(instantiate_virtual_regs_1...
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 88, 89, 91-96, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
35
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
40
41 #include "config.h"
42 #include <stdio.h>
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "insn-flags.h"
49 #include "expr.h"
50 #include "insn-codes.h"
51 #include "regs.h"
52 #include "hard-reg-set.h"
53 #include "insn-config.h"
54 #include "recog.h"
55 #include "output.h"
56 #include "basic-block.h"
57 #include "obstack.h"
58 #include "bytecode.h"
59 #include "bc-emit.h"
60
61 /* Some systems use __main in a way incompatible with its use in gcc, in these
62 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
63 give the same symbol without quotes for an alternative entry point. You
64 must define both, or neither. */
65 #ifndef NAME__MAIN
66 #define NAME__MAIN "__main"
67 #define SYMBOL__MAIN __main
68 #endif
69
70 /* Round a value to the lowest integer less than it that is a multiple of
71 the required alignment. Avoid using division in case the value is
72 negative. Assume the alignment is a power of two. */
73 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
74
75 /* Similar, but round to the next highest integer that meets the
76 alignment. */
77 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
78
79 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
80 during rtl generation. If they are different register numbers, this is
81 always true. It may also be true if
82 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
83 generation. See fix_lexical_addr for details. */
84
85 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
86 #define NEED_SEPARATE_AP
87 #endif
88
89 /* Number of bytes of args popped by function being compiled on its return.
90 Zero if no bytes are to be popped.
91 May affect compilation of return insn or of function epilogue. */
92
93 int current_function_pops_args;
94
95 /* Nonzero if function being compiled needs to be given an address
96 where the value should be stored. */
97
98 int current_function_returns_struct;
99
100 /* Nonzero if function being compiled needs to
101 return the address of where it has put a structure value. */
102
103 int current_function_returns_pcc_struct;
104
105 /* Nonzero if function being compiled needs to be passed a static chain. */
106
107 int current_function_needs_context;
108
109 /* Nonzero if function being compiled can call setjmp. */
110
111 int current_function_calls_setjmp;
112
113 /* Nonzero if function being compiled can call longjmp. */
114
115 int current_function_calls_longjmp;
116
117 /* Nonzero if function being compiled receives nonlocal gotos
118 from nested functions. */
119
120 int current_function_has_nonlocal_label;
121
122 /* Nonzero if function being compiled has nonlocal gotos to parent
123 function. */
124
125 int current_function_has_nonlocal_goto;
126
127 /* Nonzero if function being compiled contains nested functions. */
128
129 int current_function_contains_functions;
130
131 /* Nonzero if function being compiled can call alloca,
132 either as a subroutine or builtin. */
133
134 int current_function_calls_alloca;
135
136 /* Nonzero if the current function returns a pointer type */
137
138 int current_function_returns_pointer;
139
140 /* If some insns can be deferred to the delay slots of the epilogue, the
141 delay list for them is recorded here. */
142
143 rtx current_function_epilogue_delay_list;
144
145 /* If function's args have a fixed size, this is that size, in bytes.
146 Otherwise, it is -1.
147 May affect compilation of return insn or of function epilogue. */
148
149 int current_function_args_size;
150
151 /* # bytes the prologue should push and pretend that the caller pushed them.
152 The prologue must do this, but only if parms can be passed in registers. */
153
154 int current_function_pretend_args_size;
155
156 /* # of bytes of outgoing arguments. If ACCUMULATE_OUTGOING_ARGS is
157 defined, the needed space is pushed by the prologue. */
158
159 int current_function_outgoing_args_size;
160
161 /* This is the offset from the arg pointer to the place where the first
162 anonymous arg can be found, if there is one. */
163
164 rtx current_function_arg_offset_rtx;
165
166 /* Nonzero if current function uses varargs.h or equivalent.
167 Zero for functions that use stdarg.h. */
168
169 int current_function_varargs;
170
171 /* Nonzero if current function uses stdarg.h or equivalent.
172 Zero for functions that use varargs.h. */
173
174 int current_function_stdarg;
175
176 /* Quantities of various kinds of registers
177 used for the current function's args. */
178
179 CUMULATIVE_ARGS current_function_args_info;
180
181 /* Name of function now being compiled. */
182
183 char *current_function_name;
184
185 /* If non-zero, an RTL expression for that location at which the current
186 function returns its result. Always equal to
187 DECL_RTL (DECL_RESULT (current_function_decl)), but provided
188 independently of the tree structures. */
189
190 rtx current_function_return_rtx;
191
192 /* Nonzero if the current function uses the constant pool. */
193
194 int current_function_uses_const_pool;
195
196 /* Nonzero if the current function uses pic_offset_table_rtx. */
197 int current_function_uses_pic_offset_table;
198
199 /* The arg pointer hard register, or the pseudo into which it was copied. */
200 rtx current_function_internal_arg_pointer;
201
202 /* The FUNCTION_DECL for an inline function currently being expanded. */
203 tree inline_function_decl;
204
205 /* Number of function calls seen so far in current function. */
206
207 int function_call_count;
208
209 /* List (chain of TREE_LIST) of LABEL_DECLs for all nonlocal labels
210 (labels to which there can be nonlocal gotos from nested functions)
211 in this function. */
212
213 tree nonlocal_labels;
214
215 /* RTX for stack slot that holds the current handler for nonlocal gotos.
216 Zero when function does not have nonlocal labels. */
217
218 rtx nonlocal_goto_handler_slot;
219
220 /* RTX for stack slot that holds the stack pointer value to restore
221 for a nonlocal goto.
222 Zero when function does not have nonlocal labels. */
223
224 rtx nonlocal_goto_stack_level;
225
226 /* Label that will go on parm cleanup code, if any.
227 Jumping to this label runs cleanup code for parameters, if
228 such code must be run. Following this code is the logical return label. */
229
230 rtx cleanup_label;
231
232 /* Label that will go on function epilogue.
233 Jumping to this label serves as a "return" instruction
234 on machines which require execution of the epilogue on all returns. */
235
236 rtx return_label;
237
238 /* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs.
239 So we can mark them all live at the end of the function, if nonopt. */
240 rtx save_expr_regs;
241
242 /* List (chain of EXPR_LISTs) of all stack slots in this function.
243 Made for the sake of unshare_all_rtl. */
244 rtx stack_slot_list;
245
246 /* Chain of all RTL_EXPRs that have insns in them. */
247 tree rtl_expr_chain;
248
249 /* Label to jump back to for tail recursion, or 0 if we have
250 not yet needed one for this function. */
251 rtx tail_recursion_label;
252
253 /* Place after which to insert the tail_recursion_label if we need one. */
254 rtx tail_recursion_reentry;
255
256 /* Location at which to save the argument pointer if it will need to be
257 referenced. There are two cases where this is done: if nonlocal gotos
258 exist, or if vars stored at an offset from the argument pointer will be
259 needed by inner routines. */
260
261 rtx arg_pointer_save_area;
262
263 /* Offset to end of allocated area of stack frame.
264 If stack grows down, this is the address of the last stack slot allocated.
265 If stack grows up, this is the address for the next slot. */
266 HOST_WIDE_INT frame_offset;
267
268 /* List (chain of TREE_LISTs) of static chains for containing functions.
269 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
270 in an RTL_EXPR in the TREE_VALUE. */
271 static tree context_display;
272
273 /* List (chain of TREE_LISTs) of trampolines for nested functions.
274 The trampoline sets up the static chain and jumps to the function.
275 We supply the trampoline's address when the function's address is requested.
276
277 Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
278 in an RTL_EXPR in the TREE_VALUE. */
279 static tree trampoline_list;
280
281 /* Insn after which register parms and SAVE_EXPRs are born, if nonopt. */
282 static rtx parm_birth_insn;
283
284 #if 0
285 /* Nonzero if a stack slot has been generated whose address is not
286 actually valid. It means that the generated rtl must all be scanned
287 to detect and correct the invalid addresses where they occur. */
288 static int invalid_stack_slot;
289 #endif
290
291 /* Last insn of those whose job was to put parms into their nominal homes. */
292 static rtx last_parm_insn;
293
294 /* 1 + last pseudo register number used for loading a copy
295 of a parameter of this function. */
296 static int max_parm_reg;
297
298 /* Vector indexed by REGNO, containing location on stack in which
299 to put the parm which is nominally in pseudo register REGNO,
300 if we discover that that parm must go in the stack. */
301 static rtx *parm_reg_stack_loc;
302
303 /* Nonzero once virtual register instantiation has been done.
304 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
305 static int virtuals_instantiated;
306
307 /* These variables hold pointers to functions to
308 save and restore machine-specific data,
309 in push_function_context and pop_function_context. */
310 void (*save_machine_status) PROTO((struct function *));
311 void (*restore_machine_status) PROTO((struct function *));
312
313 /* Nonzero if we need to distinguish between the return value of this function
314 and the return value of a function called by this function. This helps
315 integrate.c */
316
317 extern int rtx_equal_function_value_matters;
318 extern tree sequence_rtl_expr;
319 \f
320 /* In order to evaluate some expressions, such as function calls returning
321 structures in memory, we need to temporarily allocate stack locations.
322 We record each allocated temporary in the following structure.
323
324 Associated with each temporary slot is a nesting level. When we pop up
325 one level, all temporaries associated with the previous level are freed.
326 Normally, all temporaries are freed after the execution of the statement
327 in which they were created. However, if we are inside a ({...}) grouping,
328 the result may be in a temporary and hence must be preserved. If the
329 result could be in a temporary, we preserve it if we can determine which
330 one it is in. If we cannot determine which temporary may contain the
331 result, all temporaries are preserved. A temporary is preserved by
332 pretending it was allocated at the previous nesting level.
333
334 Automatic variables are also assigned temporary slots, at the nesting
335 level where they are defined. They are marked a "kept" so that
336 free_temp_slots will not free them. */
337
338 struct temp_slot
339 {
340 /* Points to next temporary slot. */
341 struct temp_slot *next;
342 /* The rtx to used to reference the slot. */
343 rtx slot;
344 /* The rtx used to represent the address if not the address of the
345 slot above. May be an EXPR_LIST if multiple addresses exist. */
346 rtx address;
347 /* The size, in units, of the slot. */
348 int size;
349 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
350 tree rtl_expr;
351 /* Non-zero if this temporary is currently in use. */
352 char in_use;
353 /* Non-zero if this temporary has its address taken. */
354 char addr_taken;
355 /* Nesting level at which this slot is being used. */
356 int level;
357 /* Non-zero if this should survive a call to free_temp_slots. */
358 int keep;
359 /* The offset of the slot from the frame_pointer, including extra space
360 for alignment. This info is for combine_temp_slots. */
361 int base_offset;
362 /* The size of the slot, including extra space for alignment. This
363 info is for combine_temp_slots. */
364 int full_size;
365 };
366
367 /* List of all temporaries allocated, both available and in use. */
368
369 struct temp_slot *temp_slots;
370
371 /* Current nesting level for temporaries. */
372
373 int temp_slot_level;
374 \f
375 /* The FUNCTION_DECL node for the current function. */
376 static tree this_function_decl;
377
378 /* Callinfo pointer for the current function. */
379 static rtx this_function_callinfo;
380
381 /* The label in the bytecode file of this function's actual bytecode.
382 Not an rtx. */
383 static char *this_function_bytecode;
384
385 /* The call description vector for the current function. */
386 static rtx this_function_calldesc;
387
388 /* Size of the local variables allocated for the current function. */
389 int local_vars_size;
390
391 /* Current depth of the bytecode evaluation stack. */
392 int stack_depth;
393
394 /* Maximum depth of the evaluation stack in this function. */
395 int max_stack_depth;
396
397 /* Current depth in statement expressions. */
398 static int stmt_expr_depth;
399
400 /* This structure is used to record MEMs or pseudos used to replace VAR, any
401 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
402 maintain this list in case two operands of an insn were required to match;
403 in that case we must ensure we use the same replacement. */
404
405 struct fixup_replacement
406 {
407 rtx old;
408 rtx new;
409 struct fixup_replacement *next;
410 };
411
412 /* Forward declarations. */
413
414 static struct temp_slot *find_temp_slot_from_address PROTO((rtx));
415 static void put_reg_into_stack PROTO((struct function *, rtx, tree,
416 enum machine_mode, enum machine_mode,
417 int));
418 static void fixup_var_refs PROTO((rtx, enum machine_mode, int));
419 static struct fixup_replacement
420 *find_fixup_replacement PROTO((struct fixup_replacement **, rtx));
421 static void fixup_var_refs_insns PROTO((rtx, enum machine_mode, int,
422 rtx, int));
423 static void fixup_var_refs_1 PROTO((rtx, enum machine_mode, rtx *, rtx,
424 struct fixup_replacement **));
425 static rtx fixup_memory_subreg PROTO((rtx, rtx, int));
426 static rtx walk_fixup_memory_subreg PROTO((rtx, rtx, int));
427 static rtx fixup_stack_1 PROTO((rtx, rtx));
428 static void optimize_bit_field PROTO((rtx, rtx, rtx *));
429 static void instantiate_decls PROTO((tree, int));
430 static void instantiate_decls_1 PROTO((tree, int));
431 static void instantiate_decl PROTO((rtx, int, int));
432 static int instantiate_virtual_regs_1 PROTO((rtx *, rtx, int));
433 static void delete_handlers PROTO((void));
434 static void pad_to_arg_alignment PROTO((struct args_size *, int));
435 static void pad_below PROTO((struct args_size *, enum machine_mode,
436 tree));
437 static tree round_down PROTO((tree, int));
438 static rtx round_trampoline_addr PROTO((rtx));
439 static tree blocks_nreverse PROTO((tree));
440 static int all_blocks PROTO((tree, tree *));
441 static int *record_insns PROTO((rtx));
442 static int contains PROTO((rtx, int *));
443 \f
444 /* Pointer to chain of `struct function' for containing functions. */
445 struct function *outer_function_chain;
446
447 /* Given a function decl for a containing function,
448 return the `struct function' for it. */
449
450 struct function *
451 find_function_data (decl)
452 tree decl;
453 {
454 struct function *p;
455 for (p = outer_function_chain; p; p = p->next)
456 if (p->decl == decl)
457 return p;
458 abort ();
459 }
460
461 /* Save the current context for compilation of a nested function.
462 This is called from language-specific code.
463 The caller is responsible for saving any language-specific status,
464 since this function knows only about language-independent variables. */
465
466 void
467 push_function_context_to (context)
468 tree context;
469 {
470 struct function *p = (struct function *) xmalloc (sizeof (struct function));
471
472 p->next = outer_function_chain;
473 outer_function_chain = p;
474
475 p->name = current_function_name;
476 p->decl = current_function_decl;
477 p->pops_args = current_function_pops_args;
478 p->returns_struct = current_function_returns_struct;
479 p->returns_pcc_struct = current_function_returns_pcc_struct;
480 p->returns_pointer = current_function_returns_pointer;
481 p->needs_context = current_function_needs_context;
482 p->calls_setjmp = current_function_calls_setjmp;
483 p->calls_longjmp = current_function_calls_longjmp;
484 p->calls_alloca = current_function_calls_alloca;
485 p->has_nonlocal_label = current_function_has_nonlocal_label;
486 p->has_nonlocal_goto = current_function_has_nonlocal_goto;
487 p->contains_functions = current_function_contains_functions;
488 p->args_size = current_function_args_size;
489 p->pretend_args_size = current_function_pretend_args_size;
490 p->arg_offset_rtx = current_function_arg_offset_rtx;
491 p->varargs = current_function_varargs;
492 p->stdarg = current_function_stdarg;
493 p->uses_const_pool = current_function_uses_const_pool;
494 p->uses_pic_offset_table = current_function_uses_pic_offset_table;
495 p->internal_arg_pointer = current_function_internal_arg_pointer;
496 p->max_parm_reg = max_parm_reg;
497 p->parm_reg_stack_loc = parm_reg_stack_loc;
498 p->outgoing_args_size = current_function_outgoing_args_size;
499 p->return_rtx = current_function_return_rtx;
500 p->nonlocal_goto_handler_slot = nonlocal_goto_handler_slot;
501 p->nonlocal_goto_stack_level = nonlocal_goto_stack_level;
502 p->nonlocal_labels = nonlocal_labels;
503 p->cleanup_label = cleanup_label;
504 p->return_label = return_label;
505 p->save_expr_regs = save_expr_regs;
506 p->stack_slot_list = stack_slot_list;
507 p->parm_birth_insn = parm_birth_insn;
508 p->frame_offset = frame_offset;
509 p->tail_recursion_label = tail_recursion_label;
510 p->tail_recursion_reentry = tail_recursion_reentry;
511 p->arg_pointer_save_area = arg_pointer_save_area;
512 p->rtl_expr_chain = rtl_expr_chain;
513 p->last_parm_insn = last_parm_insn;
514 p->context_display = context_display;
515 p->trampoline_list = trampoline_list;
516 p->function_call_count = function_call_count;
517 p->temp_slots = temp_slots;
518 p->temp_slot_level = temp_slot_level;
519 p->fixup_var_refs_queue = 0;
520 p->epilogue_delay_list = current_function_epilogue_delay_list;
521 p->args_info = current_function_args_info;
522
523 save_tree_status (p, context);
524 save_storage_status (p);
525 save_emit_status (p);
526 init_emit ();
527 save_expr_status (p);
528 save_stmt_status (p);
529 save_varasm_status (p);
530
531 if (save_machine_status)
532 (*save_machine_status) (p);
533 }
534
535 void
536 push_function_context ()
537 {
538 push_function_context_to (current_function_decl);
539 }
540
541 /* Restore the last saved context, at the end of a nested function.
542 This function is called from language-specific code. */
543
544 void
545 pop_function_context_from (context)
546 tree context;
547 {
548 struct function *p = outer_function_chain;
549
550 outer_function_chain = p->next;
551
552 current_function_contains_functions
553 = p->contains_functions || p->inline_obstacks
554 || context == current_function_decl;
555 current_function_name = p->name;
556 current_function_decl = p->decl;
557 current_function_pops_args = p->pops_args;
558 current_function_returns_struct = p->returns_struct;
559 current_function_returns_pcc_struct = p->returns_pcc_struct;
560 current_function_returns_pointer = p->returns_pointer;
561 current_function_needs_context = p->needs_context;
562 current_function_calls_setjmp = p->calls_setjmp;
563 current_function_calls_longjmp = p->calls_longjmp;
564 current_function_calls_alloca = p->calls_alloca;
565 current_function_has_nonlocal_label = p->has_nonlocal_label;
566 current_function_has_nonlocal_goto = p->has_nonlocal_goto;
567 current_function_args_size = p->args_size;
568 current_function_pretend_args_size = p->pretend_args_size;
569 current_function_arg_offset_rtx = p->arg_offset_rtx;
570 current_function_varargs = p->varargs;
571 current_function_stdarg = p->stdarg;
572 current_function_uses_const_pool = p->uses_const_pool;
573 current_function_uses_pic_offset_table = p->uses_pic_offset_table;
574 current_function_internal_arg_pointer = p->internal_arg_pointer;
575 max_parm_reg = p->max_parm_reg;
576 parm_reg_stack_loc = p->parm_reg_stack_loc;
577 current_function_outgoing_args_size = p->outgoing_args_size;
578 current_function_return_rtx = p->return_rtx;
579 nonlocal_goto_handler_slot = p->nonlocal_goto_handler_slot;
580 nonlocal_goto_stack_level = p->nonlocal_goto_stack_level;
581 nonlocal_labels = p->nonlocal_labels;
582 cleanup_label = p->cleanup_label;
583 return_label = p->return_label;
584 save_expr_regs = p->save_expr_regs;
585 stack_slot_list = p->stack_slot_list;
586 parm_birth_insn = p->parm_birth_insn;
587 frame_offset = p->frame_offset;
588 tail_recursion_label = p->tail_recursion_label;
589 tail_recursion_reentry = p->tail_recursion_reentry;
590 arg_pointer_save_area = p->arg_pointer_save_area;
591 rtl_expr_chain = p->rtl_expr_chain;
592 last_parm_insn = p->last_parm_insn;
593 context_display = p->context_display;
594 trampoline_list = p->trampoline_list;
595 function_call_count = p->function_call_count;
596 temp_slots = p->temp_slots;
597 temp_slot_level = p->temp_slot_level;
598 current_function_epilogue_delay_list = p->epilogue_delay_list;
599 reg_renumber = 0;
600 current_function_args_info = p->args_info;
601
602 restore_tree_status (p);
603 restore_storage_status (p);
604 restore_expr_status (p);
605 restore_emit_status (p);
606 restore_stmt_status (p);
607 restore_varasm_status (p);
608
609 if (restore_machine_status)
610 (*restore_machine_status) (p);
611
612 /* Finish doing put_var_into_stack for any of our variables
613 which became addressable during the nested function. */
614 {
615 struct var_refs_queue *queue = p->fixup_var_refs_queue;
616 for (; queue; queue = queue->next)
617 fixup_var_refs (queue->modified, queue->promoted_mode, queue->unsignedp);
618 }
619
620 free (p);
621
622 /* Reset variables that have known state during rtx generation. */
623 rtx_equal_function_value_matters = 1;
624 virtuals_instantiated = 0;
625 }
626
627 void pop_function_context ()
628 {
629 pop_function_context_from (current_function_decl);
630 }
631 \f
632 /* Allocate fixed slots in the stack frame of the current function. */
633
634 /* Return size needed for stack frame based on slots so far allocated.
635 This size counts from zero. It is not rounded to STACK_BOUNDARY;
636 the caller may have to do that. */
637
638 HOST_WIDE_INT
639 get_frame_size ()
640 {
641 #ifdef FRAME_GROWS_DOWNWARD
642 return -frame_offset;
643 #else
644 return frame_offset;
645 #endif
646 }
647
648 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
649 with machine mode MODE.
650
651 ALIGN controls the amount of alignment for the address of the slot:
652 0 means according to MODE,
653 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
654 positive specifies alignment boundary in bits.
655
656 We do not round to stack_boundary here. */
657
658 rtx
659 assign_stack_local (mode, size, align)
660 enum machine_mode mode;
661 int size;
662 int align;
663 {
664 register rtx x, addr;
665 int bigend_correction = 0;
666 int alignment;
667
668 if (align == 0)
669 {
670 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
671 if (mode == BLKmode)
672 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
673 }
674 else if (align == -1)
675 {
676 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
677 size = CEIL_ROUND (size, alignment);
678 }
679 else
680 alignment = align / BITS_PER_UNIT;
681
682 /* Round frame offset to that alignment.
683 We must be careful here, since FRAME_OFFSET might be negative and
684 division with a negative dividend isn't as well defined as we might
685 like. So we instead assume that ALIGNMENT is a power of two and
686 use logical operations which are unambiguous. */
687 #ifdef FRAME_GROWS_DOWNWARD
688 frame_offset = FLOOR_ROUND (frame_offset, alignment);
689 #else
690 frame_offset = CEIL_ROUND (frame_offset, alignment);
691 #endif
692
693 /* On a big-endian machine, if we are allocating more space than we will use,
694 use the least significant bytes of those that are allocated. */
695 if (BYTES_BIG_ENDIAN && mode != BLKmode)
696 bigend_correction = size - GET_MODE_SIZE (mode);
697
698 #ifdef FRAME_GROWS_DOWNWARD
699 frame_offset -= size;
700 #endif
701
702 /* If we have already instantiated virtual registers, return the actual
703 address relative to the frame pointer. */
704 if (virtuals_instantiated)
705 addr = plus_constant (frame_pointer_rtx,
706 (frame_offset + bigend_correction
707 + STARTING_FRAME_OFFSET));
708 else
709 addr = plus_constant (virtual_stack_vars_rtx,
710 frame_offset + bigend_correction);
711
712 #ifndef FRAME_GROWS_DOWNWARD
713 frame_offset += size;
714 #endif
715
716 x = gen_rtx (MEM, mode, addr);
717
718 stack_slot_list = gen_rtx (EXPR_LIST, VOIDmode, x, stack_slot_list);
719
720 return x;
721 }
722
723 /* Assign a stack slot in a containing function.
724 First three arguments are same as in preceding function.
725 The last argument specifies the function to allocate in. */
726
727 rtx
728 assign_outer_stack_local (mode, size, align, function)
729 enum machine_mode mode;
730 int size;
731 int align;
732 struct function *function;
733 {
734 register rtx x, addr;
735 int bigend_correction = 0;
736 int alignment;
737
738 /* Allocate in the memory associated with the function in whose frame
739 we are assigning. */
740 push_obstacks (function->function_obstack,
741 function->function_maybepermanent_obstack);
742
743 if (align == 0)
744 {
745 alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
746 if (mode == BLKmode)
747 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
748 }
749 else if (align == -1)
750 {
751 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
752 size = CEIL_ROUND (size, alignment);
753 }
754 else
755 alignment = align / BITS_PER_UNIT;
756
757 /* Round frame offset to that alignment. */
758 #ifdef FRAME_GROWS_DOWNWARD
759 function->frame_offset = FLOOR_ROUND (function->frame_offset, alignment);
760 #else
761 function->frame_offset = CEIL_ROUND (function->frame_offset, alignment);
762 #endif
763
764 /* On a big-endian machine, if we are allocating more space than we will use,
765 use the least significant bytes of those that are allocated. */
766 if (BYTES_BIG_ENDIAN && mode != BLKmode)
767 bigend_correction = size - GET_MODE_SIZE (mode);
768
769 #ifdef FRAME_GROWS_DOWNWARD
770 function->frame_offset -= size;
771 #endif
772 addr = plus_constant (virtual_stack_vars_rtx,
773 function->frame_offset + bigend_correction);
774 #ifndef FRAME_GROWS_DOWNWARD
775 function->frame_offset += size;
776 #endif
777
778 x = gen_rtx (MEM, mode, addr);
779
780 function->stack_slot_list
781 = gen_rtx (EXPR_LIST, VOIDmode, x, function->stack_slot_list);
782
783 pop_obstacks ();
784
785 return x;
786 }
787 \f
788 /* Allocate a temporary stack slot and record it for possible later
789 reuse.
790
791 MODE is the machine mode to be given to the returned rtx.
792
793 SIZE is the size in units of the space required. We do no rounding here
794 since assign_stack_local will do any required rounding.
795
796 KEEP is 1 if this slot is to be retained after a call to
797 free_temp_slots. Automatic variables for a block are allocated
798 with this flag. KEEP is 2, if we allocate a longer term temporary,
799 whose lifetime is controlled by CLEANUP_POINT_EXPRs. */
800
801 rtx
802 assign_stack_temp (mode, size, keep)
803 enum machine_mode mode;
804 int size;
805 int keep;
806 {
807 struct temp_slot *p, *best_p = 0;
808
809 /* If SIZE is -1 it means that somebody tried to allocate a temporary
810 of a variable size. */
811 if (size == -1)
812 abort ();
813
814 /* First try to find an available, already-allocated temporary that is the
815 exact size we require. */
816 for (p = temp_slots; p; p = p->next)
817 if (p->size == size && GET_MODE (p->slot) == mode && ! p->in_use)
818 break;
819
820 /* If we didn't find, one, try one that is larger than what we want. We
821 find the smallest such. */
822 if (p == 0)
823 for (p = temp_slots; p; p = p->next)
824 if (p->size > size && GET_MODE (p->slot) == mode && ! p->in_use
825 && (best_p == 0 || best_p->size > p->size))
826 best_p = p;
827
828 /* Make our best, if any, the one to use. */
829 if (best_p)
830 {
831 /* If there are enough aligned bytes left over, make them into a new
832 temp_slot so that the extra bytes don't get wasted. Do this only
833 for BLKmode slots, so that we can be sure of the alignment. */
834 if (GET_MODE (best_p->slot) == BLKmode)
835 {
836 int alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
837 int rounded_size = CEIL_ROUND (size, alignment);
838
839 if (best_p->size - rounded_size >= alignment)
840 {
841 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
842 p->in_use = p->addr_taken = 0;
843 p->size = best_p->size - rounded_size;
844 p->base_offset = best_p->base_offset + rounded_size;
845 p->full_size = best_p->full_size - rounded_size;
846 p->slot = gen_rtx (MEM, BLKmode,
847 plus_constant (XEXP (best_p->slot, 0),
848 rounded_size));
849 p->address = 0;
850 p->rtl_expr = 0;
851 p->next = temp_slots;
852 temp_slots = p;
853
854 stack_slot_list = gen_rtx (EXPR_LIST, VOIDmode, p->slot,
855 stack_slot_list);
856
857 best_p->size = rounded_size;
858 best_p->full_size = rounded_size;
859 }
860 }
861
862 p = best_p;
863 }
864
865 /* If we still didn't find one, make a new temporary. */
866 if (p == 0)
867 {
868 int frame_offset_old = frame_offset;
869 p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
870 /* If the temp slot mode doesn't indicate the alignment,
871 use the largest possible, so no one will be disappointed. */
872 p->slot = assign_stack_local (mode, size, mode == BLKmode ? -1 : 0);
873 /* The following slot size computation is necessary because we don't
874 know the actual size of the temporary slot until assign_stack_local
875 has performed all the frame alignment and size rounding for the
876 requested temporary. Note that extra space added for alignment
877 can be either above or below this stack slot depending on which
878 way the frame grows. We include the extra space if and only if it
879 is above this slot. */
880 #ifdef FRAME_GROWS_DOWNWARD
881 p->size = frame_offset_old - frame_offset;
882 #else
883 p->size = size;
884 #endif
885 /* Now define the fields used by combine_temp_slots. */
886 #ifdef FRAME_GROWS_DOWNWARD
887 p->base_offset = frame_offset;
888 p->full_size = frame_offset_old - frame_offset;
889 #else
890 p->base_offset = frame_offset_old;
891 p->full_size = frame_offset - frame_offset_old;
892 #endif
893 p->address = 0;
894 p->next = temp_slots;
895 temp_slots = p;
896 }
897
898 p->in_use = 1;
899 p->addr_taken = 0;
900 p->rtl_expr = sequence_rtl_expr;
901
902 if (keep == 2)
903 {
904 p->level = target_temp_slot_level;
905 p->keep = 0;
906 }
907 else
908 {
909 p->level = temp_slot_level;
910 p->keep = keep;
911 }
912 return p->slot;
913 }
914 \f
915 /* Assign a temporary of given TYPE.
916 KEEP is as for assign_stack_temp.
917 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
918 it is 0 if a register is OK.
919 DONT_PROMOTE is 1 if we should not promote values in register
920 to wider modes. */
921
922 rtx
923 assign_temp (type, keep, memory_required, dont_promote)
924 tree type;
925 int keep;
926 int memory_required;
927 int dont_promote;
928 {
929 enum machine_mode mode = TYPE_MODE (type);
930 int unsignedp = TREE_UNSIGNED (type);
931
932 if (mode == BLKmode || memory_required)
933 {
934 int size = int_size_in_bytes (type);
935 rtx tmp;
936
937 /* Unfortunately, we don't yet know how to allocate variable-sized
938 temporaries. However, sometimes we have a fixed upper limit on
939 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
940 instead. This is the case for Chill variable-sized strings. */
941 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
942 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
943 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
944 size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));
945
946 tmp = assign_stack_temp (mode, size, keep);
947 MEM_IN_STRUCT_P (tmp) = AGGREGATE_TYPE_P (type);
948 return tmp;
949 }
950
951 #ifndef PROMOTE_FOR_CALL_ONLY
952 if (! dont_promote)
953 mode = promote_mode (type, mode, &unsignedp, 0);
954 #endif
955
956 return gen_reg_rtx (mode);
957 }
958 \f
959 /* Combine temporary stack slots which are adjacent on the stack.
960
961 This allows for better use of already allocated stack space. This is only
962 done for BLKmode slots because we can be sure that we won't have alignment
963 problems in this case. */
964
965 void
966 combine_temp_slots ()
967 {
968 struct temp_slot *p, *q;
969 struct temp_slot *prev_p, *prev_q;
970 /* Determine where to free back to after this function. */
971 rtx free_pointer = rtx_alloc (CONST_INT);
972
973 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
974 {
975 int delete_p = 0;
976 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
977 for (q = p->next, prev_q = p; q; q = prev_q->next)
978 {
979 int delete_q = 0;
980 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
981 {
982 if (p->base_offset + p->full_size == q->base_offset)
983 {
984 /* Q comes after P; combine Q into P. */
985 p->size += q->size;
986 p->full_size += q->full_size;
987 delete_q = 1;
988 }
989 else if (q->base_offset + q->full_size == p->base_offset)
990 {
991 /* P comes after Q; combine P into Q. */
992 q->size += p->size;
993 q->full_size += p->full_size;
994 delete_p = 1;
995 break;
996 }
997 }
998 /* Either delete Q or advance past it. */
999 if (delete_q)
1000 prev_q->next = q->next;
1001 else
1002 prev_q = q;
1003 }
1004 /* Either delete P or advance past it. */
1005 if (delete_p)
1006 {
1007 if (prev_p)
1008 prev_p->next = p->next;
1009 else
1010 temp_slots = p->next;
1011 }
1012 else
1013 prev_p = p;
1014 }
1015
1016 /* Free all the RTL made by plus_constant. */
1017 rtx_free (free_pointer);
1018 }
1019 \f
1020 /* Find the temp slot corresponding to the object at address X. */
1021
1022 static struct temp_slot *
1023 find_temp_slot_from_address (x)
1024 rtx x;
1025 {
1026 struct temp_slot *p;
1027 rtx next;
1028
1029 for (p = temp_slots; p; p = p->next)
1030 {
1031 if (! p->in_use)
1032 continue;
1033 else if (XEXP (p->slot, 0) == x
1034 || p->address == x
1035 || (GET_CODE (x) == PLUS
1036 && XEXP (x, 0) == virtual_stack_vars_rtx
1037 && GET_CODE (XEXP (x, 1)) == CONST_INT
1038 && INTVAL (XEXP (x, 1)) >= p->base_offset
1039 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
1040 return p;
1041
1042 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
1043 for (next = p->address; next; next = XEXP (next, 1))
1044 if (XEXP (next, 0) == x)
1045 return p;
1046 }
1047
1048 return 0;
1049 }
1050
1051 /* Indicate that NEW is an alternate way of referring to the temp slot
1052 that previous was known by OLD. */
1053
1054 void
1055 update_temp_slot_address (old, new)
1056 rtx old, new;
1057 {
1058 struct temp_slot *p = find_temp_slot_from_address (old);
1059
1060 /* If none, return. Else add NEW as an alias. */
1061 if (p == 0)
1062 return;
1063 else if (p->address == 0)
1064 p->address = new;
1065 else
1066 {
1067 if (GET_CODE (p->address) != EXPR_LIST)
1068 p->address = gen_rtx (EXPR_LIST, VOIDmode, p->address, NULL_RTX);
1069
1070 p->address = gen_rtx (EXPR_LIST, VOIDmode, new, p->address);
1071 }
1072 }
1073
1074 /* If X could be a reference to a temporary slot, mark the fact that its
1075 address was taken. */
1076
1077 void
1078 mark_temp_addr_taken (x)
1079 rtx x;
1080 {
1081 struct temp_slot *p;
1082
1083 if (x == 0)
1084 return;
1085
1086 /* If X is not in memory or is at a constant address, it cannot be in
1087 a temporary slot. */
1088 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1089 return;
1090
1091 p = find_temp_slot_from_address (XEXP (x, 0));
1092 if (p != 0)
1093 p->addr_taken = 1;
1094 }
1095
1096 /* If X could be a reference to a temporary slot, mark that slot as
1097 belonging to the to one level higher than the current level. If X
1098 matched one of our slots, just mark that one. Otherwise, we can't
1099 easily predict which it is, so upgrade all of them. Kept slots
1100 need not be touched.
1101
1102 This is called when an ({...}) construct occurs and a statement
1103 returns a value in memory. */
1104
1105 void
1106 preserve_temp_slots (x)
1107 rtx x;
1108 {
1109 struct temp_slot *p = 0;
1110
1111 /* If there is no result, we still might have some objects whose address
1112 were taken, so we need to make sure they stay around. */
1113 if (x == 0)
1114 {
1115 for (p = temp_slots; p; p = p->next)
1116 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1117 p->level--;
1118
1119 return;
1120 }
1121
1122 /* If X is a register that is being used as a pointer, see if we have
1123 a temporary slot we know it points to. To be consistent with
1124 the code below, we really should preserve all non-kept slots
1125 if we can't find a match, but that seems to be much too costly. */
1126 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1127 p = find_temp_slot_from_address (x);
1128
1129 /* If X is not in memory or is at a constant address, it cannot be in
1130 a temporary slot, but it can contain something whose address was
1131 taken. */
1132 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1133 {
1134 for (p = temp_slots; p; p = p->next)
1135 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1136 p->level--;
1137
1138 return;
1139 }
1140
1141 /* First see if we can find a match. */
1142 if (p == 0)
1143 p = find_temp_slot_from_address (XEXP (x, 0));
1144
1145 if (p != 0)
1146 {
1147 /* Move everything at our level whose address was taken to our new
1148 level in case we used its address. */
1149 struct temp_slot *q;
1150
1151 if (p->level == temp_slot_level)
1152 {
1153 for (q = temp_slots; q; q = q->next)
1154 if (q != p && q->addr_taken && q->level == p->level)
1155 q->level--;
1156
1157 p->level--;
1158 p->addr_taken = 0;
1159 }
1160 return;
1161 }
1162
1163 /* Otherwise, preserve all non-kept slots at this level. */
1164 for (p = temp_slots; p; p = p->next)
1165 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1166 p->level--;
1167 }
1168
1169 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1170 with that RTL_EXPR, promote it into a temporary slot at the present
1171 level so it will not be freed when we free slots made in the
1172 RTL_EXPR. */
1173
1174 void
1175 preserve_rtl_expr_result (x)
1176 rtx x;
1177 {
1178 struct temp_slot *p;
1179
1180 /* If X is not in memory or is at a constant address, it cannot be in
1181 a temporary slot. */
1182 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1183 return;
1184
1185 /* If we can find a match, move it to our level unless it is already at
1186 an upper level. */
1187 p = find_temp_slot_from_address (XEXP (x, 0));
1188 if (p != 0)
1189 {
1190 p->level = MIN (p->level, temp_slot_level);
1191 p->rtl_expr = 0;
1192 }
1193
1194 return;
1195 }
1196
1197 /* Free all temporaries used so far. This is normally called at the end
1198 of generating code for a statement. Don't free any temporaries
1199 currently in use for an RTL_EXPR that hasn't yet been emitted.
1200 We could eventually do better than this since it can be reused while
1201 generating the same RTL_EXPR, but this is complex and probably not
1202 worthwhile. */
1203
1204 void
1205 free_temp_slots ()
1206 {
1207 struct temp_slot *p;
1208
1209 for (p = temp_slots; p; p = p->next)
1210 if (p->in_use && p->level == temp_slot_level && ! p->keep
1211 && p->rtl_expr == 0)
1212 p->in_use = 0;
1213
1214 combine_temp_slots ();
1215 }
1216
1217 /* Free all temporary slots used in T, an RTL_EXPR node. */
1218
1219 void
1220 free_temps_for_rtl_expr (t)
1221 tree t;
1222 {
1223 struct temp_slot *p;
1224
1225 for (p = temp_slots; p; p = p->next)
1226 if (p->rtl_expr == t)
1227 p->in_use = 0;
1228
1229 combine_temp_slots ();
1230 }
1231
1232 /* Mark all temporaries ever allocated in this functon as not suitable
1233 for reuse until the current level is exited. */
1234
1235 void
1236 mark_all_temps_used ()
1237 {
1238 struct temp_slot *p;
1239
1240 for (p = temp_slots; p; p = p->next)
1241 {
1242 p->in_use = 1;
1243 p->level = MIN (p->level, temp_slot_level);
1244 }
1245 }
1246
1247 /* Push deeper into the nesting level for stack temporaries. */
1248
1249 void
1250 push_temp_slots ()
1251 {
1252 temp_slot_level++;
1253 }
1254
1255 /* Pop a temporary nesting level. All slots in use in the current level
1256 are freed. */
1257
1258 void
1259 pop_temp_slots ()
1260 {
1261 struct temp_slot *p;
1262
1263 for (p = temp_slots; p; p = p->next)
1264 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1265 p->in_use = 0;
1266
1267 combine_temp_slots ();
1268
1269 temp_slot_level--;
1270 }
1271
1272 /* Initialize temporary slots. */
1273
1274 void
1275 init_temp_slots ()
1276 {
1277 /* We have not allocated any temporaries yet. */
1278 temp_slots = 0;
1279 temp_slot_level = 0;
1280 target_temp_slot_level = 0;
1281 }
1282 \f
1283 /* Retroactively move an auto variable from a register to a stack slot.
1284 This is done when an address-reference to the variable is seen. */
1285
1286 void
1287 put_var_into_stack (decl)
1288 tree decl;
1289 {
1290 register rtx reg;
1291 enum machine_mode promoted_mode, decl_mode;
1292 struct function *function = 0;
1293 tree context;
1294
1295 if (output_bytecode)
1296 return;
1297
1298 context = decl_function_context (decl);
1299
1300 /* Get the current rtl used for this object and it's original mode. */
1301 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1302
1303 /* No need to do anything if decl has no rtx yet
1304 since in that case caller is setting TREE_ADDRESSABLE
1305 and a stack slot will be assigned when the rtl is made. */
1306 if (reg == 0)
1307 return;
1308
1309 /* Get the declared mode for this object. */
1310 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1311 : DECL_MODE (decl));
1312 /* Get the mode it's actually stored in. */
1313 promoted_mode = GET_MODE (reg);
1314
1315 /* If this variable comes from an outer function,
1316 find that function's saved context. */
1317 if (context != current_function_decl)
1318 for (function = outer_function_chain; function; function = function->next)
1319 if (function->decl == context)
1320 break;
1321
1322 /* If this is a variable-size object with a pseudo to address it,
1323 put that pseudo into the stack, if the var is nonlocal. */
1324 if (DECL_NONLOCAL (decl)
1325 && GET_CODE (reg) == MEM
1326 && GET_CODE (XEXP (reg, 0)) == REG
1327 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1328 {
1329 reg = XEXP (reg, 0);
1330 decl_mode = promoted_mode = GET_MODE (reg);
1331 }
1332
1333 /* Now we should have a value that resides in one or more pseudo regs. */
1334
1335 if (GET_CODE (reg) == REG)
1336 put_reg_into_stack (function, reg, TREE_TYPE (decl),
1337 promoted_mode, decl_mode, TREE_SIDE_EFFECTS (decl));
1338 else if (GET_CODE (reg) == CONCAT)
1339 {
1340 /* A CONCAT contains two pseudos; put them both in the stack.
1341 We do it so they end up consecutive. */
1342 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1343 tree part_type = TREE_TYPE (TREE_TYPE (decl));
1344 #ifdef FRAME_GROWS_DOWNWARD
1345 /* Since part 0 should have a lower address, do it second. */
1346 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1347 part_mode, TREE_SIDE_EFFECTS (decl));
1348 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1349 part_mode, TREE_SIDE_EFFECTS (decl));
1350 #else
1351 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1352 part_mode, TREE_SIDE_EFFECTS (decl));
1353 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1354 part_mode, TREE_SIDE_EFFECTS (decl));
1355 #endif
1356
1357 /* Change the CONCAT into a combined MEM for both parts. */
1358 PUT_CODE (reg, MEM);
1359 MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
1360
1361 /* The two parts are in memory order already.
1362 Use the lower parts address as ours. */
1363 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1364 /* Prevent sharing of rtl that might lose. */
1365 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1366 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1367 }
1368 }
1369
1370 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1371 into the stack frame of FUNCTION (0 means the current function).
1372 DECL_MODE is the machine mode of the user-level data type.
1373 PROMOTED_MODE is the machine mode of the register.
1374 VOLATILE_P is nonzero if this is for a "volatile" decl. */
1375
1376 static void
1377 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p)
1378 struct function *function;
1379 rtx reg;
1380 tree type;
1381 enum machine_mode promoted_mode, decl_mode;
1382 int volatile_p;
1383 {
1384 rtx new = 0;
1385
1386 if (function)
1387 {
1388 if (REGNO (reg) < function->max_parm_reg)
1389 new = function->parm_reg_stack_loc[REGNO (reg)];
1390 if (new == 0)
1391 new = assign_outer_stack_local (decl_mode, GET_MODE_SIZE (decl_mode),
1392 0, function);
1393 }
1394 else
1395 {
1396 if (REGNO (reg) < max_parm_reg)
1397 new = parm_reg_stack_loc[REGNO (reg)];
1398 if (new == 0)
1399 new = assign_stack_local (decl_mode, GET_MODE_SIZE (decl_mode), 0);
1400 }
1401
1402 PUT_MODE (reg, decl_mode);
1403 XEXP (reg, 0) = XEXP (new, 0);
1404 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1405 MEM_VOLATILE_P (reg) = volatile_p;
1406 PUT_CODE (reg, MEM);
1407
1408 /* If this is a memory ref that contains aggregate components,
1409 mark it as such for cse and loop optimize. */
1410 MEM_IN_STRUCT_P (reg) = AGGREGATE_TYPE_P (type);
1411
1412 /* Now make sure that all refs to the variable, previously made
1413 when it was a register, are fixed up to be valid again. */
1414 if (function)
1415 {
1416 struct var_refs_queue *temp;
1417
1418 /* Variable is inherited; fix it up when we get back to its function. */
1419 push_obstacks (function->function_obstack,
1420 function->function_maybepermanent_obstack);
1421
1422 /* See comment in restore_tree_status in tree.c for why this needs to be
1423 on saveable obstack. */
1424 temp
1425 = (struct var_refs_queue *) savealloc (sizeof (struct var_refs_queue));
1426 temp->modified = reg;
1427 temp->promoted_mode = promoted_mode;
1428 temp->unsignedp = TREE_UNSIGNED (type);
1429 temp->next = function->fixup_var_refs_queue;
1430 function->fixup_var_refs_queue = temp;
1431 pop_obstacks ();
1432 }
1433 else
1434 /* Variable is local; fix it up now. */
1435 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type));
1436 }
1437 \f
1438 static void
1439 fixup_var_refs (var, promoted_mode, unsignedp)
1440 rtx var;
1441 enum machine_mode promoted_mode;
1442 int unsignedp;
1443 {
1444 tree pending;
1445 rtx first_insn = get_insns ();
1446 struct sequence_stack *stack = sequence_stack;
1447 tree rtl_exps = rtl_expr_chain;
1448
1449 /* Must scan all insns for stack-refs that exceed the limit. */
1450 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn, stack == 0);
1451
1452 /* Scan all pending sequences too. */
1453 for (; stack; stack = stack->next)
1454 {
1455 push_to_sequence (stack->first);
1456 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1457 stack->first, stack->next != 0);
1458 /* Update remembered end of sequence
1459 in case we added an insn at the end. */
1460 stack->last = get_last_insn ();
1461 end_sequence ();
1462 }
1463
1464 /* Scan all waiting RTL_EXPRs too. */
1465 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1466 {
1467 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1468 if (seq != const0_rtx && seq != 0)
1469 {
1470 push_to_sequence (seq);
1471 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0);
1472 end_sequence ();
1473 }
1474 }
1475 }
1476 \f
1477 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1478 some part of an insn. Return a struct fixup_replacement whose OLD
1479 value is equal to X. Allocate a new structure if no such entry exists. */
1480
1481 static struct fixup_replacement *
1482 find_fixup_replacement (replacements, x)
1483 struct fixup_replacement **replacements;
1484 rtx x;
1485 {
1486 struct fixup_replacement *p;
1487
1488 /* See if we have already replaced this. */
1489 for (p = *replacements; p && p->old != x; p = p->next)
1490 ;
1491
1492 if (p == 0)
1493 {
1494 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1495 p->old = x;
1496 p->new = 0;
1497 p->next = *replacements;
1498 *replacements = p;
1499 }
1500
1501 return p;
1502 }
1503
1504 /* Scan the insn-chain starting with INSN for refs to VAR
1505 and fix them up. TOPLEVEL is nonzero if this chain is the
1506 main chain of insns for the current function. */
1507
1508 static void
1509 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel)
1510 rtx var;
1511 enum machine_mode promoted_mode;
1512 int unsignedp;
1513 rtx insn;
1514 int toplevel;
1515 {
1516 rtx call_dest = 0;
1517
1518 while (insn)
1519 {
1520 rtx next = NEXT_INSN (insn);
1521 rtx note;
1522 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1523 {
1524 /* If this is a CLOBBER of VAR, delete it.
1525
1526 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1527 and REG_RETVAL notes too. */
1528 if (GET_CODE (PATTERN (insn)) == CLOBBER
1529 && XEXP (PATTERN (insn), 0) == var)
1530 {
1531 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1532 /* The REG_LIBCALL note will go away since we are going to
1533 turn INSN into a NOTE, so just delete the
1534 corresponding REG_RETVAL note. */
1535 remove_note (XEXP (note, 0),
1536 find_reg_note (XEXP (note, 0), REG_RETVAL,
1537 NULL_RTX));
1538
1539 /* In unoptimized compilation, we shouldn't call delete_insn
1540 except in jump.c doing warnings. */
1541 PUT_CODE (insn, NOTE);
1542 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1543 NOTE_SOURCE_FILE (insn) = 0;
1544 }
1545
1546 /* The insn to load VAR from a home in the arglist
1547 is now a no-op. When we see it, just delete it. */
1548 else if (toplevel
1549 && GET_CODE (PATTERN (insn)) == SET
1550 && SET_DEST (PATTERN (insn)) == var
1551 /* If this represents the result of an insn group,
1552 don't delete the insn. */
1553 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1554 && rtx_equal_p (SET_SRC (PATTERN (insn)), var))
1555 {
1556 /* In unoptimized compilation, we shouldn't call delete_insn
1557 except in jump.c doing warnings. */
1558 PUT_CODE (insn, NOTE);
1559 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1560 NOTE_SOURCE_FILE (insn) = 0;
1561 if (insn == last_parm_insn)
1562 last_parm_insn = PREV_INSN (next);
1563 }
1564 else
1565 {
1566 struct fixup_replacement *replacements = 0;
1567 rtx next_insn = NEXT_INSN (insn);
1568
1569 #ifdef SMALL_REGISTER_CLASSES
1570 /* If the insn that copies the results of a CALL_INSN
1571 into a pseudo now references VAR, we have to use an
1572 intermediate pseudo since we want the life of the
1573 return value register to be only a single insn.
1574
1575 If we don't use an intermediate pseudo, such things as
1576 address computations to make the address of VAR valid
1577 if it is not can be placed between the CALL_INSN and INSN.
1578
1579 To make sure this doesn't happen, we record the destination
1580 of the CALL_INSN and see if the next insn uses both that
1581 and VAR. */
1582
1583 if (SMALL_REGISTER_CLASSES)
1584 {
1585 if (call_dest != 0 && GET_CODE (insn) == INSN
1586 && reg_mentioned_p (var, PATTERN (insn))
1587 && reg_mentioned_p (call_dest, PATTERN (insn)))
1588 {
1589 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1590
1591 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1592
1593 PATTERN (insn) = replace_rtx (PATTERN (insn),
1594 call_dest, temp);
1595 }
1596
1597 if (GET_CODE (insn) == CALL_INSN
1598 && GET_CODE (PATTERN (insn)) == SET)
1599 call_dest = SET_DEST (PATTERN (insn));
1600 else if (GET_CODE (insn) == CALL_INSN
1601 && GET_CODE (PATTERN (insn)) == PARALLEL
1602 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1603 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1604 else
1605 call_dest = 0;
1606 }
1607 #endif
1608
1609 /* See if we have to do anything to INSN now that VAR is in
1610 memory. If it needs to be loaded into a pseudo, use a single
1611 pseudo for the entire insn in case there is a MATCH_DUP
1612 between two operands. We pass a pointer to the head of
1613 a list of struct fixup_replacements. If fixup_var_refs_1
1614 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1615 it will record them in this list.
1616
1617 If it allocated a pseudo for any replacement, we copy into
1618 it here. */
1619
1620 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1621 &replacements);
1622
1623 /* If this is last_parm_insn, and any instructions were output
1624 after it to fix it up, then we must set last_parm_insn to
1625 the last such instruction emitted. */
1626 if (insn == last_parm_insn)
1627 last_parm_insn = PREV_INSN (next_insn);
1628
1629 while (replacements)
1630 {
1631 if (GET_CODE (replacements->new) == REG)
1632 {
1633 rtx insert_before;
1634 rtx seq;
1635
1636 /* OLD might be a (subreg (mem)). */
1637 if (GET_CODE (replacements->old) == SUBREG)
1638 replacements->old
1639 = fixup_memory_subreg (replacements->old, insn, 0);
1640 else
1641 replacements->old
1642 = fixup_stack_1 (replacements->old, insn);
1643
1644 insert_before = insn;
1645
1646 /* If we are changing the mode, do a conversion.
1647 This might be wasteful, but combine.c will
1648 eliminate much of the waste. */
1649
1650 if (GET_MODE (replacements->new)
1651 != GET_MODE (replacements->old))
1652 {
1653 start_sequence ();
1654 convert_move (replacements->new,
1655 replacements->old, unsignedp);
1656 seq = gen_sequence ();
1657 end_sequence ();
1658 }
1659 else
1660 seq = gen_move_insn (replacements->new,
1661 replacements->old);
1662
1663 emit_insn_before (seq, insert_before);
1664 }
1665
1666 replacements = replacements->next;
1667 }
1668 }
1669
1670 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1671 But don't touch other insns referred to by reg-notes;
1672 we will get them elsewhere. */
1673 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1674 if (GET_CODE (note) != INSN_LIST)
1675 XEXP (note, 0)
1676 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1677 }
1678 insn = next;
1679 }
1680 }
1681 \f
1682 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1683 See if the rtx expression at *LOC in INSN needs to be changed.
1684
1685 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1686 contain a list of original rtx's and replacements. If we find that we need
1687 to modify this insn by replacing a memory reference with a pseudo or by
1688 making a new MEM to implement a SUBREG, we consult that list to see if
1689 we have already chosen a replacement. If none has already been allocated,
1690 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1691 or the SUBREG, as appropriate, to the pseudo. */
1692
1693 static void
1694 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1695 register rtx var;
1696 enum machine_mode promoted_mode;
1697 register rtx *loc;
1698 rtx insn;
1699 struct fixup_replacement **replacements;
1700 {
1701 register int i;
1702 register rtx x = *loc;
1703 RTX_CODE code = GET_CODE (x);
1704 register char *fmt;
1705 register rtx tem, tem1;
1706 struct fixup_replacement *replacement;
1707
1708 switch (code)
1709 {
1710 case MEM:
1711 if (var == x)
1712 {
1713 /* If we already have a replacement, use it. Otherwise,
1714 try to fix up this address in case it is invalid. */
1715
1716 replacement = find_fixup_replacement (replacements, var);
1717 if (replacement->new)
1718 {
1719 *loc = replacement->new;
1720 return;
1721 }
1722
1723 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1724
1725 /* Unless we are forcing memory to register or we changed the mode,
1726 we can leave things the way they are if the insn is valid. */
1727
1728 INSN_CODE (insn) = -1;
1729 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1730 && recog_memoized (insn) >= 0)
1731 return;
1732
1733 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1734 return;
1735 }
1736
1737 /* If X contains VAR, we need to unshare it here so that we update
1738 each occurrence separately. But all identical MEMs in one insn
1739 must be replaced with the same rtx because of the possibility of
1740 MATCH_DUPs. */
1741
1742 if (reg_mentioned_p (var, x))
1743 {
1744 replacement = find_fixup_replacement (replacements, x);
1745 if (replacement->new == 0)
1746 replacement->new = copy_most_rtx (x, var);
1747
1748 *loc = x = replacement->new;
1749 }
1750 break;
1751
1752 case REG:
1753 case CC0:
1754 case PC:
1755 case CONST_INT:
1756 case CONST:
1757 case SYMBOL_REF:
1758 case LABEL_REF:
1759 case CONST_DOUBLE:
1760 return;
1761
1762 case SIGN_EXTRACT:
1763 case ZERO_EXTRACT:
1764 /* Note that in some cases those types of expressions are altered
1765 by optimize_bit_field, and do not survive to get here. */
1766 if (XEXP (x, 0) == var
1767 || (GET_CODE (XEXP (x, 0)) == SUBREG
1768 && SUBREG_REG (XEXP (x, 0)) == var))
1769 {
1770 /* Get TEM as a valid MEM in the mode presently in the insn.
1771
1772 We don't worry about the possibility of MATCH_DUP here; it
1773 is highly unlikely and would be tricky to handle. */
1774
1775 tem = XEXP (x, 0);
1776 if (GET_CODE (tem) == SUBREG)
1777 {
1778 if (GET_MODE_BITSIZE (GET_MODE (tem))
1779 > GET_MODE_BITSIZE (GET_MODE (var)))
1780 {
1781 replacement = find_fixup_replacement (replacements, var);
1782 if (replacement->new == 0)
1783 replacement->new = gen_reg_rtx (GET_MODE (var));
1784 SUBREG_REG (tem) = replacement->new;
1785 }
1786 else
1787 tem = fixup_memory_subreg (tem, insn, 0);
1788 }
1789 else
1790 tem = fixup_stack_1 (tem, insn);
1791
1792 /* Unless we want to load from memory, get TEM into the proper mode
1793 for an extract from memory. This can only be done if the
1794 extract is at a constant position and length. */
1795
1796 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1797 && GET_CODE (XEXP (x, 2)) == CONST_INT
1798 && ! mode_dependent_address_p (XEXP (tem, 0))
1799 && ! MEM_VOLATILE_P (tem))
1800 {
1801 enum machine_mode wanted_mode = VOIDmode;
1802 enum machine_mode is_mode = GET_MODE (tem);
1803 int width = INTVAL (XEXP (x, 1));
1804 int pos = INTVAL (XEXP (x, 2));
1805
1806 #ifdef HAVE_extzv
1807 if (GET_CODE (x) == ZERO_EXTRACT)
1808 wanted_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
1809 #endif
1810 #ifdef HAVE_extv
1811 if (GET_CODE (x) == SIGN_EXTRACT)
1812 wanted_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
1813 #endif
1814 /* If we have a narrower mode, we can do something. */
1815 if (wanted_mode != VOIDmode
1816 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
1817 {
1818 int offset = pos / BITS_PER_UNIT;
1819 rtx old_pos = XEXP (x, 2);
1820 rtx newmem;
1821
1822 /* If the bytes and bits are counted differently, we
1823 must adjust the offset. */
1824 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
1825 offset = (GET_MODE_SIZE (is_mode)
1826 - GET_MODE_SIZE (wanted_mode) - offset);
1827
1828 pos %= GET_MODE_BITSIZE (wanted_mode);
1829
1830 newmem = gen_rtx (MEM, wanted_mode,
1831 plus_constant (XEXP (tem, 0), offset));
1832 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
1833 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
1834 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
1835
1836 /* Make the change and see if the insn remains valid. */
1837 INSN_CODE (insn) = -1;
1838 XEXP (x, 0) = newmem;
1839 XEXP (x, 2) = GEN_INT (pos);
1840
1841 if (recog_memoized (insn) >= 0)
1842 return;
1843
1844 /* Otherwise, restore old position. XEXP (x, 0) will be
1845 restored later. */
1846 XEXP (x, 2) = old_pos;
1847 }
1848 }
1849
1850 /* If we get here, the bitfield extract insn can't accept a memory
1851 reference. Copy the input into a register. */
1852
1853 tem1 = gen_reg_rtx (GET_MODE (tem));
1854 emit_insn_before (gen_move_insn (tem1, tem), insn);
1855 XEXP (x, 0) = tem1;
1856 return;
1857 }
1858 break;
1859
1860 case SUBREG:
1861 if (SUBREG_REG (x) == var)
1862 {
1863 /* If this is a special SUBREG made because VAR was promoted
1864 from a wider mode, replace it with VAR and call ourself
1865 recursively, this time saying that the object previously
1866 had its current mode (by virtue of the SUBREG). */
1867
1868 if (SUBREG_PROMOTED_VAR_P (x))
1869 {
1870 *loc = var;
1871 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
1872 return;
1873 }
1874
1875 /* If this SUBREG makes VAR wider, it has become a paradoxical
1876 SUBREG with VAR in memory, but these aren't allowed at this
1877 stage of the compilation. So load VAR into a pseudo and take
1878 a SUBREG of that pseudo. */
1879 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
1880 {
1881 replacement = find_fixup_replacement (replacements, var);
1882 if (replacement->new == 0)
1883 replacement->new = gen_reg_rtx (GET_MODE (var));
1884 SUBREG_REG (x) = replacement->new;
1885 return;
1886 }
1887
1888 /* See if we have already found a replacement for this SUBREG.
1889 If so, use it. Otherwise, make a MEM and see if the insn
1890 is recognized. If not, or if we should force MEM into a register,
1891 make a pseudo for this SUBREG. */
1892 replacement = find_fixup_replacement (replacements, x);
1893 if (replacement->new)
1894 {
1895 *loc = replacement->new;
1896 return;
1897 }
1898
1899 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
1900
1901 INSN_CODE (insn) = -1;
1902 if (! flag_force_mem && recog_memoized (insn) >= 0)
1903 return;
1904
1905 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
1906 return;
1907 }
1908 break;
1909
1910 case SET:
1911 /* First do special simplification of bit-field references. */
1912 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
1913 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
1914 optimize_bit_field (x, insn, 0);
1915 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
1916 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
1917 optimize_bit_field (x, insn, NULL_PTR);
1918
1919 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
1920 into a register and then store it back out. */
1921 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
1922 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
1923 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
1924 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
1925 > GET_MODE_SIZE (GET_MODE (var))))
1926 {
1927 replacement = find_fixup_replacement (replacements, var);
1928 if (replacement->new == 0)
1929 replacement->new = gen_reg_rtx (GET_MODE (var));
1930
1931 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
1932 emit_insn_after (gen_move_insn (var, replacement->new), insn);
1933 }
1934
1935 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
1936 insn into a pseudo and store the low part of the pseudo into VAR. */
1937 if (GET_CODE (SET_DEST (x)) == SUBREG
1938 && SUBREG_REG (SET_DEST (x)) == var
1939 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
1940 > GET_MODE_SIZE (GET_MODE (var))))
1941 {
1942 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
1943 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
1944 tem)),
1945 insn);
1946 break;
1947 }
1948
1949 {
1950 rtx dest = SET_DEST (x);
1951 rtx src = SET_SRC (x);
1952 rtx outerdest = dest;
1953
1954 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1955 || GET_CODE (dest) == SIGN_EXTRACT
1956 || GET_CODE (dest) == ZERO_EXTRACT)
1957 dest = XEXP (dest, 0);
1958
1959 if (GET_CODE (src) == SUBREG)
1960 src = XEXP (src, 0);
1961
1962 /* If VAR does not appear at the top level of the SET
1963 just scan the lower levels of the tree. */
1964
1965 if (src != var && dest != var)
1966 break;
1967
1968 /* We will need to rerecognize this insn. */
1969 INSN_CODE (insn) = -1;
1970
1971 #ifdef HAVE_insv
1972 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
1973 {
1974 /* Since this case will return, ensure we fixup all the
1975 operands here. */
1976 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
1977 insn, replacements);
1978 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
1979 insn, replacements);
1980 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
1981 insn, replacements);
1982
1983 tem = XEXP (outerdest, 0);
1984
1985 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
1986 that may appear inside a ZERO_EXTRACT.
1987 This was legitimate when the MEM was a REG. */
1988 if (GET_CODE (tem) == SUBREG
1989 && SUBREG_REG (tem) == var)
1990 tem = fixup_memory_subreg (tem, insn, 0);
1991 else
1992 tem = fixup_stack_1 (tem, insn);
1993
1994 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
1995 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
1996 && ! mode_dependent_address_p (XEXP (tem, 0))
1997 && ! MEM_VOLATILE_P (tem))
1998 {
1999 enum machine_mode wanted_mode
2000 = insn_operand_mode[(int) CODE_FOR_insv][0];
2001 enum machine_mode is_mode = GET_MODE (tem);
2002 int width = INTVAL (XEXP (outerdest, 1));
2003 int pos = INTVAL (XEXP (outerdest, 2));
2004
2005 /* If we have a narrower mode, we can do something. */
2006 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2007 {
2008 int offset = pos / BITS_PER_UNIT;
2009 rtx old_pos = XEXP (outerdest, 2);
2010 rtx newmem;
2011
2012 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2013 offset = (GET_MODE_SIZE (is_mode)
2014 - GET_MODE_SIZE (wanted_mode) - offset);
2015
2016 pos %= GET_MODE_BITSIZE (wanted_mode);
2017
2018 newmem = gen_rtx (MEM, wanted_mode,
2019 plus_constant (XEXP (tem, 0), offset));
2020 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
2021 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (tem);
2022 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (tem);
2023
2024 /* Make the change and see if the insn remains valid. */
2025 INSN_CODE (insn) = -1;
2026 XEXP (outerdest, 0) = newmem;
2027 XEXP (outerdest, 2) = GEN_INT (pos);
2028
2029 if (recog_memoized (insn) >= 0)
2030 return;
2031
2032 /* Otherwise, restore old position. XEXP (x, 0) will be
2033 restored later. */
2034 XEXP (outerdest, 2) = old_pos;
2035 }
2036 }
2037
2038 /* If we get here, the bit-field store doesn't allow memory
2039 or isn't located at a constant position. Load the value into
2040 a register, do the store, and put it back into memory. */
2041
2042 tem1 = gen_reg_rtx (GET_MODE (tem));
2043 emit_insn_before (gen_move_insn (tem1, tem), insn);
2044 emit_insn_after (gen_move_insn (tem, tem1), insn);
2045 XEXP (outerdest, 0) = tem1;
2046 return;
2047 }
2048 #endif
2049
2050 /* STRICT_LOW_PART is a no-op on memory references
2051 and it can cause combinations to be unrecognizable,
2052 so eliminate it. */
2053
2054 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2055 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2056
2057 /* A valid insn to copy VAR into or out of a register
2058 must be left alone, to avoid an infinite loop here.
2059 If the reference to VAR is by a subreg, fix that up,
2060 since SUBREG is not valid for a memref.
2061 Also fix up the address of the stack slot.
2062
2063 Note that we must not try to recognize the insn until
2064 after we know that we have valid addresses and no
2065 (subreg (mem ...) ...) constructs, since these interfere
2066 with determining the validity of the insn. */
2067
2068 if ((SET_SRC (x) == var
2069 || (GET_CODE (SET_SRC (x)) == SUBREG
2070 && SUBREG_REG (SET_SRC (x)) == var))
2071 && (GET_CODE (SET_DEST (x)) == REG
2072 || (GET_CODE (SET_DEST (x)) == SUBREG
2073 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2074 && GET_MODE (var) == promoted_mode
2075 && x == single_set (insn))
2076 {
2077 rtx pat;
2078
2079 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2080 if (replacement->new)
2081 SET_SRC (x) = replacement->new;
2082 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2083 SET_SRC (x) = replacement->new
2084 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2085 else
2086 SET_SRC (x) = replacement->new
2087 = fixup_stack_1 (SET_SRC (x), insn);
2088
2089 if (recog_memoized (insn) >= 0)
2090 return;
2091
2092 /* INSN is not valid, but we know that we want to
2093 copy SET_SRC (x) to SET_DEST (x) in some way. So
2094 we generate the move and see whether it requires more
2095 than one insn. If it does, we emit those insns and
2096 delete INSN. Otherwise, we an just replace the pattern
2097 of INSN; we have already verified above that INSN has
2098 no other function that to do X. */
2099
2100 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2101 if (GET_CODE (pat) == SEQUENCE)
2102 {
2103 emit_insn_after (pat, insn);
2104 PUT_CODE (insn, NOTE);
2105 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2106 NOTE_SOURCE_FILE (insn) = 0;
2107 }
2108 else
2109 PATTERN (insn) = pat;
2110
2111 return;
2112 }
2113
2114 if ((SET_DEST (x) == var
2115 || (GET_CODE (SET_DEST (x)) == SUBREG
2116 && SUBREG_REG (SET_DEST (x)) == var))
2117 && (GET_CODE (SET_SRC (x)) == REG
2118 || (GET_CODE (SET_SRC (x)) == SUBREG
2119 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2120 && GET_MODE (var) == promoted_mode
2121 && x == single_set (insn))
2122 {
2123 rtx pat;
2124
2125 if (GET_CODE (SET_DEST (x)) == SUBREG)
2126 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2127 else
2128 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2129
2130 if (recog_memoized (insn) >= 0)
2131 return;
2132
2133 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2134 if (GET_CODE (pat) == SEQUENCE)
2135 {
2136 emit_insn_after (pat, insn);
2137 PUT_CODE (insn, NOTE);
2138 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2139 NOTE_SOURCE_FILE (insn) = 0;
2140 }
2141 else
2142 PATTERN (insn) = pat;
2143
2144 return;
2145 }
2146
2147 /* Otherwise, storing into VAR must be handled specially
2148 by storing into a temporary and copying that into VAR
2149 with a new insn after this one. Note that this case
2150 will be used when storing into a promoted scalar since
2151 the insn will now have different modes on the input
2152 and output and hence will be invalid (except for the case
2153 of setting it to a constant, which does not need any
2154 change if it is valid). We generate extra code in that case,
2155 but combine.c will eliminate it. */
2156
2157 if (dest == var)
2158 {
2159 rtx temp;
2160 rtx fixeddest = SET_DEST (x);
2161
2162 /* STRICT_LOW_PART can be discarded, around a MEM. */
2163 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2164 fixeddest = XEXP (fixeddest, 0);
2165 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2166 if (GET_CODE (fixeddest) == SUBREG)
2167 {
2168 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2169 promoted_mode = GET_MODE (fixeddest);
2170 }
2171 else
2172 fixeddest = fixup_stack_1 (fixeddest, insn);
2173
2174 temp = gen_reg_rtx (promoted_mode);
2175
2176 emit_insn_after (gen_move_insn (fixeddest,
2177 gen_lowpart (GET_MODE (fixeddest),
2178 temp)),
2179 insn);
2180
2181 SET_DEST (x) = temp;
2182 }
2183 }
2184 }
2185
2186 /* Nothing special about this RTX; fix its operands. */
2187
2188 fmt = GET_RTX_FORMAT (code);
2189 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2190 {
2191 if (fmt[i] == 'e')
2192 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2193 if (fmt[i] == 'E')
2194 {
2195 register int j;
2196 for (j = 0; j < XVECLEN (x, i); j++)
2197 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2198 insn, replacements);
2199 }
2200 }
2201 }
2202 \f
2203 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2204 return an rtx (MEM:m1 newaddr) which is equivalent.
2205 If any insns must be emitted to compute NEWADDR, put them before INSN.
2206
2207 UNCRITICAL nonzero means accept paradoxical subregs.
2208 This is used for subregs found inside REG_NOTES. */
2209
2210 static rtx
2211 fixup_memory_subreg (x, insn, uncritical)
2212 rtx x;
2213 rtx insn;
2214 int uncritical;
2215 {
2216 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2217 rtx addr = XEXP (SUBREG_REG (x), 0);
2218 enum machine_mode mode = GET_MODE (x);
2219 rtx saved, result;
2220
2221 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2222 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2223 && ! uncritical)
2224 abort ();
2225
2226 if (BYTES_BIG_ENDIAN)
2227 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2228 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2229 addr = plus_constant (addr, offset);
2230 if (!flag_force_addr && memory_address_p (mode, addr))
2231 /* Shortcut if no insns need be emitted. */
2232 return change_address (SUBREG_REG (x), mode, addr);
2233 start_sequence ();
2234 result = change_address (SUBREG_REG (x), mode, addr);
2235 emit_insn_before (gen_sequence (), insn);
2236 end_sequence ();
2237 return result;
2238 }
2239
2240 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2241 Replace subexpressions of X in place.
2242 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2243 Otherwise return X, with its contents possibly altered.
2244
2245 If any insns must be emitted to compute NEWADDR, put them before INSN.
2246
2247 UNCRITICAL is as in fixup_memory_subreg. */
2248
2249 static rtx
2250 walk_fixup_memory_subreg (x, insn, uncritical)
2251 register rtx x;
2252 rtx insn;
2253 int uncritical;
2254 {
2255 register enum rtx_code code;
2256 register char *fmt;
2257 register int i;
2258
2259 if (x == 0)
2260 return 0;
2261
2262 code = GET_CODE (x);
2263
2264 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2265 return fixup_memory_subreg (x, insn, uncritical);
2266
2267 /* Nothing special about this RTX; fix its operands. */
2268
2269 fmt = GET_RTX_FORMAT (code);
2270 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2271 {
2272 if (fmt[i] == 'e')
2273 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2274 if (fmt[i] == 'E')
2275 {
2276 register int j;
2277 for (j = 0; j < XVECLEN (x, i); j++)
2278 XVECEXP (x, i, j)
2279 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2280 }
2281 }
2282 return x;
2283 }
2284 \f
2285 /* For each memory ref within X, if it refers to a stack slot
2286 with an out of range displacement, put the address in a temp register
2287 (emitting new insns before INSN to load these registers)
2288 and alter the memory ref to use that register.
2289 Replace each such MEM rtx with a copy, to avoid clobberage. */
2290
2291 static rtx
2292 fixup_stack_1 (x, insn)
2293 rtx x;
2294 rtx insn;
2295 {
2296 register int i;
2297 register RTX_CODE code = GET_CODE (x);
2298 register char *fmt;
2299
2300 if (code == MEM)
2301 {
2302 register rtx ad = XEXP (x, 0);
2303 /* If we have address of a stack slot but it's not valid
2304 (displacement is too large), compute the sum in a register. */
2305 if (GET_CODE (ad) == PLUS
2306 && GET_CODE (XEXP (ad, 0)) == REG
2307 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2308 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2309 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2310 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2311 {
2312 rtx temp, seq;
2313 if (memory_address_p (GET_MODE (x), ad))
2314 return x;
2315
2316 start_sequence ();
2317 temp = copy_to_reg (ad);
2318 seq = gen_sequence ();
2319 end_sequence ();
2320 emit_insn_before (seq, insn);
2321 return change_address (x, VOIDmode, temp);
2322 }
2323 return x;
2324 }
2325
2326 fmt = GET_RTX_FORMAT (code);
2327 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2328 {
2329 if (fmt[i] == 'e')
2330 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2331 if (fmt[i] == 'E')
2332 {
2333 register int j;
2334 for (j = 0; j < XVECLEN (x, i); j++)
2335 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2336 }
2337 }
2338 return x;
2339 }
2340 \f
2341 /* Optimization: a bit-field instruction whose field
2342 happens to be a byte or halfword in memory
2343 can be changed to a move instruction.
2344
2345 We call here when INSN is an insn to examine or store into a bit-field.
2346 BODY is the SET-rtx to be altered.
2347
2348 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2349 (Currently this is called only from function.c, and EQUIV_MEM
2350 is always 0.) */
2351
2352 static void
2353 optimize_bit_field (body, insn, equiv_mem)
2354 rtx body;
2355 rtx insn;
2356 rtx *equiv_mem;
2357 {
2358 register rtx bitfield;
2359 int destflag;
2360 rtx seq = 0;
2361 enum machine_mode mode;
2362
2363 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2364 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2365 bitfield = SET_DEST (body), destflag = 1;
2366 else
2367 bitfield = SET_SRC (body), destflag = 0;
2368
2369 /* First check that the field being stored has constant size and position
2370 and is in fact a byte or halfword suitably aligned. */
2371
2372 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2373 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2374 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2375 != BLKmode)
2376 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2377 {
2378 register rtx memref = 0;
2379
2380 /* Now check that the containing word is memory, not a register,
2381 and that it is safe to change the machine mode. */
2382
2383 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2384 memref = XEXP (bitfield, 0);
2385 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2386 && equiv_mem != 0)
2387 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2388 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2389 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2390 memref = SUBREG_REG (XEXP (bitfield, 0));
2391 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2392 && equiv_mem != 0
2393 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2394 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2395
2396 if (memref
2397 && ! mode_dependent_address_p (XEXP (memref, 0))
2398 && ! MEM_VOLATILE_P (memref))
2399 {
2400 /* Now adjust the address, first for any subreg'ing
2401 that we are now getting rid of,
2402 and then for which byte of the word is wanted. */
2403
2404 register int offset = INTVAL (XEXP (bitfield, 2));
2405 rtx insns;
2406
2407 /* Adjust OFFSET to count bits from low-address byte. */
2408 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2409 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2410 - offset - INTVAL (XEXP (bitfield, 1)));
2411
2412 /* Adjust OFFSET to count bytes from low-address byte. */
2413 offset /= BITS_PER_UNIT;
2414 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2415 {
2416 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2417 if (BYTES_BIG_ENDIAN)
2418 offset -= (MIN (UNITS_PER_WORD,
2419 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2420 - MIN (UNITS_PER_WORD,
2421 GET_MODE_SIZE (GET_MODE (memref))));
2422 }
2423
2424 start_sequence ();
2425 memref = change_address (memref, mode,
2426 plus_constant (XEXP (memref, 0), offset));
2427 insns = get_insns ();
2428 end_sequence ();
2429 emit_insns_before (insns, insn);
2430
2431 /* Store this memory reference where
2432 we found the bit field reference. */
2433
2434 if (destflag)
2435 {
2436 validate_change (insn, &SET_DEST (body), memref, 1);
2437 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2438 {
2439 rtx src = SET_SRC (body);
2440 while (GET_CODE (src) == SUBREG
2441 && SUBREG_WORD (src) == 0)
2442 src = SUBREG_REG (src);
2443 if (GET_MODE (src) != GET_MODE (memref))
2444 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2445 validate_change (insn, &SET_SRC (body), src, 1);
2446 }
2447 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2448 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2449 /* This shouldn't happen because anything that didn't have
2450 one of these modes should have got converted explicitly
2451 and then referenced through a subreg.
2452 This is so because the original bit-field was
2453 handled by agg_mode and so its tree structure had
2454 the same mode that memref now has. */
2455 abort ();
2456 }
2457 else
2458 {
2459 rtx dest = SET_DEST (body);
2460
2461 while (GET_CODE (dest) == SUBREG
2462 && SUBREG_WORD (dest) == 0
2463 && (GET_MODE_CLASS (GET_MODE (dest))
2464 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest)))))
2465 dest = SUBREG_REG (dest);
2466
2467 validate_change (insn, &SET_DEST (body), dest, 1);
2468
2469 if (GET_MODE (dest) == GET_MODE (memref))
2470 validate_change (insn, &SET_SRC (body), memref, 1);
2471 else
2472 {
2473 /* Convert the mem ref to the destination mode. */
2474 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2475
2476 start_sequence ();
2477 convert_move (newreg, memref,
2478 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2479 seq = get_insns ();
2480 end_sequence ();
2481
2482 validate_change (insn, &SET_SRC (body), newreg, 1);
2483 }
2484 }
2485
2486 /* See if we can convert this extraction or insertion into
2487 a simple move insn. We might not be able to do so if this
2488 was, for example, part of a PARALLEL.
2489
2490 If we succeed, write out any needed conversions. If we fail,
2491 it is hard to guess why we failed, so don't do anything
2492 special; just let the optimization be suppressed. */
2493
2494 if (apply_change_group () && seq)
2495 emit_insns_before (seq, insn);
2496 }
2497 }
2498 }
2499 \f
2500 /* These routines are responsible for converting virtual register references
2501 to the actual hard register references once RTL generation is complete.
2502
2503 The following four variables are used for communication between the
2504 routines. They contain the offsets of the virtual registers from their
2505 respective hard registers. */
2506
2507 static int in_arg_offset;
2508 static int var_offset;
2509 static int dynamic_offset;
2510 static int out_arg_offset;
2511
2512 /* In most machines, the stack pointer register is equivalent to the bottom
2513 of the stack. */
2514
2515 #ifndef STACK_POINTER_OFFSET
2516 #define STACK_POINTER_OFFSET 0
2517 #endif
2518
2519 /* If not defined, pick an appropriate default for the offset of dynamically
2520 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2521 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2522
2523 #ifndef STACK_DYNAMIC_OFFSET
2524
2525 #ifdef ACCUMULATE_OUTGOING_ARGS
2526 /* The bottom of the stack points to the actual arguments. If
2527 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2528 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2529 stack space for register parameters is not pushed by the caller, but
2530 rather part of the fixed stack areas and hence not included in
2531 `current_function_outgoing_args_size'. Nevertheless, we must allow
2532 for it when allocating stack dynamic objects. */
2533
2534 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2535 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2536 (current_function_outgoing_args_size \
2537 + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET))
2538
2539 #else
2540 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2541 (current_function_outgoing_args_size + (STACK_POINTER_OFFSET))
2542 #endif
2543
2544 #else
2545 #define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET
2546 #endif
2547 #endif
2548
2549 /* Pass through the INSNS of function FNDECL and convert virtual register
2550 references to hard register references. */
2551
2552 void
2553 instantiate_virtual_regs (fndecl, insns)
2554 tree fndecl;
2555 rtx insns;
2556 {
2557 rtx insn;
2558
2559 /* Compute the offsets to use for this function. */
2560 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
2561 var_offset = STARTING_FRAME_OFFSET;
2562 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
2563 out_arg_offset = STACK_POINTER_OFFSET;
2564
2565 /* Scan all variables and parameters of this function. For each that is
2566 in memory, instantiate all virtual registers if the result is a valid
2567 address. If not, we do it later. That will handle most uses of virtual
2568 regs on many machines. */
2569 instantiate_decls (fndecl, 1);
2570
2571 /* Initialize recognition, indicating that volatile is OK. */
2572 init_recog ();
2573
2574 /* Scan through all the insns, instantiating every virtual register still
2575 present. */
2576 for (insn = insns; insn; insn = NEXT_INSN (insn))
2577 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2578 || GET_CODE (insn) == CALL_INSN)
2579 {
2580 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
2581 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
2582 }
2583
2584 /* Now instantiate the remaining register equivalences for debugging info.
2585 These will not be valid addresses. */
2586 instantiate_decls (fndecl, 0);
2587
2588 /* Indicate that, from now on, assign_stack_local should use
2589 frame_pointer_rtx. */
2590 virtuals_instantiated = 1;
2591 }
2592
2593 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
2594 all virtual registers in their DECL_RTL's.
2595
2596 If VALID_ONLY, do this only if the resulting address is still valid.
2597 Otherwise, always do it. */
2598
2599 static void
2600 instantiate_decls (fndecl, valid_only)
2601 tree fndecl;
2602 int valid_only;
2603 {
2604 tree decl;
2605
2606 if (DECL_SAVED_INSNS (fndecl))
2607 /* When compiling an inline function, the obstack used for
2608 rtl allocation is the maybepermanent_obstack. Calling
2609 `resume_temporary_allocation' switches us back to that
2610 obstack while we process this function's parameters. */
2611 resume_temporary_allocation ();
2612
2613 /* Process all parameters of the function. */
2614 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2615 {
2616 instantiate_decl (DECL_RTL (decl), int_size_in_bytes (TREE_TYPE (decl)),
2617 valid_only);
2618 instantiate_decl (DECL_INCOMING_RTL (decl),
2619 int_size_in_bytes (TREE_TYPE (decl)), valid_only);
2620 }
2621
2622 /* Now process all variables defined in the function or its subblocks. */
2623 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
2624
2625 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
2626 {
2627 /* Save all rtl allocated for this function by raising the
2628 high-water mark on the maybepermanent_obstack. */
2629 preserve_data ();
2630 /* All further rtl allocation is now done in the current_obstack. */
2631 rtl_in_current_obstack ();
2632 }
2633 }
2634
2635 /* Subroutine of instantiate_decls: Process all decls in the given
2636 BLOCK node and all its subblocks. */
2637
2638 static void
2639 instantiate_decls_1 (let, valid_only)
2640 tree let;
2641 int valid_only;
2642 {
2643 tree t;
2644
2645 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
2646 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
2647 valid_only);
2648
2649 /* Process all subblocks. */
2650 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
2651 instantiate_decls_1 (t, valid_only);
2652 }
2653
2654 /* Subroutine of the preceding procedures: Given RTL representing a
2655 decl and the size of the object, do any instantiation required.
2656
2657 If VALID_ONLY is non-zero, it means that the RTL should only be
2658 changed if the new address is valid. */
2659
2660 static void
2661 instantiate_decl (x, size, valid_only)
2662 rtx x;
2663 int size;
2664 int valid_only;
2665 {
2666 enum machine_mode mode;
2667 rtx addr;
2668
2669 /* If this is not a MEM, no need to do anything. Similarly if the
2670 address is a constant or a register that is not a virtual register. */
2671
2672 if (x == 0 || GET_CODE (x) != MEM)
2673 return;
2674
2675 addr = XEXP (x, 0);
2676 if (CONSTANT_P (addr)
2677 || (GET_CODE (addr) == REG
2678 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
2679 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
2680 return;
2681
2682 /* If we should only do this if the address is valid, copy the address.
2683 We need to do this so we can undo any changes that might make the
2684 address invalid. This copy is unfortunate, but probably can't be
2685 avoided. */
2686
2687 if (valid_only)
2688 addr = copy_rtx (addr);
2689
2690 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
2691
2692 if (valid_only)
2693 {
2694 /* Now verify that the resulting address is valid for every integer or
2695 floating-point mode up to and including SIZE bytes long. We do this
2696 since the object might be accessed in any mode and frame addresses
2697 are shared. */
2698
2699 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2700 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
2701 mode = GET_MODE_WIDER_MODE (mode))
2702 if (! memory_address_p (mode, addr))
2703 return;
2704
2705 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
2706 mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
2707 mode = GET_MODE_WIDER_MODE (mode))
2708 if (! memory_address_p (mode, addr))
2709 return;
2710 }
2711
2712 /* Put back the address now that we have updated it and we either know
2713 it is valid or we don't care whether it is valid. */
2714
2715 XEXP (x, 0) = addr;
2716 }
2717 \f
2718 /* Given a pointer to a piece of rtx and an optional pointer to the
2719 containing object, instantiate any virtual registers present in it.
2720
2721 If EXTRA_INSNS, we always do the replacement and generate
2722 any extra insns before OBJECT. If it zero, we do nothing if replacement
2723 is not valid.
2724
2725 Return 1 if we either had nothing to do or if we were able to do the
2726 needed replacement. Return 0 otherwise; we only return zero if
2727 EXTRA_INSNS is zero.
2728
2729 We first try some simple transformations to avoid the creation of extra
2730 pseudos. */
2731
2732 static int
2733 instantiate_virtual_regs_1 (loc, object, extra_insns)
2734 rtx *loc;
2735 rtx object;
2736 int extra_insns;
2737 {
2738 rtx x;
2739 RTX_CODE code;
2740 rtx new = 0;
2741 int offset;
2742 rtx temp;
2743 rtx seq;
2744 int i, j;
2745 char *fmt;
2746
2747 /* Re-start here to avoid recursion in common cases. */
2748 restart:
2749
2750 x = *loc;
2751 if (x == 0)
2752 return 1;
2753
2754 code = GET_CODE (x);
2755
2756 /* Check for some special cases. */
2757 switch (code)
2758 {
2759 case CONST_INT:
2760 case CONST_DOUBLE:
2761 case CONST:
2762 case SYMBOL_REF:
2763 case CODE_LABEL:
2764 case PC:
2765 case CC0:
2766 case ASM_INPUT:
2767 case ADDR_VEC:
2768 case ADDR_DIFF_VEC:
2769 case RETURN:
2770 return 1;
2771
2772 case SET:
2773 /* We are allowed to set the virtual registers. This means that
2774 that the actual register should receive the source minus the
2775 appropriate offset. This is used, for example, in the handling
2776 of non-local gotos. */
2777 if (SET_DEST (x) == virtual_incoming_args_rtx)
2778 new = arg_pointer_rtx, offset = - in_arg_offset;
2779 else if (SET_DEST (x) == virtual_stack_vars_rtx)
2780 new = frame_pointer_rtx, offset = - var_offset;
2781 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
2782 new = stack_pointer_rtx, offset = - dynamic_offset;
2783 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
2784 new = stack_pointer_rtx, offset = - out_arg_offset;
2785
2786 if (new)
2787 {
2788 /* The only valid sources here are PLUS or REG. Just do
2789 the simplest possible thing to handle them. */
2790 if (GET_CODE (SET_SRC (x)) != REG
2791 && GET_CODE (SET_SRC (x)) != PLUS)
2792 abort ();
2793
2794 start_sequence ();
2795 if (GET_CODE (SET_SRC (x)) != REG)
2796 temp = force_operand (SET_SRC (x), NULL_RTX);
2797 else
2798 temp = SET_SRC (x);
2799 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
2800 seq = get_insns ();
2801 end_sequence ();
2802
2803 emit_insns_before (seq, object);
2804 SET_DEST (x) = new;
2805
2806 if (!validate_change (object, &SET_SRC (x), temp, 0)
2807 || ! extra_insns)
2808 abort ();
2809
2810 return 1;
2811 }
2812
2813 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
2814 loc = &SET_SRC (x);
2815 goto restart;
2816
2817 case PLUS:
2818 /* Handle special case of virtual register plus constant. */
2819 if (CONSTANT_P (XEXP (x, 1)))
2820 {
2821 rtx old, new_offset;
2822
2823 /* Check for (plus (plus VIRT foo) (const_int)) first. */
2824 if (GET_CODE (XEXP (x, 0)) == PLUS)
2825 {
2826 rtx inner = XEXP (XEXP (x, 0), 0);
2827
2828 if (inner == virtual_incoming_args_rtx)
2829 new = arg_pointer_rtx, offset = in_arg_offset;
2830 else if (inner == virtual_stack_vars_rtx)
2831 new = frame_pointer_rtx, offset = var_offset;
2832 else if (inner == virtual_stack_dynamic_rtx)
2833 new = stack_pointer_rtx, offset = dynamic_offset;
2834 else if (inner == virtual_outgoing_args_rtx)
2835 new = stack_pointer_rtx, offset = out_arg_offset;
2836 else
2837 {
2838 loc = &XEXP (x, 0);
2839 goto restart;
2840 }
2841
2842 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
2843 extra_insns);
2844 new = gen_rtx (PLUS, Pmode, new, XEXP (XEXP (x, 0), 1));
2845 }
2846
2847 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
2848 new = arg_pointer_rtx, offset = in_arg_offset;
2849 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
2850 new = frame_pointer_rtx, offset = var_offset;
2851 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
2852 new = stack_pointer_rtx, offset = dynamic_offset;
2853 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
2854 new = stack_pointer_rtx, offset = out_arg_offset;
2855 else
2856 {
2857 /* We know the second operand is a constant. Unless the
2858 first operand is a REG (which has been already checked),
2859 it needs to be checked. */
2860 if (GET_CODE (XEXP (x, 0)) != REG)
2861 {
2862 loc = &XEXP (x, 0);
2863 goto restart;
2864 }
2865 return 1;
2866 }
2867
2868 new_offset = plus_constant (XEXP (x, 1), offset);
2869
2870 /* If the new constant is zero, try to replace the sum with just
2871 the register. */
2872 if (new_offset == const0_rtx
2873 && validate_change (object, loc, new, 0))
2874 return 1;
2875
2876 /* Next try to replace the register and new offset.
2877 There are two changes to validate here and we can't assume that
2878 in the case of old offset equals new just changing the register
2879 will yield a valid insn. In the interests of a little efficiency,
2880 however, we only call validate change once (we don't queue up the
2881 changes and then call apply_change_group). */
2882
2883 old = XEXP (x, 0);
2884 if (offset == 0
2885 ? ! validate_change (object, &XEXP (x, 0), new, 0)
2886 : (XEXP (x, 0) = new,
2887 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
2888 {
2889 if (! extra_insns)
2890 {
2891 XEXP (x, 0) = old;
2892 return 0;
2893 }
2894
2895 /* Otherwise copy the new constant into a register and replace
2896 constant with that register. */
2897 temp = gen_reg_rtx (Pmode);
2898 XEXP (x, 0) = new;
2899 if (validate_change (object, &XEXP (x, 1), temp, 0))
2900 emit_insn_before (gen_move_insn (temp, new_offset), object);
2901 else
2902 {
2903 /* If that didn't work, replace this expression with a
2904 register containing the sum. */
2905
2906 XEXP (x, 0) = old;
2907 new = gen_rtx (PLUS, Pmode, new, new_offset);
2908
2909 start_sequence ();
2910 temp = force_operand (new, NULL_RTX);
2911 seq = get_insns ();
2912 end_sequence ();
2913
2914 emit_insns_before (seq, object);
2915 if (! validate_change (object, loc, temp, 0)
2916 && ! validate_replace_rtx (x, temp, object))
2917 abort ();
2918 }
2919 }
2920
2921 return 1;
2922 }
2923
2924 /* Fall through to generic two-operand expression case. */
2925 case EXPR_LIST:
2926 case CALL:
2927 case COMPARE:
2928 case MINUS:
2929 case MULT:
2930 case DIV: case UDIV:
2931 case MOD: case UMOD:
2932 case AND: case IOR: case XOR:
2933 case ROTATERT: case ROTATE:
2934 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2935 case NE: case EQ:
2936 case GE: case GT: case GEU: case GTU:
2937 case LE: case LT: case LEU: case LTU:
2938 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
2939 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
2940 loc = &XEXP (x, 0);
2941 goto restart;
2942
2943 case MEM:
2944 /* Most cases of MEM that convert to valid addresses have already been
2945 handled by our scan of decls. The only special handling we
2946 need here is to make a copy of the rtx to ensure it isn't being
2947 shared if we have to change it to a pseudo.
2948
2949 If the rtx is a simple reference to an address via a virtual register,
2950 it can potentially be shared. In such cases, first try to make it
2951 a valid address, which can also be shared. Otherwise, copy it and
2952 proceed normally.
2953
2954 First check for common cases that need no processing. These are
2955 usually due to instantiation already being done on a previous instance
2956 of a shared rtx. */
2957
2958 temp = XEXP (x, 0);
2959 if (CONSTANT_ADDRESS_P (temp)
2960 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2961 || temp == arg_pointer_rtx
2962 #endif
2963 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2964 || temp == hard_frame_pointer_rtx
2965 #endif
2966 || temp == frame_pointer_rtx)
2967 return 1;
2968
2969 if (GET_CODE (temp) == PLUS
2970 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
2971 && (XEXP (temp, 0) == frame_pointer_rtx
2972 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2973 || XEXP (temp, 0) == hard_frame_pointer_rtx
2974 #endif
2975 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2976 || XEXP (temp, 0) == arg_pointer_rtx
2977 #endif
2978 ))
2979 return 1;
2980
2981 if (temp == virtual_stack_vars_rtx
2982 || temp == virtual_incoming_args_rtx
2983 || (GET_CODE (temp) == PLUS
2984 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
2985 && (XEXP (temp, 0) == virtual_stack_vars_rtx
2986 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
2987 {
2988 /* This MEM may be shared. If the substitution can be done without
2989 the need to generate new pseudos, we want to do it in place
2990 so all copies of the shared rtx benefit. The call below will
2991 only make substitutions if the resulting address is still
2992 valid.
2993
2994 Note that we cannot pass X as the object in the recursive call
2995 since the insn being processed may not allow all valid
2996 addresses. However, if we were not passed on object, we can
2997 only modify X without copying it if X will have a valid
2998 address.
2999
3000 ??? Also note that this can still lose if OBJECT is an insn that
3001 has less restrictions on an address that some other insn.
3002 In that case, we will modify the shared address. This case
3003 doesn't seem very likely, though. One case where this could
3004 happen is in the case of a USE or CLOBBER reference, but we
3005 take care of that below. */
3006
3007 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3008 object ? object : x, 0))
3009 return 1;
3010
3011 /* Otherwise make a copy and process that copy. We copy the entire
3012 RTL expression since it might be a PLUS which could also be
3013 shared. */
3014 *loc = x = copy_rtx (x);
3015 }
3016
3017 /* Fall through to generic unary operation case. */
3018 case SUBREG:
3019 case STRICT_LOW_PART:
3020 case NEG: case NOT:
3021 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3022 case SIGN_EXTEND: case ZERO_EXTEND:
3023 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3024 case FLOAT: case FIX:
3025 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3026 case ABS:
3027 case SQRT:
3028 case FFS:
3029 /* These case either have just one operand or we know that we need not
3030 check the rest of the operands. */
3031 loc = &XEXP (x, 0);
3032 goto restart;
3033
3034 case USE:
3035 case CLOBBER:
3036 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3037 go ahead and make the invalid one, but do it to a copy. For a REG,
3038 just make the recursive call, since there's no chance of a problem. */
3039
3040 if ((GET_CODE (XEXP (x, 0)) == MEM
3041 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3042 0))
3043 || (GET_CODE (XEXP (x, 0)) == REG
3044 && instantiate_virtual_regs_1 (&XEXP (x, 0), 0, 0)))
3045 return 1;
3046
3047 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3048 loc = &XEXP (x, 0);
3049 goto restart;
3050
3051 case REG:
3052 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3053 in front of this insn and substitute the temporary. */
3054 if (x == virtual_incoming_args_rtx)
3055 new = arg_pointer_rtx, offset = in_arg_offset;
3056 else if (x == virtual_stack_vars_rtx)
3057 new = frame_pointer_rtx, offset = var_offset;
3058 else if (x == virtual_stack_dynamic_rtx)
3059 new = stack_pointer_rtx, offset = dynamic_offset;
3060 else if (x == virtual_outgoing_args_rtx)
3061 new = stack_pointer_rtx, offset = out_arg_offset;
3062
3063 if (new)
3064 {
3065 temp = plus_constant (new, offset);
3066 if (!validate_change (object, loc, temp, 0))
3067 {
3068 if (! extra_insns)
3069 return 0;
3070
3071 start_sequence ();
3072 temp = force_operand (temp, NULL_RTX);
3073 seq = get_insns ();
3074 end_sequence ();
3075
3076 emit_insns_before (seq, object);
3077 if (! validate_change (object, loc, temp, 0)
3078 && ! validate_replace_rtx (x, temp, object))
3079 abort ();
3080 }
3081 }
3082
3083 return 1;
3084 }
3085
3086 /* Scan all subexpressions. */
3087 fmt = GET_RTX_FORMAT (code);
3088 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3089 if (*fmt == 'e')
3090 {
3091 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3092 return 0;
3093 }
3094 else if (*fmt == 'E')
3095 for (j = 0; j < XVECLEN (x, i); j++)
3096 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3097 extra_insns))
3098 return 0;
3099
3100 return 1;
3101 }
3102 \f
3103 /* Optimization: assuming this function does not receive nonlocal gotos,
3104 delete the handlers for such, as well as the insns to establish
3105 and disestablish them. */
3106
3107 static void
3108 delete_handlers ()
3109 {
3110 rtx insn;
3111 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3112 {
3113 /* Delete the handler by turning off the flag that would
3114 prevent jump_optimize from deleting it.
3115 Also permit deletion of the nonlocal labels themselves
3116 if nothing local refers to them. */
3117 if (GET_CODE (insn) == CODE_LABEL)
3118 {
3119 tree t, last_t;
3120
3121 LABEL_PRESERVE_P (insn) = 0;
3122
3123 /* Remove it from the nonlocal_label list, to avoid confusing
3124 flow. */
3125 for (t = nonlocal_labels, last_t = 0; t;
3126 last_t = t, t = TREE_CHAIN (t))
3127 if (DECL_RTL (TREE_VALUE (t)) == insn)
3128 break;
3129 if (t)
3130 {
3131 if (! last_t)
3132 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3133 else
3134 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3135 }
3136 }
3137 if (GET_CODE (insn) == INSN
3138 && ((nonlocal_goto_handler_slot != 0
3139 && reg_mentioned_p (nonlocal_goto_handler_slot, PATTERN (insn)))
3140 || (nonlocal_goto_stack_level != 0
3141 && reg_mentioned_p (nonlocal_goto_stack_level,
3142 PATTERN (insn)))))
3143 delete_insn (insn);
3144 }
3145 }
3146
3147 /* Return a list (chain of EXPR_LIST nodes) for the nonlocal labels
3148 of the current function. */
3149
3150 rtx
3151 nonlocal_label_rtx_list ()
3152 {
3153 tree t;
3154 rtx x = 0;
3155
3156 for (t = nonlocal_labels; t; t = TREE_CHAIN (t))
3157 x = gen_rtx (EXPR_LIST, VOIDmode, label_rtx (TREE_VALUE (t)), x);
3158
3159 return x;
3160 }
3161 \f
3162 /* Output a USE for any register use in RTL.
3163 This is used with -noreg to mark the extent of lifespan
3164 of any registers used in a user-visible variable's DECL_RTL. */
3165
3166 void
3167 use_variable (rtl)
3168 rtx rtl;
3169 {
3170 if (GET_CODE (rtl) == REG)
3171 /* This is a register variable. */
3172 emit_insn (gen_rtx (USE, VOIDmode, rtl));
3173 else if (GET_CODE (rtl) == MEM
3174 && GET_CODE (XEXP (rtl, 0)) == REG
3175 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
3176 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
3177 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
3178 /* This is a variable-sized structure. */
3179 emit_insn (gen_rtx (USE, VOIDmode, XEXP (rtl, 0)));
3180 }
3181
3182 /* Like use_variable except that it outputs the USEs after INSN
3183 instead of at the end of the insn-chain. */
3184
3185 void
3186 use_variable_after (rtl, insn)
3187 rtx rtl, insn;
3188 {
3189 if (GET_CODE (rtl) == REG)
3190 /* This is a register variable. */
3191 emit_insn_after (gen_rtx (USE, VOIDmode, rtl), insn);
3192 else if (GET_CODE (rtl) == MEM
3193 && GET_CODE (XEXP (rtl, 0)) == REG
3194 && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
3195 || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
3196 && XEXP (rtl, 0) != current_function_internal_arg_pointer)
3197 /* This is a variable-sized structure. */
3198 emit_insn_after (gen_rtx (USE, VOIDmode, XEXP (rtl, 0)), insn);
3199 }
3200 \f
3201 int
3202 max_parm_reg_num ()
3203 {
3204 return max_parm_reg;
3205 }
3206
3207 /* Return the first insn following those generated by `assign_parms'. */
3208
3209 rtx
3210 get_first_nonparm_insn ()
3211 {
3212 if (last_parm_insn)
3213 return NEXT_INSN (last_parm_insn);
3214 return get_insns ();
3215 }
3216
3217 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
3218 Crash if there is none. */
3219
3220 rtx
3221 get_first_block_beg ()
3222 {
3223 register rtx searcher;
3224 register rtx insn = get_first_nonparm_insn ();
3225
3226 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
3227 if (GET_CODE (searcher) == NOTE
3228 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
3229 return searcher;
3230
3231 abort (); /* Invalid call to this function. (See comments above.) */
3232 return NULL_RTX;
3233 }
3234
3235 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
3236 This means a type for which function calls must pass an address to the
3237 function or get an address back from the function.
3238 EXP may be a type node or an expression (whose type is tested). */
3239
3240 int
3241 aggregate_value_p (exp)
3242 tree exp;
3243 {
3244 int i, regno, nregs;
3245 rtx reg;
3246 tree type;
3247 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 't')
3248 type = exp;
3249 else
3250 type = TREE_TYPE (exp);
3251
3252 if (RETURN_IN_MEMORY (type))
3253 return 1;
3254 /* Types that are TREE_ADDRESSABLE must be contructed in memory,
3255 and thus can't be returned in registers. */
3256 if (TREE_ADDRESSABLE (type))
3257 return 1;
3258 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
3259 return 1;
3260 /* Make sure we have suitable call-clobbered regs to return
3261 the value in; if not, we must return it in memory. */
3262 reg = hard_function_value (type, 0);
3263
3264 /* If we have something other than a REG (e.g. a PARALLEL), then assume
3265 it is OK. */
3266 if (GET_CODE (reg) != REG)
3267 return 0;
3268
3269 regno = REGNO (reg);
3270 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
3271 for (i = 0; i < nregs; i++)
3272 if (! call_used_regs[regno + i])
3273 return 1;
3274 return 0;
3275 }
3276 \f
3277 /* Assign RTL expressions to the function's parameters.
3278 This may involve copying them into registers and using
3279 those registers as the RTL for them.
3280
3281 If SECOND_TIME is non-zero it means that this function is being
3282 called a second time. This is done by integrate.c when a function's
3283 compilation is deferred. We need to come back here in case the
3284 FUNCTION_ARG macro computes items needed for the rest of the compilation
3285 (such as changing which registers are fixed or caller-saved). But suppress
3286 writing any insns or setting DECL_RTL of anything in this case. */
3287
3288 void
3289 assign_parms (fndecl, second_time)
3290 tree fndecl;
3291 int second_time;
3292 {
3293 register tree parm;
3294 register rtx entry_parm = 0;
3295 register rtx stack_parm = 0;
3296 CUMULATIVE_ARGS args_so_far;
3297 enum machine_mode promoted_mode, passed_mode;
3298 enum machine_mode nominal_mode, promoted_nominal_mode;
3299 int unsignedp;
3300 /* Total space needed so far for args on the stack,
3301 given as a constant and a tree-expression. */
3302 struct args_size stack_args_size;
3303 tree fntype = TREE_TYPE (fndecl);
3304 tree fnargs = DECL_ARGUMENTS (fndecl);
3305 /* This is used for the arg pointer when referring to stack args. */
3306 rtx internal_arg_pointer;
3307 /* This is a dummy PARM_DECL that we used for the function result if
3308 the function returns a structure. */
3309 tree function_result_decl = 0;
3310 int nparmregs = list_length (fnargs) + LAST_VIRTUAL_REGISTER + 1;
3311 int varargs_setup = 0;
3312 rtx conversion_insns = 0;
3313
3314 /* Nonzero if the last arg is named `__builtin_va_alist',
3315 which is used on some machines for old-fashioned non-ANSI varargs.h;
3316 this should be stuck onto the stack as if it had arrived there. */
3317 int hide_last_arg
3318 = (current_function_varargs
3319 && fnargs
3320 && (parm = tree_last (fnargs)) != 0
3321 && DECL_NAME (parm)
3322 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
3323 "__builtin_va_alist")));
3324
3325 /* Nonzero if function takes extra anonymous args.
3326 This means the last named arg must be on the stack
3327 right before the anonymous ones. */
3328 int stdarg
3329 = (TYPE_ARG_TYPES (fntype) != 0
3330 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3331 != void_type_node));
3332
3333 current_function_stdarg = stdarg;
3334
3335 /* If the reg that the virtual arg pointer will be translated into is
3336 not a fixed reg or is the stack pointer, make a copy of the virtual
3337 arg pointer, and address parms via the copy. The frame pointer is
3338 considered fixed even though it is not marked as such.
3339
3340 The second time through, simply use ap to avoid generating rtx. */
3341
3342 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3343 || ! (fixed_regs[ARG_POINTER_REGNUM]
3344 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM))
3345 && ! second_time)
3346 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3347 else
3348 internal_arg_pointer = virtual_incoming_args_rtx;
3349 current_function_internal_arg_pointer = internal_arg_pointer;
3350
3351 stack_args_size.constant = 0;
3352 stack_args_size.var = 0;
3353
3354 /* If struct value address is treated as the first argument, make it so. */
3355 if (aggregate_value_p (DECL_RESULT (fndecl))
3356 && ! current_function_returns_pcc_struct
3357 && struct_value_incoming_rtx == 0)
3358 {
3359 tree type = build_pointer_type (TREE_TYPE (fntype));
3360
3361 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
3362
3363 DECL_ARG_TYPE (function_result_decl) = type;
3364 TREE_CHAIN (function_result_decl) = fnargs;
3365 fnargs = function_result_decl;
3366 }
3367
3368 parm_reg_stack_loc = (rtx *) oballoc (nparmregs * sizeof (rtx));
3369 bzero ((char *) parm_reg_stack_loc, nparmregs * sizeof (rtx));
3370
3371 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
3372 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
3373 #else
3374 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
3375 #endif
3376
3377 /* We haven't yet found an argument that we must push and pretend the
3378 caller did. */
3379 current_function_pretend_args_size = 0;
3380
3381 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3382 {
3383 int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
3384 struct args_size stack_offset;
3385 struct args_size arg_size;
3386 int passed_pointer = 0;
3387 int did_conversion = 0;
3388 tree passed_type = DECL_ARG_TYPE (parm);
3389 tree nominal_type = TREE_TYPE (parm);
3390
3391 /* Set LAST_NAMED if this is last named arg before some
3392 anonymous args. We treat it as if it were anonymous too. */
3393 int last_named = ((TREE_CHAIN (parm) == 0
3394 || DECL_NAME (TREE_CHAIN (parm)) == 0)
3395 && (stdarg || current_function_varargs));
3396
3397 if (TREE_TYPE (parm) == error_mark_node
3398 /* This can happen after weird syntax errors
3399 or if an enum type is defined among the parms. */
3400 || TREE_CODE (parm) != PARM_DECL
3401 || passed_type == NULL)
3402 {
3403 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = gen_rtx (MEM, BLKmode,
3404 const0_rtx);
3405 TREE_USED (parm) = 1;
3406 continue;
3407 }
3408
3409 /* For varargs.h function, save info about regs and stack space
3410 used by the individual args, not including the va_alist arg. */
3411 if (hide_last_arg && last_named)
3412 current_function_args_info = args_so_far;
3413
3414 /* Find mode of arg as it is passed, and mode of arg
3415 as it should be during execution of this function. */
3416 passed_mode = TYPE_MODE (passed_type);
3417 nominal_mode = TYPE_MODE (nominal_type);
3418
3419 /* If the parm's mode is VOID, its value doesn't matter,
3420 and avoid the usual things like emit_move_insn that could crash. */
3421 if (nominal_mode == VOIDmode)
3422 {
3423 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
3424 continue;
3425 }
3426
3427 /* If the parm is to be passed as a transparent union, use the
3428 type of the first field for the tests below. We have already
3429 verified that the modes are the same. */
3430 if (DECL_TRANSPARENT_UNION (parm)
3431 || TYPE_TRANSPARENT_UNION (passed_type))
3432 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
3433
3434 /* See if this arg was passed by invisible reference. It is if
3435 it is an object whose size depends on the contents of the
3436 object itself or if the machine requires these objects be passed
3437 that way. */
3438
3439 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
3440 && contains_placeholder_p (TYPE_SIZE (passed_type)))
3441 || TREE_ADDRESSABLE (passed_type)
3442 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
3443 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
3444 passed_type, ! last_named)
3445 #endif
3446 )
3447 {
3448 passed_type = nominal_type = build_pointer_type (passed_type);
3449 passed_pointer = 1;
3450 passed_mode = nominal_mode = Pmode;
3451 }
3452
3453 promoted_mode = passed_mode;
3454
3455 #ifdef PROMOTE_FUNCTION_ARGS
3456 /* Compute the mode in which the arg is actually extended to. */
3457 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
3458 #endif
3459
3460 /* Let machine desc say which reg (if any) the parm arrives in.
3461 0 means it arrives on the stack. */
3462 #ifdef FUNCTION_INCOMING_ARG
3463 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
3464 passed_type, ! last_named);
3465 #else
3466 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
3467 passed_type, ! last_named);
3468 #endif
3469
3470 if (entry_parm == 0)
3471 promoted_mode = passed_mode;
3472
3473 #ifdef SETUP_INCOMING_VARARGS
3474 /* If this is the last named parameter, do any required setup for
3475 varargs or stdargs. We need to know about the case of this being an
3476 addressable type, in which case we skip the registers it
3477 would have arrived in.
3478
3479 For stdargs, LAST_NAMED will be set for two parameters, the one that
3480 is actually the last named, and the dummy parameter. We only
3481 want to do this action once.
3482
3483 Also, indicate when RTL generation is to be suppressed. */
3484 if (last_named && !varargs_setup)
3485 {
3486 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
3487 current_function_pretend_args_size,
3488 second_time);
3489 varargs_setup = 1;
3490 }
3491 #endif
3492
3493 /* Determine parm's home in the stack,
3494 in case it arrives in the stack or we should pretend it did.
3495
3496 Compute the stack position and rtx where the argument arrives
3497 and its size.
3498
3499 There is one complexity here: If this was a parameter that would
3500 have been passed in registers, but wasn't only because it is
3501 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
3502 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
3503 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
3504 0 as it was the previous time. */
3505
3506 locate_and_pad_parm (promoted_mode, passed_type,
3507 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3508 1,
3509 #else
3510 #ifdef FUNCTION_INCOMING_ARG
3511 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
3512 passed_type,
3513 (! last_named
3514 || varargs_setup)) != 0,
3515 #else
3516 FUNCTION_ARG (args_so_far, promoted_mode,
3517 passed_type,
3518 ! last_named || varargs_setup) != 0,
3519 #endif
3520 #endif
3521 fndecl, &stack_args_size, &stack_offset, &arg_size);
3522
3523 if (! second_time)
3524 {
3525 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
3526
3527 if (offset_rtx == const0_rtx)
3528 stack_parm = gen_rtx (MEM, promoted_mode, internal_arg_pointer);
3529 else
3530 stack_parm = gen_rtx (MEM, promoted_mode,
3531 gen_rtx (PLUS, Pmode,
3532 internal_arg_pointer, offset_rtx));
3533
3534 /* If this is a memory ref that contains aggregate components,
3535 mark it as such for cse and loop optimize. Likewise if it
3536 is readonly. */
3537 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3538 RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
3539 }
3540
3541 /* If this parameter was passed both in registers and in the stack,
3542 use the copy on the stack. */
3543 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
3544 entry_parm = 0;
3545
3546 #ifdef FUNCTION_ARG_PARTIAL_NREGS
3547 /* If this parm was passed part in regs and part in memory,
3548 pretend it arrived entirely in memory
3549 by pushing the register-part onto the stack.
3550
3551 In the special case of a DImode or DFmode that is split,
3552 we could put it together in a pseudoreg directly,
3553 but for now that's not worth bothering with. */
3554
3555 if (entry_parm)
3556 {
3557 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
3558 passed_type, ! last_named);
3559
3560 if (nregs > 0)
3561 {
3562 current_function_pretend_args_size
3563 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
3564 / (PARM_BOUNDARY / BITS_PER_UNIT)
3565 * (PARM_BOUNDARY / BITS_PER_UNIT));
3566
3567 if (! second_time)
3568 {
3569 /* Handle calls that pass values in multiple non-contiguous
3570 locations. The Irix 6 ABI has examples of this. */
3571 if (GET_CODE (entry_parm) == PARALLEL)
3572 emit_group_store (validize_mem (stack_parm),
3573 entry_parm);
3574 else
3575 move_block_from_reg (REGNO (entry_parm),
3576 validize_mem (stack_parm), nregs,
3577 int_size_in_bytes (TREE_TYPE (parm)));
3578 }
3579 entry_parm = stack_parm;
3580 }
3581 }
3582 #endif
3583
3584 /* If we didn't decide this parm came in a register,
3585 by default it came on the stack. */
3586 if (entry_parm == 0)
3587 entry_parm = stack_parm;
3588
3589 /* Record permanently how this parm was passed. */
3590 if (! second_time)
3591 DECL_INCOMING_RTL (parm) = entry_parm;
3592
3593 /* If there is actually space on the stack for this parm,
3594 count it in stack_args_size; otherwise set stack_parm to 0
3595 to indicate there is no preallocated stack slot for the parm. */
3596
3597 if (entry_parm == stack_parm
3598 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
3599 /* On some machines, even if a parm value arrives in a register
3600 there is still an (uninitialized) stack slot allocated for it.
3601
3602 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
3603 whether this parameter already has a stack slot allocated,
3604 because an arg block exists only if current_function_args_size
3605 is larger than some threshold, and we haven't calculated that
3606 yet. So, for now, we just assume that stack slots never exist
3607 in this case. */
3608 || REG_PARM_STACK_SPACE (fndecl) > 0
3609 #endif
3610 )
3611 {
3612 stack_args_size.constant += arg_size.constant;
3613 if (arg_size.var)
3614 ADD_PARM_SIZE (stack_args_size, arg_size.var);
3615 }
3616 else
3617 /* No stack slot was pushed for this parm. */
3618 stack_parm = 0;
3619
3620 /* Update info on where next arg arrives in registers. */
3621
3622 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
3623 passed_type, ! last_named);
3624
3625 /* If this is our second time through, we are done with this parm. */
3626 if (second_time)
3627 continue;
3628
3629 /* If we can't trust the parm stack slot to be aligned enough
3630 for its ultimate type, don't use that slot after entry.
3631 We'll make another stack slot, if we need one. */
3632 {
3633 int thisparm_boundary
3634 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
3635
3636 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
3637 stack_parm = 0;
3638 }
3639
3640 /* If parm was passed in memory, and we need to convert it on entry,
3641 don't store it back in that same slot. */
3642 if (entry_parm != 0
3643 && nominal_mode != BLKmode && nominal_mode != passed_mode)
3644 stack_parm = 0;
3645
3646 #if 0
3647 /* Now adjust STACK_PARM to the mode and precise location
3648 where this parameter should live during execution,
3649 if we discover that it must live in the stack during execution.
3650 To make debuggers happier on big-endian machines, we store
3651 the value in the last bytes of the space available. */
3652
3653 if (nominal_mode != BLKmode && nominal_mode != passed_mode
3654 && stack_parm != 0)
3655 {
3656 rtx offset_rtx;
3657
3658 if (BYTES_BIG_ENDIAN
3659 && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
3660 stack_offset.constant += (GET_MODE_SIZE (passed_mode)
3661 - GET_MODE_SIZE (nominal_mode));
3662
3663 offset_rtx = ARGS_SIZE_RTX (stack_offset);
3664 if (offset_rtx == const0_rtx)
3665 stack_parm = gen_rtx (MEM, nominal_mode, internal_arg_pointer);
3666 else
3667 stack_parm = gen_rtx (MEM, nominal_mode,
3668 gen_rtx (PLUS, Pmode,
3669 internal_arg_pointer, offset_rtx));
3670
3671 /* If this is a memory ref that contains aggregate components,
3672 mark it as such for cse and loop optimize. */
3673 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3674 }
3675 #endif /* 0 */
3676
3677 #ifdef STACK_REGS
3678 /* We need this "use" info, because the gcc-register->stack-register
3679 converter in reg-stack.c needs to know which registers are active
3680 at the start of the function call. The actual parameter loading
3681 instructions are not always available then anymore, since they might
3682 have been optimised away. */
3683
3684 if (GET_CODE (entry_parm) == REG && !(hide_last_arg && last_named))
3685 emit_insn (gen_rtx (USE, GET_MODE (entry_parm), entry_parm));
3686 #endif
3687
3688 /* ENTRY_PARM is an RTX for the parameter as it arrives,
3689 in the mode in which it arrives.
3690 STACK_PARM is an RTX for a stack slot where the parameter can live
3691 during the function (in case we want to put it there).
3692 STACK_PARM is 0 if no stack slot was pushed for it.
3693
3694 Now output code if necessary to convert ENTRY_PARM to
3695 the type in which this function declares it,
3696 and store that result in an appropriate place,
3697 which may be a pseudo reg, may be STACK_PARM,
3698 or may be a local stack slot if STACK_PARM is 0.
3699
3700 Set DECL_RTL to that place. */
3701
3702 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
3703 {
3704 /* If a BLKmode arrives in registers, copy it to a stack slot.
3705 Handle calls that pass values in multiple non-contiguous
3706 locations. The Irix 6 ABI has examples of this. */
3707 if (GET_CODE (entry_parm) == REG
3708 || GET_CODE (entry_parm) == PARALLEL)
3709 {
3710 int size_stored
3711 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
3712 UNITS_PER_WORD);
3713
3714 /* Note that we will be storing an integral number of words.
3715 So we have to be careful to ensure that we allocate an
3716 integral number of words. We do this below in the
3717 assign_stack_local if space was not allocated in the argument
3718 list. If it was, this will not work if PARM_BOUNDARY is not
3719 a multiple of BITS_PER_WORD. It isn't clear how to fix this
3720 if it becomes a problem. */
3721
3722 if (stack_parm == 0)
3723 {
3724 stack_parm
3725 = assign_stack_local (GET_MODE (entry_parm),
3726 size_stored, 0);
3727
3728 /* If this is a memory ref that contains aggregate
3729 components, mark it as such for cse and loop optimize. */
3730 MEM_IN_STRUCT_P (stack_parm) = aggregate;
3731 }
3732
3733 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
3734 abort ();
3735
3736 if (TREE_READONLY (parm))
3737 RTX_UNCHANGING_P (stack_parm) = 1;
3738
3739 /* Handle calls that pass values in multiple non-contiguous
3740 locations. The Irix 6 ABI has examples of this. */
3741 if (GET_CODE (entry_parm) == PARALLEL)
3742 emit_group_store (validize_mem (stack_parm), entry_parm);
3743 else
3744 move_block_from_reg (REGNO (entry_parm),
3745 validize_mem (stack_parm),
3746 size_stored / UNITS_PER_WORD,
3747 int_size_in_bytes (TREE_TYPE (parm)));
3748 }
3749 DECL_RTL (parm) = stack_parm;
3750 }
3751 else if (! ((obey_regdecls && ! DECL_REGISTER (parm)
3752 && ! DECL_INLINE (fndecl))
3753 /* layout_decl may set this. */
3754 || TREE_ADDRESSABLE (parm)
3755 || TREE_SIDE_EFFECTS (parm)
3756 /* If -ffloat-store specified, don't put explicit
3757 float variables into registers. */
3758 || (flag_float_store
3759 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
3760 /* Always assign pseudo to structure return or item passed
3761 by invisible reference. */
3762 || passed_pointer || parm == function_result_decl)
3763 {
3764 /* Store the parm in a pseudoregister during the function, but we
3765 may need to do it in a wider mode. */
3766
3767 register rtx parmreg;
3768 int regno, regnoi, regnor;
3769
3770 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
3771
3772 promoted_nominal_mode
3773 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
3774
3775 parmreg = gen_reg_rtx (promoted_nominal_mode);
3776 mark_user_reg (parmreg);
3777
3778 /* If this was an item that we received a pointer to, set DECL_RTL
3779 appropriately. */
3780 if (passed_pointer)
3781 {
3782 DECL_RTL (parm)
3783 = gen_rtx (MEM, TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
3784 MEM_IN_STRUCT_P (DECL_RTL (parm)) = aggregate;
3785 }
3786 else
3787 DECL_RTL (parm) = parmreg;
3788
3789 /* Copy the value into the register. */
3790 if (nominal_mode != passed_mode
3791 || promoted_nominal_mode != promoted_mode)
3792 {
3793 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3794 mode, by the caller. We now have to convert it to
3795 NOMINAL_MODE, if different. However, PARMREG may be in
3796 a diffent mode than NOMINAL_MODE if it is being stored
3797 promoted.
3798
3799 If ENTRY_PARM is a hard register, it might be in a register
3800 not valid for operating in its mode (e.g., an odd-numbered
3801 register for a DFmode). In that case, moves are the only
3802 thing valid, so we can't do a convert from there. This
3803 occurs when the calling sequence allow such misaligned
3804 usages.
3805
3806 In addition, the conversion may involve a call, which could
3807 clobber parameters which haven't been copied to pseudo
3808 registers yet. Therefore, we must first copy the parm to
3809 a pseudo reg here, and save the conversion until after all
3810 parameters have been moved. */
3811
3812 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
3813
3814 emit_move_insn (tempreg, validize_mem (entry_parm));
3815
3816 push_to_sequence (conversion_insns);
3817 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
3818
3819 expand_assignment (parm,
3820 make_tree (nominal_type, tempreg), 0, 0);
3821 conversion_insns = get_insns ();
3822 did_conversion = 1;
3823 end_sequence ();
3824 }
3825 else
3826 emit_move_insn (parmreg, validize_mem (entry_parm));
3827
3828 /* If we were passed a pointer but the actual value
3829 can safely live in a register, put it in one. */
3830 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3831 && ! ((obey_regdecls && ! DECL_REGISTER (parm)
3832 && ! DECL_INLINE (fndecl))
3833 /* layout_decl may set this. */
3834 || TREE_ADDRESSABLE (parm)
3835 || TREE_SIDE_EFFECTS (parm)
3836 /* If -ffloat-store specified, don't put explicit
3837 float variables into registers. */
3838 || (flag_float_store
3839 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
3840 {
3841 /* We can't use nominal_mode, because it will have been set to
3842 Pmode above. We must use the actual mode of the parm. */
3843 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3844 mark_user_reg (parmreg);
3845 emit_move_insn (parmreg, DECL_RTL (parm));
3846 DECL_RTL (parm) = parmreg;
3847 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3848 now the parm. */
3849 stack_parm = 0;
3850 }
3851 #ifdef FUNCTION_ARG_CALLEE_COPIES
3852 /* If we are passed an arg by reference and it is our responsibility
3853 to make a copy, do it now.
3854 PASSED_TYPE and PASSED mode now refer to the pointer, not the
3855 original argument, so we must recreate them in the call to
3856 FUNCTION_ARG_CALLEE_COPIES. */
3857 /* ??? Later add code to handle the case that if the argument isn't
3858 modified, don't do the copy. */
3859
3860 else if (passed_pointer
3861 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
3862 TYPE_MODE (DECL_ARG_TYPE (parm)),
3863 DECL_ARG_TYPE (parm),
3864 ! last_named)
3865 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
3866 {
3867 rtx copy;
3868 tree type = DECL_ARG_TYPE (parm);
3869
3870 /* This sequence may involve a library call perhaps clobbering
3871 registers that haven't been copied to pseudos yet. */
3872
3873 push_to_sequence (conversion_insns);
3874
3875 if (TYPE_SIZE (type) == 0
3876 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
3877 /* This is a variable sized object. */
3878 copy = gen_rtx (MEM, BLKmode,
3879 allocate_dynamic_stack_space
3880 (expr_size (parm), NULL_RTX,
3881 TYPE_ALIGN (type)));
3882 else
3883 copy = assign_stack_temp (TYPE_MODE (type),
3884 int_size_in_bytes (type), 1);
3885 MEM_IN_STRUCT_P (copy) = AGGREGATE_TYPE_P (type);
3886
3887 store_expr (parm, copy, 0);
3888 emit_move_insn (parmreg, XEXP (copy, 0));
3889 conversion_insns = get_insns ();
3890 did_conversion = 1;
3891 end_sequence ();
3892 }
3893 #endif /* FUNCTION_ARG_CALLEE_COPIES */
3894
3895 /* In any case, record the parm's desired stack location
3896 in case we later discover it must live in the stack.
3897
3898 If it is a COMPLEX value, store the stack location for both
3899 halves. */
3900
3901 if (GET_CODE (parmreg) == CONCAT)
3902 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
3903 else
3904 regno = REGNO (parmreg);
3905
3906 if (regno >= nparmregs)
3907 {
3908 rtx *new;
3909 int old_nparmregs = nparmregs;
3910
3911 nparmregs = regno + 5;
3912 new = (rtx *) oballoc (nparmregs * sizeof (rtx));
3913 bcopy ((char *) parm_reg_stack_loc, (char *) new,
3914 old_nparmregs * sizeof (rtx));
3915 bzero ((char *) (new + old_nparmregs),
3916 (nparmregs - old_nparmregs) * sizeof (rtx));
3917 parm_reg_stack_loc = new;
3918 }
3919
3920 if (GET_CODE (parmreg) == CONCAT)
3921 {
3922 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
3923
3924 regnor = REGNO (gen_realpart (submode, parmreg));
3925 regnoi = REGNO (gen_imagpart (submode, parmreg));
3926
3927 if (stack_parm != 0)
3928 {
3929 parm_reg_stack_loc[regnor]
3930 = gen_realpart (submode, stack_parm);
3931 parm_reg_stack_loc[regnoi]
3932 = gen_imagpart (submode, stack_parm);
3933 }
3934 else
3935 {
3936 parm_reg_stack_loc[regnor] = 0;
3937 parm_reg_stack_loc[regnoi] = 0;
3938 }
3939 }
3940 else
3941 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
3942
3943 /* Mark the register as eliminable if we did no conversion
3944 and it was copied from memory at a fixed offset,
3945 and the arg pointer was not copied to a pseudo-reg.
3946 If the arg pointer is a pseudo reg or the offset formed
3947 an invalid address, such memory-equivalences
3948 as we make here would screw up life analysis for it. */
3949 if (nominal_mode == passed_mode
3950 && ! did_conversion
3951 && GET_CODE (entry_parm) == MEM
3952 && entry_parm == stack_parm
3953 && stack_offset.var == 0
3954 && reg_mentioned_p (virtual_incoming_args_rtx,
3955 XEXP (entry_parm, 0)))
3956 {
3957 rtx linsn = get_last_insn ();
3958 rtx sinsn, set;
3959
3960 /* Mark complex types separately. */
3961 if (GET_CODE (parmreg) == CONCAT)
3962 /* Scan backwards for the set of the real and
3963 imaginary parts. */
3964 for (sinsn = linsn; sinsn != 0;
3965 sinsn = prev_nonnote_insn (sinsn))
3966 {
3967 set = single_set (sinsn);
3968 if (set != 0
3969 && SET_DEST (set) == regno_reg_rtx [regnoi])
3970 REG_NOTES (sinsn)
3971 = gen_rtx (EXPR_LIST, REG_EQUIV,
3972 parm_reg_stack_loc[regnoi],
3973 REG_NOTES (sinsn));
3974 else if (set != 0
3975 && SET_DEST (set) == regno_reg_rtx [regnor])
3976 REG_NOTES (sinsn)
3977 = gen_rtx (EXPR_LIST, REG_EQUIV,
3978 parm_reg_stack_loc[regnor],
3979 REG_NOTES (sinsn));
3980 }
3981 else if ((set = single_set (linsn)) != 0
3982 && SET_DEST (set) == parmreg)
3983 REG_NOTES (linsn)
3984 = gen_rtx (EXPR_LIST, REG_EQUIV,
3985 entry_parm, REG_NOTES (linsn));
3986 }
3987
3988 /* For pointer data type, suggest pointer register. */
3989 if (TREE_CODE (TREE_TYPE (parm)) == POINTER_TYPE)
3990 mark_reg_pointer (parmreg,
3991 (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))
3992 / BITS_PER_UNIT));
3993 }
3994 else
3995 {
3996 /* Value must be stored in the stack slot STACK_PARM
3997 during function execution. */
3998
3999 if (promoted_mode != nominal_mode)
4000 {
4001 /* Conversion is required. */
4002 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4003
4004 emit_move_insn (tempreg, validize_mem (entry_parm));
4005
4006 push_to_sequence (conversion_insns);
4007 entry_parm = convert_to_mode (nominal_mode, tempreg,
4008 TREE_UNSIGNED (TREE_TYPE (parm)));
4009 conversion_insns = get_insns ();
4010 did_conversion = 1;
4011 end_sequence ();
4012 }
4013
4014 if (entry_parm != stack_parm)
4015 {
4016 if (stack_parm == 0)
4017 {
4018 stack_parm
4019 = assign_stack_local (GET_MODE (entry_parm),
4020 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4021 /* If this is a memory ref that contains aggregate components,
4022 mark it as such for cse and loop optimize. */
4023 MEM_IN_STRUCT_P (stack_parm) = aggregate;
4024 }
4025
4026 if (promoted_mode != nominal_mode)
4027 {
4028 push_to_sequence (conversion_insns);
4029 emit_move_insn (validize_mem (stack_parm),
4030 validize_mem (entry_parm));
4031 conversion_insns = get_insns ();
4032 end_sequence ();
4033 }
4034 else
4035 emit_move_insn (validize_mem (stack_parm),
4036 validize_mem (entry_parm));
4037 }
4038
4039 DECL_RTL (parm) = stack_parm;
4040 }
4041
4042 /* If this "parameter" was the place where we are receiving the
4043 function's incoming structure pointer, set up the result. */
4044 if (parm == function_result_decl)
4045 {
4046 tree result = DECL_RESULT (fndecl);
4047 tree restype = TREE_TYPE (result);
4048
4049 DECL_RTL (result)
4050 = gen_rtx (MEM, DECL_MODE (result), DECL_RTL (parm));
4051
4052 MEM_IN_STRUCT_P (DECL_RTL (result)) = AGGREGATE_TYPE_P (restype);
4053 }
4054
4055 if (TREE_THIS_VOLATILE (parm))
4056 MEM_VOLATILE_P (DECL_RTL (parm)) = 1;
4057 if (TREE_READONLY (parm))
4058 RTX_UNCHANGING_P (DECL_RTL (parm)) = 1;
4059 }
4060
4061 /* Output all parameter conversion instructions (possibly including calls)
4062 now that all parameters have been copied out of hard registers. */
4063 emit_insns (conversion_insns);
4064
4065 max_parm_reg = max_reg_num ();
4066 last_parm_insn = get_last_insn ();
4067
4068 current_function_args_size = stack_args_size.constant;
4069
4070 /* Adjust function incoming argument size for alignment and
4071 minimum length. */
4072
4073 #ifdef REG_PARM_STACK_SPACE
4074 #ifndef MAYBE_REG_PARM_STACK_SPACE
4075 current_function_args_size = MAX (current_function_args_size,
4076 REG_PARM_STACK_SPACE (fndecl));
4077 #endif
4078 #endif
4079
4080 #ifdef STACK_BOUNDARY
4081 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4082
4083 current_function_args_size
4084 = ((current_function_args_size + STACK_BYTES - 1)
4085 / STACK_BYTES) * STACK_BYTES;
4086 #endif
4087
4088 #ifdef ARGS_GROW_DOWNWARD
4089 current_function_arg_offset_rtx
4090 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4091 : expand_expr (size_binop (MINUS_EXPR, stack_args_size.var,
4092 size_int (-stack_args_size.constant)),
4093 NULL_RTX, VOIDmode, 0));
4094 #else
4095 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4096 #endif
4097
4098 /* See how many bytes, if any, of its args a function should try to pop
4099 on return. */
4100
4101 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4102 current_function_args_size);
4103
4104 /* For stdarg.h function, save info about
4105 regs and stack space used by the named args. */
4106
4107 if (!hide_last_arg)
4108 current_function_args_info = args_so_far;
4109
4110 /* Set the rtx used for the function return value. Put this in its
4111 own variable so any optimizers that need this information don't have
4112 to include tree.h. Do this here so it gets done when an inlined
4113 function gets output. */
4114
4115 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4116 }
4117 \f
4118 /* Indicate whether REGNO is an incoming argument to the current function
4119 that was promoted to a wider mode. If so, return the RTX for the
4120 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4121 that REGNO is promoted from and whether the promotion was signed or
4122 unsigned. */
4123
4124 #ifdef PROMOTE_FUNCTION_ARGS
4125
4126 rtx
4127 promoted_input_arg (regno, pmode, punsignedp)
4128 int regno;
4129 enum machine_mode *pmode;
4130 int *punsignedp;
4131 {
4132 tree arg;
4133
4134 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4135 arg = TREE_CHAIN (arg))
4136 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4137 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4138 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4139 {
4140 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4141 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4142
4143 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4144 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4145 && mode != DECL_MODE (arg))
4146 {
4147 *pmode = DECL_MODE (arg);
4148 *punsignedp = unsignedp;
4149 return DECL_INCOMING_RTL (arg);
4150 }
4151 }
4152
4153 return 0;
4154 }
4155
4156 #endif
4157 \f
4158 /* Compute the size and offset from the start of the stacked arguments for a
4159 parm passed in mode PASSED_MODE and with type TYPE.
4160
4161 INITIAL_OFFSET_PTR points to the current offset into the stacked
4162 arguments.
4163
4164 The starting offset and size for this parm are returned in *OFFSET_PTR
4165 and *ARG_SIZE_PTR, respectively.
4166
4167 IN_REGS is non-zero if the argument will be passed in registers. It will
4168 never be set if REG_PARM_STACK_SPACE is not defined.
4169
4170 FNDECL is the function in which the argument was defined.
4171
4172 There are two types of rounding that are done. The first, controlled by
4173 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4174 list to be aligned to the specific boundary (in bits). This rounding
4175 affects the initial and starting offsets, but not the argument size.
4176
4177 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4178 optionally rounds the size of the parm to PARM_BOUNDARY. The
4179 initial offset is not affected by this rounding, while the size always
4180 is and the starting offset may be. */
4181
4182 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4183 initial_offset_ptr is positive because locate_and_pad_parm's
4184 callers pass in the total size of args so far as
4185 initial_offset_ptr. arg_size_ptr is always positive.*/
4186
4187 void
4188 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4189 initial_offset_ptr, offset_ptr, arg_size_ptr)
4190 enum machine_mode passed_mode;
4191 tree type;
4192 int in_regs;
4193 tree fndecl;
4194 struct args_size *initial_offset_ptr;
4195 struct args_size *offset_ptr;
4196 struct args_size *arg_size_ptr;
4197 {
4198 tree sizetree
4199 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4200 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4201 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
4202 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4203 int reg_parm_stack_space = 0;
4204
4205 #ifdef REG_PARM_STACK_SPACE
4206 /* If we have found a stack parm before we reach the end of the
4207 area reserved for registers, skip that area. */
4208 if (! in_regs)
4209 {
4210 #ifdef MAYBE_REG_PARM_STACK_SPACE
4211 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4212 #else
4213 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4214 #endif
4215 if (reg_parm_stack_space > 0)
4216 {
4217 if (initial_offset_ptr->var)
4218 {
4219 initial_offset_ptr->var
4220 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4221 size_int (reg_parm_stack_space));
4222 initial_offset_ptr->constant = 0;
4223 }
4224 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4225 initial_offset_ptr->constant = reg_parm_stack_space;
4226 }
4227 }
4228 #endif /* REG_PARM_STACK_SPACE */
4229
4230 arg_size_ptr->var = 0;
4231 arg_size_ptr->constant = 0;
4232
4233 #ifdef ARGS_GROW_DOWNWARD
4234 if (initial_offset_ptr->var)
4235 {
4236 offset_ptr->constant = 0;
4237 offset_ptr->var = size_binop (MINUS_EXPR, integer_zero_node,
4238 initial_offset_ptr->var);
4239 }
4240 else
4241 {
4242 offset_ptr->constant = - initial_offset_ptr->constant;
4243 offset_ptr->var = 0;
4244 }
4245 if (where_pad != none
4246 && (TREE_CODE (sizetree) != INTEGER_CST
4247 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
4248 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4249 SUB_PARM_SIZE (*offset_ptr, sizetree);
4250 if (where_pad != downward)
4251 pad_to_arg_alignment (offset_ptr, boundary);
4252 if (initial_offset_ptr->var)
4253 {
4254 arg_size_ptr->var = size_binop (MINUS_EXPR,
4255 size_binop (MINUS_EXPR,
4256 integer_zero_node,
4257 initial_offset_ptr->var),
4258 offset_ptr->var);
4259 }
4260 else
4261 {
4262 arg_size_ptr->constant = (- initial_offset_ptr->constant -
4263 offset_ptr->constant);
4264 }
4265 #else /* !ARGS_GROW_DOWNWARD */
4266 pad_to_arg_alignment (initial_offset_ptr, boundary);
4267 *offset_ptr = *initial_offset_ptr;
4268
4269 #ifdef PUSH_ROUNDING
4270 if (passed_mode != BLKmode)
4271 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4272 #endif
4273
4274 /* Pad_below needs the pre-rounded size to know how much to pad below
4275 so this must be done before rounding up. */
4276 if (where_pad == downward
4277 /* However, BLKmode args passed in regs have their padding done elsewhere.
4278 The stack slot must be able to hold the entire register. */
4279 && !(in_regs && passed_mode == BLKmode))
4280 pad_below (offset_ptr, passed_mode, sizetree);
4281
4282 if (where_pad != none
4283 && (TREE_CODE (sizetree) != INTEGER_CST
4284 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
4285 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4286
4287 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
4288 #endif /* ARGS_GROW_DOWNWARD */
4289 }
4290
4291 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4292 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4293
4294 static void
4295 pad_to_arg_alignment (offset_ptr, boundary)
4296 struct args_size *offset_ptr;
4297 int boundary;
4298 {
4299 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4300
4301 if (boundary > BITS_PER_UNIT)
4302 {
4303 if (offset_ptr->var)
4304 {
4305 offset_ptr->var =
4306 #ifdef ARGS_GROW_DOWNWARD
4307 round_down
4308 #else
4309 round_up
4310 #endif
4311 (ARGS_SIZE_TREE (*offset_ptr),
4312 boundary / BITS_PER_UNIT);
4313 offset_ptr->constant = 0; /*?*/
4314 }
4315 else
4316 offset_ptr->constant =
4317 #ifdef ARGS_GROW_DOWNWARD
4318 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
4319 #else
4320 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
4321 #endif
4322 }
4323 }
4324
4325 static void
4326 pad_below (offset_ptr, passed_mode, sizetree)
4327 struct args_size *offset_ptr;
4328 enum machine_mode passed_mode;
4329 tree sizetree;
4330 {
4331 if (passed_mode != BLKmode)
4332 {
4333 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4334 offset_ptr->constant
4335 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4336 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4337 - GET_MODE_SIZE (passed_mode));
4338 }
4339 else
4340 {
4341 if (TREE_CODE (sizetree) != INTEGER_CST
4342 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4343 {
4344 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4345 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4346 /* Add it in. */
4347 ADD_PARM_SIZE (*offset_ptr, s2);
4348 SUB_PARM_SIZE (*offset_ptr, sizetree);
4349 }
4350 }
4351 }
4352
4353 static tree
4354 round_down (value, divisor)
4355 tree value;
4356 int divisor;
4357 {
4358 return size_binop (MULT_EXPR,
4359 size_binop (FLOOR_DIV_EXPR, value, size_int (divisor)),
4360 size_int (divisor));
4361 }
4362 \f
4363 /* Walk the tree of blocks describing the binding levels within a function
4364 and warn about uninitialized variables.
4365 This is done after calling flow_analysis and before global_alloc
4366 clobbers the pseudo-regs to hard regs. */
4367
4368 void
4369 uninitialized_vars_warning (block)
4370 tree block;
4371 {
4372 register tree decl, sub;
4373 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
4374 {
4375 if (TREE_CODE (decl) == VAR_DECL
4376 /* These warnings are unreliable for and aggregates
4377 because assigning the fields one by one can fail to convince
4378 flow.c that the entire aggregate was initialized.
4379 Unions are troublesome because members may be shorter. */
4380 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
4381 && DECL_RTL (decl) != 0
4382 && GET_CODE (DECL_RTL (decl)) == REG
4383 && regno_uninitialized (REGNO (DECL_RTL (decl))))
4384 warning_with_decl (decl,
4385 "`%s' might be used uninitialized in this function");
4386 if (TREE_CODE (decl) == VAR_DECL
4387 && DECL_RTL (decl) != 0
4388 && GET_CODE (DECL_RTL (decl)) == REG
4389 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
4390 warning_with_decl (decl,
4391 "variable `%s' might be clobbered by `longjmp' or `vfork'");
4392 }
4393 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
4394 uninitialized_vars_warning (sub);
4395 }
4396
4397 /* Do the appropriate part of uninitialized_vars_warning
4398 but for arguments instead of local variables. */
4399
4400 void
4401 setjmp_args_warning ()
4402 {
4403 register tree decl;
4404 for (decl = DECL_ARGUMENTS (current_function_decl);
4405 decl; decl = TREE_CHAIN (decl))
4406 if (DECL_RTL (decl) != 0
4407 && GET_CODE (DECL_RTL (decl)) == REG
4408 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
4409 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
4410 }
4411
4412 /* If this function call setjmp, put all vars into the stack
4413 unless they were declared `register'. */
4414
4415 void
4416 setjmp_protect (block)
4417 tree block;
4418 {
4419 register tree decl, sub;
4420 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
4421 if ((TREE_CODE (decl) == VAR_DECL
4422 || TREE_CODE (decl) == PARM_DECL)
4423 && DECL_RTL (decl) != 0
4424 && GET_CODE (DECL_RTL (decl)) == REG
4425 /* If this variable came from an inline function, it must be
4426 that it's life doesn't overlap the setjmp. If there was a
4427 setjmp in the function, it would already be in memory. We
4428 must exclude such variable because their DECL_RTL might be
4429 set to strange things such as virtual_stack_vars_rtx. */
4430 && ! DECL_FROM_INLINE (decl)
4431 && (
4432 #ifdef NON_SAVING_SETJMP
4433 /* If longjmp doesn't restore the registers,
4434 don't put anything in them. */
4435 NON_SAVING_SETJMP
4436 ||
4437 #endif
4438 ! DECL_REGISTER (decl)))
4439 put_var_into_stack (decl);
4440 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
4441 setjmp_protect (sub);
4442 }
4443 \f
4444 /* Like the previous function, but for args instead of local variables. */
4445
4446 void
4447 setjmp_protect_args ()
4448 {
4449 register tree decl, sub;
4450 for (decl = DECL_ARGUMENTS (current_function_decl);
4451 decl; decl = TREE_CHAIN (decl))
4452 if ((TREE_CODE (decl) == VAR_DECL
4453 || TREE_CODE (decl) == PARM_DECL)
4454 && DECL_RTL (decl) != 0
4455 && GET_CODE (DECL_RTL (decl)) == REG
4456 && (
4457 /* If longjmp doesn't restore the registers,
4458 don't put anything in them. */
4459 #ifdef NON_SAVING_SETJMP
4460 NON_SAVING_SETJMP
4461 ||
4462 #endif
4463 ! DECL_REGISTER (decl)))
4464 put_var_into_stack (decl);
4465 }
4466 \f
4467 /* Return the context-pointer register corresponding to DECL,
4468 or 0 if it does not need one. */
4469
4470 rtx
4471 lookup_static_chain (decl)
4472 tree decl;
4473 {
4474 tree context = decl_function_context (decl);
4475 tree link;
4476
4477 if (context == 0
4478 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
4479 return 0;
4480
4481 /* We treat inline_function_decl as an alias for the current function
4482 because that is the inline function whose vars, types, etc.
4483 are being merged into the current function.
4484 See expand_inline_function. */
4485 if (context == current_function_decl || context == inline_function_decl)
4486 return virtual_stack_vars_rtx;
4487
4488 for (link = context_display; link; link = TREE_CHAIN (link))
4489 if (TREE_PURPOSE (link) == context)
4490 return RTL_EXPR_RTL (TREE_VALUE (link));
4491
4492 abort ();
4493 }
4494 \f
4495 /* Convert a stack slot address ADDR for variable VAR
4496 (from a containing function)
4497 into an address valid in this function (using a static chain). */
4498
4499 rtx
4500 fix_lexical_addr (addr, var)
4501 rtx addr;
4502 tree var;
4503 {
4504 rtx basereg;
4505 int displacement;
4506 tree context = decl_function_context (var);
4507 struct function *fp;
4508 rtx base = 0;
4509
4510 /* If this is the present function, we need not do anything. */
4511 if (context == current_function_decl || context == inline_function_decl)
4512 return addr;
4513
4514 for (fp = outer_function_chain; fp; fp = fp->next)
4515 if (fp->decl == context)
4516 break;
4517
4518 if (fp == 0)
4519 abort ();
4520
4521 /* Decode given address as base reg plus displacement. */
4522 if (GET_CODE (addr) == REG)
4523 basereg = addr, displacement = 0;
4524 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
4525 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
4526 else
4527 abort ();
4528
4529 /* We accept vars reached via the containing function's
4530 incoming arg pointer and via its stack variables pointer. */
4531 if (basereg == fp->internal_arg_pointer)
4532 {
4533 /* If reached via arg pointer, get the arg pointer value
4534 out of that function's stack frame.
4535
4536 There are two cases: If a separate ap is needed, allocate a
4537 slot in the outer function for it and dereference it that way.
4538 This is correct even if the real ap is actually a pseudo.
4539 Otherwise, just adjust the offset from the frame pointer to
4540 compensate. */
4541
4542 #ifdef NEED_SEPARATE_AP
4543 rtx addr;
4544
4545 if (fp->arg_pointer_save_area == 0)
4546 fp->arg_pointer_save_area
4547 = assign_outer_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
4548
4549 addr = fix_lexical_addr (XEXP (fp->arg_pointer_save_area, 0), var);
4550 addr = memory_address (Pmode, addr);
4551
4552 base = copy_to_reg (gen_rtx (MEM, Pmode, addr));
4553 #else
4554 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
4555 base = lookup_static_chain (var);
4556 #endif
4557 }
4558
4559 else if (basereg == virtual_stack_vars_rtx)
4560 {
4561 /* This is the same code as lookup_static_chain, duplicated here to
4562 avoid an extra call to decl_function_context. */
4563 tree link;
4564
4565 for (link = context_display; link; link = TREE_CHAIN (link))
4566 if (TREE_PURPOSE (link) == context)
4567 {
4568 base = RTL_EXPR_RTL (TREE_VALUE (link));
4569 break;
4570 }
4571 }
4572
4573 if (base == 0)
4574 abort ();
4575
4576 /* Use same offset, relative to appropriate static chain or argument
4577 pointer. */
4578 return plus_constant (base, displacement);
4579 }
4580 \f
4581 /* Return the address of the trampoline for entering nested fn FUNCTION.
4582 If necessary, allocate a trampoline (in the stack frame)
4583 and emit rtl to initialize its contents (at entry to this function). */
4584
4585 rtx
4586 trampoline_address (function)
4587 tree function;
4588 {
4589 tree link;
4590 tree rtlexp;
4591 rtx tramp;
4592 struct function *fp;
4593 tree fn_context;
4594
4595 /* Find an existing trampoline and return it. */
4596 for (link = trampoline_list; link; link = TREE_CHAIN (link))
4597 if (TREE_PURPOSE (link) == function)
4598 return
4599 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
4600
4601 for (fp = outer_function_chain; fp; fp = fp->next)
4602 for (link = fp->trampoline_list; link; link = TREE_CHAIN (link))
4603 if (TREE_PURPOSE (link) == function)
4604 {
4605 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
4606 function);
4607 return round_trampoline_addr (tramp);
4608 }
4609
4610 /* None exists; we must make one. */
4611
4612 /* Find the `struct function' for the function containing FUNCTION. */
4613 fp = 0;
4614 fn_context = decl_function_context (function);
4615 if (fn_context != current_function_decl)
4616 for (fp = outer_function_chain; fp; fp = fp->next)
4617 if (fp->decl == fn_context)
4618 break;
4619
4620 /* Allocate run-time space for this trampoline
4621 (usually in the defining function's stack frame). */
4622 #ifdef ALLOCATE_TRAMPOLINE
4623 tramp = ALLOCATE_TRAMPOLINE (fp);
4624 #else
4625 /* If rounding needed, allocate extra space
4626 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
4627 #ifdef TRAMPOLINE_ALIGNMENT
4628 #define TRAMPOLINE_REAL_SIZE \
4629 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
4630 #else
4631 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
4632 #endif
4633 if (fp != 0)
4634 tramp = assign_outer_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0, fp);
4635 else
4636 tramp = assign_stack_local (BLKmode, TRAMPOLINE_REAL_SIZE, 0);
4637 #endif
4638
4639 /* Record the trampoline for reuse and note it for later initialization
4640 by expand_function_end. */
4641 if (fp != 0)
4642 {
4643 push_obstacks (fp->function_maybepermanent_obstack,
4644 fp->function_maybepermanent_obstack);
4645 rtlexp = make_node (RTL_EXPR);
4646 RTL_EXPR_RTL (rtlexp) = tramp;
4647 fp->trampoline_list = tree_cons (function, rtlexp, fp->trampoline_list);
4648 pop_obstacks ();
4649 }
4650 else
4651 {
4652 /* Make the RTL_EXPR node temporary, not momentary, so that the
4653 trampoline_list doesn't become garbage. */
4654 int momentary = suspend_momentary ();
4655 rtlexp = make_node (RTL_EXPR);
4656 resume_momentary (momentary);
4657
4658 RTL_EXPR_RTL (rtlexp) = tramp;
4659 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
4660 }
4661
4662 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
4663 return round_trampoline_addr (tramp);
4664 }
4665
4666 /* Given a trampoline address,
4667 round it to multiple of TRAMPOLINE_ALIGNMENT. */
4668
4669 static rtx
4670 round_trampoline_addr (tramp)
4671 rtx tramp;
4672 {
4673 #ifdef TRAMPOLINE_ALIGNMENT
4674 /* Round address up to desired boundary. */
4675 rtx temp = gen_reg_rtx (Pmode);
4676 temp = expand_binop (Pmode, add_optab, tramp,
4677 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
4678 temp, 0, OPTAB_LIB_WIDEN);
4679 tramp = expand_binop (Pmode, and_optab, temp,
4680 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
4681 temp, 0, OPTAB_LIB_WIDEN);
4682 #endif
4683 return tramp;
4684 }
4685 \f
4686 /* The functions identify_blocks and reorder_blocks provide a way to
4687 reorder the tree of BLOCK nodes, for optimizers that reshuffle or
4688 duplicate portions of the RTL code. Call identify_blocks before
4689 changing the RTL, and call reorder_blocks after. */
4690
4691 /* Put all this function's BLOCK nodes including those that are chained
4692 onto the first block into a vector, and return it.
4693 Also store in each NOTE for the beginning or end of a block
4694 the index of that block in the vector.
4695 The arguments are BLOCK, the chain of top-level blocks of the function,
4696 and INSNS, the insn chain of the function. */
4697
4698 tree *
4699 identify_blocks (block, insns)
4700 tree block;
4701 rtx insns;
4702 {
4703 int n_blocks;
4704 tree *block_vector;
4705 int *block_stack;
4706 int depth = 0;
4707 int next_block_number = 1;
4708 int current_block_number = 1;
4709 rtx insn;
4710
4711 if (block == 0)
4712 return 0;
4713
4714 n_blocks = all_blocks (block, 0);
4715 block_vector = (tree *) xmalloc (n_blocks * sizeof (tree));
4716 block_stack = (int *) alloca (n_blocks * sizeof (int));
4717
4718 all_blocks (block, block_vector);
4719
4720 for (insn = insns; insn; insn = NEXT_INSN (insn))
4721 if (GET_CODE (insn) == NOTE)
4722 {
4723 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
4724 {
4725 block_stack[depth++] = current_block_number;
4726 current_block_number = next_block_number;
4727 NOTE_BLOCK_NUMBER (insn) = next_block_number++;
4728 }
4729 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
4730 {
4731 current_block_number = block_stack[--depth];
4732 NOTE_BLOCK_NUMBER (insn) = current_block_number;
4733 }
4734 }
4735
4736 if (n_blocks != next_block_number)
4737 abort ();
4738
4739 return block_vector;
4740 }
4741
4742 /* Given BLOCK_VECTOR which was returned by identify_blocks,
4743 and a revised instruction chain, rebuild the tree structure
4744 of BLOCK nodes to correspond to the new order of RTL.
4745 The new block tree is inserted below TOP_BLOCK.
4746 Returns the current top-level block. */
4747
4748 tree
4749 reorder_blocks (block_vector, block, insns)
4750 tree *block_vector;
4751 tree block;
4752 rtx insns;
4753 {
4754 tree current_block = block;
4755 rtx insn;
4756
4757 if (block_vector == 0)
4758 return block;
4759
4760 /* Prune the old trees away, so that it doesn't get in the way. */
4761 BLOCK_SUBBLOCKS (current_block) = 0;
4762 BLOCK_CHAIN (current_block) = 0;
4763
4764 for (insn = insns; insn; insn = NEXT_INSN (insn))
4765 if (GET_CODE (insn) == NOTE)
4766 {
4767 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
4768 {
4769 tree block = block_vector[NOTE_BLOCK_NUMBER (insn)];
4770 /* If we have seen this block before, copy it. */
4771 if (TREE_ASM_WRITTEN (block))
4772 block = copy_node (block);
4773 BLOCK_SUBBLOCKS (block) = 0;
4774 TREE_ASM_WRITTEN (block) = 1;
4775 BLOCK_SUPERCONTEXT (block) = current_block;
4776 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4777 BLOCK_SUBBLOCKS (current_block) = block;
4778 current_block = block;
4779 NOTE_SOURCE_FILE (insn) = 0;
4780 }
4781 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
4782 {
4783 BLOCK_SUBBLOCKS (current_block)
4784 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
4785 current_block = BLOCK_SUPERCONTEXT (current_block);
4786 NOTE_SOURCE_FILE (insn) = 0;
4787 }
4788 }
4789
4790 BLOCK_SUBBLOCKS (current_block)
4791 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
4792 return current_block;
4793 }
4794
4795 /* Reverse the order of elements in the chain T of blocks,
4796 and return the new head of the chain (old last element). */
4797
4798 static tree
4799 blocks_nreverse (t)
4800 tree t;
4801 {
4802 register tree prev = 0, decl, next;
4803 for (decl = t; decl; decl = next)
4804 {
4805 next = BLOCK_CHAIN (decl);
4806 BLOCK_CHAIN (decl) = prev;
4807 prev = decl;
4808 }
4809 return prev;
4810 }
4811
4812 /* Count the subblocks of the list starting with BLOCK, and list them
4813 all into the vector VECTOR. Also clear TREE_ASM_WRITTEN in all
4814 blocks. */
4815
4816 static int
4817 all_blocks (block, vector)
4818 tree block;
4819 tree *vector;
4820 {
4821 int n_blocks = 0;
4822
4823 while (block)
4824 {
4825 TREE_ASM_WRITTEN (block) = 0;
4826
4827 /* Record this block. */
4828 if (vector)
4829 vector[n_blocks] = block;
4830
4831 ++n_blocks;
4832
4833 /* Record the subblocks, and their subblocks... */
4834 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4835 vector ? vector + n_blocks : 0);
4836 block = BLOCK_CHAIN (block);
4837 }
4838
4839 return n_blocks;
4840 }
4841 \f
4842 /* Build bytecode call descriptor for function SUBR. */
4843
4844 rtx
4845 bc_build_calldesc (subr)
4846 tree subr;
4847 {
4848 tree calldesc = 0, arg;
4849 int nargs = 0;
4850
4851 /* Build the argument description vector in reverse order. */
4852 DECL_ARGUMENTS (subr) = nreverse (DECL_ARGUMENTS (subr));
4853 nargs = 0;
4854
4855 for (arg = DECL_ARGUMENTS (subr); arg; arg = TREE_CHAIN (arg))
4856 {
4857 ++nargs;
4858
4859 calldesc = tree_cons ((tree) 0, size_in_bytes (TREE_TYPE (arg)), calldesc);
4860 calldesc = tree_cons ((tree) 0, bc_runtime_type_code (TREE_TYPE (arg)), calldesc);
4861 }
4862
4863 DECL_ARGUMENTS (subr) = nreverse (DECL_ARGUMENTS (subr));
4864
4865 /* Prepend the function's return type. */
4866 calldesc = tree_cons ((tree) 0,
4867 size_in_bytes (TREE_TYPE (TREE_TYPE (subr))),
4868 calldesc);
4869
4870 calldesc = tree_cons ((tree) 0,
4871 bc_runtime_type_code (TREE_TYPE (TREE_TYPE (subr))),
4872 calldesc);
4873
4874 /* Prepend the arg count. */
4875 calldesc = tree_cons ((tree) 0, build_int_2 (nargs, 0), calldesc);
4876
4877 /* Output the call description vector and get its address. */
4878 calldesc = build_nt (CONSTRUCTOR, (tree) 0, calldesc);
4879 TREE_TYPE (calldesc) = build_array_type (integer_type_node,
4880 build_index_type (build_int_2 (nargs * 2, 0)));
4881
4882 return output_constant_def (calldesc);
4883 }
4884
4885
4886 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4887 and initialize static variables for generating RTL for the statements
4888 of the function. */
4889
4890 void
4891 init_function_start (subr, filename, line)
4892 tree subr;
4893 char *filename;
4894 int line;
4895 {
4896 char *junk;
4897
4898 if (output_bytecode)
4899 {
4900 this_function_decl = subr;
4901 this_function_calldesc = bc_build_calldesc (subr);
4902 local_vars_size = 0;
4903 stack_depth = 0;
4904 max_stack_depth = 0;
4905 stmt_expr_depth = 0;
4906 return;
4907 }
4908
4909 init_stmt_for_function ();
4910
4911 cse_not_expected = ! optimize;
4912
4913 /* Caller save not needed yet. */
4914 caller_save_needed = 0;
4915
4916 /* No stack slots have been made yet. */
4917 stack_slot_list = 0;
4918
4919 /* There is no stack slot for handling nonlocal gotos. */
4920 nonlocal_goto_handler_slot = 0;
4921 nonlocal_goto_stack_level = 0;
4922
4923 /* No labels have been declared for nonlocal use. */
4924 nonlocal_labels = 0;
4925
4926 /* No function calls so far in this function. */
4927 function_call_count = 0;
4928
4929 /* No parm regs have been allocated.
4930 (This is important for output_inline_function.) */
4931 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4932
4933 /* Initialize the RTL mechanism. */
4934 init_emit ();
4935
4936 /* Initialize the queue of pending postincrement and postdecrements,
4937 and some other info in expr.c. */
4938 init_expr ();
4939
4940 /* We haven't done register allocation yet. */
4941 reg_renumber = 0;
4942
4943 init_const_rtx_hash_table ();
4944
4945 current_function_name = (*decl_printable_name) (subr, &junk);
4946
4947 /* Nonzero if this is a nested function that uses a static chain. */
4948
4949 current_function_needs_context
4950 = (decl_function_context (current_function_decl) != 0
4951 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
4952
4953 /* Set if a call to setjmp is seen. */
4954 current_function_calls_setjmp = 0;
4955
4956 /* Set if a call to longjmp is seen. */
4957 current_function_calls_longjmp = 0;
4958
4959 current_function_calls_alloca = 0;
4960 current_function_has_nonlocal_label = 0;
4961 current_function_has_nonlocal_goto = 0;
4962 current_function_contains_functions = 0;
4963
4964 current_function_returns_pcc_struct = 0;
4965 current_function_returns_struct = 0;
4966 current_function_epilogue_delay_list = 0;
4967 current_function_uses_const_pool = 0;
4968 current_function_uses_pic_offset_table = 0;
4969
4970 /* We have not yet needed to make a label to jump to for tail-recursion. */
4971 tail_recursion_label = 0;
4972
4973 /* We haven't had a need to make a save area for ap yet. */
4974
4975 arg_pointer_save_area = 0;
4976
4977 /* No stack slots allocated yet. */
4978 frame_offset = 0;
4979
4980 /* No SAVE_EXPRs in this function yet. */
4981 save_expr_regs = 0;
4982
4983 /* No RTL_EXPRs in this function yet. */
4984 rtl_expr_chain = 0;
4985
4986 /* Set up to allocate temporaries. */
4987 init_temp_slots ();
4988
4989 /* Within function body, compute a type's size as soon it is laid out. */
4990 immediate_size_expand++;
4991
4992 /* We haven't made any trampolines for this function yet. */
4993 trampoline_list = 0;
4994
4995 init_pending_stack_adjust ();
4996 inhibit_defer_pop = 0;
4997
4998 current_function_outgoing_args_size = 0;
4999
5000 /* Prevent ever trying to delete the first instruction of a function.
5001 Also tell final how to output a linenum before the function prologue. */
5002 emit_line_note (filename, line);
5003
5004 /* Make sure first insn is a note even if we don't want linenums.
5005 This makes sure the first insn will never be deleted.
5006 Also, final expects a note to appear there. */
5007 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5008
5009 /* Set flags used by final.c. */
5010 if (aggregate_value_p (DECL_RESULT (subr)))
5011 {
5012 #ifdef PCC_STATIC_STRUCT_RETURN
5013 current_function_returns_pcc_struct = 1;
5014 #endif
5015 current_function_returns_struct = 1;
5016 }
5017
5018 /* Warn if this value is an aggregate type,
5019 regardless of which calling convention we are using for it. */
5020 if (warn_aggregate_return
5021 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5022 warning ("function returns an aggregate");
5023
5024 current_function_returns_pointer
5025 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5026
5027 /* Indicate that we need to distinguish between the return value of the
5028 present function and the return value of a function being called. */
5029 rtx_equal_function_value_matters = 1;
5030
5031 /* Indicate that we have not instantiated virtual registers yet. */
5032 virtuals_instantiated = 0;
5033
5034 /* Indicate we have no need of a frame pointer yet. */
5035 frame_pointer_needed = 0;
5036
5037 /* By default assume not varargs or stdarg. */
5038 current_function_varargs = 0;
5039 current_function_stdarg = 0;
5040 }
5041
5042 /* Indicate that the current function uses extra args
5043 not explicitly mentioned in the argument list in any fashion. */
5044
5045 void
5046 mark_varargs ()
5047 {
5048 current_function_varargs = 1;
5049 }
5050
5051 /* Expand a call to __main at the beginning of a possible main function. */
5052
5053 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
5054 #undef HAS_INIT_SECTION
5055 #define HAS_INIT_SECTION
5056 #endif
5057
5058 void
5059 expand_main_function ()
5060 {
5061 if (!output_bytecode)
5062 {
5063 /* The zero below avoids a possible parse error */
5064 0;
5065 #if !defined (HAS_INIT_SECTION)
5066 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, NAME__MAIN), 0,
5067 VOIDmode, 0);
5068 #endif /* not HAS_INIT_SECTION */
5069 }
5070 }
5071 \f
5072 extern struct obstack permanent_obstack;
5073
5074 /* Expand start of bytecode function. See comment at
5075 expand_function_start below for details. */
5076
5077 void
5078 bc_expand_function_start (subr, parms_have_cleanups)
5079 tree subr;
5080 int parms_have_cleanups;
5081 {
5082 char label[20], *name;
5083 static int nlab;
5084 tree thisarg;
5085 int argsz;
5086
5087 if (TREE_PUBLIC (subr))
5088 bc_globalize_label (IDENTIFIER_POINTER (DECL_NAME (subr)));
5089
5090 #ifdef DEBUG_PRINT_CODE
5091 fprintf (stderr, "\n<func %s>\n", IDENTIFIER_POINTER (DECL_NAME (subr)));
5092 #endif
5093
5094 for (argsz = 0, thisarg = DECL_ARGUMENTS (subr); thisarg; thisarg = TREE_CHAIN (thisarg))
5095 {
5096 if (DECL_RTL (thisarg))
5097 abort (); /* Should be NULL here I think. */
5098 else if (TREE_CONSTANT (DECL_SIZE (thisarg)))
5099 {
5100 DECL_RTL (thisarg) = bc_gen_rtx ((char *) 0, argsz, (struct bc_label *) 0);
5101 argsz += TREE_INT_CST_LOW (DECL_SIZE (thisarg));
5102 }
5103 else
5104 {
5105 /* Variable-sized objects are pointers to their storage. */
5106 DECL_RTL (thisarg) = bc_gen_rtx ((char *) 0, argsz, (struct bc_label *) 0);
5107 argsz += POINTER_SIZE;
5108 }
5109 }
5110
5111 bc_begin_function (xstrdup (IDENTIFIER_POINTER (DECL_NAME (subr))));
5112
5113 ASM_GENERATE_INTERNAL_LABEL (label, "LX", nlab);
5114
5115 ++nlab;
5116 name = (char *) obstack_copy0 (&permanent_obstack, label, strlen (label));
5117 this_function_callinfo = bc_gen_rtx (name, 0, (struct bc_label *) 0);
5118 this_function_bytecode =
5119 bc_emit_trampoline (BYTECODE_LABEL (this_function_callinfo));
5120 }
5121
5122
5123 /* Expand end of bytecode function. See details the comment of
5124 expand_function_end(), below. */
5125
5126 void
5127 bc_expand_function_end ()
5128 {
5129 char *ptrconsts;
5130
5131 expand_null_return ();
5132
5133 /* Emit any fixup code. This must be done before the call to
5134 to BC_END_FUNCTION (), since that will cause the bytecode
5135 segment to be finished off and closed. */
5136
5137 expand_fixups (NULL_RTX);
5138
5139 ptrconsts = bc_end_function ();
5140
5141 bc_align_const (2 /* INT_ALIGN */);
5142
5143 /* If this changes also make sure to change bc-interp.h! */
5144
5145 bc_emit_const_labeldef (BYTECODE_LABEL (this_function_callinfo));
5146 bc_emit_const ((char *) &max_stack_depth, sizeof max_stack_depth);
5147 bc_emit_const ((char *) &local_vars_size, sizeof local_vars_size);
5148 bc_emit_const_labelref (this_function_bytecode, 0);
5149 bc_emit_const_labelref (ptrconsts, 0);
5150 bc_emit_const_labelref (BYTECODE_LABEL (this_function_calldesc), 0);
5151 }
5152
5153
5154 /* Start the RTL for a new function, and set variables used for
5155 emitting RTL.
5156 SUBR is the FUNCTION_DECL node.
5157 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5158 the function's parameters, which must be run at any return statement. */
5159
5160 void
5161 expand_function_start (subr, parms_have_cleanups)
5162 tree subr;
5163 int parms_have_cleanups;
5164 {
5165 register int i;
5166 tree tem;
5167 rtx last_ptr;
5168
5169 if (output_bytecode)
5170 {
5171 bc_expand_function_start (subr, parms_have_cleanups);
5172 return;
5173 }
5174
5175 /* Make sure volatile mem refs aren't considered
5176 valid operands of arithmetic insns. */
5177 init_recog_no_volatile ();
5178
5179 /* If function gets a static chain arg, store it in the stack frame.
5180 Do this first, so it gets the first stack slot offset. */
5181 if (current_function_needs_context)
5182 {
5183 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5184
5185 #ifdef SMALL_REGISTER_CLASSES
5186 /* Delay copying static chain if it is not a register to avoid
5187 conflicts with regs used for parameters. */
5188 if (! SMALL_REGISTER_CLASSES
5189 || GET_CODE (static_chain_incoming_rtx) == REG)
5190 #endif
5191 emit_move_insn (last_ptr, static_chain_incoming_rtx);
5192 }
5193
5194 /* If the parameters of this function need cleaning up, get a label
5195 for the beginning of the code which executes those cleanups. This must
5196 be done before doing anything with return_label. */
5197 if (parms_have_cleanups)
5198 cleanup_label = gen_label_rtx ();
5199 else
5200 cleanup_label = 0;
5201
5202 /* Make the label for return statements to jump to, if this machine
5203 does not have a one-instruction return and uses an epilogue,
5204 or if it returns a structure, or if it has parm cleanups. */
5205 #ifdef HAVE_return
5206 if (cleanup_label == 0 && HAVE_return
5207 && ! current_function_returns_pcc_struct
5208 && ! (current_function_returns_struct && ! optimize))
5209 return_label = 0;
5210 else
5211 return_label = gen_label_rtx ();
5212 #else
5213 return_label = gen_label_rtx ();
5214 #endif
5215
5216 /* Initialize rtx used to return the value. */
5217 /* Do this before assign_parms so that we copy the struct value address
5218 before any library calls that assign parms might generate. */
5219
5220 /* Decide whether to return the value in memory or in a register. */
5221 if (aggregate_value_p (DECL_RESULT (subr)))
5222 {
5223 /* Returning something that won't go in a register. */
5224 register rtx value_address = 0;
5225
5226 #ifdef PCC_STATIC_STRUCT_RETURN
5227 if (current_function_returns_pcc_struct)
5228 {
5229 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
5230 value_address = assemble_static_space (size);
5231 }
5232 else
5233 #endif
5234 {
5235 /* Expect to be passed the address of a place to store the value.
5236 If it is passed as an argument, assign_parms will take care of
5237 it. */
5238 if (struct_value_incoming_rtx)
5239 {
5240 value_address = gen_reg_rtx (Pmode);
5241 emit_move_insn (value_address, struct_value_incoming_rtx);
5242 }
5243 }
5244 if (value_address)
5245 {
5246 DECL_RTL (DECL_RESULT (subr))
5247 = gen_rtx (MEM, DECL_MODE (DECL_RESULT (subr)), value_address);
5248 MEM_IN_STRUCT_P (DECL_RTL (DECL_RESULT (subr)))
5249 = AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5250 }
5251 }
5252 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
5253 /* If return mode is void, this decl rtl should not be used. */
5254 DECL_RTL (DECL_RESULT (subr)) = 0;
5255 else if (parms_have_cleanups)
5256 {
5257 /* If function will end with cleanup code for parms,
5258 compute the return values into a pseudo reg,
5259 which we will copy into the true return register
5260 after the cleanups are done. */
5261
5262 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
5263
5264 #ifdef PROMOTE_FUNCTION_RETURN
5265 tree type = TREE_TYPE (DECL_RESULT (subr));
5266 int unsignedp = TREE_UNSIGNED (type);
5267
5268 mode = promote_mode (type, mode, &unsignedp, 1);
5269 #endif
5270
5271 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
5272 }
5273 else
5274 /* Scalar, returned in a register. */
5275 {
5276 #ifdef FUNCTION_OUTGOING_VALUE
5277 DECL_RTL (DECL_RESULT (subr))
5278 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
5279 #else
5280 DECL_RTL (DECL_RESULT (subr))
5281 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (subr)), subr);
5282 #endif
5283
5284 /* Mark this reg as the function's return value. */
5285 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
5286 {
5287 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
5288 /* Needed because we may need to move this to memory
5289 in case it's a named return value whose address is taken. */
5290 DECL_REGISTER (DECL_RESULT (subr)) = 1;
5291 }
5292 }
5293
5294 /* Initialize rtx for parameters and local variables.
5295 In some cases this requires emitting insns. */
5296
5297 assign_parms (subr, 0);
5298
5299 #ifdef SMALL_REGISTER_CLASSES
5300 /* Copy the static chain now if it wasn't a register. The delay is to
5301 avoid conflicts with the parameter passing registers. */
5302
5303 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
5304 if (GET_CODE (static_chain_incoming_rtx) != REG)
5305 emit_move_insn (last_ptr, static_chain_incoming_rtx);
5306 #endif
5307
5308 /* The following was moved from init_function_start.
5309 The move is supposed to make sdb output more accurate. */
5310 /* Indicate the beginning of the function body,
5311 as opposed to parm setup. */
5312 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
5313
5314 /* If doing stupid allocation, mark parms as born here. */
5315
5316 if (GET_CODE (get_last_insn ()) != NOTE)
5317 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5318 parm_birth_insn = get_last_insn ();
5319
5320 if (obey_regdecls)
5321 {
5322 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
5323 use_variable (regno_reg_rtx[i]);
5324
5325 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
5326 use_variable (current_function_internal_arg_pointer);
5327 }
5328
5329 context_display = 0;
5330 if (current_function_needs_context)
5331 {
5332 /* Fetch static chain values for containing functions. */
5333 tem = decl_function_context (current_function_decl);
5334 /* If not doing stupid register allocation copy the static chain
5335 pointer into a pseudo. If we have small register classes, copy
5336 the value from memory if static_chain_incoming_rtx is a REG. If
5337 we do stupid register allocation, we use the stack address
5338 generated above. */
5339 if (tem && ! obey_regdecls)
5340 {
5341 #ifdef SMALL_REGISTER_CLASSES
5342 /* If the static chain originally came in a register, put it back
5343 there, then move it out in the next insn. The reason for
5344 this peculiar code is to satisfy function integration. */
5345 if (SMALL_REGISTER_CLASSES
5346 && GET_CODE (static_chain_incoming_rtx) == REG)
5347 emit_move_insn (static_chain_incoming_rtx, last_ptr);
5348 #endif
5349
5350 last_ptr = copy_to_reg (static_chain_incoming_rtx);
5351 }
5352
5353 while (tem)
5354 {
5355 tree rtlexp = make_node (RTL_EXPR);
5356
5357 RTL_EXPR_RTL (rtlexp) = last_ptr;
5358 context_display = tree_cons (tem, rtlexp, context_display);
5359 tem = decl_function_context (tem);
5360 if (tem == 0)
5361 break;
5362 /* Chain thru stack frames, assuming pointer to next lexical frame
5363 is found at the place we always store it. */
5364 #ifdef FRAME_GROWS_DOWNWARD
5365 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
5366 #endif
5367 last_ptr = copy_to_reg (gen_rtx (MEM, Pmode,
5368 memory_address (Pmode, last_ptr)));
5369
5370 /* If we are not optimizing, ensure that we know that this
5371 piece of context is live over the entire function. */
5372 if (! optimize)
5373 save_expr_regs = gen_rtx (EXPR_LIST, VOIDmode, last_ptr,
5374 save_expr_regs);
5375 }
5376 }
5377
5378 /* After the display initializations is where the tail-recursion label
5379 should go, if we end up needing one. Ensure we have a NOTE here
5380 since some things (like trampolines) get placed before this. */
5381 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
5382
5383 /* Evaluate now the sizes of any types declared among the arguments. */
5384 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
5385 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
5386
5387 /* Make sure there is a line number after the function entry setup code. */
5388 force_next_line_note ();
5389 }
5390 \f
5391 /* Generate RTL for the end of the current function.
5392 FILENAME and LINE are the current position in the source file.
5393
5394 It is up to language-specific callers to do cleanups for parameters--
5395 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
5396
5397 void
5398 expand_function_end (filename, line, end_bindings)
5399 char *filename;
5400 int line;
5401 int end_bindings;
5402 {
5403 register int i;
5404 tree link;
5405
5406 #ifdef TRAMPOLINE_TEMPLATE
5407 static rtx initial_trampoline;
5408 #endif
5409
5410 if (output_bytecode)
5411 {
5412 bc_expand_function_end ();
5413 return;
5414 }
5415
5416 #ifdef NON_SAVING_SETJMP
5417 /* Don't put any variables in registers if we call setjmp
5418 on a machine that fails to restore the registers. */
5419 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
5420 {
5421 if (DECL_INITIAL (current_function_decl) != error_mark_node)
5422 setjmp_protect (DECL_INITIAL (current_function_decl));
5423
5424 setjmp_protect_args ();
5425 }
5426 #endif
5427
5428 /* Save the argument pointer if a save area was made for it. */
5429 if (arg_pointer_save_area)
5430 {
5431 rtx x = gen_move_insn (arg_pointer_save_area, virtual_incoming_args_rtx);
5432 emit_insn_before (x, tail_recursion_reentry);
5433 }
5434
5435 /* Initialize any trampolines required by this function. */
5436 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5437 {
5438 tree function = TREE_PURPOSE (link);
5439 rtx context = lookup_static_chain (function);
5440 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
5441 rtx blktramp;
5442 rtx seq;
5443
5444 #ifdef TRAMPOLINE_TEMPLATE
5445 /* First make sure this compilation has a template for
5446 initializing trampolines. */
5447 if (initial_trampoline == 0)
5448 {
5449 end_temporary_allocation ();
5450 initial_trampoline
5451 = gen_rtx (MEM, BLKmode, assemble_trampoline_template ());
5452 resume_temporary_allocation ();
5453 }
5454 #endif
5455
5456 /* Generate insns to initialize the trampoline. */
5457 start_sequence ();
5458 tramp = round_trampoline_addr (XEXP (tramp, 0));
5459 #ifdef TRAMPOLINE_TEMPLATE
5460 blktramp = change_address (initial_trampoline, BLKmode, tramp);
5461 emit_block_move (blktramp, initial_trampoline,
5462 GEN_INT (TRAMPOLINE_SIZE),
5463 FUNCTION_BOUNDARY / BITS_PER_UNIT);
5464 #endif
5465 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
5466 seq = get_insns ();
5467 end_sequence ();
5468
5469 /* Put those insns at entry to the containing function (this one). */
5470 emit_insns_before (seq, tail_recursion_reentry);
5471 }
5472
5473 /* Warn about unused parms if extra warnings were specified. */
5474 if (warn_unused && extra_warnings)
5475 {
5476 tree decl;
5477
5478 for (decl = DECL_ARGUMENTS (current_function_decl);
5479 decl; decl = TREE_CHAIN (decl))
5480 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5481 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
5482 warning_with_decl (decl, "unused parameter `%s'");
5483 }
5484
5485 /* Delete handlers for nonlocal gotos if nothing uses them. */
5486 if (nonlocal_goto_handler_slot != 0 && !current_function_has_nonlocal_label)
5487 delete_handlers ();
5488
5489 /* End any sequences that failed to be closed due to syntax errors. */
5490 while (in_sequence_p ())
5491 end_sequence ();
5492
5493 /* Outside function body, can't compute type's actual size
5494 until next function's body starts. */
5495 immediate_size_expand--;
5496
5497 /* If doing stupid register allocation,
5498 mark register parms as dying here. */
5499
5500 if (obey_regdecls)
5501 {
5502 rtx tem;
5503 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_parm_reg; i++)
5504 use_variable (regno_reg_rtx[i]);
5505
5506 /* Likewise for the regs of all the SAVE_EXPRs in the function. */
5507
5508 for (tem = save_expr_regs; tem; tem = XEXP (tem, 1))
5509 {
5510 use_variable (XEXP (tem, 0));
5511 use_variable_after (XEXP (tem, 0), parm_birth_insn);
5512 }
5513
5514 if (current_function_internal_arg_pointer != virtual_incoming_args_rtx)
5515 use_variable (current_function_internal_arg_pointer);
5516 }
5517
5518 clear_pending_stack_adjust ();
5519 do_pending_stack_adjust ();
5520
5521 /* Mark the end of the function body.
5522 If control reaches this insn, the function can drop through
5523 without returning a value. */
5524 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
5525
5526 /* Output a linenumber for the end of the function.
5527 SDB depends on this. */
5528 emit_line_note_force (filename, line);
5529
5530 /* Output the label for the actual return from the function,
5531 if one is expected. This happens either because a function epilogue
5532 is used instead of a return instruction, or because a return was done
5533 with a goto in order to run local cleanups, or because of pcc-style
5534 structure returning. */
5535
5536 if (return_label)
5537 emit_label (return_label);
5538
5539 /* C++ uses this. */
5540 if (end_bindings)
5541 expand_end_bindings (0, 0, 0);
5542
5543 /* If we had calls to alloca, and this machine needs
5544 an accurate stack pointer to exit the function,
5545 insert some code to save and restore the stack pointer. */
5546 #ifdef EXIT_IGNORE_STACK
5547 if (! EXIT_IGNORE_STACK)
5548 #endif
5549 if (current_function_calls_alloca)
5550 {
5551 rtx tem = 0;
5552
5553 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
5554 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
5555 }
5556
5557 /* If scalar return value was computed in a pseudo-reg,
5558 copy that to the hard return register. */
5559 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
5560 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
5561 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
5562 >= FIRST_PSEUDO_REGISTER))
5563 {
5564 rtx real_decl_result;
5565
5566 #ifdef FUNCTION_OUTGOING_VALUE
5567 real_decl_result
5568 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
5569 current_function_decl);
5570 #else
5571 real_decl_result
5572 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
5573 current_function_decl);
5574 #endif
5575 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
5576 /* If this is a BLKmode structure being returned in registers, then use
5577 the mode computed in expand_return. */
5578 if (GET_MODE (real_decl_result) == BLKmode)
5579 PUT_MODE (real_decl_result,
5580 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
5581 emit_move_insn (real_decl_result,
5582 DECL_RTL (DECL_RESULT (current_function_decl)));
5583 emit_insn (gen_rtx (USE, VOIDmode, real_decl_result));
5584 }
5585
5586 /* If returning a structure, arrange to return the address of the value
5587 in a place where debuggers expect to find it.
5588
5589 If returning a structure PCC style,
5590 the caller also depends on this value.
5591 And current_function_returns_pcc_struct is not necessarily set. */
5592 if (current_function_returns_struct
5593 || current_function_returns_pcc_struct)
5594 {
5595 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
5596 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5597 #ifdef FUNCTION_OUTGOING_VALUE
5598 rtx outgoing
5599 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
5600 current_function_decl);
5601 #else
5602 rtx outgoing
5603 = FUNCTION_VALUE (build_pointer_type (type),
5604 current_function_decl);
5605 #endif
5606
5607 /* Mark this as a function return value so integrate will delete the
5608 assignment and USE below when inlining this function. */
5609 REG_FUNCTION_VALUE_P (outgoing) = 1;
5610
5611 emit_move_insn (outgoing, value_address);
5612 use_variable (outgoing);
5613 }
5614
5615 /* Output a return insn if we are using one.
5616 Otherwise, let the rtl chain end here, to drop through
5617 into the epilogue. */
5618
5619 #ifdef HAVE_return
5620 if (HAVE_return)
5621 {
5622 emit_jump_insn (gen_return ());
5623 emit_barrier ();
5624 }
5625 #endif
5626
5627 /* Fix up any gotos that jumped out to the outermost
5628 binding level of the function.
5629 Must follow emitting RETURN_LABEL. */
5630
5631 /* If you have any cleanups to do at this point,
5632 and they need to create temporary variables,
5633 then you will lose. */
5634 expand_fixups (get_insns ());
5635 }
5636 \f
5637 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
5638
5639 static int *prologue;
5640 static int *epilogue;
5641
5642 /* Create an array that records the INSN_UIDs of INSNS (either a sequence
5643 or a single insn). */
5644
5645 static int *
5646 record_insns (insns)
5647 rtx insns;
5648 {
5649 int *vec;
5650
5651 if (GET_CODE (insns) == SEQUENCE)
5652 {
5653 int len = XVECLEN (insns, 0);
5654 vec = (int *) oballoc ((len + 1) * sizeof (int));
5655 vec[len] = 0;
5656 while (--len >= 0)
5657 vec[len] = INSN_UID (XVECEXP (insns, 0, len));
5658 }
5659 else
5660 {
5661 vec = (int *) oballoc (2 * sizeof (int));
5662 vec[0] = INSN_UID (insns);
5663 vec[1] = 0;
5664 }
5665 return vec;
5666 }
5667
5668 /* Determine how many INSN_UIDs in VEC are part of INSN. */
5669
5670 static int
5671 contains (insn, vec)
5672 rtx insn;
5673 int *vec;
5674 {
5675 register int i, j;
5676
5677 if (GET_CODE (insn) == INSN
5678 && GET_CODE (PATTERN (insn)) == SEQUENCE)
5679 {
5680 int count = 0;
5681 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5682 for (j = 0; vec[j]; j++)
5683 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == vec[j])
5684 count++;
5685 return count;
5686 }
5687 else
5688 {
5689 for (j = 0; vec[j]; j++)
5690 if (INSN_UID (insn) == vec[j])
5691 return 1;
5692 }
5693 return 0;
5694 }
5695
5696 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5697 this into place with notes indicating where the prologue ends and where
5698 the epilogue begins. Update the basic block information when possible. */
5699
5700 void
5701 thread_prologue_and_epilogue_insns (f)
5702 rtx f;
5703 {
5704 #ifdef HAVE_prologue
5705 if (HAVE_prologue)
5706 {
5707 rtx head, seq, insn;
5708
5709 /* The first insn (a NOTE_INSN_DELETED) is followed by zero or more
5710 prologue insns and a NOTE_INSN_PROLOGUE_END. */
5711 emit_note_after (NOTE_INSN_PROLOGUE_END, f);
5712 seq = gen_prologue ();
5713 head = emit_insn_after (seq, f);
5714
5715 /* Include the new prologue insns in the first block. Ignore them
5716 if they form a basic block unto themselves. */
5717 if (basic_block_head && n_basic_blocks
5718 && GET_CODE (basic_block_head[0]) != CODE_LABEL)
5719 basic_block_head[0] = NEXT_INSN (f);
5720
5721 /* Retain a map of the prologue insns. */
5722 prologue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : head);
5723 }
5724 else
5725 #endif
5726 prologue = 0;
5727
5728 #ifdef HAVE_epilogue
5729 if (HAVE_epilogue)
5730 {
5731 rtx insn = get_last_insn ();
5732 rtx prev = prev_nonnote_insn (insn);
5733
5734 /* If we end with a BARRIER, we don't need an epilogue. */
5735 if (! (prev && GET_CODE (prev) == BARRIER))
5736 {
5737 rtx tail, seq, tem;
5738 rtx first_use = 0;
5739 rtx last_use = 0;
5740
5741 /* The last basic block ends with a NOTE_INSN_EPILOGUE_BEG, the
5742 epilogue insns, the USE insns at the end of a function,
5743 the jump insn that returns, and then a BARRIER. */
5744
5745 /* Move the USE insns at the end of a function onto a list. */
5746 while (prev
5747 && GET_CODE (prev) == INSN
5748 && GET_CODE (PATTERN (prev)) == USE)
5749 {
5750 tem = prev;
5751 prev = prev_nonnote_insn (prev);
5752
5753 NEXT_INSN (PREV_INSN (tem)) = NEXT_INSN (tem);
5754 PREV_INSN (NEXT_INSN (tem)) = PREV_INSN (tem);
5755 if (first_use)
5756 {
5757 NEXT_INSN (tem) = first_use;
5758 PREV_INSN (first_use) = tem;
5759 }
5760 first_use = tem;
5761 if (!last_use)
5762 last_use = tem;
5763 }
5764
5765 emit_barrier_after (insn);
5766
5767 seq = gen_epilogue ();
5768 tail = emit_jump_insn_after (seq, insn);
5769
5770 /* Insert the USE insns immediately before the return insn, which
5771 must be the first instruction before the final barrier. */
5772 if (first_use)
5773 {
5774 tem = prev_nonnote_insn (get_last_insn ());
5775 NEXT_INSN (PREV_INSN (tem)) = first_use;
5776 PREV_INSN (first_use) = PREV_INSN (tem);
5777 PREV_INSN (tem) = last_use;
5778 NEXT_INSN (last_use) = tem;
5779 }
5780
5781 emit_note_after (NOTE_INSN_EPILOGUE_BEG, insn);
5782
5783 /* Include the new epilogue insns in the last block. Ignore
5784 them if they form a basic block unto themselves. */
5785 if (basic_block_end && n_basic_blocks
5786 && GET_CODE (basic_block_end[n_basic_blocks - 1]) != JUMP_INSN)
5787 basic_block_end[n_basic_blocks - 1] = tail;
5788
5789 /* Retain a map of the epilogue insns. */
5790 epilogue = record_insns (GET_CODE (seq) == SEQUENCE ? seq : tail);
5791 return;
5792 }
5793 }
5794 #endif
5795 epilogue = 0;
5796 }
5797
5798 /* Reposition the prologue-end and epilogue-begin notes after instruction
5799 scheduling and delayed branch scheduling. */
5800
5801 void
5802 reposition_prologue_and_epilogue_notes (f)
5803 rtx f;
5804 {
5805 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5806 /* Reposition the prologue and epilogue notes. */
5807 if (n_basic_blocks)
5808 {
5809 rtx next, prev;
5810 int len;
5811
5812 if (prologue)
5813 {
5814 register rtx insn, note = 0;
5815
5816 /* Scan from the beginning until we reach the last prologue insn.
5817 We apparently can't depend on basic_block_{head,end} after
5818 reorg has run. */
5819 for (len = 0; prologue[len]; len++)
5820 ;
5821 for (insn = f; len && insn; insn = NEXT_INSN (insn))
5822 {
5823 if (GET_CODE (insn) == NOTE)
5824 {
5825 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5826 note = insn;
5827 }
5828 else if ((len -= contains (insn, prologue)) == 0)
5829 {
5830 /* Find the prologue-end note if we haven't already, and
5831 move it to just after the last prologue insn. */
5832 if (note == 0)
5833 {
5834 for (note = insn; note = NEXT_INSN (note);)
5835 if (GET_CODE (note) == NOTE
5836 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5837 break;
5838 }
5839 next = NEXT_INSN (note);
5840 prev = PREV_INSN (note);
5841 if (prev)
5842 NEXT_INSN (prev) = next;
5843 if (next)
5844 PREV_INSN (next) = prev;
5845 add_insn_after (note, insn);
5846 }
5847 }
5848 }
5849
5850 if (epilogue)
5851 {
5852 register rtx insn, note = 0;
5853
5854 /* Scan from the end until we reach the first epilogue insn.
5855 We apparently can't depend on basic_block_{head,end} after
5856 reorg has run. */
5857 for (len = 0; epilogue[len]; len++)
5858 ;
5859 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
5860 {
5861 if (GET_CODE (insn) == NOTE)
5862 {
5863 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5864 note = insn;
5865 }
5866 else if ((len -= contains (insn, epilogue)) == 0)
5867 {
5868 /* Find the epilogue-begin note if we haven't already, and
5869 move it to just before the first epilogue insn. */
5870 if (note == 0)
5871 {
5872 for (note = insn; note = PREV_INSN (note);)
5873 if (GET_CODE (note) == NOTE
5874 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5875 break;
5876 }
5877 next = NEXT_INSN (note);
5878 prev = PREV_INSN (note);
5879 if (prev)
5880 NEXT_INSN (prev) = next;
5881 if (next)
5882 PREV_INSN (next) = prev;
5883 add_insn_after (note, PREV_INSN (insn));
5884 }
5885 }
5886 }
5887 }
5888 #endif /* HAVE_prologue or HAVE_epilogue */
5889 }