;
1385
1386 if (function)
1387 {
1388 if (REGNO (reg) < function->max_parm_reg)
1389 new = function->parm_reg_stack_loc[REGNO (reg)];
1390 if (new == 0)
1391 new = assign_outer_stack_local (decl_mode, GET_MODE_SIZE (decl_mode),
1392 0, function);
1393 }
1394 else
1395 {
1396 if (REGNO (reg) < max_parm_reg)
1397 new = parm_reg_stack_loc[REGNO (reg)];
1398 if (new == 0)
1399 new = assign_stack_local (decl_mode, GET_MODE_SIZE (decl_mode), 0);
1400 }
1401
1402 PUT_MODE (reg, decl_mode);
1403 XEXP (reg, 0) = XEXP (new, 0);
1404 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1405 MEM_VOLATILE_P (reg) = volatile_p;
1406 PUT_CODE (reg, MEM);
1407
1408 /* If this is a memory ref that contains aggregate components,
1409 mark it as such for cse and loop optimize. */
1410 MEM_IN_STRUCT_P (reg) = AGGREGATE_TYPE_P (type);
1411
1412 /* Now make sure that all refs to the variable, previously made
1413 when it was a register, are fixed up to be valid again. */
1414 if (function)
1415 {
1416 struct var_refs_queue *temp;
1417
1418 /* Variable is inherited; fix it up when we get back to its function. */
1419 push_obstacks (function->function_obstack,
1420 function->function_maybepermanent_obstack);
1421
1422 /* See comment in restore_tree_status in tree.c for why this needs to be
1423 on saveable obstack. */
1424 temp
1425 = (struct var_refs_queue *) savealloc (sizeof (struct var_refs_queue));
1426 temp->modified = reg;
1427 temp->promoted_mode = promoted_mode;
1428 temp->unsignedp = TREE_UNSIGNED (type);
1429 temp->next = function->fixup_var_refs_queue;
1430 function->fixup_var_refs_queue = temp;
1431 pop_obstacks ();
1432 }
1433 else
1434 /* Variable is local; fix it up now. */
1435 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type));
1436 }
1437 \f
1438 static void
1439 fixup_var_refs (var, promoted_mode, unsignedp)
1440 rtx var;
1441 enum machine_mode promoted_mode;
1442 int unsignedp;
1443 {
1444 tree pending;
1445 rtx first_insn = get_insns ();
1446 struct sequence_stack *stack = sequence_stack;
1447 tree rtl_exps = rtl_expr_chain;
1448
1449 /* Must scan all insns for stack-refs that exceed the limit. */
1450 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn, stack == 0);
1451
1452 /* Scan all pending sequences too. */
1453 for (; stack; stack = stack->next)
1454 {
1455 push_to_sequence (stack->first);
1456 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1457 stack->first, stack->next != 0);
1458 /* Update remembered end of sequence
1459 in case we added an insn at the end. */
1460 stack->last = get_last_insn ();
1461 end_sequence ();
1462 }
1463
1464 /* Scan all waiting RTL_EXPRs too. */
1465 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1466 {
1467 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1468 if (seq != const0_rtx && seq != 0)
1469 {
1470 push_to_sequence (seq);
1471 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0);
1472 end_sequence ();
1473 }
1474 }
1475 }
1476 \f
1477 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1478 some part of an insn. Return a struct fixup_replacement whose OLD
1479 value is equal to X. Allocate a new structure if no such entry exists. */
1480
1481 static struct fixup_replacement *
1482 find_fixup_replacement (replacements, x)
1483 struct fixup_replacement **replacements;
1484 rtx x;
1485 {
1486 struct fixup_replacement *p;
1487
1488 /* See if we have already replaced this. */
1489 for (p = *replacements; p && p->old != x; p = p->next)
1490 ;
1491
1492 if (p == 0)
1493 {
1494 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1495 p->old = x;
1496 p->new = 0;
1497 p->next = *replacements;
1498 *replacements = p;
1499 }
1500
1501 return p;
1502 }
1503
1504 /* Scan the insn-chain starting with INSN for refs to VAR
1505 and fix them up. TOPLEVEL is nonzero if this chain is the
1506 main chain of insns for the current function. */
1507
1508 static void
1509 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel)
1510 rtx var;
1511 enum machine_mode promoted_mode;
1512 int unsignedp;
1513 rtx insn;
1514 int toplevel;
1515 {
1516 rtx call_dest = 0;
1517
1518 while (insn)
1519 {
1520 rtx next = NEXT_INSN (insn);
1521 rtx note;
1522 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1523 {
1524 /* If this is a CLOBBER of VAR, delete it.
1525
1526 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1527 and REG_RETVAL notes too. */
1528 if (GET_CODE (PATTERN (insn)) == CLOBBER
1529 && XEXP (PATTERN (insn), 0) == var)
1530 {
1531 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1532 /* The REG_LIBCALL note will go away since we are going to
1533 turn INSN into a NOTE, so just delete the
1534 corresponding REG_RETVAL note. */
1535 remove_note (XEXP (note, 0),
1536 find_reg_note (XEXP (note, 0), REG_RETVAL,
1537 NULL_RTX));
1538
1539 /* In unoptimized compilation, we shouldn't call delete_insn
1540 except in jump.c doing warnings. */
1541 PUT_CODE (insn, NOTE);
1542 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1543 NOTE_SOURCE_FILE (insn) = 0;
1544 }
1545
1546 /* The insn to load VAR from a home in the arglist
1547 is now a no-op. When we see it, just delete it. */
1548 else if (toplevel
1549 && GET_CODE (PATTERN (insn)) == SET
1550 && SET_DEST (PATTERN (insn)) == var
1551 /* If this represents the result of an insn group,
1552 don't delete the insn. */
1553 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1554 && rtx_equal_p (SET_SRC (PATTERN (insn)), var))
1555 {
1556 /* In unoptimized compilation, we shouldn't call delete_insn
1557 except in jump.c doing warnings. */
1558 PUT_CODE (insn, NOTE);
1559 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1560 NOTE_SOURCE_FILE (insn) = 0;
1561 if (insn == last_parm_insn)
1562 last_parm_insn = PREV_INSN (next);
1563 }
1564 else
1565 {
1566 struct fixup_replacement *replacements = 0;
1567 rtx next_insn = NEXT_INSN (insn);
1568
1569 #ifdef SMALL_REGISTER_CLASSES
1570 /* If the insn that copies the results of a CALL_INSN
1571 into a pseudo now references VAR, we have to use an
1572 intermediate pseudo since we want the life of the
1573 return value register to be only a single insn.
1574
1575 If we don't use an intermediate pseudo, such things as
1576 address computations to make the address of VAR valid
1577 if it is not can be placed between the CALL_INSN and INSN.
1578
1579 To make sure this doesn't happen, we record the destination
1580 of the CALL_INSN and see if the next insn uses both that
1581 and VAR. */
1582
1583 if (SMALL_REGISTER_CLASSES)
1584 {
1585 if (call_dest != 0 && GET_CODE (insn) == INSN
1586 && reg_mentioned_p (var, PATTERN (insn))
1587 && reg_mentioned_p (call_dest, PATTERN (insn)))
1588 {
1589 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1590
1591 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1592
1593 PATTERN (insn) = replace_rtx (PATTERN (insn),
1594 call_dest, temp);
1595 }
1596
1597 if (GET_CODE (insn) == CALL_INSN
1598 && GET_CODE (PATTERN (insn)) == SET)
1599 call_dest = SET_DEST (PATTERN (insn));
1600 else if (GET_CODE (insn) == CALL_INSN
1601 && GET_CODE (PATTERN (insn)) == PARALLEL
1602 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1603 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1604 else
1605 call_dest = 0;
1606 }
1607 #endif
1608
1609 /* See if we have to do anything to INSN now that VAR is in
1610 memory. If it needs to be loaded into a pseudo, use a single
1611 pseudo for the entire insn in case there is a MATCH_DUP
1612 between two operands. We pass a pointer to the head of
1613 a list of struct fixup_replacements. If fixup_var_refs_1
1614 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1615 it will record them in this list.
1616
1617 If it allocated a pseudo for any replacement, we copy into
1618 it here. */
1619
1620 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1621 &replacements);
1622
1623 /* If this is last_parm_insn, and any instructions were output
1624 after it to fix it up, then we must set last_parm_insn to
1625 the last such instruction emitted. */
1626 if (insn == last_parm_insn)
1627 last_parm_insn = PREV_INSN (next_insn);
1628
1629 while (replacements)
1630 {
1631 if (GET_CODE (replacements->new) == REG)
1632 {
1633 rtx insert_before;
1634 rtx seq;
1635
1636 /* OLD might be a (subreg (mem)). */
1637 if (GET_CODE (replacements->old) == SUBREG)
1638 replacements->old
1639 = fixup_memory_subreg (replacements->old, insn, 0);
1640 else
1641 replacements->old
1642 = fixup_stack_1 (replacements->old, insn);
1643
1644 insert_before = insn;
1645
1646 /* If we are changing the mode, do a conversion.
1647 This might be wasteful, but combine.c will
1648 eliminate much of the waste. */
1649
1650 if (GET_MODE (replacements->new)
1651 != GET_MODE (replacements->old))
1652 {
1653 start_sequence ();
1654 convert_move (replacements->new,
1655 replacements->old, unsignedp);
1656 seq = gen_sequence ();
1657 end_sequence ();
1658 }
1659 else
1660 seq = gen_move_insn (replacements->new,
1661 replacements->old);
1662
1663 emit_insn_before (seq, insert_before);
1664 }
1665
1666 replacements = replacements->next;
1667 }
1668 }
1669
1670 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1671 But don't touch other insns referred to by reg-notes;
1672 we will get them elsewhere. */
1673 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1674 if (GET_CODE (note) != INSN_LIST)
1675 XEXP (note, 0)
1676 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1677 }
1678 insn = next;
1679 }
1680 }
1681 \f
1682 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1683 See if the rtx expression at *LOC in INSN needs to be changed.
1684
1685 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1686 contain a list of original rtx's and replacements. If we find that we need
1687 to modify this insn by replacing a memory reference with a pseudo or by
1688 making a new MEM to implement a SUBREG, we consult that list to see if
1689 we have already chosen a replacement. If none has already been allocated,
1690 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1691 or the SUBREG, as appropriate, to the pseudo. */
1692
1693 static void
1694 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1695 register rtx var;
1696 enum machine_mode promoted_mode;
1697 register rtx *loc;
1698 rtx insn;
1699 struct fixup_replacement **replacements;
1700 {
1701 register int i;
1702 register rtx x = *loc;
1703 RTX_CODE code = GET_CODE (x);
1704 register char *fmt;
1705 register rtx tem, tem1;
1706 struct fixup_replacement *replacement;
1707
1708 switch (code)
1709 {
1710 case MEM:
1711 if (var == x)
1712 {
1713 /* If we already have a replacement, use it. Otherwise,
1714 try to fix up this address in case it is invalid. */
1715
1716 replacement = find_fixup_replacement (replacements, var);
1717 if (replacement->new)
1718 {
1719 *loc = replacement->new;
1720 return;
1721 }
1722
1723 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1724
1725 /* Unless we are forcing memory to register or we changed the mode,
1726 we can leave things the way they are if the insn is valid. */
1727
1728 INSN_CODE (insn) = -1;
1729 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1730 && recog_memoized (insn) >= 0)
1731 return;
1732
1733 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1734 return;
1735 }
1736
1737 /* If X contains VAR, we need to unshare it here so that we update
1738 each occurrence separately. But all identical MEMs in one insn
1739 must be replaced with the same rtx because of the possibility of
1740 MATCH_DUPs. */
1741
1742 if (reg_mentioned_p (var, x))
1743 {
1744 replacement = find_fixup_replacement (replacements, x);
1745 if (replacement->new == 0)
1746 replacement->new = copy_most_rtx (x, var);
1747
1748 *loc = x = replacement->new;
1749 }
1750 break;
1751
1752 case REG:
1753 case CC0:
1754 case PC:
1755 case CONST_INT:
1756 case CONST:
1757 case SYMBOL_REF:
1758 case LABEL_REF:
1759 case CONST_DOUBLE:
1760 return;
1761
1762 case SIGN_EXTRACT:
1763 case ZERO_EXTRACT:
1764 /* Note that in some cases those types of expressions are altered
1765 by optimize_bit_field, and do not survive to get here. */
1766 if (XEXP (x, 0) == var
1767 || (GET_CODE (XEXP (x, 0)) == SUBREG
1768 && SUBREG_REG (XEXP (x, 0)) == var))
1769 {
1770 /* Get TEM as a valid MEM in the mode presently in the insn.
1771
1772 We don't worry about the possibility of MATCH_DUP here; it
1773 is highly unlikely and would be tricky to handle. */
1774
1775 tem = XEXP (x, 0);
1776 if (GET_CODE (tem) == SUBREG)
1777 {
1778 if (GET_MODE_BITSIZE (GET_MODE (tem))
1779 > GET_MODE_BITSIZE (GET_MODE (var)))
1780 {
1781 replacement = find_fixup_replacement (replacements, var);
1782 if (replacement->new == 0)
1783 replacement->new = gen_reg_rtx (GET_MODE (var));
1784 SUBREG_REG (tem) = replacement->new;
1785 }
1786 else
1787 tem = fixup_memory_subreg (tem, insn, 0);
1788 }
1789 else
1790 tem = fixup_stack_1 (tem, insn);
1791
1792 /* Unless we want to load from memory, get TEM into the proper mode
1793 for an extract from memory. This can only be done if the
1794 extract is at a constant position and length. */
1795
1796 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1797 && GET_CODE (XEXP (x, 2)) == CONST_INT
1798 && ! mode_dependent_address_p (XEXP (tem, 0))
1799 && ! MEM_VOLATILE_P (tem))
1800 {
1801 enum machine_mode wanted_mode = VOIDmode;
1802 enum machine_mode is_mode = GET_MODE (tem);
1803 int width = INTVAL (XEXP (x, 1));
1804 int pos = INTVAL (XEXP (x, 2));
1805
1806 #ifdef HAVE_extzv
1807 if (GET_CODE (x) == ZERO_EXTRACT)
1808 wanted_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
1809 #endif
1810 #ifdef HAVE_extv
1811 if (GET_CODE (x) == SIGN_EXTRACT)
1812 wanted_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
1813 #endif
1814 /* If we have a narrower mode, we can do something. */
1815 if (wanted_mode != VOIDmode
1816 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
1817 {
1818 int offset = pos / BITS_PER_UNIT;
1819 rtx old_pos = XEXP (x, 2);
1820 rtx newmem;
1821
1822 /* If the bytes and bits are counted differently, we
1823 must adjust the offset. */
1824 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
1825 offset = (GET_MODE_SIZE (is_mode)
1826 - GET_MODE_SIZE (wanted_mode) - offset);
1827
1828 pos %= GET_MODE_BITSIZE (wanted_mode);
1829
1830 newmem = gen_rtx (MEM, wanted_mode,
1831 plus_constant (XEXP (tem, 0), offset));
1832 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
1833 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
1834 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
1835
1836 /* Make the change and see if the insn remains valid. */
1837 INSN_CODE (insn) = -1;
1838 XEXP (x, 0) = newmem;
1839 XEXP (x, 2) = GEN_INT (pos);
1840
1841 if (recog_memoized (insn) >= 0)
1842 return;
1843
1844 /* Otherwise, restore old position. XEXP (x, 0) will be
1845 restored later. */
1846 XEXP (x, 2) = old_pos;
1847 }
1848 }
1849
1850 /* If we get here, the bitfield extract insn can't accept a memory
1851 reference. Copy the input into a register. */
1852
1853 tem1 = gen_reg_rtx (GET_MODE (tem));
1854 emit_insn_before (gen_move_insn (tem1, tem), insn);
1855 XEXP (x, 0) = tem1;
1856 return;
1857 }
1858 break;
1859
1860 case SUBREG:
1861 if (SUBREG_REG (x) == var)
1862 {
1863 /* If this is a special SUBREG made because VAR was promoted
1864 from a wider mode, replace it with VAR and call ourself
1865 recursively, this time saying that the object previously
1866 had its current mode (by virtue of the SUBREG). */
1867
1868 if (SUBREG_PROMOTED_VAR_P (x))
1869 {
1870 *loc = var;
1871 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
1872 return;
1873 }
1874
1875 /* If this SUBREG makes VAR wider, it has become a paradoxical
1876 SUBREG with VAR in memory, but these aren't allowed at this
1877 stage of the compilation. So load VAR into a pseudo and take
1878 a SUBREG of that pseudo. */
1879 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
1880 {
1881 replacement = find_fixup_replacement (replacements, var);
1882 if (replacement->new == 0)
1883 replacement->new = gen_reg_rtx (GET_MODE (var));
1884 SUBREG_REG (x) = replacement->new;
1885 return;
1886 }
1887
1888 /* See if we have already found a replacement for this SUBREG.
1889 If so, use it. Otherwise, make a MEM and see if the insn
1890 is recognized. If not, or if we should force MEM into a register,
1891 make a pseudo for this SUBREG. */
1892 replacement = find_fixup_replacement (replacements, x);
1893 if (replacement->new)
1894 {
1895 *loc = replacement->new;
1896 return;
1897 }
1898
1899 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
1900
1901 INSN_CODE (insn) = -1;
1902 if (! flag_force_mem && recog_memoized (insn) >= 0)
1903 return;
1904
1905 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
1906 return;
1907 }
1908 break;
1909
1910 case SET:
1911 /* First do special simplification of bit-field references. */
1912 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
1913 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
1914 optimize_bit_field (x, insn, 0);
1915 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
1916 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
1917 optimize_bit_field (x, insn, NULL_PTR);
1918
1919 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
1920 into a register and then store it back out. */
1921 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
1922 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
1923 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
1924 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
1925 > GET_MODE_SIZE (GET_MODE (var))))
1926 {
1927 replacement = find_fixup_replacement (replacements, var);
1928 if (replacement->new == 0)
1929 replacement->new = gen_reg_rtx (GET_MODE (var));
1930
1931 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
1932 emit_insn_after (gen_move_insn (var, replacement->new), insn);
1933 }
1934
1935 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
1936 insn into a pseudo and store the low part of the pseudo into VAR. */
1937 if (GET_CODE (SET_DEST (x)) == SUBREG
1938 && SUBREG_REG (SET_DEST (x)) == var
1939 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
1940 > GET_MODE_SIZE (GET_MODE (var))))
1941 {
1942 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
1943 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
1944 tem)),
1945 insn);
1946 break;
1947 }
1948
1949 {
1950 rtx dest = SET_DEST (x);
1951 rtx src = SET_SRC (x);
1952 rtx outerdest = dest;
1953
1954 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1955 || GET_CODE (dest) == SIGN_EXTRACT
1956 || GET_CODE (dest) == ZERO_EXTRACT)
1957 dest = XEXP (dest, 0);
1958
1959 if (GET_CODE (src) == SUBREG)
1960 src = XEXP (src, 0);
1961
1962 /* If VAR does not appear at the top level of the SET
1963 just scan the lower levels of the tree. */
1964
1965 if (src != var && dest != var)
1966 break;
1967
1968 /* We will need to rerecognize this insn. */
1969 INSN_CODE (insn) = -1;
1970
1971 #ifdef HAVE_insv
1972 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
1973 {
1974 /* Since this case will return, ensure we fixup all the
1975 operands here. */
1976 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
1977 insn, replacements);
1978 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
1979 insn, replacements);
1980 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
1981 insn, replacements);
1982
1983 tem = XEXP (outerdest, 0);
1984
1985 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
1986 that may appear inside a ZERO_EXTRACT.
1987 This was legitimate when the MEM was a REG. */
1988 if (GET_CODE (tem) == SUBREG
1989 && SUBREG_REG (tem) == var)
1990 tem = fixup_memory_subreg (tem, insn, 0);
1991 else
1992 tem = fixup_stack_1 (tem, insn);
1993
1994 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
1995 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
1996 && ! mode_dependent_address_p (XEXP (tem, 0))
1997 && ! MEM_VOLATILE_P (tem))
1998 {
1999 enum machine_mode wanted_mode
2000 = insn_operand_mode[(int) CODE_FOR_insv][0];
2001 enum machine_mode is_mode = GET_MODE (tem);
2002 int width = INTVAL (XEXP (outerdest, 1));
2003 int pos = INTVAL (XEXP (outerdest, 2));
2004
2005 /* If we have a narrower mode, we can do something. */
2006 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2007 {
2008 int offset = pos / BITS_PER_UNIT;
2009 rtx old_pos = XEXP (outerdest, 2);
2010 rtx newmem;
2011
2012 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2013 offset = (GET_MODE_SIZE (is_mode)
2014 - GET_MODE_SIZE (wanted_mode) - offset);
2015
2016 pos %= GET_MODE_BITSIZE (wanted_mode);
2017
2018 newmem = gen_rtx (MEM, wanted_mode,
2019 plus_constant (XEXP (tem, 0), offset));
2020 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2021 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
2022 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
2023
2024 /* Make the change and see if the insn remains valid. */
2025 INSN_CODE (insn) = -1;
2026 XEXP (outerdest, 0) = newmem;
2027 XEXP (outerdest, 2) = GEN_INT (pos);
2028
2029 if (recog_memoized (insn) >= 0)
2030 return;
2031
2032 /* Otherwise, restore old position. XEXP (x, 0) will be
2033 restored later. */
2034 XEXP (outerdest, 2) = old_pos;
2035 }
2036 }
2037
2038 /* If we get here, the bit-field store doesn't allow memory
2039 or isn't located at a constant position. Load the value into
2040 a register, do the store, and put it back into memory. */
2041
2042 tem1 = gen_reg_rtx (GET_MODE (tem));
2043 emit_insn_before (gen_move_insn (tem1, tem), insn);
2044 emit_insn_after (gen_move_insn (tem, tem1), insn);
2045 XEXP (outerdest, 0) = tem1;
2046 return;
2047 }
2048 #endif
2049
2050 /* STRICT_LOW_PART is a no-op on memory references
2051 and it can cause combinations to be unrecognizable,
2052 so eliminate it. */
2053
2054 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2055 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2056
2057 /* A valid insn to copy VAR into or out of a register
2058 must be left alone, to avoid an infinite loop here.
2059 If the reference to VAR is by a subreg, fix that up,
2060 since SUBREG is not valid for a memref.
2061 Also fix up the address of the stack slot.
2062
2063 Note that we must not try to recognize the insn until
2064 after we know that we have valid addresses and no
2065 (subreg (mem ...) ...) constructs, since these interfere
2066 with determining the validity of the insn. */
2067
2068 if ((SET_SRC (x) == var
2069 || (GET_CODE (SET_SRC (x)) == SUBREG
2070 && SUBREG_REG (SET_SRC (x)) == var))
2071 && (GET_CODE (SET_DEST (x)) == REG
2072 || (GET_CODE (SET_DEST (x)) == SUBREG
2073 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2074 && GET_MODE (var) == promoted_mode
2075 && x == single_set (insn))
2076 {
2077 rtx pat;
2078
2079 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2080 if (replacement->new)
2081 SET_SRC (x) = replacement->new;
2082 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2083 SET_SRC (x) = replacement->new
2084 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2085 else
2086 SET_SRC (x) = replacement->new
2087 = fixup_stack_1 (SET_SRC (x), insn);
2088
2089 if (recog_memoized (insn) >= 0)
2090 return;
2091
2092 /* INSN is not valid, but we know that we want to
2093 copy SET_SRC (x) to SET_DEST (x) in some way. So
2094 we generate the move and see whether it requires more
2095 than one insn. If it does, we emit those insns and
2096 delete INSN. Otherwise, we an just replace the pattern
2097 of INSN; we have already verified above that INSN has
2098 no other function that to do X. */
2099
2100 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2101 if (GET_CODE (pat) == SEQUENCE)
2102 {
2103 emit_insn_after (pat, insn);
2104 PUT_CODE (insn, NOTE);
2105 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2106 NOTE_SOURCE_FILE (insn) = 0;
2107 }
2108 else
2109 PATTERN (insn) = pat;
2110
2111 return;
2112 }
2113
2114 if ((SET_DEST (x) == var
2115 || (GET_CODE (SET_DEST (x)) == SUBREG
2116 && SUBREG_REG (SET_DEST (x)) == var))
2117 && (GET_CODE (SET_SRC (x)) == REG
2118 || (GET_CODE (SET_SRC (x)) == SUBREG
2119 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2120 && GET_MODE (var) == promoted_mode
2121 && x == single_set (insn))
2122 {
2123 rtx pat;
2124
2125 if (GET_CODE (SET_DEST (x)) == SUBREG)
2126 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2127 else
2128 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2129
2130 if (recog_memoized (insn) >= 0)
2131 return;
2132
2133 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2134 if (GET_CODE (pat) == SEQUENCE)
2135 {
2136 emit_insn_after (pat, insn);
2137 PUT_CODE (insn, NOTE);
2138 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2139 NOTE_SOURCE_FILE (insn) = 0;
2140 }
2141 else
2142 PATTERN (insn) = pat;
2143
2144 return;
2145 }
2146
2147 /* Otherwise, storing into VAR must be handled specially
2148 by storing into a temporary and copying that into VAR
2149 with a new insn after this one. Note that this case
2150 will be used when storing into a promoted scalar since
2151 the insn will now have different modes on the input
2152 and output and hence will be invalid (except for the case
2153 of setting it to a constant, which does not need any
2154 change if it is valid). We generate extra code in that case,
2155 but combine.c will eliminate it. */
2156
2157 if (dest == var)
2158 {
2159 rtx temp;
2160 rtx fixeddest = SET_DEST (x);
2161
2162 /* STRICT_LOW_PART can be discarded, around a MEM. */
2163 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2164 fixeddest = XEXP (fixeddest, 0);
2165 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2166 if (GET_CODE (fixeddest) == SUBREG)
2167 {
2168 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2169 promoted_mode = GET_MODE (fixeddest);
2170 }
2171 else
2172 fixeddest = fixup_stack_1 (fixeddest, insn);
2173
2174 temp = gen_reg_rtx (promoted_mode);
2175
2176 emit_insn_after (gen_move_insn (fixeddest,
2177 gen_lowpart (GET_MODE (fixeddest),
2178 temp)),
2179 insn);
2180
2181 SET_DEST (x) = temp;
2182 }
2183 }
2184 }
2185
2186 /* Nothing special about this RTX; fix its operands. */
2187
2188 fmt = GET_RTX_FORMAT (code);
2189 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2190 {
2191 if (fmt[i] == 'e')
2192 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2193 if (fmt[i] == 'E')
2194 {
2195 register int j;
2196 for (j = 0; j < XVECLEN (x, i); j++)
2197 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2198 insn, replacements);
2199 }
2200 }
2201 }
2202 \f
2203 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2204 return an rtx (MEM:m1 newaddr) which is equivalent.
2205 If any insns must be emitted to compute NEWADDR, put them before INSN.
2206
2207 UNCRITICAL nonzero means accept paradoxical subregs.
2208 This is used for subregs found inside REG_NOTES. */
2209
2210 static rtx
2211 fixup_memory_subreg (x, insn, uncritical)
2212 rtx x;
2213 rtx insn;
2214 int uncritical;
2215 {
2216 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2217 rtx addr = XEXP (SUBREG_REG (x), 0);
2218 enum machine_mode mode = GET_MODE (x);
2219 rtx saved, result;
2220
2221 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2222 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2223 && ! uncritical)
2224 abort ();
2225
2226 if (BYTES_BIG_ENDIAN)
2227 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2228 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2229 addr = plus_constant (addr, offset);
2230 if (!flag_force_addr && memory_address_p (mode, addr))
2231 /* Shortcut if no insns need be emitted. */
2232 return change_address (SUBREG_REG (x), mode, addr);
2233 start_sequence ();
2234 result = change_address (SUBREG_REG (x), mode, addr);
2235 emit_insn_before (gen_sequence (), insn);
2236 end_sequence ();
2237 return result;
2238 }
2239
2240 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2241 Replace subexpressions of X in place.
2242 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2243 Otherwise return X, with its contents possibly altered.
2244
2245 If any insns must be emitted to compute NEWADDR, put them before INSN.
2246
2247 UNCRITICAL is as in fixup_memory_subreg. */
2248
2249 static rtx
2250 walk_fixup_memory_subreg (x, insn, uncritical)
2251 register rtx x;
2252 rtx insn;
2253 int uncritical;
2254 {
2255 register enum rtx_code code;
2256 register char *fmt;
2257 register int i;
2258
2259 if (x == 0)
2260 return 0;
2261
2262 code = GET_CODE (x);
2263
2264 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2265 return fixup_memory_subreg (x, insn, uncritical);
2266
2267 /* Nothing special about this RTX; fix its operands. */
2268
2269 fmt = GET_RTX_FORMAT (code);
2270 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2271 {
2272 if (fmt[i] == 'e')
2273 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2274 if (fmt[i] == 'E')
2275 {
2276 register int j;
2277 for (j = 0; j < XVECLEN (x, i); j++)
2278 XVECEXP (x, i, j)
2279 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2280 }
2281 }
2282 return x;
2283 }
2284 \f
2285 /* For each memory ref within X, if it refers to a stack slot
2286 with an out of range displacement, put the address in a temp register
2287 (emitting new insns before INSN to load these registers)
2288 and alter the memory ref to use that register.
2289 Replace each such MEM rtx with a copy, to avoid clobberage. */
2290
2291 static rtx
2292 fixup_stack_1 (x, insn)
2293 rtx x;
2294 rtx insn;
2295 {
2296 register int i;
2297 register RTX_CODE code = GET_CODE (x);
2298 register char *fmt;
2299
2300 if (code == MEM)
2301 {
2302 register rtx ad = XEXP (x, 0);
2303 /* If we have address of a stack slot but it's not valid
2304 (displacement is too large), compute the sum in a register. */
2305 if (GET_CODE (ad) == PLUS
2306 && GET_CODE (XEXP (ad, 0)) == REG
2307 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2308 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2309 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2310 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2311 {
2312 rtx temp, seq;
2313 if (memory_address_p (GET_MODE (x), ad))
2314 return x;
2315
2316 start_sequence ();
2317 temp = copy_to_reg (ad);
2318 seq = gen_sequence ();
2319 end_sequence ();
2320 emit_insn_before (seq, insn);
2321 return change_address (x, VOIDmode, temp);
2322 }
2323 return x;
2324 }
2325
2326 fmt = GET_RTX_FORMAT (code);
2327 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2328 {
2329 if (fmt[i] == 'e')
2330 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2331 if (fmt[i] == 'E')
2332 {
2333 register int j;
2334 for (j = 0; j < XVECLEN (x, i); j++)
2335 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2336 }
2337 }
2338 return x;
2339 }
2340 \f
2341 /* Optimization: a bit-field instruction whose field
2342 happens to be a byte or halfword in memory
2343 can be changed to a move instruction.
2344
2345 We call here when INSN is an insn to examine or store into a bit-field.
2346 BODY is the SET-rtx to be altered.
2347
2348 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2349 (Currently this is called only from function.c, and EQUIV_MEM
2350 is always 0.) */
2351
2352 static void
2353 optimize_bit_field (body, insn, equiv_mem)
2354 rtx body;
2355 rtx insn;
2356 rtx *equiv_mem;
2357 {
2358 register rtx bitfield;
2359 int destflag;
2360 rtx seq = 0;
2361 enum machine_mode mode;
2362
2363 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2364 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2365 bitfield = SET_DEST (body), destflag = 1;
2366 else
2367 bitfield = SET_SRC (body), destflag = 0;
2368
2369 /* First check that the field being stored has constant size and position
2370 and is in fact a byte or halfword suitably aligned. */
2371
2372 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2373 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2374 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2375 != BLKmode)
2376 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2377 {
2378 register rtx memref = 0;
2379
2380 /* Now check that the containing word is memory, not a register,
2381 and that it is safe to change the machine mode. */
2382
2383 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2384 memref = XEXP (bitfield, 0);
2385 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2386 && equiv_mem != 0)
2387 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2388 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2389 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2390 memref = SUBREG_REG (XEXP (bitfield, 0));
2391 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2392 && equiv_mem != 0
2393 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2394 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2395
2396 if (memref
2397 && ! mode_dependent_address_p (XEXP (memref, 0))
2398 && ! MEM_VOLATILE_P (memref))
2399 {
2400 /* Now adjust the address, first for any subreg'ing
2401 that we are now getting rid of,
2402 and then for which byte of the word is wanted. */
2403
2404 register int offset = INTVAL (XEXP (bitfield, 2));
2405 rtx insns;
2406
2407 /* Adjust OFFSET to count bits from low-address byte. */
2408 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2409 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2410 - offset - INTVAL (XEXP (bitfield, 1)));
2411
2412 /* Adjust OFFSET to count bytes from low-address byte. */
2413 offset /= BITS_PER_UNIT;
2414 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2415 {
2416 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2417 if (BYTES_BIG_ENDIAN)
2418 offset -= (MIN (UNITS_PER_WORD,
2419 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2420 - MIN (UNITS_PER_WORD,
2421 GET_MODE_SIZE (GET_MODE (memref))));
2422 }
2423
2424 start_sequence ();
2425 memref = change_address (memref, mode,
2426 plus_constant (XEXP (memref, 0), offset));
2427 insns = get_insns ();
2428 end_sequence ();
2429 emit_insns_before (insns, insn);
2430
2431 /* Store this memory reference where
2432 we found the bit field reference. */
2433
2434 if (destflag)
2435 {
2436 validate_change (insn, &SET_DEST (body), memref, 1);
2437 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2438 {
2439 rtx src = SET_SRC (body);
2440 while (GET_CODE (src) == SUBREG
2441 && SUBREG_WORD (src) == 0)
2442 src = SUBREG_REG (src);
2443 if (GET_MODE (src) != GET_MODE (memref))
2444 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2445 validate_change (insn, &SET_SRC (body), src, 1);
2446 }
2447 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2448 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2449 /* This shouldn't happen because anything that didn't have
2450 one of these modes should have got converted explicitly
2451 and then referenced through a subreg.
2452 This is so because the original bit-field was
2453 handled by agg_mode and so its tree structure had
2454 the same mode that memref now has. */
2455 abort ();
2456 }
2457 else
2458 {
2459 rtx dest = SET_DEST (body);
2460
2461 while (GET_CODE (dest) == SUBREG
2462 && SUBREG_WORD (dest) == 0
2463 && (GET_MODE_CLASS (GET_MODE (dest))
2464 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest)))))
2465 dest = SUBREG_REG (dest);
2466
2467 validate_change (insn, &SET_DEST (body), dest, 1);
2468
2469 if (GET_MODE (dest) == GET_MODE (memref))
2470 validate_change (insn, &SET_SRC (body), memref, 1);
2471 else
2472 {
2473 /* Convert the mem ref to the destination mode. */
2474 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2475
2476 start_sequence ();
2477 convert_move (newreg, memref,
2478 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2479 seq = get_insns ();
2480 end_sequence ();
2481
2482 validate_change (insn, &SET_SRC (body), newreg, 1);
2483 }
2484 }
2485
2486 /* See if we can convert this extraction or insertion into
2487 a simple move insn. We might not be able to do so if this
2488 was, for example, part of a PARALLEL.
2489
2490 If we succeed, write out any needed conversions. If we fail,
2491 it is hard to guess why we failed, so don't do anything
2492 special; just let the optimization be suppressed. */
2493
2494 if (apply_change_group () && seq)
2495 emit_insns_before (seq, insn);
2496 }
2497 }
2498 }
2499 \f
2500 /* These routines are responsible for converting virtual register references
2501 to the actual hard register references once RTL generation is complete.
2502
2503 The following four variables are used for communication between the
2504 routines. They contain the offsets of the virtual registers from their
2505 respective hard registers. */
2506
2507 static int in_arg_offset;
2508 static int var_offset;
2509 static int dynamic_offset;
2510 static int out_arg_offset;
2511
2512 /* In most machines, the stack pointer register is equivalent to the bottom
2513 of the stack. */
2514
2515 #ifndef STACK_POINTER_OFFSET
2516 #define STACK_POINTER_OFFSET 0
2517 #endif
2518
2519 /* If not defined, pick an appropriate default for the offset of dynamically
2520 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2521 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2522
2523 #ifndef STACK_DYNAMIC_OFFSET
2524
2525 #ifdef ACCUMULATE_OUTGOING_ARGS
2526 /* The bottom of the stack points to the actual arguments. If
2527 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2528 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2529 stack space for register parameters is not pushed by the caller, but
2530 rather part of the fixed stack areas and hence not included in
2531 `current_function_outgoing_args_size'. Nevertheless, we must allow
2532 for it when allocating stack dynamic objects. */
2533
2534 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2535 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2536 (current_function_outgoing_args_size \
2537 + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET))
2538
2539 #else
2540 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2541 (current_function_outgoing_args_size + (STACK_POINTER_OFFSET))
2542 #endif
2543
2544 #else
2545 #define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET
2546 #endif
2547 #endif
2548
2549 /* Pass through the INSNS of function FNDECL and convert virtual register
2550 references to hard register references. */
2551
2552 void
2553 instantiate_virtual_regs (fndecl, insns)
2554 tree fndecl;
2555 rtx insns;
2556 {
2557 rtx insn;
2558
2559 /* Compute the offsets to use for this function. */
2560 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
2561 var_offset = STARTING_FRAME_OFFSET;
2562 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
2563 out_arg_offset = STACK_POINTER_OFFSET;
2564
2565 /* Scan all variables and parameters of this function. For each that is
2566 in memory, instantiate all virtual registers if the result is a valid
2567 address. If not, we do it later. That will handle most uses of virtual
2568 regs on many machines. */
2569 instantiate_decls (fndecl, 1);
2570
2571 /* Initialize recognition, indicating that volatile is OK. */
2572 init_recog ();
2573
2574 /* Scan through all the insns, instantiating every virtual register still
2575 present. */
2576 for (insn = insns; insn; insn = NEXT_INSN (insn))
2577 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2578 || GET_CODE (insn) == CALL_INSN)
2579 {
2580 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
2581 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
2582 }
2583
2584 /* Now instantiate the remaining register equivalences for debugging info.
2585 These will not be valid addresses. */
2586 instantiate_decls (fndecl, 0);
2587
2588 /* Indicate that, from now on, assign_stack_local should use
2589 frame_pointer_rtx. */
2590 virtuals_instantiated = 1;
2591 }
2592
2593 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
2594 all virtual registers in their DECL_RTL's.
2595
2596 If VALID_ONLY, do this only if the resulting address is still valid.
2597 Otherwise, always do it. */
2598
2599 static void
2600 instantiate_decls (fndecl, valid_only)
2601 tree fndecl;
2602 int valid_only;
2603 {
2604 tree decl;
2605
2606 if (DECL_SAVED_INSNS (fndecl))
2607 /* When compiling an inline function, the obstack used for
2608 rtl allocation is the maybepermanent_obstack. Calling
2609 `resume_temporary_allocation' switches us back to that
2610 obstack while we process this function's parameters. */
2611 resume_temporary_allocation ();
2612
2613 /* Process all parameters of the function. */
2614 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2615 {
2616 instantiate_decl (DECL_RTL (decl), int_size_in_bytes (TREE_TYPE (decl)),
2617 valid_only);
2618 instantiate_decl (DECL_INCOMING_RTL (decl),
2619 int_size_in_bytes (TREE_TYPE (decl)), valid_only);
2620 }
2621
2622 /* Now process all variables defined in the function or its subblocks. */
2623 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
2624
2625 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
2626 {
2627 /* Save all rtl allocated for this function by raising the
2628 high-water mark on the maybepermanent_obstack. */
2629 preserve_data ();
2630 /* All further rtl allocation is now done in the current_obstack. */
2631 rtl_in_current_obstack ();
2632 }
2633 }
2634
2635 /* Subroutine of instantiate_decls: Process all decls in the given
2636 BLOCK node and all its subblocks. */
2637
2638 static void
2639 instantiate_decls_1 (let, valid_only)
2640 tree let;
2641 int valid_only;
2642 {
2643 tree t;
2644
2645 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
2646 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
2647 valid_only);
2648
2649 /* Process all subblocks. */
2650 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
2651 instantiate_decls_1 (t, valid_only);
2652 }
2653
2654 /* Subroutine of the preceding procedures: Given RTL representing a
2655 decl and the size of the object, do any instantiation required.
2656
2657 If VALID_ONLY is non-zero, it means that the RTL should only be
2658 changed if the new address is valid. */
2659
2660 static void
2661 instantiate_decl (x, size, valid_only)
2662 rtx x;
2663 int size;
2664 int valid_only;
2665 {
2666 enum machine_mode mode;
2667 rtx addr;
2668
2669 /* If this is not a MEM, no need to do anything. Similarly if the
2670 address is a constant or a register that is not a virtual register. */
2671
2672 if (x == 0 || GET_CODE (x) != MEM)
2673 return;
2674
2675 addr = XEXP (x, 0);
2676 if (CONSTANT_P (addr)
2677 || (GET_CODE (addr) == REG
2678 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
2679 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
2680 return;
2681
2682 /* If we should only do this if the address is valid, copy the address.
2683 We need to do this so we can undo any changes that might make the
2684 address invalid. This copy is unfortunate, but probably can't be
2685 avoided. */
2686
2687 if (valid_only)
2688 addr = copy_rtx (addr);
2689
2690 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
2691
2692 if (valid_only)
2693 {
2694 /* Now verify that the resulting address is valid for every integer or
2695 floating-point mode up to and including SIZE bytes long. We do this
2696 since the object might be accessed in any mode and frame addresses
2697 are shared. */
2698
2699 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2700 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
2701 mode = GET_MODE_WIDER_MODE (mode))
2702 if (! memory_address_p (mode, addr))
2703 return;
2704
2705 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
2706 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
2707 mode = GET_MODE_WIDER_MODE (mode))
2708 if (! memory_address_p (mode, addr))
2709 return;
2710 }
2711
2712 /* Put back the address now that we have updated it and we either know
2713 it is valid or we don't care whether it is valid. */
2714
2715 XEXP (x, 0) = addr;
2716 }
2717 \f
2718 /* Given a pointer to a piece of rtx and an optional pointer to the
2719 containing object, instantiate any virtual registers present in it.
2720
2721 If EXTRA_INSNS, we always do the replacement and generate
2722 any extra insns before OBJECT. If it zero, we do nothing if replacement
2723 is not valid.
2724
2725 Return 1 if we either had nothing to do or if we were able to do the
2726 needed replacement. Return 0 otherwise; we only return zero if
2727 EXTRA_INSNS is zero.
2728
2729 We first try some simple transformations to avoid the creation of extra
2730 pseudos. */
2731
2732 static int
2733 instantiate_virtual_regs_1 (loc, object, extra_insns)
2734 rtx *loc;
2735 rtx object;
2736 int extra_insns;
2737 {
2738 rtx x;
2739 RTX_CODE code;
2740 rtx new = 0;
2741 int offset;
2742 rtx temp;
2743 rtx seq;
2744 int i, j;
2745 char *fmt;
2746
2747 /* Re-start here to avoid recursion in common cases. */
2748 restart:
2749
2750 x = *loc;
2751 if (x == 0)
2752 return 1;
2753
2754 code = GET_CODE (x);
2755
2756 /* Check for some special cases. */
2757 switch (code)
2758 {
2759 case CONST_INT:
2760 case CONST_DOUBLE:
2761 case CONST:
2762 case SYMBOL_REF:
2763 case CODE_LABEL:
2764 case PC:
2765 case CC0:
2766 case ASM_INPUT:
2767 case ADDR_VEC:
2768 case ADDR_DIFF_VEC:
2769 case RETURN:
2770 return 1;
2771
2772 case SET:
2773 /* We are allowed to set the virtual registers. This means that
2774 that the actual register should receive the source minus the
2775 appropriate offset. This is used, for example, in the handling
2776 of non-local gotos. */
2777 if (SET_DEST (x) == virtual_incoming_args_rtx)
2778 new = arg_pointer_rtx, offset = - in_arg_offset;
2779 else if (SET_DEST (x) == virtual_stack_vars_rtx)
2780 new = frame_pointer_rtx, offset = - var_offset;
2781 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
2782 new = stack_pointer_rtx, offset = - dynamic_offset;
2783 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
2784 new = stack_pointer_rtx, offset = - out_arg_offset;
2785
2786 if (new)
2787 {
2788 /* The only valid sources here are PLUS or REG. Just do
2789 the simplest possible thing to handle them. */
2790 if (GET_CODE (SET_SRC (x)) != REG
2791 && GET_CODE (SET_SRC (x)) != PLUS)
2792 abort ();
2793
2794 start_sequence ();
2795 if (GET_CODE (SET_SRC (x)) != REG)
2796 temp = force_operand (SET_SRC (x), NULL_RTX);
2797 else
2798 temp = SET_SRC (x);
2799 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
2800 seq = get_insns ();
2801 end_sequence ();
2802
2803 emit_insns_before (seq, object);
2804 SET_DEST (x) = new;
2805
2806 if (!validate_change (object, &SET_SRC (x), temp, 0)
2807 || ! extra_insns)
2808 abort ();
2809
2810 return 1;
2811 }
2812
2813 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
2814 loc = &SET_SRC (x);
2815 goto restart;
2816
2817 case PLUS:
2818 /* Handle special case of virtual register plus constant. */
2819 if (CONSTANT_P (XEXP (x, 1)))
2820 {
2821 rtx old, new_offset;
2822
2823 /* Check for (plus (plus VIRT foo) (const_int)) first. */
2824 if (GET_CODE (XEXP (x, 0)) == PLUS)
2825 {
2826 rtx inner = XEXP (XEXP (x, 0), 0);
2827
2828 if (inner == virtual_incoming_args_rtx)
2829 new = arg_pointer_rtx, offset = in_arg_offset;
2830 else if (inner == virtual_stack_vars_rtx)
2831 new = frame_pointer_rtx, offset = var_offset;
2832 else if (inner == virtual_stack_dynamic_rtx)
2833 new = stack_pointer_rtx, offset = dynamic_offset;
2834 else if (inner == virtual_outgoing_args_rtx)
2835 new = stack_pointer_rtx, offset = out_arg_offset;
2836 else
2837 {
2838 loc = &XEXP (x, 0);
2839 goto restart;
2840 }
2841
2842 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
2843 extra_insns);
2844 new = gen_rtx (PLUS, Pmode, new, XEXP (XEXP (x, 0), 1));
2845 }
2846
2847 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
2848 new = arg_pointer_rtx, offset = in_arg_offset;
2849 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
2850 new = frame_pointer_rtx, offset = var_offset;
2851 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
2852 new = stack_pointer_rtx, offset = dynamic_offset;
2853 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
2854 new = stack_pointer_rtx, offset = out_arg_offset;
2855 else
2856 {
2857 /* We know the second operand is a constant. Unless the
2858 first operand is a REG (which has been already checked),
2859 it needs to be checked. */
2860 if (GET_CODE (XEXP (x, 0)) != REG)
2861 {
2862 loc = &XEXP (x, 0);
2863 goto restart;
2864 }
2865 return 1;
2866 }
2867
2868 new_offset = plus_constant (XEXP (x, 1), offset);
2869
2870 /* If the new constant is zero, try to replace the sum with just
2871 the register. */
2872 if (new_offset == const0_rtx
2873 && validate_change (object, loc, new, 0))
2874 return 1;
2875
2876 /* Next try to replace the register and new offset.
2877 There are two changes to validate here and we can't assume that
2878 in the case of old offset equals new just changing the register
2879 will yield a valid insn. In the interests of a little efficiency,
2880 however, we only call validate change once (we don't queue up the
2881 changes and then call apply_change_group). */
2882
2883 old = XEXP (x, 0);
2884 if (offset == 0
2885 ? ! validate_change (object, &XEXP (x, 0), new, 0)
2886 : (XEXP (x, 0) = new,
2887 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
2888 {
2889 if (! extra_insns)
2890 {
2891 XEXP (x, 0) = old;
2892 return 0;
2893 }
2894
2895 /* Otherwise copy the new constant into a register and replace
2896 constant with that register. */
2897 temp = gen_reg_rtx (Pmode);
2898 XEXP (x, 0) = new;
2899 if (validate_change (object, &XEXP (x, 1), temp, 0))
2900 emit_insn_before (gen_move_insn (temp, new_offset), object);
2901 else
2902 {
2903 /* If that didn't work, replace this expression with a
2904 register containing the sum. */
2905
2906 XEXP (x, 0) = old;
2907 new = gen_rtx (PLUS, Pmode, new, new_offset);
2908
2909 start_sequence ();
2910 temp = force_operand (new, NULL_RTX);
2911 seq = get_insns ();
2912 end_sequence ();
2913
2914 emit_insns_before (seq, object);
2915 if (! validate_change (object, loc, temp, 0)
2916 && ! validate_replace_rtx (x, temp, object))
2917 abort ();
2918 }
2919 }
2920
2921 return 1;
2922 }
2923
2924 /* Fall through to generic two-operand expression case. */
2925 case EXPR_LIST:
2926 case CALL:
2927 case COMPARE:
2928 case MINUS:
2929 case MULT:
2930 case DIV: case UDIV:
2931 case MOD: case UMOD:
2932 case AND: case IOR: case XOR:
2933 case ROTATERT: case ROTATE:
2934 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2935 case NE: case EQ:
2936 case GE: case GT: case GEU: case GTU:
2937 case LE: case LT: case LEU: case LTU:
2938 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
2939 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
2940 loc = &XEXP (x, 0);
2941 goto restart;
2942
2943 case MEM:
2944 /* Most cases of MEM that convert to valid addresses have already been
2945 handled by our scan of regno_reg_rtx. The only special handling we
2946 need here is to make a copy of the rtx to ensure it isn't being
2947 shared if we have to change it to a pseudo.
2948
2949 If the rtx is a simple reference to an address via a virtual register,
2950 it can potentially be shared. In such cases, first try to make it
2951 a valid address, which can also be shared. Otherwise, copy it and
2952 proceed normally.
2953
2954 First check for common cases that need no processing. These are
2955 usually due to instantiation already being done on a previous instance
2956 of a shared rtx. */
2957
2958 temp = XEXP (x, 0);
2959 if (CONSTANT_ADDRESS_P (temp)
2960 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2961 || temp == arg_pointer_rtx
2962 #endif
2963 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2964 || temp == hard_frame_pointer_rtx
2965 #endif
2966 || temp == frame_pointer_rtx)
2967 return 1;
2968
2969 if (GET_CODE (temp) == PLUS
2970 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
2971 && (XEXP (temp, 0) == frame_pointer_rtx
2972 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2973 || XEXP (temp, 0) == hard_frame_pointer_rtx
2974 #endif
2975 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2976 || XEXP (temp, 0) == arg_pointer_rtx
2977 #endif
2978 ))
2979 return 1;
2980
2981 if (temp == virtual_stack_vars_rtx
2982 || temp == virtual_incoming_args_rtx
2983 || (GET_CODE (temp) == PLUS
2984 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
2985 && (XEXP (temp, 0) == virtual_stack_vars_rtx
2986 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
2987 {
2988 /* This MEM may be shared. If the substitution can be done without
2989 the need to generate new pseudos, we want to do it in place
2990 so all copies of the shared rtx benefit. The call below will
2991 only make substitutions if the resulting address is still
2992 valid.
2993
2994 Note that we cannot pass X as the object in the recursive call
2995 since the insn being processed may not allow all valid
2996 addresses. However, if we were not passed on object, we can
2997 only modify X without copying it if X will have a valid
2998 address.
2999
3000 ??? Also note that this can still lose if OBJECT is an insn that
3001 has less restrictions on an address that some other insn.
3002 In that case, we will modify the shared address. This case
3003 doesn't seem very likely, though. */
3004
3005 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3006 object ? object : x, 0))
3007 return 1;
3008
3009 /* Otherwise make a copy and process that copy. We copy the entire
3010 RTL expression since it might be a PLUS which could also be
3011 shared. */
3012 *loc = x = copy_rtx (x);
3013 }
3014
3015 /* Fall through to generic unary operation case. */
3016 case USE:
3017 case CLOBBER:
3018 case SUBREG:
3019 case STRICT_LOW_PART:
3020 case NEG: case NOT:
3021 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3022 case SIGN_EXTEND: case ZERO_EXTEND:
3023 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3024 case FLOAT: case FIX:
3025 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3026 case ABS:
3027 case SQRT:
3028 case FFS:
3029 /* These case either have just one operand or we know that we need not
3030 check the rest of the operands. */
3031 loc = &XEXP (x, 0);
3032 goto restart;
3033
3034 case REG:
3035 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3036 in front of this insn and substitute the temporary. */
3037 if (x == virtual_incoming_args_rtx)
3038 new = arg_pointer_rtx, offset = in_arg_offset;
3039 else if (x == virtual_stack_vars_rtx)
3040 new = frame_pointer_rtx, offset = var_offset;
3041 else if (x == virtual_stack_dynamic_rtx)
3042 new = stack_pointer_rtx, offset = dynamic_offset;
3043 else if (x == virtual_outgoing_args_rtx)
3044 new = stack_pointer_rtx, offset = out_arg_offset;
3045
3046 if (new)
3047 {
3048 temp = plus_constant (new, offset);
3049 if (!validate_change (object, loc, temp, 0))
3050 {
3051 if (! extra_insns)
3052 return 0;
3053
3054 start_sequence ();
3055 temp = force_operand (temp, NULL_RTX);
3056 seq = get_insns ();
3057 end_sequence ();
3058
3059 emit_insns_before (seq, object);
3060 if (! validate_change (object, loc, temp, 0)
3061 && ! validate_replace_rtx (x, temp, object))
3062 abort ();
3063 }
3064 }
3065
3066 return 1;
3067 }
3068
3069 /* Scan all subexpressions. */
3070 fmt = GET_RTX_FORMAT (code);
3071 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3072 if (*fmt == 'e')
3073 {
3074 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3075 return 0;
3076 }
3077 else if (*fmt == 'E')
3078 for (j = 0; j < XVECLEN (x, i); j++)
3079 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3080 extra_insns))
3081 return 0;
3082
3083 return 1;
3084 }
3085 \f
3086 /* Optimization: assuming this function does not receive nonlocal gotos,
3087 delete the handlers for such, as well as the insns to establish
3088 and disestablish them. */
3089
3090 static void
3091 delete_handlers ()
3092 {
3093 rtx insn;
3094 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3095 {
3096 /* Delete the handler by turning off the flag that would
3097 prevent jump_optimize from deleting it.
3098 Also permit deletion of the nonlocal labels themselves
3099 if nothing local refers to them. */
3100 if (GET_CODE (insn) == CODE_LABEL)
3101 {
3102 tree t, last_t;
3103
3104 LABEL_PRESERVE_P (insn) = 0;
3105
3106 /* Remove it from the nonlocal_label list, to avoid confusing
3107 flow. */
3108 for (t = nonlocal_labels, last_t = 0; t;
3109 last_t = t, t = TREE_CHAIN (t))
3110 if (DECL_RTL (TREE_VALUE (t)) == insn)
3111 break;
3112 if (t)
3113 {
3114 if (! last_t)
3115 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3116 else
3117 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3118 }
3119 }
3120 if (GET_CODE (insn) == INSN
3121 && ((nonlocal_goto_handler_slot != 0
3122 && reg_mentioned_p (nonlocal_goto_handler_slot, PATTERN (insn)))
3123 || (nonlocal_goto_stack_level != 0
3124 && reg_mentioned_p (nonlocal_goto_stack_level,
3125 PATTERN (insn)))))
3126 delete_insn (insn);
3127 }
3128 }
3129
3130 /* Return a list (chain of EXPR_LIST nodes) for the nonlocal labels
3131 of the current function. */
3132
3133 rtx
3134 nonlocal_label_rtx_list ()
3135 {
3136 tree t;
3137 rtx x = 0;
3138
3139 for (t = nonlocal_labels; t; t = TREE_CHAIN (t))
3140 x = gen_rtx (EXPR_LIST, VOIDmode, label_rtx (TREE_VALUE (t)), x);
3141
3142 return x;
3143 }
3144 \f
3145 /* Output a USE for any register use in RTL.
3146 This is used with -noreg to mark the extent of lifespan
3147 of any registers used in a user-visible variable's DECL_RTL. */
3148
3149 void
3150 use_variable (rtl)
3151 rtx rtl;
3152 {
3153 if (GET_CODE (rtl) == REG)
3154 /* This is a register variable. */
3155 emit_insn (gen_rtx (USE, VOIDmode, rtl));
3156 else if (GET_CODE (rtl) == MEM
3157 && GET_CODE (XEXP (rtl, 0)) == REG
3158 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
3159 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
3160 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
3161 /* This is a variable-sized structure. */
3162 emit_insn (gen_rtx (USE, VOIDmode, XEXP (rtl, 0)));
3163 }
3164
3165 /* Like use_variable except that it outputs the USEs after INSN
3166 instead of at the end of the insn-chain. */
3167
3168 void
3169 use_variable_after (rtl, insn)
3170 rtx rtl, insn;
3171 {
3172 if (GET_CODE (rtl) == REG)
3173 /* This is a register variable. */
3174 emit_insn_after (gen_rtx (USE, VOIDmode, rtl), insn);
3175 else if (GET_CODE (rtl) == MEM
3176 && GET_CODE (XEXP (rtl, 0)) == REG
3177 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
3178 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
3179 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
3180 /* This is a variable-sized structure. */
3181 emit_insn_after (gen_rtx (USE, VOIDmode, XEXP (rtl, 0)), insn);
3182 }
3183 \f
3184 int
3185 max_parm_reg_num ()
3186 {
3187 return max_parm_reg;
3188 }
3189
3190 /* Return the first insn following those generated by `assign_parms'. */
3191
3192 rtx
3193 get_first_nonparm_insn ()
3194 {
3195 if (last_parm_insn)
3196 return NEXT_INSN (last_parm_insn);
3197 return get_insns ();
3198 }
3199
3200 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
3201 Crash if there is none. */
3202
3203 rtx
3204 get_first_block_beg ()
3205 {
3206 register rtx searcher;
3207 register rtx insn = get_first_nonparm_insn ();
3208
3209 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
3210 if (GET_CODE (searcher) == NOTE
3211 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
3212 return searcher;
3213
3214 abort (); /* Invalid call to this function. (See comments above.) */
3215 return NULL_RTX;
3216 }
3217
3218 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
3219 This means a type for which function calls must pass an address to the
3220 function or get an address back from the function.
3221 EXP may be a type node or an expression (whose type is tested). */
3222
3223 int
3224 aggregate_value_p (exp)
3225 tree exp;
3226 {
3227 int i, regno, nregs;
3228 rtx reg;
3229 tree type;
3230 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 't')
3231 type = exp;
3232 else
3233 type = TREE_TYPE (exp);
3234
3235 if (RETURN_IN_MEMORY (type))
3236 return 1;
3237 /* Types that are TREE_ADDRESSABLE must be contructed in memory,
3238 and thus can't be returned in registers. */
3239 if (TREE_ADDRESSABLE (type))
3240 return 1;
3241 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
3242 return 1;
3243 /* Make sure we have suitable call-clobbered regs to return
3244 the value in; if not, we must return it in memory. */
3245 reg = hard_function_value (type, 0);
3246
3247 /* If we have something other than a REG (e.g. a PARALLEL), then assume
3248 it is OK. */
3249 if (GET_CODE (reg) != REG)
3250 return 0;
3251
3252 regno = REGNO (reg);
3253 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
3254 for (i = 0; i < nregs; i++)
3255 if (! call_used_regs[regno + i])
3256 return 1;
3257 return 0;
3258 }
3259 \f
3260 /* Assign RTL expressions to the function's parameters.
3261 This may involve copying them into registers and using
3262 those registers as the RTL for them.
3263
3264 If SECOND_TIME is non-zero it means that this function is being
3265 called a second time. This is done by integrate.c when a function's
3266 compilation is deferred. We need to come back here in case the
3267 FUNCTION_ARG macro computes items needed for the rest of the compilation
3268 (such as changing which registers are fixed or caller-saved). But suppress
3269 writing any insns or setting DECL_RTL of anything in this case. */
3270
3271 void
3272 assign_parms (fndecl, second_time)
3273 tree fndecl;
3274 int second_time;
3275 {
3276 register tree parm;
3277 register rtx entry_parm = 0;
3278 register rtx stack_parm = 0;
3279 CUMULATIVE_ARGS args_so_far;
3280 enum machine_mode promoted_mode, passed_mode;
3281 enum machine_mode nominal_mode, promoted_nominal_mode;
3282 int unsignedp;
3283 /* Total space needed so far for args on the stack,
3284 given as a constant and a tree-expression. */
3285 struct args_size stack_args_size;
3286 tree fntype = TREE_TYPE (fndecl);
3287 tree fnargs = DECL_ARGUMENTS (fndecl);
3288 /* This is used for the arg pointer when referring to stack args. */
3289 rtx internal_arg_pointer;
3290 /* This is a dummy PARM_DECL that we used for the function result if
3291 the function returns a structure. */
3292 tree function_result_decl = 0;
3293 int nparmregs = list_length (fnargs) + LAST_VIRTUAL_REGISTER + 1;
3294 int varargs_setup = 0;
3295 rtx conversion_insns = 0;
3296
3297 /* Nonzero if the last arg is named `__builtin_va_alist',
3298 which is used on some machines for old-fashioned non-ANSI varargs.h;
3299 this should be stuck onto the stack as if it had arrived there. */
3300 int hide_last_arg
3301 = (current_function_varargs
3302 && fnargs
3303 && (parm = tree_last (fnargs)) != 0
3304 && DECL_NAME (parm)
3305 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
3306 "__builtin_va_alist")));
3307
3308 /* Nonzero if function takes extra anonymous args.
3309 This means the last named arg must be on the stack
3310 right before the anonymous ones. */
3311 int stdarg
3312 = (TYPE_ARG_TYPES (fntype) != 0
3313 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3314 != void_type_node));
3315
3316 current_function_stdarg = stdarg;
3317
3318 /* If the reg that the virtual arg pointer will be translated into is
3319 not a fixed reg or is the stack pointer, make a copy of the virtual
3320 arg pointer, and address parms via the copy. The frame pointer is
3321 considered fixed even though it is not marked as such.
3322
3323 The second time through, simply use ap to avoid generating rtx. */
3324
3325 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3326 || ! (fixed_regs[ARG_POINTER_REGNUM]
3327 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM))
3328 && ! second_time)
3329 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3330 else
3331 internal_arg_pointer = virtual_incoming_args_rtx;
3332 current_function_internal_arg_pointer = internal_arg_pointer;
3333
3334 stack_args_size.constant = 0;
3335 stack_args_size.var = 0;
3336
3337 /* If struct value address is treated as the first argument, make it so. */
3338 if (aggregate_value_p (DECL_RESULT (fndecl))
3339 && ! current_function_returns_pcc_struct
3340 && struct_value_incoming_rtx == 0)
3341 {
3342 tree type = build_pointer_type (TREE_TYPE (fntype));
3343
3344 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
3345
3346 DECL_ARG_TYPE (function_result_decl) = type;
3347 TREE_CHAIN (function_result_decl) = fnargs;
3348 fnargs = function_result_decl;
3349 }
3350
3351 parm_reg_stack_loc = (rtx *) oballoc (nparmregs * sizeof (rtx));
3352 bzero ((char *) parm_reg_stack_loc, nparmregs * sizeof (rtx));
3353
3354 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
3355 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
3356 #else
3357 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
3358 #endif
3359
3360 /* We haven't yet found an argument that we must push and pretend the
3361 caller did. */
3362 current_function_pretend_args_size = 0;
3363
3364 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3365 {
3366 int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
3367 struct args_size stack_offset;
3368 struct args_size arg_size;
3369 int passed_pointer = 0;
3370 int did_conversion = 0;
3371 tree passed_type = DECL_ARG_TYPE (parm);
3372 tree nominal_type = TREE_TYPE (parm);
3373
3374 /* Set LAST_NAMED if this is last named arg before some
3375 anonymous args. We treat it as if it were anonymous too. */
3376 int last_named = ((TREE_CHAIN (parm) == 0
3377 || DECL_NAME (TREE_CHAIN (parm)) == 0)
3378 && (stdarg || current_function_varargs));
3379
3380 if (TREE_TYPE (parm) == error_mark_node
3381 /* This can happen after weird syntax errors
3382 or if an enum type is defined among the parms. */
3383 || TREE_CODE (parm) != PARM_DECL
3384 || passed_type == NULL)
3385 {
3386 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = gen_rtx (MEM, BLKmode,
3387 const0_rtx);
3388 TREE_USED (parm) = 1;
3389 continue;
3390 }
3391
3392 /* For varargs.h function, save info about regs and stack space
3393 used by the individual args, not including the va_alist arg. */
3394 if (hide_last_arg && last_named)
3395 current_function_args_info = args_so_far;
3396
3397 /* Find mode of arg as it is passed, and mode of arg
3398 as it should be during execution of this function. */
3399 passed_mode = TYPE_MODE (passed_type);
3400 nominal_mode = TYPE_MODE (nominal_type);
3401
3402 /* If the parm's mode is VOID, its value doesn't matter,
3403 and avoid the usual things like emit_move_insn that could crash. */
3404 if (nominal_mode == VOIDmode)
3405 {
3406 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
3407 continue;
3408 }
3409
3410 /* If the parm is to be passed as a transparent union, use the
3411 type of the first field for the tests below. We have already
3412 verified that the modes are the same. */
3413 if (DECL_TRANSPARENT_UNION (parm)
3414 || TYPE_TRANSPARENT_UNION (passed_type))
3415 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
3416
3417 /* See if this arg was passed by invisible reference. It is if
3418 it is an object whose size depends on the contents of the
3419 object itself or if the machine requires these objects be passed
3420 that way. */
3421
3422 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
3423 && contains_placeholder_p (TYPE_SIZE (passed_type)))
3424 || TREE_ADDRESSABLE (passed_type)
3425 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
3426 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
3427 passed_type, ! last_named)
3428 #endif
3429 )
3430 {
3431 passed_type = nominal_type = build_pointer_type (passed_type);
3432 passed_pointer = 1;
3433 passed_mode = nominal_mode = Pmode;
3434 }
3435
3436 promoted_mode = passed_mode;
3437
3438 #ifdef PROMOTE_FUNCTION_ARGS
3439 /* Compute the mode in which the arg is actually extended to. */
3440 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
3441 #endif
3442
3443 /* Let machine desc say which reg (if any) the parm arrives in.
3444 0 means it arrives on the stack. */
3445 #ifdef FUNCTION_INCOMING_ARG
3446 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
3447 passed_type, ! last_named);
3448 #else
3449 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
3450 passed_type, ! last_named);
3451 #endif
3452
3453 if (entry_parm == 0)
3454 promoted_mode = passed_mode;
3455
3456 #ifdef SETUP_INCOMING_VARARGS
3457 /* If this is the last named parameter, do any required setup for
3458 varargs or stdargs. We need to know about the case of this being an
3459 addressable type, in which case we skip the registers it
3460 would have arrived in.
3461
3462 For stdargs, LAST_NAMED will be set for two parameters, the one that
3463 is actually the last named, and the dummy parameter. We only
3464 want to do this action once.
3465
3466 Also, indicate when RTL generation is to be suppressed. */
3467 if (last_named && !varargs_setup)
3468 {
3469 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
3470 current_function_pretend_args_size,
3471 second_time);
3472 varargs_setup = 1;
3473 }
3474 #endif
3475
3476 /* Determine parm's home in the stack,
3477 in case it arrives in the stack or we should pretend it did.
3478
3479 Compute the stack position and rtx where the argument arrives
3480 and its size.
3481
3482 There is one complexity here: If this was a parameter that would
3483 have been passed in registers, but wasn't only because it is
3484 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
3485 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
3486 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
3487 0 as it was the previous time. */
3488
3489 locate_and_pad_parm (promoted_mode, passed_type,
3490 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3491 1,
3492 #else
3493 #ifdef FUNCTION_INCOMING_ARG
3494 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
3495 passed_type,
3496 (! last_named
3497 || varargs_setup)) != 0,
3498 #else
3499 FUNCTION_ARG (args_so_far, promoted_mode,
3500 passed_type,
3501 ! last_named || varargs_setup) != 0,
3502 #endif
3503 #endif
3504 fndecl, &stack_args_size, &stack_offset, &arg_size);
3505
3506 if (! second_time)
3507 {
3508 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
3509
3510 if (offset_rtx == const0_rtx)
3511 stack_parm = gen_rtx (MEM, promoted_mode, internal_arg_pointer);
3512 else
3513 stack_parm = gen_rtx (MEM, promoted_mode,
3514 gen_rtx (PLUS, Pmode,
3515 internal_arg_pointer, offset_rtx));
3516
3517 /* If this is a memory ref that contains aggregate components,
3518 mark it as such for cse and loop optimize. Likewise if it
3519 is readonly. */
3520 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3521 RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
3522 }
3523
3524 /* If this parameter was passed both in registers and in the stack,
3525 use the copy on the stack. */
3526 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
3527 entry_parm = 0;
3528
3529 #ifdef FUNCTION_ARG_PARTIAL_NREGS
3530 /* If this parm was passed part in regs and part in memory,
3531 pretend it arrived entirely in memory
3532 by pushing the register-part onto the stack.
3533
3534 In the special case of a DImode or DFmode that is split,
3535 we could put it together in a pseudoreg directly,
3536 but for now that's not worth bothering with. */
3537
3538 if (entry_parm)
3539 {
3540 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
3541 passed_type, ! last_named);
3542
3543 if (nregs > 0)
3544 {
3545 current_function_pretend_args_size
3546 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
3547 / (PARM_BOUNDARY / BITS_PER_UNIT)
3548 * (PARM_BOUNDARY / BITS_PER_UNIT));
3549
3550 if (! second_time)
3551 {
3552 /* Handle calls that pass values in multiple non-contiguous
3553 locations. The Irix 6 ABI has examples of this. */
3554 if (GET_CODE (entry_parm) == PARALLEL)
3555 emit_group_store (validize_mem (stack_parm),
3556 entry_parm);
3557 else
3558 move_block_from_reg (REGNO (entry_parm),
3559 validize_mem (stack_parm), nregs,
3560 int_size_in_bytes (TREE_TYPE (parm)));
3561 }
3562 entry_parm = stack_parm;
3563 }
3564 }
3565 #endif
3566
3567 /* If we didn't decide this parm came in a register,
3568 by default it came on the stack. */
3569 if (entry_parm == 0)
3570 entry_parm = stack_parm;
3571
3572 /* Record permanently how this parm was passed. */
3573 if (! second_time)
3574 DECL_INCOMING_RTL (parm) = entry_parm;
3575
3576 /* If there is actually space on the stack for this parm,
3577 count it in stack_args_size; otherwise set stack_parm to 0
3578 to indicate there is no preallocated stack slot for the parm. */
3579
3580 if (entry_parm == stack_parm
3581 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
3582 /* On some machines, even if a parm value arrives in a register
3583 there is still an (uninitialized) stack slot allocated for it.
3584
3585 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
3586 whether this parameter already has a stack slot allocated,
3587 because an arg block exists only if current_function_args_size
3588 is larger than some threshold, and we haven't calculated that
3589 yet. So, for now, we just assume that stack slots never exist
3590 in this case. */
3591 || REG_PARM_STACK_SPACE (fndecl) > 0
3592 #endif
3593 )
3594 {
3595 stack_args_size.constant += arg_size.constant;
3596 if (arg_size.var)
3597 ADD_PARM_SIZE (stack_args_size, arg_size.var);
3598 }
3599 else
3600 /* No stack slot was pushed for this parm. */
3601 stack_parm = 0;
3602
3603 /* Update info on where next arg arrives in registers. */
3604
3605 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
3606 passed_type, ! last_named);
3607
3608 /* If this is our second time through, we are done with this parm. */
3609 if (second_time)
3610 continue;
3611
3612 /* If we can't trust the parm stack slot to be aligned enough
3613 for its ultimate type, don't use that slot after entry.
3614 We'll make another stack slot, if we need one. */
3615 {
3616 int thisparm_boundary
3617 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
3618
3619 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
3620 stack_parm = 0;
3621 }
3622
3623 /* If parm was passed in memory, and we need to convert it on entry,
3624 don't store it back in that same slot. */
3625 if (entry_parm != 0
3626 && nominal_mode != BLKmode && nominal_mode != passed_mode)
3627 stack_parm = 0;
3628
3629 #if 0
3630 /* Now adjust STACK_PARM to the mode and precise location
3631 where this parameter should live during execution,
3632 if we discover that it must live in the stack during execution.
3633 To make debuggers happier on big-endian machines, we store
3634 the value in the last bytes of the space available. */
3635
3636 if (nominal_mode != BLKmode && nominal_mode != passed_mode
3637 && stack_parm != 0)
3638 {
3639 rtx offset_rtx;
3640
3641 if (BYTES_BIG_ENDIAN
3642 && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
3643 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
3644 - GET_MODE_SIZE (nominal_mode));
3645
3646 offset_rtx = ARGS_SIZE_RTX (stack_offset);
3647 if (offset_rtx == const0_rtx)
3648 stack_parm = gen_rtx (MEM, nominal_mode, internal_arg_pointer);
3649 else
3650 stack_parm = gen_rtx (MEM, nominal_mode,
3651 gen_rtx (PLUS, Pmode,
3652 internal_arg_pointer, offset_rtx));
3653
3654 /* If this is a memory ref that contains aggregate components,
3655 mark it as such for cse and loop optimize. */
3656 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3657 }
3658 #endif /* 0 */
3659
3660 #ifdef STACK_REGS
3661 /* We need this "use" info, because the gcc-register->stack-register
3662 converter in reg-stack.c needs to know which registers are active
3663 at the start of the function call. The actual parameter loading
3664 instructions are not always available then anymore, since they might
3665 have been optimised away. */
3666
3667 if (GET_CODE (entry_parm) == REG && !(hide_last_arg && last_named))
3668 emit_insn (gen_rtx (USE, GET_MODE (entry_parm), entry_parm));
3669 #endif
3670
3671 /* ENTRY_PARM is an RTX for the parameter as it arrives,
3672 in the mode in which it arrives.
3673 STACK_PARM is an RTX for a stack slot where the parameter can live
3674 during the function (in case we want to put it there).
3675 STACK_PARM is 0 if no stack slot was pushed for it.
3676
3677 Now output code if necessary to convert ENTRY_PARM to
3678 the type in which this function declares it,
3679 and store that result in an appropriate place,
3680 which may be a pseudo reg, may be STACK_PARM,
3681 or may be a local stack slot if STACK_PARM is 0.
3682
3683 Set DECL_RTL to that place. */
3684
3685 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
3686 {
3687 /* If a BLKmode arrives in registers, copy it to a stack slot.
3688 Handle calls that pass values in multiple non-contiguous
3689 locations. The Irix 6 ABI has examples of this. */
3690 if (GET_CODE (entry_parm) == REG
3691 || GET_CODE (entry_parm) == PARALLEL)
3692 {
3693 int size_stored
3694 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
3695 UNITS_PER_WORD);
3696
3697 /* Note that we will be storing an integral number of words.
3698 So we have to be careful to ensure that we allocate an
3699 integral number of words. We do this below in the
3700 assign_stack_local if space was not allocated in the argument
3701 list. If it was, this will not work if PARM_BOUNDARY is not
3702 a multiple of BITS_PER_WORD. It isn't clear how to fix this
3703 if it becomes a problem. */
3704
3705 if (stack_parm == 0)
3706 {
3707 stack_parm
3708 = assign_stack_local (GET_MODE (entry_parm),
3709 size_stored, 0);
3710
3711 /* If this is a memory ref that contains aggregate
3712 components, mark it as such for cse and loop optimize. */
3713 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3714 }
3715
3716 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
3717 abort ();
3718
3719 if (TREE_READONLY (parm))
3720 RTX_UNCHANGING_P (stack_parm) = 1;
3721
3722 /* Handle calls that pass values in multiple non-contiguous
3723 locations. The Irix 6 ABI has examples of this. */
3724 if (GET_CODE (entry_parm) == PARALLEL)
3725 emit_group_store (validize_mem (stack_parm), entry_parm);
3726 else
3727 move_block_from_reg (REGNO (entry_parm),
3728 validize_mem (stack_parm),
3729 size_stored / UNITS_PER_WORD,
3730 int_size_in_bytes (TREE_TYPE (parm)));
3731 }
3732 DECL_RTL (parm) = stack_parm;
3733 }
3734 else if (! ((obey_regdecls && ! DECL_REGISTER (parm)
3735 && ! DECL_INLINE (fndecl))
3736 /* layout_decl may set this. */
3737 || TREE_ADDRESSABLE (parm)
3738 || TREE_SIDE_EFFECTS (parm)
3739 /* If -ffloat-store specified, don't put explicit
3740 float variables into registers. */
3741 || (flag_float_store
3742 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
3743 /* Always assign pseudo to structure return or item passed
3744 by invisible reference. */
3745 || passed_pointer || parm == function_result_decl)
3746 {
3747 /* Store the parm in a pseudoregister during the function, but we
3748 may need to do it in a wider mode. */
3749
3750 register rtx parmreg;
3751 int regno, regnoi, regnor;
3752
3753 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
3754
3755 promoted_nominal_mode
3756 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
3757
3758 parmreg = gen_reg_rtx (promoted_nominal_mode);
3759 mark_user_reg (parmreg);
3760
3761 /* If this was an item that we received a pointer to, set DECL_RTL
3762 appropriately. */
3763 if (passed_pointer)
3764 {
3765 DECL_RTL (parm)
3766 = gen_rtx (MEM, TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
3767 MEM_IN_STRUCT_P (DECL_RTL (parm)) = aggregate;
3768 }
3769 else
3770 DECL_RTL (parm) = parmreg;
3771
3772 /* Copy the value into the register. */
3773 if (nominal_mode != passed_mode
3774 || promoted_nominal_mode != promoted_mode)
3775 {
3776 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3777 mode, by the caller. We now have to convert it to
3778 NOMINAL_MODE, if different. However, PARMREG may be in
3779 a diffent mode than NOMINAL_MODE if it is being stored
3780 promoted.
3781
3782 If ENTRY_PARM is a hard register, it might be in a register
3783 not valid for operating in its mode (e.g., an odd-numbered
3784 register for a DFmode). In that case, moves are the only
3785 thing valid, so we can't do a convert from there. This
3786 occurs when the calling sequence allow such misaligned
3787 usages.
3788
3789 In addition, the conversion may involve a call, which could
3790 clobber parameters which haven't been copied to pseudo
3791 registers yet. Therefore, we must first copy the parm to
3792 a pseudo reg here, and save the conversion until after all
3793 parameters have been moved. */
3794
3795 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
3796
3797 emit_move_insn (tempreg, validize_mem (entry_parm));
3798
3799 push_to_sequence (conversion_insns);
3800 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
3801
3802 expand_assignment (parm,
3803 make_tree (nominal_type, tempreg), 0, 0);
3804 conversion_insns = get_insns ();
3805 did_conversion = 1;
3806 end_sequence ();
3807 }
3808 else
3809 emit_move_insn (parmreg, validize_mem (entry_parm));
3810
3811 /* If we were passed a pointer but the actual value
3812 can safely live in a register, put it in one. */
3813 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3814 && ! ((obey_regdecls && ! DECL_REGISTER (parm)
3815 && ! DECL_INLINE (fndecl))
3816 /* layout_decl may set this. */
3817 || TREE_ADDRESSABLE (parm)
3818 || TREE_SIDE_EFFECTS (parm)
3819 /* If -ffloat-store specified, don't put explicit
3820 float variables into registers. */
3821 || (flag_float_store
3822 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
3823 {
3824 /* We can't use nominal_mode, because it will have been set to
3825 Pmode above. We must use the actual mode of the parm. */
3826 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3827 mark_user_reg (parmreg);
3828 emit_move_insn (parmreg, DECL_RTL (parm));
3829 DECL_RTL (parm) = parmreg;
3830 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3831 now the parm. */
3832 stack_parm = 0;
3833 }
3834 #ifdef FUNCTION_ARG_CALLEE_COPIES
3835 /* If we are passed an arg by reference and it is our responsibility
3836 to make a copy, do it now.
3837 PASSED_TYPE and PASSED mode now refer to the pointer, not the
3838 original argument, so we must recreate them in the call to
3839 FUNCTION_ARG_CALLEE_COPIES. */
3840 /* ??? Later add code to handle the case that if the argument isn't
3841 modified, don't do the copy. */
3842
3843 else if (passed_pointer
3844 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
3845 TYPE_MODE (DECL_ARG_TYPE (parm)),
3846 DECL_ARG_TYPE (parm),
3847 ! last_named)
3848 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
3849 {
3850 rtx copy;
3851 tree type = DECL_ARG_TYPE (parm);
3852
3853 /* This sequence may involve a library call perhaps clobbering
3854 registers that haven't been copied to pseudos yet. */
3855
3856 push_to_sequence (conversion_insns);
3857
3858 if (TYPE_SIZE (type) == 0
3859 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
3860 /* This is a variable sized object. */
3861 copy = gen_rtx (MEM, BLKmode,
3862 allocate_dynamic_stack_space
3863 (expr_size (parm), NULL_RTX,
3864 TYPE_ALIGN (type)));
3865 else
3866 copy = assign_stack_temp (TYPE_MODE (type),
3867 int_size_in_bytes (type), 1);
3868 MEM_IN_STRUCT_P (copy) = AGGREGATE_TYPE_P (type);
3869
3870 store_expr (parm, copy, 0);
3871 emit_move_insn (parmreg, XEXP (copy, 0));
3872 conversion_insns = get_insns ();
3873 did_conversion = 1;
3874 end_sequence ();
3875 }
3876 #endif /* FUNCTION_ARG_CALLEE_COPIES */
3877
3878 /* In any case, record the parm's desired stack location
3879 in case we later discover it must live in the stack.
3880
3881 If it is a COMPLEX value, store the stack location for both
3882 halves. */
3883
3884 if (GET_CODE (parmreg) == CONCAT)
3885 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
3886 else
3887 regno = REGNO (parmreg);
3888
3889 if (regno >= nparmregs)
3890 {
3891 rtx *new;
3892 int old_nparmregs = nparmregs;
3893
3894 nparmregs = regno + 5;
3895 new = (rtx *) oballoc (nparmregs * sizeof (rtx));
3896 bcopy ((char *) parm_reg_stack_loc, (char *) new,
3897 old_nparmregs * sizeof (rtx));
3898 bzero ((char *) (new + old_nparmregs),
3899 (nparmregs - old_nparmregs) * sizeof (rtx));
3900 parm_reg_stack_loc = new;
3901 }
3902
3903 if (GET_CODE (parmreg) == CONCAT)
3904 {
3905 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
3906
3907 regnor = REGNO (gen_realpart (submode, parmreg));
3908 regnoi = REGNO (gen_imagpart (submode, parmreg));
3909
3910 if (stack_parm != 0)
3911 {
3912 parm_reg_stack_loc[regnor]
3913 = gen_realpart (submode, stack_parm);
3914 parm_reg_stack_loc[regnoi]
3915 = gen_imagpart (submode, stack_parm);
3916 }
3917 else
3918 {
3919 parm_reg_stack_loc[regnor] = 0;
3920 parm_reg_stack_loc[regnoi] = 0;
3921 }
3922 }
3923 else
3924 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
3925
3926 /* Mark the register as eliminable if we did no conversion
3927 and it was copied from memory at a fixed offset,
3928 and the arg pointer was not copied to a pseudo-reg.
3929 If the arg pointer is a pseudo reg or the offset formed
3930 an invalid address, such memory-equivalences
3931 as we make here would screw up life analysis for it. */
3932 if (nominal_mode == passed_mode
3933 && ! did_conversion
3934 && GET_CODE (entry_parm) == MEM
3935 && entry_parm == stack_parm
3936 && stack_offset.var == 0
3937 && reg_mentioned_p (virtual_incoming_args_rtx,
3938 XEXP (entry_parm, 0)))
3939 {
3940 rtx linsn = get_last_insn ();
3941 rtx sinsn, set;
3942
3943 /* Mark complex types separately. */
3944 if (GET_CODE (parmreg) == CONCAT)
3945 /* Scan backwards for the set of the real and
3946 imaginary parts. */
3947 for (sinsn = linsn; sinsn != 0;
3948 sinsn = prev_nonnote_insn (sinsn))
3949 {
3950 set = single_set (sinsn);
3951 if (set != 0
3952 && SET_DEST (set) == regno_reg_rtx [regnoi])
3953 REG_NOTES (sinsn)
3954 = gen_rtx (EXPR_LIST, REG_EQUIV,
3955 parm_reg_stack_loc[regnoi],
3956 REG_NOTES (sinsn));
3957 else if (set != 0
3958 && SET_DEST (set) == regno_reg_rtx [regnor])
3959 REG_NOTES (sinsn)
3960 = gen_rtx (EXPR_LIST, REG_EQUIV,
3961 parm_reg_stack_loc[regnor],
3962 REG_NOTES (sinsn));
3963 }
3964 else if ((set = single_set (linsn)) != 0
3965 && SET_DEST (set) == parmreg)
3966 REG_NOTES (linsn)
3967 = gen_rtx (EXPR_LIST, REG_EQUIV,
3968 entry_parm, REG_NOTES (linsn));
3969 }
3970
3971 /* For pointer data type, suggest pointer register. */
3972 if (TREE_CODE (TREE_TYPE (parm)) == POINTER_TYPE)
3973 mark_reg_pointer (parmreg,
3974 (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))
3975 / BITS_PER_UNIT));
3976 }
3977 else
3978 {
3979 /* Value must be stored in the stack slot STACK_PARM
3980 during function execution. */
3981
3982 if (promoted_mode != nominal_mode)
3983 {
3984 /* Conversion is required. */
3985 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
3986
3987 emit_move_insn (tempreg, validize_mem (entry_parm));
3988
3989 push_to_sequence (conversion_insns);
3990 entry_parm = convert_to_mode (nominal_mode, tempreg,
3991 TREE_UNSIGNED (TREE_TYPE (parm)));
3992 conversion_insns = get_insns ();
3993 did_conversion = 1;
3994 end_sequence ();
3995 }
3996
3997 if (entry_parm != stack_parm)
3998 {
3999 if (stack_parm == 0)
4000 {
4001 stack_parm
4002 = assign_stack_local (GET_MODE (entry_parm),
4003 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4004 /* If this is a memory ref that contains aggregate components,
4005 mark it as such for cse and loop optimize. */
4006 MEM_IN_STRUCT_P (stack_parm) = aggregate;
4007 }
4008
4009 if (promoted_mode != nominal_mode)
4010 {
4011 push_to_sequence (conversion_insns);
4012 emit_move_insn (validize_mem (stack_parm),
4013 validize_mem (entry_parm));
4014 conversion_insns = get_insns ();
4015 end_sequence ();
4016 }
4017 else
4018 emit_move_insn (validize_mem (stack_parm),
4019 validize_mem (entry_parm));
4020 }
4021
4022 DECL_RTL (parm) = stack_parm;
4023 }
4024
4025 /* If this "parameter" was the place where we are receiving the
4026 function's incoming structure pointer, set up the result. */
4027 if (parm == function_result_decl)
4028 {
4029 tree result = DECL_RESULT (fndecl);
4030 tree restype = TREE_TYPE (result);
4031
4032 DECL_RTL (result)
4033 = gen_rtx (MEM, DECL_MODE (result), DECL_RTL (parm));
4034
4035 MEM_IN_STRUCT_P (DECL_RTL (result)) = AGGREGATE_TYPE_P (restype);
4036 }
4037
4038 if (TREE_THIS_VOLATILE (parm))
4039 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
4040 if (TREE_READONLY (parm))
4041 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
4042 }
4043
4044 /* Output all parameter conversion instructions (possibly including calls)
4045 now that all parameters have been copied out of hard registers. */
4046 emit_insns (conversion_insns);
4047
4048 max_parm_reg = max_reg_num ();
4049 last_parm_insn = get_last_insn ();
4050
4051 current_function_args_size = stack_args_size.constant;
4052
4053 /* Adjust function incoming argument size for alignment and
4054 minimum length. */
4055
4056 #ifdef REG_PARM_STACK_SPACE
4057 #ifndef MAYBE_REG_PARM_STACK_SPACE
4058 current_function_args_size = MAX (current_function_args_size,
4059 REG_PARM_STACK_SPACE (fndecl));
4060 #endif
4061 #endif
4062
4063 #ifdef STACK_BOUNDARY
4064 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4065
4066 current_function_args_size
4067 = ((current_function_args_size + STACK_BYTES - 1)
4068 / STACK_BYTES) * STACK_BYTES;
4069 #endif
4070
4071 #ifdef ARGS_GROW_DOWNWARD
4072 current_function_arg_offset_rtx
4073 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4074 : expand_expr (size_binop (MINUS_EXPR, stack_args_size.var,
4075 size_int (-stack_args_size.constant)),
4076 NULL_RTX, VOIDmode, 0));
4077 #else
4078 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4079 #endif
4080
4081 /* See how many bytes, if any, of its args a function should try to pop
4082 on return. */
4083
4084 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4085 current_function_args_size);
4086
4087 /* For stdarg.h function, save info about
4088 regs and stack space used by the named args. */
4089
4090 if (!hide_last_arg)
4091 current_function_args_info = args_so_far;
4092
4093 /* Set the rtx used for the function return value. Put this in its
4094 own variable so any optimizers that need this information don't have
4095 to include tree.h. Do this here so it gets done when an inlined
4096 function gets output. */
4097
4098 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4099 }
4100 \f
4101 /* Indicate whether REGNO is an incoming argument to the current function
4102 that was promoted to a wider mode. If so, return the RTX for the
4103 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4104 that REGNO is promoted from and whether the promotion was signed or
4105 unsigned. */
4106
4107 #ifdef PROMOTE_FUNCTION_ARGS
4108
4109 rtx
4110 promoted_input_arg (regno, pmode, punsignedp)
4111 int regno;
4112 enum machine_mode *pmode;
4113 int *punsignedp;
4114 {
4115 tree arg;
4116
4117 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4118 arg = TREE_CHAIN (arg))
4119 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4120 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4121 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4122 {
4123 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4124 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4125
4126 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4127 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4128 && mode != DECL_MODE (arg))
4129 {
4130 *pmode = DECL_MODE (arg);
4131 *punsignedp = unsignedp;
4132 return DECL_INCOMING_RTL (arg);
4133 }
4134 }
4135
4136 return 0;
4137 }
4138
4139 #endif
4140 \f
4141 /* Compute the size and offset from the start of the stacked arguments for a
4142 parm passed in mode PASSED_MODE and with type TYPE.
4143
4144 INITIAL_OFFSET_PTR points to the current offset into the stacked
4145 arguments.
4146
4147 The starting offset and size for this parm are returned in *OFFSET_PTR
4148 and *ARG_SIZE_PTR, respectively.
4149
4150 IN_REGS is non-zero if the argument will be passed in registers. It will
4151 never be set if REG_PARM_STACK_SPACE is not defined.
4152
4153 FNDECL is the function in which the argument was defined.
4154
4155 There are two types of rounding that are done. The first, controlled by
4156 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4157 list to be aligned to the specific boundary (in bits). This rounding
4158 affects the initial and starting offsets, but not the argument size.
4159
4160 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4161 optionally rounds the size of the parm to PARM_BOUNDARY. The
4162 initial offset is not affected by this rounding, while the size always
4163 is and the starting offset may be. */
4164
4165 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4166 initial_offset_ptr is positive because locate_and_pad_parm's
4167 callers pass in the total size of args so far as
4168 initial_offset_ptr. arg_size_ptr is always positive.*/
4169
4170 void
4171 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4172 initial_offset_ptr, offset_ptr, arg_size_ptr)
4173 enum machine_mode passed_mode;
4174 tree type;
4175 int in_regs;
4176 tree fndecl;
4177 struct args_size *initial_offset_ptr;
4178 struct args_size *offset_ptr;
4179 struct args_size *arg_size_ptr;
4180 {
4181 tree sizetree
4182 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4183 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4184 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
4185 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4186 int reg_parm_stack_space = 0;
4187
4188 #ifdef REG_PARM_STACK_SPACE
4189 /* If we have found a stack parm before we reach the end of the
4190 area reserved for registers, skip that area. */
4191 if (! in_regs)
4192 {
4193 #ifdef MAYBE_REG_PARM_STACK_SPACE
4194 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4195 #else
4196 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4197 #endif
4198 if (reg_parm_stack_space > 0)
4199 {
4200 if (initial_offset_ptr->var)
4201 {
4202 initial_offset_ptr->var
4203 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4204 size_int (reg_parm_stack_space));
4205 initial_offset_ptr->constant = 0;
4206 }
4207 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4208 initial_offset_ptr->constant = reg_parm_stack_space;
4209 }
4210 }
4211 #endif /* REG_PARM_STACK_SPACE */
4212
4213 arg_size_ptr->var = 0;
4214 arg_size_ptr->constant = 0;
4215
4216 #ifdef ARGS_GROW_DOWNWARD
4217 if (initial_offset_ptr->var)
4218 {
4219 offset_ptr->constant = 0;
4220 offset_ptr->var = size_binop (MINUS_EXPR, integer_zero_node,
4221 initial_offset_ptr->var);
4222 }
4223 else
4224 {
4225 offset_ptr->constant = - initial_offset_ptr->constant;
4226 offset_ptr->var = 0;
4227 }
4228 if (where_pad != none
4229 && (TREE_CODE (sizetree) != INTEGER_CST
4230 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
4231 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4232 SUB_PARM_SIZE (*offset_ptr, sizetree);
4233 if (where_pad != downward)
4234 pad_to_arg_alignment (offset_ptr, boundary);
4235 if (initial_offset_ptr->var)
4236 {
4237 arg_size_ptr->var = size_binop (MINUS_EXPR,
4238 size_binop (MINUS_EXPR,
4239 integer_zero_node,
4240 initial_offset_ptr->var),
4241 offset_ptr->var);
4242 }
4243 else
4244 {
4245 arg_size_ptr->constant = (- initial_offset_ptr->constant -
4246 offset_ptr->constant);
4247 }
4248 #else /* !ARGS_GROW_DOWNWARD */
4249 pad_to_arg_alignment (initial_offset_ptr, boundary);
4250 *offset_ptr = *initial_offset_ptr;
4251
4252 #ifdef PUSH_ROUNDING
4253 if (passed_mode != BLKmode)
4254 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4255 #endif
4256
4257 /* Pad_below needs the pre-rounded size to know how much to pad below
4258 so this must be done before rounding up. */
4259 if (where_pad == downward
4260 /* However, BLKmode args passed in regs have their padding done elsewhere.
4261 The stack slot must be able to hold the entire register. */
4262 && !(in_regs && passed_mode == BLKmode))
4263 pad_below (offset_ptr, passed_mode, sizetree);
4264
4265 if (where_pad != none
4266 && (TREE_CODE (sizetree) != INTEGER_CST
4267 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
4268 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4269
4270 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
4271 #endif /* ARGS_GROW_DOWNWARD */
4272 }
4273
4274 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4275 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4276
4277 static void
4278 pad_to_arg_alignment (offset_ptr, boundary)
4279 struct args_size *offset_ptr;
4280 int boundary;
4281 {
4282 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4283
4284 if (boundary > BITS_PER_UNIT)
4285 {
4286 if (offset_ptr->var)
4287 {
4288 offset_ptr->var =
4289 #ifdef ARGS_GROW_DOWNWARD
4290 round_down
4291 #else
4292 round_up
4293 #endif
4294 (ARGS_SIZE_TREE (*offset_ptr),
4295 boundary / BITS_PER_UNIT);
4296 offset_ptr->constant = 0; /*?*/
4297 }
4298 else
4299 offset_ptr->constant =
4300 #ifdef ARGS_GROW_DOWNWARD
4301 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
4302 #else
4303 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
4304 #endif
4305 }
4306 }
4307
4308 static void
4309 pad_below (offset_ptr, passed_mode, sizetree)
4310 struct args_size *offset_ptr;
4311 enum machine_mode passed_mode;
4312 tree sizetree;
4313 {
4314 if (passed_mode != BLKmode)
4315 {
4316 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4317 offset_ptr->constant
4318 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4319 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4320 - GET_MODE_SIZE (passed_mode));
4321 }
4322 else
4323 {
4324 if (TREE_CODE (sizetree) != INTEGER_CST
4325 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4326 {
4327 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4328 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4329 /* Add it in. */
4330 ADD_PARM_SIZE (*offset_ptr, s2);
4331 SUB_PARM_SIZE (*offset_ptr, sizetree);
4332 }
4333 }
4334 }
4335
4336 static tree
4337 round_down (value, divisor)
4338 tree value;
4339 int divisor;
4340 {
4341 return size_binop (MULT_EXPR,
4342 size_binop (FLOOR_DIV_EXPR, value, size_int (divisor)),
4343 size_int (divisor));
4344 }
4345 \f
4346 /* Walk the tree of blocks describing the binding levels within a function
4347 and warn about uninitialized variables.
4348 This is done after calling flow_analysis and before global_alloc
4349 clobbers the pseudo-regs to hard regs. */
4350
4351 void
4352 uninitialized_vars_warning (block)
4353 tree block;
4354 {
4355 register tree decl, sub;
4356 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
4357 {
4358 if (TREE_CODE (decl) == VAR_DECL
4359 /* These warnings are unreliable for and aggregates
4360 because assigning the fields one by one can fail to convince
4361 flow.c that the entire aggregate was initialized.
4362 Unions are troublesome because members may be shorter. */
4363 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
4364 && DECL_RTL (decl) != 0
4365 && GET_CODE (DECL_RTL (decl)) == REG
4366 && regno_uninitialized (REGNO (DECL_RTL (decl))))
4367 warning_with_decl (decl,
4368 "`%s' might be used uninitialized in this function");
4369 if (TREE_CODE (decl) == VAR_DECL
4370 && DECL_RTL (decl) != 0
4371 && GET_CODE (DECL_RTL (decl)) == REG
4372 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
4373 warning_with_decl (decl,
4374 "variable `%s' might be clobbered by `longjmp' or `vfork'");
4375 }
4376 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
4377 uninitialized_vars_warning (sub);
4378 }
4379
4380 /* Do the appropriate part of uninitialized_vars_warning
4381 but for arguments instead of local variables. */
4382
4383 void
4384 setjmp_args_warning ()
4385 {
4386 register tree decl;
4387 for (decl = DECL_ARGUMENTS (current_function_decl);
4388 decl; decl = TREE_CHAIN (decl))
4389 if (DECL_RTL (decl) != 0
4390 && GET_CODE (DECL_RTL (decl)) == REG
4391 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
4392 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
4393 }
4394
4395 /* If this function call setjmp, put all vars into the stack
4396 unless they were declared `register'. */
4397
4398 void
4399 setjmp_protect (block)
4400 tree block;
4401 {
4402 register tree decl, sub;
4403 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
4404 if ((TREE_CODE (decl) == VAR_DECL
4405 || TREE_CODE (decl) == PARM_DECL)
4406 && DECL_RTL (decl) != 0
4407 && GET_CODE (DECL_RTL (decl)) == REG
4408 /* If this variable came from an inline function, it must be
4409 that it's life doesn't overlap the setjmp. If there was a
4410 setjmp in the function, it would already be in memory. We
4411 must exclude such variable because their DECL_RTL might be
4412 set to strange things such as virtual_stack_vars_rtx. */
4413 && ! DECL_FROM_INLINE (decl)
4414 && (
4415 #ifdef NON_SAVING_SETJMP
4416 /* If longjmp doesn't restore the registers,
4417 don't put anything in them. */
4418 NON_SAVING_SETJMP
4419 ||
4420 #endif
4421 ! DECL_REGISTER (decl)))
4422 put_var_into_stack (decl);
4423 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
4424 setjmp_protect (sub);
4425 }
4426 \f
4427 /* Like the previous function, but for args instead of local variables. */
4428
4429 void
4430 setjmp_protect_args ()
4431 {
4432 register tree decl, sub;
4433 for (decl = DECL_ARGUMENTS (current_function_decl);
4434 decl; decl = TREE_CHAIN (decl))
4435 if ((TREE_CODE (decl) == VAR_DECL
4436 || TREE_CODE (decl) == PARM_DECL)
4437 && DECL_RTL (decl) != 0
4438 && GET_CODE (DECL_RTL (decl)) == REG
4439 && (
4440 /* If longjmp doesn't restore the registers,
4441 don't put anything in them. */
4442 #ifdef NON_SAVING_SETJMP
4443 NON_SAVING_SETJMP
4444 ||
4445 #endif
4446 ! DECL_REGISTER (decl)))
4447 put_var_into_stack (decl);
4448 }
4449 \f
4450 /* Return the context-pointer register corresponding to DECL,
4451 or 0 if it does not need one. */
4452
4453 rtx
4454 lookup_static_chain (decl)
4455 tree decl;
4456 {
4457 tree context = decl_function_context (decl);
4458 tree link;
4459
4460 if (context == 0
4461 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
4462 return 0;
4463
4464 /* We treat inline_function_decl as an alias for the current function
4465 because that is the inline function whose vars, types, etc.
4466 are being merged into the current function.
4467 See expand_inline_function. */
4468 if (context == current_function_decl || context == inline_function_decl)
4469 return virtual_stack_vars_rtx;
4470
4471 for (link = context_display; link; link = TREE_CHAIN (link))
4472 if (TREE_PURPOSE (link) == context)
4473 return RTL_EXPR_RTL (TREE_VALUE (link));
4474
4475 abort ();
4476 }
4477 \f
4478 /* Convert a stack slot address ADDR for variable VAR
4479 (from a containing function)
4480 into an address valid in this function (using a static chain). */
4481
4482 rtx
4483 fix_lexical_addr (addr, var)
4484 rtx addr;
4485 tree var;
4486 {
4487 rtx basereg;
4488 int displacement;
4489 tree context = decl_function_context (var);
4490 struct function *fp;
4491 rtx base = 0;
4492
4493 /* If this is the present function, we need not do anything. */
4494 if (context == current_function_decl || context == inline_function_decl)
4495 return addr;
4496
4497 for (fp = outer_function_chain; fp; fp = fp->next)
4498 if (fp->decl == context)
4499 break;
4500
4501 if (fp == 0)
4502 abort ();
4503
4504 /* Decode given address as base reg plus displacement. */
4505 if (GET_CODE (addr) == REG)
4506 basereg = addr, displacement = 0;
4507 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
4508 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
4509 else
4510 abort ();
4511
4512 /* We accept vars reached via the containing function's
4513 incoming arg pointer and via its stack variables pointer. */
4514 if (basereg == fp->internal_arg_pointer)
4515 {
4516 /* If reached via arg pointer, get the arg pointer value
4517 out of that function's stack frame.
4518
4519 There are two cases: If a separate ap is needed, allocate a
4520 slot in the outer function for it and dereference it that way.
4521 This is correct even if the real ap is actually a pseudo.
4522 Otherwise, just adjust the offset from the frame pointer to
4523 compensate. */
4524
4525 #ifdef NEED_SEPARATE_AP
4526 rtx addr;
4527
4528 if (fp->arg_pointer_save_area == 0)
4529 fp->arg_pointer_save_area
4530 = assign_outer_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
4531
4532 addr = fix_lexical_addr (XEXP (fp->arg_pointer_save_area, 0), var);
4533 addr = memory_address (Pmode, addr);
4534
4535 base = copy_to_reg (gen_rtx (MEM, Pmode, addr));
4536 #else
4537 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
4538 base = lookup_static_chain (var);
4539 #endif
4540 }
4541
4542 else if (basereg == virtual_stack_vars_rtx)
4543 {
4544 /* This is the same code as lookup_static_chain, duplicated here to
4545 avoid an extra call to decl_function_context. */
4546 tree link;
4547
4548 for (link = context_display; link; link = TREE_CHAIN (link))
4549 if (TREE_PURPOSE (link) == context)
4550 {
4551 base = RTL_EXPR_RTL (TREE_VALUE (link));
4552 break;
4553 }
4554 }
4555
4556 if (base == 0)
4557 abort ();
4558
4559 /* Use same offset, relative to appropriate static chain or argument
4560 pointer. */
4561 return plus_constant (base, displacement);
4562 }
4563 \f
4564 /* Return the address of the trampoline for entering nested fn FUNCTION.
4565 If necessary, allocate a trampoline (in the stack frame)
4566 and emit rtl to initialize its contents (at entry to this function). */
4567
4568 rtx
4569 trampoline_address (function)
4570 tree function;
4571 {
4572 tree link;
4573 tree rtlexp;
4574 rtx tramp;
4575 struct function *fp;
4576 tree fn_context;
4577
4578 /* Find an existing trampoline and return it. */
4579 for (link = trampoline_list; link; link = TREE_CHAIN (link))
4580 if (TREE_PURPOSE (link) == function)
4581 return
4582 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
4583
4584 for (fp = outer_function_chain; fp; fp = fp->next)
4585 for (link = fp->trampoline_list; link; link = TREE_CHAIN (link))
4586 if (TREE_PURPOSE (link) == function)
4587 {
4588 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
4589 function);
4590 return round_trampoline_addr (tramp);
4591 }
4592
4593 /* None exists; we must make one. */
4594
4595 /* Find the `struct function' for the function containing FUNCTION. */
4596 fp = 0;
4597 fn_context = decl_function_context (function);
4598 if (fn_context != current_function_decl)
4599 for (fp = outer_function_chain; fp; fp = fp->next)
4600 if (fp->decl == fn_context)
4601 break;
4602
4603 /* Allocate run-time space for this trampoline
4604 (usually in the defining function's stack frame). */
4605 #ifdef ALLOCATE_TRAMPOLINE
4606 tramp = ALLOCATE_TRAMPOLINE (fp);
4607 #else
4608 /* If rounding needed, allocate extra space
4609 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
4610 #ifdef TRAMPOLINE_ALIGNMENT
4611 #define TRAMPOLINE_REAL_SIZE \
4612 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
4613 #else
4614 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
4615 #endif
4616 if (fp != 0)
4617 tramp = assign_outer_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0, fp);
4618 else
4619 tramp = assign_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0);
4620 #endif
4621
4622 /* Record the trampoline for reuse and note it for later initialization
4623 by expand_function_end. */
4624 if (fp != 0)
4625 {
4626 push_obstacks (fp->function_maybepermanent_obstack,
4627 fp->function_maybepermanent_obstack);
4628 rtlexp = make_node (RTL_EXPR);
4629 RTL_EXPR_RTL (rtlexp) = tramp;
4630 fp->trampoline_list = tree_cons (function, rtlexp, fp->trampoline_list);
4631 pop_obstacks ();
4632 }
4633 else
4634 {
4635 /* Make the RTL_EXPR node temporary, not momentary, so that the
4636 trampoline_list doesn't become garbage. */
4637 int momentary = suspend_momentary ();
4638 rtlexp = make_node (RTL_EXPR);
4639 resume_momentary (momentary);
4640
4641 RTL_EXPR_RTL (rtlexp) = tramp;
4642 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
4643 }
4644
4645 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
4646 return round_trampoline_addr (tramp);
4647 }
4648
4649 /* Given a trampoline address,
4650 round it to multiple of TRAMPOLINE_ALIGNMENT. */
4651
4652 static rtx
4653 round_trampoline_addr (tramp)
4654 rtx tramp;
4655 {
4656 #ifdef TRAMPOLINE_ALIGNMENT
4657 /* Round address up to desired boundary. */
4658 rtx temp = gen_reg_rtx (Pmode);
4659 temp = expand_binop (Pmode, add_optab, tramp,
4660 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
4661 temp, 0, OPTAB_LIB_WIDEN);
4662 tramp = expand_binop (Pmode, and_optab, temp,
4663 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
4664 temp, 0, OPTAB_LIB_WIDEN);
4665 #endif
4666 return tramp;
4667 }
4668 \f
4669 /* The functions identify_blocks and reorder_blocks provide a way to
4670 reorder the tree of BLOCK nodes, for optimizers that reshuffle or
4671 duplicate portions of the RTL code. Call identify_blocks before
4672 changing the RTL, and call reorder_blocks after. */
4673
4674 /* Put all this function's BLOCK nodes including those that are chained
4675 onto the first block into a vector, and return it.
4676 Also store in each NOTE for the beginning or end of a block
4677 the index of that block in the vector.
4678 The arguments are BLOCK, the chain of top-level blocks of the function,
4679 and INSNS, the insn chain of the function. */
4680
4681 tree *
4682 identify_blocks (block, insns)
4683 tree block;
4684 rtx insns;
4685 {
4686 int n_blocks;
4687 tree *block_vector;
4688 int *block_stack;
4689 int depth = 0;
4690 int next_block_number = 1;
4691 int current_block_number = 1;
4692 rtx insn;
4693
4694 if (block == 0)
4695 return 0;
4696
4697 n_blocks = all_blocks (block, 0);
4698 block_vector = (tree *) xmalloc (n_blocks * sizeof (tree));
4699 block_stack = (int *) alloca (n_blocks * sizeof (int));
4700
4701 all_blocks (block, block_vector);
4702
4703 for (insn = insns; insn; insn = NEXT_INSN (insn))
4704 if (GET_CODE (insn) == NOTE)
4705 {
4706 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
4707 {
4708 block_stack[depth++] = current_block_number;
4709 current_block_number = next_block_number;
4710 NOTE_BLOCK_NUMBER (insn) = next_block_number++;
4711 }
4712 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
4713 {
4714 current_block_number = block_stack[--depth];
4715 NOTE_BLOCK_NUMBER (insn) = current_block_number;
4716 }
4717 }
4718
4719 if (n_blocks != next_block_number)
4720 abort ();
4721
4722 return block_vector;
4723 }
4724
4725 /* Given BLOCK_VECTOR which was returned by identify_blocks,
4726 and a revised instruction chain, rebuild the tree structure
4727 of BLOCK nodes to correspond to the new order of RTL.
4728 The new block tree is inserted below TOP_BLOCK.
4729 Returns the current top-level block. */
4730
4731 tree
4732 reorder_blocks (block_vector, block, insns)
4733 tree *block_vector;
4734 tree block;
4735 rtx insns;
4736 {
4737 tree current_block = block;
4738 rtx insn;
4739
4740 if (block_vector == 0)
4741 return block;
4742
4743 /* Prune the old trees away, so that it doesn't get in the way. */
4744 BLOCK_SUBBLOCKS (current_block) = 0;
4745 BLOCK_CHAIN (current_block) = 0;
4746
4747 for (insn = insns; insn; insn = NEXT_INSN (insn))
4748 if (GET_CODE (insn) == NOTE)
4749 {
4750 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
4751 {
4752 tree block = block_vector[NOTE_BLOCK_NUMBER (insn)];
4753 /* If we have seen this block before, copy it. */
4754 if (TREE_ASM_WRITTEN (block))
4755 block = copy_node (block);
4756 BLOCK_SUBBLOCKS (block) = 0;
4757 TREE_ASM_WRITTEN (block) = 1;
4758 BLOCK_SUPERCONTEXT (block) = current_block;
4759 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4760 BLOCK_SUBBLOCKS (current_block) = block;
4761 current_block = block;
4762 NOTE_SOURCE_FILE (insn) = 0;
4763 }
4764 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
4765 {
4766 BLOCK_SUBBLOCKS (current_block)
4767 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
4768 current_block = BLOCK_SUPERCONTEXT (current_block);
4769 NOTE_SOURCE_FILE (insn) = 0;
4770 }
4771 }
4772
4773 BLOCK_SUBBLOCKS (current_block)
4774 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
4775 return current_block;
4776 }
4777
4778 /* Reverse the order of elements in the chain T of blocks,
4779 and return the new head of the chain (old last element). */
4780
4781 static tree
4782 blocks_nreverse (t)
4783 tree t;
4784 {
4785 register tree prev = 0, decl, next;
4786 for (decl = t; decl; decl = next)
4787 {
4788 next = BLOCK_CHAIN (decl);
4789 BLOCK_CHAIN (decl) = prev;
4790 prev = decl;
4791 }
4792 return prev;
4793 }
4794
4795 /* Count the subblocks of the list starting with BLOCK, and list them
4796 all into the vector VECTOR. Also clear TREE_ASM_WRITTEN in all
4797 blocks. */
4798
4799 static int
4800 all_blocks (block, vector)
4801 tree block;
4802 tree *vector;
4803 {
4804 int n_blocks = 0;
4805
4806 while (block)
4807 {
4808 TREE_ASM_WRITTEN (block) = 0;
4809
4810 /* Record this block. */
4811 if (vector)
4812 vector[n_blocks] = block;
4813
4814 ++n_blocks;
4815
4816 /* Record the subblocks, and their subblocks... */
4817 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4818 vector ? vector + n_blocks : 0);
4819 block = BLOCK_CHAIN (block);
4820 }
4821
4822 return n_blocks;
4823 }
4824 \f
4825 /* Build bytecode call descriptor for function SUBR. */
4826
4827 rtx
4828 bc_build_calldesc (subr)
4829 tree subr;
4830 {
4831 tree calldesc = 0, arg;
4832 int nargs = 0;
4833
4834 /* Build the argument description vector in reverse order. */
4835 DECL_ARGUMENTS (subr) = nreverse (DECL_ARGUMENTS (subr));
4836 nargs = 0;
4837
4838 for (arg = DECL_ARGUMENTS (subr); arg; arg = TREE_CHAIN (arg))
4839 {
4840 ++nargs;
4841
4842 calldesc = tree_cons ((tree) 0, size_in_bytes (TREE_TYPE (arg)), calldesc);
4843 calldesc = tree_cons ((tree) 0, bc_runtime_type_code (TREE_TYPE (arg)), calldesc);
4844 }
4845
4846 DECL_ARGUMENTS (subr) = nreverse (DECL_ARGUMENTS (subr));
4847
4848 /* Prepend the function's return type. */
4849 calldesc = tree_cons ((tree) 0,
4850 size_in_bytes (TREE_TYPE (TREE_TYPE (subr))),
4851 calldesc);
4852
4853 calldesc = tree_cons ((tree) 0,
4854 bc_runtime_type_code (TREE_TYPE (TREE_TYPE (subr))),
4855 calldesc);
4856
4857 /* Prepend the arg count. */
4858 calldesc = tree_cons ((tree) 0, build_int_2 (nargs, 0), calldesc);
4859
4860 /* Output the call description vector and get its address. */
4861 calldesc = build_nt (CONSTRUCTOR, (tree) 0, calldesc);
4862 TREE_TYPE (calldesc) = build_array_type (integer_type_node,
4863 build_index_type (build_int_2 (nargs * 2, 0)));
4864
4865 return output_constant_def (calldesc);
4866 }
4867
4868
4869 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4870 and initialize static variables for generating RTL for the statements
4871 of the function. */
4872
4873 void
4874 init_function_start (subr, filename, line)
4875 tree subr;
4876 char *filename;
4877 int line;
4878 {
4879 char *junk;
4880
4881 if (output_bytecode)
4882 {
4883 this_function_decl = subr;
4884 this_function_calldesc = bc_build_calldesc (subr);
4885 local_vars_size = 0;
4886 stack_depth = 0;
4887 max_stack_depth = 0;
4888 stmt_expr_depth = 0;
4889 return;
4890 }
4891
4892 init_stmt_for_function ();
4893
4894 cse_not_expected = ! optimize;
4895
4896 /* Caller save not needed yet. */
4897 caller_save_needed = 0;
4898
4899 /* No stack slots have been made yet. */
4900 stack_slot_list = 0;
4901
4902 /* There is no stack slot for handling nonlocal gotos. */
4903 nonlocal_goto_handler_slot = 0;
4904 nonlocal_goto_stack_level = 0;
4905
4906 /* No labels have been declared for nonlocal use. */
4907 nonlocal_labels = 0;
4908
4909 /* No function calls so far in this function. */
4910 function_call_count = 0;
4911
4912 /* No parm regs have been allocated.
4913 (This is important for output_inline_function.) */
4914 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4915
4916 /* Initialize the RTL mechanism. */
4917 init_emit ();
4918
4919 /* Initialize the queue of pending postincrement and postdecrements,
4920 and some other info in expr.c. */
4921 init_expr ();
4922
4923 /* We haven't done register allocation yet. */
4924 reg_renumber = 0;
4925
4926 init_const_rtx_hash_table ();
4927
4928 current_function_name = (*decl_printable_name) (subr, &junk);
4929
4930 /* Nonzero if this is a nested function that uses a static chain. */
4931
4932 current_function_needs_context
4933 = (decl_function_context (current_function_decl) != 0
4934 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
4935
4936 /* Set if a call to setjmp is seen. */
4937 current_function_calls_setjmp = 0;
4938
4939 /* Set if a call to longjmp is seen. */
4940 current_function_calls_longjmp = 0;
4941
4942 current_function_calls_alloca = 0;
4943 current_function_has_nonlocal_label = 0;
4944 current_function_has_nonlocal_goto = 0;
4945 current_function_contains_functions = 0;
4946
4947 current_function_returns_pcc_struct = 0;
4948 current_function_returns_struct = 0;
4949 current_function_epilogue_delay_list = 0;
4950 current_function_uses_const_pool = 0;
4951 current_function_uses_pic_offset_table = 0;
4952
4953 /* We have not yet needed to make a label to jump to for tail-recursion. */
4954 tail_recursion_label = 0;
4955
4956 /* We haven't had a need to make a save area for ap yet. */
4957
4958 arg_pointer_save_area = 0;
4959
4960 /* No stack slots allocated yet. */
4961 frame_offset = 0;
4962
4963 /* No SAVE_EXPRs in this function yet. */
4964 save_expr_regs = 0;
4965
4966 /* No RTL_EXPRs in this function yet. */
4967 rtl_expr_chain = 0;
4968
4969 /* Set up to allocate temporaries. */
4970 init_temp_slots ();
4971
4972 /* Within function body, compute a type's size as soon it is laid out. */
4973 immediate_size_expand++;
4974
4975 /* We haven't made any trampolines for this function yet. */
4976 trampoline_list = 0;
4977
4978 init_pending_stack_adjust ();
4979 inhibit_defer_pop = 0;
4980
4981 current_function_outgoing_args_size = 0;
4982
4983 /* Prevent ever trying to delete the first instruction of a function.
4984 Also tell final how to output a linenum before the function prologue. */
4985 emit_line_note (filename, line);
4986
4987 /* Make sure first insn is a note even if we don't want linenums.
4988 This makes sure the first insn will never be deleted.
4989 Also, final expects a note to appear there. */
4990 emit_note (NULL_PTR, NOTE_INSN_DELETED);
4991
4992 /* Set flags used by final.c. */
4993 if (aggregate_value_p (DECL_RESULT (subr)))
4994 {
4995 #ifdef PCC_STATIC_STRUCT_RETURN
4996 current_function_returns_pcc_struct = 1;
4997 #endif
4998 current_function_returns_struct = 1;
4999 }
5000
5001 /* Warn if this value is an aggregate type,
5002 regardless of which calling convention we are using for it. */
5003 if (warn_aggregate_return
5004 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5005 warning ("function returns an aggregate");
5006
5007 current_function_returns_pointer
5008 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5009
5010 /* Indicate that we need to distinguish between the return value of the
5011 present function and the return value of a function being called. */
5012 rtx_equal_function_value_matters = 1;
5013
5014 /* Indicate that we have not instantiated virtual registers yet. */
5015 virtuals_instantiated = 0;
5016
5017 /* Indicate we have no need of a frame pointer yet. */
5018 frame_pointer_needed = 0;
5019
5020 /* By default assume not varargs or stdarg. */
5021 current_function_varargs = 0;
5022 current_function_stdarg = 0;
5023 }
5024
5025 /* Indicate that the current function uses extra args
5026 not explicitly mentioned in the argument list in any fashion. */
5027
5028 void
5029 mark_varargs ()
5030 {
5031 current_function_varargs = 1;
5032 }
5033
5034 /* Expand a call to __main at the beginning of a possible main function. */
5035
5036 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
5037 #undef HAS_INIT_SECTION
5038 #define HAS_INIT_SECTION
5039 #endif
5040
5041 void
5042 expand_main_function ()
5043 {
5044 if (!output_bytecode)
5045 {
5046 /* The zero below avoids a possible parse error */
5047 0;
5048 #if !defined (HAS_INIT_SECTION)
5049 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, NAME__MAIN), 0,
5050 VOIDmode, 0);
5051 #endif /* not HAS_INIT_SECTION */
5052 }
5053 }
5054 \f
5055 extern struct obstack permanent_obstack;
5056
5057 /* Expand start of bytecode function. See comment at
5058 expand_function_start below for details. */
5059
5060 void
5061 bc_expand_function_start (subr, parms_have_cleanups)
5062 tree subr;
5063 int parms_have_cleanups;
5064 {
5065 char label[20], *name;
5066 static int nlab;
5067 tree thisarg;
5068 int argsz;
5069
5070 if (TREE_PUBLIC (subr))
5071 bc_globalize_label (IDENTIFIER_POINTER (DECL_NAME (subr)));
5072
5073 #ifdef DEBUG_PRINT_CODE
5074 fprintf (stderr, "\n<func %s>\n", IDENTIFIER_POINTER (DECL_NAME (subr)));
5075 #endif
5076
5077 for (argsz = 0, thisarg = DECL_ARGUMENTS (subr); thisarg; thisarg = TREE_CHAIN (thisarg))
5078 {
5079 if (DECL_RTL (thisarg))
5080 abort (); /* Should be NULL here I think. */
5081 else if (TREE_CONSTANT (DECL_SIZE (thisarg)))
5082 {
5083 DECL_RTL (thisarg) = bc_gen_rtx ((char *) 0, argsz, (struct bc_label *) 0);
5084 argsz += TREE_INT_CST_LOW (DECL_SIZE (thisarg));
5085 }
5086 else
5087 {
5088 /* Variable-sized objects are pointers to their storage. */
5089 DECL_RTL (thisarg) = bc_gen_rtx ((char *) 0, argsz, (struct bc_label *) 0);
5090 argsz += POINTER_SIZE;
5091 }
5092 }
5093
5094 bc_begin_function (xstrdup (IDENTIFIER_POINTER (DECL_NAME (subr))));
5095
5096 ASM_GENERATE_INTERNAL_LABEL (label, "LX", nlab);
5097
5098 ++nlab;
5099 name = (char *) obstack_copy0 (&permanent_obstack, label, strlen (label));
5100 this_function_callinfo = bc_gen_rtx (name, 0, (struct bc_label *) 0);
5101 this_function_bytecode =
5102 bc_emit_trampoline (BYTECODE_LABEL (this_function_callinfo));
5103 }
5104
5105
5106 /* Expand end of bytecode function. See details the comment of
5107 expand_function_end(), below. */
5108
5109 void
5110 bc_expand_function_end ()
5111 {
5112 char *ptrconsts;
5113
5114 expand_null_return ();
5115
5116 /* Emit any fixup code. This must be done before the call to
5117 to BC_END_FUNCTION (), since that will cause the bytecode
5118 segment to be finished off and closed. */
5119
5120 expand_fixups (NULL_RTX);
5121
5122 ptrconsts = bc_end_function ();
5123
5124 bc_align_const (2 /* INT_ALIGN */);
5125
5126 /* If this changes also make sure to change bc-interp.h! */
5127
5128 bc_emit_const_labeldef (BYTECODE_LABEL (this_function_callinfo));
5129 bc_emit_const ((char *) &max_stack_depth, sizeof max_stack_depth);
5130 bc_emit_const ((char *) &local_vars_size, sizeof local_vars_size);
5131 bc_emit_const_labelref (this_function_bytecode, 0);
5132 bc_emit_const_labelref (ptrconsts, 0);
5133 bc_emit_const_labelref (BYTECODE_LABEL (this_function_calldesc), 0);
5134 }
5135
5136
5137 /* Start the RTL for a new function, and set variables used for
5138 emitting RTL.
5139 SUBR is the FUNCTION_DECL node.
5140 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5141 the function's parameters, which must be run at any return statement. */
5142
5143 void
5144 expand_function_start (subr, parms_have_cleanups)
5145 tree subr;
5146 int parms_have_cleanups;
5147 {
5148 register int i;
5149 tree tem;
5150 rtx last_ptr;
5151
5152 if (output_bytecode)
5153 {
5154 bc_expand_function_start (subr, parms_have_cleanups);
5155 return;
5156 }
5157
5158 /* Make sure volatile mem refs aren't considered
5159 valid operands of arithmetic insns. */
5160 init_recog_no_volatile ();
5161
5162 /* If function gets a static chain arg, store it in the stack frame.
5163 Do this first, so it gets the first stack slot offset. */
5164 if (current_function_needs_context)
5165 {
5166 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5167
5168 #ifdef SMALL_REGISTER_CLASSES
5169 /* Delay copying static chain if it is not a register to avoid
5170 conflicts with regs used for parameters. */
5171 if (! SMALL_REGISTER_CLASSES
5172 || GET_CODE (static_chain_incoming_rtx) == REG)
5173 #endif
5174 emit_move_insn (last_ptr, static_chain_incoming_rtx);
5175 }
5176
5177 /* If the parameters of this function need cleaning up, get a label
5178 for the beginning of the code which executes those cleanups. This must
5179 be done before doing anything with return_label. */
5180 if (parms_have_cleanups)
5181 cleanup_label = gen_label_rtx ();
5182 else
5183 cleanup_label = 0;
5184
5185 /* Make the label for return statements to jump to, if this machine
5186 does not have a one-instruction return and uses an epilogue,
5187 or if it returns a structure, or if it has parm cleanups. */
5188 #ifdef HAVE_return
5189 if (cleanup_label == 0 && HAVE_return
5190 && ! current_function_returns_pcc_struct
5191 && ! (current_function_returns_struct && ! optimize))
5192 return_label = 0;
5193 else
5194 return_label = gen_label_rtx ();
5195 #else
5196 return_label = gen_label_rtx ();
5197 #endif
5198
5199 /* Initialize rtx used to return the value. */
5200 /* Do this before assign_parms so that we copy the struct value address
5201 before any library calls that assign parms might generate. */
5202
5203 /* Decide whether to return the value in memory or in a register. */
5204 if (aggregate_value_p (DECL_RESULT (subr)))
5205 {
5206 /* Returning something that won't go in a register. */
5207 register rtx value_address = 0;
5208
5209 #ifdef PCC_STATIC_STRUCT_RETURN
5210 if (current_function_returns_pcc_struct)
5211 {
5212 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
5213 value_address = assemble_static_space (size);
5214 }
5215 else
5216 #endif
5217 {
5218 /* Expect to be passed the address of a place to store the value.
5219 If it is passed as an argument, assign_parms will take care of
5220 it. */
5221 if (struct_value_incoming_rtx)
5222 {
5223 value_address = gen_reg_rtx (Pmode);
5224 emit_move_insn (value_address, struct_value_incoming_rtx);
5225 }
5226 }
5227 if (value_address)
5228 {
5229 DECL_RTL (DECL_RESULT (subr))
5230 = gen_rtx (MEM, DECL_MODE (DECL_RESULT (subr)), value_address);
5231 MEM_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)))
5232 = AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5233 }
5234 }
5235 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
5236 /* If return mode is void, this decl rtl should not be used. */
5237 DECL_RTL (DECL_RESULT (subr)) = 0;
5238 else if (parms_have_cleanups)
5239 {
5240 /* If function will end with cleanup code for parms,
5241 compute the return values into a pseudo reg,
5242 which we will copy into the true return register
5243 after the cleanups are done. */
5244
5245 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
5246
5247 #ifdef PROMOTE_FUNCTION_RETURN
5248 tree type = TREE_TYPE (DECL_RESULT (subr));
5249 int unsignedp = TREE_UNSIGNED (type);
5250
5251 mode = promote_mode (type, mode, &unsignedp, 1);
5252 #endif
5253
5254 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
5255 }
5256 else
5257 /* Scalar, returned in a register. */
5258 {
5259 #ifdef FUNCTION_OUTGOING_VALUE
5260 DECL_RTL (DECL_RESULT (subr))
5261 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
5262 #else
5263 DECL_RTL (DECL_RESULT (subr))
5264 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
5265 #endif
5266
5267 /* Mark this reg as the function's return value. */
5268 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
5269 {
5270 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
5271 /* Needed because we may need to move this to memory
5272 in case it's a named return value whose address is taken. */
5273 DECL_REGISTER (DECL_RESULT (subr)) = 1;
5274 }
5275 }
5276
5277 /* Initialize rtx for parameters and local variables.
5278 In some cases this requires emitting insns. */
5279
5280 assign_parms (subr, 0);
5281
5282 #ifdef SMALL_REGISTER_CLASSES
5283 /* Copy the static chain now if it wasn't a register. The delay is to
5284 avoid conflicts with the parameter passing registers. */
5285
5286 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
5287 if (GET_CODE (static_chain_incoming_rtx) != REG)
5288 emit_move_insn (last_ptr, static_chain_incoming_rtx);
5289 #endif
5290
5291 /* The following was moved from init_function_start.
5292 The move is supposed to make sdb output more accurate. */
5293 /* Indicate the beginning of the function body,
5294 as opposed to parm setup. */
5295 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
5296
5297 /* If doing stupid allocation, mark parms as born here. */
5298
5299 if (GET_CODE (get_last_insn ()) != NOTE)
5300 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5301 parm_birth_insn = get_last_insn ();
5302
5303 if (obey_regdecls)
5304 {
5305 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
5306 use_variable (regno_reg_rtx[i]);
5307
5308 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
5309 use_variable (current_function_internal_arg_pointer);
5310 }
5311
5312 context_display = 0;
5313 if (current_function_needs_context)
5314 {
5315 /* Fetch static chain values for containing functions. */
5316 tem = decl_function_context (current_function_decl);
5317 /* If not doing stupid register allocation copy the static chain
5318 pointer into a pseudo. If we have small register classes, copy
5319 the value from memory if static_chain_incoming_rtx is a REG. If
5320 we do stupid register allocation, we use the stack address
5321 generated above. */
5322 if (tem && ! obey_regdecls)
5323 {
5324 #ifdef SMALL_REGISTER_CLASSES
5325 /* If the static chain originally came in a register, put it back
5326 there, then move it out in the next insn. The reason for
5327 this peculiar code is to satisfy function integration. */
5328 if (SMALL_REGISTER_CLASSES
5329 && GET_CODE (static_chain_incoming_rtx) == REG)
5330 emit_move_insn (static_chain_incoming_rtx, last_ptr);
5331 #endif
5332
5333 last_ptr = copy_to_reg (static_chain_incoming_rtx);
5334 }
5335
5336 while (tem)
5337 {
5338 tree rtlexp = make_node (RTL_EXPR);
5339
5340 RTL_EXPR_RTL (rtlexp) = last_ptr;
5341 context_display = tree_cons (tem, rtlexp, context_display);
5342 tem = decl_function_context (tem);
5343 if (tem == 0)
5344 break;
5345 /* Chain thru stack frames, assuming pointer to next lexical frame
5346 is found at the place we always store it. */
5347 #ifdef FRAME_GROWS_DOWNWARD
5348 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
5349 #endif
5350 last_ptr = copy_to_reg (gen_rtx (MEM, Pmode,
5351 memory_address (Pmode, last_ptr)));
5352
5353 /* If we are not optimizing, ensure that we know that this
5354 piece of context is live over the entire function. */
5355 if (! optimize)
5356 save_expr_regs = gen_rtx (EXPR_LIST, VOIDmode, last_ptr,
5357 save_expr_regs);
5358 }
5359 }
5360
5361 /* After the display initializations is where the tail-recursion label
5362 should go, if we end up needing one. Ensure we have a NOTE here
5363 since some things (like trampolines) get placed before this. */
5364 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
5365
5366 /* Evaluate now the sizes of any types declared among the arguments. */
5367 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
5368 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
5369
5370 /* Make sure there is a line number after the function entry setup code. */
5371 force_next_line_note ();
5372 }
5373 \f
5374 /* Generate RTL for the end of the current function.
5375 FILENAME and LINE are the current position in the source file.
5376
5377 It is up to language-specific callers to do cleanups for parameters--
5378 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
5379
5380 void
5381 expand_function_end (filename, line, end_bindings)
5382 char *filename;
5383 int line;
5384 int end_bindings;
5385 {
5386 register int i;
5387 tree link;
5388
5389 #ifdef TRAMPOLINE_TEMPLATE
5390 static rtx initial_trampoline;
5391 #endif
5392
5393 if (output_bytecode)
5394 {
5395 bc_expand_function_end ();
5396 return;
5397 }
5398
5399 #ifdef NON_SAVING_SETJMP
5400 /* Don't put any variables in registers if we call setjmp
5401 on a machine that fails to restore the registers. */
5402 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
5403 {
5404 if (DECL_INITIAL (current_function_decl) != error_mark_node)
5405 setjmp_protect (DECL_INITIAL (current_function_decl));
5406
5407 setjmp_protect_args ();
5408 }
5409 #endif
5410
5411 /* Save the argument pointer if a save area was made for it. */
5412 if (arg_pointer_save_area)
5413 {
5414 rtx x = gen_move_insn (arg_pointer_save_area, virtual_incoming_args_rtx);
5415 emit_insn_before (x, tail_recursion_reentry);
5416 }
5417
5418 /* Initialize any trampolines required by this function. */
5419 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5420 {
5421 tree function = TREE_PURPOSE (link);
5422 rtx context = lookup_static_chain (function);
5423 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
5424 rtx blktramp;
5425 rtx seq;
5426
5427 #ifdef TRAMPOLINE_TEMPLATE
5428 /* First make sure this compilation has a template for
5429 initializing trampolines. */
5430 if (initial_trampoline == 0)
5431 {
5432 end_temporary_allocation ();
5433 initial_trampoline
5434 = gen_rtx (MEM, BLKmode, assemble_trampoline_template ());
5435 resume_temporary_allocation ();
5436 }
5437 #endif
5438
5439 /* Generate insns to initialize the trampoline. */
5440 start_sequence ();
5441 tramp = round_trampoline_addr (XEXP (tramp, 0));
5442 #ifdef TRAMPOLINE_TEMPLATE
5443 blktramp = change_address (initial_trampoline, BLKmode, tramp);
5444 emit_block_move (blktramp, initial_trampoline,
5445 GEN_INT (TRAMPOLINE_SIZE),
5446 FUNCTION_BOUNDARY / BITS_PER_UNIT);
5447 #endif
5448 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
5449 seq = get_insns ();
5450 end_sequence ();
5451
5452 /* Put those insns at entry to the containing function (this one). */
5453 emit_insns_before (seq, tail_recursion_reentry);
5454 }
5455
5456 /* Warn about unused parms if extra warnings were specified. */
5457 if (warn_unused && extra_warnings)
5458 {
5459 tree decl;
5460
5461 for (decl = DECL_ARGUMENTS (current_function_decl);
5462 decl; decl = TREE_CHAIN (decl))
5463 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5464 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
5465 warning_with_decl (decl, "unused parameter `%s'");
5466 }
5467
5468 /* Delete handlers for nonlocal gotos if nothing uses them. */
5469 if (nonlocal_goto_handler_slot != 0 && !current_function_has_nonlocal_label)
5470 delete_handlers ();
5471
5472 /* End any sequences that failed to be closed due to syntax errors. */
5473 while (in_sequence_p ())
5474 end_sequence ();
5475
5476 /* Outside function body, can't compute type's actual size
5477 until next function's body starts. */
5478 immediate_size_expand--;
5479
5480 /* If doing stupid register allocation,
5481 mark register parms as dying here. */
5482
5483 if (obey_regdecls)
5484 {
5485 rtx tem;
5486 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
5487 use_variable (regno_reg_rtx[i]);
5488
5489 /* Likewise for the regs of all the SAVE_EXPRs in the function. */
5490
5491 for (tem = save_expr_regs; tem; tem = XEXP (tem, 1))
5492 {
5493 use_variable (XEXP (tem, 0));
5494 use_variable_after (XEXP (tem, 0), parm_birth_insn);
5495 }
5496
5497 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
5498 use_variable (current_function_internal_arg_pointer);
5499 }
5500
5501 clear_pending_stack_adjust ();
5502 do_pending_stack_adjust ();
5503
5504 /* Mark the end of the function body.
5505 If control reaches this insn, the function can drop through
5506 without returning a value. */
5507 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
5508
5509 /* Output a linenumber for the end of the function.
5510 SDB depends on this. */
5511 emit_line_note_force (filename, line);
5512
5513 /* Output the label for the actual return from the function,
5514 if one is expected. This happens either because a function epilogue
5515 is used instead of a return instruction, or because a return was done
5516 with a goto in order to run local cleanups, or because of pcc-style
5517 structure returning. */
5518
5519 if (return_label)
5520 emit_label (return_label);
5521
5522 /* C++ uses this. */
5523 if (end_bindings)
5524 expand_end_bindings (0, 0, 0);
5525
5526 /* If we had calls to alloca, and this machine needs
5527 an accurate stack pointer to exit the function,
5528 insert some code to save and restore the stack pointer. */
5529 #ifdef EXIT_IGNORE_STACK
5530 if (! EXIT_IGNORE_STACK)
5531 #endif
5532 if (current_function_calls_alloca)
5533 {
5534 rtx tem = 0;
5535
5536 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
5537 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
5538 }
5539
5540 /* If scalar return value was computed in a pseudo-reg,
5541 copy that to the hard return register. */
5542 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
5543 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
5544 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
5545 >= FIRST_PSEUDO_REGISTER))
5546 {
5547 rtx real_decl_result;
5548
5549 #ifdef FUNCTION_OUTGOING_VALUE
5550 real_decl_result
5551 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
5552 current_function_decl);
5553 #else
5554 real_decl_result
5555 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
5556 current_function_decl);
5557 #endif
5558 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
5559 /* If this is a BLKmode structure being returned in registers, then use
5560 the mode computed in expand_return. */
5561 if (GET_MODE (real_decl_result) == BLKmode)
5562 PUT_MODE (real_decl_result,
5563 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
5564 emit_move_insn (real_decl_result,
5565 DECL_RTL (DECL_RESULT (current_function_decl)));
5566 emit_insn (gen_rtx (USE, VOIDmode, real_decl_result));
5567 }
5568
5569 /* If returning a structure, arrange to return the address of the value
5570 in a place where debuggers expect to find it.
5571
5572 If returning a structure PCC style,
5573 the caller also depends on this value.
5574 And current_function_returns_pcc_struct is not necessarily set. */
5575 if (current_function_returns_struct
5576 || current_function_returns_pcc_struct)
5577 {
5578 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
5579 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5580 #ifdef FUNCTION_OUTGOING_VALUE
5581 rtx outgoing
5582 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
5583 current_function_decl);
5584 #else
5585 rtx outgoing
5586 = FUNCTION_VALUE (build_pointer_type (type),
5587 current_function_decl);
5588 #endif
5589
5590 /* Mark this as a function return value so integrate will delete the
5591 assignment and USE below when inlining this function. */
5592 REG_FUNCTION_VALUE_P (outgoing) = 1;
5593
5594 emit_move_insn (outgoing, value_address);
5595 use_variable (outgoing);
5596 }
5597
5598 /* Output a return insn if we are using one.
5599 Otherwise, let the rtl chain end here, to drop through
5600 into the epilogue. */
5601
5602 #ifdef HAVE_return
5603 if (HAVE_return)
5604 {
5605 emit_jump_insn (gen_return ());
5606 emit_barrier ();
5607 }
5608 #endif
5609
5610 /* Fix up any gotos that jumped out to the outermost
5611 binding level of the function.
5612 Must follow emitting RETURN_LABEL. */
5613
5614 /* If you have any cleanups to do at this point,
5615 and they need to create temporary variables,
5616 then you will lose. */
5617 expand_fixups (get_insns ());
5618 }
5619 \f
5620 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
5621
5622 static int *prologue;
5623 static int *epilogue;
5624
5625 /* Create an array that records the INSN_UIDs of INSNS (either a sequence
5626 or a single insn). */
5627
5628 static int *
5629 record_insns (insns)
5630 rtx insns;
5631 {
5632 int *vec;
5633
5634 if (GET_CODE (insns) == SEQUENCE)
5635 {
5636 int len = XVECLEN (insns, 0);
5637 vec = (int *) oballoc ((len + 1) * sizeof (int));
5638 vec[len] = 0;
5639 while (--len >= 0)
5640 vec[len] = INSN_UID (XVECEXP (insns, 0, len));
5641 }
5642 else
5643 {
5644 vec = (int *) oballoc (2 * sizeof (int));
5645 vec[0] = INSN_UID (insns);
5646 vec[1] = 0;
5647 }
5648 return vec;
5649 }
5650
5651 /* Determine how many INSN_UIDs in VEC are part of INSN. */
5652
5653 static int
5654 contains (insn, vec)
5655 rtx insn;
5656 int *vec;
5657 {
5658 register int i, j;
5659
5660 if (GET_CODE (insn) == INSN
5661 && GET_CODE (PATTERN (insn)) == SEQUENCE)
5662 {
5663 int count = 0;
5664 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5665 for (j = 0; vec[j]; j++)
5666 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == vec[j])
5667 count++;
5668 return count;
5669 }
5670 else
5671 {
5672 for (j = 0; vec[j]; j++)
5673 if (INSN_UID (insn) == vec[j])
5674 return 1;
5675 }
5676 return 0;
5677 }
5678
5679 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5680 this into place with notes indicating where the prologue ends and where
5681 the epilogue begins. Update the basic block information when possible. */
5682
5683 void
5684 thread_prologue_and_epilogue_insns (f)
5685 rtx f;
5686 {
5687 #ifdef HAVE_prologue
5688 if (HAVE_prologue)
5689 {
5690 rtx head, seq, insn;
5691
5692 /* The first insn (a NOTE_INSN_DELETED) is followed by zero or more
5693 prologue insns and a NOTE_INSN_PROLOGUE_END. */
5694 emit_note_after (NOTE_INSN_PROLOGUE_END, f);
5695 seq = gen_prologue ();
5696 head = emit_insn_after (seq, f);
5697
5698 /* Include the new prologue insns in the first block. Ignore them
5699 if they form a basic block unto themselves. */
5700 if (basic_block_head && n_basic_blocks
5701 && GET_CODE (basic_block_head[0]) != CODE_LABEL)
5702 basic_block_head[0] = NEXT_INSN (f);
5703
5704 /* Retain a map of the prologue insns. */
5705 prologue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : head);
5706 }
5707 else
5708 #endif
5709 prologue = 0;
5710
5711 #ifdef HAVE_epilogue
5712 if (HAVE_epilogue)
5713 {
5714 rtx insn = get_last_insn ();
5715 rtx prev = prev_nonnote_insn (insn);
5716
5717 /* If we end with a BARRIER, we don't need an epilogue. */
5718 if (! (prev && GET_CODE (prev) == BARRIER))
5719 {
5720 rtx tail, seq, tem;
5721 rtx first_use = 0;
5722 rtx last_use = 0;
5723
5724 /* The last basic block ends with a NOTE_INSN_EPILOGUE_BEG, the
5725 epilogue insns, the USE insns at the end of a function,
5726 the jump insn that returns, and then a BARRIER. */
5727
5728 /* Move the USE insns at the end of a function onto a list. */
5729 while (prev
5730 && GET_CODE (prev) == INSN
5731 && GET_CODE (PATTERN (prev)) == USE)
5732 {
5733 tem = prev;
5734 prev = prev_nonnote_insn (prev);
5735
5736 NEXT_INSN (PREV_INSN (tem)) = NEXT_INSN (tem);
5737 PREV_INSN (NEXT_INSN (tem)) = PREV_INSN (tem);
5738 if (first_use)
5739 {
5740 NEXT_INSN (tem) = first_use;
5741 PREV_INSN (first_use) = tem;
5742 }
5743 first_use = tem;
5744 if (!last_use)
5745 last_use = tem;
5746 }
5747
5748 emit_barrier_after (insn);
5749
5750 seq = gen_epilogue ();
5751 tail = emit_jump_insn_after (seq, insn);
5752
5753 /* Insert the USE insns immediately before the return insn, which
5754 must be the first instruction before the final barrier. */
5755 if (first_use)
5756 {
5757 tem = prev_nonnote_insn (get_last_insn ());
5758 NEXT_INSN (PREV_INSN (tem)) = first_use;
5759 PREV_INSN (first_use) = PREV_INSN (tem);
5760 PREV_INSN (tem) = last_use;
5761 NEXT_INSN (last_use) = tem;
5762 }
5763
5764 emit_note_after (NOTE_INSN_EPILOGUE_BEG, insn);
5765
5766 /* Include the new epilogue insns in the last block. Ignore
5767 them if they form a basic block unto themselves. */
5768 if (basic_block_end && n_basic_blocks
5769 && GET_CODE (basic_block_end[n_basic_blocks - 1]) != JUMP_INSN)
5770 basic_block_end[n_basic_blocks - 1] = tail;
5771
5772 /* Retain a map of the epilogue insns. */
5773 epilogue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : tail);
5774 return;
5775 }
5776 }
5777 #endif
5778 epilogue = 0;
5779 }
5780
5781 /* Reposition the prologue-end and epilogue-begin notes after instruction
5782 scheduling and delayed branch scheduling. */
5783
5784 void
5785 reposition_prologue_and_epilogue_notes (f)
5786 rtx f;
5787 {
5788 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5789 /* Reposition the prologue and epilogue notes. */
5790 if (n_basic_blocks)
5791 {
5792 rtx next, prev;
5793 int len;
5794
5795 if (prologue)
5796 {
5797 register rtx insn, note = 0;
5798
5799 /* Scan from the beginning until we reach the last prologue insn.
5800 We apparently can't depend on basic_block_{head,end} after
5801 reorg has run. */
5802 for (len = 0; prologue[len]; len++)
5803 ;
5804 for (insn = f; len && insn; insn = NEXT_INSN (insn))
5805 {
5806 if (GET_CODE (insn) == NOTE)
5807 {
5808 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5809 note = insn;
5810 }
5811 else if ((len -= contains (insn, prologue)) == 0)
5812 {
5813 /* Find the prologue-end note if we haven't already, and
5814 move it to just after the last prologue insn. */
5815 if (note == 0)
5816 {
5817 for (note = insn; note = NEXT_INSN (note);)
5818 if (GET_CODE (note) == NOTE
5819 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5820 break;
5821 }
5822 next = NEXT_INSN (note);
5823 prev = PREV_INSN (note);
5824 if (prev)
5825 NEXT_INSN (prev) = next;
5826 if (next)
5827 PREV_INSN (next) = prev;
5828 add_insn_after (note, insn);
5829 }
5830 }
5831 }
5832
5833 if (epilogue)
5834 {
5835 register rtx insn, note = 0;
5836
5837 /* Scan from the end until we reach the first epilogue insn.
5838 We apparently can't depend on basic_block_{head,end} after
5839 reorg has run. */
5840 for (len = 0; epilogue[len]; len++)
5841 ;
5842 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
5843 {
5844 if (GET_CODE (insn) == NOTE)
5845 {
5846 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5847 note = insn;
5848 }
5849 else if ((len -= contains (insn, epilogue)) == 0)
5850 {
5851 /* Find the epilogue-begin note if we haven't already, and
5852 move it to just before the first epilogue insn. */
5853 if (note == 0)
5854 {
5855 for (note = insn; note = PREV_INSN (note);)
5856 if (GET_CODE (note) == NOTE
5857 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5858 break;
5859 }
5860 next = NEXT_INSN (note);
5861 prev = PREV_INSN (note);
5862 if (prev)
5863 NEXT_INSN (prev) = next;
5864 if (next)
5865 PREV_INSN (next) = prev;
5866 add_insn_after (note, PREV_INSN (insn));
5867 }
5868 }
5869 }
5870 }
5871 #endif /* HAVE_prologue or HAVE_epilogue */
5872 }