re PR inline-asm/33600 (Breakage caused by the fix to PR33552)
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "tree-gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 #ifndef LOCAL_ALIGNMENT
70 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
71 #endif
72
73 #ifndef STACK_ALIGNMENT_NEEDED
74 #define STACK_ALIGNMENT_NEEDED 1
75 #endif
76
77 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78
79 /* Some systems use __main in a way incompatible with its use in gcc, in these
80 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
81 give the same symbol without quotes for an alternative entry point. You
82 must define both, or neither. */
83 #ifndef NAME__MAIN
84 #define NAME__MAIN "__main"
85 #endif
86
87 /* Round a value to the lowest integer less than it that is a multiple of
88 the required alignment. Avoid using division in case the value is
89 negative. Assume the alignment is a power of two. */
90 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91
92 /* Similar, but round to the next highest integer that meets the
93 alignment. */
94 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95
96 /* Nonzero if function being compiled doesn't contain any calls
97 (ignoring the prologue and epilogue). This is set prior to
98 local register allocation and is valid for the remaining
99 compiler passes. */
100 int current_function_is_leaf;
101
102 /* Nonzero if function being compiled doesn't modify the stack pointer
103 (ignoring the prologue and epilogue). This is only valid after
104 pass_stack_ptr_mod has run. */
105 int current_function_sp_is_unchanging;
106
107 /* Nonzero if the function being compiled is a leaf function which only
108 uses leaf registers. This is valid after reload (specifically after
109 sched2) and is useful only if the port defines LEAF_REGISTERS. */
110 int current_function_uses_only_leaf_regs;
111
112 /* Nonzero once virtual register instantiation has been done.
113 assign_stack_local uses frame_pointer_rtx when this is nonzero.
114 calls.c:emit_library_call_value_1 uses it to set up
115 post-instantiation libcalls. */
116 int virtuals_instantiated;
117
118 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
119 static GTY(()) int funcdef_no;
120
121 /* These variables hold pointers to functions to create and destroy
122 target specific, per-function data structures. */
123 struct machine_function * (*init_machine_status) (void);
124
125 /* The currently compiled function. */
126 struct function *cfun = 0;
127
128 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
129 static VEC(int,heap) *prologue;
130 static VEC(int,heap) *epilogue;
131
132 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
133 in this function. */
134 static VEC(int,heap) *sibcall_epilogue;
135 \f
136 /* In order to evaluate some expressions, such as function calls returning
137 structures in memory, we need to temporarily allocate stack locations.
138 We record each allocated temporary in the following structure.
139
140 Associated with each temporary slot is a nesting level. When we pop up
141 one level, all temporaries associated with the previous level are freed.
142 Normally, all temporaries are freed after the execution of the statement
143 in which they were created. However, if we are inside a ({...}) grouping,
144 the result may be in a temporary and hence must be preserved. If the
145 result could be in a temporary, we preserve it if we can determine which
146 one it is in. If we cannot determine which temporary may contain the
147 result, all temporaries are preserved. A temporary is preserved by
148 pretending it was allocated at the previous nesting level.
149
150 Automatic variables are also assigned temporary slots, at the nesting
151 level where they are defined. They are marked a "kept" so that
152 free_temp_slots will not free them. */
153
154 struct temp_slot GTY(())
155 {
156 /* Points to next temporary slot. */
157 struct temp_slot *next;
158 /* Points to previous temporary slot. */
159 struct temp_slot *prev;
160
161 /* The rtx to used to reference the slot. */
162 rtx slot;
163 /* The rtx used to represent the address if not the address of the
164 slot above. May be an EXPR_LIST if multiple addresses exist. */
165 rtx address;
166 /* The alignment (in bits) of the slot. */
167 unsigned int align;
168 /* The size, in units, of the slot. */
169 HOST_WIDE_INT size;
170 /* The type of the object in the slot, or zero if it doesn't correspond
171 to a type. We use this to determine whether a slot can be reused.
172 It can be reused if objects of the type of the new slot will always
173 conflict with objects of the type of the old slot. */
174 tree type;
175 /* Nonzero if this temporary is currently in use. */
176 char in_use;
177 /* Nonzero if this temporary has its address taken. */
178 char addr_taken;
179 /* Nesting level at which this slot is being used. */
180 int level;
181 /* Nonzero if this should survive a call to free_temp_slots. */
182 int keep;
183 /* The offset of the slot from the frame_pointer, including extra space
184 for alignment. This info is for combine_temp_slots. */
185 HOST_WIDE_INT base_offset;
186 /* The size of the slot, including extra space for alignment. This
187 info is for combine_temp_slots. */
188 HOST_WIDE_INT full_size;
189 };
190 \f
191 /* Forward declarations. */
192
193 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
194 struct function *);
195 static struct temp_slot *find_temp_slot_from_address (rtx);
196 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
197 static void pad_below (struct args_size *, enum machine_mode, tree);
198 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
199 static int all_blocks (tree, tree *);
200 static tree *get_block_vector (tree, int *);
201 extern tree debug_find_var_in_block_tree (tree, tree);
202 /* We always define `record_insns' even if it's not used so that we
203 can always export `prologue_epilogue_contains'. */
204 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
205 static int contains (const_rtx, VEC(int,heap) **);
206 #ifdef HAVE_return
207 static void emit_return_into_block (basic_block);
208 #endif
209 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
210 static rtx keep_stack_depressed (rtx);
211 #endif
212 static void prepare_function_start (void);
213 static void do_clobber_return_reg (rtx, void *);
214 static void do_use_return_reg (rtx, void *);
215 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
216 \f
217 /* Pointer to chain of `struct function' for containing functions. */
218 struct function *outer_function_chain;
219
220 /* Given a function decl for a containing function,
221 return the `struct function' for it. */
222
223 struct function *
224 find_function_data (tree decl)
225 {
226 struct function *p;
227
228 for (p = outer_function_chain; p; p = p->outer)
229 if (p->decl == decl)
230 return p;
231
232 gcc_unreachable ();
233 }
234
235 /* Save the current context for compilation of a nested function.
236 This is called from language-specific code. The caller should use
237 the enter_nested langhook to save any language-specific state,
238 since this function knows only about language-independent
239 variables. */
240
241 void
242 push_function_context_to (tree context ATTRIBUTE_UNUSED)
243 {
244 struct function *p;
245
246 if (cfun == 0)
247 allocate_struct_function (NULL);
248 p = cfun;
249
250 p->outer = outer_function_chain;
251 outer_function_chain = p;
252
253 lang_hooks.function.enter_nested (p);
254
255 set_cfun (NULL);
256 }
257
258 void
259 push_function_context (void)
260 {
261 push_function_context_to (current_function_decl);
262 }
263
264 /* Restore the last saved context, at the end of a nested function.
265 This function is called from language-specific code. */
266
267 void
268 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
269 {
270 struct function *p = outer_function_chain;
271
272 set_cfun (p);
273 outer_function_chain = p->outer;
274
275 current_function_decl = p->decl;
276
277 lang_hooks.function.leave_nested (p);
278
279 /* Reset variables that have known state during rtx generation. */
280 virtuals_instantiated = 0;
281 generating_concat_p = 1;
282 }
283
284 void
285 pop_function_context (void)
286 {
287 pop_function_context_from (current_function_decl);
288 }
289
290 /* Clear out all parts of the state in F that can safely be discarded
291 after the function has been parsed, but not compiled, to let
292 garbage collection reclaim the memory. */
293
294 void
295 free_after_parsing (struct function *f)
296 {
297 /* f->expr->forced_labels is used by code generation. */
298 /* f->emit->regno_reg_rtx is used by code generation. */
299 /* f->varasm is used by code generation. */
300 /* f->eh->eh_return_stub_label is used by code generation. */
301
302 lang_hooks.function.final (f);
303 }
304
305 /* Clear out all parts of the state in F that can safely be discarded
306 after the function has been compiled, to let garbage collection
307 reclaim the memory. */
308
309 void
310 free_after_compilation (struct function *f)
311 {
312 VEC_free (int, heap, prologue);
313 VEC_free (int, heap, epilogue);
314 VEC_free (int, heap, sibcall_epilogue);
315
316 f->eh = NULL;
317 f->expr = NULL;
318 f->emit = NULL;
319 f->varasm = NULL;
320 f->machine = NULL;
321 f->cfg = NULL;
322
323 f->x_avail_temp_slots = NULL;
324 f->x_used_temp_slots = NULL;
325 f->arg_offset_rtx = NULL;
326 f->return_rtx = NULL;
327 f->internal_arg_pointer = NULL;
328 f->x_nonlocal_goto_handler_labels = NULL;
329 f->x_return_label = NULL;
330 f->x_naked_return_label = NULL;
331 f->x_stack_slot_list = NULL;
332 f->x_stack_check_probe_note = NULL;
333 f->x_arg_pointer_save_area = NULL;
334 f->x_parm_birth_insn = NULL;
335 f->epilogue_delay_list = NULL;
336 }
337 \f
338 /* Allocate fixed slots in the stack frame of the current function. */
339
340 /* Return size needed for stack frame based on slots so far allocated in
341 function F.
342 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
343 the caller may have to do that. */
344
345 static HOST_WIDE_INT
346 get_func_frame_size (struct function *f)
347 {
348 if (FRAME_GROWS_DOWNWARD)
349 return -f->x_frame_offset;
350 else
351 return f->x_frame_offset;
352 }
353
354 /* Return size needed for stack frame based on slots so far allocated.
355 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
356 the caller may have to do that. */
357
358 HOST_WIDE_INT
359 get_frame_size (void)
360 {
361 return get_func_frame_size (cfun);
362 }
363
364 /* Issue an error message and return TRUE if frame OFFSET overflows in
365 the signed target pointer arithmetics for function FUNC. Otherwise
366 return FALSE. */
367
368 bool
369 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
370 {
371 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
372
373 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
374 /* Leave room for the fixed part of the frame. */
375 - 64 * UNITS_PER_WORD)
376 {
377 error ("%Jtotal size of local objects too large", func);
378 return TRUE;
379 }
380
381 return FALSE;
382 }
383
384 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
385 with machine mode MODE.
386
387 ALIGN controls the amount of alignment for the address of the slot:
388 0 means according to MODE,
389 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
390 -2 means use BITS_PER_UNIT,
391 positive specifies alignment boundary in bits.
392
393 We do not round to stack_boundary here.
394
395 FUNCTION specifies the function to allocate in. */
396
397 static rtx
398 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
399 struct function *function)
400 {
401 rtx x, addr;
402 int bigend_correction = 0;
403 unsigned int alignment;
404 int frame_off, frame_alignment, frame_phase;
405
406 if (align == 0)
407 {
408 tree type;
409
410 if (mode == BLKmode)
411 alignment = BIGGEST_ALIGNMENT;
412 else
413 alignment = GET_MODE_ALIGNMENT (mode);
414
415 /* Allow the target to (possibly) increase the alignment of this
416 stack slot. */
417 type = lang_hooks.types.type_for_mode (mode, 0);
418 if (type)
419 alignment = LOCAL_ALIGNMENT (type, alignment);
420
421 alignment /= BITS_PER_UNIT;
422 }
423 else if (align == -1)
424 {
425 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
426 size = CEIL_ROUND (size, alignment);
427 }
428 else if (align == -2)
429 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
430 else
431 alignment = align / BITS_PER_UNIT;
432
433 if (FRAME_GROWS_DOWNWARD)
434 function->x_frame_offset -= size;
435
436 /* Ignore alignment we can't do with expected alignment of the boundary. */
437 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
438 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
439
440 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
441 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
442
443 /* Calculate how many bytes the start of local variables is off from
444 stack alignment. */
445 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
446 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
447 frame_phase = frame_off ? frame_alignment - frame_off : 0;
448
449 /* Round the frame offset to the specified alignment. The default is
450 to always honor requests to align the stack but a port may choose to
451 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
452 if (STACK_ALIGNMENT_NEEDED
453 || mode != BLKmode
454 || size != 0)
455 {
456 /* We must be careful here, since FRAME_OFFSET might be negative and
457 division with a negative dividend isn't as well defined as we might
458 like. So we instead assume that ALIGNMENT is a power of two and
459 use logical operations which are unambiguous. */
460 if (FRAME_GROWS_DOWNWARD)
461 function->x_frame_offset
462 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
463 (unsigned HOST_WIDE_INT) alignment)
464 + frame_phase);
465 else
466 function->x_frame_offset
467 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
468 (unsigned HOST_WIDE_INT) alignment)
469 + frame_phase);
470 }
471
472 /* On a big-endian machine, if we are allocating more space than we will use,
473 use the least significant bytes of those that are allocated. */
474 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
475 bigend_correction = size - GET_MODE_SIZE (mode);
476
477 /* If we have already instantiated virtual registers, return the actual
478 address relative to the frame pointer. */
479 if (function == cfun && virtuals_instantiated)
480 addr = plus_constant (frame_pointer_rtx,
481 trunc_int_for_mode
482 (frame_offset + bigend_correction
483 + STARTING_FRAME_OFFSET, Pmode));
484 else
485 addr = plus_constant (virtual_stack_vars_rtx,
486 trunc_int_for_mode
487 (function->x_frame_offset + bigend_correction,
488 Pmode));
489
490 if (!FRAME_GROWS_DOWNWARD)
491 function->x_frame_offset += size;
492
493 x = gen_rtx_MEM (mode, addr);
494 MEM_NOTRAP_P (x) = 1;
495
496 function->x_stack_slot_list
497 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
498
499 if (frame_offset_overflow (function->x_frame_offset, function->decl))
500 function->x_frame_offset = 0;
501
502 return x;
503 }
504
505 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
506 current function. */
507
508 rtx
509 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
510 {
511 return assign_stack_local_1 (mode, size, align, cfun);
512 }
513
514 \f
515 /* Removes temporary slot TEMP from LIST. */
516
517 static void
518 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
519 {
520 if (temp->next)
521 temp->next->prev = temp->prev;
522 if (temp->prev)
523 temp->prev->next = temp->next;
524 else
525 *list = temp->next;
526
527 temp->prev = temp->next = NULL;
528 }
529
530 /* Inserts temporary slot TEMP to LIST. */
531
532 static void
533 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
534 {
535 temp->next = *list;
536 if (*list)
537 (*list)->prev = temp;
538 temp->prev = NULL;
539 *list = temp;
540 }
541
542 /* Returns the list of used temp slots at LEVEL. */
543
544 static struct temp_slot **
545 temp_slots_at_level (int level)
546 {
547 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
548 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
549
550 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
551 }
552
553 /* Returns the maximal temporary slot level. */
554
555 static int
556 max_slot_level (void)
557 {
558 if (!used_temp_slots)
559 return -1;
560
561 return VEC_length (temp_slot_p, used_temp_slots) - 1;
562 }
563
564 /* Moves temporary slot TEMP to LEVEL. */
565
566 static void
567 move_slot_to_level (struct temp_slot *temp, int level)
568 {
569 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
570 insert_slot_to_list (temp, temp_slots_at_level (level));
571 temp->level = level;
572 }
573
574 /* Make temporary slot TEMP available. */
575
576 static void
577 make_slot_available (struct temp_slot *temp)
578 {
579 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
580 insert_slot_to_list (temp, &avail_temp_slots);
581 temp->in_use = 0;
582 temp->level = -1;
583 }
584 \f
585 /* Allocate a temporary stack slot and record it for possible later
586 reuse.
587
588 MODE is the machine mode to be given to the returned rtx.
589
590 SIZE is the size in units of the space required. We do no rounding here
591 since assign_stack_local will do any required rounding.
592
593 KEEP is 1 if this slot is to be retained after a call to
594 free_temp_slots. Automatic variables for a block are allocated
595 with this flag. KEEP values of 2 or 3 were needed respectively
596 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
597 or for SAVE_EXPRs, but they are now unused.
598
599 TYPE is the type that will be used for the stack slot. */
600
601 rtx
602 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
603 int keep, tree type)
604 {
605 unsigned int align;
606 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
607 rtx slot;
608
609 /* If SIZE is -1 it means that somebody tried to allocate a temporary
610 of a variable size. */
611 gcc_assert (size != -1);
612
613 /* These are now unused. */
614 gcc_assert (keep <= 1);
615
616 if (mode == BLKmode)
617 align = BIGGEST_ALIGNMENT;
618 else
619 align = GET_MODE_ALIGNMENT (mode);
620
621 if (! type)
622 type = lang_hooks.types.type_for_mode (mode, 0);
623
624 if (type)
625 align = LOCAL_ALIGNMENT (type, align);
626
627 /* Try to find an available, already-allocated temporary of the proper
628 mode which meets the size and alignment requirements. Choose the
629 smallest one with the closest alignment.
630
631 If assign_stack_temp is called outside of the tree->rtl expansion,
632 we cannot reuse the stack slots (that may still refer to
633 VIRTUAL_STACK_VARS_REGNUM). */
634 if (!virtuals_instantiated)
635 {
636 for (p = avail_temp_slots; p; p = p->next)
637 {
638 if (p->align >= align && p->size >= size
639 && GET_MODE (p->slot) == mode
640 && objects_must_conflict_p (p->type, type)
641 && (best_p == 0 || best_p->size > p->size
642 || (best_p->size == p->size && best_p->align > p->align)))
643 {
644 if (p->align == align && p->size == size)
645 {
646 selected = p;
647 cut_slot_from_list (selected, &avail_temp_slots);
648 best_p = 0;
649 break;
650 }
651 best_p = p;
652 }
653 }
654 }
655
656 /* Make our best, if any, the one to use. */
657 if (best_p)
658 {
659 selected = best_p;
660 cut_slot_from_list (selected, &avail_temp_slots);
661
662 /* If there are enough aligned bytes left over, make them into a new
663 temp_slot so that the extra bytes don't get wasted. Do this only
664 for BLKmode slots, so that we can be sure of the alignment. */
665 if (GET_MODE (best_p->slot) == BLKmode)
666 {
667 int alignment = best_p->align / BITS_PER_UNIT;
668 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
669
670 if (best_p->size - rounded_size >= alignment)
671 {
672 p = ggc_alloc (sizeof (struct temp_slot));
673 p->in_use = p->addr_taken = 0;
674 p->size = best_p->size - rounded_size;
675 p->base_offset = best_p->base_offset + rounded_size;
676 p->full_size = best_p->full_size - rounded_size;
677 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
678 p->align = best_p->align;
679 p->address = 0;
680 p->type = best_p->type;
681 insert_slot_to_list (p, &avail_temp_slots);
682
683 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
684 stack_slot_list);
685
686 best_p->size = rounded_size;
687 best_p->full_size = rounded_size;
688 }
689 }
690 }
691
692 /* If we still didn't find one, make a new temporary. */
693 if (selected == 0)
694 {
695 HOST_WIDE_INT frame_offset_old = frame_offset;
696
697 p = ggc_alloc (sizeof (struct temp_slot));
698
699 /* We are passing an explicit alignment request to assign_stack_local.
700 One side effect of that is assign_stack_local will not round SIZE
701 to ensure the frame offset remains suitably aligned.
702
703 So for requests which depended on the rounding of SIZE, we go ahead
704 and round it now. We also make sure ALIGNMENT is at least
705 BIGGEST_ALIGNMENT. */
706 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
707 p->slot = assign_stack_local (mode,
708 (mode == BLKmode
709 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
710 : size),
711 align);
712
713 p->align = align;
714
715 /* The following slot size computation is necessary because we don't
716 know the actual size of the temporary slot until assign_stack_local
717 has performed all the frame alignment and size rounding for the
718 requested temporary. Note that extra space added for alignment
719 can be either above or below this stack slot depending on which
720 way the frame grows. We include the extra space if and only if it
721 is above this slot. */
722 if (FRAME_GROWS_DOWNWARD)
723 p->size = frame_offset_old - frame_offset;
724 else
725 p->size = size;
726
727 /* Now define the fields used by combine_temp_slots. */
728 if (FRAME_GROWS_DOWNWARD)
729 {
730 p->base_offset = frame_offset;
731 p->full_size = frame_offset_old - frame_offset;
732 }
733 else
734 {
735 p->base_offset = frame_offset_old;
736 p->full_size = frame_offset - frame_offset_old;
737 }
738 p->address = 0;
739
740 selected = p;
741 }
742
743 p = selected;
744 p->in_use = 1;
745 p->addr_taken = 0;
746 p->type = type;
747 p->level = temp_slot_level;
748 p->keep = keep;
749
750 pp = temp_slots_at_level (p->level);
751 insert_slot_to_list (p, pp);
752
753 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
754 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
755 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
756
757 /* If we know the alias set for the memory that will be used, use
758 it. If there's no TYPE, then we don't know anything about the
759 alias set for the memory. */
760 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
761 set_mem_align (slot, align);
762
763 /* If a type is specified, set the relevant flags. */
764 if (type != 0)
765 {
766 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
767 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
768 || TREE_CODE (type) == COMPLEX_TYPE));
769 }
770 MEM_NOTRAP_P (slot) = 1;
771
772 return slot;
773 }
774
775 /* Allocate a temporary stack slot and record it for possible later
776 reuse. First three arguments are same as in preceding function. */
777
778 rtx
779 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
780 {
781 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
782 }
783 \f
784 /* Assign a temporary.
785 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
786 and so that should be used in error messages. In either case, we
787 allocate of the given type.
788 KEEP is as for assign_stack_temp.
789 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
790 it is 0 if a register is OK.
791 DONT_PROMOTE is 1 if we should not promote values in register
792 to wider modes. */
793
794 rtx
795 assign_temp (tree type_or_decl, int keep, int memory_required,
796 int dont_promote ATTRIBUTE_UNUSED)
797 {
798 tree type, decl;
799 enum machine_mode mode;
800 #ifdef PROMOTE_MODE
801 int unsignedp;
802 #endif
803
804 if (DECL_P (type_or_decl))
805 decl = type_or_decl, type = TREE_TYPE (decl);
806 else
807 decl = NULL, type = type_or_decl;
808
809 mode = TYPE_MODE (type);
810 #ifdef PROMOTE_MODE
811 unsignedp = TYPE_UNSIGNED (type);
812 #endif
813
814 if (mode == BLKmode || memory_required)
815 {
816 HOST_WIDE_INT size = int_size_in_bytes (type);
817 rtx tmp;
818
819 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
820 problems with allocating the stack space. */
821 if (size == 0)
822 size = 1;
823
824 /* Unfortunately, we don't yet know how to allocate variable-sized
825 temporaries. However, sometimes we can find a fixed upper limit on
826 the size, so try that instead. */
827 else if (size == -1)
828 size = max_int_size_in_bytes (type);
829
830 /* The size of the temporary may be too large to fit into an integer. */
831 /* ??? Not sure this should happen except for user silliness, so limit
832 this to things that aren't compiler-generated temporaries. The
833 rest of the time we'll die in assign_stack_temp_for_type. */
834 if (decl && size == -1
835 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
836 {
837 error ("size of variable %q+D is too large", decl);
838 size = 1;
839 }
840
841 tmp = assign_stack_temp_for_type (mode, size, keep, type);
842 return tmp;
843 }
844
845 #ifdef PROMOTE_MODE
846 if (! dont_promote)
847 mode = promote_mode (type, mode, &unsignedp, 0);
848 #endif
849
850 return gen_reg_rtx (mode);
851 }
852 \f
853 /* Combine temporary stack slots which are adjacent on the stack.
854
855 This allows for better use of already allocated stack space. This is only
856 done for BLKmode slots because we can be sure that we won't have alignment
857 problems in this case. */
858
859 static void
860 combine_temp_slots (void)
861 {
862 struct temp_slot *p, *q, *next, *next_q;
863 int num_slots;
864
865 /* We can't combine slots, because the information about which slot
866 is in which alias set will be lost. */
867 if (flag_strict_aliasing)
868 return;
869
870 /* If there are a lot of temp slots, don't do anything unless
871 high levels of optimization. */
872 if (! flag_expensive_optimizations)
873 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
874 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
875 return;
876
877 for (p = avail_temp_slots; p; p = next)
878 {
879 int delete_p = 0;
880
881 next = p->next;
882
883 if (GET_MODE (p->slot) != BLKmode)
884 continue;
885
886 for (q = p->next; q; q = next_q)
887 {
888 int delete_q = 0;
889
890 next_q = q->next;
891
892 if (GET_MODE (q->slot) != BLKmode)
893 continue;
894
895 if (p->base_offset + p->full_size == q->base_offset)
896 {
897 /* Q comes after P; combine Q into P. */
898 p->size += q->size;
899 p->full_size += q->full_size;
900 delete_q = 1;
901 }
902 else if (q->base_offset + q->full_size == p->base_offset)
903 {
904 /* P comes after Q; combine P into Q. */
905 q->size += p->size;
906 q->full_size += p->full_size;
907 delete_p = 1;
908 break;
909 }
910 if (delete_q)
911 cut_slot_from_list (q, &avail_temp_slots);
912 }
913
914 /* Either delete P or advance past it. */
915 if (delete_p)
916 cut_slot_from_list (p, &avail_temp_slots);
917 }
918 }
919 \f
920 /* Find the temp slot corresponding to the object at address X. */
921
922 static struct temp_slot *
923 find_temp_slot_from_address (rtx x)
924 {
925 struct temp_slot *p;
926 rtx next;
927 int i;
928
929 for (i = max_slot_level (); i >= 0; i--)
930 for (p = *temp_slots_at_level (i); p; p = p->next)
931 {
932 if (XEXP (p->slot, 0) == x
933 || p->address == x
934 || (GET_CODE (x) == PLUS
935 && XEXP (x, 0) == virtual_stack_vars_rtx
936 && GET_CODE (XEXP (x, 1)) == CONST_INT
937 && INTVAL (XEXP (x, 1)) >= p->base_offset
938 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
939 return p;
940
941 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
942 for (next = p->address; next; next = XEXP (next, 1))
943 if (XEXP (next, 0) == x)
944 return p;
945 }
946
947 /* If we have a sum involving a register, see if it points to a temp
948 slot. */
949 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
950 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
951 return p;
952 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
953 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
954 return p;
955
956 return 0;
957 }
958
959 /* Indicate that NEW is an alternate way of referring to the temp slot
960 that previously was known by OLD. */
961
962 void
963 update_temp_slot_address (rtx old, rtx new)
964 {
965 struct temp_slot *p;
966
967 if (rtx_equal_p (old, new))
968 return;
969
970 p = find_temp_slot_from_address (old);
971
972 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
973 is a register, see if one operand of the PLUS is a temporary
974 location. If so, NEW points into it. Otherwise, if both OLD and
975 NEW are a PLUS and if there is a register in common between them.
976 If so, try a recursive call on those values. */
977 if (p == 0)
978 {
979 if (GET_CODE (old) != PLUS)
980 return;
981
982 if (REG_P (new))
983 {
984 update_temp_slot_address (XEXP (old, 0), new);
985 update_temp_slot_address (XEXP (old, 1), new);
986 return;
987 }
988 else if (GET_CODE (new) != PLUS)
989 return;
990
991 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
992 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
993 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
994 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
995 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
996 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
997 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
998 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
999
1000 return;
1001 }
1002
1003 /* Otherwise add an alias for the temp's address. */
1004 else if (p->address == 0)
1005 p->address = new;
1006 else
1007 {
1008 if (GET_CODE (p->address) != EXPR_LIST)
1009 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1010
1011 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1012 }
1013 }
1014
1015 /* If X could be a reference to a temporary slot, mark the fact that its
1016 address was taken. */
1017
1018 void
1019 mark_temp_addr_taken (rtx x)
1020 {
1021 struct temp_slot *p;
1022
1023 if (x == 0)
1024 return;
1025
1026 /* If X is not in memory or is at a constant address, it cannot be in
1027 a temporary slot. */
1028 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1029 return;
1030
1031 p = find_temp_slot_from_address (XEXP (x, 0));
1032 if (p != 0)
1033 p->addr_taken = 1;
1034 }
1035
1036 /* If X could be a reference to a temporary slot, mark that slot as
1037 belonging to the to one level higher than the current level. If X
1038 matched one of our slots, just mark that one. Otherwise, we can't
1039 easily predict which it is, so upgrade all of them. Kept slots
1040 need not be touched.
1041
1042 This is called when an ({...}) construct occurs and a statement
1043 returns a value in memory. */
1044
1045 void
1046 preserve_temp_slots (rtx x)
1047 {
1048 struct temp_slot *p = 0, *next;
1049
1050 /* If there is no result, we still might have some objects whose address
1051 were taken, so we need to make sure they stay around. */
1052 if (x == 0)
1053 {
1054 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1055 {
1056 next = p->next;
1057
1058 if (p->addr_taken)
1059 move_slot_to_level (p, temp_slot_level - 1);
1060 }
1061
1062 return;
1063 }
1064
1065 /* If X is a register that is being used as a pointer, see if we have
1066 a temporary slot we know it points to. To be consistent with
1067 the code below, we really should preserve all non-kept slots
1068 if we can't find a match, but that seems to be much too costly. */
1069 if (REG_P (x) && REG_POINTER (x))
1070 p = find_temp_slot_from_address (x);
1071
1072 /* If X is not in memory or is at a constant address, it cannot be in
1073 a temporary slot, but it can contain something whose address was
1074 taken. */
1075 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1076 {
1077 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1078 {
1079 next = p->next;
1080
1081 if (p->addr_taken)
1082 move_slot_to_level (p, temp_slot_level - 1);
1083 }
1084
1085 return;
1086 }
1087
1088 /* First see if we can find a match. */
1089 if (p == 0)
1090 p = find_temp_slot_from_address (XEXP (x, 0));
1091
1092 if (p != 0)
1093 {
1094 /* Move everything at our level whose address was taken to our new
1095 level in case we used its address. */
1096 struct temp_slot *q;
1097
1098 if (p->level == temp_slot_level)
1099 {
1100 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1101 {
1102 next = q->next;
1103
1104 if (p != q && q->addr_taken)
1105 move_slot_to_level (q, temp_slot_level - 1);
1106 }
1107
1108 move_slot_to_level (p, temp_slot_level - 1);
1109 p->addr_taken = 0;
1110 }
1111 return;
1112 }
1113
1114 /* Otherwise, preserve all non-kept slots at this level. */
1115 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1116 {
1117 next = p->next;
1118
1119 if (!p->keep)
1120 move_slot_to_level (p, temp_slot_level - 1);
1121 }
1122 }
1123
1124 /* Free all temporaries used so far. This is normally called at the
1125 end of generating code for a statement. */
1126
1127 void
1128 free_temp_slots (void)
1129 {
1130 struct temp_slot *p, *next;
1131
1132 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1133 {
1134 next = p->next;
1135
1136 if (!p->keep)
1137 make_slot_available (p);
1138 }
1139
1140 combine_temp_slots ();
1141 }
1142
1143 /* Push deeper into the nesting level for stack temporaries. */
1144
1145 void
1146 push_temp_slots (void)
1147 {
1148 temp_slot_level++;
1149 }
1150
1151 /* Pop a temporary nesting level. All slots in use in the current level
1152 are freed. */
1153
1154 void
1155 pop_temp_slots (void)
1156 {
1157 struct temp_slot *p, *next;
1158
1159 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1160 {
1161 next = p->next;
1162 make_slot_available (p);
1163 }
1164
1165 combine_temp_slots ();
1166
1167 temp_slot_level--;
1168 }
1169
1170 /* Initialize temporary slots. */
1171
1172 void
1173 init_temp_slots (void)
1174 {
1175 /* We have not allocated any temporaries yet. */
1176 avail_temp_slots = 0;
1177 used_temp_slots = 0;
1178 temp_slot_level = 0;
1179 }
1180 \f
1181 /* These routines are responsible for converting virtual register references
1182 to the actual hard register references once RTL generation is complete.
1183
1184 The following four variables are used for communication between the
1185 routines. They contain the offsets of the virtual registers from their
1186 respective hard registers. */
1187
1188 static int in_arg_offset;
1189 static int var_offset;
1190 static int dynamic_offset;
1191 static int out_arg_offset;
1192 static int cfa_offset;
1193
1194 /* In most machines, the stack pointer register is equivalent to the bottom
1195 of the stack. */
1196
1197 #ifndef STACK_POINTER_OFFSET
1198 #define STACK_POINTER_OFFSET 0
1199 #endif
1200
1201 /* If not defined, pick an appropriate default for the offset of dynamically
1202 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1203 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1204
1205 #ifndef STACK_DYNAMIC_OFFSET
1206
1207 /* The bottom of the stack points to the actual arguments. If
1208 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1209 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1210 stack space for register parameters is not pushed by the caller, but
1211 rather part of the fixed stack areas and hence not included in
1212 `current_function_outgoing_args_size'. Nevertheless, we must allow
1213 for it when allocating stack dynamic objects. */
1214
1215 #if defined(REG_PARM_STACK_SPACE)
1216 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1217 ((ACCUMULATE_OUTGOING_ARGS \
1218 ? (current_function_outgoing_args_size \
1219 + (OUTGOING_REG_PARM_STACK_SPACE ? 0 : REG_PARM_STACK_SPACE (FNDECL))) \
1220 : 0) + (STACK_POINTER_OFFSET))
1221 #else
1222 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1223 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1224 + (STACK_POINTER_OFFSET))
1225 #endif
1226 #endif
1227
1228 \f
1229 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1230 is a virtual register, return the equivalent hard register and set the
1231 offset indirectly through the pointer. Otherwise, return 0. */
1232
1233 static rtx
1234 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1235 {
1236 rtx new;
1237 HOST_WIDE_INT offset;
1238
1239 if (x == virtual_incoming_args_rtx)
1240 new = arg_pointer_rtx, offset = in_arg_offset;
1241 else if (x == virtual_stack_vars_rtx)
1242 new = frame_pointer_rtx, offset = var_offset;
1243 else if (x == virtual_stack_dynamic_rtx)
1244 new = stack_pointer_rtx, offset = dynamic_offset;
1245 else if (x == virtual_outgoing_args_rtx)
1246 new = stack_pointer_rtx, offset = out_arg_offset;
1247 else if (x == virtual_cfa_rtx)
1248 {
1249 #ifdef FRAME_POINTER_CFA_OFFSET
1250 new = frame_pointer_rtx;
1251 #else
1252 new = arg_pointer_rtx;
1253 #endif
1254 offset = cfa_offset;
1255 }
1256 else
1257 return NULL_RTX;
1258
1259 *poffset = offset;
1260 return new;
1261 }
1262
1263 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1264 Instantiate any virtual registers present inside of *LOC. The expression
1265 is simplified, as much as possible, but is not to be considered "valid"
1266 in any sense implied by the target. If any change is made, set CHANGED
1267 to true. */
1268
1269 static int
1270 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1271 {
1272 HOST_WIDE_INT offset;
1273 bool *changed = (bool *) data;
1274 rtx x, new;
1275
1276 x = *loc;
1277 if (x == 0)
1278 return 0;
1279
1280 switch (GET_CODE (x))
1281 {
1282 case REG:
1283 new = instantiate_new_reg (x, &offset);
1284 if (new)
1285 {
1286 *loc = plus_constant (new, offset);
1287 if (changed)
1288 *changed = true;
1289 }
1290 return -1;
1291
1292 case PLUS:
1293 new = instantiate_new_reg (XEXP (x, 0), &offset);
1294 if (new)
1295 {
1296 new = plus_constant (new, offset);
1297 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1298 if (changed)
1299 *changed = true;
1300 return -1;
1301 }
1302
1303 /* FIXME -- from old code */
1304 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1305 we can commute the PLUS and SUBREG because pointers into the
1306 frame are well-behaved. */
1307 break;
1308
1309 default:
1310 break;
1311 }
1312
1313 return 0;
1314 }
1315
1316 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1317 matches the predicate for insn CODE operand OPERAND. */
1318
1319 static int
1320 safe_insn_predicate (int code, int operand, rtx x)
1321 {
1322 const struct insn_operand_data *op_data;
1323
1324 if (code < 0)
1325 return true;
1326
1327 op_data = &insn_data[code].operand[operand];
1328 if (op_data->predicate == NULL)
1329 return true;
1330
1331 return op_data->predicate (x, op_data->mode);
1332 }
1333
1334 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1335 registers present inside of insn. The result will be a valid insn. */
1336
1337 static void
1338 instantiate_virtual_regs_in_insn (rtx insn)
1339 {
1340 HOST_WIDE_INT offset;
1341 int insn_code, i;
1342 bool any_change = false;
1343 rtx set, new, x, seq;
1344
1345 /* There are some special cases to be handled first. */
1346 set = single_set (insn);
1347 if (set)
1348 {
1349 /* We're allowed to assign to a virtual register. This is interpreted
1350 to mean that the underlying register gets assigned the inverse
1351 transformation. This is used, for example, in the handling of
1352 non-local gotos. */
1353 new = instantiate_new_reg (SET_DEST (set), &offset);
1354 if (new)
1355 {
1356 start_sequence ();
1357
1358 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1359 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1360 GEN_INT (-offset));
1361 x = force_operand (x, new);
1362 if (x != new)
1363 emit_move_insn (new, x);
1364
1365 seq = get_insns ();
1366 end_sequence ();
1367
1368 emit_insn_before (seq, insn);
1369 delete_insn (insn);
1370 return;
1371 }
1372
1373 /* Handle a straight copy from a virtual register by generating a
1374 new add insn. The difference between this and falling through
1375 to the generic case is avoiding a new pseudo and eliminating a
1376 move insn in the initial rtl stream. */
1377 new = instantiate_new_reg (SET_SRC (set), &offset);
1378 if (new && offset != 0
1379 && REG_P (SET_DEST (set))
1380 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1381 {
1382 start_sequence ();
1383
1384 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1385 new, GEN_INT (offset), SET_DEST (set),
1386 1, OPTAB_LIB_WIDEN);
1387 if (x != SET_DEST (set))
1388 emit_move_insn (SET_DEST (set), x);
1389
1390 seq = get_insns ();
1391 end_sequence ();
1392
1393 emit_insn_before (seq, insn);
1394 delete_insn (insn);
1395 return;
1396 }
1397
1398 extract_insn (insn);
1399 insn_code = INSN_CODE (insn);
1400
1401 /* Handle a plus involving a virtual register by determining if the
1402 operands remain valid if they're modified in place. */
1403 if (GET_CODE (SET_SRC (set)) == PLUS
1404 && recog_data.n_operands >= 3
1405 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1406 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1407 && GET_CODE (recog_data.operand[2]) == CONST_INT
1408 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1409 {
1410 offset += INTVAL (recog_data.operand[2]);
1411
1412 /* If the sum is zero, then replace with a plain move. */
1413 if (offset == 0
1414 && REG_P (SET_DEST (set))
1415 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1416 {
1417 start_sequence ();
1418 emit_move_insn (SET_DEST (set), new);
1419 seq = get_insns ();
1420 end_sequence ();
1421
1422 emit_insn_before (seq, insn);
1423 delete_insn (insn);
1424 return;
1425 }
1426
1427 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1428
1429 /* Using validate_change and apply_change_group here leaves
1430 recog_data in an invalid state. Since we know exactly what
1431 we want to check, do those two by hand. */
1432 if (safe_insn_predicate (insn_code, 1, new)
1433 && safe_insn_predicate (insn_code, 2, x))
1434 {
1435 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1436 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1437 any_change = true;
1438
1439 /* Fall through into the regular operand fixup loop in
1440 order to take care of operands other than 1 and 2. */
1441 }
1442 }
1443 }
1444 else
1445 {
1446 extract_insn (insn);
1447 insn_code = INSN_CODE (insn);
1448 }
1449
1450 /* In the general case, we expect virtual registers to appear only in
1451 operands, and then only as either bare registers or inside memories. */
1452 for (i = 0; i < recog_data.n_operands; ++i)
1453 {
1454 x = recog_data.operand[i];
1455 switch (GET_CODE (x))
1456 {
1457 case MEM:
1458 {
1459 rtx addr = XEXP (x, 0);
1460 bool changed = false;
1461
1462 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1463 if (!changed)
1464 continue;
1465
1466 start_sequence ();
1467 x = replace_equiv_address (x, addr);
1468 seq = get_insns ();
1469 end_sequence ();
1470 if (seq)
1471 emit_insn_before (seq, insn);
1472 }
1473 break;
1474
1475 case REG:
1476 new = instantiate_new_reg (x, &offset);
1477 if (new == NULL)
1478 continue;
1479 if (offset == 0)
1480 x = new;
1481 else
1482 {
1483 start_sequence ();
1484
1485 /* Careful, special mode predicates may have stuff in
1486 insn_data[insn_code].operand[i].mode that isn't useful
1487 to us for computing a new value. */
1488 /* ??? Recognize address_operand and/or "p" constraints
1489 to see if (plus new offset) is a valid before we put
1490 this through expand_simple_binop. */
1491 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1492 GEN_INT (offset), NULL_RTX,
1493 1, OPTAB_LIB_WIDEN);
1494 seq = get_insns ();
1495 end_sequence ();
1496 emit_insn_before (seq, insn);
1497 }
1498 break;
1499
1500 case SUBREG:
1501 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1502 if (new == NULL)
1503 continue;
1504 if (offset != 0)
1505 {
1506 start_sequence ();
1507 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1508 GEN_INT (offset), NULL_RTX,
1509 1, OPTAB_LIB_WIDEN);
1510 seq = get_insns ();
1511 end_sequence ();
1512 emit_insn_before (seq, insn);
1513 }
1514 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1515 GET_MODE (new), SUBREG_BYTE (x));
1516 break;
1517
1518 default:
1519 continue;
1520 }
1521
1522 /* At this point, X contains the new value for the operand.
1523 Validate the new value vs the insn predicate. Note that
1524 asm insns will have insn_code -1 here. */
1525 if (!safe_insn_predicate (insn_code, i, x))
1526 {
1527 start_sequence ();
1528 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1529 seq = get_insns ();
1530 end_sequence ();
1531 if (seq)
1532 emit_insn_before (seq, insn);
1533 }
1534
1535 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1536 any_change = true;
1537 }
1538
1539 if (any_change)
1540 {
1541 /* Propagate operand changes into the duplicates. */
1542 for (i = 0; i < recog_data.n_dups; ++i)
1543 *recog_data.dup_loc[i]
1544 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1545
1546 /* Force re-recognition of the instruction for validation. */
1547 INSN_CODE (insn) = -1;
1548 }
1549
1550 if (asm_noperands (PATTERN (insn)) >= 0)
1551 {
1552 if (!check_asm_operands (PATTERN (insn)))
1553 {
1554 error_for_asm (insn, "impossible constraint in %<asm%>");
1555 delete_insn (insn);
1556 }
1557 }
1558 else
1559 {
1560 if (recog_memoized (insn) < 0)
1561 fatal_insn_not_found (insn);
1562 }
1563 }
1564
1565 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1566 do any instantiation required. */
1567
1568 static void
1569 instantiate_decl (rtx x)
1570 {
1571 rtx addr;
1572
1573 if (x == 0)
1574 return;
1575
1576 /* If this is a CONCAT, recurse for the pieces. */
1577 if (GET_CODE (x) == CONCAT)
1578 {
1579 instantiate_decl (XEXP (x, 0));
1580 instantiate_decl (XEXP (x, 1));
1581 return;
1582 }
1583
1584 /* If this is not a MEM, no need to do anything. Similarly if the
1585 address is a constant or a register that is not a virtual register. */
1586 if (!MEM_P (x))
1587 return;
1588
1589 addr = XEXP (x, 0);
1590 if (CONSTANT_P (addr)
1591 || (REG_P (addr)
1592 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1593 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1594 return;
1595
1596 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1597 }
1598
1599 /* Helper for instantiate_decls called via walk_tree: Process all decls
1600 in the given DECL_VALUE_EXPR. */
1601
1602 static tree
1603 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1604 {
1605 tree t = *tp;
1606 if (! EXPR_P (t) && ! GIMPLE_STMT_P (t))
1607 {
1608 *walk_subtrees = 0;
1609 if (DECL_P (t) && DECL_RTL_SET_P (t))
1610 instantiate_decl (DECL_RTL (t));
1611 }
1612 return NULL;
1613 }
1614
1615 /* Subroutine of instantiate_decls: Process all decls in the given
1616 BLOCK node and all its subblocks. */
1617
1618 static void
1619 instantiate_decls_1 (tree let)
1620 {
1621 tree t;
1622
1623 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1624 {
1625 if (DECL_RTL_SET_P (t))
1626 instantiate_decl (DECL_RTL (t));
1627 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1628 {
1629 tree v = DECL_VALUE_EXPR (t);
1630 walk_tree (&v, instantiate_expr, NULL, NULL);
1631 }
1632 }
1633
1634 /* Process all subblocks. */
1635 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1636 instantiate_decls_1 (t);
1637 }
1638
1639 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1640 all virtual registers in their DECL_RTL's. */
1641
1642 static void
1643 instantiate_decls (tree fndecl)
1644 {
1645 tree decl;
1646
1647 /* Process all parameters of the function. */
1648 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1649 {
1650 instantiate_decl (DECL_RTL (decl));
1651 instantiate_decl (DECL_INCOMING_RTL (decl));
1652 if (DECL_HAS_VALUE_EXPR_P (decl))
1653 {
1654 tree v = DECL_VALUE_EXPR (decl);
1655 walk_tree (&v, instantiate_expr, NULL, NULL);
1656 }
1657 }
1658
1659 /* Now process all variables defined in the function or its subblocks. */
1660 instantiate_decls_1 (DECL_INITIAL (fndecl));
1661 }
1662
1663 /* Pass through the INSNS of function FNDECL and convert virtual register
1664 references to hard register references. */
1665
1666 static unsigned int
1667 instantiate_virtual_regs (void)
1668 {
1669 rtx insn;
1670
1671 /* Compute the offsets to use for this function. */
1672 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1673 var_offset = STARTING_FRAME_OFFSET;
1674 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1675 out_arg_offset = STACK_POINTER_OFFSET;
1676 #ifdef FRAME_POINTER_CFA_OFFSET
1677 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1678 #else
1679 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1680 #endif
1681
1682 /* Initialize recognition, indicating that volatile is OK. */
1683 init_recog ();
1684
1685 /* Scan through all the insns, instantiating every virtual register still
1686 present. */
1687 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1688 if (INSN_P (insn))
1689 {
1690 /* These patterns in the instruction stream can never be recognized.
1691 Fortunately, they shouldn't contain virtual registers either. */
1692 if (GET_CODE (PATTERN (insn)) == USE
1693 || GET_CODE (PATTERN (insn)) == CLOBBER
1694 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1695 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1696 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1697 continue;
1698
1699 instantiate_virtual_regs_in_insn (insn);
1700
1701 if (INSN_DELETED_P (insn))
1702 continue;
1703
1704 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1705
1706 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1707 if (GET_CODE (insn) == CALL_INSN)
1708 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1709 instantiate_virtual_regs_in_rtx, NULL);
1710 }
1711
1712 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1713 instantiate_decls (current_function_decl);
1714
1715 /* Indicate that, from now on, assign_stack_local should use
1716 frame_pointer_rtx. */
1717 virtuals_instantiated = 1;
1718 return 0;
1719 }
1720
1721 struct tree_opt_pass pass_instantiate_virtual_regs =
1722 {
1723 "vregs", /* name */
1724 NULL, /* gate */
1725 instantiate_virtual_regs, /* execute */
1726 NULL, /* sub */
1727 NULL, /* next */
1728 0, /* static_pass_number */
1729 0, /* tv_id */
1730 0, /* properties_required */
1731 0, /* properties_provided */
1732 0, /* properties_destroyed */
1733 0, /* todo_flags_start */
1734 TODO_dump_func, /* todo_flags_finish */
1735 0 /* letter */
1736 };
1737
1738 \f
1739 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1740 This means a type for which function calls must pass an address to the
1741 function or get an address back from the function.
1742 EXP may be a type node or an expression (whose type is tested). */
1743
1744 int
1745 aggregate_value_p (const_tree exp, const_tree fntype)
1746 {
1747 int i, regno, nregs;
1748 rtx reg;
1749
1750 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1751
1752 /* DECL node associated with FNTYPE when relevant, which we might need to
1753 check for by-invisible-reference returns, typically for CALL_EXPR input
1754 EXPressions. */
1755 const_tree fndecl = NULL_TREE;
1756
1757 if (fntype)
1758 switch (TREE_CODE (fntype))
1759 {
1760 case CALL_EXPR:
1761 fndecl = get_callee_fndecl (fntype);
1762 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1763 break;
1764 case FUNCTION_DECL:
1765 fndecl = fntype;
1766 fntype = TREE_TYPE (fndecl);
1767 break;
1768 case FUNCTION_TYPE:
1769 case METHOD_TYPE:
1770 break;
1771 case IDENTIFIER_NODE:
1772 fntype = 0;
1773 break;
1774 default:
1775 /* We don't expect other rtl types here. */
1776 gcc_unreachable ();
1777 }
1778
1779 if (TREE_CODE (type) == VOID_TYPE)
1780 return 0;
1781
1782 /* If the front end has decided that this needs to be passed by
1783 reference, do so. */
1784 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1785 && DECL_BY_REFERENCE (exp))
1786 return 1;
1787
1788 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1789 called function RESULT_DECL, meaning the function returns in memory by
1790 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1791 on the function type, which used to be the way to request such a return
1792 mechanism but might now be causing troubles at gimplification time if
1793 temporaries with the function type need to be created. */
1794 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1795 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1796 return 1;
1797
1798 if (targetm.calls.return_in_memory (type, fntype))
1799 return 1;
1800 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1801 and thus can't be returned in registers. */
1802 if (TREE_ADDRESSABLE (type))
1803 return 1;
1804 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1805 return 1;
1806 /* Make sure we have suitable call-clobbered regs to return
1807 the value in; if not, we must return it in memory. */
1808 reg = hard_function_value (type, 0, fntype, 0);
1809
1810 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1811 it is OK. */
1812 if (!REG_P (reg))
1813 return 0;
1814
1815 regno = REGNO (reg);
1816 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1817 for (i = 0; i < nregs; i++)
1818 if (! call_used_regs[regno + i])
1819 return 1;
1820 return 0;
1821 }
1822 \f
1823 /* Return true if we should assign DECL a pseudo register; false if it
1824 should live on the local stack. */
1825
1826 bool
1827 use_register_for_decl (const_tree decl)
1828 {
1829 /* Honor volatile. */
1830 if (TREE_SIDE_EFFECTS (decl))
1831 return false;
1832
1833 /* Honor addressability. */
1834 if (TREE_ADDRESSABLE (decl))
1835 return false;
1836
1837 /* Only register-like things go in registers. */
1838 if (DECL_MODE (decl) == BLKmode)
1839 return false;
1840
1841 /* If -ffloat-store specified, don't put explicit float variables
1842 into registers. */
1843 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1844 propagates values across these stores, and it probably shouldn't. */
1845 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1846 return false;
1847
1848 /* If we're not interested in tracking debugging information for
1849 this decl, then we can certainly put it in a register. */
1850 if (DECL_IGNORED_P (decl))
1851 return true;
1852
1853 return (optimize || DECL_REGISTER (decl));
1854 }
1855
1856 /* Return true if TYPE should be passed by invisible reference. */
1857
1858 bool
1859 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1860 tree type, bool named_arg)
1861 {
1862 if (type)
1863 {
1864 /* If this type contains non-trivial constructors, then it is
1865 forbidden for the middle-end to create any new copies. */
1866 if (TREE_ADDRESSABLE (type))
1867 return true;
1868
1869 /* GCC post 3.4 passes *all* variable sized types by reference. */
1870 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1871 return true;
1872 }
1873
1874 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1875 }
1876
1877 /* Return true if TYPE, which is passed by reference, should be callee
1878 copied instead of caller copied. */
1879
1880 bool
1881 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1882 tree type, bool named_arg)
1883 {
1884 if (type && TREE_ADDRESSABLE (type))
1885 return false;
1886 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1887 }
1888
1889 /* Structures to communicate between the subroutines of assign_parms.
1890 The first holds data persistent across all parameters, the second
1891 is cleared out for each parameter. */
1892
1893 struct assign_parm_data_all
1894 {
1895 CUMULATIVE_ARGS args_so_far;
1896 struct args_size stack_args_size;
1897 tree function_result_decl;
1898 tree orig_fnargs;
1899 rtx first_conversion_insn;
1900 rtx last_conversion_insn;
1901 HOST_WIDE_INT pretend_args_size;
1902 HOST_WIDE_INT extra_pretend_bytes;
1903 int reg_parm_stack_space;
1904 };
1905
1906 struct assign_parm_data_one
1907 {
1908 tree nominal_type;
1909 tree passed_type;
1910 rtx entry_parm;
1911 rtx stack_parm;
1912 enum machine_mode nominal_mode;
1913 enum machine_mode passed_mode;
1914 enum machine_mode promoted_mode;
1915 struct locate_and_pad_arg_data locate;
1916 int partial;
1917 BOOL_BITFIELD named_arg : 1;
1918 BOOL_BITFIELD passed_pointer : 1;
1919 BOOL_BITFIELD on_stack : 1;
1920 BOOL_BITFIELD loaded_in_reg : 1;
1921 };
1922
1923 /* A subroutine of assign_parms. Initialize ALL. */
1924
1925 static void
1926 assign_parms_initialize_all (struct assign_parm_data_all *all)
1927 {
1928 tree fntype;
1929
1930 memset (all, 0, sizeof (*all));
1931
1932 fntype = TREE_TYPE (current_function_decl);
1933
1934 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1935 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1936 #else
1937 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1938 current_function_decl, -1);
1939 #endif
1940
1941 #ifdef REG_PARM_STACK_SPACE
1942 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1943 #endif
1944 }
1945
1946 /* If ARGS contains entries with complex types, split the entry into two
1947 entries of the component type. Return a new list of substitutions are
1948 needed, else the old list. */
1949
1950 static tree
1951 split_complex_args (tree args)
1952 {
1953 tree p;
1954
1955 /* Before allocating memory, check for the common case of no complex. */
1956 for (p = args; p; p = TREE_CHAIN (p))
1957 {
1958 tree type = TREE_TYPE (p);
1959 if (TREE_CODE (type) == COMPLEX_TYPE
1960 && targetm.calls.split_complex_arg (type))
1961 goto found;
1962 }
1963 return args;
1964
1965 found:
1966 args = copy_list (args);
1967
1968 for (p = args; p; p = TREE_CHAIN (p))
1969 {
1970 tree type = TREE_TYPE (p);
1971 if (TREE_CODE (type) == COMPLEX_TYPE
1972 && targetm.calls.split_complex_arg (type))
1973 {
1974 tree decl;
1975 tree subtype = TREE_TYPE (type);
1976 bool addressable = TREE_ADDRESSABLE (p);
1977
1978 /* Rewrite the PARM_DECL's type with its component. */
1979 TREE_TYPE (p) = subtype;
1980 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1981 DECL_MODE (p) = VOIDmode;
1982 DECL_SIZE (p) = NULL;
1983 DECL_SIZE_UNIT (p) = NULL;
1984 /* If this arg must go in memory, put it in a pseudo here.
1985 We can't allow it to go in memory as per normal parms,
1986 because the usual place might not have the imag part
1987 adjacent to the real part. */
1988 DECL_ARTIFICIAL (p) = addressable;
1989 DECL_IGNORED_P (p) = addressable;
1990 TREE_ADDRESSABLE (p) = 0;
1991 layout_decl (p, 0);
1992
1993 /* Build a second synthetic decl. */
1994 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1995 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1996 DECL_ARTIFICIAL (decl) = addressable;
1997 DECL_IGNORED_P (decl) = addressable;
1998 layout_decl (decl, 0);
1999
2000 /* Splice it in; skip the new decl. */
2001 TREE_CHAIN (decl) = TREE_CHAIN (p);
2002 TREE_CHAIN (p) = decl;
2003 p = decl;
2004 }
2005 }
2006
2007 return args;
2008 }
2009
2010 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2011 the hidden struct return argument, and (abi willing) complex args.
2012 Return the new parameter list. */
2013
2014 static tree
2015 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2016 {
2017 tree fndecl = current_function_decl;
2018 tree fntype = TREE_TYPE (fndecl);
2019 tree fnargs = DECL_ARGUMENTS (fndecl);
2020
2021 /* If struct value address is treated as the first argument, make it so. */
2022 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2023 && ! current_function_returns_pcc_struct
2024 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2025 {
2026 tree type = build_pointer_type (TREE_TYPE (fntype));
2027 tree decl;
2028
2029 decl = build_decl (PARM_DECL, NULL_TREE, type);
2030 DECL_ARG_TYPE (decl) = type;
2031 DECL_ARTIFICIAL (decl) = 1;
2032 DECL_IGNORED_P (decl) = 1;
2033
2034 TREE_CHAIN (decl) = fnargs;
2035 fnargs = decl;
2036 all->function_result_decl = decl;
2037 }
2038
2039 all->orig_fnargs = fnargs;
2040
2041 /* If the target wants to split complex arguments into scalars, do so. */
2042 if (targetm.calls.split_complex_arg)
2043 fnargs = split_complex_args (fnargs);
2044
2045 return fnargs;
2046 }
2047
2048 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2049 data for the parameter. Incorporate ABI specifics such as pass-by-
2050 reference and type promotion. */
2051
2052 static void
2053 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2054 struct assign_parm_data_one *data)
2055 {
2056 tree nominal_type, passed_type;
2057 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2058
2059 memset (data, 0, sizeof (*data));
2060
2061 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2062 if (!current_function_stdarg)
2063 data->named_arg = 1; /* No varadic parms. */
2064 else if (TREE_CHAIN (parm))
2065 data->named_arg = 1; /* Not the last non-varadic parm. */
2066 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2067 data->named_arg = 1; /* Only varadic ones are unnamed. */
2068 else
2069 data->named_arg = 0; /* Treat as varadic. */
2070
2071 nominal_type = TREE_TYPE (parm);
2072 passed_type = DECL_ARG_TYPE (parm);
2073
2074 /* Look out for errors propagating this far. Also, if the parameter's
2075 type is void then its value doesn't matter. */
2076 if (TREE_TYPE (parm) == error_mark_node
2077 /* This can happen after weird syntax errors
2078 or if an enum type is defined among the parms. */
2079 || TREE_CODE (parm) != PARM_DECL
2080 || passed_type == NULL
2081 || VOID_TYPE_P (nominal_type))
2082 {
2083 nominal_type = passed_type = void_type_node;
2084 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2085 goto egress;
2086 }
2087
2088 /* Find mode of arg as it is passed, and mode of arg as it should be
2089 during execution of this function. */
2090 passed_mode = TYPE_MODE (passed_type);
2091 nominal_mode = TYPE_MODE (nominal_type);
2092
2093 /* If the parm is to be passed as a transparent union, use the type of
2094 the first field for the tests below. We have already verified that
2095 the modes are the same. */
2096 if (TREE_CODE (passed_type) == UNION_TYPE
2097 && TYPE_TRANSPARENT_UNION (passed_type))
2098 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2099
2100 /* See if this arg was passed by invisible reference. */
2101 if (pass_by_reference (&all->args_so_far, passed_mode,
2102 passed_type, data->named_arg))
2103 {
2104 passed_type = nominal_type = build_pointer_type (passed_type);
2105 data->passed_pointer = true;
2106 passed_mode = nominal_mode = Pmode;
2107 }
2108
2109 /* Find mode as it is passed by the ABI. */
2110 promoted_mode = passed_mode;
2111 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2112 {
2113 int unsignedp = TYPE_UNSIGNED (passed_type);
2114 promoted_mode = promote_mode (passed_type, promoted_mode,
2115 &unsignedp, 1);
2116 }
2117
2118 egress:
2119 data->nominal_type = nominal_type;
2120 data->passed_type = passed_type;
2121 data->nominal_mode = nominal_mode;
2122 data->passed_mode = passed_mode;
2123 data->promoted_mode = promoted_mode;
2124 }
2125
2126 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2127
2128 static void
2129 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2130 struct assign_parm_data_one *data, bool no_rtl)
2131 {
2132 int varargs_pretend_bytes = 0;
2133
2134 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2135 data->promoted_mode,
2136 data->passed_type,
2137 &varargs_pretend_bytes, no_rtl);
2138
2139 /* If the back-end has requested extra stack space, record how much is
2140 needed. Do not change pretend_args_size otherwise since it may be
2141 nonzero from an earlier partial argument. */
2142 if (varargs_pretend_bytes > 0)
2143 all->pretend_args_size = varargs_pretend_bytes;
2144 }
2145
2146 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2147 the incoming location of the current parameter. */
2148
2149 static void
2150 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2151 struct assign_parm_data_one *data)
2152 {
2153 HOST_WIDE_INT pretend_bytes = 0;
2154 rtx entry_parm;
2155 bool in_regs;
2156
2157 if (data->promoted_mode == VOIDmode)
2158 {
2159 data->entry_parm = data->stack_parm = const0_rtx;
2160 return;
2161 }
2162
2163 #ifdef FUNCTION_INCOMING_ARG
2164 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2165 data->passed_type, data->named_arg);
2166 #else
2167 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2168 data->passed_type, data->named_arg);
2169 #endif
2170
2171 if (entry_parm == 0)
2172 data->promoted_mode = data->passed_mode;
2173
2174 /* Determine parm's home in the stack, in case it arrives in the stack
2175 or we should pretend it did. Compute the stack position and rtx where
2176 the argument arrives and its size.
2177
2178 There is one complexity here: If this was a parameter that would
2179 have been passed in registers, but wasn't only because it is
2180 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2181 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2182 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2183 as it was the previous time. */
2184 in_regs = entry_parm != 0;
2185 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2186 in_regs = true;
2187 #endif
2188 if (!in_regs && !data->named_arg)
2189 {
2190 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2191 {
2192 rtx tem;
2193 #ifdef FUNCTION_INCOMING_ARG
2194 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2195 data->passed_type, true);
2196 #else
2197 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2198 data->passed_type, true);
2199 #endif
2200 in_regs = tem != NULL;
2201 }
2202 }
2203
2204 /* If this parameter was passed both in registers and in the stack, use
2205 the copy on the stack. */
2206 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2207 data->passed_type))
2208 entry_parm = 0;
2209
2210 if (entry_parm)
2211 {
2212 int partial;
2213
2214 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2215 data->promoted_mode,
2216 data->passed_type,
2217 data->named_arg);
2218 data->partial = partial;
2219
2220 /* The caller might already have allocated stack space for the
2221 register parameters. */
2222 if (partial != 0 && all->reg_parm_stack_space == 0)
2223 {
2224 /* Part of this argument is passed in registers and part
2225 is passed on the stack. Ask the prologue code to extend
2226 the stack part so that we can recreate the full value.
2227
2228 PRETEND_BYTES is the size of the registers we need to store.
2229 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2230 stack space that the prologue should allocate.
2231
2232 Internally, gcc assumes that the argument pointer is aligned
2233 to STACK_BOUNDARY bits. This is used both for alignment
2234 optimizations (see init_emit) and to locate arguments that are
2235 aligned to more than PARM_BOUNDARY bits. We must preserve this
2236 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2237 a stack boundary. */
2238
2239 /* We assume at most one partial arg, and it must be the first
2240 argument on the stack. */
2241 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2242
2243 pretend_bytes = partial;
2244 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2245
2246 /* We want to align relative to the actual stack pointer, so
2247 don't include this in the stack size until later. */
2248 all->extra_pretend_bytes = all->pretend_args_size;
2249 }
2250 }
2251
2252 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2253 entry_parm ? data->partial : 0, current_function_decl,
2254 &all->stack_args_size, &data->locate);
2255
2256 /* Adjust offsets to include the pretend args. */
2257 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2258 data->locate.slot_offset.constant += pretend_bytes;
2259 data->locate.offset.constant += pretend_bytes;
2260
2261 data->entry_parm = entry_parm;
2262 }
2263
2264 /* A subroutine of assign_parms. If there is actually space on the stack
2265 for this parm, count it in stack_args_size and return true. */
2266
2267 static bool
2268 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2269 struct assign_parm_data_one *data)
2270 {
2271 /* Trivially true if we've no incoming register. */
2272 if (data->entry_parm == NULL)
2273 ;
2274 /* Also true if we're partially in registers and partially not,
2275 since we've arranged to drop the entire argument on the stack. */
2276 else if (data->partial != 0)
2277 ;
2278 /* Also true if the target says that it's passed in both registers
2279 and on the stack. */
2280 else if (GET_CODE (data->entry_parm) == PARALLEL
2281 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2282 ;
2283 /* Also true if the target says that there's stack allocated for
2284 all register parameters. */
2285 else if (all->reg_parm_stack_space > 0)
2286 ;
2287 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2288 else
2289 return false;
2290
2291 all->stack_args_size.constant += data->locate.size.constant;
2292 if (data->locate.size.var)
2293 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2294
2295 return true;
2296 }
2297
2298 /* A subroutine of assign_parms. Given that this parameter is allocated
2299 stack space by the ABI, find it. */
2300
2301 static void
2302 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2303 {
2304 rtx offset_rtx, stack_parm;
2305 unsigned int align, boundary;
2306
2307 /* If we're passing this arg using a reg, make its stack home the
2308 aligned stack slot. */
2309 if (data->entry_parm)
2310 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2311 else
2312 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2313
2314 stack_parm = current_function_internal_arg_pointer;
2315 if (offset_rtx != const0_rtx)
2316 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2317 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2318
2319 set_mem_attributes (stack_parm, parm, 1);
2320
2321 boundary = data->locate.boundary;
2322 align = BITS_PER_UNIT;
2323
2324 /* If we're padding upward, we know that the alignment of the slot
2325 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2326 intentionally forcing upward padding. Otherwise we have to come
2327 up with a guess at the alignment based on OFFSET_RTX. */
2328 if (data->locate.where_pad != downward || data->entry_parm)
2329 align = boundary;
2330 else if (GET_CODE (offset_rtx) == CONST_INT)
2331 {
2332 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2333 align = align & -align;
2334 }
2335 set_mem_align (stack_parm, align);
2336
2337 if (data->entry_parm)
2338 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2339
2340 data->stack_parm = stack_parm;
2341 }
2342
2343 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2344 always valid and contiguous. */
2345
2346 static void
2347 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2348 {
2349 rtx entry_parm = data->entry_parm;
2350 rtx stack_parm = data->stack_parm;
2351
2352 /* If this parm was passed part in regs and part in memory, pretend it
2353 arrived entirely in memory by pushing the register-part onto the stack.
2354 In the special case of a DImode or DFmode that is split, we could put
2355 it together in a pseudoreg directly, but for now that's not worth
2356 bothering with. */
2357 if (data->partial != 0)
2358 {
2359 /* Handle calls that pass values in multiple non-contiguous
2360 locations. The Irix 6 ABI has examples of this. */
2361 if (GET_CODE (entry_parm) == PARALLEL)
2362 emit_group_store (validize_mem (stack_parm), entry_parm,
2363 data->passed_type,
2364 int_size_in_bytes (data->passed_type));
2365 else
2366 {
2367 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2368 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2369 data->partial / UNITS_PER_WORD);
2370 }
2371
2372 entry_parm = stack_parm;
2373 }
2374
2375 /* If we didn't decide this parm came in a register, by default it came
2376 on the stack. */
2377 else if (entry_parm == NULL)
2378 entry_parm = stack_parm;
2379
2380 /* When an argument is passed in multiple locations, we can't make use
2381 of this information, but we can save some copying if the whole argument
2382 is passed in a single register. */
2383 else if (GET_CODE (entry_parm) == PARALLEL
2384 && data->nominal_mode != BLKmode
2385 && data->passed_mode != BLKmode)
2386 {
2387 size_t i, len = XVECLEN (entry_parm, 0);
2388
2389 for (i = 0; i < len; i++)
2390 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2391 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2392 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2393 == data->passed_mode)
2394 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2395 {
2396 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2397 break;
2398 }
2399 }
2400
2401 data->entry_parm = entry_parm;
2402 }
2403
2404 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2405 always valid and properly aligned. */
2406
2407 static void
2408 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2409 {
2410 rtx stack_parm = data->stack_parm;
2411
2412 /* If we can't trust the parm stack slot to be aligned enough for its
2413 ultimate type, don't use that slot after entry. We'll make another
2414 stack slot, if we need one. */
2415 if (stack_parm
2416 && ((STRICT_ALIGNMENT
2417 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2418 || (data->nominal_type
2419 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2420 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2421 stack_parm = NULL;
2422
2423 /* If parm was passed in memory, and we need to convert it on entry,
2424 don't store it back in that same slot. */
2425 else if (data->entry_parm == stack_parm
2426 && data->nominal_mode != BLKmode
2427 && data->nominal_mode != data->passed_mode)
2428 stack_parm = NULL;
2429
2430 /* If stack protection is in effect for this function, don't leave any
2431 pointers in their passed stack slots. */
2432 else if (cfun->stack_protect_guard
2433 && (flag_stack_protect == 2
2434 || data->passed_pointer
2435 || POINTER_TYPE_P (data->nominal_type)))
2436 stack_parm = NULL;
2437
2438 data->stack_parm = stack_parm;
2439 }
2440
2441 /* A subroutine of assign_parms. Return true if the current parameter
2442 should be stored as a BLKmode in the current frame. */
2443
2444 static bool
2445 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2446 {
2447 if (data->nominal_mode == BLKmode)
2448 return true;
2449 if (GET_CODE (data->entry_parm) == PARALLEL)
2450 return true;
2451
2452 #ifdef BLOCK_REG_PADDING
2453 /* Only assign_parm_setup_block knows how to deal with register arguments
2454 that are padded at the least significant end. */
2455 if (REG_P (data->entry_parm)
2456 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2457 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2458 == (BYTES_BIG_ENDIAN ? upward : downward)))
2459 return true;
2460 #endif
2461
2462 return false;
2463 }
2464
2465 /* A subroutine of assign_parms. Arrange for the parameter to be
2466 present and valid in DATA->STACK_RTL. */
2467
2468 static void
2469 assign_parm_setup_block (struct assign_parm_data_all *all,
2470 tree parm, struct assign_parm_data_one *data)
2471 {
2472 rtx entry_parm = data->entry_parm;
2473 rtx stack_parm = data->stack_parm;
2474 HOST_WIDE_INT size;
2475 HOST_WIDE_INT size_stored;
2476 rtx orig_entry_parm = entry_parm;
2477
2478 if (GET_CODE (entry_parm) == PARALLEL)
2479 entry_parm = emit_group_move_into_temps (entry_parm);
2480
2481 /* If we've a non-block object that's nevertheless passed in parts,
2482 reconstitute it in register operations rather than on the stack. */
2483 if (GET_CODE (entry_parm) == PARALLEL
2484 && data->nominal_mode != BLKmode)
2485 {
2486 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2487
2488 if ((XVECLEN (entry_parm, 0) > 1
2489 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2490 && use_register_for_decl (parm))
2491 {
2492 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2493
2494 push_to_sequence2 (all->first_conversion_insn,
2495 all->last_conversion_insn);
2496
2497 /* For values returned in multiple registers, handle possible
2498 incompatible calls to emit_group_store.
2499
2500 For example, the following would be invalid, and would have to
2501 be fixed by the conditional below:
2502
2503 emit_group_store ((reg:SF), (parallel:DF))
2504 emit_group_store ((reg:SI), (parallel:DI))
2505
2506 An example of this are doubles in e500 v2:
2507 (parallel:DF (expr_list (reg:SI) (const_int 0))
2508 (expr_list (reg:SI) (const_int 4))). */
2509 if (data->nominal_mode != data->passed_mode)
2510 {
2511 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2512 emit_group_store (t, entry_parm, NULL_TREE,
2513 GET_MODE_SIZE (GET_MODE (entry_parm)));
2514 convert_move (parmreg, t, 0);
2515 }
2516 else
2517 emit_group_store (parmreg, entry_parm, data->nominal_type,
2518 int_size_in_bytes (data->nominal_type));
2519
2520 all->first_conversion_insn = get_insns ();
2521 all->last_conversion_insn = get_last_insn ();
2522 end_sequence ();
2523
2524 SET_DECL_RTL (parm, parmreg);
2525 return;
2526 }
2527 }
2528
2529 size = int_size_in_bytes (data->passed_type);
2530 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2531 if (stack_parm == 0)
2532 {
2533 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2534 stack_parm = assign_stack_local (BLKmode, size_stored,
2535 DECL_ALIGN (parm));
2536 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2537 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2538 set_mem_attributes (stack_parm, parm, 1);
2539 }
2540
2541 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2542 calls that pass values in multiple non-contiguous locations. */
2543 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2544 {
2545 rtx mem;
2546
2547 /* Note that we will be storing an integral number of words.
2548 So we have to be careful to ensure that we allocate an
2549 integral number of words. We do this above when we call
2550 assign_stack_local if space was not allocated in the argument
2551 list. If it was, this will not work if PARM_BOUNDARY is not
2552 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2553 if it becomes a problem. Exception is when BLKmode arrives
2554 with arguments not conforming to word_mode. */
2555
2556 if (data->stack_parm == 0)
2557 ;
2558 else if (GET_CODE (entry_parm) == PARALLEL)
2559 ;
2560 else
2561 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2562
2563 mem = validize_mem (stack_parm);
2564
2565 /* Handle values in multiple non-contiguous locations. */
2566 if (GET_CODE (entry_parm) == PARALLEL)
2567 {
2568 push_to_sequence2 (all->first_conversion_insn,
2569 all->last_conversion_insn);
2570 emit_group_store (mem, entry_parm, data->passed_type, size);
2571 all->first_conversion_insn = get_insns ();
2572 all->last_conversion_insn = get_last_insn ();
2573 end_sequence ();
2574 }
2575
2576 else if (size == 0)
2577 ;
2578
2579 /* If SIZE is that of a mode no bigger than a word, just use
2580 that mode's store operation. */
2581 else if (size <= UNITS_PER_WORD)
2582 {
2583 enum machine_mode mode
2584 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2585
2586 if (mode != BLKmode
2587 #ifdef BLOCK_REG_PADDING
2588 && (size == UNITS_PER_WORD
2589 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2590 != (BYTES_BIG_ENDIAN ? upward : downward)))
2591 #endif
2592 )
2593 {
2594 rtx reg;
2595
2596 /* We are really truncating a word_mode value containing
2597 SIZE bytes into a value of mode MODE. If such an
2598 operation requires no actual instructions, we can refer
2599 to the value directly in mode MODE, otherwise we must
2600 start with the register in word_mode and explicitly
2601 convert it. */
2602 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2603 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2604 else
2605 {
2606 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2607 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2608 }
2609 emit_move_insn (change_address (mem, mode, 0), reg);
2610 }
2611
2612 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2613 machine must be aligned to the left before storing
2614 to memory. Note that the previous test doesn't
2615 handle all cases (e.g. SIZE == 3). */
2616 else if (size != UNITS_PER_WORD
2617 #ifdef BLOCK_REG_PADDING
2618 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2619 == downward)
2620 #else
2621 && BYTES_BIG_ENDIAN
2622 #endif
2623 )
2624 {
2625 rtx tem, x;
2626 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2627 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2628
2629 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2630 build_int_cst (NULL_TREE, by),
2631 NULL_RTX, 1);
2632 tem = change_address (mem, word_mode, 0);
2633 emit_move_insn (tem, x);
2634 }
2635 else
2636 move_block_from_reg (REGNO (entry_parm), mem,
2637 size_stored / UNITS_PER_WORD);
2638 }
2639 else
2640 move_block_from_reg (REGNO (entry_parm), mem,
2641 size_stored / UNITS_PER_WORD);
2642 }
2643 else if (data->stack_parm == 0)
2644 {
2645 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2646 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2647 BLOCK_OP_NORMAL);
2648 all->first_conversion_insn = get_insns ();
2649 all->last_conversion_insn = get_last_insn ();
2650 end_sequence ();
2651 }
2652
2653 data->stack_parm = stack_parm;
2654 SET_DECL_RTL (parm, stack_parm);
2655 }
2656
2657 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2658 parameter. Get it there. Perform all ABI specified conversions. */
2659
2660 static void
2661 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2662 struct assign_parm_data_one *data)
2663 {
2664 rtx parmreg;
2665 enum machine_mode promoted_nominal_mode;
2666 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2667 bool did_conversion = false;
2668
2669 /* Store the parm in a pseudoregister during the function, but we may
2670 need to do it in a wider mode. */
2671
2672 /* This is not really promoting for a call. However we need to be
2673 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2674 promoted_nominal_mode
2675 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2676
2677 parmreg = gen_reg_rtx (promoted_nominal_mode);
2678
2679 if (!DECL_ARTIFICIAL (parm))
2680 mark_user_reg (parmreg);
2681
2682 /* If this was an item that we received a pointer to,
2683 set DECL_RTL appropriately. */
2684 if (data->passed_pointer)
2685 {
2686 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2687 set_mem_attributes (x, parm, 1);
2688 SET_DECL_RTL (parm, x);
2689 }
2690 else
2691 SET_DECL_RTL (parm, parmreg);
2692
2693 /* Copy the value into the register. */
2694 if (data->nominal_mode != data->passed_mode
2695 || promoted_nominal_mode != data->promoted_mode)
2696 {
2697 int save_tree_used;
2698
2699 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2700 mode, by the caller. We now have to convert it to
2701 NOMINAL_MODE, if different. However, PARMREG may be in
2702 a different mode than NOMINAL_MODE if it is being stored
2703 promoted.
2704
2705 If ENTRY_PARM is a hard register, it might be in a register
2706 not valid for operating in its mode (e.g., an odd-numbered
2707 register for a DFmode). In that case, moves are the only
2708 thing valid, so we can't do a convert from there. This
2709 occurs when the calling sequence allow such misaligned
2710 usages.
2711
2712 In addition, the conversion may involve a call, which could
2713 clobber parameters which haven't been copied to pseudo
2714 registers yet. Therefore, we must first copy the parm to
2715 a pseudo reg here, and save the conversion until after all
2716 parameters have been moved. */
2717
2718 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2719
2720 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2721
2722 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2723 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2724
2725 if (GET_CODE (tempreg) == SUBREG
2726 && GET_MODE (tempreg) == data->nominal_mode
2727 && REG_P (SUBREG_REG (tempreg))
2728 && data->nominal_mode == data->passed_mode
2729 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2730 && GET_MODE_SIZE (GET_MODE (tempreg))
2731 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2732 {
2733 /* The argument is already sign/zero extended, so note it
2734 into the subreg. */
2735 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2736 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2737 }
2738
2739 /* TREE_USED gets set erroneously during expand_assignment. */
2740 save_tree_used = TREE_USED (parm);
2741 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2742 TREE_USED (parm) = save_tree_used;
2743 all->first_conversion_insn = get_insns ();
2744 all->last_conversion_insn = get_last_insn ();
2745 end_sequence ();
2746
2747 did_conversion = true;
2748 }
2749 else
2750 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2751
2752 /* If we were passed a pointer but the actual value can safely live
2753 in a register, put it in one. */
2754 if (data->passed_pointer
2755 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2756 /* If by-reference argument was promoted, demote it. */
2757 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2758 || use_register_for_decl (parm)))
2759 {
2760 /* We can't use nominal_mode, because it will have been set to
2761 Pmode above. We must use the actual mode of the parm. */
2762 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2763 mark_user_reg (parmreg);
2764
2765 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2766 {
2767 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2768 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2769
2770 push_to_sequence2 (all->first_conversion_insn,
2771 all->last_conversion_insn);
2772 emit_move_insn (tempreg, DECL_RTL (parm));
2773 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2774 emit_move_insn (parmreg, tempreg);
2775 all->first_conversion_insn = get_insns ();
2776 all->last_conversion_insn = get_last_insn ();
2777 end_sequence ();
2778
2779 did_conversion = true;
2780 }
2781 else
2782 emit_move_insn (parmreg, DECL_RTL (parm));
2783
2784 SET_DECL_RTL (parm, parmreg);
2785
2786 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2787 now the parm. */
2788 data->stack_parm = NULL;
2789 }
2790
2791 /* Mark the register as eliminable if we did no conversion and it was
2792 copied from memory at a fixed offset, and the arg pointer was not
2793 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2794 offset formed an invalid address, such memory-equivalences as we
2795 make here would screw up life analysis for it. */
2796 if (data->nominal_mode == data->passed_mode
2797 && !did_conversion
2798 && data->stack_parm != 0
2799 && MEM_P (data->stack_parm)
2800 && data->locate.offset.var == 0
2801 && reg_mentioned_p (virtual_incoming_args_rtx,
2802 XEXP (data->stack_parm, 0)))
2803 {
2804 rtx linsn = get_last_insn ();
2805 rtx sinsn, set;
2806
2807 /* Mark complex types separately. */
2808 if (GET_CODE (parmreg) == CONCAT)
2809 {
2810 enum machine_mode submode
2811 = GET_MODE_INNER (GET_MODE (parmreg));
2812 int regnor = REGNO (XEXP (parmreg, 0));
2813 int regnoi = REGNO (XEXP (parmreg, 1));
2814 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2815 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2816 GET_MODE_SIZE (submode));
2817
2818 /* Scan backwards for the set of the real and
2819 imaginary parts. */
2820 for (sinsn = linsn; sinsn != 0;
2821 sinsn = prev_nonnote_insn (sinsn))
2822 {
2823 set = single_set (sinsn);
2824 if (set == 0)
2825 continue;
2826
2827 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2828 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2829 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2830 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2831 }
2832 }
2833 else if ((set = single_set (linsn)) != 0
2834 && SET_DEST (set) == parmreg)
2835 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2836 }
2837
2838 /* For pointer data type, suggest pointer register. */
2839 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2840 mark_reg_pointer (parmreg,
2841 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2842 }
2843
2844 /* A subroutine of assign_parms. Allocate stack space to hold the current
2845 parameter. Get it there. Perform all ABI specified conversions. */
2846
2847 static void
2848 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2849 struct assign_parm_data_one *data)
2850 {
2851 /* Value must be stored in the stack slot STACK_PARM during function
2852 execution. */
2853 bool to_conversion = false;
2854
2855 if (data->promoted_mode != data->nominal_mode)
2856 {
2857 /* Conversion is required. */
2858 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2859
2860 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2861
2862 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2863 to_conversion = true;
2864
2865 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2866 TYPE_UNSIGNED (TREE_TYPE (parm)));
2867
2868 if (data->stack_parm)
2869 /* ??? This may need a big-endian conversion on sparc64. */
2870 data->stack_parm
2871 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2872 }
2873
2874 if (data->entry_parm != data->stack_parm)
2875 {
2876 rtx src, dest;
2877
2878 if (data->stack_parm == 0)
2879 {
2880 data->stack_parm
2881 = assign_stack_local (GET_MODE (data->entry_parm),
2882 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2883 TYPE_ALIGN (data->passed_type));
2884 set_mem_attributes (data->stack_parm, parm, 1);
2885 }
2886
2887 dest = validize_mem (data->stack_parm);
2888 src = validize_mem (data->entry_parm);
2889
2890 if (MEM_P (src))
2891 {
2892 /* Use a block move to handle potentially misaligned entry_parm. */
2893 if (!to_conversion)
2894 push_to_sequence2 (all->first_conversion_insn,
2895 all->last_conversion_insn);
2896 to_conversion = true;
2897
2898 emit_block_move (dest, src,
2899 GEN_INT (int_size_in_bytes (data->passed_type)),
2900 BLOCK_OP_NORMAL);
2901 }
2902 else
2903 emit_move_insn (dest, src);
2904 }
2905
2906 if (to_conversion)
2907 {
2908 all->first_conversion_insn = get_insns ();
2909 all->last_conversion_insn = get_last_insn ();
2910 end_sequence ();
2911 }
2912
2913 SET_DECL_RTL (parm, data->stack_parm);
2914 }
2915
2916 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2917 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2918
2919 static void
2920 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2921 {
2922 tree parm;
2923 tree orig_fnargs = all->orig_fnargs;
2924
2925 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2926 {
2927 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2928 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2929 {
2930 rtx tmp, real, imag;
2931 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2932
2933 real = DECL_RTL (fnargs);
2934 imag = DECL_RTL (TREE_CHAIN (fnargs));
2935 if (inner != GET_MODE (real))
2936 {
2937 real = gen_lowpart_SUBREG (inner, real);
2938 imag = gen_lowpart_SUBREG (inner, imag);
2939 }
2940
2941 if (TREE_ADDRESSABLE (parm))
2942 {
2943 rtx rmem, imem;
2944 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2945
2946 /* split_complex_arg put the real and imag parts in
2947 pseudos. Move them to memory. */
2948 tmp = assign_stack_local (DECL_MODE (parm), size,
2949 TYPE_ALIGN (TREE_TYPE (parm)));
2950 set_mem_attributes (tmp, parm, 1);
2951 rmem = adjust_address_nv (tmp, inner, 0);
2952 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2953 push_to_sequence2 (all->first_conversion_insn,
2954 all->last_conversion_insn);
2955 emit_move_insn (rmem, real);
2956 emit_move_insn (imem, imag);
2957 all->first_conversion_insn = get_insns ();
2958 all->last_conversion_insn = get_last_insn ();
2959 end_sequence ();
2960 }
2961 else
2962 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2963 SET_DECL_RTL (parm, tmp);
2964
2965 real = DECL_INCOMING_RTL (fnargs);
2966 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2967 if (inner != GET_MODE (real))
2968 {
2969 real = gen_lowpart_SUBREG (inner, real);
2970 imag = gen_lowpart_SUBREG (inner, imag);
2971 }
2972 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2973 set_decl_incoming_rtl (parm, tmp);
2974 fnargs = TREE_CHAIN (fnargs);
2975 }
2976 else
2977 {
2978 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2979 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2980
2981 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2982 instead of the copy of decl, i.e. FNARGS. */
2983 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2984 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2985 }
2986
2987 fnargs = TREE_CHAIN (fnargs);
2988 }
2989 }
2990
2991 /* Assign RTL expressions to the function's parameters. This may involve
2992 copying them into registers and using those registers as the DECL_RTL. */
2993
2994 static void
2995 assign_parms (tree fndecl)
2996 {
2997 struct assign_parm_data_all all;
2998 tree fnargs, parm;
2999
3000 current_function_internal_arg_pointer
3001 = targetm.calls.internal_arg_pointer ();
3002
3003 assign_parms_initialize_all (&all);
3004 fnargs = assign_parms_augmented_arg_list (&all);
3005
3006 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3007 {
3008 struct assign_parm_data_one data;
3009
3010 /* Extract the type of PARM; adjust it according to ABI. */
3011 assign_parm_find_data_types (&all, parm, &data);
3012
3013 /* Early out for errors and void parameters. */
3014 if (data.passed_mode == VOIDmode)
3015 {
3016 SET_DECL_RTL (parm, const0_rtx);
3017 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3018 continue;
3019 }
3020
3021 if (current_function_stdarg && !TREE_CHAIN (parm))
3022 assign_parms_setup_varargs (&all, &data, false);
3023
3024 /* Find out where the parameter arrives in this function. */
3025 assign_parm_find_entry_rtl (&all, &data);
3026
3027 /* Find out where stack space for this parameter might be. */
3028 if (assign_parm_is_stack_parm (&all, &data))
3029 {
3030 assign_parm_find_stack_rtl (parm, &data);
3031 assign_parm_adjust_entry_rtl (&data);
3032 }
3033
3034 /* Record permanently how this parm was passed. */
3035 set_decl_incoming_rtl (parm, data.entry_parm);
3036
3037 /* Update info on where next arg arrives in registers. */
3038 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3039 data.passed_type, data.named_arg);
3040
3041 assign_parm_adjust_stack_rtl (&data);
3042
3043 if (assign_parm_setup_block_p (&data))
3044 assign_parm_setup_block (&all, parm, &data);
3045 else if (data.passed_pointer || use_register_for_decl (parm))
3046 assign_parm_setup_reg (&all, parm, &data);
3047 else
3048 assign_parm_setup_stack (&all, parm, &data);
3049 }
3050
3051 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3052 assign_parms_unsplit_complex (&all, fnargs);
3053
3054 /* Output all parameter conversion instructions (possibly including calls)
3055 now that all parameters have been copied out of hard registers. */
3056 emit_insn (all.first_conversion_insn);
3057
3058 /* If we are receiving a struct value address as the first argument, set up
3059 the RTL for the function result. As this might require code to convert
3060 the transmitted address to Pmode, we do this here to ensure that possible
3061 preliminary conversions of the address have been emitted already. */
3062 if (all.function_result_decl)
3063 {
3064 tree result = DECL_RESULT (current_function_decl);
3065 rtx addr = DECL_RTL (all.function_result_decl);
3066 rtx x;
3067
3068 if (DECL_BY_REFERENCE (result))
3069 x = addr;
3070 else
3071 {
3072 addr = convert_memory_address (Pmode, addr);
3073 x = gen_rtx_MEM (DECL_MODE (result), addr);
3074 set_mem_attributes (x, result, 1);
3075 }
3076 SET_DECL_RTL (result, x);
3077 }
3078
3079 /* We have aligned all the args, so add space for the pretend args. */
3080 current_function_pretend_args_size = all.pretend_args_size;
3081 all.stack_args_size.constant += all.extra_pretend_bytes;
3082 current_function_args_size = all.stack_args_size.constant;
3083
3084 /* Adjust function incoming argument size for alignment and
3085 minimum length. */
3086
3087 #ifdef REG_PARM_STACK_SPACE
3088 current_function_args_size = MAX (current_function_args_size,
3089 REG_PARM_STACK_SPACE (fndecl));
3090 #endif
3091
3092 current_function_args_size = CEIL_ROUND (current_function_args_size,
3093 PARM_BOUNDARY / BITS_PER_UNIT);
3094
3095 #ifdef ARGS_GROW_DOWNWARD
3096 current_function_arg_offset_rtx
3097 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3098 : expand_expr (size_diffop (all.stack_args_size.var,
3099 size_int (-all.stack_args_size.constant)),
3100 NULL_RTX, VOIDmode, 0));
3101 #else
3102 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3103 #endif
3104
3105 /* See how many bytes, if any, of its args a function should try to pop
3106 on return. */
3107
3108 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3109 current_function_args_size);
3110
3111 /* For stdarg.h function, save info about
3112 regs and stack space used by the named args. */
3113
3114 current_function_args_info = all.args_so_far;
3115
3116 /* Set the rtx used for the function return value. Put this in its
3117 own variable so any optimizers that need this information don't have
3118 to include tree.h. Do this here so it gets done when an inlined
3119 function gets output. */
3120
3121 current_function_return_rtx
3122 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3123 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3124
3125 /* If scalar return value was computed in a pseudo-reg, or was a named
3126 return value that got dumped to the stack, copy that to the hard
3127 return register. */
3128 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3129 {
3130 tree decl_result = DECL_RESULT (fndecl);
3131 rtx decl_rtl = DECL_RTL (decl_result);
3132
3133 if (REG_P (decl_rtl)
3134 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3135 : DECL_REGISTER (decl_result))
3136 {
3137 rtx real_decl_rtl;
3138
3139 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3140 fndecl, true);
3141 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3142 /* The delay slot scheduler assumes that current_function_return_rtx
3143 holds the hard register containing the return value, not a
3144 temporary pseudo. */
3145 current_function_return_rtx = real_decl_rtl;
3146 }
3147 }
3148 }
3149
3150 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3151 For all seen types, gimplify their sizes. */
3152
3153 static tree
3154 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3155 {
3156 tree t = *tp;
3157
3158 *walk_subtrees = 0;
3159 if (TYPE_P (t))
3160 {
3161 if (POINTER_TYPE_P (t))
3162 *walk_subtrees = 1;
3163 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3164 && !TYPE_SIZES_GIMPLIFIED (t))
3165 {
3166 gimplify_type_sizes (t, (tree *) data);
3167 *walk_subtrees = 1;
3168 }
3169 }
3170
3171 return NULL;
3172 }
3173
3174 /* Gimplify the parameter list for current_function_decl. This involves
3175 evaluating SAVE_EXPRs of variable sized parameters and generating code
3176 to implement callee-copies reference parameters. Returns a list of
3177 statements to add to the beginning of the function, or NULL if nothing
3178 to do. */
3179
3180 tree
3181 gimplify_parameters (void)
3182 {
3183 struct assign_parm_data_all all;
3184 tree fnargs, parm, stmts = NULL;
3185
3186 assign_parms_initialize_all (&all);
3187 fnargs = assign_parms_augmented_arg_list (&all);
3188
3189 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3190 {
3191 struct assign_parm_data_one data;
3192
3193 /* Extract the type of PARM; adjust it according to ABI. */
3194 assign_parm_find_data_types (&all, parm, &data);
3195
3196 /* Early out for errors and void parameters. */
3197 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3198 continue;
3199
3200 /* Update info on where next arg arrives in registers. */
3201 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3202 data.passed_type, data.named_arg);
3203
3204 /* ??? Once upon a time variable_size stuffed parameter list
3205 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3206 turned out to be less than manageable in the gimple world.
3207 Now we have to hunt them down ourselves. */
3208 walk_tree_without_duplicates (&data.passed_type,
3209 gimplify_parm_type, &stmts);
3210
3211 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3212 {
3213 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3214 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3215 }
3216
3217 if (data.passed_pointer)
3218 {
3219 tree type = TREE_TYPE (data.passed_type);
3220 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3221 type, data.named_arg))
3222 {
3223 tree local, t;
3224
3225 /* For constant sized objects, this is trivial; for
3226 variable-sized objects, we have to play games. */
3227 if (TREE_CONSTANT (DECL_SIZE (parm)))
3228 {
3229 local = create_tmp_var (type, get_name (parm));
3230 DECL_IGNORED_P (local) = 0;
3231 }
3232 else
3233 {
3234 tree ptr_type, addr;
3235
3236 ptr_type = build_pointer_type (type);
3237 addr = create_tmp_var (ptr_type, get_name (parm));
3238 DECL_IGNORED_P (addr) = 0;
3239 local = build_fold_indirect_ref (addr);
3240
3241 t = built_in_decls[BUILT_IN_ALLOCA];
3242 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3243 t = fold_convert (ptr_type, t);
3244 t = build_gimple_modify_stmt (addr, t);
3245 gimplify_and_add (t, &stmts);
3246 }
3247
3248 t = build_gimple_modify_stmt (local, parm);
3249 gimplify_and_add (t, &stmts);
3250
3251 SET_DECL_VALUE_EXPR (parm, local);
3252 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3253 }
3254 }
3255 }
3256
3257 return stmts;
3258 }
3259 \f
3260 /* Compute the size and offset from the start of the stacked arguments for a
3261 parm passed in mode PASSED_MODE and with type TYPE.
3262
3263 INITIAL_OFFSET_PTR points to the current offset into the stacked
3264 arguments.
3265
3266 The starting offset and size for this parm are returned in
3267 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3268 nonzero, the offset is that of stack slot, which is returned in
3269 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3270 padding required from the initial offset ptr to the stack slot.
3271
3272 IN_REGS is nonzero if the argument will be passed in registers. It will
3273 never be set if REG_PARM_STACK_SPACE is not defined.
3274
3275 FNDECL is the function in which the argument was defined.
3276
3277 There are two types of rounding that are done. The first, controlled by
3278 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3279 list to be aligned to the specific boundary (in bits). This rounding
3280 affects the initial and starting offsets, but not the argument size.
3281
3282 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3283 optionally rounds the size of the parm to PARM_BOUNDARY. The
3284 initial offset is not affected by this rounding, while the size always
3285 is and the starting offset may be. */
3286
3287 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3288 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3289 callers pass in the total size of args so far as
3290 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3291
3292 void
3293 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3294 int partial, tree fndecl ATTRIBUTE_UNUSED,
3295 struct args_size *initial_offset_ptr,
3296 struct locate_and_pad_arg_data *locate)
3297 {
3298 tree sizetree;
3299 enum direction where_pad;
3300 unsigned int boundary;
3301 int reg_parm_stack_space = 0;
3302 int part_size_in_regs;
3303
3304 #ifdef REG_PARM_STACK_SPACE
3305 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3306
3307 /* If we have found a stack parm before we reach the end of the
3308 area reserved for registers, skip that area. */
3309 if (! in_regs)
3310 {
3311 if (reg_parm_stack_space > 0)
3312 {
3313 if (initial_offset_ptr->var)
3314 {
3315 initial_offset_ptr->var
3316 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3317 ssize_int (reg_parm_stack_space));
3318 initial_offset_ptr->constant = 0;
3319 }
3320 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3321 initial_offset_ptr->constant = reg_parm_stack_space;
3322 }
3323 }
3324 #endif /* REG_PARM_STACK_SPACE */
3325
3326 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3327
3328 sizetree
3329 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3330 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3331 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3332 locate->where_pad = where_pad;
3333 locate->boundary = boundary;
3334
3335 /* Remember if the outgoing parameter requires extra alignment on the
3336 calling function side. */
3337 if (boundary > PREFERRED_STACK_BOUNDARY)
3338 boundary = PREFERRED_STACK_BOUNDARY;
3339 if (cfun->stack_alignment_needed < boundary)
3340 cfun->stack_alignment_needed = boundary;
3341
3342 #ifdef ARGS_GROW_DOWNWARD
3343 locate->slot_offset.constant = -initial_offset_ptr->constant;
3344 if (initial_offset_ptr->var)
3345 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3346 initial_offset_ptr->var);
3347
3348 {
3349 tree s2 = sizetree;
3350 if (where_pad != none
3351 && (!host_integerp (sizetree, 1)
3352 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3353 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3354 SUB_PARM_SIZE (locate->slot_offset, s2);
3355 }
3356
3357 locate->slot_offset.constant += part_size_in_regs;
3358
3359 if (!in_regs
3360 #ifdef REG_PARM_STACK_SPACE
3361 || REG_PARM_STACK_SPACE (fndecl) > 0
3362 #endif
3363 )
3364 pad_to_arg_alignment (&locate->slot_offset, boundary,
3365 &locate->alignment_pad);
3366
3367 locate->size.constant = (-initial_offset_ptr->constant
3368 - locate->slot_offset.constant);
3369 if (initial_offset_ptr->var)
3370 locate->size.var = size_binop (MINUS_EXPR,
3371 size_binop (MINUS_EXPR,
3372 ssize_int (0),
3373 initial_offset_ptr->var),
3374 locate->slot_offset.var);
3375
3376 /* Pad_below needs the pre-rounded size to know how much to pad
3377 below. */
3378 locate->offset = locate->slot_offset;
3379 if (where_pad == downward)
3380 pad_below (&locate->offset, passed_mode, sizetree);
3381
3382 #else /* !ARGS_GROW_DOWNWARD */
3383 if (!in_regs
3384 #ifdef REG_PARM_STACK_SPACE
3385 || REG_PARM_STACK_SPACE (fndecl) > 0
3386 #endif
3387 )
3388 pad_to_arg_alignment (initial_offset_ptr, boundary,
3389 &locate->alignment_pad);
3390 locate->slot_offset = *initial_offset_ptr;
3391
3392 #ifdef PUSH_ROUNDING
3393 if (passed_mode != BLKmode)
3394 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3395 #endif
3396
3397 /* Pad_below needs the pre-rounded size to know how much to pad below
3398 so this must be done before rounding up. */
3399 locate->offset = locate->slot_offset;
3400 if (where_pad == downward)
3401 pad_below (&locate->offset, passed_mode, sizetree);
3402
3403 if (where_pad != none
3404 && (!host_integerp (sizetree, 1)
3405 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3406 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3407
3408 ADD_PARM_SIZE (locate->size, sizetree);
3409
3410 locate->size.constant -= part_size_in_regs;
3411 #endif /* ARGS_GROW_DOWNWARD */
3412 }
3413
3414 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3415 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3416
3417 static void
3418 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3419 struct args_size *alignment_pad)
3420 {
3421 tree save_var = NULL_TREE;
3422 HOST_WIDE_INT save_constant = 0;
3423 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3424 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3425
3426 #ifdef SPARC_STACK_BOUNDARY_HACK
3427 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3428 the real alignment of %sp. However, when it does this, the
3429 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3430 if (SPARC_STACK_BOUNDARY_HACK)
3431 sp_offset = 0;
3432 #endif
3433
3434 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3435 {
3436 save_var = offset_ptr->var;
3437 save_constant = offset_ptr->constant;
3438 }
3439
3440 alignment_pad->var = NULL_TREE;
3441 alignment_pad->constant = 0;
3442
3443 if (boundary > BITS_PER_UNIT)
3444 {
3445 if (offset_ptr->var)
3446 {
3447 tree sp_offset_tree = ssize_int (sp_offset);
3448 tree offset = size_binop (PLUS_EXPR,
3449 ARGS_SIZE_TREE (*offset_ptr),
3450 sp_offset_tree);
3451 #ifdef ARGS_GROW_DOWNWARD
3452 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3453 #else
3454 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3455 #endif
3456
3457 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3458 /* ARGS_SIZE_TREE includes constant term. */
3459 offset_ptr->constant = 0;
3460 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3461 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3462 save_var);
3463 }
3464 else
3465 {
3466 offset_ptr->constant = -sp_offset +
3467 #ifdef ARGS_GROW_DOWNWARD
3468 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3469 #else
3470 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3471 #endif
3472 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3473 alignment_pad->constant = offset_ptr->constant - save_constant;
3474 }
3475 }
3476 }
3477
3478 static void
3479 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3480 {
3481 if (passed_mode != BLKmode)
3482 {
3483 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3484 offset_ptr->constant
3485 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3486 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3487 - GET_MODE_SIZE (passed_mode));
3488 }
3489 else
3490 {
3491 if (TREE_CODE (sizetree) != INTEGER_CST
3492 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3493 {
3494 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3495 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3496 /* Add it in. */
3497 ADD_PARM_SIZE (*offset_ptr, s2);
3498 SUB_PARM_SIZE (*offset_ptr, sizetree);
3499 }
3500 }
3501 }
3502 \f
3503
3504 /* True if register REGNO was alive at a place where `setjmp' was
3505 called and was set more than once or is an argument. Such regs may
3506 be clobbered by `longjmp'. */
3507
3508 static bool
3509 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3510 {
3511 /* There appear to be cases where some local vars never reach the
3512 backend but have bogus regnos. */
3513 if (regno >= max_reg_num ())
3514 return false;
3515
3516 return ((REG_N_SETS (regno) > 1
3517 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3518 && REGNO_REG_SET_P (setjmp_crosses, regno));
3519 }
3520
3521 /* Walk the tree of blocks describing the binding levels within a
3522 function and warn about variables the might be killed by setjmp or
3523 vfork. This is done after calling flow_analysis before register
3524 allocation since that will clobber the pseudo-regs to hard
3525 regs. */
3526
3527 static void
3528 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3529 {
3530 tree decl, sub;
3531
3532 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3533 {
3534 if (TREE_CODE (decl) == VAR_DECL
3535 && DECL_RTL_SET_P (decl)
3536 && REG_P (DECL_RTL (decl))
3537 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3538 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3539 " %<longjmp%> or %<vfork%>", decl);
3540 }
3541
3542 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3543 setjmp_vars_warning (setjmp_crosses, sub);
3544 }
3545
3546 /* Do the appropriate part of setjmp_vars_warning
3547 but for arguments instead of local variables. */
3548
3549 static void
3550 setjmp_args_warning (bitmap setjmp_crosses)
3551 {
3552 tree decl;
3553 for (decl = DECL_ARGUMENTS (current_function_decl);
3554 decl; decl = TREE_CHAIN (decl))
3555 if (DECL_RTL (decl) != 0
3556 && REG_P (DECL_RTL (decl))
3557 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3558 warning (OPT_Wclobbered,
3559 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3560 decl);
3561 }
3562
3563 /* Generate warning messages for variables live across setjmp. */
3564
3565 void
3566 generate_setjmp_warnings (void)
3567 {
3568 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3569
3570 if (n_basic_blocks == NUM_FIXED_BLOCKS
3571 || bitmap_empty_p (setjmp_crosses))
3572 return;
3573
3574 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3575 setjmp_args_warning (setjmp_crosses);
3576 }
3577
3578 \f
3579 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3580 and create duplicate blocks. */
3581 /* ??? Need an option to either create block fragments or to create
3582 abstract origin duplicates of a source block. It really depends
3583 on what optimization has been performed. */
3584
3585 void
3586 reorder_blocks (void)
3587 {
3588 tree block = DECL_INITIAL (current_function_decl);
3589 VEC(tree,heap) *block_stack;
3590
3591 if (block == NULL_TREE)
3592 return;
3593
3594 block_stack = VEC_alloc (tree, heap, 10);
3595
3596 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3597 clear_block_marks (block);
3598
3599 /* Prune the old trees away, so that they don't get in the way. */
3600 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3601 BLOCK_CHAIN (block) = NULL_TREE;
3602
3603 /* Recreate the block tree from the note nesting. */
3604 reorder_blocks_1 (get_insns (), block, &block_stack);
3605 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3606
3607 VEC_free (tree, heap, block_stack);
3608 }
3609
3610 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3611
3612 void
3613 clear_block_marks (tree block)
3614 {
3615 while (block)
3616 {
3617 TREE_ASM_WRITTEN (block) = 0;
3618 clear_block_marks (BLOCK_SUBBLOCKS (block));
3619 block = BLOCK_CHAIN (block);
3620 }
3621 }
3622
3623 static void
3624 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3625 {
3626 rtx insn;
3627
3628 for (insn = insns; insn; insn = NEXT_INSN (insn))
3629 {
3630 if (NOTE_P (insn))
3631 {
3632 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3633 {
3634 tree block = NOTE_BLOCK (insn);
3635 tree origin;
3636
3637 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3638 ? BLOCK_FRAGMENT_ORIGIN (block)
3639 : block);
3640
3641 /* If we have seen this block before, that means it now
3642 spans multiple address regions. Create a new fragment. */
3643 if (TREE_ASM_WRITTEN (block))
3644 {
3645 tree new_block = copy_node (block);
3646
3647 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3648 BLOCK_FRAGMENT_CHAIN (new_block)
3649 = BLOCK_FRAGMENT_CHAIN (origin);
3650 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3651
3652 NOTE_BLOCK (insn) = new_block;
3653 block = new_block;
3654 }
3655
3656 BLOCK_SUBBLOCKS (block) = 0;
3657 TREE_ASM_WRITTEN (block) = 1;
3658 /* When there's only one block for the entire function,
3659 current_block == block and we mustn't do this, it
3660 will cause infinite recursion. */
3661 if (block != current_block)
3662 {
3663 if (block != origin)
3664 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3665
3666 BLOCK_SUPERCONTEXT (block) = current_block;
3667 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3668 BLOCK_SUBBLOCKS (current_block) = block;
3669 current_block = origin;
3670 }
3671 VEC_safe_push (tree, heap, *p_block_stack, block);
3672 }
3673 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3674 {
3675 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3676 BLOCK_SUBBLOCKS (current_block)
3677 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3678 current_block = BLOCK_SUPERCONTEXT (current_block);
3679 }
3680 }
3681 }
3682 }
3683
3684 /* Reverse the order of elements in the chain T of blocks,
3685 and return the new head of the chain (old last element). */
3686
3687 tree
3688 blocks_nreverse (tree t)
3689 {
3690 tree prev = 0, decl, next;
3691 for (decl = t; decl; decl = next)
3692 {
3693 next = BLOCK_CHAIN (decl);
3694 BLOCK_CHAIN (decl) = prev;
3695 prev = decl;
3696 }
3697 return prev;
3698 }
3699
3700 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3701 non-NULL, list them all into VECTOR, in a depth-first preorder
3702 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3703 blocks. */
3704
3705 static int
3706 all_blocks (tree block, tree *vector)
3707 {
3708 int n_blocks = 0;
3709
3710 while (block)
3711 {
3712 TREE_ASM_WRITTEN (block) = 0;
3713
3714 /* Record this block. */
3715 if (vector)
3716 vector[n_blocks] = block;
3717
3718 ++n_blocks;
3719
3720 /* Record the subblocks, and their subblocks... */
3721 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3722 vector ? vector + n_blocks : 0);
3723 block = BLOCK_CHAIN (block);
3724 }
3725
3726 return n_blocks;
3727 }
3728
3729 /* Return a vector containing all the blocks rooted at BLOCK. The
3730 number of elements in the vector is stored in N_BLOCKS_P. The
3731 vector is dynamically allocated; it is the caller's responsibility
3732 to call `free' on the pointer returned. */
3733
3734 static tree *
3735 get_block_vector (tree block, int *n_blocks_p)
3736 {
3737 tree *block_vector;
3738
3739 *n_blocks_p = all_blocks (block, NULL);
3740 block_vector = XNEWVEC (tree, *n_blocks_p);
3741 all_blocks (block, block_vector);
3742
3743 return block_vector;
3744 }
3745
3746 static GTY(()) int next_block_index = 2;
3747
3748 /* Set BLOCK_NUMBER for all the blocks in FN. */
3749
3750 void
3751 number_blocks (tree fn)
3752 {
3753 int i;
3754 int n_blocks;
3755 tree *block_vector;
3756
3757 /* For SDB and XCOFF debugging output, we start numbering the blocks
3758 from 1 within each function, rather than keeping a running
3759 count. */
3760 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3761 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3762 next_block_index = 1;
3763 #endif
3764
3765 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3766
3767 /* The top-level BLOCK isn't numbered at all. */
3768 for (i = 1; i < n_blocks; ++i)
3769 /* We number the blocks from two. */
3770 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3771
3772 free (block_vector);
3773
3774 return;
3775 }
3776
3777 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3778
3779 tree
3780 debug_find_var_in_block_tree (tree var, tree block)
3781 {
3782 tree t;
3783
3784 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3785 if (t == var)
3786 return block;
3787
3788 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3789 {
3790 tree ret = debug_find_var_in_block_tree (var, t);
3791 if (ret)
3792 return ret;
3793 }
3794
3795 return NULL_TREE;
3796 }
3797 \f
3798 /* Keep track of whether we're in a dummy function context. If we are,
3799 we don't want to invoke the set_current_function hook, because we'll
3800 get into trouble if the hook calls target_reinit () recursively or
3801 when the initial initialization is not yet complete. */
3802
3803 static bool in_dummy_function;
3804
3805 /* Invoke the target hook when setting cfun. */
3806
3807 static void
3808 invoke_set_current_function_hook (tree fndecl)
3809 {
3810 if (!in_dummy_function)
3811 targetm.set_current_function (fndecl);
3812 }
3813
3814 /* cfun should never be set directly; use this function. */
3815
3816 void
3817 set_cfun (struct function *new_cfun)
3818 {
3819 if (cfun != new_cfun)
3820 {
3821 cfun = new_cfun;
3822 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
3823 }
3824 }
3825
3826 /* Keep track of the cfun stack. */
3827
3828 typedef struct function *function_p;
3829
3830 DEF_VEC_P(function_p);
3831 DEF_VEC_ALLOC_P(function_p,heap);
3832
3833 /* Initialized with NOGC, making this poisonous to the garbage collector. */
3834
3835 static VEC(function_p,heap) *cfun_stack;
3836
3837 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
3838
3839 void
3840 push_cfun (struct function *new_cfun)
3841 {
3842 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3843 set_cfun (new_cfun);
3844 }
3845
3846 /* Pop cfun from the stack. */
3847
3848 void
3849 pop_cfun (void)
3850 {
3851 set_cfun (VEC_pop (function_p, cfun_stack));
3852 }
3853
3854 /* Return value of funcdef and increase it. */
3855 int
3856 get_next_funcdef_no (void)
3857 {
3858 return funcdef_no++;
3859 }
3860
3861 /* Allocate a function structure for FNDECL and set its contents
3862 to the defaults. Set cfun to the newly-allocated object.
3863 Some of the helper functions invoked during initialization assume
3864 that cfun has already been set. Therefore, assign the new object
3865 directly into cfun and invoke the back end hook explicitly at the
3866 very end, rather than initializing a temporary and calling set_cfun
3867 on it.
3868 */
3869
3870 void
3871 allocate_struct_function (tree fndecl)
3872 {
3873 tree result;
3874 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3875
3876 cfun = ggc_alloc_cleared (sizeof (struct function));
3877
3878 cfun->stack_alignment_needed = STACK_BOUNDARY;
3879 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3880
3881 current_function_funcdef_no = get_next_funcdef_no ();
3882
3883 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3884
3885 init_eh_for_function ();
3886
3887 lang_hooks.function.init (cfun);
3888 if (init_machine_status)
3889 cfun->machine = (*init_machine_status) ();
3890
3891 if (fndecl != NULL)
3892 {
3893 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3894 cfun->decl = fndecl;
3895
3896 result = DECL_RESULT (fndecl);
3897 if (aggregate_value_p (result, fndecl))
3898 {
3899 #ifdef PCC_STATIC_STRUCT_RETURN
3900 current_function_returns_pcc_struct = 1;
3901 #endif
3902 current_function_returns_struct = 1;
3903 }
3904
3905 current_function_stdarg
3906 = (fntype
3907 && TYPE_ARG_TYPES (fntype) != 0
3908 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3909 != void_type_node));
3910
3911 /* Assume all registers in stdarg functions need to be saved. */
3912 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3913 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3914 }
3915
3916 invoke_set_current_function_hook (fndecl);
3917 }
3918
3919 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
3920 instead of just setting it. */
3921
3922 void
3923 push_struct_function (tree fndecl)
3924 {
3925 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3926 allocate_struct_function (fndecl);
3927 }
3928
3929 /* Reset cfun, and other non-struct-function variables to defaults as
3930 appropriate for emitting rtl at the start of a function. */
3931
3932 static void
3933 prepare_function_start (void)
3934 {
3935 init_emit ();
3936 init_varasm_status (cfun);
3937 init_expr ();
3938
3939 cse_not_expected = ! optimize;
3940
3941 /* Caller save not needed yet. */
3942 caller_save_needed = 0;
3943
3944 /* We haven't done register allocation yet. */
3945 reg_renumber = 0;
3946
3947 /* Indicate that we have not instantiated virtual registers yet. */
3948 virtuals_instantiated = 0;
3949
3950 /* Indicate that we want CONCATs now. */
3951 generating_concat_p = 1;
3952
3953 /* Indicate we have no need of a frame pointer yet. */
3954 frame_pointer_needed = 0;
3955 }
3956
3957 /* Initialize the rtl expansion mechanism so that we can do simple things
3958 like generate sequences. This is used to provide a context during global
3959 initialization of some passes. You must call expand_dummy_function_end
3960 to exit this context. */
3961
3962 void
3963 init_dummy_function_start (void)
3964 {
3965 gcc_assert (!in_dummy_function);
3966 in_dummy_function = true;
3967 push_struct_function (NULL_TREE);
3968 prepare_function_start ();
3969 }
3970
3971 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3972 and initialize static variables for generating RTL for the statements
3973 of the function. */
3974
3975 void
3976 init_function_start (tree subr)
3977 {
3978 if (subr && DECL_STRUCT_FUNCTION (subr))
3979 set_cfun (DECL_STRUCT_FUNCTION (subr));
3980 else
3981 allocate_struct_function (subr);
3982 prepare_function_start ();
3983
3984 /* Warn if this value is an aggregate type,
3985 regardless of which calling convention we are using for it. */
3986 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3987 warning (OPT_Waggregate_return, "function returns an aggregate");
3988 }
3989
3990 /* Make sure all values used by the optimization passes have sane
3991 defaults. */
3992 unsigned int
3993 init_function_for_compilation (void)
3994 {
3995 reg_renumber = 0;
3996
3997 /* No prologue/epilogue insns yet. Make sure that these vectors are
3998 empty. */
3999 gcc_assert (VEC_length (int, prologue) == 0);
4000 gcc_assert (VEC_length (int, epilogue) == 0);
4001 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
4002 return 0;
4003 }
4004
4005 struct tree_opt_pass pass_init_function =
4006 {
4007 NULL, /* name */
4008 NULL, /* gate */
4009 init_function_for_compilation, /* execute */
4010 NULL, /* sub */
4011 NULL, /* next */
4012 0, /* static_pass_number */
4013 0, /* tv_id */
4014 0, /* properties_required */
4015 0, /* properties_provided */
4016 0, /* properties_destroyed */
4017 0, /* todo_flags_start */
4018 0, /* todo_flags_finish */
4019 0 /* letter */
4020 };
4021
4022
4023 void
4024 expand_main_function (void)
4025 {
4026 #if (defined(INVOKE__main) \
4027 || (!defined(HAS_INIT_SECTION) \
4028 && !defined(INIT_SECTION_ASM_OP) \
4029 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4030 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4031 #endif
4032 }
4033 \f
4034 /* Expand code to initialize the stack_protect_guard. This is invoked at
4035 the beginning of a function to be protected. */
4036
4037 #ifndef HAVE_stack_protect_set
4038 # define HAVE_stack_protect_set 0
4039 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4040 #endif
4041
4042 void
4043 stack_protect_prologue (void)
4044 {
4045 tree guard_decl = targetm.stack_protect_guard ();
4046 rtx x, y;
4047
4048 /* Avoid expand_expr here, because we don't want guard_decl pulled
4049 into registers unless absolutely necessary. And we know that
4050 cfun->stack_protect_guard is a local stack slot, so this skips
4051 all the fluff. */
4052 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4053 y = validize_mem (DECL_RTL (guard_decl));
4054
4055 /* Allow the target to copy from Y to X without leaking Y into a
4056 register. */
4057 if (HAVE_stack_protect_set)
4058 {
4059 rtx insn = gen_stack_protect_set (x, y);
4060 if (insn)
4061 {
4062 emit_insn (insn);
4063 return;
4064 }
4065 }
4066
4067 /* Otherwise do a straight move. */
4068 emit_move_insn (x, y);
4069 }
4070
4071 /* Expand code to verify the stack_protect_guard. This is invoked at
4072 the end of a function to be protected. */
4073
4074 #ifndef HAVE_stack_protect_test
4075 # define HAVE_stack_protect_test 0
4076 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4077 #endif
4078
4079 void
4080 stack_protect_epilogue (void)
4081 {
4082 tree guard_decl = targetm.stack_protect_guard ();
4083 rtx label = gen_label_rtx ();
4084 rtx x, y, tmp;
4085
4086 /* Avoid expand_expr here, because we don't want guard_decl pulled
4087 into registers unless absolutely necessary. And we know that
4088 cfun->stack_protect_guard is a local stack slot, so this skips
4089 all the fluff. */
4090 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4091 y = validize_mem (DECL_RTL (guard_decl));
4092
4093 /* Allow the target to compare Y with X without leaking either into
4094 a register. */
4095 switch (HAVE_stack_protect_test != 0)
4096 {
4097 case 1:
4098 tmp = gen_stack_protect_test (x, y, label);
4099 if (tmp)
4100 {
4101 emit_insn (tmp);
4102 break;
4103 }
4104 /* FALLTHRU */
4105
4106 default:
4107 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4108 break;
4109 }
4110
4111 /* The noreturn predictor has been moved to the tree level. The rtl-level
4112 predictors estimate this branch about 20%, which isn't enough to get
4113 things moved out of line. Since this is the only extant case of adding
4114 a noreturn function at the rtl level, it doesn't seem worth doing ought
4115 except adding the prediction by hand. */
4116 tmp = get_last_insn ();
4117 if (JUMP_P (tmp))
4118 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4119
4120 expand_expr_stmt (targetm.stack_protect_fail ());
4121 emit_label (label);
4122 }
4123 \f
4124 /* Start the RTL for a new function, and set variables used for
4125 emitting RTL.
4126 SUBR is the FUNCTION_DECL node.
4127 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4128 the function's parameters, which must be run at any return statement. */
4129
4130 void
4131 expand_function_start (tree subr)
4132 {
4133 /* Make sure volatile mem refs aren't considered
4134 valid operands of arithmetic insns. */
4135 init_recog_no_volatile ();
4136
4137 current_function_profile
4138 = (profile_flag
4139 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4140
4141 current_function_limit_stack
4142 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4143
4144 /* Make the label for return statements to jump to. Do not special
4145 case machines with special return instructions -- they will be
4146 handled later during jump, ifcvt, or epilogue creation. */
4147 return_label = gen_label_rtx ();
4148
4149 /* Initialize rtx used to return the value. */
4150 /* Do this before assign_parms so that we copy the struct value address
4151 before any library calls that assign parms might generate. */
4152
4153 /* Decide whether to return the value in memory or in a register. */
4154 if (aggregate_value_p (DECL_RESULT (subr), subr))
4155 {
4156 /* Returning something that won't go in a register. */
4157 rtx value_address = 0;
4158
4159 #ifdef PCC_STATIC_STRUCT_RETURN
4160 if (current_function_returns_pcc_struct)
4161 {
4162 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4163 value_address = assemble_static_space (size);
4164 }
4165 else
4166 #endif
4167 {
4168 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4169 /* Expect to be passed the address of a place to store the value.
4170 If it is passed as an argument, assign_parms will take care of
4171 it. */
4172 if (sv)
4173 {
4174 value_address = gen_reg_rtx (Pmode);
4175 emit_move_insn (value_address, sv);
4176 }
4177 }
4178 if (value_address)
4179 {
4180 rtx x = value_address;
4181 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4182 {
4183 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4184 set_mem_attributes (x, DECL_RESULT (subr), 1);
4185 }
4186 SET_DECL_RTL (DECL_RESULT (subr), x);
4187 }
4188 }
4189 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4190 /* If return mode is void, this decl rtl should not be used. */
4191 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4192 else
4193 {
4194 /* Compute the return values into a pseudo reg, which we will copy
4195 into the true return register after the cleanups are done. */
4196 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4197 if (TYPE_MODE (return_type) != BLKmode
4198 && targetm.calls.return_in_msb (return_type))
4199 /* expand_function_end will insert the appropriate padding in
4200 this case. Use the return value's natural (unpadded) mode
4201 within the function proper. */
4202 SET_DECL_RTL (DECL_RESULT (subr),
4203 gen_reg_rtx (TYPE_MODE (return_type)));
4204 else
4205 {
4206 /* In order to figure out what mode to use for the pseudo, we
4207 figure out what the mode of the eventual return register will
4208 actually be, and use that. */
4209 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4210
4211 /* Structures that are returned in registers are not
4212 aggregate_value_p, so we may see a PARALLEL or a REG. */
4213 if (REG_P (hard_reg))
4214 SET_DECL_RTL (DECL_RESULT (subr),
4215 gen_reg_rtx (GET_MODE (hard_reg)));
4216 else
4217 {
4218 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4219 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4220 }
4221 }
4222
4223 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4224 result to the real return register(s). */
4225 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4226 }
4227
4228 /* Initialize rtx for parameters and local variables.
4229 In some cases this requires emitting insns. */
4230 assign_parms (subr);
4231
4232 /* If function gets a static chain arg, store it. */
4233 if (cfun->static_chain_decl)
4234 {
4235 tree parm = cfun->static_chain_decl;
4236 rtx local = gen_reg_rtx (Pmode);
4237
4238 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4239 SET_DECL_RTL (parm, local);
4240 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4241
4242 emit_move_insn (local, static_chain_incoming_rtx);
4243 }
4244
4245 /* If the function receives a non-local goto, then store the
4246 bits we need to restore the frame pointer. */
4247 if (cfun->nonlocal_goto_save_area)
4248 {
4249 tree t_save;
4250 rtx r_save;
4251
4252 /* ??? We need to do this save early. Unfortunately here is
4253 before the frame variable gets declared. Help out... */
4254 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4255
4256 t_save = build4 (ARRAY_REF, ptr_type_node,
4257 cfun->nonlocal_goto_save_area,
4258 integer_zero_node, NULL_TREE, NULL_TREE);
4259 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4260 r_save = convert_memory_address (Pmode, r_save);
4261
4262 emit_move_insn (r_save, virtual_stack_vars_rtx);
4263 update_nonlocal_goto_save_area ();
4264 }
4265
4266 /* The following was moved from init_function_start.
4267 The move is supposed to make sdb output more accurate. */
4268 /* Indicate the beginning of the function body,
4269 as opposed to parm setup. */
4270 emit_note (NOTE_INSN_FUNCTION_BEG);
4271
4272 gcc_assert (NOTE_P (get_last_insn ()));
4273
4274 parm_birth_insn = get_last_insn ();
4275
4276 if (current_function_profile)
4277 {
4278 #ifdef PROFILE_HOOK
4279 PROFILE_HOOK (current_function_funcdef_no);
4280 #endif
4281 }
4282
4283 /* After the display initializations is where the stack checking
4284 probe should go. */
4285 if(flag_stack_check)
4286 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4287
4288 /* Make sure there is a line number after the function entry setup code. */
4289 force_next_line_note ();
4290 }
4291 \f
4292 /* Undo the effects of init_dummy_function_start. */
4293 void
4294 expand_dummy_function_end (void)
4295 {
4296 gcc_assert (in_dummy_function);
4297
4298 /* End any sequences that failed to be closed due to syntax errors. */
4299 while (in_sequence_p ())
4300 end_sequence ();
4301
4302 /* Outside function body, can't compute type's actual size
4303 until next function's body starts. */
4304
4305 free_after_parsing (cfun);
4306 free_after_compilation (cfun);
4307 pop_cfun ();
4308 in_dummy_function = false;
4309 }
4310
4311 /* Call DOIT for each hard register used as a return value from
4312 the current function. */
4313
4314 void
4315 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4316 {
4317 rtx outgoing = current_function_return_rtx;
4318
4319 if (! outgoing)
4320 return;
4321
4322 if (REG_P (outgoing))
4323 (*doit) (outgoing, arg);
4324 else if (GET_CODE (outgoing) == PARALLEL)
4325 {
4326 int i;
4327
4328 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4329 {
4330 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4331
4332 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4333 (*doit) (x, arg);
4334 }
4335 }
4336 }
4337
4338 static void
4339 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4340 {
4341 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4342 }
4343
4344 void
4345 clobber_return_register (void)
4346 {
4347 diddle_return_value (do_clobber_return_reg, NULL);
4348
4349 /* In case we do use pseudo to return value, clobber it too. */
4350 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4351 {
4352 tree decl_result = DECL_RESULT (current_function_decl);
4353 rtx decl_rtl = DECL_RTL (decl_result);
4354 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4355 {
4356 do_clobber_return_reg (decl_rtl, NULL);
4357 }
4358 }
4359 }
4360
4361 static void
4362 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4363 {
4364 emit_insn (gen_rtx_USE (VOIDmode, reg));
4365 }
4366
4367 static void
4368 use_return_register (void)
4369 {
4370 diddle_return_value (do_use_return_reg, NULL);
4371 }
4372
4373 /* Possibly warn about unused parameters. */
4374 void
4375 do_warn_unused_parameter (tree fn)
4376 {
4377 tree decl;
4378
4379 for (decl = DECL_ARGUMENTS (fn);
4380 decl; decl = TREE_CHAIN (decl))
4381 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4382 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4383 && !TREE_NO_WARNING (decl))
4384 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4385 }
4386
4387 static GTY(()) rtx initial_trampoline;
4388
4389 /* Generate RTL for the end of the current function. */
4390
4391 void
4392 expand_function_end (void)
4393 {
4394 rtx clobber_after;
4395
4396 /* If arg_pointer_save_area was referenced only from a nested
4397 function, we will not have initialized it yet. Do that now. */
4398 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4399 get_arg_pointer_save_area (cfun);
4400
4401 /* If we are doing stack checking and this function makes calls,
4402 do a stack probe at the start of the function to ensure we have enough
4403 space for another stack frame. */
4404 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4405 {
4406 rtx insn, seq;
4407
4408 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4409 if (CALL_P (insn))
4410 {
4411 start_sequence ();
4412 probe_stack_range (STACK_CHECK_PROTECT,
4413 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4414 seq = get_insns ();
4415 end_sequence ();
4416 emit_insn_before (seq, stack_check_probe_note);
4417 break;
4418 }
4419 }
4420
4421 /* End any sequences that failed to be closed due to syntax errors. */
4422 while (in_sequence_p ())
4423 end_sequence ();
4424
4425 clear_pending_stack_adjust ();
4426 do_pending_stack_adjust ();
4427
4428 /* Output a linenumber for the end of the function.
4429 SDB depends on this. */
4430 force_next_line_note ();
4431 set_curr_insn_source_location (input_location);
4432
4433 /* Before the return label (if any), clobber the return
4434 registers so that they are not propagated live to the rest of
4435 the function. This can only happen with functions that drop
4436 through; if there had been a return statement, there would
4437 have either been a return rtx, or a jump to the return label.
4438
4439 We delay actual code generation after the current_function_value_rtx
4440 is computed. */
4441 clobber_after = get_last_insn ();
4442
4443 /* Output the label for the actual return from the function. */
4444 emit_label (return_label);
4445
4446 if (USING_SJLJ_EXCEPTIONS)
4447 {
4448 /* Let except.c know where it should emit the call to unregister
4449 the function context for sjlj exceptions. */
4450 if (flag_exceptions)
4451 sjlj_emit_function_exit_after (get_last_insn ());
4452 }
4453 else
4454 {
4455 /* We want to ensure that instructions that may trap are not
4456 moved into the epilogue by scheduling, because we don't
4457 always emit unwind information for the epilogue. */
4458 if (flag_non_call_exceptions)
4459 emit_insn (gen_blockage ());
4460 }
4461
4462 /* If this is an implementation of throw, do what's necessary to
4463 communicate between __builtin_eh_return and the epilogue. */
4464 expand_eh_return ();
4465
4466 /* If scalar return value was computed in a pseudo-reg, or was a named
4467 return value that got dumped to the stack, copy that to the hard
4468 return register. */
4469 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4470 {
4471 tree decl_result = DECL_RESULT (current_function_decl);
4472 rtx decl_rtl = DECL_RTL (decl_result);
4473
4474 if (REG_P (decl_rtl)
4475 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4476 : DECL_REGISTER (decl_result))
4477 {
4478 rtx real_decl_rtl = current_function_return_rtx;
4479
4480 /* This should be set in assign_parms. */
4481 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4482
4483 /* If this is a BLKmode structure being returned in registers,
4484 then use the mode computed in expand_return. Note that if
4485 decl_rtl is memory, then its mode may have been changed,
4486 but that current_function_return_rtx has not. */
4487 if (GET_MODE (real_decl_rtl) == BLKmode)
4488 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4489
4490 /* If a non-BLKmode return value should be padded at the least
4491 significant end of the register, shift it left by the appropriate
4492 amount. BLKmode results are handled using the group load/store
4493 machinery. */
4494 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4495 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4496 {
4497 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4498 REGNO (real_decl_rtl)),
4499 decl_rtl);
4500 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4501 }
4502 /* If a named return value dumped decl_return to memory, then
4503 we may need to re-do the PROMOTE_MODE signed/unsigned
4504 extension. */
4505 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4506 {
4507 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4508
4509 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4510 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4511 &unsignedp, 1);
4512
4513 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4514 }
4515 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4516 {
4517 /* If expand_function_start has created a PARALLEL for decl_rtl,
4518 move the result to the real return registers. Otherwise, do
4519 a group load from decl_rtl for a named return. */
4520 if (GET_CODE (decl_rtl) == PARALLEL)
4521 emit_group_move (real_decl_rtl, decl_rtl);
4522 else
4523 emit_group_load (real_decl_rtl, decl_rtl,
4524 TREE_TYPE (decl_result),
4525 int_size_in_bytes (TREE_TYPE (decl_result)));
4526 }
4527 /* In the case of complex integer modes smaller than a word, we'll
4528 need to generate some non-trivial bitfield insertions. Do that
4529 on a pseudo and not the hard register. */
4530 else if (GET_CODE (decl_rtl) == CONCAT
4531 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4532 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4533 {
4534 int old_generating_concat_p;
4535 rtx tmp;
4536
4537 old_generating_concat_p = generating_concat_p;
4538 generating_concat_p = 0;
4539 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4540 generating_concat_p = old_generating_concat_p;
4541
4542 emit_move_insn (tmp, decl_rtl);
4543 emit_move_insn (real_decl_rtl, tmp);
4544 }
4545 else
4546 emit_move_insn (real_decl_rtl, decl_rtl);
4547 }
4548 }
4549
4550 /* If returning a structure, arrange to return the address of the value
4551 in a place where debuggers expect to find it.
4552
4553 If returning a structure PCC style,
4554 the caller also depends on this value.
4555 And current_function_returns_pcc_struct is not necessarily set. */
4556 if (current_function_returns_struct
4557 || current_function_returns_pcc_struct)
4558 {
4559 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4560 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4561 rtx outgoing;
4562
4563 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4564 type = TREE_TYPE (type);
4565 else
4566 value_address = XEXP (value_address, 0);
4567
4568 outgoing = targetm.calls.function_value (build_pointer_type (type),
4569 current_function_decl, true);
4570
4571 /* Mark this as a function return value so integrate will delete the
4572 assignment and USE below when inlining this function. */
4573 REG_FUNCTION_VALUE_P (outgoing) = 1;
4574
4575 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4576 value_address = convert_memory_address (GET_MODE (outgoing),
4577 value_address);
4578
4579 emit_move_insn (outgoing, value_address);
4580
4581 /* Show return register used to hold result (in this case the address
4582 of the result. */
4583 current_function_return_rtx = outgoing;
4584 }
4585
4586 /* Emit the actual code to clobber return register. */
4587 {
4588 rtx seq;
4589
4590 start_sequence ();
4591 clobber_return_register ();
4592 expand_naked_return ();
4593 seq = get_insns ();
4594 end_sequence ();
4595
4596 emit_insn_after (seq, clobber_after);
4597 }
4598
4599 /* Output the label for the naked return from the function. */
4600 emit_label (naked_return_label);
4601
4602 /* @@@ This is a kludge. We want to ensure that instructions that
4603 may trap are not moved into the epilogue by scheduling, because
4604 we don't always emit unwind information for the epilogue. */
4605 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4606 emit_insn (gen_blockage ());
4607
4608 /* If stack protection is enabled for this function, check the guard. */
4609 if (cfun->stack_protect_guard)
4610 stack_protect_epilogue ();
4611
4612 /* If we had calls to alloca, and this machine needs
4613 an accurate stack pointer to exit the function,
4614 insert some code to save and restore the stack pointer. */
4615 if (! EXIT_IGNORE_STACK
4616 && current_function_calls_alloca)
4617 {
4618 rtx tem = 0;
4619
4620 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4621 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4622 }
4623
4624 /* ??? This should no longer be necessary since stupid is no longer with
4625 us, but there are some parts of the compiler (eg reload_combine, and
4626 sh mach_dep_reorg) that still try and compute their own lifetime info
4627 instead of using the general framework. */
4628 use_return_register ();
4629 }
4630
4631 rtx
4632 get_arg_pointer_save_area (struct function *f)
4633 {
4634 rtx ret = f->x_arg_pointer_save_area;
4635
4636 if (! ret)
4637 {
4638 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4639 f->x_arg_pointer_save_area = ret;
4640 }
4641
4642 if (f == cfun && ! f->arg_pointer_save_area_init)
4643 {
4644 rtx seq;
4645
4646 /* Save the arg pointer at the beginning of the function. The
4647 generated stack slot may not be a valid memory address, so we
4648 have to check it and fix it if necessary. */
4649 start_sequence ();
4650 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4651 seq = get_insns ();
4652 end_sequence ();
4653
4654 push_topmost_sequence ();
4655 emit_insn_after (seq, entry_of_function ());
4656 pop_topmost_sequence ();
4657 }
4658
4659 return ret;
4660 }
4661 \f
4662 /* Extend a vector that records the INSN_UIDs of INSNS
4663 (a list of one or more insns). */
4664
4665 static void
4666 record_insns (rtx insns, VEC(int,heap) **vecp)
4667 {
4668 rtx tmp;
4669
4670 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4671 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4672 }
4673
4674 /* Set the locator of the insn chain starting at INSN to LOC. */
4675 static void
4676 set_insn_locators (rtx insn, int loc)
4677 {
4678 while (insn != NULL_RTX)
4679 {
4680 if (INSN_P (insn))
4681 INSN_LOCATOR (insn) = loc;
4682 insn = NEXT_INSN (insn);
4683 }
4684 }
4685
4686 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4687 be running after reorg, SEQUENCE rtl is possible. */
4688
4689 static int
4690 contains (const_rtx insn, VEC(int,heap) **vec)
4691 {
4692 int i, j;
4693
4694 if (NONJUMP_INSN_P (insn)
4695 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4696 {
4697 int count = 0;
4698 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4699 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4700 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4701 == VEC_index (int, *vec, j))
4702 count++;
4703 return count;
4704 }
4705 else
4706 {
4707 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4708 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4709 return 1;
4710 }
4711 return 0;
4712 }
4713
4714 int
4715 prologue_epilogue_contains (const_rtx insn)
4716 {
4717 if (contains (insn, &prologue))
4718 return 1;
4719 if (contains (insn, &epilogue))
4720 return 1;
4721 return 0;
4722 }
4723
4724 int
4725 sibcall_epilogue_contains (const_rtx insn)
4726 {
4727 if (sibcall_epilogue)
4728 return contains (insn, &sibcall_epilogue);
4729 return 0;
4730 }
4731
4732 #ifdef HAVE_return
4733 /* Insert gen_return at the end of block BB. This also means updating
4734 block_for_insn appropriately. */
4735
4736 static void
4737 emit_return_into_block (basic_block bb)
4738 {
4739 emit_jump_insn_after (gen_return (), BB_END (bb));
4740 }
4741 #endif /* HAVE_return */
4742
4743 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4744
4745 /* These functions convert the epilogue into a variant that does not
4746 modify the stack pointer. This is used in cases where a function
4747 returns an object whose size is not known until it is computed.
4748 The called function leaves the object on the stack, leaves the
4749 stack depressed, and returns a pointer to the object.
4750
4751 What we need to do is track all modifications and references to the
4752 stack pointer, deleting the modifications and changing the
4753 references to point to the location the stack pointer would have
4754 pointed to had the modifications taken place.
4755
4756 These functions need to be portable so we need to make as few
4757 assumptions about the epilogue as we can. However, the epilogue
4758 basically contains three things: instructions to reset the stack
4759 pointer, instructions to reload registers, possibly including the
4760 frame pointer, and an instruction to return to the caller.
4761
4762 We must be sure of what a relevant epilogue insn is doing. We also
4763 make no attempt to validate the insns we make since if they are
4764 invalid, we probably can't do anything valid. The intent is that
4765 these routines get "smarter" as more and more machines start to use
4766 them and they try operating on different epilogues.
4767
4768 We use the following structure to track what the part of the
4769 epilogue that we've already processed has done. We keep two copies
4770 of the SP equivalence, one for use during the insn we are
4771 processing and one for use in the next insn. The difference is
4772 because one part of a PARALLEL may adjust SP and the other may use
4773 it. */
4774
4775 struct epi_info
4776 {
4777 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4778 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4779 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4780 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4781 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4782 should be set to once we no longer need
4783 its value. */
4784 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4785 for registers. */
4786 };
4787
4788 static void handle_epilogue_set (rtx, struct epi_info *);
4789 static void update_epilogue_consts (rtx, const_rtx, void *);
4790 static void emit_equiv_load (struct epi_info *);
4791
4792 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4793 no modifications to the stack pointer. Return the new list of insns. */
4794
4795 static rtx
4796 keep_stack_depressed (rtx insns)
4797 {
4798 int j;
4799 struct epi_info info;
4800 rtx insn, next;
4801
4802 /* If the epilogue is just a single instruction, it must be OK as is. */
4803 if (NEXT_INSN (insns) == NULL_RTX)
4804 return insns;
4805
4806 /* Otherwise, start a sequence, initialize the information we have, and
4807 process all the insns we were given. */
4808 start_sequence ();
4809
4810 info.sp_equiv_reg = stack_pointer_rtx;
4811 info.sp_offset = 0;
4812 info.equiv_reg_src = 0;
4813
4814 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4815 info.const_equiv[j] = 0;
4816
4817 insn = insns;
4818 next = NULL_RTX;
4819 while (insn != NULL_RTX)
4820 {
4821 next = NEXT_INSN (insn);
4822
4823 if (!INSN_P (insn))
4824 {
4825 add_insn (insn);
4826 insn = next;
4827 continue;
4828 }
4829
4830 /* If this insn references the register that SP is equivalent to and
4831 we have a pending load to that register, we must force out the load
4832 first and then indicate we no longer know what SP's equivalent is. */
4833 if (info.equiv_reg_src != 0
4834 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4835 {
4836 emit_equiv_load (&info);
4837 info.sp_equiv_reg = 0;
4838 }
4839
4840 info.new_sp_equiv_reg = info.sp_equiv_reg;
4841 info.new_sp_offset = info.sp_offset;
4842
4843 /* If this is a (RETURN) and the return address is on the stack,
4844 update the address and change to an indirect jump. */
4845 if (GET_CODE (PATTERN (insn)) == RETURN
4846 || (GET_CODE (PATTERN (insn)) == PARALLEL
4847 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4848 {
4849 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4850 rtx base = 0;
4851 HOST_WIDE_INT offset = 0;
4852 rtx jump_insn, jump_set;
4853
4854 /* If the return address is in a register, we can emit the insn
4855 unchanged. Otherwise, it must be a MEM and we see what the
4856 base register and offset are. In any case, we have to emit any
4857 pending load to the equivalent reg of SP, if any. */
4858 if (REG_P (retaddr))
4859 {
4860 emit_equiv_load (&info);
4861 add_insn (insn);
4862 insn = next;
4863 continue;
4864 }
4865 else
4866 {
4867 rtx ret_ptr;
4868 gcc_assert (MEM_P (retaddr));
4869
4870 ret_ptr = XEXP (retaddr, 0);
4871
4872 if (REG_P (ret_ptr))
4873 {
4874 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4875 offset = 0;
4876 }
4877 else
4878 {
4879 gcc_assert (GET_CODE (ret_ptr) == PLUS
4880 && REG_P (XEXP (ret_ptr, 0))
4881 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4882 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4883 offset = INTVAL (XEXP (ret_ptr, 1));
4884 }
4885 }
4886
4887 /* If the base of the location containing the return pointer
4888 is SP, we must update it with the replacement address. Otherwise,
4889 just build the necessary MEM. */
4890 retaddr = plus_constant (base, offset);
4891 if (base == stack_pointer_rtx)
4892 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4893 plus_constant (info.sp_equiv_reg,
4894 info.sp_offset));
4895
4896 retaddr = gen_rtx_MEM (Pmode, retaddr);
4897 MEM_NOTRAP_P (retaddr) = 1;
4898
4899 /* If there is a pending load to the equivalent register for SP
4900 and we reference that register, we must load our address into
4901 a scratch register and then do that load. */
4902 if (info.equiv_reg_src
4903 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4904 {
4905 unsigned int regno;
4906 rtx reg;
4907
4908 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4909 if (HARD_REGNO_MODE_OK (regno, Pmode)
4910 && !fixed_regs[regno]
4911 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4912 && !REGNO_REG_SET_P
4913 (DF_LR_IN (EXIT_BLOCK_PTR), regno)
4914 && !refers_to_regno_p (regno,
4915 end_hard_regno (Pmode, regno),
4916 info.equiv_reg_src, NULL)
4917 && info.const_equiv[regno] == 0)
4918 break;
4919
4920 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4921
4922 reg = gen_rtx_REG (Pmode, regno);
4923 emit_move_insn (reg, retaddr);
4924 retaddr = reg;
4925 }
4926
4927 emit_equiv_load (&info);
4928 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4929
4930 /* Show the SET in the above insn is a RETURN. */
4931 jump_set = single_set (jump_insn);
4932 gcc_assert (jump_set);
4933 SET_IS_RETURN_P (jump_set) = 1;
4934 }
4935
4936 /* If SP is not mentioned in the pattern and its equivalent register, if
4937 any, is not modified, just emit it. Otherwise, if neither is set,
4938 replace the reference to SP and emit the insn. If none of those are
4939 true, handle each SET individually. */
4940 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4941 && (info.sp_equiv_reg == stack_pointer_rtx
4942 || !reg_set_p (info.sp_equiv_reg, insn)))
4943 add_insn (insn);
4944 else if (! reg_set_p (stack_pointer_rtx, insn)
4945 && (info.sp_equiv_reg == stack_pointer_rtx
4946 || !reg_set_p (info.sp_equiv_reg, insn)))
4947 {
4948 int changed;
4949
4950 changed = validate_replace_rtx (stack_pointer_rtx,
4951 plus_constant (info.sp_equiv_reg,
4952 info.sp_offset),
4953 insn);
4954 gcc_assert (changed);
4955
4956 add_insn (insn);
4957 }
4958 else if (GET_CODE (PATTERN (insn)) == SET)
4959 handle_epilogue_set (PATTERN (insn), &info);
4960 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4961 {
4962 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4963 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4964 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4965 }
4966 else
4967 add_insn (insn);
4968
4969 info.sp_equiv_reg = info.new_sp_equiv_reg;
4970 info.sp_offset = info.new_sp_offset;
4971
4972 /* Now update any constants this insn sets. */
4973 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4974 insn = next;
4975 }
4976
4977 insns = get_insns ();
4978 end_sequence ();
4979 return insns;
4980 }
4981
4982 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4983 structure that contains information about what we've seen so far. We
4984 process this SET by either updating that data or by emitting one or
4985 more insns. */
4986
4987 static void
4988 handle_epilogue_set (rtx set, struct epi_info *p)
4989 {
4990 /* First handle the case where we are setting SP. Record what it is being
4991 set from, which we must be able to determine */
4992 if (reg_set_p (stack_pointer_rtx, set))
4993 {
4994 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4995
4996 if (GET_CODE (SET_SRC (set)) == PLUS)
4997 {
4998 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4999 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
5000 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
5001 else
5002 {
5003 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
5004 && (REGNO (XEXP (SET_SRC (set), 1))
5005 < FIRST_PSEUDO_REGISTER)
5006 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
5007 p->new_sp_offset
5008 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
5009 }
5010 }
5011 else
5012 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
5013
5014 /* If we are adjusting SP, we adjust from the old data. */
5015 if (p->new_sp_equiv_reg == stack_pointer_rtx)
5016 {
5017 p->new_sp_equiv_reg = p->sp_equiv_reg;
5018 p->new_sp_offset += p->sp_offset;
5019 }
5020
5021 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
5022
5023 return;
5024 }
5025
5026 /* Next handle the case where we are setting SP's equivalent
5027 register. We must not already have a value to set it to. We
5028 could update, but there seems little point in handling that case.
5029 Note that we have to allow for the case where we are setting the
5030 register set in the previous part of a PARALLEL inside a single
5031 insn. But use the old offset for any updates within this insn.
5032 We must allow for the case where the register is being set in a
5033 different (usually wider) mode than Pmode). */
5034 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
5035 {
5036 gcc_assert (!p->equiv_reg_src
5037 && REG_P (p->new_sp_equiv_reg)
5038 && REG_P (SET_DEST (set))
5039 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
5040 <= BITS_PER_WORD)
5041 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
5042 p->equiv_reg_src
5043 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5044 plus_constant (p->sp_equiv_reg,
5045 p->sp_offset));
5046 }
5047
5048 /* Otherwise, replace any references to SP in the insn to its new value
5049 and emit the insn. */
5050 else
5051 {
5052 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5053 plus_constant (p->sp_equiv_reg,
5054 p->sp_offset));
5055 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5056 plus_constant (p->sp_equiv_reg,
5057 p->sp_offset));
5058 emit_insn (set);
5059 }
5060 }
5061
5062 /* Update the tracking information for registers set to constants. */
5063
5064 static void
5065 update_epilogue_consts (rtx dest, const_rtx x, void *data)
5066 {
5067 struct epi_info *p = (struct epi_info *) data;
5068 rtx new;
5069
5070 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5071 return;
5072
5073 /* If we are either clobbering a register or doing a partial set,
5074 show we don't know the value. */
5075 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5076 p->const_equiv[REGNO (dest)] = 0;
5077
5078 /* If we are setting it to a constant, record that constant. */
5079 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5080 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5081
5082 /* If this is a binary operation between a register we have been tracking
5083 and a constant, see if we can compute a new constant value. */
5084 else if (ARITHMETIC_P (SET_SRC (x))
5085 && REG_P (XEXP (SET_SRC (x), 0))
5086 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5087 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5088 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5089 && 0 != (new = simplify_binary_operation
5090 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5091 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5092 XEXP (SET_SRC (x), 1)))
5093 && GET_CODE (new) == CONST_INT)
5094 p->const_equiv[REGNO (dest)] = new;
5095
5096 /* Otherwise, we can't do anything with this value. */
5097 else
5098 p->const_equiv[REGNO (dest)] = 0;
5099 }
5100
5101 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5102
5103 static void
5104 emit_equiv_load (struct epi_info *p)
5105 {
5106 if (p->equiv_reg_src != 0)
5107 {
5108 rtx dest = p->sp_equiv_reg;
5109
5110 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5111 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5112 REGNO (p->sp_equiv_reg));
5113
5114 emit_move_insn (dest, p->equiv_reg_src);
5115 p->equiv_reg_src = 0;
5116 }
5117 }
5118 #endif
5119
5120 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5121 this into place with notes indicating where the prologue ends and where
5122 the epilogue begins. Update the basic block information when possible. */
5123
5124 static void
5125 thread_prologue_and_epilogue_insns (void)
5126 {
5127 int inserted = 0;
5128 edge e;
5129 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5130 rtx seq;
5131 #endif
5132 #if defined (HAVE_epilogue) || defined(HAVE_return)
5133 rtx epilogue_end = NULL_RTX;
5134 #endif
5135 edge_iterator ei;
5136
5137 #ifdef HAVE_prologue
5138 if (HAVE_prologue)
5139 {
5140 start_sequence ();
5141 seq = gen_prologue ();
5142 emit_insn (seq);
5143
5144 /* Insert an explicit USE for the frame pointer
5145 if the profiling is on and the frame pointer is required. */
5146 if (current_function_profile && frame_pointer_needed)
5147 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
5148
5149 /* Retain a map of the prologue insns. */
5150 record_insns (seq, &prologue);
5151 emit_note (NOTE_INSN_PROLOGUE_END);
5152
5153 #ifndef PROFILE_BEFORE_PROLOGUE
5154 /* Ensure that instructions are not moved into the prologue when
5155 profiling is on. The call to the profiling routine can be
5156 emitted within the live range of a call-clobbered register. */
5157 if (current_function_profile)
5158 emit_insn (gen_blockage ());
5159 #endif
5160
5161 seq = get_insns ();
5162 end_sequence ();
5163 set_insn_locators (seq, prologue_locator);
5164
5165 /* Can't deal with multiple successors of the entry block
5166 at the moment. Function should always have at least one
5167 entry point. */
5168 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5169
5170 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5171 inserted = 1;
5172 }
5173 #endif
5174
5175 /* If the exit block has no non-fake predecessors, we don't need
5176 an epilogue. */
5177 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5178 if ((e->flags & EDGE_FAKE) == 0)
5179 break;
5180 if (e == NULL)
5181 goto epilogue_done;
5182
5183 #ifdef HAVE_return
5184 if (optimize && HAVE_return)
5185 {
5186 /* If we're allowed to generate a simple return instruction,
5187 then by definition we don't need a full epilogue. Examine
5188 the block that falls through to EXIT. If it does not
5189 contain any code, examine its predecessors and try to
5190 emit (conditional) return instructions. */
5191
5192 basic_block last;
5193 rtx label;
5194
5195 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5196 if (e->flags & EDGE_FALLTHRU)
5197 break;
5198 if (e == NULL)
5199 goto epilogue_done;
5200 last = e->src;
5201
5202 /* Verify that there are no active instructions in the last block. */
5203 label = BB_END (last);
5204 while (label && !LABEL_P (label))
5205 {
5206 if (active_insn_p (label))
5207 break;
5208 label = PREV_INSN (label);
5209 }
5210
5211 if (BB_HEAD (last) == label && LABEL_P (label))
5212 {
5213 edge_iterator ei2;
5214
5215 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5216 {
5217 basic_block bb = e->src;
5218 rtx jump;
5219
5220 if (bb == ENTRY_BLOCK_PTR)
5221 {
5222 ei_next (&ei2);
5223 continue;
5224 }
5225
5226 jump = BB_END (bb);
5227 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5228 {
5229 ei_next (&ei2);
5230 continue;
5231 }
5232
5233 /* If we have an unconditional jump, we can replace that
5234 with a simple return instruction. */
5235 if (simplejump_p (jump))
5236 {
5237 emit_return_into_block (bb);
5238 delete_insn (jump);
5239 }
5240
5241 /* If we have a conditional jump, we can try to replace
5242 that with a conditional return instruction. */
5243 else if (condjump_p (jump))
5244 {
5245 if (! redirect_jump (jump, 0, 0))
5246 {
5247 ei_next (&ei2);
5248 continue;
5249 }
5250
5251 /* If this block has only one successor, it both jumps
5252 and falls through to the fallthru block, so we can't
5253 delete the edge. */
5254 if (single_succ_p (bb))
5255 {
5256 ei_next (&ei2);
5257 continue;
5258 }
5259 }
5260 else
5261 {
5262 ei_next (&ei2);
5263 continue;
5264 }
5265
5266 /* Fix up the CFG for the successful change we just made. */
5267 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5268 }
5269
5270 /* Emit a return insn for the exit fallthru block. Whether
5271 this is still reachable will be determined later. */
5272
5273 emit_barrier_after (BB_END (last));
5274 emit_return_into_block (last);
5275 epilogue_end = BB_END (last);
5276 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5277 goto epilogue_done;
5278 }
5279 }
5280 #endif
5281 /* Find the edge that falls through to EXIT. Other edges may exist
5282 due to RETURN instructions, but those don't need epilogues.
5283 There really shouldn't be a mixture -- either all should have
5284 been converted or none, however... */
5285
5286 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5287 if (e->flags & EDGE_FALLTHRU)
5288 break;
5289 if (e == NULL)
5290 goto epilogue_done;
5291
5292 #ifdef HAVE_epilogue
5293 if (HAVE_epilogue)
5294 {
5295 start_sequence ();
5296 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5297
5298 seq = gen_epilogue ();
5299
5300 #ifdef INCOMING_RETURN_ADDR_RTX
5301 /* If this function returns with the stack depressed and we can support
5302 it, massage the epilogue to actually do that. */
5303 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5304 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5305 seq = keep_stack_depressed (seq);
5306 #endif
5307
5308 emit_jump_insn (seq);
5309
5310 /* Retain a map of the epilogue insns. */
5311 record_insns (seq, &epilogue);
5312 set_insn_locators (seq, epilogue_locator);
5313
5314 seq = get_insns ();
5315 end_sequence ();
5316
5317 insert_insn_on_edge (seq, e);
5318 inserted = 1;
5319 }
5320 else
5321 #endif
5322 {
5323 basic_block cur_bb;
5324
5325 if (! next_active_insn (BB_END (e->src)))
5326 goto epilogue_done;
5327 /* We have a fall-through edge to the exit block, the source is not
5328 at the end of the function, and there will be an assembler epilogue
5329 at the end of the function.
5330 We can't use force_nonfallthru here, because that would try to
5331 use return. Inserting a jump 'by hand' is extremely messy, so
5332 we take advantage of cfg_layout_finalize using
5333 fixup_fallthru_exit_predecessor. */
5334 cfg_layout_initialize (0);
5335 FOR_EACH_BB (cur_bb)
5336 if (cur_bb->index >= NUM_FIXED_BLOCKS
5337 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5338 cur_bb->aux = cur_bb->next_bb;
5339 cfg_layout_finalize ();
5340 }
5341 epilogue_done:
5342
5343 if (inserted)
5344 {
5345 commit_edge_insertions ();
5346
5347 /* The epilogue insns we inserted may cause the exit edge to no longer
5348 be fallthru. */
5349 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5350 {
5351 if (((e->flags & EDGE_FALLTHRU) != 0)
5352 && returnjump_p (BB_END (e->src)))
5353 e->flags &= ~EDGE_FALLTHRU;
5354 }
5355 }
5356
5357 #ifdef HAVE_sibcall_epilogue
5358 /* Emit sibling epilogues before any sibling call sites. */
5359 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5360 {
5361 basic_block bb = e->src;
5362 rtx insn = BB_END (bb);
5363
5364 if (!CALL_P (insn)
5365 || ! SIBLING_CALL_P (insn))
5366 {
5367 ei_next (&ei);
5368 continue;
5369 }
5370
5371 start_sequence ();
5372 emit_insn (gen_sibcall_epilogue ());
5373 seq = get_insns ();
5374 end_sequence ();
5375
5376 /* Retain a map of the epilogue insns. Used in life analysis to
5377 avoid getting rid of sibcall epilogue insns. Do this before we
5378 actually emit the sequence. */
5379 record_insns (seq, &sibcall_epilogue);
5380 set_insn_locators (seq, epilogue_locator);
5381
5382 emit_insn_before (seq, insn);
5383 ei_next (&ei);
5384 }
5385 #endif
5386
5387 #ifdef HAVE_epilogue
5388 if (epilogue_end)
5389 {
5390 rtx insn, next;
5391
5392 /* Similarly, move any line notes that appear after the epilogue.
5393 There is no need, however, to be quite so anal about the existence
5394 of such a note. Also possibly move
5395 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5396 info generation. */
5397 for (insn = epilogue_end; insn; insn = next)
5398 {
5399 next = NEXT_INSN (insn);
5400 if (NOTE_P (insn)
5401 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5402 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5403 }
5404 }
5405 #endif
5406
5407 /* Threading the prologue and epilogue changes the artificial refs
5408 in the entry and exit blocks. */
5409 epilogue_completed = 1;
5410 df_update_entry_exit_and_calls ();
5411 }
5412
5413 /* Reposition the prologue-end and epilogue-begin notes after instruction
5414 scheduling and delayed branch scheduling. */
5415
5416 void
5417 reposition_prologue_and_epilogue_notes (void)
5418 {
5419 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5420 rtx insn, last, note;
5421 int len;
5422
5423 if ((len = VEC_length (int, prologue)) > 0)
5424 {
5425 last = 0, note = 0;
5426
5427 /* Scan from the beginning until we reach the last prologue insn.
5428 We apparently can't depend on basic_block_{head,end} after
5429 reorg has run. */
5430 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5431 {
5432 if (NOTE_P (insn))
5433 {
5434 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5435 note = insn;
5436 }
5437 else if (contains (insn, &prologue))
5438 {
5439 last = insn;
5440 if (--len == 0)
5441 break;
5442 }
5443 }
5444
5445 if (last)
5446 {
5447 /* Find the prologue-end note if we haven't already, and
5448 move it to just after the last prologue insn. */
5449 if (note == 0)
5450 {
5451 for (note = last; (note = NEXT_INSN (note));)
5452 if (NOTE_P (note)
5453 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5454 break;
5455 }
5456
5457 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5458 if (LABEL_P (last))
5459 last = NEXT_INSN (last);
5460 reorder_insns (note, note, last);
5461 }
5462 }
5463
5464 if ((len = VEC_length (int, epilogue)) > 0)
5465 {
5466 last = 0, note = 0;
5467
5468 /* Scan from the end until we reach the first epilogue insn.
5469 We apparently can't depend on basic_block_{head,end} after
5470 reorg has run. */
5471 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5472 {
5473 if (NOTE_P (insn))
5474 {
5475 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5476 note = insn;
5477 }
5478 else if (contains (insn, &epilogue))
5479 {
5480 last = insn;
5481 if (--len == 0)
5482 break;
5483 }
5484 }
5485
5486 if (last)
5487 {
5488 /* Find the epilogue-begin note if we haven't already, and
5489 move it to just before the first epilogue insn. */
5490 if (note == 0)
5491 {
5492 for (note = insn; (note = PREV_INSN (note));)
5493 if (NOTE_P (note)
5494 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5495 break;
5496 }
5497
5498 if (PREV_INSN (last) != note)
5499 reorder_insns (note, note, PREV_INSN (last));
5500 }
5501 }
5502 #endif /* HAVE_prologue or HAVE_epilogue */
5503 }
5504
5505 /* Returns the name of the current function. */
5506 const char *
5507 current_function_name (void)
5508 {
5509 return lang_hooks.decl_printable_name (cfun->decl, 2);
5510 }
5511
5512 /* Returns the raw (mangled) name of the current function. */
5513 const char *
5514 current_function_assembler_name (void)
5515 {
5516 return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
5517 }
5518 \f
5519
5520 static unsigned int
5521 rest_of_handle_check_leaf_regs (void)
5522 {
5523 #ifdef LEAF_REGISTERS
5524 current_function_uses_only_leaf_regs
5525 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5526 #endif
5527 return 0;
5528 }
5529
5530 /* Insert a TYPE into the used types hash table of CFUN. */
5531 static void
5532 used_types_insert_helper (tree type, struct function *func)
5533 {
5534 if (type != NULL && func != NULL)
5535 {
5536 void **slot;
5537
5538 if (func->used_types_hash == NULL)
5539 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5540 htab_eq_pointer, NULL);
5541 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5542 if (*slot == NULL)
5543 *slot = type;
5544 }
5545 }
5546
5547 /* Given a type, insert it into the used hash table in cfun. */
5548 void
5549 used_types_insert (tree t)
5550 {
5551 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5552 t = TREE_TYPE (t);
5553 t = TYPE_MAIN_VARIANT (t);
5554 if (debug_info_level > DINFO_LEVEL_NONE)
5555 used_types_insert_helper (t, cfun);
5556 }
5557
5558 struct tree_opt_pass pass_leaf_regs =
5559 {
5560 NULL, /* name */
5561 NULL, /* gate */
5562 rest_of_handle_check_leaf_regs, /* execute */
5563 NULL, /* sub */
5564 NULL, /* next */
5565 0, /* static_pass_number */
5566 0, /* tv_id */
5567 0, /* properties_required */
5568 0, /* properties_provided */
5569 0, /* properties_destroyed */
5570 0, /* todo_flags_start */
5571 0, /* todo_flags_finish */
5572 0 /* letter */
5573 };
5574
5575 static unsigned int
5576 rest_of_handle_thread_prologue_and_epilogue (void)
5577 {
5578 if (optimize)
5579 cleanup_cfg (CLEANUP_EXPENSIVE);
5580 /* On some machines, the prologue and epilogue code, or parts thereof,
5581 can be represented as RTL. Doing so lets us schedule insns between
5582 it and the rest of the code and also allows delayed branch
5583 scheduling to operate in the epilogue. */
5584
5585 thread_prologue_and_epilogue_insns ();
5586 return 0;
5587 }
5588
5589 struct tree_opt_pass pass_thread_prologue_and_epilogue =
5590 {
5591 "pro_and_epilogue", /* name */
5592 NULL, /* gate */
5593 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5594 NULL, /* sub */
5595 NULL, /* next */
5596 0, /* static_pass_number */
5597 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5598 0, /* properties_required */
5599 0, /* properties_provided */
5600 0, /* properties_destroyed */
5601 TODO_verify_flow, /* todo_flags_start */
5602 TODO_dump_func |
5603 TODO_df_verify |
5604 TODO_df_finish | TODO_verify_rtl_sharing |
5605 TODO_ggc_collect, /* todo_flags_finish */
5606 'w' /* letter */
5607 };
5608 \f
5609
5610 /* This mini-pass fixes fall-out from SSA in asm statements that have
5611 in-out constraints. Say you start with
5612
5613 orig = inout;
5614 asm ("": "+mr" (inout));
5615 use (orig);
5616
5617 which is transformed very early to use explicit output and match operands:
5618
5619 orig = inout;
5620 asm ("": "=mr" (inout) : "0" (inout));
5621 use (orig);
5622
5623 Or, after SSA and copyprop,
5624
5625 asm ("": "=mr" (inout_2) : "0" (inout_1));
5626 use (inout_1);
5627
5628 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5629 they represent two separate values, so they will get different pseudo
5630 registers during expansion. Then, since the two operands need to match
5631 per the constraints, but use different pseudo registers, reload can
5632 only register a reload for these operands. But reloads can only be
5633 satisfied by hardregs, not by memory, so we need a register for this
5634 reload, just because we are presented with non-matching operands.
5635 So, even though we allow memory for this operand, no memory can be
5636 used for it, just because the two operands don't match. This can
5637 cause reload failures on register-starved targets.
5638
5639 So it's a symptom of reload not being able to use memory for reloads
5640 or, alternatively it's also a symptom of both operands not coming into
5641 reload as matching (in which case the pseudo could go to memory just
5642 fine, as the alternative allows it, and no reload would be necessary).
5643 We fix the latter problem here, by transforming
5644
5645 asm ("": "=mr" (inout_2) : "0" (inout_1));
5646
5647 back to
5648
5649 inout_2 = inout_1;
5650 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5651
5652 static void
5653 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5654 {
5655 int i;
5656 bool changed = false;
5657 rtx op = SET_SRC (p_sets[0]);
5658 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5659 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5660
5661 for (i = 0; i < ninputs; i++)
5662 {
5663 rtx input, output, insns;
5664 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5665 char *end;
5666 int match, j;
5667
5668 match = strtoul (constraint, &end, 10);
5669 if (end == constraint)
5670 continue;
5671
5672 gcc_assert (match < noutputs);
5673 output = SET_DEST (p_sets[match]);
5674 input = RTVEC_ELT (inputs, i);
5675 /* Only do the transformation for pseudos. */
5676 if (! REG_P (output)
5677 || rtx_equal_p (output, input)
5678 || (GET_MODE (input) != VOIDmode
5679 && GET_MODE (input) != GET_MODE (output)))
5680 continue;
5681
5682 /* We can't do anything if the output is also used as input,
5683 as we're going to overwrite it. */
5684 for (j = 0; j < ninputs; j++)
5685 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5686 break;
5687 if (j != ninputs)
5688 continue;
5689
5690 start_sequence ();
5691 emit_move_insn (output, input);
5692 insns = get_insns ();
5693 end_sequence ();
5694 emit_insn_before (insns, insn);
5695
5696 /* Now replace all mentions of the input with output. We can't
5697 just replace the occurence in inputs[i], as the register might
5698 also be used in some other input (or even in an address of an
5699 output), which would mean possibly increasing the number of
5700 inputs by one (namely 'output' in addition), which might pose
5701 a too complicated problem for reload to solve. E.g. this situation:
5702
5703 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5704
5705 Here 'input' is used in two occurences as input (once for the
5706 input operand, once for the address in the second output operand).
5707 If we would replace only the occurence of the input operand (to
5708 make the matching) we would be left with this:
5709
5710 output = input
5711 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5712
5713 Now we suddenly have two different input values (containing the same
5714 value, but different pseudos) where we formerly had only one.
5715 With more complicated asms this might lead to reload failures
5716 which wouldn't have happen without this pass. So, iterate over
5717 all operands and replace all occurences of the register used. */
5718 for (j = 0; j < noutputs; j++)
5719 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5720 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5721 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5722 input, output);
5723 for (j = 0; j < ninputs; j++)
5724 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5725 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5726 input, output);
5727
5728 changed = true;
5729 }
5730
5731 if (changed)
5732 df_insn_rescan (insn);
5733 }
5734
5735 static unsigned
5736 rest_of_match_asm_constraints (void)
5737 {
5738 basic_block bb;
5739 rtx insn, pat, *p_sets;
5740 int noutputs;
5741
5742 if (!cfun->has_asm_statement)
5743 return 0;
5744
5745 df_set_flags (DF_DEFER_INSN_RESCAN);
5746 FOR_EACH_BB (bb)
5747 {
5748 FOR_BB_INSNS (bb, insn)
5749 {
5750 if (!INSN_P (insn))
5751 continue;
5752
5753 pat = PATTERN (insn);
5754 if (GET_CODE (pat) == PARALLEL)
5755 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5756 else if (GET_CODE (pat) == SET)
5757 p_sets = &PATTERN (insn), noutputs = 1;
5758 else
5759 continue;
5760
5761 if (GET_CODE (*p_sets) == SET
5762 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5763 match_asm_constraints_1 (insn, p_sets, noutputs);
5764 }
5765 }
5766
5767 return TODO_df_finish;
5768 }
5769
5770 struct tree_opt_pass pass_match_asm_constraints =
5771 {
5772 "asmcons", /* name */
5773 NULL, /* gate */
5774 rest_of_match_asm_constraints, /* execute */
5775 NULL, /* sub */
5776 NULL, /* next */
5777 0, /* static_pass_number */
5778 0, /* tv_id */
5779 0, /* properties_required */
5780 0, /* properties_provided */
5781 0, /* properties_destroyed */
5782 0, /* todo_flags_start */
5783 TODO_dump_func, /* todo_flags_finish */
5784 0 /* letter */
5785 };
5786
5787
5788 #include "gt-function.h"