[PR64164] Drop copyrename, use coalescible partition as base when optimizing.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "input.h"
40 #include "alias.h"
41 #include "symtab.h"
42 #include "tree.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "varasm.h"
46 #include "stringpool.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "hard-reg-set.h"
50 #include "function.h"
51 #include "rtl.h"
52 #include "insn-config.h"
53 #include "expmed.h"
54 #include "dojump.h"
55 #include "explow.h"
56 #include "calls.h"
57 #include "emit-rtl.h"
58 #include "stmt.h"
59 #include "expr.h"
60 #include "insn-codes.h"
61 #include "optabs.h"
62 #include "libfuncs.h"
63 #include "regs.h"
64 #include "recog.h"
65 #include "output.h"
66 #include "tm_p.h"
67 #include "langhooks.h"
68 #include "target.h"
69 #include "common/common-target.h"
70 #include "gimple-expr.h"
71 #include "gimplify.h"
72 #include "tree-pass.h"
73 #include "predict.h"
74 #include "dominance.h"
75 #include "cfg.h"
76 #include "cfgrtl.h"
77 #include "cfganal.h"
78 #include "cfgbuild.h"
79 #include "cfgcleanup.h"
80 #include "cfgexpand.h"
81 #include "basic-block.h"
82 #include "df.h"
83 #include "params.h"
84 #include "bb-reorder.h"
85 #include "shrink-wrap.h"
86 #include "toplev.h"
87 #include "rtl-iter.h"
88 #include "tree-chkp.h"
89 #include "rtl-chkp.h"
90
91 /* So we can assign to cfun in this file. */
92 #undef cfun
93
94 #ifndef STACK_ALIGNMENT_NEEDED
95 #define STACK_ALIGNMENT_NEEDED 1
96 #endif
97
98 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
99
100 /* Round a value to the lowest integer less than it that is a multiple of
101 the required alignment. Avoid using division in case the value is
102 negative. Assume the alignment is a power of two. */
103 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
104
105 /* Similar, but round to the next highest integer that meets the
106 alignment. */
107 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
108
109 /* Nonzero once virtual register instantiation has been done.
110 assign_stack_local uses frame_pointer_rtx when this is nonzero.
111 calls.c:emit_library_call_value_1 uses it to set up
112 post-instantiation libcalls. */
113 int virtuals_instantiated;
114
115 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
116 static GTY(()) int funcdef_no;
117
118 /* These variables hold pointers to functions to create and destroy
119 target specific, per-function data structures. */
120 struct machine_function * (*init_machine_status) (void);
121
122 /* The currently compiled function. */
123 struct function *cfun = 0;
124
125 /* These hashes record the prologue and epilogue insns. */
126
127 struct insn_cache_hasher : ggc_cache_hasher<rtx>
128 {
129 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
130 static bool equal (rtx a, rtx b) { return a == b; }
131 };
132
133 static GTY((cache))
134 hash_table<insn_cache_hasher> *prologue_insn_hash;
135 static GTY((cache))
136 hash_table<insn_cache_hasher> *epilogue_insn_hash;
137 \f
138
139 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
140 vec<tree, va_gc> *types_used_by_cur_var_decl;
141
142 /* Forward declarations. */
143
144 static struct temp_slot *find_temp_slot_from_address (rtx);
145 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
146 static void pad_below (struct args_size *, machine_mode, tree);
147 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
148 static int all_blocks (tree, tree *);
149 static tree *get_block_vector (tree, int *);
150 extern tree debug_find_var_in_block_tree (tree, tree);
151 /* We always define `record_insns' even if it's not used so that we
152 can always export `prologue_epilogue_contains'. */
153 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
154 ATTRIBUTE_UNUSED;
155 static bool contains (const_rtx, hash_table<insn_cache_hasher> *);
156 static void prepare_function_start (void);
157 static void do_clobber_return_reg (rtx, void *);
158 static void do_use_return_reg (rtx, void *);
159 \f
160 /* Stack of nested functions. */
161 /* Keep track of the cfun stack. */
162
163 typedef struct function *function_p;
164
165 static vec<function_p> function_context_stack;
166
167 /* Save the current context for compilation of a nested function.
168 This is called from language-specific code. */
169
170 void
171 push_function_context (void)
172 {
173 if (cfun == 0)
174 allocate_struct_function (NULL, false);
175
176 function_context_stack.safe_push (cfun);
177 set_cfun (NULL);
178 }
179
180 /* Restore the last saved context, at the end of a nested function.
181 This function is called from language-specific code. */
182
183 void
184 pop_function_context (void)
185 {
186 struct function *p = function_context_stack.pop ();
187 set_cfun (p);
188 current_function_decl = p->decl;
189
190 /* Reset variables that have known state during rtx generation. */
191 virtuals_instantiated = 0;
192 generating_concat_p = 1;
193 }
194
195 /* Clear out all parts of the state in F that can safely be discarded
196 after the function has been parsed, but not compiled, to let
197 garbage collection reclaim the memory. */
198
199 void
200 free_after_parsing (struct function *f)
201 {
202 f->language = 0;
203 }
204
205 /* Clear out all parts of the state in F that can safely be discarded
206 after the function has been compiled, to let garbage collection
207 reclaim the memory. */
208
209 void
210 free_after_compilation (struct function *f)
211 {
212 prologue_insn_hash = NULL;
213 epilogue_insn_hash = NULL;
214
215 free (crtl->emit.regno_pointer_align);
216
217 memset (crtl, 0, sizeof (struct rtl_data));
218 f->eh = NULL;
219 f->machine = NULL;
220 f->cfg = NULL;
221
222 regno_reg_rtx = NULL;
223 }
224 \f
225 /* Return size needed for stack frame based on slots so far allocated.
226 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
227 the caller may have to do that. */
228
229 HOST_WIDE_INT
230 get_frame_size (void)
231 {
232 if (FRAME_GROWS_DOWNWARD)
233 return -frame_offset;
234 else
235 return frame_offset;
236 }
237
238 /* Issue an error message and return TRUE if frame OFFSET overflows in
239 the signed target pointer arithmetics for function FUNC. Otherwise
240 return FALSE. */
241
242 bool
243 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
244 {
245 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
246
247 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
248 /* Leave room for the fixed part of the frame. */
249 - 64 * UNITS_PER_WORD)
250 {
251 error_at (DECL_SOURCE_LOCATION (func),
252 "total size of local objects too large");
253 return TRUE;
254 }
255
256 return FALSE;
257 }
258
259 /* Return stack slot alignment in bits for TYPE and MODE. */
260
261 static unsigned int
262 get_stack_local_alignment (tree type, machine_mode mode)
263 {
264 unsigned int alignment;
265
266 if (mode == BLKmode)
267 alignment = BIGGEST_ALIGNMENT;
268 else
269 alignment = GET_MODE_ALIGNMENT (mode);
270
271 /* Allow the frond-end to (possibly) increase the alignment of this
272 stack slot. */
273 if (! type)
274 type = lang_hooks.types.type_for_mode (mode, 0);
275
276 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
277 }
278
279 /* Determine whether it is possible to fit a stack slot of size SIZE and
280 alignment ALIGNMENT into an area in the stack frame that starts at
281 frame offset START and has a length of LENGTH. If so, store the frame
282 offset to be used for the stack slot in *POFFSET and return true;
283 return false otherwise. This function will extend the frame size when
284 given a start/length pair that lies at the end of the frame. */
285
286 static bool
287 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
288 HOST_WIDE_INT size, unsigned int alignment,
289 HOST_WIDE_INT *poffset)
290 {
291 HOST_WIDE_INT this_frame_offset;
292 int frame_off, frame_alignment, frame_phase;
293
294 /* Calculate how many bytes the start of local variables is off from
295 stack alignment. */
296 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
297 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
298 frame_phase = frame_off ? frame_alignment - frame_off : 0;
299
300 /* Round the frame offset to the specified alignment. */
301
302 /* We must be careful here, since FRAME_OFFSET might be negative and
303 division with a negative dividend isn't as well defined as we might
304 like. So we instead assume that ALIGNMENT is a power of two and
305 use logical operations which are unambiguous. */
306 if (FRAME_GROWS_DOWNWARD)
307 this_frame_offset
308 = (FLOOR_ROUND (start + length - size - frame_phase,
309 (unsigned HOST_WIDE_INT) alignment)
310 + frame_phase);
311 else
312 this_frame_offset
313 = (CEIL_ROUND (start - frame_phase,
314 (unsigned HOST_WIDE_INT) alignment)
315 + frame_phase);
316
317 /* See if it fits. If this space is at the edge of the frame,
318 consider extending the frame to make it fit. Our caller relies on
319 this when allocating a new slot. */
320 if (frame_offset == start && this_frame_offset < frame_offset)
321 frame_offset = this_frame_offset;
322 else if (this_frame_offset < start)
323 return false;
324 else if (start + length == frame_offset
325 && this_frame_offset + size > start + length)
326 frame_offset = this_frame_offset + size;
327 else if (this_frame_offset + size > start + length)
328 return false;
329
330 *poffset = this_frame_offset;
331 return true;
332 }
333
334 /* Create a new frame_space structure describing free space in the stack
335 frame beginning at START and ending at END, and chain it into the
336 function's frame_space_list. */
337
338 static void
339 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
340 {
341 struct frame_space *space = ggc_alloc<frame_space> ();
342 space->next = crtl->frame_space_list;
343 crtl->frame_space_list = space;
344 space->start = start;
345 space->length = end - start;
346 }
347
348 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
349 with machine mode MODE.
350
351 ALIGN controls the amount of alignment for the address of the slot:
352 0 means according to MODE,
353 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
354 -2 means use BITS_PER_UNIT,
355 positive specifies alignment boundary in bits.
356
357 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
358 alignment and ASLK_RECORD_PAD bit set if we should remember
359 extra space we allocated for alignment purposes. When we are
360 called from assign_stack_temp_for_type, it is not set so we don't
361 track the same stack slot in two independent lists.
362
363 We do not round to stack_boundary here. */
364
365 rtx
366 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
367 int align, int kind)
368 {
369 rtx x, addr;
370 int bigend_correction = 0;
371 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
372 unsigned int alignment, alignment_in_bits;
373
374 if (align == 0)
375 {
376 alignment = get_stack_local_alignment (NULL, mode);
377 alignment /= BITS_PER_UNIT;
378 }
379 else if (align == -1)
380 {
381 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
382 size = CEIL_ROUND (size, alignment);
383 }
384 else if (align == -2)
385 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
386 else
387 alignment = align / BITS_PER_UNIT;
388
389 alignment_in_bits = alignment * BITS_PER_UNIT;
390
391 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
392 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
393 {
394 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
395 alignment = alignment_in_bits / BITS_PER_UNIT;
396 }
397
398 if (SUPPORTS_STACK_ALIGNMENT)
399 {
400 if (crtl->stack_alignment_estimated < alignment_in_bits)
401 {
402 if (!crtl->stack_realign_processed)
403 crtl->stack_alignment_estimated = alignment_in_bits;
404 else
405 {
406 /* If stack is realigned and stack alignment value
407 hasn't been finalized, it is OK not to increase
408 stack_alignment_estimated. The bigger alignment
409 requirement is recorded in stack_alignment_needed
410 below. */
411 gcc_assert (!crtl->stack_realign_finalized);
412 if (!crtl->stack_realign_needed)
413 {
414 /* It is OK to reduce the alignment as long as the
415 requested size is 0 or the estimated stack
416 alignment >= mode alignment. */
417 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
418 || size == 0
419 || (crtl->stack_alignment_estimated
420 >= GET_MODE_ALIGNMENT (mode)));
421 alignment_in_bits = crtl->stack_alignment_estimated;
422 alignment = alignment_in_bits / BITS_PER_UNIT;
423 }
424 }
425 }
426 }
427
428 if (crtl->stack_alignment_needed < alignment_in_bits)
429 crtl->stack_alignment_needed = alignment_in_bits;
430 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
431 crtl->max_used_stack_slot_alignment = alignment_in_bits;
432
433 if (mode != BLKmode || size != 0)
434 {
435 if (kind & ASLK_RECORD_PAD)
436 {
437 struct frame_space **psp;
438
439 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
440 {
441 struct frame_space *space = *psp;
442 if (!try_fit_stack_local (space->start, space->length, size,
443 alignment, &slot_offset))
444 continue;
445 *psp = space->next;
446 if (slot_offset > space->start)
447 add_frame_space (space->start, slot_offset);
448 if (slot_offset + size < space->start + space->length)
449 add_frame_space (slot_offset + size,
450 space->start + space->length);
451 goto found_space;
452 }
453 }
454 }
455 else if (!STACK_ALIGNMENT_NEEDED)
456 {
457 slot_offset = frame_offset;
458 goto found_space;
459 }
460
461 old_frame_offset = frame_offset;
462
463 if (FRAME_GROWS_DOWNWARD)
464 {
465 frame_offset -= size;
466 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
467
468 if (kind & ASLK_RECORD_PAD)
469 {
470 if (slot_offset > frame_offset)
471 add_frame_space (frame_offset, slot_offset);
472 if (slot_offset + size < old_frame_offset)
473 add_frame_space (slot_offset + size, old_frame_offset);
474 }
475 }
476 else
477 {
478 frame_offset += size;
479 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
480
481 if (kind & ASLK_RECORD_PAD)
482 {
483 if (slot_offset > old_frame_offset)
484 add_frame_space (old_frame_offset, slot_offset);
485 if (slot_offset + size < frame_offset)
486 add_frame_space (slot_offset + size, frame_offset);
487 }
488 }
489
490 found_space:
491 /* On a big-endian machine, if we are allocating more space than we will use,
492 use the least significant bytes of those that are allocated. */
493 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
494 bigend_correction = size - GET_MODE_SIZE (mode);
495
496 /* If we have already instantiated virtual registers, return the actual
497 address relative to the frame pointer. */
498 if (virtuals_instantiated)
499 addr = plus_constant (Pmode, frame_pointer_rtx,
500 trunc_int_for_mode
501 (slot_offset + bigend_correction
502 + STARTING_FRAME_OFFSET, Pmode));
503 else
504 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
505 trunc_int_for_mode
506 (slot_offset + bigend_correction,
507 Pmode));
508
509 x = gen_rtx_MEM (mode, addr);
510 set_mem_align (x, alignment_in_bits);
511 MEM_NOTRAP_P (x) = 1;
512
513 stack_slot_list
514 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
515
516 if (frame_offset_overflow (frame_offset, current_function_decl))
517 frame_offset = 0;
518
519 return x;
520 }
521
522 /* Wrap up assign_stack_local_1 with last parameter as false. */
523
524 rtx
525 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
526 {
527 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
528 }
529 \f
530 /* In order to evaluate some expressions, such as function calls returning
531 structures in memory, we need to temporarily allocate stack locations.
532 We record each allocated temporary in the following structure.
533
534 Associated with each temporary slot is a nesting level. When we pop up
535 one level, all temporaries associated with the previous level are freed.
536 Normally, all temporaries are freed after the execution of the statement
537 in which they were created. However, if we are inside a ({...}) grouping,
538 the result may be in a temporary and hence must be preserved. If the
539 result could be in a temporary, we preserve it if we can determine which
540 one it is in. If we cannot determine which temporary may contain the
541 result, all temporaries are preserved. A temporary is preserved by
542 pretending it was allocated at the previous nesting level. */
543
544 struct GTY(()) temp_slot {
545 /* Points to next temporary slot. */
546 struct temp_slot *next;
547 /* Points to previous temporary slot. */
548 struct temp_slot *prev;
549 /* The rtx to used to reference the slot. */
550 rtx slot;
551 /* The size, in units, of the slot. */
552 HOST_WIDE_INT size;
553 /* The type of the object in the slot, or zero if it doesn't correspond
554 to a type. We use this to determine whether a slot can be reused.
555 It can be reused if objects of the type of the new slot will always
556 conflict with objects of the type of the old slot. */
557 tree type;
558 /* The alignment (in bits) of the slot. */
559 unsigned int align;
560 /* Nonzero if this temporary is currently in use. */
561 char in_use;
562 /* Nesting level at which this slot is being used. */
563 int level;
564 /* The offset of the slot from the frame_pointer, including extra space
565 for alignment. This info is for combine_temp_slots. */
566 HOST_WIDE_INT base_offset;
567 /* The size of the slot, including extra space for alignment. This
568 info is for combine_temp_slots. */
569 HOST_WIDE_INT full_size;
570 };
571
572 /* Entry for the below hash table. */
573 struct GTY((for_user)) temp_slot_address_entry {
574 hashval_t hash;
575 rtx address;
576 struct temp_slot *temp_slot;
577 };
578
579 struct temp_address_hasher : ggc_hasher<temp_slot_address_entry *>
580 {
581 static hashval_t hash (temp_slot_address_entry *);
582 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
583 };
584
585 /* A table of addresses that represent a stack slot. The table is a mapping
586 from address RTXen to a temp slot. */
587 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
588 static size_t n_temp_slots_in_use;
589
590 /* Removes temporary slot TEMP from LIST. */
591
592 static void
593 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
594 {
595 if (temp->next)
596 temp->next->prev = temp->prev;
597 if (temp->prev)
598 temp->prev->next = temp->next;
599 else
600 *list = temp->next;
601
602 temp->prev = temp->next = NULL;
603 }
604
605 /* Inserts temporary slot TEMP to LIST. */
606
607 static void
608 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
609 {
610 temp->next = *list;
611 if (*list)
612 (*list)->prev = temp;
613 temp->prev = NULL;
614 *list = temp;
615 }
616
617 /* Returns the list of used temp slots at LEVEL. */
618
619 static struct temp_slot **
620 temp_slots_at_level (int level)
621 {
622 if (level >= (int) vec_safe_length (used_temp_slots))
623 vec_safe_grow_cleared (used_temp_slots, level + 1);
624
625 return &(*used_temp_slots)[level];
626 }
627
628 /* Returns the maximal temporary slot level. */
629
630 static int
631 max_slot_level (void)
632 {
633 if (!used_temp_slots)
634 return -1;
635
636 return used_temp_slots->length () - 1;
637 }
638
639 /* Moves temporary slot TEMP to LEVEL. */
640
641 static void
642 move_slot_to_level (struct temp_slot *temp, int level)
643 {
644 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
645 insert_slot_to_list (temp, temp_slots_at_level (level));
646 temp->level = level;
647 }
648
649 /* Make temporary slot TEMP available. */
650
651 static void
652 make_slot_available (struct temp_slot *temp)
653 {
654 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
655 insert_slot_to_list (temp, &avail_temp_slots);
656 temp->in_use = 0;
657 temp->level = -1;
658 n_temp_slots_in_use--;
659 }
660
661 /* Compute the hash value for an address -> temp slot mapping.
662 The value is cached on the mapping entry. */
663 static hashval_t
664 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
665 {
666 int do_not_record = 0;
667 return hash_rtx (t->address, GET_MODE (t->address),
668 &do_not_record, NULL, false);
669 }
670
671 /* Return the hash value for an address -> temp slot mapping. */
672 hashval_t
673 temp_address_hasher::hash (temp_slot_address_entry *t)
674 {
675 return t->hash;
676 }
677
678 /* Compare two address -> temp slot mapping entries. */
679 bool
680 temp_address_hasher::equal (temp_slot_address_entry *t1,
681 temp_slot_address_entry *t2)
682 {
683 return exp_equiv_p (t1->address, t2->address, 0, true);
684 }
685
686 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
687 static void
688 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
689 {
690 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
691 t->address = address;
692 t->temp_slot = temp_slot;
693 t->hash = temp_slot_address_compute_hash (t);
694 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
695 }
696
697 /* Remove an address -> temp slot mapping entry if the temp slot is
698 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
699 int
700 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
701 {
702 const struct temp_slot_address_entry *t = *slot;
703 if (! t->temp_slot->in_use)
704 temp_slot_address_table->clear_slot (slot);
705 return 1;
706 }
707
708 /* Remove all mappings of addresses to unused temp slots. */
709 static void
710 remove_unused_temp_slot_addresses (void)
711 {
712 /* Use quicker clearing if there aren't any active temp slots. */
713 if (n_temp_slots_in_use)
714 temp_slot_address_table->traverse
715 <void *, remove_unused_temp_slot_addresses_1> (NULL);
716 else
717 temp_slot_address_table->empty ();
718 }
719
720 /* Find the temp slot corresponding to the object at address X. */
721
722 static struct temp_slot *
723 find_temp_slot_from_address (rtx x)
724 {
725 struct temp_slot *p;
726 struct temp_slot_address_entry tmp, *t;
727
728 /* First try the easy way:
729 See if X exists in the address -> temp slot mapping. */
730 tmp.address = x;
731 tmp.temp_slot = NULL;
732 tmp.hash = temp_slot_address_compute_hash (&tmp);
733 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
734 if (t)
735 return t->temp_slot;
736
737 /* If we have a sum involving a register, see if it points to a temp
738 slot. */
739 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
740 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
741 return p;
742 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
743 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
744 return p;
745
746 /* Last resort: Address is a virtual stack var address. */
747 if (GET_CODE (x) == PLUS
748 && XEXP (x, 0) == virtual_stack_vars_rtx
749 && CONST_INT_P (XEXP (x, 1)))
750 {
751 int i;
752 for (i = max_slot_level (); i >= 0; i--)
753 for (p = *temp_slots_at_level (i); p; p = p->next)
754 {
755 if (INTVAL (XEXP (x, 1)) >= p->base_offset
756 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
757 return p;
758 }
759 }
760
761 return NULL;
762 }
763 \f
764 /* Allocate a temporary stack slot and record it for possible later
765 reuse.
766
767 MODE is the machine mode to be given to the returned rtx.
768
769 SIZE is the size in units of the space required. We do no rounding here
770 since assign_stack_local will do any required rounding.
771
772 TYPE is the type that will be used for the stack slot. */
773
774 rtx
775 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
776 tree type)
777 {
778 unsigned int align;
779 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
780 rtx slot;
781
782 /* If SIZE is -1 it means that somebody tried to allocate a temporary
783 of a variable size. */
784 gcc_assert (size != -1);
785
786 align = get_stack_local_alignment (type, mode);
787
788 /* Try to find an available, already-allocated temporary of the proper
789 mode which meets the size and alignment requirements. Choose the
790 smallest one with the closest alignment.
791
792 If assign_stack_temp is called outside of the tree->rtl expansion,
793 we cannot reuse the stack slots (that may still refer to
794 VIRTUAL_STACK_VARS_REGNUM). */
795 if (!virtuals_instantiated)
796 {
797 for (p = avail_temp_slots; p; p = p->next)
798 {
799 if (p->align >= align && p->size >= size
800 && GET_MODE (p->slot) == mode
801 && objects_must_conflict_p (p->type, type)
802 && (best_p == 0 || best_p->size > p->size
803 || (best_p->size == p->size && best_p->align > p->align)))
804 {
805 if (p->align == align && p->size == size)
806 {
807 selected = p;
808 cut_slot_from_list (selected, &avail_temp_slots);
809 best_p = 0;
810 break;
811 }
812 best_p = p;
813 }
814 }
815 }
816
817 /* Make our best, if any, the one to use. */
818 if (best_p)
819 {
820 selected = best_p;
821 cut_slot_from_list (selected, &avail_temp_slots);
822
823 /* If there are enough aligned bytes left over, make them into a new
824 temp_slot so that the extra bytes don't get wasted. Do this only
825 for BLKmode slots, so that we can be sure of the alignment. */
826 if (GET_MODE (best_p->slot) == BLKmode)
827 {
828 int alignment = best_p->align / BITS_PER_UNIT;
829 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
830
831 if (best_p->size - rounded_size >= alignment)
832 {
833 p = ggc_alloc<temp_slot> ();
834 p->in_use = 0;
835 p->size = best_p->size - rounded_size;
836 p->base_offset = best_p->base_offset + rounded_size;
837 p->full_size = best_p->full_size - rounded_size;
838 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
839 p->align = best_p->align;
840 p->type = best_p->type;
841 insert_slot_to_list (p, &avail_temp_slots);
842
843 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
844 stack_slot_list);
845
846 best_p->size = rounded_size;
847 best_p->full_size = rounded_size;
848 }
849 }
850 }
851
852 /* If we still didn't find one, make a new temporary. */
853 if (selected == 0)
854 {
855 HOST_WIDE_INT frame_offset_old = frame_offset;
856
857 p = ggc_alloc<temp_slot> ();
858
859 /* We are passing an explicit alignment request to assign_stack_local.
860 One side effect of that is assign_stack_local will not round SIZE
861 to ensure the frame offset remains suitably aligned.
862
863 So for requests which depended on the rounding of SIZE, we go ahead
864 and round it now. We also make sure ALIGNMENT is at least
865 BIGGEST_ALIGNMENT. */
866 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
867 p->slot = assign_stack_local_1 (mode,
868 (mode == BLKmode
869 ? CEIL_ROUND (size,
870 (int) align
871 / BITS_PER_UNIT)
872 : size),
873 align, 0);
874
875 p->align = align;
876
877 /* The following slot size computation is necessary because we don't
878 know the actual size of the temporary slot until assign_stack_local
879 has performed all the frame alignment and size rounding for the
880 requested temporary. Note that extra space added for alignment
881 can be either above or below this stack slot depending on which
882 way the frame grows. We include the extra space if and only if it
883 is above this slot. */
884 if (FRAME_GROWS_DOWNWARD)
885 p->size = frame_offset_old - frame_offset;
886 else
887 p->size = size;
888
889 /* Now define the fields used by combine_temp_slots. */
890 if (FRAME_GROWS_DOWNWARD)
891 {
892 p->base_offset = frame_offset;
893 p->full_size = frame_offset_old - frame_offset;
894 }
895 else
896 {
897 p->base_offset = frame_offset_old;
898 p->full_size = frame_offset - frame_offset_old;
899 }
900
901 selected = p;
902 }
903
904 p = selected;
905 p->in_use = 1;
906 p->type = type;
907 p->level = temp_slot_level;
908 n_temp_slots_in_use++;
909
910 pp = temp_slots_at_level (p->level);
911 insert_slot_to_list (p, pp);
912 insert_temp_slot_address (XEXP (p->slot, 0), p);
913
914 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
915 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
916 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
917
918 /* If we know the alias set for the memory that will be used, use
919 it. If there's no TYPE, then we don't know anything about the
920 alias set for the memory. */
921 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
922 set_mem_align (slot, align);
923
924 /* If a type is specified, set the relevant flags. */
925 if (type != 0)
926 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
927 MEM_NOTRAP_P (slot) = 1;
928
929 return slot;
930 }
931
932 /* Allocate a temporary stack slot and record it for possible later
933 reuse. First two arguments are same as in preceding function. */
934
935 rtx
936 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
937 {
938 return assign_stack_temp_for_type (mode, size, NULL_TREE);
939 }
940 \f
941 /* Assign a temporary.
942 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
943 and so that should be used in error messages. In either case, we
944 allocate of the given type.
945 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
946 it is 0 if a register is OK.
947 DONT_PROMOTE is 1 if we should not promote values in register
948 to wider modes. */
949
950 rtx
951 assign_temp (tree type_or_decl, int memory_required,
952 int dont_promote ATTRIBUTE_UNUSED)
953 {
954 tree type, decl;
955 machine_mode mode;
956 #ifdef PROMOTE_MODE
957 int unsignedp;
958 #endif
959
960 if (DECL_P (type_or_decl))
961 decl = type_or_decl, type = TREE_TYPE (decl);
962 else
963 decl = NULL, type = type_or_decl;
964
965 mode = TYPE_MODE (type);
966 #ifdef PROMOTE_MODE
967 unsignedp = TYPE_UNSIGNED (type);
968 #endif
969
970 if (mode == BLKmode || memory_required)
971 {
972 HOST_WIDE_INT size = int_size_in_bytes (type);
973 rtx tmp;
974
975 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
976 problems with allocating the stack space. */
977 if (size == 0)
978 size = 1;
979
980 /* Unfortunately, we don't yet know how to allocate variable-sized
981 temporaries. However, sometimes we can find a fixed upper limit on
982 the size, so try that instead. */
983 else if (size == -1)
984 size = max_int_size_in_bytes (type);
985
986 /* The size of the temporary may be too large to fit into an integer. */
987 /* ??? Not sure this should happen except for user silliness, so limit
988 this to things that aren't compiler-generated temporaries. The
989 rest of the time we'll die in assign_stack_temp_for_type. */
990 if (decl && size == -1
991 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
992 {
993 error ("size of variable %q+D is too large", decl);
994 size = 1;
995 }
996
997 tmp = assign_stack_temp_for_type (mode, size, type);
998 return tmp;
999 }
1000
1001 #ifdef PROMOTE_MODE
1002 if (! dont_promote)
1003 mode = promote_mode (type, mode, &unsignedp);
1004 #endif
1005
1006 return gen_reg_rtx (mode);
1007 }
1008 \f
1009 /* Combine temporary stack slots which are adjacent on the stack.
1010
1011 This allows for better use of already allocated stack space. This is only
1012 done for BLKmode slots because we can be sure that we won't have alignment
1013 problems in this case. */
1014
1015 static void
1016 combine_temp_slots (void)
1017 {
1018 struct temp_slot *p, *q, *next, *next_q;
1019 int num_slots;
1020
1021 /* We can't combine slots, because the information about which slot
1022 is in which alias set will be lost. */
1023 if (flag_strict_aliasing)
1024 return;
1025
1026 /* If there are a lot of temp slots, don't do anything unless
1027 high levels of optimization. */
1028 if (! flag_expensive_optimizations)
1029 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1030 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1031 return;
1032
1033 for (p = avail_temp_slots; p; p = next)
1034 {
1035 int delete_p = 0;
1036
1037 next = p->next;
1038
1039 if (GET_MODE (p->slot) != BLKmode)
1040 continue;
1041
1042 for (q = p->next; q; q = next_q)
1043 {
1044 int delete_q = 0;
1045
1046 next_q = q->next;
1047
1048 if (GET_MODE (q->slot) != BLKmode)
1049 continue;
1050
1051 if (p->base_offset + p->full_size == q->base_offset)
1052 {
1053 /* Q comes after P; combine Q into P. */
1054 p->size += q->size;
1055 p->full_size += q->full_size;
1056 delete_q = 1;
1057 }
1058 else if (q->base_offset + q->full_size == p->base_offset)
1059 {
1060 /* P comes after Q; combine P into Q. */
1061 q->size += p->size;
1062 q->full_size += p->full_size;
1063 delete_p = 1;
1064 break;
1065 }
1066 if (delete_q)
1067 cut_slot_from_list (q, &avail_temp_slots);
1068 }
1069
1070 /* Either delete P or advance past it. */
1071 if (delete_p)
1072 cut_slot_from_list (p, &avail_temp_slots);
1073 }
1074 }
1075 \f
1076 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1077 slot that previously was known by OLD_RTX. */
1078
1079 void
1080 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1081 {
1082 struct temp_slot *p;
1083
1084 if (rtx_equal_p (old_rtx, new_rtx))
1085 return;
1086
1087 p = find_temp_slot_from_address (old_rtx);
1088
1089 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1090 NEW_RTX is a register, see if one operand of the PLUS is a
1091 temporary location. If so, NEW_RTX points into it. Otherwise,
1092 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1093 in common between them. If so, try a recursive call on those
1094 values. */
1095 if (p == 0)
1096 {
1097 if (GET_CODE (old_rtx) != PLUS)
1098 return;
1099
1100 if (REG_P (new_rtx))
1101 {
1102 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1103 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1104 return;
1105 }
1106 else if (GET_CODE (new_rtx) != PLUS)
1107 return;
1108
1109 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1110 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1111 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1112 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1113 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1114 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1115 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1116 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1117
1118 return;
1119 }
1120
1121 /* Otherwise add an alias for the temp's address. */
1122 insert_temp_slot_address (new_rtx, p);
1123 }
1124
1125 /* If X could be a reference to a temporary slot, mark that slot as
1126 belonging to the to one level higher than the current level. If X
1127 matched one of our slots, just mark that one. Otherwise, we can't
1128 easily predict which it is, so upgrade all of them.
1129
1130 This is called when an ({...}) construct occurs and a statement
1131 returns a value in memory. */
1132
1133 void
1134 preserve_temp_slots (rtx x)
1135 {
1136 struct temp_slot *p = 0, *next;
1137
1138 if (x == 0)
1139 return;
1140
1141 /* If X is a register that is being used as a pointer, see if we have
1142 a temporary slot we know it points to. */
1143 if (REG_P (x) && REG_POINTER (x))
1144 p = find_temp_slot_from_address (x);
1145
1146 /* If X is not in memory or is at a constant address, it cannot be in
1147 a temporary slot. */
1148 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1149 return;
1150
1151 /* First see if we can find a match. */
1152 if (p == 0)
1153 p = find_temp_slot_from_address (XEXP (x, 0));
1154
1155 if (p != 0)
1156 {
1157 if (p->level == temp_slot_level)
1158 move_slot_to_level (p, temp_slot_level - 1);
1159 return;
1160 }
1161
1162 /* Otherwise, preserve all non-kept slots at this level. */
1163 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1164 {
1165 next = p->next;
1166 move_slot_to_level (p, temp_slot_level - 1);
1167 }
1168 }
1169
1170 /* Free all temporaries used so far. This is normally called at the
1171 end of generating code for a statement. */
1172
1173 void
1174 free_temp_slots (void)
1175 {
1176 struct temp_slot *p, *next;
1177 bool some_available = false;
1178
1179 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1180 {
1181 next = p->next;
1182 make_slot_available (p);
1183 some_available = true;
1184 }
1185
1186 if (some_available)
1187 {
1188 remove_unused_temp_slot_addresses ();
1189 combine_temp_slots ();
1190 }
1191 }
1192
1193 /* Push deeper into the nesting level for stack temporaries. */
1194
1195 void
1196 push_temp_slots (void)
1197 {
1198 temp_slot_level++;
1199 }
1200
1201 /* Pop a temporary nesting level. All slots in use in the current level
1202 are freed. */
1203
1204 void
1205 pop_temp_slots (void)
1206 {
1207 free_temp_slots ();
1208 temp_slot_level--;
1209 }
1210
1211 /* Initialize temporary slots. */
1212
1213 void
1214 init_temp_slots (void)
1215 {
1216 /* We have not allocated any temporaries yet. */
1217 avail_temp_slots = 0;
1218 vec_alloc (used_temp_slots, 0);
1219 temp_slot_level = 0;
1220 n_temp_slots_in_use = 0;
1221
1222 /* Set up the table to map addresses to temp slots. */
1223 if (! temp_slot_address_table)
1224 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1225 else
1226 temp_slot_address_table->empty ();
1227 }
1228 \f
1229 /* Functions and data structures to keep track of the values hard regs
1230 had at the start of the function. */
1231
1232 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1233 and has_hard_reg_initial_val.. */
1234 typedef struct GTY(()) initial_value_pair {
1235 rtx hard_reg;
1236 rtx pseudo;
1237 } initial_value_pair;
1238 /* ??? This could be a VEC but there is currently no way to define an
1239 opaque VEC type. This could be worked around by defining struct
1240 initial_value_pair in function.h. */
1241 typedef struct GTY(()) initial_value_struct {
1242 int num_entries;
1243 int max_entries;
1244 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1245 } initial_value_struct;
1246
1247 /* If a pseudo represents an initial hard reg (or expression), return
1248 it, else return NULL_RTX. */
1249
1250 rtx
1251 get_hard_reg_initial_reg (rtx reg)
1252 {
1253 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1254 int i;
1255
1256 if (ivs == 0)
1257 return NULL_RTX;
1258
1259 for (i = 0; i < ivs->num_entries; i++)
1260 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1261 return ivs->entries[i].hard_reg;
1262
1263 return NULL_RTX;
1264 }
1265
1266 /* Make sure that there's a pseudo register of mode MODE that stores the
1267 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1268
1269 rtx
1270 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1271 {
1272 struct initial_value_struct *ivs;
1273 rtx rv;
1274
1275 rv = has_hard_reg_initial_val (mode, regno);
1276 if (rv)
1277 return rv;
1278
1279 ivs = crtl->hard_reg_initial_vals;
1280 if (ivs == 0)
1281 {
1282 ivs = ggc_alloc<initial_value_struct> ();
1283 ivs->num_entries = 0;
1284 ivs->max_entries = 5;
1285 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1286 crtl->hard_reg_initial_vals = ivs;
1287 }
1288
1289 if (ivs->num_entries >= ivs->max_entries)
1290 {
1291 ivs->max_entries += 5;
1292 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1293 ivs->max_entries);
1294 }
1295
1296 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1297 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1298
1299 return ivs->entries[ivs->num_entries++].pseudo;
1300 }
1301
1302 /* See if get_hard_reg_initial_val has been used to create a pseudo
1303 for the initial value of hard register REGNO in mode MODE. Return
1304 the associated pseudo if so, otherwise return NULL. */
1305
1306 rtx
1307 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1308 {
1309 struct initial_value_struct *ivs;
1310 int i;
1311
1312 ivs = crtl->hard_reg_initial_vals;
1313 if (ivs != 0)
1314 for (i = 0; i < ivs->num_entries; i++)
1315 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1316 && REGNO (ivs->entries[i].hard_reg) == regno)
1317 return ivs->entries[i].pseudo;
1318
1319 return NULL_RTX;
1320 }
1321
1322 unsigned int
1323 emit_initial_value_sets (void)
1324 {
1325 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1326 int i;
1327 rtx_insn *seq;
1328
1329 if (ivs == 0)
1330 return 0;
1331
1332 start_sequence ();
1333 for (i = 0; i < ivs->num_entries; i++)
1334 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1335 seq = get_insns ();
1336 end_sequence ();
1337
1338 emit_insn_at_entry (seq);
1339 return 0;
1340 }
1341
1342 /* Return the hardreg-pseudoreg initial values pair entry I and
1343 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1344 bool
1345 initial_value_entry (int i, rtx *hreg, rtx *preg)
1346 {
1347 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1348 if (!ivs || i >= ivs->num_entries)
1349 return false;
1350
1351 *hreg = ivs->entries[i].hard_reg;
1352 *preg = ivs->entries[i].pseudo;
1353 return true;
1354 }
1355 \f
1356 /* These routines are responsible for converting virtual register references
1357 to the actual hard register references once RTL generation is complete.
1358
1359 The following four variables are used for communication between the
1360 routines. They contain the offsets of the virtual registers from their
1361 respective hard registers. */
1362
1363 static int in_arg_offset;
1364 static int var_offset;
1365 static int dynamic_offset;
1366 static int out_arg_offset;
1367 static int cfa_offset;
1368
1369 /* In most machines, the stack pointer register is equivalent to the bottom
1370 of the stack. */
1371
1372 #ifndef STACK_POINTER_OFFSET
1373 #define STACK_POINTER_OFFSET 0
1374 #endif
1375
1376 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1377 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1378 #endif
1379
1380 /* If not defined, pick an appropriate default for the offset of dynamically
1381 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1382 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1383
1384 #ifndef STACK_DYNAMIC_OFFSET
1385
1386 /* The bottom of the stack points to the actual arguments. If
1387 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1388 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1389 stack space for register parameters is not pushed by the caller, but
1390 rather part of the fixed stack areas and hence not included in
1391 `crtl->outgoing_args_size'. Nevertheless, we must allow
1392 for it when allocating stack dynamic objects. */
1393
1394 #ifdef INCOMING_REG_PARM_STACK_SPACE
1395 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1396 ((ACCUMULATE_OUTGOING_ARGS \
1397 ? (crtl->outgoing_args_size \
1398 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1399 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1400 : 0) + (STACK_POINTER_OFFSET))
1401 #else
1402 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1403 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1404 + (STACK_POINTER_OFFSET))
1405 #endif
1406 #endif
1407
1408 \f
1409 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1410 is a virtual register, return the equivalent hard register and set the
1411 offset indirectly through the pointer. Otherwise, return 0. */
1412
1413 static rtx
1414 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1415 {
1416 rtx new_rtx;
1417 HOST_WIDE_INT offset;
1418
1419 if (x == virtual_incoming_args_rtx)
1420 {
1421 if (stack_realign_drap)
1422 {
1423 /* Replace virtual_incoming_args_rtx with internal arg
1424 pointer if DRAP is used to realign stack. */
1425 new_rtx = crtl->args.internal_arg_pointer;
1426 offset = 0;
1427 }
1428 else
1429 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1430 }
1431 else if (x == virtual_stack_vars_rtx)
1432 new_rtx = frame_pointer_rtx, offset = var_offset;
1433 else if (x == virtual_stack_dynamic_rtx)
1434 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1435 else if (x == virtual_outgoing_args_rtx)
1436 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1437 else if (x == virtual_cfa_rtx)
1438 {
1439 #ifdef FRAME_POINTER_CFA_OFFSET
1440 new_rtx = frame_pointer_rtx;
1441 #else
1442 new_rtx = arg_pointer_rtx;
1443 #endif
1444 offset = cfa_offset;
1445 }
1446 else if (x == virtual_preferred_stack_boundary_rtx)
1447 {
1448 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1449 offset = 0;
1450 }
1451 else
1452 return NULL_RTX;
1453
1454 *poffset = offset;
1455 return new_rtx;
1456 }
1457
1458 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1459 registers present inside of *LOC. The expression is simplified,
1460 as much as possible, but is not to be considered "valid" in any sense
1461 implied by the target. Return true if any change is made. */
1462
1463 static bool
1464 instantiate_virtual_regs_in_rtx (rtx *loc)
1465 {
1466 if (!*loc)
1467 return false;
1468 bool changed = false;
1469 subrtx_ptr_iterator::array_type array;
1470 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1471 {
1472 rtx *loc = *iter;
1473 if (rtx x = *loc)
1474 {
1475 rtx new_rtx;
1476 HOST_WIDE_INT offset;
1477 switch (GET_CODE (x))
1478 {
1479 case REG:
1480 new_rtx = instantiate_new_reg (x, &offset);
1481 if (new_rtx)
1482 {
1483 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1484 changed = true;
1485 }
1486 iter.skip_subrtxes ();
1487 break;
1488
1489 case PLUS:
1490 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1491 if (new_rtx)
1492 {
1493 XEXP (x, 0) = new_rtx;
1494 *loc = plus_constant (GET_MODE (x), x, offset, true);
1495 changed = true;
1496 iter.skip_subrtxes ();
1497 break;
1498 }
1499
1500 /* FIXME -- from old code */
1501 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1502 we can commute the PLUS and SUBREG because pointers into the
1503 frame are well-behaved. */
1504 break;
1505
1506 default:
1507 break;
1508 }
1509 }
1510 }
1511 return changed;
1512 }
1513
1514 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1515 matches the predicate for insn CODE operand OPERAND. */
1516
1517 static int
1518 safe_insn_predicate (int code, int operand, rtx x)
1519 {
1520 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1521 }
1522
1523 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1524 registers present inside of insn. The result will be a valid insn. */
1525
1526 static void
1527 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1528 {
1529 HOST_WIDE_INT offset;
1530 int insn_code, i;
1531 bool any_change = false;
1532 rtx set, new_rtx, x;
1533 rtx_insn *seq;
1534
1535 /* There are some special cases to be handled first. */
1536 set = single_set (insn);
1537 if (set)
1538 {
1539 /* We're allowed to assign to a virtual register. This is interpreted
1540 to mean that the underlying register gets assigned the inverse
1541 transformation. This is used, for example, in the handling of
1542 non-local gotos. */
1543 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1544 if (new_rtx)
1545 {
1546 start_sequence ();
1547
1548 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1549 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1550 gen_int_mode (-offset, GET_MODE (new_rtx)));
1551 x = force_operand (x, new_rtx);
1552 if (x != new_rtx)
1553 emit_move_insn (new_rtx, x);
1554
1555 seq = get_insns ();
1556 end_sequence ();
1557
1558 emit_insn_before (seq, insn);
1559 delete_insn (insn);
1560 return;
1561 }
1562
1563 /* Handle a straight copy from a virtual register by generating a
1564 new add insn. The difference between this and falling through
1565 to the generic case is avoiding a new pseudo and eliminating a
1566 move insn in the initial rtl stream. */
1567 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1568 if (new_rtx && offset != 0
1569 && REG_P (SET_DEST (set))
1570 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1571 {
1572 start_sequence ();
1573
1574 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1575 gen_int_mode (offset,
1576 GET_MODE (SET_DEST (set))),
1577 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1578 if (x != SET_DEST (set))
1579 emit_move_insn (SET_DEST (set), x);
1580
1581 seq = get_insns ();
1582 end_sequence ();
1583
1584 emit_insn_before (seq, insn);
1585 delete_insn (insn);
1586 return;
1587 }
1588
1589 extract_insn (insn);
1590 insn_code = INSN_CODE (insn);
1591
1592 /* Handle a plus involving a virtual register by determining if the
1593 operands remain valid if they're modified in place. */
1594 if (GET_CODE (SET_SRC (set)) == PLUS
1595 && recog_data.n_operands >= 3
1596 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1597 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1598 && CONST_INT_P (recog_data.operand[2])
1599 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1600 {
1601 offset += INTVAL (recog_data.operand[2]);
1602
1603 /* If the sum is zero, then replace with a plain move. */
1604 if (offset == 0
1605 && REG_P (SET_DEST (set))
1606 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1607 {
1608 start_sequence ();
1609 emit_move_insn (SET_DEST (set), new_rtx);
1610 seq = get_insns ();
1611 end_sequence ();
1612
1613 emit_insn_before (seq, insn);
1614 delete_insn (insn);
1615 return;
1616 }
1617
1618 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1619
1620 /* Using validate_change and apply_change_group here leaves
1621 recog_data in an invalid state. Since we know exactly what
1622 we want to check, do those two by hand. */
1623 if (safe_insn_predicate (insn_code, 1, new_rtx)
1624 && safe_insn_predicate (insn_code, 2, x))
1625 {
1626 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1627 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1628 any_change = true;
1629
1630 /* Fall through into the regular operand fixup loop in
1631 order to take care of operands other than 1 and 2. */
1632 }
1633 }
1634 }
1635 else
1636 {
1637 extract_insn (insn);
1638 insn_code = INSN_CODE (insn);
1639 }
1640
1641 /* In the general case, we expect virtual registers to appear only in
1642 operands, and then only as either bare registers or inside memories. */
1643 for (i = 0; i < recog_data.n_operands; ++i)
1644 {
1645 x = recog_data.operand[i];
1646 switch (GET_CODE (x))
1647 {
1648 case MEM:
1649 {
1650 rtx addr = XEXP (x, 0);
1651
1652 if (!instantiate_virtual_regs_in_rtx (&addr))
1653 continue;
1654
1655 start_sequence ();
1656 x = replace_equiv_address (x, addr, true);
1657 /* It may happen that the address with the virtual reg
1658 was valid (e.g. based on the virtual stack reg, which might
1659 be acceptable to the predicates with all offsets), whereas
1660 the address now isn't anymore, for instance when the address
1661 is still offsetted, but the base reg isn't virtual-stack-reg
1662 anymore. Below we would do a force_reg on the whole operand,
1663 but this insn might actually only accept memory. Hence,
1664 before doing that last resort, try to reload the address into
1665 a register, so this operand stays a MEM. */
1666 if (!safe_insn_predicate (insn_code, i, x))
1667 {
1668 addr = force_reg (GET_MODE (addr), addr);
1669 x = replace_equiv_address (x, addr, true);
1670 }
1671 seq = get_insns ();
1672 end_sequence ();
1673 if (seq)
1674 emit_insn_before (seq, insn);
1675 }
1676 break;
1677
1678 case REG:
1679 new_rtx = instantiate_new_reg (x, &offset);
1680 if (new_rtx == NULL)
1681 continue;
1682 if (offset == 0)
1683 x = new_rtx;
1684 else
1685 {
1686 start_sequence ();
1687
1688 /* Careful, special mode predicates may have stuff in
1689 insn_data[insn_code].operand[i].mode that isn't useful
1690 to us for computing a new value. */
1691 /* ??? Recognize address_operand and/or "p" constraints
1692 to see if (plus new offset) is a valid before we put
1693 this through expand_simple_binop. */
1694 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1695 gen_int_mode (offset, GET_MODE (x)),
1696 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1697 seq = get_insns ();
1698 end_sequence ();
1699 emit_insn_before (seq, insn);
1700 }
1701 break;
1702
1703 case SUBREG:
1704 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1705 if (new_rtx == NULL)
1706 continue;
1707 if (offset != 0)
1708 {
1709 start_sequence ();
1710 new_rtx = expand_simple_binop
1711 (GET_MODE (new_rtx), PLUS, new_rtx,
1712 gen_int_mode (offset, GET_MODE (new_rtx)),
1713 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1714 seq = get_insns ();
1715 end_sequence ();
1716 emit_insn_before (seq, insn);
1717 }
1718 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1719 GET_MODE (new_rtx), SUBREG_BYTE (x));
1720 gcc_assert (x);
1721 break;
1722
1723 default:
1724 continue;
1725 }
1726
1727 /* At this point, X contains the new value for the operand.
1728 Validate the new value vs the insn predicate. Note that
1729 asm insns will have insn_code -1 here. */
1730 if (!safe_insn_predicate (insn_code, i, x))
1731 {
1732 start_sequence ();
1733 if (REG_P (x))
1734 {
1735 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1736 x = copy_to_reg (x);
1737 }
1738 else
1739 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1740 seq = get_insns ();
1741 end_sequence ();
1742 if (seq)
1743 emit_insn_before (seq, insn);
1744 }
1745
1746 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1747 any_change = true;
1748 }
1749
1750 if (any_change)
1751 {
1752 /* Propagate operand changes into the duplicates. */
1753 for (i = 0; i < recog_data.n_dups; ++i)
1754 *recog_data.dup_loc[i]
1755 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1756
1757 /* Force re-recognition of the instruction for validation. */
1758 INSN_CODE (insn) = -1;
1759 }
1760
1761 if (asm_noperands (PATTERN (insn)) >= 0)
1762 {
1763 if (!check_asm_operands (PATTERN (insn)))
1764 {
1765 error_for_asm (insn, "impossible constraint in %<asm%>");
1766 /* For asm goto, instead of fixing up all the edges
1767 just clear the template and clear input operands
1768 (asm goto doesn't have any output operands). */
1769 if (JUMP_P (insn))
1770 {
1771 rtx asm_op = extract_asm_operands (PATTERN (insn));
1772 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1773 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1774 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1775 }
1776 else
1777 delete_insn (insn);
1778 }
1779 }
1780 else
1781 {
1782 if (recog_memoized (insn) < 0)
1783 fatal_insn_not_found (insn);
1784 }
1785 }
1786
1787 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1788 do any instantiation required. */
1789
1790 void
1791 instantiate_decl_rtl (rtx x)
1792 {
1793 rtx addr;
1794
1795 if (x == 0)
1796 return;
1797
1798 /* If this is a CONCAT, recurse for the pieces. */
1799 if (GET_CODE (x) == CONCAT)
1800 {
1801 instantiate_decl_rtl (XEXP (x, 0));
1802 instantiate_decl_rtl (XEXP (x, 1));
1803 return;
1804 }
1805
1806 /* If this is not a MEM, no need to do anything. Similarly if the
1807 address is a constant or a register that is not a virtual register. */
1808 if (!MEM_P (x))
1809 return;
1810
1811 addr = XEXP (x, 0);
1812 if (CONSTANT_P (addr)
1813 || (REG_P (addr)
1814 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1815 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1816 return;
1817
1818 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1819 }
1820
1821 /* Helper for instantiate_decls called via walk_tree: Process all decls
1822 in the given DECL_VALUE_EXPR. */
1823
1824 static tree
1825 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1826 {
1827 tree t = *tp;
1828 if (! EXPR_P (t))
1829 {
1830 *walk_subtrees = 0;
1831 if (DECL_P (t))
1832 {
1833 if (DECL_RTL_SET_P (t))
1834 instantiate_decl_rtl (DECL_RTL (t));
1835 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1836 && DECL_INCOMING_RTL (t))
1837 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1838 if ((TREE_CODE (t) == VAR_DECL
1839 || TREE_CODE (t) == RESULT_DECL)
1840 && DECL_HAS_VALUE_EXPR_P (t))
1841 {
1842 tree v = DECL_VALUE_EXPR (t);
1843 walk_tree (&v, instantiate_expr, NULL, NULL);
1844 }
1845 }
1846 }
1847 return NULL;
1848 }
1849
1850 /* Subroutine of instantiate_decls: Process all decls in the given
1851 BLOCK node and all its subblocks. */
1852
1853 static void
1854 instantiate_decls_1 (tree let)
1855 {
1856 tree t;
1857
1858 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1859 {
1860 if (DECL_RTL_SET_P (t))
1861 instantiate_decl_rtl (DECL_RTL (t));
1862 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1863 {
1864 tree v = DECL_VALUE_EXPR (t);
1865 walk_tree (&v, instantiate_expr, NULL, NULL);
1866 }
1867 }
1868
1869 /* Process all subblocks. */
1870 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1871 instantiate_decls_1 (t);
1872 }
1873
1874 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1875 all virtual registers in their DECL_RTL's. */
1876
1877 static void
1878 instantiate_decls (tree fndecl)
1879 {
1880 tree decl;
1881 unsigned ix;
1882
1883 /* Process all parameters of the function. */
1884 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1885 {
1886 instantiate_decl_rtl (DECL_RTL (decl));
1887 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1888 if (DECL_HAS_VALUE_EXPR_P (decl))
1889 {
1890 tree v = DECL_VALUE_EXPR (decl);
1891 walk_tree (&v, instantiate_expr, NULL, NULL);
1892 }
1893 }
1894
1895 if ((decl = DECL_RESULT (fndecl))
1896 && TREE_CODE (decl) == RESULT_DECL)
1897 {
1898 if (DECL_RTL_SET_P (decl))
1899 instantiate_decl_rtl (DECL_RTL (decl));
1900 if (DECL_HAS_VALUE_EXPR_P (decl))
1901 {
1902 tree v = DECL_VALUE_EXPR (decl);
1903 walk_tree (&v, instantiate_expr, NULL, NULL);
1904 }
1905 }
1906
1907 /* Process the saved static chain if it exists. */
1908 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1909 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1910 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1911
1912 /* Now process all variables defined in the function or its subblocks. */
1913 instantiate_decls_1 (DECL_INITIAL (fndecl));
1914
1915 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1916 if (DECL_RTL_SET_P (decl))
1917 instantiate_decl_rtl (DECL_RTL (decl));
1918 vec_free (cfun->local_decls);
1919 }
1920
1921 /* Pass through the INSNS of function FNDECL and convert virtual register
1922 references to hard register references. */
1923
1924 static unsigned int
1925 instantiate_virtual_regs (void)
1926 {
1927 rtx_insn *insn;
1928
1929 /* Compute the offsets to use for this function. */
1930 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1931 var_offset = STARTING_FRAME_OFFSET;
1932 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1933 out_arg_offset = STACK_POINTER_OFFSET;
1934 #ifdef FRAME_POINTER_CFA_OFFSET
1935 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1936 #else
1937 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1938 #endif
1939
1940 /* Initialize recognition, indicating that volatile is OK. */
1941 init_recog ();
1942
1943 /* Scan through all the insns, instantiating every virtual register still
1944 present. */
1945 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1946 if (INSN_P (insn))
1947 {
1948 /* These patterns in the instruction stream can never be recognized.
1949 Fortunately, they shouldn't contain virtual registers either. */
1950 if (GET_CODE (PATTERN (insn)) == USE
1951 || GET_CODE (PATTERN (insn)) == CLOBBER
1952 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1953 continue;
1954 else if (DEBUG_INSN_P (insn))
1955 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1956 else
1957 instantiate_virtual_regs_in_insn (insn);
1958
1959 if (insn->deleted ())
1960 continue;
1961
1962 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1963
1964 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1965 if (CALL_P (insn))
1966 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1967 }
1968
1969 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1970 instantiate_decls (current_function_decl);
1971
1972 targetm.instantiate_decls ();
1973
1974 /* Indicate that, from now on, assign_stack_local should use
1975 frame_pointer_rtx. */
1976 virtuals_instantiated = 1;
1977
1978 return 0;
1979 }
1980
1981 namespace {
1982
1983 const pass_data pass_data_instantiate_virtual_regs =
1984 {
1985 RTL_PASS, /* type */
1986 "vregs", /* name */
1987 OPTGROUP_NONE, /* optinfo_flags */
1988 TV_NONE, /* tv_id */
1989 0, /* properties_required */
1990 0, /* properties_provided */
1991 0, /* properties_destroyed */
1992 0, /* todo_flags_start */
1993 0, /* todo_flags_finish */
1994 };
1995
1996 class pass_instantiate_virtual_regs : public rtl_opt_pass
1997 {
1998 public:
1999 pass_instantiate_virtual_regs (gcc::context *ctxt)
2000 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2001 {}
2002
2003 /* opt_pass methods: */
2004 virtual unsigned int execute (function *)
2005 {
2006 return instantiate_virtual_regs ();
2007 }
2008
2009 }; // class pass_instantiate_virtual_regs
2010
2011 } // anon namespace
2012
2013 rtl_opt_pass *
2014 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2015 {
2016 return new pass_instantiate_virtual_regs (ctxt);
2017 }
2018
2019 \f
2020 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2021 This means a type for which function calls must pass an address to the
2022 function or get an address back from the function.
2023 EXP may be a type node or an expression (whose type is tested). */
2024
2025 int
2026 aggregate_value_p (const_tree exp, const_tree fntype)
2027 {
2028 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2029 int i, regno, nregs;
2030 rtx reg;
2031
2032 if (fntype)
2033 switch (TREE_CODE (fntype))
2034 {
2035 case CALL_EXPR:
2036 {
2037 tree fndecl = get_callee_fndecl (fntype);
2038 if (fndecl)
2039 fntype = TREE_TYPE (fndecl);
2040 else if (CALL_EXPR_FN (fntype))
2041 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2042 else
2043 /* For internal functions, assume nothing needs to be
2044 returned in memory. */
2045 return 0;
2046 }
2047 break;
2048 case FUNCTION_DECL:
2049 fntype = TREE_TYPE (fntype);
2050 break;
2051 case FUNCTION_TYPE:
2052 case METHOD_TYPE:
2053 break;
2054 case IDENTIFIER_NODE:
2055 fntype = NULL_TREE;
2056 break;
2057 default:
2058 /* We don't expect other tree types here. */
2059 gcc_unreachable ();
2060 }
2061
2062 if (VOID_TYPE_P (type))
2063 return 0;
2064
2065 /* If a record should be passed the same as its first (and only) member
2066 don't pass it as an aggregate. */
2067 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2068 return aggregate_value_p (first_field (type), fntype);
2069
2070 /* If the front end has decided that this needs to be passed by
2071 reference, do so. */
2072 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2073 && DECL_BY_REFERENCE (exp))
2074 return 1;
2075
2076 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2077 if (fntype && TREE_ADDRESSABLE (fntype))
2078 return 1;
2079
2080 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2081 and thus can't be returned in registers. */
2082 if (TREE_ADDRESSABLE (type))
2083 return 1;
2084
2085 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2086 return 1;
2087
2088 if (targetm.calls.return_in_memory (type, fntype))
2089 return 1;
2090
2091 /* Make sure we have suitable call-clobbered regs to return
2092 the value in; if not, we must return it in memory. */
2093 reg = hard_function_value (type, 0, fntype, 0);
2094
2095 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2096 it is OK. */
2097 if (!REG_P (reg))
2098 return 0;
2099
2100 regno = REGNO (reg);
2101 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2102 for (i = 0; i < nregs; i++)
2103 if (! call_used_regs[regno + i])
2104 return 1;
2105
2106 return 0;
2107 }
2108 \f
2109 /* Return true if we should assign DECL a pseudo register; false if it
2110 should live on the local stack. */
2111
2112 bool
2113 use_register_for_decl (const_tree decl)
2114 {
2115 if (TREE_CODE (decl) == SSA_NAME)
2116 {
2117 /* We often try to use the SSA_NAME, instead of its underlying
2118 decl, to get type information and guide decisions, to avoid
2119 differences of behavior between anonymous and named
2120 variables, but in this one case we have to go for the actual
2121 variable if there is one. The main reason is that, at least
2122 at -O0, we want to place user variables on the stack, but we
2123 don't mind using pseudos for anonymous or ignored temps.
2124 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2125 should go in pseudos, whereas their corresponding variables
2126 might have to go on the stack. So, disregarding the decl
2127 here would negatively impact debug info at -O0, enable
2128 coalescing between SSA_NAMEs that ought to get different
2129 stack/pseudo assignments, and get the incoming argument
2130 processing thoroughly confused by PARM_DECLs expected to live
2131 in stack slots but assigned to pseudos. */
2132 if (!SSA_NAME_VAR (decl))
2133 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2134 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2135
2136 decl = SSA_NAME_VAR (decl);
2137 }
2138
2139 if (!targetm.calls.allocate_stack_slots_for_args ())
2140 return true;
2141
2142 /* Honor volatile. */
2143 if (TREE_SIDE_EFFECTS (decl))
2144 return false;
2145
2146 /* Honor addressability. */
2147 if (TREE_ADDRESSABLE (decl))
2148 return false;
2149
2150 /* Decl is implicitly addressible by bound stores and loads
2151 if it is an aggregate holding bounds. */
2152 if (chkp_function_instrumented_p (current_function_decl)
2153 && TREE_TYPE (decl)
2154 && !BOUNDED_P (decl)
2155 && chkp_type_has_pointer (TREE_TYPE (decl)))
2156 return false;
2157
2158 /* Only register-like things go in registers. */
2159 if (DECL_MODE (decl) == BLKmode)
2160 return false;
2161
2162 /* If -ffloat-store specified, don't put explicit float variables
2163 into registers. */
2164 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2165 propagates values across these stores, and it probably shouldn't. */
2166 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2167 return false;
2168
2169 /* If we're not interested in tracking debugging information for
2170 this decl, then we can certainly put it in a register. */
2171 if (DECL_IGNORED_P (decl))
2172 return true;
2173
2174 if (optimize)
2175 return true;
2176
2177 if (!DECL_REGISTER (decl))
2178 return false;
2179
2180 switch (TREE_CODE (TREE_TYPE (decl)))
2181 {
2182 case RECORD_TYPE:
2183 case UNION_TYPE:
2184 case QUAL_UNION_TYPE:
2185 /* When not optimizing, disregard register keyword for variables with
2186 types containing methods, otherwise the methods won't be callable
2187 from the debugger. */
2188 if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl))))
2189 return false;
2190 break;
2191 default:
2192 break;
2193 }
2194
2195 return true;
2196 }
2197
2198 /* Return true if TYPE should be passed by invisible reference. */
2199
2200 bool
2201 pass_by_reference (CUMULATIVE_ARGS *ca, machine_mode mode,
2202 tree type, bool named_arg)
2203 {
2204 if (type)
2205 {
2206 /* If this type contains non-trivial constructors, then it is
2207 forbidden for the middle-end to create any new copies. */
2208 if (TREE_ADDRESSABLE (type))
2209 return true;
2210
2211 /* GCC post 3.4 passes *all* variable sized types by reference. */
2212 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2213 return true;
2214
2215 /* If a record type should be passed the same as its first (and only)
2216 member, use the type and mode of that member. */
2217 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2218 {
2219 type = TREE_TYPE (first_field (type));
2220 mode = TYPE_MODE (type);
2221 }
2222 }
2223
2224 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2225 type, named_arg);
2226 }
2227
2228 /* Return true if TYPE, which is passed by reference, should be callee
2229 copied instead of caller copied. */
2230
2231 bool
2232 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
2233 tree type, bool named_arg)
2234 {
2235 if (type && TREE_ADDRESSABLE (type))
2236 return false;
2237 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2238 named_arg);
2239 }
2240
2241 /* Structures to communicate between the subroutines of assign_parms.
2242 The first holds data persistent across all parameters, the second
2243 is cleared out for each parameter. */
2244
2245 struct assign_parm_data_all
2246 {
2247 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2248 should become a job of the target or otherwise encapsulated. */
2249 CUMULATIVE_ARGS args_so_far_v;
2250 cumulative_args_t args_so_far;
2251 struct args_size stack_args_size;
2252 tree function_result_decl;
2253 tree orig_fnargs;
2254 rtx_insn *first_conversion_insn;
2255 rtx_insn *last_conversion_insn;
2256 HOST_WIDE_INT pretend_args_size;
2257 HOST_WIDE_INT extra_pretend_bytes;
2258 int reg_parm_stack_space;
2259 };
2260
2261 struct assign_parm_data_one
2262 {
2263 tree nominal_type;
2264 tree passed_type;
2265 rtx entry_parm;
2266 rtx stack_parm;
2267 machine_mode nominal_mode;
2268 machine_mode passed_mode;
2269 machine_mode promoted_mode;
2270 struct locate_and_pad_arg_data locate;
2271 int partial;
2272 BOOL_BITFIELD named_arg : 1;
2273 BOOL_BITFIELD passed_pointer : 1;
2274 BOOL_BITFIELD on_stack : 1;
2275 BOOL_BITFIELD loaded_in_reg : 1;
2276 };
2277
2278 struct bounds_parm_data
2279 {
2280 assign_parm_data_one parm_data;
2281 tree bounds_parm;
2282 tree ptr_parm;
2283 rtx ptr_entry;
2284 int bound_no;
2285 };
2286
2287 /* A subroutine of assign_parms. Initialize ALL. */
2288
2289 static void
2290 assign_parms_initialize_all (struct assign_parm_data_all *all)
2291 {
2292 tree fntype ATTRIBUTE_UNUSED;
2293
2294 memset (all, 0, sizeof (*all));
2295
2296 fntype = TREE_TYPE (current_function_decl);
2297
2298 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2299 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2300 #else
2301 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2302 current_function_decl, -1);
2303 #endif
2304 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2305
2306 #ifdef INCOMING_REG_PARM_STACK_SPACE
2307 all->reg_parm_stack_space
2308 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2309 #endif
2310 }
2311
2312 /* If ARGS contains entries with complex types, split the entry into two
2313 entries of the component type. Return a new list of substitutions are
2314 needed, else the old list. */
2315
2316 static void
2317 split_complex_args (vec<tree> *args)
2318 {
2319 unsigned i;
2320 tree p;
2321
2322 FOR_EACH_VEC_ELT (*args, i, p)
2323 {
2324 tree type = TREE_TYPE (p);
2325 if (TREE_CODE (type) == COMPLEX_TYPE
2326 && targetm.calls.split_complex_arg (type))
2327 {
2328 tree decl;
2329 tree subtype = TREE_TYPE (type);
2330 bool addressable = TREE_ADDRESSABLE (p);
2331
2332 /* Rewrite the PARM_DECL's type with its component. */
2333 p = copy_node (p);
2334 TREE_TYPE (p) = subtype;
2335 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2336 DECL_MODE (p) = VOIDmode;
2337 DECL_SIZE (p) = NULL;
2338 DECL_SIZE_UNIT (p) = NULL;
2339 /* If this arg must go in memory, put it in a pseudo here.
2340 We can't allow it to go in memory as per normal parms,
2341 because the usual place might not have the imag part
2342 adjacent to the real part. */
2343 DECL_ARTIFICIAL (p) = addressable;
2344 DECL_IGNORED_P (p) = addressable;
2345 TREE_ADDRESSABLE (p) = 0;
2346 layout_decl (p, 0);
2347 (*args)[i] = p;
2348
2349 /* Build a second synthetic decl. */
2350 decl = build_decl (EXPR_LOCATION (p),
2351 PARM_DECL, NULL_TREE, subtype);
2352 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2353 DECL_ARTIFICIAL (decl) = addressable;
2354 DECL_IGNORED_P (decl) = addressable;
2355 layout_decl (decl, 0);
2356 args->safe_insert (++i, decl);
2357 }
2358 }
2359 }
2360
2361 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2362 the hidden struct return argument, and (abi willing) complex args.
2363 Return the new parameter list. */
2364
2365 static vec<tree>
2366 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2367 {
2368 tree fndecl = current_function_decl;
2369 tree fntype = TREE_TYPE (fndecl);
2370 vec<tree> fnargs = vNULL;
2371 tree arg;
2372
2373 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2374 fnargs.safe_push (arg);
2375
2376 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2377
2378 /* If struct value address is treated as the first argument, make it so. */
2379 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2380 && ! cfun->returns_pcc_struct
2381 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2382 {
2383 tree type = build_pointer_type (TREE_TYPE (fntype));
2384 tree decl;
2385
2386 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2387 PARM_DECL, get_identifier (".result_ptr"), type);
2388 DECL_ARG_TYPE (decl) = type;
2389 DECL_ARTIFICIAL (decl) = 1;
2390 DECL_NAMELESS (decl) = 1;
2391 TREE_CONSTANT (decl) = 1;
2392
2393 DECL_CHAIN (decl) = all->orig_fnargs;
2394 all->orig_fnargs = decl;
2395 fnargs.safe_insert (0, decl);
2396
2397 all->function_result_decl = decl;
2398
2399 /* If function is instrumented then bounds of the
2400 passed structure address is the second argument. */
2401 if (chkp_function_instrumented_p (fndecl))
2402 {
2403 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2404 PARM_DECL, get_identifier (".result_bnd"),
2405 pointer_bounds_type_node);
2406 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2407 DECL_ARTIFICIAL (decl) = 1;
2408 DECL_NAMELESS (decl) = 1;
2409 TREE_CONSTANT (decl) = 1;
2410
2411 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2412 DECL_CHAIN (all->orig_fnargs) = decl;
2413 fnargs.safe_insert (1, decl);
2414 }
2415 }
2416
2417 /* If the target wants to split complex arguments into scalars, do so. */
2418 if (targetm.calls.split_complex_arg)
2419 split_complex_args (&fnargs);
2420
2421 return fnargs;
2422 }
2423
2424 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2425 data for the parameter. Incorporate ABI specifics such as pass-by-
2426 reference and type promotion. */
2427
2428 static void
2429 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2430 struct assign_parm_data_one *data)
2431 {
2432 tree nominal_type, passed_type;
2433 machine_mode nominal_mode, passed_mode, promoted_mode;
2434 int unsignedp;
2435
2436 memset (data, 0, sizeof (*data));
2437
2438 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2439 if (!cfun->stdarg)
2440 data->named_arg = 1; /* No variadic parms. */
2441 else if (DECL_CHAIN (parm))
2442 data->named_arg = 1; /* Not the last non-variadic parm. */
2443 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2444 data->named_arg = 1; /* Only variadic ones are unnamed. */
2445 else
2446 data->named_arg = 0; /* Treat as variadic. */
2447
2448 nominal_type = TREE_TYPE (parm);
2449 passed_type = DECL_ARG_TYPE (parm);
2450
2451 /* Look out for errors propagating this far. Also, if the parameter's
2452 type is void then its value doesn't matter. */
2453 if (TREE_TYPE (parm) == error_mark_node
2454 /* This can happen after weird syntax errors
2455 or if an enum type is defined among the parms. */
2456 || TREE_CODE (parm) != PARM_DECL
2457 || passed_type == NULL
2458 || VOID_TYPE_P (nominal_type))
2459 {
2460 nominal_type = passed_type = void_type_node;
2461 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2462 goto egress;
2463 }
2464
2465 /* Find mode of arg as it is passed, and mode of arg as it should be
2466 during execution of this function. */
2467 passed_mode = TYPE_MODE (passed_type);
2468 nominal_mode = TYPE_MODE (nominal_type);
2469
2470 /* If the parm is to be passed as a transparent union or record, use the
2471 type of the first field for the tests below. We have already verified
2472 that the modes are the same. */
2473 if ((TREE_CODE (passed_type) == UNION_TYPE
2474 || TREE_CODE (passed_type) == RECORD_TYPE)
2475 && TYPE_TRANSPARENT_AGGR (passed_type))
2476 passed_type = TREE_TYPE (first_field (passed_type));
2477
2478 /* See if this arg was passed by invisible reference. */
2479 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2480 passed_type, data->named_arg))
2481 {
2482 passed_type = nominal_type = build_pointer_type (passed_type);
2483 data->passed_pointer = true;
2484 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2485 }
2486
2487 /* Find mode as it is passed by the ABI. */
2488 unsignedp = TYPE_UNSIGNED (passed_type);
2489 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2490 TREE_TYPE (current_function_decl), 0);
2491
2492 egress:
2493 data->nominal_type = nominal_type;
2494 data->passed_type = passed_type;
2495 data->nominal_mode = nominal_mode;
2496 data->passed_mode = passed_mode;
2497 data->promoted_mode = promoted_mode;
2498 }
2499
2500 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2501
2502 static void
2503 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2504 struct assign_parm_data_one *data, bool no_rtl)
2505 {
2506 int varargs_pretend_bytes = 0;
2507
2508 targetm.calls.setup_incoming_varargs (all->args_so_far,
2509 data->promoted_mode,
2510 data->passed_type,
2511 &varargs_pretend_bytes, no_rtl);
2512
2513 /* If the back-end has requested extra stack space, record how much is
2514 needed. Do not change pretend_args_size otherwise since it may be
2515 nonzero from an earlier partial argument. */
2516 if (varargs_pretend_bytes > 0)
2517 all->pretend_args_size = varargs_pretend_bytes;
2518 }
2519
2520 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2521 the incoming location of the current parameter. */
2522
2523 static void
2524 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2525 struct assign_parm_data_one *data)
2526 {
2527 HOST_WIDE_INT pretend_bytes = 0;
2528 rtx entry_parm;
2529 bool in_regs;
2530
2531 if (data->promoted_mode == VOIDmode)
2532 {
2533 data->entry_parm = data->stack_parm = const0_rtx;
2534 return;
2535 }
2536
2537 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2538 data->promoted_mode,
2539 data->passed_type,
2540 data->named_arg);
2541
2542 if (entry_parm == 0)
2543 data->promoted_mode = data->passed_mode;
2544
2545 /* Determine parm's home in the stack, in case it arrives in the stack
2546 or we should pretend it did. Compute the stack position and rtx where
2547 the argument arrives and its size.
2548
2549 There is one complexity here: If this was a parameter that would
2550 have been passed in registers, but wasn't only because it is
2551 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2552 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2553 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2554 as it was the previous time. */
2555 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2556 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2557 in_regs = true;
2558 #endif
2559 if (!in_regs && !data->named_arg)
2560 {
2561 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2562 {
2563 rtx tem;
2564 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2565 data->promoted_mode,
2566 data->passed_type, true);
2567 in_regs = tem != NULL;
2568 }
2569 }
2570
2571 /* If this parameter was passed both in registers and in the stack, use
2572 the copy on the stack. */
2573 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2574 data->passed_type))
2575 entry_parm = 0;
2576
2577 if (entry_parm)
2578 {
2579 int partial;
2580
2581 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2582 data->promoted_mode,
2583 data->passed_type,
2584 data->named_arg);
2585 data->partial = partial;
2586
2587 /* The caller might already have allocated stack space for the
2588 register parameters. */
2589 if (partial != 0 && all->reg_parm_stack_space == 0)
2590 {
2591 /* Part of this argument is passed in registers and part
2592 is passed on the stack. Ask the prologue code to extend
2593 the stack part so that we can recreate the full value.
2594
2595 PRETEND_BYTES is the size of the registers we need to store.
2596 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2597 stack space that the prologue should allocate.
2598
2599 Internally, gcc assumes that the argument pointer is aligned
2600 to STACK_BOUNDARY bits. This is used both for alignment
2601 optimizations (see init_emit) and to locate arguments that are
2602 aligned to more than PARM_BOUNDARY bits. We must preserve this
2603 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2604 a stack boundary. */
2605
2606 /* We assume at most one partial arg, and it must be the first
2607 argument on the stack. */
2608 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2609
2610 pretend_bytes = partial;
2611 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2612
2613 /* We want to align relative to the actual stack pointer, so
2614 don't include this in the stack size until later. */
2615 all->extra_pretend_bytes = all->pretend_args_size;
2616 }
2617 }
2618
2619 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2620 all->reg_parm_stack_space,
2621 entry_parm ? data->partial : 0, current_function_decl,
2622 &all->stack_args_size, &data->locate);
2623
2624 /* Update parm_stack_boundary if this parameter is passed in the
2625 stack. */
2626 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2627 crtl->parm_stack_boundary = data->locate.boundary;
2628
2629 /* Adjust offsets to include the pretend args. */
2630 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2631 data->locate.slot_offset.constant += pretend_bytes;
2632 data->locate.offset.constant += pretend_bytes;
2633
2634 data->entry_parm = entry_parm;
2635 }
2636
2637 /* A subroutine of assign_parms. If there is actually space on the stack
2638 for this parm, count it in stack_args_size and return true. */
2639
2640 static bool
2641 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2642 struct assign_parm_data_one *data)
2643 {
2644 /* Bounds are never passed on the stack to keep compatibility
2645 with not instrumented code. */
2646 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2647 return false;
2648 /* Trivially true if we've no incoming register. */
2649 else if (data->entry_parm == NULL)
2650 ;
2651 /* Also true if we're partially in registers and partially not,
2652 since we've arranged to drop the entire argument on the stack. */
2653 else if (data->partial != 0)
2654 ;
2655 /* Also true if the target says that it's passed in both registers
2656 and on the stack. */
2657 else if (GET_CODE (data->entry_parm) == PARALLEL
2658 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2659 ;
2660 /* Also true if the target says that there's stack allocated for
2661 all register parameters. */
2662 else if (all->reg_parm_stack_space > 0)
2663 ;
2664 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2665 else
2666 return false;
2667
2668 all->stack_args_size.constant += data->locate.size.constant;
2669 if (data->locate.size.var)
2670 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2671
2672 return true;
2673 }
2674
2675 /* A subroutine of assign_parms. Given that this parameter is allocated
2676 stack space by the ABI, find it. */
2677
2678 static void
2679 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2680 {
2681 rtx offset_rtx, stack_parm;
2682 unsigned int align, boundary;
2683
2684 /* If we're passing this arg using a reg, make its stack home the
2685 aligned stack slot. */
2686 if (data->entry_parm)
2687 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2688 else
2689 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2690
2691 stack_parm = crtl->args.internal_arg_pointer;
2692 if (offset_rtx != const0_rtx)
2693 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2694 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2695
2696 if (!data->passed_pointer)
2697 {
2698 set_mem_attributes (stack_parm, parm, 1);
2699 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2700 while promoted mode's size is needed. */
2701 if (data->promoted_mode != BLKmode
2702 && data->promoted_mode != DECL_MODE (parm))
2703 {
2704 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2705 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2706 {
2707 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2708 data->promoted_mode);
2709 if (offset)
2710 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2711 }
2712 }
2713 }
2714
2715 boundary = data->locate.boundary;
2716 align = BITS_PER_UNIT;
2717
2718 /* If we're padding upward, we know that the alignment of the slot
2719 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2720 intentionally forcing upward padding. Otherwise we have to come
2721 up with a guess at the alignment based on OFFSET_RTX. */
2722 if (data->locate.where_pad != downward || data->entry_parm)
2723 align = boundary;
2724 else if (CONST_INT_P (offset_rtx))
2725 {
2726 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2727 align = align & -align;
2728 }
2729 set_mem_align (stack_parm, align);
2730
2731 if (data->entry_parm)
2732 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2733
2734 data->stack_parm = stack_parm;
2735 }
2736
2737 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2738 always valid and contiguous. */
2739
2740 static void
2741 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2742 {
2743 rtx entry_parm = data->entry_parm;
2744 rtx stack_parm = data->stack_parm;
2745
2746 /* If this parm was passed part in regs and part in memory, pretend it
2747 arrived entirely in memory by pushing the register-part onto the stack.
2748 In the special case of a DImode or DFmode that is split, we could put
2749 it together in a pseudoreg directly, but for now that's not worth
2750 bothering with. */
2751 if (data->partial != 0)
2752 {
2753 /* Handle calls that pass values in multiple non-contiguous
2754 locations. The Irix 6 ABI has examples of this. */
2755 if (GET_CODE (entry_parm) == PARALLEL)
2756 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2757 data->passed_type,
2758 int_size_in_bytes (data->passed_type));
2759 else
2760 {
2761 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2762 move_block_from_reg (REGNO (entry_parm),
2763 validize_mem (copy_rtx (stack_parm)),
2764 data->partial / UNITS_PER_WORD);
2765 }
2766
2767 entry_parm = stack_parm;
2768 }
2769
2770 /* If we didn't decide this parm came in a register, by default it came
2771 on the stack. */
2772 else if (entry_parm == NULL)
2773 entry_parm = stack_parm;
2774
2775 /* When an argument is passed in multiple locations, we can't make use
2776 of this information, but we can save some copying if the whole argument
2777 is passed in a single register. */
2778 else if (GET_CODE (entry_parm) == PARALLEL
2779 && data->nominal_mode != BLKmode
2780 && data->passed_mode != BLKmode)
2781 {
2782 size_t i, len = XVECLEN (entry_parm, 0);
2783
2784 for (i = 0; i < len; i++)
2785 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2786 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2787 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2788 == data->passed_mode)
2789 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2790 {
2791 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2792 break;
2793 }
2794 }
2795
2796 data->entry_parm = entry_parm;
2797 }
2798
2799 /* A subroutine of assign_parms. Reconstitute any values which were
2800 passed in multiple registers and would fit in a single register. */
2801
2802 static void
2803 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2804 {
2805 rtx entry_parm = data->entry_parm;
2806
2807 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2808 This can be done with register operations rather than on the
2809 stack, even if we will store the reconstituted parameter on the
2810 stack later. */
2811 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2812 {
2813 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2814 emit_group_store (parmreg, entry_parm, data->passed_type,
2815 GET_MODE_SIZE (GET_MODE (entry_parm)));
2816 entry_parm = parmreg;
2817 }
2818
2819 data->entry_parm = entry_parm;
2820 }
2821
2822 /* Wrapper for use_register_for_decl, that special-cases the
2823 .result_ptr as the function's RESULT_DECL when the RESULT_DECL is
2824 passed by reference. */
2825
2826 static bool
2827 use_register_for_parm_decl (struct assign_parm_data_all *all, tree parm)
2828 {
2829 if (parm == all->function_result_decl)
2830 {
2831 tree result = DECL_RESULT (current_function_decl);
2832
2833 if (DECL_BY_REFERENCE (result))
2834 parm = result;
2835 }
2836
2837 return use_register_for_decl (parm);
2838 }
2839
2840 /* Wrapper for get_rtl_for_parm_ssa_default_def, that special-cases
2841 the .result_ptr as the function's RESULT_DECL when the RESULT_DECL
2842 is passed by reference. */
2843
2844 static rtx
2845 rtl_for_parm (struct assign_parm_data_all *all, tree parm)
2846 {
2847 if (parm == all->function_result_decl)
2848 {
2849 tree result = DECL_RESULT (current_function_decl);
2850
2851 if (!DECL_BY_REFERENCE (result))
2852 return NULL_RTX;
2853
2854 parm = result;
2855 }
2856
2857 return get_rtl_for_parm_ssa_default_def (parm);
2858 }
2859
2860 /* Reset the location of PARM_DECLs and RESULT_DECLs that had
2861 SSA_NAMEs in multiple partitions, so that assign_parms will choose
2862 the default def, if it exists, or create new RTL to hold the unused
2863 entry value. If we are coalescing across variables, we want to
2864 reset the location too, because a parm without a default def
2865 (incoming value unused) might be coalesced with one with a default
2866 def, and then assign_parms would copy both incoming values to the
2867 same location, which might cause the wrong value to survive. */
2868 static void
2869 maybe_reset_rtl_for_parm (tree parm)
2870 {
2871 gcc_assert (TREE_CODE (parm) == PARM_DECL
2872 || TREE_CODE (parm) == RESULT_DECL);
2873 if ((flag_tree_coalesce_vars
2874 || (DECL_RTL_SET_P (parm) && DECL_RTL (parm) == pc_rtx))
2875 && is_gimple_reg (parm))
2876 SET_DECL_RTL (parm, NULL_RTX);
2877 }
2878
2879 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2880 always valid and properly aligned. */
2881
2882 static void
2883 assign_parm_adjust_stack_rtl (struct assign_parm_data_all *all, tree parm,
2884 struct assign_parm_data_one *data)
2885 {
2886 rtx stack_parm = data->stack_parm;
2887
2888 /* If out-of-SSA assigned RTL to the parm default def, make sure we
2889 don't use what we might have computed before. */
2890 rtx ssa_assigned = rtl_for_parm (all, parm);
2891 if (ssa_assigned)
2892 stack_parm = NULL;
2893
2894 /* If we can't trust the parm stack slot to be aligned enough for its
2895 ultimate type, don't use that slot after entry. We'll make another
2896 stack slot, if we need one. */
2897 else if (stack_parm
2898 && ((STRICT_ALIGNMENT
2899 && (GET_MODE_ALIGNMENT (data->nominal_mode)
2900 > MEM_ALIGN (stack_parm)))
2901 || (data->nominal_type
2902 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2903 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2904 stack_parm = NULL;
2905
2906 /* If parm was passed in memory, and we need to convert it on entry,
2907 don't store it back in that same slot. */
2908 else if (data->entry_parm == stack_parm
2909 && data->nominal_mode != BLKmode
2910 && data->nominal_mode != data->passed_mode)
2911 stack_parm = NULL;
2912
2913 /* If stack protection is in effect for this function, don't leave any
2914 pointers in their passed stack slots. */
2915 else if (crtl->stack_protect_guard
2916 && (flag_stack_protect == 2
2917 || data->passed_pointer
2918 || POINTER_TYPE_P (data->nominal_type)))
2919 stack_parm = NULL;
2920
2921 data->stack_parm = stack_parm;
2922 }
2923
2924 /* A subroutine of assign_parms. Return true if the current parameter
2925 should be stored as a BLKmode in the current frame. */
2926
2927 static bool
2928 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2929 {
2930 if (data->nominal_mode == BLKmode)
2931 return true;
2932 if (GET_MODE (data->entry_parm) == BLKmode)
2933 return true;
2934
2935 #ifdef BLOCK_REG_PADDING
2936 /* Only assign_parm_setup_block knows how to deal with register arguments
2937 that are padded at the least significant end. */
2938 if (REG_P (data->entry_parm)
2939 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2940 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2941 == (BYTES_BIG_ENDIAN ? upward : downward)))
2942 return true;
2943 #endif
2944
2945 return false;
2946 }
2947
2948 /* A subroutine of assign_parms. Arrange for the parameter to be
2949 present and valid in DATA->STACK_RTL. */
2950
2951 static void
2952 assign_parm_setup_block (struct assign_parm_data_all *all,
2953 tree parm, struct assign_parm_data_one *data)
2954 {
2955 rtx entry_parm = data->entry_parm;
2956 rtx stack_parm = data->stack_parm;
2957 HOST_WIDE_INT size;
2958 HOST_WIDE_INT size_stored;
2959
2960 if (GET_CODE (entry_parm) == PARALLEL)
2961 entry_parm = emit_group_move_into_temps (entry_parm);
2962
2963 size = int_size_in_bytes (data->passed_type);
2964 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2965
2966 if (stack_parm == 0)
2967 {
2968 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2969 stack_parm = rtl_for_parm (all, parm);
2970 if (!stack_parm)
2971 stack_parm = assign_stack_local (BLKmode, size_stored,
2972 DECL_ALIGN (parm));
2973 else
2974 stack_parm = copy_rtx (stack_parm);
2975 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2976 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2977 set_mem_attributes (stack_parm, parm, 1);
2978 }
2979
2980 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2981 calls that pass values in multiple non-contiguous locations. */
2982 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2983 {
2984 rtx mem;
2985
2986 /* Note that we will be storing an integral number of words.
2987 So we have to be careful to ensure that we allocate an
2988 integral number of words. We do this above when we call
2989 assign_stack_local if space was not allocated in the argument
2990 list. If it was, this will not work if PARM_BOUNDARY is not
2991 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2992 if it becomes a problem. Exception is when BLKmode arrives
2993 with arguments not conforming to word_mode. */
2994
2995 if (data->stack_parm == 0)
2996 ;
2997 else if (GET_CODE (entry_parm) == PARALLEL)
2998 ;
2999 else
3000 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
3001
3002 mem = validize_mem (copy_rtx (stack_parm));
3003
3004 /* Handle values in multiple non-contiguous locations. */
3005 if (GET_CODE (entry_parm) == PARALLEL)
3006 {
3007 push_to_sequence2 (all->first_conversion_insn,
3008 all->last_conversion_insn);
3009 emit_group_store (mem, entry_parm, data->passed_type, size);
3010 all->first_conversion_insn = get_insns ();
3011 all->last_conversion_insn = get_last_insn ();
3012 end_sequence ();
3013 }
3014
3015 else if (size == 0)
3016 ;
3017
3018 /* If SIZE is that of a mode no bigger than a word, just use
3019 that mode's store operation. */
3020 else if (size <= UNITS_PER_WORD)
3021 {
3022 machine_mode mode
3023 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
3024
3025 if (mode != BLKmode
3026 #ifdef BLOCK_REG_PADDING
3027 && (size == UNITS_PER_WORD
3028 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
3029 != (BYTES_BIG_ENDIAN ? upward : downward)))
3030 #endif
3031 )
3032 {
3033 rtx reg;
3034
3035 /* We are really truncating a word_mode value containing
3036 SIZE bytes into a value of mode MODE. If such an
3037 operation requires no actual instructions, we can refer
3038 to the value directly in mode MODE, otherwise we must
3039 start with the register in word_mode and explicitly
3040 convert it. */
3041 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
3042 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3043 else
3044 {
3045 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3046 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3047 }
3048 emit_move_insn (change_address (mem, mode, 0), reg);
3049 }
3050
3051 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3052 machine must be aligned to the left before storing
3053 to memory. Note that the previous test doesn't
3054 handle all cases (e.g. SIZE == 3). */
3055 else if (size != UNITS_PER_WORD
3056 #ifdef BLOCK_REG_PADDING
3057 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
3058 == downward)
3059 #else
3060 && BYTES_BIG_ENDIAN
3061 #endif
3062 )
3063 {
3064 rtx tem, x;
3065 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3066 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3067
3068 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3069 tem = change_address (mem, word_mode, 0);
3070 emit_move_insn (tem, x);
3071 }
3072 else
3073 move_block_from_reg (REGNO (entry_parm), mem,
3074 size_stored / UNITS_PER_WORD);
3075 }
3076 else
3077 move_block_from_reg (REGNO (entry_parm), mem,
3078 size_stored / UNITS_PER_WORD);
3079 }
3080 else if (data->stack_parm == 0)
3081 {
3082 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3083 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3084 BLOCK_OP_NORMAL);
3085 all->first_conversion_insn = get_insns ();
3086 all->last_conversion_insn = get_last_insn ();
3087 end_sequence ();
3088 }
3089
3090 data->stack_parm = stack_parm;
3091 SET_DECL_RTL (parm, stack_parm);
3092 }
3093
3094 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3095 parameter. Get it there. Perform all ABI specified conversions. */
3096
3097 static void
3098 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3099 struct assign_parm_data_one *data)
3100 {
3101 rtx parmreg, validated_mem;
3102 rtx equiv_stack_parm;
3103 machine_mode promoted_nominal_mode;
3104 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3105 bool did_conversion = false;
3106 bool need_conversion, moved;
3107
3108 /* Store the parm in a pseudoregister during the function, but we may
3109 need to do it in a wider mode. Using 2 here makes the result
3110 consistent with promote_decl_mode and thus expand_expr_real_1. */
3111 promoted_nominal_mode
3112 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3113 TREE_TYPE (current_function_decl), 2);
3114
3115 rtx from_expand = rtl_for_parm (all, parm);
3116
3117 if (from_expand && !data->passed_pointer)
3118 {
3119 parmreg = from_expand;
3120 gcc_assert (GET_MODE (parmreg) == promoted_nominal_mode);
3121 }
3122 else
3123 {
3124 parmreg = gen_reg_rtx (promoted_nominal_mode);
3125 if (!DECL_ARTIFICIAL (parm))
3126 mark_user_reg (parmreg);
3127 }
3128
3129 /* If this was an item that we received a pointer to,
3130 set DECL_RTL appropriately. */
3131 if (data->passed_pointer)
3132 {
3133 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3134 set_mem_attributes (x, parm, 1);
3135 SET_DECL_RTL (parm, x);
3136 }
3137 else
3138 SET_DECL_RTL (parm, parmreg);
3139
3140 assign_parm_remove_parallels (data);
3141
3142 /* Copy the value into the register, thus bridging between
3143 assign_parm_find_data_types and expand_expr_real_1. */
3144
3145 equiv_stack_parm = data->stack_parm;
3146 if (!equiv_stack_parm)
3147 equiv_stack_parm = data->entry_parm;
3148 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3149
3150 need_conversion = (data->nominal_mode != data->passed_mode
3151 || promoted_nominal_mode != data->promoted_mode);
3152 moved = false;
3153
3154 if (need_conversion
3155 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3156 && data->nominal_mode == data->passed_mode
3157 && data->nominal_mode == GET_MODE (data->entry_parm))
3158 {
3159 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3160 mode, by the caller. We now have to convert it to
3161 NOMINAL_MODE, if different. However, PARMREG may be in
3162 a different mode than NOMINAL_MODE if it is being stored
3163 promoted.
3164
3165 If ENTRY_PARM is a hard register, it might be in a register
3166 not valid for operating in its mode (e.g., an odd-numbered
3167 register for a DFmode). In that case, moves are the only
3168 thing valid, so we can't do a convert from there. This
3169 occurs when the calling sequence allow such misaligned
3170 usages.
3171
3172 In addition, the conversion may involve a call, which could
3173 clobber parameters which haven't been copied to pseudo
3174 registers yet.
3175
3176 First, we try to emit an insn which performs the necessary
3177 conversion. We verify that this insn does not clobber any
3178 hard registers. */
3179
3180 enum insn_code icode;
3181 rtx op0, op1;
3182
3183 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3184 unsignedp);
3185
3186 op0 = parmreg;
3187 op1 = validated_mem;
3188 if (icode != CODE_FOR_nothing
3189 && insn_operand_matches (icode, 0, op0)
3190 && insn_operand_matches (icode, 1, op1))
3191 {
3192 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3193 rtx_insn *insn, *insns;
3194 rtx t = op1;
3195 HARD_REG_SET hardregs;
3196
3197 start_sequence ();
3198 /* If op1 is a hard register that is likely spilled, first
3199 force it into a pseudo, otherwise combiner might extend
3200 its lifetime too much. */
3201 if (GET_CODE (t) == SUBREG)
3202 t = SUBREG_REG (t);
3203 if (REG_P (t)
3204 && HARD_REGISTER_P (t)
3205 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3206 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3207 {
3208 t = gen_reg_rtx (GET_MODE (op1));
3209 emit_move_insn (t, op1);
3210 }
3211 else
3212 t = op1;
3213 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3214 data->passed_mode, unsignedp);
3215 emit_insn (pat);
3216 insns = get_insns ();
3217
3218 moved = true;
3219 CLEAR_HARD_REG_SET (hardregs);
3220 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3221 {
3222 if (INSN_P (insn))
3223 note_stores (PATTERN (insn), record_hard_reg_sets,
3224 &hardregs);
3225 if (!hard_reg_set_empty_p (hardregs))
3226 moved = false;
3227 }
3228
3229 end_sequence ();
3230
3231 if (moved)
3232 {
3233 emit_insn (insns);
3234 if (equiv_stack_parm != NULL_RTX)
3235 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3236 equiv_stack_parm);
3237 }
3238 }
3239 }
3240
3241 if (moved)
3242 /* Nothing to do. */
3243 ;
3244 else if (need_conversion)
3245 {
3246 /* We did not have an insn to convert directly, or the sequence
3247 generated appeared unsafe. We must first copy the parm to a
3248 pseudo reg, and save the conversion until after all
3249 parameters have been moved. */
3250
3251 int save_tree_used;
3252 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3253
3254 emit_move_insn (tempreg, validated_mem);
3255
3256 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3257 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3258
3259 if (GET_CODE (tempreg) == SUBREG
3260 && GET_MODE (tempreg) == data->nominal_mode
3261 && REG_P (SUBREG_REG (tempreg))
3262 && data->nominal_mode == data->passed_mode
3263 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3264 && GET_MODE_SIZE (GET_MODE (tempreg))
3265 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3266 {
3267 /* The argument is already sign/zero extended, so note it
3268 into the subreg. */
3269 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3270 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3271 }
3272
3273 /* TREE_USED gets set erroneously during expand_assignment. */
3274 save_tree_used = TREE_USED (parm);
3275 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3276 TREE_USED (parm) = save_tree_used;
3277 all->first_conversion_insn = get_insns ();
3278 all->last_conversion_insn = get_last_insn ();
3279 end_sequence ();
3280
3281 did_conversion = true;
3282 }
3283 else
3284 emit_move_insn (parmreg, validated_mem);
3285
3286 /* If we were passed a pointer but the actual value can safely live
3287 in a register, retrieve it and use it directly. */
3288 if (data->passed_pointer
3289 && (from_expand || TYPE_MODE (TREE_TYPE (parm)) != BLKmode))
3290 {
3291 /* We can't use nominal_mode, because it will have been set to
3292 Pmode above. We must use the actual mode of the parm. */
3293 if (from_expand)
3294 {
3295 parmreg = from_expand;
3296 gcc_assert (GET_MODE (parmreg) == TYPE_MODE (TREE_TYPE (parm)));
3297 }
3298 else if (use_register_for_decl (parm))
3299 {
3300 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3301 mark_user_reg (parmreg);
3302 }
3303 else
3304 {
3305 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3306 TYPE_MODE (TREE_TYPE (parm)),
3307 TYPE_ALIGN (TREE_TYPE (parm)));
3308 parmreg
3309 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3310 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3311 align);
3312 set_mem_attributes (parmreg, parm, 1);
3313 }
3314
3315 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3316 {
3317 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3318 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3319
3320 push_to_sequence2 (all->first_conversion_insn,
3321 all->last_conversion_insn);
3322 emit_move_insn (tempreg, DECL_RTL (parm));
3323 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3324 emit_move_insn (parmreg, tempreg);
3325 all->first_conversion_insn = get_insns ();
3326 all->last_conversion_insn = get_last_insn ();
3327 end_sequence ();
3328
3329 did_conversion = true;
3330 }
3331 else
3332 emit_move_insn (parmreg, DECL_RTL (parm));
3333
3334 SET_DECL_RTL (parm, parmreg);
3335
3336 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3337 now the parm. */
3338 data->stack_parm = equiv_stack_parm = NULL;
3339 }
3340
3341 /* Mark the register as eliminable if we did no conversion and it was
3342 copied from memory at a fixed offset, and the arg pointer was not
3343 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3344 offset formed an invalid address, such memory-equivalences as we
3345 make here would screw up life analysis for it. */
3346 if (data->nominal_mode == data->passed_mode
3347 && !did_conversion
3348 && equiv_stack_parm != 0
3349 && MEM_P (equiv_stack_parm)
3350 && data->locate.offset.var == 0
3351 && reg_mentioned_p (virtual_incoming_args_rtx,
3352 XEXP (equiv_stack_parm, 0)))
3353 {
3354 rtx_insn *linsn = get_last_insn ();
3355 rtx_insn *sinsn;
3356 rtx set;
3357
3358 /* Mark complex types separately. */
3359 if (GET_CODE (parmreg) == CONCAT)
3360 {
3361 machine_mode submode
3362 = GET_MODE_INNER (GET_MODE (parmreg));
3363 int regnor = REGNO (XEXP (parmreg, 0));
3364 int regnoi = REGNO (XEXP (parmreg, 1));
3365 rtx stackr = adjust_address_nv (equiv_stack_parm, submode, 0);
3366 rtx stacki = adjust_address_nv (equiv_stack_parm, submode,
3367 GET_MODE_SIZE (submode));
3368
3369 /* Scan backwards for the set of the real and
3370 imaginary parts. */
3371 for (sinsn = linsn; sinsn != 0;
3372 sinsn = prev_nonnote_insn (sinsn))
3373 {
3374 set = single_set (sinsn);
3375 if (set == 0)
3376 continue;
3377
3378 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3379 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3380 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3381 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3382 }
3383 }
3384 else
3385 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3386 }
3387
3388 /* For pointer data type, suggest pointer register. */
3389 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3390 mark_reg_pointer (parmreg,
3391 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3392 }
3393
3394 /* A subroutine of assign_parms. Allocate stack space to hold the current
3395 parameter. Get it there. Perform all ABI specified conversions. */
3396
3397 static void
3398 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3399 struct assign_parm_data_one *data)
3400 {
3401 /* Value must be stored in the stack slot STACK_PARM during function
3402 execution. */
3403 bool to_conversion = false;
3404
3405 assign_parm_remove_parallels (data);
3406
3407 if (data->promoted_mode != data->nominal_mode)
3408 {
3409 /* Conversion is required. */
3410 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3411
3412 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3413
3414 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3415 to_conversion = true;
3416
3417 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3418 TYPE_UNSIGNED (TREE_TYPE (parm)));
3419
3420 if (data->stack_parm)
3421 {
3422 int offset = subreg_lowpart_offset (data->nominal_mode,
3423 GET_MODE (data->stack_parm));
3424 /* ??? This may need a big-endian conversion on sparc64. */
3425 data->stack_parm
3426 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3427 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3428 set_mem_offset (data->stack_parm,
3429 MEM_OFFSET (data->stack_parm) + offset);
3430 }
3431 }
3432
3433 if (data->entry_parm != data->stack_parm)
3434 {
3435 rtx src, dest;
3436
3437 if (data->stack_parm == 0)
3438 {
3439 rtx x = data->stack_parm = rtl_for_parm (all, parm);
3440 if (x)
3441 gcc_assert (GET_MODE (x) == GET_MODE (data->entry_parm));
3442 }
3443
3444 if (data->stack_parm == 0)
3445 {
3446 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3447 GET_MODE (data->entry_parm),
3448 TYPE_ALIGN (data->passed_type));
3449 data->stack_parm
3450 = assign_stack_local (GET_MODE (data->entry_parm),
3451 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3452 align);
3453 set_mem_attributes (data->stack_parm, parm, 1);
3454 }
3455
3456 dest = validize_mem (copy_rtx (data->stack_parm));
3457 src = validize_mem (copy_rtx (data->entry_parm));
3458
3459 if (MEM_P (src))
3460 {
3461 /* Use a block move to handle potentially misaligned entry_parm. */
3462 if (!to_conversion)
3463 push_to_sequence2 (all->first_conversion_insn,
3464 all->last_conversion_insn);
3465 to_conversion = true;
3466
3467 emit_block_move (dest, src,
3468 GEN_INT (int_size_in_bytes (data->passed_type)),
3469 BLOCK_OP_NORMAL);
3470 }
3471 else
3472 emit_move_insn (dest, src);
3473 }
3474
3475 if (to_conversion)
3476 {
3477 all->first_conversion_insn = get_insns ();
3478 all->last_conversion_insn = get_last_insn ();
3479 end_sequence ();
3480 }
3481
3482 SET_DECL_RTL (parm, data->stack_parm);
3483 }
3484
3485 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3486 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3487
3488 static void
3489 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3490 vec<tree> fnargs)
3491 {
3492 tree parm;
3493 tree orig_fnargs = all->orig_fnargs;
3494 unsigned i = 0;
3495
3496 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3497 {
3498 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3499 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3500 {
3501 rtx tmp, real, imag;
3502 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3503
3504 real = DECL_RTL (fnargs[i]);
3505 imag = DECL_RTL (fnargs[i + 1]);
3506 if (inner != GET_MODE (real))
3507 {
3508 real = gen_lowpart_SUBREG (inner, real);
3509 imag = gen_lowpart_SUBREG (inner, imag);
3510 }
3511
3512 if (TREE_ADDRESSABLE (parm))
3513 {
3514 rtx rmem, imem;
3515 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3516 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3517 DECL_MODE (parm),
3518 TYPE_ALIGN (TREE_TYPE (parm)));
3519
3520 /* split_complex_arg put the real and imag parts in
3521 pseudos. Move them to memory. */
3522 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3523 set_mem_attributes (tmp, parm, 1);
3524 rmem = adjust_address_nv (tmp, inner, 0);
3525 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3526 push_to_sequence2 (all->first_conversion_insn,
3527 all->last_conversion_insn);
3528 emit_move_insn (rmem, real);
3529 emit_move_insn (imem, imag);
3530 all->first_conversion_insn = get_insns ();
3531 all->last_conversion_insn = get_last_insn ();
3532 end_sequence ();
3533 }
3534 else
3535 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3536 SET_DECL_RTL (parm, tmp);
3537
3538 real = DECL_INCOMING_RTL (fnargs[i]);
3539 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3540 if (inner != GET_MODE (real))
3541 {
3542 real = gen_lowpart_SUBREG (inner, real);
3543 imag = gen_lowpart_SUBREG (inner, imag);
3544 }
3545 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3546 set_decl_incoming_rtl (parm, tmp, false);
3547 i++;
3548 }
3549 }
3550 }
3551
3552 /* Load bounds of PARM from bounds table. */
3553 static void
3554 assign_parm_load_bounds (struct assign_parm_data_one *data,
3555 tree parm,
3556 rtx entry,
3557 unsigned bound_no)
3558 {
3559 bitmap_iterator bi;
3560 unsigned i, offs = 0;
3561 int bnd_no = -1;
3562 rtx slot = NULL, ptr = NULL;
3563
3564 if (parm)
3565 {
3566 bitmap slots;
3567 bitmap_obstack_initialize (NULL);
3568 slots = BITMAP_ALLOC (NULL);
3569 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3570 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3571 {
3572 if (bound_no)
3573 bound_no--;
3574 else
3575 {
3576 bnd_no = i;
3577 break;
3578 }
3579 }
3580 BITMAP_FREE (slots);
3581 bitmap_obstack_release (NULL);
3582 }
3583
3584 /* We may have bounds not associated with any pointer. */
3585 if (bnd_no != -1)
3586 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3587
3588 /* Find associated pointer. */
3589 if (bnd_no == -1)
3590 {
3591 /* If bounds are not associated with any bounds,
3592 then it is passed in a register or special slot. */
3593 gcc_assert (data->entry_parm);
3594 ptr = const0_rtx;
3595 }
3596 else if (MEM_P (entry))
3597 slot = adjust_address (entry, Pmode, offs);
3598 else if (REG_P (entry))
3599 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3600 else if (GET_CODE (entry) == PARALLEL)
3601 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3602 else
3603 gcc_unreachable ();
3604 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3605 data->entry_parm);
3606 }
3607
3608 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3609
3610 static void
3611 assign_bounds (vec<bounds_parm_data> &bndargs,
3612 struct assign_parm_data_all &all)
3613 {
3614 unsigned i, pass, handled = 0;
3615 bounds_parm_data *pbdata;
3616
3617 if (!bndargs.exists ())
3618 return;
3619
3620 /* We make few passes to store input bounds. Firstly handle bounds
3621 passed in registers. After that we load bounds passed in special
3622 slots. Finally we load bounds from Bounds Table. */
3623 for (pass = 0; pass < 3; pass++)
3624 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3625 {
3626 /* Pass 0 => regs only. */
3627 if (pass == 0
3628 && (!pbdata->parm_data.entry_parm
3629 || GET_CODE (pbdata->parm_data.entry_parm) != REG))
3630 continue;
3631 /* Pass 1 => slots only. */
3632 else if (pass == 1
3633 && (!pbdata->parm_data.entry_parm
3634 || GET_CODE (pbdata->parm_data.entry_parm) == REG))
3635 continue;
3636 /* Pass 2 => BT only. */
3637 else if (pass == 2
3638 && pbdata->parm_data.entry_parm)
3639 continue;
3640
3641 if (!pbdata->parm_data.entry_parm
3642 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3643 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3644 pbdata->ptr_entry, pbdata->bound_no);
3645
3646 set_decl_incoming_rtl (pbdata->bounds_parm,
3647 pbdata->parm_data.entry_parm, false);
3648
3649 if (assign_parm_setup_block_p (&pbdata->parm_data))
3650 assign_parm_setup_block (&all, pbdata->bounds_parm,
3651 &pbdata->parm_data);
3652 else if (pbdata->parm_data.passed_pointer
3653 || use_register_for_decl (pbdata->bounds_parm))
3654 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3655 &pbdata->parm_data);
3656 else
3657 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3658 &pbdata->parm_data);
3659
3660 /* Count handled bounds to make sure we miss nothing. */
3661 handled++;
3662 }
3663
3664 gcc_assert (handled == bndargs.length ());
3665
3666 bndargs.release ();
3667 }
3668
3669 /* Assign RTL expressions to the function's parameters. This may involve
3670 copying them into registers and using those registers as the DECL_RTL. */
3671
3672 static void
3673 assign_parms (tree fndecl)
3674 {
3675 struct assign_parm_data_all all;
3676 tree parm;
3677 vec<tree> fnargs;
3678 unsigned i, bound_no = 0;
3679 tree last_arg = NULL;
3680 rtx last_arg_entry = NULL;
3681 vec<bounds_parm_data> bndargs = vNULL;
3682 bounds_parm_data bdata;
3683
3684 crtl->args.internal_arg_pointer
3685 = targetm.calls.internal_arg_pointer ();
3686
3687 assign_parms_initialize_all (&all);
3688 fnargs = assign_parms_augmented_arg_list (&all);
3689
3690 FOR_EACH_VEC_ELT (fnargs, i, parm)
3691 {
3692 struct assign_parm_data_one data;
3693
3694 /* Extract the type of PARM; adjust it according to ABI. */
3695 assign_parm_find_data_types (&all, parm, &data);
3696
3697 /* Early out for errors and void parameters. */
3698 if (data.passed_mode == VOIDmode)
3699 {
3700 SET_DECL_RTL (parm, const0_rtx);
3701 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3702 continue;
3703 }
3704 else
3705 maybe_reset_rtl_for_parm (parm);
3706
3707 /* Estimate stack alignment from parameter alignment. */
3708 if (SUPPORTS_STACK_ALIGNMENT)
3709 {
3710 unsigned int align
3711 = targetm.calls.function_arg_boundary (data.promoted_mode,
3712 data.passed_type);
3713 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3714 align);
3715 if (TYPE_ALIGN (data.nominal_type) > align)
3716 align = MINIMUM_ALIGNMENT (data.nominal_type,
3717 TYPE_MODE (data.nominal_type),
3718 TYPE_ALIGN (data.nominal_type));
3719 if (crtl->stack_alignment_estimated < align)
3720 {
3721 gcc_assert (!crtl->stack_realign_processed);
3722 crtl->stack_alignment_estimated = align;
3723 }
3724 }
3725
3726 /* Find out where the parameter arrives in this function. */
3727 assign_parm_find_entry_rtl (&all, &data);
3728
3729 /* Find out where stack space for this parameter might be. */
3730 if (assign_parm_is_stack_parm (&all, &data))
3731 {
3732 assign_parm_find_stack_rtl (parm, &data);
3733 assign_parm_adjust_entry_rtl (&data);
3734 }
3735 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3736 {
3737 /* Remember where last non bounds arg was passed in case
3738 we have to load associated bounds for it from Bounds
3739 Table. */
3740 last_arg = parm;
3741 last_arg_entry = data.entry_parm;
3742 bound_no = 0;
3743 }
3744 /* Record permanently how this parm was passed. */
3745 if (data.passed_pointer)
3746 {
3747 rtx incoming_rtl
3748 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3749 data.entry_parm);
3750 set_decl_incoming_rtl (parm, incoming_rtl, true);
3751 }
3752 else
3753 set_decl_incoming_rtl (parm, data.entry_parm, false);
3754
3755 assign_parm_adjust_stack_rtl (&all, parm, &data);
3756
3757 /* Bounds should be loaded in the particular order to
3758 have registers allocated correctly. Collect info about
3759 input bounds and load them later. */
3760 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3761 {
3762 /* Expect bounds in instrumented functions only. */
3763 gcc_assert (chkp_function_instrumented_p (fndecl));
3764
3765 bdata.parm_data = data;
3766 bdata.bounds_parm = parm;
3767 bdata.ptr_parm = last_arg;
3768 bdata.ptr_entry = last_arg_entry;
3769 bdata.bound_no = bound_no;
3770 bndargs.safe_push (bdata);
3771 }
3772 else
3773 {
3774 if (assign_parm_setup_block_p (&data))
3775 assign_parm_setup_block (&all, parm, &data);
3776 else if (data.passed_pointer
3777 || use_register_for_parm_decl (&all, parm))
3778 assign_parm_setup_reg (&all, parm, &data);
3779 else
3780 assign_parm_setup_stack (&all, parm, &data);
3781 }
3782
3783 if (cfun->stdarg && !DECL_CHAIN (parm))
3784 {
3785 int pretend_bytes = 0;
3786
3787 assign_parms_setup_varargs (&all, &data, false);
3788
3789 if (chkp_function_instrumented_p (fndecl))
3790 {
3791 /* We expect this is the last parm. Otherwise it is wrong
3792 to assign bounds right now. */
3793 gcc_assert (i == (fnargs.length () - 1));
3794 assign_bounds (bndargs, all);
3795 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3796 data.promoted_mode,
3797 data.passed_type,
3798 &pretend_bytes,
3799 false);
3800 }
3801 }
3802
3803 /* Update info on where next arg arrives in registers. */
3804 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3805 data.passed_type, data.named_arg);
3806
3807 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3808 bound_no++;
3809 }
3810
3811 assign_bounds (bndargs, all);
3812
3813 if (targetm.calls.split_complex_arg)
3814 assign_parms_unsplit_complex (&all, fnargs);
3815
3816 fnargs.release ();
3817
3818 /* Output all parameter conversion instructions (possibly including calls)
3819 now that all parameters have been copied out of hard registers. */
3820 emit_insn (all.first_conversion_insn);
3821
3822 /* Estimate reload stack alignment from scalar return mode. */
3823 if (SUPPORTS_STACK_ALIGNMENT)
3824 {
3825 if (DECL_RESULT (fndecl))
3826 {
3827 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3828 machine_mode mode = TYPE_MODE (type);
3829
3830 if (mode != BLKmode
3831 && mode != VOIDmode
3832 && !AGGREGATE_TYPE_P (type))
3833 {
3834 unsigned int align = GET_MODE_ALIGNMENT (mode);
3835 if (crtl->stack_alignment_estimated < align)
3836 {
3837 gcc_assert (!crtl->stack_realign_processed);
3838 crtl->stack_alignment_estimated = align;
3839 }
3840 }
3841 }
3842 }
3843
3844 /* If we are receiving a struct value address as the first argument, set up
3845 the RTL for the function result. As this might require code to convert
3846 the transmitted address to Pmode, we do this here to ensure that possible
3847 preliminary conversions of the address have been emitted already. */
3848 if (all.function_result_decl)
3849 {
3850 tree result = DECL_RESULT (current_function_decl);
3851 rtx addr = DECL_RTL (all.function_result_decl);
3852 rtx x;
3853
3854 if (DECL_BY_REFERENCE (result))
3855 {
3856 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3857 x = addr;
3858 }
3859 else
3860 {
3861 SET_DECL_VALUE_EXPR (result,
3862 build1 (INDIRECT_REF, TREE_TYPE (result),
3863 all.function_result_decl));
3864 addr = convert_memory_address (Pmode, addr);
3865 x = gen_rtx_MEM (DECL_MODE (result), addr);
3866 set_mem_attributes (x, result, 1);
3867 }
3868
3869 DECL_HAS_VALUE_EXPR_P (result) = 1;
3870
3871 SET_DECL_RTL (result, x);
3872 }
3873
3874 /* We have aligned all the args, so add space for the pretend args. */
3875 crtl->args.pretend_args_size = all.pretend_args_size;
3876 all.stack_args_size.constant += all.extra_pretend_bytes;
3877 crtl->args.size = all.stack_args_size.constant;
3878
3879 /* Adjust function incoming argument size for alignment and
3880 minimum length. */
3881
3882 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3883 crtl->args.size = CEIL_ROUND (crtl->args.size,
3884 PARM_BOUNDARY / BITS_PER_UNIT);
3885
3886 if (ARGS_GROW_DOWNWARD)
3887 {
3888 crtl->args.arg_offset_rtx
3889 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3890 : expand_expr (size_diffop (all.stack_args_size.var,
3891 size_int (-all.stack_args_size.constant)),
3892 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3893 }
3894 else
3895 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3896
3897 /* See how many bytes, if any, of its args a function should try to pop
3898 on return. */
3899
3900 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3901 TREE_TYPE (fndecl),
3902 crtl->args.size);
3903
3904 /* For stdarg.h function, save info about
3905 regs and stack space used by the named args. */
3906
3907 crtl->args.info = all.args_so_far_v;
3908
3909 /* Set the rtx used for the function return value. Put this in its
3910 own variable so any optimizers that need this information don't have
3911 to include tree.h. Do this here so it gets done when an inlined
3912 function gets output. */
3913
3914 crtl->return_rtx
3915 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3916 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3917
3918 /* If scalar return value was computed in a pseudo-reg, or was a named
3919 return value that got dumped to the stack, copy that to the hard
3920 return register. */
3921 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3922 {
3923 tree decl_result = DECL_RESULT (fndecl);
3924 rtx decl_rtl = DECL_RTL (decl_result);
3925
3926 if (REG_P (decl_rtl)
3927 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3928 : DECL_REGISTER (decl_result))
3929 {
3930 rtx real_decl_rtl;
3931
3932 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3933 fndecl, true);
3934 if (chkp_function_instrumented_p (fndecl))
3935 crtl->return_bnd
3936 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3937 fndecl, true);
3938 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3939 /* The delay slot scheduler assumes that crtl->return_rtx
3940 holds the hard register containing the return value, not a
3941 temporary pseudo. */
3942 crtl->return_rtx = real_decl_rtl;
3943 }
3944 }
3945 }
3946
3947 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3948 For all seen types, gimplify their sizes. */
3949
3950 static tree
3951 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3952 {
3953 tree t = *tp;
3954
3955 *walk_subtrees = 0;
3956 if (TYPE_P (t))
3957 {
3958 if (POINTER_TYPE_P (t))
3959 *walk_subtrees = 1;
3960 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3961 && !TYPE_SIZES_GIMPLIFIED (t))
3962 {
3963 gimplify_type_sizes (t, (gimple_seq *) data);
3964 *walk_subtrees = 1;
3965 }
3966 }
3967
3968 return NULL;
3969 }
3970
3971 /* Gimplify the parameter list for current_function_decl. This involves
3972 evaluating SAVE_EXPRs of variable sized parameters and generating code
3973 to implement callee-copies reference parameters. Returns a sequence of
3974 statements to add to the beginning of the function. */
3975
3976 gimple_seq
3977 gimplify_parameters (void)
3978 {
3979 struct assign_parm_data_all all;
3980 tree parm;
3981 gimple_seq stmts = NULL;
3982 vec<tree> fnargs;
3983 unsigned i;
3984
3985 assign_parms_initialize_all (&all);
3986 fnargs = assign_parms_augmented_arg_list (&all);
3987
3988 FOR_EACH_VEC_ELT (fnargs, i, parm)
3989 {
3990 struct assign_parm_data_one data;
3991
3992 /* Extract the type of PARM; adjust it according to ABI. */
3993 assign_parm_find_data_types (&all, parm, &data);
3994
3995 /* Early out for errors and void parameters. */
3996 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3997 continue;
3998
3999 /* Update info on where next arg arrives in registers. */
4000 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
4001 data.passed_type, data.named_arg);
4002
4003 /* ??? Once upon a time variable_size stuffed parameter list
4004 SAVE_EXPRs (amongst others) onto a pending sizes list. This
4005 turned out to be less than manageable in the gimple world.
4006 Now we have to hunt them down ourselves. */
4007 walk_tree_without_duplicates (&data.passed_type,
4008 gimplify_parm_type, &stmts);
4009
4010 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
4011 {
4012 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
4013 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
4014 }
4015
4016 if (data.passed_pointer)
4017 {
4018 tree type = TREE_TYPE (data.passed_type);
4019 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
4020 type, data.named_arg))
4021 {
4022 tree local, t;
4023
4024 /* For constant-sized objects, this is trivial; for
4025 variable-sized objects, we have to play games. */
4026 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
4027 && !(flag_stack_check == GENERIC_STACK_CHECK
4028 && compare_tree_int (DECL_SIZE_UNIT (parm),
4029 STACK_CHECK_MAX_VAR_SIZE) > 0))
4030 {
4031 local = create_tmp_var (type, get_name (parm));
4032 DECL_IGNORED_P (local) = 0;
4033 /* If PARM was addressable, move that flag over
4034 to the local copy, as its address will be taken,
4035 not the PARMs. Keep the parms address taken
4036 as we'll query that flag during gimplification. */
4037 if (TREE_ADDRESSABLE (parm))
4038 TREE_ADDRESSABLE (local) = 1;
4039 else if (TREE_CODE (type) == COMPLEX_TYPE
4040 || TREE_CODE (type) == VECTOR_TYPE)
4041 DECL_GIMPLE_REG_P (local) = 1;
4042 }
4043 else
4044 {
4045 tree ptr_type, addr;
4046
4047 ptr_type = build_pointer_type (type);
4048 addr = create_tmp_reg (ptr_type, get_name (parm));
4049 DECL_IGNORED_P (addr) = 0;
4050 local = build_fold_indirect_ref (addr);
4051
4052 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
4053 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
4054 size_int (DECL_ALIGN (parm)));
4055
4056 /* The call has been built for a variable-sized object. */
4057 CALL_ALLOCA_FOR_VAR_P (t) = 1;
4058 t = fold_convert (ptr_type, t);
4059 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
4060 gimplify_and_add (t, &stmts);
4061 }
4062
4063 gimplify_assign (local, parm, &stmts);
4064
4065 SET_DECL_VALUE_EXPR (parm, local);
4066 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4067 }
4068 }
4069 }
4070
4071 fnargs.release ();
4072
4073 return stmts;
4074 }
4075 \f
4076 /* Compute the size and offset from the start of the stacked arguments for a
4077 parm passed in mode PASSED_MODE and with type TYPE.
4078
4079 INITIAL_OFFSET_PTR points to the current offset into the stacked
4080 arguments.
4081
4082 The starting offset and size for this parm are returned in
4083 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4084 nonzero, the offset is that of stack slot, which is returned in
4085 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4086 padding required from the initial offset ptr to the stack slot.
4087
4088 IN_REGS is nonzero if the argument will be passed in registers. It will
4089 never be set if REG_PARM_STACK_SPACE is not defined.
4090
4091 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4092 for arguments which are passed in registers.
4093
4094 FNDECL is the function in which the argument was defined.
4095
4096 There are two types of rounding that are done. The first, controlled by
4097 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4098 argument list to be aligned to the specific boundary (in bits). This
4099 rounding affects the initial and starting offsets, but not the argument
4100 size.
4101
4102 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4103 optionally rounds the size of the parm to PARM_BOUNDARY. The
4104 initial offset is not affected by this rounding, while the size always
4105 is and the starting offset may be. */
4106
4107 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4108 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4109 callers pass in the total size of args so far as
4110 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4111
4112 void
4113 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4114 int reg_parm_stack_space, int partial,
4115 tree fndecl ATTRIBUTE_UNUSED,
4116 struct args_size *initial_offset_ptr,
4117 struct locate_and_pad_arg_data *locate)
4118 {
4119 tree sizetree;
4120 enum direction where_pad;
4121 unsigned int boundary, round_boundary;
4122 int part_size_in_regs;
4123
4124 /* If we have found a stack parm before we reach the end of the
4125 area reserved for registers, skip that area. */
4126 if (! in_regs)
4127 {
4128 if (reg_parm_stack_space > 0)
4129 {
4130 if (initial_offset_ptr->var)
4131 {
4132 initial_offset_ptr->var
4133 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4134 ssize_int (reg_parm_stack_space));
4135 initial_offset_ptr->constant = 0;
4136 }
4137 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4138 initial_offset_ptr->constant = reg_parm_stack_space;
4139 }
4140 }
4141
4142 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4143
4144 sizetree
4145 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4146 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4147 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4148 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4149 type);
4150 locate->where_pad = where_pad;
4151
4152 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4153 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4154 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4155
4156 locate->boundary = boundary;
4157
4158 if (SUPPORTS_STACK_ALIGNMENT)
4159 {
4160 /* stack_alignment_estimated can't change after stack has been
4161 realigned. */
4162 if (crtl->stack_alignment_estimated < boundary)
4163 {
4164 if (!crtl->stack_realign_processed)
4165 crtl->stack_alignment_estimated = boundary;
4166 else
4167 {
4168 /* If stack is realigned and stack alignment value
4169 hasn't been finalized, it is OK not to increase
4170 stack_alignment_estimated. The bigger alignment
4171 requirement is recorded in stack_alignment_needed
4172 below. */
4173 gcc_assert (!crtl->stack_realign_finalized
4174 && crtl->stack_realign_needed);
4175 }
4176 }
4177 }
4178
4179 /* Remember if the outgoing parameter requires extra alignment on the
4180 calling function side. */
4181 if (crtl->stack_alignment_needed < boundary)
4182 crtl->stack_alignment_needed = boundary;
4183 if (crtl->preferred_stack_boundary < boundary)
4184 crtl->preferred_stack_boundary = boundary;
4185
4186 if (ARGS_GROW_DOWNWARD)
4187 {
4188 locate->slot_offset.constant = -initial_offset_ptr->constant;
4189 if (initial_offset_ptr->var)
4190 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4191 initial_offset_ptr->var);
4192
4193 {
4194 tree s2 = sizetree;
4195 if (where_pad != none
4196 && (!tree_fits_uhwi_p (sizetree)
4197 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4198 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4199 SUB_PARM_SIZE (locate->slot_offset, s2);
4200 }
4201
4202 locate->slot_offset.constant += part_size_in_regs;
4203
4204 if (!in_regs || reg_parm_stack_space > 0)
4205 pad_to_arg_alignment (&locate->slot_offset, boundary,
4206 &locate->alignment_pad);
4207
4208 locate->size.constant = (-initial_offset_ptr->constant
4209 - locate->slot_offset.constant);
4210 if (initial_offset_ptr->var)
4211 locate->size.var = size_binop (MINUS_EXPR,
4212 size_binop (MINUS_EXPR,
4213 ssize_int (0),
4214 initial_offset_ptr->var),
4215 locate->slot_offset.var);
4216
4217 /* Pad_below needs the pre-rounded size to know how much to pad
4218 below. */
4219 locate->offset = locate->slot_offset;
4220 if (where_pad == downward)
4221 pad_below (&locate->offset, passed_mode, sizetree);
4222
4223 }
4224 else
4225 {
4226 if (!in_regs || reg_parm_stack_space > 0)
4227 pad_to_arg_alignment (initial_offset_ptr, boundary,
4228 &locate->alignment_pad);
4229 locate->slot_offset = *initial_offset_ptr;
4230
4231 #ifdef PUSH_ROUNDING
4232 if (passed_mode != BLKmode)
4233 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4234 #endif
4235
4236 /* Pad_below needs the pre-rounded size to know how much to pad below
4237 so this must be done before rounding up. */
4238 locate->offset = locate->slot_offset;
4239 if (where_pad == downward)
4240 pad_below (&locate->offset, passed_mode, sizetree);
4241
4242 if (where_pad != none
4243 && (!tree_fits_uhwi_p (sizetree)
4244 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4245 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4246
4247 ADD_PARM_SIZE (locate->size, sizetree);
4248
4249 locate->size.constant -= part_size_in_regs;
4250 }
4251
4252 #ifdef FUNCTION_ARG_OFFSET
4253 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
4254 #endif
4255 }
4256
4257 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4258 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4259
4260 static void
4261 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4262 struct args_size *alignment_pad)
4263 {
4264 tree save_var = NULL_TREE;
4265 HOST_WIDE_INT save_constant = 0;
4266 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4267 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
4268
4269 #ifdef SPARC_STACK_BOUNDARY_HACK
4270 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4271 the real alignment of %sp. However, when it does this, the
4272 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4273 if (SPARC_STACK_BOUNDARY_HACK)
4274 sp_offset = 0;
4275 #endif
4276
4277 if (boundary > PARM_BOUNDARY)
4278 {
4279 save_var = offset_ptr->var;
4280 save_constant = offset_ptr->constant;
4281 }
4282
4283 alignment_pad->var = NULL_TREE;
4284 alignment_pad->constant = 0;
4285
4286 if (boundary > BITS_PER_UNIT)
4287 {
4288 if (offset_ptr->var)
4289 {
4290 tree sp_offset_tree = ssize_int (sp_offset);
4291 tree offset = size_binop (PLUS_EXPR,
4292 ARGS_SIZE_TREE (*offset_ptr),
4293 sp_offset_tree);
4294 tree rounded;
4295 if (ARGS_GROW_DOWNWARD)
4296 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4297 else
4298 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4299
4300 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4301 /* ARGS_SIZE_TREE includes constant term. */
4302 offset_ptr->constant = 0;
4303 if (boundary > PARM_BOUNDARY)
4304 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4305 save_var);
4306 }
4307 else
4308 {
4309 offset_ptr->constant = -sp_offset +
4310 (ARGS_GROW_DOWNWARD
4311 ? FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes)
4312 : CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes));
4313
4314 if (boundary > PARM_BOUNDARY)
4315 alignment_pad->constant = offset_ptr->constant - save_constant;
4316 }
4317 }
4318 }
4319
4320 static void
4321 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4322 {
4323 if (passed_mode != BLKmode)
4324 {
4325 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4326 offset_ptr->constant
4327 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4328 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4329 - GET_MODE_SIZE (passed_mode));
4330 }
4331 else
4332 {
4333 if (TREE_CODE (sizetree) != INTEGER_CST
4334 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4335 {
4336 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4337 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4338 /* Add it in. */
4339 ADD_PARM_SIZE (*offset_ptr, s2);
4340 SUB_PARM_SIZE (*offset_ptr, sizetree);
4341 }
4342 }
4343 }
4344 \f
4345
4346 /* True if register REGNO was alive at a place where `setjmp' was
4347 called and was set more than once or is an argument. Such regs may
4348 be clobbered by `longjmp'. */
4349
4350 static bool
4351 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4352 {
4353 /* There appear to be cases where some local vars never reach the
4354 backend but have bogus regnos. */
4355 if (regno >= max_reg_num ())
4356 return false;
4357
4358 return ((REG_N_SETS (regno) > 1
4359 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4360 regno))
4361 && REGNO_REG_SET_P (setjmp_crosses, regno));
4362 }
4363
4364 /* Walk the tree of blocks describing the binding levels within a
4365 function and warn about variables the might be killed by setjmp or
4366 vfork. This is done after calling flow_analysis before register
4367 allocation since that will clobber the pseudo-regs to hard
4368 regs. */
4369
4370 static void
4371 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4372 {
4373 tree decl, sub;
4374
4375 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4376 {
4377 if (TREE_CODE (decl) == VAR_DECL
4378 && DECL_RTL_SET_P (decl)
4379 && REG_P (DECL_RTL (decl))
4380 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4381 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4382 " %<longjmp%> or %<vfork%>", decl);
4383 }
4384
4385 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4386 setjmp_vars_warning (setjmp_crosses, sub);
4387 }
4388
4389 /* Do the appropriate part of setjmp_vars_warning
4390 but for arguments instead of local variables. */
4391
4392 static void
4393 setjmp_args_warning (bitmap setjmp_crosses)
4394 {
4395 tree decl;
4396 for (decl = DECL_ARGUMENTS (current_function_decl);
4397 decl; decl = DECL_CHAIN (decl))
4398 if (DECL_RTL (decl) != 0
4399 && REG_P (DECL_RTL (decl))
4400 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4401 warning (OPT_Wclobbered,
4402 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4403 decl);
4404 }
4405
4406 /* Generate warning messages for variables live across setjmp. */
4407
4408 void
4409 generate_setjmp_warnings (void)
4410 {
4411 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4412
4413 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4414 || bitmap_empty_p (setjmp_crosses))
4415 return;
4416
4417 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4418 setjmp_args_warning (setjmp_crosses);
4419 }
4420
4421 \f
4422 /* Reverse the order of elements in the fragment chain T of blocks,
4423 and return the new head of the chain (old last element).
4424 In addition to that clear BLOCK_SAME_RANGE flags when needed
4425 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4426 its super fragment origin. */
4427
4428 static tree
4429 block_fragments_nreverse (tree t)
4430 {
4431 tree prev = 0, block, next, prev_super = 0;
4432 tree super = BLOCK_SUPERCONTEXT (t);
4433 if (BLOCK_FRAGMENT_ORIGIN (super))
4434 super = BLOCK_FRAGMENT_ORIGIN (super);
4435 for (block = t; block; block = next)
4436 {
4437 next = BLOCK_FRAGMENT_CHAIN (block);
4438 BLOCK_FRAGMENT_CHAIN (block) = prev;
4439 if ((prev && !BLOCK_SAME_RANGE (prev))
4440 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4441 != prev_super))
4442 BLOCK_SAME_RANGE (block) = 0;
4443 prev_super = BLOCK_SUPERCONTEXT (block);
4444 BLOCK_SUPERCONTEXT (block) = super;
4445 prev = block;
4446 }
4447 t = BLOCK_FRAGMENT_ORIGIN (t);
4448 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4449 != prev_super)
4450 BLOCK_SAME_RANGE (t) = 0;
4451 BLOCK_SUPERCONTEXT (t) = super;
4452 return prev;
4453 }
4454
4455 /* Reverse the order of elements in the chain T of blocks,
4456 and return the new head of the chain (old last element).
4457 Also do the same on subblocks and reverse the order of elements
4458 in BLOCK_FRAGMENT_CHAIN as well. */
4459
4460 static tree
4461 blocks_nreverse_all (tree t)
4462 {
4463 tree prev = 0, block, next;
4464 for (block = t; block; block = next)
4465 {
4466 next = BLOCK_CHAIN (block);
4467 BLOCK_CHAIN (block) = prev;
4468 if (BLOCK_FRAGMENT_CHAIN (block)
4469 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4470 {
4471 BLOCK_FRAGMENT_CHAIN (block)
4472 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4473 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4474 BLOCK_SAME_RANGE (block) = 0;
4475 }
4476 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4477 prev = block;
4478 }
4479 return prev;
4480 }
4481
4482
4483 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4484 and create duplicate blocks. */
4485 /* ??? Need an option to either create block fragments or to create
4486 abstract origin duplicates of a source block. It really depends
4487 on what optimization has been performed. */
4488
4489 void
4490 reorder_blocks (void)
4491 {
4492 tree block = DECL_INITIAL (current_function_decl);
4493
4494 if (block == NULL_TREE)
4495 return;
4496
4497 auto_vec<tree, 10> block_stack;
4498
4499 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4500 clear_block_marks (block);
4501
4502 /* Prune the old trees away, so that they don't get in the way. */
4503 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4504 BLOCK_CHAIN (block) = NULL_TREE;
4505
4506 /* Recreate the block tree from the note nesting. */
4507 reorder_blocks_1 (get_insns (), block, &block_stack);
4508 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4509 }
4510
4511 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4512
4513 void
4514 clear_block_marks (tree block)
4515 {
4516 while (block)
4517 {
4518 TREE_ASM_WRITTEN (block) = 0;
4519 clear_block_marks (BLOCK_SUBBLOCKS (block));
4520 block = BLOCK_CHAIN (block);
4521 }
4522 }
4523
4524 static void
4525 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4526 vec<tree> *p_block_stack)
4527 {
4528 rtx_insn *insn;
4529 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4530
4531 for (insn = insns; insn; insn = NEXT_INSN (insn))
4532 {
4533 if (NOTE_P (insn))
4534 {
4535 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4536 {
4537 tree block = NOTE_BLOCK (insn);
4538 tree origin;
4539
4540 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4541 origin = block;
4542
4543 if (prev_end)
4544 BLOCK_SAME_RANGE (prev_end) = 0;
4545 prev_end = NULL_TREE;
4546
4547 /* If we have seen this block before, that means it now
4548 spans multiple address regions. Create a new fragment. */
4549 if (TREE_ASM_WRITTEN (block))
4550 {
4551 tree new_block = copy_node (block);
4552
4553 BLOCK_SAME_RANGE (new_block) = 0;
4554 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4555 BLOCK_FRAGMENT_CHAIN (new_block)
4556 = BLOCK_FRAGMENT_CHAIN (origin);
4557 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4558
4559 NOTE_BLOCK (insn) = new_block;
4560 block = new_block;
4561 }
4562
4563 if (prev_beg == current_block && prev_beg)
4564 BLOCK_SAME_RANGE (block) = 1;
4565
4566 prev_beg = origin;
4567
4568 BLOCK_SUBBLOCKS (block) = 0;
4569 TREE_ASM_WRITTEN (block) = 1;
4570 /* When there's only one block for the entire function,
4571 current_block == block and we mustn't do this, it
4572 will cause infinite recursion. */
4573 if (block != current_block)
4574 {
4575 tree super;
4576 if (block != origin)
4577 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4578 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4579 (origin))
4580 == current_block);
4581 if (p_block_stack->is_empty ())
4582 super = current_block;
4583 else
4584 {
4585 super = p_block_stack->last ();
4586 gcc_assert (super == current_block
4587 || BLOCK_FRAGMENT_ORIGIN (super)
4588 == current_block);
4589 }
4590 BLOCK_SUPERCONTEXT (block) = super;
4591 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4592 BLOCK_SUBBLOCKS (current_block) = block;
4593 current_block = origin;
4594 }
4595 p_block_stack->safe_push (block);
4596 }
4597 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4598 {
4599 NOTE_BLOCK (insn) = p_block_stack->pop ();
4600 current_block = BLOCK_SUPERCONTEXT (current_block);
4601 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4602 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4603 prev_beg = NULL_TREE;
4604 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4605 ? NOTE_BLOCK (insn) : NULL_TREE;
4606 }
4607 }
4608 else
4609 {
4610 prev_beg = NULL_TREE;
4611 if (prev_end)
4612 BLOCK_SAME_RANGE (prev_end) = 0;
4613 prev_end = NULL_TREE;
4614 }
4615 }
4616 }
4617
4618 /* Reverse the order of elements in the chain T of blocks,
4619 and return the new head of the chain (old last element). */
4620
4621 tree
4622 blocks_nreverse (tree t)
4623 {
4624 tree prev = 0, block, next;
4625 for (block = t; block; block = next)
4626 {
4627 next = BLOCK_CHAIN (block);
4628 BLOCK_CHAIN (block) = prev;
4629 prev = block;
4630 }
4631 return prev;
4632 }
4633
4634 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4635 by modifying the last node in chain 1 to point to chain 2. */
4636
4637 tree
4638 block_chainon (tree op1, tree op2)
4639 {
4640 tree t1;
4641
4642 if (!op1)
4643 return op2;
4644 if (!op2)
4645 return op1;
4646
4647 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4648 continue;
4649 BLOCK_CHAIN (t1) = op2;
4650
4651 #ifdef ENABLE_TREE_CHECKING
4652 {
4653 tree t2;
4654 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4655 gcc_assert (t2 != t1);
4656 }
4657 #endif
4658
4659 return op1;
4660 }
4661
4662 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4663 non-NULL, list them all into VECTOR, in a depth-first preorder
4664 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4665 blocks. */
4666
4667 static int
4668 all_blocks (tree block, tree *vector)
4669 {
4670 int n_blocks = 0;
4671
4672 while (block)
4673 {
4674 TREE_ASM_WRITTEN (block) = 0;
4675
4676 /* Record this block. */
4677 if (vector)
4678 vector[n_blocks] = block;
4679
4680 ++n_blocks;
4681
4682 /* Record the subblocks, and their subblocks... */
4683 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4684 vector ? vector + n_blocks : 0);
4685 block = BLOCK_CHAIN (block);
4686 }
4687
4688 return n_blocks;
4689 }
4690
4691 /* Return a vector containing all the blocks rooted at BLOCK. The
4692 number of elements in the vector is stored in N_BLOCKS_P. The
4693 vector is dynamically allocated; it is the caller's responsibility
4694 to call `free' on the pointer returned. */
4695
4696 static tree *
4697 get_block_vector (tree block, int *n_blocks_p)
4698 {
4699 tree *block_vector;
4700
4701 *n_blocks_p = all_blocks (block, NULL);
4702 block_vector = XNEWVEC (tree, *n_blocks_p);
4703 all_blocks (block, block_vector);
4704
4705 return block_vector;
4706 }
4707
4708 static GTY(()) int next_block_index = 2;
4709
4710 /* Set BLOCK_NUMBER for all the blocks in FN. */
4711
4712 void
4713 number_blocks (tree fn)
4714 {
4715 int i;
4716 int n_blocks;
4717 tree *block_vector;
4718
4719 /* For SDB and XCOFF debugging output, we start numbering the blocks
4720 from 1 within each function, rather than keeping a running
4721 count. */
4722 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4723 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4724 next_block_index = 1;
4725 #endif
4726
4727 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4728
4729 /* The top-level BLOCK isn't numbered at all. */
4730 for (i = 1; i < n_blocks; ++i)
4731 /* We number the blocks from two. */
4732 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4733
4734 free (block_vector);
4735
4736 return;
4737 }
4738
4739 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4740
4741 DEBUG_FUNCTION tree
4742 debug_find_var_in_block_tree (tree var, tree block)
4743 {
4744 tree t;
4745
4746 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4747 if (t == var)
4748 return block;
4749
4750 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4751 {
4752 tree ret = debug_find_var_in_block_tree (var, t);
4753 if (ret)
4754 return ret;
4755 }
4756
4757 return NULL_TREE;
4758 }
4759 \f
4760 /* Keep track of whether we're in a dummy function context. If we are,
4761 we don't want to invoke the set_current_function hook, because we'll
4762 get into trouble if the hook calls target_reinit () recursively or
4763 when the initial initialization is not yet complete. */
4764
4765 static bool in_dummy_function;
4766
4767 /* Invoke the target hook when setting cfun. Update the optimization options
4768 if the function uses different options than the default. */
4769
4770 static void
4771 invoke_set_current_function_hook (tree fndecl)
4772 {
4773 if (!in_dummy_function)
4774 {
4775 tree opts = ((fndecl)
4776 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4777 : optimization_default_node);
4778
4779 if (!opts)
4780 opts = optimization_default_node;
4781
4782 /* Change optimization options if needed. */
4783 if (optimization_current_node != opts)
4784 {
4785 optimization_current_node = opts;
4786 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4787 }
4788
4789 targetm.set_current_function (fndecl);
4790 this_fn_optabs = this_target_optabs;
4791
4792 if (opts != optimization_default_node)
4793 {
4794 init_tree_optimization_optabs (opts);
4795 if (TREE_OPTIMIZATION_OPTABS (opts))
4796 this_fn_optabs = (struct target_optabs *)
4797 TREE_OPTIMIZATION_OPTABS (opts);
4798 }
4799 }
4800 }
4801
4802 /* cfun should never be set directly; use this function. */
4803
4804 void
4805 set_cfun (struct function *new_cfun)
4806 {
4807 if (cfun != new_cfun)
4808 {
4809 cfun = new_cfun;
4810 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4811 }
4812 }
4813
4814 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4815
4816 static vec<function_p> cfun_stack;
4817
4818 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4819 current_function_decl accordingly. */
4820
4821 void
4822 push_cfun (struct function *new_cfun)
4823 {
4824 gcc_assert ((!cfun && !current_function_decl)
4825 || (cfun && current_function_decl == cfun->decl));
4826 cfun_stack.safe_push (cfun);
4827 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4828 set_cfun (new_cfun);
4829 }
4830
4831 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4832
4833 void
4834 pop_cfun (void)
4835 {
4836 struct function *new_cfun = cfun_stack.pop ();
4837 /* When in_dummy_function, we do have a cfun but current_function_decl is
4838 NULL. We also allow pushing NULL cfun and subsequently changing
4839 current_function_decl to something else and have both restored by
4840 pop_cfun. */
4841 gcc_checking_assert (in_dummy_function
4842 || !cfun
4843 || current_function_decl == cfun->decl);
4844 set_cfun (new_cfun);
4845 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4846 }
4847
4848 /* Return value of funcdef and increase it. */
4849 int
4850 get_next_funcdef_no (void)
4851 {
4852 return funcdef_no++;
4853 }
4854
4855 /* Return value of funcdef. */
4856 int
4857 get_last_funcdef_no (void)
4858 {
4859 return funcdef_no;
4860 }
4861
4862 /* Allocate a function structure for FNDECL and set its contents
4863 to the defaults. Set cfun to the newly-allocated object.
4864 Some of the helper functions invoked during initialization assume
4865 that cfun has already been set. Therefore, assign the new object
4866 directly into cfun and invoke the back end hook explicitly at the
4867 very end, rather than initializing a temporary and calling set_cfun
4868 on it.
4869
4870 ABSTRACT_P is true if this is a function that will never be seen by
4871 the middle-end. Such functions are front-end concepts (like C++
4872 function templates) that do not correspond directly to functions
4873 placed in object files. */
4874
4875 void
4876 allocate_struct_function (tree fndecl, bool abstract_p)
4877 {
4878 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4879
4880 cfun = ggc_cleared_alloc<function> ();
4881
4882 init_eh_for_function ();
4883
4884 if (init_machine_status)
4885 cfun->machine = (*init_machine_status) ();
4886
4887 #ifdef OVERRIDE_ABI_FORMAT
4888 OVERRIDE_ABI_FORMAT (fndecl);
4889 #endif
4890
4891 if (fndecl != NULL_TREE)
4892 {
4893 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4894 cfun->decl = fndecl;
4895 current_function_funcdef_no = get_next_funcdef_no ();
4896 }
4897
4898 invoke_set_current_function_hook (fndecl);
4899
4900 if (fndecl != NULL_TREE)
4901 {
4902 tree result = DECL_RESULT (fndecl);
4903 if (!abstract_p && aggregate_value_p (result, fndecl))
4904 {
4905 #ifdef PCC_STATIC_STRUCT_RETURN
4906 cfun->returns_pcc_struct = 1;
4907 #endif
4908 cfun->returns_struct = 1;
4909 }
4910
4911 cfun->stdarg = stdarg_p (fntype);
4912
4913 /* Assume all registers in stdarg functions need to be saved. */
4914 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4915 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4916
4917 /* ??? This could be set on a per-function basis by the front-end
4918 but is this worth the hassle? */
4919 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4920 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4921
4922 if (!profile_flag && !flag_instrument_function_entry_exit)
4923 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4924 }
4925 }
4926
4927 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4928 instead of just setting it. */
4929
4930 void
4931 push_struct_function (tree fndecl)
4932 {
4933 /* When in_dummy_function we might be in the middle of a pop_cfun and
4934 current_function_decl and cfun may not match. */
4935 gcc_assert (in_dummy_function
4936 || (!cfun && !current_function_decl)
4937 || (cfun && current_function_decl == cfun->decl));
4938 cfun_stack.safe_push (cfun);
4939 current_function_decl = fndecl;
4940 allocate_struct_function (fndecl, false);
4941 }
4942
4943 /* Reset crtl and other non-struct-function variables to defaults as
4944 appropriate for emitting rtl at the start of a function. */
4945
4946 static void
4947 prepare_function_start (void)
4948 {
4949 gcc_assert (!get_last_insn ());
4950 init_temp_slots ();
4951 init_emit ();
4952 init_varasm_status ();
4953 init_expr ();
4954 default_rtl_profile ();
4955
4956 if (flag_stack_usage_info)
4957 {
4958 cfun->su = ggc_cleared_alloc<stack_usage> ();
4959 cfun->su->static_stack_size = -1;
4960 }
4961
4962 cse_not_expected = ! optimize;
4963
4964 /* Caller save not needed yet. */
4965 caller_save_needed = 0;
4966
4967 /* We haven't done register allocation yet. */
4968 reg_renumber = 0;
4969
4970 /* Indicate that we have not instantiated virtual registers yet. */
4971 virtuals_instantiated = 0;
4972
4973 /* Indicate that we want CONCATs now. */
4974 generating_concat_p = 1;
4975
4976 /* Indicate we have no need of a frame pointer yet. */
4977 frame_pointer_needed = 0;
4978 }
4979
4980 void
4981 push_dummy_function (bool with_decl)
4982 {
4983 tree fn_decl, fn_type, fn_result_decl;
4984
4985 gcc_assert (!in_dummy_function);
4986 in_dummy_function = true;
4987
4988 if (with_decl)
4989 {
4990 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4991 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4992 fn_type);
4993 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4994 NULL_TREE, void_type_node);
4995 DECL_RESULT (fn_decl) = fn_result_decl;
4996 }
4997 else
4998 fn_decl = NULL_TREE;
4999
5000 push_struct_function (fn_decl);
5001 }
5002
5003 /* Initialize the rtl expansion mechanism so that we can do simple things
5004 like generate sequences. This is used to provide a context during global
5005 initialization of some passes. You must call expand_dummy_function_end
5006 to exit this context. */
5007
5008 void
5009 init_dummy_function_start (void)
5010 {
5011 push_dummy_function (false);
5012 prepare_function_start ();
5013 }
5014
5015 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5016 and initialize static variables for generating RTL for the statements
5017 of the function. */
5018
5019 void
5020 init_function_start (tree subr)
5021 {
5022 if (subr && DECL_STRUCT_FUNCTION (subr))
5023 set_cfun (DECL_STRUCT_FUNCTION (subr));
5024 else
5025 allocate_struct_function (subr, false);
5026
5027 /* Initialize backend, if needed. */
5028 initialize_rtl ();
5029
5030 prepare_function_start ();
5031 decide_function_section (subr);
5032
5033 /* Warn if this value is an aggregate type,
5034 regardless of which calling convention we are using for it. */
5035 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5036 warning (OPT_Waggregate_return, "function returns an aggregate");
5037 }
5038
5039 /* Expand code to verify the stack_protect_guard. This is invoked at
5040 the end of a function to be protected. */
5041
5042 #ifndef HAVE_stack_protect_test
5043 # define HAVE_stack_protect_test 0
5044 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
5045 #endif
5046
5047 void
5048 stack_protect_epilogue (void)
5049 {
5050 tree guard_decl = targetm.stack_protect_guard ();
5051 rtx_code_label *label = gen_label_rtx ();
5052 rtx x, y, tmp;
5053
5054 x = expand_normal (crtl->stack_protect_guard);
5055 y = expand_normal (guard_decl);
5056
5057 /* Allow the target to compare Y with X without leaking either into
5058 a register. */
5059 switch ((int) (HAVE_stack_protect_test != 0))
5060 {
5061 case 1:
5062 tmp = gen_stack_protect_test (x, y, label);
5063 if (tmp)
5064 {
5065 emit_insn (tmp);
5066 break;
5067 }
5068 /* FALLTHRU */
5069
5070 default:
5071 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5072 break;
5073 }
5074
5075 /* The noreturn predictor has been moved to the tree level. The rtl-level
5076 predictors estimate this branch about 20%, which isn't enough to get
5077 things moved out of line. Since this is the only extant case of adding
5078 a noreturn function at the rtl level, it doesn't seem worth doing ought
5079 except adding the prediction by hand. */
5080 tmp = get_last_insn ();
5081 if (JUMP_P (tmp))
5082 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
5083
5084 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5085 free_temp_slots ();
5086 emit_label (label);
5087 }
5088 \f
5089 /* Start the RTL for a new function, and set variables used for
5090 emitting RTL.
5091 SUBR is the FUNCTION_DECL node.
5092 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5093 the function's parameters, which must be run at any return statement. */
5094
5095 void
5096 expand_function_start (tree subr)
5097 {
5098 /* Make sure volatile mem refs aren't considered
5099 valid operands of arithmetic insns. */
5100 init_recog_no_volatile ();
5101
5102 crtl->profile
5103 = (profile_flag
5104 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5105
5106 crtl->limit_stack
5107 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5108
5109 /* Make the label for return statements to jump to. Do not special
5110 case machines with special return instructions -- they will be
5111 handled later during jump, ifcvt, or epilogue creation. */
5112 return_label = gen_label_rtx ();
5113
5114 /* Initialize rtx used to return the value. */
5115 /* Do this before assign_parms so that we copy the struct value address
5116 before any library calls that assign parms might generate. */
5117
5118 /* Decide whether to return the value in memory or in a register. */
5119 tree res = DECL_RESULT (subr);
5120 maybe_reset_rtl_for_parm (res);
5121 if (aggregate_value_p (res, subr))
5122 {
5123 /* Returning something that won't go in a register. */
5124 rtx value_address = 0;
5125
5126 #ifdef PCC_STATIC_STRUCT_RETURN
5127 if (cfun->returns_pcc_struct)
5128 {
5129 int size = int_size_in_bytes (TREE_TYPE (res));
5130 value_address = assemble_static_space (size);
5131 }
5132 else
5133 #endif
5134 {
5135 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5136 /* Expect to be passed the address of a place to store the value.
5137 If it is passed as an argument, assign_parms will take care of
5138 it. */
5139 if (sv)
5140 {
5141 if (DECL_BY_REFERENCE (res))
5142 value_address = get_rtl_for_parm_ssa_default_def (res);
5143 if (!value_address)
5144 value_address = gen_reg_rtx (Pmode);
5145 emit_move_insn (value_address, sv);
5146 }
5147 }
5148 if (value_address)
5149 {
5150 rtx x = value_address;
5151 if (!DECL_BY_REFERENCE (res))
5152 {
5153 x = get_rtl_for_parm_ssa_default_def (res);
5154 if (!x)
5155 {
5156 x = gen_rtx_MEM (DECL_MODE (res), value_address);
5157 set_mem_attributes (x, res, 1);
5158 }
5159 }
5160 SET_DECL_RTL (res, x);
5161 }
5162 }
5163 else if (DECL_MODE (res) == VOIDmode)
5164 /* If return mode is void, this decl rtl should not be used. */
5165 SET_DECL_RTL (res, NULL_RTX);
5166 else
5167 {
5168 /* Compute the return values into a pseudo reg, which we will copy
5169 into the true return register after the cleanups are done. */
5170 tree return_type = TREE_TYPE (res);
5171 rtx x = get_rtl_for_parm_ssa_default_def (res);
5172 if (x)
5173 /* Use it. */;
5174 else if (TYPE_MODE (return_type) != BLKmode
5175 && targetm.calls.return_in_msb (return_type))
5176 /* expand_function_end will insert the appropriate padding in
5177 this case. Use the return value's natural (unpadded) mode
5178 within the function proper. */
5179 x = gen_reg_rtx (TYPE_MODE (return_type));
5180 else
5181 {
5182 /* In order to figure out what mode to use for the pseudo, we
5183 figure out what the mode of the eventual return register will
5184 actually be, and use that. */
5185 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5186
5187 /* Structures that are returned in registers are not
5188 aggregate_value_p, so we may see a PARALLEL or a REG. */
5189 if (REG_P (hard_reg))
5190 x = gen_reg_rtx (GET_MODE (hard_reg));
5191 else
5192 {
5193 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5194 x = gen_group_rtx (hard_reg);
5195 }
5196 }
5197
5198 SET_DECL_RTL (res, x);
5199
5200 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5201 result to the real return register(s). */
5202 DECL_REGISTER (res) = 1;
5203
5204 if (chkp_function_instrumented_p (current_function_decl))
5205 {
5206 tree return_type = TREE_TYPE (res);
5207 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5208 subr, 1);
5209 SET_DECL_BOUNDS_RTL (res, bounds);
5210 }
5211 }
5212
5213 /* Initialize rtx for parameters and local variables.
5214 In some cases this requires emitting insns. */
5215 assign_parms (subr);
5216
5217 /* If function gets a static chain arg, store it. */
5218 if (cfun->static_chain_decl)
5219 {
5220 tree parm = cfun->static_chain_decl;
5221 rtx local, chain;
5222 rtx_insn *insn;
5223
5224 local = get_rtl_for_parm_ssa_default_def (parm);
5225 if (!local)
5226 local = gen_reg_rtx (Pmode);
5227 chain = targetm.calls.static_chain (current_function_decl, true);
5228
5229 set_decl_incoming_rtl (parm, chain, false);
5230 SET_DECL_RTL (parm, local);
5231 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5232
5233 insn = emit_move_insn (local, chain);
5234
5235 /* Mark the register as eliminable, similar to parameters. */
5236 if (MEM_P (chain)
5237 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5238 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5239
5240 /* If we aren't optimizing, save the static chain onto the stack. */
5241 if (!optimize)
5242 {
5243 tree saved_static_chain_decl
5244 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5245 DECL_NAME (parm), TREE_TYPE (parm));
5246 rtx saved_static_chain_rtx
5247 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5248 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5249 emit_move_insn (saved_static_chain_rtx, chain);
5250 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5251 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5252 }
5253 }
5254
5255 /* If the function receives a non-local goto, then store the
5256 bits we need to restore the frame pointer. */
5257 if (cfun->nonlocal_goto_save_area)
5258 {
5259 tree t_save;
5260 rtx r_save;
5261
5262 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5263 gcc_assert (DECL_RTL_SET_P (var));
5264
5265 t_save = build4 (ARRAY_REF,
5266 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5267 cfun->nonlocal_goto_save_area,
5268 integer_zero_node, NULL_TREE, NULL_TREE);
5269 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5270 gcc_assert (GET_MODE (r_save) == Pmode);
5271
5272 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5273 update_nonlocal_goto_save_area ();
5274 }
5275
5276 /* The following was moved from init_function_start.
5277 The move is supposed to make sdb output more accurate. */
5278 /* Indicate the beginning of the function body,
5279 as opposed to parm setup. */
5280 emit_note (NOTE_INSN_FUNCTION_BEG);
5281
5282 gcc_assert (NOTE_P (get_last_insn ()));
5283
5284 parm_birth_insn = get_last_insn ();
5285
5286 if (crtl->profile)
5287 {
5288 #ifdef PROFILE_HOOK
5289 PROFILE_HOOK (current_function_funcdef_no);
5290 #endif
5291 }
5292
5293 /* If we are doing generic stack checking, the probe should go here. */
5294 if (flag_stack_check == GENERIC_STACK_CHECK)
5295 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5296 }
5297 \f
5298 void
5299 pop_dummy_function (void)
5300 {
5301 pop_cfun ();
5302 in_dummy_function = false;
5303 }
5304
5305 /* Undo the effects of init_dummy_function_start. */
5306 void
5307 expand_dummy_function_end (void)
5308 {
5309 gcc_assert (in_dummy_function);
5310
5311 /* End any sequences that failed to be closed due to syntax errors. */
5312 while (in_sequence_p ())
5313 end_sequence ();
5314
5315 /* Outside function body, can't compute type's actual size
5316 until next function's body starts. */
5317
5318 free_after_parsing (cfun);
5319 free_after_compilation (cfun);
5320 pop_dummy_function ();
5321 }
5322
5323 /* Helper for diddle_return_value. */
5324
5325 void
5326 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5327 {
5328 if (! outgoing)
5329 return;
5330
5331 if (REG_P (outgoing))
5332 (*doit) (outgoing, arg);
5333 else if (GET_CODE (outgoing) == PARALLEL)
5334 {
5335 int i;
5336
5337 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5338 {
5339 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5340
5341 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5342 (*doit) (x, arg);
5343 }
5344 }
5345 }
5346
5347 /* Call DOIT for each hard register used as a return value from
5348 the current function. */
5349
5350 void
5351 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5352 {
5353 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5354 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5355 }
5356
5357 static void
5358 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5359 {
5360 emit_clobber (reg);
5361 }
5362
5363 void
5364 clobber_return_register (void)
5365 {
5366 diddle_return_value (do_clobber_return_reg, NULL);
5367
5368 /* In case we do use pseudo to return value, clobber it too. */
5369 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5370 {
5371 tree decl_result = DECL_RESULT (current_function_decl);
5372 rtx decl_rtl = DECL_RTL (decl_result);
5373 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5374 {
5375 do_clobber_return_reg (decl_rtl, NULL);
5376 }
5377 }
5378 }
5379
5380 static void
5381 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5382 {
5383 emit_use (reg);
5384 }
5385
5386 static void
5387 use_return_register (void)
5388 {
5389 diddle_return_value (do_use_return_reg, NULL);
5390 }
5391
5392 /* Possibly warn about unused parameters. */
5393 void
5394 do_warn_unused_parameter (tree fn)
5395 {
5396 tree decl;
5397
5398 for (decl = DECL_ARGUMENTS (fn);
5399 decl; decl = DECL_CHAIN (decl))
5400 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5401 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
5402 && !TREE_NO_WARNING (decl))
5403 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
5404 }
5405
5406 /* Set the location of the insn chain starting at INSN to LOC. */
5407
5408 static void
5409 set_insn_locations (rtx_insn *insn, int loc)
5410 {
5411 while (insn != NULL)
5412 {
5413 if (INSN_P (insn))
5414 INSN_LOCATION (insn) = loc;
5415 insn = NEXT_INSN (insn);
5416 }
5417 }
5418
5419 /* Generate RTL for the end of the current function. */
5420
5421 void
5422 expand_function_end (void)
5423 {
5424 /* If arg_pointer_save_area was referenced only from a nested
5425 function, we will not have initialized it yet. Do that now. */
5426 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5427 get_arg_pointer_save_area ();
5428
5429 /* If we are doing generic stack checking and this function makes calls,
5430 do a stack probe at the start of the function to ensure we have enough
5431 space for another stack frame. */
5432 if (flag_stack_check == GENERIC_STACK_CHECK)
5433 {
5434 rtx_insn *insn, *seq;
5435
5436 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5437 if (CALL_P (insn))
5438 {
5439 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5440 start_sequence ();
5441 if (STACK_CHECK_MOVING_SP)
5442 anti_adjust_stack_and_probe (max_frame_size, true);
5443 else
5444 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5445 seq = get_insns ();
5446 end_sequence ();
5447 set_insn_locations (seq, prologue_location);
5448 emit_insn_before (seq, stack_check_probe_note);
5449 break;
5450 }
5451 }
5452
5453 /* End any sequences that failed to be closed due to syntax errors. */
5454 while (in_sequence_p ())
5455 end_sequence ();
5456
5457 clear_pending_stack_adjust ();
5458 do_pending_stack_adjust ();
5459
5460 /* Output a linenumber for the end of the function.
5461 SDB depends on this. */
5462 set_curr_insn_location (input_location);
5463
5464 /* Before the return label (if any), clobber the return
5465 registers so that they are not propagated live to the rest of
5466 the function. This can only happen with functions that drop
5467 through; if there had been a return statement, there would
5468 have either been a return rtx, or a jump to the return label.
5469
5470 We delay actual code generation after the current_function_value_rtx
5471 is computed. */
5472 rtx_insn *clobber_after = get_last_insn ();
5473
5474 /* Output the label for the actual return from the function. */
5475 emit_label (return_label);
5476
5477 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5478 {
5479 /* Let except.c know where it should emit the call to unregister
5480 the function context for sjlj exceptions. */
5481 if (flag_exceptions)
5482 sjlj_emit_function_exit_after (get_last_insn ());
5483 }
5484 else
5485 {
5486 /* We want to ensure that instructions that may trap are not
5487 moved into the epilogue by scheduling, because we don't
5488 always emit unwind information for the epilogue. */
5489 if (cfun->can_throw_non_call_exceptions)
5490 emit_insn (gen_blockage ());
5491 }
5492
5493 /* If this is an implementation of throw, do what's necessary to
5494 communicate between __builtin_eh_return and the epilogue. */
5495 expand_eh_return ();
5496
5497 /* If scalar return value was computed in a pseudo-reg, or was a named
5498 return value that got dumped to the stack, copy that to the hard
5499 return register. */
5500 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5501 {
5502 tree decl_result = DECL_RESULT (current_function_decl);
5503 rtx decl_rtl = DECL_RTL (decl_result);
5504
5505 if (REG_P (decl_rtl)
5506 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5507 : DECL_REGISTER (decl_result))
5508 {
5509 rtx real_decl_rtl = crtl->return_rtx;
5510
5511 /* This should be set in assign_parms. */
5512 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5513
5514 /* If this is a BLKmode structure being returned in registers,
5515 then use the mode computed in expand_return. Note that if
5516 decl_rtl is memory, then its mode may have been changed,
5517 but that crtl->return_rtx has not. */
5518 if (GET_MODE (real_decl_rtl) == BLKmode)
5519 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5520
5521 /* If a non-BLKmode return value should be padded at the least
5522 significant end of the register, shift it left by the appropriate
5523 amount. BLKmode results are handled using the group load/store
5524 machinery. */
5525 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5526 && REG_P (real_decl_rtl)
5527 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5528 {
5529 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5530 REGNO (real_decl_rtl)),
5531 decl_rtl);
5532 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5533 }
5534 /* If a named return value dumped decl_return to memory, then
5535 we may need to re-do the PROMOTE_MODE signed/unsigned
5536 extension. */
5537 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5538 {
5539 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5540 promote_function_mode (TREE_TYPE (decl_result),
5541 GET_MODE (decl_rtl), &unsignedp,
5542 TREE_TYPE (current_function_decl), 1);
5543
5544 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5545 }
5546 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5547 {
5548 /* If expand_function_start has created a PARALLEL for decl_rtl,
5549 move the result to the real return registers. Otherwise, do
5550 a group load from decl_rtl for a named return. */
5551 if (GET_CODE (decl_rtl) == PARALLEL)
5552 emit_group_move (real_decl_rtl, decl_rtl);
5553 else
5554 emit_group_load (real_decl_rtl, decl_rtl,
5555 TREE_TYPE (decl_result),
5556 int_size_in_bytes (TREE_TYPE (decl_result)));
5557 }
5558 /* In the case of complex integer modes smaller than a word, we'll
5559 need to generate some non-trivial bitfield insertions. Do that
5560 on a pseudo and not the hard register. */
5561 else if (GET_CODE (decl_rtl) == CONCAT
5562 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5563 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5564 {
5565 int old_generating_concat_p;
5566 rtx tmp;
5567
5568 old_generating_concat_p = generating_concat_p;
5569 generating_concat_p = 0;
5570 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5571 generating_concat_p = old_generating_concat_p;
5572
5573 emit_move_insn (tmp, decl_rtl);
5574 emit_move_insn (real_decl_rtl, tmp);
5575 }
5576 else
5577 emit_move_insn (real_decl_rtl, decl_rtl);
5578 }
5579 }
5580
5581 /* If returning a structure, arrange to return the address of the value
5582 in a place where debuggers expect to find it.
5583
5584 If returning a structure PCC style,
5585 the caller also depends on this value.
5586 And cfun->returns_pcc_struct is not necessarily set. */
5587 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5588 && !targetm.calls.omit_struct_return_reg)
5589 {
5590 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5591 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5592 rtx outgoing;
5593
5594 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5595 type = TREE_TYPE (type);
5596 else
5597 value_address = XEXP (value_address, 0);
5598
5599 outgoing = targetm.calls.function_value (build_pointer_type (type),
5600 current_function_decl, true);
5601
5602 /* Mark this as a function return value so integrate will delete the
5603 assignment and USE below when inlining this function. */
5604 REG_FUNCTION_VALUE_P (outgoing) = 1;
5605
5606 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5607 value_address = convert_memory_address (GET_MODE (outgoing),
5608 value_address);
5609
5610 emit_move_insn (outgoing, value_address);
5611
5612 /* Show return register used to hold result (in this case the address
5613 of the result. */
5614 crtl->return_rtx = outgoing;
5615 }
5616
5617 /* Emit the actual code to clobber return register. Don't emit
5618 it if clobber_after is a barrier, then the previous basic block
5619 certainly doesn't fall thru into the exit block. */
5620 if (!BARRIER_P (clobber_after))
5621 {
5622 start_sequence ();
5623 clobber_return_register ();
5624 rtx_insn *seq = get_insns ();
5625 end_sequence ();
5626
5627 emit_insn_after (seq, clobber_after);
5628 }
5629
5630 /* Output the label for the naked return from the function. */
5631 if (naked_return_label)
5632 emit_label (naked_return_label);
5633
5634 /* @@@ This is a kludge. We want to ensure that instructions that
5635 may trap are not moved into the epilogue by scheduling, because
5636 we don't always emit unwind information for the epilogue. */
5637 if (cfun->can_throw_non_call_exceptions
5638 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5639 emit_insn (gen_blockage ());
5640
5641 /* If stack protection is enabled for this function, check the guard. */
5642 if (crtl->stack_protect_guard)
5643 stack_protect_epilogue ();
5644
5645 /* If we had calls to alloca, and this machine needs
5646 an accurate stack pointer to exit the function,
5647 insert some code to save and restore the stack pointer. */
5648 if (! EXIT_IGNORE_STACK
5649 && cfun->calls_alloca)
5650 {
5651 rtx tem = 0;
5652
5653 start_sequence ();
5654 emit_stack_save (SAVE_FUNCTION, &tem);
5655 rtx_insn *seq = get_insns ();
5656 end_sequence ();
5657 emit_insn_before (seq, parm_birth_insn);
5658
5659 emit_stack_restore (SAVE_FUNCTION, tem);
5660 }
5661
5662 /* ??? This should no longer be necessary since stupid is no longer with
5663 us, but there are some parts of the compiler (eg reload_combine, and
5664 sh mach_dep_reorg) that still try and compute their own lifetime info
5665 instead of using the general framework. */
5666 use_return_register ();
5667 }
5668
5669 rtx
5670 get_arg_pointer_save_area (void)
5671 {
5672 rtx ret = arg_pointer_save_area;
5673
5674 if (! ret)
5675 {
5676 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5677 arg_pointer_save_area = ret;
5678 }
5679
5680 if (! crtl->arg_pointer_save_area_init)
5681 {
5682 /* Save the arg pointer at the beginning of the function. The
5683 generated stack slot may not be a valid memory address, so we
5684 have to check it and fix it if necessary. */
5685 start_sequence ();
5686 emit_move_insn (validize_mem (copy_rtx (ret)),
5687 crtl->args.internal_arg_pointer);
5688 rtx_insn *seq = get_insns ();
5689 end_sequence ();
5690
5691 push_topmost_sequence ();
5692 emit_insn_after (seq, entry_of_function ());
5693 pop_topmost_sequence ();
5694
5695 crtl->arg_pointer_save_area_init = true;
5696 }
5697
5698 return ret;
5699 }
5700 \f
5701 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5702 for the first time. */
5703
5704 static void
5705 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5706 {
5707 rtx_insn *tmp;
5708 hash_table<insn_cache_hasher> *hash = *hashp;
5709
5710 if (hash == NULL)
5711 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5712
5713 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5714 {
5715 rtx *slot = hash->find_slot (tmp, INSERT);
5716 gcc_assert (*slot == NULL);
5717 *slot = tmp;
5718 }
5719 }
5720
5721 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5722 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5723 insn, then record COPY as well. */
5724
5725 void
5726 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5727 {
5728 hash_table<insn_cache_hasher> *hash;
5729 rtx *slot;
5730
5731 hash = epilogue_insn_hash;
5732 if (!hash || !hash->find (insn))
5733 {
5734 hash = prologue_insn_hash;
5735 if (!hash || !hash->find (insn))
5736 return;
5737 }
5738
5739 slot = hash->find_slot (copy, INSERT);
5740 gcc_assert (*slot == NULL);
5741 *slot = copy;
5742 }
5743
5744 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5745 we can be running after reorg, SEQUENCE rtl is possible. */
5746
5747 static bool
5748 contains (const_rtx insn, hash_table<insn_cache_hasher> *hash)
5749 {
5750 if (hash == NULL)
5751 return false;
5752
5753 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5754 {
5755 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5756 int i;
5757 for (i = seq->len () - 1; i >= 0; i--)
5758 if (hash->find (seq->element (i)))
5759 return true;
5760 return false;
5761 }
5762
5763 return hash->find (const_cast<rtx> (insn)) != NULL;
5764 }
5765
5766 int
5767 prologue_epilogue_contains (const_rtx insn)
5768 {
5769 if (contains (insn, prologue_insn_hash))
5770 return 1;
5771 if (contains (insn, epilogue_insn_hash))
5772 return 1;
5773 return 0;
5774 }
5775
5776 /* Insert use of return register before the end of BB. */
5777
5778 static void
5779 emit_use_return_register_into_block (basic_block bb)
5780 {
5781 start_sequence ();
5782 use_return_register ();
5783 rtx_insn *seq = get_insns ();
5784 end_sequence ();
5785 rtx_insn *insn = BB_END (bb);
5786 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5787 insn = prev_cc0_setter (insn);
5788
5789 emit_insn_before (seq, insn);
5790 }
5791
5792
5793 /* Create a return pattern, either simple_return or return, depending on
5794 simple_p. */
5795
5796 static rtx
5797 gen_return_pattern (bool simple_p)
5798 {
5799 if (!HAVE_simple_return)
5800 gcc_assert (!simple_p);
5801
5802 return simple_p ? gen_simple_return () : gen_return ();
5803 }
5804
5805 /* Insert an appropriate return pattern at the end of block BB. This
5806 also means updating block_for_insn appropriately. SIMPLE_P is
5807 the same as in gen_return_pattern and passed to it. */
5808
5809 void
5810 emit_return_into_block (bool simple_p, basic_block bb)
5811 {
5812 rtx_jump_insn *jump = emit_jump_insn_after (gen_return_pattern (simple_p),
5813 BB_END (bb));
5814 rtx pat = PATTERN (jump);
5815 if (GET_CODE (pat) == PARALLEL)
5816 pat = XVECEXP (pat, 0, 0);
5817 gcc_assert (ANY_RETURN_P (pat));
5818 JUMP_LABEL (jump) = pat;
5819 }
5820
5821 /* Set JUMP_LABEL for a return insn. */
5822
5823 void
5824 set_return_jump_label (rtx_insn *returnjump)
5825 {
5826 rtx pat = PATTERN (returnjump);
5827 if (GET_CODE (pat) == PARALLEL)
5828 pat = XVECEXP (pat, 0, 0);
5829 if (ANY_RETURN_P (pat))
5830 JUMP_LABEL (returnjump) = pat;
5831 else
5832 JUMP_LABEL (returnjump) = ret_rtx;
5833 }
5834
5835 /* Return true if there are any active insns between HEAD and TAIL. */
5836 bool
5837 active_insn_between (rtx_insn *head, rtx_insn *tail)
5838 {
5839 while (tail)
5840 {
5841 if (active_insn_p (tail))
5842 return true;
5843 if (tail == head)
5844 return false;
5845 tail = PREV_INSN (tail);
5846 }
5847 return false;
5848 }
5849
5850 /* LAST_BB is a block that exits, and empty of active instructions.
5851 Examine its predecessors for jumps that can be converted to
5852 (conditional) returns. */
5853 vec<edge>
5854 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5855 vec<edge> unconverted ATTRIBUTE_UNUSED)
5856 {
5857 int i;
5858 basic_block bb;
5859 edge_iterator ei;
5860 edge e;
5861 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5862
5863 FOR_EACH_EDGE (e, ei, last_bb->preds)
5864 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5865 src_bbs.quick_push (e->src);
5866
5867 rtx_insn *label = BB_HEAD (last_bb);
5868
5869 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5870 {
5871 rtx_insn *jump = BB_END (bb);
5872
5873 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5874 continue;
5875
5876 e = find_edge (bb, last_bb);
5877
5878 /* If we have an unconditional jump, we can replace that
5879 with a simple return instruction. */
5880 if (simplejump_p (jump))
5881 {
5882 /* The use of the return register might be present in the exit
5883 fallthru block. Either:
5884 - removing the use is safe, and we should remove the use in
5885 the exit fallthru block, or
5886 - removing the use is not safe, and we should add it here.
5887 For now, we conservatively choose the latter. Either of the
5888 2 helps in crossjumping. */
5889 emit_use_return_register_into_block (bb);
5890
5891 emit_return_into_block (simple_p, bb);
5892 delete_insn (jump);
5893 }
5894
5895 /* If we have a conditional jump branching to the last
5896 block, we can try to replace that with a conditional
5897 return instruction. */
5898 else if (condjump_p (jump))
5899 {
5900 rtx dest;
5901
5902 if (simple_p)
5903 dest = simple_return_rtx;
5904 else
5905 dest = ret_rtx;
5906 if (!redirect_jump (as_a <rtx_jump_insn *> (jump), dest, 0))
5907 {
5908 if (HAVE_simple_return && simple_p)
5909 {
5910 if (dump_file)
5911 fprintf (dump_file,
5912 "Failed to redirect bb %d branch.\n", bb->index);
5913 unconverted.safe_push (e);
5914 }
5915 continue;
5916 }
5917
5918 /* See comment in simplejump_p case above. */
5919 emit_use_return_register_into_block (bb);
5920
5921 /* If this block has only one successor, it both jumps
5922 and falls through to the fallthru block, so we can't
5923 delete the edge. */
5924 if (single_succ_p (bb))
5925 continue;
5926 }
5927 else
5928 {
5929 if (HAVE_simple_return && simple_p)
5930 {
5931 if (dump_file)
5932 fprintf (dump_file,
5933 "Failed to redirect bb %d branch.\n", bb->index);
5934 unconverted.safe_push (e);
5935 }
5936 continue;
5937 }
5938
5939 /* Fix up the CFG for the successful change we just made. */
5940 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5941 e->flags &= ~EDGE_CROSSING;
5942 }
5943 src_bbs.release ();
5944 return unconverted;
5945 }
5946
5947 /* Emit a return insn for the exit fallthru block. */
5948 basic_block
5949 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5950 {
5951 basic_block last_bb = exit_fallthru_edge->src;
5952
5953 if (JUMP_P (BB_END (last_bb)))
5954 {
5955 last_bb = split_edge (exit_fallthru_edge);
5956 exit_fallthru_edge = single_succ_edge (last_bb);
5957 }
5958 emit_barrier_after (BB_END (last_bb));
5959 emit_return_into_block (simple_p, last_bb);
5960 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5961 return last_bb;
5962 }
5963
5964
5965 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5966 this into place with notes indicating where the prologue ends and where
5967 the epilogue begins. Update the basic block information when possible.
5968
5969 Notes on epilogue placement:
5970 There are several kinds of edges to the exit block:
5971 * a single fallthru edge from LAST_BB
5972 * possibly, edges from blocks containing sibcalls
5973 * possibly, fake edges from infinite loops
5974
5975 The epilogue is always emitted on the fallthru edge from the last basic
5976 block in the function, LAST_BB, into the exit block.
5977
5978 If LAST_BB is empty except for a label, it is the target of every
5979 other basic block in the function that ends in a return. If a
5980 target has a return or simple_return pattern (possibly with
5981 conditional variants), these basic blocks can be changed so that a
5982 return insn is emitted into them, and their target is adjusted to
5983 the real exit block.
5984
5985 Notes on shrink wrapping: We implement a fairly conservative
5986 version of shrink-wrapping rather than the textbook one. We only
5987 generate a single prologue and a single epilogue. This is
5988 sufficient to catch a number of interesting cases involving early
5989 exits.
5990
5991 First, we identify the blocks that require the prologue to occur before
5992 them. These are the ones that modify a call-saved register, or reference
5993 any of the stack or frame pointer registers. To simplify things, we then
5994 mark everything reachable from these blocks as also requiring a prologue.
5995 This takes care of loops automatically, and avoids the need to examine
5996 whether MEMs reference the frame, since it is sufficient to check for
5997 occurrences of the stack or frame pointer.
5998
5999 We then compute the set of blocks for which the need for a prologue
6000 is anticipatable (borrowing terminology from the shrink-wrapping
6001 description in Muchnick's book). These are the blocks which either
6002 require a prologue themselves, or those that have only successors
6003 where the prologue is anticipatable. The prologue needs to be
6004 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6005 is not. For the moment, we ensure that only one such edge exists.
6006
6007 The epilogue is placed as described above, but we make a
6008 distinction between inserting return and simple_return patterns
6009 when modifying other blocks that end in a return. Blocks that end
6010 in a sibcall omit the sibcall_epilogue if the block is not in
6011 ANTIC. */
6012
6013 void
6014 thread_prologue_and_epilogue_insns (void)
6015 {
6016 bool inserted;
6017 vec<edge> unconverted_simple_returns = vNULL;
6018 bitmap_head bb_flags;
6019 rtx_insn *returnjump;
6020 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
6021 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
6022 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
6023 edge_iterator ei;
6024
6025 df_analyze ();
6026
6027 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6028
6029 inserted = false;
6030 epilogue_end = NULL;
6031 returnjump = NULL;
6032
6033 /* Can't deal with multiple successors of the entry block at the
6034 moment. Function should always have at least one entry
6035 point. */
6036 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6037 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6038 orig_entry_edge = entry_edge;
6039
6040 split_prologue_seq = NULL;
6041 if (flag_split_stack
6042 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
6043 == NULL))
6044 {
6045 #ifndef HAVE_split_stack_prologue
6046 gcc_unreachable ();
6047 #else
6048 gcc_assert (HAVE_split_stack_prologue);
6049
6050 start_sequence ();
6051 emit_insn (gen_split_stack_prologue ());
6052 split_prologue_seq = get_insns ();
6053 end_sequence ();
6054
6055 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
6056 set_insn_locations (split_prologue_seq, prologue_location);
6057 #endif
6058 }
6059
6060 prologue_seq = NULL;
6061 #ifdef HAVE_prologue
6062 if (HAVE_prologue)
6063 {
6064 start_sequence ();
6065 rtx_insn *seq = safe_as_a <rtx_insn *> (gen_prologue ());
6066 emit_insn (seq);
6067
6068 /* Insert an explicit USE for the frame pointer
6069 if the profiling is on and the frame pointer is required. */
6070 if (crtl->profile && frame_pointer_needed)
6071 emit_use (hard_frame_pointer_rtx);
6072
6073 /* Retain a map of the prologue insns. */
6074 record_insns (seq, NULL, &prologue_insn_hash);
6075 emit_note (NOTE_INSN_PROLOGUE_END);
6076
6077 /* Ensure that instructions are not moved into the prologue when
6078 profiling is on. The call to the profiling routine can be
6079 emitted within the live range of a call-clobbered register. */
6080 if (!targetm.profile_before_prologue () && crtl->profile)
6081 emit_insn (gen_blockage ());
6082
6083 prologue_seq = get_insns ();
6084 end_sequence ();
6085 set_insn_locations (prologue_seq, prologue_location);
6086 }
6087 #endif
6088
6089 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
6090
6091 /* Try to perform a kind of shrink-wrapping, making sure the
6092 prologue/epilogue is emitted only around those parts of the
6093 function that require it. */
6094
6095 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
6096
6097 if (split_prologue_seq != NULL_RTX)
6098 {
6099 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6100 inserted = true;
6101 }
6102 if (prologue_seq != NULL_RTX)
6103 {
6104 insert_insn_on_edge (prologue_seq, entry_edge);
6105 inserted = true;
6106 }
6107
6108 /* If the exit block has no non-fake predecessors, we don't need
6109 an epilogue. */
6110 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6111 if ((e->flags & EDGE_FAKE) == 0)
6112 break;
6113 if (e == NULL)
6114 goto epilogue_done;
6115
6116 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6117
6118 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6119
6120 if (HAVE_simple_return && entry_edge != orig_entry_edge)
6121 exit_fallthru_edge
6122 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
6123 &unconverted_simple_returns,
6124 &returnjump);
6125 if (HAVE_return)
6126 {
6127 if (exit_fallthru_edge == NULL)
6128 goto epilogue_done;
6129
6130 if (optimize)
6131 {
6132 basic_block last_bb = exit_fallthru_edge->src;
6133
6134 if (LABEL_P (BB_HEAD (last_bb))
6135 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6136 convert_jumps_to_returns (last_bb, false, vNULL);
6137
6138 if (EDGE_COUNT (last_bb->preds) != 0
6139 && single_succ_p (last_bb))
6140 {
6141 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6142 epilogue_end = returnjump = BB_END (last_bb);
6143
6144 /* Emitting the return may add a basic block.
6145 Fix bb_flags for the added block. */
6146 if (HAVE_simple_return && last_bb != exit_fallthru_edge->src)
6147 bitmap_set_bit (&bb_flags, last_bb->index);
6148
6149 goto epilogue_done;
6150 }
6151 }
6152 }
6153
6154 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6155 this marker for the splits of EH_RETURN patterns, and nothing else
6156 uses the flag in the meantime. */
6157 epilogue_completed = 1;
6158
6159 #ifdef HAVE_eh_return
6160 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6161 some targets, these get split to a special version of the epilogue
6162 code. In order to be able to properly annotate these with unwind
6163 info, try to split them now. If we get a valid split, drop an
6164 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6165 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6166 {
6167 rtx_insn *prev, *last, *trial;
6168
6169 if (e->flags & EDGE_FALLTHRU)
6170 continue;
6171 last = BB_END (e->src);
6172 if (!eh_returnjump_p (last))
6173 continue;
6174
6175 prev = PREV_INSN (last);
6176 trial = try_split (PATTERN (last), last, 1);
6177 if (trial == last)
6178 continue;
6179
6180 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6181 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6182 }
6183 #endif
6184
6185 /* If nothing falls through into the exit block, we don't need an
6186 epilogue. */
6187
6188 if (exit_fallthru_edge == NULL)
6189 goto epilogue_done;
6190
6191 if (HAVE_epilogue)
6192 {
6193 start_sequence ();
6194 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6195 rtx_insn *seq = as_a <rtx_insn *> (gen_epilogue ());
6196 if (seq)
6197 emit_jump_insn (seq);
6198
6199 /* Retain a map of the epilogue insns. */
6200 record_insns (seq, NULL, &epilogue_insn_hash);
6201 set_insn_locations (seq, epilogue_location);
6202
6203 seq = get_insns ();
6204 returnjump = get_last_insn ();
6205 end_sequence ();
6206
6207 insert_insn_on_edge (seq, exit_fallthru_edge);
6208 inserted = true;
6209
6210 if (JUMP_P (returnjump))
6211 set_return_jump_label (returnjump);
6212 }
6213 else
6214 {
6215 basic_block cur_bb;
6216
6217 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6218 goto epilogue_done;
6219 /* We have a fall-through edge to the exit block, the source is not
6220 at the end of the function, and there will be an assembler epilogue
6221 at the end of the function.
6222 We can't use force_nonfallthru here, because that would try to
6223 use return. Inserting a jump 'by hand' is extremely messy, so
6224 we take advantage of cfg_layout_finalize using
6225 fixup_fallthru_exit_predecessor. */
6226 cfg_layout_initialize (0);
6227 FOR_EACH_BB_FN (cur_bb, cfun)
6228 if (cur_bb->index >= NUM_FIXED_BLOCKS
6229 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6230 cur_bb->aux = cur_bb->next_bb;
6231 cfg_layout_finalize ();
6232 }
6233
6234 epilogue_done:
6235
6236 default_rtl_profile ();
6237
6238 if (inserted)
6239 {
6240 sbitmap blocks;
6241
6242 commit_edge_insertions ();
6243
6244 /* Look for basic blocks within the prologue insns. */
6245 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6246 bitmap_clear (blocks);
6247 bitmap_set_bit (blocks, entry_edge->dest->index);
6248 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6249 find_many_sub_basic_blocks (blocks);
6250 sbitmap_free (blocks);
6251
6252 /* The epilogue insns we inserted may cause the exit edge to no longer
6253 be fallthru. */
6254 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6255 {
6256 if (((e->flags & EDGE_FALLTHRU) != 0)
6257 && returnjump_p (BB_END (e->src)))
6258 e->flags &= ~EDGE_FALLTHRU;
6259 }
6260 }
6261
6262 if (HAVE_simple_return)
6263 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags,
6264 returnjump, unconverted_simple_returns);
6265
6266 #ifdef HAVE_sibcall_epilogue
6267 /* Emit sibling epilogues before any sibling call sites. */
6268 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6269 ei_safe_edge (ei));
6270 )
6271 {
6272 basic_block bb = e->src;
6273 rtx_insn *insn = BB_END (bb);
6274 rtx ep_seq;
6275
6276 if (!CALL_P (insn)
6277 || ! SIBLING_CALL_P (insn)
6278 || (HAVE_simple_return && (entry_edge != orig_entry_edge
6279 && !bitmap_bit_p (&bb_flags, bb->index))))
6280 {
6281 ei_next (&ei);
6282 continue;
6283 }
6284
6285 ep_seq = gen_sibcall_epilogue ();
6286 if (ep_seq)
6287 {
6288 start_sequence ();
6289 emit_note (NOTE_INSN_EPILOGUE_BEG);
6290 emit_insn (ep_seq);
6291 rtx_insn *seq = get_insns ();
6292 end_sequence ();
6293
6294 /* Retain a map of the epilogue insns. Used in life analysis to
6295 avoid getting rid of sibcall epilogue insns. Do this before we
6296 actually emit the sequence. */
6297 record_insns (seq, NULL, &epilogue_insn_hash);
6298 set_insn_locations (seq, epilogue_location);
6299
6300 emit_insn_before (seq, insn);
6301 }
6302 ei_next (&ei);
6303 }
6304 #endif
6305
6306 if (epilogue_end)
6307 {
6308 rtx_insn *insn, *next;
6309
6310 /* Similarly, move any line notes that appear after the epilogue.
6311 There is no need, however, to be quite so anal about the existence
6312 of such a note. Also possibly move
6313 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6314 info generation. */
6315 for (insn = epilogue_end; insn; insn = next)
6316 {
6317 next = NEXT_INSN (insn);
6318 if (NOTE_P (insn)
6319 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6320 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6321 }
6322 }
6323
6324 bitmap_clear (&bb_flags);
6325
6326 /* Threading the prologue and epilogue changes the artificial refs
6327 in the entry and exit blocks. */
6328 epilogue_completed = 1;
6329 df_update_entry_exit_and_calls ();
6330 }
6331
6332 /* Reposition the prologue-end and epilogue-begin notes after
6333 instruction scheduling. */
6334
6335 void
6336 reposition_prologue_and_epilogue_notes (void)
6337 {
6338 #if ! defined (HAVE_prologue) && ! defined (HAVE_sibcall_epilogue)
6339 if (!HAVE_epilogue)
6340 return;
6341 #endif
6342
6343 /* Since the hash table is created on demand, the fact that it is
6344 non-null is a signal that it is non-empty. */
6345 if (prologue_insn_hash != NULL)
6346 {
6347 size_t len = prologue_insn_hash->elements ();
6348 rtx_insn *insn, *last = NULL, *note = NULL;
6349
6350 /* Scan from the beginning until we reach the last prologue insn. */
6351 /* ??? While we do have the CFG intact, there are two problems:
6352 (1) The prologue can contain loops (typically probing the stack),
6353 which means that the end of the prologue isn't in the first bb.
6354 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6355 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6356 {
6357 if (NOTE_P (insn))
6358 {
6359 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6360 note = insn;
6361 }
6362 else if (contains (insn, prologue_insn_hash))
6363 {
6364 last = insn;
6365 if (--len == 0)
6366 break;
6367 }
6368 }
6369
6370 if (last)
6371 {
6372 if (note == NULL)
6373 {
6374 /* Scan forward looking for the PROLOGUE_END note. It should
6375 be right at the beginning of the block, possibly with other
6376 insn notes that got moved there. */
6377 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6378 {
6379 if (NOTE_P (note)
6380 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6381 break;
6382 }
6383 }
6384
6385 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6386 if (LABEL_P (last))
6387 last = NEXT_INSN (last);
6388 reorder_insns (note, note, last);
6389 }
6390 }
6391
6392 if (epilogue_insn_hash != NULL)
6393 {
6394 edge_iterator ei;
6395 edge e;
6396
6397 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6398 {
6399 rtx_insn *insn, *first = NULL, *note = NULL;
6400 basic_block bb = e->src;
6401
6402 /* Scan from the beginning until we reach the first epilogue insn. */
6403 FOR_BB_INSNS (bb, insn)
6404 {
6405 if (NOTE_P (insn))
6406 {
6407 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6408 {
6409 note = insn;
6410 if (first != NULL)
6411 break;
6412 }
6413 }
6414 else if (first == NULL && contains (insn, epilogue_insn_hash))
6415 {
6416 first = insn;
6417 if (note != NULL)
6418 break;
6419 }
6420 }
6421
6422 if (note)
6423 {
6424 /* If the function has a single basic block, and no real
6425 epilogue insns (e.g. sibcall with no cleanup), the
6426 epilogue note can get scheduled before the prologue
6427 note. If we have frame related prologue insns, having
6428 them scanned during the epilogue will result in a crash.
6429 In this case re-order the epilogue note to just before
6430 the last insn in the block. */
6431 if (first == NULL)
6432 first = BB_END (bb);
6433
6434 if (PREV_INSN (first) != note)
6435 reorder_insns (note, note, PREV_INSN (first));
6436 }
6437 }
6438 }
6439 }
6440
6441 /* Returns the name of function declared by FNDECL. */
6442 const char *
6443 fndecl_name (tree fndecl)
6444 {
6445 if (fndecl == NULL)
6446 return "(nofn)";
6447 return lang_hooks.decl_printable_name (fndecl, 2);
6448 }
6449
6450 /* Returns the name of function FN. */
6451 const char *
6452 function_name (struct function *fn)
6453 {
6454 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6455 return fndecl_name (fndecl);
6456 }
6457
6458 /* Returns the name of the current function. */
6459 const char *
6460 current_function_name (void)
6461 {
6462 return function_name (cfun);
6463 }
6464 \f
6465
6466 static unsigned int
6467 rest_of_handle_check_leaf_regs (void)
6468 {
6469 #ifdef LEAF_REGISTERS
6470 crtl->uses_only_leaf_regs
6471 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6472 #endif
6473 return 0;
6474 }
6475
6476 /* Insert a TYPE into the used types hash table of CFUN. */
6477
6478 static void
6479 used_types_insert_helper (tree type, struct function *func)
6480 {
6481 if (type != NULL && func != NULL)
6482 {
6483 if (func->used_types_hash == NULL)
6484 func->used_types_hash = hash_set<tree>::create_ggc (37);
6485
6486 func->used_types_hash->add (type);
6487 }
6488 }
6489
6490 /* Given a type, insert it into the used hash table in cfun. */
6491 void
6492 used_types_insert (tree t)
6493 {
6494 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6495 if (TYPE_NAME (t))
6496 break;
6497 else
6498 t = TREE_TYPE (t);
6499 if (TREE_CODE (t) == ERROR_MARK)
6500 return;
6501 if (TYPE_NAME (t) == NULL_TREE
6502 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6503 t = TYPE_MAIN_VARIANT (t);
6504 if (debug_info_level > DINFO_LEVEL_NONE)
6505 {
6506 if (cfun)
6507 used_types_insert_helper (t, cfun);
6508 else
6509 {
6510 /* So this might be a type referenced by a global variable.
6511 Record that type so that we can later decide to emit its
6512 debug information. */
6513 vec_safe_push (types_used_by_cur_var_decl, t);
6514 }
6515 }
6516 }
6517
6518 /* Helper to Hash a struct types_used_by_vars_entry. */
6519
6520 static hashval_t
6521 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6522 {
6523 gcc_assert (entry && entry->var_decl && entry->type);
6524
6525 return iterative_hash_object (entry->type,
6526 iterative_hash_object (entry->var_decl, 0));
6527 }
6528
6529 /* Hash function of the types_used_by_vars_entry hash table. */
6530
6531 hashval_t
6532 used_type_hasher::hash (types_used_by_vars_entry *entry)
6533 {
6534 return hash_types_used_by_vars_entry (entry);
6535 }
6536
6537 /*Equality function of the types_used_by_vars_entry hash table. */
6538
6539 bool
6540 used_type_hasher::equal (types_used_by_vars_entry *e1,
6541 types_used_by_vars_entry *e2)
6542 {
6543 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6544 }
6545
6546 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6547
6548 void
6549 types_used_by_var_decl_insert (tree type, tree var_decl)
6550 {
6551 if (type != NULL && var_decl != NULL)
6552 {
6553 types_used_by_vars_entry **slot;
6554 struct types_used_by_vars_entry e;
6555 e.var_decl = var_decl;
6556 e.type = type;
6557 if (types_used_by_vars_hash == NULL)
6558 types_used_by_vars_hash
6559 = hash_table<used_type_hasher>::create_ggc (37);
6560
6561 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6562 if (*slot == NULL)
6563 {
6564 struct types_used_by_vars_entry *entry;
6565 entry = ggc_alloc<types_used_by_vars_entry> ();
6566 entry->type = type;
6567 entry->var_decl = var_decl;
6568 *slot = entry;
6569 }
6570 }
6571 }
6572
6573 namespace {
6574
6575 const pass_data pass_data_leaf_regs =
6576 {
6577 RTL_PASS, /* type */
6578 "*leaf_regs", /* name */
6579 OPTGROUP_NONE, /* optinfo_flags */
6580 TV_NONE, /* tv_id */
6581 0, /* properties_required */
6582 0, /* properties_provided */
6583 0, /* properties_destroyed */
6584 0, /* todo_flags_start */
6585 0, /* todo_flags_finish */
6586 };
6587
6588 class pass_leaf_regs : public rtl_opt_pass
6589 {
6590 public:
6591 pass_leaf_regs (gcc::context *ctxt)
6592 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6593 {}
6594
6595 /* opt_pass methods: */
6596 virtual unsigned int execute (function *)
6597 {
6598 return rest_of_handle_check_leaf_regs ();
6599 }
6600
6601 }; // class pass_leaf_regs
6602
6603 } // anon namespace
6604
6605 rtl_opt_pass *
6606 make_pass_leaf_regs (gcc::context *ctxt)
6607 {
6608 return new pass_leaf_regs (ctxt);
6609 }
6610
6611 static unsigned int
6612 rest_of_handle_thread_prologue_and_epilogue (void)
6613 {
6614 if (optimize)
6615 cleanup_cfg (CLEANUP_EXPENSIVE);
6616
6617 /* On some machines, the prologue and epilogue code, or parts thereof,
6618 can be represented as RTL. Doing so lets us schedule insns between
6619 it and the rest of the code and also allows delayed branch
6620 scheduling to operate in the epilogue. */
6621 thread_prologue_and_epilogue_insns ();
6622
6623 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6624 see PR57320. */
6625 cleanup_cfg (0);
6626
6627 /* The stack usage info is finalized during prologue expansion. */
6628 if (flag_stack_usage_info)
6629 output_stack_usage ();
6630
6631 return 0;
6632 }
6633
6634 namespace {
6635
6636 const pass_data pass_data_thread_prologue_and_epilogue =
6637 {
6638 RTL_PASS, /* type */
6639 "pro_and_epilogue", /* name */
6640 OPTGROUP_NONE, /* optinfo_flags */
6641 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6642 0, /* properties_required */
6643 0, /* properties_provided */
6644 0, /* properties_destroyed */
6645 0, /* todo_flags_start */
6646 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6647 };
6648
6649 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6650 {
6651 public:
6652 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6653 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6654 {}
6655
6656 /* opt_pass methods: */
6657 virtual unsigned int execute (function *)
6658 {
6659 return rest_of_handle_thread_prologue_and_epilogue ();
6660 }
6661
6662 }; // class pass_thread_prologue_and_epilogue
6663
6664 } // anon namespace
6665
6666 rtl_opt_pass *
6667 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6668 {
6669 return new pass_thread_prologue_and_epilogue (ctxt);
6670 }
6671 \f
6672
6673 /* This mini-pass fixes fall-out from SSA in asm statements that have
6674 in-out constraints. Say you start with
6675
6676 orig = inout;
6677 asm ("": "+mr" (inout));
6678 use (orig);
6679
6680 which is transformed very early to use explicit output and match operands:
6681
6682 orig = inout;
6683 asm ("": "=mr" (inout) : "0" (inout));
6684 use (orig);
6685
6686 Or, after SSA and copyprop,
6687
6688 asm ("": "=mr" (inout_2) : "0" (inout_1));
6689 use (inout_1);
6690
6691 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6692 they represent two separate values, so they will get different pseudo
6693 registers during expansion. Then, since the two operands need to match
6694 per the constraints, but use different pseudo registers, reload can
6695 only register a reload for these operands. But reloads can only be
6696 satisfied by hardregs, not by memory, so we need a register for this
6697 reload, just because we are presented with non-matching operands.
6698 So, even though we allow memory for this operand, no memory can be
6699 used for it, just because the two operands don't match. This can
6700 cause reload failures on register-starved targets.
6701
6702 So it's a symptom of reload not being able to use memory for reloads
6703 or, alternatively it's also a symptom of both operands not coming into
6704 reload as matching (in which case the pseudo could go to memory just
6705 fine, as the alternative allows it, and no reload would be necessary).
6706 We fix the latter problem here, by transforming
6707
6708 asm ("": "=mr" (inout_2) : "0" (inout_1));
6709
6710 back to
6711
6712 inout_2 = inout_1;
6713 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6714
6715 static void
6716 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6717 {
6718 int i;
6719 bool changed = false;
6720 rtx op = SET_SRC (p_sets[0]);
6721 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6722 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6723 bool *output_matched = XALLOCAVEC (bool, noutputs);
6724
6725 memset (output_matched, 0, noutputs * sizeof (bool));
6726 for (i = 0; i < ninputs; i++)
6727 {
6728 rtx input, output;
6729 rtx_insn *insns;
6730 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6731 char *end;
6732 int match, j;
6733
6734 if (*constraint == '%')
6735 constraint++;
6736
6737 match = strtoul (constraint, &end, 10);
6738 if (end == constraint)
6739 continue;
6740
6741 gcc_assert (match < noutputs);
6742 output = SET_DEST (p_sets[match]);
6743 input = RTVEC_ELT (inputs, i);
6744 /* Only do the transformation for pseudos. */
6745 if (! REG_P (output)
6746 || rtx_equal_p (output, input)
6747 || (GET_MODE (input) != VOIDmode
6748 && GET_MODE (input) != GET_MODE (output)))
6749 continue;
6750
6751 /* We can't do anything if the output is also used as input,
6752 as we're going to overwrite it. */
6753 for (j = 0; j < ninputs; j++)
6754 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6755 break;
6756 if (j != ninputs)
6757 continue;
6758
6759 /* Avoid changing the same input several times. For
6760 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6761 only change in once (to out1), rather than changing it
6762 first to out1 and afterwards to out2. */
6763 if (i > 0)
6764 {
6765 for (j = 0; j < noutputs; j++)
6766 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6767 break;
6768 if (j != noutputs)
6769 continue;
6770 }
6771 output_matched[match] = true;
6772
6773 start_sequence ();
6774 emit_move_insn (output, input);
6775 insns = get_insns ();
6776 end_sequence ();
6777 emit_insn_before (insns, insn);
6778
6779 /* Now replace all mentions of the input with output. We can't
6780 just replace the occurrence in inputs[i], as the register might
6781 also be used in some other input (or even in an address of an
6782 output), which would mean possibly increasing the number of
6783 inputs by one (namely 'output' in addition), which might pose
6784 a too complicated problem for reload to solve. E.g. this situation:
6785
6786 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6787
6788 Here 'input' is used in two occurrences as input (once for the
6789 input operand, once for the address in the second output operand).
6790 If we would replace only the occurrence of the input operand (to
6791 make the matching) we would be left with this:
6792
6793 output = input
6794 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6795
6796 Now we suddenly have two different input values (containing the same
6797 value, but different pseudos) where we formerly had only one.
6798 With more complicated asms this might lead to reload failures
6799 which wouldn't have happen without this pass. So, iterate over
6800 all operands and replace all occurrences of the register used. */
6801 for (j = 0; j < noutputs; j++)
6802 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6803 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6804 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6805 input, output);
6806 for (j = 0; j < ninputs; j++)
6807 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6808 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6809 input, output);
6810
6811 changed = true;
6812 }
6813
6814 if (changed)
6815 df_insn_rescan (insn);
6816 }
6817
6818 /* Add the decl D to the local_decls list of FUN. */
6819
6820 void
6821 add_local_decl (struct function *fun, tree d)
6822 {
6823 gcc_assert (TREE_CODE (d) == VAR_DECL);
6824 vec_safe_push (fun->local_decls, d);
6825 }
6826
6827 namespace {
6828
6829 const pass_data pass_data_match_asm_constraints =
6830 {
6831 RTL_PASS, /* type */
6832 "asmcons", /* name */
6833 OPTGROUP_NONE, /* optinfo_flags */
6834 TV_NONE, /* tv_id */
6835 0, /* properties_required */
6836 0, /* properties_provided */
6837 0, /* properties_destroyed */
6838 0, /* todo_flags_start */
6839 0, /* todo_flags_finish */
6840 };
6841
6842 class pass_match_asm_constraints : public rtl_opt_pass
6843 {
6844 public:
6845 pass_match_asm_constraints (gcc::context *ctxt)
6846 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6847 {}
6848
6849 /* opt_pass methods: */
6850 virtual unsigned int execute (function *);
6851
6852 }; // class pass_match_asm_constraints
6853
6854 unsigned
6855 pass_match_asm_constraints::execute (function *fun)
6856 {
6857 basic_block bb;
6858 rtx_insn *insn;
6859 rtx pat, *p_sets;
6860 int noutputs;
6861
6862 if (!crtl->has_asm_statement)
6863 return 0;
6864
6865 df_set_flags (DF_DEFER_INSN_RESCAN);
6866 FOR_EACH_BB_FN (bb, fun)
6867 {
6868 FOR_BB_INSNS (bb, insn)
6869 {
6870 if (!INSN_P (insn))
6871 continue;
6872
6873 pat = PATTERN (insn);
6874 if (GET_CODE (pat) == PARALLEL)
6875 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6876 else if (GET_CODE (pat) == SET)
6877 p_sets = &PATTERN (insn), noutputs = 1;
6878 else
6879 continue;
6880
6881 if (GET_CODE (*p_sets) == SET
6882 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6883 match_asm_constraints_1 (insn, p_sets, noutputs);
6884 }
6885 }
6886
6887 return TODO_df_finish;
6888 }
6889
6890 } // anon namespace
6891
6892 rtl_opt_pass *
6893 make_pass_match_asm_constraints (gcc::context *ctxt)
6894 {
6895 return new pass_match_asm_constraints (ctxt);
6896 }
6897
6898
6899 #include "gt-function.h"