re PR target/41246 (should "sorry" when regparm=3 and nested functions are encountered)
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
75
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
85
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
100
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
105
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
110
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
116
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
119
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
123
124 /* The currently compiled function. */
125 struct function *cfun = 0;
126
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
132 \f
133 /* Forward declarations. */
134
135 static struct temp_slot *find_temp_slot_from_address (rtx);
136 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
137 static void pad_below (struct args_size *, enum machine_mode, tree);
138 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
139 static int all_blocks (tree, tree *);
140 static tree *get_block_vector (tree, int *);
141 extern tree debug_find_var_in_block_tree (tree, tree);
142 /* We always define `record_insns' even if it's not used so that we
143 can always export `prologue_epilogue_contains'. */
144 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
145 static bool contains (const_rtx, htab_t);
146 #ifdef HAVE_return
147 static void emit_return_into_block (basic_block);
148 #endif
149 static void prepare_function_start (void);
150 static void do_clobber_return_reg (rtx, void *);
151 static void do_use_return_reg (rtx, void *);
152 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
153 \f
154 /* Stack of nested functions. */
155 /* Keep track of the cfun stack. */
156
157 typedef struct function *function_p;
158
159 DEF_VEC_P(function_p);
160 DEF_VEC_ALLOC_P(function_p,heap);
161 static VEC(function_p,heap) *function_context_stack;
162
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
165
166 void
167 push_function_context (void)
168 {
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
171
172 VEC_safe_push (function_p, heap, function_context_stack, cfun);
173 set_cfun (NULL);
174 }
175
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
178
179 void
180 pop_function_context (void)
181 {
182 struct function *p = VEC_pop (function_p, function_context_stack);
183 set_cfun (p);
184 current_function_decl = p->decl;
185
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
189 }
190
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
194
195 void
196 free_after_parsing (struct function *f)
197 {
198 f->language = 0;
199 }
200
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
204
205 void
206 free_after_compilation (struct function *f)
207 {
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
210
211 if (crtl->emit.regno_pointer_align)
212 free (crtl->emit.regno_pointer_align);
213
214 memset (crtl, 0, sizeof (struct rtl_data));
215 f->eh = NULL;
216 f->machine = NULL;
217 f->cfg = NULL;
218
219 regno_reg_rtx = NULL;
220 insn_locators_free ();
221 }
222 \f
223 /* Return size needed for stack frame based on slots so far allocated.
224 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
225 the caller may have to do that. */
226
227 HOST_WIDE_INT
228 get_frame_size (void)
229 {
230 if (FRAME_GROWS_DOWNWARD)
231 return -frame_offset;
232 else
233 return frame_offset;
234 }
235
236 /* Issue an error message and return TRUE if frame OFFSET overflows in
237 the signed target pointer arithmetics for function FUNC. Otherwise
238 return FALSE. */
239
240 bool
241 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
242 {
243 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
244
245 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
246 /* Leave room for the fixed part of the frame. */
247 - 64 * UNITS_PER_WORD)
248 {
249 error_at (DECL_SOURCE_LOCATION (func),
250 "total size of local objects too large");
251 return TRUE;
252 }
253
254 return FALSE;
255 }
256
257 /* Return stack slot alignment in bits for TYPE and MODE. */
258
259 static unsigned int
260 get_stack_local_alignment (tree type, enum machine_mode mode)
261 {
262 unsigned int alignment;
263
264 if (mode == BLKmode)
265 alignment = BIGGEST_ALIGNMENT;
266 else
267 alignment = GET_MODE_ALIGNMENT (mode);
268
269 /* Allow the frond-end to (possibly) increase the alignment of this
270 stack slot. */
271 if (! type)
272 type = lang_hooks.types.type_for_mode (mode, 0);
273
274 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
275 }
276
277 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
278 with machine mode MODE.
279
280 ALIGN controls the amount of alignment for the address of the slot:
281 0 means according to MODE,
282 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
283 -2 means use BITS_PER_UNIT,
284 positive specifies alignment boundary in bits.
285
286 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
287
288 We do not round to stack_boundary here. */
289
290 rtx
291 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
292 int align,
293 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
294 {
295 rtx x, addr;
296 int bigend_correction = 0;
297 unsigned int alignment, alignment_in_bits;
298 int frame_off, frame_alignment, frame_phase;
299
300 if (align == 0)
301 {
302 alignment = get_stack_local_alignment (NULL, mode);
303 alignment /= BITS_PER_UNIT;
304 }
305 else if (align == -1)
306 {
307 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
308 size = CEIL_ROUND (size, alignment);
309 }
310 else if (align == -2)
311 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
312 else
313 alignment = align / BITS_PER_UNIT;
314
315 alignment_in_bits = alignment * BITS_PER_UNIT;
316
317 if (FRAME_GROWS_DOWNWARD)
318 frame_offset -= size;
319
320 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
321 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
322 {
323 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
324 alignment = alignment_in_bits / BITS_PER_UNIT;
325 }
326
327 if (SUPPORTS_STACK_ALIGNMENT)
328 {
329 if (crtl->stack_alignment_estimated < alignment_in_bits)
330 {
331 if (!crtl->stack_realign_processed)
332 crtl->stack_alignment_estimated = alignment_in_bits;
333 else
334 {
335 /* If stack is realigned and stack alignment value
336 hasn't been finalized, it is OK not to increase
337 stack_alignment_estimated. The bigger alignment
338 requirement is recorded in stack_alignment_needed
339 below. */
340 gcc_assert (!crtl->stack_realign_finalized);
341 if (!crtl->stack_realign_needed)
342 {
343 /* It is OK to reduce the alignment as long as the
344 requested size is 0 or the estimated stack
345 alignment >= mode alignment. */
346 gcc_assert (reduce_alignment_ok
347 || size == 0
348 || (crtl->stack_alignment_estimated
349 >= GET_MODE_ALIGNMENT (mode)));
350 alignment_in_bits = crtl->stack_alignment_estimated;
351 alignment = alignment_in_bits / BITS_PER_UNIT;
352 }
353 }
354 }
355 }
356
357 if (crtl->stack_alignment_needed < alignment_in_bits)
358 crtl->stack_alignment_needed = alignment_in_bits;
359 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
360 crtl->max_used_stack_slot_alignment = alignment_in_bits;
361
362 /* Calculate how many bytes the start of local variables is off from
363 stack alignment. */
364 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
365 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
366 frame_phase = frame_off ? frame_alignment - frame_off : 0;
367
368 /* Round the frame offset to the specified alignment. The default is
369 to always honor requests to align the stack but a port may choose to
370 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
371 if (STACK_ALIGNMENT_NEEDED
372 || mode != BLKmode
373 || size != 0)
374 {
375 /* We must be careful here, since FRAME_OFFSET might be negative and
376 division with a negative dividend isn't as well defined as we might
377 like. So we instead assume that ALIGNMENT is a power of two and
378 use logical operations which are unambiguous. */
379 if (FRAME_GROWS_DOWNWARD)
380 frame_offset
381 = (FLOOR_ROUND (frame_offset - frame_phase,
382 (unsigned HOST_WIDE_INT) alignment)
383 + frame_phase);
384 else
385 frame_offset
386 = (CEIL_ROUND (frame_offset - frame_phase,
387 (unsigned HOST_WIDE_INT) alignment)
388 + frame_phase);
389 }
390
391 /* On a big-endian machine, if we are allocating more space than we will use,
392 use the least significant bytes of those that are allocated. */
393 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
394 bigend_correction = size - GET_MODE_SIZE (mode);
395
396 /* If we have already instantiated virtual registers, return the actual
397 address relative to the frame pointer. */
398 if (virtuals_instantiated)
399 addr = plus_constant (frame_pointer_rtx,
400 trunc_int_for_mode
401 (frame_offset + bigend_correction
402 + STARTING_FRAME_OFFSET, Pmode));
403 else
404 addr = plus_constant (virtual_stack_vars_rtx,
405 trunc_int_for_mode
406 (frame_offset + bigend_correction,
407 Pmode));
408
409 if (!FRAME_GROWS_DOWNWARD)
410 frame_offset += size;
411
412 x = gen_rtx_MEM (mode, addr);
413 set_mem_align (x, alignment_in_bits);
414 MEM_NOTRAP_P (x) = 1;
415
416 stack_slot_list
417 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
418
419 if (frame_offset_overflow (frame_offset, current_function_decl))
420 frame_offset = 0;
421
422 return x;
423 }
424
425 /* Wrap up assign_stack_local_1 with last parameter as false. */
426
427 rtx
428 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
429 {
430 return assign_stack_local_1 (mode, size, align, false);
431 }
432 \f
433 \f
434 /* In order to evaluate some expressions, such as function calls returning
435 structures in memory, we need to temporarily allocate stack locations.
436 We record each allocated temporary in the following structure.
437
438 Associated with each temporary slot is a nesting level. When we pop up
439 one level, all temporaries associated with the previous level are freed.
440 Normally, all temporaries are freed after the execution of the statement
441 in which they were created. However, if we are inside a ({...}) grouping,
442 the result may be in a temporary and hence must be preserved. If the
443 result could be in a temporary, we preserve it if we can determine which
444 one it is in. If we cannot determine which temporary may contain the
445 result, all temporaries are preserved. A temporary is preserved by
446 pretending it was allocated at the previous nesting level.
447
448 Automatic variables are also assigned temporary slots, at the nesting
449 level where they are defined. They are marked a "kept" so that
450 free_temp_slots will not free them. */
451
452 struct GTY(()) temp_slot {
453 /* Points to next temporary slot. */
454 struct temp_slot *next;
455 /* Points to previous temporary slot. */
456 struct temp_slot *prev;
457 /* The rtx to used to reference the slot. */
458 rtx slot;
459 /* The size, in units, of the slot. */
460 HOST_WIDE_INT size;
461 /* The type of the object in the slot, or zero if it doesn't correspond
462 to a type. We use this to determine whether a slot can be reused.
463 It can be reused if objects of the type of the new slot will always
464 conflict with objects of the type of the old slot. */
465 tree type;
466 /* The alignment (in bits) of the slot. */
467 unsigned int align;
468 /* Nonzero if this temporary is currently in use. */
469 char in_use;
470 /* Nonzero if this temporary has its address taken. */
471 char addr_taken;
472 /* Nesting level at which this slot is being used. */
473 int level;
474 /* Nonzero if this should survive a call to free_temp_slots. */
475 int keep;
476 /* The offset of the slot from the frame_pointer, including extra space
477 for alignment. This info is for combine_temp_slots. */
478 HOST_WIDE_INT base_offset;
479 /* The size of the slot, including extra space for alignment. This
480 info is for combine_temp_slots. */
481 HOST_WIDE_INT full_size;
482 };
483
484 /* A table of addresses that represent a stack slot. The table is a mapping
485 from address RTXen to a temp slot. */
486 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
487
488 /* Entry for the above hash table. */
489 struct GTY(()) temp_slot_address_entry {
490 hashval_t hash;
491 rtx address;
492 struct temp_slot *temp_slot;
493 };
494
495 /* Removes temporary slot TEMP from LIST. */
496
497 static void
498 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
499 {
500 if (temp->next)
501 temp->next->prev = temp->prev;
502 if (temp->prev)
503 temp->prev->next = temp->next;
504 else
505 *list = temp->next;
506
507 temp->prev = temp->next = NULL;
508 }
509
510 /* Inserts temporary slot TEMP to LIST. */
511
512 static void
513 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
514 {
515 temp->next = *list;
516 if (*list)
517 (*list)->prev = temp;
518 temp->prev = NULL;
519 *list = temp;
520 }
521
522 /* Returns the list of used temp slots at LEVEL. */
523
524 static struct temp_slot **
525 temp_slots_at_level (int level)
526 {
527 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
528 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
529
530 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
531 }
532
533 /* Returns the maximal temporary slot level. */
534
535 static int
536 max_slot_level (void)
537 {
538 if (!used_temp_slots)
539 return -1;
540
541 return VEC_length (temp_slot_p, used_temp_slots) - 1;
542 }
543
544 /* Moves temporary slot TEMP to LEVEL. */
545
546 static void
547 move_slot_to_level (struct temp_slot *temp, int level)
548 {
549 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
550 insert_slot_to_list (temp, temp_slots_at_level (level));
551 temp->level = level;
552 }
553
554 /* Make temporary slot TEMP available. */
555
556 static void
557 make_slot_available (struct temp_slot *temp)
558 {
559 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
560 insert_slot_to_list (temp, &avail_temp_slots);
561 temp->in_use = 0;
562 temp->level = -1;
563 }
564
565 /* Compute the hash value for an address -> temp slot mapping.
566 The value is cached on the mapping entry. */
567 static hashval_t
568 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
569 {
570 int do_not_record = 0;
571 return hash_rtx (t->address, GET_MODE (t->address),
572 &do_not_record, NULL, false);
573 }
574
575 /* Return the hash value for an address -> temp slot mapping. */
576 static hashval_t
577 temp_slot_address_hash (const void *p)
578 {
579 const struct temp_slot_address_entry *t;
580 t = (const struct temp_slot_address_entry *) p;
581 return t->hash;
582 }
583
584 /* Compare two address -> temp slot mapping entries. */
585 static int
586 temp_slot_address_eq (const void *p1, const void *p2)
587 {
588 const struct temp_slot_address_entry *t1, *t2;
589 t1 = (const struct temp_slot_address_entry *) p1;
590 t2 = (const struct temp_slot_address_entry *) p2;
591 return exp_equiv_p (t1->address, t2->address, 0, true);
592 }
593
594 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
595 static void
596 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
597 {
598 void **slot;
599 struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
600 t->address = address;
601 t->temp_slot = temp_slot;
602 t->hash = temp_slot_address_compute_hash (t);
603 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
604 *slot = t;
605 }
606
607 /* Remove an address -> temp slot mapping entry if the temp slot is
608 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
609 static int
610 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
611 {
612 const struct temp_slot_address_entry *t;
613 t = (const struct temp_slot_address_entry *) *slot;
614 if (! t->temp_slot->in_use)
615 *slot = NULL;
616 return 1;
617 }
618
619 /* Remove all mappings of addresses to unused temp slots. */
620 static void
621 remove_unused_temp_slot_addresses (void)
622 {
623 htab_traverse (temp_slot_address_table,
624 remove_unused_temp_slot_addresses_1,
625 NULL);
626 }
627
628 /* Find the temp slot corresponding to the object at address X. */
629
630 static struct temp_slot *
631 find_temp_slot_from_address (rtx x)
632 {
633 struct temp_slot *p;
634 struct temp_slot_address_entry tmp, *t;
635
636 /* First try the easy way:
637 See if X exists in the address -> temp slot mapping. */
638 tmp.address = x;
639 tmp.temp_slot = NULL;
640 tmp.hash = temp_slot_address_compute_hash (&tmp);
641 t = (struct temp_slot_address_entry *)
642 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
643 if (t)
644 return t->temp_slot;
645
646 /* If we have a sum involving a register, see if it points to a temp
647 slot. */
648 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
649 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
650 return p;
651 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
652 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
653 return p;
654
655 /* Last resort: Address is a virtual stack var address. */
656 if (GET_CODE (x) == PLUS
657 && XEXP (x, 0) == virtual_stack_vars_rtx
658 && CONST_INT_P (XEXP (x, 1)))
659 {
660 int i;
661 for (i = max_slot_level (); i >= 0; i--)
662 for (p = *temp_slots_at_level (i); p; p = p->next)
663 {
664 if (INTVAL (XEXP (x, 1)) >= p->base_offset
665 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
666 return p;
667 }
668 }
669
670 return NULL;
671 }
672 \f
673 /* Allocate a temporary stack slot and record it for possible later
674 reuse.
675
676 MODE is the machine mode to be given to the returned rtx.
677
678 SIZE is the size in units of the space required. We do no rounding here
679 since assign_stack_local will do any required rounding.
680
681 KEEP is 1 if this slot is to be retained after a call to
682 free_temp_slots. Automatic variables for a block are allocated
683 with this flag. KEEP values of 2 or 3 were needed respectively
684 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
685 or for SAVE_EXPRs, but they are now unused.
686
687 TYPE is the type that will be used for the stack slot. */
688
689 rtx
690 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
691 int keep, tree type)
692 {
693 unsigned int align;
694 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
695 rtx slot;
696
697 /* If SIZE is -1 it means that somebody tried to allocate a temporary
698 of a variable size. */
699 gcc_assert (size != -1);
700
701 /* These are now unused. */
702 gcc_assert (keep <= 1);
703
704 align = get_stack_local_alignment (type, mode);
705
706 /* Try to find an available, already-allocated temporary of the proper
707 mode which meets the size and alignment requirements. Choose the
708 smallest one with the closest alignment.
709
710 If assign_stack_temp is called outside of the tree->rtl expansion,
711 we cannot reuse the stack slots (that may still refer to
712 VIRTUAL_STACK_VARS_REGNUM). */
713 if (!virtuals_instantiated)
714 {
715 for (p = avail_temp_slots; p; p = p->next)
716 {
717 if (p->align >= align && p->size >= size
718 && GET_MODE (p->slot) == mode
719 && objects_must_conflict_p (p->type, type)
720 && (best_p == 0 || best_p->size > p->size
721 || (best_p->size == p->size && best_p->align > p->align)))
722 {
723 if (p->align == align && p->size == size)
724 {
725 selected = p;
726 cut_slot_from_list (selected, &avail_temp_slots);
727 best_p = 0;
728 break;
729 }
730 best_p = p;
731 }
732 }
733 }
734
735 /* Make our best, if any, the one to use. */
736 if (best_p)
737 {
738 selected = best_p;
739 cut_slot_from_list (selected, &avail_temp_slots);
740
741 /* If there are enough aligned bytes left over, make them into a new
742 temp_slot so that the extra bytes don't get wasted. Do this only
743 for BLKmode slots, so that we can be sure of the alignment. */
744 if (GET_MODE (best_p->slot) == BLKmode)
745 {
746 int alignment = best_p->align / BITS_PER_UNIT;
747 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
748
749 if (best_p->size - rounded_size >= alignment)
750 {
751 p = GGC_NEW (struct temp_slot);
752 p->in_use = p->addr_taken = 0;
753 p->size = best_p->size - rounded_size;
754 p->base_offset = best_p->base_offset + rounded_size;
755 p->full_size = best_p->full_size - rounded_size;
756 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
757 p->align = best_p->align;
758 p->type = best_p->type;
759 insert_slot_to_list (p, &avail_temp_slots);
760
761 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
762 stack_slot_list);
763
764 best_p->size = rounded_size;
765 best_p->full_size = rounded_size;
766 }
767 }
768 }
769
770 /* If we still didn't find one, make a new temporary. */
771 if (selected == 0)
772 {
773 HOST_WIDE_INT frame_offset_old = frame_offset;
774
775 p = GGC_NEW (struct temp_slot);
776
777 /* We are passing an explicit alignment request to assign_stack_local.
778 One side effect of that is assign_stack_local will not round SIZE
779 to ensure the frame offset remains suitably aligned.
780
781 So for requests which depended on the rounding of SIZE, we go ahead
782 and round it now. We also make sure ALIGNMENT is at least
783 BIGGEST_ALIGNMENT. */
784 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
785 p->slot = assign_stack_local (mode,
786 (mode == BLKmode
787 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
788 : size),
789 align);
790
791 p->align = align;
792
793 /* The following slot size computation is necessary because we don't
794 know the actual size of the temporary slot until assign_stack_local
795 has performed all the frame alignment and size rounding for the
796 requested temporary. Note that extra space added for alignment
797 can be either above or below this stack slot depending on which
798 way the frame grows. We include the extra space if and only if it
799 is above this slot. */
800 if (FRAME_GROWS_DOWNWARD)
801 p->size = frame_offset_old - frame_offset;
802 else
803 p->size = size;
804
805 /* Now define the fields used by combine_temp_slots. */
806 if (FRAME_GROWS_DOWNWARD)
807 {
808 p->base_offset = frame_offset;
809 p->full_size = frame_offset_old - frame_offset;
810 }
811 else
812 {
813 p->base_offset = frame_offset_old;
814 p->full_size = frame_offset - frame_offset_old;
815 }
816
817 selected = p;
818 }
819
820 p = selected;
821 p->in_use = 1;
822 p->addr_taken = 0;
823 p->type = type;
824 p->level = temp_slot_level;
825 p->keep = keep;
826
827 pp = temp_slots_at_level (p->level);
828 insert_slot_to_list (p, pp);
829 insert_temp_slot_address (XEXP (p->slot, 0), p);
830
831 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
832 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
833 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
834
835 /* If we know the alias set for the memory that will be used, use
836 it. If there's no TYPE, then we don't know anything about the
837 alias set for the memory. */
838 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
839 set_mem_align (slot, align);
840
841 /* If a type is specified, set the relevant flags. */
842 if (type != 0)
843 {
844 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
845 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
846 || TREE_CODE (type) == COMPLEX_TYPE));
847 }
848 MEM_NOTRAP_P (slot) = 1;
849
850 return slot;
851 }
852
853 /* Allocate a temporary stack slot and record it for possible later
854 reuse. First three arguments are same as in preceding function. */
855
856 rtx
857 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
858 {
859 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
860 }
861 \f
862 /* Assign a temporary.
863 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
864 and so that should be used in error messages. In either case, we
865 allocate of the given type.
866 KEEP is as for assign_stack_temp.
867 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
868 it is 0 if a register is OK.
869 DONT_PROMOTE is 1 if we should not promote values in register
870 to wider modes. */
871
872 rtx
873 assign_temp (tree type_or_decl, int keep, int memory_required,
874 int dont_promote ATTRIBUTE_UNUSED)
875 {
876 tree type, decl;
877 enum machine_mode mode;
878 #ifdef PROMOTE_MODE
879 int unsignedp;
880 #endif
881
882 if (DECL_P (type_or_decl))
883 decl = type_or_decl, type = TREE_TYPE (decl);
884 else
885 decl = NULL, type = type_or_decl;
886
887 mode = TYPE_MODE (type);
888 #ifdef PROMOTE_MODE
889 unsignedp = TYPE_UNSIGNED (type);
890 #endif
891
892 if (mode == BLKmode || memory_required)
893 {
894 HOST_WIDE_INT size = int_size_in_bytes (type);
895 rtx tmp;
896
897 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
898 problems with allocating the stack space. */
899 if (size == 0)
900 size = 1;
901
902 /* Unfortunately, we don't yet know how to allocate variable-sized
903 temporaries. However, sometimes we can find a fixed upper limit on
904 the size, so try that instead. */
905 else if (size == -1)
906 size = max_int_size_in_bytes (type);
907
908 /* The size of the temporary may be too large to fit into an integer. */
909 /* ??? Not sure this should happen except for user silliness, so limit
910 this to things that aren't compiler-generated temporaries. The
911 rest of the time we'll die in assign_stack_temp_for_type. */
912 if (decl && size == -1
913 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
914 {
915 error ("size of variable %q+D is too large", decl);
916 size = 1;
917 }
918
919 tmp = assign_stack_temp_for_type (mode, size, keep, type);
920 return tmp;
921 }
922
923 #ifdef PROMOTE_MODE
924 if (! dont_promote)
925 mode = promote_mode (type, mode, &unsignedp);
926 #endif
927
928 return gen_reg_rtx (mode);
929 }
930 \f
931 /* Combine temporary stack slots which are adjacent on the stack.
932
933 This allows for better use of already allocated stack space. This is only
934 done for BLKmode slots because we can be sure that we won't have alignment
935 problems in this case. */
936
937 static void
938 combine_temp_slots (void)
939 {
940 struct temp_slot *p, *q, *next, *next_q;
941 int num_slots;
942
943 /* We can't combine slots, because the information about which slot
944 is in which alias set will be lost. */
945 if (flag_strict_aliasing)
946 return;
947
948 /* If there are a lot of temp slots, don't do anything unless
949 high levels of optimization. */
950 if (! flag_expensive_optimizations)
951 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
952 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
953 return;
954
955 for (p = avail_temp_slots; p; p = next)
956 {
957 int delete_p = 0;
958
959 next = p->next;
960
961 if (GET_MODE (p->slot) != BLKmode)
962 continue;
963
964 for (q = p->next; q; q = next_q)
965 {
966 int delete_q = 0;
967
968 next_q = q->next;
969
970 if (GET_MODE (q->slot) != BLKmode)
971 continue;
972
973 if (p->base_offset + p->full_size == q->base_offset)
974 {
975 /* Q comes after P; combine Q into P. */
976 p->size += q->size;
977 p->full_size += q->full_size;
978 delete_q = 1;
979 }
980 else if (q->base_offset + q->full_size == p->base_offset)
981 {
982 /* P comes after Q; combine P into Q. */
983 q->size += p->size;
984 q->full_size += p->full_size;
985 delete_p = 1;
986 break;
987 }
988 if (delete_q)
989 cut_slot_from_list (q, &avail_temp_slots);
990 }
991
992 /* Either delete P or advance past it. */
993 if (delete_p)
994 cut_slot_from_list (p, &avail_temp_slots);
995 }
996 }
997 \f
998 /* Indicate that NEW_RTX is an alternate way of referring to the temp
999 slot that previously was known by OLD_RTX. */
1000
1001 void
1002 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1003 {
1004 struct temp_slot *p;
1005
1006 if (rtx_equal_p (old_rtx, new_rtx))
1007 return;
1008
1009 p = find_temp_slot_from_address (old_rtx);
1010
1011 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1012 NEW_RTX is a register, see if one operand of the PLUS is a
1013 temporary location. If so, NEW_RTX points into it. Otherwise,
1014 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1015 in common between them. If so, try a recursive call on those
1016 values. */
1017 if (p == 0)
1018 {
1019 if (GET_CODE (old_rtx) != PLUS)
1020 return;
1021
1022 if (REG_P (new_rtx))
1023 {
1024 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1025 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1026 return;
1027 }
1028 else if (GET_CODE (new_rtx) != PLUS)
1029 return;
1030
1031 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1032 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1033 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1034 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1035 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1036 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1037 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1038 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1039
1040 return;
1041 }
1042
1043 /* Otherwise add an alias for the temp's address. */
1044 insert_temp_slot_address (new_rtx, p);
1045 }
1046
1047 /* If X could be a reference to a temporary slot, mark the fact that its
1048 address was taken. */
1049
1050 void
1051 mark_temp_addr_taken (rtx x)
1052 {
1053 struct temp_slot *p;
1054
1055 if (x == 0)
1056 return;
1057
1058 /* If X is not in memory or is at a constant address, it cannot be in
1059 a temporary slot. */
1060 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1061 return;
1062
1063 p = find_temp_slot_from_address (XEXP (x, 0));
1064 if (p != 0)
1065 p->addr_taken = 1;
1066 }
1067
1068 /* If X could be a reference to a temporary slot, mark that slot as
1069 belonging to the to one level higher than the current level. If X
1070 matched one of our slots, just mark that one. Otherwise, we can't
1071 easily predict which it is, so upgrade all of them. Kept slots
1072 need not be touched.
1073
1074 This is called when an ({...}) construct occurs and a statement
1075 returns a value in memory. */
1076
1077 void
1078 preserve_temp_slots (rtx x)
1079 {
1080 struct temp_slot *p = 0, *next;
1081
1082 /* If there is no result, we still might have some objects whose address
1083 were taken, so we need to make sure they stay around. */
1084 if (x == 0)
1085 {
1086 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1087 {
1088 next = p->next;
1089
1090 if (p->addr_taken)
1091 move_slot_to_level (p, temp_slot_level - 1);
1092 }
1093
1094 return;
1095 }
1096
1097 /* If X is a register that is being used as a pointer, see if we have
1098 a temporary slot we know it points to. To be consistent with
1099 the code below, we really should preserve all non-kept slots
1100 if we can't find a match, but that seems to be much too costly. */
1101 if (REG_P (x) && REG_POINTER (x))
1102 p = find_temp_slot_from_address (x);
1103
1104 /* If X is not in memory or is at a constant address, it cannot be in
1105 a temporary slot, but it can contain something whose address was
1106 taken. */
1107 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1108 {
1109 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1110 {
1111 next = p->next;
1112
1113 if (p->addr_taken)
1114 move_slot_to_level (p, temp_slot_level - 1);
1115 }
1116
1117 return;
1118 }
1119
1120 /* First see if we can find a match. */
1121 if (p == 0)
1122 p = find_temp_slot_from_address (XEXP (x, 0));
1123
1124 if (p != 0)
1125 {
1126 /* Move everything at our level whose address was taken to our new
1127 level in case we used its address. */
1128 struct temp_slot *q;
1129
1130 if (p->level == temp_slot_level)
1131 {
1132 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1133 {
1134 next = q->next;
1135
1136 if (p != q && q->addr_taken)
1137 move_slot_to_level (q, temp_slot_level - 1);
1138 }
1139
1140 move_slot_to_level (p, temp_slot_level - 1);
1141 p->addr_taken = 0;
1142 }
1143 return;
1144 }
1145
1146 /* Otherwise, preserve all non-kept slots at this level. */
1147 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1148 {
1149 next = p->next;
1150
1151 if (!p->keep)
1152 move_slot_to_level (p, temp_slot_level - 1);
1153 }
1154 }
1155
1156 /* Free all temporaries used so far. This is normally called at the
1157 end of generating code for a statement. */
1158
1159 void
1160 free_temp_slots (void)
1161 {
1162 struct temp_slot *p, *next;
1163
1164 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1165 {
1166 next = p->next;
1167
1168 if (!p->keep)
1169 make_slot_available (p);
1170 }
1171
1172 remove_unused_temp_slot_addresses ();
1173 combine_temp_slots ();
1174 }
1175
1176 /* Push deeper into the nesting level for stack temporaries. */
1177
1178 void
1179 push_temp_slots (void)
1180 {
1181 temp_slot_level++;
1182 }
1183
1184 /* Pop a temporary nesting level. All slots in use in the current level
1185 are freed. */
1186
1187 void
1188 pop_temp_slots (void)
1189 {
1190 struct temp_slot *p, *next;
1191
1192 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1193 {
1194 next = p->next;
1195 make_slot_available (p);
1196 }
1197
1198 remove_unused_temp_slot_addresses ();
1199 combine_temp_slots ();
1200
1201 temp_slot_level--;
1202 }
1203
1204 /* Initialize temporary slots. */
1205
1206 void
1207 init_temp_slots (void)
1208 {
1209 /* We have not allocated any temporaries yet. */
1210 avail_temp_slots = 0;
1211 used_temp_slots = 0;
1212 temp_slot_level = 0;
1213
1214 /* Set up the table to map addresses to temp slots. */
1215 if (! temp_slot_address_table)
1216 temp_slot_address_table = htab_create_ggc (32,
1217 temp_slot_address_hash,
1218 temp_slot_address_eq,
1219 NULL);
1220 else
1221 htab_empty (temp_slot_address_table);
1222 }
1223 \f
1224 /* These routines are responsible for converting virtual register references
1225 to the actual hard register references once RTL generation is complete.
1226
1227 The following four variables are used for communication between the
1228 routines. They contain the offsets of the virtual registers from their
1229 respective hard registers. */
1230
1231 static int in_arg_offset;
1232 static int var_offset;
1233 static int dynamic_offset;
1234 static int out_arg_offset;
1235 static int cfa_offset;
1236
1237 /* In most machines, the stack pointer register is equivalent to the bottom
1238 of the stack. */
1239
1240 #ifndef STACK_POINTER_OFFSET
1241 #define STACK_POINTER_OFFSET 0
1242 #endif
1243
1244 /* If not defined, pick an appropriate default for the offset of dynamically
1245 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1246 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1247
1248 #ifndef STACK_DYNAMIC_OFFSET
1249
1250 /* The bottom of the stack points to the actual arguments. If
1251 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1252 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1253 stack space for register parameters is not pushed by the caller, but
1254 rather part of the fixed stack areas and hence not included in
1255 `crtl->outgoing_args_size'. Nevertheless, we must allow
1256 for it when allocating stack dynamic objects. */
1257
1258 #if defined(REG_PARM_STACK_SPACE)
1259 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1260 ((ACCUMULATE_OUTGOING_ARGS \
1261 ? (crtl->outgoing_args_size \
1262 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1263 : REG_PARM_STACK_SPACE (FNDECL))) \
1264 : 0) + (STACK_POINTER_OFFSET))
1265 #else
1266 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1267 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1268 + (STACK_POINTER_OFFSET))
1269 #endif
1270 #endif
1271
1272 \f
1273 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1274 is a virtual register, return the equivalent hard register and set the
1275 offset indirectly through the pointer. Otherwise, return 0. */
1276
1277 static rtx
1278 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1279 {
1280 rtx new_rtx;
1281 HOST_WIDE_INT offset;
1282
1283 if (x == virtual_incoming_args_rtx)
1284 {
1285 if (stack_realign_drap)
1286 {
1287 /* Replace virtual_incoming_args_rtx with internal arg
1288 pointer if DRAP is used to realign stack. */
1289 new_rtx = crtl->args.internal_arg_pointer;
1290 offset = 0;
1291 }
1292 else
1293 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1294 }
1295 else if (x == virtual_stack_vars_rtx)
1296 new_rtx = frame_pointer_rtx, offset = var_offset;
1297 else if (x == virtual_stack_dynamic_rtx)
1298 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1299 else if (x == virtual_outgoing_args_rtx)
1300 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1301 else if (x == virtual_cfa_rtx)
1302 {
1303 #ifdef FRAME_POINTER_CFA_OFFSET
1304 new_rtx = frame_pointer_rtx;
1305 #else
1306 new_rtx = arg_pointer_rtx;
1307 #endif
1308 offset = cfa_offset;
1309 }
1310 else
1311 return NULL_RTX;
1312
1313 *poffset = offset;
1314 return new_rtx;
1315 }
1316
1317 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1318 Instantiate any virtual registers present inside of *LOC. The expression
1319 is simplified, as much as possible, but is not to be considered "valid"
1320 in any sense implied by the target. If any change is made, set CHANGED
1321 to true. */
1322
1323 static int
1324 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1325 {
1326 HOST_WIDE_INT offset;
1327 bool *changed = (bool *) data;
1328 rtx x, new_rtx;
1329
1330 x = *loc;
1331 if (x == 0)
1332 return 0;
1333
1334 switch (GET_CODE (x))
1335 {
1336 case REG:
1337 new_rtx = instantiate_new_reg (x, &offset);
1338 if (new_rtx)
1339 {
1340 *loc = plus_constant (new_rtx, offset);
1341 if (changed)
1342 *changed = true;
1343 }
1344 return -1;
1345
1346 case PLUS:
1347 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1348 if (new_rtx)
1349 {
1350 new_rtx = plus_constant (new_rtx, offset);
1351 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1352 if (changed)
1353 *changed = true;
1354 return -1;
1355 }
1356
1357 /* FIXME -- from old code */
1358 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1359 we can commute the PLUS and SUBREG because pointers into the
1360 frame are well-behaved. */
1361 break;
1362
1363 default:
1364 break;
1365 }
1366
1367 return 0;
1368 }
1369
1370 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1371 matches the predicate for insn CODE operand OPERAND. */
1372
1373 static int
1374 safe_insn_predicate (int code, int operand, rtx x)
1375 {
1376 const struct insn_operand_data *op_data;
1377
1378 if (code < 0)
1379 return true;
1380
1381 op_data = &insn_data[code].operand[operand];
1382 if (op_data->predicate == NULL)
1383 return true;
1384
1385 return op_data->predicate (x, op_data->mode);
1386 }
1387
1388 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1389 registers present inside of insn. The result will be a valid insn. */
1390
1391 static void
1392 instantiate_virtual_regs_in_insn (rtx insn)
1393 {
1394 HOST_WIDE_INT offset;
1395 int insn_code, i;
1396 bool any_change = false;
1397 rtx set, new_rtx, x, seq;
1398
1399 /* There are some special cases to be handled first. */
1400 set = single_set (insn);
1401 if (set)
1402 {
1403 /* We're allowed to assign to a virtual register. This is interpreted
1404 to mean that the underlying register gets assigned the inverse
1405 transformation. This is used, for example, in the handling of
1406 non-local gotos. */
1407 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1408 if (new_rtx)
1409 {
1410 start_sequence ();
1411
1412 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1413 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1414 GEN_INT (-offset));
1415 x = force_operand (x, new_rtx);
1416 if (x != new_rtx)
1417 emit_move_insn (new_rtx, x);
1418
1419 seq = get_insns ();
1420 end_sequence ();
1421
1422 emit_insn_before (seq, insn);
1423 delete_insn (insn);
1424 return;
1425 }
1426
1427 /* Handle a straight copy from a virtual register by generating a
1428 new add insn. The difference between this and falling through
1429 to the generic case is avoiding a new pseudo and eliminating a
1430 move insn in the initial rtl stream. */
1431 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1432 if (new_rtx && offset != 0
1433 && REG_P (SET_DEST (set))
1434 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1435 {
1436 start_sequence ();
1437
1438 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1439 new_rtx, GEN_INT (offset), SET_DEST (set),
1440 1, OPTAB_LIB_WIDEN);
1441 if (x != SET_DEST (set))
1442 emit_move_insn (SET_DEST (set), x);
1443
1444 seq = get_insns ();
1445 end_sequence ();
1446
1447 emit_insn_before (seq, insn);
1448 delete_insn (insn);
1449 return;
1450 }
1451
1452 extract_insn (insn);
1453 insn_code = INSN_CODE (insn);
1454
1455 /* Handle a plus involving a virtual register by determining if the
1456 operands remain valid if they're modified in place. */
1457 if (GET_CODE (SET_SRC (set)) == PLUS
1458 && recog_data.n_operands >= 3
1459 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1460 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1461 && CONST_INT_P (recog_data.operand[2])
1462 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1463 {
1464 offset += INTVAL (recog_data.operand[2]);
1465
1466 /* If the sum is zero, then replace with a plain move. */
1467 if (offset == 0
1468 && REG_P (SET_DEST (set))
1469 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1470 {
1471 start_sequence ();
1472 emit_move_insn (SET_DEST (set), new_rtx);
1473 seq = get_insns ();
1474 end_sequence ();
1475
1476 emit_insn_before (seq, insn);
1477 delete_insn (insn);
1478 return;
1479 }
1480
1481 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1482
1483 /* Using validate_change and apply_change_group here leaves
1484 recog_data in an invalid state. Since we know exactly what
1485 we want to check, do those two by hand. */
1486 if (safe_insn_predicate (insn_code, 1, new_rtx)
1487 && safe_insn_predicate (insn_code, 2, x))
1488 {
1489 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1490 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1491 any_change = true;
1492
1493 /* Fall through into the regular operand fixup loop in
1494 order to take care of operands other than 1 and 2. */
1495 }
1496 }
1497 }
1498 else
1499 {
1500 extract_insn (insn);
1501 insn_code = INSN_CODE (insn);
1502 }
1503
1504 /* In the general case, we expect virtual registers to appear only in
1505 operands, and then only as either bare registers or inside memories. */
1506 for (i = 0; i < recog_data.n_operands; ++i)
1507 {
1508 x = recog_data.operand[i];
1509 switch (GET_CODE (x))
1510 {
1511 case MEM:
1512 {
1513 rtx addr = XEXP (x, 0);
1514 bool changed = false;
1515
1516 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1517 if (!changed)
1518 continue;
1519
1520 start_sequence ();
1521 x = replace_equiv_address (x, addr);
1522 /* It may happen that the address with the virtual reg
1523 was valid (e.g. based on the virtual stack reg, which might
1524 be acceptable to the predicates with all offsets), whereas
1525 the address now isn't anymore, for instance when the address
1526 is still offsetted, but the base reg isn't virtual-stack-reg
1527 anymore. Below we would do a force_reg on the whole operand,
1528 but this insn might actually only accept memory. Hence,
1529 before doing that last resort, try to reload the address into
1530 a register, so this operand stays a MEM. */
1531 if (!safe_insn_predicate (insn_code, i, x))
1532 {
1533 addr = force_reg (GET_MODE (addr), addr);
1534 x = replace_equiv_address (x, addr);
1535 }
1536 seq = get_insns ();
1537 end_sequence ();
1538 if (seq)
1539 emit_insn_before (seq, insn);
1540 }
1541 break;
1542
1543 case REG:
1544 new_rtx = instantiate_new_reg (x, &offset);
1545 if (new_rtx == NULL)
1546 continue;
1547 if (offset == 0)
1548 x = new_rtx;
1549 else
1550 {
1551 start_sequence ();
1552
1553 /* Careful, special mode predicates may have stuff in
1554 insn_data[insn_code].operand[i].mode that isn't useful
1555 to us for computing a new value. */
1556 /* ??? Recognize address_operand and/or "p" constraints
1557 to see if (plus new offset) is a valid before we put
1558 this through expand_simple_binop. */
1559 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1560 GEN_INT (offset), NULL_RTX,
1561 1, OPTAB_LIB_WIDEN);
1562 seq = get_insns ();
1563 end_sequence ();
1564 emit_insn_before (seq, insn);
1565 }
1566 break;
1567
1568 case SUBREG:
1569 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1570 if (new_rtx == NULL)
1571 continue;
1572 if (offset != 0)
1573 {
1574 start_sequence ();
1575 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1576 GEN_INT (offset), NULL_RTX,
1577 1, OPTAB_LIB_WIDEN);
1578 seq = get_insns ();
1579 end_sequence ();
1580 emit_insn_before (seq, insn);
1581 }
1582 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1583 GET_MODE (new_rtx), SUBREG_BYTE (x));
1584 gcc_assert (x);
1585 break;
1586
1587 default:
1588 continue;
1589 }
1590
1591 /* At this point, X contains the new value for the operand.
1592 Validate the new value vs the insn predicate. Note that
1593 asm insns will have insn_code -1 here. */
1594 if (!safe_insn_predicate (insn_code, i, x))
1595 {
1596 start_sequence ();
1597 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1598 seq = get_insns ();
1599 end_sequence ();
1600 if (seq)
1601 emit_insn_before (seq, insn);
1602 }
1603
1604 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1605 any_change = true;
1606 }
1607
1608 if (any_change)
1609 {
1610 /* Propagate operand changes into the duplicates. */
1611 for (i = 0; i < recog_data.n_dups; ++i)
1612 *recog_data.dup_loc[i]
1613 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1614
1615 /* Force re-recognition of the instruction for validation. */
1616 INSN_CODE (insn) = -1;
1617 }
1618
1619 if (asm_noperands (PATTERN (insn)) >= 0)
1620 {
1621 if (!check_asm_operands (PATTERN (insn)))
1622 {
1623 error_for_asm (insn, "impossible constraint in %<asm%>");
1624 delete_insn (insn);
1625 }
1626 }
1627 else
1628 {
1629 if (recog_memoized (insn) < 0)
1630 fatal_insn_not_found (insn);
1631 }
1632 }
1633
1634 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1635 do any instantiation required. */
1636
1637 void
1638 instantiate_decl_rtl (rtx x)
1639 {
1640 rtx addr;
1641
1642 if (x == 0)
1643 return;
1644
1645 /* If this is a CONCAT, recurse for the pieces. */
1646 if (GET_CODE (x) == CONCAT)
1647 {
1648 instantiate_decl_rtl (XEXP (x, 0));
1649 instantiate_decl_rtl (XEXP (x, 1));
1650 return;
1651 }
1652
1653 /* If this is not a MEM, no need to do anything. Similarly if the
1654 address is a constant or a register that is not a virtual register. */
1655 if (!MEM_P (x))
1656 return;
1657
1658 addr = XEXP (x, 0);
1659 if (CONSTANT_P (addr)
1660 || (REG_P (addr)
1661 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1662 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1663 return;
1664
1665 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1666 }
1667
1668 /* Helper for instantiate_decls called via walk_tree: Process all decls
1669 in the given DECL_VALUE_EXPR. */
1670
1671 static tree
1672 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1673 {
1674 tree t = *tp;
1675 if (! EXPR_P (t))
1676 {
1677 *walk_subtrees = 0;
1678 if (DECL_P (t) && DECL_RTL_SET_P (t))
1679 instantiate_decl_rtl (DECL_RTL (t));
1680 }
1681 return NULL;
1682 }
1683
1684 /* Subroutine of instantiate_decls: Process all decls in the given
1685 BLOCK node and all its subblocks. */
1686
1687 static void
1688 instantiate_decls_1 (tree let)
1689 {
1690 tree t;
1691
1692 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1693 {
1694 if (DECL_RTL_SET_P (t))
1695 instantiate_decl_rtl (DECL_RTL (t));
1696 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1697 {
1698 tree v = DECL_VALUE_EXPR (t);
1699 walk_tree (&v, instantiate_expr, NULL, NULL);
1700 }
1701 }
1702
1703 /* Process all subblocks. */
1704 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1705 instantiate_decls_1 (t);
1706 }
1707
1708 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1709 all virtual registers in their DECL_RTL's. */
1710
1711 static void
1712 instantiate_decls (tree fndecl)
1713 {
1714 tree decl, t, next;
1715
1716 /* Process all parameters of the function. */
1717 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1718 {
1719 instantiate_decl_rtl (DECL_RTL (decl));
1720 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1721 if (DECL_HAS_VALUE_EXPR_P (decl))
1722 {
1723 tree v = DECL_VALUE_EXPR (decl);
1724 walk_tree (&v, instantiate_expr, NULL, NULL);
1725 }
1726 }
1727
1728 /* Now process all variables defined in the function or its subblocks. */
1729 instantiate_decls_1 (DECL_INITIAL (fndecl));
1730
1731 t = cfun->local_decls;
1732 cfun->local_decls = NULL_TREE;
1733 for (; t; t = next)
1734 {
1735 next = TREE_CHAIN (t);
1736 decl = TREE_VALUE (t);
1737 if (DECL_RTL_SET_P (decl))
1738 instantiate_decl_rtl (DECL_RTL (decl));
1739 ggc_free (t);
1740 }
1741 }
1742
1743 /* Pass through the INSNS of function FNDECL and convert virtual register
1744 references to hard register references. */
1745
1746 static unsigned int
1747 instantiate_virtual_regs (void)
1748 {
1749 rtx insn;
1750
1751 /* Compute the offsets to use for this function. */
1752 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1753 var_offset = STARTING_FRAME_OFFSET;
1754 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1755 out_arg_offset = STACK_POINTER_OFFSET;
1756 #ifdef FRAME_POINTER_CFA_OFFSET
1757 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1758 #else
1759 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1760 #endif
1761
1762 /* Initialize recognition, indicating that volatile is OK. */
1763 init_recog ();
1764
1765 /* Scan through all the insns, instantiating every virtual register still
1766 present. */
1767 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1768 if (INSN_P (insn))
1769 {
1770 /* These patterns in the instruction stream can never be recognized.
1771 Fortunately, they shouldn't contain virtual registers either. */
1772 if (GET_CODE (PATTERN (insn)) == USE
1773 || GET_CODE (PATTERN (insn)) == CLOBBER
1774 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1775 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1776 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1777 continue;
1778 else if (DEBUG_INSN_P (insn))
1779 for_each_rtx (&INSN_VAR_LOCATION (insn),
1780 instantiate_virtual_regs_in_rtx, NULL);
1781 else
1782 instantiate_virtual_regs_in_insn (insn);
1783
1784 if (INSN_DELETED_P (insn))
1785 continue;
1786
1787 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1788
1789 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1790 if (CALL_P (insn))
1791 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1792 instantiate_virtual_regs_in_rtx, NULL);
1793 }
1794
1795 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1796 instantiate_decls (current_function_decl);
1797
1798 targetm.instantiate_decls ();
1799
1800 /* Indicate that, from now on, assign_stack_local should use
1801 frame_pointer_rtx. */
1802 virtuals_instantiated = 1;
1803 return 0;
1804 }
1805
1806 struct rtl_opt_pass pass_instantiate_virtual_regs =
1807 {
1808 {
1809 RTL_PASS,
1810 "vregs", /* name */
1811 NULL, /* gate */
1812 instantiate_virtual_regs, /* execute */
1813 NULL, /* sub */
1814 NULL, /* next */
1815 0, /* static_pass_number */
1816 TV_NONE, /* tv_id */
1817 0, /* properties_required */
1818 0, /* properties_provided */
1819 0, /* properties_destroyed */
1820 0, /* todo_flags_start */
1821 TODO_dump_func /* todo_flags_finish */
1822 }
1823 };
1824
1825 \f
1826 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1827 This means a type for which function calls must pass an address to the
1828 function or get an address back from the function.
1829 EXP may be a type node or an expression (whose type is tested). */
1830
1831 int
1832 aggregate_value_p (const_tree exp, const_tree fntype)
1833 {
1834 int i, regno, nregs;
1835 rtx reg;
1836
1837 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1838
1839 /* DECL node associated with FNTYPE when relevant, which we might need to
1840 check for by-invisible-reference returns, typically for CALL_EXPR input
1841 EXPressions. */
1842 const_tree fndecl = NULL_TREE;
1843
1844 if (fntype)
1845 switch (TREE_CODE (fntype))
1846 {
1847 case CALL_EXPR:
1848 fndecl = get_callee_fndecl (fntype);
1849 fntype = (fndecl
1850 ? TREE_TYPE (fndecl)
1851 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1852 break;
1853 case FUNCTION_DECL:
1854 fndecl = fntype;
1855 fntype = TREE_TYPE (fndecl);
1856 break;
1857 case FUNCTION_TYPE:
1858 case METHOD_TYPE:
1859 break;
1860 case IDENTIFIER_NODE:
1861 fntype = 0;
1862 break;
1863 default:
1864 /* We don't expect other rtl types here. */
1865 gcc_unreachable ();
1866 }
1867
1868 if (TREE_CODE (type) == VOID_TYPE)
1869 return 0;
1870
1871 /* If the front end has decided that this needs to be passed by
1872 reference, do so. */
1873 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1874 && DECL_BY_REFERENCE (exp))
1875 return 1;
1876
1877 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1878 called function RESULT_DECL, meaning the function returns in memory by
1879 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1880 on the function type, which used to be the way to request such a return
1881 mechanism but might now be causing troubles at gimplification time if
1882 temporaries with the function type need to be created. */
1883 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1884 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1885 return 1;
1886
1887 if (targetm.calls.return_in_memory (type, fntype))
1888 return 1;
1889 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1890 and thus can't be returned in registers. */
1891 if (TREE_ADDRESSABLE (type))
1892 return 1;
1893 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1894 return 1;
1895 /* Make sure we have suitable call-clobbered regs to return
1896 the value in; if not, we must return it in memory. */
1897 reg = hard_function_value (type, 0, fntype, 0);
1898
1899 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1900 it is OK. */
1901 if (!REG_P (reg))
1902 return 0;
1903
1904 regno = REGNO (reg);
1905 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1906 for (i = 0; i < nregs; i++)
1907 if (! call_used_regs[regno + i])
1908 return 1;
1909 return 0;
1910 }
1911 \f
1912 /* Return true if we should assign DECL a pseudo register; false if it
1913 should live on the local stack. */
1914
1915 bool
1916 use_register_for_decl (const_tree decl)
1917 {
1918 if (!targetm.calls.allocate_stack_slots_for_args())
1919 return true;
1920
1921 /* Honor volatile. */
1922 if (TREE_SIDE_EFFECTS (decl))
1923 return false;
1924
1925 /* Honor addressability. */
1926 if (TREE_ADDRESSABLE (decl))
1927 return false;
1928
1929 /* Only register-like things go in registers. */
1930 if (DECL_MODE (decl) == BLKmode)
1931 return false;
1932
1933 /* If -ffloat-store specified, don't put explicit float variables
1934 into registers. */
1935 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1936 propagates values across these stores, and it probably shouldn't. */
1937 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1938 return false;
1939
1940 /* If we're not interested in tracking debugging information for
1941 this decl, then we can certainly put it in a register. */
1942 if (DECL_IGNORED_P (decl))
1943 return true;
1944
1945 if (optimize)
1946 return true;
1947
1948 if (!DECL_REGISTER (decl))
1949 return false;
1950
1951 switch (TREE_CODE (TREE_TYPE (decl)))
1952 {
1953 case RECORD_TYPE:
1954 case UNION_TYPE:
1955 case QUAL_UNION_TYPE:
1956 /* When not optimizing, disregard register keyword for variables with
1957 types containing methods, otherwise the methods won't be callable
1958 from the debugger. */
1959 if (TYPE_METHODS (TREE_TYPE (decl)))
1960 return false;
1961 break;
1962 default:
1963 break;
1964 }
1965
1966 return true;
1967 }
1968
1969 /* Return true if TYPE should be passed by invisible reference. */
1970
1971 bool
1972 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1973 tree type, bool named_arg)
1974 {
1975 if (type)
1976 {
1977 /* If this type contains non-trivial constructors, then it is
1978 forbidden for the middle-end to create any new copies. */
1979 if (TREE_ADDRESSABLE (type))
1980 return true;
1981
1982 /* GCC post 3.4 passes *all* variable sized types by reference. */
1983 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1984 return true;
1985 }
1986
1987 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1988 }
1989
1990 /* Return true if TYPE, which is passed by reference, should be callee
1991 copied instead of caller copied. */
1992
1993 bool
1994 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1995 tree type, bool named_arg)
1996 {
1997 if (type && TREE_ADDRESSABLE (type))
1998 return false;
1999 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2000 }
2001
2002 /* Structures to communicate between the subroutines of assign_parms.
2003 The first holds data persistent across all parameters, the second
2004 is cleared out for each parameter. */
2005
2006 struct assign_parm_data_all
2007 {
2008 CUMULATIVE_ARGS args_so_far;
2009 struct args_size stack_args_size;
2010 tree function_result_decl;
2011 tree orig_fnargs;
2012 rtx first_conversion_insn;
2013 rtx last_conversion_insn;
2014 HOST_WIDE_INT pretend_args_size;
2015 HOST_WIDE_INT extra_pretend_bytes;
2016 int reg_parm_stack_space;
2017 };
2018
2019 struct assign_parm_data_one
2020 {
2021 tree nominal_type;
2022 tree passed_type;
2023 rtx entry_parm;
2024 rtx stack_parm;
2025 enum machine_mode nominal_mode;
2026 enum machine_mode passed_mode;
2027 enum machine_mode promoted_mode;
2028 struct locate_and_pad_arg_data locate;
2029 int partial;
2030 BOOL_BITFIELD named_arg : 1;
2031 BOOL_BITFIELD passed_pointer : 1;
2032 BOOL_BITFIELD on_stack : 1;
2033 BOOL_BITFIELD loaded_in_reg : 1;
2034 };
2035
2036 /* A subroutine of assign_parms. Initialize ALL. */
2037
2038 static void
2039 assign_parms_initialize_all (struct assign_parm_data_all *all)
2040 {
2041 tree fntype;
2042
2043 memset (all, 0, sizeof (*all));
2044
2045 fntype = TREE_TYPE (current_function_decl);
2046
2047 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2048 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2049 #else
2050 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2051 current_function_decl, -1);
2052 #endif
2053
2054 #ifdef REG_PARM_STACK_SPACE
2055 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2056 #endif
2057 }
2058
2059 /* If ARGS contains entries with complex types, split the entry into two
2060 entries of the component type. Return a new list of substitutions are
2061 needed, else the old list. */
2062
2063 static tree
2064 split_complex_args (tree args)
2065 {
2066 tree p;
2067
2068 /* Before allocating memory, check for the common case of no complex. */
2069 for (p = args; p; p = TREE_CHAIN (p))
2070 {
2071 tree type = TREE_TYPE (p);
2072 if (TREE_CODE (type) == COMPLEX_TYPE
2073 && targetm.calls.split_complex_arg (type))
2074 goto found;
2075 }
2076 return args;
2077
2078 found:
2079 args = copy_list (args);
2080
2081 for (p = args; p; p = TREE_CHAIN (p))
2082 {
2083 tree type = TREE_TYPE (p);
2084 if (TREE_CODE (type) == COMPLEX_TYPE
2085 && targetm.calls.split_complex_arg (type))
2086 {
2087 tree decl;
2088 tree subtype = TREE_TYPE (type);
2089 bool addressable = TREE_ADDRESSABLE (p);
2090
2091 /* Rewrite the PARM_DECL's type with its component. */
2092 TREE_TYPE (p) = subtype;
2093 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2094 DECL_MODE (p) = VOIDmode;
2095 DECL_SIZE (p) = NULL;
2096 DECL_SIZE_UNIT (p) = NULL;
2097 /* If this arg must go in memory, put it in a pseudo here.
2098 We can't allow it to go in memory as per normal parms,
2099 because the usual place might not have the imag part
2100 adjacent to the real part. */
2101 DECL_ARTIFICIAL (p) = addressable;
2102 DECL_IGNORED_P (p) = addressable;
2103 TREE_ADDRESSABLE (p) = 0;
2104 layout_decl (p, 0);
2105
2106 /* Build a second synthetic decl. */
2107 decl = build_decl (EXPR_LOCATION (p),
2108 PARM_DECL, NULL_TREE, subtype);
2109 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2110 DECL_ARTIFICIAL (decl) = addressable;
2111 DECL_IGNORED_P (decl) = addressable;
2112 layout_decl (decl, 0);
2113
2114 /* Splice it in; skip the new decl. */
2115 TREE_CHAIN (decl) = TREE_CHAIN (p);
2116 TREE_CHAIN (p) = decl;
2117 p = decl;
2118 }
2119 }
2120
2121 return args;
2122 }
2123
2124 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2125 the hidden struct return argument, and (abi willing) complex args.
2126 Return the new parameter list. */
2127
2128 static tree
2129 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2130 {
2131 tree fndecl = current_function_decl;
2132 tree fntype = TREE_TYPE (fndecl);
2133 tree fnargs = DECL_ARGUMENTS (fndecl);
2134
2135 /* If struct value address is treated as the first argument, make it so. */
2136 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2137 && ! cfun->returns_pcc_struct
2138 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2139 {
2140 tree type = build_pointer_type (TREE_TYPE (fntype));
2141 tree decl;
2142
2143 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2144 PARM_DECL, NULL_TREE, type);
2145 DECL_ARG_TYPE (decl) = type;
2146 DECL_ARTIFICIAL (decl) = 1;
2147 DECL_IGNORED_P (decl) = 1;
2148
2149 TREE_CHAIN (decl) = fnargs;
2150 fnargs = decl;
2151 all->function_result_decl = decl;
2152 }
2153
2154 all->orig_fnargs = fnargs;
2155
2156 /* If the target wants to split complex arguments into scalars, do so. */
2157 if (targetm.calls.split_complex_arg)
2158 fnargs = split_complex_args (fnargs);
2159
2160 return fnargs;
2161 }
2162
2163 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2164 data for the parameter. Incorporate ABI specifics such as pass-by-
2165 reference and type promotion. */
2166
2167 static void
2168 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2169 struct assign_parm_data_one *data)
2170 {
2171 tree nominal_type, passed_type;
2172 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2173 int unsignedp;
2174
2175 memset (data, 0, sizeof (*data));
2176
2177 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2178 if (!cfun->stdarg)
2179 data->named_arg = 1; /* No variadic parms. */
2180 else if (TREE_CHAIN (parm))
2181 data->named_arg = 1; /* Not the last non-variadic parm. */
2182 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2183 data->named_arg = 1; /* Only variadic ones are unnamed. */
2184 else
2185 data->named_arg = 0; /* Treat as variadic. */
2186
2187 nominal_type = TREE_TYPE (parm);
2188 passed_type = DECL_ARG_TYPE (parm);
2189
2190 /* Look out for errors propagating this far. Also, if the parameter's
2191 type is void then its value doesn't matter. */
2192 if (TREE_TYPE (parm) == error_mark_node
2193 /* This can happen after weird syntax errors
2194 or if an enum type is defined among the parms. */
2195 || TREE_CODE (parm) != PARM_DECL
2196 || passed_type == NULL
2197 || VOID_TYPE_P (nominal_type))
2198 {
2199 nominal_type = passed_type = void_type_node;
2200 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2201 goto egress;
2202 }
2203
2204 /* Find mode of arg as it is passed, and mode of arg as it should be
2205 during execution of this function. */
2206 passed_mode = TYPE_MODE (passed_type);
2207 nominal_mode = TYPE_MODE (nominal_type);
2208
2209 /* If the parm is to be passed as a transparent union, use the type of
2210 the first field for the tests below. We have already verified that
2211 the modes are the same. */
2212 if (TREE_CODE (passed_type) == UNION_TYPE
2213 && TYPE_TRANSPARENT_UNION (passed_type))
2214 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2215
2216 /* See if this arg was passed by invisible reference. */
2217 if (pass_by_reference (&all->args_so_far, passed_mode,
2218 passed_type, data->named_arg))
2219 {
2220 passed_type = nominal_type = build_pointer_type (passed_type);
2221 data->passed_pointer = true;
2222 passed_mode = nominal_mode = Pmode;
2223 }
2224
2225 /* Find mode as it is passed by the ABI. */
2226 unsignedp = TYPE_UNSIGNED (passed_type);
2227 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2228 TREE_TYPE (current_function_decl), 0);
2229
2230 egress:
2231 data->nominal_type = nominal_type;
2232 data->passed_type = passed_type;
2233 data->nominal_mode = nominal_mode;
2234 data->passed_mode = passed_mode;
2235 data->promoted_mode = promoted_mode;
2236 }
2237
2238 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2239
2240 static void
2241 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2242 struct assign_parm_data_one *data, bool no_rtl)
2243 {
2244 int varargs_pretend_bytes = 0;
2245
2246 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2247 data->promoted_mode,
2248 data->passed_type,
2249 &varargs_pretend_bytes, no_rtl);
2250
2251 /* If the back-end has requested extra stack space, record how much is
2252 needed. Do not change pretend_args_size otherwise since it may be
2253 nonzero from an earlier partial argument. */
2254 if (varargs_pretend_bytes > 0)
2255 all->pretend_args_size = varargs_pretend_bytes;
2256 }
2257
2258 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2259 the incoming location of the current parameter. */
2260
2261 static void
2262 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2263 struct assign_parm_data_one *data)
2264 {
2265 HOST_WIDE_INT pretend_bytes = 0;
2266 rtx entry_parm;
2267 bool in_regs;
2268
2269 if (data->promoted_mode == VOIDmode)
2270 {
2271 data->entry_parm = data->stack_parm = const0_rtx;
2272 return;
2273 }
2274
2275 #ifdef FUNCTION_INCOMING_ARG
2276 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2277 data->passed_type, data->named_arg);
2278 #else
2279 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2280 data->passed_type, data->named_arg);
2281 #endif
2282
2283 if (entry_parm == 0)
2284 data->promoted_mode = data->passed_mode;
2285
2286 /* Determine parm's home in the stack, in case it arrives in the stack
2287 or we should pretend it did. Compute the stack position and rtx where
2288 the argument arrives and its size.
2289
2290 There is one complexity here: If this was a parameter that would
2291 have been passed in registers, but wasn't only because it is
2292 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2293 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2294 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2295 as it was the previous time. */
2296 in_regs = entry_parm != 0;
2297 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2298 in_regs = true;
2299 #endif
2300 if (!in_regs && !data->named_arg)
2301 {
2302 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2303 {
2304 rtx tem;
2305 #ifdef FUNCTION_INCOMING_ARG
2306 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2307 data->passed_type, true);
2308 #else
2309 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2310 data->passed_type, true);
2311 #endif
2312 in_regs = tem != NULL;
2313 }
2314 }
2315
2316 /* If this parameter was passed both in registers and in the stack, use
2317 the copy on the stack. */
2318 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2319 data->passed_type))
2320 entry_parm = 0;
2321
2322 if (entry_parm)
2323 {
2324 int partial;
2325
2326 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2327 data->promoted_mode,
2328 data->passed_type,
2329 data->named_arg);
2330 data->partial = partial;
2331
2332 /* The caller might already have allocated stack space for the
2333 register parameters. */
2334 if (partial != 0 && all->reg_parm_stack_space == 0)
2335 {
2336 /* Part of this argument is passed in registers and part
2337 is passed on the stack. Ask the prologue code to extend
2338 the stack part so that we can recreate the full value.
2339
2340 PRETEND_BYTES is the size of the registers we need to store.
2341 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2342 stack space that the prologue should allocate.
2343
2344 Internally, gcc assumes that the argument pointer is aligned
2345 to STACK_BOUNDARY bits. This is used both for alignment
2346 optimizations (see init_emit) and to locate arguments that are
2347 aligned to more than PARM_BOUNDARY bits. We must preserve this
2348 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2349 a stack boundary. */
2350
2351 /* We assume at most one partial arg, and it must be the first
2352 argument on the stack. */
2353 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2354
2355 pretend_bytes = partial;
2356 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2357
2358 /* We want to align relative to the actual stack pointer, so
2359 don't include this in the stack size until later. */
2360 all->extra_pretend_bytes = all->pretend_args_size;
2361 }
2362 }
2363
2364 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2365 entry_parm ? data->partial : 0, current_function_decl,
2366 &all->stack_args_size, &data->locate);
2367
2368 /* Update parm_stack_boundary if this parameter is passed in the
2369 stack. */
2370 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2371 crtl->parm_stack_boundary = data->locate.boundary;
2372
2373 /* Adjust offsets to include the pretend args. */
2374 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2375 data->locate.slot_offset.constant += pretend_bytes;
2376 data->locate.offset.constant += pretend_bytes;
2377
2378 data->entry_parm = entry_parm;
2379 }
2380
2381 /* A subroutine of assign_parms. If there is actually space on the stack
2382 for this parm, count it in stack_args_size and return true. */
2383
2384 static bool
2385 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2386 struct assign_parm_data_one *data)
2387 {
2388 /* Trivially true if we've no incoming register. */
2389 if (data->entry_parm == NULL)
2390 ;
2391 /* Also true if we're partially in registers and partially not,
2392 since we've arranged to drop the entire argument on the stack. */
2393 else if (data->partial != 0)
2394 ;
2395 /* Also true if the target says that it's passed in both registers
2396 and on the stack. */
2397 else if (GET_CODE (data->entry_parm) == PARALLEL
2398 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2399 ;
2400 /* Also true if the target says that there's stack allocated for
2401 all register parameters. */
2402 else if (all->reg_parm_stack_space > 0)
2403 ;
2404 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2405 else
2406 return false;
2407
2408 all->stack_args_size.constant += data->locate.size.constant;
2409 if (data->locate.size.var)
2410 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2411
2412 return true;
2413 }
2414
2415 /* A subroutine of assign_parms. Given that this parameter is allocated
2416 stack space by the ABI, find it. */
2417
2418 static void
2419 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2420 {
2421 rtx offset_rtx, stack_parm;
2422 unsigned int align, boundary;
2423
2424 /* If we're passing this arg using a reg, make its stack home the
2425 aligned stack slot. */
2426 if (data->entry_parm)
2427 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2428 else
2429 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2430
2431 stack_parm = crtl->args.internal_arg_pointer;
2432 if (offset_rtx != const0_rtx)
2433 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2434 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2435
2436 if (!data->passed_pointer)
2437 {
2438 set_mem_attributes (stack_parm, parm, 1);
2439 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2440 while promoted mode's size is needed. */
2441 if (data->promoted_mode != BLKmode
2442 && data->promoted_mode != DECL_MODE (parm))
2443 {
2444 set_mem_size (stack_parm,
2445 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2446 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2447 {
2448 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2449 data->promoted_mode);
2450 if (offset)
2451 set_mem_offset (stack_parm,
2452 plus_constant (MEM_OFFSET (stack_parm),
2453 -offset));
2454 }
2455 }
2456 }
2457
2458 boundary = data->locate.boundary;
2459 align = BITS_PER_UNIT;
2460
2461 /* If we're padding upward, we know that the alignment of the slot
2462 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2463 intentionally forcing upward padding. Otherwise we have to come
2464 up with a guess at the alignment based on OFFSET_RTX. */
2465 if (data->locate.where_pad != downward || data->entry_parm)
2466 align = boundary;
2467 else if (CONST_INT_P (offset_rtx))
2468 {
2469 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2470 align = align & -align;
2471 }
2472 set_mem_align (stack_parm, align);
2473
2474 if (data->entry_parm)
2475 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2476
2477 data->stack_parm = stack_parm;
2478 }
2479
2480 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2481 always valid and contiguous. */
2482
2483 static void
2484 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2485 {
2486 rtx entry_parm = data->entry_parm;
2487 rtx stack_parm = data->stack_parm;
2488
2489 /* If this parm was passed part in regs and part in memory, pretend it
2490 arrived entirely in memory by pushing the register-part onto the stack.
2491 In the special case of a DImode or DFmode that is split, we could put
2492 it together in a pseudoreg directly, but for now that's not worth
2493 bothering with. */
2494 if (data->partial != 0)
2495 {
2496 /* Handle calls that pass values in multiple non-contiguous
2497 locations. The Irix 6 ABI has examples of this. */
2498 if (GET_CODE (entry_parm) == PARALLEL)
2499 emit_group_store (validize_mem (stack_parm), entry_parm,
2500 data->passed_type,
2501 int_size_in_bytes (data->passed_type));
2502 else
2503 {
2504 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2505 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2506 data->partial / UNITS_PER_WORD);
2507 }
2508
2509 entry_parm = stack_parm;
2510 }
2511
2512 /* If we didn't decide this parm came in a register, by default it came
2513 on the stack. */
2514 else if (entry_parm == NULL)
2515 entry_parm = stack_parm;
2516
2517 /* When an argument is passed in multiple locations, we can't make use
2518 of this information, but we can save some copying if the whole argument
2519 is passed in a single register. */
2520 else if (GET_CODE (entry_parm) == PARALLEL
2521 && data->nominal_mode != BLKmode
2522 && data->passed_mode != BLKmode)
2523 {
2524 size_t i, len = XVECLEN (entry_parm, 0);
2525
2526 for (i = 0; i < len; i++)
2527 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2528 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2529 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2530 == data->passed_mode)
2531 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2532 {
2533 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2534 break;
2535 }
2536 }
2537
2538 data->entry_parm = entry_parm;
2539 }
2540
2541 /* A subroutine of assign_parms. Reconstitute any values which were
2542 passed in multiple registers and would fit in a single register. */
2543
2544 static void
2545 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2546 {
2547 rtx entry_parm = data->entry_parm;
2548
2549 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2550 This can be done with register operations rather than on the
2551 stack, even if we will store the reconstituted parameter on the
2552 stack later. */
2553 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2554 {
2555 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2556 emit_group_store (parmreg, entry_parm, data->passed_type,
2557 GET_MODE_SIZE (GET_MODE (entry_parm)));
2558 entry_parm = parmreg;
2559 }
2560
2561 data->entry_parm = entry_parm;
2562 }
2563
2564 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2565 always valid and properly aligned. */
2566
2567 static void
2568 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2569 {
2570 rtx stack_parm = data->stack_parm;
2571
2572 /* If we can't trust the parm stack slot to be aligned enough for its
2573 ultimate type, don't use that slot after entry. We'll make another
2574 stack slot, if we need one. */
2575 if (stack_parm
2576 && ((STRICT_ALIGNMENT
2577 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2578 || (data->nominal_type
2579 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2580 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2581 stack_parm = NULL;
2582
2583 /* If parm was passed in memory, and we need to convert it on entry,
2584 don't store it back in that same slot. */
2585 else if (data->entry_parm == stack_parm
2586 && data->nominal_mode != BLKmode
2587 && data->nominal_mode != data->passed_mode)
2588 stack_parm = NULL;
2589
2590 /* If stack protection is in effect for this function, don't leave any
2591 pointers in their passed stack slots. */
2592 else if (crtl->stack_protect_guard
2593 && (flag_stack_protect == 2
2594 || data->passed_pointer
2595 || POINTER_TYPE_P (data->nominal_type)))
2596 stack_parm = NULL;
2597
2598 data->stack_parm = stack_parm;
2599 }
2600
2601 /* A subroutine of assign_parms. Return true if the current parameter
2602 should be stored as a BLKmode in the current frame. */
2603
2604 static bool
2605 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2606 {
2607 if (data->nominal_mode == BLKmode)
2608 return true;
2609 if (GET_MODE (data->entry_parm) == BLKmode)
2610 return true;
2611
2612 #ifdef BLOCK_REG_PADDING
2613 /* Only assign_parm_setup_block knows how to deal with register arguments
2614 that are padded at the least significant end. */
2615 if (REG_P (data->entry_parm)
2616 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2617 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2618 == (BYTES_BIG_ENDIAN ? upward : downward)))
2619 return true;
2620 #endif
2621
2622 return false;
2623 }
2624
2625 /* A subroutine of assign_parms. Arrange for the parameter to be
2626 present and valid in DATA->STACK_RTL. */
2627
2628 static void
2629 assign_parm_setup_block (struct assign_parm_data_all *all,
2630 tree parm, struct assign_parm_data_one *data)
2631 {
2632 rtx entry_parm = data->entry_parm;
2633 rtx stack_parm = data->stack_parm;
2634 HOST_WIDE_INT size;
2635 HOST_WIDE_INT size_stored;
2636
2637 if (GET_CODE (entry_parm) == PARALLEL)
2638 entry_parm = emit_group_move_into_temps (entry_parm);
2639
2640 size = int_size_in_bytes (data->passed_type);
2641 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2642 if (stack_parm == 0)
2643 {
2644 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2645 stack_parm = assign_stack_local (BLKmode, size_stored,
2646 DECL_ALIGN (parm));
2647 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2648 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2649 set_mem_attributes (stack_parm, parm, 1);
2650 }
2651
2652 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2653 calls that pass values in multiple non-contiguous locations. */
2654 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2655 {
2656 rtx mem;
2657
2658 /* Note that we will be storing an integral number of words.
2659 So we have to be careful to ensure that we allocate an
2660 integral number of words. We do this above when we call
2661 assign_stack_local if space was not allocated in the argument
2662 list. If it was, this will not work if PARM_BOUNDARY is not
2663 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2664 if it becomes a problem. Exception is when BLKmode arrives
2665 with arguments not conforming to word_mode. */
2666
2667 if (data->stack_parm == 0)
2668 ;
2669 else if (GET_CODE (entry_parm) == PARALLEL)
2670 ;
2671 else
2672 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2673
2674 mem = validize_mem (stack_parm);
2675
2676 /* Handle values in multiple non-contiguous locations. */
2677 if (GET_CODE (entry_parm) == PARALLEL)
2678 {
2679 push_to_sequence2 (all->first_conversion_insn,
2680 all->last_conversion_insn);
2681 emit_group_store (mem, entry_parm, data->passed_type, size);
2682 all->first_conversion_insn = get_insns ();
2683 all->last_conversion_insn = get_last_insn ();
2684 end_sequence ();
2685 }
2686
2687 else if (size == 0)
2688 ;
2689
2690 /* If SIZE is that of a mode no bigger than a word, just use
2691 that mode's store operation. */
2692 else if (size <= UNITS_PER_WORD)
2693 {
2694 enum machine_mode mode
2695 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2696
2697 if (mode != BLKmode
2698 #ifdef BLOCK_REG_PADDING
2699 && (size == UNITS_PER_WORD
2700 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2701 != (BYTES_BIG_ENDIAN ? upward : downward)))
2702 #endif
2703 )
2704 {
2705 rtx reg;
2706
2707 /* We are really truncating a word_mode value containing
2708 SIZE bytes into a value of mode MODE. If such an
2709 operation requires no actual instructions, we can refer
2710 to the value directly in mode MODE, otherwise we must
2711 start with the register in word_mode and explicitly
2712 convert it. */
2713 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2714 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2715 else
2716 {
2717 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2718 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2719 }
2720 emit_move_insn (change_address (mem, mode, 0), reg);
2721 }
2722
2723 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2724 machine must be aligned to the left before storing
2725 to memory. Note that the previous test doesn't
2726 handle all cases (e.g. SIZE == 3). */
2727 else if (size != UNITS_PER_WORD
2728 #ifdef BLOCK_REG_PADDING
2729 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2730 == downward)
2731 #else
2732 && BYTES_BIG_ENDIAN
2733 #endif
2734 )
2735 {
2736 rtx tem, x;
2737 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2738 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2739
2740 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2741 build_int_cst (NULL_TREE, by),
2742 NULL_RTX, 1);
2743 tem = change_address (mem, word_mode, 0);
2744 emit_move_insn (tem, x);
2745 }
2746 else
2747 move_block_from_reg (REGNO (entry_parm), mem,
2748 size_stored / UNITS_PER_WORD);
2749 }
2750 else
2751 move_block_from_reg (REGNO (entry_parm), mem,
2752 size_stored / UNITS_PER_WORD);
2753 }
2754 else if (data->stack_parm == 0)
2755 {
2756 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2757 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2758 BLOCK_OP_NORMAL);
2759 all->first_conversion_insn = get_insns ();
2760 all->last_conversion_insn = get_last_insn ();
2761 end_sequence ();
2762 }
2763
2764 data->stack_parm = stack_parm;
2765 SET_DECL_RTL (parm, stack_parm);
2766 }
2767
2768 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2769 parameter. Get it there. Perform all ABI specified conversions. */
2770
2771 static void
2772 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2773 struct assign_parm_data_one *data)
2774 {
2775 rtx parmreg;
2776 enum machine_mode promoted_nominal_mode;
2777 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2778 bool did_conversion = false;
2779
2780 /* Store the parm in a pseudoregister during the function, but we may
2781 need to do it in a wider mode. Using 2 here makes the result
2782 consistent with promote_decl_mode and thus expand_expr_real_1. */
2783 promoted_nominal_mode
2784 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2785 TREE_TYPE (current_function_decl), 2);
2786
2787 parmreg = gen_reg_rtx (promoted_nominal_mode);
2788
2789 if (!DECL_ARTIFICIAL (parm))
2790 mark_user_reg (parmreg);
2791
2792 /* If this was an item that we received a pointer to,
2793 set DECL_RTL appropriately. */
2794 if (data->passed_pointer)
2795 {
2796 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2797 set_mem_attributes (x, parm, 1);
2798 SET_DECL_RTL (parm, x);
2799 }
2800 else
2801 SET_DECL_RTL (parm, parmreg);
2802
2803 assign_parm_remove_parallels (data);
2804
2805 /* Copy the value into the register, thus bridging between
2806 assign_parm_find_data_types and expand_expr_real_1. */
2807 if (data->nominal_mode != data->passed_mode
2808 || promoted_nominal_mode != data->promoted_mode)
2809 {
2810 int save_tree_used;
2811
2812 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2813 mode, by the caller. We now have to convert it to
2814 NOMINAL_MODE, if different. However, PARMREG may be in
2815 a different mode than NOMINAL_MODE if it is being stored
2816 promoted.
2817
2818 If ENTRY_PARM is a hard register, it might be in a register
2819 not valid for operating in its mode (e.g., an odd-numbered
2820 register for a DFmode). In that case, moves are the only
2821 thing valid, so we can't do a convert from there. This
2822 occurs when the calling sequence allow such misaligned
2823 usages.
2824
2825 In addition, the conversion may involve a call, which could
2826 clobber parameters which haven't been copied to pseudo
2827 registers yet. Therefore, we must first copy the parm to
2828 a pseudo reg here, and save the conversion until after all
2829 parameters have been moved. */
2830
2831 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2832
2833 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2834
2835 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2836 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2837
2838 if (GET_CODE (tempreg) == SUBREG
2839 && GET_MODE (tempreg) == data->nominal_mode
2840 && REG_P (SUBREG_REG (tempreg))
2841 && data->nominal_mode == data->passed_mode
2842 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2843 && GET_MODE_SIZE (GET_MODE (tempreg))
2844 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2845 {
2846 /* The argument is already sign/zero extended, so note it
2847 into the subreg. */
2848 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2849 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2850 }
2851
2852 /* TREE_USED gets set erroneously during expand_assignment. */
2853 save_tree_used = TREE_USED (parm);
2854 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2855 TREE_USED (parm) = save_tree_used;
2856 all->first_conversion_insn = get_insns ();
2857 all->last_conversion_insn = get_last_insn ();
2858 end_sequence ();
2859
2860 did_conversion = true;
2861 }
2862 else
2863 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2864
2865 /* If we were passed a pointer but the actual value can safely live
2866 in a register, put it in one. */
2867 if (data->passed_pointer
2868 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2869 /* If by-reference argument was promoted, demote it. */
2870 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2871 || use_register_for_decl (parm)))
2872 {
2873 /* We can't use nominal_mode, because it will have been set to
2874 Pmode above. We must use the actual mode of the parm. */
2875 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2876 mark_user_reg (parmreg);
2877
2878 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2879 {
2880 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2881 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2882
2883 push_to_sequence2 (all->first_conversion_insn,
2884 all->last_conversion_insn);
2885 emit_move_insn (tempreg, DECL_RTL (parm));
2886 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2887 emit_move_insn (parmreg, tempreg);
2888 all->first_conversion_insn = get_insns ();
2889 all->last_conversion_insn = get_last_insn ();
2890 end_sequence ();
2891
2892 did_conversion = true;
2893 }
2894 else
2895 emit_move_insn (parmreg, DECL_RTL (parm));
2896
2897 SET_DECL_RTL (parm, parmreg);
2898
2899 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2900 now the parm. */
2901 data->stack_parm = NULL;
2902 }
2903
2904 /* Mark the register as eliminable if we did no conversion and it was
2905 copied from memory at a fixed offset, and the arg pointer was not
2906 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2907 offset formed an invalid address, such memory-equivalences as we
2908 make here would screw up life analysis for it. */
2909 if (data->nominal_mode == data->passed_mode
2910 && !did_conversion
2911 && data->stack_parm != 0
2912 && MEM_P (data->stack_parm)
2913 && data->locate.offset.var == 0
2914 && reg_mentioned_p (virtual_incoming_args_rtx,
2915 XEXP (data->stack_parm, 0)))
2916 {
2917 rtx linsn = get_last_insn ();
2918 rtx sinsn, set;
2919
2920 /* Mark complex types separately. */
2921 if (GET_CODE (parmreg) == CONCAT)
2922 {
2923 enum machine_mode submode
2924 = GET_MODE_INNER (GET_MODE (parmreg));
2925 int regnor = REGNO (XEXP (parmreg, 0));
2926 int regnoi = REGNO (XEXP (parmreg, 1));
2927 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2928 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2929 GET_MODE_SIZE (submode));
2930
2931 /* Scan backwards for the set of the real and
2932 imaginary parts. */
2933 for (sinsn = linsn; sinsn != 0;
2934 sinsn = prev_nonnote_insn (sinsn))
2935 {
2936 set = single_set (sinsn);
2937 if (set == 0)
2938 continue;
2939
2940 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2941 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2942 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2943 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2944 }
2945 }
2946 else if ((set = single_set (linsn)) != 0
2947 && SET_DEST (set) == parmreg)
2948 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2949 }
2950
2951 /* For pointer data type, suggest pointer register. */
2952 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2953 mark_reg_pointer (parmreg,
2954 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2955 }
2956
2957 /* A subroutine of assign_parms. Allocate stack space to hold the current
2958 parameter. Get it there. Perform all ABI specified conversions. */
2959
2960 static void
2961 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2962 struct assign_parm_data_one *data)
2963 {
2964 /* Value must be stored in the stack slot STACK_PARM during function
2965 execution. */
2966 bool to_conversion = false;
2967
2968 assign_parm_remove_parallels (data);
2969
2970 if (data->promoted_mode != data->nominal_mode)
2971 {
2972 /* Conversion is required. */
2973 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2974
2975 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2976
2977 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2978 to_conversion = true;
2979
2980 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2981 TYPE_UNSIGNED (TREE_TYPE (parm)));
2982
2983 if (data->stack_parm)
2984 {
2985 int offset = subreg_lowpart_offset (data->nominal_mode,
2986 GET_MODE (data->stack_parm));
2987 /* ??? This may need a big-endian conversion on sparc64. */
2988 data->stack_parm
2989 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2990 if (offset && MEM_OFFSET (data->stack_parm))
2991 set_mem_offset (data->stack_parm,
2992 plus_constant (MEM_OFFSET (data->stack_parm),
2993 offset));
2994 }
2995 }
2996
2997 if (data->entry_parm != data->stack_parm)
2998 {
2999 rtx src, dest;
3000
3001 if (data->stack_parm == 0)
3002 {
3003 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3004 GET_MODE (data->entry_parm),
3005 TYPE_ALIGN (data->passed_type));
3006 data->stack_parm
3007 = assign_stack_local (GET_MODE (data->entry_parm),
3008 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3009 align);
3010 set_mem_attributes (data->stack_parm, parm, 1);
3011 }
3012
3013 dest = validize_mem (data->stack_parm);
3014 src = validize_mem (data->entry_parm);
3015
3016 if (MEM_P (src))
3017 {
3018 /* Use a block move to handle potentially misaligned entry_parm. */
3019 if (!to_conversion)
3020 push_to_sequence2 (all->first_conversion_insn,
3021 all->last_conversion_insn);
3022 to_conversion = true;
3023
3024 emit_block_move (dest, src,
3025 GEN_INT (int_size_in_bytes (data->passed_type)),
3026 BLOCK_OP_NORMAL);
3027 }
3028 else
3029 emit_move_insn (dest, src);
3030 }
3031
3032 if (to_conversion)
3033 {
3034 all->first_conversion_insn = get_insns ();
3035 all->last_conversion_insn = get_last_insn ();
3036 end_sequence ();
3037 }
3038
3039 SET_DECL_RTL (parm, data->stack_parm);
3040 }
3041
3042 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3043 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3044
3045 static void
3046 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
3047 {
3048 tree parm;
3049 tree orig_fnargs = all->orig_fnargs;
3050
3051 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
3052 {
3053 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3054 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3055 {
3056 rtx tmp, real, imag;
3057 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3058
3059 real = DECL_RTL (fnargs);
3060 imag = DECL_RTL (TREE_CHAIN (fnargs));
3061 if (inner != GET_MODE (real))
3062 {
3063 real = gen_lowpart_SUBREG (inner, real);
3064 imag = gen_lowpart_SUBREG (inner, imag);
3065 }
3066
3067 if (TREE_ADDRESSABLE (parm))
3068 {
3069 rtx rmem, imem;
3070 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3071 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3072 DECL_MODE (parm),
3073 TYPE_ALIGN (TREE_TYPE (parm)));
3074
3075 /* split_complex_arg put the real and imag parts in
3076 pseudos. Move them to memory. */
3077 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3078 set_mem_attributes (tmp, parm, 1);
3079 rmem = adjust_address_nv (tmp, inner, 0);
3080 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3081 push_to_sequence2 (all->first_conversion_insn,
3082 all->last_conversion_insn);
3083 emit_move_insn (rmem, real);
3084 emit_move_insn (imem, imag);
3085 all->first_conversion_insn = get_insns ();
3086 all->last_conversion_insn = get_last_insn ();
3087 end_sequence ();
3088 }
3089 else
3090 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3091 SET_DECL_RTL (parm, tmp);
3092
3093 real = DECL_INCOMING_RTL (fnargs);
3094 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3095 if (inner != GET_MODE (real))
3096 {
3097 real = gen_lowpart_SUBREG (inner, real);
3098 imag = gen_lowpart_SUBREG (inner, imag);
3099 }
3100 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3101 set_decl_incoming_rtl (parm, tmp, false);
3102 fnargs = TREE_CHAIN (fnargs);
3103 }
3104 else
3105 {
3106 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3107 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
3108
3109 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3110 instead of the copy of decl, i.e. FNARGS. */
3111 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3112 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3113 }
3114
3115 fnargs = TREE_CHAIN (fnargs);
3116 }
3117 }
3118
3119 /* Assign RTL expressions to the function's parameters. This may involve
3120 copying them into registers and using those registers as the DECL_RTL. */
3121
3122 static void
3123 assign_parms (tree fndecl)
3124 {
3125 struct assign_parm_data_all all;
3126 tree fnargs, parm;
3127
3128 crtl->args.internal_arg_pointer
3129 = targetm.calls.internal_arg_pointer ();
3130
3131 assign_parms_initialize_all (&all);
3132 fnargs = assign_parms_augmented_arg_list (&all);
3133
3134 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3135 {
3136 struct assign_parm_data_one data;
3137
3138 /* Extract the type of PARM; adjust it according to ABI. */
3139 assign_parm_find_data_types (&all, parm, &data);
3140
3141 /* Early out for errors and void parameters. */
3142 if (data.passed_mode == VOIDmode)
3143 {
3144 SET_DECL_RTL (parm, const0_rtx);
3145 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3146 continue;
3147 }
3148
3149 /* Estimate stack alignment from parameter alignment. */
3150 if (SUPPORTS_STACK_ALIGNMENT)
3151 {
3152 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3153 data.passed_type);
3154 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3155 align);
3156 if (TYPE_ALIGN (data.nominal_type) > align)
3157 align = MINIMUM_ALIGNMENT (data.nominal_type,
3158 TYPE_MODE (data.nominal_type),
3159 TYPE_ALIGN (data.nominal_type));
3160 if (crtl->stack_alignment_estimated < align)
3161 {
3162 gcc_assert (!crtl->stack_realign_processed);
3163 crtl->stack_alignment_estimated = align;
3164 }
3165 }
3166
3167 if (cfun->stdarg && !TREE_CHAIN (parm))
3168 assign_parms_setup_varargs (&all, &data, false);
3169
3170 /* Find out where the parameter arrives in this function. */
3171 assign_parm_find_entry_rtl (&all, &data);
3172
3173 /* Find out where stack space for this parameter might be. */
3174 if (assign_parm_is_stack_parm (&all, &data))
3175 {
3176 assign_parm_find_stack_rtl (parm, &data);
3177 assign_parm_adjust_entry_rtl (&data);
3178 }
3179
3180 /* Record permanently how this parm was passed. */
3181 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3182
3183 /* Update info on where next arg arrives in registers. */
3184 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3185 data.passed_type, data.named_arg);
3186
3187 assign_parm_adjust_stack_rtl (&data);
3188
3189 if (assign_parm_setup_block_p (&data))
3190 assign_parm_setup_block (&all, parm, &data);
3191 else if (data.passed_pointer || use_register_for_decl (parm))
3192 assign_parm_setup_reg (&all, parm, &data);
3193 else
3194 assign_parm_setup_stack (&all, parm, &data);
3195 }
3196
3197 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3198 assign_parms_unsplit_complex (&all, fnargs);
3199
3200 /* Output all parameter conversion instructions (possibly including calls)
3201 now that all parameters have been copied out of hard registers. */
3202 emit_insn (all.first_conversion_insn);
3203
3204 /* Estimate reload stack alignment from scalar return mode. */
3205 if (SUPPORTS_STACK_ALIGNMENT)
3206 {
3207 if (DECL_RESULT (fndecl))
3208 {
3209 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3210 enum machine_mode mode = TYPE_MODE (type);
3211
3212 if (mode != BLKmode
3213 && mode != VOIDmode
3214 && !AGGREGATE_TYPE_P (type))
3215 {
3216 unsigned int align = GET_MODE_ALIGNMENT (mode);
3217 if (crtl->stack_alignment_estimated < align)
3218 {
3219 gcc_assert (!crtl->stack_realign_processed);
3220 crtl->stack_alignment_estimated = align;
3221 }
3222 }
3223 }
3224 }
3225
3226 /* If we are receiving a struct value address as the first argument, set up
3227 the RTL for the function result. As this might require code to convert
3228 the transmitted address to Pmode, we do this here to ensure that possible
3229 preliminary conversions of the address have been emitted already. */
3230 if (all.function_result_decl)
3231 {
3232 tree result = DECL_RESULT (current_function_decl);
3233 rtx addr = DECL_RTL (all.function_result_decl);
3234 rtx x;
3235
3236 if (DECL_BY_REFERENCE (result))
3237 x = addr;
3238 else
3239 {
3240 addr = convert_memory_address (Pmode, addr);
3241 x = gen_rtx_MEM (DECL_MODE (result), addr);
3242 set_mem_attributes (x, result, 1);
3243 }
3244 SET_DECL_RTL (result, x);
3245 }
3246
3247 /* We have aligned all the args, so add space for the pretend args. */
3248 crtl->args.pretend_args_size = all.pretend_args_size;
3249 all.stack_args_size.constant += all.extra_pretend_bytes;
3250 crtl->args.size = all.stack_args_size.constant;
3251
3252 /* Adjust function incoming argument size for alignment and
3253 minimum length. */
3254
3255 #ifdef REG_PARM_STACK_SPACE
3256 crtl->args.size = MAX (crtl->args.size,
3257 REG_PARM_STACK_SPACE (fndecl));
3258 #endif
3259
3260 crtl->args.size = CEIL_ROUND (crtl->args.size,
3261 PARM_BOUNDARY / BITS_PER_UNIT);
3262
3263 #ifdef ARGS_GROW_DOWNWARD
3264 crtl->args.arg_offset_rtx
3265 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3266 : expand_expr (size_diffop (all.stack_args_size.var,
3267 size_int (-all.stack_args_size.constant)),
3268 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3269 #else
3270 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3271 #endif
3272
3273 /* See how many bytes, if any, of its args a function should try to pop
3274 on return. */
3275
3276 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3277 crtl->args.size);
3278
3279 /* For stdarg.h function, save info about
3280 regs and stack space used by the named args. */
3281
3282 crtl->args.info = all.args_so_far;
3283
3284 /* Set the rtx used for the function return value. Put this in its
3285 own variable so any optimizers that need this information don't have
3286 to include tree.h. Do this here so it gets done when an inlined
3287 function gets output. */
3288
3289 crtl->return_rtx
3290 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3291 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3292
3293 /* If scalar return value was computed in a pseudo-reg, or was a named
3294 return value that got dumped to the stack, copy that to the hard
3295 return register. */
3296 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3297 {
3298 tree decl_result = DECL_RESULT (fndecl);
3299 rtx decl_rtl = DECL_RTL (decl_result);
3300
3301 if (REG_P (decl_rtl)
3302 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3303 : DECL_REGISTER (decl_result))
3304 {
3305 rtx real_decl_rtl;
3306
3307 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3308 fndecl, true);
3309 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3310 /* The delay slot scheduler assumes that crtl->return_rtx
3311 holds the hard register containing the return value, not a
3312 temporary pseudo. */
3313 crtl->return_rtx = real_decl_rtl;
3314 }
3315 }
3316 }
3317
3318 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3319 For all seen types, gimplify their sizes. */
3320
3321 static tree
3322 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3323 {
3324 tree t = *tp;
3325
3326 *walk_subtrees = 0;
3327 if (TYPE_P (t))
3328 {
3329 if (POINTER_TYPE_P (t))
3330 *walk_subtrees = 1;
3331 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3332 && !TYPE_SIZES_GIMPLIFIED (t))
3333 {
3334 gimplify_type_sizes (t, (gimple_seq *) data);
3335 *walk_subtrees = 1;
3336 }
3337 }
3338
3339 return NULL;
3340 }
3341
3342 /* Gimplify the parameter list for current_function_decl. This involves
3343 evaluating SAVE_EXPRs of variable sized parameters and generating code
3344 to implement callee-copies reference parameters. Returns a sequence of
3345 statements to add to the beginning of the function. */
3346
3347 gimple_seq
3348 gimplify_parameters (void)
3349 {
3350 struct assign_parm_data_all all;
3351 tree fnargs, parm;
3352 gimple_seq stmts = NULL;
3353
3354 assign_parms_initialize_all (&all);
3355 fnargs = assign_parms_augmented_arg_list (&all);
3356
3357 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3358 {
3359 struct assign_parm_data_one data;
3360
3361 /* Extract the type of PARM; adjust it according to ABI. */
3362 assign_parm_find_data_types (&all, parm, &data);
3363
3364 /* Early out for errors and void parameters. */
3365 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3366 continue;
3367
3368 /* Update info on where next arg arrives in registers. */
3369 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3370 data.passed_type, data.named_arg);
3371
3372 /* ??? Once upon a time variable_size stuffed parameter list
3373 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3374 turned out to be less than manageable in the gimple world.
3375 Now we have to hunt them down ourselves. */
3376 walk_tree_without_duplicates (&data.passed_type,
3377 gimplify_parm_type, &stmts);
3378
3379 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3380 {
3381 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3382 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3383 }
3384
3385 if (data.passed_pointer)
3386 {
3387 tree type = TREE_TYPE (data.passed_type);
3388 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3389 type, data.named_arg))
3390 {
3391 tree local, t;
3392
3393 /* For constant-sized objects, this is trivial; for
3394 variable-sized objects, we have to play games. */
3395 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3396 && !(flag_stack_check == GENERIC_STACK_CHECK
3397 && compare_tree_int (DECL_SIZE_UNIT (parm),
3398 STACK_CHECK_MAX_VAR_SIZE) > 0))
3399 {
3400 local = create_tmp_var (type, get_name (parm));
3401 DECL_IGNORED_P (local) = 0;
3402 /* If PARM was addressable, move that flag over
3403 to the local copy, as its address will be taken,
3404 not the PARMs. */
3405 if (TREE_ADDRESSABLE (parm))
3406 {
3407 TREE_ADDRESSABLE (parm) = 0;
3408 TREE_ADDRESSABLE (local) = 1;
3409 }
3410 }
3411 else
3412 {
3413 tree ptr_type, addr;
3414
3415 ptr_type = build_pointer_type (type);
3416 addr = create_tmp_var (ptr_type, get_name (parm));
3417 DECL_IGNORED_P (addr) = 0;
3418 local = build_fold_indirect_ref (addr);
3419
3420 t = built_in_decls[BUILT_IN_ALLOCA];
3421 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3422 t = fold_convert (ptr_type, t);
3423 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3424 gimplify_and_add (t, &stmts);
3425 }
3426
3427 gimplify_assign (local, parm, &stmts);
3428
3429 SET_DECL_VALUE_EXPR (parm, local);
3430 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3431 }
3432 }
3433 }
3434
3435 return stmts;
3436 }
3437 \f
3438 /* Compute the size and offset from the start of the stacked arguments for a
3439 parm passed in mode PASSED_MODE and with type TYPE.
3440
3441 INITIAL_OFFSET_PTR points to the current offset into the stacked
3442 arguments.
3443
3444 The starting offset and size for this parm are returned in
3445 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3446 nonzero, the offset is that of stack slot, which is returned in
3447 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3448 padding required from the initial offset ptr to the stack slot.
3449
3450 IN_REGS is nonzero if the argument will be passed in registers. It will
3451 never be set if REG_PARM_STACK_SPACE is not defined.
3452
3453 FNDECL is the function in which the argument was defined.
3454
3455 There are two types of rounding that are done. The first, controlled by
3456 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3457 list to be aligned to the specific boundary (in bits). This rounding
3458 affects the initial and starting offsets, but not the argument size.
3459
3460 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3461 optionally rounds the size of the parm to PARM_BOUNDARY. The
3462 initial offset is not affected by this rounding, while the size always
3463 is and the starting offset may be. */
3464
3465 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3466 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3467 callers pass in the total size of args so far as
3468 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3469
3470 void
3471 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3472 int partial, tree fndecl ATTRIBUTE_UNUSED,
3473 struct args_size *initial_offset_ptr,
3474 struct locate_and_pad_arg_data *locate)
3475 {
3476 tree sizetree;
3477 enum direction where_pad;
3478 unsigned int boundary;
3479 int reg_parm_stack_space = 0;
3480 int part_size_in_regs;
3481
3482 #ifdef REG_PARM_STACK_SPACE
3483 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3484
3485 /* If we have found a stack parm before we reach the end of the
3486 area reserved for registers, skip that area. */
3487 if (! in_regs)
3488 {
3489 if (reg_parm_stack_space > 0)
3490 {
3491 if (initial_offset_ptr->var)
3492 {
3493 initial_offset_ptr->var
3494 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3495 ssize_int (reg_parm_stack_space));
3496 initial_offset_ptr->constant = 0;
3497 }
3498 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3499 initial_offset_ptr->constant = reg_parm_stack_space;
3500 }
3501 }
3502 #endif /* REG_PARM_STACK_SPACE */
3503
3504 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3505
3506 sizetree
3507 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3508 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3509 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3510 locate->where_pad = where_pad;
3511
3512 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3513 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3514 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3515
3516 locate->boundary = boundary;
3517
3518 if (SUPPORTS_STACK_ALIGNMENT)
3519 {
3520 /* stack_alignment_estimated can't change after stack has been
3521 realigned. */
3522 if (crtl->stack_alignment_estimated < boundary)
3523 {
3524 if (!crtl->stack_realign_processed)
3525 crtl->stack_alignment_estimated = boundary;
3526 else
3527 {
3528 /* If stack is realigned and stack alignment value
3529 hasn't been finalized, it is OK not to increase
3530 stack_alignment_estimated. The bigger alignment
3531 requirement is recorded in stack_alignment_needed
3532 below. */
3533 gcc_assert (!crtl->stack_realign_finalized
3534 && crtl->stack_realign_needed);
3535 }
3536 }
3537 }
3538
3539 /* Remember if the outgoing parameter requires extra alignment on the
3540 calling function side. */
3541 if (crtl->stack_alignment_needed < boundary)
3542 crtl->stack_alignment_needed = boundary;
3543 if (crtl->preferred_stack_boundary < boundary)
3544 crtl->preferred_stack_boundary = boundary;
3545
3546 #ifdef ARGS_GROW_DOWNWARD
3547 locate->slot_offset.constant = -initial_offset_ptr->constant;
3548 if (initial_offset_ptr->var)
3549 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3550 initial_offset_ptr->var);
3551
3552 {
3553 tree s2 = sizetree;
3554 if (where_pad != none
3555 && (!host_integerp (sizetree, 1)
3556 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3557 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3558 SUB_PARM_SIZE (locate->slot_offset, s2);
3559 }
3560
3561 locate->slot_offset.constant += part_size_in_regs;
3562
3563 if (!in_regs
3564 #ifdef REG_PARM_STACK_SPACE
3565 || REG_PARM_STACK_SPACE (fndecl) > 0
3566 #endif
3567 )
3568 pad_to_arg_alignment (&locate->slot_offset, boundary,
3569 &locate->alignment_pad);
3570
3571 locate->size.constant = (-initial_offset_ptr->constant
3572 - locate->slot_offset.constant);
3573 if (initial_offset_ptr->var)
3574 locate->size.var = size_binop (MINUS_EXPR,
3575 size_binop (MINUS_EXPR,
3576 ssize_int (0),
3577 initial_offset_ptr->var),
3578 locate->slot_offset.var);
3579
3580 /* Pad_below needs the pre-rounded size to know how much to pad
3581 below. */
3582 locate->offset = locate->slot_offset;
3583 if (where_pad == downward)
3584 pad_below (&locate->offset, passed_mode, sizetree);
3585
3586 #else /* !ARGS_GROW_DOWNWARD */
3587 if (!in_regs
3588 #ifdef REG_PARM_STACK_SPACE
3589 || REG_PARM_STACK_SPACE (fndecl) > 0
3590 #endif
3591 )
3592 pad_to_arg_alignment (initial_offset_ptr, boundary,
3593 &locate->alignment_pad);
3594 locate->slot_offset = *initial_offset_ptr;
3595
3596 #ifdef PUSH_ROUNDING
3597 if (passed_mode != BLKmode)
3598 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3599 #endif
3600
3601 /* Pad_below needs the pre-rounded size to know how much to pad below
3602 so this must be done before rounding up. */
3603 locate->offset = locate->slot_offset;
3604 if (where_pad == downward)
3605 pad_below (&locate->offset, passed_mode, sizetree);
3606
3607 if (where_pad != none
3608 && (!host_integerp (sizetree, 1)
3609 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3610 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3611
3612 ADD_PARM_SIZE (locate->size, sizetree);
3613
3614 locate->size.constant -= part_size_in_regs;
3615 #endif /* ARGS_GROW_DOWNWARD */
3616
3617 #ifdef FUNCTION_ARG_OFFSET
3618 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3619 #endif
3620 }
3621
3622 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3623 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3624
3625 static void
3626 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3627 struct args_size *alignment_pad)
3628 {
3629 tree save_var = NULL_TREE;
3630 HOST_WIDE_INT save_constant = 0;
3631 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3632 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3633
3634 #ifdef SPARC_STACK_BOUNDARY_HACK
3635 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3636 the real alignment of %sp. However, when it does this, the
3637 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3638 if (SPARC_STACK_BOUNDARY_HACK)
3639 sp_offset = 0;
3640 #endif
3641
3642 if (boundary > PARM_BOUNDARY)
3643 {
3644 save_var = offset_ptr->var;
3645 save_constant = offset_ptr->constant;
3646 }
3647
3648 alignment_pad->var = NULL_TREE;
3649 alignment_pad->constant = 0;
3650
3651 if (boundary > BITS_PER_UNIT)
3652 {
3653 if (offset_ptr->var)
3654 {
3655 tree sp_offset_tree = ssize_int (sp_offset);
3656 tree offset = size_binop (PLUS_EXPR,
3657 ARGS_SIZE_TREE (*offset_ptr),
3658 sp_offset_tree);
3659 #ifdef ARGS_GROW_DOWNWARD
3660 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3661 #else
3662 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3663 #endif
3664
3665 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3666 /* ARGS_SIZE_TREE includes constant term. */
3667 offset_ptr->constant = 0;
3668 if (boundary > PARM_BOUNDARY)
3669 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3670 save_var);
3671 }
3672 else
3673 {
3674 offset_ptr->constant = -sp_offset +
3675 #ifdef ARGS_GROW_DOWNWARD
3676 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3677 #else
3678 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3679 #endif
3680 if (boundary > PARM_BOUNDARY)
3681 alignment_pad->constant = offset_ptr->constant - save_constant;
3682 }
3683 }
3684 }
3685
3686 static void
3687 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3688 {
3689 if (passed_mode != BLKmode)
3690 {
3691 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3692 offset_ptr->constant
3693 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3694 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3695 - GET_MODE_SIZE (passed_mode));
3696 }
3697 else
3698 {
3699 if (TREE_CODE (sizetree) != INTEGER_CST
3700 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3701 {
3702 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3703 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3704 /* Add it in. */
3705 ADD_PARM_SIZE (*offset_ptr, s2);
3706 SUB_PARM_SIZE (*offset_ptr, sizetree);
3707 }
3708 }
3709 }
3710 \f
3711
3712 /* True if register REGNO was alive at a place where `setjmp' was
3713 called and was set more than once or is an argument. Such regs may
3714 be clobbered by `longjmp'. */
3715
3716 static bool
3717 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3718 {
3719 /* There appear to be cases where some local vars never reach the
3720 backend but have bogus regnos. */
3721 if (regno >= max_reg_num ())
3722 return false;
3723
3724 return ((REG_N_SETS (regno) > 1
3725 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3726 && REGNO_REG_SET_P (setjmp_crosses, regno));
3727 }
3728
3729 /* Walk the tree of blocks describing the binding levels within a
3730 function and warn about variables the might be killed by setjmp or
3731 vfork. This is done after calling flow_analysis before register
3732 allocation since that will clobber the pseudo-regs to hard
3733 regs. */
3734
3735 static void
3736 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3737 {
3738 tree decl, sub;
3739
3740 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3741 {
3742 if (TREE_CODE (decl) == VAR_DECL
3743 && DECL_RTL_SET_P (decl)
3744 && REG_P (DECL_RTL (decl))
3745 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3746 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3747 " %<longjmp%> or %<vfork%>", decl);
3748 }
3749
3750 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3751 setjmp_vars_warning (setjmp_crosses, sub);
3752 }
3753
3754 /* Do the appropriate part of setjmp_vars_warning
3755 but for arguments instead of local variables. */
3756
3757 static void
3758 setjmp_args_warning (bitmap setjmp_crosses)
3759 {
3760 tree decl;
3761 for (decl = DECL_ARGUMENTS (current_function_decl);
3762 decl; decl = TREE_CHAIN (decl))
3763 if (DECL_RTL (decl) != 0
3764 && REG_P (DECL_RTL (decl))
3765 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3766 warning (OPT_Wclobbered,
3767 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3768 decl);
3769 }
3770
3771 /* Generate warning messages for variables live across setjmp. */
3772
3773 void
3774 generate_setjmp_warnings (void)
3775 {
3776 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3777
3778 if (n_basic_blocks == NUM_FIXED_BLOCKS
3779 || bitmap_empty_p (setjmp_crosses))
3780 return;
3781
3782 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3783 setjmp_args_warning (setjmp_crosses);
3784 }
3785
3786 \f
3787 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3788 and create duplicate blocks. */
3789 /* ??? Need an option to either create block fragments or to create
3790 abstract origin duplicates of a source block. It really depends
3791 on what optimization has been performed. */
3792
3793 void
3794 reorder_blocks (void)
3795 {
3796 tree block = DECL_INITIAL (current_function_decl);
3797 VEC(tree,heap) *block_stack;
3798
3799 if (block == NULL_TREE)
3800 return;
3801
3802 block_stack = VEC_alloc (tree, heap, 10);
3803
3804 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3805 clear_block_marks (block);
3806
3807 /* Prune the old trees away, so that they don't get in the way. */
3808 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3809 BLOCK_CHAIN (block) = NULL_TREE;
3810
3811 /* Recreate the block tree from the note nesting. */
3812 reorder_blocks_1 (get_insns (), block, &block_stack);
3813 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3814
3815 VEC_free (tree, heap, block_stack);
3816 }
3817
3818 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3819
3820 void
3821 clear_block_marks (tree block)
3822 {
3823 while (block)
3824 {
3825 TREE_ASM_WRITTEN (block) = 0;
3826 clear_block_marks (BLOCK_SUBBLOCKS (block));
3827 block = BLOCK_CHAIN (block);
3828 }
3829 }
3830
3831 static void
3832 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3833 {
3834 rtx insn;
3835
3836 for (insn = insns; insn; insn = NEXT_INSN (insn))
3837 {
3838 if (NOTE_P (insn))
3839 {
3840 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3841 {
3842 tree block = NOTE_BLOCK (insn);
3843 tree origin;
3844
3845 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3846 ? BLOCK_FRAGMENT_ORIGIN (block)
3847 : block);
3848
3849 /* If we have seen this block before, that means it now
3850 spans multiple address regions. Create a new fragment. */
3851 if (TREE_ASM_WRITTEN (block))
3852 {
3853 tree new_block = copy_node (block);
3854
3855 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3856 BLOCK_FRAGMENT_CHAIN (new_block)
3857 = BLOCK_FRAGMENT_CHAIN (origin);
3858 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3859
3860 NOTE_BLOCK (insn) = new_block;
3861 block = new_block;
3862 }
3863
3864 BLOCK_SUBBLOCKS (block) = 0;
3865 TREE_ASM_WRITTEN (block) = 1;
3866 /* When there's only one block for the entire function,
3867 current_block == block and we mustn't do this, it
3868 will cause infinite recursion. */
3869 if (block != current_block)
3870 {
3871 if (block != origin)
3872 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3873
3874 BLOCK_SUPERCONTEXT (block) = current_block;
3875 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3876 BLOCK_SUBBLOCKS (current_block) = block;
3877 current_block = origin;
3878 }
3879 VEC_safe_push (tree, heap, *p_block_stack, block);
3880 }
3881 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3882 {
3883 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3884 BLOCK_SUBBLOCKS (current_block)
3885 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3886 current_block = BLOCK_SUPERCONTEXT (current_block);
3887 }
3888 }
3889 }
3890 }
3891
3892 /* Reverse the order of elements in the chain T of blocks,
3893 and return the new head of the chain (old last element). */
3894
3895 tree
3896 blocks_nreverse (tree t)
3897 {
3898 tree prev = 0, decl, next;
3899 for (decl = t; decl; decl = next)
3900 {
3901 next = BLOCK_CHAIN (decl);
3902 BLOCK_CHAIN (decl) = prev;
3903 prev = decl;
3904 }
3905 return prev;
3906 }
3907
3908 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3909 non-NULL, list them all into VECTOR, in a depth-first preorder
3910 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3911 blocks. */
3912
3913 static int
3914 all_blocks (tree block, tree *vector)
3915 {
3916 int n_blocks = 0;
3917
3918 while (block)
3919 {
3920 TREE_ASM_WRITTEN (block) = 0;
3921
3922 /* Record this block. */
3923 if (vector)
3924 vector[n_blocks] = block;
3925
3926 ++n_blocks;
3927
3928 /* Record the subblocks, and their subblocks... */
3929 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3930 vector ? vector + n_blocks : 0);
3931 block = BLOCK_CHAIN (block);
3932 }
3933
3934 return n_blocks;
3935 }
3936
3937 /* Return a vector containing all the blocks rooted at BLOCK. The
3938 number of elements in the vector is stored in N_BLOCKS_P. The
3939 vector is dynamically allocated; it is the caller's responsibility
3940 to call `free' on the pointer returned. */
3941
3942 static tree *
3943 get_block_vector (tree block, int *n_blocks_p)
3944 {
3945 tree *block_vector;
3946
3947 *n_blocks_p = all_blocks (block, NULL);
3948 block_vector = XNEWVEC (tree, *n_blocks_p);
3949 all_blocks (block, block_vector);
3950
3951 return block_vector;
3952 }
3953
3954 static GTY(()) int next_block_index = 2;
3955
3956 /* Set BLOCK_NUMBER for all the blocks in FN. */
3957
3958 void
3959 number_blocks (tree fn)
3960 {
3961 int i;
3962 int n_blocks;
3963 tree *block_vector;
3964
3965 /* For SDB and XCOFF debugging output, we start numbering the blocks
3966 from 1 within each function, rather than keeping a running
3967 count. */
3968 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3969 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3970 next_block_index = 1;
3971 #endif
3972
3973 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3974
3975 /* The top-level BLOCK isn't numbered at all. */
3976 for (i = 1; i < n_blocks; ++i)
3977 /* We number the blocks from two. */
3978 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3979
3980 free (block_vector);
3981
3982 return;
3983 }
3984
3985 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3986
3987 tree
3988 debug_find_var_in_block_tree (tree var, tree block)
3989 {
3990 tree t;
3991
3992 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3993 if (t == var)
3994 return block;
3995
3996 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3997 {
3998 tree ret = debug_find_var_in_block_tree (var, t);
3999 if (ret)
4000 return ret;
4001 }
4002
4003 return NULL_TREE;
4004 }
4005 \f
4006 /* Keep track of whether we're in a dummy function context. If we are,
4007 we don't want to invoke the set_current_function hook, because we'll
4008 get into trouble if the hook calls target_reinit () recursively or
4009 when the initial initialization is not yet complete. */
4010
4011 static bool in_dummy_function;
4012
4013 /* Invoke the target hook when setting cfun. Update the optimization options
4014 if the function uses different options than the default. */
4015
4016 static void
4017 invoke_set_current_function_hook (tree fndecl)
4018 {
4019 if (!in_dummy_function)
4020 {
4021 tree opts = ((fndecl)
4022 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4023 : optimization_default_node);
4024
4025 if (!opts)
4026 opts = optimization_default_node;
4027
4028 /* Change optimization options if needed. */
4029 if (optimization_current_node != opts)
4030 {
4031 optimization_current_node = opts;
4032 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4033 }
4034
4035 targetm.set_current_function (fndecl);
4036 }
4037 }
4038
4039 /* cfun should never be set directly; use this function. */
4040
4041 void
4042 set_cfun (struct function *new_cfun)
4043 {
4044 if (cfun != new_cfun)
4045 {
4046 cfun = new_cfun;
4047 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4048 }
4049 }
4050
4051 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4052
4053 static VEC(function_p,heap) *cfun_stack;
4054
4055 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4056
4057 void
4058 push_cfun (struct function *new_cfun)
4059 {
4060 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4061 set_cfun (new_cfun);
4062 }
4063
4064 /* Pop cfun from the stack. */
4065
4066 void
4067 pop_cfun (void)
4068 {
4069 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4070 set_cfun (new_cfun);
4071 }
4072
4073 /* Return value of funcdef and increase it. */
4074 int
4075 get_next_funcdef_no (void)
4076 {
4077 return funcdef_no++;
4078 }
4079
4080 /* Allocate a function structure for FNDECL and set its contents
4081 to the defaults. Set cfun to the newly-allocated object.
4082 Some of the helper functions invoked during initialization assume
4083 that cfun has already been set. Therefore, assign the new object
4084 directly into cfun and invoke the back end hook explicitly at the
4085 very end, rather than initializing a temporary and calling set_cfun
4086 on it.
4087
4088 ABSTRACT_P is true if this is a function that will never be seen by
4089 the middle-end. Such functions are front-end concepts (like C++
4090 function templates) that do not correspond directly to functions
4091 placed in object files. */
4092
4093 void
4094 allocate_struct_function (tree fndecl, bool abstract_p)
4095 {
4096 tree result;
4097 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4098
4099 cfun = GGC_CNEW (struct function);
4100
4101 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
4102
4103 init_eh_for_function ();
4104
4105 if (init_machine_status)
4106 cfun->machine = (*init_machine_status) ();
4107
4108 #ifdef OVERRIDE_ABI_FORMAT
4109 OVERRIDE_ABI_FORMAT (fndecl);
4110 #endif
4111
4112 invoke_set_current_function_hook (fndecl);
4113
4114 if (fndecl != NULL_TREE)
4115 {
4116 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4117 cfun->decl = fndecl;
4118 current_function_funcdef_no = get_next_funcdef_no ();
4119
4120 result = DECL_RESULT (fndecl);
4121 if (!abstract_p && aggregate_value_p (result, fndecl))
4122 {
4123 #ifdef PCC_STATIC_STRUCT_RETURN
4124 cfun->returns_pcc_struct = 1;
4125 #endif
4126 cfun->returns_struct = 1;
4127 }
4128
4129 cfun->stdarg
4130 = (fntype
4131 && TYPE_ARG_TYPES (fntype) != 0
4132 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4133 != void_type_node));
4134
4135 /* Assume all registers in stdarg functions need to be saved. */
4136 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4137 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4138 }
4139 }
4140
4141 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4142 instead of just setting it. */
4143
4144 void
4145 push_struct_function (tree fndecl)
4146 {
4147 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4148 allocate_struct_function (fndecl, false);
4149 }
4150
4151 /* Reset cfun, and other non-struct-function variables to defaults as
4152 appropriate for emitting rtl at the start of a function. */
4153
4154 static void
4155 prepare_function_start (void)
4156 {
4157 gcc_assert (!crtl->emit.x_last_insn);
4158 init_temp_slots ();
4159 init_emit ();
4160 init_varasm_status ();
4161 init_expr ();
4162 default_rtl_profile ();
4163
4164 cse_not_expected = ! optimize;
4165
4166 /* Caller save not needed yet. */
4167 caller_save_needed = 0;
4168
4169 /* We haven't done register allocation yet. */
4170 reg_renumber = 0;
4171
4172 /* Indicate that we have not instantiated virtual registers yet. */
4173 virtuals_instantiated = 0;
4174
4175 /* Indicate that we want CONCATs now. */
4176 generating_concat_p = 1;
4177
4178 /* Indicate we have no need of a frame pointer yet. */
4179 frame_pointer_needed = 0;
4180 }
4181
4182 /* Initialize the rtl expansion mechanism so that we can do simple things
4183 like generate sequences. This is used to provide a context during global
4184 initialization of some passes. You must call expand_dummy_function_end
4185 to exit this context. */
4186
4187 void
4188 init_dummy_function_start (void)
4189 {
4190 gcc_assert (!in_dummy_function);
4191 in_dummy_function = true;
4192 push_struct_function (NULL_TREE);
4193 prepare_function_start ();
4194 }
4195
4196 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4197 and initialize static variables for generating RTL for the statements
4198 of the function. */
4199
4200 void
4201 init_function_start (tree subr)
4202 {
4203 if (subr && DECL_STRUCT_FUNCTION (subr))
4204 set_cfun (DECL_STRUCT_FUNCTION (subr));
4205 else
4206 allocate_struct_function (subr, false);
4207 prepare_function_start ();
4208
4209 /* Warn if this value is an aggregate type,
4210 regardless of which calling convention we are using for it. */
4211 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4212 warning (OPT_Waggregate_return, "function returns an aggregate");
4213 }
4214
4215 /* Make sure all values used by the optimization passes have sane defaults. */
4216 unsigned int
4217 init_function_for_compilation (void)
4218 {
4219 reg_renumber = 0;
4220 return 0;
4221 }
4222
4223 struct rtl_opt_pass pass_init_function =
4224 {
4225 {
4226 RTL_PASS,
4227 NULL, /* name */
4228 NULL, /* gate */
4229 init_function_for_compilation, /* execute */
4230 NULL, /* sub */
4231 NULL, /* next */
4232 0, /* static_pass_number */
4233 TV_NONE, /* tv_id */
4234 0, /* properties_required */
4235 0, /* properties_provided */
4236 0, /* properties_destroyed */
4237 0, /* todo_flags_start */
4238 0 /* todo_flags_finish */
4239 }
4240 };
4241
4242
4243 void
4244 expand_main_function (void)
4245 {
4246 #if (defined(INVOKE__main) \
4247 || (!defined(HAS_INIT_SECTION) \
4248 && !defined(INIT_SECTION_ASM_OP) \
4249 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4250 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4251 #endif
4252 }
4253 \f
4254 /* Expand code to initialize the stack_protect_guard. This is invoked at
4255 the beginning of a function to be protected. */
4256
4257 #ifndef HAVE_stack_protect_set
4258 # define HAVE_stack_protect_set 0
4259 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4260 #endif
4261
4262 void
4263 stack_protect_prologue (void)
4264 {
4265 tree guard_decl = targetm.stack_protect_guard ();
4266 rtx x, y;
4267
4268 /* Avoid expand_expr here, because we don't want guard_decl pulled
4269 into registers unless absolutely necessary. And we know that
4270 crtl->stack_protect_guard is a local stack slot, so this skips
4271 all the fluff. */
4272 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4273 y = validize_mem (DECL_RTL (guard_decl));
4274
4275 /* Allow the target to copy from Y to X without leaking Y into a
4276 register. */
4277 if (HAVE_stack_protect_set)
4278 {
4279 rtx insn = gen_stack_protect_set (x, y);
4280 if (insn)
4281 {
4282 emit_insn (insn);
4283 return;
4284 }
4285 }
4286
4287 /* Otherwise do a straight move. */
4288 emit_move_insn (x, y);
4289 }
4290
4291 /* Expand code to verify the stack_protect_guard. This is invoked at
4292 the end of a function to be protected. */
4293
4294 #ifndef HAVE_stack_protect_test
4295 # define HAVE_stack_protect_test 0
4296 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4297 #endif
4298
4299 void
4300 stack_protect_epilogue (void)
4301 {
4302 tree guard_decl = targetm.stack_protect_guard ();
4303 rtx label = gen_label_rtx ();
4304 rtx x, y, tmp;
4305
4306 /* Avoid expand_expr here, because we don't want guard_decl pulled
4307 into registers unless absolutely necessary. And we know that
4308 crtl->stack_protect_guard is a local stack slot, so this skips
4309 all the fluff. */
4310 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4311 y = validize_mem (DECL_RTL (guard_decl));
4312
4313 /* Allow the target to compare Y with X without leaking either into
4314 a register. */
4315 switch (HAVE_stack_protect_test != 0)
4316 {
4317 case 1:
4318 tmp = gen_stack_protect_test (x, y, label);
4319 if (tmp)
4320 {
4321 emit_insn (tmp);
4322 break;
4323 }
4324 /* FALLTHRU */
4325
4326 default:
4327 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4328 break;
4329 }
4330
4331 /* The noreturn predictor has been moved to the tree level. The rtl-level
4332 predictors estimate this branch about 20%, which isn't enough to get
4333 things moved out of line. Since this is the only extant case of adding
4334 a noreturn function at the rtl level, it doesn't seem worth doing ought
4335 except adding the prediction by hand. */
4336 tmp = get_last_insn ();
4337 if (JUMP_P (tmp))
4338 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4339
4340 expand_expr_stmt (targetm.stack_protect_fail ());
4341 emit_label (label);
4342 }
4343 \f
4344 /* Start the RTL for a new function, and set variables used for
4345 emitting RTL.
4346 SUBR is the FUNCTION_DECL node.
4347 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4348 the function's parameters, which must be run at any return statement. */
4349
4350 void
4351 expand_function_start (tree subr)
4352 {
4353 /* Make sure volatile mem refs aren't considered
4354 valid operands of arithmetic insns. */
4355 init_recog_no_volatile ();
4356
4357 crtl->profile
4358 = (profile_flag
4359 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4360
4361 crtl->limit_stack
4362 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4363
4364 /* Make the label for return statements to jump to. Do not special
4365 case machines with special return instructions -- they will be
4366 handled later during jump, ifcvt, or epilogue creation. */
4367 return_label = gen_label_rtx ();
4368
4369 /* Initialize rtx used to return the value. */
4370 /* Do this before assign_parms so that we copy the struct value address
4371 before any library calls that assign parms might generate. */
4372
4373 /* Decide whether to return the value in memory or in a register. */
4374 if (aggregate_value_p (DECL_RESULT (subr), subr))
4375 {
4376 /* Returning something that won't go in a register. */
4377 rtx value_address = 0;
4378
4379 #ifdef PCC_STATIC_STRUCT_RETURN
4380 if (cfun->returns_pcc_struct)
4381 {
4382 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4383 value_address = assemble_static_space (size);
4384 }
4385 else
4386 #endif
4387 {
4388 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4389 /* Expect to be passed the address of a place to store the value.
4390 If it is passed as an argument, assign_parms will take care of
4391 it. */
4392 if (sv)
4393 {
4394 value_address = gen_reg_rtx (Pmode);
4395 emit_move_insn (value_address, sv);
4396 }
4397 }
4398 if (value_address)
4399 {
4400 rtx x = value_address;
4401 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4402 {
4403 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4404 set_mem_attributes (x, DECL_RESULT (subr), 1);
4405 }
4406 SET_DECL_RTL (DECL_RESULT (subr), x);
4407 }
4408 }
4409 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4410 /* If return mode is void, this decl rtl should not be used. */
4411 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4412 else
4413 {
4414 /* Compute the return values into a pseudo reg, which we will copy
4415 into the true return register after the cleanups are done. */
4416 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4417 if (TYPE_MODE (return_type) != BLKmode
4418 && targetm.calls.return_in_msb (return_type))
4419 /* expand_function_end will insert the appropriate padding in
4420 this case. Use the return value's natural (unpadded) mode
4421 within the function proper. */
4422 SET_DECL_RTL (DECL_RESULT (subr),
4423 gen_reg_rtx (TYPE_MODE (return_type)));
4424 else
4425 {
4426 /* In order to figure out what mode to use for the pseudo, we
4427 figure out what the mode of the eventual return register will
4428 actually be, and use that. */
4429 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4430
4431 /* Structures that are returned in registers are not
4432 aggregate_value_p, so we may see a PARALLEL or a REG. */
4433 if (REG_P (hard_reg))
4434 SET_DECL_RTL (DECL_RESULT (subr),
4435 gen_reg_rtx (GET_MODE (hard_reg)));
4436 else
4437 {
4438 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4439 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4440 }
4441 }
4442
4443 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4444 result to the real return register(s). */
4445 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4446 }
4447
4448 /* Initialize rtx for parameters and local variables.
4449 In some cases this requires emitting insns. */
4450 assign_parms (subr);
4451
4452 /* If function gets a static chain arg, store it. */
4453 if (cfun->static_chain_decl)
4454 {
4455 tree parm = cfun->static_chain_decl;
4456 rtx local, chain, insn;
4457
4458 local = gen_reg_rtx (Pmode);
4459 chain = targetm.calls.static_chain (current_function_decl, true);
4460
4461 set_decl_incoming_rtl (parm, chain, false);
4462 SET_DECL_RTL (parm, local);
4463 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4464
4465 insn = emit_move_insn (local, chain);
4466
4467 /* Mark the register as eliminable, similar to parameters. */
4468 if (MEM_P (chain)
4469 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4470 set_unique_reg_note (insn, REG_EQUIV, chain);
4471 }
4472
4473 /* If the function receives a non-local goto, then store the
4474 bits we need to restore the frame pointer. */
4475 if (cfun->nonlocal_goto_save_area)
4476 {
4477 tree t_save;
4478 rtx r_save;
4479
4480 /* ??? We need to do this save early. Unfortunately here is
4481 before the frame variable gets declared. Help out... */
4482 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4483 if (!DECL_RTL_SET_P (var))
4484 expand_decl (var);
4485
4486 t_save = build4 (ARRAY_REF, ptr_type_node,
4487 cfun->nonlocal_goto_save_area,
4488 integer_zero_node, NULL_TREE, NULL_TREE);
4489 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4490 r_save = convert_memory_address (Pmode, r_save);
4491
4492 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4493 update_nonlocal_goto_save_area ();
4494 }
4495
4496 /* The following was moved from init_function_start.
4497 The move is supposed to make sdb output more accurate. */
4498 /* Indicate the beginning of the function body,
4499 as opposed to parm setup. */
4500 emit_note (NOTE_INSN_FUNCTION_BEG);
4501
4502 gcc_assert (NOTE_P (get_last_insn ()));
4503
4504 parm_birth_insn = get_last_insn ();
4505
4506 if (crtl->profile)
4507 {
4508 #ifdef PROFILE_HOOK
4509 PROFILE_HOOK (current_function_funcdef_no);
4510 #endif
4511 }
4512
4513 /* After the display initializations is where the stack checking
4514 probe should go. */
4515 if(flag_stack_check)
4516 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4517
4518 /* Make sure there is a line number after the function entry setup code. */
4519 force_next_line_note ();
4520 }
4521 \f
4522 /* Undo the effects of init_dummy_function_start. */
4523 void
4524 expand_dummy_function_end (void)
4525 {
4526 gcc_assert (in_dummy_function);
4527
4528 /* End any sequences that failed to be closed due to syntax errors. */
4529 while (in_sequence_p ())
4530 end_sequence ();
4531
4532 /* Outside function body, can't compute type's actual size
4533 until next function's body starts. */
4534
4535 free_after_parsing (cfun);
4536 free_after_compilation (cfun);
4537 pop_cfun ();
4538 in_dummy_function = false;
4539 }
4540
4541 /* Call DOIT for each hard register used as a return value from
4542 the current function. */
4543
4544 void
4545 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4546 {
4547 rtx outgoing = crtl->return_rtx;
4548
4549 if (! outgoing)
4550 return;
4551
4552 if (REG_P (outgoing))
4553 (*doit) (outgoing, arg);
4554 else if (GET_CODE (outgoing) == PARALLEL)
4555 {
4556 int i;
4557
4558 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4559 {
4560 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4561
4562 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4563 (*doit) (x, arg);
4564 }
4565 }
4566 }
4567
4568 static void
4569 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4570 {
4571 emit_clobber (reg);
4572 }
4573
4574 void
4575 clobber_return_register (void)
4576 {
4577 diddle_return_value (do_clobber_return_reg, NULL);
4578
4579 /* In case we do use pseudo to return value, clobber it too. */
4580 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4581 {
4582 tree decl_result = DECL_RESULT (current_function_decl);
4583 rtx decl_rtl = DECL_RTL (decl_result);
4584 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4585 {
4586 do_clobber_return_reg (decl_rtl, NULL);
4587 }
4588 }
4589 }
4590
4591 static void
4592 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4593 {
4594 emit_use (reg);
4595 }
4596
4597 static void
4598 use_return_register (void)
4599 {
4600 diddle_return_value (do_use_return_reg, NULL);
4601 }
4602
4603 /* Possibly warn about unused parameters. */
4604 void
4605 do_warn_unused_parameter (tree fn)
4606 {
4607 tree decl;
4608
4609 for (decl = DECL_ARGUMENTS (fn);
4610 decl; decl = TREE_CHAIN (decl))
4611 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4612 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4613 && !TREE_NO_WARNING (decl))
4614 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4615 }
4616
4617 static GTY(()) rtx initial_trampoline;
4618
4619 /* Generate RTL for the end of the current function. */
4620
4621 void
4622 expand_function_end (void)
4623 {
4624 rtx clobber_after;
4625
4626 /* If arg_pointer_save_area was referenced only from a nested
4627 function, we will not have initialized it yet. Do that now. */
4628 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4629 get_arg_pointer_save_area ();
4630
4631 /* If we are doing generic stack checking and this function makes calls,
4632 do a stack probe at the start of the function to ensure we have enough
4633 space for another stack frame. */
4634 if (flag_stack_check == GENERIC_STACK_CHECK)
4635 {
4636 rtx insn, seq;
4637
4638 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4639 if (CALL_P (insn))
4640 {
4641 start_sequence ();
4642 probe_stack_range (STACK_OLD_CHECK_PROTECT,
4643 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4644 seq = get_insns ();
4645 end_sequence ();
4646 emit_insn_before (seq, stack_check_probe_note);
4647 break;
4648 }
4649 }
4650
4651 /* End any sequences that failed to be closed due to syntax errors. */
4652 while (in_sequence_p ())
4653 end_sequence ();
4654
4655 clear_pending_stack_adjust ();
4656 do_pending_stack_adjust ();
4657
4658 /* Output a linenumber for the end of the function.
4659 SDB depends on this. */
4660 force_next_line_note ();
4661 set_curr_insn_source_location (input_location);
4662
4663 /* Before the return label (if any), clobber the return
4664 registers so that they are not propagated live to the rest of
4665 the function. This can only happen with functions that drop
4666 through; if there had been a return statement, there would
4667 have either been a return rtx, or a jump to the return label.
4668
4669 We delay actual code generation after the current_function_value_rtx
4670 is computed. */
4671 clobber_after = get_last_insn ();
4672
4673 /* Output the label for the actual return from the function. */
4674 emit_label (return_label);
4675
4676 if (USING_SJLJ_EXCEPTIONS)
4677 {
4678 /* Let except.c know where it should emit the call to unregister
4679 the function context for sjlj exceptions. */
4680 if (flag_exceptions)
4681 sjlj_emit_function_exit_after (get_last_insn ());
4682 }
4683 else
4684 {
4685 /* We want to ensure that instructions that may trap are not
4686 moved into the epilogue by scheduling, because we don't
4687 always emit unwind information for the epilogue. */
4688 if (flag_non_call_exceptions)
4689 emit_insn (gen_blockage ());
4690 }
4691
4692 /* If this is an implementation of throw, do what's necessary to
4693 communicate between __builtin_eh_return and the epilogue. */
4694 expand_eh_return ();
4695
4696 /* If scalar return value was computed in a pseudo-reg, or was a named
4697 return value that got dumped to the stack, copy that to the hard
4698 return register. */
4699 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4700 {
4701 tree decl_result = DECL_RESULT (current_function_decl);
4702 rtx decl_rtl = DECL_RTL (decl_result);
4703
4704 if (REG_P (decl_rtl)
4705 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4706 : DECL_REGISTER (decl_result))
4707 {
4708 rtx real_decl_rtl = crtl->return_rtx;
4709
4710 /* This should be set in assign_parms. */
4711 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4712
4713 /* If this is a BLKmode structure being returned in registers,
4714 then use the mode computed in expand_return. Note that if
4715 decl_rtl is memory, then its mode may have been changed,
4716 but that crtl->return_rtx has not. */
4717 if (GET_MODE (real_decl_rtl) == BLKmode)
4718 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4719
4720 /* If a non-BLKmode return value should be padded at the least
4721 significant end of the register, shift it left by the appropriate
4722 amount. BLKmode results are handled using the group load/store
4723 machinery. */
4724 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4725 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4726 {
4727 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4728 REGNO (real_decl_rtl)),
4729 decl_rtl);
4730 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4731 }
4732 /* If a named return value dumped decl_return to memory, then
4733 we may need to re-do the PROMOTE_MODE signed/unsigned
4734 extension. */
4735 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4736 {
4737 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4738 promote_function_mode (TREE_TYPE (decl_result),
4739 GET_MODE (decl_rtl), &unsignedp,
4740 TREE_TYPE (current_function_decl), 1);
4741
4742 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4743 }
4744 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4745 {
4746 /* If expand_function_start has created a PARALLEL for decl_rtl,
4747 move the result to the real return registers. Otherwise, do
4748 a group load from decl_rtl for a named return. */
4749 if (GET_CODE (decl_rtl) == PARALLEL)
4750 emit_group_move (real_decl_rtl, decl_rtl);
4751 else
4752 emit_group_load (real_decl_rtl, decl_rtl,
4753 TREE_TYPE (decl_result),
4754 int_size_in_bytes (TREE_TYPE (decl_result)));
4755 }
4756 /* In the case of complex integer modes smaller than a word, we'll
4757 need to generate some non-trivial bitfield insertions. Do that
4758 on a pseudo and not the hard register. */
4759 else if (GET_CODE (decl_rtl) == CONCAT
4760 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4761 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4762 {
4763 int old_generating_concat_p;
4764 rtx tmp;
4765
4766 old_generating_concat_p = generating_concat_p;
4767 generating_concat_p = 0;
4768 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4769 generating_concat_p = old_generating_concat_p;
4770
4771 emit_move_insn (tmp, decl_rtl);
4772 emit_move_insn (real_decl_rtl, tmp);
4773 }
4774 else
4775 emit_move_insn (real_decl_rtl, decl_rtl);
4776 }
4777 }
4778
4779 /* If returning a structure, arrange to return the address of the value
4780 in a place where debuggers expect to find it.
4781
4782 If returning a structure PCC style,
4783 the caller also depends on this value.
4784 And cfun->returns_pcc_struct is not necessarily set. */
4785 if (cfun->returns_struct
4786 || cfun->returns_pcc_struct)
4787 {
4788 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4789 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4790 rtx outgoing;
4791
4792 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4793 type = TREE_TYPE (type);
4794 else
4795 value_address = XEXP (value_address, 0);
4796
4797 outgoing = targetm.calls.function_value (build_pointer_type (type),
4798 current_function_decl, true);
4799
4800 /* Mark this as a function return value so integrate will delete the
4801 assignment and USE below when inlining this function. */
4802 REG_FUNCTION_VALUE_P (outgoing) = 1;
4803
4804 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4805 value_address = convert_memory_address (GET_MODE (outgoing),
4806 value_address);
4807
4808 emit_move_insn (outgoing, value_address);
4809
4810 /* Show return register used to hold result (in this case the address
4811 of the result. */
4812 crtl->return_rtx = outgoing;
4813 }
4814
4815 /* Emit the actual code to clobber return register. */
4816 {
4817 rtx seq;
4818
4819 start_sequence ();
4820 clobber_return_register ();
4821 seq = get_insns ();
4822 end_sequence ();
4823
4824 emit_insn_after (seq, clobber_after);
4825 }
4826
4827 /* Output the label for the naked return from the function. */
4828 if (naked_return_label)
4829 emit_label (naked_return_label);
4830
4831 /* @@@ This is a kludge. We want to ensure that instructions that
4832 may trap are not moved into the epilogue by scheduling, because
4833 we don't always emit unwind information for the epilogue. */
4834 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4835 emit_insn (gen_blockage ());
4836
4837 /* If stack protection is enabled for this function, check the guard. */
4838 if (crtl->stack_protect_guard)
4839 stack_protect_epilogue ();
4840
4841 /* If we had calls to alloca, and this machine needs
4842 an accurate stack pointer to exit the function,
4843 insert some code to save and restore the stack pointer. */
4844 if (! EXIT_IGNORE_STACK
4845 && cfun->calls_alloca)
4846 {
4847 rtx tem = 0;
4848
4849 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4850 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4851 }
4852
4853 /* ??? This should no longer be necessary since stupid is no longer with
4854 us, but there are some parts of the compiler (eg reload_combine, and
4855 sh mach_dep_reorg) that still try and compute their own lifetime info
4856 instead of using the general framework. */
4857 use_return_register ();
4858 }
4859
4860 rtx
4861 get_arg_pointer_save_area (void)
4862 {
4863 rtx ret = arg_pointer_save_area;
4864
4865 if (! ret)
4866 {
4867 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4868 arg_pointer_save_area = ret;
4869 }
4870
4871 if (! crtl->arg_pointer_save_area_init)
4872 {
4873 rtx seq;
4874
4875 /* Save the arg pointer at the beginning of the function. The
4876 generated stack slot may not be a valid memory address, so we
4877 have to check it and fix it if necessary. */
4878 start_sequence ();
4879 emit_move_insn (validize_mem (ret),
4880 crtl->args.internal_arg_pointer);
4881 seq = get_insns ();
4882 end_sequence ();
4883
4884 push_topmost_sequence ();
4885 emit_insn_after (seq, entry_of_function ());
4886 pop_topmost_sequence ();
4887 }
4888
4889 return ret;
4890 }
4891 \f
4892 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4893 for the first time. */
4894
4895 static void
4896 record_insns (rtx insns, rtx end, htab_t *hashp)
4897 {
4898 rtx tmp;
4899 htab_t hash = *hashp;
4900
4901 if (hash == NULL)
4902 *hashp = hash
4903 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
4904
4905 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
4906 {
4907 void **slot = htab_find_slot (hash, tmp, INSERT);
4908 gcc_assert (*slot == NULL);
4909 *slot = tmp;
4910 }
4911 }
4912
4913 /* INSN has been duplicated as COPY, as part of duping a basic block.
4914 If INSN is an epilogue insn, then record COPY as epilogue as well. */
4915
4916 void
4917 maybe_copy_epilogue_insn (rtx insn, rtx copy)
4918 {
4919 void **slot;
4920
4921 if (epilogue_insn_hash == NULL
4922 || htab_find (epilogue_insn_hash, insn) == NULL)
4923 return;
4924
4925 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
4926 gcc_assert (*slot == NULL);
4927 *slot = copy;
4928 }
4929
4930 /* Set the locator of the insn chain starting at INSN to LOC. */
4931 static void
4932 set_insn_locators (rtx insn, int loc)
4933 {
4934 while (insn != NULL_RTX)
4935 {
4936 if (INSN_P (insn))
4937 INSN_LOCATOR (insn) = loc;
4938 insn = NEXT_INSN (insn);
4939 }
4940 }
4941
4942 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
4943 we can be running after reorg, SEQUENCE rtl is possible. */
4944
4945 static bool
4946 contains (const_rtx insn, htab_t hash)
4947 {
4948 if (hash == NULL)
4949 return false;
4950
4951 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4952 {
4953 int i;
4954 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4955 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
4956 return true;
4957 return false;
4958 }
4959
4960 return htab_find (hash, insn) != NULL;
4961 }
4962
4963 int
4964 prologue_epilogue_contains (const_rtx insn)
4965 {
4966 if (contains (insn, prologue_insn_hash))
4967 return 1;
4968 if (contains (insn, epilogue_insn_hash))
4969 return 1;
4970 return 0;
4971 }
4972
4973 #ifdef HAVE_return
4974 /* Insert gen_return at the end of block BB. This also means updating
4975 block_for_insn appropriately. */
4976
4977 static void
4978 emit_return_into_block (basic_block bb)
4979 {
4980 emit_jump_insn_after (gen_return (), BB_END (bb));
4981 }
4982 #endif /* HAVE_return */
4983
4984 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4985 this into place with notes indicating where the prologue ends and where
4986 the epilogue begins. Update the basic block information when possible. */
4987
4988 static void
4989 thread_prologue_and_epilogue_insns (void)
4990 {
4991 int inserted = 0;
4992 edge e;
4993 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4994 rtx seq;
4995 #endif
4996 #if defined (HAVE_epilogue) || defined(HAVE_return)
4997 rtx epilogue_end = NULL_RTX;
4998 #endif
4999 edge_iterator ei;
5000
5001 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5002 #ifdef HAVE_prologue
5003 if (HAVE_prologue)
5004 {
5005 start_sequence ();
5006 seq = gen_prologue ();
5007 emit_insn (seq);
5008
5009 /* Insert an explicit USE for the frame pointer
5010 if the profiling is on and the frame pointer is required. */
5011 if (crtl->profile && frame_pointer_needed)
5012 emit_use (hard_frame_pointer_rtx);
5013
5014 /* Retain a map of the prologue insns. */
5015 record_insns (seq, NULL, &prologue_insn_hash);
5016 emit_note (NOTE_INSN_PROLOGUE_END);
5017
5018 #ifndef PROFILE_BEFORE_PROLOGUE
5019 /* Ensure that instructions are not moved into the prologue when
5020 profiling is on. The call to the profiling routine can be
5021 emitted within the live range of a call-clobbered register. */
5022 if (crtl->profile)
5023 emit_insn (gen_blockage ());
5024 #endif
5025
5026 seq = get_insns ();
5027 end_sequence ();
5028 set_insn_locators (seq, prologue_locator);
5029
5030 /* Can't deal with multiple successors of the entry block
5031 at the moment. Function should always have at least one
5032 entry point. */
5033 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5034
5035 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5036 inserted = 1;
5037 }
5038 #endif
5039
5040 /* If the exit block has no non-fake predecessors, we don't need
5041 an epilogue. */
5042 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5043 if ((e->flags & EDGE_FAKE) == 0)
5044 break;
5045 if (e == NULL)
5046 goto epilogue_done;
5047
5048 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5049 #ifdef HAVE_return
5050 if (optimize && HAVE_return)
5051 {
5052 /* If we're allowed to generate a simple return instruction,
5053 then by definition we don't need a full epilogue. Examine
5054 the block that falls through to EXIT. If it does not
5055 contain any code, examine its predecessors and try to
5056 emit (conditional) return instructions. */
5057
5058 basic_block last;
5059 rtx label;
5060
5061 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5062 if (e->flags & EDGE_FALLTHRU)
5063 break;
5064 if (e == NULL)
5065 goto epilogue_done;
5066 last = e->src;
5067
5068 /* Verify that there are no active instructions in the last block. */
5069 label = BB_END (last);
5070 while (label && !LABEL_P (label))
5071 {
5072 if (active_insn_p (label))
5073 break;
5074 label = PREV_INSN (label);
5075 }
5076
5077 if (BB_HEAD (last) == label && LABEL_P (label))
5078 {
5079 edge_iterator ei2;
5080
5081 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5082 {
5083 basic_block bb = e->src;
5084 rtx jump;
5085
5086 if (bb == ENTRY_BLOCK_PTR)
5087 {
5088 ei_next (&ei2);
5089 continue;
5090 }
5091
5092 jump = BB_END (bb);
5093 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5094 {
5095 ei_next (&ei2);
5096 continue;
5097 }
5098
5099 /* If we have an unconditional jump, we can replace that
5100 with a simple return instruction. */
5101 if (simplejump_p (jump))
5102 {
5103 emit_return_into_block (bb);
5104 delete_insn (jump);
5105 }
5106
5107 /* If we have a conditional jump, we can try to replace
5108 that with a conditional return instruction. */
5109 else if (condjump_p (jump))
5110 {
5111 if (! redirect_jump (jump, 0, 0))
5112 {
5113 ei_next (&ei2);
5114 continue;
5115 }
5116
5117 /* If this block has only one successor, it both jumps
5118 and falls through to the fallthru block, so we can't
5119 delete the edge. */
5120 if (single_succ_p (bb))
5121 {
5122 ei_next (&ei2);
5123 continue;
5124 }
5125 }
5126 else
5127 {
5128 ei_next (&ei2);
5129 continue;
5130 }
5131
5132 /* Fix up the CFG for the successful change we just made. */
5133 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5134 }
5135
5136 /* Emit a return insn for the exit fallthru block. Whether
5137 this is still reachable will be determined later. */
5138
5139 emit_barrier_after (BB_END (last));
5140 emit_return_into_block (last);
5141 epilogue_end = BB_END (last);
5142 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5143 goto epilogue_done;
5144 }
5145 }
5146 #endif
5147
5148 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5149 this marker for the splits of EH_RETURN patterns, and nothing else
5150 uses the flag in the meantime. */
5151 epilogue_completed = 1;
5152
5153 #ifdef HAVE_eh_return
5154 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5155 some targets, these get split to a special version of the epilogue
5156 code. In order to be able to properly annotate these with unwind
5157 info, try to split them now. If we get a valid split, drop an
5158 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5159 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5160 {
5161 rtx prev, last, trial;
5162
5163 if (e->flags & EDGE_FALLTHRU)
5164 continue;
5165 last = BB_END (e->src);
5166 if (!eh_returnjump_p (last))
5167 continue;
5168
5169 prev = PREV_INSN (last);
5170 trial = try_split (PATTERN (last), last, 1);
5171 if (trial == last)
5172 continue;
5173
5174 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5175 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5176 }
5177 #endif
5178
5179 /* Find the edge that falls through to EXIT. Other edges may exist
5180 due to RETURN instructions, but those don't need epilogues.
5181 There really shouldn't be a mixture -- either all should have
5182 been converted or none, however... */
5183
5184 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5185 if (e->flags & EDGE_FALLTHRU)
5186 break;
5187 if (e == NULL)
5188 goto epilogue_done;
5189
5190 #ifdef HAVE_epilogue
5191 if (HAVE_epilogue)
5192 {
5193 start_sequence ();
5194 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5195 seq = gen_epilogue ();
5196 emit_jump_insn (seq);
5197
5198 /* Retain a map of the epilogue insns. */
5199 record_insns (seq, NULL, &epilogue_insn_hash);
5200 set_insn_locators (seq, epilogue_locator);
5201
5202 seq = get_insns ();
5203 end_sequence ();
5204
5205 insert_insn_on_edge (seq, e);
5206 inserted = 1;
5207 }
5208 else
5209 #endif
5210 {
5211 basic_block cur_bb;
5212
5213 if (! next_active_insn (BB_END (e->src)))
5214 goto epilogue_done;
5215 /* We have a fall-through edge to the exit block, the source is not
5216 at the end of the function, and there will be an assembler epilogue
5217 at the end of the function.
5218 We can't use force_nonfallthru here, because that would try to
5219 use return. Inserting a jump 'by hand' is extremely messy, so
5220 we take advantage of cfg_layout_finalize using
5221 fixup_fallthru_exit_predecessor. */
5222 cfg_layout_initialize (0);
5223 FOR_EACH_BB (cur_bb)
5224 if (cur_bb->index >= NUM_FIXED_BLOCKS
5225 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5226 cur_bb->aux = cur_bb->next_bb;
5227 cfg_layout_finalize ();
5228 }
5229 epilogue_done:
5230 default_rtl_profile ();
5231
5232 if (inserted)
5233 {
5234 commit_edge_insertions ();
5235
5236 /* The epilogue insns we inserted may cause the exit edge to no longer
5237 be fallthru. */
5238 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5239 {
5240 if (((e->flags & EDGE_FALLTHRU) != 0)
5241 && returnjump_p (BB_END (e->src)))
5242 e->flags &= ~EDGE_FALLTHRU;
5243 }
5244 }
5245
5246 #ifdef HAVE_sibcall_epilogue
5247 /* Emit sibling epilogues before any sibling call sites. */
5248 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5249 {
5250 basic_block bb = e->src;
5251 rtx insn = BB_END (bb);
5252
5253 if (!CALL_P (insn)
5254 || ! SIBLING_CALL_P (insn))
5255 {
5256 ei_next (&ei);
5257 continue;
5258 }
5259
5260 start_sequence ();
5261 emit_note (NOTE_INSN_EPILOGUE_BEG);
5262 emit_insn (gen_sibcall_epilogue ());
5263 seq = get_insns ();
5264 end_sequence ();
5265
5266 /* Retain a map of the epilogue insns. Used in life analysis to
5267 avoid getting rid of sibcall epilogue insns. Do this before we
5268 actually emit the sequence. */
5269 record_insns (seq, NULL, &epilogue_insn_hash);
5270 set_insn_locators (seq, epilogue_locator);
5271
5272 emit_insn_before (seq, insn);
5273 ei_next (&ei);
5274 }
5275 #endif
5276
5277 #ifdef HAVE_epilogue
5278 if (epilogue_end)
5279 {
5280 rtx insn, next;
5281
5282 /* Similarly, move any line notes that appear after the epilogue.
5283 There is no need, however, to be quite so anal about the existence
5284 of such a note. Also possibly move
5285 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5286 info generation. */
5287 for (insn = epilogue_end; insn; insn = next)
5288 {
5289 next = NEXT_INSN (insn);
5290 if (NOTE_P (insn)
5291 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5292 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5293 }
5294 }
5295 #endif
5296
5297 /* Threading the prologue and epilogue changes the artificial refs
5298 in the entry and exit blocks. */
5299 epilogue_completed = 1;
5300 df_update_entry_exit_and_calls ();
5301 }
5302
5303 /* Reposition the prologue-end and epilogue-begin notes after
5304 instruction scheduling. */
5305
5306 void
5307 reposition_prologue_and_epilogue_notes (void)
5308 {
5309 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5310 || defined (HAVE_sibcall_epilogue)
5311 /* Since the hash table is created on demand, the fact that it is
5312 non-null is a signal that it is non-empty. */
5313 if (prologue_insn_hash != NULL)
5314 {
5315 size_t len = htab_elements (prologue_insn_hash);
5316 rtx insn, last = NULL, note = NULL;
5317
5318 /* Scan from the beginning until we reach the last prologue insn. */
5319 /* ??? While we do have the CFG intact, there are two problems:
5320 (1) The prologue can contain loops (typically probing the stack),
5321 which means that the end of the prologue isn't in the first bb.
5322 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5323 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5324 {
5325 if (NOTE_P (insn))
5326 {
5327 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5328 note = insn;
5329 }
5330 else if (contains (insn, prologue_insn_hash))
5331 {
5332 last = insn;
5333 if (--len == 0)
5334 break;
5335 }
5336 }
5337
5338 if (last)
5339 {
5340 if (note == NULL)
5341 {
5342 /* Scan forward looking for the PROLOGUE_END note. It should
5343 be right at the beginning of the block, possibly with other
5344 insn notes that got moved there. */
5345 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5346 {
5347 if (NOTE_P (note)
5348 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5349 break;
5350 }
5351 }
5352
5353 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5354 if (LABEL_P (last))
5355 last = NEXT_INSN (last);
5356 reorder_insns (note, note, last);
5357 }
5358 }
5359
5360 if (epilogue_insn_hash != NULL)
5361 {
5362 edge_iterator ei;
5363 edge e;
5364
5365 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5366 {
5367 rtx insn, first = NULL, note = NULL;
5368 basic_block bb = e->src;
5369
5370 /* Scan from the beginning until we reach the first epilogue insn. */
5371 FOR_BB_INSNS (bb, insn)
5372 {
5373 if (NOTE_P (insn))
5374 {
5375 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5376 {
5377 note = insn;
5378 if (first != NULL)
5379 break;
5380 }
5381 }
5382 else if (first == NULL && contains (insn, epilogue_insn_hash))
5383 {
5384 first = insn;
5385 if (note != NULL)
5386 break;
5387 }
5388 }
5389
5390 if (note)
5391 {
5392 /* If the function has a single basic block, and no real
5393 epilogue insns (e.g. sibcall with no cleanup), the
5394 epilogue note can get scheduled before the prologue
5395 note. If we have frame related prologue insns, having
5396 them scanned during the epilogue will result in a crash.
5397 In this case re-order the epilogue note to just before
5398 the last insn in the block. */
5399 if (first == NULL)
5400 first = BB_END (bb);
5401
5402 if (PREV_INSN (first) != note)
5403 reorder_insns (note, note, PREV_INSN (first));
5404 }
5405 }
5406 }
5407 #endif /* HAVE_prologue or HAVE_epilogue */
5408 }
5409
5410 /* Returns the name of the current function. */
5411 const char *
5412 current_function_name (void)
5413 {
5414 return lang_hooks.decl_printable_name (cfun->decl, 2);
5415 }
5416 \f
5417
5418 static unsigned int
5419 rest_of_handle_check_leaf_regs (void)
5420 {
5421 #ifdef LEAF_REGISTERS
5422 current_function_uses_only_leaf_regs
5423 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5424 #endif
5425 return 0;
5426 }
5427
5428 /* Insert a TYPE into the used types hash table of CFUN. */
5429 static void
5430 used_types_insert_helper (tree type, struct function *func)
5431 {
5432 if (type != NULL && func != NULL)
5433 {
5434 void **slot;
5435
5436 if (func->used_types_hash == NULL)
5437 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5438 htab_eq_pointer, NULL);
5439 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5440 if (*slot == NULL)
5441 *slot = type;
5442 }
5443 }
5444
5445 /* Given a type, insert it into the used hash table in cfun. */
5446 void
5447 used_types_insert (tree t)
5448 {
5449 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5450 t = TREE_TYPE (t);
5451 t = TYPE_MAIN_VARIANT (t);
5452 if (debug_info_level > DINFO_LEVEL_NONE)
5453 used_types_insert_helper (t, cfun);
5454 }
5455
5456 struct rtl_opt_pass pass_leaf_regs =
5457 {
5458 {
5459 RTL_PASS,
5460 NULL, /* name */
5461 NULL, /* gate */
5462 rest_of_handle_check_leaf_regs, /* execute */
5463 NULL, /* sub */
5464 NULL, /* next */
5465 0, /* static_pass_number */
5466 TV_NONE, /* tv_id */
5467 0, /* properties_required */
5468 0, /* properties_provided */
5469 0, /* properties_destroyed */
5470 0, /* todo_flags_start */
5471 0 /* todo_flags_finish */
5472 }
5473 };
5474
5475 static unsigned int
5476 rest_of_handle_thread_prologue_and_epilogue (void)
5477 {
5478 if (optimize)
5479 cleanup_cfg (CLEANUP_EXPENSIVE);
5480 /* On some machines, the prologue and epilogue code, or parts thereof,
5481 can be represented as RTL. Doing so lets us schedule insns between
5482 it and the rest of the code and also allows delayed branch
5483 scheduling to operate in the epilogue. */
5484
5485 thread_prologue_and_epilogue_insns ();
5486 return 0;
5487 }
5488
5489 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5490 {
5491 {
5492 RTL_PASS,
5493 "pro_and_epilogue", /* name */
5494 NULL, /* gate */
5495 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5496 NULL, /* sub */
5497 NULL, /* next */
5498 0, /* static_pass_number */
5499 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5500 0, /* properties_required */
5501 0, /* properties_provided */
5502 0, /* properties_destroyed */
5503 TODO_verify_flow, /* todo_flags_start */
5504 TODO_dump_func |
5505 TODO_df_verify |
5506 TODO_df_finish | TODO_verify_rtl_sharing |
5507 TODO_ggc_collect /* todo_flags_finish */
5508 }
5509 };
5510 \f
5511
5512 /* This mini-pass fixes fall-out from SSA in asm statements that have
5513 in-out constraints. Say you start with
5514
5515 orig = inout;
5516 asm ("": "+mr" (inout));
5517 use (orig);
5518
5519 which is transformed very early to use explicit output and match operands:
5520
5521 orig = inout;
5522 asm ("": "=mr" (inout) : "0" (inout));
5523 use (orig);
5524
5525 Or, after SSA and copyprop,
5526
5527 asm ("": "=mr" (inout_2) : "0" (inout_1));
5528 use (inout_1);
5529
5530 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5531 they represent two separate values, so they will get different pseudo
5532 registers during expansion. Then, since the two operands need to match
5533 per the constraints, but use different pseudo registers, reload can
5534 only register a reload for these operands. But reloads can only be
5535 satisfied by hardregs, not by memory, so we need a register for this
5536 reload, just because we are presented with non-matching operands.
5537 So, even though we allow memory for this operand, no memory can be
5538 used for it, just because the two operands don't match. This can
5539 cause reload failures on register-starved targets.
5540
5541 So it's a symptom of reload not being able to use memory for reloads
5542 or, alternatively it's also a symptom of both operands not coming into
5543 reload as matching (in which case the pseudo could go to memory just
5544 fine, as the alternative allows it, and no reload would be necessary).
5545 We fix the latter problem here, by transforming
5546
5547 asm ("": "=mr" (inout_2) : "0" (inout_1));
5548
5549 back to
5550
5551 inout_2 = inout_1;
5552 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5553
5554 static void
5555 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5556 {
5557 int i;
5558 bool changed = false;
5559 rtx op = SET_SRC (p_sets[0]);
5560 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5561 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5562 bool *output_matched = XALLOCAVEC (bool, noutputs);
5563
5564 memset (output_matched, 0, noutputs * sizeof (bool));
5565 for (i = 0; i < ninputs; i++)
5566 {
5567 rtx input, output, insns;
5568 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5569 char *end;
5570 int match, j;
5571
5572 if (*constraint == '%')
5573 constraint++;
5574
5575 match = strtoul (constraint, &end, 10);
5576 if (end == constraint)
5577 continue;
5578
5579 gcc_assert (match < noutputs);
5580 output = SET_DEST (p_sets[match]);
5581 input = RTVEC_ELT (inputs, i);
5582 /* Only do the transformation for pseudos. */
5583 if (! REG_P (output)
5584 || rtx_equal_p (output, input)
5585 || (GET_MODE (input) != VOIDmode
5586 && GET_MODE (input) != GET_MODE (output)))
5587 continue;
5588
5589 /* We can't do anything if the output is also used as input,
5590 as we're going to overwrite it. */
5591 for (j = 0; j < ninputs; j++)
5592 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5593 break;
5594 if (j != ninputs)
5595 continue;
5596
5597 /* Avoid changing the same input several times. For
5598 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5599 only change in once (to out1), rather than changing it
5600 first to out1 and afterwards to out2. */
5601 if (i > 0)
5602 {
5603 for (j = 0; j < noutputs; j++)
5604 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5605 break;
5606 if (j != noutputs)
5607 continue;
5608 }
5609 output_matched[match] = true;
5610
5611 start_sequence ();
5612 emit_move_insn (output, input);
5613 insns = get_insns ();
5614 end_sequence ();
5615 emit_insn_before (insns, insn);
5616
5617 /* Now replace all mentions of the input with output. We can't
5618 just replace the occurrence in inputs[i], as the register might
5619 also be used in some other input (or even in an address of an
5620 output), which would mean possibly increasing the number of
5621 inputs by one (namely 'output' in addition), which might pose
5622 a too complicated problem for reload to solve. E.g. this situation:
5623
5624 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5625
5626 Here 'input' is used in two occurrences as input (once for the
5627 input operand, once for the address in the second output operand).
5628 If we would replace only the occurrence of the input operand (to
5629 make the matching) we would be left with this:
5630
5631 output = input
5632 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5633
5634 Now we suddenly have two different input values (containing the same
5635 value, but different pseudos) where we formerly had only one.
5636 With more complicated asms this might lead to reload failures
5637 which wouldn't have happen without this pass. So, iterate over
5638 all operands and replace all occurrences of the register used. */
5639 for (j = 0; j < noutputs; j++)
5640 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5641 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5642 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5643 input, output);
5644 for (j = 0; j < ninputs; j++)
5645 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5646 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5647 input, output);
5648
5649 changed = true;
5650 }
5651
5652 if (changed)
5653 df_insn_rescan (insn);
5654 }
5655
5656 static unsigned
5657 rest_of_match_asm_constraints (void)
5658 {
5659 basic_block bb;
5660 rtx insn, pat, *p_sets;
5661 int noutputs;
5662
5663 if (!crtl->has_asm_statement)
5664 return 0;
5665
5666 df_set_flags (DF_DEFER_INSN_RESCAN);
5667 FOR_EACH_BB (bb)
5668 {
5669 FOR_BB_INSNS (bb, insn)
5670 {
5671 if (!INSN_P (insn))
5672 continue;
5673
5674 pat = PATTERN (insn);
5675 if (GET_CODE (pat) == PARALLEL)
5676 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5677 else if (GET_CODE (pat) == SET)
5678 p_sets = &PATTERN (insn), noutputs = 1;
5679 else
5680 continue;
5681
5682 if (GET_CODE (*p_sets) == SET
5683 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5684 match_asm_constraints_1 (insn, p_sets, noutputs);
5685 }
5686 }
5687
5688 return TODO_df_finish;
5689 }
5690
5691 struct rtl_opt_pass pass_match_asm_constraints =
5692 {
5693 {
5694 RTL_PASS,
5695 "asmcons", /* name */
5696 NULL, /* gate */
5697 rest_of_match_asm_constraints, /* execute */
5698 NULL, /* sub */
5699 NULL, /* next */
5700 0, /* static_pass_number */
5701 TV_NONE, /* tv_id */
5702 0, /* properties_required */
5703 0, /* properties_provided */
5704 0, /* properties_destroyed */
5705 0, /* todo_flags_start */
5706 TODO_dump_func /* todo_flags_finish */
5707 }
5708 };
5709
5710
5711 #include "gt-function.h"