Update Copyright years for files modified in 2008 and/or 2009.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
75
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
85
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
100
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
105
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
110
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
116
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
119
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
123
124 /* The currently compiled function. */
125 struct function *cfun = 0;
126
127 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
128 static VEC(int,heap) *prologue;
129 static VEC(int,heap) *epilogue;
130
131 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
132 in this function. */
133 static VEC(int,heap) *sibcall_epilogue;
134 \f
135 /* Forward declarations. */
136
137 static struct temp_slot *find_temp_slot_from_address (rtx);
138 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
139 static void pad_below (struct args_size *, enum machine_mode, tree);
140 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
141 static int all_blocks (tree, tree *);
142 static tree *get_block_vector (tree, int *);
143 extern tree debug_find_var_in_block_tree (tree, tree);
144 /* We always define `record_insns' even if it's not used so that we
145 can always export `prologue_epilogue_contains'. */
146 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
147 static int contains (const_rtx, VEC(int,heap) **);
148 #ifdef HAVE_return
149 static void emit_return_into_block (basic_block);
150 #endif
151 static void prepare_function_start (void);
152 static void do_clobber_return_reg (rtx, void *);
153 static void do_use_return_reg (rtx, void *);
154 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
155 \f
156 /* Stack of nested functions. */
157 /* Keep track of the cfun stack. */
158
159 typedef struct function *function_p;
160
161 DEF_VEC_P(function_p);
162 DEF_VEC_ALLOC_P(function_p,heap);
163 static VEC(function_p,heap) *function_context_stack;
164
165 /* Save the current context for compilation of a nested function.
166 This is called from language-specific code. */
167
168 void
169 push_function_context (void)
170 {
171 if (cfun == 0)
172 allocate_struct_function (NULL, false);
173
174 VEC_safe_push (function_p, heap, function_context_stack, cfun);
175 set_cfun (NULL);
176 }
177
178 /* Restore the last saved context, at the end of a nested function.
179 This function is called from language-specific code. */
180
181 void
182 pop_function_context (void)
183 {
184 struct function *p = VEC_pop (function_p, function_context_stack);
185 set_cfun (p);
186 current_function_decl = p->decl;
187
188 /* Reset variables that have known state during rtx generation. */
189 virtuals_instantiated = 0;
190 generating_concat_p = 1;
191 }
192
193 /* Clear out all parts of the state in F that can safely be discarded
194 after the function has been parsed, but not compiled, to let
195 garbage collection reclaim the memory. */
196
197 void
198 free_after_parsing (struct function *f)
199 {
200 f->language = 0;
201 }
202
203 /* Clear out all parts of the state in F that can safely be discarded
204 after the function has been compiled, to let garbage collection
205 reclaim the memory. */
206
207 void
208 free_after_compilation (struct function *f)
209 {
210 VEC_free (int, heap, prologue);
211 VEC_free (int, heap, epilogue);
212 VEC_free (int, heap, sibcall_epilogue);
213 if (crtl->emit.regno_pointer_align)
214 free (crtl->emit.regno_pointer_align);
215
216 memset (crtl, 0, sizeof (struct rtl_data));
217 f->eh = NULL;
218 f->machine = NULL;
219 f->cfg = NULL;
220
221 regno_reg_rtx = NULL;
222 insn_locators_free ();
223 }
224 \f
225 /* Return size needed for stack frame based on slots so far allocated.
226 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
227 the caller may have to do that. */
228
229 HOST_WIDE_INT
230 get_frame_size (void)
231 {
232 if (FRAME_GROWS_DOWNWARD)
233 return -frame_offset;
234 else
235 return frame_offset;
236 }
237
238 /* Issue an error message and return TRUE if frame OFFSET overflows in
239 the signed target pointer arithmetics for function FUNC. Otherwise
240 return FALSE. */
241
242 bool
243 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
244 {
245 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
246
247 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
248 /* Leave room for the fixed part of the frame. */
249 - 64 * UNITS_PER_WORD)
250 {
251 error ("%Jtotal size of local objects too large", func);
252 return TRUE;
253 }
254
255 return FALSE;
256 }
257
258 /* Return stack slot alignment in bits for TYPE and MODE. */
259
260 static unsigned int
261 get_stack_local_alignment (tree type, enum machine_mode mode)
262 {
263 unsigned int alignment;
264
265 if (mode == BLKmode)
266 alignment = BIGGEST_ALIGNMENT;
267 else
268 alignment = GET_MODE_ALIGNMENT (mode);
269
270 /* Allow the frond-end to (possibly) increase the alignment of this
271 stack slot. */
272 if (! type)
273 type = lang_hooks.types.type_for_mode (mode, 0);
274
275 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
276 }
277
278 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
279 with machine mode MODE.
280
281 ALIGN controls the amount of alignment for the address of the slot:
282 0 means according to MODE,
283 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
284 -2 means use BITS_PER_UNIT,
285 positive specifies alignment boundary in bits.
286
287 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
288
289 We do not round to stack_boundary here. */
290
291 rtx
292 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
293 int align,
294 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
295 {
296 rtx x, addr;
297 int bigend_correction = 0;
298 unsigned int alignment, alignment_in_bits;
299 int frame_off, frame_alignment, frame_phase;
300
301 if (align == 0)
302 {
303 alignment = get_stack_local_alignment (NULL, mode);
304 alignment /= BITS_PER_UNIT;
305 }
306 else if (align == -1)
307 {
308 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
309 size = CEIL_ROUND (size, alignment);
310 }
311 else if (align == -2)
312 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
313 else
314 alignment = align / BITS_PER_UNIT;
315
316 alignment_in_bits = alignment * BITS_PER_UNIT;
317
318 if (FRAME_GROWS_DOWNWARD)
319 frame_offset -= size;
320
321 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
322 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
323 {
324 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
325 alignment = alignment_in_bits / BITS_PER_UNIT;
326 }
327
328 if (SUPPORTS_STACK_ALIGNMENT)
329 {
330 if (crtl->stack_alignment_estimated < alignment_in_bits)
331 {
332 if (!crtl->stack_realign_processed)
333 crtl->stack_alignment_estimated = alignment_in_bits;
334 else
335 {
336 /* If stack is realigned and stack alignment value
337 hasn't been finalized, it is OK not to increase
338 stack_alignment_estimated. The bigger alignment
339 requirement is recorded in stack_alignment_needed
340 below. */
341 gcc_assert (!crtl->stack_realign_finalized);
342 if (!crtl->stack_realign_needed)
343 {
344 /* It is OK to reduce the alignment as long as the
345 requested size is 0 or the estimated stack
346 alignment >= mode alignment. */
347 gcc_assert (reduce_alignment_ok
348 || size == 0
349 || (crtl->stack_alignment_estimated
350 >= GET_MODE_ALIGNMENT (mode)));
351 alignment_in_bits = crtl->stack_alignment_estimated;
352 alignment = alignment_in_bits / BITS_PER_UNIT;
353 }
354 }
355 }
356 }
357
358 if (crtl->stack_alignment_needed < alignment_in_bits)
359 crtl->stack_alignment_needed = alignment_in_bits;
360 if (crtl->max_used_stack_slot_alignment < crtl->stack_alignment_needed)
361 crtl->max_used_stack_slot_alignment = crtl->stack_alignment_needed;
362
363 /* Calculate how many bytes the start of local variables is off from
364 stack alignment. */
365 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
366 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
367 frame_phase = frame_off ? frame_alignment - frame_off : 0;
368
369 /* Round the frame offset to the specified alignment. The default is
370 to always honor requests to align the stack but a port may choose to
371 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
372 if (STACK_ALIGNMENT_NEEDED
373 || mode != BLKmode
374 || size != 0)
375 {
376 /* We must be careful here, since FRAME_OFFSET might be negative and
377 division with a negative dividend isn't as well defined as we might
378 like. So we instead assume that ALIGNMENT is a power of two and
379 use logical operations which are unambiguous. */
380 if (FRAME_GROWS_DOWNWARD)
381 frame_offset
382 = (FLOOR_ROUND (frame_offset - frame_phase,
383 (unsigned HOST_WIDE_INT) alignment)
384 + frame_phase);
385 else
386 frame_offset
387 = (CEIL_ROUND (frame_offset - frame_phase,
388 (unsigned HOST_WIDE_INT) alignment)
389 + frame_phase);
390 }
391
392 /* On a big-endian machine, if we are allocating more space than we will use,
393 use the least significant bytes of those that are allocated. */
394 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
395 bigend_correction = size - GET_MODE_SIZE (mode);
396
397 /* If we have already instantiated virtual registers, return the actual
398 address relative to the frame pointer. */
399 if (virtuals_instantiated)
400 addr = plus_constant (frame_pointer_rtx,
401 trunc_int_for_mode
402 (frame_offset + bigend_correction
403 + STARTING_FRAME_OFFSET, Pmode));
404 else
405 addr = plus_constant (virtual_stack_vars_rtx,
406 trunc_int_for_mode
407 (frame_offset + bigend_correction,
408 Pmode));
409
410 if (!FRAME_GROWS_DOWNWARD)
411 frame_offset += size;
412
413 x = gen_rtx_MEM (mode, addr);
414 set_mem_align (x, alignment_in_bits);
415 MEM_NOTRAP_P (x) = 1;
416
417 stack_slot_list
418 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
419
420 if (frame_offset_overflow (frame_offset, current_function_decl))
421 frame_offset = 0;
422
423 return x;
424 }
425
426 /* Wrap up assign_stack_local_1 with last parameter as false. */
427
428 rtx
429 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
430 {
431 return assign_stack_local_1 (mode, size, align, false);
432 }
433 \f
434 \f
435 /* In order to evaluate some expressions, such as function calls returning
436 structures in memory, we need to temporarily allocate stack locations.
437 We record each allocated temporary in the following structure.
438
439 Associated with each temporary slot is a nesting level. When we pop up
440 one level, all temporaries associated with the previous level are freed.
441 Normally, all temporaries are freed after the execution of the statement
442 in which they were created. However, if we are inside a ({...}) grouping,
443 the result may be in a temporary and hence must be preserved. If the
444 result could be in a temporary, we preserve it if we can determine which
445 one it is in. If we cannot determine which temporary may contain the
446 result, all temporaries are preserved. A temporary is preserved by
447 pretending it was allocated at the previous nesting level.
448
449 Automatic variables are also assigned temporary slots, at the nesting
450 level where they are defined. They are marked a "kept" so that
451 free_temp_slots will not free them. */
452
453 struct temp_slot GTY(())
454 {
455 /* Points to next temporary slot. */
456 struct temp_slot *next;
457 /* Points to previous temporary slot. */
458 struct temp_slot *prev;
459 /* The rtx to used to reference the slot. */
460 rtx slot;
461 /* The alignment (in bits) of the slot. */
462 unsigned int align;
463 /* The size, in units, of the slot. */
464 HOST_WIDE_INT size;
465 /* The type of the object in the slot, or zero if it doesn't correspond
466 to a type. We use this to determine whether a slot can be reused.
467 It can be reused if objects of the type of the new slot will always
468 conflict with objects of the type of the old slot. */
469 tree type;
470 /* Nonzero if this temporary is currently in use. */
471 char in_use;
472 /* Nonzero if this temporary has its address taken. */
473 char addr_taken;
474 /* Nesting level at which this slot is being used. */
475 int level;
476 /* Nonzero if this should survive a call to free_temp_slots. */
477 int keep;
478 /* The offset of the slot from the frame_pointer, including extra space
479 for alignment. This info is for combine_temp_slots. */
480 HOST_WIDE_INT base_offset;
481 /* The size of the slot, including extra space for alignment. This
482 info is for combine_temp_slots. */
483 HOST_WIDE_INT full_size;
484 };
485
486 /* A table of addresses that represent a stack slot. The table is a mapping
487 from address RTXen to a temp slot. */
488 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
489
490 /* Entry for the above hash table. */
491 struct temp_slot_address_entry GTY(())
492 {
493 hashval_t hash;
494 rtx address;
495 struct temp_slot *temp_slot;
496 };
497
498 /* Removes temporary slot TEMP from LIST. */
499
500 static void
501 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
502 {
503 if (temp->next)
504 temp->next->prev = temp->prev;
505 if (temp->prev)
506 temp->prev->next = temp->next;
507 else
508 *list = temp->next;
509
510 temp->prev = temp->next = NULL;
511 }
512
513 /* Inserts temporary slot TEMP to LIST. */
514
515 static void
516 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
517 {
518 temp->next = *list;
519 if (*list)
520 (*list)->prev = temp;
521 temp->prev = NULL;
522 *list = temp;
523 }
524
525 /* Returns the list of used temp slots at LEVEL. */
526
527 static struct temp_slot **
528 temp_slots_at_level (int level)
529 {
530 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
531 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
532
533 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
534 }
535
536 /* Returns the maximal temporary slot level. */
537
538 static int
539 max_slot_level (void)
540 {
541 if (!used_temp_slots)
542 return -1;
543
544 return VEC_length (temp_slot_p, used_temp_slots) - 1;
545 }
546
547 /* Moves temporary slot TEMP to LEVEL. */
548
549 static void
550 move_slot_to_level (struct temp_slot *temp, int level)
551 {
552 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
553 insert_slot_to_list (temp, temp_slots_at_level (level));
554 temp->level = level;
555 }
556
557 /* Make temporary slot TEMP available. */
558
559 static void
560 make_slot_available (struct temp_slot *temp)
561 {
562 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
563 insert_slot_to_list (temp, &avail_temp_slots);
564 temp->in_use = 0;
565 temp->level = -1;
566 }
567
568 /* Compute the hash value for an address -> temp slot mapping.
569 The value is cached on the mapping entry. */
570 static hashval_t
571 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
572 {
573 int do_not_record = 0;
574 return hash_rtx (t->address, GET_MODE (t->address),
575 &do_not_record, NULL, false);
576 }
577
578 /* Return the hash value for an address -> temp slot mapping. */
579 static hashval_t
580 temp_slot_address_hash (const void *p)
581 {
582 const struct temp_slot_address_entry *t;
583 t = (const struct temp_slot_address_entry *) p;
584 return t->hash;
585 }
586
587 /* Compare two address -> temp slot mapping entries. */
588 static int
589 temp_slot_address_eq (const void *p1, const void *p2)
590 {
591 const struct temp_slot_address_entry *t1, *t2;
592 t1 = (const struct temp_slot_address_entry *) p1;
593 t2 = (const struct temp_slot_address_entry *) p2;
594 return exp_equiv_p (t1->address, t2->address, 0, true);
595 }
596
597 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
598 static void
599 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
600 {
601 void **slot;
602 struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
603 t->address = address;
604 t->temp_slot = temp_slot;
605 t->hash = temp_slot_address_compute_hash (t);
606 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
607 *slot = t;
608 }
609
610 /* Remove an address -> temp slot mapping entry if the temp slot is
611 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
612 static int
613 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
614 {
615 const struct temp_slot_address_entry *t;
616 t = (const struct temp_slot_address_entry *) *slot;
617 if (! t->temp_slot->in_use)
618 *slot = NULL;
619 return 1;
620 }
621
622 /* Remove all mappings of addresses to unused temp slots. */
623 static void
624 remove_unused_temp_slot_addresses (void)
625 {
626 htab_traverse (temp_slot_address_table,
627 remove_unused_temp_slot_addresses_1,
628 NULL);
629 }
630
631 /* Find the temp slot corresponding to the object at address X. */
632
633 static struct temp_slot *
634 find_temp_slot_from_address (rtx x)
635 {
636 struct temp_slot *p;
637 struct temp_slot_address_entry tmp, *t;
638
639 /* First try the easy way:
640 See if X exists in the address -> temp slot mapping. */
641 tmp.address = x;
642 tmp.temp_slot = NULL;
643 tmp.hash = temp_slot_address_compute_hash (&tmp);
644 t = (struct temp_slot_address_entry *)
645 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
646 if (t)
647 return t->temp_slot;
648
649 /* If we have a sum involving a register, see if it points to a temp
650 slot. */
651 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
652 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
653 return p;
654 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
655 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
656 return p;
657
658 /* Last resort: Address is a virtual stack var address. */
659 if (GET_CODE (x) == PLUS
660 && XEXP (x, 0) == virtual_stack_vars_rtx
661 && GET_CODE (XEXP (x, 1)) == CONST_INT)
662 {
663 int i;
664 for (i = max_slot_level (); i >= 0; i--)
665 for (p = *temp_slots_at_level (i); p; p = p->next)
666 {
667 if (INTVAL (XEXP (x, 1)) >= p->base_offset
668 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
669 return p;
670 }
671 }
672
673 return NULL;
674 }
675 \f
676 /* Allocate a temporary stack slot and record it for possible later
677 reuse.
678
679 MODE is the machine mode to be given to the returned rtx.
680
681 SIZE is the size in units of the space required. We do no rounding here
682 since assign_stack_local will do any required rounding.
683
684 KEEP is 1 if this slot is to be retained after a call to
685 free_temp_slots. Automatic variables for a block are allocated
686 with this flag. KEEP values of 2 or 3 were needed respectively
687 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
688 or for SAVE_EXPRs, but they are now unused.
689
690 TYPE is the type that will be used for the stack slot. */
691
692 rtx
693 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
694 int keep, tree type)
695 {
696 unsigned int align;
697 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
698 rtx slot;
699
700 /* If SIZE is -1 it means that somebody tried to allocate a temporary
701 of a variable size. */
702 gcc_assert (size != -1);
703
704 /* These are now unused. */
705 gcc_assert (keep <= 1);
706
707 align = get_stack_local_alignment (type, mode);
708
709 /* Try to find an available, already-allocated temporary of the proper
710 mode which meets the size and alignment requirements. Choose the
711 smallest one with the closest alignment.
712
713 If assign_stack_temp is called outside of the tree->rtl expansion,
714 we cannot reuse the stack slots (that may still refer to
715 VIRTUAL_STACK_VARS_REGNUM). */
716 if (!virtuals_instantiated)
717 {
718 for (p = avail_temp_slots; p; p = p->next)
719 {
720 if (p->align >= align && p->size >= size
721 && GET_MODE (p->slot) == mode
722 && objects_must_conflict_p (p->type, type)
723 && (best_p == 0 || best_p->size > p->size
724 || (best_p->size == p->size && best_p->align > p->align)))
725 {
726 if (p->align == align && p->size == size)
727 {
728 selected = p;
729 cut_slot_from_list (selected, &avail_temp_slots);
730 best_p = 0;
731 break;
732 }
733 best_p = p;
734 }
735 }
736 }
737
738 /* Make our best, if any, the one to use. */
739 if (best_p)
740 {
741 selected = best_p;
742 cut_slot_from_list (selected, &avail_temp_slots);
743
744 /* If there are enough aligned bytes left over, make them into a new
745 temp_slot so that the extra bytes don't get wasted. Do this only
746 for BLKmode slots, so that we can be sure of the alignment. */
747 if (GET_MODE (best_p->slot) == BLKmode)
748 {
749 int alignment = best_p->align / BITS_PER_UNIT;
750 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
751
752 if (best_p->size - rounded_size >= alignment)
753 {
754 p = GGC_NEW (struct temp_slot);
755 p->in_use = p->addr_taken = 0;
756 p->size = best_p->size - rounded_size;
757 p->base_offset = best_p->base_offset + rounded_size;
758 p->full_size = best_p->full_size - rounded_size;
759 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
760 p->align = best_p->align;
761 p->type = best_p->type;
762 insert_slot_to_list (p, &avail_temp_slots);
763
764 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
765 stack_slot_list);
766
767 best_p->size = rounded_size;
768 best_p->full_size = rounded_size;
769 }
770 }
771 }
772
773 /* If we still didn't find one, make a new temporary. */
774 if (selected == 0)
775 {
776 HOST_WIDE_INT frame_offset_old = frame_offset;
777
778 p = GGC_NEW (struct temp_slot);
779
780 /* We are passing an explicit alignment request to assign_stack_local.
781 One side effect of that is assign_stack_local will not round SIZE
782 to ensure the frame offset remains suitably aligned.
783
784 So for requests which depended on the rounding of SIZE, we go ahead
785 and round it now. We also make sure ALIGNMENT is at least
786 BIGGEST_ALIGNMENT. */
787 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
788 p->slot = assign_stack_local (mode,
789 (mode == BLKmode
790 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
791 : size),
792 align);
793
794 p->align = align;
795
796 /* The following slot size computation is necessary because we don't
797 know the actual size of the temporary slot until assign_stack_local
798 has performed all the frame alignment and size rounding for the
799 requested temporary. Note that extra space added for alignment
800 can be either above or below this stack slot depending on which
801 way the frame grows. We include the extra space if and only if it
802 is above this slot. */
803 if (FRAME_GROWS_DOWNWARD)
804 p->size = frame_offset_old - frame_offset;
805 else
806 p->size = size;
807
808 /* Now define the fields used by combine_temp_slots. */
809 if (FRAME_GROWS_DOWNWARD)
810 {
811 p->base_offset = frame_offset;
812 p->full_size = frame_offset_old - frame_offset;
813 }
814 else
815 {
816 p->base_offset = frame_offset_old;
817 p->full_size = frame_offset - frame_offset_old;
818 }
819
820 selected = p;
821 }
822
823 p = selected;
824 p->in_use = 1;
825 p->addr_taken = 0;
826 p->type = type;
827 p->level = temp_slot_level;
828 p->keep = keep;
829
830 pp = temp_slots_at_level (p->level);
831 insert_slot_to_list (p, pp);
832 insert_temp_slot_address (XEXP (p->slot, 0), p);
833
834 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
835 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
836 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
837
838 /* If we know the alias set for the memory that will be used, use
839 it. If there's no TYPE, then we don't know anything about the
840 alias set for the memory. */
841 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
842 set_mem_align (slot, align);
843
844 /* If a type is specified, set the relevant flags. */
845 if (type != 0)
846 {
847 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
848 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
849 || TREE_CODE (type) == COMPLEX_TYPE));
850 }
851 MEM_NOTRAP_P (slot) = 1;
852
853 return slot;
854 }
855
856 /* Allocate a temporary stack slot and record it for possible later
857 reuse. First three arguments are same as in preceding function. */
858
859 rtx
860 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
861 {
862 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
863 }
864 \f
865 /* Assign a temporary.
866 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
867 and so that should be used in error messages. In either case, we
868 allocate of the given type.
869 KEEP is as for assign_stack_temp.
870 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
871 it is 0 if a register is OK.
872 DONT_PROMOTE is 1 if we should not promote values in register
873 to wider modes. */
874
875 rtx
876 assign_temp (tree type_or_decl, int keep, int memory_required,
877 int dont_promote ATTRIBUTE_UNUSED)
878 {
879 tree type, decl;
880 enum machine_mode mode;
881 #ifdef PROMOTE_MODE
882 int unsignedp;
883 #endif
884
885 if (DECL_P (type_or_decl))
886 decl = type_or_decl, type = TREE_TYPE (decl);
887 else
888 decl = NULL, type = type_or_decl;
889
890 mode = TYPE_MODE (type);
891 #ifdef PROMOTE_MODE
892 unsignedp = TYPE_UNSIGNED (type);
893 #endif
894
895 if (mode == BLKmode || memory_required)
896 {
897 HOST_WIDE_INT size = int_size_in_bytes (type);
898 rtx tmp;
899
900 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
901 problems with allocating the stack space. */
902 if (size == 0)
903 size = 1;
904
905 /* Unfortunately, we don't yet know how to allocate variable-sized
906 temporaries. However, sometimes we can find a fixed upper limit on
907 the size, so try that instead. */
908 else if (size == -1)
909 size = max_int_size_in_bytes (type);
910
911 /* The size of the temporary may be too large to fit into an integer. */
912 /* ??? Not sure this should happen except for user silliness, so limit
913 this to things that aren't compiler-generated temporaries. The
914 rest of the time we'll die in assign_stack_temp_for_type. */
915 if (decl && size == -1
916 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
917 {
918 error ("size of variable %q+D is too large", decl);
919 size = 1;
920 }
921
922 tmp = assign_stack_temp_for_type (mode, size, keep, type);
923 return tmp;
924 }
925
926 #ifdef PROMOTE_MODE
927 if (! dont_promote)
928 mode = promote_mode (type, mode, &unsignedp, 0);
929 #endif
930
931 return gen_reg_rtx (mode);
932 }
933 \f
934 /* Combine temporary stack slots which are adjacent on the stack.
935
936 This allows for better use of already allocated stack space. This is only
937 done for BLKmode slots because we can be sure that we won't have alignment
938 problems in this case. */
939
940 static void
941 combine_temp_slots (void)
942 {
943 struct temp_slot *p, *q, *next, *next_q;
944 int num_slots;
945
946 /* We can't combine slots, because the information about which slot
947 is in which alias set will be lost. */
948 if (flag_strict_aliasing)
949 return;
950
951 /* If there are a lot of temp slots, don't do anything unless
952 high levels of optimization. */
953 if (! flag_expensive_optimizations)
954 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
955 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
956 return;
957
958 for (p = avail_temp_slots; p; p = next)
959 {
960 int delete_p = 0;
961
962 next = p->next;
963
964 if (GET_MODE (p->slot) != BLKmode)
965 continue;
966
967 for (q = p->next; q; q = next_q)
968 {
969 int delete_q = 0;
970
971 next_q = q->next;
972
973 if (GET_MODE (q->slot) != BLKmode)
974 continue;
975
976 if (p->base_offset + p->full_size == q->base_offset)
977 {
978 /* Q comes after P; combine Q into P. */
979 p->size += q->size;
980 p->full_size += q->full_size;
981 delete_q = 1;
982 }
983 else if (q->base_offset + q->full_size == p->base_offset)
984 {
985 /* P comes after Q; combine P into Q. */
986 q->size += p->size;
987 q->full_size += p->full_size;
988 delete_p = 1;
989 break;
990 }
991 if (delete_q)
992 cut_slot_from_list (q, &avail_temp_slots);
993 }
994
995 /* Either delete P or advance past it. */
996 if (delete_p)
997 cut_slot_from_list (p, &avail_temp_slots);
998 }
999 }
1000 \f
1001 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1002 slot that previously was known by OLD_RTX. */
1003
1004 void
1005 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1006 {
1007 struct temp_slot *p;
1008
1009 if (rtx_equal_p (old_rtx, new_rtx))
1010 return;
1011
1012 p = find_temp_slot_from_address (old_rtx);
1013
1014 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1015 NEW_RTX is a register, see if one operand of the PLUS is a
1016 temporary location. If so, NEW_RTX points into it. Otherwise,
1017 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1018 in common between them. If so, try a recursive call on those
1019 values. */
1020 if (p == 0)
1021 {
1022 if (GET_CODE (old_rtx) != PLUS)
1023 return;
1024
1025 if (REG_P (new_rtx))
1026 {
1027 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1028 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1029 return;
1030 }
1031 else if (GET_CODE (new_rtx) != PLUS)
1032 return;
1033
1034 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1035 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1036 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1037 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1038 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1039 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1040 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1041 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1042
1043 return;
1044 }
1045
1046 /* Otherwise add an alias for the temp's address. */
1047 insert_temp_slot_address (new_rtx, p);
1048 }
1049
1050 /* If X could be a reference to a temporary slot, mark the fact that its
1051 address was taken. */
1052
1053 void
1054 mark_temp_addr_taken (rtx x)
1055 {
1056 struct temp_slot *p;
1057
1058 if (x == 0)
1059 return;
1060
1061 /* If X is not in memory or is at a constant address, it cannot be in
1062 a temporary slot. */
1063 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1064 return;
1065
1066 p = find_temp_slot_from_address (XEXP (x, 0));
1067 if (p != 0)
1068 p->addr_taken = 1;
1069 }
1070
1071 /* If X could be a reference to a temporary slot, mark that slot as
1072 belonging to the to one level higher than the current level. If X
1073 matched one of our slots, just mark that one. Otherwise, we can't
1074 easily predict which it is, so upgrade all of them. Kept slots
1075 need not be touched.
1076
1077 This is called when an ({...}) construct occurs and a statement
1078 returns a value in memory. */
1079
1080 void
1081 preserve_temp_slots (rtx x)
1082 {
1083 struct temp_slot *p = 0, *next;
1084
1085 /* If there is no result, we still might have some objects whose address
1086 were taken, so we need to make sure they stay around. */
1087 if (x == 0)
1088 {
1089 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1090 {
1091 next = p->next;
1092
1093 if (p->addr_taken)
1094 move_slot_to_level (p, temp_slot_level - 1);
1095 }
1096
1097 return;
1098 }
1099
1100 /* If X is a register that is being used as a pointer, see if we have
1101 a temporary slot we know it points to. To be consistent with
1102 the code below, we really should preserve all non-kept slots
1103 if we can't find a match, but that seems to be much too costly. */
1104 if (REG_P (x) && REG_POINTER (x))
1105 p = find_temp_slot_from_address (x);
1106
1107 /* If X is not in memory or is at a constant address, it cannot be in
1108 a temporary slot, but it can contain something whose address was
1109 taken. */
1110 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1111 {
1112 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1113 {
1114 next = p->next;
1115
1116 if (p->addr_taken)
1117 move_slot_to_level (p, temp_slot_level - 1);
1118 }
1119
1120 return;
1121 }
1122
1123 /* First see if we can find a match. */
1124 if (p == 0)
1125 p = find_temp_slot_from_address (XEXP (x, 0));
1126
1127 if (p != 0)
1128 {
1129 /* Move everything at our level whose address was taken to our new
1130 level in case we used its address. */
1131 struct temp_slot *q;
1132
1133 if (p->level == temp_slot_level)
1134 {
1135 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1136 {
1137 next = q->next;
1138
1139 if (p != q && q->addr_taken)
1140 move_slot_to_level (q, temp_slot_level - 1);
1141 }
1142
1143 move_slot_to_level (p, temp_slot_level - 1);
1144 p->addr_taken = 0;
1145 }
1146 return;
1147 }
1148
1149 /* Otherwise, preserve all non-kept slots at this level. */
1150 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1151 {
1152 next = p->next;
1153
1154 if (!p->keep)
1155 move_slot_to_level (p, temp_slot_level - 1);
1156 }
1157 }
1158
1159 /* Free all temporaries used so far. This is normally called at the
1160 end of generating code for a statement. */
1161
1162 void
1163 free_temp_slots (void)
1164 {
1165 struct temp_slot *p, *next;
1166
1167 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1168 {
1169 next = p->next;
1170
1171 if (!p->keep)
1172 make_slot_available (p);
1173 }
1174
1175 remove_unused_temp_slot_addresses ();
1176 combine_temp_slots ();
1177 }
1178
1179 /* Push deeper into the nesting level for stack temporaries. */
1180
1181 void
1182 push_temp_slots (void)
1183 {
1184 temp_slot_level++;
1185 }
1186
1187 /* Pop a temporary nesting level. All slots in use in the current level
1188 are freed. */
1189
1190 void
1191 pop_temp_slots (void)
1192 {
1193 struct temp_slot *p, *next;
1194
1195 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1196 {
1197 next = p->next;
1198 make_slot_available (p);
1199 }
1200
1201 remove_unused_temp_slot_addresses ();
1202 combine_temp_slots ();
1203
1204 temp_slot_level--;
1205 }
1206
1207 /* Initialize temporary slots. */
1208
1209 void
1210 init_temp_slots (void)
1211 {
1212 /* We have not allocated any temporaries yet. */
1213 avail_temp_slots = 0;
1214 used_temp_slots = 0;
1215 temp_slot_level = 0;
1216
1217 /* Set up the table to map addresses to temp slots. */
1218 if (! temp_slot_address_table)
1219 temp_slot_address_table = htab_create_ggc (32,
1220 temp_slot_address_hash,
1221 temp_slot_address_eq,
1222 NULL);
1223 else
1224 htab_empty (temp_slot_address_table);
1225 }
1226 \f
1227 /* These routines are responsible for converting virtual register references
1228 to the actual hard register references once RTL generation is complete.
1229
1230 The following four variables are used for communication between the
1231 routines. They contain the offsets of the virtual registers from their
1232 respective hard registers. */
1233
1234 static int in_arg_offset;
1235 static int var_offset;
1236 static int dynamic_offset;
1237 static int out_arg_offset;
1238 static int cfa_offset;
1239
1240 /* In most machines, the stack pointer register is equivalent to the bottom
1241 of the stack. */
1242
1243 #ifndef STACK_POINTER_OFFSET
1244 #define STACK_POINTER_OFFSET 0
1245 #endif
1246
1247 /* If not defined, pick an appropriate default for the offset of dynamically
1248 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1249 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1250
1251 #ifndef STACK_DYNAMIC_OFFSET
1252
1253 /* The bottom of the stack points to the actual arguments. If
1254 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1255 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1256 stack space for register parameters is not pushed by the caller, but
1257 rather part of the fixed stack areas and hence not included in
1258 `crtl->outgoing_args_size'. Nevertheless, we must allow
1259 for it when allocating stack dynamic objects. */
1260
1261 #if defined(REG_PARM_STACK_SPACE)
1262 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1263 ((ACCUMULATE_OUTGOING_ARGS \
1264 ? (crtl->outgoing_args_size \
1265 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1266 : REG_PARM_STACK_SPACE (FNDECL))) \
1267 : 0) + (STACK_POINTER_OFFSET))
1268 #else
1269 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1270 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1271 + (STACK_POINTER_OFFSET))
1272 #endif
1273 #endif
1274
1275 \f
1276 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1277 is a virtual register, return the equivalent hard register and set the
1278 offset indirectly through the pointer. Otherwise, return 0. */
1279
1280 static rtx
1281 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1282 {
1283 rtx new_rtx;
1284 HOST_WIDE_INT offset;
1285
1286 if (x == virtual_incoming_args_rtx)
1287 {
1288 if (stack_realign_drap)
1289 {
1290 /* Replace virtual_incoming_args_rtx with internal arg
1291 pointer if DRAP is used to realign stack. */
1292 new_rtx = crtl->args.internal_arg_pointer;
1293 offset = 0;
1294 }
1295 else
1296 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1297 }
1298 else if (x == virtual_stack_vars_rtx)
1299 new_rtx = frame_pointer_rtx, offset = var_offset;
1300 else if (x == virtual_stack_dynamic_rtx)
1301 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1302 else if (x == virtual_outgoing_args_rtx)
1303 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1304 else if (x == virtual_cfa_rtx)
1305 {
1306 #ifdef FRAME_POINTER_CFA_OFFSET
1307 new_rtx = frame_pointer_rtx;
1308 #else
1309 new_rtx = arg_pointer_rtx;
1310 #endif
1311 offset = cfa_offset;
1312 }
1313 else
1314 return NULL_RTX;
1315
1316 *poffset = offset;
1317 return new_rtx;
1318 }
1319
1320 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1321 Instantiate any virtual registers present inside of *LOC. The expression
1322 is simplified, as much as possible, but is not to be considered "valid"
1323 in any sense implied by the target. If any change is made, set CHANGED
1324 to true. */
1325
1326 static int
1327 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1328 {
1329 HOST_WIDE_INT offset;
1330 bool *changed = (bool *) data;
1331 rtx x, new_rtx;
1332
1333 x = *loc;
1334 if (x == 0)
1335 return 0;
1336
1337 switch (GET_CODE (x))
1338 {
1339 case REG:
1340 new_rtx = instantiate_new_reg (x, &offset);
1341 if (new_rtx)
1342 {
1343 *loc = plus_constant (new_rtx, offset);
1344 if (changed)
1345 *changed = true;
1346 }
1347 return -1;
1348
1349 case PLUS:
1350 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1351 if (new_rtx)
1352 {
1353 new_rtx = plus_constant (new_rtx, offset);
1354 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1355 if (changed)
1356 *changed = true;
1357 return -1;
1358 }
1359
1360 /* FIXME -- from old code */
1361 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1362 we can commute the PLUS and SUBREG because pointers into the
1363 frame are well-behaved. */
1364 break;
1365
1366 default:
1367 break;
1368 }
1369
1370 return 0;
1371 }
1372
1373 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1374 matches the predicate for insn CODE operand OPERAND. */
1375
1376 static int
1377 safe_insn_predicate (int code, int operand, rtx x)
1378 {
1379 const struct insn_operand_data *op_data;
1380
1381 if (code < 0)
1382 return true;
1383
1384 op_data = &insn_data[code].operand[operand];
1385 if (op_data->predicate == NULL)
1386 return true;
1387
1388 return op_data->predicate (x, op_data->mode);
1389 }
1390
1391 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1392 registers present inside of insn. The result will be a valid insn. */
1393
1394 static void
1395 instantiate_virtual_regs_in_insn (rtx insn)
1396 {
1397 HOST_WIDE_INT offset;
1398 int insn_code, i;
1399 bool any_change = false;
1400 rtx set, new_rtx, x, seq;
1401
1402 /* There are some special cases to be handled first. */
1403 set = single_set (insn);
1404 if (set)
1405 {
1406 /* We're allowed to assign to a virtual register. This is interpreted
1407 to mean that the underlying register gets assigned the inverse
1408 transformation. This is used, for example, in the handling of
1409 non-local gotos. */
1410 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1411 if (new_rtx)
1412 {
1413 start_sequence ();
1414
1415 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1416 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1417 GEN_INT (-offset));
1418 x = force_operand (x, new_rtx);
1419 if (x != new_rtx)
1420 emit_move_insn (new_rtx, x);
1421
1422 seq = get_insns ();
1423 end_sequence ();
1424
1425 emit_insn_before (seq, insn);
1426 delete_insn (insn);
1427 return;
1428 }
1429
1430 /* Handle a straight copy from a virtual register by generating a
1431 new add insn. The difference between this and falling through
1432 to the generic case is avoiding a new pseudo and eliminating a
1433 move insn in the initial rtl stream. */
1434 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1435 if (new_rtx && offset != 0
1436 && REG_P (SET_DEST (set))
1437 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1438 {
1439 start_sequence ();
1440
1441 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1442 new_rtx, GEN_INT (offset), SET_DEST (set),
1443 1, OPTAB_LIB_WIDEN);
1444 if (x != SET_DEST (set))
1445 emit_move_insn (SET_DEST (set), x);
1446
1447 seq = get_insns ();
1448 end_sequence ();
1449
1450 emit_insn_before (seq, insn);
1451 delete_insn (insn);
1452 return;
1453 }
1454
1455 extract_insn (insn);
1456 insn_code = INSN_CODE (insn);
1457
1458 /* Handle a plus involving a virtual register by determining if the
1459 operands remain valid if they're modified in place. */
1460 if (GET_CODE (SET_SRC (set)) == PLUS
1461 && recog_data.n_operands >= 3
1462 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1463 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1464 && GET_CODE (recog_data.operand[2]) == CONST_INT
1465 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1466 {
1467 offset += INTVAL (recog_data.operand[2]);
1468
1469 /* If the sum is zero, then replace with a plain move. */
1470 if (offset == 0
1471 && REG_P (SET_DEST (set))
1472 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1473 {
1474 start_sequence ();
1475 emit_move_insn (SET_DEST (set), new_rtx);
1476 seq = get_insns ();
1477 end_sequence ();
1478
1479 emit_insn_before (seq, insn);
1480 delete_insn (insn);
1481 return;
1482 }
1483
1484 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1485
1486 /* Using validate_change and apply_change_group here leaves
1487 recog_data in an invalid state. Since we know exactly what
1488 we want to check, do those two by hand. */
1489 if (safe_insn_predicate (insn_code, 1, new_rtx)
1490 && safe_insn_predicate (insn_code, 2, x))
1491 {
1492 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1493 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1494 any_change = true;
1495
1496 /* Fall through into the regular operand fixup loop in
1497 order to take care of operands other than 1 and 2. */
1498 }
1499 }
1500 }
1501 else
1502 {
1503 extract_insn (insn);
1504 insn_code = INSN_CODE (insn);
1505 }
1506
1507 /* In the general case, we expect virtual registers to appear only in
1508 operands, and then only as either bare registers or inside memories. */
1509 for (i = 0; i < recog_data.n_operands; ++i)
1510 {
1511 x = recog_data.operand[i];
1512 switch (GET_CODE (x))
1513 {
1514 case MEM:
1515 {
1516 rtx addr = XEXP (x, 0);
1517 bool changed = false;
1518
1519 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1520 if (!changed)
1521 continue;
1522
1523 start_sequence ();
1524 x = replace_equiv_address (x, addr);
1525 /* It may happen that the address with the virtual reg
1526 was valid (e.g. based on the virtual stack reg, which might
1527 be acceptable to the predicates with all offsets), whereas
1528 the address now isn't anymore, for instance when the address
1529 is still offsetted, but the base reg isn't virtual-stack-reg
1530 anymore. Below we would do a force_reg on the whole operand,
1531 but this insn might actually only accept memory. Hence,
1532 before doing that last resort, try to reload the address into
1533 a register, so this operand stays a MEM. */
1534 if (!safe_insn_predicate (insn_code, i, x))
1535 {
1536 addr = force_reg (GET_MODE (addr), addr);
1537 x = replace_equiv_address (x, addr);
1538 }
1539 seq = get_insns ();
1540 end_sequence ();
1541 if (seq)
1542 emit_insn_before (seq, insn);
1543 }
1544 break;
1545
1546 case REG:
1547 new_rtx = instantiate_new_reg (x, &offset);
1548 if (new_rtx == NULL)
1549 continue;
1550 if (offset == 0)
1551 x = new_rtx;
1552 else
1553 {
1554 start_sequence ();
1555
1556 /* Careful, special mode predicates may have stuff in
1557 insn_data[insn_code].operand[i].mode that isn't useful
1558 to us for computing a new value. */
1559 /* ??? Recognize address_operand and/or "p" constraints
1560 to see if (plus new offset) is a valid before we put
1561 this through expand_simple_binop. */
1562 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1563 GEN_INT (offset), NULL_RTX,
1564 1, OPTAB_LIB_WIDEN);
1565 seq = get_insns ();
1566 end_sequence ();
1567 emit_insn_before (seq, insn);
1568 }
1569 break;
1570
1571 case SUBREG:
1572 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1573 if (new_rtx == NULL)
1574 continue;
1575 if (offset != 0)
1576 {
1577 start_sequence ();
1578 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1579 GEN_INT (offset), NULL_RTX,
1580 1, OPTAB_LIB_WIDEN);
1581 seq = get_insns ();
1582 end_sequence ();
1583 emit_insn_before (seq, insn);
1584 }
1585 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1586 GET_MODE (new_rtx), SUBREG_BYTE (x));
1587 gcc_assert (x);
1588 break;
1589
1590 default:
1591 continue;
1592 }
1593
1594 /* At this point, X contains the new value for the operand.
1595 Validate the new value vs the insn predicate. Note that
1596 asm insns will have insn_code -1 here. */
1597 if (!safe_insn_predicate (insn_code, i, x))
1598 {
1599 start_sequence ();
1600 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1601 seq = get_insns ();
1602 end_sequence ();
1603 if (seq)
1604 emit_insn_before (seq, insn);
1605 }
1606
1607 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1608 any_change = true;
1609 }
1610
1611 if (any_change)
1612 {
1613 /* Propagate operand changes into the duplicates. */
1614 for (i = 0; i < recog_data.n_dups; ++i)
1615 *recog_data.dup_loc[i]
1616 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1617
1618 /* Force re-recognition of the instruction for validation. */
1619 INSN_CODE (insn) = -1;
1620 }
1621
1622 if (asm_noperands (PATTERN (insn)) >= 0)
1623 {
1624 if (!check_asm_operands (PATTERN (insn)))
1625 {
1626 error_for_asm (insn, "impossible constraint in %<asm%>");
1627 delete_insn (insn);
1628 }
1629 }
1630 else
1631 {
1632 if (recog_memoized (insn) < 0)
1633 fatal_insn_not_found (insn);
1634 }
1635 }
1636
1637 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1638 do any instantiation required. */
1639
1640 void
1641 instantiate_decl_rtl (rtx x)
1642 {
1643 rtx addr;
1644
1645 if (x == 0)
1646 return;
1647
1648 /* If this is a CONCAT, recurse for the pieces. */
1649 if (GET_CODE (x) == CONCAT)
1650 {
1651 instantiate_decl_rtl (XEXP (x, 0));
1652 instantiate_decl_rtl (XEXP (x, 1));
1653 return;
1654 }
1655
1656 /* If this is not a MEM, no need to do anything. Similarly if the
1657 address is a constant or a register that is not a virtual register. */
1658 if (!MEM_P (x))
1659 return;
1660
1661 addr = XEXP (x, 0);
1662 if (CONSTANT_P (addr)
1663 || (REG_P (addr)
1664 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1665 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1666 return;
1667
1668 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1669 }
1670
1671 /* Helper for instantiate_decls called via walk_tree: Process all decls
1672 in the given DECL_VALUE_EXPR. */
1673
1674 static tree
1675 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1676 {
1677 tree t = *tp;
1678 if (! EXPR_P (t))
1679 {
1680 *walk_subtrees = 0;
1681 if (DECL_P (t) && DECL_RTL_SET_P (t))
1682 instantiate_decl_rtl (DECL_RTL (t));
1683 }
1684 return NULL;
1685 }
1686
1687 /* Subroutine of instantiate_decls: Process all decls in the given
1688 BLOCK node and all its subblocks. */
1689
1690 static void
1691 instantiate_decls_1 (tree let)
1692 {
1693 tree t;
1694
1695 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1696 {
1697 if (DECL_RTL_SET_P (t))
1698 instantiate_decl_rtl (DECL_RTL (t));
1699 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1700 {
1701 tree v = DECL_VALUE_EXPR (t);
1702 walk_tree (&v, instantiate_expr, NULL, NULL);
1703 }
1704 }
1705
1706 /* Process all subblocks. */
1707 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1708 instantiate_decls_1 (t);
1709 }
1710
1711 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1712 all virtual registers in their DECL_RTL's. */
1713
1714 static void
1715 instantiate_decls (tree fndecl)
1716 {
1717 tree decl, t, next;
1718
1719 /* Process all parameters of the function. */
1720 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1721 {
1722 instantiate_decl_rtl (DECL_RTL (decl));
1723 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1724 if (DECL_HAS_VALUE_EXPR_P (decl))
1725 {
1726 tree v = DECL_VALUE_EXPR (decl);
1727 walk_tree (&v, instantiate_expr, NULL, NULL);
1728 }
1729 }
1730
1731 /* Now process all variables defined in the function or its subblocks. */
1732 instantiate_decls_1 (DECL_INITIAL (fndecl));
1733
1734 t = cfun->local_decls;
1735 cfun->local_decls = NULL_TREE;
1736 for (; t; t = next)
1737 {
1738 next = TREE_CHAIN (t);
1739 decl = TREE_VALUE (t);
1740 if (DECL_RTL_SET_P (decl))
1741 instantiate_decl_rtl (DECL_RTL (decl));
1742 ggc_free (t);
1743 }
1744 }
1745
1746 /* Pass through the INSNS of function FNDECL and convert virtual register
1747 references to hard register references. */
1748
1749 static unsigned int
1750 instantiate_virtual_regs (void)
1751 {
1752 rtx insn;
1753
1754 /* Compute the offsets to use for this function. */
1755 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1756 var_offset = STARTING_FRAME_OFFSET;
1757 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1758 out_arg_offset = STACK_POINTER_OFFSET;
1759 #ifdef FRAME_POINTER_CFA_OFFSET
1760 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1761 #else
1762 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1763 #endif
1764
1765 /* Initialize recognition, indicating that volatile is OK. */
1766 init_recog ();
1767
1768 /* Scan through all the insns, instantiating every virtual register still
1769 present. */
1770 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1771 if (INSN_P (insn))
1772 {
1773 /* These patterns in the instruction stream can never be recognized.
1774 Fortunately, they shouldn't contain virtual registers either. */
1775 if (GET_CODE (PATTERN (insn)) == USE
1776 || GET_CODE (PATTERN (insn)) == CLOBBER
1777 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1778 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1779 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1780 continue;
1781
1782 instantiate_virtual_regs_in_insn (insn);
1783
1784 if (INSN_DELETED_P (insn))
1785 continue;
1786
1787 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1788
1789 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1790 if (GET_CODE (insn) == CALL_INSN)
1791 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1792 instantiate_virtual_regs_in_rtx, NULL);
1793 }
1794
1795 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1796 instantiate_decls (current_function_decl);
1797
1798 targetm.instantiate_decls ();
1799
1800 /* Indicate that, from now on, assign_stack_local should use
1801 frame_pointer_rtx. */
1802 virtuals_instantiated = 1;
1803 return 0;
1804 }
1805
1806 struct rtl_opt_pass pass_instantiate_virtual_regs =
1807 {
1808 {
1809 RTL_PASS,
1810 "vregs", /* name */
1811 NULL, /* gate */
1812 instantiate_virtual_regs, /* execute */
1813 NULL, /* sub */
1814 NULL, /* next */
1815 0, /* static_pass_number */
1816 0, /* tv_id */
1817 0, /* properties_required */
1818 0, /* properties_provided */
1819 0, /* properties_destroyed */
1820 0, /* todo_flags_start */
1821 TODO_dump_func /* todo_flags_finish */
1822 }
1823 };
1824
1825 \f
1826 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1827 This means a type for which function calls must pass an address to the
1828 function or get an address back from the function.
1829 EXP may be a type node or an expression (whose type is tested). */
1830
1831 int
1832 aggregate_value_p (const_tree exp, const_tree fntype)
1833 {
1834 int i, regno, nregs;
1835 rtx reg;
1836
1837 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1838
1839 /* DECL node associated with FNTYPE when relevant, which we might need to
1840 check for by-invisible-reference returns, typically for CALL_EXPR input
1841 EXPressions. */
1842 const_tree fndecl = NULL_TREE;
1843
1844 if (fntype)
1845 switch (TREE_CODE (fntype))
1846 {
1847 case CALL_EXPR:
1848 fndecl = get_callee_fndecl (fntype);
1849 fntype = (fndecl
1850 ? TREE_TYPE (fndecl)
1851 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1852 break;
1853 case FUNCTION_DECL:
1854 fndecl = fntype;
1855 fntype = TREE_TYPE (fndecl);
1856 break;
1857 case FUNCTION_TYPE:
1858 case METHOD_TYPE:
1859 break;
1860 case IDENTIFIER_NODE:
1861 fntype = 0;
1862 break;
1863 default:
1864 /* We don't expect other rtl types here. */
1865 gcc_unreachable ();
1866 }
1867
1868 if (TREE_CODE (type) == VOID_TYPE)
1869 return 0;
1870
1871 /* If the front end has decided that this needs to be passed by
1872 reference, do so. */
1873 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1874 && DECL_BY_REFERENCE (exp))
1875 return 1;
1876
1877 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1878 called function RESULT_DECL, meaning the function returns in memory by
1879 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1880 on the function type, which used to be the way to request such a return
1881 mechanism but might now be causing troubles at gimplification time if
1882 temporaries with the function type need to be created. */
1883 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1884 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1885 return 1;
1886
1887 if (targetm.calls.return_in_memory (type, fntype))
1888 return 1;
1889 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1890 and thus can't be returned in registers. */
1891 if (TREE_ADDRESSABLE (type))
1892 return 1;
1893 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1894 return 1;
1895 /* Make sure we have suitable call-clobbered regs to return
1896 the value in; if not, we must return it in memory. */
1897 reg = hard_function_value (type, 0, fntype, 0);
1898
1899 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1900 it is OK. */
1901 if (!REG_P (reg))
1902 return 0;
1903
1904 regno = REGNO (reg);
1905 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1906 for (i = 0; i < nregs; i++)
1907 if (! call_used_regs[regno + i])
1908 return 1;
1909 return 0;
1910 }
1911 \f
1912 /* Return true if we should assign DECL a pseudo register; false if it
1913 should live on the local stack. */
1914
1915 bool
1916 use_register_for_decl (const_tree decl)
1917 {
1918 if (!targetm.calls.allocate_stack_slots_for_args())
1919 return true;
1920
1921 /* Honor volatile. */
1922 if (TREE_SIDE_EFFECTS (decl))
1923 return false;
1924
1925 /* Honor addressability. */
1926 if (TREE_ADDRESSABLE (decl))
1927 return false;
1928
1929 /* Only register-like things go in registers. */
1930 if (DECL_MODE (decl) == BLKmode)
1931 return false;
1932
1933 /* If -ffloat-store specified, don't put explicit float variables
1934 into registers. */
1935 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1936 propagates values across these stores, and it probably shouldn't. */
1937 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1938 return false;
1939
1940 /* If we're not interested in tracking debugging information for
1941 this decl, then we can certainly put it in a register. */
1942 if (DECL_IGNORED_P (decl))
1943 return true;
1944
1945 return (optimize || DECL_REGISTER (decl));
1946 }
1947
1948 /* Return true if TYPE should be passed by invisible reference. */
1949
1950 bool
1951 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1952 tree type, bool named_arg)
1953 {
1954 if (type)
1955 {
1956 /* If this type contains non-trivial constructors, then it is
1957 forbidden for the middle-end to create any new copies. */
1958 if (TREE_ADDRESSABLE (type))
1959 return true;
1960
1961 /* GCC post 3.4 passes *all* variable sized types by reference. */
1962 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1963 return true;
1964 }
1965
1966 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1967 }
1968
1969 /* Return true if TYPE, which is passed by reference, should be callee
1970 copied instead of caller copied. */
1971
1972 bool
1973 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1974 tree type, bool named_arg)
1975 {
1976 if (type && TREE_ADDRESSABLE (type))
1977 return false;
1978 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1979 }
1980
1981 /* Structures to communicate between the subroutines of assign_parms.
1982 The first holds data persistent across all parameters, the second
1983 is cleared out for each parameter. */
1984
1985 struct assign_parm_data_all
1986 {
1987 CUMULATIVE_ARGS args_so_far;
1988 struct args_size stack_args_size;
1989 tree function_result_decl;
1990 tree orig_fnargs;
1991 rtx first_conversion_insn;
1992 rtx last_conversion_insn;
1993 HOST_WIDE_INT pretend_args_size;
1994 HOST_WIDE_INT extra_pretend_bytes;
1995 int reg_parm_stack_space;
1996 };
1997
1998 struct assign_parm_data_one
1999 {
2000 tree nominal_type;
2001 tree passed_type;
2002 rtx entry_parm;
2003 rtx stack_parm;
2004 enum machine_mode nominal_mode;
2005 enum machine_mode passed_mode;
2006 enum machine_mode promoted_mode;
2007 struct locate_and_pad_arg_data locate;
2008 int partial;
2009 BOOL_BITFIELD named_arg : 1;
2010 BOOL_BITFIELD passed_pointer : 1;
2011 BOOL_BITFIELD on_stack : 1;
2012 BOOL_BITFIELD loaded_in_reg : 1;
2013 };
2014
2015 /* A subroutine of assign_parms. Initialize ALL. */
2016
2017 static void
2018 assign_parms_initialize_all (struct assign_parm_data_all *all)
2019 {
2020 tree fntype;
2021
2022 memset (all, 0, sizeof (*all));
2023
2024 fntype = TREE_TYPE (current_function_decl);
2025
2026 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2027 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2028 #else
2029 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2030 current_function_decl, -1);
2031 #endif
2032
2033 #ifdef REG_PARM_STACK_SPACE
2034 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2035 #endif
2036 }
2037
2038 /* If ARGS contains entries with complex types, split the entry into two
2039 entries of the component type. Return a new list of substitutions are
2040 needed, else the old list. */
2041
2042 static tree
2043 split_complex_args (tree args)
2044 {
2045 tree p;
2046
2047 /* Before allocating memory, check for the common case of no complex. */
2048 for (p = args; p; p = TREE_CHAIN (p))
2049 {
2050 tree type = TREE_TYPE (p);
2051 if (TREE_CODE (type) == COMPLEX_TYPE
2052 && targetm.calls.split_complex_arg (type))
2053 goto found;
2054 }
2055 return args;
2056
2057 found:
2058 args = copy_list (args);
2059
2060 for (p = args; p; p = TREE_CHAIN (p))
2061 {
2062 tree type = TREE_TYPE (p);
2063 if (TREE_CODE (type) == COMPLEX_TYPE
2064 && targetm.calls.split_complex_arg (type))
2065 {
2066 tree decl;
2067 tree subtype = TREE_TYPE (type);
2068 bool addressable = TREE_ADDRESSABLE (p);
2069
2070 /* Rewrite the PARM_DECL's type with its component. */
2071 TREE_TYPE (p) = subtype;
2072 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2073 DECL_MODE (p) = VOIDmode;
2074 DECL_SIZE (p) = NULL;
2075 DECL_SIZE_UNIT (p) = NULL;
2076 /* If this arg must go in memory, put it in a pseudo here.
2077 We can't allow it to go in memory as per normal parms,
2078 because the usual place might not have the imag part
2079 adjacent to the real part. */
2080 DECL_ARTIFICIAL (p) = addressable;
2081 DECL_IGNORED_P (p) = addressable;
2082 TREE_ADDRESSABLE (p) = 0;
2083 layout_decl (p, 0);
2084
2085 /* Build a second synthetic decl. */
2086 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2087 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2088 DECL_ARTIFICIAL (decl) = addressable;
2089 DECL_IGNORED_P (decl) = addressable;
2090 layout_decl (decl, 0);
2091
2092 /* Splice it in; skip the new decl. */
2093 TREE_CHAIN (decl) = TREE_CHAIN (p);
2094 TREE_CHAIN (p) = decl;
2095 p = decl;
2096 }
2097 }
2098
2099 return args;
2100 }
2101
2102 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2103 the hidden struct return argument, and (abi willing) complex args.
2104 Return the new parameter list. */
2105
2106 static tree
2107 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2108 {
2109 tree fndecl = current_function_decl;
2110 tree fntype = TREE_TYPE (fndecl);
2111 tree fnargs = DECL_ARGUMENTS (fndecl);
2112
2113 /* If struct value address is treated as the first argument, make it so. */
2114 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2115 && ! cfun->returns_pcc_struct
2116 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2117 {
2118 tree type = build_pointer_type (TREE_TYPE (fntype));
2119 tree decl;
2120
2121 decl = build_decl (PARM_DECL, NULL_TREE, type);
2122 DECL_ARG_TYPE (decl) = type;
2123 DECL_ARTIFICIAL (decl) = 1;
2124 DECL_IGNORED_P (decl) = 1;
2125
2126 TREE_CHAIN (decl) = fnargs;
2127 fnargs = decl;
2128 all->function_result_decl = decl;
2129 }
2130
2131 all->orig_fnargs = fnargs;
2132
2133 /* If the target wants to split complex arguments into scalars, do so. */
2134 if (targetm.calls.split_complex_arg)
2135 fnargs = split_complex_args (fnargs);
2136
2137 return fnargs;
2138 }
2139
2140 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2141 data for the parameter. Incorporate ABI specifics such as pass-by-
2142 reference and type promotion. */
2143
2144 static void
2145 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2146 struct assign_parm_data_one *data)
2147 {
2148 tree nominal_type, passed_type;
2149 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2150
2151 memset (data, 0, sizeof (*data));
2152
2153 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2154 if (!cfun->stdarg)
2155 data->named_arg = 1; /* No variadic parms. */
2156 else if (TREE_CHAIN (parm))
2157 data->named_arg = 1; /* Not the last non-variadic parm. */
2158 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2159 data->named_arg = 1; /* Only variadic ones are unnamed. */
2160 else
2161 data->named_arg = 0; /* Treat as variadic. */
2162
2163 nominal_type = TREE_TYPE (parm);
2164 passed_type = DECL_ARG_TYPE (parm);
2165
2166 /* Look out for errors propagating this far. Also, if the parameter's
2167 type is void then its value doesn't matter. */
2168 if (TREE_TYPE (parm) == error_mark_node
2169 /* This can happen after weird syntax errors
2170 or if an enum type is defined among the parms. */
2171 || TREE_CODE (parm) != PARM_DECL
2172 || passed_type == NULL
2173 || VOID_TYPE_P (nominal_type))
2174 {
2175 nominal_type = passed_type = void_type_node;
2176 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2177 goto egress;
2178 }
2179
2180 /* Find mode of arg as it is passed, and mode of arg as it should be
2181 during execution of this function. */
2182 passed_mode = TYPE_MODE (passed_type);
2183 nominal_mode = TYPE_MODE (nominal_type);
2184
2185 /* If the parm is to be passed as a transparent union, use the type of
2186 the first field for the tests below. We have already verified that
2187 the modes are the same. */
2188 if (TREE_CODE (passed_type) == UNION_TYPE
2189 && TYPE_TRANSPARENT_UNION (passed_type))
2190 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2191
2192 /* See if this arg was passed by invisible reference. */
2193 if (pass_by_reference (&all->args_so_far, passed_mode,
2194 passed_type, data->named_arg))
2195 {
2196 passed_type = nominal_type = build_pointer_type (passed_type);
2197 data->passed_pointer = true;
2198 passed_mode = nominal_mode = Pmode;
2199 }
2200
2201 /* Find mode as it is passed by the ABI. */
2202 promoted_mode = passed_mode;
2203 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2204 {
2205 int unsignedp = TYPE_UNSIGNED (passed_type);
2206 promoted_mode = promote_mode (passed_type, promoted_mode,
2207 &unsignedp, 1);
2208 }
2209
2210 egress:
2211 data->nominal_type = nominal_type;
2212 data->passed_type = passed_type;
2213 data->nominal_mode = nominal_mode;
2214 data->passed_mode = passed_mode;
2215 data->promoted_mode = promoted_mode;
2216 }
2217
2218 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2219
2220 static void
2221 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2222 struct assign_parm_data_one *data, bool no_rtl)
2223 {
2224 int varargs_pretend_bytes = 0;
2225
2226 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2227 data->promoted_mode,
2228 data->passed_type,
2229 &varargs_pretend_bytes, no_rtl);
2230
2231 /* If the back-end has requested extra stack space, record how much is
2232 needed. Do not change pretend_args_size otherwise since it may be
2233 nonzero from an earlier partial argument. */
2234 if (varargs_pretend_bytes > 0)
2235 all->pretend_args_size = varargs_pretend_bytes;
2236 }
2237
2238 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2239 the incoming location of the current parameter. */
2240
2241 static void
2242 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2243 struct assign_parm_data_one *data)
2244 {
2245 HOST_WIDE_INT pretend_bytes = 0;
2246 rtx entry_parm;
2247 bool in_regs;
2248
2249 if (data->promoted_mode == VOIDmode)
2250 {
2251 data->entry_parm = data->stack_parm = const0_rtx;
2252 return;
2253 }
2254
2255 #ifdef FUNCTION_INCOMING_ARG
2256 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2257 data->passed_type, data->named_arg);
2258 #else
2259 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2260 data->passed_type, data->named_arg);
2261 #endif
2262
2263 if (entry_parm == 0)
2264 data->promoted_mode = data->passed_mode;
2265
2266 /* Determine parm's home in the stack, in case it arrives in the stack
2267 or we should pretend it did. Compute the stack position and rtx where
2268 the argument arrives and its size.
2269
2270 There is one complexity here: If this was a parameter that would
2271 have been passed in registers, but wasn't only because it is
2272 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2273 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2274 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2275 as it was the previous time. */
2276 in_regs = entry_parm != 0;
2277 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2278 in_regs = true;
2279 #endif
2280 if (!in_regs && !data->named_arg)
2281 {
2282 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2283 {
2284 rtx tem;
2285 #ifdef FUNCTION_INCOMING_ARG
2286 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2287 data->passed_type, true);
2288 #else
2289 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2290 data->passed_type, true);
2291 #endif
2292 in_regs = tem != NULL;
2293 }
2294 }
2295
2296 /* If this parameter was passed both in registers and in the stack, use
2297 the copy on the stack. */
2298 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2299 data->passed_type))
2300 entry_parm = 0;
2301
2302 if (entry_parm)
2303 {
2304 int partial;
2305
2306 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2307 data->promoted_mode,
2308 data->passed_type,
2309 data->named_arg);
2310 data->partial = partial;
2311
2312 /* The caller might already have allocated stack space for the
2313 register parameters. */
2314 if (partial != 0 && all->reg_parm_stack_space == 0)
2315 {
2316 /* Part of this argument is passed in registers and part
2317 is passed on the stack. Ask the prologue code to extend
2318 the stack part so that we can recreate the full value.
2319
2320 PRETEND_BYTES is the size of the registers we need to store.
2321 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2322 stack space that the prologue should allocate.
2323
2324 Internally, gcc assumes that the argument pointer is aligned
2325 to STACK_BOUNDARY bits. This is used both for alignment
2326 optimizations (see init_emit) and to locate arguments that are
2327 aligned to more than PARM_BOUNDARY bits. We must preserve this
2328 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2329 a stack boundary. */
2330
2331 /* We assume at most one partial arg, and it must be the first
2332 argument on the stack. */
2333 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2334
2335 pretend_bytes = partial;
2336 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2337
2338 /* We want to align relative to the actual stack pointer, so
2339 don't include this in the stack size until later. */
2340 all->extra_pretend_bytes = all->pretend_args_size;
2341 }
2342 }
2343
2344 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2345 entry_parm ? data->partial : 0, current_function_decl,
2346 &all->stack_args_size, &data->locate);
2347
2348 /* Update parm_stack_boundary if this parameter is passed in the
2349 stack. */
2350 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2351 crtl->parm_stack_boundary = data->locate.boundary;
2352
2353 /* Adjust offsets to include the pretend args. */
2354 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2355 data->locate.slot_offset.constant += pretend_bytes;
2356 data->locate.offset.constant += pretend_bytes;
2357
2358 data->entry_parm = entry_parm;
2359 }
2360
2361 /* A subroutine of assign_parms. If there is actually space on the stack
2362 for this parm, count it in stack_args_size and return true. */
2363
2364 static bool
2365 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2366 struct assign_parm_data_one *data)
2367 {
2368 /* Trivially true if we've no incoming register. */
2369 if (data->entry_parm == NULL)
2370 ;
2371 /* Also true if we're partially in registers and partially not,
2372 since we've arranged to drop the entire argument on the stack. */
2373 else if (data->partial != 0)
2374 ;
2375 /* Also true if the target says that it's passed in both registers
2376 and on the stack. */
2377 else if (GET_CODE (data->entry_parm) == PARALLEL
2378 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2379 ;
2380 /* Also true if the target says that there's stack allocated for
2381 all register parameters. */
2382 else if (all->reg_parm_stack_space > 0)
2383 ;
2384 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2385 else
2386 return false;
2387
2388 all->stack_args_size.constant += data->locate.size.constant;
2389 if (data->locate.size.var)
2390 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2391
2392 return true;
2393 }
2394
2395 /* A subroutine of assign_parms. Given that this parameter is allocated
2396 stack space by the ABI, find it. */
2397
2398 static void
2399 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2400 {
2401 rtx offset_rtx, stack_parm;
2402 unsigned int align, boundary;
2403
2404 /* If we're passing this arg using a reg, make its stack home the
2405 aligned stack slot. */
2406 if (data->entry_parm)
2407 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2408 else
2409 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2410
2411 stack_parm = crtl->args.internal_arg_pointer;
2412 if (offset_rtx != const0_rtx)
2413 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2414 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2415
2416 set_mem_attributes (stack_parm, parm, 1);
2417 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2418 while promoted mode's size is needed. */
2419 if (data->promoted_mode != BLKmode
2420 && data->promoted_mode != DECL_MODE (parm))
2421 {
2422 set_mem_size (stack_parm, GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2423 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2424 {
2425 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2426 data->promoted_mode);
2427 if (offset)
2428 set_mem_offset (stack_parm,
2429 plus_constant (MEM_OFFSET (stack_parm), -offset));
2430 }
2431 }
2432
2433 boundary = data->locate.boundary;
2434 align = BITS_PER_UNIT;
2435
2436 /* If we're padding upward, we know that the alignment of the slot
2437 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2438 intentionally forcing upward padding. Otherwise we have to come
2439 up with a guess at the alignment based on OFFSET_RTX. */
2440 if (data->locate.where_pad != downward || data->entry_parm)
2441 align = boundary;
2442 else if (GET_CODE (offset_rtx) == CONST_INT)
2443 {
2444 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2445 align = align & -align;
2446 }
2447 set_mem_align (stack_parm, align);
2448
2449 if (data->entry_parm)
2450 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2451
2452 data->stack_parm = stack_parm;
2453 }
2454
2455 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2456 always valid and contiguous. */
2457
2458 static void
2459 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2460 {
2461 rtx entry_parm = data->entry_parm;
2462 rtx stack_parm = data->stack_parm;
2463
2464 /* If this parm was passed part in regs and part in memory, pretend it
2465 arrived entirely in memory by pushing the register-part onto the stack.
2466 In the special case of a DImode or DFmode that is split, we could put
2467 it together in a pseudoreg directly, but for now that's not worth
2468 bothering with. */
2469 if (data->partial != 0)
2470 {
2471 /* Handle calls that pass values in multiple non-contiguous
2472 locations. The Irix 6 ABI has examples of this. */
2473 if (GET_CODE (entry_parm) == PARALLEL)
2474 emit_group_store (validize_mem (stack_parm), entry_parm,
2475 data->passed_type,
2476 int_size_in_bytes (data->passed_type));
2477 else
2478 {
2479 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2480 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2481 data->partial / UNITS_PER_WORD);
2482 }
2483
2484 entry_parm = stack_parm;
2485 }
2486
2487 /* If we didn't decide this parm came in a register, by default it came
2488 on the stack. */
2489 else if (entry_parm == NULL)
2490 entry_parm = stack_parm;
2491
2492 /* When an argument is passed in multiple locations, we can't make use
2493 of this information, but we can save some copying if the whole argument
2494 is passed in a single register. */
2495 else if (GET_CODE (entry_parm) == PARALLEL
2496 && data->nominal_mode != BLKmode
2497 && data->passed_mode != BLKmode)
2498 {
2499 size_t i, len = XVECLEN (entry_parm, 0);
2500
2501 for (i = 0; i < len; i++)
2502 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2503 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2504 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2505 == data->passed_mode)
2506 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2507 {
2508 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2509 break;
2510 }
2511 }
2512
2513 data->entry_parm = entry_parm;
2514 }
2515
2516 /* A subroutine of assign_parms. Reconstitute any values which were
2517 passed in multiple registers and would fit in a single register. */
2518
2519 static void
2520 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2521 {
2522 rtx entry_parm = data->entry_parm;
2523
2524 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2525 This can be done with register operations rather than on the
2526 stack, even if we will store the reconstituted parameter on the
2527 stack later. */
2528 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2529 {
2530 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2531 emit_group_store (parmreg, entry_parm, data->passed_type,
2532 GET_MODE_SIZE (GET_MODE (entry_parm)));
2533 entry_parm = parmreg;
2534 }
2535
2536 data->entry_parm = entry_parm;
2537 }
2538
2539 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2540 always valid and properly aligned. */
2541
2542 static void
2543 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2544 {
2545 rtx stack_parm = data->stack_parm;
2546
2547 /* If we can't trust the parm stack slot to be aligned enough for its
2548 ultimate type, don't use that slot after entry. We'll make another
2549 stack slot, if we need one. */
2550 if (stack_parm
2551 && ((STRICT_ALIGNMENT
2552 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2553 || (data->nominal_type
2554 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2555 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2556 stack_parm = NULL;
2557
2558 /* If parm was passed in memory, and we need to convert it on entry,
2559 don't store it back in that same slot. */
2560 else if (data->entry_parm == stack_parm
2561 && data->nominal_mode != BLKmode
2562 && data->nominal_mode != data->passed_mode)
2563 stack_parm = NULL;
2564
2565 /* If stack protection is in effect for this function, don't leave any
2566 pointers in their passed stack slots. */
2567 else if (crtl->stack_protect_guard
2568 && (flag_stack_protect == 2
2569 || data->passed_pointer
2570 || POINTER_TYPE_P (data->nominal_type)))
2571 stack_parm = NULL;
2572
2573 data->stack_parm = stack_parm;
2574 }
2575
2576 /* A subroutine of assign_parms. Return true if the current parameter
2577 should be stored as a BLKmode in the current frame. */
2578
2579 static bool
2580 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2581 {
2582 if (data->nominal_mode == BLKmode)
2583 return true;
2584 if (GET_MODE (data->entry_parm) == BLKmode)
2585 return true;
2586
2587 #ifdef BLOCK_REG_PADDING
2588 /* Only assign_parm_setup_block knows how to deal with register arguments
2589 that are padded at the least significant end. */
2590 if (REG_P (data->entry_parm)
2591 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2592 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2593 == (BYTES_BIG_ENDIAN ? upward : downward)))
2594 return true;
2595 #endif
2596
2597 return false;
2598 }
2599
2600 /* A subroutine of assign_parms. Arrange for the parameter to be
2601 present and valid in DATA->STACK_RTL. */
2602
2603 static void
2604 assign_parm_setup_block (struct assign_parm_data_all *all,
2605 tree parm, struct assign_parm_data_one *data)
2606 {
2607 rtx entry_parm = data->entry_parm;
2608 rtx stack_parm = data->stack_parm;
2609 HOST_WIDE_INT size;
2610 HOST_WIDE_INT size_stored;
2611
2612 if (GET_CODE (entry_parm) == PARALLEL)
2613 entry_parm = emit_group_move_into_temps (entry_parm);
2614
2615 size = int_size_in_bytes (data->passed_type);
2616 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2617 if (stack_parm == 0)
2618 {
2619 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2620 stack_parm = assign_stack_local (BLKmode, size_stored,
2621 DECL_ALIGN (parm));
2622 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2623 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2624 set_mem_attributes (stack_parm, parm, 1);
2625 }
2626
2627 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2628 calls that pass values in multiple non-contiguous locations. */
2629 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2630 {
2631 rtx mem;
2632
2633 /* Note that we will be storing an integral number of words.
2634 So we have to be careful to ensure that we allocate an
2635 integral number of words. We do this above when we call
2636 assign_stack_local if space was not allocated in the argument
2637 list. If it was, this will not work if PARM_BOUNDARY is not
2638 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2639 if it becomes a problem. Exception is when BLKmode arrives
2640 with arguments not conforming to word_mode. */
2641
2642 if (data->stack_parm == 0)
2643 ;
2644 else if (GET_CODE (entry_parm) == PARALLEL)
2645 ;
2646 else
2647 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2648
2649 mem = validize_mem (stack_parm);
2650
2651 /* Handle values in multiple non-contiguous locations. */
2652 if (GET_CODE (entry_parm) == PARALLEL)
2653 {
2654 push_to_sequence2 (all->first_conversion_insn,
2655 all->last_conversion_insn);
2656 emit_group_store (mem, entry_parm, data->passed_type, size);
2657 all->first_conversion_insn = get_insns ();
2658 all->last_conversion_insn = get_last_insn ();
2659 end_sequence ();
2660 }
2661
2662 else if (size == 0)
2663 ;
2664
2665 /* If SIZE is that of a mode no bigger than a word, just use
2666 that mode's store operation. */
2667 else if (size <= UNITS_PER_WORD)
2668 {
2669 enum machine_mode mode
2670 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2671
2672 if (mode != BLKmode
2673 #ifdef BLOCK_REG_PADDING
2674 && (size == UNITS_PER_WORD
2675 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2676 != (BYTES_BIG_ENDIAN ? upward : downward)))
2677 #endif
2678 )
2679 {
2680 rtx reg;
2681
2682 /* We are really truncating a word_mode value containing
2683 SIZE bytes into a value of mode MODE. If such an
2684 operation requires no actual instructions, we can refer
2685 to the value directly in mode MODE, otherwise we must
2686 start with the register in word_mode and explicitly
2687 convert it. */
2688 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2689 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2690 else
2691 {
2692 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2693 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2694 }
2695 emit_move_insn (change_address (mem, mode, 0), reg);
2696 }
2697
2698 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2699 machine must be aligned to the left before storing
2700 to memory. Note that the previous test doesn't
2701 handle all cases (e.g. SIZE == 3). */
2702 else if (size != UNITS_PER_WORD
2703 #ifdef BLOCK_REG_PADDING
2704 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2705 == downward)
2706 #else
2707 && BYTES_BIG_ENDIAN
2708 #endif
2709 )
2710 {
2711 rtx tem, x;
2712 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2713 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2714
2715 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2716 build_int_cst (NULL_TREE, by),
2717 NULL_RTX, 1);
2718 tem = change_address (mem, word_mode, 0);
2719 emit_move_insn (tem, x);
2720 }
2721 else
2722 move_block_from_reg (REGNO (entry_parm), mem,
2723 size_stored / UNITS_PER_WORD);
2724 }
2725 else
2726 move_block_from_reg (REGNO (entry_parm), mem,
2727 size_stored / UNITS_PER_WORD);
2728 }
2729 else if (data->stack_parm == 0)
2730 {
2731 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2732 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2733 BLOCK_OP_NORMAL);
2734 all->first_conversion_insn = get_insns ();
2735 all->last_conversion_insn = get_last_insn ();
2736 end_sequence ();
2737 }
2738
2739 data->stack_parm = stack_parm;
2740 SET_DECL_RTL (parm, stack_parm);
2741 }
2742
2743 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2744 parameter. Get it there. Perform all ABI specified conversions. */
2745
2746 static void
2747 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2748 struct assign_parm_data_one *data)
2749 {
2750 rtx parmreg;
2751 enum machine_mode promoted_nominal_mode;
2752 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2753 bool did_conversion = false;
2754
2755 /* Store the parm in a pseudoregister during the function, but we may
2756 need to do it in a wider mode. */
2757
2758 /* This is not really promoting for a call. However we need to be
2759 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2760 promoted_nominal_mode
2761 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2762
2763 parmreg = gen_reg_rtx (promoted_nominal_mode);
2764
2765 if (!DECL_ARTIFICIAL (parm))
2766 mark_user_reg (parmreg);
2767
2768 /* If this was an item that we received a pointer to,
2769 set DECL_RTL appropriately. */
2770 if (data->passed_pointer)
2771 {
2772 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2773 set_mem_attributes (x, parm, 1);
2774 SET_DECL_RTL (parm, x);
2775 }
2776 else
2777 SET_DECL_RTL (parm, parmreg);
2778
2779 assign_parm_remove_parallels (data);
2780
2781 /* Copy the value into the register. */
2782 if (data->nominal_mode != data->passed_mode
2783 || promoted_nominal_mode != data->promoted_mode)
2784 {
2785 int save_tree_used;
2786
2787 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2788 mode, by the caller. We now have to convert it to
2789 NOMINAL_MODE, if different. However, PARMREG may be in
2790 a different mode than NOMINAL_MODE if it is being stored
2791 promoted.
2792
2793 If ENTRY_PARM is a hard register, it might be in a register
2794 not valid for operating in its mode (e.g., an odd-numbered
2795 register for a DFmode). In that case, moves are the only
2796 thing valid, so we can't do a convert from there. This
2797 occurs when the calling sequence allow such misaligned
2798 usages.
2799
2800 In addition, the conversion may involve a call, which could
2801 clobber parameters which haven't been copied to pseudo
2802 registers yet. Therefore, we must first copy the parm to
2803 a pseudo reg here, and save the conversion until after all
2804 parameters have been moved. */
2805
2806 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2807
2808 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2809
2810 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2811 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2812
2813 if (GET_CODE (tempreg) == SUBREG
2814 && GET_MODE (tempreg) == data->nominal_mode
2815 && REG_P (SUBREG_REG (tempreg))
2816 && data->nominal_mode == data->passed_mode
2817 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2818 && GET_MODE_SIZE (GET_MODE (tempreg))
2819 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2820 {
2821 /* The argument is already sign/zero extended, so note it
2822 into the subreg. */
2823 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2824 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2825 }
2826
2827 /* TREE_USED gets set erroneously during expand_assignment. */
2828 save_tree_used = TREE_USED (parm);
2829 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2830 TREE_USED (parm) = save_tree_used;
2831 all->first_conversion_insn = get_insns ();
2832 all->last_conversion_insn = get_last_insn ();
2833 end_sequence ();
2834
2835 did_conversion = true;
2836 }
2837 else
2838 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2839
2840 /* If we were passed a pointer but the actual value can safely live
2841 in a register, put it in one. */
2842 if (data->passed_pointer
2843 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2844 /* If by-reference argument was promoted, demote it. */
2845 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2846 || use_register_for_decl (parm)))
2847 {
2848 /* We can't use nominal_mode, because it will have been set to
2849 Pmode above. We must use the actual mode of the parm. */
2850 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2851 mark_user_reg (parmreg);
2852
2853 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2854 {
2855 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2856 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2857
2858 push_to_sequence2 (all->first_conversion_insn,
2859 all->last_conversion_insn);
2860 emit_move_insn (tempreg, DECL_RTL (parm));
2861 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2862 emit_move_insn (parmreg, tempreg);
2863 all->first_conversion_insn = get_insns ();
2864 all->last_conversion_insn = get_last_insn ();
2865 end_sequence ();
2866
2867 did_conversion = true;
2868 }
2869 else
2870 emit_move_insn (parmreg, DECL_RTL (parm));
2871
2872 SET_DECL_RTL (parm, parmreg);
2873
2874 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2875 now the parm. */
2876 data->stack_parm = NULL;
2877 }
2878
2879 /* Mark the register as eliminable if we did no conversion and it was
2880 copied from memory at a fixed offset, and the arg pointer was not
2881 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2882 offset formed an invalid address, such memory-equivalences as we
2883 make here would screw up life analysis for it. */
2884 if (data->nominal_mode == data->passed_mode
2885 && !did_conversion
2886 && data->stack_parm != 0
2887 && MEM_P (data->stack_parm)
2888 && data->locate.offset.var == 0
2889 && reg_mentioned_p (virtual_incoming_args_rtx,
2890 XEXP (data->stack_parm, 0)))
2891 {
2892 rtx linsn = get_last_insn ();
2893 rtx sinsn, set;
2894
2895 /* Mark complex types separately. */
2896 if (GET_CODE (parmreg) == CONCAT)
2897 {
2898 enum machine_mode submode
2899 = GET_MODE_INNER (GET_MODE (parmreg));
2900 int regnor = REGNO (XEXP (parmreg, 0));
2901 int regnoi = REGNO (XEXP (parmreg, 1));
2902 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2903 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2904 GET_MODE_SIZE (submode));
2905
2906 /* Scan backwards for the set of the real and
2907 imaginary parts. */
2908 for (sinsn = linsn; sinsn != 0;
2909 sinsn = prev_nonnote_insn (sinsn))
2910 {
2911 set = single_set (sinsn);
2912 if (set == 0)
2913 continue;
2914
2915 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2916 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2917 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2918 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2919 }
2920 }
2921 else if ((set = single_set (linsn)) != 0
2922 && SET_DEST (set) == parmreg)
2923 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2924 }
2925
2926 /* For pointer data type, suggest pointer register. */
2927 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2928 mark_reg_pointer (parmreg,
2929 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2930 }
2931
2932 /* A subroutine of assign_parms. Allocate stack space to hold the current
2933 parameter. Get it there. Perform all ABI specified conversions. */
2934
2935 static void
2936 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2937 struct assign_parm_data_one *data)
2938 {
2939 /* Value must be stored in the stack slot STACK_PARM during function
2940 execution. */
2941 bool to_conversion = false;
2942
2943 assign_parm_remove_parallels (data);
2944
2945 if (data->promoted_mode != data->nominal_mode)
2946 {
2947 /* Conversion is required. */
2948 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2949
2950 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2951
2952 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2953 to_conversion = true;
2954
2955 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2956 TYPE_UNSIGNED (TREE_TYPE (parm)));
2957
2958 if (data->stack_parm)
2959 /* ??? This may need a big-endian conversion on sparc64. */
2960 data->stack_parm
2961 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2962 }
2963
2964 if (data->entry_parm != data->stack_parm)
2965 {
2966 rtx src, dest;
2967
2968 if (data->stack_parm == 0)
2969 {
2970 data->stack_parm
2971 = assign_stack_local (GET_MODE (data->entry_parm),
2972 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2973 TYPE_ALIGN (data->passed_type));
2974 set_mem_attributes (data->stack_parm, parm, 1);
2975 }
2976
2977 dest = validize_mem (data->stack_parm);
2978 src = validize_mem (data->entry_parm);
2979
2980 if (MEM_P (src))
2981 {
2982 /* Use a block move to handle potentially misaligned entry_parm. */
2983 if (!to_conversion)
2984 push_to_sequence2 (all->first_conversion_insn,
2985 all->last_conversion_insn);
2986 to_conversion = true;
2987
2988 emit_block_move (dest, src,
2989 GEN_INT (int_size_in_bytes (data->passed_type)),
2990 BLOCK_OP_NORMAL);
2991 }
2992 else
2993 emit_move_insn (dest, src);
2994 }
2995
2996 if (to_conversion)
2997 {
2998 all->first_conversion_insn = get_insns ();
2999 all->last_conversion_insn = get_last_insn ();
3000 end_sequence ();
3001 }
3002
3003 SET_DECL_RTL (parm, data->stack_parm);
3004 }
3005
3006 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3007 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3008
3009 static void
3010 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
3011 {
3012 tree parm;
3013 tree orig_fnargs = all->orig_fnargs;
3014
3015 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
3016 {
3017 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3018 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3019 {
3020 rtx tmp, real, imag;
3021 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3022
3023 real = DECL_RTL (fnargs);
3024 imag = DECL_RTL (TREE_CHAIN (fnargs));
3025 if (inner != GET_MODE (real))
3026 {
3027 real = gen_lowpart_SUBREG (inner, real);
3028 imag = gen_lowpart_SUBREG (inner, imag);
3029 }
3030
3031 if (TREE_ADDRESSABLE (parm))
3032 {
3033 rtx rmem, imem;
3034 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3035
3036 /* split_complex_arg put the real and imag parts in
3037 pseudos. Move them to memory. */
3038 tmp = assign_stack_local (DECL_MODE (parm), size,
3039 TYPE_ALIGN (TREE_TYPE (parm)));
3040 set_mem_attributes (tmp, parm, 1);
3041 rmem = adjust_address_nv (tmp, inner, 0);
3042 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3043 push_to_sequence2 (all->first_conversion_insn,
3044 all->last_conversion_insn);
3045 emit_move_insn (rmem, real);
3046 emit_move_insn (imem, imag);
3047 all->first_conversion_insn = get_insns ();
3048 all->last_conversion_insn = get_last_insn ();
3049 end_sequence ();
3050 }
3051 else
3052 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3053 SET_DECL_RTL (parm, tmp);
3054
3055 real = DECL_INCOMING_RTL (fnargs);
3056 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3057 if (inner != GET_MODE (real))
3058 {
3059 real = gen_lowpart_SUBREG (inner, real);
3060 imag = gen_lowpart_SUBREG (inner, imag);
3061 }
3062 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3063 set_decl_incoming_rtl (parm, tmp, false);
3064 fnargs = TREE_CHAIN (fnargs);
3065 }
3066 else
3067 {
3068 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3069 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
3070
3071 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3072 instead of the copy of decl, i.e. FNARGS. */
3073 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3074 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3075 }
3076
3077 fnargs = TREE_CHAIN (fnargs);
3078 }
3079 }
3080
3081 /* Assign RTL expressions to the function's parameters. This may involve
3082 copying them into registers and using those registers as the DECL_RTL. */
3083
3084 static void
3085 assign_parms (tree fndecl)
3086 {
3087 struct assign_parm_data_all all;
3088 tree fnargs, parm;
3089
3090 crtl->args.internal_arg_pointer
3091 = targetm.calls.internal_arg_pointer ();
3092
3093 assign_parms_initialize_all (&all);
3094 fnargs = assign_parms_augmented_arg_list (&all);
3095
3096 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3097 {
3098 struct assign_parm_data_one data;
3099
3100 /* Extract the type of PARM; adjust it according to ABI. */
3101 assign_parm_find_data_types (&all, parm, &data);
3102
3103 /* Early out for errors and void parameters. */
3104 if (data.passed_mode == VOIDmode)
3105 {
3106 SET_DECL_RTL (parm, const0_rtx);
3107 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3108 continue;
3109 }
3110
3111 /* Estimate stack alignment from parameter alignment. */
3112 if (SUPPORTS_STACK_ALIGNMENT)
3113 {
3114 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3115 data.passed_type);
3116 if (TYPE_ALIGN (data.nominal_type) > align)
3117 align = TYPE_ALIGN (data.passed_type);
3118 if (crtl->stack_alignment_estimated < align)
3119 {
3120 gcc_assert (!crtl->stack_realign_processed);
3121 crtl->stack_alignment_estimated = align;
3122 }
3123 }
3124
3125 if (cfun->stdarg && !TREE_CHAIN (parm))
3126 assign_parms_setup_varargs (&all, &data, false);
3127
3128 /* Find out where the parameter arrives in this function. */
3129 assign_parm_find_entry_rtl (&all, &data);
3130
3131 /* Find out where stack space for this parameter might be. */
3132 if (assign_parm_is_stack_parm (&all, &data))
3133 {
3134 assign_parm_find_stack_rtl (parm, &data);
3135 assign_parm_adjust_entry_rtl (&data);
3136 }
3137
3138 /* Record permanently how this parm was passed. */
3139 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3140
3141 /* Update info on where next arg arrives in registers. */
3142 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3143 data.passed_type, data.named_arg);
3144
3145 assign_parm_adjust_stack_rtl (&data);
3146
3147 if (assign_parm_setup_block_p (&data))
3148 assign_parm_setup_block (&all, parm, &data);
3149 else if (data.passed_pointer || use_register_for_decl (parm))
3150 assign_parm_setup_reg (&all, parm, &data);
3151 else
3152 assign_parm_setup_stack (&all, parm, &data);
3153 }
3154
3155 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3156 assign_parms_unsplit_complex (&all, fnargs);
3157
3158 /* Output all parameter conversion instructions (possibly including calls)
3159 now that all parameters have been copied out of hard registers. */
3160 emit_insn (all.first_conversion_insn);
3161
3162 /* Estimate reload stack alignment from scalar return mode. */
3163 if (SUPPORTS_STACK_ALIGNMENT)
3164 {
3165 if (DECL_RESULT (fndecl))
3166 {
3167 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3168 enum machine_mode mode = TYPE_MODE (type);
3169
3170 if (mode != BLKmode
3171 && mode != VOIDmode
3172 && !AGGREGATE_TYPE_P (type))
3173 {
3174 unsigned int align = GET_MODE_ALIGNMENT (mode);
3175 if (crtl->stack_alignment_estimated < align)
3176 {
3177 gcc_assert (!crtl->stack_realign_processed);
3178 crtl->stack_alignment_estimated = align;
3179 }
3180 }
3181 }
3182 }
3183
3184 /* If we are receiving a struct value address as the first argument, set up
3185 the RTL for the function result. As this might require code to convert
3186 the transmitted address to Pmode, we do this here to ensure that possible
3187 preliminary conversions of the address have been emitted already. */
3188 if (all.function_result_decl)
3189 {
3190 tree result = DECL_RESULT (current_function_decl);
3191 rtx addr = DECL_RTL (all.function_result_decl);
3192 rtx x;
3193
3194 if (DECL_BY_REFERENCE (result))
3195 x = addr;
3196 else
3197 {
3198 addr = convert_memory_address (Pmode, addr);
3199 x = gen_rtx_MEM (DECL_MODE (result), addr);
3200 set_mem_attributes (x, result, 1);
3201 }
3202 SET_DECL_RTL (result, x);
3203 }
3204
3205 /* We have aligned all the args, so add space for the pretend args. */
3206 crtl->args.pretend_args_size = all.pretend_args_size;
3207 all.stack_args_size.constant += all.extra_pretend_bytes;
3208 crtl->args.size = all.stack_args_size.constant;
3209
3210 /* Adjust function incoming argument size for alignment and
3211 minimum length. */
3212
3213 #ifdef REG_PARM_STACK_SPACE
3214 crtl->args.size = MAX (crtl->args.size,
3215 REG_PARM_STACK_SPACE (fndecl));
3216 #endif
3217
3218 crtl->args.size = CEIL_ROUND (crtl->args.size,
3219 PARM_BOUNDARY / BITS_PER_UNIT);
3220
3221 #ifdef ARGS_GROW_DOWNWARD
3222 crtl->args.arg_offset_rtx
3223 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3224 : expand_expr (size_diffop (all.stack_args_size.var,
3225 size_int (-all.stack_args_size.constant)),
3226 NULL_RTX, VOIDmode, 0));
3227 #else
3228 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3229 #endif
3230
3231 /* See how many bytes, if any, of its args a function should try to pop
3232 on return. */
3233
3234 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3235 crtl->args.size);
3236
3237 /* For stdarg.h function, save info about
3238 regs and stack space used by the named args. */
3239
3240 crtl->args.info = all.args_so_far;
3241
3242 /* Set the rtx used for the function return value. Put this in its
3243 own variable so any optimizers that need this information don't have
3244 to include tree.h. Do this here so it gets done when an inlined
3245 function gets output. */
3246
3247 crtl->return_rtx
3248 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3249 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3250
3251 /* If scalar return value was computed in a pseudo-reg, or was a named
3252 return value that got dumped to the stack, copy that to the hard
3253 return register. */
3254 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3255 {
3256 tree decl_result = DECL_RESULT (fndecl);
3257 rtx decl_rtl = DECL_RTL (decl_result);
3258
3259 if (REG_P (decl_rtl)
3260 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3261 : DECL_REGISTER (decl_result))
3262 {
3263 rtx real_decl_rtl;
3264
3265 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3266 fndecl, true);
3267 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3268 /* The delay slot scheduler assumes that crtl->return_rtx
3269 holds the hard register containing the return value, not a
3270 temporary pseudo. */
3271 crtl->return_rtx = real_decl_rtl;
3272 }
3273 }
3274 }
3275
3276 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3277 For all seen types, gimplify their sizes. */
3278
3279 static tree
3280 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3281 {
3282 tree t = *tp;
3283
3284 *walk_subtrees = 0;
3285 if (TYPE_P (t))
3286 {
3287 if (POINTER_TYPE_P (t))
3288 *walk_subtrees = 1;
3289 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3290 && !TYPE_SIZES_GIMPLIFIED (t))
3291 {
3292 gimplify_type_sizes (t, (gimple_seq *) data);
3293 *walk_subtrees = 1;
3294 }
3295 }
3296
3297 return NULL;
3298 }
3299
3300 /* Gimplify the parameter list for current_function_decl. This involves
3301 evaluating SAVE_EXPRs of variable sized parameters and generating code
3302 to implement callee-copies reference parameters. Returns a sequence of
3303 statements to add to the beginning of the function. */
3304
3305 gimple_seq
3306 gimplify_parameters (void)
3307 {
3308 struct assign_parm_data_all all;
3309 tree fnargs, parm;
3310 gimple_seq stmts = NULL;
3311
3312 assign_parms_initialize_all (&all);
3313 fnargs = assign_parms_augmented_arg_list (&all);
3314
3315 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3316 {
3317 struct assign_parm_data_one data;
3318
3319 /* Extract the type of PARM; adjust it according to ABI. */
3320 assign_parm_find_data_types (&all, parm, &data);
3321
3322 /* Early out for errors and void parameters. */
3323 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3324 continue;
3325
3326 /* Update info on where next arg arrives in registers. */
3327 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3328 data.passed_type, data.named_arg);
3329
3330 /* ??? Once upon a time variable_size stuffed parameter list
3331 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3332 turned out to be less than manageable in the gimple world.
3333 Now we have to hunt them down ourselves. */
3334 walk_tree_without_duplicates (&data.passed_type,
3335 gimplify_parm_type, &stmts);
3336
3337 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3338 {
3339 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3340 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3341 }
3342
3343 if (data.passed_pointer)
3344 {
3345 tree type = TREE_TYPE (data.passed_type);
3346 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3347 type, data.named_arg))
3348 {
3349 tree local, t;
3350
3351 /* For constant-sized objects, this is trivial; for
3352 variable-sized objects, we have to play games. */
3353 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3354 && !(flag_stack_check == GENERIC_STACK_CHECK
3355 && compare_tree_int (DECL_SIZE_UNIT (parm),
3356 STACK_CHECK_MAX_VAR_SIZE) > 0))
3357 {
3358 local = create_tmp_var (type, get_name (parm));
3359 DECL_IGNORED_P (local) = 0;
3360 /* If PARM was addressable, move that flag over
3361 to the local copy, as its address will be taken,
3362 not the PARMs. */
3363 if (TREE_ADDRESSABLE (parm))
3364 {
3365 TREE_ADDRESSABLE (parm) = 0;
3366 TREE_ADDRESSABLE (local) = 1;
3367 }
3368 }
3369 else
3370 {
3371 tree ptr_type, addr;
3372
3373 ptr_type = build_pointer_type (type);
3374 addr = create_tmp_var (ptr_type, get_name (parm));
3375 DECL_IGNORED_P (addr) = 0;
3376 local = build_fold_indirect_ref (addr);
3377
3378 t = built_in_decls[BUILT_IN_ALLOCA];
3379 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3380 t = fold_convert (ptr_type, t);
3381 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3382 gimplify_and_add (t, &stmts);
3383 }
3384
3385 gimplify_assign (local, parm, &stmts);
3386
3387 SET_DECL_VALUE_EXPR (parm, local);
3388 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3389 }
3390 }
3391 }
3392
3393 return stmts;
3394 }
3395 \f
3396 /* Compute the size and offset from the start of the stacked arguments for a
3397 parm passed in mode PASSED_MODE and with type TYPE.
3398
3399 INITIAL_OFFSET_PTR points to the current offset into the stacked
3400 arguments.
3401
3402 The starting offset and size for this parm are returned in
3403 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3404 nonzero, the offset is that of stack slot, which is returned in
3405 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3406 padding required from the initial offset ptr to the stack slot.
3407
3408 IN_REGS is nonzero if the argument will be passed in registers. It will
3409 never be set if REG_PARM_STACK_SPACE is not defined.
3410
3411 FNDECL is the function in which the argument was defined.
3412
3413 There are two types of rounding that are done. The first, controlled by
3414 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3415 list to be aligned to the specific boundary (in bits). This rounding
3416 affects the initial and starting offsets, but not the argument size.
3417
3418 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3419 optionally rounds the size of the parm to PARM_BOUNDARY. The
3420 initial offset is not affected by this rounding, while the size always
3421 is and the starting offset may be. */
3422
3423 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3424 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3425 callers pass in the total size of args so far as
3426 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3427
3428 void
3429 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3430 int partial, tree fndecl ATTRIBUTE_UNUSED,
3431 struct args_size *initial_offset_ptr,
3432 struct locate_and_pad_arg_data *locate)
3433 {
3434 tree sizetree;
3435 enum direction where_pad;
3436 unsigned int boundary;
3437 int reg_parm_stack_space = 0;
3438 int part_size_in_regs;
3439
3440 #ifdef REG_PARM_STACK_SPACE
3441 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3442
3443 /* If we have found a stack parm before we reach the end of the
3444 area reserved for registers, skip that area. */
3445 if (! in_regs)
3446 {
3447 if (reg_parm_stack_space > 0)
3448 {
3449 if (initial_offset_ptr->var)
3450 {
3451 initial_offset_ptr->var
3452 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3453 ssize_int (reg_parm_stack_space));
3454 initial_offset_ptr->constant = 0;
3455 }
3456 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3457 initial_offset_ptr->constant = reg_parm_stack_space;
3458 }
3459 }
3460 #endif /* REG_PARM_STACK_SPACE */
3461
3462 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3463
3464 sizetree
3465 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3466 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3467 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3468 locate->where_pad = where_pad;
3469
3470 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3471 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3472 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3473
3474 locate->boundary = boundary;
3475
3476 if (SUPPORTS_STACK_ALIGNMENT)
3477 {
3478 /* stack_alignment_estimated can't change after stack has been
3479 realigned. */
3480 if (crtl->stack_alignment_estimated < boundary)
3481 {
3482 if (!crtl->stack_realign_processed)
3483 crtl->stack_alignment_estimated = boundary;
3484 else
3485 {
3486 /* If stack is realigned and stack alignment value
3487 hasn't been finalized, it is OK not to increase
3488 stack_alignment_estimated. The bigger alignment
3489 requirement is recorded in stack_alignment_needed
3490 below. */
3491 gcc_assert (!crtl->stack_realign_finalized
3492 && crtl->stack_realign_needed);
3493 }
3494 }
3495 }
3496
3497 /* Remember if the outgoing parameter requires extra alignment on the
3498 calling function side. */
3499 if (crtl->stack_alignment_needed < boundary)
3500 crtl->stack_alignment_needed = boundary;
3501 if (crtl->max_used_stack_slot_alignment < crtl->stack_alignment_needed)
3502 crtl->max_used_stack_slot_alignment = crtl->stack_alignment_needed;
3503 if (crtl->preferred_stack_boundary < boundary)
3504 crtl->preferred_stack_boundary = boundary;
3505
3506 #ifdef ARGS_GROW_DOWNWARD
3507 locate->slot_offset.constant = -initial_offset_ptr->constant;
3508 if (initial_offset_ptr->var)
3509 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3510 initial_offset_ptr->var);
3511
3512 {
3513 tree s2 = sizetree;
3514 if (where_pad != none
3515 && (!host_integerp (sizetree, 1)
3516 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3517 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3518 SUB_PARM_SIZE (locate->slot_offset, s2);
3519 }
3520
3521 locate->slot_offset.constant += part_size_in_regs;
3522
3523 if (!in_regs
3524 #ifdef REG_PARM_STACK_SPACE
3525 || REG_PARM_STACK_SPACE (fndecl) > 0
3526 #endif
3527 )
3528 pad_to_arg_alignment (&locate->slot_offset, boundary,
3529 &locate->alignment_pad);
3530
3531 locate->size.constant = (-initial_offset_ptr->constant
3532 - locate->slot_offset.constant);
3533 if (initial_offset_ptr->var)
3534 locate->size.var = size_binop (MINUS_EXPR,
3535 size_binop (MINUS_EXPR,
3536 ssize_int (0),
3537 initial_offset_ptr->var),
3538 locate->slot_offset.var);
3539
3540 /* Pad_below needs the pre-rounded size to know how much to pad
3541 below. */
3542 locate->offset = locate->slot_offset;
3543 if (where_pad == downward)
3544 pad_below (&locate->offset, passed_mode, sizetree);
3545
3546 #else /* !ARGS_GROW_DOWNWARD */
3547 if (!in_regs
3548 #ifdef REG_PARM_STACK_SPACE
3549 || REG_PARM_STACK_SPACE (fndecl) > 0
3550 #endif
3551 )
3552 pad_to_arg_alignment (initial_offset_ptr, boundary,
3553 &locate->alignment_pad);
3554 locate->slot_offset = *initial_offset_ptr;
3555
3556 #ifdef PUSH_ROUNDING
3557 if (passed_mode != BLKmode)
3558 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3559 #endif
3560
3561 /* Pad_below needs the pre-rounded size to know how much to pad below
3562 so this must be done before rounding up. */
3563 locate->offset = locate->slot_offset;
3564 if (where_pad == downward)
3565 pad_below (&locate->offset, passed_mode, sizetree);
3566
3567 if (where_pad != none
3568 && (!host_integerp (sizetree, 1)
3569 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3570 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3571
3572 ADD_PARM_SIZE (locate->size, sizetree);
3573
3574 locate->size.constant -= part_size_in_regs;
3575 #endif /* ARGS_GROW_DOWNWARD */
3576
3577 #ifdef FUNCTION_ARG_OFFSET
3578 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3579 #endif
3580 }
3581
3582 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3583 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3584
3585 static void
3586 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3587 struct args_size *alignment_pad)
3588 {
3589 tree save_var = NULL_TREE;
3590 HOST_WIDE_INT save_constant = 0;
3591 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3592 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3593
3594 #ifdef SPARC_STACK_BOUNDARY_HACK
3595 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3596 the real alignment of %sp. However, when it does this, the
3597 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3598 if (SPARC_STACK_BOUNDARY_HACK)
3599 sp_offset = 0;
3600 #endif
3601
3602 if (boundary > PARM_BOUNDARY)
3603 {
3604 save_var = offset_ptr->var;
3605 save_constant = offset_ptr->constant;
3606 }
3607
3608 alignment_pad->var = NULL_TREE;
3609 alignment_pad->constant = 0;
3610
3611 if (boundary > BITS_PER_UNIT)
3612 {
3613 if (offset_ptr->var)
3614 {
3615 tree sp_offset_tree = ssize_int (sp_offset);
3616 tree offset = size_binop (PLUS_EXPR,
3617 ARGS_SIZE_TREE (*offset_ptr),
3618 sp_offset_tree);
3619 #ifdef ARGS_GROW_DOWNWARD
3620 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3621 #else
3622 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3623 #endif
3624
3625 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3626 /* ARGS_SIZE_TREE includes constant term. */
3627 offset_ptr->constant = 0;
3628 if (boundary > PARM_BOUNDARY)
3629 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3630 save_var);
3631 }
3632 else
3633 {
3634 offset_ptr->constant = -sp_offset +
3635 #ifdef ARGS_GROW_DOWNWARD
3636 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3637 #else
3638 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3639 #endif
3640 if (boundary > PARM_BOUNDARY)
3641 alignment_pad->constant = offset_ptr->constant - save_constant;
3642 }
3643 }
3644 }
3645
3646 static void
3647 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3648 {
3649 if (passed_mode != BLKmode)
3650 {
3651 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3652 offset_ptr->constant
3653 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3654 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3655 - GET_MODE_SIZE (passed_mode));
3656 }
3657 else
3658 {
3659 if (TREE_CODE (sizetree) != INTEGER_CST
3660 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3661 {
3662 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3663 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3664 /* Add it in. */
3665 ADD_PARM_SIZE (*offset_ptr, s2);
3666 SUB_PARM_SIZE (*offset_ptr, sizetree);
3667 }
3668 }
3669 }
3670 \f
3671
3672 /* True if register REGNO was alive at a place where `setjmp' was
3673 called and was set more than once or is an argument. Such regs may
3674 be clobbered by `longjmp'. */
3675
3676 static bool
3677 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3678 {
3679 /* There appear to be cases where some local vars never reach the
3680 backend but have bogus regnos. */
3681 if (regno >= max_reg_num ())
3682 return false;
3683
3684 return ((REG_N_SETS (regno) > 1
3685 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3686 && REGNO_REG_SET_P (setjmp_crosses, regno));
3687 }
3688
3689 /* Walk the tree of blocks describing the binding levels within a
3690 function and warn about variables the might be killed by setjmp or
3691 vfork. This is done after calling flow_analysis before register
3692 allocation since that will clobber the pseudo-regs to hard
3693 regs. */
3694
3695 static void
3696 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3697 {
3698 tree decl, sub;
3699
3700 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3701 {
3702 if (TREE_CODE (decl) == VAR_DECL
3703 && DECL_RTL_SET_P (decl)
3704 && REG_P (DECL_RTL (decl))
3705 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3706 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3707 " %<longjmp%> or %<vfork%>", decl);
3708 }
3709
3710 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3711 setjmp_vars_warning (setjmp_crosses, sub);
3712 }
3713
3714 /* Do the appropriate part of setjmp_vars_warning
3715 but for arguments instead of local variables. */
3716
3717 static void
3718 setjmp_args_warning (bitmap setjmp_crosses)
3719 {
3720 tree decl;
3721 for (decl = DECL_ARGUMENTS (current_function_decl);
3722 decl; decl = TREE_CHAIN (decl))
3723 if (DECL_RTL (decl) != 0
3724 && REG_P (DECL_RTL (decl))
3725 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3726 warning (OPT_Wclobbered,
3727 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3728 decl);
3729 }
3730
3731 /* Generate warning messages for variables live across setjmp. */
3732
3733 void
3734 generate_setjmp_warnings (void)
3735 {
3736 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3737
3738 if (n_basic_blocks == NUM_FIXED_BLOCKS
3739 || bitmap_empty_p (setjmp_crosses))
3740 return;
3741
3742 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3743 setjmp_args_warning (setjmp_crosses);
3744 }
3745
3746 \f
3747 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3748 and create duplicate blocks. */
3749 /* ??? Need an option to either create block fragments or to create
3750 abstract origin duplicates of a source block. It really depends
3751 on what optimization has been performed. */
3752
3753 void
3754 reorder_blocks (void)
3755 {
3756 tree block = DECL_INITIAL (current_function_decl);
3757 VEC(tree,heap) *block_stack;
3758
3759 if (block == NULL_TREE)
3760 return;
3761
3762 block_stack = VEC_alloc (tree, heap, 10);
3763
3764 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3765 clear_block_marks (block);
3766
3767 /* Prune the old trees away, so that they don't get in the way. */
3768 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3769 BLOCK_CHAIN (block) = NULL_TREE;
3770
3771 /* Recreate the block tree from the note nesting. */
3772 reorder_blocks_1 (get_insns (), block, &block_stack);
3773 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3774
3775 VEC_free (tree, heap, block_stack);
3776 }
3777
3778 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3779
3780 void
3781 clear_block_marks (tree block)
3782 {
3783 while (block)
3784 {
3785 TREE_ASM_WRITTEN (block) = 0;
3786 clear_block_marks (BLOCK_SUBBLOCKS (block));
3787 block = BLOCK_CHAIN (block);
3788 }
3789 }
3790
3791 static void
3792 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3793 {
3794 rtx insn;
3795
3796 for (insn = insns; insn; insn = NEXT_INSN (insn))
3797 {
3798 if (NOTE_P (insn))
3799 {
3800 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3801 {
3802 tree block = NOTE_BLOCK (insn);
3803 tree origin;
3804
3805 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3806 ? BLOCK_FRAGMENT_ORIGIN (block)
3807 : block);
3808
3809 /* If we have seen this block before, that means it now
3810 spans multiple address regions. Create a new fragment. */
3811 if (TREE_ASM_WRITTEN (block))
3812 {
3813 tree new_block = copy_node (block);
3814
3815 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3816 BLOCK_FRAGMENT_CHAIN (new_block)
3817 = BLOCK_FRAGMENT_CHAIN (origin);
3818 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3819
3820 NOTE_BLOCK (insn) = new_block;
3821 block = new_block;
3822 }
3823
3824 BLOCK_SUBBLOCKS (block) = 0;
3825 TREE_ASM_WRITTEN (block) = 1;
3826 /* When there's only one block for the entire function,
3827 current_block == block and we mustn't do this, it
3828 will cause infinite recursion. */
3829 if (block != current_block)
3830 {
3831 if (block != origin)
3832 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3833
3834 BLOCK_SUPERCONTEXT (block) = current_block;
3835 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3836 BLOCK_SUBBLOCKS (current_block) = block;
3837 current_block = origin;
3838 }
3839 VEC_safe_push (tree, heap, *p_block_stack, block);
3840 }
3841 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3842 {
3843 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3844 BLOCK_SUBBLOCKS (current_block)
3845 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3846 current_block = BLOCK_SUPERCONTEXT (current_block);
3847 }
3848 }
3849 }
3850 }
3851
3852 /* Reverse the order of elements in the chain T of blocks,
3853 and return the new head of the chain (old last element). */
3854
3855 tree
3856 blocks_nreverse (tree t)
3857 {
3858 tree prev = 0, decl, next;
3859 for (decl = t; decl; decl = next)
3860 {
3861 next = BLOCK_CHAIN (decl);
3862 BLOCK_CHAIN (decl) = prev;
3863 prev = decl;
3864 }
3865 return prev;
3866 }
3867
3868 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3869 non-NULL, list them all into VECTOR, in a depth-first preorder
3870 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3871 blocks. */
3872
3873 static int
3874 all_blocks (tree block, tree *vector)
3875 {
3876 int n_blocks = 0;
3877
3878 while (block)
3879 {
3880 TREE_ASM_WRITTEN (block) = 0;
3881
3882 /* Record this block. */
3883 if (vector)
3884 vector[n_blocks] = block;
3885
3886 ++n_blocks;
3887
3888 /* Record the subblocks, and their subblocks... */
3889 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3890 vector ? vector + n_blocks : 0);
3891 block = BLOCK_CHAIN (block);
3892 }
3893
3894 return n_blocks;
3895 }
3896
3897 /* Return a vector containing all the blocks rooted at BLOCK. The
3898 number of elements in the vector is stored in N_BLOCKS_P. The
3899 vector is dynamically allocated; it is the caller's responsibility
3900 to call `free' on the pointer returned. */
3901
3902 static tree *
3903 get_block_vector (tree block, int *n_blocks_p)
3904 {
3905 tree *block_vector;
3906
3907 *n_blocks_p = all_blocks (block, NULL);
3908 block_vector = XNEWVEC (tree, *n_blocks_p);
3909 all_blocks (block, block_vector);
3910
3911 return block_vector;
3912 }
3913
3914 static GTY(()) int next_block_index = 2;
3915
3916 /* Set BLOCK_NUMBER for all the blocks in FN. */
3917
3918 void
3919 number_blocks (tree fn)
3920 {
3921 int i;
3922 int n_blocks;
3923 tree *block_vector;
3924
3925 /* For SDB and XCOFF debugging output, we start numbering the blocks
3926 from 1 within each function, rather than keeping a running
3927 count. */
3928 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3929 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3930 next_block_index = 1;
3931 #endif
3932
3933 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3934
3935 /* The top-level BLOCK isn't numbered at all. */
3936 for (i = 1; i < n_blocks; ++i)
3937 /* We number the blocks from two. */
3938 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3939
3940 free (block_vector);
3941
3942 return;
3943 }
3944
3945 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3946
3947 tree
3948 debug_find_var_in_block_tree (tree var, tree block)
3949 {
3950 tree t;
3951
3952 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3953 if (t == var)
3954 return block;
3955
3956 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3957 {
3958 tree ret = debug_find_var_in_block_tree (var, t);
3959 if (ret)
3960 return ret;
3961 }
3962
3963 return NULL_TREE;
3964 }
3965 \f
3966 /* Keep track of whether we're in a dummy function context. If we are,
3967 we don't want to invoke the set_current_function hook, because we'll
3968 get into trouble if the hook calls target_reinit () recursively or
3969 when the initial initialization is not yet complete. */
3970
3971 static bool in_dummy_function;
3972
3973 /* Invoke the target hook when setting cfun. Update the optimization options
3974 if the function uses different options than the default. */
3975
3976 static void
3977 invoke_set_current_function_hook (tree fndecl)
3978 {
3979 if (!in_dummy_function)
3980 {
3981 tree opts = ((fndecl)
3982 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
3983 : optimization_default_node);
3984
3985 if (!opts)
3986 opts = optimization_default_node;
3987
3988 /* Change optimization options if needed. */
3989 if (optimization_current_node != opts)
3990 {
3991 optimization_current_node = opts;
3992 cl_optimization_restore (TREE_OPTIMIZATION (opts));
3993 }
3994
3995 targetm.set_current_function (fndecl);
3996 }
3997 }
3998
3999 /* cfun should never be set directly; use this function. */
4000
4001 void
4002 set_cfun (struct function *new_cfun)
4003 {
4004 if (cfun != new_cfun)
4005 {
4006 cfun = new_cfun;
4007 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4008 }
4009 }
4010
4011 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4012
4013 static VEC(function_p,heap) *cfun_stack;
4014
4015 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4016
4017 void
4018 push_cfun (struct function *new_cfun)
4019 {
4020 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4021 set_cfun (new_cfun);
4022 }
4023
4024 /* Pop cfun from the stack. */
4025
4026 void
4027 pop_cfun (void)
4028 {
4029 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4030 set_cfun (new_cfun);
4031 }
4032
4033 /* Return value of funcdef and increase it. */
4034 int
4035 get_next_funcdef_no (void)
4036 {
4037 return funcdef_no++;
4038 }
4039
4040 /* Allocate a function structure for FNDECL and set its contents
4041 to the defaults. Set cfun to the newly-allocated object.
4042 Some of the helper functions invoked during initialization assume
4043 that cfun has already been set. Therefore, assign the new object
4044 directly into cfun and invoke the back end hook explicitly at the
4045 very end, rather than initializing a temporary and calling set_cfun
4046 on it.
4047
4048 ABSTRACT_P is true if this is a function that will never be seen by
4049 the middle-end. Such functions are front-end concepts (like C++
4050 function templates) that do not correspond directly to functions
4051 placed in object files. */
4052
4053 void
4054 allocate_struct_function (tree fndecl, bool abstract_p)
4055 {
4056 tree result;
4057 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4058
4059 cfun = GGC_CNEW (struct function);
4060
4061 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
4062
4063 init_eh_for_function ();
4064
4065 if (init_machine_status)
4066 cfun->machine = (*init_machine_status) ();
4067
4068 #ifdef OVERRIDE_ABI_FORMAT
4069 OVERRIDE_ABI_FORMAT (fndecl);
4070 #endif
4071
4072 invoke_set_current_function_hook (fndecl);
4073
4074 if (fndecl != NULL_TREE)
4075 {
4076 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4077 cfun->decl = fndecl;
4078 current_function_funcdef_no = get_next_funcdef_no ();
4079
4080 result = DECL_RESULT (fndecl);
4081 if (!abstract_p && aggregate_value_p (result, fndecl))
4082 {
4083 #ifdef PCC_STATIC_STRUCT_RETURN
4084 cfun->returns_pcc_struct = 1;
4085 #endif
4086 cfun->returns_struct = 1;
4087 }
4088
4089 cfun->stdarg
4090 = (fntype
4091 && TYPE_ARG_TYPES (fntype) != 0
4092 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4093 != void_type_node));
4094
4095 /* Assume all registers in stdarg functions need to be saved. */
4096 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4097 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4098 }
4099 }
4100
4101 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4102 instead of just setting it. */
4103
4104 void
4105 push_struct_function (tree fndecl)
4106 {
4107 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4108 allocate_struct_function (fndecl, false);
4109 }
4110
4111 /* Reset cfun, and other non-struct-function variables to defaults as
4112 appropriate for emitting rtl at the start of a function. */
4113
4114 static void
4115 prepare_function_start (void)
4116 {
4117 gcc_assert (!crtl->emit.x_last_insn);
4118 init_temp_slots ();
4119 init_emit ();
4120 init_varasm_status ();
4121 init_expr ();
4122 default_rtl_profile ();
4123
4124 cse_not_expected = ! optimize;
4125
4126 /* Caller save not needed yet. */
4127 caller_save_needed = 0;
4128
4129 /* We haven't done register allocation yet. */
4130 reg_renumber = 0;
4131
4132 /* Indicate that we have not instantiated virtual registers yet. */
4133 virtuals_instantiated = 0;
4134
4135 /* Indicate that we want CONCATs now. */
4136 generating_concat_p = 1;
4137
4138 /* Indicate we have no need of a frame pointer yet. */
4139 frame_pointer_needed = 0;
4140 }
4141
4142 /* Initialize the rtl expansion mechanism so that we can do simple things
4143 like generate sequences. This is used to provide a context during global
4144 initialization of some passes. You must call expand_dummy_function_end
4145 to exit this context. */
4146
4147 void
4148 init_dummy_function_start (void)
4149 {
4150 gcc_assert (!in_dummy_function);
4151 in_dummy_function = true;
4152 push_struct_function (NULL_TREE);
4153 prepare_function_start ();
4154 }
4155
4156 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4157 and initialize static variables for generating RTL for the statements
4158 of the function. */
4159
4160 void
4161 init_function_start (tree subr)
4162 {
4163 if (subr && DECL_STRUCT_FUNCTION (subr))
4164 set_cfun (DECL_STRUCT_FUNCTION (subr));
4165 else
4166 allocate_struct_function (subr, false);
4167 prepare_function_start ();
4168
4169 /* Warn if this value is an aggregate type,
4170 regardless of which calling convention we are using for it. */
4171 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4172 warning (OPT_Waggregate_return, "function returns an aggregate");
4173 }
4174
4175 /* Make sure all values used by the optimization passes have sane
4176 defaults. */
4177 unsigned int
4178 init_function_for_compilation (void)
4179 {
4180 reg_renumber = 0;
4181
4182 /* No prologue/epilogue insns yet. Make sure that these vectors are
4183 empty. */
4184 gcc_assert (VEC_length (int, prologue) == 0);
4185 gcc_assert (VEC_length (int, epilogue) == 0);
4186 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
4187 return 0;
4188 }
4189
4190 struct rtl_opt_pass pass_init_function =
4191 {
4192 {
4193 RTL_PASS,
4194 NULL, /* name */
4195 NULL, /* gate */
4196 init_function_for_compilation, /* execute */
4197 NULL, /* sub */
4198 NULL, /* next */
4199 0, /* static_pass_number */
4200 0, /* tv_id */
4201 0, /* properties_required */
4202 0, /* properties_provided */
4203 0, /* properties_destroyed */
4204 0, /* todo_flags_start */
4205 0 /* todo_flags_finish */
4206 }
4207 };
4208
4209
4210 void
4211 expand_main_function (void)
4212 {
4213 #if (defined(INVOKE__main) \
4214 || (!defined(HAS_INIT_SECTION) \
4215 && !defined(INIT_SECTION_ASM_OP) \
4216 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4217 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4218 #endif
4219 }
4220 \f
4221 /* Expand code to initialize the stack_protect_guard. This is invoked at
4222 the beginning of a function to be protected. */
4223
4224 #ifndef HAVE_stack_protect_set
4225 # define HAVE_stack_protect_set 0
4226 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4227 #endif
4228
4229 void
4230 stack_protect_prologue (void)
4231 {
4232 tree guard_decl = targetm.stack_protect_guard ();
4233 rtx x, y;
4234
4235 /* Avoid expand_expr here, because we don't want guard_decl pulled
4236 into registers unless absolutely necessary. And we know that
4237 crtl->stack_protect_guard is a local stack slot, so this skips
4238 all the fluff. */
4239 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4240 y = validize_mem (DECL_RTL (guard_decl));
4241
4242 /* Allow the target to copy from Y to X without leaking Y into a
4243 register. */
4244 if (HAVE_stack_protect_set)
4245 {
4246 rtx insn = gen_stack_protect_set (x, y);
4247 if (insn)
4248 {
4249 emit_insn (insn);
4250 return;
4251 }
4252 }
4253
4254 /* Otherwise do a straight move. */
4255 emit_move_insn (x, y);
4256 }
4257
4258 /* Expand code to verify the stack_protect_guard. This is invoked at
4259 the end of a function to be protected. */
4260
4261 #ifndef HAVE_stack_protect_test
4262 # define HAVE_stack_protect_test 0
4263 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4264 #endif
4265
4266 void
4267 stack_protect_epilogue (void)
4268 {
4269 tree guard_decl = targetm.stack_protect_guard ();
4270 rtx label = gen_label_rtx ();
4271 rtx x, y, tmp;
4272
4273 /* Avoid expand_expr here, because we don't want guard_decl pulled
4274 into registers unless absolutely necessary. And we know that
4275 crtl->stack_protect_guard is a local stack slot, so this skips
4276 all the fluff. */
4277 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4278 y = validize_mem (DECL_RTL (guard_decl));
4279
4280 /* Allow the target to compare Y with X without leaking either into
4281 a register. */
4282 switch (HAVE_stack_protect_test != 0)
4283 {
4284 case 1:
4285 tmp = gen_stack_protect_test (x, y, label);
4286 if (tmp)
4287 {
4288 emit_insn (tmp);
4289 break;
4290 }
4291 /* FALLTHRU */
4292
4293 default:
4294 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4295 break;
4296 }
4297
4298 /* The noreturn predictor has been moved to the tree level. The rtl-level
4299 predictors estimate this branch about 20%, which isn't enough to get
4300 things moved out of line. Since this is the only extant case of adding
4301 a noreturn function at the rtl level, it doesn't seem worth doing ought
4302 except adding the prediction by hand. */
4303 tmp = get_last_insn ();
4304 if (JUMP_P (tmp))
4305 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4306
4307 expand_expr_stmt (targetm.stack_protect_fail ());
4308 emit_label (label);
4309 }
4310 \f
4311 /* Start the RTL for a new function, and set variables used for
4312 emitting RTL.
4313 SUBR is the FUNCTION_DECL node.
4314 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4315 the function's parameters, which must be run at any return statement. */
4316
4317 void
4318 expand_function_start (tree subr)
4319 {
4320 /* Make sure volatile mem refs aren't considered
4321 valid operands of arithmetic insns. */
4322 init_recog_no_volatile ();
4323
4324 crtl->profile
4325 = (profile_flag
4326 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4327
4328 crtl->limit_stack
4329 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4330
4331 /* Make the label for return statements to jump to. Do not special
4332 case machines with special return instructions -- they will be
4333 handled later during jump, ifcvt, or epilogue creation. */
4334 return_label = gen_label_rtx ();
4335
4336 /* Initialize rtx used to return the value. */
4337 /* Do this before assign_parms so that we copy the struct value address
4338 before any library calls that assign parms might generate. */
4339
4340 /* Decide whether to return the value in memory or in a register. */
4341 if (aggregate_value_p (DECL_RESULT (subr), subr))
4342 {
4343 /* Returning something that won't go in a register. */
4344 rtx value_address = 0;
4345
4346 #ifdef PCC_STATIC_STRUCT_RETURN
4347 if (cfun->returns_pcc_struct)
4348 {
4349 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4350 value_address = assemble_static_space (size);
4351 }
4352 else
4353 #endif
4354 {
4355 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4356 /* Expect to be passed the address of a place to store the value.
4357 If it is passed as an argument, assign_parms will take care of
4358 it. */
4359 if (sv)
4360 {
4361 value_address = gen_reg_rtx (Pmode);
4362 emit_move_insn (value_address, sv);
4363 }
4364 }
4365 if (value_address)
4366 {
4367 rtx x = value_address;
4368 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4369 {
4370 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4371 set_mem_attributes (x, DECL_RESULT (subr), 1);
4372 }
4373 SET_DECL_RTL (DECL_RESULT (subr), x);
4374 }
4375 }
4376 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4377 /* If return mode is void, this decl rtl should not be used. */
4378 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4379 else
4380 {
4381 /* Compute the return values into a pseudo reg, which we will copy
4382 into the true return register after the cleanups are done. */
4383 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4384 if (TYPE_MODE (return_type) != BLKmode
4385 && targetm.calls.return_in_msb (return_type))
4386 /* expand_function_end will insert the appropriate padding in
4387 this case. Use the return value's natural (unpadded) mode
4388 within the function proper. */
4389 SET_DECL_RTL (DECL_RESULT (subr),
4390 gen_reg_rtx (TYPE_MODE (return_type)));
4391 else
4392 {
4393 /* In order to figure out what mode to use for the pseudo, we
4394 figure out what the mode of the eventual return register will
4395 actually be, and use that. */
4396 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4397
4398 /* Structures that are returned in registers are not
4399 aggregate_value_p, so we may see a PARALLEL or a REG. */
4400 if (REG_P (hard_reg))
4401 SET_DECL_RTL (DECL_RESULT (subr),
4402 gen_reg_rtx (GET_MODE (hard_reg)));
4403 else
4404 {
4405 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4406 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4407 }
4408 }
4409
4410 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4411 result to the real return register(s). */
4412 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4413 }
4414
4415 /* Initialize rtx for parameters and local variables.
4416 In some cases this requires emitting insns. */
4417 assign_parms (subr);
4418
4419 /* If function gets a static chain arg, store it. */
4420 if (cfun->static_chain_decl)
4421 {
4422 tree parm = cfun->static_chain_decl;
4423 rtx local = gen_reg_rtx (Pmode);
4424
4425 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4426 SET_DECL_RTL (parm, local);
4427 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4428
4429 emit_move_insn (local, static_chain_incoming_rtx);
4430 }
4431
4432 /* If the function receives a non-local goto, then store the
4433 bits we need to restore the frame pointer. */
4434 if (cfun->nonlocal_goto_save_area)
4435 {
4436 tree t_save;
4437 rtx r_save;
4438
4439 /* ??? We need to do this save early. Unfortunately here is
4440 before the frame variable gets declared. Help out... */
4441 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4442 if (!DECL_RTL_SET_P (var))
4443 expand_decl (var);
4444
4445 t_save = build4 (ARRAY_REF, ptr_type_node,
4446 cfun->nonlocal_goto_save_area,
4447 integer_zero_node, NULL_TREE, NULL_TREE);
4448 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4449 r_save = convert_memory_address (Pmode, r_save);
4450
4451 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4452 update_nonlocal_goto_save_area ();
4453 }
4454
4455 /* The following was moved from init_function_start.
4456 The move is supposed to make sdb output more accurate. */
4457 /* Indicate the beginning of the function body,
4458 as opposed to parm setup. */
4459 emit_note (NOTE_INSN_FUNCTION_BEG);
4460
4461 gcc_assert (NOTE_P (get_last_insn ()));
4462
4463 parm_birth_insn = get_last_insn ();
4464
4465 if (crtl->profile)
4466 {
4467 #ifdef PROFILE_HOOK
4468 PROFILE_HOOK (current_function_funcdef_no);
4469 #endif
4470 }
4471
4472 /* After the display initializations is where the stack checking
4473 probe should go. */
4474 if(flag_stack_check)
4475 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4476
4477 /* Make sure there is a line number after the function entry setup code. */
4478 force_next_line_note ();
4479 }
4480 \f
4481 /* Undo the effects of init_dummy_function_start. */
4482 void
4483 expand_dummy_function_end (void)
4484 {
4485 gcc_assert (in_dummy_function);
4486
4487 /* End any sequences that failed to be closed due to syntax errors. */
4488 while (in_sequence_p ())
4489 end_sequence ();
4490
4491 /* Outside function body, can't compute type's actual size
4492 until next function's body starts. */
4493
4494 free_after_parsing (cfun);
4495 free_after_compilation (cfun);
4496 pop_cfun ();
4497 in_dummy_function = false;
4498 }
4499
4500 /* Call DOIT for each hard register used as a return value from
4501 the current function. */
4502
4503 void
4504 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4505 {
4506 rtx outgoing = crtl->return_rtx;
4507
4508 if (! outgoing)
4509 return;
4510
4511 if (REG_P (outgoing))
4512 (*doit) (outgoing, arg);
4513 else if (GET_CODE (outgoing) == PARALLEL)
4514 {
4515 int i;
4516
4517 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4518 {
4519 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4520
4521 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4522 (*doit) (x, arg);
4523 }
4524 }
4525 }
4526
4527 static void
4528 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4529 {
4530 emit_clobber (reg);
4531 }
4532
4533 void
4534 clobber_return_register (void)
4535 {
4536 diddle_return_value (do_clobber_return_reg, NULL);
4537
4538 /* In case we do use pseudo to return value, clobber it too. */
4539 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4540 {
4541 tree decl_result = DECL_RESULT (current_function_decl);
4542 rtx decl_rtl = DECL_RTL (decl_result);
4543 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4544 {
4545 do_clobber_return_reg (decl_rtl, NULL);
4546 }
4547 }
4548 }
4549
4550 static void
4551 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4552 {
4553 emit_use (reg);
4554 }
4555
4556 static void
4557 use_return_register (void)
4558 {
4559 diddle_return_value (do_use_return_reg, NULL);
4560 }
4561
4562 /* Possibly warn about unused parameters. */
4563 void
4564 do_warn_unused_parameter (tree fn)
4565 {
4566 tree decl;
4567
4568 for (decl = DECL_ARGUMENTS (fn);
4569 decl; decl = TREE_CHAIN (decl))
4570 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4571 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4572 && !TREE_NO_WARNING (decl))
4573 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4574 }
4575
4576 static GTY(()) rtx initial_trampoline;
4577
4578 /* Generate RTL for the end of the current function. */
4579
4580 void
4581 expand_function_end (void)
4582 {
4583 rtx clobber_after;
4584
4585 /* If arg_pointer_save_area was referenced only from a nested
4586 function, we will not have initialized it yet. Do that now. */
4587 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4588 get_arg_pointer_save_area ();
4589
4590 /* If we are doing generic stack checking and this function makes calls,
4591 do a stack probe at the start of the function to ensure we have enough
4592 space for another stack frame. */
4593 if (flag_stack_check == GENERIC_STACK_CHECK)
4594 {
4595 rtx insn, seq;
4596
4597 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4598 if (CALL_P (insn))
4599 {
4600 start_sequence ();
4601 probe_stack_range (STACK_OLD_CHECK_PROTECT,
4602 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4603 seq = get_insns ();
4604 end_sequence ();
4605 emit_insn_before (seq, stack_check_probe_note);
4606 break;
4607 }
4608 }
4609
4610 /* End any sequences that failed to be closed due to syntax errors. */
4611 while (in_sequence_p ())
4612 end_sequence ();
4613
4614 clear_pending_stack_adjust ();
4615 do_pending_stack_adjust ();
4616
4617 /* Output a linenumber for the end of the function.
4618 SDB depends on this. */
4619 force_next_line_note ();
4620 set_curr_insn_source_location (input_location);
4621
4622 /* Before the return label (if any), clobber the return
4623 registers so that they are not propagated live to the rest of
4624 the function. This can only happen with functions that drop
4625 through; if there had been a return statement, there would
4626 have either been a return rtx, or a jump to the return label.
4627
4628 We delay actual code generation after the current_function_value_rtx
4629 is computed. */
4630 clobber_after = get_last_insn ();
4631
4632 /* Output the label for the actual return from the function. */
4633 emit_label (return_label);
4634
4635 if (USING_SJLJ_EXCEPTIONS)
4636 {
4637 /* Let except.c know where it should emit the call to unregister
4638 the function context for sjlj exceptions. */
4639 if (flag_exceptions)
4640 sjlj_emit_function_exit_after (get_last_insn ());
4641 }
4642 else
4643 {
4644 /* We want to ensure that instructions that may trap are not
4645 moved into the epilogue by scheduling, because we don't
4646 always emit unwind information for the epilogue. */
4647 if (flag_non_call_exceptions)
4648 emit_insn (gen_blockage ());
4649 }
4650
4651 /* If this is an implementation of throw, do what's necessary to
4652 communicate between __builtin_eh_return and the epilogue. */
4653 expand_eh_return ();
4654
4655 /* If scalar return value was computed in a pseudo-reg, or was a named
4656 return value that got dumped to the stack, copy that to the hard
4657 return register. */
4658 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4659 {
4660 tree decl_result = DECL_RESULT (current_function_decl);
4661 rtx decl_rtl = DECL_RTL (decl_result);
4662
4663 if (REG_P (decl_rtl)
4664 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4665 : DECL_REGISTER (decl_result))
4666 {
4667 rtx real_decl_rtl = crtl->return_rtx;
4668
4669 /* This should be set in assign_parms. */
4670 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4671
4672 /* If this is a BLKmode structure being returned in registers,
4673 then use the mode computed in expand_return. Note that if
4674 decl_rtl is memory, then its mode may have been changed,
4675 but that crtl->return_rtx has not. */
4676 if (GET_MODE (real_decl_rtl) == BLKmode)
4677 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4678
4679 /* If a non-BLKmode return value should be padded at the least
4680 significant end of the register, shift it left by the appropriate
4681 amount. BLKmode results are handled using the group load/store
4682 machinery. */
4683 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4684 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4685 {
4686 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4687 REGNO (real_decl_rtl)),
4688 decl_rtl);
4689 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4690 }
4691 /* If a named return value dumped decl_return to memory, then
4692 we may need to re-do the PROMOTE_MODE signed/unsigned
4693 extension. */
4694 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4695 {
4696 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4697
4698 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4699 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4700 &unsignedp, 1);
4701
4702 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4703 }
4704 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4705 {
4706 /* If expand_function_start has created a PARALLEL for decl_rtl,
4707 move the result to the real return registers. Otherwise, do
4708 a group load from decl_rtl for a named return. */
4709 if (GET_CODE (decl_rtl) == PARALLEL)
4710 emit_group_move (real_decl_rtl, decl_rtl);
4711 else
4712 emit_group_load (real_decl_rtl, decl_rtl,
4713 TREE_TYPE (decl_result),
4714 int_size_in_bytes (TREE_TYPE (decl_result)));
4715 }
4716 /* In the case of complex integer modes smaller than a word, we'll
4717 need to generate some non-trivial bitfield insertions. Do that
4718 on a pseudo and not the hard register. */
4719 else if (GET_CODE (decl_rtl) == CONCAT
4720 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4721 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4722 {
4723 int old_generating_concat_p;
4724 rtx tmp;
4725
4726 old_generating_concat_p = generating_concat_p;
4727 generating_concat_p = 0;
4728 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4729 generating_concat_p = old_generating_concat_p;
4730
4731 emit_move_insn (tmp, decl_rtl);
4732 emit_move_insn (real_decl_rtl, tmp);
4733 }
4734 else
4735 emit_move_insn (real_decl_rtl, decl_rtl);
4736 }
4737 }
4738
4739 /* If returning a structure, arrange to return the address of the value
4740 in a place where debuggers expect to find it.
4741
4742 If returning a structure PCC style,
4743 the caller also depends on this value.
4744 And cfun->returns_pcc_struct is not necessarily set. */
4745 if (cfun->returns_struct
4746 || cfun->returns_pcc_struct)
4747 {
4748 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4749 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4750 rtx outgoing;
4751
4752 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4753 type = TREE_TYPE (type);
4754 else
4755 value_address = XEXP (value_address, 0);
4756
4757 outgoing = targetm.calls.function_value (build_pointer_type (type),
4758 current_function_decl, true);
4759
4760 /* Mark this as a function return value so integrate will delete the
4761 assignment and USE below when inlining this function. */
4762 REG_FUNCTION_VALUE_P (outgoing) = 1;
4763
4764 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4765 value_address = convert_memory_address (GET_MODE (outgoing),
4766 value_address);
4767
4768 emit_move_insn (outgoing, value_address);
4769
4770 /* Show return register used to hold result (in this case the address
4771 of the result. */
4772 crtl->return_rtx = outgoing;
4773 }
4774
4775 /* Emit the actual code to clobber return register. */
4776 {
4777 rtx seq;
4778
4779 start_sequence ();
4780 clobber_return_register ();
4781 expand_naked_return ();
4782 seq = get_insns ();
4783 end_sequence ();
4784
4785 emit_insn_after (seq, clobber_after);
4786 }
4787
4788 /* Output the label for the naked return from the function. */
4789 emit_label (naked_return_label);
4790
4791 /* @@@ This is a kludge. We want to ensure that instructions that
4792 may trap are not moved into the epilogue by scheduling, because
4793 we don't always emit unwind information for the epilogue. */
4794 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4795 emit_insn (gen_blockage ());
4796
4797 /* If stack protection is enabled for this function, check the guard. */
4798 if (crtl->stack_protect_guard)
4799 stack_protect_epilogue ();
4800
4801 /* If we had calls to alloca, and this machine needs
4802 an accurate stack pointer to exit the function,
4803 insert some code to save and restore the stack pointer. */
4804 if (! EXIT_IGNORE_STACK
4805 && cfun->calls_alloca)
4806 {
4807 rtx tem = 0;
4808
4809 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4810 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4811 }
4812
4813 /* ??? This should no longer be necessary since stupid is no longer with
4814 us, but there are some parts of the compiler (eg reload_combine, and
4815 sh mach_dep_reorg) that still try and compute their own lifetime info
4816 instead of using the general framework. */
4817 use_return_register ();
4818 }
4819
4820 rtx
4821 get_arg_pointer_save_area (void)
4822 {
4823 rtx ret = arg_pointer_save_area;
4824
4825 if (! ret)
4826 {
4827 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4828 arg_pointer_save_area = ret;
4829 }
4830
4831 if (! crtl->arg_pointer_save_area_init)
4832 {
4833 rtx seq;
4834
4835 /* Save the arg pointer at the beginning of the function. The
4836 generated stack slot may not be a valid memory address, so we
4837 have to check it and fix it if necessary. */
4838 start_sequence ();
4839 emit_move_insn (validize_mem (ret),
4840 crtl->args.internal_arg_pointer);
4841 seq = get_insns ();
4842 end_sequence ();
4843
4844 push_topmost_sequence ();
4845 emit_insn_after (seq, entry_of_function ());
4846 pop_topmost_sequence ();
4847 }
4848
4849 return ret;
4850 }
4851 \f
4852 /* Extend a vector that records the INSN_UIDs of INSNS
4853 (a list of one or more insns). */
4854
4855 static void
4856 record_insns (rtx insns, VEC(int,heap) **vecp)
4857 {
4858 rtx tmp;
4859
4860 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4861 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4862 }
4863
4864 /* Set the locator of the insn chain starting at INSN to LOC. */
4865 static void
4866 set_insn_locators (rtx insn, int loc)
4867 {
4868 while (insn != NULL_RTX)
4869 {
4870 if (INSN_P (insn))
4871 INSN_LOCATOR (insn) = loc;
4872 insn = NEXT_INSN (insn);
4873 }
4874 }
4875
4876 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4877 be running after reorg, SEQUENCE rtl is possible. */
4878
4879 static int
4880 contains (const_rtx insn, VEC(int,heap) **vec)
4881 {
4882 int i, j;
4883
4884 if (NONJUMP_INSN_P (insn)
4885 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4886 {
4887 int count = 0;
4888 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4889 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4890 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4891 == VEC_index (int, *vec, j))
4892 count++;
4893 return count;
4894 }
4895 else
4896 {
4897 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4898 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4899 return 1;
4900 }
4901 return 0;
4902 }
4903
4904 int
4905 prologue_epilogue_contains (const_rtx insn)
4906 {
4907 if (contains (insn, &prologue))
4908 return 1;
4909 if (contains (insn, &epilogue))
4910 return 1;
4911 return 0;
4912 }
4913
4914 int
4915 sibcall_epilogue_contains (const_rtx insn)
4916 {
4917 if (sibcall_epilogue)
4918 return contains (insn, &sibcall_epilogue);
4919 return 0;
4920 }
4921
4922 #ifdef HAVE_return
4923 /* Insert gen_return at the end of block BB. This also means updating
4924 block_for_insn appropriately. */
4925
4926 static void
4927 emit_return_into_block (basic_block bb)
4928 {
4929 emit_jump_insn_after (gen_return (), BB_END (bb));
4930 }
4931 #endif /* HAVE_return */
4932
4933 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4934 this into place with notes indicating where the prologue ends and where
4935 the epilogue begins. Update the basic block information when possible. */
4936
4937 static void
4938 thread_prologue_and_epilogue_insns (void)
4939 {
4940 int inserted = 0;
4941 edge e;
4942 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4943 rtx seq;
4944 #endif
4945 #if defined (HAVE_epilogue) || defined(HAVE_return)
4946 rtx epilogue_end = NULL_RTX;
4947 #endif
4948 edge_iterator ei;
4949
4950 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
4951 #ifdef HAVE_prologue
4952 if (HAVE_prologue)
4953 {
4954 start_sequence ();
4955 seq = gen_prologue ();
4956 emit_insn (seq);
4957
4958 /* Insert an explicit USE for the frame pointer
4959 if the profiling is on and the frame pointer is required. */
4960 if (crtl->profile && frame_pointer_needed)
4961 emit_use (hard_frame_pointer_rtx);
4962
4963 /* Retain a map of the prologue insns. */
4964 record_insns (seq, &prologue);
4965 emit_note (NOTE_INSN_PROLOGUE_END);
4966
4967 #ifndef PROFILE_BEFORE_PROLOGUE
4968 /* Ensure that instructions are not moved into the prologue when
4969 profiling is on. The call to the profiling routine can be
4970 emitted within the live range of a call-clobbered register. */
4971 if (crtl->profile)
4972 emit_insn (gen_blockage ());
4973 #endif
4974
4975 seq = get_insns ();
4976 end_sequence ();
4977 set_insn_locators (seq, prologue_locator);
4978
4979 /* Can't deal with multiple successors of the entry block
4980 at the moment. Function should always have at least one
4981 entry point. */
4982 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
4983
4984 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
4985 inserted = 1;
4986 }
4987 #endif
4988
4989 /* If the exit block has no non-fake predecessors, we don't need
4990 an epilogue. */
4991 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4992 if ((e->flags & EDGE_FAKE) == 0)
4993 break;
4994 if (e == NULL)
4995 goto epilogue_done;
4996
4997 rtl_profile_for_bb (EXIT_BLOCK_PTR);
4998 #ifdef HAVE_return
4999 if (optimize && HAVE_return)
5000 {
5001 /* If we're allowed to generate a simple return instruction,
5002 then by definition we don't need a full epilogue. Examine
5003 the block that falls through to EXIT. If it does not
5004 contain any code, examine its predecessors and try to
5005 emit (conditional) return instructions. */
5006
5007 basic_block last;
5008 rtx label;
5009
5010 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5011 if (e->flags & EDGE_FALLTHRU)
5012 break;
5013 if (e == NULL)
5014 goto epilogue_done;
5015 last = e->src;
5016
5017 /* Verify that there are no active instructions in the last block. */
5018 label = BB_END (last);
5019 while (label && !LABEL_P (label))
5020 {
5021 if (active_insn_p (label))
5022 break;
5023 label = PREV_INSN (label);
5024 }
5025
5026 if (BB_HEAD (last) == label && LABEL_P (label))
5027 {
5028 edge_iterator ei2;
5029
5030 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5031 {
5032 basic_block bb = e->src;
5033 rtx jump;
5034
5035 if (bb == ENTRY_BLOCK_PTR)
5036 {
5037 ei_next (&ei2);
5038 continue;
5039 }
5040
5041 jump = BB_END (bb);
5042 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5043 {
5044 ei_next (&ei2);
5045 continue;
5046 }
5047
5048 /* If we have an unconditional jump, we can replace that
5049 with a simple return instruction. */
5050 if (simplejump_p (jump))
5051 {
5052 emit_return_into_block (bb);
5053 delete_insn (jump);
5054 }
5055
5056 /* If we have a conditional jump, we can try to replace
5057 that with a conditional return instruction. */
5058 else if (condjump_p (jump))
5059 {
5060 if (! redirect_jump (jump, 0, 0))
5061 {
5062 ei_next (&ei2);
5063 continue;
5064 }
5065
5066 /* If this block has only one successor, it both jumps
5067 and falls through to the fallthru block, so we can't
5068 delete the edge. */
5069 if (single_succ_p (bb))
5070 {
5071 ei_next (&ei2);
5072 continue;
5073 }
5074 }
5075 else
5076 {
5077 ei_next (&ei2);
5078 continue;
5079 }
5080
5081 /* Fix up the CFG for the successful change we just made. */
5082 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5083 }
5084
5085 /* Emit a return insn for the exit fallthru block. Whether
5086 this is still reachable will be determined later. */
5087
5088 emit_barrier_after (BB_END (last));
5089 emit_return_into_block (last);
5090 epilogue_end = BB_END (last);
5091 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5092 goto epilogue_done;
5093 }
5094 }
5095 #endif
5096 /* Find the edge that falls through to EXIT. Other edges may exist
5097 due to RETURN instructions, but those don't need epilogues.
5098 There really shouldn't be a mixture -- either all should have
5099 been converted or none, however... */
5100
5101 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5102 if (e->flags & EDGE_FALLTHRU)
5103 break;
5104 if (e == NULL)
5105 goto epilogue_done;
5106
5107 #ifdef HAVE_epilogue
5108 if (HAVE_epilogue)
5109 {
5110 start_sequence ();
5111 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5112 seq = gen_epilogue ();
5113 emit_jump_insn (seq);
5114
5115 /* Retain a map of the epilogue insns. */
5116 record_insns (seq, &epilogue);
5117 set_insn_locators (seq, epilogue_locator);
5118
5119 seq = get_insns ();
5120 end_sequence ();
5121
5122 insert_insn_on_edge (seq, e);
5123 inserted = 1;
5124 }
5125 else
5126 #endif
5127 {
5128 basic_block cur_bb;
5129
5130 if (! next_active_insn (BB_END (e->src)))
5131 goto epilogue_done;
5132 /* We have a fall-through edge to the exit block, the source is not
5133 at the end of the function, and there will be an assembler epilogue
5134 at the end of the function.
5135 We can't use force_nonfallthru here, because that would try to
5136 use return. Inserting a jump 'by hand' is extremely messy, so
5137 we take advantage of cfg_layout_finalize using
5138 fixup_fallthru_exit_predecessor. */
5139 cfg_layout_initialize (0);
5140 FOR_EACH_BB (cur_bb)
5141 if (cur_bb->index >= NUM_FIXED_BLOCKS
5142 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5143 cur_bb->aux = cur_bb->next_bb;
5144 cfg_layout_finalize ();
5145 }
5146 epilogue_done:
5147 default_rtl_profile ();
5148
5149 if (inserted)
5150 {
5151 commit_edge_insertions ();
5152
5153 /* The epilogue insns we inserted may cause the exit edge to no longer
5154 be fallthru. */
5155 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5156 {
5157 if (((e->flags & EDGE_FALLTHRU) != 0)
5158 && returnjump_p (BB_END (e->src)))
5159 e->flags &= ~EDGE_FALLTHRU;
5160 }
5161 }
5162
5163 #ifdef HAVE_sibcall_epilogue
5164 /* Emit sibling epilogues before any sibling call sites. */
5165 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5166 {
5167 basic_block bb = e->src;
5168 rtx insn = BB_END (bb);
5169
5170 if (!CALL_P (insn)
5171 || ! SIBLING_CALL_P (insn))
5172 {
5173 ei_next (&ei);
5174 continue;
5175 }
5176
5177 start_sequence ();
5178 emit_insn (gen_sibcall_epilogue ());
5179 seq = get_insns ();
5180 end_sequence ();
5181
5182 /* Retain a map of the epilogue insns. Used in life analysis to
5183 avoid getting rid of sibcall epilogue insns. Do this before we
5184 actually emit the sequence. */
5185 record_insns (seq, &sibcall_epilogue);
5186 set_insn_locators (seq, epilogue_locator);
5187
5188 emit_insn_before (seq, insn);
5189 ei_next (&ei);
5190 }
5191 #endif
5192
5193 #ifdef HAVE_epilogue
5194 if (epilogue_end)
5195 {
5196 rtx insn, next;
5197
5198 /* Similarly, move any line notes that appear after the epilogue.
5199 There is no need, however, to be quite so anal about the existence
5200 of such a note. Also possibly move
5201 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5202 info generation. */
5203 for (insn = epilogue_end; insn; insn = next)
5204 {
5205 next = NEXT_INSN (insn);
5206 if (NOTE_P (insn)
5207 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5208 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5209 }
5210 }
5211 #endif
5212
5213 /* Threading the prologue and epilogue changes the artificial refs
5214 in the entry and exit blocks. */
5215 epilogue_completed = 1;
5216 df_update_entry_exit_and_calls ();
5217 }
5218
5219 /* Reposition the prologue-end and epilogue-begin notes after instruction
5220 scheduling and delayed branch scheduling. */
5221
5222 void
5223 reposition_prologue_and_epilogue_notes (void)
5224 {
5225 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5226 rtx insn, last, note;
5227 int len;
5228
5229 if ((len = VEC_length (int, prologue)) > 0)
5230 {
5231 last = 0, note = 0;
5232
5233 /* Scan from the beginning until we reach the last prologue insn.
5234 We apparently can't depend on basic_block_{head,end} after
5235 reorg has run. */
5236 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5237 {
5238 if (NOTE_P (insn))
5239 {
5240 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5241 note = insn;
5242 }
5243 else if (contains (insn, &prologue))
5244 {
5245 last = insn;
5246 if (--len == 0)
5247 break;
5248 }
5249 }
5250
5251 if (last)
5252 {
5253 /* Find the prologue-end note if we haven't already, and
5254 move it to just after the last prologue insn. */
5255 if (note == 0)
5256 {
5257 for (note = last; (note = NEXT_INSN (note));)
5258 if (NOTE_P (note)
5259 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5260 break;
5261 }
5262
5263 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5264 if (LABEL_P (last))
5265 last = NEXT_INSN (last);
5266 reorder_insns (note, note, last);
5267 }
5268 }
5269
5270 if ((len = VEC_length (int, epilogue)) > 0)
5271 {
5272 last = 0, note = 0;
5273
5274 /* Scan from the end until we reach the first epilogue insn.
5275 We apparently can't depend on basic_block_{head,end} after
5276 reorg has run. */
5277 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5278 {
5279 if (NOTE_P (insn))
5280 {
5281 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5282 note = insn;
5283 }
5284 else if (contains (insn, &epilogue))
5285 {
5286 last = insn;
5287 if (--len == 0)
5288 break;
5289 }
5290 }
5291
5292 if (last)
5293 {
5294 /* Find the epilogue-begin note if we haven't already, and
5295 move it to just before the first epilogue insn. */
5296 if (note == 0)
5297 {
5298 for (note = insn; (note = PREV_INSN (note));)
5299 if (NOTE_P (note)
5300 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5301 break;
5302 }
5303
5304 if (PREV_INSN (last) != note)
5305 reorder_insns (note, note, PREV_INSN (last));
5306 }
5307 }
5308 #endif /* HAVE_prologue or HAVE_epilogue */
5309 }
5310
5311 /* Returns the name of the current function. */
5312 const char *
5313 current_function_name (void)
5314 {
5315 return lang_hooks.decl_printable_name (cfun->decl, 2);
5316 }
5317
5318 /* Returns the raw (mangled) name of the current function. */
5319 const char *
5320 current_function_assembler_name (void)
5321 {
5322 return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
5323 }
5324 \f
5325
5326 static unsigned int
5327 rest_of_handle_check_leaf_regs (void)
5328 {
5329 #ifdef LEAF_REGISTERS
5330 current_function_uses_only_leaf_regs
5331 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5332 #endif
5333 return 0;
5334 }
5335
5336 /* Insert a TYPE into the used types hash table of CFUN. */
5337 static void
5338 used_types_insert_helper (tree type, struct function *func)
5339 {
5340 if (type != NULL && func != NULL)
5341 {
5342 void **slot;
5343
5344 if (func->used_types_hash == NULL)
5345 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5346 htab_eq_pointer, NULL);
5347 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5348 if (*slot == NULL)
5349 *slot = type;
5350 }
5351 }
5352
5353 /* Given a type, insert it into the used hash table in cfun. */
5354 void
5355 used_types_insert (tree t)
5356 {
5357 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5358 t = TREE_TYPE (t);
5359 t = TYPE_MAIN_VARIANT (t);
5360 if (debug_info_level > DINFO_LEVEL_NONE)
5361 used_types_insert_helper (t, cfun);
5362 }
5363
5364 struct rtl_opt_pass pass_leaf_regs =
5365 {
5366 {
5367 RTL_PASS,
5368 NULL, /* name */
5369 NULL, /* gate */
5370 rest_of_handle_check_leaf_regs, /* execute */
5371 NULL, /* sub */
5372 NULL, /* next */
5373 0, /* static_pass_number */
5374 0, /* tv_id */
5375 0, /* properties_required */
5376 0, /* properties_provided */
5377 0, /* properties_destroyed */
5378 0, /* todo_flags_start */
5379 0 /* todo_flags_finish */
5380 }
5381 };
5382
5383 static unsigned int
5384 rest_of_handle_thread_prologue_and_epilogue (void)
5385 {
5386 if (optimize)
5387 cleanup_cfg (CLEANUP_EXPENSIVE);
5388 /* On some machines, the prologue and epilogue code, or parts thereof,
5389 can be represented as RTL. Doing so lets us schedule insns between
5390 it and the rest of the code and also allows delayed branch
5391 scheduling to operate in the epilogue. */
5392
5393 thread_prologue_and_epilogue_insns ();
5394 return 0;
5395 }
5396
5397 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5398 {
5399 {
5400 RTL_PASS,
5401 "pro_and_epilogue", /* name */
5402 NULL, /* gate */
5403 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5404 NULL, /* sub */
5405 NULL, /* next */
5406 0, /* static_pass_number */
5407 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5408 0, /* properties_required */
5409 0, /* properties_provided */
5410 0, /* properties_destroyed */
5411 TODO_verify_flow, /* todo_flags_start */
5412 TODO_dump_func |
5413 TODO_df_verify |
5414 TODO_df_finish | TODO_verify_rtl_sharing |
5415 TODO_ggc_collect /* todo_flags_finish */
5416 }
5417 };
5418 \f
5419
5420 /* This mini-pass fixes fall-out from SSA in asm statements that have
5421 in-out constraints. Say you start with
5422
5423 orig = inout;
5424 asm ("": "+mr" (inout));
5425 use (orig);
5426
5427 which is transformed very early to use explicit output and match operands:
5428
5429 orig = inout;
5430 asm ("": "=mr" (inout) : "0" (inout));
5431 use (orig);
5432
5433 Or, after SSA and copyprop,
5434
5435 asm ("": "=mr" (inout_2) : "0" (inout_1));
5436 use (inout_1);
5437
5438 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5439 they represent two separate values, so they will get different pseudo
5440 registers during expansion. Then, since the two operands need to match
5441 per the constraints, but use different pseudo registers, reload can
5442 only register a reload for these operands. But reloads can only be
5443 satisfied by hardregs, not by memory, so we need a register for this
5444 reload, just because we are presented with non-matching operands.
5445 So, even though we allow memory for this operand, no memory can be
5446 used for it, just because the two operands don't match. This can
5447 cause reload failures on register-starved targets.
5448
5449 So it's a symptom of reload not being able to use memory for reloads
5450 or, alternatively it's also a symptom of both operands not coming into
5451 reload as matching (in which case the pseudo could go to memory just
5452 fine, as the alternative allows it, and no reload would be necessary).
5453 We fix the latter problem here, by transforming
5454
5455 asm ("": "=mr" (inout_2) : "0" (inout_1));
5456
5457 back to
5458
5459 inout_2 = inout_1;
5460 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5461
5462 static void
5463 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5464 {
5465 int i;
5466 bool changed = false;
5467 rtx op = SET_SRC (p_sets[0]);
5468 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5469 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5470 bool *output_matched = XALLOCAVEC (bool, noutputs);
5471
5472 memset (output_matched, 0, noutputs * sizeof (bool));
5473 for (i = 0; i < ninputs; i++)
5474 {
5475 rtx input, output, insns;
5476 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5477 char *end;
5478 int match, j;
5479
5480 if (*constraint == '%')
5481 constraint++;
5482
5483 match = strtoul (constraint, &end, 10);
5484 if (end == constraint)
5485 continue;
5486
5487 gcc_assert (match < noutputs);
5488 output = SET_DEST (p_sets[match]);
5489 input = RTVEC_ELT (inputs, i);
5490 /* Only do the transformation for pseudos. */
5491 if (! REG_P (output)
5492 || rtx_equal_p (output, input)
5493 || (GET_MODE (input) != VOIDmode
5494 && GET_MODE (input) != GET_MODE (output)))
5495 continue;
5496
5497 /* We can't do anything if the output is also used as input,
5498 as we're going to overwrite it. */
5499 for (j = 0; j < ninputs; j++)
5500 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5501 break;
5502 if (j != ninputs)
5503 continue;
5504
5505 /* Avoid changing the same input several times. For
5506 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5507 only change in once (to out1), rather than changing it
5508 first to out1 and afterwards to out2. */
5509 if (i > 0)
5510 {
5511 for (j = 0; j < noutputs; j++)
5512 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5513 break;
5514 if (j != noutputs)
5515 continue;
5516 }
5517 output_matched[match] = true;
5518
5519 start_sequence ();
5520 emit_move_insn (output, input);
5521 insns = get_insns ();
5522 end_sequence ();
5523 emit_insn_before (insns, insn);
5524
5525 /* Now replace all mentions of the input with output. We can't
5526 just replace the occurrence in inputs[i], as the register might
5527 also be used in some other input (or even in an address of an
5528 output), which would mean possibly increasing the number of
5529 inputs by one (namely 'output' in addition), which might pose
5530 a too complicated problem for reload to solve. E.g. this situation:
5531
5532 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5533
5534 Here 'input' is used in two occurrences as input (once for the
5535 input operand, once for the address in the second output operand).
5536 If we would replace only the occurrence of the input operand (to
5537 make the matching) we would be left with this:
5538
5539 output = input
5540 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5541
5542 Now we suddenly have two different input values (containing the same
5543 value, but different pseudos) where we formerly had only one.
5544 With more complicated asms this might lead to reload failures
5545 which wouldn't have happen without this pass. So, iterate over
5546 all operands and replace all occurrences of the register used. */
5547 for (j = 0; j < noutputs; j++)
5548 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5549 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5550 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5551 input, output);
5552 for (j = 0; j < ninputs; j++)
5553 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5554 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5555 input, output);
5556
5557 changed = true;
5558 }
5559
5560 if (changed)
5561 df_insn_rescan (insn);
5562 }
5563
5564 static unsigned
5565 rest_of_match_asm_constraints (void)
5566 {
5567 basic_block bb;
5568 rtx insn, pat, *p_sets;
5569 int noutputs;
5570
5571 if (!crtl->has_asm_statement)
5572 return 0;
5573
5574 df_set_flags (DF_DEFER_INSN_RESCAN);
5575 FOR_EACH_BB (bb)
5576 {
5577 FOR_BB_INSNS (bb, insn)
5578 {
5579 if (!INSN_P (insn))
5580 continue;
5581
5582 pat = PATTERN (insn);
5583 if (GET_CODE (pat) == PARALLEL)
5584 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5585 else if (GET_CODE (pat) == SET)
5586 p_sets = &PATTERN (insn), noutputs = 1;
5587 else
5588 continue;
5589
5590 if (GET_CODE (*p_sets) == SET
5591 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5592 match_asm_constraints_1 (insn, p_sets, noutputs);
5593 }
5594 }
5595
5596 return TODO_df_finish;
5597 }
5598
5599 struct rtl_opt_pass pass_match_asm_constraints =
5600 {
5601 {
5602 RTL_PASS,
5603 "asmcons", /* name */
5604 NULL, /* gate */
5605 rest_of_match_asm_constraints, /* execute */
5606 NULL, /* sub */
5607 NULL, /* next */
5608 0, /* static_pass_number */
5609 0, /* tv_id */
5610 0, /* properties_required */
5611 0, /* properties_provided */
5612 0, /* properties_destroyed */
5613 0, /* todo_flags_start */
5614 TODO_dump_func /* todo_flags_finish */
5615 }
5616 };
5617
5618
5619 #include "gt-function.h"