function.h (rtl): Rename to x_rtl.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "tree-gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef LOCAL_ALIGNMENT
73 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
74 #endif
75
76 #ifndef STACK_ALIGNMENT_NEEDED
77 #define STACK_ALIGNMENT_NEEDED 1
78 #endif
79
80 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
81
82 /* Some systems use __main in a way incompatible with its use in gcc, in these
83 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
84 give the same symbol without quotes for an alternative entry point. You
85 must define both, or neither. */
86 #ifndef NAME__MAIN
87 #define NAME__MAIN "__main"
88 #endif
89
90 /* Round a value to the lowest integer less than it that is a multiple of
91 the required alignment. Avoid using division in case the value is
92 negative. Assume the alignment is a power of two. */
93 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94
95 /* Similar, but round to the next highest integer that meets the
96 alignment. */
97 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98
99 /* Nonzero if function being compiled doesn't contain any calls
100 (ignoring the prologue and epilogue). This is set prior to
101 local register allocation and is valid for the remaining
102 compiler passes. */
103 int current_function_is_leaf;
104
105 /* Nonzero if function being compiled doesn't modify the stack pointer
106 (ignoring the prologue and epilogue). This is only valid after
107 pass_stack_ptr_mod has run. */
108 int current_function_sp_is_unchanging;
109
110 /* Nonzero if the function being compiled is a leaf function which only
111 uses leaf registers. This is valid after reload (specifically after
112 sched2) and is useful only if the port defines LEAF_REGISTERS. */
113 int current_function_uses_only_leaf_regs;
114
115 /* Nonzero once virtual register instantiation has been done.
116 assign_stack_local uses frame_pointer_rtx when this is nonzero.
117 calls.c:emit_library_call_value_1 uses it to set up
118 post-instantiation libcalls. */
119 int virtuals_instantiated;
120
121 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
122 static GTY(()) int funcdef_no;
123
124 /* These variables hold pointers to functions to create and destroy
125 target specific, per-function data structures. */
126 struct machine_function * (*init_machine_status) (void);
127
128 /* The currently compiled function. */
129 struct function *cfun = 0;
130
131 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
132 static VEC(int,heap) *prologue;
133 static VEC(int,heap) *epilogue;
134
135 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
136 in this function. */
137 static VEC(int,heap) *sibcall_epilogue;
138 \f
139 /* In order to evaluate some expressions, such as function calls returning
140 structures in memory, we need to temporarily allocate stack locations.
141 We record each allocated temporary in the following structure.
142
143 Associated with each temporary slot is a nesting level. When we pop up
144 one level, all temporaries associated with the previous level are freed.
145 Normally, all temporaries are freed after the execution of the statement
146 in which they were created. However, if we are inside a ({...}) grouping,
147 the result may be in a temporary and hence must be preserved. If the
148 result could be in a temporary, we preserve it if we can determine which
149 one it is in. If we cannot determine which temporary may contain the
150 result, all temporaries are preserved. A temporary is preserved by
151 pretending it was allocated at the previous nesting level.
152
153 Automatic variables are also assigned temporary slots, at the nesting
154 level where they are defined. They are marked a "kept" so that
155 free_temp_slots will not free them. */
156
157 struct temp_slot GTY(())
158 {
159 /* Points to next temporary slot. */
160 struct temp_slot *next;
161 /* Points to previous temporary slot. */
162 struct temp_slot *prev;
163
164 /* The rtx to used to reference the slot. */
165 rtx slot;
166 /* The rtx used to represent the address if not the address of the
167 slot above. May be an EXPR_LIST if multiple addresses exist. */
168 rtx address;
169 /* The alignment (in bits) of the slot. */
170 unsigned int align;
171 /* The size, in units, of the slot. */
172 HOST_WIDE_INT size;
173 /* The type of the object in the slot, or zero if it doesn't correspond
174 to a type. We use this to determine whether a slot can be reused.
175 It can be reused if objects of the type of the new slot will always
176 conflict with objects of the type of the old slot. */
177 tree type;
178 /* Nonzero if this temporary is currently in use. */
179 char in_use;
180 /* Nonzero if this temporary has its address taken. */
181 char addr_taken;
182 /* Nesting level at which this slot is being used. */
183 int level;
184 /* Nonzero if this should survive a call to free_temp_slots. */
185 int keep;
186 /* The offset of the slot from the frame_pointer, including extra space
187 for alignment. This info is for combine_temp_slots. */
188 HOST_WIDE_INT base_offset;
189 /* The size of the slot, including extra space for alignment. This
190 info is for combine_temp_slots. */
191 HOST_WIDE_INT full_size;
192 };
193 \f
194 /* Forward declarations. */
195
196 static struct temp_slot *find_temp_slot_from_address (rtx);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200 static int all_blocks (tree, tree *);
201 static tree *get_block_vector (tree, int *);
202 extern tree debug_find_var_in_block_tree (tree, tree);
203 /* We always define `record_insns' even if it's not used so that we
204 can always export `prologue_epilogue_contains'. */
205 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
206 static int contains (const_rtx, VEC(int,heap) **);
207 #ifdef HAVE_return
208 static void emit_return_into_block (basic_block);
209 #endif
210 static void prepare_function_start (void);
211 static void do_clobber_return_reg (rtx, void *);
212 static void do_use_return_reg (rtx, void *);
213 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
214 \f
215 /* Pointer to chain of `struct function' for containing functions. */
216 struct function *outer_function_chain;
217
218 /* Given a function decl for a containing function,
219 return the `struct function' for it. */
220
221 struct function *
222 find_function_data (tree decl)
223 {
224 struct function *p;
225
226 for (p = outer_function_chain; p; p = p->outer)
227 if (p->decl == decl)
228 return p;
229
230 gcc_unreachable ();
231 }
232
233 /* Save the current context for compilation of a nested function.
234 This is called from language-specific code. */
235
236 void
237 push_function_context (void)
238 {
239 if (cfun == 0)
240 allocate_struct_function (NULL, false);
241
242 cfun->outer = outer_function_chain;
243 outer_function_chain = cfun;
244 set_cfun (NULL);
245 }
246
247 /* Restore the last saved context, at the end of a nested function.
248 This function is called from language-specific code. */
249
250 void
251 pop_function_context (void)
252 {
253 struct function *p = outer_function_chain;
254
255 set_cfun (p);
256 outer_function_chain = p->outer;
257 current_function_decl = p->decl;
258
259 /* Reset variables that have known state during rtx generation. */
260 virtuals_instantiated = 0;
261 generating_concat_p = 1;
262 }
263
264 /* Clear out all parts of the state in F that can safely be discarded
265 after the function has been parsed, but not compiled, to let
266 garbage collection reclaim the memory. */
267
268 void
269 free_after_parsing (struct function *f)
270 {
271 f->language = 0;
272 }
273
274 /* Clear out all parts of the state in F that can safely be discarded
275 after the function has been compiled, to let garbage collection
276 reclaim the memory. */
277
278 void
279 free_after_compilation (struct function *f)
280 {
281 VEC_free (int, heap, prologue);
282 VEC_free (int, heap, epilogue);
283 VEC_free (int, heap, sibcall_epilogue);
284 if (crtl->emit.regno_pointer_align)
285 free (crtl->emit.regno_pointer_align);
286
287 memset (crtl, 0, sizeof (struct rtl_data));
288 f->eh = NULL;
289 f->machine = NULL;
290 f->cfg = NULL;
291
292 f->arg_offset_rtx = NULL;
293 f->return_rtx = NULL;
294 f->internal_arg_pointer = NULL;
295 f->epilogue_delay_list = NULL;
296 }
297 \f
298 /* Return size needed for stack frame based on slots so far allocated.
299 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
300 the caller may have to do that. */
301
302 HOST_WIDE_INT
303 get_frame_size (void)
304 {
305 if (FRAME_GROWS_DOWNWARD)
306 return -frame_offset;
307 else
308 return frame_offset;
309 }
310
311 /* Issue an error message and return TRUE if frame OFFSET overflows in
312 the signed target pointer arithmetics for function FUNC. Otherwise
313 return FALSE. */
314
315 bool
316 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
317 {
318 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
319
320 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
321 /* Leave room for the fixed part of the frame. */
322 - 64 * UNITS_PER_WORD)
323 {
324 error ("%Jtotal size of local objects too large", func);
325 return TRUE;
326 }
327
328 return FALSE;
329 }
330
331 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
332 with machine mode MODE.
333
334 ALIGN controls the amount of alignment for the address of the slot:
335 0 means according to MODE,
336 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
337 -2 means use BITS_PER_UNIT,
338 positive specifies alignment boundary in bits.
339
340 We do not round to stack_boundary here. */
341
342 rtx
343 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
344 {
345 rtx x, addr;
346 int bigend_correction = 0;
347 unsigned int alignment;
348 int frame_off, frame_alignment, frame_phase;
349
350 if (align == 0)
351 {
352 tree type;
353
354 if (mode == BLKmode)
355 alignment = BIGGEST_ALIGNMENT;
356 else
357 alignment = GET_MODE_ALIGNMENT (mode);
358
359 /* Allow the target to (possibly) increase the alignment of this
360 stack slot. */
361 type = lang_hooks.types.type_for_mode (mode, 0);
362 if (type)
363 alignment = LOCAL_ALIGNMENT (type, alignment);
364
365 alignment /= BITS_PER_UNIT;
366 }
367 else if (align == -1)
368 {
369 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
370 size = CEIL_ROUND (size, alignment);
371 }
372 else if (align == -2)
373 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
374 else
375 alignment = align / BITS_PER_UNIT;
376
377 if (FRAME_GROWS_DOWNWARD)
378 frame_offset -= size;
379
380 /* Ignore alignment we can't do with expected alignment of the boundary. */
381 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
382 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
383
384 if (cfun->stack_alignment_needed < alignment * BITS_PER_UNIT)
385 cfun->stack_alignment_needed = alignment * BITS_PER_UNIT;
386
387 /* Calculate how many bytes the start of local variables is off from
388 stack alignment. */
389 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
390 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
391 frame_phase = frame_off ? frame_alignment - frame_off : 0;
392
393 /* Round the frame offset to the specified alignment. The default is
394 to always honor requests to align the stack but a port may choose to
395 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
396 if (STACK_ALIGNMENT_NEEDED
397 || mode != BLKmode
398 || size != 0)
399 {
400 /* We must be careful here, since FRAME_OFFSET might be negative and
401 division with a negative dividend isn't as well defined as we might
402 like. So we instead assume that ALIGNMENT is a power of two and
403 use logical operations which are unambiguous. */
404 if (FRAME_GROWS_DOWNWARD)
405 frame_offset
406 = (FLOOR_ROUND (frame_offset - frame_phase,
407 (unsigned HOST_WIDE_INT) alignment)
408 + frame_phase);
409 else
410 frame_offset
411 = (CEIL_ROUND (frame_offset - frame_phase,
412 (unsigned HOST_WIDE_INT) alignment)
413 + frame_phase);
414 }
415
416 /* On a big-endian machine, if we are allocating more space than we will use,
417 use the least significant bytes of those that are allocated. */
418 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
419 bigend_correction = size - GET_MODE_SIZE (mode);
420
421 /* If we have already instantiated virtual registers, return the actual
422 address relative to the frame pointer. */
423 if (virtuals_instantiated)
424 addr = plus_constant (frame_pointer_rtx,
425 trunc_int_for_mode
426 (frame_offset + bigend_correction
427 + STARTING_FRAME_OFFSET, Pmode));
428 else
429 addr = plus_constant (virtual_stack_vars_rtx,
430 trunc_int_for_mode
431 (frame_offset + bigend_correction,
432 Pmode));
433
434 if (!FRAME_GROWS_DOWNWARD)
435 frame_offset += size;
436
437 x = gen_rtx_MEM (mode, addr);
438 MEM_NOTRAP_P (x) = 1;
439
440 stack_slot_list
441 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
442
443 if (frame_offset_overflow (frame_offset, current_function_decl))
444 frame_offset = 0;
445
446 return x;
447 }
448 \f
449 /* Removes temporary slot TEMP from LIST. */
450
451 static void
452 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
453 {
454 if (temp->next)
455 temp->next->prev = temp->prev;
456 if (temp->prev)
457 temp->prev->next = temp->next;
458 else
459 *list = temp->next;
460
461 temp->prev = temp->next = NULL;
462 }
463
464 /* Inserts temporary slot TEMP to LIST. */
465
466 static void
467 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
468 {
469 temp->next = *list;
470 if (*list)
471 (*list)->prev = temp;
472 temp->prev = NULL;
473 *list = temp;
474 }
475
476 /* Returns the list of used temp slots at LEVEL. */
477
478 static struct temp_slot **
479 temp_slots_at_level (int level)
480 {
481 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
482 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
483
484 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
485 }
486
487 /* Returns the maximal temporary slot level. */
488
489 static int
490 max_slot_level (void)
491 {
492 if (!used_temp_slots)
493 return -1;
494
495 return VEC_length (temp_slot_p, used_temp_slots) - 1;
496 }
497
498 /* Moves temporary slot TEMP to LEVEL. */
499
500 static void
501 move_slot_to_level (struct temp_slot *temp, int level)
502 {
503 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
504 insert_slot_to_list (temp, temp_slots_at_level (level));
505 temp->level = level;
506 }
507
508 /* Make temporary slot TEMP available. */
509
510 static void
511 make_slot_available (struct temp_slot *temp)
512 {
513 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
514 insert_slot_to_list (temp, &avail_temp_slots);
515 temp->in_use = 0;
516 temp->level = -1;
517 }
518 \f
519 /* Allocate a temporary stack slot and record it for possible later
520 reuse.
521
522 MODE is the machine mode to be given to the returned rtx.
523
524 SIZE is the size in units of the space required. We do no rounding here
525 since assign_stack_local will do any required rounding.
526
527 KEEP is 1 if this slot is to be retained after a call to
528 free_temp_slots. Automatic variables for a block are allocated
529 with this flag. KEEP values of 2 or 3 were needed respectively
530 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
531 or for SAVE_EXPRs, but they are now unused.
532
533 TYPE is the type that will be used for the stack slot. */
534
535 rtx
536 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
537 int keep, tree type)
538 {
539 unsigned int align;
540 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
541 rtx slot;
542
543 /* If SIZE is -1 it means that somebody tried to allocate a temporary
544 of a variable size. */
545 gcc_assert (size != -1);
546
547 /* These are now unused. */
548 gcc_assert (keep <= 1);
549
550 if (mode == BLKmode)
551 align = BIGGEST_ALIGNMENT;
552 else
553 align = GET_MODE_ALIGNMENT (mode);
554
555 if (! type)
556 type = lang_hooks.types.type_for_mode (mode, 0);
557
558 if (type)
559 align = LOCAL_ALIGNMENT (type, align);
560
561 /* Try to find an available, already-allocated temporary of the proper
562 mode which meets the size and alignment requirements. Choose the
563 smallest one with the closest alignment.
564
565 If assign_stack_temp is called outside of the tree->rtl expansion,
566 we cannot reuse the stack slots (that may still refer to
567 VIRTUAL_STACK_VARS_REGNUM). */
568 if (!virtuals_instantiated)
569 {
570 for (p = avail_temp_slots; p; p = p->next)
571 {
572 if (p->align >= align && p->size >= size
573 && GET_MODE (p->slot) == mode
574 && objects_must_conflict_p (p->type, type)
575 && (best_p == 0 || best_p->size > p->size
576 || (best_p->size == p->size && best_p->align > p->align)))
577 {
578 if (p->align == align && p->size == size)
579 {
580 selected = p;
581 cut_slot_from_list (selected, &avail_temp_slots);
582 best_p = 0;
583 break;
584 }
585 best_p = p;
586 }
587 }
588 }
589
590 /* Make our best, if any, the one to use. */
591 if (best_p)
592 {
593 selected = best_p;
594 cut_slot_from_list (selected, &avail_temp_slots);
595
596 /* If there are enough aligned bytes left over, make them into a new
597 temp_slot so that the extra bytes don't get wasted. Do this only
598 for BLKmode slots, so that we can be sure of the alignment. */
599 if (GET_MODE (best_p->slot) == BLKmode)
600 {
601 int alignment = best_p->align / BITS_PER_UNIT;
602 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
603
604 if (best_p->size - rounded_size >= alignment)
605 {
606 p = ggc_alloc (sizeof (struct temp_slot));
607 p->in_use = p->addr_taken = 0;
608 p->size = best_p->size - rounded_size;
609 p->base_offset = best_p->base_offset + rounded_size;
610 p->full_size = best_p->full_size - rounded_size;
611 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
612 p->align = best_p->align;
613 p->address = 0;
614 p->type = best_p->type;
615 insert_slot_to_list (p, &avail_temp_slots);
616
617 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
618 stack_slot_list);
619
620 best_p->size = rounded_size;
621 best_p->full_size = rounded_size;
622 }
623 }
624 }
625
626 /* If we still didn't find one, make a new temporary. */
627 if (selected == 0)
628 {
629 HOST_WIDE_INT frame_offset_old = frame_offset;
630
631 p = ggc_alloc (sizeof (struct temp_slot));
632
633 /* We are passing an explicit alignment request to assign_stack_local.
634 One side effect of that is assign_stack_local will not round SIZE
635 to ensure the frame offset remains suitably aligned.
636
637 So for requests which depended on the rounding of SIZE, we go ahead
638 and round it now. We also make sure ALIGNMENT is at least
639 BIGGEST_ALIGNMENT. */
640 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
641 p->slot = assign_stack_local (mode,
642 (mode == BLKmode
643 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
644 : size),
645 align);
646
647 p->align = align;
648
649 /* The following slot size computation is necessary because we don't
650 know the actual size of the temporary slot until assign_stack_local
651 has performed all the frame alignment and size rounding for the
652 requested temporary. Note that extra space added for alignment
653 can be either above or below this stack slot depending on which
654 way the frame grows. We include the extra space if and only if it
655 is above this slot. */
656 if (FRAME_GROWS_DOWNWARD)
657 p->size = frame_offset_old - frame_offset;
658 else
659 p->size = size;
660
661 /* Now define the fields used by combine_temp_slots. */
662 if (FRAME_GROWS_DOWNWARD)
663 {
664 p->base_offset = frame_offset;
665 p->full_size = frame_offset_old - frame_offset;
666 }
667 else
668 {
669 p->base_offset = frame_offset_old;
670 p->full_size = frame_offset - frame_offset_old;
671 }
672 p->address = 0;
673
674 selected = p;
675 }
676
677 p = selected;
678 p->in_use = 1;
679 p->addr_taken = 0;
680 p->type = type;
681 p->level = temp_slot_level;
682 p->keep = keep;
683
684 pp = temp_slots_at_level (p->level);
685 insert_slot_to_list (p, pp);
686
687 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
688 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
689 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
690
691 /* If we know the alias set for the memory that will be used, use
692 it. If there's no TYPE, then we don't know anything about the
693 alias set for the memory. */
694 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
695 set_mem_align (slot, align);
696
697 /* If a type is specified, set the relevant flags. */
698 if (type != 0)
699 {
700 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
701 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
702 || TREE_CODE (type) == COMPLEX_TYPE));
703 }
704 MEM_NOTRAP_P (slot) = 1;
705
706 return slot;
707 }
708
709 /* Allocate a temporary stack slot and record it for possible later
710 reuse. First three arguments are same as in preceding function. */
711
712 rtx
713 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
714 {
715 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
716 }
717 \f
718 /* Assign a temporary.
719 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
720 and so that should be used in error messages. In either case, we
721 allocate of the given type.
722 KEEP is as for assign_stack_temp.
723 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
724 it is 0 if a register is OK.
725 DONT_PROMOTE is 1 if we should not promote values in register
726 to wider modes. */
727
728 rtx
729 assign_temp (tree type_or_decl, int keep, int memory_required,
730 int dont_promote ATTRIBUTE_UNUSED)
731 {
732 tree type, decl;
733 enum machine_mode mode;
734 #ifdef PROMOTE_MODE
735 int unsignedp;
736 #endif
737
738 if (DECL_P (type_or_decl))
739 decl = type_or_decl, type = TREE_TYPE (decl);
740 else
741 decl = NULL, type = type_or_decl;
742
743 mode = TYPE_MODE (type);
744 #ifdef PROMOTE_MODE
745 unsignedp = TYPE_UNSIGNED (type);
746 #endif
747
748 if (mode == BLKmode || memory_required)
749 {
750 HOST_WIDE_INT size = int_size_in_bytes (type);
751 rtx tmp;
752
753 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
754 problems with allocating the stack space. */
755 if (size == 0)
756 size = 1;
757
758 /* Unfortunately, we don't yet know how to allocate variable-sized
759 temporaries. However, sometimes we can find a fixed upper limit on
760 the size, so try that instead. */
761 else if (size == -1)
762 size = max_int_size_in_bytes (type);
763
764 /* The size of the temporary may be too large to fit into an integer. */
765 /* ??? Not sure this should happen except for user silliness, so limit
766 this to things that aren't compiler-generated temporaries. The
767 rest of the time we'll die in assign_stack_temp_for_type. */
768 if (decl && size == -1
769 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
770 {
771 error ("size of variable %q+D is too large", decl);
772 size = 1;
773 }
774
775 tmp = assign_stack_temp_for_type (mode, size, keep, type);
776 return tmp;
777 }
778
779 #ifdef PROMOTE_MODE
780 if (! dont_promote)
781 mode = promote_mode (type, mode, &unsignedp, 0);
782 #endif
783
784 return gen_reg_rtx (mode);
785 }
786 \f
787 /* Combine temporary stack slots which are adjacent on the stack.
788
789 This allows for better use of already allocated stack space. This is only
790 done for BLKmode slots because we can be sure that we won't have alignment
791 problems in this case. */
792
793 static void
794 combine_temp_slots (void)
795 {
796 struct temp_slot *p, *q, *next, *next_q;
797 int num_slots;
798
799 /* We can't combine slots, because the information about which slot
800 is in which alias set will be lost. */
801 if (flag_strict_aliasing)
802 return;
803
804 /* If there are a lot of temp slots, don't do anything unless
805 high levels of optimization. */
806 if (! flag_expensive_optimizations)
807 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
808 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
809 return;
810
811 for (p = avail_temp_slots; p; p = next)
812 {
813 int delete_p = 0;
814
815 next = p->next;
816
817 if (GET_MODE (p->slot) != BLKmode)
818 continue;
819
820 for (q = p->next; q; q = next_q)
821 {
822 int delete_q = 0;
823
824 next_q = q->next;
825
826 if (GET_MODE (q->slot) != BLKmode)
827 continue;
828
829 if (p->base_offset + p->full_size == q->base_offset)
830 {
831 /* Q comes after P; combine Q into P. */
832 p->size += q->size;
833 p->full_size += q->full_size;
834 delete_q = 1;
835 }
836 else if (q->base_offset + q->full_size == p->base_offset)
837 {
838 /* P comes after Q; combine P into Q. */
839 q->size += p->size;
840 q->full_size += p->full_size;
841 delete_p = 1;
842 break;
843 }
844 if (delete_q)
845 cut_slot_from_list (q, &avail_temp_slots);
846 }
847
848 /* Either delete P or advance past it. */
849 if (delete_p)
850 cut_slot_from_list (p, &avail_temp_slots);
851 }
852 }
853 \f
854 /* Find the temp slot corresponding to the object at address X. */
855
856 static struct temp_slot *
857 find_temp_slot_from_address (rtx x)
858 {
859 struct temp_slot *p;
860 rtx next;
861 int i;
862
863 for (i = max_slot_level (); i >= 0; i--)
864 for (p = *temp_slots_at_level (i); p; p = p->next)
865 {
866 if (XEXP (p->slot, 0) == x
867 || p->address == x
868 || (GET_CODE (x) == PLUS
869 && XEXP (x, 0) == virtual_stack_vars_rtx
870 && GET_CODE (XEXP (x, 1)) == CONST_INT
871 && INTVAL (XEXP (x, 1)) >= p->base_offset
872 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
873 return p;
874
875 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
876 for (next = p->address; next; next = XEXP (next, 1))
877 if (XEXP (next, 0) == x)
878 return p;
879 }
880
881 /* If we have a sum involving a register, see if it points to a temp
882 slot. */
883 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
884 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
885 return p;
886 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
887 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
888 return p;
889
890 return 0;
891 }
892
893 /* Indicate that NEW is an alternate way of referring to the temp slot
894 that previously was known by OLD. */
895
896 void
897 update_temp_slot_address (rtx old, rtx new)
898 {
899 struct temp_slot *p;
900
901 if (rtx_equal_p (old, new))
902 return;
903
904 p = find_temp_slot_from_address (old);
905
906 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
907 is a register, see if one operand of the PLUS is a temporary
908 location. If so, NEW points into it. Otherwise, if both OLD and
909 NEW are a PLUS and if there is a register in common between them.
910 If so, try a recursive call on those values. */
911 if (p == 0)
912 {
913 if (GET_CODE (old) != PLUS)
914 return;
915
916 if (REG_P (new))
917 {
918 update_temp_slot_address (XEXP (old, 0), new);
919 update_temp_slot_address (XEXP (old, 1), new);
920 return;
921 }
922 else if (GET_CODE (new) != PLUS)
923 return;
924
925 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
926 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
927 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
928 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
929 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
930 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
931 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
932 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
933
934 return;
935 }
936
937 /* Otherwise add an alias for the temp's address. */
938 else if (p->address == 0)
939 p->address = new;
940 else
941 {
942 if (GET_CODE (p->address) != EXPR_LIST)
943 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
944
945 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
946 }
947 }
948
949 /* If X could be a reference to a temporary slot, mark the fact that its
950 address was taken. */
951
952 void
953 mark_temp_addr_taken (rtx x)
954 {
955 struct temp_slot *p;
956
957 if (x == 0)
958 return;
959
960 /* If X is not in memory or is at a constant address, it cannot be in
961 a temporary slot. */
962 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
963 return;
964
965 p = find_temp_slot_from_address (XEXP (x, 0));
966 if (p != 0)
967 p->addr_taken = 1;
968 }
969
970 /* If X could be a reference to a temporary slot, mark that slot as
971 belonging to the to one level higher than the current level. If X
972 matched one of our slots, just mark that one. Otherwise, we can't
973 easily predict which it is, so upgrade all of them. Kept slots
974 need not be touched.
975
976 This is called when an ({...}) construct occurs and a statement
977 returns a value in memory. */
978
979 void
980 preserve_temp_slots (rtx x)
981 {
982 struct temp_slot *p = 0, *next;
983
984 /* If there is no result, we still might have some objects whose address
985 were taken, so we need to make sure they stay around. */
986 if (x == 0)
987 {
988 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
989 {
990 next = p->next;
991
992 if (p->addr_taken)
993 move_slot_to_level (p, temp_slot_level - 1);
994 }
995
996 return;
997 }
998
999 /* If X is a register that is being used as a pointer, see if we have
1000 a temporary slot we know it points to. To be consistent with
1001 the code below, we really should preserve all non-kept slots
1002 if we can't find a match, but that seems to be much too costly. */
1003 if (REG_P (x) && REG_POINTER (x))
1004 p = find_temp_slot_from_address (x);
1005
1006 /* If X is not in memory or is at a constant address, it cannot be in
1007 a temporary slot, but it can contain something whose address was
1008 taken. */
1009 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1010 {
1011 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1012 {
1013 next = p->next;
1014
1015 if (p->addr_taken)
1016 move_slot_to_level (p, temp_slot_level - 1);
1017 }
1018
1019 return;
1020 }
1021
1022 /* First see if we can find a match. */
1023 if (p == 0)
1024 p = find_temp_slot_from_address (XEXP (x, 0));
1025
1026 if (p != 0)
1027 {
1028 /* Move everything at our level whose address was taken to our new
1029 level in case we used its address. */
1030 struct temp_slot *q;
1031
1032 if (p->level == temp_slot_level)
1033 {
1034 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1035 {
1036 next = q->next;
1037
1038 if (p != q && q->addr_taken)
1039 move_slot_to_level (q, temp_slot_level - 1);
1040 }
1041
1042 move_slot_to_level (p, temp_slot_level - 1);
1043 p->addr_taken = 0;
1044 }
1045 return;
1046 }
1047
1048 /* Otherwise, preserve all non-kept slots at this level. */
1049 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1050 {
1051 next = p->next;
1052
1053 if (!p->keep)
1054 move_slot_to_level (p, temp_slot_level - 1);
1055 }
1056 }
1057
1058 /* Free all temporaries used so far. This is normally called at the
1059 end of generating code for a statement. */
1060
1061 void
1062 free_temp_slots (void)
1063 {
1064 struct temp_slot *p, *next;
1065
1066 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1067 {
1068 next = p->next;
1069
1070 if (!p->keep)
1071 make_slot_available (p);
1072 }
1073
1074 combine_temp_slots ();
1075 }
1076
1077 /* Push deeper into the nesting level for stack temporaries. */
1078
1079 void
1080 push_temp_slots (void)
1081 {
1082 temp_slot_level++;
1083 }
1084
1085 /* Pop a temporary nesting level. All slots in use in the current level
1086 are freed. */
1087
1088 void
1089 pop_temp_slots (void)
1090 {
1091 struct temp_slot *p, *next;
1092
1093 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1094 {
1095 next = p->next;
1096 make_slot_available (p);
1097 }
1098
1099 combine_temp_slots ();
1100
1101 temp_slot_level--;
1102 }
1103
1104 /* Initialize temporary slots. */
1105
1106 void
1107 init_temp_slots (void)
1108 {
1109 /* We have not allocated any temporaries yet. */
1110 avail_temp_slots = 0;
1111 used_temp_slots = 0;
1112 temp_slot_level = 0;
1113 }
1114 \f
1115 /* These routines are responsible for converting virtual register references
1116 to the actual hard register references once RTL generation is complete.
1117
1118 The following four variables are used for communication between the
1119 routines. They contain the offsets of the virtual registers from their
1120 respective hard registers. */
1121
1122 static int in_arg_offset;
1123 static int var_offset;
1124 static int dynamic_offset;
1125 static int out_arg_offset;
1126 static int cfa_offset;
1127
1128 /* In most machines, the stack pointer register is equivalent to the bottom
1129 of the stack. */
1130
1131 #ifndef STACK_POINTER_OFFSET
1132 #define STACK_POINTER_OFFSET 0
1133 #endif
1134
1135 /* If not defined, pick an appropriate default for the offset of dynamically
1136 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1137 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1138
1139 #ifndef STACK_DYNAMIC_OFFSET
1140
1141 /* The bottom of the stack points to the actual arguments. If
1142 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1143 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1144 stack space for register parameters is not pushed by the caller, but
1145 rather part of the fixed stack areas and hence not included in
1146 `current_function_outgoing_args_size'. Nevertheless, we must allow
1147 for it when allocating stack dynamic objects. */
1148
1149 #if defined(REG_PARM_STACK_SPACE)
1150 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1151 ((ACCUMULATE_OUTGOING_ARGS \
1152 ? (current_function_outgoing_args_size \
1153 + (OUTGOING_REG_PARM_STACK_SPACE ? 0 : REG_PARM_STACK_SPACE (FNDECL))) \
1154 : 0) + (STACK_POINTER_OFFSET))
1155 #else
1156 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1157 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1158 + (STACK_POINTER_OFFSET))
1159 #endif
1160 #endif
1161
1162 \f
1163 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1164 is a virtual register, return the equivalent hard register and set the
1165 offset indirectly through the pointer. Otherwise, return 0. */
1166
1167 static rtx
1168 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1169 {
1170 rtx new;
1171 HOST_WIDE_INT offset;
1172
1173 if (x == virtual_incoming_args_rtx)
1174 new = arg_pointer_rtx, offset = in_arg_offset;
1175 else if (x == virtual_stack_vars_rtx)
1176 new = frame_pointer_rtx, offset = var_offset;
1177 else if (x == virtual_stack_dynamic_rtx)
1178 new = stack_pointer_rtx, offset = dynamic_offset;
1179 else if (x == virtual_outgoing_args_rtx)
1180 new = stack_pointer_rtx, offset = out_arg_offset;
1181 else if (x == virtual_cfa_rtx)
1182 {
1183 #ifdef FRAME_POINTER_CFA_OFFSET
1184 new = frame_pointer_rtx;
1185 #else
1186 new = arg_pointer_rtx;
1187 #endif
1188 offset = cfa_offset;
1189 }
1190 else
1191 return NULL_RTX;
1192
1193 *poffset = offset;
1194 return new;
1195 }
1196
1197 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1198 Instantiate any virtual registers present inside of *LOC. The expression
1199 is simplified, as much as possible, but is not to be considered "valid"
1200 in any sense implied by the target. If any change is made, set CHANGED
1201 to true. */
1202
1203 static int
1204 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1205 {
1206 HOST_WIDE_INT offset;
1207 bool *changed = (bool *) data;
1208 rtx x, new;
1209
1210 x = *loc;
1211 if (x == 0)
1212 return 0;
1213
1214 switch (GET_CODE (x))
1215 {
1216 case REG:
1217 new = instantiate_new_reg (x, &offset);
1218 if (new)
1219 {
1220 *loc = plus_constant (new, offset);
1221 if (changed)
1222 *changed = true;
1223 }
1224 return -1;
1225
1226 case PLUS:
1227 new = instantiate_new_reg (XEXP (x, 0), &offset);
1228 if (new)
1229 {
1230 new = plus_constant (new, offset);
1231 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1232 if (changed)
1233 *changed = true;
1234 return -1;
1235 }
1236
1237 /* FIXME -- from old code */
1238 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1239 we can commute the PLUS and SUBREG because pointers into the
1240 frame are well-behaved. */
1241 break;
1242
1243 default:
1244 break;
1245 }
1246
1247 return 0;
1248 }
1249
1250 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1251 matches the predicate for insn CODE operand OPERAND. */
1252
1253 static int
1254 safe_insn_predicate (int code, int operand, rtx x)
1255 {
1256 const struct insn_operand_data *op_data;
1257
1258 if (code < 0)
1259 return true;
1260
1261 op_data = &insn_data[code].operand[operand];
1262 if (op_data->predicate == NULL)
1263 return true;
1264
1265 return op_data->predicate (x, op_data->mode);
1266 }
1267
1268 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1269 registers present inside of insn. The result will be a valid insn. */
1270
1271 static void
1272 instantiate_virtual_regs_in_insn (rtx insn)
1273 {
1274 HOST_WIDE_INT offset;
1275 int insn_code, i;
1276 bool any_change = false;
1277 rtx set, new, x, seq;
1278
1279 /* There are some special cases to be handled first. */
1280 set = single_set (insn);
1281 if (set)
1282 {
1283 /* We're allowed to assign to a virtual register. This is interpreted
1284 to mean that the underlying register gets assigned the inverse
1285 transformation. This is used, for example, in the handling of
1286 non-local gotos. */
1287 new = instantiate_new_reg (SET_DEST (set), &offset);
1288 if (new)
1289 {
1290 start_sequence ();
1291
1292 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1293 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1294 GEN_INT (-offset));
1295 x = force_operand (x, new);
1296 if (x != new)
1297 emit_move_insn (new, x);
1298
1299 seq = get_insns ();
1300 end_sequence ();
1301
1302 emit_insn_before (seq, insn);
1303 delete_insn (insn);
1304 return;
1305 }
1306
1307 /* Handle a straight copy from a virtual register by generating a
1308 new add insn. The difference between this and falling through
1309 to the generic case is avoiding a new pseudo and eliminating a
1310 move insn in the initial rtl stream. */
1311 new = instantiate_new_reg (SET_SRC (set), &offset);
1312 if (new && offset != 0
1313 && REG_P (SET_DEST (set))
1314 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1315 {
1316 start_sequence ();
1317
1318 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1319 new, GEN_INT (offset), SET_DEST (set),
1320 1, OPTAB_LIB_WIDEN);
1321 if (x != SET_DEST (set))
1322 emit_move_insn (SET_DEST (set), x);
1323
1324 seq = get_insns ();
1325 end_sequence ();
1326
1327 emit_insn_before (seq, insn);
1328 delete_insn (insn);
1329 return;
1330 }
1331
1332 extract_insn (insn);
1333 insn_code = INSN_CODE (insn);
1334
1335 /* Handle a plus involving a virtual register by determining if the
1336 operands remain valid if they're modified in place. */
1337 if (GET_CODE (SET_SRC (set)) == PLUS
1338 && recog_data.n_operands >= 3
1339 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1340 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1341 && GET_CODE (recog_data.operand[2]) == CONST_INT
1342 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1343 {
1344 offset += INTVAL (recog_data.operand[2]);
1345
1346 /* If the sum is zero, then replace with a plain move. */
1347 if (offset == 0
1348 && REG_P (SET_DEST (set))
1349 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1350 {
1351 start_sequence ();
1352 emit_move_insn (SET_DEST (set), new);
1353 seq = get_insns ();
1354 end_sequence ();
1355
1356 emit_insn_before (seq, insn);
1357 delete_insn (insn);
1358 return;
1359 }
1360
1361 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1362
1363 /* Using validate_change and apply_change_group here leaves
1364 recog_data in an invalid state. Since we know exactly what
1365 we want to check, do those two by hand. */
1366 if (safe_insn_predicate (insn_code, 1, new)
1367 && safe_insn_predicate (insn_code, 2, x))
1368 {
1369 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1370 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1371 any_change = true;
1372
1373 /* Fall through into the regular operand fixup loop in
1374 order to take care of operands other than 1 and 2. */
1375 }
1376 }
1377 }
1378 else
1379 {
1380 extract_insn (insn);
1381 insn_code = INSN_CODE (insn);
1382 }
1383
1384 /* In the general case, we expect virtual registers to appear only in
1385 operands, and then only as either bare registers or inside memories. */
1386 for (i = 0; i < recog_data.n_operands; ++i)
1387 {
1388 x = recog_data.operand[i];
1389 switch (GET_CODE (x))
1390 {
1391 case MEM:
1392 {
1393 rtx addr = XEXP (x, 0);
1394 bool changed = false;
1395
1396 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1397 if (!changed)
1398 continue;
1399
1400 start_sequence ();
1401 x = replace_equiv_address (x, addr);
1402 /* It may happen that the address with the virtual reg
1403 was valid (e.g. based on the virtual stack reg, which might
1404 be acceptable to the predicates with all offsets), whereas
1405 the address now isn't anymore, for instance when the address
1406 is still offsetted, but the base reg isn't virtual-stack-reg
1407 anymore. Below we would do a force_reg on the whole operand,
1408 but this insn might actually only accept memory. Hence,
1409 before doing that last resort, try to reload the address into
1410 a register, so this operand stays a MEM. */
1411 if (!safe_insn_predicate (insn_code, i, x))
1412 {
1413 addr = force_reg (GET_MODE (addr), addr);
1414 x = replace_equiv_address (x, addr);
1415 }
1416 seq = get_insns ();
1417 end_sequence ();
1418 if (seq)
1419 emit_insn_before (seq, insn);
1420 }
1421 break;
1422
1423 case REG:
1424 new = instantiate_new_reg (x, &offset);
1425 if (new == NULL)
1426 continue;
1427 if (offset == 0)
1428 x = new;
1429 else
1430 {
1431 start_sequence ();
1432
1433 /* Careful, special mode predicates may have stuff in
1434 insn_data[insn_code].operand[i].mode that isn't useful
1435 to us for computing a new value. */
1436 /* ??? Recognize address_operand and/or "p" constraints
1437 to see if (plus new offset) is a valid before we put
1438 this through expand_simple_binop. */
1439 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1440 GEN_INT (offset), NULL_RTX,
1441 1, OPTAB_LIB_WIDEN);
1442 seq = get_insns ();
1443 end_sequence ();
1444 emit_insn_before (seq, insn);
1445 }
1446 break;
1447
1448 case SUBREG:
1449 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1450 if (new == NULL)
1451 continue;
1452 if (offset != 0)
1453 {
1454 start_sequence ();
1455 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1456 GEN_INT (offset), NULL_RTX,
1457 1, OPTAB_LIB_WIDEN);
1458 seq = get_insns ();
1459 end_sequence ();
1460 emit_insn_before (seq, insn);
1461 }
1462 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1463 GET_MODE (new), SUBREG_BYTE (x));
1464 break;
1465
1466 default:
1467 continue;
1468 }
1469
1470 /* At this point, X contains the new value for the operand.
1471 Validate the new value vs the insn predicate. Note that
1472 asm insns will have insn_code -1 here. */
1473 if (!safe_insn_predicate (insn_code, i, x))
1474 {
1475 start_sequence ();
1476 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1477 seq = get_insns ();
1478 end_sequence ();
1479 if (seq)
1480 emit_insn_before (seq, insn);
1481 }
1482
1483 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1484 any_change = true;
1485 }
1486
1487 if (any_change)
1488 {
1489 /* Propagate operand changes into the duplicates. */
1490 for (i = 0; i < recog_data.n_dups; ++i)
1491 *recog_data.dup_loc[i]
1492 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1493
1494 /* Force re-recognition of the instruction for validation. */
1495 INSN_CODE (insn) = -1;
1496 }
1497
1498 if (asm_noperands (PATTERN (insn)) >= 0)
1499 {
1500 if (!check_asm_operands (PATTERN (insn)))
1501 {
1502 error_for_asm (insn, "impossible constraint in %<asm%>");
1503 delete_insn (insn);
1504 }
1505 }
1506 else
1507 {
1508 if (recog_memoized (insn) < 0)
1509 fatal_insn_not_found (insn);
1510 }
1511 }
1512
1513 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1514 do any instantiation required. */
1515
1516 void
1517 instantiate_decl_rtl (rtx x)
1518 {
1519 rtx addr;
1520
1521 if (x == 0)
1522 return;
1523
1524 /* If this is a CONCAT, recurse for the pieces. */
1525 if (GET_CODE (x) == CONCAT)
1526 {
1527 instantiate_decl_rtl (XEXP (x, 0));
1528 instantiate_decl_rtl (XEXP (x, 1));
1529 return;
1530 }
1531
1532 /* If this is not a MEM, no need to do anything. Similarly if the
1533 address is a constant or a register that is not a virtual register. */
1534 if (!MEM_P (x))
1535 return;
1536
1537 addr = XEXP (x, 0);
1538 if (CONSTANT_P (addr)
1539 || (REG_P (addr)
1540 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1541 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1542 return;
1543
1544 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1545 }
1546
1547 /* Helper for instantiate_decls called via walk_tree: Process all decls
1548 in the given DECL_VALUE_EXPR. */
1549
1550 static tree
1551 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1552 {
1553 tree t = *tp;
1554 if (! EXPR_P (t) && ! GIMPLE_STMT_P (t))
1555 {
1556 *walk_subtrees = 0;
1557 if (DECL_P (t) && DECL_RTL_SET_P (t))
1558 instantiate_decl_rtl (DECL_RTL (t));
1559 }
1560 return NULL;
1561 }
1562
1563 /* Subroutine of instantiate_decls: Process all decls in the given
1564 BLOCK node and all its subblocks. */
1565
1566 static void
1567 instantiate_decls_1 (tree let)
1568 {
1569 tree t;
1570
1571 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1572 {
1573 if (DECL_RTL_SET_P (t))
1574 instantiate_decl_rtl (DECL_RTL (t));
1575 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1576 {
1577 tree v = DECL_VALUE_EXPR (t);
1578 walk_tree (&v, instantiate_expr, NULL, NULL);
1579 }
1580 }
1581
1582 /* Process all subblocks. */
1583 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1584 instantiate_decls_1 (t);
1585 }
1586
1587 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1588 all virtual registers in their DECL_RTL's. */
1589
1590 static void
1591 instantiate_decls (tree fndecl)
1592 {
1593 tree decl;
1594
1595 /* Process all parameters of the function. */
1596 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1597 {
1598 instantiate_decl_rtl (DECL_RTL (decl));
1599 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1600 if (DECL_HAS_VALUE_EXPR_P (decl))
1601 {
1602 tree v = DECL_VALUE_EXPR (decl);
1603 walk_tree (&v, instantiate_expr, NULL, NULL);
1604 }
1605 }
1606
1607 /* Now process all variables defined in the function or its subblocks. */
1608 instantiate_decls_1 (DECL_INITIAL (fndecl));
1609 }
1610
1611 /* Pass through the INSNS of function FNDECL and convert virtual register
1612 references to hard register references. */
1613
1614 static unsigned int
1615 instantiate_virtual_regs (void)
1616 {
1617 rtx insn;
1618
1619 /* Compute the offsets to use for this function. */
1620 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1621 var_offset = STARTING_FRAME_OFFSET;
1622 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1623 out_arg_offset = STACK_POINTER_OFFSET;
1624 #ifdef FRAME_POINTER_CFA_OFFSET
1625 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1626 #else
1627 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1628 #endif
1629
1630 /* Initialize recognition, indicating that volatile is OK. */
1631 init_recog ();
1632
1633 /* Scan through all the insns, instantiating every virtual register still
1634 present. */
1635 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1636 if (INSN_P (insn))
1637 {
1638 /* These patterns in the instruction stream can never be recognized.
1639 Fortunately, they shouldn't contain virtual registers either. */
1640 if (GET_CODE (PATTERN (insn)) == USE
1641 || GET_CODE (PATTERN (insn)) == CLOBBER
1642 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1643 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1644 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1645 continue;
1646
1647 instantiate_virtual_regs_in_insn (insn);
1648
1649 if (INSN_DELETED_P (insn))
1650 continue;
1651
1652 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1653
1654 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1655 if (GET_CODE (insn) == CALL_INSN)
1656 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1657 instantiate_virtual_regs_in_rtx, NULL);
1658 }
1659
1660 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1661 instantiate_decls (current_function_decl);
1662
1663 targetm.instantiate_decls ();
1664
1665 /* Indicate that, from now on, assign_stack_local should use
1666 frame_pointer_rtx. */
1667 virtuals_instantiated = 1;
1668 return 0;
1669 }
1670
1671 struct rtl_opt_pass pass_instantiate_virtual_regs =
1672 {
1673 {
1674 RTL_PASS,
1675 "vregs", /* name */
1676 NULL, /* gate */
1677 instantiate_virtual_regs, /* execute */
1678 NULL, /* sub */
1679 NULL, /* next */
1680 0, /* static_pass_number */
1681 0, /* tv_id */
1682 0, /* properties_required */
1683 0, /* properties_provided */
1684 0, /* properties_destroyed */
1685 0, /* todo_flags_start */
1686 TODO_dump_func /* todo_flags_finish */
1687 }
1688 };
1689
1690 \f
1691 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1692 This means a type for which function calls must pass an address to the
1693 function or get an address back from the function.
1694 EXP may be a type node or an expression (whose type is tested). */
1695
1696 int
1697 aggregate_value_p (const_tree exp, const_tree fntype)
1698 {
1699 int i, regno, nregs;
1700 rtx reg;
1701
1702 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1703
1704 /* DECL node associated with FNTYPE when relevant, which we might need to
1705 check for by-invisible-reference returns, typically for CALL_EXPR input
1706 EXPressions. */
1707 const_tree fndecl = NULL_TREE;
1708
1709 if (fntype)
1710 switch (TREE_CODE (fntype))
1711 {
1712 case CALL_EXPR:
1713 fndecl = get_callee_fndecl (fntype);
1714 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1715 break;
1716 case FUNCTION_DECL:
1717 fndecl = fntype;
1718 fntype = TREE_TYPE (fndecl);
1719 break;
1720 case FUNCTION_TYPE:
1721 case METHOD_TYPE:
1722 break;
1723 case IDENTIFIER_NODE:
1724 fntype = 0;
1725 break;
1726 default:
1727 /* We don't expect other rtl types here. */
1728 gcc_unreachable ();
1729 }
1730
1731 if (TREE_CODE (type) == VOID_TYPE)
1732 return 0;
1733
1734 /* If the front end has decided that this needs to be passed by
1735 reference, do so. */
1736 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1737 && DECL_BY_REFERENCE (exp))
1738 return 1;
1739
1740 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1741 called function RESULT_DECL, meaning the function returns in memory by
1742 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1743 on the function type, which used to be the way to request such a return
1744 mechanism but might now be causing troubles at gimplification time if
1745 temporaries with the function type need to be created. */
1746 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1747 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1748 return 1;
1749
1750 if (targetm.calls.return_in_memory (type, fntype))
1751 return 1;
1752 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1753 and thus can't be returned in registers. */
1754 if (TREE_ADDRESSABLE (type))
1755 return 1;
1756 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1757 return 1;
1758 /* Make sure we have suitable call-clobbered regs to return
1759 the value in; if not, we must return it in memory. */
1760 reg = hard_function_value (type, 0, fntype, 0);
1761
1762 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1763 it is OK. */
1764 if (!REG_P (reg))
1765 return 0;
1766
1767 regno = REGNO (reg);
1768 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1769 for (i = 0; i < nregs; i++)
1770 if (! call_used_regs[regno + i])
1771 return 1;
1772 return 0;
1773 }
1774 \f
1775 /* Return true if we should assign DECL a pseudo register; false if it
1776 should live on the local stack. */
1777
1778 bool
1779 use_register_for_decl (const_tree decl)
1780 {
1781 /* Honor volatile. */
1782 if (TREE_SIDE_EFFECTS (decl))
1783 return false;
1784
1785 /* Honor addressability. */
1786 if (TREE_ADDRESSABLE (decl))
1787 return false;
1788
1789 /* Only register-like things go in registers. */
1790 if (DECL_MODE (decl) == BLKmode)
1791 return false;
1792
1793 /* If -ffloat-store specified, don't put explicit float variables
1794 into registers. */
1795 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1796 propagates values across these stores, and it probably shouldn't. */
1797 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1798 return false;
1799
1800 /* If we're not interested in tracking debugging information for
1801 this decl, then we can certainly put it in a register. */
1802 if (DECL_IGNORED_P (decl))
1803 return true;
1804
1805 return (optimize || DECL_REGISTER (decl));
1806 }
1807
1808 /* Return true if TYPE should be passed by invisible reference. */
1809
1810 bool
1811 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1812 tree type, bool named_arg)
1813 {
1814 if (type)
1815 {
1816 /* If this type contains non-trivial constructors, then it is
1817 forbidden for the middle-end to create any new copies. */
1818 if (TREE_ADDRESSABLE (type))
1819 return true;
1820
1821 /* GCC post 3.4 passes *all* variable sized types by reference. */
1822 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1823 return true;
1824 }
1825
1826 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1827 }
1828
1829 /* Return true if TYPE, which is passed by reference, should be callee
1830 copied instead of caller copied. */
1831
1832 bool
1833 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1834 tree type, bool named_arg)
1835 {
1836 if (type && TREE_ADDRESSABLE (type))
1837 return false;
1838 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1839 }
1840
1841 /* Structures to communicate between the subroutines of assign_parms.
1842 The first holds data persistent across all parameters, the second
1843 is cleared out for each parameter. */
1844
1845 struct assign_parm_data_all
1846 {
1847 CUMULATIVE_ARGS args_so_far;
1848 struct args_size stack_args_size;
1849 tree function_result_decl;
1850 tree orig_fnargs;
1851 rtx first_conversion_insn;
1852 rtx last_conversion_insn;
1853 HOST_WIDE_INT pretend_args_size;
1854 HOST_WIDE_INT extra_pretend_bytes;
1855 int reg_parm_stack_space;
1856 };
1857
1858 struct assign_parm_data_one
1859 {
1860 tree nominal_type;
1861 tree passed_type;
1862 rtx entry_parm;
1863 rtx stack_parm;
1864 enum machine_mode nominal_mode;
1865 enum machine_mode passed_mode;
1866 enum machine_mode promoted_mode;
1867 struct locate_and_pad_arg_data locate;
1868 int partial;
1869 BOOL_BITFIELD named_arg : 1;
1870 BOOL_BITFIELD passed_pointer : 1;
1871 BOOL_BITFIELD on_stack : 1;
1872 BOOL_BITFIELD loaded_in_reg : 1;
1873 };
1874
1875 /* A subroutine of assign_parms. Initialize ALL. */
1876
1877 static void
1878 assign_parms_initialize_all (struct assign_parm_data_all *all)
1879 {
1880 tree fntype;
1881
1882 memset (all, 0, sizeof (*all));
1883
1884 fntype = TREE_TYPE (current_function_decl);
1885
1886 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1887 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1888 #else
1889 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1890 current_function_decl, -1);
1891 #endif
1892
1893 #ifdef REG_PARM_STACK_SPACE
1894 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1895 #endif
1896 }
1897
1898 /* If ARGS contains entries with complex types, split the entry into two
1899 entries of the component type. Return a new list of substitutions are
1900 needed, else the old list. */
1901
1902 static tree
1903 split_complex_args (tree args)
1904 {
1905 tree p;
1906
1907 /* Before allocating memory, check for the common case of no complex. */
1908 for (p = args; p; p = TREE_CHAIN (p))
1909 {
1910 tree type = TREE_TYPE (p);
1911 if (TREE_CODE (type) == COMPLEX_TYPE
1912 && targetm.calls.split_complex_arg (type))
1913 goto found;
1914 }
1915 return args;
1916
1917 found:
1918 args = copy_list (args);
1919
1920 for (p = args; p; p = TREE_CHAIN (p))
1921 {
1922 tree type = TREE_TYPE (p);
1923 if (TREE_CODE (type) == COMPLEX_TYPE
1924 && targetm.calls.split_complex_arg (type))
1925 {
1926 tree decl;
1927 tree subtype = TREE_TYPE (type);
1928 bool addressable = TREE_ADDRESSABLE (p);
1929
1930 /* Rewrite the PARM_DECL's type with its component. */
1931 TREE_TYPE (p) = subtype;
1932 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1933 DECL_MODE (p) = VOIDmode;
1934 DECL_SIZE (p) = NULL;
1935 DECL_SIZE_UNIT (p) = NULL;
1936 /* If this arg must go in memory, put it in a pseudo here.
1937 We can't allow it to go in memory as per normal parms,
1938 because the usual place might not have the imag part
1939 adjacent to the real part. */
1940 DECL_ARTIFICIAL (p) = addressable;
1941 DECL_IGNORED_P (p) = addressable;
1942 TREE_ADDRESSABLE (p) = 0;
1943 layout_decl (p, 0);
1944
1945 /* Build a second synthetic decl. */
1946 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1947 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1948 DECL_ARTIFICIAL (decl) = addressable;
1949 DECL_IGNORED_P (decl) = addressable;
1950 layout_decl (decl, 0);
1951
1952 /* Splice it in; skip the new decl. */
1953 TREE_CHAIN (decl) = TREE_CHAIN (p);
1954 TREE_CHAIN (p) = decl;
1955 p = decl;
1956 }
1957 }
1958
1959 return args;
1960 }
1961
1962 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1963 the hidden struct return argument, and (abi willing) complex args.
1964 Return the new parameter list. */
1965
1966 static tree
1967 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1968 {
1969 tree fndecl = current_function_decl;
1970 tree fntype = TREE_TYPE (fndecl);
1971 tree fnargs = DECL_ARGUMENTS (fndecl);
1972
1973 /* If struct value address is treated as the first argument, make it so. */
1974 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1975 && ! current_function_returns_pcc_struct
1976 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
1977 {
1978 tree type = build_pointer_type (TREE_TYPE (fntype));
1979 tree decl;
1980
1981 decl = build_decl (PARM_DECL, NULL_TREE, type);
1982 DECL_ARG_TYPE (decl) = type;
1983 DECL_ARTIFICIAL (decl) = 1;
1984 DECL_IGNORED_P (decl) = 1;
1985
1986 TREE_CHAIN (decl) = fnargs;
1987 fnargs = decl;
1988 all->function_result_decl = decl;
1989 }
1990
1991 all->orig_fnargs = fnargs;
1992
1993 /* If the target wants to split complex arguments into scalars, do so. */
1994 if (targetm.calls.split_complex_arg)
1995 fnargs = split_complex_args (fnargs);
1996
1997 return fnargs;
1998 }
1999
2000 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2001 data for the parameter. Incorporate ABI specifics such as pass-by-
2002 reference and type promotion. */
2003
2004 static void
2005 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2006 struct assign_parm_data_one *data)
2007 {
2008 tree nominal_type, passed_type;
2009 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2010
2011 memset (data, 0, sizeof (*data));
2012
2013 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2014 if (!current_function_stdarg)
2015 data->named_arg = 1; /* No varadic parms. */
2016 else if (TREE_CHAIN (parm))
2017 data->named_arg = 1; /* Not the last non-varadic parm. */
2018 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2019 data->named_arg = 1; /* Only varadic ones are unnamed. */
2020 else
2021 data->named_arg = 0; /* Treat as varadic. */
2022
2023 nominal_type = TREE_TYPE (parm);
2024 passed_type = DECL_ARG_TYPE (parm);
2025
2026 /* Look out for errors propagating this far. Also, if the parameter's
2027 type is void then its value doesn't matter. */
2028 if (TREE_TYPE (parm) == error_mark_node
2029 /* This can happen after weird syntax errors
2030 or if an enum type is defined among the parms. */
2031 || TREE_CODE (parm) != PARM_DECL
2032 || passed_type == NULL
2033 || VOID_TYPE_P (nominal_type))
2034 {
2035 nominal_type = passed_type = void_type_node;
2036 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2037 goto egress;
2038 }
2039
2040 /* Find mode of arg as it is passed, and mode of arg as it should be
2041 during execution of this function. */
2042 passed_mode = TYPE_MODE (passed_type);
2043 nominal_mode = TYPE_MODE (nominal_type);
2044
2045 /* If the parm is to be passed as a transparent union, use the type of
2046 the first field for the tests below. We have already verified that
2047 the modes are the same. */
2048 if (TREE_CODE (passed_type) == UNION_TYPE
2049 && TYPE_TRANSPARENT_UNION (passed_type))
2050 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2051
2052 /* See if this arg was passed by invisible reference. */
2053 if (pass_by_reference (&all->args_so_far, passed_mode,
2054 passed_type, data->named_arg))
2055 {
2056 passed_type = nominal_type = build_pointer_type (passed_type);
2057 data->passed_pointer = true;
2058 passed_mode = nominal_mode = Pmode;
2059 }
2060
2061 /* Find mode as it is passed by the ABI. */
2062 promoted_mode = passed_mode;
2063 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2064 {
2065 int unsignedp = TYPE_UNSIGNED (passed_type);
2066 promoted_mode = promote_mode (passed_type, promoted_mode,
2067 &unsignedp, 1);
2068 }
2069
2070 egress:
2071 data->nominal_type = nominal_type;
2072 data->passed_type = passed_type;
2073 data->nominal_mode = nominal_mode;
2074 data->passed_mode = passed_mode;
2075 data->promoted_mode = promoted_mode;
2076 }
2077
2078 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2079
2080 static void
2081 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2082 struct assign_parm_data_one *data, bool no_rtl)
2083 {
2084 int varargs_pretend_bytes = 0;
2085
2086 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2087 data->promoted_mode,
2088 data->passed_type,
2089 &varargs_pretend_bytes, no_rtl);
2090
2091 /* If the back-end has requested extra stack space, record how much is
2092 needed. Do not change pretend_args_size otherwise since it may be
2093 nonzero from an earlier partial argument. */
2094 if (varargs_pretend_bytes > 0)
2095 all->pretend_args_size = varargs_pretend_bytes;
2096 }
2097
2098 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2099 the incoming location of the current parameter. */
2100
2101 static void
2102 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2103 struct assign_parm_data_one *data)
2104 {
2105 HOST_WIDE_INT pretend_bytes = 0;
2106 rtx entry_parm;
2107 bool in_regs;
2108
2109 if (data->promoted_mode == VOIDmode)
2110 {
2111 data->entry_parm = data->stack_parm = const0_rtx;
2112 return;
2113 }
2114
2115 #ifdef FUNCTION_INCOMING_ARG
2116 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2117 data->passed_type, data->named_arg);
2118 #else
2119 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2120 data->passed_type, data->named_arg);
2121 #endif
2122
2123 if (entry_parm == 0)
2124 data->promoted_mode = data->passed_mode;
2125
2126 /* Determine parm's home in the stack, in case it arrives in the stack
2127 or we should pretend it did. Compute the stack position and rtx where
2128 the argument arrives and its size.
2129
2130 There is one complexity here: If this was a parameter that would
2131 have been passed in registers, but wasn't only because it is
2132 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2133 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2134 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2135 as it was the previous time. */
2136 in_regs = entry_parm != 0;
2137 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2138 in_regs = true;
2139 #endif
2140 if (!in_regs && !data->named_arg)
2141 {
2142 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2143 {
2144 rtx tem;
2145 #ifdef FUNCTION_INCOMING_ARG
2146 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2147 data->passed_type, true);
2148 #else
2149 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2150 data->passed_type, true);
2151 #endif
2152 in_regs = tem != NULL;
2153 }
2154 }
2155
2156 /* If this parameter was passed both in registers and in the stack, use
2157 the copy on the stack. */
2158 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2159 data->passed_type))
2160 entry_parm = 0;
2161
2162 if (entry_parm)
2163 {
2164 int partial;
2165
2166 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2167 data->promoted_mode,
2168 data->passed_type,
2169 data->named_arg);
2170 data->partial = partial;
2171
2172 /* The caller might already have allocated stack space for the
2173 register parameters. */
2174 if (partial != 0 && all->reg_parm_stack_space == 0)
2175 {
2176 /* Part of this argument is passed in registers and part
2177 is passed on the stack. Ask the prologue code to extend
2178 the stack part so that we can recreate the full value.
2179
2180 PRETEND_BYTES is the size of the registers we need to store.
2181 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2182 stack space that the prologue should allocate.
2183
2184 Internally, gcc assumes that the argument pointer is aligned
2185 to STACK_BOUNDARY bits. This is used both for alignment
2186 optimizations (see init_emit) and to locate arguments that are
2187 aligned to more than PARM_BOUNDARY bits. We must preserve this
2188 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2189 a stack boundary. */
2190
2191 /* We assume at most one partial arg, and it must be the first
2192 argument on the stack. */
2193 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2194
2195 pretend_bytes = partial;
2196 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2197
2198 /* We want to align relative to the actual stack pointer, so
2199 don't include this in the stack size until later. */
2200 all->extra_pretend_bytes = all->pretend_args_size;
2201 }
2202 }
2203
2204 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2205 entry_parm ? data->partial : 0, current_function_decl,
2206 &all->stack_args_size, &data->locate);
2207
2208 /* Adjust offsets to include the pretend args. */
2209 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2210 data->locate.slot_offset.constant += pretend_bytes;
2211 data->locate.offset.constant += pretend_bytes;
2212
2213 data->entry_parm = entry_parm;
2214 }
2215
2216 /* A subroutine of assign_parms. If there is actually space on the stack
2217 for this parm, count it in stack_args_size and return true. */
2218
2219 static bool
2220 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2221 struct assign_parm_data_one *data)
2222 {
2223 /* Trivially true if we've no incoming register. */
2224 if (data->entry_parm == NULL)
2225 ;
2226 /* Also true if we're partially in registers and partially not,
2227 since we've arranged to drop the entire argument on the stack. */
2228 else if (data->partial != 0)
2229 ;
2230 /* Also true if the target says that it's passed in both registers
2231 and on the stack. */
2232 else if (GET_CODE (data->entry_parm) == PARALLEL
2233 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2234 ;
2235 /* Also true if the target says that there's stack allocated for
2236 all register parameters. */
2237 else if (all->reg_parm_stack_space > 0)
2238 ;
2239 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2240 else
2241 return false;
2242
2243 all->stack_args_size.constant += data->locate.size.constant;
2244 if (data->locate.size.var)
2245 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2246
2247 return true;
2248 }
2249
2250 /* A subroutine of assign_parms. Given that this parameter is allocated
2251 stack space by the ABI, find it. */
2252
2253 static void
2254 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2255 {
2256 rtx offset_rtx, stack_parm;
2257 unsigned int align, boundary;
2258
2259 /* If we're passing this arg using a reg, make its stack home the
2260 aligned stack slot. */
2261 if (data->entry_parm)
2262 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2263 else
2264 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2265
2266 stack_parm = current_function_internal_arg_pointer;
2267 if (offset_rtx != const0_rtx)
2268 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2269 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2270
2271 set_mem_attributes (stack_parm, parm, 1);
2272
2273 boundary = data->locate.boundary;
2274 align = BITS_PER_UNIT;
2275
2276 /* If we're padding upward, we know that the alignment of the slot
2277 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2278 intentionally forcing upward padding. Otherwise we have to come
2279 up with a guess at the alignment based on OFFSET_RTX. */
2280 if (data->locate.where_pad != downward || data->entry_parm)
2281 align = boundary;
2282 else if (GET_CODE (offset_rtx) == CONST_INT)
2283 {
2284 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2285 align = align & -align;
2286 }
2287 set_mem_align (stack_parm, align);
2288
2289 if (data->entry_parm)
2290 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2291
2292 data->stack_parm = stack_parm;
2293 }
2294
2295 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2296 always valid and contiguous. */
2297
2298 static void
2299 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2300 {
2301 rtx entry_parm = data->entry_parm;
2302 rtx stack_parm = data->stack_parm;
2303
2304 /* If this parm was passed part in regs and part in memory, pretend it
2305 arrived entirely in memory by pushing the register-part onto the stack.
2306 In the special case of a DImode or DFmode that is split, we could put
2307 it together in a pseudoreg directly, but for now that's not worth
2308 bothering with. */
2309 if (data->partial != 0)
2310 {
2311 /* Handle calls that pass values in multiple non-contiguous
2312 locations. The Irix 6 ABI has examples of this. */
2313 if (GET_CODE (entry_parm) == PARALLEL)
2314 emit_group_store (validize_mem (stack_parm), entry_parm,
2315 data->passed_type,
2316 int_size_in_bytes (data->passed_type));
2317 else
2318 {
2319 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2320 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2321 data->partial / UNITS_PER_WORD);
2322 }
2323
2324 entry_parm = stack_parm;
2325 }
2326
2327 /* If we didn't decide this parm came in a register, by default it came
2328 on the stack. */
2329 else if (entry_parm == NULL)
2330 entry_parm = stack_parm;
2331
2332 /* When an argument is passed in multiple locations, we can't make use
2333 of this information, but we can save some copying if the whole argument
2334 is passed in a single register. */
2335 else if (GET_CODE (entry_parm) == PARALLEL
2336 && data->nominal_mode != BLKmode
2337 && data->passed_mode != BLKmode)
2338 {
2339 size_t i, len = XVECLEN (entry_parm, 0);
2340
2341 for (i = 0; i < len; i++)
2342 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2343 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2344 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2345 == data->passed_mode)
2346 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2347 {
2348 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2349 break;
2350 }
2351 }
2352
2353 data->entry_parm = entry_parm;
2354 }
2355
2356 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2357 always valid and properly aligned. */
2358
2359 static void
2360 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2361 {
2362 rtx stack_parm = data->stack_parm;
2363
2364 /* If we can't trust the parm stack slot to be aligned enough for its
2365 ultimate type, don't use that slot after entry. We'll make another
2366 stack slot, if we need one. */
2367 if (stack_parm
2368 && ((STRICT_ALIGNMENT
2369 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2370 || (data->nominal_type
2371 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2372 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2373 stack_parm = NULL;
2374
2375 /* If parm was passed in memory, and we need to convert it on entry,
2376 don't store it back in that same slot. */
2377 else if (data->entry_parm == stack_parm
2378 && data->nominal_mode != BLKmode
2379 && data->nominal_mode != data->passed_mode)
2380 stack_parm = NULL;
2381
2382 /* If stack protection is in effect for this function, don't leave any
2383 pointers in their passed stack slots. */
2384 else if (cfun->stack_protect_guard
2385 && (flag_stack_protect == 2
2386 || data->passed_pointer
2387 || POINTER_TYPE_P (data->nominal_type)))
2388 stack_parm = NULL;
2389
2390 data->stack_parm = stack_parm;
2391 }
2392
2393 /* A subroutine of assign_parms. Return true if the current parameter
2394 should be stored as a BLKmode in the current frame. */
2395
2396 static bool
2397 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2398 {
2399 if (data->nominal_mode == BLKmode)
2400 return true;
2401 if (GET_CODE (data->entry_parm) == PARALLEL)
2402 return true;
2403
2404 #ifdef BLOCK_REG_PADDING
2405 /* Only assign_parm_setup_block knows how to deal with register arguments
2406 that are padded at the least significant end. */
2407 if (REG_P (data->entry_parm)
2408 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2409 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2410 == (BYTES_BIG_ENDIAN ? upward : downward)))
2411 return true;
2412 #endif
2413
2414 return false;
2415 }
2416
2417 /* A subroutine of assign_parms. Arrange for the parameter to be
2418 present and valid in DATA->STACK_RTL. */
2419
2420 static void
2421 assign_parm_setup_block (struct assign_parm_data_all *all,
2422 tree parm, struct assign_parm_data_one *data)
2423 {
2424 rtx entry_parm = data->entry_parm;
2425 rtx stack_parm = data->stack_parm;
2426 HOST_WIDE_INT size;
2427 HOST_WIDE_INT size_stored;
2428 rtx orig_entry_parm = entry_parm;
2429
2430 if (GET_CODE (entry_parm) == PARALLEL)
2431 entry_parm = emit_group_move_into_temps (entry_parm);
2432
2433 /* If we've a non-block object that's nevertheless passed in parts,
2434 reconstitute it in register operations rather than on the stack. */
2435 if (GET_CODE (entry_parm) == PARALLEL
2436 && data->nominal_mode != BLKmode)
2437 {
2438 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2439
2440 if ((XVECLEN (entry_parm, 0) > 1
2441 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2442 && use_register_for_decl (parm))
2443 {
2444 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2445
2446 push_to_sequence2 (all->first_conversion_insn,
2447 all->last_conversion_insn);
2448
2449 /* For values returned in multiple registers, handle possible
2450 incompatible calls to emit_group_store.
2451
2452 For example, the following would be invalid, and would have to
2453 be fixed by the conditional below:
2454
2455 emit_group_store ((reg:SF), (parallel:DF))
2456 emit_group_store ((reg:SI), (parallel:DI))
2457
2458 An example of this are doubles in e500 v2:
2459 (parallel:DF (expr_list (reg:SI) (const_int 0))
2460 (expr_list (reg:SI) (const_int 4))). */
2461 if (data->nominal_mode != data->passed_mode)
2462 {
2463 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2464 emit_group_store (t, entry_parm, NULL_TREE,
2465 GET_MODE_SIZE (GET_MODE (entry_parm)));
2466 convert_move (parmreg, t, 0);
2467 }
2468 else
2469 emit_group_store (parmreg, entry_parm, data->nominal_type,
2470 int_size_in_bytes (data->nominal_type));
2471
2472 all->first_conversion_insn = get_insns ();
2473 all->last_conversion_insn = get_last_insn ();
2474 end_sequence ();
2475
2476 SET_DECL_RTL (parm, parmreg);
2477 return;
2478 }
2479 }
2480
2481 size = int_size_in_bytes (data->passed_type);
2482 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2483 if (stack_parm == 0)
2484 {
2485 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2486 stack_parm = assign_stack_local (BLKmode, size_stored,
2487 DECL_ALIGN (parm));
2488 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2489 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2490 set_mem_attributes (stack_parm, parm, 1);
2491 }
2492
2493 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2494 calls that pass values in multiple non-contiguous locations. */
2495 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2496 {
2497 rtx mem;
2498
2499 /* Note that we will be storing an integral number of words.
2500 So we have to be careful to ensure that we allocate an
2501 integral number of words. We do this above when we call
2502 assign_stack_local if space was not allocated in the argument
2503 list. If it was, this will not work if PARM_BOUNDARY is not
2504 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2505 if it becomes a problem. Exception is when BLKmode arrives
2506 with arguments not conforming to word_mode. */
2507
2508 if (data->stack_parm == 0)
2509 ;
2510 else if (GET_CODE (entry_parm) == PARALLEL)
2511 ;
2512 else
2513 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2514
2515 mem = validize_mem (stack_parm);
2516
2517 /* Handle values in multiple non-contiguous locations. */
2518 if (GET_CODE (entry_parm) == PARALLEL)
2519 {
2520 push_to_sequence2 (all->first_conversion_insn,
2521 all->last_conversion_insn);
2522 emit_group_store (mem, entry_parm, data->passed_type, size);
2523 all->first_conversion_insn = get_insns ();
2524 all->last_conversion_insn = get_last_insn ();
2525 end_sequence ();
2526 }
2527
2528 else if (size == 0)
2529 ;
2530
2531 /* If SIZE is that of a mode no bigger than a word, just use
2532 that mode's store operation. */
2533 else if (size <= UNITS_PER_WORD)
2534 {
2535 enum machine_mode mode
2536 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2537
2538 if (mode != BLKmode
2539 #ifdef BLOCK_REG_PADDING
2540 && (size == UNITS_PER_WORD
2541 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2542 != (BYTES_BIG_ENDIAN ? upward : downward)))
2543 #endif
2544 )
2545 {
2546 rtx reg;
2547
2548 /* We are really truncating a word_mode value containing
2549 SIZE bytes into a value of mode MODE. If such an
2550 operation requires no actual instructions, we can refer
2551 to the value directly in mode MODE, otherwise we must
2552 start with the register in word_mode and explicitly
2553 convert it. */
2554 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2555 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2556 else
2557 {
2558 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2559 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2560 }
2561 emit_move_insn (change_address (mem, mode, 0), reg);
2562 }
2563
2564 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2565 machine must be aligned to the left before storing
2566 to memory. Note that the previous test doesn't
2567 handle all cases (e.g. SIZE == 3). */
2568 else if (size != UNITS_PER_WORD
2569 #ifdef BLOCK_REG_PADDING
2570 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2571 == downward)
2572 #else
2573 && BYTES_BIG_ENDIAN
2574 #endif
2575 )
2576 {
2577 rtx tem, x;
2578 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2579 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2580
2581 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2582 build_int_cst (NULL_TREE, by),
2583 NULL_RTX, 1);
2584 tem = change_address (mem, word_mode, 0);
2585 emit_move_insn (tem, x);
2586 }
2587 else
2588 move_block_from_reg (REGNO (entry_parm), mem,
2589 size_stored / UNITS_PER_WORD);
2590 }
2591 else
2592 move_block_from_reg (REGNO (entry_parm), mem,
2593 size_stored / UNITS_PER_WORD);
2594 }
2595 else if (data->stack_parm == 0)
2596 {
2597 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2598 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2599 BLOCK_OP_NORMAL);
2600 all->first_conversion_insn = get_insns ();
2601 all->last_conversion_insn = get_last_insn ();
2602 end_sequence ();
2603 }
2604
2605 data->stack_parm = stack_parm;
2606 SET_DECL_RTL (parm, stack_parm);
2607 }
2608
2609 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2610 parameter. Get it there. Perform all ABI specified conversions. */
2611
2612 static void
2613 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2614 struct assign_parm_data_one *data)
2615 {
2616 rtx parmreg;
2617 enum machine_mode promoted_nominal_mode;
2618 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2619 bool did_conversion = false;
2620
2621 /* Store the parm in a pseudoregister during the function, but we may
2622 need to do it in a wider mode. */
2623
2624 /* This is not really promoting for a call. However we need to be
2625 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2626 promoted_nominal_mode
2627 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2628
2629 parmreg = gen_reg_rtx (promoted_nominal_mode);
2630
2631 if (!DECL_ARTIFICIAL (parm))
2632 mark_user_reg (parmreg);
2633
2634 /* If this was an item that we received a pointer to,
2635 set DECL_RTL appropriately. */
2636 if (data->passed_pointer)
2637 {
2638 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2639 set_mem_attributes (x, parm, 1);
2640 SET_DECL_RTL (parm, x);
2641 }
2642 else
2643 SET_DECL_RTL (parm, parmreg);
2644
2645 /* Copy the value into the register. */
2646 if (data->nominal_mode != data->passed_mode
2647 || promoted_nominal_mode != data->promoted_mode)
2648 {
2649 int save_tree_used;
2650
2651 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2652 mode, by the caller. We now have to convert it to
2653 NOMINAL_MODE, if different. However, PARMREG may be in
2654 a different mode than NOMINAL_MODE if it is being stored
2655 promoted.
2656
2657 If ENTRY_PARM is a hard register, it might be in a register
2658 not valid for operating in its mode (e.g., an odd-numbered
2659 register for a DFmode). In that case, moves are the only
2660 thing valid, so we can't do a convert from there. This
2661 occurs when the calling sequence allow such misaligned
2662 usages.
2663
2664 In addition, the conversion may involve a call, which could
2665 clobber parameters which haven't been copied to pseudo
2666 registers yet. Therefore, we must first copy the parm to
2667 a pseudo reg here, and save the conversion until after all
2668 parameters have been moved. */
2669
2670 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2671
2672 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2673
2674 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2675 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2676
2677 if (GET_CODE (tempreg) == SUBREG
2678 && GET_MODE (tempreg) == data->nominal_mode
2679 && REG_P (SUBREG_REG (tempreg))
2680 && data->nominal_mode == data->passed_mode
2681 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2682 && GET_MODE_SIZE (GET_MODE (tempreg))
2683 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2684 {
2685 /* The argument is already sign/zero extended, so note it
2686 into the subreg. */
2687 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2688 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2689 }
2690
2691 /* TREE_USED gets set erroneously during expand_assignment. */
2692 save_tree_used = TREE_USED (parm);
2693 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2694 TREE_USED (parm) = save_tree_used;
2695 all->first_conversion_insn = get_insns ();
2696 all->last_conversion_insn = get_last_insn ();
2697 end_sequence ();
2698
2699 did_conversion = true;
2700 }
2701 else
2702 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2703
2704 /* If we were passed a pointer but the actual value can safely live
2705 in a register, put it in one. */
2706 if (data->passed_pointer
2707 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2708 /* If by-reference argument was promoted, demote it. */
2709 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2710 || use_register_for_decl (parm)))
2711 {
2712 /* We can't use nominal_mode, because it will have been set to
2713 Pmode above. We must use the actual mode of the parm. */
2714 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2715 mark_user_reg (parmreg);
2716
2717 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2718 {
2719 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2720 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2721
2722 push_to_sequence2 (all->first_conversion_insn,
2723 all->last_conversion_insn);
2724 emit_move_insn (tempreg, DECL_RTL (parm));
2725 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2726 emit_move_insn (parmreg, tempreg);
2727 all->first_conversion_insn = get_insns ();
2728 all->last_conversion_insn = get_last_insn ();
2729 end_sequence ();
2730
2731 did_conversion = true;
2732 }
2733 else
2734 emit_move_insn (parmreg, DECL_RTL (parm));
2735
2736 SET_DECL_RTL (parm, parmreg);
2737
2738 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2739 now the parm. */
2740 data->stack_parm = NULL;
2741 }
2742
2743 /* Mark the register as eliminable if we did no conversion and it was
2744 copied from memory at a fixed offset, and the arg pointer was not
2745 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2746 offset formed an invalid address, such memory-equivalences as we
2747 make here would screw up life analysis for it. */
2748 if (data->nominal_mode == data->passed_mode
2749 && !did_conversion
2750 && data->stack_parm != 0
2751 && MEM_P (data->stack_parm)
2752 && data->locate.offset.var == 0
2753 && reg_mentioned_p (virtual_incoming_args_rtx,
2754 XEXP (data->stack_parm, 0)))
2755 {
2756 rtx linsn = get_last_insn ();
2757 rtx sinsn, set;
2758
2759 /* Mark complex types separately. */
2760 if (GET_CODE (parmreg) == CONCAT)
2761 {
2762 enum machine_mode submode
2763 = GET_MODE_INNER (GET_MODE (parmreg));
2764 int regnor = REGNO (XEXP (parmreg, 0));
2765 int regnoi = REGNO (XEXP (parmreg, 1));
2766 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2767 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2768 GET_MODE_SIZE (submode));
2769
2770 /* Scan backwards for the set of the real and
2771 imaginary parts. */
2772 for (sinsn = linsn; sinsn != 0;
2773 sinsn = prev_nonnote_insn (sinsn))
2774 {
2775 set = single_set (sinsn);
2776 if (set == 0)
2777 continue;
2778
2779 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2780 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2781 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2782 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2783 }
2784 }
2785 else if ((set = single_set (linsn)) != 0
2786 && SET_DEST (set) == parmreg)
2787 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2788 }
2789
2790 /* For pointer data type, suggest pointer register. */
2791 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2792 mark_reg_pointer (parmreg,
2793 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2794 }
2795
2796 /* A subroutine of assign_parms. Allocate stack space to hold the current
2797 parameter. Get it there. Perform all ABI specified conversions. */
2798
2799 static void
2800 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2801 struct assign_parm_data_one *data)
2802 {
2803 /* Value must be stored in the stack slot STACK_PARM during function
2804 execution. */
2805 bool to_conversion = false;
2806
2807 if (data->promoted_mode != data->nominal_mode)
2808 {
2809 /* Conversion is required. */
2810 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2811
2812 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2813
2814 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2815 to_conversion = true;
2816
2817 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2818 TYPE_UNSIGNED (TREE_TYPE (parm)));
2819
2820 if (data->stack_parm)
2821 /* ??? This may need a big-endian conversion on sparc64. */
2822 data->stack_parm
2823 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2824 }
2825
2826 if (data->entry_parm != data->stack_parm)
2827 {
2828 rtx src, dest;
2829
2830 if (data->stack_parm == 0)
2831 {
2832 data->stack_parm
2833 = assign_stack_local (GET_MODE (data->entry_parm),
2834 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2835 TYPE_ALIGN (data->passed_type));
2836 set_mem_attributes (data->stack_parm, parm, 1);
2837 }
2838
2839 dest = validize_mem (data->stack_parm);
2840 src = validize_mem (data->entry_parm);
2841
2842 if (MEM_P (src))
2843 {
2844 /* Use a block move to handle potentially misaligned entry_parm. */
2845 if (!to_conversion)
2846 push_to_sequence2 (all->first_conversion_insn,
2847 all->last_conversion_insn);
2848 to_conversion = true;
2849
2850 emit_block_move (dest, src,
2851 GEN_INT (int_size_in_bytes (data->passed_type)),
2852 BLOCK_OP_NORMAL);
2853 }
2854 else
2855 emit_move_insn (dest, src);
2856 }
2857
2858 if (to_conversion)
2859 {
2860 all->first_conversion_insn = get_insns ();
2861 all->last_conversion_insn = get_last_insn ();
2862 end_sequence ();
2863 }
2864
2865 SET_DECL_RTL (parm, data->stack_parm);
2866 }
2867
2868 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2869 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2870
2871 static void
2872 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2873 {
2874 tree parm;
2875 tree orig_fnargs = all->orig_fnargs;
2876
2877 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2878 {
2879 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2880 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2881 {
2882 rtx tmp, real, imag;
2883 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2884
2885 real = DECL_RTL (fnargs);
2886 imag = DECL_RTL (TREE_CHAIN (fnargs));
2887 if (inner != GET_MODE (real))
2888 {
2889 real = gen_lowpart_SUBREG (inner, real);
2890 imag = gen_lowpart_SUBREG (inner, imag);
2891 }
2892
2893 if (TREE_ADDRESSABLE (parm))
2894 {
2895 rtx rmem, imem;
2896 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2897
2898 /* split_complex_arg put the real and imag parts in
2899 pseudos. Move them to memory. */
2900 tmp = assign_stack_local (DECL_MODE (parm), size,
2901 TYPE_ALIGN (TREE_TYPE (parm)));
2902 set_mem_attributes (tmp, parm, 1);
2903 rmem = adjust_address_nv (tmp, inner, 0);
2904 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2905 push_to_sequence2 (all->first_conversion_insn,
2906 all->last_conversion_insn);
2907 emit_move_insn (rmem, real);
2908 emit_move_insn (imem, imag);
2909 all->first_conversion_insn = get_insns ();
2910 all->last_conversion_insn = get_last_insn ();
2911 end_sequence ();
2912 }
2913 else
2914 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2915 SET_DECL_RTL (parm, tmp);
2916
2917 real = DECL_INCOMING_RTL (fnargs);
2918 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2919 if (inner != GET_MODE (real))
2920 {
2921 real = gen_lowpart_SUBREG (inner, real);
2922 imag = gen_lowpart_SUBREG (inner, imag);
2923 }
2924 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2925 set_decl_incoming_rtl (parm, tmp, false);
2926 fnargs = TREE_CHAIN (fnargs);
2927 }
2928 else
2929 {
2930 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2931 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
2932
2933 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2934 instead of the copy of decl, i.e. FNARGS. */
2935 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2936 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2937 }
2938
2939 fnargs = TREE_CHAIN (fnargs);
2940 }
2941 }
2942
2943 /* Assign RTL expressions to the function's parameters. This may involve
2944 copying them into registers and using those registers as the DECL_RTL. */
2945
2946 static void
2947 assign_parms (tree fndecl)
2948 {
2949 struct assign_parm_data_all all;
2950 tree fnargs, parm;
2951
2952 current_function_internal_arg_pointer
2953 = targetm.calls.internal_arg_pointer ();
2954
2955 assign_parms_initialize_all (&all);
2956 fnargs = assign_parms_augmented_arg_list (&all);
2957
2958 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2959 {
2960 struct assign_parm_data_one data;
2961
2962 /* Extract the type of PARM; adjust it according to ABI. */
2963 assign_parm_find_data_types (&all, parm, &data);
2964
2965 /* Early out for errors and void parameters. */
2966 if (data.passed_mode == VOIDmode)
2967 {
2968 SET_DECL_RTL (parm, const0_rtx);
2969 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2970 continue;
2971 }
2972
2973 if (current_function_stdarg && !TREE_CHAIN (parm))
2974 assign_parms_setup_varargs (&all, &data, false);
2975
2976 /* Find out where the parameter arrives in this function. */
2977 assign_parm_find_entry_rtl (&all, &data);
2978
2979 /* Find out where stack space for this parameter might be. */
2980 if (assign_parm_is_stack_parm (&all, &data))
2981 {
2982 assign_parm_find_stack_rtl (parm, &data);
2983 assign_parm_adjust_entry_rtl (&data);
2984 }
2985
2986 /* Record permanently how this parm was passed. */
2987 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
2988
2989 /* Update info on where next arg arrives in registers. */
2990 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2991 data.passed_type, data.named_arg);
2992
2993 assign_parm_adjust_stack_rtl (&data);
2994
2995 if (assign_parm_setup_block_p (&data))
2996 assign_parm_setup_block (&all, parm, &data);
2997 else if (data.passed_pointer || use_register_for_decl (parm))
2998 assign_parm_setup_reg (&all, parm, &data);
2999 else
3000 assign_parm_setup_stack (&all, parm, &data);
3001 }
3002
3003 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3004 assign_parms_unsplit_complex (&all, fnargs);
3005
3006 /* Output all parameter conversion instructions (possibly including calls)
3007 now that all parameters have been copied out of hard registers. */
3008 emit_insn (all.first_conversion_insn);
3009
3010 /* If we are receiving a struct value address as the first argument, set up
3011 the RTL for the function result. As this might require code to convert
3012 the transmitted address to Pmode, we do this here to ensure that possible
3013 preliminary conversions of the address have been emitted already. */
3014 if (all.function_result_decl)
3015 {
3016 tree result = DECL_RESULT (current_function_decl);
3017 rtx addr = DECL_RTL (all.function_result_decl);
3018 rtx x;
3019
3020 if (DECL_BY_REFERENCE (result))
3021 x = addr;
3022 else
3023 {
3024 addr = convert_memory_address (Pmode, addr);
3025 x = gen_rtx_MEM (DECL_MODE (result), addr);
3026 set_mem_attributes (x, result, 1);
3027 }
3028 SET_DECL_RTL (result, x);
3029 }
3030
3031 /* We have aligned all the args, so add space for the pretend args. */
3032 current_function_pretend_args_size = all.pretend_args_size;
3033 all.stack_args_size.constant += all.extra_pretend_bytes;
3034 current_function_args_size = all.stack_args_size.constant;
3035
3036 /* Adjust function incoming argument size for alignment and
3037 minimum length. */
3038
3039 #ifdef REG_PARM_STACK_SPACE
3040 current_function_args_size = MAX (current_function_args_size,
3041 REG_PARM_STACK_SPACE (fndecl));
3042 #endif
3043
3044 current_function_args_size = CEIL_ROUND (current_function_args_size,
3045 PARM_BOUNDARY / BITS_PER_UNIT);
3046
3047 #ifdef ARGS_GROW_DOWNWARD
3048 current_function_arg_offset_rtx
3049 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3050 : expand_expr (size_diffop (all.stack_args_size.var,
3051 size_int (-all.stack_args_size.constant)),
3052 NULL_RTX, VOIDmode, 0));
3053 #else
3054 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3055 #endif
3056
3057 /* See how many bytes, if any, of its args a function should try to pop
3058 on return. */
3059
3060 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3061 current_function_args_size);
3062
3063 /* For stdarg.h function, save info about
3064 regs and stack space used by the named args. */
3065
3066 current_function_args_info = all.args_so_far;
3067
3068 /* Set the rtx used for the function return value. Put this in its
3069 own variable so any optimizers that need this information don't have
3070 to include tree.h. Do this here so it gets done when an inlined
3071 function gets output. */
3072
3073 current_function_return_rtx
3074 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3075 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3076
3077 /* If scalar return value was computed in a pseudo-reg, or was a named
3078 return value that got dumped to the stack, copy that to the hard
3079 return register. */
3080 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3081 {
3082 tree decl_result = DECL_RESULT (fndecl);
3083 rtx decl_rtl = DECL_RTL (decl_result);
3084
3085 if (REG_P (decl_rtl)
3086 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3087 : DECL_REGISTER (decl_result))
3088 {
3089 rtx real_decl_rtl;
3090
3091 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3092 fndecl, true);
3093 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3094 /* The delay slot scheduler assumes that current_function_return_rtx
3095 holds the hard register containing the return value, not a
3096 temporary pseudo. */
3097 current_function_return_rtx = real_decl_rtl;
3098 }
3099 }
3100 }
3101
3102 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3103 For all seen types, gimplify their sizes. */
3104
3105 static tree
3106 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3107 {
3108 tree t = *tp;
3109
3110 *walk_subtrees = 0;
3111 if (TYPE_P (t))
3112 {
3113 if (POINTER_TYPE_P (t))
3114 *walk_subtrees = 1;
3115 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3116 && !TYPE_SIZES_GIMPLIFIED (t))
3117 {
3118 gimplify_type_sizes (t, (tree *) data);
3119 *walk_subtrees = 1;
3120 }
3121 }
3122
3123 return NULL;
3124 }
3125
3126 /* Gimplify the parameter list for current_function_decl. This involves
3127 evaluating SAVE_EXPRs of variable sized parameters and generating code
3128 to implement callee-copies reference parameters. Returns a list of
3129 statements to add to the beginning of the function, or NULL if nothing
3130 to do. */
3131
3132 tree
3133 gimplify_parameters (void)
3134 {
3135 struct assign_parm_data_all all;
3136 tree fnargs, parm, stmts = NULL;
3137
3138 assign_parms_initialize_all (&all);
3139 fnargs = assign_parms_augmented_arg_list (&all);
3140
3141 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3142 {
3143 struct assign_parm_data_one data;
3144
3145 /* Extract the type of PARM; adjust it according to ABI. */
3146 assign_parm_find_data_types (&all, parm, &data);
3147
3148 /* Early out for errors and void parameters. */
3149 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3150 continue;
3151
3152 /* Update info on where next arg arrives in registers. */
3153 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3154 data.passed_type, data.named_arg);
3155
3156 /* ??? Once upon a time variable_size stuffed parameter list
3157 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3158 turned out to be less than manageable in the gimple world.
3159 Now we have to hunt them down ourselves. */
3160 walk_tree_without_duplicates (&data.passed_type,
3161 gimplify_parm_type, &stmts);
3162
3163 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3164 {
3165 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3166 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3167 }
3168
3169 if (data.passed_pointer)
3170 {
3171 tree type = TREE_TYPE (data.passed_type);
3172 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3173 type, data.named_arg))
3174 {
3175 tree local, t;
3176
3177 /* For constant sized objects, this is trivial; for
3178 variable-sized objects, we have to play games. */
3179 if (TREE_CONSTANT (DECL_SIZE (parm)))
3180 {
3181 local = create_tmp_var (type, get_name (parm));
3182 DECL_IGNORED_P (local) = 0;
3183 }
3184 else
3185 {
3186 tree ptr_type, addr;
3187
3188 ptr_type = build_pointer_type (type);
3189 addr = create_tmp_var (ptr_type, get_name (parm));
3190 DECL_IGNORED_P (addr) = 0;
3191 local = build_fold_indirect_ref (addr);
3192
3193 t = built_in_decls[BUILT_IN_ALLOCA];
3194 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3195 t = fold_convert (ptr_type, t);
3196 t = build_gimple_modify_stmt (addr, t);
3197 gimplify_and_add (t, &stmts);
3198 }
3199
3200 t = build_gimple_modify_stmt (local, parm);
3201 gimplify_and_add (t, &stmts);
3202
3203 SET_DECL_VALUE_EXPR (parm, local);
3204 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3205 }
3206 }
3207 }
3208
3209 return stmts;
3210 }
3211 \f
3212 /* Compute the size and offset from the start of the stacked arguments for a
3213 parm passed in mode PASSED_MODE and with type TYPE.
3214
3215 INITIAL_OFFSET_PTR points to the current offset into the stacked
3216 arguments.
3217
3218 The starting offset and size for this parm are returned in
3219 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3220 nonzero, the offset is that of stack slot, which is returned in
3221 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3222 padding required from the initial offset ptr to the stack slot.
3223
3224 IN_REGS is nonzero if the argument will be passed in registers. It will
3225 never be set if REG_PARM_STACK_SPACE is not defined.
3226
3227 FNDECL is the function in which the argument was defined.
3228
3229 There are two types of rounding that are done. The first, controlled by
3230 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3231 list to be aligned to the specific boundary (in bits). This rounding
3232 affects the initial and starting offsets, but not the argument size.
3233
3234 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3235 optionally rounds the size of the parm to PARM_BOUNDARY. The
3236 initial offset is not affected by this rounding, while the size always
3237 is and the starting offset may be. */
3238
3239 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3240 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3241 callers pass in the total size of args so far as
3242 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3243
3244 void
3245 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3246 int partial, tree fndecl ATTRIBUTE_UNUSED,
3247 struct args_size *initial_offset_ptr,
3248 struct locate_and_pad_arg_data *locate)
3249 {
3250 tree sizetree;
3251 enum direction where_pad;
3252 unsigned int boundary;
3253 int reg_parm_stack_space = 0;
3254 int part_size_in_regs;
3255
3256 #ifdef REG_PARM_STACK_SPACE
3257 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3258
3259 /* If we have found a stack parm before we reach the end of the
3260 area reserved for registers, skip that area. */
3261 if (! in_regs)
3262 {
3263 if (reg_parm_stack_space > 0)
3264 {
3265 if (initial_offset_ptr->var)
3266 {
3267 initial_offset_ptr->var
3268 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3269 ssize_int (reg_parm_stack_space));
3270 initial_offset_ptr->constant = 0;
3271 }
3272 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3273 initial_offset_ptr->constant = reg_parm_stack_space;
3274 }
3275 }
3276 #endif /* REG_PARM_STACK_SPACE */
3277
3278 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3279
3280 sizetree
3281 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3282 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3283 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3284 locate->where_pad = where_pad;
3285 locate->boundary = boundary;
3286
3287 /* Remember if the outgoing parameter requires extra alignment on the
3288 calling function side. */
3289 if (boundary > PREFERRED_STACK_BOUNDARY)
3290 boundary = PREFERRED_STACK_BOUNDARY;
3291 if (cfun->stack_alignment_needed < boundary)
3292 cfun->stack_alignment_needed = boundary;
3293
3294 #ifdef ARGS_GROW_DOWNWARD
3295 locate->slot_offset.constant = -initial_offset_ptr->constant;
3296 if (initial_offset_ptr->var)
3297 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3298 initial_offset_ptr->var);
3299
3300 {
3301 tree s2 = sizetree;
3302 if (where_pad != none
3303 && (!host_integerp (sizetree, 1)
3304 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3305 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3306 SUB_PARM_SIZE (locate->slot_offset, s2);
3307 }
3308
3309 locate->slot_offset.constant += part_size_in_regs;
3310
3311 if (!in_regs
3312 #ifdef REG_PARM_STACK_SPACE
3313 || REG_PARM_STACK_SPACE (fndecl) > 0
3314 #endif
3315 )
3316 pad_to_arg_alignment (&locate->slot_offset, boundary,
3317 &locate->alignment_pad);
3318
3319 locate->size.constant = (-initial_offset_ptr->constant
3320 - locate->slot_offset.constant);
3321 if (initial_offset_ptr->var)
3322 locate->size.var = size_binop (MINUS_EXPR,
3323 size_binop (MINUS_EXPR,
3324 ssize_int (0),
3325 initial_offset_ptr->var),
3326 locate->slot_offset.var);
3327
3328 /* Pad_below needs the pre-rounded size to know how much to pad
3329 below. */
3330 locate->offset = locate->slot_offset;
3331 if (where_pad == downward)
3332 pad_below (&locate->offset, passed_mode, sizetree);
3333
3334 #else /* !ARGS_GROW_DOWNWARD */
3335 if (!in_regs
3336 #ifdef REG_PARM_STACK_SPACE
3337 || REG_PARM_STACK_SPACE (fndecl) > 0
3338 #endif
3339 )
3340 pad_to_arg_alignment (initial_offset_ptr, boundary,
3341 &locate->alignment_pad);
3342 locate->slot_offset = *initial_offset_ptr;
3343
3344 #ifdef PUSH_ROUNDING
3345 if (passed_mode != BLKmode)
3346 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3347 #endif
3348
3349 /* Pad_below needs the pre-rounded size to know how much to pad below
3350 so this must be done before rounding up. */
3351 locate->offset = locate->slot_offset;
3352 if (where_pad == downward)
3353 pad_below (&locate->offset, passed_mode, sizetree);
3354
3355 if (where_pad != none
3356 && (!host_integerp (sizetree, 1)
3357 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3358 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3359
3360 ADD_PARM_SIZE (locate->size, sizetree);
3361
3362 locate->size.constant -= part_size_in_regs;
3363 #endif /* ARGS_GROW_DOWNWARD */
3364 }
3365
3366 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3367 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3368
3369 static void
3370 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3371 struct args_size *alignment_pad)
3372 {
3373 tree save_var = NULL_TREE;
3374 HOST_WIDE_INT save_constant = 0;
3375 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3376 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3377
3378 #ifdef SPARC_STACK_BOUNDARY_HACK
3379 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3380 the real alignment of %sp. However, when it does this, the
3381 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3382 if (SPARC_STACK_BOUNDARY_HACK)
3383 sp_offset = 0;
3384 #endif
3385
3386 if (boundary > PARM_BOUNDARY)
3387 {
3388 save_var = offset_ptr->var;
3389 save_constant = offset_ptr->constant;
3390 }
3391
3392 alignment_pad->var = NULL_TREE;
3393 alignment_pad->constant = 0;
3394
3395 if (boundary > BITS_PER_UNIT)
3396 {
3397 if (offset_ptr->var)
3398 {
3399 tree sp_offset_tree = ssize_int (sp_offset);
3400 tree offset = size_binop (PLUS_EXPR,
3401 ARGS_SIZE_TREE (*offset_ptr),
3402 sp_offset_tree);
3403 #ifdef ARGS_GROW_DOWNWARD
3404 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3405 #else
3406 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3407 #endif
3408
3409 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3410 /* ARGS_SIZE_TREE includes constant term. */
3411 offset_ptr->constant = 0;
3412 if (boundary > PARM_BOUNDARY)
3413 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3414 save_var);
3415 }
3416 else
3417 {
3418 offset_ptr->constant = -sp_offset +
3419 #ifdef ARGS_GROW_DOWNWARD
3420 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3421 #else
3422 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3423 #endif
3424 if (boundary > PARM_BOUNDARY)
3425 alignment_pad->constant = offset_ptr->constant - save_constant;
3426 }
3427 }
3428 }
3429
3430 static void
3431 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3432 {
3433 if (passed_mode != BLKmode)
3434 {
3435 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3436 offset_ptr->constant
3437 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3438 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3439 - GET_MODE_SIZE (passed_mode));
3440 }
3441 else
3442 {
3443 if (TREE_CODE (sizetree) != INTEGER_CST
3444 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3445 {
3446 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3447 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3448 /* Add it in. */
3449 ADD_PARM_SIZE (*offset_ptr, s2);
3450 SUB_PARM_SIZE (*offset_ptr, sizetree);
3451 }
3452 }
3453 }
3454 \f
3455
3456 /* True if register REGNO was alive at a place where `setjmp' was
3457 called and was set more than once or is an argument. Such regs may
3458 be clobbered by `longjmp'. */
3459
3460 static bool
3461 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3462 {
3463 /* There appear to be cases where some local vars never reach the
3464 backend but have bogus regnos. */
3465 if (regno >= max_reg_num ())
3466 return false;
3467
3468 return ((REG_N_SETS (regno) > 1
3469 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3470 && REGNO_REG_SET_P (setjmp_crosses, regno));
3471 }
3472
3473 /* Walk the tree of blocks describing the binding levels within a
3474 function and warn about variables the might be killed by setjmp or
3475 vfork. This is done after calling flow_analysis before register
3476 allocation since that will clobber the pseudo-regs to hard
3477 regs. */
3478
3479 static void
3480 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3481 {
3482 tree decl, sub;
3483
3484 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3485 {
3486 if (TREE_CODE (decl) == VAR_DECL
3487 && DECL_RTL_SET_P (decl)
3488 && REG_P (DECL_RTL (decl))
3489 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3490 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3491 " %<longjmp%> or %<vfork%>", decl);
3492 }
3493
3494 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3495 setjmp_vars_warning (setjmp_crosses, sub);
3496 }
3497
3498 /* Do the appropriate part of setjmp_vars_warning
3499 but for arguments instead of local variables. */
3500
3501 static void
3502 setjmp_args_warning (bitmap setjmp_crosses)
3503 {
3504 tree decl;
3505 for (decl = DECL_ARGUMENTS (current_function_decl);
3506 decl; decl = TREE_CHAIN (decl))
3507 if (DECL_RTL (decl) != 0
3508 && REG_P (DECL_RTL (decl))
3509 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3510 warning (OPT_Wclobbered,
3511 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3512 decl);
3513 }
3514
3515 /* Generate warning messages for variables live across setjmp. */
3516
3517 void
3518 generate_setjmp_warnings (void)
3519 {
3520 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3521
3522 if (n_basic_blocks == NUM_FIXED_BLOCKS
3523 || bitmap_empty_p (setjmp_crosses))
3524 return;
3525
3526 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3527 setjmp_args_warning (setjmp_crosses);
3528 }
3529
3530 \f
3531 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3532 and create duplicate blocks. */
3533 /* ??? Need an option to either create block fragments or to create
3534 abstract origin duplicates of a source block. It really depends
3535 on what optimization has been performed. */
3536
3537 void
3538 reorder_blocks (void)
3539 {
3540 tree block = DECL_INITIAL (current_function_decl);
3541 VEC(tree,heap) *block_stack;
3542
3543 if (block == NULL_TREE)
3544 return;
3545
3546 block_stack = VEC_alloc (tree, heap, 10);
3547
3548 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3549 clear_block_marks (block);
3550
3551 /* Prune the old trees away, so that they don't get in the way. */
3552 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3553 BLOCK_CHAIN (block) = NULL_TREE;
3554
3555 /* Recreate the block tree from the note nesting. */
3556 reorder_blocks_1 (get_insns (), block, &block_stack);
3557 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3558
3559 VEC_free (tree, heap, block_stack);
3560 }
3561
3562 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3563
3564 void
3565 clear_block_marks (tree block)
3566 {
3567 while (block)
3568 {
3569 TREE_ASM_WRITTEN (block) = 0;
3570 clear_block_marks (BLOCK_SUBBLOCKS (block));
3571 block = BLOCK_CHAIN (block);
3572 }
3573 }
3574
3575 static void
3576 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3577 {
3578 rtx insn;
3579
3580 for (insn = insns; insn; insn = NEXT_INSN (insn))
3581 {
3582 if (NOTE_P (insn))
3583 {
3584 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3585 {
3586 tree block = NOTE_BLOCK (insn);
3587 tree origin;
3588
3589 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3590 ? BLOCK_FRAGMENT_ORIGIN (block)
3591 : block);
3592
3593 /* If we have seen this block before, that means it now
3594 spans multiple address regions. Create a new fragment. */
3595 if (TREE_ASM_WRITTEN (block))
3596 {
3597 tree new_block = copy_node (block);
3598
3599 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3600 BLOCK_FRAGMENT_CHAIN (new_block)
3601 = BLOCK_FRAGMENT_CHAIN (origin);
3602 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3603
3604 NOTE_BLOCK (insn) = new_block;
3605 block = new_block;
3606 }
3607
3608 BLOCK_SUBBLOCKS (block) = 0;
3609 TREE_ASM_WRITTEN (block) = 1;
3610 /* When there's only one block for the entire function,
3611 current_block == block and we mustn't do this, it
3612 will cause infinite recursion. */
3613 if (block != current_block)
3614 {
3615 if (block != origin)
3616 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3617
3618 BLOCK_SUPERCONTEXT (block) = current_block;
3619 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3620 BLOCK_SUBBLOCKS (current_block) = block;
3621 current_block = origin;
3622 }
3623 VEC_safe_push (tree, heap, *p_block_stack, block);
3624 }
3625 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3626 {
3627 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3628 BLOCK_SUBBLOCKS (current_block)
3629 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3630 current_block = BLOCK_SUPERCONTEXT (current_block);
3631 }
3632 }
3633 }
3634 }
3635
3636 /* Reverse the order of elements in the chain T of blocks,
3637 and return the new head of the chain (old last element). */
3638
3639 tree
3640 blocks_nreverse (tree t)
3641 {
3642 tree prev = 0, decl, next;
3643 for (decl = t; decl; decl = next)
3644 {
3645 next = BLOCK_CHAIN (decl);
3646 BLOCK_CHAIN (decl) = prev;
3647 prev = decl;
3648 }
3649 return prev;
3650 }
3651
3652 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3653 non-NULL, list them all into VECTOR, in a depth-first preorder
3654 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3655 blocks. */
3656
3657 static int
3658 all_blocks (tree block, tree *vector)
3659 {
3660 int n_blocks = 0;
3661
3662 while (block)
3663 {
3664 TREE_ASM_WRITTEN (block) = 0;
3665
3666 /* Record this block. */
3667 if (vector)
3668 vector[n_blocks] = block;
3669
3670 ++n_blocks;
3671
3672 /* Record the subblocks, and their subblocks... */
3673 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3674 vector ? vector + n_blocks : 0);
3675 block = BLOCK_CHAIN (block);
3676 }
3677
3678 return n_blocks;
3679 }
3680
3681 /* Return a vector containing all the blocks rooted at BLOCK. The
3682 number of elements in the vector is stored in N_BLOCKS_P. The
3683 vector is dynamically allocated; it is the caller's responsibility
3684 to call `free' on the pointer returned. */
3685
3686 static tree *
3687 get_block_vector (tree block, int *n_blocks_p)
3688 {
3689 tree *block_vector;
3690
3691 *n_blocks_p = all_blocks (block, NULL);
3692 block_vector = XNEWVEC (tree, *n_blocks_p);
3693 all_blocks (block, block_vector);
3694
3695 return block_vector;
3696 }
3697
3698 static GTY(()) int next_block_index = 2;
3699
3700 /* Set BLOCK_NUMBER for all the blocks in FN. */
3701
3702 void
3703 number_blocks (tree fn)
3704 {
3705 int i;
3706 int n_blocks;
3707 tree *block_vector;
3708
3709 /* For SDB and XCOFF debugging output, we start numbering the blocks
3710 from 1 within each function, rather than keeping a running
3711 count. */
3712 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3713 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3714 next_block_index = 1;
3715 #endif
3716
3717 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3718
3719 /* The top-level BLOCK isn't numbered at all. */
3720 for (i = 1; i < n_blocks; ++i)
3721 /* We number the blocks from two. */
3722 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3723
3724 free (block_vector);
3725
3726 return;
3727 }
3728
3729 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3730
3731 tree
3732 debug_find_var_in_block_tree (tree var, tree block)
3733 {
3734 tree t;
3735
3736 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3737 if (t == var)
3738 return block;
3739
3740 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3741 {
3742 tree ret = debug_find_var_in_block_tree (var, t);
3743 if (ret)
3744 return ret;
3745 }
3746
3747 return NULL_TREE;
3748 }
3749 \f
3750 /* Keep track of whether we're in a dummy function context. If we are,
3751 we don't want to invoke the set_current_function hook, because we'll
3752 get into trouble if the hook calls target_reinit () recursively or
3753 when the initial initialization is not yet complete. */
3754
3755 static bool in_dummy_function;
3756
3757 /* Invoke the target hook when setting cfun. */
3758
3759 static void
3760 invoke_set_current_function_hook (tree fndecl)
3761 {
3762 if (!in_dummy_function)
3763 targetm.set_current_function (fndecl);
3764 }
3765
3766 /* cfun should never be set directly; use this function. */
3767
3768 void
3769 set_cfun (struct function *new_cfun)
3770 {
3771 if (cfun != new_cfun)
3772 {
3773 cfun = new_cfun;
3774 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
3775 }
3776 }
3777
3778 /* Keep track of the cfun stack. */
3779
3780 typedef struct function *function_p;
3781
3782 DEF_VEC_P(function_p);
3783 DEF_VEC_ALLOC_P(function_p,heap);
3784
3785 /* Initialized with NOGC, making this poisonous to the garbage collector. */
3786
3787 static VEC(function_p,heap) *cfun_stack;
3788
3789 /* We save the value of in_system_header here when pushing the first
3790 function on the cfun stack, and we restore it from here when
3791 popping the last function. */
3792
3793 static bool saved_in_system_header;
3794
3795 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
3796
3797 void
3798 push_cfun (struct function *new_cfun)
3799 {
3800 if (cfun == NULL)
3801 saved_in_system_header = in_system_header;
3802 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3803 if (new_cfun)
3804 in_system_header = DECL_IN_SYSTEM_HEADER (new_cfun->decl);
3805 set_cfun (new_cfun);
3806 }
3807
3808 /* Pop cfun from the stack. */
3809
3810 void
3811 pop_cfun (void)
3812 {
3813 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
3814 in_system_header = ((new_cfun == NULL) ? saved_in_system_header
3815 : DECL_IN_SYSTEM_HEADER (new_cfun->decl));
3816 set_cfun (new_cfun);
3817 }
3818
3819 /* Return value of funcdef and increase it. */
3820 int
3821 get_next_funcdef_no (void)
3822 {
3823 return funcdef_no++;
3824 }
3825
3826 /* Allocate a function structure for FNDECL and set its contents
3827 to the defaults. Set cfun to the newly-allocated object.
3828 Some of the helper functions invoked during initialization assume
3829 that cfun has already been set. Therefore, assign the new object
3830 directly into cfun and invoke the back end hook explicitly at the
3831 very end, rather than initializing a temporary and calling set_cfun
3832 on it.
3833
3834 ABSTRACT_P is true if this is a function that will never be seen by
3835 the middle-end. Such functions are front-end concepts (like C++
3836 function templates) that do not correspond directly to functions
3837 placed in object files. */
3838
3839 void
3840 allocate_struct_function (tree fndecl, bool abstract_p)
3841 {
3842 tree result;
3843 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3844
3845 cfun = ggc_alloc_cleared (sizeof (struct function));
3846
3847 cfun->stack_alignment_needed = STACK_BOUNDARY;
3848 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3849
3850 current_function_funcdef_no = get_next_funcdef_no ();
3851
3852 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3853
3854 init_eh_for_function ();
3855
3856 if (init_machine_status)
3857 cfun->machine = (*init_machine_status) ();
3858
3859 if (fndecl != NULL)
3860 {
3861 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3862 cfun->decl = fndecl;
3863
3864 result = DECL_RESULT (fndecl);
3865 if (!abstract_p && aggregate_value_p (result, fndecl))
3866 {
3867 #ifdef PCC_STATIC_STRUCT_RETURN
3868 current_function_returns_pcc_struct = 1;
3869 #endif
3870 current_function_returns_struct = 1;
3871 }
3872
3873 current_function_stdarg
3874 = (fntype
3875 && TYPE_ARG_TYPES (fntype) != 0
3876 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3877 != void_type_node));
3878
3879 /* Assume all registers in stdarg functions need to be saved. */
3880 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3881 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3882 }
3883
3884 invoke_set_current_function_hook (fndecl);
3885 }
3886
3887 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
3888 instead of just setting it. */
3889
3890 void
3891 push_struct_function (tree fndecl)
3892 {
3893 if (cfun == NULL)
3894 saved_in_system_header = in_system_header;
3895 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3896 if (fndecl)
3897 in_system_header = DECL_IN_SYSTEM_HEADER (fndecl);
3898 allocate_struct_function (fndecl, false);
3899 }
3900
3901 /* Reset cfun, and other non-struct-function variables to defaults as
3902 appropriate for emitting rtl at the start of a function. */
3903
3904 static void
3905 prepare_function_start (void)
3906 {
3907 gcc_assert (!crtl->emit.x_last_insn);
3908 init_emit ();
3909 init_varasm_status ();
3910 init_expr ();
3911
3912 cse_not_expected = ! optimize;
3913
3914 /* Caller save not needed yet. */
3915 caller_save_needed = 0;
3916
3917 /* We haven't done register allocation yet. */
3918 reg_renumber = 0;
3919
3920 /* Indicate that we have not instantiated virtual registers yet. */
3921 virtuals_instantiated = 0;
3922
3923 /* Indicate that we want CONCATs now. */
3924 generating_concat_p = 1;
3925
3926 /* Indicate we have no need of a frame pointer yet. */
3927 frame_pointer_needed = 0;
3928 }
3929
3930 /* Initialize the rtl expansion mechanism so that we can do simple things
3931 like generate sequences. This is used to provide a context during global
3932 initialization of some passes. You must call expand_dummy_function_end
3933 to exit this context. */
3934
3935 void
3936 init_dummy_function_start (void)
3937 {
3938 gcc_assert (!in_dummy_function);
3939 in_dummy_function = true;
3940 push_struct_function (NULL_TREE);
3941 prepare_function_start ();
3942 }
3943
3944 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3945 and initialize static variables for generating RTL for the statements
3946 of the function. */
3947
3948 void
3949 init_function_start (tree subr)
3950 {
3951 if (subr && DECL_STRUCT_FUNCTION (subr))
3952 set_cfun (DECL_STRUCT_FUNCTION (subr));
3953 else
3954 allocate_struct_function (subr, false);
3955 prepare_function_start ();
3956
3957 /* Warn if this value is an aggregate type,
3958 regardless of which calling convention we are using for it. */
3959 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3960 warning (OPT_Waggregate_return, "function returns an aggregate");
3961 }
3962
3963 /* Make sure all values used by the optimization passes have sane
3964 defaults. */
3965 unsigned int
3966 init_function_for_compilation (void)
3967 {
3968 reg_renumber = 0;
3969
3970 /* No prologue/epilogue insns yet. Make sure that these vectors are
3971 empty. */
3972 gcc_assert (VEC_length (int, prologue) == 0);
3973 gcc_assert (VEC_length (int, epilogue) == 0);
3974 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3975 return 0;
3976 }
3977
3978 struct rtl_opt_pass pass_init_function =
3979 {
3980 {
3981 RTL_PASS,
3982 NULL, /* name */
3983 NULL, /* gate */
3984 init_function_for_compilation, /* execute */
3985 NULL, /* sub */
3986 NULL, /* next */
3987 0, /* static_pass_number */
3988 0, /* tv_id */
3989 0, /* properties_required */
3990 0, /* properties_provided */
3991 0, /* properties_destroyed */
3992 0, /* todo_flags_start */
3993 0 /* todo_flags_finish */
3994 }
3995 };
3996
3997
3998 void
3999 expand_main_function (void)
4000 {
4001 #if (defined(INVOKE__main) \
4002 || (!defined(HAS_INIT_SECTION) \
4003 && !defined(INIT_SECTION_ASM_OP) \
4004 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4005 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4006 #endif
4007 }
4008 \f
4009 /* Expand code to initialize the stack_protect_guard. This is invoked at
4010 the beginning of a function to be protected. */
4011
4012 #ifndef HAVE_stack_protect_set
4013 # define HAVE_stack_protect_set 0
4014 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4015 #endif
4016
4017 void
4018 stack_protect_prologue (void)
4019 {
4020 tree guard_decl = targetm.stack_protect_guard ();
4021 rtx x, y;
4022
4023 /* Avoid expand_expr here, because we don't want guard_decl pulled
4024 into registers unless absolutely necessary. And we know that
4025 cfun->stack_protect_guard is a local stack slot, so this skips
4026 all the fluff. */
4027 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4028 y = validize_mem (DECL_RTL (guard_decl));
4029
4030 /* Allow the target to copy from Y to X without leaking Y into a
4031 register. */
4032 if (HAVE_stack_protect_set)
4033 {
4034 rtx insn = gen_stack_protect_set (x, y);
4035 if (insn)
4036 {
4037 emit_insn (insn);
4038 return;
4039 }
4040 }
4041
4042 /* Otherwise do a straight move. */
4043 emit_move_insn (x, y);
4044 }
4045
4046 /* Expand code to verify the stack_protect_guard. This is invoked at
4047 the end of a function to be protected. */
4048
4049 #ifndef HAVE_stack_protect_test
4050 # define HAVE_stack_protect_test 0
4051 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4052 #endif
4053
4054 void
4055 stack_protect_epilogue (void)
4056 {
4057 tree guard_decl = targetm.stack_protect_guard ();
4058 rtx label = gen_label_rtx ();
4059 rtx x, y, tmp;
4060
4061 /* Avoid expand_expr here, because we don't want guard_decl pulled
4062 into registers unless absolutely necessary. And we know that
4063 cfun->stack_protect_guard is a local stack slot, so this skips
4064 all the fluff. */
4065 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4066 y = validize_mem (DECL_RTL (guard_decl));
4067
4068 /* Allow the target to compare Y with X without leaking either into
4069 a register. */
4070 switch (HAVE_stack_protect_test != 0)
4071 {
4072 case 1:
4073 tmp = gen_stack_protect_test (x, y, label);
4074 if (tmp)
4075 {
4076 emit_insn (tmp);
4077 break;
4078 }
4079 /* FALLTHRU */
4080
4081 default:
4082 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4083 break;
4084 }
4085
4086 /* The noreturn predictor has been moved to the tree level. The rtl-level
4087 predictors estimate this branch about 20%, which isn't enough to get
4088 things moved out of line. Since this is the only extant case of adding
4089 a noreturn function at the rtl level, it doesn't seem worth doing ought
4090 except adding the prediction by hand. */
4091 tmp = get_last_insn ();
4092 if (JUMP_P (tmp))
4093 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4094
4095 expand_expr_stmt (targetm.stack_protect_fail ());
4096 emit_label (label);
4097 }
4098 \f
4099 /* Start the RTL for a new function, and set variables used for
4100 emitting RTL.
4101 SUBR is the FUNCTION_DECL node.
4102 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4103 the function's parameters, which must be run at any return statement. */
4104
4105 void
4106 expand_function_start (tree subr)
4107 {
4108 /* Make sure volatile mem refs aren't considered
4109 valid operands of arithmetic insns. */
4110 init_recog_no_volatile ();
4111
4112 current_function_profile
4113 = (profile_flag
4114 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4115
4116 current_function_limit_stack
4117 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4118
4119 /* Make the label for return statements to jump to. Do not special
4120 case machines with special return instructions -- they will be
4121 handled later during jump, ifcvt, or epilogue creation. */
4122 return_label = gen_label_rtx ();
4123
4124 /* Initialize rtx used to return the value. */
4125 /* Do this before assign_parms so that we copy the struct value address
4126 before any library calls that assign parms might generate. */
4127
4128 /* Decide whether to return the value in memory or in a register. */
4129 if (aggregate_value_p (DECL_RESULT (subr), subr))
4130 {
4131 /* Returning something that won't go in a register. */
4132 rtx value_address = 0;
4133
4134 #ifdef PCC_STATIC_STRUCT_RETURN
4135 if (current_function_returns_pcc_struct)
4136 {
4137 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4138 value_address = assemble_static_space (size);
4139 }
4140 else
4141 #endif
4142 {
4143 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4144 /* Expect to be passed the address of a place to store the value.
4145 If it is passed as an argument, assign_parms will take care of
4146 it. */
4147 if (sv)
4148 {
4149 value_address = gen_reg_rtx (Pmode);
4150 emit_move_insn (value_address, sv);
4151 }
4152 }
4153 if (value_address)
4154 {
4155 rtx x = value_address;
4156 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4157 {
4158 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4159 set_mem_attributes (x, DECL_RESULT (subr), 1);
4160 }
4161 SET_DECL_RTL (DECL_RESULT (subr), x);
4162 }
4163 }
4164 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4165 /* If return mode is void, this decl rtl should not be used. */
4166 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4167 else
4168 {
4169 /* Compute the return values into a pseudo reg, which we will copy
4170 into the true return register after the cleanups are done. */
4171 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4172 if (TYPE_MODE (return_type) != BLKmode
4173 && targetm.calls.return_in_msb (return_type))
4174 /* expand_function_end will insert the appropriate padding in
4175 this case. Use the return value's natural (unpadded) mode
4176 within the function proper. */
4177 SET_DECL_RTL (DECL_RESULT (subr),
4178 gen_reg_rtx (TYPE_MODE (return_type)));
4179 else
4180 {
4181 /* In order to figure out what mode to use for the pseudo, we
4182 figure out what the mode of the eventual return register will
4183 actually be, and use that. */
4184 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4185
4186 /* Structures that are returned in registers are not
4187 aggregate_value_p, so we may see a PARALLEL or a REG. */
4188 if (REG_P (hard_reg))
4189 SET_DECL_RTL (DECL_RESULT (subr),
4190 gen_reg_rtx (GET_MODE (hard_reg)));
4191 else
4192 {
4193 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4194 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4195 }
4196 }
4197
4198 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4199 result to the real return register(s). */
4200 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4201 }
4202
4203 /* Initialize rtx for parameters and local variables.
4204 In some cases this requires emitting insns. */
4205 assign_parms (subr);
4206
4207 /* If function gets a static chain arg, store it. */
4208 if (cfun->static_chain_decl)
4209 {
4210 tree parm = cfun->static_chain_decl;
4211 rtx local = gen_reg_rtx (Pmode);
4212
4213 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4214 SET_DECL_RTL (parm, local);
4215 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4216
4217 emit_move_insn (local, static_chain_incoming_rtx);
4218 }
4219
4220 /* If the function receives a non-local goto, then store the
4221 bits we need to restore the frame pointer. */
4222 if (cfun->nonlocal_goto_save_area)
4223 {
4224 tree t_save;
4225 rtx r_save;
4226
4227 /* ??? We need to do this save early. Unfortunately here is
4228 before the frame variable gets declared. Help out... */
4229 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4230 if (!DECL_RTL_SET_P (var))
4231 expand_decl (var);
4232
4233 t_save = build4 (ARRAY_REF, ptr_type_node,
4234 cfun->nonlocal_goto_save_area,
4235 integer_zero_node, NULL_TREE, NULL_TREE);
4236 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4237 r_save = convert_memory_address (Pmode, r_save);
4238
4239 emit_move_insn (r_save, virtual_stack_vars_rtx);
4240 update_nonlocal_goto_save_area ();
4241 }
4242
4243 /* The following was moved from init_function_start.
4244 The move is supposed to make sdb output more accurate. */
4245 /* Indicate the beginning of the function body,
4246 as opposed to parm setup. */
4247 emit_note (NOTE_INSN_FUNCTION_BEG);
4248
4249 gcc_assert (NOTE_P (get_last_insn ()));
4250
4251 parm_birth_insn = get_last_insn ();
4252
4253 if (current_function_profile)
4254 {
4255 #ifdef PROFILE_HOOK
4256 PROFILE_HOOK (current_function_funcdef_no);
4257 #endif
4258 }
4259
4260 /* After the display initializations is where the stack checking
4261 probe should go. */
4262 if(flag_stack_check)
4263 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4264
4265 /* Make sure there is a line number after the function entry setup code. */
4266 force_next_line_note ();
4267 }
4268 \f
4269 /* Undo the effects of init_dummy_function_start. */
4270 void
4271 expand_dummy_function_end (void)
4272 {
4273 gcc_assert (in_dummy_function);
4274
4275 /* End any sequences that failed to be closed due to syntax errors. */
4276 while (in_sequence_p ())
4277 end_sequence ();
4278
4279 /* Outside function body, can't compute type's actual size
4280 until next function's body starts. */
4281
4282 free_after_parsing (cfun);
4283 free_after_compilation (cfun);
4284 pop_cfun ();
4285 in_dummy_function = false;
4286 }
4287
4288 /* Call DOIT for each hard register used as a return value from
4289 the current function. */
4290
4291 void
4292 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4293 {
4294 rtx outgoing = current_function_return_rtx;
4295
4296 if (! outgoing)
4297 return;
4298
4299 if (REG_P (outgoing))
4300 (*doit) (outgoing, arg);
4301 else if (GET_CODE (outgoing) == PARALLEL)
4302 {
4303 int i;
4304
4305 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4306 {
4307 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4308
4309 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4310 (*doit) (x, arg);
4311 }
4312 }
4313 }
4314
4315 static void
4316 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4317 {
4318 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4319 }
4320
4321 void
4322 clobber_return_register (void)
4323 {
4324 diddle_return_value (do_clobber_return_reg, NULL);
4325
4326 /* In case we do use pseudo to return value, clobber it too. */
4327 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4328 {
4329 tree decl_result = DECL_RESULT (current_function_decl);
4330 rtx decl_rtl = DECL_RTL (decl_result);
4331 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4332 {
4333 do_clobber_return_reg (decl_rtl, NULL);
4334 }
4335 }
4336 }
4337
4338 static void
4339 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4340 {
4341 emit_insn (gen_rtx_USE (VOIDmode, reg));
4342 }
4343
4344 static void
4345 use_return_register (void)
4346 {
4347 diddle_return_value (do_use_return_reg, NULL);
4348 }
4349
4350 /* Possibly warn about unused parameters. */
4351 void
4352 do_warn_unused_parameter (tree fn)
4353 {
4354 tree decl;
4355
4356 for (decl = DECL_ARGUMENTS (fn);
4357 decl; decl = TREE_CHAIN (decl))
4358 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4359 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4360 && !TREE_NO_WARNING (decl))
4361 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4362 }
4363
4364 static GTY(()) rtx initial_trampoline;
4365
4366 /* Generate RTL for the end of the current function. */
4367
4368 void
4369 expand_function_end (void)
4370 {
4371 rtx clobber_after;
4372
4373 /* If arg_pointer_save_area was referenced only from a nested
4374 function, we will not have initialized it yet. Do that now. */
4375 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4376 get_arg_pointer_save_area ();
4377
4378 /* If we are doing stack checking and this function makes calls,
4379 do a stack probe at the start of the function to ensure we have enough
4380 space for another stack frame. */
4381 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4382 {
4383 rtx insn, seq;
4384
4385 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4386 if (CALL_P (insn))
4387 {
4388 start_sequence ();
4389 probe_stack_range (STACK_CHECK_PROTECT,
4390 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4391 seq = get_insns ();
4392 end_sequence ();
4393 emit_insn_before (seq, stack_check_probe_note);
4394 break;
4395 }
4396 }
4397
4398 /* End any sequences that failed to be closed due to syntax errors. */
4399 while (in_sequence_p ())
4400 end_sequence ();
4401
4402 clear_pending_stack_adjust ();
4403 do_pending_stack_adjust ();
4404
4405 /* Output a linenumber for the end of the function.
4406 SDB depends on this. */
4407 force_next_line_note ();
4408 set_curr_insn_source_location (input_location);
4409
4410 /* Before the return label (if any), clobber the return
4411 registers so that they are not propagated live to the rest of
4412 the function. This can only happen with functions that drop
4413 through; if there had been a return statement, there would
4414 have either been a return rtx, or a jump to the return label.
4415
4416 We delay actual code generation after the current_function_value_rtx
4417 is computed. */
4418 clobber_after = get_last_insn ();
4419
4420 /* Output the label for the actual return from the function. */
4421 emit_label (return_label);
4422
4423 if (USING_SJLJ_EXCEPTIONS)
4424 {
4425 /* Let except.c know where it should emit the call to unregister
4426 the function context for sjlj exceptions. */
4427 if (flag_exceptions)
4428 sjlj_emit_function_exit_after (get_last_insn ());
4429 }
4430 else
4431 {
4432 /* We want to ensure that instructions that may trap are not
4433 moved into the epilogue by scheduling, because we don't
4434 always emit unwind information for the epilogue. */
4435 if (flag_non_call_exceptions)
4436 emit_insn (gen_blockage ());
4437 }
4438
4439 /* If this is an implementation of throw, do what's necessary to
4440 communicate between __builtin_eh_return and the epilogue. */
4441 expand_eh_return ();
4442
4443 /* If scalar return value was computed in a pseudo-reg, or was a named
4444 return value that got dumped to the stack, copy that to the hard
4445 return register. */
4446 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4447 {
4448 tree decl_result = DECL_RESULT (current_function_decl);
4449 rtx decl_rtl = DECL_RTL (decl_result);
4450
4451 if (REG_P (decl_rtl)
4452 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4453 : DECL_REGISTER (decl_result))
4454 {
4455 rtx real_decl_rtl = current_function_return_rtx;
4456
4457 /* This should be set in assign_parms. */
4458 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4459
4460 /* If this is a BLKmode structure being returned in registers,
4461 then use the mode computed in expand_return. Note that if
4462 decl_rtl is memory, then its mode may have been changed,
4463 but that current_function_return_rtx has not. */
4464 if (GET_MODE (real_decl_rtl) == BLKmode)
4465 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4466
4467 /* If a non-BLKmode return value should be padded at the least
4468 significant end of the register, shift it left by the appropriate
4469 amount. BLKmode results are handled using the group load/store
4470 machinery. */
4471 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4472 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4473 {
4474 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4475 REGNO (real_decl_rtl)),
4476 decl_rtl);
4477 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4478 }
4479 /* If a named return value dumped decl_return to memory, then
4480 we may need to re-do the PROMOTE_MODE signed/unsigned
4481 extension. */
4482 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4483 {
4484 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4485
4486 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4487 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4488 &unsignedp, 1);
4489
4490 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4491 }
4492 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4493 {
4494 /* If expand_function_start has created a PARALLEL for decl_rtl,
4495 move the result to the real return registers. Otherwise, do
4496 a group load from decl_rtl for a named return. */
4497 if (GET_CODE (decl_rtl) == PARALLEL)
4498 emit_group_move (real_decl_rtl, decl_rtl);
4499 else
4500 emit_group_load (real_decl_rtl, decl_rtl,
4501 TREE_TYPE (decl_result),
4502 int_size_in_bytes (TREE_TYPE (decl_result)));
4503 }
4504 /* In the case of complex integer modes smaller than a word, we'll
4505 need to generate some non-trivial bitfield insertions. Do that
4506 on a pseudo and not the hard register. */
4507 else if (GET_CODE (decl_rtl) == CONCAT
4508 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4509 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4510 {
4511 int old_generating_concat_p;
4512 rtx tmp;
4513
4514 old_generating_concat_p = generating_concat_p;
4515 generating_concat_p = 0;
4516 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4517 generating_concat_p = old_generating_concat_p;
4518
4519 emit_move_insn (tmp, decl_rtl);
4520 emit_move_insn (real_decl_rtl, tmp);
4521 }
4522 else
4523 emit_move_insn (real_decl_rtl, decl_rtl);
4524 }
4525 }
4526
4527 /* If returning a structure, arrange to return the address of the value
4528 in a place where debuggers expect to find it.
4529
4530 If returning a structure PCC style,
4531 the caller also depends on this value.
4532 And current_function_returns_pcc_struct is not necessarily set. */
4533 if (current_function_returns_struct
4534 || current_function_returns_pcc_struct)
4535 {
4536 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4537 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4538 rtx outgoing;
4539
4540 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4541 type = TREE_TYPE (type);
4542 else
4543 value_address = XEXP (value_address, 0);
4544
4545 outgoing = targetm.calls.function_value (build_pointer_type (type),
4546 current_function_decl, true);
4547
4548 /* Mark this as a function return value so integrate will delete the
4549 assignment and USE below when inlining this function. */
4550 REG_FUNCTION_VALUE_P (outgoing) = 1;
4551
4552 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4553 value_address = convert_memory_address (GET_MODE (outgoing),
4554 value_address);
4555
4556 emit_move_insn (outgoing, value_address);
4557
4558 /* Show return register used to hold result (in this case the address
4559 of the result. */
4560 current_function_return_rtx = outgoing;
4561 }
4562
4563 /* Emit the actual code to clobber return register. */
4564 {
4565 rtx seq;
4566
4567 start_sequence ();
4568 clobber_return_register ();
4569 expand_naked_return ();
4570 seq = get_insns ();
4571 end_sequence ();
4572
4573 emit_insn_after (seq, clobber_after);
4574 }
4575
4576 /* Output the label for the naked return from the function. */
4577 emit_label (naked_return_label);
4578
4579 /* @@@ This is a kludge. We want to ensure that instructions that
4580 may trap are not moved into the epilogue by scheduling, because
4581 we don't always emit unwind information for the epilogue. */
4582 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4583 emit_insn (gen_blockage ());
4584
4585 /* If stack protection is enabled for this function, check the guard. */
4586 if (cfun->stack_protect_guard)
4587 stack_protect_epilogue ();
4588
4589 /* If we had calls to alloca, and this machine needs
4590 an accurate stack pointer to exit the function,
4591 insert some code to save and restore the stack pointer. */
4592 if (! EXIT_IGNORE_STACK
4593 && current_function_calls_alloca)
4594 {
4595 rtx tem = 0;
4596
4597 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4598 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4599 }
4600
4601 /* ??? This should no longer be necessary since stupid is no longer with
4602 us, but there are some parts of the compiler (eg reload_combine, and
4603 sh mach_dep_reorg) that still try and compute their own lifetime info
4604 instead of using the general framework. */
4605 use_return_register ();
4606 }
4607
4608 rtx
4609 get_arg_pointer_save_area (void)
4610 {
4611 rtx ret = arg_pointer_save_area;
4612
4613 if (! ret)
4614 {
4615 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4616 arg_pointer_save_area = ret;
4617 }
4618
4619 if (! cfun->arg_pointer_save_area_init)
4620 {
4621 rtx seq;
4622
4623 /* Save the arg pointer at the beginning of the function. The
4624 generated stack slot may not be a valid memory address, so we
4625 have to check it and fix it if necessary. */
4626 start_sequence ();
4627 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4628 seq = get_insns ();
4629 end_sequence ();
4630
4631 push_topmost_sequence ();
4632 emit_insn_after (seq, entry_of_function ());
4633 pop_topmost_sequence ();
4634 }
4635
4636 return ret;
4637 }
4638 \f
4639 /* Extend a vector that records the INSN_UIDs of INSNS
4640 (a list of one or more insns). */
4641
4642 static void
4643 record_insns (rtx insns, VEC(int,heap) **vecp)
4644 {
4645 rtx tmp;
4646
4647 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4648 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4649 }
4650
4651 /* Set the locator of the insn chain starting at INSN to LOC. */
4652 static void
4653 set_insn_locators (rtx insn, int loc)
4654 {
4655 while (insn != NULL_RTX)
4656 {
4657 if (INSN_P (insn))
4658 INSN_LOCATOR (insn) = loc;
4659 insn = NEXT_INSN (insn);
4660 }
4661 }
4662
4663 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4664 be running after reorg, SEQUENCE rtl is possible. */
4665
4666 static int
4667 contains (const_rtx insn, VEC(int,heap) **vec)
4668 {
4669 int i, j;
4670
4671 if (NONJUMP_INSN_P (insn)
4672 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4673 {
4674 int count = 0;
4675 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4676 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4677 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4678 == VEC_index (int, *vec, j))
4679 count++;
4680 return count;
4681 }
4682 else
4683 {
4684 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4685 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4686 return 1;
4687 }
4688 return 0;
4689 }
4690
4691 int
4692 prologue_epilogue_contains (const_rtx insn)
4693 {
4694 if (contains (insn, &prologue))
4695 return 1;
4696 if (contains (insn, &epilogue))
4697 return 1;
4698 return 0;
4699 }
4700
4701 int
4702 sibcall_epilogue_contains (const_rtx insn)
4703 {
4704 if (sibcall_epilogue)
4705 return contains (insn, &sibcall_epilogue);
4706 return 0;
4707 }
4708
4709 #ifdef HAVE_return
4710 /* Insert gen_return at the end of block BB. This also means updating
4711 block_for_insn appropriately. */
4712
4713 static void
4714 emit_return_into_block (basic_block bb)
4715 {
4716 emit_jump_insn_after (gen_return (), BB_END (bb));
4717 }
4718 #endif /* HAVE_return */
4719
4720 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4721 this into place with notes indicating where the prologue ends and where
4722 the epilogue begins. Update the basic block information when possible. */
4723
4724 static void
4725 thread_prologue_and_epilogue_insns (void)
4726 {
4727 int inserted = 0;
4728 edge e;
4729 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4730 rtx seq;
4731 #endif
4732 #if defined (HAVE_epilogue) || defined(HAVE_return)
4733 rtx epilogue_end = NULL_RTX;
4734 #endif
4735 edge_iterator ei;
4736
4737 #ifdef HAVE_prologue
4738 if (HAVE_prologue)
4739 {
4740 start_sequence ();
4741 seq = gen_prologue ();
4742 emit_insn (seq);
4743
4744 /* Insert an explicit USE for the frame pointer
4745 if the profiling is on and the frame pointer is required. */
4746 if (current_function_profile && frame_pointer_needed)
4747 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
4748
4749 /* Retain a map of the prologue insns. */
4750 record_insns (seq, &prologue);
4751 emit_note (NOTE_INSN_PROLOGUE_END);
4752
4753 #ifndef PROFILE_BEFORE_PROLOGUE
4754 /* Ensure that instructions are not moved into the prologue when
4755 profiling is on. The call to the profiling routine can be
4756 emitted within the live range of a call-clobbered register. */
4757 if (current_function_profile)
4758 emit_insn (gen_blockage ());
4759 #endif
4760
4761 seq = get_insns ();
4762 end_sequence ();
4763 set_insn_locators (seq, prologue_locator);
4764
4765 /* Can't deal with multiple successors of the entry block
4766 at the moment. Function should always have at least one
4767 entry point. */
4768 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
4769
4770 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
4771 inserted = 1;
4772 }
4773 #endif
4774
4775 /* If the exit block has no non-fake predecessors, we don't need
4776 an epilogue. */
4777 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4778 if ((e->flags & EDGE_FAKE) == 0)
4779 break;
4780 if (e == NULL)
4781 goto epilogue_done;
4782
4783 #ifdef HAVE_return
4784 if (optimize && HAVE_return)
4785 {
4786 /* If we're allowed to generate a simple return instruction,
4787 then by definition we don't need a full epilogue. Examine
4788 the block that falls through to EXIT. If it does not
4789 contain any code, examine its predecessors and try to
4790 emit (conditional) return instructions. */
4791
4792 basic_block last;
4793 rtx label;
4794
4795 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4796 if (e->flags & EDGE_FALLTHRU)
4797 break;
4798 if (e == NULL)
4799 goto epilogue_done;
4800 last = e->src;
4801
4802 /* Verify that there are no active instructions in the last block. */
4803 label = BB_END (last);
4804 while (label && !LABEL_P (label))
4805 {
4806 if (active_insn_p (label))
4807 break;
4808 label = PREV_INSN (label);
4809 }
4810
4811 if (BB_HEAD (last) == label && LABEL_P (label))
4812 {
4813 edge_iterator ei2;
4814
4815 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
4816 {
4817 basic_block bb = e->src;
4818 rtx jump;
4819
4820 if (bb == ENTRY_BLOCK_PTR)
4821 {
4822 ei_next (&ei2);
4823 continue;
4824 }
4825
4826 jump = BB_END (bb);
4827 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
4828 {
4829 ei_next (&ei2);
4830 continue;
4831 }
4832
4833 /* If we have an unconditional jump, we can replace that
4834 with a simple return instruction. */
4835 if (simplejump_p (jump))
4836 {
4837 emit_return_into_block (bb);
4838 delete_insn (jump);
4839 }
4840
4841 /* If we have a conditional jump, we can try to replace
4842 that with a conditional return instruction. */
4843 else if (condjump_p (jump))
4844 {
4845 if (! redirect_jump (jump, 0, 0))
4846 {
4847 ei_next (&ei2);
4848 continue;
4849 }
4850
4851 /* If this block has only one successor, it both jumps
4852 and falls through to the fallthru block, so we can't
4853 delete the edge. */
4854 if (single_succ_p (bb))
4855 {
4856 ei_next (&ei2);
4857 continue;
4858 }
4859 }
4860 else
4861 {
4862 ei_next (&ei2);
4863 continue;
4864 }
4865
4866 /* Fix up the CFG for the successful change we just made. */
4867 redirect_edge_succ (e, EXIT_BLOCK_PTR);
4868 }
4869
4870 /* Emit a return insn for the exit fallthru block. Whether
4871 this is still reachable will be determined later. */
4872
4873 emit_barrier_after (BB_END (last));
4874 emit_return_into_block (last);
4875 epilogue_end = BB_END (last);
4876 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
4877 goto epilogue_done;
4878 }
4879 }
4880 #endif
4881 /* Find the edge that falls through to EXIT. Other edges may exist
4882 due to RETURN instructions, but those don't need epilogues.
4883 There really shouldn't be a mixture -- either all should have
4884 been converted or none, however... */
4885
4886 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4887 if (e->flags & EDGE_FALLTHRU)
4888 break;
4889 if (e == NULL)
4890 goto epilogue_done;
4891
4892 #ifdef HAVE_epilogue
4893 if (HAVE_epilogue)
4894 {
4895 start_sequence ();
4896 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
4897 seq = gen_epilogue ();
4898 emit_jump_insn (seq);
4899
4900 /* Retain a map of the epilogue insns. */
4901 record_insns (seq, &epilogue);
4902 set_insn_locators (seq, epilogue_locator);
4903
4904 seq = get_insns ();
4905 end_sequence ();
4906
4907 insert_insn_on_edge (seq, e);
4908 inserted = 1;
4909 }
4910 else
4911 #endif
4912 {
4913 basic_block cur_bb;
4914
4915 if (! next_active_insn (BB_END (e->src)))
4916 goto epilogue_done;
4917 /* We have a fall-through edge to the exit block, the source is not
4918 at the end of the function, and there will be an assembler epilogue
4919 at the end of the function.
4920 We can't use force_nonfallthru here, because that would try to
4921 use return. Inserting a jump 'by hand' is extremely messy, so
4922 we take advantage of cfg_layout_finalize using
4923 fixup_fallthru_exit_predecessor. */
4924 cfg_layout_initialize (0);
4925 FOR_EACH_BB (cur_bb)
4926 if (cur_bb->index >= NUM_FIXED_BLOCKS
4927 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
4928 cur_bb->aux = cur_bb->next_bb;
4929 cfg_layout_finalize ();
4930 }
4931 epilogue_done:
4932
4933 if (inserted)
4934 {
4935 commit_edge_insertions ();
4936
4937 /* The epilogue insns we inserted may cause the exit edge to no longer
4938 be fallthru. */
4939 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4940 {
4941 if (((e->flags & EDGE_FALLTHRU) != 0)
4942 && returnjump_p (BB_END (e->src)))
4943 e->flags &= ~EDGE_FALLTHRU;
4944 }
4945 }
4946
4947 #ifdef HAVE_sibcall_epilogue
4948 /* Emit sibling epilogues before any sibling call sites. */
4949 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
4950 {
4951 basic_block bb = e->src;
4952 rtx insn = BB_END (bb);
4953
4954 if (!CALL_P (insn)
4955 || ! SIBLING_CALL_P (insn))
4956 {
4957 ei_next (&ei);
4958 continue;
4959 }
4960
4961 start_sequence ();
4962 emit_insn (gen_sibcall_epilogue ());
4963 seq = get_insns ();
4964 end_sequence ();
4965
4966 /* Retain a map of the epilogue insns. Used in life analysis to
4967 avoid getting rid of sibcall epilogue insns. Do this before we
4968 actually emit the sequence. */
4969 record_insns (seq, &sibcall_epilogue);
4970 set_insn_locators (seq, epilogue_locator);
4971
4972 emit_insn_before (seq, insn);
4973 ei_next (&ei);
4974 }
4975 #endif
4976
4977 #ifdef HAVE_epilogue
4978 if (epilogue_end)
4979 {
4980 rtx insn, next;
4981
4982 /* Similarly, move any line notes that appear after the epilogue.
4983 There is no need, however, to be quite so anal about the existence
4984 of such a note. Also possibly move
4985 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
4986 info generation. */
4987 for (insn = epilogue_end; insn; insn = next)
4988 {
4989 next = NEXT_INSN (insn);
4990 if (NOTE_P (insn)
4991 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
4992 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
4993 }
4994 }
4995 #endif
4996
4997 /* Threading the prologue and epilogue changes the artificial refs
4998 in the entry and exit blocks. */
4999 epilogue_completed = 1;
5000 df_update_entry_exit_and_calls ();
5001 }
5002
5003 /* Reposition the prologue-end and epilogue-begin notes after instruction
5004 scheduling and delayed branch scheduling. */
5005
5006 void
5007 reposition_prologue_and_epilogue_notes (void)
5008 {
5009 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5010 rtx insn, last, note;
5011 int len;
5012
5013 if ((len = VEC_length (int, prologue)) > 0)
5014 {
5015 last = 0, note = 0;
5016
5017 /* Scan from the beginning until we reach the last prologue insn.
5018 We apparently can't depend on basic_block_{head,end} after
5019 reorg has run. */
5020 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5021 {
5022 if (NOTE_P (insn))
5023 {
5024 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5025 note = insn;
5026 }
5027 else if (contains (insn, &prologue))
5028 {
5029 last = insn;
5030 if (--len == 0)
5031 break;
5032 }
5033 }
5034
5035 if (last)
5036 {
5037 /* Find the prologue-end note if we haven't already, and
5038 move it to just after the last prologue insn. */
5039 if (note == 0)
5040 {
5041 for (note = last; (note = NEXT_INSN (note));)
5042 if (NOTE_P (note)
5043 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5044 break;
5045 }
5046
5047 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5048 if (LABEL_P (last))
5049 last = NEXT_INSN (last);
5050 reorder_insns (note, note, last);
5051 }
5052 }
5053
5054 if ((len = VEC_length (int, epilogue)) > 0)
5055 {
5056 last = 0, note = 0;
5057
5058 /* Scan from the end until we reach the first epilogue insn.
5059 We apparently can't depend on basic_block_{head,end} after
5060 reorg has run. */
5061 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5062 {
5063 if (NOTE_P (insn))
5064 {
5065 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5066 note = insn;
5067 }
5068 else if (contains (insn, &epilogue))
5069 {
5070 last = insn;
5071 if (--len == 0)
5072 break;
5073 }
5074 }
5075
5076 if (last)
5077 {
5078 /* Find the epilogue-begin note if we haven't already, and
5079 move it to just before the first epilogue insn. */
5080 if (note == 0)
5081 {
5082 for (note = insn; (note = PREV_INSN (note));)
5083 if (NOTE_P (note)
5084 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5085 break;
5086 }
5087
5088 if (PREV_INSN (last) != note)
5089 reorder_insns (note, note, PREV_INSN (last));
5090 }
5091 }
5092 #endif /* HAVE_prologue or HAVE_epilogue */
5093 }
5094
5095 /* Returns the name of the current function. */
5096 const char *
5097 current_function_name (void)
5098 {
5099 return lang_hooks.decl_printable_name (cfun->decl, 2);
5100 }
5101
5102 /* Returns the raw (mangled) name of the current function. */
5103 const char *
5104 current_function_assembler_name (void)
5105 {
5106 return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
5107 }
5108 \f
5109
5110 static unsigned int
5111 rest_of_handle_check_leaf_regs (void)
5112 {
5113 #ifdef LEAF_REGISTERS
5114 current_function_uses_only_leaf_regs
5115 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5116 #endif
5117 return 0;
5118 }
5119
5120 /* Insert a TYPE into the used types hash table of CFUN. */
5121 static void
5122 used_types_insert_helper (tree type, struct function *func)
5123 {
5124 if (type != NULL && func != NULL)
5125 {
5126 void **slot;
5127
5128 if (func->used_types_hash == NULL)
5129 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5130 htab_eq_pointer, NULL);
5131 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5132 if (*slot == NULL)
5133 *slot = type;
5134 }
5135 }
5136
5137 /* Given a type, insert it into the used hash table in cfun. */
5138 void
5139 used_types_insert (tree t)
5140 {
5141 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5142 t = TREE_TYPE (t);
5143 t = TYPE_MAIN_VARIANT (t);
5144 if (debug_info_level > DINFO_LEVEL_NONE)
5145 used_types_insert_helper (t, cfun);
5146 }
5147
5148 struct rtl_opt_pass pass_leaf_regs =
5149 {
5150 {
5151 RTL_PASS,
5152 NULL, /* name */
5153 NULL, /* gate */
5154 rest_of_handle_check_leaf_regs, /* execute */
5155 NULL, /* sub */
5156 NULL, /* next */
5157 0, /* static_pass_number */
5158 0, /* tv_id */
5159 0, /* properties_required */
5160 0, /* properties_provided */
5161 0, /* properties_destroyed */
5162 0, /* todo_flags_start */
5163 0 /* todo_flags_finish */
5164 }
5165 };
5166
5167 static unsigned int
5168 rest_of_handle_thread_prologue_and_epilogue (void)
5169 {
5170 if (optimize)
5171 cleanup_cfg (CLEANUP_EXPENSIVE);
5172 /* On some machines, the prologue and epilogue code, or parts thereof,
5173 can be represented as RTL. Doing so lets us schedule insns between
5174 it and the rest of the code and also allows delayed branch
5175 scheduling to operate in the epilogue. */
5176
5177 thread_prologue_and_epilogue_insns ();
5178 return 0;
5179 }
5180
5181 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5182 {
5183 {
5184 RTL_PASS,
5185 "pro_and_epilogue", /* name */
5186 NULL, /* gate */
5187 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5188 NULL, /* sub */
5189 NULL, /* next */
5190 0, /* static_pass_number */
5191 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5192 0, /* properties_required */
5193 0, /* properties_provided */
5194 0, /* properties_destroyed */
5195 TODO_verify_flow, /* todo_flags_start */
5196 TODO_dump_func |
5197 TODO_df_verify |
5198 TODO_df_finish | TODO_verify_rtl_sharing |
5199 TODO_ggc_collect /* todo_flags_finish */
5200 }
5201 };
5202 \f
5203
5204 /* This mini-pass fixes fall-out from SSA in asm statements that have
5205 in-out constraints. Say you start with
5206
5207 orig = inout;
5208 asm ("": "+mr" (inout));
5209 use (orig);
5210
5211 which is transformed very early to use explicit output and match operands:
5212
5213 orig = inout;
5214 asm ("": "=mr" (inout) : "0" (inout));
5215 use (orig);
5216
5217 Or, after SSA and copyprop,
5218
5219 asm ("": "=mr" (inout_2) : "0" (inout_1));
5220 use (inout_1);
5221
5222 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5223 they represent two separate values, so they will get different pseudo
5224 registers during expansion. Then, since the two operands need to match
5225 per the constraints, but use different pseudo registers, reload can
5226 only register a reload for these operands. But reloads can only be
5227 satisfied by hardregs, not by memory, so we need a register for this
5228 reload, just because we are presented with non-matching operands.
5229 So, even though we allow memory for this operand, no memory can be
5230 used for it, just because the two operands don't match. This can
5231 cause reload failures on register-starved targets.
5232
5233 So it's a symptom of reload not being able to use memory for reloads
5234 or, alternatively it's also a symptom of both operands not coming into
5235 reload as matching (in which case the pseudo could go to memory just
5236 fine, as the alternative allows it, and no reload would be necessary).
5237 We fix the latter problem here, by transforming
5238
5239 asm ("": "=mr" (inout_2) : "0" (inout_1));
5240
5241 back to
5242
5243 inout_2 = inout_1;
5244 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5245
5246 static void
5247 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5248 {
5249 int i;
5250 bool changed = false;
5251 rtx op = SET_SRC (p_sets[0]);
5252 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5253 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5254 bool *output_matched = alloca (noutputs * sizeof (bool));
5255
5256 memset (output_matched, 0, noutputs * sizeof (bool));
5257 for (i = 0; i < ninputs; i++)
5258 {
5259 rtx input, output, insns;
5260 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5261 char *end;
5262 int match, j;
5263
5264 match = strtoul (constraint, &end, 10);
5265 if (end == constraint)
5266 continue;
5267
5268 gcc_assert (match < noutputs);
5269 output = SET_DEST (p_sets[match]);
5270 input = RTVEC_ELT (inputs, i);
5271 /* Only do the transformation for pseudos. */
5272 if (! REG_P (output)
5273 || rtx_equal_p (output, input)
5274 || (GET_MODE (input) != VOIDmode
5275 && GET_MODE (input) != GET_MODE (output)))
5276 continue;
5277
5278 /* We can't do anything if the output is also used as input,
5279 as we're going to overwrite it. */
5280 for (j = 0; j < ninputs; j++)
5281 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5282 break;
5283 if (j != ninputs)
5284 continue;
5285
5286 /* Avoid changing the same input several times. For
5287 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5288 only change in once (to out1), rather than changing it
5289 first to out1 and afterwards to out2. */
5290 if (i > 0)
5291 {
5292 for (j = 0; j < noutputs; j++)
5293 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5294 break;
5295 if (j != noutputs)
5296 continue;
5297 }
5298 output_matched[match] = true;
5299
5300 start_sequence ();
5301 emit_move_insn (output, input);
5302 insns = get_insns ();
5303 end_sequence ();
5304 emit_insn_before (insns, insn);
5305
5306 /* Now replace all mentions of the input with output. We can't
5307 just replace the occurence in inputs[i], as the register might
5308 also be used in some other input (or even in an address of an
5309 output), which would mean possibly increasing the number of
5310 inputs by one (namely 'output' in addition), which might pose
5311 a too complicated problem for reload to solve. E.g. this situation:
5312
5313 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5314
5315 Here 'input' is used in two occurrences as input (once for the
5316 input operand, once for the address in the second output operand).
5317 If we would replace only the occurence of the input operand (to
5318 make the matching) we would be left with this:
5319
5320 output = input
5321 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5322
5323 Now we suddenly have two different input values (containing the same
5324 value, but different pseudos) where we formerly had only one.
5325 With more complicated asms this might lead to reload failures
5326 which wouldn't have happen without this pass. So, iterate over
5327 all operands and replace all occurrences of the register used. */
5328 for (j = 0; j < noutputs; j++)
5329 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5330 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5331 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5332 input, output);
5333 for (j = 0; j < ninputs; j++)
5334 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5335 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5336 input, output);
5337
5338 changed = true;
5339 }
5340
5341 if (changed)
5342 df_insn_rescan (insn);
5343 }
5344
5345 static unsigned
5346 rest_of_match_asm_constraints (void)
5347 {
5348 basic_block bb;
5349 rtx insn, pat, *p_sets;
5350 int noutputs;
5351
5352 if (!cfun->has_asm_statement)
5353 return 0;
5354
5355 df_set_flags (DF_DEFER_INSN_RESCAN);
5356 FOR_EACH_BB (bb)
5357 {
5358 FOR_BB_INSNS (bb, insn)
5359 {
5360 if (!INSN_P (insn))
5361 continue;
5362
5363 pat = PATTERN (insn);
5364 if (GET_CODE (pat) == PARALLEL)
5365 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5366 else if (GET_CODE (pat) == SET)
5367 p_sets = &PATTERN (insn), noutputs = 1;
5368 else
5369 continue;
5370
5371 if (GET_CODE (*p_sets) == SET
5372 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5373 match_asm_constraints_1 (insn, p_sets, noutputs);
5374 }
5375 }
5376
5377 return TODO_df_finish;
5378 }
5379
5380 struct rtl_opt_pass pass_match_asm_constraints =
5381 {
5382 {
5383 RTL_PASS,
5384 "asmcons", /* name */
5385 NULL, /* gate */
5386 rest_of_match_asm_constraints, /* execute */
5387 NULL, /* sub */
5388 NULL, /* next */
5389 0, /* static_pass_number */
5390 0, /* tv_id */
5391 0, /* properties_required */
5392 0, /* properties_provided */
5393 0, /* properties_destroyed */
5394 0, /* todo_flags_start */
5395 TODO_dump_func /* todo_flags_finish */
5396 }
5397 };
5398
5399
5400 #include "gt-function.h"