re PR target/66569 ([CHKP] internal compiler error: in assign_by_spills)
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "alias.h"
40 #include "symtab.h"
41 #include "tree.h"
42 #include "fold-const.h"
43 #include "stor-layout.h"
44 #include "varasm.h"
45 #include "stringpool.h"
46 #include "flags.h"
47 #include "except.h"
48 #include "hard-reg-set.h"
49 #include "function.h"
50 #include "rtl.h"
51 #include "insn-config.h"
52 #include "expmed.h"
53 #include "dojump.h"
54 #include "explow.h"
55 #include "calls.h"
56 #include "emit-rtl.h"
57 #include "stmt.h"
58 #include "expr.h"
59 #include "insn-codes.h"
60 #include "optabs.h"
61 #include "libfuncs.h"
62 #include "regs.h"
63 #include "recog.h"
64 #include "output.h"
65 #include "tm_p.h"
66 #include "langhooks.h"
67 #include "target.h"
68 #include "common/common-target.h"
69 #include "gimple-expr.h"
70 #include "gimplify.h"
71 #include "tree-pass.h"
72 #include "predict.h"
73 #include "dominance.h"
74 #include "cfg.h"
75 #include "cfgrtl.h"
76 #include "cfganal.h"
77 #include "cfgbuild.h"
78 #include "cfgcleanup.h"
79 #include "basic-block.h"
80 #include "df.h"
81 #include "params.h"
82 #include "bb-reorder.h"
83 #include "shrink-wrap.h"
84 #include "toplev.h"
85 #include "rtl-iter.h"
86 #include "tree-chkp.h"
87 #include "rtl-chkp.h"
88
89 /* So we can assign to cfun in this file. */
90 #undef cfun
91
92 #ifndef STACK_ALIGNMENT_NEEDED
93 #define STACK_ALIGNMENT_NEEDED 1
94 #endif
95
96 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
97
98 /* Round a value to the lowest integer less than it that is a multiple of
99 the required alignment. Avoid using division in case the value is
100 negative. Assume the alignment is a power of two. */
101 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
102
103 /* Similar, but round to the next highest integer that meets the
104 alignment. */
105 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
106
107 /* Nonzero once virtual register instantiation has been done.
108 assign_stack_local uses frame_pointer_rtx when this is nonzero.
109 calls.c:emit_library_call_value_1 uses it to set up
110 post-instantiation libcalls. */
111 int virtuals_instantiated;
112
113 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
114 static GTY(()) int funcdef_no;
115
116 /* These variables hold pointers to functions to create and destroy
117 target specific, per-function data structures. */
118 struct machine_function * (*init_machine_status) (void);
119
120 /* The currently compiled function. */
121 struct function *cfun = 0;
122
123 /* These hashes record the prologue and epilogue insns. */
124
125 struct insn_cache_hasher : ggc_cache_hasher<rtx>
126 {
127 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
128 static bool equal (rtx a, rtx b) { return a == b; }
129 };
130
131 static GTY((cache))
132 hash_table<insn_cache_hasher> *prologue_insn_hash;
133 static GTY((cache))
134 hash_table<insn_cache_hasher> *epilogue_insn_hash;
135 \f
136
137 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
138 vec<tree, va_gc> *types_used_by_cur_var_decl;
139
140 /* Forward declarations. */
141
142 static struct temp_slot *find_temp_slot_from_address (rtx);
143 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
144 static void pad_below (struct args_size *, machine_mode, tree);
145 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
146 static int all_blocks (tree, tree *);
147 static tree *get_block_vector (tree, int *);
148 extern tree debug_find_var_in_block_tree (tree, tree);
149 /* We always define `record_insns' even if it's not used so that we
150 can always export `prologue_epilogue_contains'. */
151 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
152 ATTRIBUTE_UNUSED;
153 static bool contains (const_rtx, hash_table<insn_cache_hasher> *);
154 static void prepare_function_start (void);
155 static void do_clobber_return_reg (rtx, void *);
156 static void do_use_return_reg (rtx, void *);
157 \f
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
160
161 typedef struct function *function_p;
162
163 static vec<function_p> function_context_stack;
164
165 /* Save the current context for compilation of a nested function.
166 This is called from language-specific code. */
167
168 void
169 push_function_context (void)
170 {
171 if (cfun == 0)
172 allocate_struct_function (NULL, false);
173
174 function_context_stack.safe_push (cfun);
175 set_cfun (NULL);
176 }
177
178 /* Restore the last saved context, at the end of a nested function.
179 This function is called from language-specific code. */
180
181 void
182 pop_function_context (void)
183 {
184 struct function *p = function_context_stack.pop ();
185 set_cfun (p);
186 current_function_decl = p->decl;
187
188 /* Reset variables that have known state during rtx generation. */
189 virtuals_instantiated = 0;
190 generating_concat_p = 1;
191 }
192
193 /* Clear out all parts of the state in F that can safely be discarded
194 after the function has been parsed, but not compiled, to let
195 garbage collection reclaim the memory. */
196
197 void
198 free_after_parsing (struct function *f)
199 {
200 f->language = 0;
201 }
202
203 /* Clear out all parts of the state in F that can safely be discarded
204 after the function has been compiled, to let garbage collection
205 reclaim the memory. */
206
207 void
208 free_after_compilation (struct function *f)
209 {
210 prologue_insn_hash = NULL;
211 epilogue_insn_hash = NULL;
212
213 free (crtl->emit.regno_pointer_align);
214
215 memset (crtl, 0, sizeof (struct rtl_data));
216 f->eh = NULL;
217 f->machine = NULL;
218 f->cfg = NULL;
219
220 regno_reg_rtx = NULL;
221 }
222 \f
223 /* Return size needed for stack frame based on slots so far allocated.
224 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
225 the caller may have to do that. */
226
227 HOST_WIDE_INT
228 get_frame_size (void)
229 {
230 if (FRAME_GROWS_DOWNWARD)
231 return -frame_offset;
232 else
233 return frame_offset;
234 }
235
236 /* Issue an error message and return TRUE if frame OFFSET overflows in
237 the signed target pointer arithmetics for function FUNC. Otherwise
238 return FALSE. */
239
240 bool
241 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
242 {
243 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
244
245 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
246 /* Leave room for the fixed part of the frame. */
247 - 64 * UNITS_PER_WORD)
248 {
249 error_at (DECL_SOURCE_LOCATION (func),
250 "total size of local objects too large");
251 return TRUE;
252 }
253
254 return FALSE;
255 }
256
257 /* Return stack slot alignment in bits for TYPE and MODE. */
258
259 static unsigned int
260 get_stack_local_alignment (tree type, machine_mode mode)
261 {
262 unsigned int alignment;
263
264 if (mode == BLKmode)
265 alignment = BIGGEST_ALIGNMENT;
266 else
267 alignment = GET_MODE_ALIGNMENT (mode);
268
269 /* Allow the frond-end to (possibly) increase the alignment of this
270 stack slot. */
271 if (! type)
272 type = lang_hooks.types.type_for_mode (mode, 0);
273
274 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
275 }
276
277 /* Determine whether it is possible to fit a stack slot of size SIZE and
278 alignment ALIGNMENT into an area in the stack frame that starts at
279 frame offset START and has a length of LENGTH. If so, store the frame
280 offset to be used for the stack slot in *POFFSET and return true;
281 return false otherwise. This function will extend the frame size when
282 given a start/length pair that lies at the end of the frame. */
283
284 static bool
285 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
286 HOST_WIDE_INT size, unsigned int alignment,
287 HOST_WIDE_INT *poffset)
288 {
289 HOST_WIDE_INT this_frame_offset;
290 int frame_off, frame_alignment, frame_phase;
291
292 /* Calculate how many bytes the start of local variables is off from
293 stack alignment. */
294 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
295 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
296 frame_phase = frame_off ? frame_alignment - frame_off : 0;
297
298 /* Round the frame offset to the specified alignment. */
299
300 /* We must be careful here, since FRAME_OFFSET might be negative and
301 division with a negative dividend isn't as well defined as we might
302 like. So we instead assume that ALIGNMENT is a power of two and
303 use logical operations which are unambiguous. */
304 if (FRAME_GROWS_DOWNWARD)
305 this_frame_offset
306 = (FLOOR_ROUND (start + length - size - frame_phase,
307 (unsigned HOST_WIDE_INT) alignment)
308 + frame_phase);
309 else
310 this_frame_offset
311 = (CEIL_ROUND (start - frame_phase,
312 (unsigned HOST_WIDE_INT) alignment)
313 + frame_phase);
314
315 /* See if it fits. If this space is at the edge of the frame,
316 consider extending the frame to make it fit. Our caller relies on
317 this when allocating a new slot. */
318 if (frame_offset == start && this_frame_offset < frame_offset)
319 frame_offset = this_frame_offset;
320 else if (this_frame_offset < start)
321 return false;
322 else if (start + length == frame_offset
323 && this_frame_offset + size > start + length)
324 frame_offset = this_frame_offset + size;
325 else if (this_frame_offset + size > start + length)
326 return false;
327
328 *poffset = this_frame_offset;
329 return true;
330 }
331
332 /* Create a new frame_space structure describing free space in the stack
333 frame beginning at START and ending at END, and chain it into the
334 function's frame_space_list. */
335
336 static void
337 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
338 {
339 struct frame_space *space = ggc_alloc<frame_space> ();
340 space->next = crtl->frame_space_list;
341 crtl->frame_space_list = space;
342 space->start = start;
343 space->length = end - start;
344 }
345
346 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
347 with machine mode MODE.
348
349 ALIGN controls the amount of alignment for the address of the slot:
350 0 means according to MODE,
351 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
352 -2 means use BITS_PER_UNIT,
353 positive specifies alignment boundary in bits.
354
355 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
356 alignment and ASLK_RECORD_PAD bit set if we should remember
357 extra space we allocated for alignment purposes. When we are
358 called from assign_stack_temp_for_type, it is not set so we don't
359 track the same stack slot in two independent lists.
360
361 We do not round to stack_boundary here. */
362
363 rtx
364 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
365 int align, int kind)
366 {
367 rtx x, addr;
368 int bigend_correction = 0;
369 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
370 unsigned int alignment, alignment_in_bits;
371
372 if (align == 0)
373 {
374 alignment = get_stack_local_alignment (NULL, mode);
375 alignment /= BITS_PER_UNIT;
376 }
377 else if (align == -1)
378 {
379 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
380 size = CEIL_ROUND (size, alignment);
381 }
382 else if (align == -2)
383 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
384 else
385 alignment = align / BITS_PER_UNIT;
386
387 alignment_in_bits = alignment * BITS_PER_UNIT;
388
389 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
390 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
391 {
392 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
393 alignment = alignment_in_bits / BITS_PER_UNIT;
394 }
395
396 if (SUPPORTS_STACK_ALIGNMENT)
397 {
398 if (crtl->stack_alignment_estimated < alignment_in_bits)
399 {
400 if (!crtl->stack_realign_processed)
401 crtl->stack_alignment_estimated = alignment_in_bits;
402 else
403 {
404 /* If stack is realigned and stack alignment value
405 hasn't been finalized, it is OK not to increase
406 stack_alignment_estimated. The bigger alignment
407 requirement is recorded in stack_alignment_needed
408 below. */
409 gcc_assert (!crtl->stack_realign_finalized);
410 if (!crtl->stack_realign_needed)
411 {
412 /* It is OK to reduce the alignment as long as the
413 requested size is 0 or the estimated stack
414 alignment >= mode alignment. */
415 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
416 || size == 0
417 || (crtl->stack_alignment_estimated
418 >= GET_MODE_ALIGNMENT (mode)));
419 alignment_in_bits = crtl->stack_alignment_estimated;
420 alignment = alignment_in_bits / BITS_PER_UNIT;
421 }
422 }
423 }
424 }
425
426 if (crtl->stack_alignment_needed < alignment_in_bits)
427 crtl->stack_alignment_needed = alignment_in_bits;
428 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
429 crtl->max_used_stack_slot_alignment = alignment_in_bits;
430
431 if (mode != BLKmode || size != 0)
432 {
433 if (kind & ASLK_RECORD_PAD)
434 {
435 struct frame_space **psp;
436
437 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
438 {
439 struct frame_space *space = *psp;
440 if (!try_fit_stack_local (space->start, space->length, size,
441 alignment, &slot_offset))
442 continue;
443 *psp = space->next;
444 if (slot_offset > space->start)
445 add_frame_space (space->start, slot_offset);
446 if (slot_offset + size < space->start + space->length)
447 add_frame_space (slot_offset + size,
448 space->start + space->length);
449 goto found_space;
450 }
451 }
452 }
453 else if (!STACK_ALIGNMENT_NEEDED)
454 {
455 slot_offset = frame_offset;
456 goto found_space;
457 }
458
459 old_frame_offset = frame_offset;
460
461 if (FRAME_GROWS_DOWNWARD)
462 {
463 frame_offset -= size;
464 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
465
466 if (kind & ASLK_RECORD_PAD)
467 {
468 if (slot_offset > frame_offset)
469 add_frame_space (frame_offset, slot_offset);
470 if (slot_offset + size < old_frame_offset)
471 add_frame_space (slot_offset + size, old_frame_offset);
472 }
473 }
474 else
475 {
476 frame_offset += size;
477 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
478
479 if (kind & ASLK_RECORD_PAD)
480 {
481 if (slot_offset > old_frame_offset)
482 add_frame_space (old_frame_offset, slot_offset);
483 if (slot_offset + size < frame_offset)
484 add_frame_space (slot_offset + size, frame_offset);
485 }
486 }
487
488 found_space:
489 /* On a big-endian machine, if we are allocating more space than we will use,
490 use the least significant bytes of those that are allocated. */
491 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
492 bigend_correction = size - GET_MODE_SIZE (mode);
493
494 /* If we have already instantiated virtual registers, return the actual
495 address relative to the frame pointer. */
496 if (virtuals_instantiated)
497 addr = plus_constant (Pmode, frame_pointer_rtx,
498 trunc_int_for_mode
499 (slot_offset + bigend_correction
500 + STARTING_FRAME_OFFSET, Pmode));
501 else
502 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
503 trunc_int_for_mode
504 (slot_offset + bigend_correction,
505 Pmode));
506
507 x = gen_rtx_MEM (mode, addr);
508 set_mem_align (x, alignment_in_bits);
509 MEM_NOTRAP_P (x) = 1;
510
511 stack_slot_list
512 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
513
514 if (frame_offset_overflow (frame_offset, current_function_decl))
515 frame_offset = 0;
516
517 return x;
518 }
519
520 /* Wrap up assign_stack_local_1 with last parameter as false. */
521
522 rtx
523 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
524 {
525 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
526 }
527 \f
528 /* In order to evaluate some expressions, such as function calls returning
529 structures in memory, we need to temporarily allocate stack locations.
530 We record each allocated temporary in the following structure.
531
532 Associated with each temporary slot is a nesting level. When we pop up
533 one level, all temporaries associated with the previous level are freed.
534 Normally, all temporaries are freed after the execution of the statement
535 in which they were created. However, if we are inside a ({...}) grouping,
536 the result may be in a temporary and hence must be preserved. If the
537 result could be in a temporary, we preserve it if we can determine which
538 one it is in. If we cannot determine which temporary may contain the
539 result, all temporaries are preserved. A temporary is preserved by
540 pretending it was allocated at the previous nesting level. */
541
542 struct GTY(()) temp_slot {
543 /* Points to next temporary slot. */
544 struct temp_slot *next;
545 /* Points to previous temporary slot. */
546 struct temp_slot *prev;
547 /* The rtx to used to reference the slot. */
548 rtx slot;
549 /* The size, in units, of the slot. */
550 HOST_WIDE_INT size;
551 /* The type of the object in the slot, or zero if it doesn't correspond
552 to a type. We use this to determine whether a slot can be reused.
553 It can be reused if objects of the type of the new slot will always
554 conflict with objects of the type of the old slot. */
555 tree type;
556 /* The alignment (in bits) of the slot. */
557 unsigned int align;
558 /* Nonzero if this temporary is currently in use. */
559 char in_use;
560 /* Nesting level at which this slot is being used. */
561 int level;
562 /* The offset of the slot from the frame_pointer, including extra space
563 for alignment. This info is for combine_temp_slots. */
564 HOST_WIDE_INT base_offset;
565 /* The size of the slot, including extra space for alignment. This
566 info is for combine_temp_slots. */
567 HOST_WIDE_INT full_size;
568 };
569
570 /* Entry for the below hash table. */
571 struct GTY((for_user)) temp_slot_address_entry {
572 hashval_t hash;
573 rtx address;
574 struct temp_slot *temp_slot;
575 };
576
577 struct temp_address_hasher : ggc_hasher<temp_slot_address_entry *>
578 {
579 static hashval_t hash (temp_slot_address_entry *);
580 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
581 };
582
583 /* A table of addresses that represent a stack slot. The table is a mapping
584 from address RTXen to a temp slot. */
585 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
586 static size_t n_temp_slots_in_use;
587
588 /* Removes temporary slot TEMP from LIST. */
589
590 static void
591 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
592 {
593 if (temp->next)
594 temp->next->prev = temp->prev;
595 if (temp->prev)
596 temp->prev->next = temp->next;
597 else
598 *list = temp->next;
599
600 temp->prev = temp->next = NULL;
601 }
602
603 /* Inserts temporary slot TEMP to LIST. */
604
605 static void
606 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
607 {
608 temp->next = *list;
609 if (*list)
610 (*list)->prev = temp;
611 temp->prev = NULL;
612 *list = temp;
613 }
614
615 /* Returns the list of used temp slots at LEVEL. */
616
617 static struct temp_slot **
618 temp_slots_at_level (int level)
619 {
620 if (level >= (int) vec_safe_length (used_temp_slots))
621 vec_safe_grow_cleared (used_temp_slots, level + 1);
622
623 return &(*used_temp_slots)[level];
624 }
625
626 /* Returns the maximal temporary slot level. */
627
628 static int
629 max_slot_level (void)
630 {
631 if (!used_temp_slots)
632 return -1;
633
634 return used_temp_slots->length () - 1;
635 }
636
637 /* Moves temporary slot TEMP to LEVEL. */
638
639 static void
640 move_slot_to_level (struct temp_slot *temp, int level)
641 {
642 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
643 insert_slot_to_list (temp, temp_slots_at_level (level));
644 temp->level = level;
645 }
646
647 /* Make temporary slot TEMP available. */
648
649 static void
650 make_slot_available (struct temp_slot *temp)
651 {
652 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
653 insert_slot_to_list (temp, &avail_temp_slots);
654 temp->in_use = 0;
655 temp->level = -1;
656 n_temp_slots_in_use--;
657 }
658
659 /* Compute the hash value for an address -> temp slot mapping.
660 The value is cached on the mapping entry. */
661 static hashval_t
662 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
663 {
664 int do_not_record = 0;
665 return hash_rtx (t->address, GET_MODE (t->address),
666 &do_not_record, NULL, false);
667 }
668
669 /* Return the hash value for an address -> temp slot mapping. */
670 hashval_t
671 temp_address_hasher::hash (temp_slot_address_entry *t)
672 {
673 return t->hash;
674 }
675
676 /* Compare two address -> temp slot mapping entries. */
677 bool
678 temp_address_hasher::equal (temp_slot_address_entry *t1,
679 temp_slot_address_entry *t2)
680 {
681 return exp_equiv_p (t1->address, t2->address, 0, true);
682 }
683
684 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
685 static void
686 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
687 {
688 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
689 t->address = address;
690 t->temp_slot = temp_slot;
691 t->hash = temp_slot_address_compute_hash (t);
692 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
693 }
694
695 /* Remove an address -> temp slot mapping entry if the temp slot is
696 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
697 int
698 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
699 {
700 const struct temp_slot_address_entry *t = *slot;
701 if (! t->temp_slot->in_use)
702 temp_slot_address_table->clear_slot (slot);
703 return 1;
704 }
705
706 /* Remove all mappings of addresses to unused temp slots. */
707 static void
708 remove_unused_temp_slot_addresses (void)
709 {
710 /* Use quicker clearing if there aren't any active temp slots. */
711 if (n_temp_slots_in_use)
712 temp_slot_address_table->traverse
713 <void *, remove_unused_temp_slot_addresses_1> (NULL);
714 else
715 temp_slot_address_table->empty ();
716 }
717
718 /* Find the temp slot corresponding to the object at address X. */
719
720 static struct temp_slot *
721 find_temp_slot_from_address (rtx x)
722 {
723 struct temp_slot *p;
724 struct temp_slot_address_entry tmp, *t;
725
726 /* First try the easy way:
727 See if X exists in the address -> temp slot mapping. */
728 tmp.address = x;
729 tmp.temp_slot = NULL;
730 tmp.hash = temp_slot_address_compute_hash (&tmp);
731 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
732 if (t)
733 return t->temp_slot;
734
735 /* If we have a sum involving a register, see if it points to a temp
736 slot. */
737 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
738 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
739 return p;
740 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
741 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
742 return p;
743
744 /* Last resort: Address is a virtual stack var address. */
745 if (GET_CODE (x) == PLUS
746 && XEXP (x, 0) == virtual_stack_vars_rtx
747 && CONST_INT_P (XEXP (x, 1)))
748 {
749 int i;
750 for (i = max_slot_level (); i >= 0; i--)
751 for (p = *temp_slots_at_level (i); p; p = p->next)
752 {
753 if (INTVAL (XEXP (x, 1)) >= p->base_offset
754 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
755 return p;
756 }
757 }
758
759 return NULL;
760 }
761 \f
762 /* Allocate a temporary stack slot and record it for possible later
763 reuse.
764
765 MODE is the machine mode to be given to the returned rtx.
766
767 SIZE is the size in units of the space required. We do no rounding here
768 since assign_stack_local will do any required rounding.
769
770 TYPE is the type that will be used for the stack slot. */
771
772 rtx
773 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
774 tree type)
775 {
776 unsigned int align;
777 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
778 rtx slot;
779
780 /* If SIZE is -1 it means that somebody tried to allocate a temporary
781 of a variable size. */
782 gcc_assert (size != -1);
783
784 align = get_stack_local_alignment (type, mode);
785
786 /* Try to find an available, already-allocated temporary of the proper
787 mode which meets the size and alignment requirements. Choose the
788 smallest one with the closest alignment.
789
790 If assign_stack_temp is called outside of the tree->rtl expansion,
791 we cannot reuse the stack slots (that may still refer to
792 VIRTUAL_STACK_VARS_REGNUM). */
793 if (!virtuals_instantiated)
794 {
795 for (p = avail_temp_slots; p; p = p->next)
796 {
797 if (p->align >= align && p->size >= size
798 && GET_MODE (p->slot) == mode
799 && objects_must_conflict_p (p->type, type)
800 && (best_p == 0 || best_p->size > p->size
801 || (best_p->size == p->size && best_p->align > p->align)))
802 {
803 if (p->align == align && p->size == size)
804 {
805 selected = p;
806 cut_slot_from_list (selected, &avail_temp_slots);
807 best_p = 0;
808 break;
809 }
810 best_p = p;
811 }
812 }
813 }
814
815 /* Make our best, if any, the one to use. */
816 if (best_p)
817 {
818 selected = best_p;
819 cut_slot_from_list (selected, &avail_temp_slots);
820
821 /* If there are enough aligned bytes left over, make them into a new
822 temp_slot so that the extra bytes don't get wasted. Do this only
823 for BLKmode slots, so that we can be sure of the alignment. */
824 if (GET_MODE (best_p->slot) == BLKmode)
825 {
826 int alignment = best_p->align / BITS_PER_UNIT;
827 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
828
829 if (best_p->size - rounded_size >= alignment)
830 {
831 p = ggc_alloc<temp_slot> ();
832 p->in_use = 0;
833 p->size = best_p->size - rounded_size;
834 p->base_offset = best_p->base_offset + rounded_size;
835 p->full_size = best_p->full_size - rounded_size;
836 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
837 p->align = best_p->align;
838 p->type = best_p->type;
839 insert_slot_to_list (p, &avail_temp_slots);
840
841 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
842 stack_slot_list);
843
844 best_p->size = rounded_size;
845 best_p->full_size = rounded_size;
846 }
847 }
848 }
849
850 /* If we still didn't find one, make a new temporary. */
851 if (selected == 0)
852 {
853 HOST_WIDE_INT frame_offset_old = frame_offset;
854
855 p = ggc_alloc<temp_slot> ();
856
857 /* We are passing an explicit alignment request to assign_stack_local.
858 One side effect of that is assign_stack_local will not round SIZE
859 to ensure the frame offset remains suitably aligned.
860
861 So for requests which depended on the rounding of SIZE, we go ahead
862 and round it now. We also make sure ALIGNMENT is at least
863 BIGGEST_ALIGNMENT. */
864 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
865 p->slot = assign_stack_local_1 (mode,
866 (mode == BLKmode
867 ? CEIL_ROUND (size,
868 (int) align
869 / BITS_PER_UNIT)
870 : size),
871 align, 0);
872
873 p->align = align;
874
875 /* The following slot size computation is necessary because we don't
876 know the actual size of the temporary slot until assign_stack_local
877 has performed all the frame alignment and size rounding for the
878 requested temporary. Note that extra space added for alignment
879 can be either above or below this stack slot depending on which
880 way the frame grows. We include the extra space if and only if it
881 is above this slot. */
882 if (FRAME_GROWS_DOWNWARD)
883 p->size = frame_offset_old - frame_offset;
884 else
885 p->size = size;
886
887 /* Now define the fields used by combine_temp_slots. */
888 if (FRAME_GROWS_DOWNWARD)
889 {
890 p->base_offset = frame_offset;
891 p->full_size = frame_offset_old - frame_offset;
892 }
893 else
894 {
895 p->base_offset = frame_offset_old;
896 p->full_size = frame_offset - frame_offset_old;
897 }
898
899 selected = p;
900 }
901
902 p = selected;
903 p->in_use = 1;
904 p->type = type;
905 p->level = temp_slot_level;
906 n_temp_slots_in_use++;
907
908 pp = temp_slots_at_level (p->level);
909 insert_slot_to_list (p, pp);
910 insert_temp_slot_address (XEXP (p->slot, 0), p);
911
912 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
913 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
914 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
915
916 /* If we know the alias set for the memory that will be used, use
917 it. If there's no TYPE, then we don't know anything about the
918 alias set for the memory. */
919 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
920 set_mem_align (slot, align);
921
922 /* If a type is specified, set the relevant flags. */
923 if (type != 0)
924 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
925 MEM_NOTRAP_P (slot) = 1;
926
927 return slot;
928 }
929
930 /* Allocate a temporary stack slot and record it for possible later
931 reuse. First two arguments are same as in preceding function. */
932
933 rtx
934 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
935 {
936 return assign_stack_temp_for_type (mode, size, NULL_TREE);
937 }
938 \f
939 /* Assign a temporary.
940 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
941 and so that should be used in error messages. In either case, we
942 allocate of the given type.
943 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
944 it is 0 if a register is OK.
945 DONT_PROMOTE is 1 if we should not promote values in register
946 to wider modes. */
947
948 rtx
949 assign_temp (tree type_or_decl, int memory_required,
950 int dont_promote ATTRIBUTE_UNUSED)
951 {
952 tree type, decl;
953 machine_mode mode;
954 #ifdef PROMOTE_MODE
955 int unsignedp;
956 #endif
957
958 if (DECL_P (type_or_decl))
959 decl = type_or_decl, type = TREE_TYPE (decl);
960 else
961 decl = NULL, type = type_or_decl;
962
963 mode = TYPE_MODE (type);
964 #ifdef PROMOTE_MODE
965 unsignedp = TYPE_UNSIGNED (type);
966 #endif
967
968 if (mode == BLKmode || memory_required)
969 {
970 HOST_WIDE_INT size = int_size_in_bytes (type);
971 rtx tmp;
972
973 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
974 problems with allocating the stack space. */
975 if (size == 0)
976 size = 1;
977
978 /* Unfortunately, we don't yet know how to allocate variable-sized
979 temporaries. However, sometimes we can find a fixed upper limit on
980 the size, so try that instead. */
981 else if (size == -1)
982 size = max_int_size_in_bytes (type);
983
984 /* The size of the temporary may be too large to fit into an integer. */
985 /* ??? Not sure this should happen except for user silliness, so limit
986 this to things that aren't compiler-generated temporaries. The
987 rest of the time we'll die in assign_stack_temp_for_type. */
988 if (decl && size == -1
989 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
990 {
991 error ("size of variable %q+D is too large", decl);
992 size = 1;
993 }
994
995 tmp = assign_stack_temp_for_type (mode, size, type);
996 return tmp;
997 }
998
999 #ifdef PROMOTE_MODE
1000 if (! dont_promote)
1001 mode = promote_mode (type, mode, &unsignedp);
1002 #endif
1003
1004 return gen_reg_rtx (mode);
1005 }
1006 \f
1007 /* Combine temporary stack slots which are adjacent on the stack.
1008
1009 This allows for better use of already allocated stack space. This is only
1010 done for BLKmode slots because we can be sure that we won't have alignment
1011 problems in this case. */
1012
1013 static void
1014 combine_temp_slots (void)
1015 {
1016 struct temp_slot *p, *q, *next, *next_q;
1017 int num_slots;
1018
1019 /* We can't combine slots, because the information about which slot
1020 is in which alias set will be lost. */
1021 if (flag_strict_aliasing)
1022 return;
1023
1024 /* If there are a lot of temp slots, don't do anything unless
1025 high levels of optimization. */
1026 if (! flag_expensive_optimizations)
1027 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1028 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1029 return;
1030
1031 for (p = avail_temp_slots; p; p = next)
1032 {
1033 int delete_p = 0;
1034
1035 next = p->next;
1036
1037 if (GET_MODE (p->slot) != BLKmode)
1038 continue;
1039
1040 for (q = p->next; q; q = next_q)
1041 {
1042 int delete_q = 0;
1043
1044 next_q = q->next;
1045
1046 if (GET_MODE (q->slot) != BLKmode)
1047 continue;
1048
1049 if (p->base_offset + p->full_size == q->base_offset)
1050 {
1051 /* Q comes after P; combine Q into P. */
1052 p->size += q->size;
1053 p->full_size += q->full_size;
1054 delete_q = 1;
1055 }
1056 else if (q->base_offset + q->full_size == p->base_offset)
1057 {
1058 /* P comes after Q; combine P into Q. */
1059 q->size += p->size;
1060 q->full_size += p->full_size;
1061 delete_p = 1;
1062 break;
1063 }
1064 if (delete_q)
1065 cut_slot_from_list (q, &avail_temp_slots);
1066 }
1067
1068 /* Either delete P or advance past it. */
1069 if (delete_p)
1070 cut_slot_from_list (p, &avail_temp_slots);
1071 }
1072 }
1073 \f
1074 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1075 slot that previously was known by OLD_RTX. */
1076
1077 void
1078 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1079 {
1080 struct temp_slot *p;
1081
1082 if (rtx_equal_p (old_rtx, new_rtx))
1083 return;
1084
1085 p = find_temp_slot_from_address (old_rtx);
1086
1087 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1088 NEW_RTX is a register, see if one operand of the PLUS is a
1089 temporary location. If so, NEW_RTX points into it. Otherwise,
1090 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1091 in common between them. If so, try a recursive call on those
1092 values. */
1093 if (p == 0)
1094 {
1095 if (GET_CODE (old_rtx) != PLUS)
1096 return;
1097
1098 if (REG_P (new_rtx))
1099 {
1100 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1101 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1102 return;
1103 }
1104 else if (GET_CODE (new_rtx) != PLUS)
1105 return;
1106
1107 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1108 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1109 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1110 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1111 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1112 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1113 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1114 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1115
1116 return;
1117 }
1118
1119 /* Otherwise add an alias for the temp's address. */
1120 insert_temp_slot_address (new_rtx, p);
1121 }
1122
1123 /* If X could be a reference to a temporary slot, mark that slot as
1124 belonging to the to one level higher than the current level. If X
1125 matched one of our slots, just mark that one. Otherwise, we can't
1126 easily predict which it is, so upgrade all of them.
1127
1128 This is called when an ({...}) construct occurs and a statement
1129 returns a value in memory. */
1130
1131 void
1132 preserve_temp_slots (rtx x)
1133 {
1134 struct temp_slot *p = 0, *next;
1135
1136 if (x == 0)
1137 return;
1138
1139 /* If X is a register that is being used as a pointer, see if we have
1140 a temporary slot we know it points to. */
1141 if (REG_P (x) && REG_POINTER (x))
1142 p = find_temp_slot_from_address (x);
1143
1144 /* If X is not in memory or is at a constant address, it cannot be in
1145 a temporary slot. */
1146 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1147 return;
1148
1149 /* First see if we can find a match. */
1150 if (p == 0)
1151 p = find_temp_slot_from_address (XEXP (x, 0));
1152
1153 if (p != 0)
1154 {
1155 if (p->level == temp_slot_level)
1156 move_slot_to_level (p, temp_slot_level - 1);
1157 return;
1158 }
1159
1160 /* Otherwise, preserve all non-kept slots at this level. */
1161 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1162 {
1163 next = p->next;
1164 move_slot_to_level (p, temp_slot_level - 1);
1165 }
1166 }
1167
1168 /* Free all temporaries used so far. This is normally called at the
1169 end of generating code for a statement. */
1170
1171 void
1172 free_temp_slots (void)
1173 {
1174 struct temp_slot *p, *next;
1175 bool some_available = false;
1176
1177 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1178 {
1179 next = p->next;
1180 make_slot_available (p);
1181 some_available = true;
1182 }
1183
1184 if (some_available)
1185 {
1186 remove_unused_temp_slot_addresses ();
1187 combine_temp_slots ();
1188 }
1189 }
1190
1191 /* Push deeper into the nesting level for stack temporaries. */
1192
1193 void
1194 push_temp_slots (void)
1195 {
1196 temp_slot_level++;
1197 }
1198
1199 /* Pop a temporary nesting level. All slots in use in the current level
1200 are freed. */
1201
1202 void
1203 pop_temp_slots (void)
1204 {
1205 free_temp_slots ();
1206 temp_slot_level--;
1207 }
1208
1209 /* Initialize temporary slots. */
1210
1211 void
1212 init_temp_slots (void)
1213 {
1214 /* We have not allocated any temporaries yet. */
1215 avail_temp_slots = 0;
1216 vec_alloc (used_temp_slots, 0);
1217 temp_slot_level = 0;
1218 n_temp_slots_in_use = 0;
1219
1220 /* Set up the table to map addresses to temp slots. */
1221 if (! temp_slot_address_table)
1222 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1223 else
1224 temp_slot_address_table->empty ();
1225 }
1226 \f
1227 /* Functions and data structures to keep track of the values hard regs
1228 had at the start of the function. */
1229
1230 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1231 and has_hard_reg_initial_val.. */
1232 typedef struct GTY(()) initial_value_pair {
1233 rtx hard_reg;
1234 rtx pseudo;
1235 } initial_value_pair;
1236 /* ??? This could be a VEC but there is currently no way to define an
1237 opaque VEC type. This could be worked around by defining struct
1238 initial_value_pair in function.h. */
1239 typedef struct GTY(()) initial_value_struct {
1240 int num_entries;
1241 int max_entries;
1242 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1243 } initial_value_struct;
1244
1245 /* If a pseudo represents an initial hard reg (or expression), return
1246 it, else return NULL_RTX. */
1247
1248 rtx
1249 get_hard_reg_initial_reg (rtx reg)
1250 {
1251 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1252 int i;
1253
1254 if (ivs == 0)
1255 return NULL_RTX;
1256
1257 for (i = 0; i < ivs->num_entries; i++)
1258 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1259 return ivs->entries[i].hard_reg;
1260
1261 return NULL_RTX;
1262 }
1263
1264 /* Make sure that there's a pseudo register of mode MODE that stores the
1265 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1266
1267 rtx
1268 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1269 {
1270 struct initial_value_struct *ivs;
1271 rtx rv;
1272
1273 rv = has_hard_reg_initial_val (mode, regno);
1274 if (rv)
1275 return rv;
1276
1277 ivs = crtl->hard_reg_initial_vals;
1278 if (ivs == 0)
1279 {
1280 ivs = ggc_alloc<initial_value_struct> ();
1281 ivs->num_entries = 0;
1282 ivs->max_entries = 5;
1283 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1284 crtl->hard_reg_initial_vals = ivs;
1285 }
1286
1287 if (ivs->num_entries >= ivs->max_entries)
1288 {
1289 ivs->max_entries += 5;
1290 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1291 ivs->max_entries);
1292 }
1293
1294 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1295 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1296
1297 return ivs->entries[ivs->num_entries++].pseudo;
1298 }
1299
1300 /* See if get_hard_reg_initial_val has been used to create a pseudo
1301 for the initial value of hard register REGNO in mode MODE. Return
1302 the associated pseudo if so, otherwise return NULL. */
1303
1304 rtx
1305 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1306 {
1307 struct initial_value_struct *ivs;
1308 int i;
1309
1310 ivs = crtl->hard_reg_initial_vals;
1311 if (ivs != 0)
1312 for (i = 0; i < ivs->num_entries; i++)
1313 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1314 && REGNO (ivs->entries[i].hard_reg) == regno)
1315 return ivs->entries[i].pseudo;
1316
1317 return NULL_RTX;
1318 }
1319
1320 unsigned int
1321 emit_initial_value_sets (void)
1322 {
1323 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1324 int i;
1325 rtx_insn *seq;
1326
1327 if (ivs == 0)
1328 return 0;
1329
1330 start_sequence ();
1331 for (i = 0; i < ivs->num_entries; i++)
1332 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1333 seq = get_insns ();
1334 end_sequence ();
1335
1336 emit_insn_at_entry (seq);
1337 return 0;
1338 }
1339
1340 /* Return the hardreg-pseudoreg initial values pair entry I and
1341 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1342 bool
1343 initial_value_entry (int i, rtx *hreg, rtx *preg)
1344 {
1345 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1346 if (!ivs || i >= ivs->num_entries)
1347 return false;
1348
1349 *hreg = ivs->entries[i].hard_reg;
1350 *preg = ivs->entries[i].pseudo;
1351 return true;
1352 }
1353 \f
1354 /* These routines are responsible for converting virtual register references
1355 to the actual hard register references once RTL generation is complete.
1356
1357 The following four variables are used for communication between the
1358 routines. They contain the offsets of the virtual registers from their
1359 respective hard registers. */
1360
1361 static int in_arg_offset;
1362 static int var_offset;
1363 static int dynamic_offset;
1364 static int out_arg_offset;
1365 static int cfa_offset;
1366
1367 /* In most machines, the stack pointer register is equivalent to the bottom
1368 of the stack. */
1369
1370 #ifndef STACK_POINTER_OFFSET
1371 #define STACK_POINTER_OFFSET 0
1372 #endif
1373
1374 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1375 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1376 #endif
1377
1378 /* If not defined, pick an appropriate default for the offset of dynamically
1379 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1380 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1381
1382 #ifndef STACK_DYNAMIC_OFFSET
1383
1384 /* The bottom of the stack points to the actual arguments. If
1385 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1386 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1387 stack space for register parameters is not pushed by the caller, but
1388 rather part of the fixed stack areas and hence not included in
1389 `crtl->outgoing_args_size'. Nevertheless, we must allow
1390 for it when allocating stack dynamic objects. */
1391
1392 #ifdef INCOMING_REG_PARM_STACK_SPACE
1393 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1394 ((ACCUMULATE_OUTGOING_ARGS \
1395 ? (crtl->outgoing_args_size \
1396 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1397 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1398 : 0) + (STACK_POINTER_OFFSET))
1399 #else
1400 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1401 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1402 + (STACK_POINTER_OFFSET))
1403 #endif
1404 #endif
1405
1406 \f
1407 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1408 is a virtual register, return the equivalent hard register and set the
1409 offset indirectly through the pointer. Otherwise, return 0. */
1410
1411 static rtx
1412 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1413 {
1414 rtx new_rtx;
1415 HOST_WIDE_INT offset;
1416
1417 if (x == virtual_incoming_args_rtx)
1418 {
1419 if (stack_realign_drap)
1420 {
1421 /* Replace virtual_incoming_args_rtx with internal arg
1422 pointer if DRAP is used to realign stack. */
1423 new_rtx = crtl->args.internal_arg_pointer;
1424 offset = 0;
1425 }
1426 else
1427 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1428 }
1429 else if (x == virtual_stack_vars_rtx)
1430 new_rtx = frame_pointer_rtx, offset = var_offset;
1431 else if (x == virtual_stack_dynamic_rtx)
1432 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1433 else if (x == virtual_outgoing_args_rtx)
1434 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1435 else if (x == virtual_cfa_rtx)
1436 {
1437 #ifdef FRAME_POINTER_CFA_OFFSET
1438 new_rtx = frame_pointer_rtx;
1439 #else
1440 new_rtx = arg_pointer_rtx;
1441 #endif
1442 offset = cfa_offset;
1443 }
1444 else if (x == virtual_preferred_stack_boundary_rtx)
1445 {
1446 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1447 offset = 0;
1448 }
1449 else
1450 return NULL_RTX;
1451
1452 *poffset = offset;
1453 return new_rtx;
1454 }
1455
1456 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1457 registers present inside of *LOC. The expression is simplified,
1458 as much as possible, but is not to be considered "valid" in any sense
1459 implied by the target. Return true if any change is made. */
1460
1461 static bool
1462 instantiate_virtual_regs_in_rtx (rtx *loc)
1463 {
1464 if (!*loc)
1465 return false;
1466 bool changed = false;
1467 subrtx_ptr_iterator::array_type array;
1468 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1469 {
1470 rtx *loc = *iter;
1471 if (rtx x = *loc)
1472 {
1473 rtx new_rtx;
1474 HOST_WIDE_INT offset;
1475 switch (GET_CODE (x))
1476 {
1477 case REG:
1478 new_rtx = instantiate_new_reg (x, &offset);
1479 if (new_rtx)
1480 {
1481 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1482 changed = true;
1483 }
1484 iter.skip_subrtxes ();
1485 break;
1486
1487 case PLUS:
1488 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1489 if (new_rtx)
1490 {
1491 XEXP (x, 0) = new_rtx;
1492 *loc = plus_constant (GET_MODE (x), x, offset, true);
1493 changed = true;
1494 iter.skip_subrtxes ();
1495 break;
1496 }
1497
1498 /* FIXME -- from old code */
1499 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1500 we can commute the PLUS and SUBREG because pointers into the
1501 frame are well-behaved. */
1502 break;
1503
1504 default:
1505 break;
1506 }
1507 }
1508 }
1509 return changed;
1510 }
1511
1512 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1513 matches the predicate for insn CODE operand OPERAND. */
1514
1515 static int
1516 safe_insn_predicate (int code, int operand, rtx x)
1517 {
1518 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1519 }
1520
1521 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1522 registers present inside of insn. The result will be a valid insn. */
1523
1524 static void
1525 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1526 {
1527 HOST_WIDE_INT offset;
1528 int insn_code, i;
1529 bool any_change = false;
1530 rtx set, new_rtx, x;
1531 rtx_insn *seq;
1532
1533 /* There are some special cases to be handled first. */
1534 set = single_set (insn);
1535 if (set)
1536 {
1537 /* We're allowed to assign to a virtual register. This is interpreted
1538 to mean that the underlying register gets assigned the inverse
1539 transformation. This is used, for example, in the handling of
1540 non-local gotos. */
1541 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1542 if (new_rtx)
1543 {
1544 start_sequence ();
1545
1546 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1547 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1548 gen_int_mode (-offset, GET_MODE (new_rtx)));
1549 x = force_operand (x, new_rtx);
1550 if (x != new_rtx)
1551 emit_move_insn (new_rtx, x);
1552
1553 seq = get_insns ();
1554 end_sequence ();
1555
1556 emit_insn_before (seq, insn);
1557 delete_insn (insn);
1558 return;
1559 }
1560
1561 /* Handle a straight copy from a virtual register by generating a
1562 new add insn. The difference between this and falling through
1563 to the generic case is avoiding a new pseudo and eliminating a
1564 move insn in the initial rtl stream. */
1565 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1566 if (new_rtx && offset != 0
1567 && REG_P (SET_DEST (set))
1568 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1569 {
1570 start_sequence ();
1571
1572 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1573 gen_int_mode (offset,
1574 GET_MODE (SET_DEST (set))),
1575 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1576 if (x != SET_DEST (set))
1577 emit_move_insn (SET_DEST (set), x);
1578
1579 seq = get_insns ();
1580 end_sequence ();
1581
1582 emit_insn_before (seq, insn);
1583 delete_insn (insn);
1584 return;
1585 }
1586
1587 extract_insn (insn);
1588 insn_code = INSN_CODE (insn);
1589
1590 /* Handle a plus involving a virtual register by determining if the
1591 operands remain valid if they're modified in place. */
1592 if (GET_CODE (SET_SRC (set)) == PLUS
1593 && recog_data.n_operands >= 3
1594 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1595 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1596 && CONST_INT_P (recog_data.operand[2])
1597 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1598 {
1599 offset += INTVAL (recog_data.operand[2]);
1600
1601 /* If the sum is zero, then replace with a plain move. */
1602 if (offset == 0
1603 && REG_P (SET_DEST (set))
1604 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1605 {
1606 start_sequence ();
1607 emit_move_insn (SET_DEST (set), new_rtx);
1608 seq = get_insns ();
1609 end_sequence ();
1610
1611 emit_insn_before (seq, insn);
1612 delete_insn (insn);
1613 return;
1614 }
1615
1616 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1617
1618 /* Using validate_change and apply_change_group here leaves
1619 recog_data in an invalid state. Since we know exactly what
1620 we want to check, do those two by hand. */
1621 if (safe_insn_predicate (insn_code, 1, new_rtx)
1622 && safe_insn_predicate (insn_code, 2, x))
1623 {
1624 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1625 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1626 any_change = true;
1627
1628 /* Fall through into the regular operand fixup loop in
1629 order to take care of operands other than 1 and 2. */
1630 }
1631 }
1632 }
1633 else
1634 {
1635 extract_insn (insn);
1636 insn_code = INSN_CODE (insn);
1637 }
1638
1639 /* In the general case, we expect virtual registers to appear only in
1640 operands, and then only as either bare registers or inside memories. */
1641 for (i = 0; i < recog_data.n_operands; ++i)
1642 {
1643 x = recog_data.operand[i];
1644 switch (GET_CODE (x))
1645 {
1646 case MEM:
1647 {
1648 rtx addr = XEXP (x, 0);
1649
1650 if (!instantiate_virtual_regs_in_rtx (&addr))
1651 continue;
1652
1653 start_sequence ();
1654 x = replace_equiv_address (x, addr, true);
1655 /* It may happen that the address with the virtual reg
1656 was valid (e.g. based on the virtual stack reg, which might
1657 be acceptable to the predicates with all offsets), whereas
1658 the address now isn't anymore, for instance when the address
1659 is still offsetted, but the base reg isn't virtual-stack-reg
1660 anymore. Below we would do a force_reg on the whole operand,
1661 but this insn might actually only accept memory. Hence,
1662 before doing that last resort, try to reload the address into
1663 a register, so this operand stays a MEM. */
1664 if (!safe_insn_predicate (insn_code, i, x))
1665 {
1666 addr = force_reg (GET_MODE (addr), addr);
1667 x = replace_equiv_address (x, addr, true);
1668 }
1669 seq = get_insns ();
1670 end_sequence ();
1671 if (seq)
1672 emit_insn_before (seq, insn);
1673 }
1674 break;
1675
1676 case REG:
1677 new_rtx = instantiate_new_reg (x, &offset);
1678 if (new_rtx == NULL)
1679 continue;
1680 if (offset == 0)
1681 x = new_rtx;
1682 else
1683 {
1684 start_sequence ();
1685
1686 /* Careful, special mode predicates may have stuff in
1687 insn_data[insn_code].operand[i].mode that isn't useful
1688 to us for computing a new value. */
1689 /* ??? Recognize address_operand and/or "p" constraints
1690 to see if (plus new offset) is a valid before we put
1691 this through expand_simple_binop. */
1692 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1693 gen_int_mode (offset, GET_MODE (x)),
1694 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1695 seq = get_insns ();
1696 end_sequence ();
1697 emit_insn_before (seq, insn);
1698 }
1699 break;
1700
1701 case SUBREG:
1702 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1703 if (new_rtx == NULL)
1704 continue;
1705 if (offset != 0)
1706 {
1707 start_sequence ();
1708 new_rtx = expand_simple_binop
1709 (GET_MODE (new_rtx), PLUS, new_rtx,
1710 gen_int_mode (offset, GET_MODE (new_rtx)),
1711 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1712 seq = get_insns ();
1713 end_sequence ();
1714 emit_insn_before (seq, insn);
1715 }
1716 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1717 GET_MODE (new_rtx), SUBREG_BYTE (x));
1718 gcc_assert (x);
1719 break;
1720
1721 default:
1722 continue;
1723 }
1724
1725 /* At this point, X contains the new value for the operand.
1726 Validate the new value vs the insn predicate. Note that
1727 asm insns will have insn_code -1 here. */
1728 if (!safe_insn_predicate (insn_code, i, x))
1729 {
1730 start_sequence ();
1731 if (REG_P (x))
1732 {
1733 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1734 x = copy_to_reg (x);
1735 }
1736 else
1737 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1738 seq = get_insns ();
1739 end_sequence ();
1740 if (seq)
1741 emit_insn_before (seq, insn);
1742 }
1743
1744 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1745 any_change = true;
1746 }
1747
1748 if (any_change)
1749 {
1750 /* Propagate operand changes into the duplicates. */
1751 for (i = 0; i < recog_data.n_dups; ++i)
1752 *recog_data.dup_loc[i]
1753 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1754
1755 /* Force re-recognition of the instruction for validation. */
1756 INSN_CODE (insn) = -1;
1757 }
1758
1759 if (asm_noperands (PATTERN (insn)) >= 0)
1760 {
1761 if (!check_asm_operands (PATTERN (insn)))
1762 {
1763 error_for_asm (insn, "impossible constraint in %<asm%>");
1764 /* For asm goto, instead of fixing up all the edges
1765 just clear the template and clear input operands
1766 (asm goto doesn't have any output operands). */
1767 if (JUMP_P (insn))
1768 {
1769 rtx asm_op = extract_asm_operands (PATTERN (insn));
1770 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1771 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1772 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1773 }
1774 else
1775 delete_insn (insn);
1776 }
1777 }
1778 else
1779 {
1780 if (recog_memoized (insn) < 0)
1781 fatal_insn_not_found (insn);
1782 }
1783 }
1784
1785 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1786 do any instantiation required. */
1787
1788 void
1789 instantiate_decl_rtl (rtx x)
1790 {
1791 rtx addr;
1792
1793 if (x == 0)
1794 return;
1795
1796 /* If this is a CONCAT, recurse for the pieces. */
1797 if (GET_CODE (x) == CONCAT)
1798 {
1799 instantiate_decl_rtl (XEXP (x, 0));
1800 instantiate_decl_rtl (XEXP (x, 1));
1801 return;
1802 }
1803
1804 /* If this is not a MEM, no need to do anything. Similarly if the
1805 address is a constant or a register that is not a virtual register. */
1806 if (!MEM_P (x))
1807 return;
1808
1809 addr = XEXP (x, 0);
1810 if (CONSTANT_P (addr)
1811 || (REG_P (addr)
1812 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1813 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1814 return;
1815
1816 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1817 }
1818
1819 /* Helper for instantiate_decls called via walk_tree: Process all decls
1820 in the given DECL_VALUE_EXPR. */
1821
1822 static tree
1823 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1824 {
1825 tree t = *tp;
1826 if (! EXPR_P (t))
1827 {
1828 *walk_subtrees = 0;
1829 if (DECL_P (t))
1830 {
1831 if (DECL_RTL_SET_P (t))
1832 instantiate_decl_rtl (DECL_RTL (t));
1833 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1834 && DECL_INCOMING_RTL (t))
1835 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1836 if ((TREE_CODE (t) == VAR_DECL
1837 || TREE_CODE (t) == RESULT_DECL)
1838 && DECL_HAS_VALUE_EXPR_P (t))
1839 {
1840 tree v = DECL_VALUE_EXPR (t);
1841 walk_tree (&v, instantiate_expr, NULL, NULL);
1842 }
1843 }
1844 }
1845 return NULL;
1846 }
1847
1848 /* Subroutine of instantiate_decls: Process all decls in the given
1849 BLOCK node and all its subblocks. */
1850
1851 static void
1852 instantiate_decls_1 (tree let)
1853 {
1854 tree t;
1855
1856 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1857 {
1858 if (DECL_RTL_SET_P (t))
1859 instantiate_decl_rtl (DECL_RTL (t));
1860 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1861 {
1862 tree v = DECL_VALUE_EXPR (t);
1863 walk_tree (&v, instantiate_expr, NULL, NULL);
1864 }
1865 }
1866
1867 /* Process all subblocks. */
1868 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1869 instantiate_decls_1 (t);
1870 }
1871
1872 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1873 all virtual registers in their DECL_RTL's. */
1874
1875 static void
1876 instantiate_decls (tree fndecl)
1877 {
1878 tree decl;
1879 unsigned ix;
1880
1881 /* Process all parameters of the function. */
1882 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1883 {
1884 instantiate_decl_rtl (DECL_RTL (decl));
1885 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1886 if (DECL_HAS_VALUE_EXPR_P (decl))
1887 {
1888 tree v = DECL_VALUE_EXPR (decl);
1889 walk_tree (&v, instantiate_expr, NULL, NULL);
1890 }
1891 }
1892
1893 if ((decl = DECL_RESULT (fndecl))
1894 && TREE_CODE (decl) == RESULT_DECL)
1895 {
1896 if (DECL_RTL_SET_P (decl))
1897 instantiate_decl_rtl (DECL_RTL (decl));
1898 if (DECL_HAS_VALUE_EXPR_P (decl))
1899 {
1900 tree v = DECL_VALUE_EXPR (decl);
1901 walk_tree (&v, instantiate_expr, NULL, NULL);
1902 }
1903 }
1904
1905 /* Process the saved static chain if it exists. */
1906 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1907 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1908 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1909
1910 /* Now process all variables defined in the function or its subblocks. */
1911 instantiate_decls_1 (DECL_INITIAL (fndecl));
1912
1913 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1914 if (DECL_RTL_SET_P (decl))
1915 instantiate_decl_rtl (DECL_RTL (decl));
1916 vec_free (cfun->local_decls);
1917 }
1918
1919 /* Pass through the INSNS of function FNDECL and convert virtual register
1920 references to hard register references. */
1921
1922 static unsigned int
1923 instantiate_virtual_regs (void)
1924 {
1925 rtx_insn *insn;
1926
1927 /* Compute the offsets to use for this function. */
1928 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1929 var_offset = STARTING_FRAME_OFFSET;
1930 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1931 out_arg_offset = STACK_POINTER_OFFSET;
1932 #ifdef FRAME_POINTER_CFA_OFFSET
1933 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1934 #else
1935 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1936 #endif
1937
1938 /* Initialize recognition, indicating that volatile is OK. */
1939 init_recog ();
1940
1941 /* Scan through all the insns, instantiating every virtual register still
1942 present. */
1943 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1944 if (INSN_P (insn))
1945 {
1946 /* These patterns in the instruction stream can never be recognized.
1947 Fortunately, they shouldn't contain virtual registers either. */
1948 if (GET_CODE (PATTERN (insn)) == USE
1949 || GET_CODE (PATTERN (insn)) == CLOBBER
1950 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1951 continue;
1952 else if (DEBUG_INSN_P (insn))
1953 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1954 else
1955 instantiate_virtual_regs_in_insn (insn);
1956
1957 if (insn->deleted ())
1958 continue;
1959
1960 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1961
1962 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1963 if (CALL_P (insn))
1964 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1965 }
1966
1967 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1968 instantiate_decls (current_function_decl);
1969
1970 targetm.instantiate_decls ();
1971
1972 /* Indicate that, from now on, assign_stack_local should use
1973 frame_pointer_rtx. */
1974 virtuals_instantiated = 1;
1975
1976 return 0;
1977 }
1978
1979 namespace {
1980
1981 const pass_data pass_data_instantiate_virtual_regs =
1982 {
1983 RTL_PASS, /* type */
1984 "vregs", /* name */
1985 OPTGROUP_NONE, /* optinfo_flags */
1986 TV_NONE, /* tv_id */
1987 0, /* properties_required */
1988 0, /* properties_provided */
1989 0, /* properties_destroyed */
1990 0, /* todo_flags_start */
1991 0, /* todo_flags_finish */
1992 };
1993
1994 class pass_instantiate_virtual_regs : public rtl_opt_pass
1995 {
1996 public:
1997 pass_instantiate_virtual_regs (gcc::context *ctxt)
1998 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1999 {}
2000
2001 /* opt_pass methods: */
2002 virtual unsigned int execute (function *)
2003 {
2004 return instantiate_virtual_regs ();
2005 }
2006
2007 }; // class pass_instantiate_virtual_regs
2008
2009 } // anon namespace
2010
2011 rtl_opt_pass *
2012 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2013 {
2014 return new pass_instantiate_virtual_regs (ctxt);
2015 }
2016
2017 \f
2018 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2019 This means a type for which function calls must pass an address to the
2020 function or get an address back from the function.
2021 EXP may be a type node or an expression (whose type is tested). */
2022
2023 int
2024 aggregate_value_p (const_tree exp, const_tree fntype)
2025 {
2026 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2027 int i, regno, nregs;
2028 rtx reg;
2029
2030 if (fntype)
2031 switch (TREE_CODE (fntype))
2032 {
2033 case CALL_EXPR:
2034 {
2035 tree fndecl = get_callee_fndecl (fntype);
2036 if (fndecl)
2037 fntype = TREE_TYPE (fndecl);
2038 else if (CALL_EXPR_FN (fntype))
2039 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2040 else
2041 /* For internal functions, assume nothing needs to be
2042 returned in memory. */
2043 return 0;
2044 }
2045 break;
2046 case FUNCTION_DECL:
2047 fntype = TREE_TYPE (fntype);
2048 break;
2049 case FUNCTION_TYPE:
2050 case METHOD_TYPE:
2051 break;
2052 case IDENTIFIER_NODE:
2053 fntype = NULL_TREE;
2054 break;
2055 default:
2056 /* We don't expect other tree types here. */
2057 gcc_unreachable ();
2058 }
2059
2060 if (VOID_TYPE_P (type))
2061 return 0;
2062
2063 /* If a record should be passed the same as its first (and only) member
2064 don't pass it as an aggregate. */
2065 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2066 return aggregate_value_p (first_field (type), fntype);
2067
2068 /* If the front end has decided that this needs to be passed by
2069 reference, do so. */
2070 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2071 && DECL_BY_REFERENCE (exp))
2072 return 1;
2073
2074 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2075 if (fntype && TREE_ADDRESSABLE (fntype))
2076 return 1;
2077
2078 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2079 and thus can't be returned in registers. */
2080 if (TREE_ADDRESSABLE (type))
2081 return 1;
2082
2083 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2084 return 1;
2085
2086 if (targetm.calls.return_in_memory (type, fntype))
2087 return 1;
2088
2089 /* Make sure we have suitable call-clobbered regs to return
2090 the value in; if not, we must return it in memory. */
2091 reg = hard_function_value (type, 0, fntype, 0);
2092
2093 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2094 it is OK. */
2095 if (!REG_P (reg))
2096 return 0;
2097
2098 regno = REGNO (reg);
2099 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2100 for (i = 0; i < nregs; i++)
2101 if (! call_used_regs[regno + i])
2102 return 1;
2103
2104 return 0;
2105 }
2106 \f
2107 /* Return true if we should assign DECL a pseudo register; false if it
2108 should live on the local stack. */
2109
2110 bool
2111 use_register_for_decl (const_tree decl)
2112 {
2113 if (!targetm.calls.allocate_stack_slots_for_args ())
2114 return true;
2115
2116 /* Honor volatile. */
2117 if (TREE_SIDE_EFFECTS (decl))
2118 return false;
2119
2120 /* Honor addressability. */
2121 if (TREE_ADDRESSABLE (decl))
2122 return false;
2123
2124 /* Decl is implicitly addressible by bound stores and loads
2125 if it is an aggregate holding bounds. */
2126 if (chkp_function_instrumented_p (current_function_decl)
2127 && TREE_TYPE (decl)
2128 && !BOUNDED_P (decl)
2129 && chkp_type_has_pointer (TREE_TYPE (decl)))
2130 return false;
2131
2132 /* Only register-like things go in registers. */
2133 if (DECL_MODE (decl) == BLKmode)
2134 return false;
2135
2136 /* If -ffloat-store specified, don't put explicit float variables
2137 into registers. */
2138 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2139 propagates values across these stores, and it probably shouldn't. */
2140 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2141 return false;
2142
2143 /* If we're not interested in tracking debugging information for
2144 this decl, then we can certainly put it in a register. */
2145 if (DECL_IGNORED_P (decl))
2146 return true;
2147
2148 if (optimize)
2149 return true;
2150
2151 if (!DECL_REGISTER (decl))
2152 return false;
2153
2154 switch (TREE_CODE (TREE_TYPE (decl)))
2155 {
2156 case RECORD_TYPE:
2157 case UNION_TYPE:
2158 case QUAL_UNION_TYPE:
2159 /* When not optimizing, disregard register keyword for variables with
2160 types containing methods, otherwise the methods won't be callable
2161 from the debugger. */
2162 if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl))))
2163 return false;
2164 break;
2165 default:
2166 break;
2167 }
2168
2169 return true;
2170 }
2171
2172 /* Return true if TYPE should be passed by invisible reference. */
2173
2174 bool
2175 pass_by_reference (CUMULATIVE_ARGS *ca, machine_mode mode,
2176 tree type, bool named_arg)
2177 {
2178 if (type)
2179 {
2180 /* If this type contains non-trivial constructors, then it is
2181 forbidden for the middle-end to create any new copies. */
2182 if (TREE_ADDRESSABLE (type))
2183 return true;
2184
2185 /* GCC post 3.4 passes *all* variable sized types by reference. */
2186 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2187 return true;
2188
2189 /* If a record type should be passed the same as its first (and only)
2190 member, use the type and mode of that member. */
2191 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2192 {
2193 type = TREE_TYPE (first_field (type));
2194 mode = TYPE_MODE (type);
2195 }
2196 }
2197
2198 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2199 type, named_arg);
2200 }
2201
2202 /* Return true if TYPE, which is passed by reference, should be callee
2203 copied instead of caller copied. */
2204
2205 bool
2206 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
2207 tree type, bool named_arg)
2208 {
2209 if (type && TREE_ADDRESSABLE (type))
2210 return false;
2211 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2212 named_arg);
2213 }
2214
2215 /* Structures to communicate between the subroutines of assign_parms.
2216 The first holds data persistent across all parameters, the second
2217 is cleared out for each parameter. */
2218
2219 struct assign_parm_data_all
2220 {
2221 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2222 should become a job of the target or otherwise encapsulated. */
2223 CUMULATIVE_ARGS args_so_far_v;
2224 cumulative_args_t args_so_far;
2225 struct args_size stack_args_size;
2226 tree function_result_decl;
2227 tree orig_fnargs;
2228 rtx_insn *first_conversion_insn;
2229 rtx_insn *last_conversion_insn;
2230 HOST_WIDE_INT pretend_args_size;
2231 HOST_WIDE_INT extra_pretend_bytes;
2232 int reg_parm_stack_space;
2233 };
2234
2235 struct assign_parm_data_one
2236 {
2237 tree nominal_type;
2238 tree passed_type;
2239 rtx entry_parm;
2240 rtx stack_parm;
2241 machine_mode nominal_mode;
2242 machine_mode passed_mode;
2243 machine_mode promoted_mode;
2244 struct locate_and_pad_arg_data locate;
2245 int partial;
2246 BOOL_BITFIELD named_arg : 1;
2247 BOOL_BITFIELD passed_pointer : 1;
2248 BOOL_BITFIELD on_stack : 1;
2249 BOOL_BITFIELD loaded_in_reg : 1;
2250 };
2251
2252 struct bounds_parm_data
2253 {
2254 assign_parm_data_one parm_data;
2255 tree bounds_parm;
2256 tree ptr_parm;
2257 rtx ptr_entry;
2258 int bound_no;
2259 };
2260
2261 /* A subroutine of assign_parms. Initialize ALL. */
2262
2263 static void
2264 assign_parms_initialize_all (struct assign_parm_data_all *all)
2265 {
2266 tree fntype ATTRIBUTE_UNUSED;
2267
2268 memset (all, 0, sizeof (*all));
2269
2270 fntype = TREE_TYPE (current_function_decl);
2271
2272 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2273 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2274 #else
2275 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2276 current_function_decl, -1);
2277 #endif
2278 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2279
2280 #ifdef INCOMING_REG_PARM_STACK_SPACE
2281 all->reg_parm_stack_space
2282 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2283 #endif
2284 }
2285
2286 /* If ARGS contains entries with complex types, split the entry into two
2287 entries of the component type. Return a new list of substitutions are
2288 needed, else the old list. */
2289
2290 static void
2291 split_complex_args (vec<tree> *args)
2292 {
2293 unsigned i;
2294 tree p;
2295
2296 FOR_EACH_VEC_ELT (*args, i, p)
2297 {
2298 tree type = TREE_TYPE (p);
2299 if (TREE_CODE (type) == COMPLEX_TYPE
2300 && targetm.calls.split_complex_arg (type))
2301 {
2302 tree decl;
2303 tree subtype = TREE_TYPE (type);
2304 bool addressable = TREE_ADDRESSABLE (p);
2305
2306 /* Rewrite the PARM_DECL's type with its component. */
2307 p = copy_node (p);
2308 TREE_TYPE (p) = subtype;
2309 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2310 DECL_MODE (p) = VOIDmode;
2311 DECL_SIZE (p) = NULL;
2312 DECL_SIZE_UNIT (p) = NULL;
2313 /* If this arg must go in memory, put it in a pseudo here.
2314 We can't allow it to go in memory as per normal parms,
2315 because the usual place might not have the imag part
2316 adjacent to the real part. */
2317 DECL_ARTIFICIAL (p) = addressable;
2318 DECL_IGNORED_P (p) = addressable;
2319 TREE_ADDRESSABLE (p) = 0;
2320 layout_decl (p, 0);
2321 (*args)[i] = p;
2322
2323 /* Build a second synthetic decl. */
2324 decl = build_decl (EXPR_LOCATION (p),
2325 PARM_DECL, NULL_TREE, subtype);
2326 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2327 DECL_ARTIFICIAL (decl) = addressable;
2328 DECL_IGNORED_P (decl) = addressable;
2329 layout_decl (decl, 0);
2330 args->safe_insert (++i, decl);
2331 }
2332 }
2333 }
2334
2335 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2336 the hidden struct return argument, and (abi willing) complex args.
2337 Return the new parameter list. */
2338
2339 static vec<tree>
2340 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2341 {
2342 tree fndecl = current_function_decl;
2343 tree fntype = TREE_TYPE (fndecl);
2344 vec<tree> fnargs = vNULL;
2345 tree arg;
2346
2347 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2348 fnargs.safe_push (arg);
2349
2350 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2351
2352 /* If struct value address is treated as the first argument, make it so. */
2353 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2354 && ! cfun->returns_pcc_struct
2355 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2356 {
2357 tree type = build_pointer_type (TREE_TYPE (fntype));
2358 tree decl;
2359
2360 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2361 PARM_DECL, get_identifier (".result_ptr"), type);
2362 DECL_ARG_TYPE (decl) = type;
2363 DECL_ARTIFICIAL (decl) = 1;
2364 DECL_NAMELESS (decl) = 1;
2365 TREE_CONSTANT (decl) = 1;
2366
2367 DECL_CHAIN (decl) = all->orig_fnargs;
2368 all->orig_fnargs = decl;
2369 fnargs.safe_insert (0, decl);
2370
2371 all->function_result_decl = decl;
2372
2373 /* If function is instrumented then bounds of the
2374 passed structure address is the second argument. */
2375 if (chkp_function_instrumented_p (fndecl))
2376 {
2377 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2378 PARM_DECL, get_identifier (".result_bnd"),
2379 pointer_bounds_type_node);
2380 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2381 DECL_ARTIFICIAL (decl) = 1;
2382 DECL_NAMELESS (decl) = 1;
2383 TREE_CONSTANT (decl) = 1;
2384
2385 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2386 DECL_CHAIN (all->orig_fnargs) = decl;
2387 fnargs.safe_insert (1, decl);
2388 }
2389 }
2390
2391 /* If the target wants to split complex arguments into scalars, do so. */
2392 if (targetm.calls.split_complex_arg)
2393 split_complex_args (&fnargs);
2394
2395 return fnargs;
2396 }
2397
2398 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2399 data for the parameter. Incorporate ABI specifics such as pass-by-
2400 reference and type promotion. */
2401
2402 static void
2403 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2404 struct assign_parm_data_one *data)
2405 {
2406 tree nominal_type, passed_type;
2407 machine_mode nominal_mode, passed_mode, promoted_mode;
2408 int unsignedp;
2409
2410 memset (data, 0, sizeof (*data));
2411
2412 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2413 if (!cfun->stdarg)
2414 data->named_arg = 1; /* No variadic parms. */
2415 else if (DECL_CHAIN (parm))
2416 data->named_arg = 1; /* Not the last non-variadic parm. */
2417 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2418 data->named_arg = 1; /* Only variadic ones are unnamed. */
2419 else
2420 data->named_arg = 0; /* Treat as variadic. */
2421
2422 nominal_type = TREE_TYPE (parm);
2423 passed_type = DECL_ARG_TYPE (parm);
2424
2425 /* Look out for errors propagating this far. Also, if the parameter's
2426 type is void then its value doesn't matter. */
2427 if (TREE_TYPE (parm) == error_mark_node
2428 /* This can happen after weird syntax errors
2429 or if an enum type is defined among the parms. */
2430 || TREE_CODE (parm) != PARM_DECL
2431 || passed_type == NULL
2432 || VOID_TYPE_P (nominal_type))
2433 {
2434 nominal_type = passed_type = void_type_node;
2435 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2436 goto egress;
2437 }
2438
2439 /* Find mode of arg as it is passed, and mode of arg as it should be
2440 during execution of this function. */
2441 passed_mode = TYPE_MODE (passed_type);
2442 nominal_mode = TYPE_MODE (nominal_type);
2443
2444 /* If the parm is to be passed as a transparent union or record, use the
2445 type of the first field for the tests below. We have already verified
2446 that the modes are the same. */
2447 if ((TREE_CODE (passed_type) == UNION_TYPE
2448 || TREE_CODE (passed_type) == RECORD_TYPE)
2449 && TYPE_TRANSPARENT_AGGR (passed_type))
2450 passed_type = TREE_TYPE (first_field (passed_type));
2451
2452 /* See if this arg was passed by invisible reference. */
2453 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2454 passed_type, data->named_arg))
2455 {
2456 passed_type = nominal_type = build_pointer_type (passed_type);
2457 data->passed_pointer = true;
2458 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2459 }
2460
2461 /* Find mode as it is passed by the ABI. */
2462 unsignedp = TYPE_UNSIGNED (passed_type);
2463 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2464 TREE_TYPE (current_function_decl), 0);
2465
2466 egress:
2467 data->nominal_type = nominal_type;
2468 data->passed_type = passed_type;
2469 data->nominal_mode = nominal_mode;
2470 data->passed_mode = passed_mode;
2471 data->promoted_mode = promoted_mode;
2472 }
2473
2474 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2475
2476 static void
2477 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2478 struct assign_parm_data_one *data, bool no_rtl)
2479 {
2480 int varargs_pretend_bytes = 0;
2481
2482 targetm.calls.setup_incoming_varargs (all->args_so_far,
2483 data->promoted_mode,
2484 data->passed_type,
2485 &varargs_pretend_bytes, no_rtl);
2486
2487 /* If the back-end has requested extra stack space, record how much is
2488 needed. Do not change pretend_args_size otherwise since it may be
2489 nonzero from an earlier partial argument. */
2490 if (varargs_pretend_bytes > 0)
2491 all->pretend_args_size = varargs_pretend_bytes;
2492 }
2493
2494 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2495 the incoming location of the current parameter. */
2496
2497 static void
2498 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2499 struct assign_parm_data_one *data)
2500 {
2501 HOST_WIDE_INT pretend_bytes = 0;
2502 rtx entry_parm;
2503 bool in_regs;
2504
2505 if (data->promoted_mode == VOIDmode)
2506 {
2507 data->entry_parm = data->stack_parm = const0_rtx;
2508 return;
2509 }
2510
2511 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2512 data->promoted_mode,
2513 data->passed_type,
2514 data->named_arg);
2515
2516 if (entry_parm == 0)
2517 data->promoted_mode = data->passed_mode;
2518
2519 /* Determine parm's home in the stack, in case it arrives in the stack
2520 or we should pretend it did. Compute the stack position and rtx where
2521 the argument arrives and its size.
2522
2523 There is one complexity here: If this was a parameter that would
2524 have been passed in registers, but wasn't only because it is
2525 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2526 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2527 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2528 as it was the previous time. */
2529 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2530 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2531 in_regs = true;
2532 #endif
2533 if (!in_regs && !data->named_arg)
2534 {
2535 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2536 {
2537 rtx tem;
2538 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2539 data->promoted_mode,
2540 data->passed_type, true);
2541 in_regs = tem != NULL;
2542 }
2543 }
2544
2545 /* If this parameter was passed both in registers and in the stack, use
2546 the copy on the stack. */
2547 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2548 data->passed_type))
2549 entry_parm = 0;
2550
2551 if (entry_parm)
2552 {
2553 int partial;
2554
2555 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2556 data->promoted_mode,
2557 data->passed_type,
2558 data->named_arg);
2559 data->partial = partial;
2560
2561 /* The caller might already have allocated stack space for the
2562 register parameters. */
2563 if (partial != 0 && all->reg_parm_stack_space == 0)
2564 {
2565 /* Part of this argument is passed in registers and part
2566 is passed on the stack. Ask the prologue code to extend
2567 the stack part so that we can recreate the full value.
2568
2569 PRETEND_BYTES is the size of the registers we need to store.
2570 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2571 stack space that the prologue should allocate.
2572
2573 Internally, gcc assumes that the argument pointer is aligned
2574 to STACK_BOUNDARY bits. This is used both for alignment
2575 optimizations (see init_emit) and to locate arguments that are
2576 aligned to more than PARM_BOUNDARY bits. We must preserve this
2577 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2578 a stack boundary. */
2579
2580 /* We assume at most one partial arg, and it must be the first
2581 argument on the stack. */
2582 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2583
2584 pretend_bytes = partial;
2585 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2586
2587 /* We want to align relative to the actual stack pointer, so
2588 don't include this in the stack size until later. */
2589 all->extra_pretend_bytes = all->pretend_args_size;
2590 }
2591 }
2592
2593 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2594 all->reg_parm_stack_space,
2595 entry_parm ? data->partial : 0, current_function_decl,
2596 &all->stack_args_size, &data->locate);
2597
2598 /* Update parm_stack_boundary if this parameter is passed in the
2599 stack. */
2600 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2601 crtl->parm_stack_boundary = data->locate.boundary;
2602
2603 /* Adjust offsets to include the pretend args. */
2604 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2605 data->locate.slot_offset.constant += pretend_bytes;
2606 data->locate.offset.constant += pretend_bytes;
2607
2608 data->entry_parm = entry_parm;
2609 }
2610
2611 /* A subroutine of assign_parms. If there is actually space on the stack
2612 for this parm, count it in stack_args_size and return true. */
2613
2614 static bool
2615 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2616 struct assign_parm_data_one *data)
2617 {
2618 /* Bounds are never passed on the stack to keep compatibility
2619 with not instrumented code. */
2620 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2621 return false;
2622 /* Trivially true if we've no incoming register. */
2623 else if (data->entry_parm == NULL)
2624 ;
2625 /* Also true if we're partially in registers and partially not,
2626 since we've arranged to drop the entire argument on the stack. */
2627 else if (data->partial != 0)
2628 ;
2629 /* Also true if the target says that it's passed in both registers
2630 and on the stack. */
2631 else if (GET_CODE (data->entry_parm) == PARALLEL
2632 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2633 ;
2634 /* Also true if the target says that there's stack allocated for
2635 all register parameters. */
2636 else if (all->reg_parm_stack_space > 0)
2637 ;
2638 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2639 else
2640 return false;
2641
2642 all->stack_args_size.constant += data->locate.size.constant;
2643 if (data->locate.size.var)
2644 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2645
2646 return true;
2647 }
2648
2649 /* A subroutine of assign_parms. Given that this parameter is allocated
2650 stack space by the ABI, find it. */
2651
2652 static void
2653 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2654 {
2655 rtx offset_rtx, stack_parm;
2656 unsigned int align, boundary;
2657
2658 /* If we're passing this arg using a reg, make its stack home the
2659 aligned stack slot. */
2660 if (data->entry_parm)
2661 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2662 else
2663 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2664
2665 stack_parm = crtl->args.internal_arg_pointer;
2666 if (offset_rtx != const0_rtx)
2667 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2668 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2669
2670 if (!data->passed_pointer)
2671 {
2672 set_mem_attributes (stack_parm, parm, 1);
2673 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2674 while promoted mode's size is needed. */
2675 if (data->promoted_mode != BLKmode
2676 && data->promoted_mode != DECL_MODE (parm))
2677 {
2678 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2679 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2680 {
2681 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2682 data->promoted_mode);
2683 if (offset)
2684 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2685 }
2686 }
2687 }
2688
2689 boundary = data->locate.boundary;
2690 align = BITS_PER_UNIT;
2691
2692 /* If we're padding upward, we know that the alignment of the slot
2693 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2694 intentionally forcing upward padding. Otherwise we have to come
2695 up with a guess at the alignment based on OFFSET_RTX. */
2696 if (data->locate.where_pad != downward || data->entry_parm)
2697 align = boundary;
2698 else if (CONST_INT_P (offset_rtx))
2699 {
2700 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2701 align = align & -align;
2702 }
2703 set_mem_align (stack_parm, align);
2704
2705 if (data->entry_parm)
2706 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2707
2708 data->stack_parm = stack_parm;
2709 }
2710
2711 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2712 always valid and contiguous. */
2713
2714 static void
2715 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2716 {
2717 rtx entry_parm = data->entry_parm;
2718 rtx stack_parm = data->stack_parm;
2719
2720 /* If this parm was passed part in regs and part in memory, pretend it
2721 arrived entirely in memory by pushing the register-part onto the stack.
2722 In the special case of a DImode or DFmode that is split, we could put
2723 it together in a pseudoreg directly, but for now that's not worth
2724 bothering with. */
2725 if (data->partial != 0)
2726 {
2727 /* Handle calls that pass values in multiple non-contiguous
2728 locations. The Irix 6 ABI has examples of this. */
2729 if (GET_CODE (entry_parm) == PARALLEL)
2730 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2731 data->passed_type,
2732 int_size_in_bytes (data->passed_type));
2733 else
2734 {
2735 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2736 move_block_from_reg (REGNO (entry_parm),
2737 validize_mem (copy_rtx (stack_parm)),
2738 data->partial / UNITS_PER_WORD);
2739 }
2740
2741 entry_parm = stack_parm;
2742 }
2743
2744 /* If we didn't decide this parm came in a register, by default it came
2745 on the stack. */
2746 else if (entry_parm == NULL)
2747 entry_parm = stack_parm;
2748
2749 /* When an argument is passed in multiple locations, we can't make use
2750 of this information, but we can save some copying if the whole argument
2751 is passed in a single register. */
2752 else if (GET_CODE (entry_parm) == PARALLEL
2753 && data->nominal_mode != BLKmode
2754 && data->passed_mode != BLKmode)
2755 {
2756 size_t i, len = XVECLEN (entry_parm, 0);
2757
2758 for (i = 0; i < len; i++)
2759 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2760 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2761 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2762 == data->passed_mode)
2763 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2764 {
2765 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2766 break;
2767 }
2768 }
2769
2770 data->entry_parm = entry_parm;
2771 }
2772
2773 /* A subroutine of assign_parms. Reconstitute any values which were
2774 passed in multiple registers and would fit in a single register. */
2775
2776 static void
2777 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2778 {
2779 rtx entry_parm = data->entry_parm;
2780
2781 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2782 This can be done with register operations rather than on the
2783 stack, even if we will store the reconstituted parameter on the
2784 stack later. */
2785 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2786 {
2787 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2788 emit_group_store (parmreg, entry_parm, data->passed_type,
2789 GET_MODE_SIZE (GET_MODE (entry_parm)));
2790 entry_parm = parmreg;
2791 }
2792
2793 data->entry_parm = entry_parm;
2794 }
2795
2796 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2797 always valid and properly aligned. */
2798
2799 static void
2800 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2801 {
2802 rtx stack_parm = data->stack_parm;
2803
2804 /* If we can't trust the parm stack slot to be aligned enough for its
2805 ultimate type, don't use that slot after entry. We'll make another
2806 stack slot, if we need one. */
2807 if (stack_parm
2808 && ((STRICT_ALIGNMENT
2809 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2810 || (data->nominal_type
2811 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2812 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2813 stack_parm = NULL;
2814
2815 /* If parm was passed in memory, and we need to convert it on entry,
2816 don't store it back in that same slot. */
2817 else if (data->entry_parm == stack_parm
2818 && data->nominal_mode != BLKmode
2819 && data->nominal_mode != data->passed_mode)
2820 stack_parm = NULL;
2821
2822 /* If stack protection is in effect for this function, don't leave any
2823 pointers in their passed stack slots. */
2824 else if (crtl->stack_protect_guard
2825 && (flag_stack_protect == 2
2826 || data->passed_pointer
2827 || POINTER_TYPE_P (data->nominal_type)))
2828 stack_parm = NULL;
2829
2830 data->stack_parm = stack_parm;
2831 }
2832
2833 /* A subroutine of assign_parms. Return true if the current parameter
2834 should be stored as a BLKmode in the current frame. */
2835
2836 static bool
2837 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2838 {
2839 if (data->nominal_mode == BLKmode)
2840 return true;
2841 if (GET_MODE (data->entry_parm) == BLKmode)
2842 return true;
2843
2844 #ifdef BLOCK_REG_PADDING
2845 /* Only assign_parm_setup_block knows how to deal with register arguments
2846 that are padded at the least significant end. */
2847 if (REG_P (data->entry_parm)
2848 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2849 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2850 == (BYTES_BIG_ENDIAN ? upward : downward)))
2851 return true;
2852 #endif
2853
2854 return false;
2855 }
2856
2857 /* A subroutine of assign_parms. Arrange for the parameter to be
2858 present and valid in DATA->STACK_RTL. */
2859
2860 static void
2861 assign_parm_setup_block (struct assign_parm_data_all *all,
2862 tree parm, struct assign_parm_data_one *data)
2863 {
2864 rtx entry_parm = data->entry_parm;
2865 rtx stack_parm = data->stack_parm;
2866 HOST_WIDE_INT size;
2867 HOST_WIDE_INT size_stored;
2868
2869 if (GET_CODE (entry_parm) == PARALLEL)
2870 entry_parm = emit_group_move_into_temps (entry_parm);
2871
2872 size = int_size_in_bytes (data->passed_type);
2873 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2874 if (stack_parm == 0)
2875 {
2876 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2877 stack_parm = assign_stack_local (BLKmode, size_stored,
2878 DECL_ALIGN (parm));
2879 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2880 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2881 set_mem_attributes (stack_parm, parm, 1);
2882 }
2883
2884 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2885 calls that pass values in multiple non-contiguous locations. */
2886 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2887 {
2888 rtx mem;
2889
2890 /* Note that we will be storing an integral number of words.
2891 So we have to be careful to ensure that we allocate an
2892 integral number of words. We do this above when we call
2893 assign_stack_local if space was not allocated in the argument
2894 list. If it was, this will not work if PARM_BOUNDARY is not
2895 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2896 if it becomes a problem. Exception is when BLKmode arrives
2897 with arguments not conforming to word_mode. */
2898
2899 if (data->stack_parm == 0)
2900 ;
2901 else if (GET_CODE (entry_parm) == PARALLEL)
2902 ;
2903 else
2904 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2905
2906 mem = validize_mem (copy_rtx (stack_parm));
2907
2908 /* Handle values in multiple non-contiguous locations. */
2909 if (GET_CODE (entry_parm) == PARALLEL)
2910 {
2911 push_to_sequence2 (all->first_conversion_insn,
2912 all->last_conversion_insn);
2913 emit_group_store (mem, entry_parm, data->passed_type, size);
2914 all->first_conversion_insn = get_insns ();
2915 all->last_conversion_insn = get_last_insn ();
2916 end_sequence ();
2917 }
2918
2919 else if (size == 0)
2920 ;
2921
2922 /* If SIZE is that of a mode no bigger than a word, just use
2923 that mode's store operation. */
2924 else if (size <= UNITS_PER_WORD)
2925 {
2926 machine_mode mode
2927 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2928
2929 if (mode != BLKmode
2930 #ifdef BLOCK_REG_PADDING
2931 && (size == UNITS_PER_WORD
2932 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2933 != (BYTES_BIG_ENDIAN ? upward : downward)))
2934 #endif
2935 )
2936 {
2937 rtx reg;
2938
2939 /* We are really truncating a word_mode value containing
2940 SIZE bytes into a value of mode MODE. If such an
2941 operation requires no actual instructions, we can refer
2942 to the value directly in mode MODE, otherwise we must
2943 start with the register in word_mode and explicitly
2944 convert it. */
2945 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2946 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2947 else
2948 {
2949 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2950 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2951 }
2952 emit_move_insn (change_address (mem, mode, 0), reg);
2953 }
2954
2955 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2956 machine must be aligned to the left before storing
2957 to memory. Note that the previous test doesn't
2958 handle all cases (e.g. SIZE == 3). */
2959 else if (size != UNITS_PER_WORD
2960 #ifdef BLOCK_REG_PADDING
2961 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2962 == downward)
2963 #else
2964 && BYTES_BIG_ENDIAN
2965 #endif
2966 )
2967 {
2968 rtx tem, x;
2969 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2970 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2971
2972 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2973 tem = change_address (mem, word_mode, 0);
2974 emit_move_insn (tem, x);
2975 }
2976 else
2977 move_block_from_reg (REGNO (entry_parm), mem,
2978 size_stored / UNITS_PER_WORD);
2979 }
2980 else
2981 move_block_from_reg (REGNO (entry_parm), mem,
2982 size_stored / UNITS_PER_WORD);
2983 }
2984 else if (data->stack_parm == 0)
2985 {
2986 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2987 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2988 BLOCK_OP_NORMAL);
2989 all->first_conversion_insn = get_insns ();
2990 all->last_conversion_insn = get_last_insn ();
2991 end_sequence ();
2992 }
2993
2994 data->stack_parm = stack_parm;
2995 SET_DECL_RTL (parm, stack_parm);
2996 }
2997
2998 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2999 parameter. Get it there. Perform all ABI specified conversions. */
3000
3001 static void
3002 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3003 struct assign_parm_data_one *data)
3004 {
3005 rtx parmreg, validated_mem;
3006 rtx equiv_stack_parm;
3007 machine_mode promoted_nominal_mode;
3008 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3009 bool did_conversion = false;
3010 bool need_conversion, moved;
3011
3012 /* Store the parm in a pseudoregister during the function, but we may
3013 need to do it in a wider mode. Using 2 here makes the result
3014 consistent with promote_decl_mode and thus expand_expr_real_1. */
3015 promoted_nominal_mode
3016 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3017 TREE_TYPE (current_function_decl), 2);
3018
3019 parmreg = gen_reg_rtx (promoted_nominal_mode);
3020
3021 if (!DECL_ARTIFICIAL (parm))
3022 mark_user_reg (parmreg);
3023
3024 /* If this was an item that we received a pointer to,
3025 set DECL_RTL appropriately. */
3026 if (data->passed_pointer)
3027 {
3028 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3029 set_mem_attributes (x, parm, 1);
3030 SET_DECL_RTL (parm, x);
3031 }
3032 else
3033 SET_DECL_RTL (parm, parmreg);
3034
3035 assign_parm_remove_parallels (data);
3036
3037 /* Copy the value into the register, thus bridging between
3038 assign_parm_find_data_types and expand_expr_real_1. */
3039
3040 equiv_stack_parm = data->stack_parm;
3041 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3042
3043 need_conversion = (data->nominal_mode != data->passed_mode
3044 || promoted_nominal_mode != data->promoted_mode);
3045 moved = false;
3046
3047 if (need_conversion
3048 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3049 && data->nominal_mode == data->passed_mode
3050 && data->nominal_mode == GET_MODE (data->entry_parm))
3051 {
3052 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3053 mode, by the caller. We now have to convert it to
3054 NOMINAL_MODE, if different. However, PARMREG may be in
3055 a different mode than NOMINAL_MODE if it is being stored
3056 promoted.
3057
3058 If ENTRY_PARM is a hard register, it might be in a register
3059 not valid for operating in its mode (e.g., an odd-numbered
3060 register for a DFmode). In that case, moves are the only
3061 thing valid, so we can't do a convert from there. This
3062 occurs when the calling sequence allow such misaligned
3063 usages.
3064
3065 In addition, the conversion may involve a call, which could
3066 clobber parameters which haven't been copied to pseudo
3067 registers yet.
3068
3069 First, we try to emit an insn which performs the necessary
3070 conversion. We verify that this insn does not clobber any
3071 hard registers. */
3072
3073 enum insn_code icode;
3074 rtx op0, op1;
3075
3076 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3077 unsignedp);
3078
3079 op0 = parmreg;
3080 op1 = validated_mem;
3081 if (icode != CODE_FOR_nothing
3082 && insn_operand_matches (icode, 0, op0)
3083 && insn_operand_matches (icode, 1, op1))
3084 {
3085 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3086 rtx_insn *insn, *insns;
3087 rtx t = op1;
3088 HARD_REG_SET hardregs;
3089
3090 start_sequence ();
3091 /* If op1 is a hard register that is likely spilled, first
3092 force it into a pseudo, otherwise combiner might extend
3093 its lifetime too much. */
3094 if (GET_CODE (t) == SUBREG)
3095 t = SUBREG_REG (t);
3096 if (REG_P (t)
3097 && HARD_REGISTER_P (t)
3098 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3099 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3100 {
3101 t = gen_reg_rtx (GET_MODE (op1));
3102 emit_move_insn (t, op1);
3103 }
3104 else
3105 t = op1;
3106 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3107 data->passed_mode, unsignedp);
3108 emit_insn (pat);
3109 insns = get_insns ();
3110
3111 moved = true;
3112 CLEAR_HARD_REG_SET (hardregs);
3113 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3114 {
3115 if (INSN_P (insn))
3116 note_stores (PATTERN (insn), record_hard_reg_sets,
3117 &hardregs);
3118 if (!hard_reg_set_empty_p (hardregs))
3119 moved = false;
3120 }
3121
3122 end_sequence ();
3123
3124 if (moved)
3125 {
3126 emit_insn (insns);
3127 if (equiv_stack_parm != NULL_RTX)
3128 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3129 equiv_stack_parm);
3130 }
3131 }
3132 }
3133
3134 if (moved)
3135 /* Nothing to do. */
3136 ;
3137 else if (need_conversion)
3138 {
3139 /* We did not have an insn to convert directly, or the sequence
3140 generated appeared unsafe. We must first copy the parm to a
3141 pseudo reg, and save the conversion until after all
3142 parameters have been moved. */
3143
3144 int save_tree_used;
3145 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3146
3147 emit_move_insn (tempreg, validated_mem);
3148
3149 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3150 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3151
3152 if (GET_CODE (tempreg) == SUBREG
3153 && GET_MODE (tempreg) == data->nominal_mode
3154 && REG_P (SUBREG_REG (tempreg))
3155 && data->nominal_mode == data->passed_mode
3156 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3157 && GET_MODE_SIZE (GET_MODE (tempreg))
3158 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3159 {
3160 /* The argument is already sign/zero extended, so note it
3161 into the subreg. */
3162 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3163 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3164 }
3165
3166 /* TREE_USED gets set erroneously during expand_assignment. */
3167 save_tree_used = TREE_USED (parm);
3168 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3169 TREE_USED (parm) = save_tree_used;
3170 all->first_conversion_insn = get_insns ();
3171 all->last_conversion_insn = get_last_insn ();
3172 end_sequence ();
3173
3174 did_conversion = true;
3175 }
3176 else
3177 emit_move_insn (parmreg, validated_mem);
3178
3179 /* If we were passed a pointer but the actual value can safely live
3180 in a register, retrieve it and use it directly. */
3181 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3182 {
3183 /* We can't use nominal_mode, because it will have been set to
3184 Pmode above. We must use the actual mode of the parm. */
3185 if (use_register_for_decl (parm))
3186 {
3187 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3188 mark_user_reg (parmreg);
3189 }
3190 else
3191 {
3192 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3193 TYPE_MODE (TREE_TYPE (parm)),
3194 TYPE_ALIGN (TREE_TYPE (parm)));
3195 parmreg
3196 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3197 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3198 align);
3199 set_mem_attributes (parmreg, parm, 1);
3200 }
3201
3202 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3203 {
3204 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3205 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3206
3207 push_to_sequence2 (all->first_conversion_insn,
3208 all->last_conversion_insn);
3209 emit_move_insn (tempreg, DECL_RTL (parm));
3210 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3211 emit_move_insn (parmreg, tempreg);
3212 all->first_conversion_insn = get_insns ();
3213 all->last_conversion_insn = get_last_insn ();
3214 end_sequence ();
3215
3216 did_conversion = true;
3217 }
3218 else
3219 emit_move_insn (parmreg, DECL_RTL (parm));
3220
3221 SET_DECL_RTL (parm, parmreg);
3222
3223 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3224 now the parm. */
3225 data->stack_parm = NULL;
3226 }
3227
3228 /* Mark the register as eliminable if we did no conversion and it was
3229 copied from memory at a fixed offset, and the arg pointer was not
3230 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3231 offset formed an invalid address, such memory-equivalences as we
3232 make here would screw up life analysis for it. */
3233 if (data->nominal_mode == data->passed_mode
3234 && !did_conversion
3235 && data->stack_parm != 0
3236 && MEM_P (data->stack_parm)
3237 && data->locate.offset.var == 0
3238 && reg_mentioned_p (virtual_incoming_args_rtx,
3239 XEXP (data->stack_parm, 0)))
3240 {
3241 rtx_insn *linsn = get_last_insn ();
3242 rtx_insn *sinsn;
3243 rtx set;
3244
3245 /* Mark complex types separately. */
3246 if (GET_CODE (parmreg) == CONCAT)
3247 {
3248 machine_mode submode
3249 = GET_MODE_INNER (GET_MODE (parmreg));
3250 int regnor = REGNO (XEXP (parmreg, 0));
3251 int regnoi = REGNO (XEXP (parmreg, 1));
3252 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3253 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3254 GET_MODE_SIZE (submode));
3255
3256 /* Scan backwards for the set of the real and
3257 imaginary parts. */
3258 for (sinsn = linsn; sinsn != 0;
3259 sinsn = prev_nonnote_insn (sinsn))
3260 {
3261 set = single_set (sinsn);
3262 if (set == 0)
3263 continue;
3264
3265 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3266 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3267 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3268 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3269 }
3270 }
3271 else
3272 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3273 }
3274
3275 /* For pointer data type, suggest pointer register. */
3276 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3277 mark_reg_pointer (parmreg,
3278 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3279 }
3280
3281 /* A subroutine of assign_parms. Allocate stack space to hold the current
3282 parameter. Get it there. Perform all ABI specified conversions. */
3283
3284 static void
3285 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3286 struct assign_parm_data_one *data)
3287 {
3288 /* Value must be stored in the stack slot STACK_PARM during function
3289 execution. */
3290 bool to_conversion = false;
3291
3292 assign_parm_remove_parallels (data);
3293
3294 if (data->promoted_mode != data->nominal_mode)
3295 {
3296 /* Conversion is required. */
3297 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3298
3299 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3300
3301 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3302 to_conversion = true;
3303
3304 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3305 TYPE_UNSIGNED (TREE_TYPE (parm)));
3306
3307 if (data->stack_parm)
3308 {
3309 int offset = subreg_lowpart_offset (data->nominal_mode,
3310 GET_MODE (data->stack_parm));
3311 /* ??? This may need a big-endian conversion on sparc64. */
3312 data->stack_parm
3313 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3314 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3315 set_mem_offset (data->stack_parm,
3316 MEM_OFFSET (data->stack_parm) + offset);
3317 }
3318 }
3319
3320 if (data->entry_parm != data->stack_parm)
3321 {
3322 rtx src, dest;
3323
3324 if (data->stack_parm == 0)
3325 {
3326 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3327 GET_MODE (data->entry_parm),
3328 TYPE_ALIGN (data->passed_type));
3329 data->stack_parm
3330 = assign_stack_local (GET_MODE (data->entry_parm),
3331 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3332 align);
3333 set_mem_attributes (data->stack_parm, parm, 1);
3334 }
3335
3336 dest = validize_mem (copy_rtx (data->stack_parm));
3337 src = validize_mem (copy_rtx (data->entry_parm));
3338
3339 if (MEM_P (src))
3340 {
3341 /* Use a block move to handle potentially misaligned entry_parm. */
3342 if (!to_conversion)
3343 push_to_sequence2 (all->first_conversion_insn,
3344 all->last_conversion_insn);
3345 to_conversion = true;
3346
3347 emit_block_move (dest, src,
3348 GEN_INT (int_size_in_bytes (data->passed_type)),
3349 BLOCK_OP_NORMAL);
3350 }
3351 else
3352 emit_move_insn (dest, src);
3353 }
3354
3355 if (to_conversion)
3356 {
3357 all->first_conversion_insn = get_insns ();
3358 all->last_conversion_insn = get_last_insn ();
3359 end_sequence ();
3360 }
3361
3362 SET_DECL_RTL (parm, data->stack_parm);
3363 }
3364
3365 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3366 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3367
3368 static void
3369 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3370 vec<tree> fnargs)
3371 {
3372 tree parm;
3373 tree orig_fnargs = all->orig_fnargs;
3374 unsigned i = 0;
3375
3376 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3377 {
3378 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3379 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3380 {
3381 rtx tmp, real, imag;
3382 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3383
3384 real = DECL_RTL (fnargs[i]);
3385 imag = DECL_RTL (fnargs[i + 1]);
3386 if (inner != GET_MODE (real))
3387 {
3388 real = gen_lowpart_SUBREG (inner, real);
3389 imag = gen_lowpart_SUBREG (inner, imag);
3390 }
3391
3392 if (TREE_ADDRESSABLE (parm))
3393 {
3394 rtx rmem, imem;
3395 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3396 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3397 DECL_MODE (parm),
3398 TYPE_ALIGN (TREE_TYPE (parm)));
3399
3400 /* split_complex_arg put the real and imag parts in
3401 pseudos. Move them to memory. */
3402 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3403 set_mem_attributes (tmp, parm, 1);
3404 rmem = adjust_address_nv (tmp, inner, 0);
3405 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3406 push_to_sequence2 (all->first_conversion_insn,
3407 all->last_conversion_insn);
3408 emit_move_insn (rmem, real);
3409 emit_move_insn (imem, imag);
3410 all->first_conversion_insn = get_insns ();
3411 all->last_conversion_insn = get_last_insn ();
3412 end_sequence ();
3413 }
3414 else
3415 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3416 SET_DECL_RTL (parm, tmp);
3417
3418 real = DECL_INCOMING_RTL (fnargs[i]);
3419 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3420 if (inner != GET_MODE (real))
3421 {
3422 real = gen_lowpart_SUBREG (inner, real);
3423 imag = gen_lowpart_SUBREG (inner, imag);
3424 }
3425 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3426 set_decl_incoming_rtl (parm, tmp, false);
3427 i++;
3428 }
3429 }
3430 }
3431
3432 /* Load bounds of PARM from bounds table. */
3433 static void
3434 assign_parm_load_bounds (struct assign_parm_data_one *data,
3435 tree parm,
3436 rtx entry,
3437 unsigned bound_no)
3438 {
3439 bitmap_iterator bi;
3440 unsigned i, offs = 0;
3441 int bnd_no = -1;
3442 rtx slot = NULL, ptr = NULL;
3443
3444 if (parm)
3445 {
3446 bitmap slots;
3447 bitmap_obstack_initialize (NULL);
3448 slots = BITMAP_ALLOC (NULL);
3449 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3450 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3451 {
3452 if (bound_no)
3453 bound_no--;
3454 else
3455 {
3456 bnd_no = i;
3457 break;
3458 }
3459 }
3460 BITMAP_FREE (slots);
3461 bitmap_obstack_release (NULL);
3462 }
3463
3464 /* We may have bounds not associated with any pointer. */
3465 if (bnd_no != -1)
3466 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3467
3468 /* Find associated pointer. */
3469 if (bnd_no == -1)
3470 {
3471 /* If bounds are not associated with any bounds,
3472 then it is passed in a register or special slot. */
3473 gcc_assert (data->entry_parm);
3474 ptr = const0_rtx;
3475 }
3476 else if (MEM_P (entry))
3477 slot = adjust_address (entry, Pmode, offs);
3478 else if (REG_P (entry))
3479 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3480 else if (GET_CODE (entry) == PARALLEL)
3481 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3482 else
3483 gcc_unreachable ();
3484 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3485 data->entry_parm);
3486 }
3487
3488 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3489
3490 static void
3491 assign_bounds (vec<bounds_parm_data> &bndargs,
3492 struct assign_parm_data_all &all,
3493 bool assign_regs, bool assign_special,
3494 bool assign_bt)
3495 {
3496 unsigned i, pass;
3497 bounds_parm_data *pbdata;
3498
3499 if (!bndargs.exists ())
3500 return;
3501
3502 /* We make few passes to store input bounds. Firstly handle bounds
3503 passed in registers. After that we load bounds passed in special
3504 slots. Finally we load bounds from Bounds Table. */
3505 for (pass = 0; pass < 3; pass++)
3506 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3507 {
3508 /* Pass 0 => regs only. */
3509 if (pass == 0
3510 && (!assign_regs
3511 ||(!pbdata->parm_data.entry_parm
3512 || GET_CODE (pbdata->parm_data.entry_parm) != REG)))
3513 continue;
3514 /* Pass 1 => slots only. */
3515 else if (pass == 1
3516 && (!assign_special
3517 || (!pbdata->parm_data.entry_parm
3518 || GET_CODE (pbdata->parm_data.entry_parm) == REG)))
3519 continue;
3520 /* Pass 2 => BT only. */
3521 else if (pass == 2
3522 && (!assign_bt
3523 || pbdata->parm_data.entry_parm))
3524 continue;
3525
3526 if (!pbdata->parm_data.entry_parm
3527 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3528 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3529 pbdata->ptr_entry, pbdata->bound_no);
3530
3531 set_decl_incoming_rtl (pbdata->bounds_parm,
3532 pbdata->parm_data.entry_parm, false);
3533
3534 if (assign_parm_setup_block_p (&pbdata->parm_data))
3535 assign_parm_setup_block (&all, pbdata->bounds_parm,
3536 &pbdata->parm_data);
3537 else if (pbdata->parm_data.passed_pointer
3538 || use_register_for_decl (pbdata->bounds_parm))
3539 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3540 &pbdata->parm_data);
3541 else
3542 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3543 &pbdata->parm_data);
3544 }
3545 }
3546
3547 /* Assign RTL expressions to the function's parameters. This may involve
3548 copying them into registers and using those registers as the DECL_RTL. */
3549
3550 static void
3551 assign_parms (tree fndecl)
3552 {
3553 struct assign_parm_data_all all;
3554 tree parm;
3555 vec<tree> fnargs;
3556 unsigned i, bound_no = 0;
3557 tree last_arg = NULL;
3558 rtx last_arg_entry = NULL;
3559 vec<bounds_parm_data> bndargs = vNULL;
3560 bounds_parm_data bdata;
3561
3562 crtl->args.internal_arg_pointer
3563 = targetm.calls.internal_arg_pointer ();
3564
3565 assign_parms_initialize_all (&all);
3566 fnargs = assign_parms_augmented_arg_list (&all);
3567
3568 FOR_EACH_VEC_ELT (fnargs, i, parm)
3569 {
3570 struct assign_parm_data_one data;
3571
3572 /* Extract the type of PARM; adjust it according to ABI. */
3573 assign_parm_find_data_types (&all, parm, &data);
3574
3575 /* Early out for errors and void parameters. */
3576 if (data.passed_mode == VOIDmode)
3577 {
3578 SET_DECL_RTL (parm, const0_rtx);
3579 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3580 continue;
3581 }
3582
3583 /* Estimate stack alignment from parameter alignment. */
3584 if (SUPPORTS_STACK_ALIGNMENT)
3585 {
3586 unsigned int align
3587 = targetm.calls.function_arg_boundary (data.promoted_mode,
3588 data.passed_type);
3589 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3590 align);
3591 if (TYPE_ALIGN (data.nominal_type) > align)
3592 align = MINIMUM_ALIGNMENT (data.nominal_type,
3593 TYPE_MODE (data.nominal_type),
3594 TYPE_ALIGN (data.nominal_type));
3595 if (crtl->stack_alignment_estimated < align)
3596 {
3597 gcc_assert (!crtl->stack_realign_processed);
3598 crtl->stack_alignment_estimated = align;
3599 }
3600 }
3601
3602 /* Find out where the parameter arrives in this function. */
3603 assign_parm_find_entry_rtl (&all, &data);
3604
3605 /* Find out where stack space for this parameter might be. */
3606 if (assign_parm_is_stack_parm (&all, &data))
3607 {
3608 assign_parm_find_stack_rtl (parm, &data);
3609 assign_parm_adjust_entry_rtl (&data);
3610 }
3611 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3612 {
3613 /* Remember where last non bounds arg was passed in case
3614 we have to load associated bounds for it from Bounds
3615 Table. */
3616 last_arg = parm;
3617 last_arg_entry = data.entry_parm;
3618 bound_no = 0;
3619 }
3620 /* Record permanently how this parm was passed. */
3621 if (data.passed_pointer)
3622 {
3623 rtx incoming_rtl
3624 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3625 data.entry_parm);
3626 set_decl_incoming_rtl (parm, incoming_rtl, true);
3627 }
3628 else
3629 set_decl_incoming_rtl (parm, data.entry_parm, false);
3630
3631 /* Boudns should be loaded in the particular order to
3632 have registers allocated correctly. Collect info about
3633 input bounds and load them later. */
3634 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3635 {
3636 /* Expect bounds in instrumented functions only. */
3637 gcc_assert (chkp_function_instrumented_p (fndecl));
3638
3639 bdata.parm_data = data;
3640 bdata.bounds_parm = parm;
3641 bdata.ptr_parm = last_arg;
3642 bdata.ptr_entry = last_arg_entry;
3643 bdata.bound_no = bound_no;
3644 bndargs.safe_push (bdata);
3645 }
3646 else
3647 {
3648 assign_parm_adjust_stack_rtl (&data);
3649
3650 if (assign_parm_setup_block_p (&data))
3651 assign_parm_setup_block (&all, parm, &data);
3652 else if (data.passed_pointer || use_register_for_decl (parm))
3653 assign_parm_setup_reg (&all, parm, &data);
3654 else
3655 assign_parm_setup_stack (&all, parm, &data);
3656 }
3657
3658 if (cfun->stdarg && !DECL_CHAIN (parm))
3659 {
3660 int pretend_bytes = 0;
3661
3662 assign_parms_setup_varargs (&all, &data, false);
3663
3664 if (chkp_function_instrumented_p (fndecl))
3665 {
3666 /* We expect this is the last parm. Otherwise it is wrong
3667 to assign bounds right now. */
3668 gcc_assert (i == (fnargs.length () - 1));
3669 assign_bounds (bndargs, all, true, false, false);
3670 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3671 data.promoted_mode,
3672 data.passed_type,
3673 &pretend_bytes,
3674 false);
3675 assign_bounds (bndargs, all, false, true, true);
3676 bndargs.release ();
3677 }
3678 }
3679
3680 /* Update info on where next arg arrives in registers. */
3681 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3682 data.passed_type, data.named_arg);
3683
3684 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3685 bound_no++;
3686 }
3687
3688 assign_bounds (bndargs, all, true, true, true);
3689 bndargs.release ();
3690
3691 if (targetm.calls.split_complex_arg)
3692 assign_parms_unsplit_complex (&all, fnargs);
3693
3694 fnargs.release ();
3695
3696 /* Output all parameter conversion instructions (possibly including calls)
3697 now that all parameters have been copied out of hard registers. */
3698 emit_insn (all.first_conversion_insn);
3699
3700 /* Estimate reload stack alignment from scalar return mode. */
3701 if (SUPPORTS_STACK_ALIGNMENT)
3702 {
3703 if (DECL_RESULT (fndecl))
3704 {
3705 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3706 machine_mode mode = TYPE_MODE (type);
3707
3708 if (mode != BLKmode
3709 && mode != VOIDmode
3710 && !AGGREGATE_TYPE_P (type))
3711 {
3712 unsigned int align = GET_MODE_ALIGNMENT (mode);
3713 if (crtl->stack_alignment_estimated < align)
3714 {
3715 gcc_assert (!crtl->stack_realign_processed);
3716 crtl->stack_alignment_estimated = align;
3717 }
3718 }
3719 }
3720 }
3721
3722 /* If we are receiving a struct value address as the first argument, set up
3723 the RTL for the function result. As this might require code to convert
3724 the transmitted address to Pmode, we do this here to ensure that possible
3725 preliminary conversions of the address have been emitted already. */
3726 if (all.function_result_decl)
3727 {
3728 tree result = DECL_RESULT (current_function_decl);
3729 rtx addr = DECL_RTL (all.function_result_decl);
3730 rtx x;
3731
3732 if (DECL_BY_REFERENCE (result))
3733 {
3734 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3735 x = addr;
3736 }
3737 else
3738 {
3739 SET_DECL_VALUE_EXPR (result,
3740 build1 (INDIRECT_REF, TREE_TYPE (result),
3741 all.function_result_decl));
3742 addr = convert_memory_address (Pmode, addr);
3743 x = gen_rtx_MEM (DECL_MODE (result), addr);
3744 set_mem_attributes (x, result, 1);
3745 }
3746
3747 DECL_HAS_VALUE_EXPR_P (result) = 1;
3748
3749 SET_DECL_RTL (result, x);
3750 }
3751
3752 /* We have aligned all the args, so add space for the pretend args. */
3753 crtl->args.pretend_args_size = all.pretend_args_size;
3754 all.stack_args_size.constant += all.extra_pretend_bytes;
3755 crtl->args.size = all.stack_args_size.constant;
3756
3757 /* Adjust function incoming argument size for alignment and
3758 minimum length. */
3759
3760 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3761 crtl->args.size = CEIL_ROUND (crtl->args.size,
3762 PARM_BOUNDARY / BITS_PER_UNIT);
3763
3764 if (ARGS_GROW_DOWNWARD)
3765 {
3766 crtl->args.arg_offset_rtx
3767 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3768 : expand_expr (size_diffop (all.stack_args_size.var,
3769 size_int (-all.stack_args_size.constant)),
3770 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3771 }
3772 else
3773 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3774
3775 /* See how many bytes, if any, of its args a function should try to pop
3776 on return. */
3777
3778 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3779 TREE_TYPE (fndecl),
3780 crtl->args.size);
3781
3782 /* For stdarg.h function, save info about
3783 regs and stack space used by the named args. */
3784
3785 crtl->args.info = all.args_so_far_v;
3786
3787 /* Set the rtx used for the function return value. Put this in its
3788 own variable so any optimizers that need this information don't have
3789 to include tree.h. Do this here so it gets done when an inlined
3790 function gets output. */
3791
3792 crtl->return_rtx
3793 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3794 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3795
3796 /* If scalar return value was computed in a pseudo-reg, or was a named
3797 return value that got dumped to the stack, copy that to the hard
3798 return register. */
3799 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3800 {
3801 tree decl_result = DECL_RESULT (fndecl);
3802 rtx decl_rtl = DECL_RTL (decl_result);
3803
3804 if (REG_P (decl_rtl)
3805 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3806 : DECL_REGISTER (decl_result))
3807 {
3808 rtx real_decl_rtl;
3809
3810 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3811 fndecl, true);
3812 if (chkp_function_instrumented_p (fndecl))
3813 crtl->return_bnd
3814 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3815 fndecl, true);
3816 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3817 /* The delay slot scheduler assumes that crtl->return_rtx
3818 holds the hard register containing the return value, not a
3819 temporary pseudo. */
3820 crtl->return_rtx = real_decl_rtl;
3821 }
3822 }
3823 }
3824
3825 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3826 For all seen types, gimplify their sizes. */
3827
3828 static tree
3829 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3830 {
3831 tree t = *tp;
3832
3833 *walk_subtrees = 0;
3834 if (TYPE_P (t))
3835 {
3836 if (POINTER_TYPE_P (t))
3837 *walk_subtrees = 1;
3838 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3839 && !TYPE_SIZES_GIMPLIFIED (t))
3840 {
3841 gimplify_type_sizes (t, (gimple_seq *) data);
3842 *walk_subtrees = 1;
3843 }
3844 }
3845
3846 return NULL;
3847 }
3848
3849 /* Gimplify the parameter list for current_function_decl. This involves
3850 evaluating SAVE_EXPRs of variable sized parameters and generating code
3851 to implement callee-copies reference parameters. Returns a sequence of
3852 statements to add to the beginning of the function. */
3853
3854 gimple_seq
3855 gimplify_parameters (void)
3856 {
3857 struct assign_parm_data_all all;
3858 tree parm;
3859 gimple_seq stmts = NULL;
3860 vec<tree> fnargs;
3861 unsigned i;
3862
3863 assign_parms_initialize_all (&all);
3864 fnargs = assign_parms_augmented_arg_list (&all);
3865
3866 FOR_EACH_VEC_ELT (fnargs, i, parm)
3867 {
3868 struct assign_parm_data_one data;
3869
3870 /* Extract the type of PARM; adjust it according to ABI. */
3871 assign_parm_find_data_types (&all, parm, &data);
3872
3873 /* Early out for errors and void parameters. */
3874 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3875 continue;
3876
3877 /* Update info on where next arg arrives in registers. */
3878 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3879 data.passed_type, data.named_arg);
3880
3881 /* ??? Once upon a time variable_size stuffed parameter list
3882 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3883 turned out to be less than manageable in the gimple world.
3884 Now we have to hunt them down ourselves. */
3885 walk_tree_without_duplicates (&data.passed_type,
3886 gimplify_parm_type, &stmts);
3887
3888 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3889 {
3890 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3891 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3892 }
3893
3894 if (data.passed_pointer)
3895 {
3896 tree type = TREE_TYPE (data.passed_type);
3897 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3898 type, data.named_arg))
3899 {
3900 tree local, t;
3901
3902 /* For constant-sized objects, this is trivial; for
3903 variable-sized objects, we have to play games. */
3904 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3905 && !(flag_stack_check == GENERIC_STACK_CHECK
3906 && compare_tree_int (DECL_SIZE_UNIT (parm),
3907 STACK_CHECK_MAX_VAR_SIZE) > 0))
3908 {
3909 local = create_tmp_var (type, get_name (parm));
3910 DECL_IGNORED_P (local) = 0;
3911 /* If PARM was addressable, move that flag over
3912 to the local copy, as its address will be taken,
3913 not the PARMs. Keep the parms address taken
3914 as we'll query that flag during gimplification. */
3915 if (TREE_ADDRESSABLE (parm))
3916 TREE_ADDRESSABLE (local) = 1;
3917 else if (TREE_CODE (type) == COMPLEX_TYPE
3918 || TREE_CODE (type) == VECTOR_TYPE)
3919 DECL_GIMPLE_REG_P (local) = 1;
3920 }
3921 else
3922 {
3923 tree ptr_type, addr;
3924
3925 ptr_type = build_pointer_type (type);
3926 addr = create_tmp_reg (ptr_type, get_name (parm));
3927 DECL_IGNORED_P (addr) = 0;
3928 local = build_fold_indirect_ref (addr);
3929
3930 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3931 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3932 size_int (DECL_ALIGN (parm)));
3933
3934 /* The call has been built for a variable-sized object. */
3935 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3936 t = fold_convert (ptr_type, t);
3937 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3938 gimplify_and_add (t, &stmts);
3939 }
3940
3941 gimplify_assign (local, parm, &stmts);
3942
3943 SET_DECL_VALUE_EXPR (parm, local);
3944 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3945 }
3946 }
3947 }
3948
3949 fnargs.release ();
3950
3951 return stmts;
3952 }
3953 \f
3954 /* Compute the size and offset from the start of the stacked arguments for a
3955 parm passed in mode PASSED_MODE and with type TYPE.
3956
3957 INITIAL_OFFSET_PTR points to the current offset into the stacked
3958 arguments.
3959
3960 The starting offset and size for this parm are returned in
3961 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3962 nonzero, the offset is that of stack slot, which is returned in
3963 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3964 padding required from the initial offset ptr to the stack slot.
3965
3966 IN_REGS is nonzero if the argument will be passed in registers. It will
3967 never be set if REG_PARM_STACK_SPACE is not defined.
3968
3969 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3970 for arguments which are passed in registers.
3971
3972 FNDECL is the function in which the argument was defined.
3973
3974 There are two types of rounding that are done. The first, controlled by
3975 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3976 argument list to be aligned to the specific boundary (in bits). This
3977 rounding affects the initial and starting offsets, but not the argument
3978 size.
3979
3980 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3981 optionally rounds the size of the parm to PARM_BOUNDARY. The
3982 initial offset is not affected by this rounding, while the size always
3983 is and the starting offset may be. */
3984
3985 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3986 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3987 callers pass in the total size of args so far as
3988 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3989
3990 void
3991 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
3992 int reg_parm_stack_space, int partial,
3993 tree fndecl ATTRIBUTE_UNUSED,
3994 struct args_size *initial_offset_ptr,
3995 struct locate_and_pad_arg_data *locate)
3996 {
3997 tree sizetree;
3998 enum direction where_pad;
3999 unsigned int boundary, round_boundary;
4000 int part_size_in_regs;
4001
4002 /* If we have found a stack parm before we reach the end of the
4003 area reserved for registers, skip that area. */
4004 if (! in_regs)
4005 {
4006 if (reg_parm_stack_space > 0)
4007 {
4008 if (initial_offset_ptr->var)
4009 {
4010 initial_offset_ptr->var
4011 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4012 ssize_int (reg_parm_stack_space));
4013 initial_offset_ptr->constant = 0;
4014 }
4015 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4016 initial_offset_ptr->constant = reg_parm_stack_space;
4017 }
4018 }
4019
4020 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4021
4022 sizetree
4023 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4024 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4025 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4026 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4027 type);
4028 locate->where_pad = where_pad;
4029
4030 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4031 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4032 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4033
4034 locate->boundary = boundary;
4035
4036 if (SUPPORTS_STACK_ALIGNMENT)
4037 {
4038 /* stack_alignment_estimated can't change after stack has been
4039 realigned. */
4040 if (crtl->stack_alignment_estimated < boundary)
4041 {
4042 if (!crtl->stack_realign_processed)
4043 crtl->stack_alignment_estimated = boundary;
4044 else
4045 {
4046 /* If stack is realigned and stack alignment value
4047 hasn't been finalized, it is OK not to increase
4048 stack_alignment_estimated. The bigger alignment
4049 requirement is recorded in stack_alignment_needed
4050 below. */
4051 gcc_assert (!crtl->stack_realign_finalized
4052 && crtl->stack_realign_needed);
4053 }
4054 }
4055 }
4056
4057 /* Remember if the outgoing parameter requires extra alignment on the
4058 calling function side. */
4059 if (crtl->stack_alignment_needed < boundary)
4060 crtl->stack_alignment_needed = boundary;
4061 if (crtl->preferred_stack_boundary < boundary)
4062 crtl->preferred_stack_boundary = boundary;
4063
4064 if (ARGS_GROW_DOWNWARD)
4065 {
4066 locate->slot_offset.constant = -initial_offset_ptr->constant;
4067 if (initial_offset_ptr->var)
4068 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4069 initial_offset_ptr->var);
4070
4071 {
4072 tree s2 = sizetree;
4073 if (where_pad != none
4074 && (!tree_fits_uhwi_p (sizetree)
4075 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4076 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4077 SUB_PARM_SIZE (locate->slot_offset, s2);
4078 }
4079
4080 locate->slot_offset.constant += part_size_in_regs;
4081
4082 if (!in_regs || reg_parm_stack_space > 0)
4083 pad_to_arg_alignment (&locate->slot_offset, boundary,
4084 &locate->alignment_pad);
4085
4086 locate->size.constant = (-initial_offset_ptr->constant
4087 - locate->slot_offset.constant);
4088 if (initial_offset_ptr->var)
4089 locate->size.var = size_binop (MINUS_EXPR,
4090 size_binop (MINUS_EXPR,
4091 ssize_int (0),
4092 initial_offset_ptr->var),
4093 locate->slot_offset.var);
4094
4095 /* Pad_below needs the pre-rounded size to know how much to pad
4096 below. */
4097 locate->offset = locate->slot_offset;
4098 if (where_pad == downward)
4099 pad_below (&locate->offset, passed_mode, sizetree);
4100
4101 }
4102 else
4103 {
4104 if (!in_regs || reg_parm_stack_space > 0)
4105 pad_to_arg_alignment (initial_offset_ptr, boundary,
4106 &locate->alignment_pad);
4107 locate->slot_offset = *initial_offset_ptr;
4108
4109 #ifdef PUSH_ROUNDING
4110 if (passed_mode != BLKmode)
4111 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4112 #endif
4113
4114 /* Pad_below needs the pre-rounded size to know how much to pad below
4115 so this must be done before rounding up. */
4116 locate->offset = locate->slot_offset;
4117 if (where_pad == downward)
4118 pad_below (&locate->offset, passed_mode, sizetree);
4119
4120 if (where_pad != none
4121 && (!tree_fits_uhwi_p (sizetree)
4122 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4123 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4124
4125 ADD_PARM_SIZE (locate->size, sizetree);
4126
4127 locate->size.constant -= part_size_in_regs;
4128 }
4129
4130 #ifdef FUNCTION_ARG_OFFSET
4131 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
4132 #endif
4133 }
4134
4135 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4136 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4137
4138 static void
4139 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4140 struct args_size *alignment_pad)
4141 {
4142 tree save_var = NULL_TREE;
4143 HOST_WIDE_INT save_constant = 0;
4144 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4145 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
4146
4147 #ifdef SPARC_STACK_BOUNDARY_HACK
4148 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4149 the real alignment of %sp. However, when it does this, the
4150 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4151 if (SPARC_STACK_BOUNDARY_HACK)
4152 sp_offset = 0;
4153 #endif
4154
4155 if (boundary > PARM_BOUNDARY)
4156 {
4157 save_var = offset_ptr->var;
4158 save_constant = offset_ptr->constant;
4159 }
4160
4161 alignment_pad->var = NULL_TREE;
4162 alignment_pad->constant = 0;
4163
4164 if (boundary > BITS_PER_UNIT)
4165 {
4166 if (offset_ptr->var)
4167 {
4168 tree sp_offset_tree = ssize_int (sp_offset);
4169 tree offset = size_binop (PLUS_EXPR,
4170 ARGS_SIZE_TREE (*offset_ptr),
4171 sp_offset_tree);
4172 tree rounded;
4173 if (ARGS_GROW_DOWNWARD)
4174 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4175 else
4176 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4177
4178 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4179 /* ARGS_SIZE_TREE includes constant term. */
4180 offset_ptr->constant = 0;
4181 if (boundary > PARM_BOUNDARY)
4182 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4183 save_var);
4184 }
4185 else
4186 {
4187 offset_ptr->constant = -sp_offset +
4188 (ARGS_GROW_DOWNWARD
4189 ? FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes)
4190 : CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes));
4191
4192 if (boundary > PARM_BOUNDARY)
4193 alignment_pad->constant = offset_ptr->constant - save_constant;
4194 }
4195 }
4196 }
4197
4198 static void
4199 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4200 {
4201 if (passed_mode != BLKmode)
4202 {
4203 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4204 offset_ptr->constant
4205 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4206 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4207 - GET_MODE_SIZE (passed_mode));
4208 }
4209 else
4210 {
4211 if (TREE_CODE (sizetree) != INTEGER_CST
4212 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4213 {
4214 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4215 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4216 /* Add it in. */
4217 ADD_PARM_SIZE (*offset_ptr, s2);
4218 SUB_PARM_SIZE (*offset_ptr, sizetree);
4219 }
4220 }
4221 }
4222 \f
4223
4224 /* True if register REGNO was alive at a place where `setjmp' was
4225 called and was set more than once or is an argument. Such regs may
4226 be clobbered by `longjmp'. */
4227
4228 static bool
4229 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4230 {
4231 /* There appear to be cases where some local vars never reach the
4232 backend but have bogus regnos. */
4233 if (regno >= max_reg_num ())
4234 return false;
4235
4236 return ((REG_N_SETS (regno) > 1
4237 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4238 regno))
4239 && REGNO_REG_SET_P (setjmp_crosses, regno));
4240 }
4241
4242 /* Walk the tree of blocks describing the binding levels within a
4243 function and warn about variables the might be killed by setjmp or
4244 vfork. This is done after calling flow_analysis before register
4245 allocation since that will clobber the pseudo-regs to hard
4246 regs. */
4247
4248 static void
4249 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4250 {
4251 tree decl, sub;
4252
4253 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4254 {
4255 if (TREE_CODE (decl) == VAR_DECL
4256 && DECL_RTL_SET_P (decl)
4257 && REG_P (DECL_RTL (decl))
4258 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4259 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4260 " %<longjmp%> or %<vfork%>", decl);
4261 }
4262
4263 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4264 setjmp_vars_warning (setjmp_crosses, sub);
4265 }
4266
4267 /* Do the appropriate part of setjmp_vars_warning
4268 but for arguments instead of local variables. */
4269
4270 static void
4271 setjmp_args_warning (bitmap setjmp_crosses)
4272 {
4273 tree decl;
4274 for (decl = DECL_ARGUMENTS (current_function_decl);
4275 decl; decl = DECL_CHAIN (decl))
4276 if (DECL_RTL (decl) != 0
4277 && REG_P (DECL_RTL (decl))
4278 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4279 warning (OPT_Wclobbered,
4280 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4281 decl);
4282 }
4283
4284 /* Generate warning messages for variables live across setjmp. */
4285
4286 void
4287 generate_setjmp_warnings (void)
4288 {
4289 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4290
4291 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4292 || bitmap_empty_p (setjmp_crosses))
4293 return;
4294
4295 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4296 setjmp_args_warning (setjmp_crosses);
4297 }
4298
4299 \f
4300 /* Reverse the order of elements in the fragment chain T of blocks,
4301 and return the new head of the chain (old last element).
4302 In addition to that clear BLOCK_SAME_RANGE flags when needed
4303 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4304 its super fragment origin. */
4305
4306 static tree
4307 block_fragments_nreverse (tree t)
4308 {
4309 tree prev = 0, block, next, prev_super = 0;
4310 tree super = BLOCK_SUPERCONTEXT (t);
4311 if (BLOCK_FRAGMENT_ORIGIN (super))
4312 super = BLOCK_FRAGMENT_ORIGIN (super);
4313 for (block = t; block; block = next)
4314 {
4315 next = BLOCK_FRAGMENT_CHAIN (block);
4316 BLOCK_FRAGMENT_CHAIN (block) = prev;
4317 if ((prev && !BLOCK_SAME_RANGE (prev))
4318 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4319 != prev_super))
4320 BLOCK_SAME_RANGE (block) = 0;
4321 prev_super = BLOCK_SUPERCONTEXT (block);
4322 BLOCK_SUPERCONTEXT (block) = super;
4323 prev = block;
4324 }
4325 t = BLOCK_FRAGMENT_ORIGIN (t);
4326 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4327 != prev_super)
4328 BLOCK_SAME_RANGE (t) = 0;
4329 BLOCK_SUPERCONTEXT (t) = super;
4330 return prev;
4331 }
4332
4333 /* Reverse the order of elements in the chain T of blocks,
4334 and return the new head of the chain (old last element).
4335 Also do the same on subblocks and reverse the order of elements
4336 in BLOCK_FRAGMENT_CHAIN as well. */
4337
4338 static tree
4339 blocks_nreverse_all (tree t)
4340 {
4341 tree prev = 0, block, next;
4342 for (block = t; block; block = next)
4343 {
4344 next = BLOCK_CHAIN (block);
4345 BLOCK_CHAIN (block) = prev;
4346 if (BLOCK_FRAGMENT_CHAIN (block)
4347 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4348 {
4349 BLOCK_FRAGMENT_CHAIN (block)
4350 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4351 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4352 BLOCK_SAME_RANGE (block) = 0;
4353 }
4354 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4355 prev = block;
4356 }
4357 return prev;
4358 }
4359
4360
4361 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4362 and create duplicate blocks. */
4363 /* ??? Need an option to either create block fragments or to create
4364 abstract origin duplicates of a source block. It really depends
4365 on what optimization has been performed. */
4366
4367 void
4368 reorder_blocks (void)
4369 {
4370 tree block = DECL_INITIAL (current_function_decl);
4371
4372 if (block == NULL_TREE)
4373 return;
4374
4375 auto_vec<tree, 10> block_stack;
4376
4377 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4378 clear_block_marks (block);
4379
4380 /* Prune the old trees away, so that they don't get in the way. */
4381 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4382 BLOCK_CHAIN (block) = NULL_TREE;
4383
4384 /* Recreate the block tree from the note nesting. */
4385 reorder_blocks_1 (get_insns (), block, &block_stack);
4386 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4387 }
4388
4389 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4390
4391 void
4392 clear_block_marks (tree block)
4393 {
4394 while (block)
4395 {
4396 TREE_ASM_WRITTEN (block) = 0;
4397 clear_block_marks (BLOCK_SUBBLOCKS (block));
4398 block = BLOCK_CHAIN (block);
4399 }
4400 }
4401
4402 static void
4403 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4404 vec<tree> *p_block_stack)
4405 {
4406 rtx_insn *insn;
4407 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4408
4409 for (insn = insns; insn; insn = NEXT_INSN (insn))
4410 {
4411 if (NOTE_P (insn))
4412 {
4413 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4414 {
4415 tree block = NOTE_BLOCK (insn);
4416 tree origin;
4417
4418 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4419 origin = block;
4420
4421 if (prev_end)
4422 BLOCK_SAME_RANGE (prev_end) = 0;
4423 prev_end = NULL_TREE;
4424
4425 /* If we have seen this block before, that means it now
4426 spans multiple address regions. Create a new fragment. */
4427 if (TREE_ASM_WRITTEN (block))
4428 {
4429 tree new_block = copy_node (block);
4430
4431 BLOCK_SAME_RANGE (new_block) = 0;
4432 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4433 BLOCK_FRAGMENT_CHAIN (new_block)
4434 = BLOCK_FRAGMENT_CHAIN (origin);
4435 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4436
4437 NOTE_BLOCK (insn) = new_block;
4438 block = new_block;
4439 }
4440
4441 if (prev_beg == current_block && prev_beg)
4442 BLOCK_SAME_RANGE (block) = 1;
4443
4444 prev_beg = origin;
4445
4446 BLOCK_SUBBLOCKS (block) = 0;
4447 TREE_ASM_WRITTEN (block) = 1;
4448 /* When there's only one block for the entire function,
4449 current_block == block and we mustn't do this, it
4450 will cause infinite recursion. */
4451 if (block != current_block)
4452 {
4453 tree super;
4454 if (block != origin)
4455 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4456 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4457 (origin))
4458 == current_block);
4459 if (p_block_stack->is_empty ())
4460 super = current_block;
4461 else
4462 {
4463 super = p_block_stack->last ();
4464 gcc_assert (super == current_block
4465 || BLOCK_FRAGMENT_ORIGIN (super)
4466 == current_block);
4467 }
4468 BLOCK_SUPERCONTEXT (block) = super;
4469 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4470 BLOCK_SUBBLOCKS (current_block) = block;
4471 current_block = origin;
4472 }
4473 p_block_stack->safe_push (block);
4474 }
4475 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4476 {
4477 NOTE_BLOCK (insn) = p_block_stack->pop ();
4478 current_block = BLOCK_SUPERCONTEXT (current_block);
4479 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4480 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4481 prev_beg = NULL_TREE;
4482 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4483 ? NOTE_BLOCK (insn) : NULL_TREE;
4484 }
4485 }
4486 else
4487 {
4488 prev_beg = NULL_TREE;
4489 if (prev_end)
4490 BLOCK_SAME_RANGE (prev_end) = 0;
4491 prev_end = NULL_TREE;
4492 }
4493 }
4494 }
4495
4496 /* Reverse the order of elements in the chain T of blocks,
4497 and return the new head of the chain (old last element). */
4498
4499 tree
4500 blocks_nreverse (tree t)
4501 {
4502 tree prev = 0, block, next;
4503 for (block = t; block; block = next)
4504 {
4505 next = BLOCK_CHAIN (block);
4506 BLOCK_CHAIN (block) = prev;
4507 prev = block;
4508 }
4509 return prev;
4510 }
4511
4512 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4513 by modifying the last node in chain 1 to point to chain 2. */
4514
4515 tree
4516 block_chainon (tree op1, tree op2)
4517 {
4518 tree t1;
4519
4520 if (!op1)
4521 return op2;
4522 if (!op2)
4523 return op1;
4524
4525 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4526 continue;
4527 BLOCK_CHAIN (t1) = op2;
4528
4529 #ifdef ENABLE_TREE_CHECKING
4530 {
4531 tree t2;
4532 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4533 gcc_assert (t2 != t1);
4534 }
4535 #endif
4536
4537 return op1;
4538 }
4539
4540 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4541 non-NULL, list them all into VECTOR, in a depth-first preorder
4542 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4543 blocks. */
4544
4545 static int
4546 all_blocks (tree block, tree *vector)
4547 {
4548 int n_blocks = 0;
4549
4550 while (block)
4551 {
4552 TREE_ASM_WRITTEN (block) = 0;
4553
4554 /* Record this block. */
4555 if (vector)
4556 vector[n_blocks] = block;
4557
4558 ++n_blocks;
4559
4560 /* Record the subblocks, and their subblocks... */
4561 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4562 vector ? vector + n_blocks : 0);
4563 block = BLOCK_CHAIN (block);
4564 }
4565
4566 return n_blocks;
4567 }
4568
4569 /* Return a vector containing all the blocks rooted at BLOCK. The
4570 number of elements in the vector is stored in N_BLOCKS_P. The
4571 vector is dynamically allocated; it is the caller's responsibility
4572 to call `free' on the pointer returned. */
4573
4574 static tree *
4575 get_block_vector (tree block, int *n_blocks_p)
4576 {
4577 tree *block_vector;
4578
4579 *n_blocks_p = all_blocks (block, NULL);
4580 block_vector = XNEWVEC (tree, *n_blocks_p);
4581 all_blocks (block, block_vector);
4582
4583 return block_vector;
4584 }
4585
4586 static GTY(()) int next_block_index = 2;
4587
4588 /* Set BLOCK_NUMBER for all the blocks in FN. */
4589
4590 void
4591 number_blocks (tree fn)
4592 {
4593 int i;
4594 int n_blocks;
4595 tree *block_vector;
4596
4597 /* For SDB and XCOFF debugging output, we start numbering the blocks
4598 from 1 within each function, rather than keeping a running
4599 count. */
4600 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4601 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4602 next_block_index = 1;
4603 #endif
4604
4605 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4606
4607 /* The top-level BLOCK isn't numbered at all. */
4608 for (i = 1; i < n_blocks; ++i)
4609 /* We number the blocks from two. */
4610 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4611
4612 free (block_vector);
4613
4614 return;
4615 }
4616
4617 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4618
4619 DEBUG_FUNCTION tree
4620 debug_find_var_in_block_tree (tree var, tree block)
4621 {
4622 tree t;
4623
4624 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4625 if (t == var)
4626 return block;
4627
4628 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4629 {
4630 tree ret = debug_find_var_in_block_tree (var, t);
4631 if (ret)
4632 return ret;
4633 }
4634
4635 return NULL_TREE;
4636 }
4637 \f
4638 /* Keep track of whether we're in a dummy function context. If we are,
4639 we don't want to invoke the set_current_function hook, because we'll
4640 get into trouble if the hook calls target_reinit () recursively or
4641 when the initial initialization is not yet complete. */
4642
4643 static bool in_dummy_function;
4644
4645 /* Invoke the target hook when setting cfun. Update the optimization options
4646 if the function uses different options than the default. */
4647
4648 static void
4649 invoke_set_current_function_hook (tree fndecl)
4650 {
4651 if (!in_dummy_function)
4652 {
4653 tree opts = ((fndecl)
4654 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4655 : optimization_default_node);
4656
4657 if (!opts)
4658 opts = optimization_default_node;
4659
4660 /* Change optimization options if needed. */
4661 if (optimization_current_node != opts)
4662 {
4663 optimization_current_node = opts;
4664 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4665 }
4666
4667 targetm.set_current_function (fndecl);
4668 this_fn_optabs = this_target_optabs;
4669
4670 if (opts != optimization_default_node)
4671 {
4672 init_tree_optimization_optabs (opts);
4673 if (TREE_OPTIMIZATION_OPTABS (opts))
4674 this_fn_optabs = (struct target_optabs *)
4675 TREE_OPTIMIZATION_OPTABS (opts);
4676 }
4677 }
4678 }
4679
4680 /* cfun should never be set directly; use this function. */
4681
4682 void
4683 set_cfun (struct function *new_cfun)
4684 {
4685 if (cfun != new_cfun)
4686 {
4687 cfun = new_cfun;
4688 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4689 }
4690 }
4691
4692 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4693
4694 static vec<function_p> cfun_stack;
4695
4696 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4697 current_function_decl accordingly. */
4698
4699 void
4700 push_cfun (struct function *new_cfun)
4701 {
4702 gcc_assert ((!cfun && !current_function_decl)
4703 || (cfun && current_function_decl == cfun->decl));
4704 cfun_stack.safe_push (cfun);
4705 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4706 set_cfun (new_cfun);
4707 }
4708
4709 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4710
4711 void
4712 pop_cfun (void)
4713 {
4714 struct function *new_cfun = cfun_stack.pop ();
4715 /* When in_dummy_function, we do have a cfun but current_function_decl is
4716 NULL. We also allow pushing NULL cfun and subsequently changing
4717 current_function_decl to something else and have both restored by
4718 pop_cfun. */
4719 gcc_checking_assert (in_dummy_function
4720 || !cfun
4721 || current_function_decl == cfun->decl);
4722 set_cfun (new_cfun);
4723 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4724 }
4725
4726 /* Return value of funcdef and increase it. */
4727 int
4728 get_next_funcdef_no (void)
4729 {
4730 return funcdef_no++;
4731 }
4732
4733 /* Return value of funcdef. */
4734 int
4735 get_last_funcdef_no (void)
4736 {
4737 return funcdef_no;
4738 }
4739
4740 /* Allocate a function structure for FNDECL and set its contents
4741 to the defaults. Set cfun to the newly-allocated object.
4742 Some of the helper functions invoked during initialization assume
4743 that cfun has already been set. Therefore, assign the new object
4744 directly into cfun and invoke the back end hook explicitly at the
4745 very end, rather than initializing a temporary and calling set_cfun
4746 on it.
4747
4748 ABSTRACT_P is true if this is a function that will never be seen by
4749 the middle-end. Such functions are front-end concepts (like C++
4750 function templates) that do not correspond directly to functions
4751 placed in object files. */
4752
4753 void
4754 allocate_struct_function (tree fndecl, bool abstract_p)
4755 {
4756 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4757
4758 cfun = ggc_cleared_alloc<function> ();
4759
4760 init_eh_for_function ();
4761
4762 if (init_machine_status)
4763 cfun->machine = (*init_machine_status) ();
4764
4765 #ifdef OVERRIDE_ABI_FORMAT
4766 OVERRIDE_ABI_FORMAT (fndecl);
4767 #endif
4768
4769 if (fndecl != NULL_TREE)
4770 {
4771 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4772 cfun->decl = fndecl;
4773 current_function_funcdef_no = get_next_funcdef_no ();
4774 }
4775
4776 invoke_set_current_function_hook (fndecl);
4777
4778 if (fndecl != NULL_TREE)
4779 {
4780 tree result = DECL_RESULT (fndecl);
4781 if (!abstract_p && aggregate_value_p (result, fndecl))
4782 {
4783 #ifdef PCC_STATIC_STRUCT_RETURN
4784 cfun->returns_pcc_struct = 1;
4785 #endif
4786 cfun->returns_struct = 1;
4787 }
4788
4789 cfun->stdarg = stdarg_p (fntype);
4790
4791 /* Assume all registers in stdarg functions need to be saved. */
4792 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4793 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4794
4795 /* ??? This could be set on a per-function basis by the front-end
4796 but is this worth the hassle? */
4797 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4798 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4799
4800 if (!profile_flag && !flag_instrument_function_entry_exit)
4801 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4802 }
4803 }
4804
4805 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4806 instead of just setting it. */
4807
4808 void
4809 push_struct_function (tree fndecl)
4810 {
4811 /* When in_dummy_function we might be in the middle of a pop_cfun and
4812 current_function_decl and cfun may not match. */
4813 gcc_assert (in_dummy_function
4814 || (!cfun && !current_function_decl)
4815 || (cfun && current_function_decl == cfun->decl));
4816 cfun_stack.safe_push (cfun);
4817 current_function_decl = fndecl;
4818 allocate_struct_function (fndecl, false);
4819 }
4820
4821 /* Reset crtl and other non-struct-function variables to defaults as
4822 appropriate for emitting rtl at the start of a function. */
4823
4824 static void
4825 prepare_function_start (void)
4826 {
4827 gcc_assert (!get_last_insn ());
4828 init_temp_slots ();
4829 init_emit ();
4830 init_varasm_status ();
4831 init_expr ();
4832 default_rtl_profile ();
4833
4834 if (flag_stack_usage_info)
4835 {
4836 cfun->su = ggc_cleared_alloc<stack_usage> ();
4837 cfun->su->static_stack_size = -1;
4838 }
4839
4840 cse_not_expected = ! optimize;
4841
4842 /* Caller save not needed yet. */
4843 caller_save_needed = 0;
4844
4845 /* We haven't done register allocation yet. */
4846 reg_renumber = 0;
4847
4848 /* Indicate that we have not instantiated virtual registers yet. */
4849 virtuals_instantiated = 0;
4850
4851 /* Indicate that we want CONCATs now. */
4852 generating_concat_p = 1;
4853
4854 /* Indicate we have no need of a frame pointer yet. */
4855 frame_pointer_needed = 0;
4856 }
4857
4858 void
4859 push_dummy_function (bool with_decl)
4860 {
4861 tree fn_decl, fn_type, fn_result_decl;
4862
4863 gcc_assert (!in_dummy_function);
4864 in_dummy_function = true;
4865
4866 if (with_decl)
4867 {
4868 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4869 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4870 fn_type);
4871 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4872 NULL_TREE, void_type_node);
4873 DECL_RESULT (fn_decl) = fn_result_decl;
4874 }
4875 else
4876 fn_decl = NULL_TREE;
4877
4878 push_struct_function (fn_decl);
4879 }
4880
4881 /* Initialize the rtl expansion mechanism so that we can do simple things
4882 like generate sequences. This is used to provide a context during global
4883 initialization of some passes. You must call expand_dummy_function_end
4884 to exit this context. */
4885
4886 void
4887 init_dummy_function_start (void)
4888 {
4889 push_dummy_function (false);
4890 prepare_function_start ();
4891 }
4892
4893 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4894 and initialize static variables for generating RTL for the statements
4895 of the function. */
4896
4897 void
4898 init_function_start (tree subr)
4899 {
4900 if (subr && DECL_STRUCT_FUNCTION (subr))
4901 set_cfun (DECL_STRUCT_FUNCTION (subr));
4902 else
4903 allocate_struct_function (subr, false);
4904
4905 /* Initialize backend, if needed. */
4906 initialize_rtl ();
4907
4908 prepare_function_start ();
4909 decide_function_section (subr);
4910
4911 /* Warn if this value is an aggregate type,
4912 regardless of which calling convention we are using for it. */
4913 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4914 warning (OPT_Waggregate_return, "function returns an aggregate");
4915 }
4916
4917 /* Expand code to verify the stack_protect_guard. This is invoked at
4918 the end of a function to be protected. */
4919
4920 #ifndef HAVE_stack_protect_test
4921 # define HAVE_stack_protect_test 0
4922 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4923 #endif
4924
4925 void
4926 stack_protect_epilogue (void)
4927 {
4928 tree guard_decl = targetm.stack_protect_guard ();
4929 rtx_code_label *label = gen_label_rtx ();
4930 rtx x, y, tmp;
4931
4932 x = expand_normal (crtl->stack_protect_guard);
4933 y = expand_normal (guard_decl);
4934
4935 /* Allow the target to compare Y with X without leaking either into
4936 a register. */
4937 switch ((int) (HAVE_stack_protect_test != 0))
4938 {
4939 case 1:
4940 tmp = gen_stack_protect_test (x, y, label);
4941 if (tmp)
4942 {
4943 emit_insn (tmp);
4944 break;
4945 }
4946 /* FALLTHRU */
4947
4948 default:
4949 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4950 break;
4951 }
4952
4953 /* The noreturn predictor has been moved to the tree level. The rtl-level
4954 predictors estimate this branch about 20%, which isn't enough to get
4955 things moved out of line. Since this is the only extant case of adding
4956 a noreturn function at the rtl level, it doesn't seem worth doing ought
4957 except adding the prediction by hand. */
4958 tmp = get_last_insn ();
4959 if (JUMP_P (tmp))
4960 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4961
4962 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4963 free_temp_slots ();
4964 emit_label (label);
4965 }
4966 \f
4967 /* Start the RTL for a new function, and set variables used for
4968 emitting RTL.
4969 SUBR is the FUNCTION_DECL node.
4970 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4971 the function's parameters, which must be run at any return statement. */
4972
4973 void
4974 expand_function_start (tree subr)
4975 {
4976 /* Make sure volatile mem refs aren't considered
4977 valid operands of arithmetic insns. */
4978 init_recog_no_volatile ();
4979
4980 crtl->profile
4981 = (profile_flag
4982 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4983
4984 crtl->limit_stack
4985 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4986
4987 /* Make the label for return statements to jump to. Do not special
4988 case machines with special return instructions -- they will be
4989 handled later during jump, ifcvt, or epilogue creation. */
4990 return_label = gen_label_rtx ();
4991
4992 /* Initialize rtx used to return the value. */
4993 /* Do this before assign_parms so that we copy the struct value address
4994 before any library calls that assign parms might generate. */
4995
4996 /* Decide whether to return the value in memory or in a register. */
4997 if (aggregate_value_p (DECL_RESULT (subr), subr))
4998 {
4999 /* Returning something that won't go in a register. */
5000 rtx value_address = 0;
5001
5002 #ifdef PCC_STATIC_STRUCT_RETURN
5003 if (cfun->returns_pcc_struct)
5004 {
5005 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
5006 value_address = assemble_static_space (size);
5007 }
5008 else
5009 #endif
5010 {
5011 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5012 /* Expect to be passed the address of a place to store the value.
5013 If it is passed as an argument, assign_parms will take care of
5014 it. */
5015 if (sv)
5016 {
5017 value_address = gen_reg_rtx (Pmode);
5018 emit_move_insn (value_address, sv);
5019 }
5020 }
5021 if (value_address)
5022 {
5023 rtx x = value_address;
5024 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
5025 {
5026 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
5027 set_mem_attributes (x, DECL_RESULT (subr), 1);
5028 }
5029 SET_DECL_RTL (DECL_RESULT (subr), x);
5030 }
5031 }
5032 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
5033 /* If return mode is void, this decl rtl should not be used. */
5034 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
5035 else
5036 {
5037 /* Compute the return values into a pseudo reg, which we will copy
5038 into the true return register after the cleanups are done. */
5039 tree return_type = TREE_TYPE (DECL_RESULT (subr));
5040 if (TYPE_MODE (return_type) != BLKmode
5041 && targetm.calls.return_in_msb (return_type))
5042 /* expand_function_end will insert the appropriate padding in
5043 this case. Use the return value's natural (unpadded) mode
5044 within the function proper. */
5045 SET_DECL_RTL (DECL_RESULT (subr),
5046 gen_reg_rtx (TYPE_MODE (return_type)));
5047 else
5048 {
5049 /* In order to figure out what mode to use for the pseudo, we
5050 figure out what the mode of the eventual return register will
5051 actually be, and use that. */
5052 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5053
5054 /* Structures that are returned in registers are not
5055 aggregate_value_p, so we may see a PARALLEL or a REG. */
5056 if (REG_P (hard_reg))
5057 SET_DECL_RTL (DECL_RESULT (subr),
5058 gen_reg_rtx (GET_MODE (hard_reg)));
5059 else
5060 {
5061 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5062 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
5063 }
5064 }
5065
5066 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5067 result to the real return register(s). */
5068 DECL_REGISTER (DECL_RESULT (subr)) = 1;
5069
5070 if (chkp_function_instrumented_p (current_function_decl))
5071 {
5072 tree return_type = TREE_TYPE (DECL_RESULT (subr));
5073 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5074 subr, 1);
5075 SET_DECL_BOUNDS_RTL (DECL_RESULT (subr), bounds);
5076 }
5077 }
5078
5079 /* Initialize rtx for parameters and local variables.
5080 In some cases this requires emitting insns. */
5081 assign_parms (subr);
5082
5083 /* If function gets a static chain arg, store it. */
5084 if (cfun->static_chain_decl)
5085 {
5086 tree parm = cfun->static_chain_decl;
5087 rtx local, chain;
5088 rtx_insn *insn;
5089
5090 local = gen_reg_rtx (Pmode);
5091 chain = targetm.calls.static_chain (current_function_decl, true);
5092
5093 set_decl_incoming_rtl (parm, chain, false);
5094 SET_DECL_RTL (parm, local);
5095 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5096
5097 insn = emit_move_insn (local, chain);
5098
5099 /* Mark the register as eliminable, similar to parameters. */
5100 if (MEM_P (chain)
5101 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5102 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5103
5104 /* If we aren't optimizing, save the static chain onto the stack. */
5105 if (!optimize)
5106 {
5107 tree saved_static_chain_decl
5108 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5109 DECL_NAME (parm), TREE_TYPE (parm));
5110 rtx saved_static_chain_rtx
5111 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5112 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5113 emit_move_insn (saved_static_chain_rtx, chain);
5114 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5115 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5116 }
5117 }
5118
5119 /* If the function receives a non-local goto, then store the
5120 bits we need to restore the frame pointer. */
5121 if (cfun->nonlocal_goto_save_area)
5122 {
5123 tree t_save;
5124 rtx r_save;
5125
5126 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5127 gcc_assert (DECL_RTL_SET_P (var));
5128
5129 t_save = build4 (ARRAY_REF,
5130 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5131 cfun->nonlocal_goto_save_area,
5132 integer_zero_node, NULL_TREE, NULL_TREE);
5133 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5134 gcc_assert (GET_MODE (r_save) == Pmode);
5135
5136 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5137 update_nonlocal_goto_save_area ();
5138 }
5139
5140 /* The following was moved from init_function_start.
5141 The move is supposed to make sdb output more accurate. */
5142 /* Indicate the beginning of the function body,
5143 as opposed to parm setup. */
5144 emit_note (NOTE_INSN_FUNCTION_BEG);
5145
5146 gcc_assert (NOTE_P (get_last_insn ()));
5147
5148 parm_birth_insn = get_last_insn ();
5149
5150 if (crtl->profile)
5151 {
5152 #ifdef PROFILE_HOOK
5153 PROFILE_HOOK (current_function_funcdef_no);
5154 #endif
5155 }
5156
5157 /* If we are doing generic stack checking, the probe should go here. */
5158 if (flag_stack_check == GENERIC_STACK_CHECK)
5159 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5160 }
5161 \f
5162 void
5163 pop_dummy_function (void)
5164 {
5165 pop_cfun ();
5166 in_dummy_function = false;
5167 }
5168
5169 /* Undo the effects of init_dummy_function_start. */
5170 void
5171 expand_dummy_function_end (void)
5172 {
5173 gcc_assert (in_dummy_function);
5174
5175 /* End any sequences that failed to be closed due to syntax errors. */
5176 while (in_sequence_p ())
5177 end_sequence ();
5178
5179 /* Outside function body, can't compute type's actual size
5180 until next function's body starts. */
5181
5182 free_after_parsing (cfun);
5183 free_after_compilation (cfun);
5184 pop_dummy_function ();
5185 }
5186
5187 /* Helper for diddle_return_value. */
5188
5189 void
5190 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5191 {
5192 if (! outgoing)
5193 return;
5194
5195 if (REG_P (outgoing))
5196 (*doit) (outgoing, arg);
5197 else if (GET_CODE (outgoing) == PARALLEL)
5198 {
5199 int i;
5200
5201 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5202 {
5203 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5204
5205 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5206 (*doit) (x, arg);
5207 }
5208 }
5209 }
5210
5211 /* Call DOIT for each hard register used as a return value from
5212 the current function. */
5213
5214 void
5215 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5216 {
5217 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5218 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5219 }
5220
5221 static void
5222 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5223 {
5224 emit_clobber (reg);
5225 }
5226
5227 void
5228 clobber_return_register (void)
5229 {
5230 diddle_return_value (do_clobber_return_reg, NULL);
5231
5232 /* In case we do use pseudo to return value, clobber it too. */
5233 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5234 {
5235 tree decl_result = DECL_RESULT (current_function_decl);
5236 rtx decl_rtl = DECL_RTL (decl_result);
5237 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5238 {
5239 do_clobber_return_reg (decl_rtl, NULL);
5240 }
5241 }
5242 }
5243
5244 static void
5245 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5246 {
5247 emit_use (reg);
5248 }
5249
5250 static void
5251 use_return_register (void)
5252 {
5253 diddle_return_value (do_use_return_reg, NULL);
5254 }
5255
5256 /* Possibly warn about unused parameters. */
5257 void
5258 do_warn_unused_parameter (tree fn)
5259 {
5260 tree decl;
5261
5262 for (decl = DECL_ARGUMENTS (fn);
5263 decl; decl = DECL_CHAIN (decl))
5264 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5265 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
5266 && !TREE_NO_WARNING (decl))
5267 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
5268 }
5269
5270 /* Set the location of the insn chain starting at INSN to LOC. */
5271
5272 static void
5273 set_insn_locations (rtx_insn *insn, int loc)
5274 {
5275 while (insn != NULL)
5276 {
5277 if (INSN_P (insn))
5278 INSN_LOCATION (insn) = loc;
5279 insn = NEXT_INSN (insn);
5280 }
5281 }
5282
5283 /* Generate RTL for the end of the current function. */
5284
5285 void
5286 expand_function_end (void)
5287 {
5288 /* If arg_pointer_save_area was referenced only from a nested
5289 function, we will not have initialized it yet. Do that now. */
5290 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5291 get_arg_pointer_save_area ();
5292
5293 /* If we are doing generic stack checking and this function makes calls,
5294 do a stack probe at the start of the function to ensure we have enough
5295 space for another stack frame. */
5296 if (flag_stack_check == GENERIC_STACK_CHECK)
5297 {
5298 rtx_insn *insn, *seq;
5299
5300 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5301 if (CALL_P (insn))
5302 {
5303 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5304 start_sequence ();
5305 if (STACK_CHECK_MOVING_SP)
5306 anti_adjust_stack_and_probe (max_frame_size, true);
5307 else
5308 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5309 seq = get_insns ();
5310 end_sequence ();
5311 set_insn_locations (seq, prologue_location);
5312 emit_insn_before (seq, stack_check_probe_note);
5313 break;
5314 }
5315 }
5316
5317 /* End any sequences that failed to be closed due to syntax errors. */
5318 while (in_sequence_p ())
5319 end_sequence ();
5320
5321 clear_pending_stack_adjust ();
5322 do_pending_stack_adjust ();
5323
5324 /* Output a linenumber for the end of the function.
5325 SDB depends on this. */
5326 set_curr_insn_location (input_location);
5327
5328 /* Before the return label (if any), clobber the return
5329 registers so that they are not propagated live to the rest of
5330 the function. This can only happen with functions that drop
5331 through; if there had been a return statement, there would
5332 have either been a return rtx, or a jump to the return label.
5333
5334 We delay actual code generation after the current_function_value_rtx
5335 is computed. */
5336 rtx_insn *clobber_after = get_last_insn ();
5337
5338 /* Output the label for the actual return from the function. */
5339 emit_label (return_label);
5340
5341 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5342 {
5343 /* Let except.c know where it should emit the call to unregister
5344 the function context for sjlj exceptions. */
5345 if (flag_exceptions)
5346 sjlj_emit_function_exit_after (get_last_insn ());
5347 }
5348 else
5349 {
5350 /* We want to ensure that instructions that may trap are not
5351 moved into the epilogue by scheduling, because we don't
5352 always emit unwind information for the epilogue. */
5353 if (cfun->can_throw_non_call_exceptions)
5354 emit_insn (gen_blockage ());
5355 }
5356
5357 /* If this is an implementation of throw, do what's necessary to
5358 communicate between __builtin_eh_return and the epilogue. */
5359 expand_eh_return ();
5360
5361 /* If scalar return value was computed in a pseudo-reg, or was a named
5362 return value that got dumped to the stack, copy that to the hard
5363 return register. */
5364 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5365 {
5366 tree decl_result = DECL_RESULT (current_function_decl);
5367 rtx decl_rtl = DECL_RTL (decl_result);
5368
5369 if (REG_P (decl_rtl)
5370 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5371 : DECL_REGISTER (decl_result))
5372 {
5373 rtx real_decl_rtl = crtl->return_rtx;
5374
5375 /* This should be set in assign_parms. */
5376 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5377
5378 /* If this is a BLKmode structure being returned in registers,
5379 then use the mode computed in expand_return. Note that if
5380 decl_rtl is memory, then its mode may have been changed,
5381 but that crtl->return_rtx has not. */
5382 if (GET_MODE (real_decl_rtl) == BLKmode)
5383 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5384
5385 /* If a non-BLKmode return value should be padded at the least
5386 significant end of the register, shift it left by the appropriate
5387 amount. BLKmode results are handled using the group load/store
5388 machinery. */
5389 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5390 && REG_P (real_decl_rtl)
5391 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5392 {
5393 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5394 REGNO (real_decl_rtl)),
5395 decl_rtl);
5396 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5397 }
5398 /* If a named return value dumped decl_return to memory, then
5399 we may need to re-do the PROMOTE_MODE signed/unsigned
5400 extension. */
5401 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5402 {
5403 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5404 promote_function_mode (TREE_TYPE (decl_result),
5405 GET_MODE (decl_rtl), &unsignedp,
5406 TREE_TYPE (current_function_decl), 1);
5407
5408 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5409 }
5410 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5411 {
5412 /* If expand_function_start has created a PARALLEL for decl_rtl,
5413 move the result to the real return registers. Otherwise, do
5414 a group load from decl_rtl for a named return. */
5415 if (GET_CODE (decl_rtl) == PARALLEL)
5416 emit_group_move (real_decl_rtl, decl_rtl);
5417 else
5418 emit_group_load (real_decl_rtl, decl_rtl,
5419 TREE_TYPE (decl_result),
5420 int_size_in_bytes (TREE_TYPE (decl_result)));
5421 }
5422 /* In the case of complex integer modes smaller than a word, we'll
5423 need to generate some non-trivial bitfield insertions. Do that
5424 on a pseudo and not the hard register. */
5425 else if (GET_CODE (decl_rtl) == CONCAT
5426 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5427 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5428 {
5429 int old_generating_concat_p;
5430 rtx tmp;
5431
5432 old_generating_concat_p = generating_concat_p;
5433 generating_concat_p = 0;
5434 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5435 generating_concat_p = old_generating_concat_p;
5436
5437 emit_move_insn (tmp, decl_rtl);
5438 emit_move_insn (real_decl_rtl, tmp);
5439 }
5440 else
5441 emit_move_insn (real_decl_rtl, decl_rtl);
5442 }
5443 }
5444
5445 /* If returning a structure, arrange to return the address of the value
5446 in a place where debuggers expect to find it.
5447
5448 If returning a structure PCC style,
5449 the caller also depends on this value.
5450 And cfun->returns_pcc_struct is not necessarily set. */
5451 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5452 && !targetm.calls.omit_struct_return_reg)
5453 {
5454 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5455 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5456 rtx outgoing;
5457
5458 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5459 type = TREE_TYPE (type);
5460 else
5461 value_address = XEXP (value_address, 0);
5462
5463 outgoing = targetm.calls.function_value (build_pointer_type (type),
5464 current_function_decl, true);
5465
5466 /* Mark this as a function return value so integrate will delete the
5467 assignment and USE below when inlining this function. */
5468 REG_FUNCTION_VALUE_P (outgoing) = 1;
5469
5470 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5471 value_address = convert_memory_address (GET_MODE (outgoing),
5472 value_address);
5473
5474 emit_move_insn (outgoing, value_address);
5475
5476 /* Show return register used to hold result (in this case the address
5477 of the result. */
5478 crtl->return_rtx = outgoing;
5479 }
5480
5481 /* Emit the actual code to clobber return register. Don't emit
5482 it if clobber_after is a barrier, then the previous basic block
5483 certainly doesn't fall thru into the exit block. */
5484 if (!BARRIER_P (clobber_after))
5485 {
5486 start_sequence ();
5487 clobber_return_register ();
5488 rtx_insn *seq = get_insns ();
5489 end_sequence ();
5490
5491 emit_insn_after (seq, clobber_after);
5492 }
5493
5494 /* Output the label for the naked return from the function. */
5495 if (naked_return_label)
5496 emit_label (naked_return_label);
5497
5498 /* @@@ This is a kludge. We want to ensure that instructions that
5499 may trap are not moved into the epilogue by scheduling, because
5500 we don't always emit unwind information for the epilogue. */
5501 if (cfun->can_throw_non_call_exceptions
5502 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5503 emit_insn (gen_blockage ());
5504
5505 /* If stack protection is enabled for this function, check the guard. */
5506 if (crtl->stack_protect_guard)
5507 stack_protect_epilogue ();
5508
5509 /* If we had calls to alloca, and this machine needs
5510 an accurate stack pointer to exit the function,
5511 insert some code to save and restore the stack pointer. */
5512 if (! EXIT_IGNORE_STACK
5513 && cfun->calls_alloca)
5514 {
5515 rtx tem = 0;
5516
5517 start_sequence ();
5518 emit_stack_save (SAVE_FUNCTION, &tem);
5519 rtx_insn *seq = get_insns ();
5520 end_sequence ();
5521 emit_insn_before (seq, parm_birth_insn);
5522
5523 emit_stack_restore (SAVE_FUNCTION, tem);
5524 }
5525
5526 /* ??? This should no longer be necessary since stupid is no longer with
5527 us, but there are some parts of the compiler (eg reload_combine, and
5528 sh mach_dep_reorg) that still try and compute their own lifetime info
5529 instead of using the general framework. */
5530 use_return_register ();
5531 }
5532
5533 rtx
5534 get_arg_pointer_save_area (void)
5535 {
5536 rtx ret = arg_pointer_save_area;
5537
5538 if (! ret)
5539 {
5540 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5541 arg_pointer_save_area = ret;
5542 }
5543
5544 if (! crtl->arg_pointer_save_area_init)
5545 {
5546 /* Save the arg pointer at the beginning of the function. The
5547 generated stack slot may not be a valid memory address, so we
5548 have to check it and fix it if necessary. */
5549 start_sequence ();
5550 emit_move_insn (validize_mem (copy_rtx (ret)),
5551 crtl->args.internal_arg_pointer);
5552 rtx_insn *seq = get_insns ();
5553 end_sequence ();
5554
5555 push_topmost_sequence ();
5556 emit_insn_after (seq, entry_of_function ());
5557 pop_topmost_sequence ();
5558
5559 crtl->arg_pointer_save_area_init = true;
5560 }
5561
5562 return ret;
5563 }
5564 \f
5565 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5566 for the first time. */
5567
5568 static void
5569 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5570 {
5571 rtx_insn *tmp;
5572 hash_table<insn_cache_hasher> *hash = *hashp;
5573
5574 if (hash == NULL)
5575 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5576
5577 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5578 {
5579 rtx *slot = hash->find_slot (tmp, INSERT);
5580 gcc_assert (*slot == NULL);
5581 *slot = tmp;
5582 }
5583 }
5584
5585 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5586 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5587 insn, then record COPY as well. */
5588
5589 void
5590 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5591 {
5592 hash_table<insn_cache_hasher> *hash;
5593 rtx *slot;
5594
5595 hash = epilogue_insn_hash;
5596 if (!hash || !hash->find (insn))
5597 {
5598 hash = prologue_insn_hash;
5599 if (!hash || !hash->find (insn))
5600 return;
5601 }
5602
5603 slot = hash->find_slot (copy, INSERT);
5604 gcc_assert (*slot == NULL);
5605 *slot = copy;
5606 }
5607
5608 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5609 we can be running after reorg, SEQUENCE rtl is possible. */
5610
5611 static bool
5612 contains (const_rtx insn, hash_table<insn_cache_hasher> *hash)
5613 {
5614 if (hash == NULL)
5615 return false;
5616
5617 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5618 {
5619 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5620 int i;
5621 for (i = seq->len () - 1; i >= 0; i--)
5622 if (hash->find (seq->element (i)))
5623 return true;
5624 return false;
5625 }
5626
5627 return hash->find (const_cast<rtx> (insn)) != NULL;
5628 }
5629
5630 int
5631 prologue_epilogue_contains (const_rtx insn)
5632 {
5633 if (contains (insn, prologue_insn_hash))
5634 return 1;
5635 if (contains (insn, epilogue_insn_hash))
5636 return 1;
5637 return 0;
5638 }
5639
5640 /* Insert use of return register before the end of BB. */
5641
5642 static void
5643 emit_use_return_register_into_block (basic_block bb)
5644 {
5645 start_sequence ();
5646 use_return_register ();
5647 rtx_insn *seq = get_insns ();
5648 end_sequence ();
5649 rtx_insn *insn = BB_END (bb);
5650 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5651 insn = prev_cc0_setter (insn);
5652
5653 emit_insn_before (seq, insn);
5654 }
5655
5656
5657 /* Create a return pattern, either simple_return or return, depending on
5658 simple_p. */
5659
5660 static rtx
5661 gen_return_pattern (bool simple_p)
5662 {
5663 if (!HAVE_simple_return)
5664 gcc_assert (!simple_p);
5665
5666 return simple_p ? gen_simple_return () : gen_return ();
5667 }
5668
5669 /* Insert an appropriate return pattern at the end of block BB. This
5670 also means updating block_for_insn appropriately. SIMPLE_P is
5671 the same as in gen_return_pattern and passed to it. */
5672
5673 void
5674 emit_return_into_block (bool simple_p, basic_block bb)
5675 {
5676 rtx_jump_insn *jump = emit_jump_insn_after (gen_return_pattern (simple_p),
5677 BB_END (bb));
5678 rtx pat = PATTERN (jump);
5679 if (GET_CODE (pat) == PARALLEL)
5680 pat = XVECEXP (pat, 0, 0);
5681 gcc_assert (ANY_RETURN_P (pat));
5682 JUMP_LABEL (jump) = pat;
5683 }
5684
5685 /* Set JUMP_LABEL for a return insn. */
5686
5687 void
5688 set_return_jump_label (rtx_insn *returnjump)
5689 {
5690 rtx pat = PATTERN (returnjump);
5691 if (GET_CODE (pat) == PARALLEL)
5692 pat = XVECEXP (pat, 0, 0);
5693 if (ANY_RETURN_P (pat))
5694 JUMP_LABEL (returnjump) = pat;
5695 else
5696 JUMP_LABEL (returnjump) = ret_rtx;
5697 }
5698
5699 /* Return true if there are any active insns between HEAD and TAIL. */
5700 bool
5701 active_insn_between (rtx_insn *head, rtx_insn *tail)
5702 {
5703 while (tail)
5704 {
5705 if (active_insn_p (tail))
5706 return true;
5707 if (tail == head)
5708 return false;
5709 tail = PREV_INSN (tail);
5710 }
5711 return false;
5712 }
5713
5714 /* LAST_BB is a block that exits, and empty of active instructions.
5715 Examine its predecessors for jumps that can be converted to
5716 (conditional) returns. */
5717 vec<edge>
5718 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5719 vec<edge> unconverted ATTRIBUTE_UNUSED)
5720 {
5721 int i;
5722 basic_block bb;
5723 edge_iterator ei;
5724 edge e;
5725 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5726
5727 FOR_EACH_EDGE (e, ei, last_bb->preds)
5728 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5729 src_bbs.quick_push (e->src);
5730
5731 rtx_insn *label = BB_HEAD (last_bb);
5732
5733 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5734 {
5735 rtx_insn *jump = BB_END (bb);
5736
5737 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5738 continue;
5739
5740 e = find_edge (bb, last_bb);
5741
5742 /* If we have an unconditional jump, we can replace that
5743 with a simple return instruction. */
5744 if (simplejump_p (jump))
5745 {
5746 /* The use of the return register might be present in the exit
5747 fallthru block. Either:
5748 - removing the use is safe, and we should remove the use in
5749 the exit fallthru block, or
5750 - removing the use is not safe, and we should add it here.
5751 For now, we conservatively choose the latter. Either of the
5752 2 helps in crossjumping. */
5753 emit_use_return_register_into_block (bb);
5754
5755 emit_return_into_block (simple_p, bb);
5756 delete_insn (jump);
5757 }
5758
5759 /* If we have a conditional jump branching to the last
5760 block, we can try to replace that with a conditional
5761 return instruction. */
5762 else if (condjump_p (jump))
5763 {
5764 rtx dest;
5765
5766 if (simple_p)
5767 dest = simple_return_rtx;
5768 else
5769 dest = ret_rtx;
5770 if (!redirect_jump (as_a <rtx_jump_insn *> (jump), dest, 0))
5771 {
5772 if (HAVE_simple_return && simple_p)
5773 {
5774 if (dump_file)
5775 fprintf (dump_file,
5776 "Failed to redirect bb %d branch.\n", bb->index);
5777 unconverted.safe_push (e);
5778 }
5779 continue;
5780 }
5781
5782 /* See comment in simplejump_p case above. */
5783 emit_use_return_register_into_block (bb);
5784
5785 /* If this block has only one successor, it both jumps
5786 and falls through to the fallthru block, so we can't
5787 delete the edge. */
5788 if (single_succ_p (bb))
5789 continue;
5790 }
5791 else
5792 {
5793 if (HAVE_simple_return && simple_p)
5794 {
5795 if (dump_file)
5796 fprintf (dump_file,
5797 "Failed to redirect bb %d branch.\n", bb->index);
5798 unconverted.safe_push (e);
5799 }
5800 continue;
5801 }
5802
5803 /* Fix up the CFG for the successful change we just made. */
5804 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5805 e->flags &= ~EDGE_CROSSING;
5806 }
5807 src_bbs.release ();
5808 return unconverted;
5809 }
5810
5811 /* Emit a return insn for the exit fallthru block. */
5812 basic_block
5813 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5814 {
5815 basic_block last_bb = exit_fallthru_edge->src;
5816
5817 if (JUMP_P (BB_END (last_bb)))
5818 {
5819 last_bb = split_edge (exit_fallthru_edge);
5820 exit_fallthru_edge = single_succ_edge (last_bb);
5821 }
5822 emit_barrier_after (BB_END (last_bb));
5823 emit_return_into_block (simple_p, last_bb);
5824 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5825 return last_bb;
5826 }
5827
5828
5829 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5830 this into place with notes indicating where the prologue ends and where
5831 the epilogue begins. Update the basic block information when possible.
5832
5833 Notes on epilogue placement:
5834 There are several kinds of edges to the exit block:
5835 * a single fallthru edge from LAST_BB
5836 * possibly, edges from blocks containing sibcalls
5837 * possibly, fake edges from infinite loops
5838
5839 The epilogue is always emitted on the fallthru edge from the last basic
5840 block in the function, LAST_BB, into the exit block.
5841
5842 If LAST_BB is empty except for a label, it is the target of every
5843 other basic block in the function that ends in a return. If a
5844 target has a return or simple_return pattern (possibly with
5845 conditional variants), these basic blocks can be changed so that a
5846 return insn is emitted into them, and their target is adjusted to
5847 the real exit block.
5848
5849 Notes on shrink wrapping: We implement a fairly conservative
5850 version of shrink-wrapping rather than the textbook one. We only
5851 generate a single prologue and a single epilogue. This is
5852 sufficient to catch a number of interesting cases involving early
5853 exits.
5854
5855 First, we identify the blocks that require the prologue to occur before
5856 them. These are the ones that modify a call-saved register, or reference
5857 any of the stack or frame pointer registers. To simplify things, we then
5858 mark everything reachable from these blocks as also requiring a prologue.
5859 This takes care of loops automatically, and avoids the need to examine
5860 whether MEMs reference the frame, since it is sufficient to check for
5861 occurrences of the stack or frame pointer.
5862
5863 We then compute the set of blocks for which the need for a prologue
5864 is anticipatable (borrowing terminology from the shrink-wrapping
5865 description in Muchnick's book). These are the blocks which either
5866 require a prologue themselves, or those that have only successors
5867 where the prologue is anticipatable. The prologue needs to be
5868 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5869 is not. For the moment, we ensure that only one such edge exists.
5870
5871 The epilogue is placed as described above, but we make a
5872 distinction between inserting return and simple_return patterns
5873 when modifying other blocks that end in a return. Blocks that end
5874 in a sibcall omit the sibcall_epilogue if the block is not in
5875 ANTIC. */
5876
5877 void
5878 thread_prologue_and_epilogue_insns (void)
5879 {
5880 bool inserted;
5881 vec<edge> unconverted_simple_returns = vNULL;
5882 bitmap_head bb_flags;
5883 rtx_insn *returnjump;
5884 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5885 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5886 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5887 edge_iterator ei;
5888
5889 df_analyze ();
5890
5891 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5892
5893 inserted = false;
5894 epilogue_end = NULL;
5895 returnjump = NULL;
5896
5897 /* Can't deal with multiple successors of the entry block at the
5898 moment. Function should always have at least one entry
5899 point. */
5900 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5901 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5902 orig_entry_edge = entry_edge;
5903
5904 split_prologue_seq = NULL;
5905 if (flag_split_stack
5906 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5907 == NULL))
5908 {
5909 #ifndef HAVE_split_stack_prologue
5910 gcc_unreachable ();
5911 #else
5912 gcc_assert (HAVE_split_stack_prologue);
5913
5914 start_sequence ();
5915 emit_insn (gen_split_stack_prologue ());
5916 split_prologue_seq = get_insns ();
5917 end_sequence ();
5918
5919 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5920 set_insn_locations (split_prologue_seq, prologue_location);
5921 #endif
5922 }
5923
5924 prologue_seq = NULL;
5925 #ifdef HAVE_prologue
5926 if (HAVE_prologue)
5927 {
5928 start_sequence ();
5929 rtx_insn *seq = safe_as_a <rtx_insn *> (gen_prologue ());
5930 emit_insn (seq);
5931
5932 /* Insert an explicit USE for the frame pointer
5933 if the profiling is on and the frame pointer is required. */
5934 if (crtl->profile && frame_pointer_needed)
5935 emit_use (hard_frame_pointer_rtx);
5936
5937 /* Retain a map of the prologue insns. */
5938 record_insns (seq, NULL, &prologue_insn_hash);
5939 emit_note (NOTE_INSN_PROLOGUE_END);
5940
5941 /* Ensure that instructions are not moved into the prologue when
5942 profiling is on. The call to the profiling routine can be
5943 emitted within the live range of a call-clobbered register. */
5944 if (!targetm.profile_before_prologue () && crtl->profile)
5945 emit_insn (gen_blockage ());
5946
5947 prologue_seq = get_insns ();
5948 end_sequence ();
5949 set_insn_locations (prologue_seq, prologue_location);
5950 }
5951 #endif
5952
5953 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5954
5955 /* Try to perform a kind of shrink-wrapping, making sure the
5956 prologue/epilogue is emitted only around those parts of the
5957 function that require it. */
5958
5959 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5960
5961 if (split_prologue_seq != NULL_RTX)
5962 {
5963 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5964 inserted = true;
5965 }
5966 if (prologue_seq != NULL_RTX)
5967 {
5968 insert_insn_on_edge (prologue_seq, entry_edge);
5969 inserted = true;
5970 }
5971
5972 /* If the exit block has no non-fake predecessors, we don't need
5973 an epilogue. */
5974 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5975 if ((e->flags & EDGE_FAKE) == 0)
5976 break;
5977 if (e == NULL)
5978 goto epilogue_done;
5979
5980 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5981
5982 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5983
5984 if (HAVE_simple_return && entry_edge != orig_entry_edge)
5985 exit_fallthru_edge
5986 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5987 &unconverted_simple_returns,
5988 &returnjump);
5989 if (HAVE_return)
5990 {
5991 if (exit_fallthru_edge == NULL)
5992 goto epilogue_done;
5993
5994 if (optimize)
5995 {
5996 basic_block last_bb = exit_fallthru_edge->src;
5997
5998 if (LABEL_P (BB_HEAD (last_bb))
5999 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6000 convert_jumps_to_returns (last_bb, false, vNULL);
6001
6002 if (EDGE_COUNT (last_bb->preds) != 0
6003 && single_succ_p (last_bb))
6004 {
6005 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6006 epilogue_end = returnjump = BB_END (last_bb);
6007
6008 /* Emitting the return may add a basic block.
6009 Fix bb_flags for the added block. */
6010 if (HAVE_simple_return && last_bb != exit_fallthru_edge->src)
6011 bitmap_set_bit (&bb_flags, last_bb->index);
6012
6013 goto epilogue_done;
6014 }
6015 }
6016 }
6017
6018 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6019 this marker for the splits of EH_RETURN patterns, and nothing else
6020 uses the flag in the meantime. */
6021 epilogue_completed = 1;
6022
6023 #ifdef HAVE_eh_return
6024 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6025 some targets, these get split to a special version of the epilogue
6026 code. In order to be able to properly annotate these with unwind
6027 info, try to split them now. If we get a valid split, drop an
6028 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6029 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6030 {
6031 rtx_insn *prev, *last, *trial;
6032
6033 if (e->flags & EDGE_FALLTHRU)
6034 continue;
6035 last = BB_END (e->src);
6036 if (!eh_returnjump_p (last))
6037 continue;
6038
6039 prev = PREV_INSN (last);
6040 trial = try_split (PATTERN (last), last, 1);
6041 if (trial == last)
6042 continue;
6043
6044 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6045 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6046 }
6047 #endif
6048
6049 /* If nothing falls through into the exit block, we don't need an
6050 epilogue. */
6051
6052 if (exit_fallthru_edge == NULL)
6053 goto epilogue_done;
6054
6055 if (HAVE_epilogue)
6056 {
6057 start_sequence ();
6058 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6059 rtx_insn *seq = as_a <rtx_insn *> (gen_epilogue ());
6060 if (seq)
6061 emit_jump_insn (seq);
6062
6063 /* Retain a map of the epilogue insns. */
6064 record_insns (seq, NULL, &epilogue_insn_hash);
6065 set_insn_locations (seq, epilogue_location);
6066
6067 seq = get_insns ();
6068 returnjump = get_last_insn ();
6069 end_sequence ();
6070
6071 insert_insn_on_edge (seq, exit_fallthru_edge);
6072 inserted = true;
6073
6074 if (JUMP_P (returnjump))
6075 set_return_jump_label (returnjump);
6076 }
6077 else
6078 {
6079 basic_block cur_bb;
6080
6081 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6082 goto epilogue_done;
6083 /* We have a fall-through edge to the exit block, the source is not
6084 at the end of the function, and there will be an assembler epilogue
6085 at the end of the function.
6086 We can't use force_nonfallthru here, because that would try to
6087 use return. Inserting a jump 'by hand' is extremely messy, so
6088 we take advantage of cfg_layout_finalize using
6089 fixup_fallthru_exit_predecessor. */
6090 cfg_layout_initialize (0);
6091 FOR_EACH_BB_FN (cur_bb, cfun)
6092 if (cur_bb->index >= NUM_FIXED_BLOCKS
6093 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6094 cur_bb->aux = cur_bb->next_bb;
6095 cfg_layout_finalize ();
6096 }
6097
6098 epilogue_done:
6099
6100 default_rtl_profile ();
6101
6102 if (inserted)
6103 {
6104 sbitmap blocks;
6105
6106 commit_edge_insertions ();
6107
6108 /* Look for basic blocks within the prologue insns. */
6109 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6110 bitmap_clear (blocks);
6111 bitmap_set_bit (blocks, entry_edge->dest->index);
6112 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6113 find_many_sub_basic_blocks (blocks);
6114 sbitmap_free (blocks);
6115
6116 /* The epilogue insns we inserted may cause the exit edge to no longer
6117 be fallthru. */
6118 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6119 {
6120 if (((e->flags & EDGE_FALLTHRU) != 0)
6121 && returnjump_p (BB_END (e->src)))
6122 e->flags &= ~EDGE_FALLTHRU;
6123 }
6124 }
6125
6126 if (HAVE_simple_return)
6127 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags,
6128 returnjump, unconverted_simple_returns);
6129
6130 #ifdef HAVE_sibcall_epilogue
6131 /* Emit sibling epilogues before any sibling call sites. */
6132 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6133 ei_safe_edge (ei));
6134 )
6135 {
6136 basic_block bb = e->src;
6137 rtx_insn *insn = BB_END (bb);
6138 rtx ep_seq;
6139
6140 if (!CALL_P (insn)
6141 || ! SIBLING_CALL_P (insn)
6142 || (HAVE_simple_return && (entry_edge != orig_entry_edge
6143 && !bitmap_bit_p (&bb_flags, bb->index))))
6144 {
6145 ei_next (&ei);
6146 continue;
6147 }
6148
6149 ep_seq = gen_sibcall_epilogue ();
6150 if (ep_seq)
6151 {
6152 start_sequence ();
6153 emit_note (NOTE_INSN_EPILOGUE_BEG);
6154 emit_insn (ep_seq);
6155 rtx_insn *seq = get_insns ();
6156 end_sequence ();
6157
6158 /* Retain a map of the epilogue insns. Used in life analysis to
6159 avoid getting rid of sibcall epilogue insns. Do this before we
6160 actually emit the sequence. */
6161 record_insns (seq, NULL, &epilogue_insn_hash);
6162 set_insn_locations (seq, epilogue_location);
6163
6164 emit_insn_before (seq, insn);
6165 }
6166 ei_next (&ei);
6167 }
6168 #endif
6169
6170 if (epilogue_end)
6171 {
6172 rtx_insn *insn, *next;
6173
6174 /* Similarly, move any line notes that appear after the epilogue.
6175 There is no need, however, to be quite so anal about the existence
6176 of such a note. Also possibly move
6177 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6178 info generation. */
6179 for (insn = epilogue_end; insn; insn = next)
6180 {
6181 next = NEXT_INSN (insn);
6182 if (NOTE_P (insn)
6183 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6184 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6185 }
6186 }
6187
6188 bitmap_clear (&bb_flags);
6189
6190 /* Threading the prologue and epilogue changes the artificial refs
6191 in the entry and exit blocks. */
6192 epilogue_completed = 1;
6193 df_update_entry_exit_and_calls ();
6194 }
6195
6196 /* Reposition the prologue-end and epilogue-begin notes after
6197 instruction scheduling. */
6198
6199 void
6200 reposition_prologue_and_epilogue_notes (void)
6201 {
6202 #if ! defined (HAVE_prologue) && ! defined (HAVE_sibcall_epilogue)
6203 if (!HAVE_epilogue)
6204 return;
6205 #endif
6206
6207 /* Since the hash table is created on demand, the fact that it is
6208 non-null is a signal that it is non-empty. */
6209 if (prologue_insn_hash != NULL)
6210 {
6211 size_t len = prologue_insn_hash->elements ();
6212 rtx_insn *insn, *last = NULL, *note = NULL;
6213
6214 /* Scan from the beginning until we reach the last prologue insn. */
6215 /* ??? While we do have the CFG intact, there are two problems:
6216 (1) The prologue can contain loops (typically probing the stack),
6217 which means that the end of the prologue isn't in the first bb.
6218 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6219 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6220 {
6221 if (NOTE_P (insn))
6222 {
6223 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6224 note = insn;
6225 }
6226 else if (contains (insn, prologue_insn_hash))
6227 {
6228 last = insn;
6229 if (--len == 0)
6230 break;
6231 }
6232 }
6233
6234 if (last)
6235 {
6236 if (note == NULL)
6237 {
6238 /* Scan forward looking for the PROLOGUE_END note. It should
6239 be right at the beginning of the block, possibly with other
6240 insn notes that got moved there. */
6241 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6242 {
6243 if (NOTE_P (note)
6244 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6245 break;
6246 }
6247 }
6248
6249 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6250 if (LABEL_P (last))
6251 last = NEXT_INSN (last);
6252 reorder_insns (note, note, last);
6253 }
6254 }
6255
6256 if (epilogue_insn_hash != NULL)
6257 {
6258 edge_iterator ei;
6259 edge e;
6260
6261 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6262 {
6263 rtx_insn *insn, *first = NULL, *note = NULL;
6264 basic_block bb = e->src;
6265
6266 /* Scan from the beginning until we reach the first epilogue insn. */
6267 FOR_BB_INSNS (bb, insn)
6268 {
6269 if (NOTE_P (insn))
6270 {
6271 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6272 {
6273 note = insn;
6274 if (first != NULL)
6275 break;
6276 }
6277 }
6278 else if (first == NULL && contains (insn, epilogue_insn_hash))
6279 {
6280 first = insn;
6281 if (note != NULL)
6282 break;
6283 }
6284 }
6285
6286 if (note)
6287 {
6288 /* If the function has a single basic block, and no real
6289 epilogue insns (e.g. sibcall with no cleanup), the
6290 epilogue note can get scheduled before the prologue
6291 note. If we have frame related prologue insns, having
6292 them scanned during the epilogue will result in a crash.
6293 In this case re-order the epilogue note to just before
6294 the last insn in the block. */
6295 if (first == NULL)
6296 first = BB_END (bb);
6297
6298 if (PREV_INSN (first) != note)
6299 reorder_insns (note, note, PREV_INSN (first));
6300 }
6301 }
6302 }
6303 }
6304
6305 /* Returns the name of function declared by FNDECL. */
6306 const char *
6307 fndecl_name (tree fndecl)
6308 {
6309 if (fndecl == NULL)
6310 return "(nofn)";
6311 return lang_hooks.decl_printable_name (fndecl, 2);
6312 }
6313
6314 /* Returns the name of function FN. */
6315 const char *
6316 function_name (struct function *fn)
6317 {
6318 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6319 return fndecl_name (fndecl);
6320 }
6321
6322 /* Returns the name of the current function. */
6323 const char *
6324 current_function_name (void)
6325 {
6326 return function_name (cfun);
6327 }
6328 \f
6329
6330 static unsigned int
6331 rest_of_handle_check_leaf_regs (void)
6332 {
6333 #ifdef LEAF_REGISTERS
6334 crtl->uses_only_leaf_regs
6335 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6336 #endif
6337 return 0;
6338 }
6339
6340 /* Insert a TYPE into the used types hash table of CFUN. */
6341
6342 static void
6343 used_types_insert_helper (tree type, struct function *func)
6344 {
6345 if (type != NULL && func != NULL)
6346 {
6347 if (func->used_types_hash == NULL)
6348 func->used_types_hash = hash_set<tree>::create_ggc (37);
6349
6350 func->used_types_hash->add (type);
6351 }
6352 }
6353
6354 /* Given a type, insert it into the used hash table in cfun. */
6355 void
6356 used_types_insert (tree t)
6357 {
6358 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6359 if (TYPE_NAME (t))
6360 break;
6361 else
6362 t = TREE_TYPE (t);
6363 if (TREE_CODE (t) == ERROR_MARK)
6364 return;
6365 if (TYPE_NAME (t) == NULL_TREE
6366 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6367 t = TYPE_MAIN_VARIANT (t);
6368 if (debug_info_level > DINFO_LEVEL_NONE)
6369 {
6370 if (cfun)
6371 used_types_insert_helper (t, cfun);
6372 else
6373 {
6374 /* So this might be a type referenced by a global variable.
6375 Record that type so that we can later decide to emit its
6376 debug information. */
6377 vec_safe_push (types_used_by_cur_var_decl, t);
6378 }
6379 }
6380 }
6381
6382 /* Helper to Hash a struct types_used_by_vars_entry. */
6383
6384 static hashval_t
6385 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6386 {
6387 gcc_assert (entry && entry->var_decl && entry->type);
6388
6389 return iterative_hash_object (entry->type,
6390 iterative_hash_object (entry->var_decl, 0));
6391 }
6392
6393 /* Hash function of the types_used_by_vars_entry hash table. */
6394
6395 hashval_t
6396 used_type_hasher::hash (types_used_by_vars_entry *entry)
6397 {
6398 return hash_types_used_by_vars_entry (entry);
6399 }
6400
6401 /*Equality function of the types_used_by_vars_entry hash table. */
6402
6403 bool
6404 used_type_hasher::equal (types_used_by_vars_entry *e1,
6405 types_used_by_vars_entry *e2)
6406 {
6407 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6408 }
6409
6410 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6411
6412 void
6413 types_used_by_var_decl_insert (tree type, tree var_decl)
6414 {
6415 if (type != NULL && var_decl != NULL)
6416 {
6417 types_used_by_vars_entry **slot;
6418 struct types_used_by_vars_entry e;
6419 e.var_decl = var_decl;
6420 e.type = type;
6421 if (types_used_by_vars_hash == NULL)
6422 types_used_by_vars_hash
6423 = hash_table<used_type_hasher>::create_ggc (37);
6424
6425 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6426 if (*slot == NULL)
6427 {
6428 struct types_used_by_vars_entry *entry;
6429 entry = ggc_alloc<types_used_by_vars_entry> ();
6430 entry->type = type;
6431 entry->var_decl = var_decl;
6432 *slot = entry;
6433 }
6434 }
6435 }
6436
6437 namespace {
6438
6439 const pass_data pass_data_leaf_regs =
6440 {
6441 RTL_PASS, /* type */
6442 "*leaf_regs", /* name */
6443 OPTGROUP_NONE, /* optinfo_flags */
6444 TV_NONE, /* tv_id */
6445 0, /* properties_required */
6446 0, /* properties_provided */
6447 0, /* properties_destroyed */
6448 0, /* todo_flags_start */
6449 0, /* todo_flags_finish */
6450 };
6451
6452 class pass_leaf_regs : public rtl_opt_pass
6453 {
6454 public:
6455 pass_leaf_regs (gcc::context *ctxt)
6456 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6457 {}
6458
6459 /* opt_pass methods: */
6460 virtual unsigned int execute (function *)
6461 {
6462 return rest_of_handle_check_leaf_regs ();
6463 }
6464
6465 }; // class pass_leaf_regs
6466
6467 } // anon namespace
6468
6469 rtl_opt_pass *
6470 make_pass_leaf_regs (gcc::context *ctxt)
6471 {
6472 return new pass_leaf_regs (ctxt);
6473 }
6474
6475 static unsigned int
6476 rest_of_handle_thread_prologue_and_epilogue (void)
6477 {
6478 if (optimize)
6479 cleanup_cfg (CLEANUP_EXPENSIVE);
6480
6481 /* On some machines, the prologue and epilogue code, or parts thereof,
6482 can be represented as RTL. Doing so lets us schedule insns between
6483 it and the rest of the code and also allows delayed branch
6484 scheduling to operate in the epilogue. */
6485 thread_prologue_and_epilogue_insns ();
6486
6487 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6488 see PR57320. */
6489 cleanup_cfg (0);
6490
6491 /* The stack usage info is finalized during prologue expansion. */
6492 if (flag_stack_usage_info)
6493 output_stack_usage ();
6494
6495 return 0;
6496 }
6497
6498 namespace {
6499
6500 const pass_data pass_data_thread_prologue_and_epilogue =
6501 {
6502 RTL_PASS, /* type */
6503 "pro_and_epilogue", /* name */
6504 OPTGROUP_NONE, /* optinfo_flags */
6505 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6506 0, /* properties_required */
6507 0, /* properties_provided */
6508 0, /* properties_destroyed */
6509 0, /* todo_flags_start */
6510 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6511 };
6512
6513 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6514 {
6515 public:
6516 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6517 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6518 {}
6519
6520 /* opt_pass methods: */
6521 virtual unsigned int execute (function *)
6522 {
6523 return rest_of_handle_thread_prologue_and_epilogue ();
6524 }
6525
6526 }; // class pass_thread_prologue_and_epilogue
6527
6528 } // anon namespace
6529
6530 rtl_opt_pass *
6531 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6532 {
6533 return new pass_thread_prologue_and_epilogue (ctxt);
6534 }
6535 \f
6536
6537 /* This mini-pass fixes fall-out from SSA in asm statements that have
6538 in-out constraints. Say you start with
6539
6540 orig = inout;
6541 asm ("": "+mr" (inout));
6542 use (orig);
6543
6544 which is transformed very early to use explicit output and match operands:
6545
6546 orig = inout;
6547 asm ("": "=mr" (inout) : "0" (inout));
6548 use (orig);
6549
6550 Or, after SSA and copyprop,
6551
6552 asm ("": "=mr" (inout_2) : "0" (inout_1));
6553 use (inout_1);
6554
6555 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6556 they represent two separate values, so they will get different pseudo
6557 registers during expansion. Then, since the two operands need to match
6558 per the constraints, but use different pseudo registers, reload can
6559 only register a reload for these operands. But reloads can only be
6560 satisfied by hardregs, not by memory, so we need a register for this
6561 reload, just because we are presented with non-matching operands.
6562 So, even though we allow memory for this operand, no memory can be
6563 used for it, just because the two operands don't match. This can
6564 cause reload failures on register-starved targets.
6565
6566 So it's a symptom of reload not being able to use memory for reloads
6567 or, alternatively it's also a symptom of both operands not coming into
6568 reload as matching (in which case the pseudo could go to memory just
6569 fine, as the alternative allows it, and no reload would be necessary).
6570 We fix the latter problem here, by transforming
6571
6572 asm ("": "=mr" (inout_2) : "0" (inout_1));
6573
6574 back to
6575
6576 inout_2 = inout_1;
6577 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6578
6579 static void
6580 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6581 {
6582 int i;
6583 bool changed = false;
6584 rtx op = SET_SRC (p_sets[0]);
6585 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6586 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6587 bool *output_matched = XALLOCAVEC (bool, noutputs);
6588
6589 memset (output_matched, 0, noutputs * sizeof (bool));
6590 for (i = 0; i < ninputs; i++)
6591 {
6592 rtx input, output;
6593 rtx_insn *insns;
6594 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6595 char *end;
6596 int match, j;
6597
6598 if (*constraint == '%')
6599 constraint++;
6600
6601 match = strtoul (constraint, &end, 10);
6602 if (end == constraint)
6603 continue;
6604
6605 gcc_assert (match < noutputs);
6606 output = SET_DEST (p_sets[match]);
6607 input = RTVEC_ELT (inputs, i);
6608 /* Only do the transformation for pseudos. */
6609 if (! REG_P (output)
6610 || rtx_equal_p (output, input)
6611 || (GET_MODE (input) != VOIDmode
6612 && GET_MODE (input) != GET_MODE (output)))
6613 continue;
6614
6615 /* We can't do anything if the output is also used as input,
6616 as we're going to overwrite it. */
6617 for (j = 0; j < ninputs; j++)
6618 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6619 break;
6620 if (j != ninputs)
6621 continue;
6622
6623 /* Avoid changing the same input several times. For
6624 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6625 only change in once (to out1), rather than changing it
6626 first to out1 and afterwards to out2. */
6627 if (i > 0)
6628 {
6629 for (j = 0; j < noutputs; j++)
6630 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6631 break;
6632 if (j != noutputs)
6633 continue;
6634 }
6635 output_matched[match] = true;
6636
6637 start_sequence ();
6638 emit_move_insn (output, input);
6639 insns = get_insns ();
6640 end_sequence ();
6641 emit_insn_before (insns, insn);
6642
6643 /* Now replace all mentions of the input with output. We can't
6644 just replace the occurrence in inputs[i], as the register might
6645 also be used in some other input (or even in an address of an
6646 output), which would mean possibly increasing the number of
6647 inputs by one (namely 'output' in addition), which might pose
6648 a too complicated problem for reload to solve. E.g. this situation:
6649
6650 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6651
6652 Here 'input' is used in two occurrences as input (once for the
6653 input operand, once for the address in the second output operand).
6654 If we would replace only the occurrence of the input operand (to
6655 make the matching) we would be left with this:
6656
6657 output = input
6658 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6659
6660 Now we suddenly have two different input values (containing the same
6661 value, but different pseudos) where we formerly had only one.
6662 With more complicated asms this might lead to reload failures
6663 which wouldn't have happen without this pass. So, iterate over
6664 all operands and replace all occurrences of the register used. */
6665 for (j = 0; j < noutputs; j++)
6666 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6667 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6668 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6669 input, output);
6670 for (j = 0; j < ninputs; j++)
6671 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6672 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6673 input, output);
6674
6675 changed = true;
6676 }
6677
6678 if (changed)
6679 df_insn_rescan (insn);
6680 }
6681
6682 /* Add the decl D to the local_decls list of FUN. */
6683
6684 void
6685 add_local_decl (struct function *fun, tree d)
6686 {
6687 gcc_assert (TREE_CODE (d) == VAR_DECL);
6688 vec_safe_push (fun->local_decls, d);
6689 }
6690
6691 namespace {
6692
6693 const pass_data pass_data_match_asm_constraints =
6694 {
6695 RTL_PASS, /* type */
6696 "asmcons", /* name */
6697 OPTGROUP_NONE, /* optinfo_flags */
6698 TV_NONE, /* tv_id */
6699 0, /* properties_required */
6700 0, /* properties_provided */
6701 0, /* properties_destroyed */
6702 0, /* todo_flags_start */
6703 0, /* todo_flags_finish */
6704 };
6705
6706 class pass_match_asm_constraints : public rtl_opt_pass
6707 {
6708 public:
6709 pass_match_asm_constraints (gcc::context *ctxt)
6710 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6711 {}
6712
6713 /* opt_pass methods: */
6714 virtual unsigned int execute (function *);
6715
6716 }; // class pass_match_asm_constraints
6717
6718 unsigned
6719 pass_match_asm_constraints::execute (function *fun)
6720 {
6721 basic_block bb;
6722 rtx_insn *insn;
6723 rtx pat, *p_sets;
6724 int noutputs;
6725
6726 if (!crtl->has_asm_statement)
6727 return 0;
6728
6729 df_set_flags (DF_DEFER_INSN_RESCAN);
6730 FOR_EACH_BB_FN (bb, fun)
6731 {
6732 FOR_BB_INSNS (bb, insn)
6733 {
6734 if (!INSN_P (insn))
6735 continue;
6736
6737 pat = PATTERN (insn);
6738 if (GET_CODE (pat) == PARALLEL)
6739 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6740 else if (GET_CODE (pat) == SET)
6741 p_sets = &PATTERN (insn), noutputs = 1;
6742 else
6743 continue;
6744
6745 if (GET_CODE (*p_sets) == SET
6746 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6747 match_asm_constraints_1 (insn, p_sets, noutputs);
6748 }
6749 }
6750
6751 return TODO_df_finish;
6752 }
6753
6754 } // anon namespace
6755
6756 rtl_opt_pass *
6757 make_pass_match_asm_constraints (gcc::context *ctxt)
6758 {
6759 return new pass_match_asm_constraints (ctxt);
6760 }
6761
6762
6763 #include "gt-function.h"