2008-05-07 Kai Tietz <kai,tietz@onevision.com>
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "tree-gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef LOCAL_ALIGNMENT
73 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
74 #endif
75
76 #ifndef STACK_ALIGNMENT_NEEDED
77 #define STACK_ALIGNMENT_NEEDED 1
78 #endif
79
80 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
81
82 /* Some systems use __main in a way incompatible with its use in gcc, in these
83 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
84 give the same symbol without quotes for an alternative entry point. You
85 must define both, or neither. */
86 #ifndef NAME__MAIN
87 #define NAME__MAIN "__main"
88 #endif
89
90 /* Round a value to the lowest integer less than it that is a multiple of
91 the required alignment. Avoid using division in case the value is
92 negative. Assume the alignment is a power of two. */
93 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94
95 /* Similar, but round to the next highest integer that meets the
96 alignment. */
97 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98
99 /* Nonzero if function being compiled doesn't contain any calls
100 (ignoring the prologue and epilogue). This is set prior to
101 local register allocation and is valid for the remaining
102 compiler passes. */
103 int current_function_is_leaf;
104
105 /* Nonzero if function being compiled doesn't modify the stack pointer
106 (ignoring the prologue and epilogue). This is only valid after
107 pass_stack_ptr_mod has run. */
108 int current_function_sp_is_unchanging;
109
110 /* Nonzero if the function being compiled is a leaf function which only
111 uses leaf registers. This is valid after reload (specifically after
112 sched2) and is useful only if the port defines LEAF_REGISTERS. */
113 int current_function_uses_only_leaf_regs;
114
115 /* Nonzero once virtual register instantiation has been done.
116 assign_stack_local uses frame_pointer_rtx when this is nonzero.
117 calls.c:emit_library_call_value_1 uses it to set up
118 post-instantiation libcalls. */
119 int virtuals_instantiated;
120
121 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
122 static GTY(()) int funcdef_no;
123
124 /* These variables hold pointers to functions to create and destroy
125 target specific, per-function data structures. */
126 struct machine_function * (*init_machine_status) (void);
127
128 /* The currently compiled function. */
129 struct function *cfun = 0;
130
131 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
132 static VEC(int,heap) *prologue;
133 static VEC(int,heap) *epilogue;
134
135 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
136 in this function. */
137 static VEC(int,heap) *sibcall_epilogue;
138 \f
139 /* In order to evaluate some expressions, such as function calls returning
140 structures in memory, we need to temporarily allocate stack locations.
141 We record each allocated temporary in the following structure.
142
143 Associated with each temporary slot is a nesting level. When we pop up
144 one level, all temporaries associated with the previous level are freed.
145 Normally, all temporaries are freed after the execution of the statement
146 in which they were created. However, if we are inside a ({...}) grouping,
147 the result may be in a temporary and hence must be preserved. If the
148 result could be in a temporary, we preserve it if we can determine which
149 one it is in. If we cannot determine which temporary may contain the
150 result, all temporaries are preserved. A temporary is preserved by
151 pretending it was allocated at the previous nesting level.
152
153 Automatic variables are also assigned temporary slots, at the nesting
154 level where they are defined. They are marked a "kept" so that
155 free_temp_slots will not free them. */
156
157 struct temp_slot GTY(())
158 {
159 /* Points to next temporary slot. */
160 struct temp_slot *next;
161 /* Points to previous temporary slot. */
162 struct temp_slot *prev;
163
164 /* The rtx to used to reference the slot. */
165 rtx slot;
166 /* The rtx used to represent the address if not the address of the
167 slot above. May be an EXPR_LIST if multiple addresses exist. */
168 rtx address;
169 /* The alignment (in bits) of the slot. */
170 unsigned int align;
171 /* The size, in units, of the slot. */
172 HOST_WIDE_INT size;
173 /* The type of the object in the slot, or zero if it doesn't correspond
174 to a type. We use this to determine whether a slot can be reused.
175 It can be reused if objects of the type of the new slot will always
176 conflict with objects of the type of the old slot. */
177 tree type;
178 /* Nonzero if this temporary is currently in use. */
179 char in_use;
180 /* Nonzero if this temporary has its address taken. */
181 char addr_taken;
182 /* Nesting level at which this slot is being used. */
183 int level;
184 /* Nonzero if this should survive a call to free_temp_slots. */
185 int keep;
186 /* The offset of the slot from the frame_pointer, including extra space
187 for alignment. This info is for combine_temp_slots. */
188 HOST_WIDE_INT base_offset;
189 /* The size of the slot, including extra space for alignment. This
190 info is for combine_temp_slots. */
191 HOST_WIDE_INT full_size;
192 };
193 \f
194 /* Forward declarations. */
195
196 static struct temp_slot *find_temp_slot_from_address (rtx);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200 static int all_blocks (tree, tree *);
201 static tree *get_block_vector (tree, int *);
202 extern tree debug_find_var_in_block_tree (tree, tree);
203 /* We always define `record_insns' even if it's not used so that we
204 can always export `prologue_epilogue_contains'. */
205 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
206 static int contains (const_rtx, VEC(int,heap) **);
207 #ifdef HAVE_return
208 static void emit_return_into_block (basic_block);
209 #endif
210 static void prepare_function_start (void);
211 static void do_clobber_return_reg (rtx, void *);
212 static void do_use_return_reg (rtx, void *);
213 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
214 \f
215 /* Pointer to chain of `struct function' for containing functions. */
216 struct function *outer_function_chain;
217
218 /* Given a function decl for a containing function,
219 return the `struct function' for it. */
220
221 struct function *
222 find_function_data (tree decl)
223 {
224 struct function *p;
225
226 for (p = outer_function_chain; p; p = p->outer)
227 if (p->decl == decl)
228 return p;
229
230 gcc_unreachable ();
231 }
232
233 /* Save the current context for compilation of a nested function.
234 This is called from language-specific code. */
235
236 void
237 push_function_context (void)
238 {
239 if (cfun == 0)
240 allocate_struct_function (NULL, false);
241
242 cfun->outer = outer_function_chain;
243 outer_function_chain = cfun;
244 set_cfun (NULL);
245 }
246
247 /* Restore the last saved context, at the end of a nested function.
248 This function is called from language-specific code. */
249
250 void
251 pop_function_context (void)
252 {
253 struct function *p = outer_function_chain;
254
255 set_cfun (p);
256 outer_function_chain = p->outer;
257 current_function_decl = p->decl;
258
259 /* Reset variables that have known state during rtx generation. */
260 virtuals_instantiated = 0;
261 generating_concat_p = 1;
262 }
263
264 /* Clear out all parts of the state in F that can safely be discarded
265 after the function has been parsed, but not compiled, to let
266 garbage collection reclaim the memory. */
267
268 void
269 free_after_parsing (struct function *f)
270 {
271 f->language = 0;
272 }
273
274 /* Clear out all parts of the state in F that can safely be discarded
275 after the function has been compiled, to let garbage collection
276 reclaim the memory. */
277
278 void
279 free_after_compilation (struct function *f)
280 {
281 VEC_free (int, heap, prologue);
282 VEC_free (int, heap, epilogue);
283 VEC_free (int, heap, sibcall_epilogue);
284 if (crtl->emit.regno_pointer_align)
285 free (crtl->emit.regno_pointer_align);
286
287 memset (crtl, 0, sizeof (struct rtl_data));
288 f->eh = NULL;
289 f->machine = NULL;
290 f->cfg = NULL;
291
292 regno_reg_rtx = NULL;
293 }
294 \f
295 /* Return size needed for stack frame based on slots so far allocated.
296 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
297 the caller may have to do that. */
298
299 HOST_WIDE_INT
300 get_frame_size (void)
301 {
302 if (FRAME_GROWS_DOWNWARD)
303 return -frame_offset;
304 else
305 return frame_offset;
306 }
307
308 /* Issue an error message and return TRUE if frame OFFSET overflows in
309 the signed target pointer arithmetics for function FUNC. Otherwise
310 return FALSE. */
311
312 bool
313 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
314 {
315 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
316
317 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
318 /* Leave room for the fixed part of the frame. */
319 - 64 * UNITS_PER_WORD)
320 {
321 error ("%Jtotal size of local objects too large", func);
322 return TRUE;
323 }
324
325 return FALSE;
326 }
327
328 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
329 with machine mode MODE.
330
331 ALIGN controls the amount of alignment for the address of the slot:
332 0 means according to MODE,
333 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
334 -2 means use BITS_PER_UNIT,
335 positive specifies alignment boundary in bits.
336
337 We do not round to stack_boundary here. */
338
339 rtx
340 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
341 {
342 rtx x, addr;
343 int bigend_correction = 0;
344 unsigned int alignment;
345 int frame_off, frame_alignment, frame_phase;
346
347 if (align == 0)
348 {
349 tree type;
350
351 if (mode == BLKmode)
352 alignment = BIGGEST_ALIGNMENT;
353 else
354 alignment = GET_MODE_ALIGNMENT (mode);
355
356 /* Allow the target to (possibly) increase the alignment of this
357 stack slot. */
358 type = lang_hooks.types.type_for_mode (mode, 0);
359 if (type)
360 alignment = LOCAL_ALIGNMENT (type, alignment);
361
362 alignment /= BITS_PER_UNIT;
363 }
364 else if (align == -1)
365 {
366 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
367 size = CEIL_ROUND (size, alignment);
368 }
369 else if (align == -2)
370 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
371 else
372 alignment = align / BITS_PER_UNIT;
373
374 if (FRAME_GROWS_DOWNWARD)
375 frame_offset -= size;
376
377 /* Ignore alignment we can't do with expected alignment of the boundary. */
378 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
379 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
380
381 if (crtl->stack_alignment_needed < alignment * BITS_PER_UNIT)
382 crtl->stack_alignment_needed = alignment * BITS_PER_UNIT;
383
384 /* Calculate how many bytes the start of local variables is off from
385 stack alignment. */
386 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
387 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
388 frame_phase = frame_off ? frame_alignment - frame_off : 0;
389
390 /* Round the frame offset to the specified alignment. The default is
391 to always honor requests to align the stack but a port may choose to
392 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
393 if (STACK_ALIGNMENT_NEEDED
394 || mode != BLKmode
395 || size != 0)
396 {
397 /* We must be careful here, since FRAME_OFFSET might be negative and
398 division with a negative dividend isn't as well defined as we might
399 like. So we instead assume that ALIGNMENT is a power of two and
400 use logical operations which are unambiguous. */
401 if (FRAME_GROWS_DOWNWARD)
402 frame_offset
403 = (FLOOR_ROUND (frame_offset - frame_phase,
404 (unsigned HOST_WIDE_INT) alignment)
405 + frame_phase);
406 else
407 frame_offset
408 = (CEIL_ROUND (frame_offset - frame_phase,
409 (unsigned HOST_WIDE_INT) alignment)
410 + frame_phase);
411 }
412
413 /* On a big-endian machine, if we are allocating more space than we will use,
414 use the least significant bytes of those that are allocated. */
415 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
416 bigend_correction = size - GET_MODE_SIZE (mode);
417
418 /* If we have already instantiated virtual registers, return the actual
419 address relative to the frame pointer. */
420 if (virtuals_instantiated)
421 addr = plus_constant (frame_pointer_rtx,
422 trunc_int_for_mode
423 (frame_offset + bigend_correction
424 + STARTING_FRAME_OFFSET, Pmode));
425 else
426 addr = plus_constant (virtual_stack_vars_rtx,
427 trunc_int_for_mode
428 (frame_offset + bigend_correction,
429 Pmode));
430
431 if (!FRAME_GROWS_DOWNWARD)
432 frame_offset += size;
433
434 x = gen_rtx_MEM (mode, addr);
435 MEM_NOTRAP_P (x) = 1;
436
437 stack_slot_list
438 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
439
440 if (frame_offset_overflow (frame_offset, current_function_decl))
441 frame_offset = 0;
442
443 return x;
444 }
445 \f
446 /* Removes temporary slot TEMP from LIST. */
447
448 static void
449 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
450 {
451 if (temp->next)
452 temp->next->prev = temp->prev;
453 if (temp->prev)
454 temp->prev->next = temp->next;
455 else
456 *list = temp->next;
457
458 temp->prev = temp->next = NULL;
459 }
460
461 /* Inserts temporary slot TEMP to LIST. */
462
463 static void
464 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
465 {
466 temp->next = *list;
467 if (*list)
468 (*list)->prev = temp;
469 temp->prev = NULL;
470 *list = temp;
471 }
472
473 /* Returns the list of used temp slots at LEVEL. */
474
475 static struct temp_slot **
476 temp_slots_at_level (int level)
477 {
478 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
479 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
480
481 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
482 }
483
484 /* Returns the maximal temporary slot level. */
485
486 static int
487 max_slot_level (void)
488 {
489 if (!used_temp_slots)
490 return -1;
491
492 return VEC_length (temp_slot_p, used_temp_slots) - 1;
493 }
494
495 /* Moves temporary slot TEMP to LEVEL. */
496
497 static void
498 move_slot_to_level (struct temp_slot *temp, int level)
499 {
500 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
501 insert_slot_to_list (temp, temp_slots_at_level (level));
502 temp->level = level;
503 }
504
505 /* Make temporary slot TEMP available. */
506
507 static void
508 make_slot_available (struct temp_slot *temp)
509 {
510 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
511 insert_slot_to_list (temp, &avail_temp_slots);
512 temp->in_use = 0;
513 temp->level = -1;
514 }
515 \f
516 /* Allocate a temporary stack slot and record it for possible later
517 reuse.
518
519 MODE is the machine mode to be given to the returned rtx.
520
521 SIZE is the size in units of the space required. We do no rounding here
522 since assign_stack_local will do any required rounding.
523
524 KEEP is 1 if this slot is to be retained after a call to
525 free_temp_slots. Automatic variables for a block are allocated
526 with this flag. KEEP values of 2 or 3 were needed respectively
527 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
528 or for SAVE_EXPRs, but they are now unused.
529
530 TYPE is the type that will be used for the stack slot. */
531
532 rtx
533 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
534 int keep, tree type)
535 {
536 unsigned int align;
537 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
538 rtx slot;
539
540 /* If SIZE is -1 it means that somebody tried to allocate a temporary
541 of a variable size. */
542 gcc_assert (size != -1);
543
544 /* These are now unused. */
545 gcc_assert (keep <= 1);
546
547 if (mode == BLKmode)
548 align = BIGGEST_ALIGNMENT;
549 else
550 align = GET_MODE_ALIGNMENT (mode);
551
552 if (! type)
553 type = lang_hooks.types.type_for_mode (mode, 0);
554
555 if (type)
556 align = LOCAL_ALIGNMENT (type, align);
557
558 /* Try to find an available, already-allocated temporary of the proper
559 mode which meets the size and alignment requirements. Choose the
560 smallest one with the closest alignment.
561
562 If assign_stack_temp is called outside of the tree->rtl expansion,
563 we cannot reuse the stack slots (that may still refer to
564 VIRTUAL_STACK_VARS_REGNUM). */
565 if (!virtuals_instantiated)
566 {
567 for (p = avail_temp_slots; p; p = p->next)
568 {
569 if (p->align >= align && p->size >= size
570 && GET_MODE (p->slot) == mode
571 && objects_must_conflict_p (p->type, type)
572 && (best_p == 0 || best_p->size > p->size
573 || (best_p->size == p->size && best_p->align > p->align)))
574 {
575 if (p->align == align && p->size == size)
576 {
577 selected = p;
578 cut_slot_from_list (selected, &avail_temp_slots);
579 best_p = 0;
580 break;
581 }
582 best_p = p;
583 }
584 }
585 }
586
587 /* Make our best, if any, the one to use. */
588 if (best_p)
589 {
590 selected = best_p;
591 cut_slot_from_list (selected, &avail_temp_slots);
592
593 /* If there are enough aligned bytes left over, make them into a new
594 temp_slot so that the extra bytes don't get wasted. Do this only
595 for BLKmode slots, so that we can be sure of the alignment. */
596 if (GET_MODE (best_p->slot) == BLKmode)
597 {
598 int alignment = best_p->align / BITS_PER_UNIT;
599 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
600
601 if (best_p->size - rounded_size >= alignment)
602 {
603 p = ggc_alloc (sizeof (struct temp_slot));
604 p->in_use = p->addr_taken = 0;
605 p->size = best_p->size - rounded_size;
606 p->base_offset = best_p->base_offset + rounded_size;
607 p->full_size = best_p->full_size - rounded_size;
608 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
609 p->align = best_p->align;
610 p->address = 0;
611 p->type = best_p->type;
612 insert_slot_to_list (p, &avail_temp_slots);
613
614 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
615 stack_slot_list);
616
617 best_p->size = rounded_size;
618 best_p->full_size = rounded_size;
619 }
620 }
621 }
622
623 /* If we still didn't find one, make a new temporary. */
624 if (selected == 0)
625 {
626 HOST_WIDE_INT frame_offset_old = frame_offset;
627
628 p = ggc_alloc (sizeof (struct temp_slot));
629
630 /* We are passing an explicit alignment request to assign_stack_local.
631 One side effect of that is assign_stack_local will not round SIZE
632 to ensure the frame offset remains suitably aligned.
633
634 So for requests which depended on the rounding of SIZE, we go ahead
635 and round it now. We also make sure ALIGNMENT is at least
636 BIGGEST_ALIGNMENT. */
637 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
638 p->slot = assign_stack_local (mode,
639 (mode == BLKmode
640 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
641 : size),
642 align);
643
644 p->align = align;
645
646 /* The following slot size computation is necessary because we don't
647 know the actual size of the temporary slot until assign_stack_local
648 has performed all the frame alignment and size rounding for the
649 requested temporary. Note that extra space added for alignment
650 can be either above or below this stack slot depending on which
651 way the frame grows. We include the extra space if and only if it
652 is above this slot. */
653 if (FRAME_GROWS_DOWNWARD)
654 p->size = frame_offset_old - frame_offset;
655 else
656 p->size = size;
657
658 /* Now define the fields used by combine_temp_slots. */
659 if (FRAME_GROWS_DOWNWARD)
660 {
661 p->base_offset = frame_offset;
662 p->full_size = frame_offset_old - frame_offset;
663 }
664 else
665 {
666 p->base_offset = frame_offset_old;
667 p->full_size = frame_offset - frame_offset_old;
668 }
669 p->address = 0;
670
671 selected = p;
672 }
673
674 p = selected;
675 p->in_use = 1;
676 p->addr_taken = 0;
677 p->type = type;
678 p->level = temp_slot_level;
679 p->keep = keep;
680
681 pp = temp_slots_at_level (p->level);
682 insert_slot_to_list (p, pp);
683
684 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
685 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
686 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
687
688 /* If we know the alias set for the memory that will be used, use
689 it. If there's no TYPE, then we don't know anything about the
690 alias set for the memory. */
691 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
692 set_mem_align (slot, align);
693
694 /* If a type is specified, set the relevant flags. */
695 if (type != 0)
696 {
697 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
698 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
699 || TREE_CODE (type) == COMPLEX_TYPE));
700 }
701 MEM_NOTRAP_P (slot) = 1;
702
703 return slot;
704 }
705
706 /* Allocate a temporary stack slot and record it for possible later
707 reuse. First three arguments are same as in preceding function. */
708
709 rtx
710 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
711 {
712 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
713 }
714 \f
715 /* Assign a temporary.
716 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
717 and so that should be used in error messages. In either case, we
718 allocate of the given type.
719 KEEP is as for assign_stack_temp.
720 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
721 it is 0 if a register is OK.
722 DONT_PROMOTE is 1 if we should not promote values in register
723 to wider modes. */
724
725 rtx
726 assign_temp (tree type_or_decl, int keep, int memory_required,
727 int dont_promote ATTRIBUTE_UNUSED)
728 {
729 tree type, decl;
730 enum machine_mode mode;
731 #ifdef PROMOTE_MODE
732 int unsignedp;
733 #endif
734
735 if (DECL_P (type_or_decl))
736 decl = type_or_decl, type = TREE_TYPE (decl);
737 else
738 decl = NULL, type = type_or_decl;
739
740 mode = TYPE_MODE (type);
741 #ifdef PROMOTE_MODE
742 unsignedp = TYPE_UNSIGNED (type);
743 #endif
744
745 if (mode == BLKmode || memory_required)
746 {
747 HOST_WIDE_INT size = int_size_in_bytes (type);
748 rtx tmp;
749
750 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
751 problems with allocating the stack space. */
752 if (size == 0)
753 size = 1;
754
755 /* Unfortunately, we don't yet know how to allocate variable-sized
756 temporaries. However, sometimes we can find a fixed upper limit on
757 the size, so try that instead. */
758 else if (size == -1)
759 size = max_int_size_in_bytes (type);
760
761 /* The size of the temporary may be too large to fit into an integer. */
762 /* ??? Not sure this should happen except for user silliness, so limit
763 this to things that aren't compiler-generated temporaries. The
764 rest of the time we'll die in assign_stack_temp_for_type. */
765 if (decl && size == -1
766 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
767 {
768 error ("size of variable %q+D is too large", decl);
769 size = 1;
770 }
771
772 tmp = assign_stack_temp_for_type (mode, size, keep, type);
773 return tmp;
774 }
775
776 #ifdef PROMOTE_MODE
777 if (! dont_promote)
778 mode = promote_mode (type, mode, &unsignedp, 0);
779 #endif
780
781 return gen_reg_rtx (mode);
782 }
783 \f
784 /* Combine temporary stack slots which are adjacent on the stack.
785
786 This allows for better use of already allocated stack space. This is only
787 done for BLKmode slots because we can be sure that we won't have alignment
788 problems in this case. */
789
790 static void
791 combine_temp_slots (void)
792 {
793 struct temp_slot *p, *q, *next, *next_q;
794 int num_slots;
795
796 /* We can't combine slots, because the information about which slot
797 is in which alias set will be lost. */
798 if (flag_strict_aliasing)
799 return;
800
801 /* If there are a lot of temp slots, don't do anything unless
802 high levels of optimization. */
803 if (! flag_expensive_optimizations)
804 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
805 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
806 return;
807
808 for (p = avail_temp_slots; p; p = next)
809 {
810 int delete_p = 0;
811
812 next = p->next;
813
814 if (GET_MODE (p->slot) != BLKmode)
815 continue;
816
817 for (q = p->next; q; q = next_q)
818 {
819 int delete_q = 0;
820
821 next_q = q->next;
822
823 if (GET_MODE (q->slot) != BLKmode)
824 continue;
825
826 if (p->base_offset + p->full_size == q->base_offset)
827 {
828 /* Q comes after P; combine Q into P. */
829 p->size += q->size;
830 p->full_size += q->full_size;
831 delete_q = 1;
832 }
833 else if (q->base_offset + q->full_size == p->base_offset)
834 {
835 /* P comes after Q; combine P into Q. */
836 q->size += p->size;
837 q->full_size += p->full_size;
838 delete_p = 1;
839 break;
840 }
841 if (delete_q)
842 cut_slot_from_list (q, &avail_temp_slots);
843 }
844
845 /* Either delete P or advance past it. */
846 if (delete_p)
847 cut_slot_from_list (p, &avail_temp_slots);
848 }
849 }
850 \f
851 /* Find the temp slot corresponding to the object at address X. */
852
853 static struct temp_slot *
854 find_temp_slot_from_address (rtx x)
855 {
856 struct temp_slot *p;
857 rtx next;
858 int i;
859
860 for (i = max_slot_level (); i >= 0; i--)
861 for (p = *temp_slots_at_level (i); p; p = p->next)
862 {
863 if (XEXP (p->slot, 0) == x
864 || p->address == x
865 || (GET_CODE (x) == PLUS
866 && XEXP (x, 0) == virtual_stack_vars_rtx
867 && GET_CODE (XEXP (x, 1)) == CONST_INT
868 && INTVAL (XEXP (x, 1)) >= p->base_offset
869 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
870 return p;
871
872 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
873 for (next = p->address; next; next = XEXP (next, 1))
874 if (XEXP (next, 0) == x)
875 return p;
876 }
877
878 /* If we have a sum involving a register, see if it points to a temp
879 slot. */
880 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
881 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
882 return p;
883 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
884 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
885 return p;
886
887 return 0;
888 }
889
890 /* Indicate that NEW is an alternate way of referring to the temp slot
891 that previously was known by OLD. */
892
893 void
894 update_temp_slot_address (rtx old, rtx new)
895 {
896 struct temp_slot *p;
897
898 if (rtx_equal_p (old, new))
899 return;
900
901 p = find_temp_slot_from_address (old);
902
903 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
904 is a register, see if one operand of the PLUS is a temporary
905 location. If so, NEW points into it. Otherwise, if both OLD and
906 NEW are a PLUS and if there is a register in common between them.
907 If so, try a recursive call on those values. */
908 if (p == 0)
909 {
910 if (GET_CODE (old) != PLUS)
911 return;
912
913 if (REG_P (new))
914 {
915 update_temp_slot_address (XEXP (old, 0), new);
916 update_temp_slot_address (XEXP (old, 1), new);
917 return;
918 }
919 else if (GET_CODE (new) != PLUS)
920 return;
921
922 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
923 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
924 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
925 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
926 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
927 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
928 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
929 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
930
931 return;
932 }
933
934 /* Otherwise add an alias for the temp's address. */
935 else if (p->address == 0)
936 p->address = new;
937 else
938 {
939 if (GET_CODE (p->address) != EXPR_LIST)
940 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
941
942 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
943 }
944 }
945
946 /* If X could be a reference to a temporary slot, mark the fact that its
947 address was taken. */
948
949 void
950 mark_temp_addr_taken (rtx x)
951 {
952 struct temp_slot *p;
953
954 if (x == 0)
955 return;
956
957 /* If X is not in memory or is at a constant address, it cannot be in
958 a temporary slot. */
959 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
960 return;
961
962 p = find_temp_slot_from_address (XEXP (x, 0));
963 if (p != 0)
964 p->addr_taken = 1;
965 }
966
967 /* If X could be a reference to a temporary slot, mark that slot as
968 belonging to the to one level higher than the current level. If X
969 matched one of our slots, just mark that one. Otherwise, we can't
970 easily predict which it is, so upgrade all of them. Kept slots
971 need not be touched.
972
973 This is called when an ({...}) construct occurs and a statement
974 returns a value in memory. */
975
976 void
977 preserve_temp_slots (rtx x)
978 {
979 struct temp_slot *p = 0, *next;
980
981 /* If there is no result, we still might have some objects whose address
982 were taken, so we need to make sure they stay around. */
983 if (x == 0)
984 {
985 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
986 {
987 next = p->next;
988
989 if (p->addr_taken)
990 move_slot_to_level (p, temp_slot_level - 1);
991 }
992
993 return;
994 }
995
996 /* If X is a register that is being used as a pointer, see if we have
997 a temporary slot we know it points to. To be consistent with
998 the code below, we really should preserve all non-kept slots
999 if we can't find a match, but that seems to be much too costly. */
1000 if (REG_P (x) && REG_POINTER (x))
1001 p = find_temp_slot_from_address (x);
1002
1003 /* If X is not in memory or is at a constant address, it cannot be in
1004 a temporary slot, but it can contain something whose address was
1005 taken. */
1006 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1007 {
1008 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1009 {
1010 next = p->next;
1011
1012 if (p->addr_taken)
1013 move_slot_to_level (p, temp_slot_level - 1);
1014 }
1015
1016 return;
1017 }
1018
1019 /* First see if we can find a match. */
1020 if (p == 0)
1021 p = find_temp_slot_from_address (XEXP (x, 0));
1022
1023 if (p != 0)
1024 {
1025 /* Move everything at our level whose address was taken to our new
1026 level in case we used its address. */
1027 struct temp_slot *q;
1028
1029 if (p->level == temp_slot_level)
1030 {
1031 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1032 {
1033 next = q->next;
1034
1035 if (p != q && q->addr_taken)
1036 move_slot_to_level (q, temp_slot_level - 1);
1037 }
1038
1039 move_slot_to_level (p, temp_slot_level - 1);
1040 p->addr_taken = 0;
1041 }
1042 return;
1043 }
1044
1045 /* Otherwise, preserve all non-kept slots at this level. */
1046 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1047 {
1048 next = p->next;
1049
1050 if (!p->keep)
1051 move_slot_to_level (p, temp_slot_level - 1);
1052 }
1053 }
1054
1055 /* Free all temporaries used so far. This is normally called at the
1056 end of generating code for a statement. */
1057
1058 void
1059 free_temp_slots (void)
1060 {
1061 struct temp_slot *p, *next;
1062
1063 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1064 {
1065 next = p->next;
1066
1067 if (!p->keep)
1068 make_slot_available (p);
1069 }
1070
1071 combine_temp_slots ();
1072 }
1073
1074 /* Push deeper into the nesting level for stack temporaries. */
1075
1076 void
1077 push_temp_slots (void)
1078 {
1079 temp_slot_level++;
1080 }
1081
1082 /* Pop a temporary nesting level. All slots in use in the current level
1083 are freed. */
1084
1085 void
1086 pop_temp_slots (void)
1087 {
1088 struct temp_slot *p, *next;
1089
1090 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1091 {
1092 next = p->next;
1093 make_slot_available (p);
1094 }
1095
1096 combine_temp_slots ();
1097
1098 temp_slot_level--;
1099 }
1100
1101 /* Initialize temporary slots. */
1102
1103 void
1104 init_temp_slots (void)
1105 {
1106 /* We have not allocated any temporaries yet. */
1107 avail_temp_slots = 0;
1108 used_temp_slots = 0;
1109 temp_slot_level = 0;
1110 }
1111 \f
1112 /* These routines are responsible for converting virtual register references
1113 to the actual hard register references once RTL generation is complete.
1114
1115 The following four variables are used for communication between the
1116 routines. They contain the offsets of the virtual registers from their
1117 respective hard registers. */
1118
1119 static int in_arg_offset;
1120 static int var_offset;
1121 static int dynamic_offset;
1122 static int out_arg_offset;
1123 static int cfa_offset;
1124
1125 /* In most machines, the stack pointer register is equivalent to the bottom
1126 of the stack. */
1127
1128 #ifndef STACK_POINTER_OFFSET
1129 #define STACK_POINTER_OFFSET 0
1130 #endif
1131
1132 /* If not defined, pick an appropriate default for the offset of dynamically
1133 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1134 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1135
1136 #ifndef STACK_DYNAMIC_OFFSET
1137
1138 /* The bottom of the stack points to the actual arguments. If
1139 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1140 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1141 stack space for register parameters is not pushed by the caller, but
1142 rather part of the fixed stack areas and hence not included in
1143 `crtl->outgoing_args_size'. Nevertheless, we must allow
1144 for it when allocating stack dynamic objects. */
1145
1146 #if defined(REG_PARM_STACK_SPACE)
1147 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1148 ((ACCUMULATE_OUTGOING_ARGS \
1149 ? (crtl->outgoing_args_size \
1150 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1151 : REG_PARM_STACK_SPACE (FNDECL))) \
1152 : 0) + (STACK_POINTER_OFFSET))
1153 #else
1154 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1155 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1156 + (STACK_POINTER_OFFSET))
1157 #endif
1158 #endif
1159
1160 \f
1161 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1162 is a virtual register, return the equivalent hard register and set the
1163 offset indirectly through the pointer. Otherwise, return 0. */
1164
1165 static rtx
1166 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1167 {
1168 rtx new;
1169 HOST_WIDE_INT offset;
1170
1171 if (x == virtual_incoming_args_rtx)
1172 new = arg_pointer_rtx, offset = in_arg_offset;
1173 else if (x == virtual_stack_vars_rtx)
1174 new = frame_pointer_rtx, offset = var_offset;
1175 else if (x == virtual_stack_dynamic_rtx)
1176 new = stack_pointer_rtx, offset = dynamic_offset;
1177 else if (x == virtual_outgoing_args_rtx)
1178 new = stack_pointer_rtx, offset = out_arg_offset;
1179 else if (x == virtual_cfa_rtx)
1180 {
1181 #ifdef FRAME_POINTER_CFA_OFFSET
1182 new = frame_pointer_rtx;
1183 #else
1184 new = arg_pointer_rtx;
1185 #endif
1186 offset = cfa_offset;
1187 }
1188 else
1189 return NULL_RTX;
1190
1191 *poffset = offset;
1192 return new;
1193 }
1194
1195 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1196 Instantiate any virtual registers present inside of *LOC. The expression
1197 is simplified, as much as possible, but is not to be considered "valid"
1198 in any sense implied by the target. If any change is made, set CHANGED
1199 to true. */
1200
1201 static int
1202 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1203 {
1204 HOST_WIDE_INT offset;
1205 bool *changed = (bool *) data;
1206 rtx x, new;
1207
1208 x = *loc;
1209 if (x == 0)
1210 return 0;
1211
1212 switch (GET_CODE (x))
1213 {
1214 case REG:
1215 new = instantiate_new_reg (x, &offset);
1216 if (new)
1217 {
1218 *loc = plus_constant (new, offset);
1219 if (changed)
1220 *changed = true;
1221 }
1222 return -1;
1223
1224 case PLUS:
1225 new = instantiate_new_reg (XEXP (x, 0), &offset);
1226 if (new)
1227 {
1228 new = plus_constant (new, offset);
1229 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1230 if (changed)
1231 *changed = true;
1232 return -1;
1233 }
1234
1235 /* FIXME -- from old code */
1236 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1237 we can commute the PLUS and SUBREG because pointers into the
1238 frame are well-behaved. */
1239 break;
1240
1241 default:
1242 break;
1243 }
1244
1245 return 0;
1246 }
1247
1248 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1249 matches the predicate for insn CODE operand OPERAND. */
1250
1251 static int
1252 safe_insn_predicate (int code, int operand, rtx x)
1253 {
1254 const struct insn_operand_data *op_data;
1255
1256 if (code < 0)
1257 return true;
1258
1259 op_data = &insn_data[code].operand[operand];
1260 if (op_data->predicate == NULL)
1261 return true;
1262
1263 return op_data->predicate (x, op_data->mode);
1264 }
1265
1266 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1267 registers present inside of insn. The result will be a valid insn. */
1268
1269 static void
1270 instantiate_virtual_regs_in_insn (rtx insn)
1271 {
1272 HOST_WIDE_INT offset;
1273 int insn_code, i;
1274 bool any_change = false;
1275 rtx set, new, x, seq;
1276
1277 /* There are some special cases to be handled first. */
1278 set = single_set (insn);
1279 if (set)
1280 {
1281 /* We're allowed to assign to a virtual register. This is interpreted
1282 to mean that the underlying register gets assigned the inverse
1283 transformation. This is used, for example, in the handling of
1284 non-local gotos. */
1285 new = instantiate_new_reg (SET_DEST (set), &offset);
1286 if (new)
1287 {
1288 start_sequence ();
1289
1290 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1291 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1292 GEN_INT (-offset));
1293 x = force_operand (x, new);
1294 if (x != new)
1295 emit_move_insn (new, x);
1296
1297 seq = get_insns ();
1298 end_sequence ();
1299
1300 emit_insn_before (seq, insn);
1301 delete_insn (insn);
1302 return;
1303 }
1304
1305 /* Handle a straight copy from a virtual register by generating a
1306 new add insn. The difference between this and falling through
1307 to the generic case is avoiding a new pseudo and eliminating a
1308 move insn in the initial rtl stream. */
1309 new = instantiate_new_reg (SET_SRC (set), &offset);
1310 if (new && offset != 0
1311 && REG_P (SET_DEST (set))
1312 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1313 {
1314 start_sequence ();
1315
1316 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1317 new, GEN_INT (offset), SET_DEST (set),
1318 1, OPTAB_LIB_WIDEN);
1319 if (x != SET_DEST (set))
1320 emit_move_insn (SET_DEST (set), x);
1321
1322 seq = get_insns ();
1323 end_sequence ();
1324
1325 emit_insn_before (seq, insn);
1326 delete_insn (insn);
1327 return;
1328 }
1329
1330 extract_insn (insn);
1331 insn_code = INSN_CODE (insn);
1332
1333 /* Handle a plus involving a virtual register by determining if the
1334 operands remain valid if they're modified in place. */
1335 if (GET_CODE (SET_SRC (set)) == PLUS
1336 && recog_data.n_operands >= 3
1337 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1338 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1339 && GET_CODE (recog_data.operand[2]) == CONST_INT
1340 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1341 {
1342 offset += INTVAL (recog_data.operand[2]);
1343
1344 /* If the sum is zero, then replace with a plain move. */
1345 if (offset == 0
1346 && REG_P (SET_DEST (set))
1347 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1348 {
1349 start_sequence ();
1350 emit_move_insn (SET_DEST (set), new);
1351 seq = get_insns ();
1352 end_sequence ();
1353
1354 emit_insn_before (seq, insn);
1355 delete_insn (insn);
1356 return;
1357 }
1358
1359 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1360
1361 /* Using validate_change and apply_change_group here leaves
1362 recog_data in an invalid state. Since we know exactly what
1363 we want to check, do those two by hand. */
1364 if (safe_insn_predicate (insn_code, 1, new)
1365 && safe_insn_predicate (insn_code, 2, x))
1366 {
1367 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1368 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1369 any_change = true;
1370
1371 /* Fall through into the regular operand fixup loop in
1372 order to take care of operands other than 1 and 2. */
1373 }
1374 }
1375 }
1376 else
1377 {
1378 extract_insn (insn);
1379 insn_code = INSN_CODE (insn);
1380 }
1381
1382 /* In the general case, we expect virtual registers to appear only in
1383 operands, and then only as either bare registers or inside memories. */
1384 for (i = 0; i < recog_data.n_operands; ++i)
1385 {
1386 x = recog_data.operand[i];
1387 switch (GET_CODE (x))
1388 {
1389 case MEM:
1390 {
1391 rtx addr = XEXP (x, 0);
1392 bool changed = false;
1393
1394 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1395 if (!changed)
1396 continue;
1397
1398 start_sequence ();
1399 x = replace_equiv_address (x, addr);
1400 /* It may happen that the address with the virtual reg
1401 was valid (e.g. based on the virtual stack reg, which might
1402 be acceptable to the predicates with all offsets), whereas
1403 the address now isn't anymore, for instance when the address
1404 is still offsetted, but the base reg isn't virtual-stack-reg
1405 anymore. Below we would do a force_reg on the whole operand,
1406 but this insn might actually only accept memory. Hence,
1407 before doing that last resort, try to reload the address into
1408 a register, so this operand stays a MEM. */
1409 if (!safe_insn_predicate (insn_code, i, x))
1410 {
1411 addr = force_reg (GET_MODE (addr), addr);
1412 x = replace_equiv_address (x, addr);
1413 }
1414 seq = get_insns ();
1415 end_sequence ();
1416 if (seq)
1417 emit_insn_before (seq, insn);
1418 }
1419 break;
1420
1421 case REG:
1422 new = instantiate_new_reg (x, &offset);
1423 if (new == NULL)
1424 continue;
1425 if (offset == 0)
1426 x = new;
1427 else
1428 {
1429 start_sequence ();
1430
1431 /* Careful, special mode predicates may have stuff in
1432 insn_data[insn_code].operand[i].mode that isn't useful
1433 to us for computing a new value. */
1434 /* ??? Recognize address_operand and/or "p" constraints
1435 to see if (plus new offset) is a valid before we put
1436 this through expand_simple_binop. */
1437 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1438 GEN_INT (offset), NULL_RTX,
1439 1, OPTAB_LIB_WIDEN);
1440 seq = get_insns ();
1441 end_sequence ();
1442 emit_insn_before (seq, insn);
1443 }
1444 break;
1445
1446 case SUBREG:
1447 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1448 if (new == NULL)
1449 continue;
1450 if (offset != 0)
1451 {
1452 start_sequence ();
1453 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1454 GEN_INT (offset), NULL_RTX,
1455 1, OPTAB_LIB_WIDEN);
1456 seq = get_insns ();
1457 end_sequence ();
1458 emit_insn_before (seq, insn);
1459 }
1460 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1461 GET_MODE (new), SUBREG_BYTE (x));
1462 break;
1463
1464 default:
1465 continue;
1466 }
1467
1468 /* At this point, X contains the new value for the operand.
1469 Validate the new value vs the insn predicate. Note that
1470 asm insns will have insn_code -1 here. */
1471 if (!safe_insn_predicate (insn_code, i, x))
1472 {
1473 start_sequence ();
1474 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1475 seq = get_insns ();
1476 end_sequence ();
1477 if (seq)
1478 emit_insn_before (seq, insn);
1479 }
1480
1481 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1482 any_change = true;
1483 }
1484
1485 if (any_change)
1486 {
1487 /* Propagate operand changes into the duplicates. */
1488 for (i = 0; i < recog_data.n_dups; ++i)
1489 *recog_data.dup_loc[i]
1490 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1491
1492 /* Force re-recognition of the instruction for validation. */
1493 INSN_CODE (insn) = -1;
1494 }
1495
1496 if (asm_noperands (PATTERN (insn)) >= 0)
1497 {
1498 if (!check_asm_operands (PATTERN (insn)))
1499 {
1500 error_for_asm (insn, "impossible constraint in %<asm%>");
1501 delete_insn (insn);
1502 }
1503 }
1504 else
1505 {
1506 if (recog_memoized (insn) < 0)
1507 fatal_insn_not_found (insn);
1508 }
1509 }
1510
1511 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1512 do any instantiation required. */
1513
1514 void
1515 instantiate_decl_rtl (rtx x)
1516 {
1517 rtx addr;
1518
1519 if (x == 0)
1520 return;
1521
1522 /* If this is a CONCAT, recurse for the pieces. */
1523 if (GET_CODE (x) == CONCAT)
1524 {
1525 instantiate_decl_rtl (XEXP (x, 0));
1526 instantiate_decl_rtl (XEXP (x, 1));
1527 return;
1528 }
1529
1530 /* If this is not a MEM, no need to do anything. Similarly if the
1531 address is a constant or a register that is not a virtual register. */
1532 if (!MEM_P (x))
1533 return;
1534
1535 addr = XEXP (x, 0);
1536 if (CONSTANT_P (addr)
1537 || (REG_P (addr)
1538 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1539 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1540 return;
1541
1542 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1543 }
1544
1545 /* Helper for instantiate_decls called via walk_tree: Process all decls
1546 in the given DECL_VALUE_EXPR. */
1547
1548 static tree
1549 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1550 {
1551 tree t = *tp;
1552 if (! EXPR_P (t) && ! GIMPLE_STMT_P (t))
1553 {
1554 *walk_subtrees = 0;
1555 if (DECL_P (t) && DECL_RTL_SET_P (t))
1556 instantiate_decl_rtl (DECL_RTL (t));
1557 }
1558 return NULL;
1559 }
1560
1561 /* Subroutine of instantiate_decls: Process all decls in the given
1562 BLOCK node and all its subblocks. */
1563
1564 static void
1565 instantiate_decls_1 (tree let)
1566 {
1567 tree t;
1568
1569 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1570 {
1571 if (DECL_RTL_SET_P (t))
1572 instantiate_decl_rtl (DECL_RTL (t));
1573 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1574 {
1575 tree v = DECL_VALUE_EXPR (t);
1576 walk_tree (&v, instantiate_expr, NULL, NULL);
1577 }
1578 }
1579
1580 /* Process all subblocks. */
1581 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1582 instantiate_decls_1 (t);
1583 }
1584
1585 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1586 all virtual registers in their DECL_RTL's. */
1587
1588 static void
1589 instantiate_decls (tree fndecl)
1590 {
1591 tree decl;
1592
1593 /* Process all parameters of the function. */
1594 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1595 {
1596 instantiate_decl_rtl (DECL_RTL (decl));
1597 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1598 if (DECL_HAS_VALUE_EXPR_P (decl))
1599 {
1600 tree v = DECL_VALUE_EXPR (decl);
1601 walk_tree (&v, instantiate_expr, NULL, NULL);
1602 }
1603 }
1604
1605 /* Now process all variables defined in the function or its subblocks. */
1606 instantiate_decls_1 (DECL_INITIAL (fndecl));
1607 }
1608
1609 /* Pass through the INSNS of function FNDECL and convert virtual register
1610 references to hard register references. */
1611
1612 static unsigned int
1613 instantiate_virtual_regs (void)
1614 {
1615 rtx insn;
1616
1617 /* Compute the offsets to use for this function. */
1618 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1619 var_offset = STARTING_FRAME_OFFSET;
1620 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1621 out_arg_offset = STACK_POINTER_OFFSET;
1622 #ifdef FRAME_POINTER_CFA_OFFSET
1623 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1624 #else
1625 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1626 #endif
1627
1628 /* Initialize recognition, indicating that volatile is OK. */
1629 init_recog ();
1630
1631 /* Scan through all the insns, instantiating every virtual register still
1632 present. */
1633 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1634 if (INSN_P (insn))
1635 {
1636 /* These patterns in the instruction stream can never be recognized.
1637 Fortunately, they shouldn't contain virtual registers either. */
1638 if (GET_CODE (PATTERN (insn)) == USE
1639 || GET_CODE (PATTERN (insn)) == CLOBBER
1640 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1641 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1642 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1643 continue;
1644
1645 instantiate_virtual_regs_in_insn (insn);
1646
1647 if (INSN_DELETED_P (insn))
1648 continue;
1649
1650 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1651
1652 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1653 if (GET_CODE (insn) == CALL_INSN)
1654 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1655 instantiate_virtual_regs_in_rtx, NULL);
1656 }
1657
1658 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1659 instantiate_decls (current_function_decl);
1660
1661 targetm.instantiate_decls ();
1662
1663 /* Indicate that, from now on, assign_stack_local should use
1664 frame_pointer_rtx. */
1665 virtuals_instantiated = 1;
1666 return 0;
1667 }
1668
1669 struct rtl_opt_pass pass_instantiate_virtual_regs =
1670 {
1671 {
1672 RTL_PASS,
1673 "vregs", /* name */
1674 NULL, /* gate */
1675 instantiate_virtual_regs, /* execute */
1676 NULL, /* sub */
1677 NULL, /* next */
1678 0, /* static_pass_number */
1679 0, /* tv_id */
1680 0, /* properties_required */
1681 0, /* properties_provided */
1682 0, /* properties_destroyed */
1683 0, /* todo_flags_start */
1684 TODO_dump_func /* todo_flags_finish */
1685 }
1686 };
1687
1688 \f
1689 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1690 This means a type for which function calls must pass an address to the
1691 function or get an address back from the function.
1692 EXP may be a type node or an expression (whose type is tested). */
1693
1694 int
1695 aggregate_value_p (const_tree exp, const_tree fntype)
1696 {
1697 int i, regno, nregs;
1698 rtx reg;
1699
1700 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1701
1702 /* DECL node associated with FNTYPE when relevant, which we might need to
1703 check for by-invisible-reference returns, typically for CALL_EXPR input
1704 EXPressions. */
1705 const_tree fndecl = NULL_TREE;
1706
1707 if (fntype)
1708 switch (TREE_CODE (fntype))
1709 {
1710 case CALL_EXPR:
1711 fndecl = get_callee_fndecl (fntype);
1712 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1713 break;
1714 case FUNCTION_DECL:
1715 fndecl = fntype;
1716 fntype = TREE_TYPE (fndecl);
1717 break;
1718 case FUNCTION_TYPE:
1719 case METHOD_TYPE:
1720 break;
1721 case IDENTIFIER_NODE:
1722 fntype = 0;
1723 break;
1724 default:
1725 /* We don't expect other rtl types here. */
1726 gcc_unreachable ();
1727 }
1728
1729 if (TREE_CODE (type) == VOID_TYPE)
1730 return 0;
1731
1732 /* If the front end has decided that this needs to be passed by
1733 reference, do so. */
1734 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1735 && DECL_BY_REFERENCE (exp))
1736 return 1;
1737
1738 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1739 called function RESULT_DECL, meaning the function returns in memory by
1740 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1741 on the function type, which used to be the way to request such a return
1742 mechanism but might now be causing troubles at gimplification time if
1743 temporaries with the function type need to be created. */
1744 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1745 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1746 return 1;
1747
1748 if (targetm.calls.return_in_memory (type, fntype))
1749 return 1;
1750 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1751 and thus can't be returned in registers. */
1752 if (TREE_ADDRESSABLE (type))
1753 return 1;
1754 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1755 return 1;
1756 /* Make sure we have suitable call-clobbered regs to return
1757 the value in; if not, we must return it in memory. */
1758 reg = hard_function_value (type, 0, fntype, 0);
1759
1760 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1761 it is OK. */
1762 if (!REG_P (reg))
1763 return 0;
1764
1765 regno = REGNO (reg);
1766 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1767 for (i = 0; i < nregs; i++)
1768 if (! call_used_regs[regno + i])
1769 return 1;
1770 return 0;
1771 }
1772 \f
1773 /* Return true if we should assign DECL a pseudo register; false if it
1774 should live on the local stack. */
1775
1776 bool
1777 use_register_for_decl (const_tree decl)
1778 {
1779 /* Honor volatile. */
1780 if (TREE_SIDE_EFFECTS (decl))
1781 return false;
1782
1783 /* Honor addressability. */
1784 if (TREE_ADDRESSABLE (decl))
1785 return false;
1786
1787 /* Only register-like things go in registers. */
1788 if (DECL_MODE (decl) == BLKmode)
1789 return false;
1790
1791 /* If -ffloat-store specified, don't put explicit float variables
1792 into registers. */
1793 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1794 propagates values across these stores, and it probably shouldn't. */
1795 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1796 return false;
1797
1798 /* If we're not interested in tracking debugging information for
1799 this decl, then we can certainly put it in a register. */
1800 if (DECL_IGNORED_P (decl))
1801 return true;
1802
1803 return (optimize || DECL_REGISTER (decl));
1804 }
1805
1806 /* Return true if TYPE should be passed by invisible reference. */
1807
1808 bool
1809 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1810 tree type, bool named_arg)
1811 {
1812 if (type)
1813 {
1814 /* If this type contains non-trivial constructors, then it is
1815 forbidden for the middle-end to create any new copies. */
1816 if (TREE_ADDRESSABLE (type))
1817 return true;
1818
1819 /* GCC post 3.4 passes *all* variable sized types by reference. */
1820 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1821 return true;
1822 }
1823
1824 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1825 }
1826
1827 /* Return true if TYPE, which is passed by reference, should be callee
1828 copied instead of caller copied. */
1829
1830 bool
1831 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1832 tree type, bool named_arg)
1833 {
1834 if (type && TREE_ADDRESSABLE (type))
1835 return false;
1836 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1837 }
1838
1839 /* Structures to communicate between the subroutines of assign_parms.
1840 The first holds data persistent across all parameters, the second
1841 is cleared out for each parameter. */
1842
1843 struct assign_parm_data_all
1844 {
1845 CUMULATIVE_ARGS args_so_far;
1846 struct args_size stack_args_size;
1847 tree function_result_decl;
1848 tree orig_fnargs;
1849 rtx first_conversion_insn;
1850 rtx last_conversion_insn;
1851 HOST_WIDE_INT pretend_args_size;
1852 HOST_WIDE_INT extra_pretend_bytes;
1853 int reg_parm_stack_space;
1854 };
1855
1856 struct assign_parm_data_one
1857 {
1858 tree nominal_type;
1859 tree passed_type;
1860 rtx entry_parm;
1861 rtx stack_parm;
1862 enum machine_mode nominal_mode;
1863 enum machine_mode passed_mode;
1864 enum machine_mode promoted_mode;
1865 struct locate_and_pad_arg_data locate;
1866 int partial;
1867 BOOL_BITFIELD named_arg : 1;
1868 BOOL_BITFIELD passed_pointer : 1;
1869 BOOL_BITFIELD on_stack : 1;
1870 BOOL_BITFIELD loaded_in_reg : 1;
1871 };
1872
1873 /* A subroutine of assign_parms. Initialize ALL. */
1874
1875 static void
1876 assign_parms_initialize_all (struct assign_parm_data_all *all)
1877 {
1878 tree fntype;
1879
1880 memset (all, 0, sizeof (*all));
1881
1882 fntype = TREE_TYPE (current_function_decl);
1883
1884 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1885 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1886 #else
1887 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1888 current_function_decl, -1);
1889 #endif
1890
1891 #ifdef REG_PARM_STACK_SPACE
1892 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1893 #endif
1894 }
1895
1896 /* If ARGS contains entries with complex types, split the entry into two
1897 entries of the component type. Return a new list of substitutions are
1898 needed, else the old list. */
1899
1900 static tree
1901 split_complex_args (tree args)
1902 {
1903 tree p;
1904
1905 /* Before allocating memory, check for the common case of no complex. */
1906 for (p = args; p; p = TREE_CHAIN (p))
1907 {
1908 tree type = TREE_TYPE (p);
1909 if (TREE_CODE (type) == COMPLEX_TYPE
1910 && targetm.calls.split_complex_arg (type))
1911 goto found;
1912 }
1913 return args;
1914
1915 found:
1916 args = copy_list (args);
1917
1918 for (p = args; p; p = TREE_CHAIN (p))
1919 {
1920 tree type = TREE_TYPE (p);
1921 if (TREE_CODE (type) == COMPLEX_TYPE
1922 && targetm.calls.split_complex_arg (type))
1923 {
1924 tree decl;
1925 tree subtype = TREE_TYPE (type);
1926 bool addressable = TREE_ADDRESSABLE (p);
1927
1928 /* Rewrite the PARM_DECL's type with its component. */
1929 TREE_TYPE (p) = subtype;
1930 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1931 DECL_MODE (p) = VOIDmode;
1932 DECL_SIZE (p) = NULL;
1933 DECL_SIZE_UNIT (p) = NULL;
1934 /* If this arg must go in memory, put it in a pseudo here.
1935 We can't allow it to go in memory as per normal parms,
1936 because the usual place might not have the imag part
1937 adjacent to the real part. */
1938 DECL_ARTIFICIAL (p) = addressable;
1939 DECL_IGNORED_P (p) = addressable;
1940 TREE_ADDRESSABLE (p) = 0;
1941 layout_decl (p, 0);
1942
1943 /* Build a second synthetic decl. */
1944 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1945 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1946 DECL_ARTIFICIAL (decl) = addressable;
1947 DECL_IGNORED_P (decl) = addressable;
1948 layout_decl (decl, 0);
1949
1950 /* Splice it in; skip the new decl. */
1951 TREE_CHAIN (decl) = TREE_CHAIN (p);
1952 TREE_CHAIN (p) = decl;
1953 p = decl;
1954 }
1955 }
1956
1957 return args;
1958 }
1959
1960 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1961 the hidden struct return argument, and (abi willing) complex args.
1962 Return the new parameter list. */
1963
1964 static tree
1965 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1966 {
1967 tree fndecl = current_function_decl;
1968 tree fntype = TREE_TYPE (fndecl);
1969 tree fnargs = DECL_ARGUMENTS (fndecl);
1970
1971 /* If struct value address is treated as the first argument, make it so. */
1972 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1973 && ! cfun->returns_pcc_struct
1974 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
1975 {
1976 tree type = build_pointer_type (TREE_TYPE (fntype));
1977 tree decl;
1978
1979 decl = build_decl (PARM_DECL, NULL_TREE, type);
1980 DECL_ARG_TYPE (decl) = type;
1981 DECL_ARTIFICIAL (decl) = 1;
1982 DECL_IGNORED_P (decl) = 1;
1983
1984 TREE_CHAIN (decl) = fnargs;
1985 fnargs = decl;
1986 all->function_result_decl = decl;
1987 }
1988
1989 all->orig_fnargs = fnargs;
1990
1991 /* If the target wants to split complex arguments into scalars, do so. */
1992 if (targetm.calls.split_complex_arg)
1993 fnargs = split_complex_args (fnargs);
1994
1995 return fnargs;
1996 }
1997
1998 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
1999 data for the parameter. Incorporate ABI specifics such as pass-by-
2000 reference and type promotion. */
2001
2002 static void
2003 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2004 struct assign_parm_data_one *data)
2005 {
2006 tree nominal_type, passed_type;
2007 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2008
2009 memset (data, 0, sizeof (*data));
2010
2011 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2012 if (!cfun->stdarg)
2013 data->named_arg = 1; /* No varadic parms. */
2014 else if (TREE_CHAIN (parm))
2015 data->named_arg = 1; /* Not the last non-varadic parm. */
2016 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2017 data->named_arg = 1; /* Only varadic ones are unnamed. */
2018 else
2019 data->named_arg = 0; /* Treat as varadic. */
2020
2021 nominal_type = TREE_TYPE (parm);
2022 passed_type = DECL_ARG_TYPE (parm);
2023
2024 /* Look out for errors propagating this far. Also, if the parameter's
2025 type is void then its value doesn't matter. */
2026 if (TREE_TYPE (parm) == error_mark_node
2027 /* This can happen after weird syntax errors
2028 or if an enum type is defined among the parms. */
2029 || TREE_CODE (parm) != PARM_DECL
2030 || passed_type == NULL
2031 || VOID_TYPE_P (nominal_type))
2032 {
2033 nominal_type = passed_type = void_type_node;
2034 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2035 goto egress;
2036 }
2037
2038 /* Find mode of arg as it is passed, and mode of arg as it should be
2039 during execution of this function. */
2040 passed_mode = TYPE_MODE (passed_type);
2041 nominal_mode = TYPE_MODE (nominal_type);
2042
2043 /* If the parm is to be passed as a transparent union, use the type of
2044 the first field for the tests below. We have already verified that
2045 the modes are the same. */
2046 if (TREE_CODE (passed_type) == UNION_TYPE
2047 && TYPE_TRANSPARENT_UNION (passed_type))
2048 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2049
2050 /* See if this arg was passed by invisible reference. */
2051 if (pass_by_reference (&all->args_so_far, passed_mode,
2052 passed_type, data->named_arg))
2053 {
2054 passed_type = nominal_type = build_pointer_type (passed_type);
2055 data->passed_pointer = true;
2056 passed_mode = nominal_mode = Pmode;
2057 }
2058
2059 /* Find mode as it is passed by the ABI. */
2060 promoted_mode = passed_mode;
2061 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2062 {
2063 int unsignedp = TYPE_UNSIGNED (passed_type);
2064 promoted_mode = promote_mode (passed_type, promoted_mode,
2065 &unsignedp, 1);
2066 }
2067
2068 egress:
2069 data->nominal_type = nominal_type;
2070 data->passed_type = passed_type;
2071 data->nominal_mode = nominal_mode;
2072 data->passed_mode = passed_mode;
2073 data->promoted_mode = promoted_mode;
2074 }
2075
2076 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2077
2078 static void
2079 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2080 struct assign_parm_data_one *data, bool no_rtl)
2081 {
2082 int varargs_pretend_bytes = 0;
2083
2084 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2085 data->promoted_mode,
2086 data->passed_type,
2087 &varargs_pretend_bytes, no_rtl);
2088
2089 /* If the back-end has requested extra stack space, record how much is
2090 needed. Do not change pretend_args_size otherwise since it may be
2091 nonzero from an earlier partial argument. */
2092 if (varargs_pretend_bytes > 0)
2093 all->pretend_args_size = varargs_pretend_bytes;
2094 }
2095
2096 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2097 the incoming location of the current parameter. */
2098
2099 static void
2100 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2101 struct assign_parm_data_one *data)
2102 {
2103 HOST_WIDE_INT pretend_bytes = 0;
2104 rtx entry_parm;
2105 bool in_regs;
2106
2107 if (data->promoted_mode == VOIDmode)
2108 {
2109 data->entry_parm = data->stack_parm = const0_rtx;
2110 return;
2111 }
2112
2113 #ifdef FUNCTION_INCOMING_ARG
2114 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2115 data->passed_type, data->named_arg);
2116 #else
2117 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2118 data->passed_type, data->named_arg);
2119 #endif
2120
2121 if (entry_parm == 0)
2122 data->promoted_mode = data->passed_mode;
2123
2124 /* Determine parm's home in the stack, in case it arrives in the stack
2125 or we should pretend it did. Compute the stack position and rtx where
2126 the argument arrives and its size.
2127
2128 There is one complexity here: If this was a parameter that would
2129 have been passed in registers, but wasn't only because it is
2130 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2131 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2132 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2133 as it was the previous time. */
2134 in_regs = entry_parm != 0;
2135 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2136 in_regs = true;
2137 #endif
2138 if (!in_regs && !data->named_arg)
2139 {
2140 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2141 {
2142 rtx tem;
2143 #ifdef FUNCTION_INCOMING_ARG
2144 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2145 data->passed_type, true);
2146 #else
2147 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2148 data->passed_type, true);
2149 #endif
2150 in_regs = tem != NULL;
2151 }
2152 }
2153
2154 /* If this parameter was passed both in registers and in the stack, use
2155 the copy on the stack. */
2156 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2157 data->passed_type))
2158 entry_parm = 0;
2159
2160 if (entry_parm)
2161 {
2162 int partial;
2163
2164 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2165 data->promoted_mode,
2166 data->passed_type,
2167 data->named_arg);
2168 data->partial = partial;
2169
2170 /* The caller might already have allocated stack space for the
2171 register parameters. */
2172 if (partial != 0 && all->reg_parm_stack_space == 0)
2173 {
2174 /* Part of this argument is passed in registers and part
2175 is passed on the stack. Ask the prologue code to extend
2176 the stack part so that we can recreate the full value.
2177
2178 PRETEND_BYTES is the size of the registers we need to store.
2179 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2180 stack space that the prologue should allocate.
2181
2182 Internally, gcc assumes that the argument pointer is aligned
2183 to STACK_BOUNDARY bits. This is used both for alignment
2184 optimizations (see init_emit) and to locate arguments that are
2185 aligned to more than PARM_BOUNDARY bits. We must preserve this
2186 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2187 a stack boundary. */
2188
2189 /* We assume at most one partial arg, and it must be the first
2190 argument on the stack. */
2191 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2192
2193 pretend_bytes = partial;
2194 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2195
2196 /* We want to align relative to the actual stack pointer, so
2197 don't include this in the stack size until later. */
2198 all->extra_pretend_bytes = all->pretend_args_size;
2199 }
2200 }
2201
2202 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2203 entry_parm ? data->partial : 0, current_function_decl,
2204 &all->stack_args_size, &data->locate);
2205
2206 /* Adjust offsets to include the pretend args. */
2207 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2208 data->locate.slot_offset.constant += pretend_bytes;
2209 data->locate.offset.constant += pretend_bytes;
2210
2211 data->entry_parm = entry_parm;
2212 }
2213
2214 /* A subroutine of assign_parms. If there is actually space on the stack
2215 for this parm, count it in stack_args_size and return true. */
2216
2217 static bool
2218 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2219 struct assign_parm_data_one *data)
2220 {
2221 /* Trivially true if we've no incoming register. */
2222 if (data->entry_parm == NULL)
2223 ;
2224 /* Also true if we're partially in registers and partially not,
2225 since we've arranged to drop the entire argument on the stack. */
2226 else if (data->partial != 0)
2227 ;
2228 /* Also true if the target says that it's passed in both registers
2229 and on the stack. */
2230 else if (GET_CODE (data->entry_parm) == PARALLEL
2231 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2232 ;
2233 /* Also true if the target says that there's stack allocated for
2234 all register parameters. */
2235 else if (all->reg_parm_stack_space > 0)
2236 ;
2237 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2238 else
2239 return false;
2240
2241 all->stack_args_size.constant += data->locate.size.constant;
2242 if (data->locate.size.var)
2243 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2244
2245 return true;
2246 }
2247
2248 /* A subroutine of assign_parms. Given that this parameter is allocated
2249 stack space by the ABI, find it. */
2250
2251 static void
2252 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2253 {
2254 rtx offset_rtx, stack_parm;
2255 unsigned int align, boundary;
2256
2257 /* If we're passing this arg using a reg, make its stack home the
2258 aligned stack slot. */
2259 if (data->entry_parm)
2260 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2261 else
2262 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2263
2264 stack_parm = crtl->args.internal_arg_pointer;
2265 if (offset_rtx != const0_rtx)
2266 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2267 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2268
2269 set_mem_attributes (stack_parm, parm, 1);
2270
2271 boundary = data->locate.boundary;
2272 align = BITS_PER_UNIT;
2273
2274 /* If we're padding upward, we know that the alignment of the slot
2275 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2276 intentionally forcing upward padding. Otherwise we have to come
2277 up with a guess at the alignment based on OFFSET_RTX. */
2278 if (data->locate.where_pad != downward || data->entry_parm)
2279 align = boundary;
2280 else if (GET_CODE (offset_rtx) == CONST_INT)
2281 {
2282 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2283 align = align & -align;
2284 }
2285 set_mem_align (stack_parm, align);
2286
2287 if (data->entry_parm)
2288 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2289
2290 data->stack_parm = stack_parm;
2291 }
2292
2293 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2294 always valid and contiguous. */
2295
2296 static void
2297 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2298 {
2299 rtx entry_parm = data->entry_parm;
2300 rtx stack_parm = data->stack_parm;
2301
2302 /* If this parm was passed part in regs and part in memory, pretend it
2303 arrived entirely in memory by pushing the register-part onto the stack.
2304 In the special case of a DImode or DFmode that is split, we could put
2305 it together in a pseudoreg directly, but for now that's not worth
2306 bothering with. */
2307 if (data->partial != 0)
2308 {
2309 /* Handle calls that pass values in multiple non-contiguous
2310 locations. The Irix 6 ABI has examples of this. */
2311 if (GET_CODE (entry_parm) == PARALLEL)
2312 emit_group_store (validize_mem (stack_parm), entry_parm,
2313 data->passed_type,
2314 int_size_in_bytes (data->passed_type));
2315 else
2316 {
2317 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2318 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2319 data->partial / UNITS_PER_WORD);
2320 }
2321
2322 entry_parm = stack_parm;
2323 }
2324
2325 /* If we didn't decide this parm came in a register, by default it came
2326 on the stack. */
2327 else if (entry_parm == NULL)
2328 entry_parm = stack_parm;
2329
2330 /* When an argument is passed in multiple locations, we can't make use
2331 of this information, but we can save some copying if the whole argument
2332 is passed in a single register. */
2333 else if (GET_CODE (entry_parm) == PARALLEL
2334 && data->nominal_mode != BLKmode
2335 && data->passed_mode != BLKmode)
2336 {
2337 size_t i, len = XVECLEN (entry_parm, 0);
2338
2339 for (i = 0; i < len; i++)
2340 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2341 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2342 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2343 == data->passed_mode)
2344 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2345 {
2346 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2347 break;
2348 }
2349 }
2350
2351 data->entry_parm = entry_parm;
2352 }
2353
2354 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2355 always valid and properly aligned. */
2356
2357 static void
2358 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2359 {
2360 rtx stack_parm = data->stack_parm;
2361
2362 /* If we can't trust the parm stack slot to be aligned enough for its
2363 ultimate type, don't use that slot after entry. We'll make another
2364 stack slot, if we need one. */
2365 if (stack_parm
2366 && ((STRICT_ALIGNMENT
2367 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2368 || (data->nominal_type
2369 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2370 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2371 stack_parm = NULL;
2372
2373 /* If parm was passed in memory, and we need to convert it on entry,
2374 don't store it back in that same slot. */
2375 else if (data->entry_parm == stack_parm
2376 && data->nominal_mode != BLKmode
2377 && data->nominal_mode != data->passed_mode)
2378 stack_parm = NULL;
2379
2380 /* If stack protection is in effect for this function, don't leave any
2381 pointers in their passed stack slots. */
2382 else if (crtl->stack_protect_guard
2383 && (flag_stack_protect == 2
2384 || data->passed_pointer
2385 || POINTER_TYPE_P (data->nominal_type)))
2386 stack_parm = NULL;
2387
2388 data->stack_parm = stack_parm;
2389 }
2390
2391 /* A subroutine of assign_parms. Return true if the current parameter
2392 should be stored as a BLKmode in the current frame. */
2393
2394 static bool
2395 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2396 {
2397 if (data->nominal_mode == BLKmode)
2398 return true;
2399 if (GET_CODE (data->entry_parm) == PARALLEL)
2400 return true;
2401
2402 #ifdef BLOCK_REG_PADDING
2403 /* Only assign_parm_setup_block knows how to deal with register arguments
2404 that are padded at the least significant end. */
2405 if (REG_P (data->entry_parm)
2406 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2407 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2408 == (BYTES_BIG_ENDIAN ? upward : downward)))
2409 return true;
2410 #endif
2411
2412 return false;
2413 }
2414
2415 /* A subroutine of assign_parms. Arrange for the parameter to be
2416 present and valid in DATA->STACK_RTL. */
2417
2418 static void
2419 assign_parm_setup_block (struct assign_parm_data_all *all,
2420 tree parm, struct assign_parm_data_one *data)
2421 {
2422 rtx entry_parm = data->entry_parm;
2423 rtx stack_parm = data->stack_parm;
2424 HOST_WIDE_INT size;
2425 HOST_WIDE_INT size_stored;
2426 rtx orig_entry_parm = entry_parm;
2427
2428 if (GET_CODE (entry_parm) == PARALLEL)
2429 entry_parm = emit_group_move_into_temps (entry_parm);
2430
2431 /* If we've a non-block object that's nevertheless passed in parts,
2432 reconstitute it in register operations rather than on the stack. */
2433 if (GET_CODE (entry_parm) == PARALLEL
2434 && data->nominal_mode != BLKmode)
2435 {
2436 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2437
2438 if ((XVECLEN (entry_parm, 0) > 1
2439 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2440 && use_register_for_decl (parm))
2441 {
2442 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2443
2444 push_to_sequence2 (all->first_conversion_insn,
2445 all->last_conversion_insn);
2446
2447 /* For values returned in multiple registers, handle possible
2448 incompatible calls to emit_group_store.
2449
2450 For example, the following would be invalid, and would have to
2451 be fixed by the conditional below:
2452
2453 emit_group_store ((reg:SF), (parallel:DF))
2454 emit_group_store ((reg:SI), (parallel:DI))
2455
2456 An example of this are doubles in e500 v2:
2457 (parallel:DF (expr_list (reg:SI) (const_int 0))
2458 (expr_list (reg:SI) (const_int 4))). */
2459 if (data->nominal_mode != data->passed_mode)
2460 {
2461 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2462 emit_group_store (t, entry_parm, NULL_TREE,
2463 GET_MODE_SIZE (GET_MODE (entry_parm)));
2464 convert_move (parmreg, t, 0);
2465 }
2466 else
2467 emit_group_store (parmreg, entry_parm, data->nominal_type,
2468 int_size_in_bytes (data->nominal_type));
2469
2470 all->first_conversion_insn = get_insns ();
2471 all->last_conversion_insn = get_last_insn ();
2472 end_sequence ();
2473
2474 SET_DECL_RTL (parm, parmreg);
2475 return;
2476 }
2477 }
2478
2479 size = int_size_in_bytes (data->passed_type);
2480 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2481 if (stack_parm == 0)
2482 {
2483 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2484 stack_parm = assign_stack_local (BLKmode, size_stored,
2485 DECL_ALIGN (parm));
2486 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2487 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2488 set_mem_attributes (stack_parm, parm, 1);
2489 }
2490
2491 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2492 calls that pass values in multiple non-contiguous locations. */
2493 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2494 {
2495 rtx mem;
2496
2497 /* Note that we will be storing an integral number of words.
2498 So we have to be careful to ensure that we allocate an
2499 integral number of words. We do this above when we call
2500 assign_stack_local if space was not allocated in the argument
2501 list. If it was, this will not work if PARM_BOUNDARY is not
2502 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2503 if it becomes a problem. Exception is when BLKmode arrives
2504 with arguments not conforming to word_mode. */
2505
2506 if (data->stack_parm == 0)
2507 ;
2508 else if (GET_CODE (entry_parm) == PARALLEL)
2509 ;
2510 else
2511 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2512
2513 mem = validize_mem (stack_parm);
2514
2515 /* Handle values in multiple non-contiguous locations. */
2516 if (GET_CODE (entry_parm) == PARALLEL)
2517 {
2518 push_to_sequence2 (all->first_conversion_insn,
2519 all->last_conversion_insn);
2520 emit_group_store (mem, entry_parm, data->passed_type, size);
2521 all->first_conversion_insn = get_insns ();
2522 all->last_conversion_insn = get_last_insn ();
2523 end_sequence ();
2524 }
2525
2526 else if (size == 0)
2527 ;
2528
2529 /* If SIZE is that of a mode no bigger than a word, just use
2530 that mode's store operation. */
2531 else if (size <= UNITS_PER_WORD)
2532 {
2533 enum machine_mode mode
2534 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2535
2536 if (mode != BLKmode
2537 #ifdef BLOCK_REG_PADDING
2538 && (size == UNITS_PER_WORD
2539 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2540 != (BYTES_BIG_ENDIAN ? upward : downward)))
2541 #endif
2542 )
2543 {
2544 rtx reg;
2545
2546 /* We are really truncating a word_mode value containing
2547 SIZE bytes into a value of mode MODE. If such an
2548 operation requires no actual instructions, we can refer
2549 to the value directly in mode MODE, otherwise we must
2550 start with the register in word_mode and explicitly
2551 convert it. */
2552 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2553 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2554 else
2555 {
2556 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2557 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2558 }
2559 emit_move_insn (change_address (mem, mode, 0), reg);
2560 }
2561
2562 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2563 machine must be aligned to the left before storing
2564 to memory. Note that the previous test doesn't
2565 handle all cases (e.g. SIZE == 3). */
2566 else if (size != UNITS_PER_WORD
2567 #ifdef BLOCK_REG_PADDING
2568 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2569 == downward)
2570 #else
2571 && BYTES_BIG_ENDIAN
2572 #endif
2573 )
2574 {
2575 rtx tem, x;
2576 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2577 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2578
2579 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2580 build_int_cst (NULL_TREE, by),
2581 NULL_RTX, 1);
2582 tem = change_address (mem, word_mode, 0);
2583 emit_move_insn (tem, x);
2584 }
2585 else
2586 move_block_from_reg (REGNO (entry_parm), mem,
2587 size_stored / UNITS_PER_WORD);
2588 }
2589 else
2590 move_block_from_reg (REGNO (entry_parm), mem,
2591 size_stored / UNITS_PER_WORD);
2592 }
2593 else if (data->stack_parm == 0)
2594 {
2595 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2596 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2597 BLOCK_OP_NORMAL);
2598 all->first_conversion_insn = get_insns ();
2599 all->last_conversion_insn = get_last_insn ();
2600 end_sequence ();
2601 }
2602
2603 data->stack_parm = stack_parm;
2604 SET_DECL_RTL (parm, stack_parm);
2605 }
2606
2607 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2608 parameter. Get it there. Perform all ABI specified conversions. */
2609
2610 static void
2611 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2612 struct assign_parm_data_one *data)
2613 {
2614 rtx parmreg;
2615 enum machine_mode promoted_nominal_mode;
2616 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2617 bool did_conversion = false;
2618
2619 /* Store the parm in a pseudoregister during the function, but we may
2620 need to do it in a wider mode. */
2621
2622 /* This is not really promoting for a call. However we need to be
2623 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2624 promoted_nominal_mode
2625 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2626
2627 parmreg = gen_reg_rtx (promoted_nominal_mode);
2628
2629 if (!DECL_ARTIFICIAL (parm))
2630 mark_user_reg (parmreg);
2631
2632 /* If this was an item that we received a pointer to,
2633 set DECL_RTL appropriately. */
2634 if (data->passed_pointer)
2635 {
2636 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2637 set_mem_attributes (x, parm, 1);
2638 SET_DECL_RTL (parm, x);
2639 }
2640 else
2641 SET_DECL_RTL (parm, parmreg);
2642
2643 /* Copy the value into the register. */
2644 if (data->nominal_mode != data->passed_mode
2645 || promoted_nominal_mode != data->promoted_mode)
2646 {
2647 int save_tree_used;
2648
2649 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2650 mode, by the caller. We now have to convert it to
2651 NOMINAL_MODE, if different. However, PARMREG may be in
2652 a different mode than NOMINAL_MODE if it is being stored
2653 promoted.
2654
2655 If ENTRY_PARM is a hard register, it might be in a register
2656 not valid for operating in its mode (e.g., an odd-numbered
2657 register for a DFmode). In that case, moves are the only
2658 thing valid, so we can't do a convert from there. This
2659 occurs when the calling sequence allow such misaligned
2660 usages.
2661
2662 In addition, the conversion may involve a call, which could
2663 clobber parameters which haven't been copied to pseudo
2664 registers yet. Therefore, we must first copy the parm to
2665 a pseudo reg here, and save the conversion until after all
2666 parameters have been moved. */
2667
2668 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2669
2670 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2671
2672 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2673 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2674
2675 if (GET_CODE (tempreg) == SUBREG
2676 && GET_MODE (tempreg) == data->nominal_mode
2677 && REG_P (SUBREG_REG (tempreg))
2678 && data->nominal_mode == data->passed_mode
2679 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2680 && GET_MODE_SIZE (GET_MODE (tempreg))
2681 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2682 {
2683 /* The argument is already sign/zero extended, so note it
2684 into the subreg. */
2685 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2686 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2687 }
2688
2689 /* TREE_USED gets set erroneously during expand_assignment. */
2690 save_tree_used = TREE_USED (parm);
2691 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2692 TREE_USED (parm) = save_tree_used;
2693 all->first_conversion_insn = get_insns ();
2694 all->last_conversion_insn = get_last_insn ();
2695 end_sequence ();
2696
2697 did_conversion = true;
2698 }
2699 else
2700 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2701
2702 /* If we were passed a pointer but the actual value can safely live
2703 in a register, put it in one. */
2704 if (data->passed_pointer
2705 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2706 /* If by-reference argument was promoted, demote it. */
2707 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2708 || use_register_for_decl (parm)))
2709 {
2710 /* We can't use nominal_mode, because it will have been set to
2711 Pmode above. We must use the actual mode of the parm. */
2712 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2713 mark_user_reg (parmreg);
2714
2715 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2716 {
2717 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2718 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2719
2720 push_to_sequence2 (all->first_conversion_insn,
2721 all->last_conversion_insn);
2722 emit_move_insn (tempreg, DECL_RTL (parm));
2723 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2724 emit_move_insn (parmreg, tempreg);
2725 all->first_conversion_insn = get_insns ();
2726 all->last_conversion_insn = get_last_insn ();
2727 end_sequence ();
2728
2729 did_conversion = true;
2730 }
2731 else
2732 emit_move_insn (parmreg, DECL_RTL (parm));
2733
2734 SET_DECL_RTL (parm, parmreg);
2735
2736 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2737 now the parm. */
2738 data->stack_parm = NULL;
2739 }
2740
2741 /* Mark the register as eliminable if we did no conversion and it was
2742 copied from memory at a fixed offset, and the arg pointer was not
2743 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2744 offset formed an invalid address, such memory-equivalences as we
2745 make here would screw up life analysis for it. */
2746 if (data->nominal_mode == data->passed_mode
2747 && !did_conversion
2748 && data->stack_parm != 0
2749 && MEM_P (data->stack_parm)
2750 && data->locate.offset.var == 0
2751 && reg_mentioned_p (virtual_incoming_args_rtx,
2752 XEXP (data->stack_parm, 0)))
2753 {
2754 rtx linsn = get_last_insn ();
2755 rtx sinsn, set;
2756
2757 /* Mark complex types separately. */
2758 if (GET_CODE (parmreg) == CONCAT)
2759 {
2760 enum machine_mode submode
2761 = GET_MODE_INNER (GET_MODE (parmreg));
2762 int regnor = REGNO (XEXP (parmreg, 0));
2763 int regnoi = REGNO (XEXP (parmreg, 1));
2764 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2765 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2766 GET_MODE_SIZE (submode));
2767
2768 /* Scan backwards for the set of the real and
2769 imaginary parts. */
2770 for (sinsn = linsn; sinsn != 0;
2771 sinsn = prev_nonnote_insn (sinsn))
2772 {
2773 set = single_set (sinsn);
2774 if (set == 0)
2775 continue;
2776
2777 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2778 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2779 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2780 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2781 }
2782 }
2783 else if ((set = single_set (linsn)) != 0
2784 && SET_DEST (set) == parmreg)
2785 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2786 }
2787
2788 /* For pointer data type, suggest pointer register. */
2789 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2790 mark_reg_pointer (parmreg,
2791 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2792 }
2793
2794 /* A subroutine of assign_parms. Allocate stack space to hold the current
2795 parameter. Get it there. Perform all ABI specified conversions. */
2796
2797 static void
2798 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2799 struct assign_parm_data_one *data)
2800 {
2801 /* Value must be stored in the stack slot STACK_PARM during function
2802 execution. */
2803 bool to_conversion = false;
2804
2805 if (data->promoted_mode != data->nominal_mode)
2806 {
2807 /* Conversion is required. */
2808 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2809
2810 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2811
2812 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2813 to_conversion = true;
2814
2815 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2816 TYPE_UNSIGNED (TREE_TYPE (parm)));
2817
2818 if (data->stack_parm)
2819 /* ??? This may need a big-endian conversion on sparc64. */
2820 data->stack_parm
2821 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2822 }
2823
2824 if (data->entry_parm != data->stack_parm)
2825 {
2826 rtx src, dest;
2827
2828 if (data->stack_parm == 0)
2829 {
2830 data->stack_parm
2831 = assign_stack_local (GET_MODE (data->entry_parm),
2832 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2833 TYPE_ALIGN (data->passed_type));
2834 set_mem_attributes (data->stack_parm, parm, 1);
2835 }
2836
2837 dest = validize_mem (data->stack_parm);
2838 src = validize_mem (data->entry_parm);
2839
2840 if (MEM_P (src))
2841 {
2842 /* Use a block move to handle potentially misaligned entry_parm. */
2843 if (!to_conversion)
2844 push_to_sequence2 (all->first_conversion_insn,
2845 all->last_conversion_insn);
2846 to_conversion = true;
2847
2848 emit_block_move (dest, src,
2849 GEN_INT (int_size_in_bytes (data->passed_type)),
2850 BLOCK_OP_NORMAL);
2851 }
2852 else
2853 emit_move_insn (dest, src);
2854 }
2855
2856 if (to_conversion)
2857 {
2858 all->first_conversion_insn = get_insns ();
2859 all->last_conversion_insn = get_last_insn ();
2860 end_sequence ();
2861 }
2862
2863 SET_DECL_RTL (parm, data->stack_parm);
2864 }
2865
2866 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2867 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2868
2869 static void
2870 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2871 {
2872 tree parm;
2873 tree orig_fnargs = all->orig_fnargs;
2874
2875 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2876 {
2877 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2878 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2879 {
2880 rtx tmp, real, imag;
2881 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2882
2883 real = DECL_RTL (fnargs);
2884 imag = DECL_RTL (TREE_CHAIN (fnargs));
2885 if (inner != GET_MODE (real))
2886 {
2887 real = gen_lowpart_SUBREG (inner, real);
2888 imag = gen_lowpart_SUBREG (inner, imag);
2889 }
2890
2891 if (TREE_ADDRESSABLE (parm))
2892 {
2893 rtx rmem, imem;
2894 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2895
2896 /* split_complex_arg put the real and imag parts in
2897 pseudos. Move them to memory. */
2898 tmp = assign_stack_local (DECL_MODE (parm), size,
2899 TYPE_ALIGN (TREE_TYPE (parm)));
2900 set_mem_attributes (tmp, parm, 1);
2901 rmem = adjust_address_nv (tmp, inner, 0);
2902 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2903 push_to_sequence2 (all->first_conversion_insn,
2904 all->last_conversion_insn);
2905 emit_move_insn (rmem, real);
2906 emit_move_insn (imem, imag);
2907 all->first_conversion_insn = get_insns ();
2908 all->last_conversion_insn = get_last_insn ();
2909 end_sequence ();
2910 }
2911 else
2912 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2913 SET_DECL_RTL (parm, tmp);
2914
2915 real = DECL_INCOMING_RTL (fnargs);
2916 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2917 if (inner != GET_MODE (real))
2918 {
2919 real = gen_lowpart_SUBREG (inner, real);
2920 imag = gen_lowpart_SUBREG (inner, imag);
2921 }
2922 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2923 set_decl_incoming_rtl (parm, tmp, false);
2924 fnargs = TREE_CHAIN (fnargs);
2925 }
2926 else
2927 {
2928 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2929 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
2930
2931 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2932 instead of the copy of decl, i.e. FNARGS. */
2933 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2934 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2935 }
2936
2937 fnargs = TREE_CHAIN (fnargs);
2938 }
2939 }
2940
2941 /* Assign RTL expressions to the function's parameters. This may involve
2942 copying them into registers and using those registers as the DECL_RTL. */
2943
2944 static void
2945 assign_parms (tree fndecl)
2946 {
2947 struct assign_parm_data_all all;
2948 tree fnargs, parm;
2949
2950 crtl->args.internal_arg_pointer
2951 = targetm.calls.internal_arg_pointer ();
2952
2953 assign_parms_initialize_all (&all);
2954 fnargs = assign_parms_augmented_arg_list (&all);
2955
2956 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2957 {
2958 struct assign_parm_data_one data;
2959
2960 /* Extract the type of PARM; adjust it according to ABI. */
2961 assign_parm_find_data_types (&all, parm, &data);
2962
2963 /* Early out for errors and void parameters. */
2964 if (data.passed_mode == VOIDmode)
2965 {
2966 SET_DECL_RTL (parm, const0_rtx);
2967 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2968 continue;
2969 }
2970
2971 if (cfun->stdarg && !TREE_CHAIN (parm))
2972 assign_parms_setup_varargs (&all, &data, false);
2973
2974 /* Find out where the parameter arrives in this function. */
2975 assign_parm_find_entry_rtl (&all, &data);
2976
2977 /* Find out where stack space for this parameter might be. */
2978 if (assign_parm_is_stack_parm (&all, &data))
2979 {
2980 assign_parm_find_stack_rtl (parm, &data);
2981 assign_parm_adjust_entry_rtl (&data);
2982 }
2983
2984 /* Record permanently how this parm was passed. */
2985 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
2986
2987 /* Update info on where next arg arrives in registers. */
2988 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2989 data.passed_type, data.named_arg);
2990
2991 assign_parm_adjust_stack_rtl (&data);
2992
2993 if (assign_parm_setup_block_p (&data))
2994 assign_parm_setup_block (&all, parm, &data);
2995 else if (data.passed_pointer || use_register_for_decl (parm))
2996 assign_parm_setup_reg (&all, parm, &data);
2997 else
2998 assign_parm_setup_stack (&all, parm, &data);
2999 }
3000
3001 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3002 assign_parms_unsplit_complex (&all, fnargs);
3003
3004 /* Output all parameter conversion instructions (possibly including calls)
3005 now that all parameters have been copied out of hard registers. */
3006 emit_insn (all.first_conversion_insn);
3007
3008 /* If we are receiving a struct value address as the first argument, set up
3009 the RTL for the function result. As this might require code to convert
3010 the transmitted address to Pmode, we do this here to ensure that possible
3011 preliminary conversions of the address have been emitted already. */
3012 if (all.function_result_decl)
3013 {
3014 tree result = DECL_RESULT (current_function_decl);
3015 rtx addr = DECL_RTL (all.function_result_decl);
3016 rtx x;
3017
3018 if (DECL_BY_REFERENCE (result))
3019 x = addr;
3020 else
3021 {
3022 addr = convert_memory_address (Pmode, addr);
3023 x = gen_rtx_MEM (DECL_MODE (result), addr);
3024 set_mem_attributes (x, result, 1);
3025 }
3026 SET_DECL_RTL (result, x);
3027 }
3028
3029 /* We have aligned all the args, so add space for the pretend args. */
3030 crtl->args.pretend_args_size = all.pretend_args_size;
3031 all.stack_args_size.constant += all.extra_pretend_bytes;
3032 crtl->args.size = all.stack_args_size.constant;
3033
3034 /* Adjust function incoming argument size for alignment and
3035 minimum length. */
3036
3037 #ifdef REG_PARM_STACK_SPACE
3038 crtl->args.size = MAX (crtl->args.size,
3039 REG_PARM_STACK_SPACE (fndecl));
3040 #endif
3041
3042 crtl->args.size = CEIL_ROUND (crtl->args.size,
3043 PARM_BOUNDARY / BITS_PER_UNIT);
3044
3045 #ifdef ARGS_GROW_DOWNWARD
3046 crtl->args.arg_offset_rtx
3047 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3048 : expand_expr (size_diffop (all.stack_args_size.var,
3049 size_int (-all.stack_args_size.constant)),
3050 NULL_RTX, VOIDmode, 0));
3051 #else
3052 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3053 #endif
3054
3055 /* See how many bytes, if any, of its args a function should try to pop
3056 on return. */
3057
3058 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3059 crtl->args.size);
3060
3061 /* For stdarg.h function, save info about
3062 regs and stack space used by the named args. */
3063
3064 crtl->args.info = all.args_so_far;
3065
3066 /* Set the rtx used for the function return value. Put this in its
3067 own variable so any optimizers that need this information don't have
3068 to include tree.h. Do this here so it gets done when an inlined
3069 function gets output. */
3070
3071 crtl->return_rtx
3072 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3073 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3074
3075 /* If scalar return value was computed in a pseudo-reg, or was a named
3076 return value that got dumped to the stack, copy that to the hard
3077 return register. */
3078 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3079 {
3080 tree decl_result = DECL_RESULT (fndecl);
3081 rtx decl_rtl = DECL_RTL (decl_result);
3082
3083 if (REG_P (decl_rtl)
3084 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3085 : DECL_REGISTER (decl_result))
3086 {
3087 rtx real_decl_rtl;
3088
3089 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3090 fndecl, true);
3091 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3092 /* The delay slot scheduler assumes that crtl->return_rtx
3093 holds the hard register containing the return value, not a
3094 temporary pseudo. */
3095 crtl->return_rtx = real_decl_rtl;
3096 }
3097 }
3098 }
3099
3100 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3101 For all seen types, gimplify their sizes. */
3102
3103 static tree
3104 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3105 {
3106 tree t = *tp;
3107
3108 *walk_subtrees = 0;
3109 if (TYPE_P (t))
3110 {
3111 if (POINTER_TYPE_P (t))
3112 *walk_subtrees = 1;
3113 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3114 && !TYPE_SIZES_GIMPLIFIED (t))
3115 {
3116 gimplify_type_sizes (t, (tree *) data);
3117 *walk_subtrees = 1;
3118 }
3119 }
3120
3121 return NULL;
3122 }
3123
3124 /* Gimplify the parameter list for current_function_decl. This involves
3125 evaluating SAVE_EXPRs of variable sized parameters and generating code
3126 to implement callee-copies reference parameters. Returns a list of
3127 statements to add to the beginning of the function, or NULL if nothing
3128 to do. */
3129
3130 tree
3131 gimplify_parameters (void)
3132 {
3133 struct assign_parm_data_all all;
3134 tree fnargs, parm, stmts = NULL;
3135
3136 assign_parms_initialize_all (&all);
3137 fnargs = assign_parms_augmented_arg_list (&all);
3138
3139 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3140 {
3141 struct assign_parm_data_one data;
3142
3143 /* Extract the type of PARM; adjust it according to ABI. */
3144 assign_parm_find_data_types (&all, parm, &data);
3145
3146 /* Early out for errors and void parameters. */
3147 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3148 continue;
3149
3150 /* Update info on where next arg arrives in registers. */
3151 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3152 data.passed_type, data.named_arg);
3153
3154 /* ??? Once upon a time variable_size stuffed parameter list
3155 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3156 turned out to be less than manageable in the gimple world.
3157 Now we have to hunt them down ourselves. */
3158 walk_tree_without_duplicates (&data.passed_type,
3159 gimplify_parm_type, &stmts);
3160
3161 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3162 {
3163 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3164 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3165 }
3166
3167 if (data.passed_pointer)
3168 {
3169 tree type = TREE_TYPE (data.passed_type);
3170 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3171 type, data.named_arg))
3172 {
3173 tree local, t;
3174
3175 /* For constant sized objects, this is trivial; for
3176 variable-sized objects, we have to play games. */
3177 if (TREE_CONSTANT (DECL_SIZE (parm)))
3178 {
3179 local = create_tmp_var (type, get_name (parm));
3180 DECL_IGNORED_P (local) = 0;
3181 }
3182 else
3183 {
3184 tree ptr_type, addr;
3185
3186 ptr_type = build_pointer_type (type);
3187 addr = create_tmp_var (ptr_type, get_name (parm));
3188 DECL_IGNORED_P (addr) = 0;
3189 local = build_fold_indirect_ref (addr);
3190
3191 t = built_in_decls[BUILT_IN_ALLOCA];
3192 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3193 t = fold_convert (ptr_type, t);
3194 t = build_gimple_modify_stmt (addr, t);
3195 gimplify_and_add (t, &stmts);
3196 }
3197
3198 t = build_gimple_modify_stmt (local, parm);
3199 gimplify_and_add (t, &stmts);
3200
3201 SET_DECL_VALUE_EXPR (parm, local);
3202 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3203 }
3204 }
3205 }
3206
3207 return stmts;
3208 }
3209 \f
3210 /* Compute the size and offset from the start of the stacked arguments for a
3211 parm passed in mode PASSED_MODE and with type TYPE.
3212
3213 INITIAL_OFFSET_PTR points to the current offset into the stacked
3214 arguments.
3215
3216 The starting offset and size for this parm are returned in
3217 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3218 nonzero, the offset is that of stack slot, which is returned in
3219 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3220 padding required from the initial offset ptr to the stack slot.
3221
3222 IN_REGS is nonzero if the argument will be passed in registers. It will
3223 never be set if REG_PARM_STACK_SPACE is not defined.
3224
3225 FNDECL is the function in which the argument was defined.
3226
3227 There are two types of rounding that are done. The first, controlled by
3228 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3229 list to be aligned to the specific boundary (in bits). This rounding
3230 affects the initial and starting offsets, but not the argument size.
3231
3232 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3233 optionally rounds the size of the parm to PARM_BOUNDARY. The
3234 initial offset is not affected by this rounding, while the size always
3235 is and the starting offset may be. */
3236
3237 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3238 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3239 callers pass in the total size of args so far as
3240 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3241
3242 void
3243 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3244 int partial, tree fndecl ATTRIBUTE_UNUSED,
3245 struct args_size *initial_offset_ptr,
3246 struct locate_and_pad_arg_data *locate)
3247 {
3248 tree sizetree;
3249 enum direction where_pad;
3250 unsigned int boundary;
3251 int reg_parm_stack_space = 0;
3252 int part_size_in_regs;
3253
3254 #ifdef REG_PARM_STACK_SPACE
3255 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3256
3257 /* If we have found a stack parm before we reach the end of the
3258 area reserved for registers, skip that area. */
3259 if (! in_regs)
3260 {
3261 if (reg_parm_stack_space > 0)
3262 {
3263 if (initial_offset_ptr->var)
3264 {
3265 initial_offset_ptr->var
3266 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3267 ssize_int (reg_parm_stack_space));
3268 initial_offset_ptr->constant = 0;
3269 }
3270 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3271 initial_offset_ptr->constant = reg_parm_stack_space;
3272 }
3273 }
3274 #endif /* REG_PARM_STACK_SPACE */
3275
3276 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3277
3278 sizetree
3279 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3280 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3281 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3282 locate->where_pad = where_pad;
3283 locate->boundary = boundary;
3284
3285 /* Remember if the outgoing parameter requires extra alignment on the
3286 calling function side. */
3287 if (boundary > PREFERRED_STACK_BOUNDARY)
3288 boundary = PREFERRED_STACK_BOUNDARY;
3289 if (crtl->stack_alignment_needed < boundary)
3290 crtl->stack_alignment_needed = boundary;
3291
3292 #ifdef ARGS_GROW_DOWNWARD
3293 locate->slot_offset.constant = -initial_offset_ptr->constant;
3294 if (initial_offset_ptr->var)
3295 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3296 initial_offset_ptr->var);
3297
3298 {
3299 tree s2 = sizetree;
3300 if (where_pad != none
3301 && (!host_integerp (sizetree, 1)
3302 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3303 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3304 SUB_PARM_SIZE (locate->slot_offset, s2);
3305 }
3306
3307 locate->slot_offset.constant += part_size_in_regs;
3308
3309 if (!in_regs
3310 #ifdef REG_PARM_STACK_SPACE
3311 || REG_PARM_STACK_SPACE (fndecl) > 0
3312 #endif
3313 )
3314 pad_to_arg_alignment (&locate->slot_offset, boundary,
3315 &locate->alignment_pad);
3316
3317 locate->size.constant = (-initial_offset_ptr->constant
3318 - locate->slot_offset.constant);
3319 if (initial_offset_ptr->var)
3320 locate->size.var = size_binop (MINUS_EXPR,
3321 size_binop (MINUS_EXPR,
3322 ssize_int (0),
3323 initial_offset_ptr->var),
3324 locate->slot_offset.var);
3325
3326 /* Pad_below needs the pre-rounded size to know how much to pad
3327 below. */
3328 locate->offset = locate->slot_offset;
3329 if (where_pad == downward)
3330 pad_below (&locate->offset, passed_mode, sizetree);
3331
3332 #else /* !ARGS_GROW_DOWNWARD */
3333 if (!in_regs
3334 #ifdef REG_PARM_STACK_SPACE
3335 || REG_PARM_STACK_SPACE (fndecl) > 0
3336 #endif
3337 )
3338 pad_to_arg_alignment (initial_offset_ptr, boundary,
3339 &locate->alignment_pad);
3340 locate->slot_offset = *initial_offset_ptr;
3341
3342 #ifdef PUSH_ROUNDING
3343 if (passed_mode != BLKmode)
3344 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3345 #endif
3346
3347 /* Pad_below needs the pre-rounded size to know how much to pad below
3348 so this must be done before rounding up. */
3349 locate->offset = locate->slot_offset;
3350 if (where_pad == downward)
3351 pad_below (&locate->offset, passed_mode, sizetree);
3352
3353 if (where_pad != none
3354 && (!host_integerp (sizetree, 1)
3355 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3356 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3357
3358 ADD_PARM_SIZE (locate->size, sizetree);
3359
3360 locate->size.constant -= part_size_in_regs;
3361 #endif /* ARGS_GROW_DOWNWARD */
3362 }
3363
3364 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3365 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3366
3367 static void
3368 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3369 struct args_size *alignment_pad)
3370 {
3371 tree save_var = NULL_TREE;
3372 HOST_WIDE_INT save_constant = 0;
3373 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3374 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3375
3376 #ifdef SPARC_STACK_BOUNDARY_HACK
3377 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3378 the real alignment of %sp. However, when it does this, the
3379 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3380 if (SPARC_STACK_BOUNDARY_HACK)
3381 sp_offset = 0;
3382 #endif
3383
3384 if (boundary > PARM_BOUNDARY)
3385 {
3386 save_var = offset_ptr->var;
3387 save_constant = offset_ptr->constant;
3388 }
3389
3390 alignment_pad->var = NULL_TREE;
3391 alignment_pad->constant = 0;
3392
3393 if (boundary > BITS_PER_UNIT)
3394 {
3395 if (offset_ptr->var)
3396 {
3397 tree sp_offset_tree = ssize_int (sp_offset);
3398 tree offset = size_binop (PLUS_EXPR,
3399 ARGS_SIZE_TREE (*offset_ptr),
3400 sp_offset_tree);
3401 #ifdef ARGS_GROW_DOWNWARD
3402 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3403 #else
3404 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3405 #endif
3406
3407 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3408 /* ARGS_SIZE_TREE includes constant term. */
3409 offset_ptr->constant = 0;
3410 if (boundary > PARM_BOUNDARY)
3411 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3412 save_var);
3413 }
3414 else
3415 {
3416 offset_ptr->constant = -sp_offset +
3417 #ifdef ARGS_GROW_DOWNWARD
3418 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3419 #else
3420 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3421 #endif
3422 if (boundary > PARM_BOUNDARY)
3423 alignment_pad->constant = offset_ptr->constant - save_constant;
3424 }
3425 }
3426 }
3427
3428 static void
3429 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3430 {
3431 if (passed_mode != BLKmode)
3432 {
3433 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3434 offset_ptr->constant
3435 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3436 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3437 - GET_MODE_SIZE (passed_mode));
3438 }
3439 else
3440 {
3441 if (TREE_CODE (sizetree) != INTEGER_CST
3442 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3443 {
3444 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3445 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3446 /* Add it in. */
3447 ADD_PARM_SIZE (*offset_ptr, s2);
3448 SUB_PARM_SIZE (*offset_ptr, sizetree);
3449 }
3450 }
3451 }
3452 \f
3453
3454 /* True if register REGNO was alive at a place where `setjmp' was
3455 called and was set more than once or is an argument. Such regs may
3456 be clobbered by `longjmp'. */
3457
3458 static bool
3459 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3460 {
3461 /* There appear to be cases where some local vars never reach the
3462 backend but have bogus regnos. */
3463 if (regno >= max_reg_num ())
3464 return false;
3465
3466 return ((REG_N_SETS (regno) > 1
3467 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3468 && REGNO_REG_SET_P (setjmp_crosses, regno));
3469 }
3470
3471 /* Walk the tree of blocks describing the binding levels within a
3472 function and warn about variables the might be killed by setjmp or
3473 vfork. This is done after calling flow_analysis before register
3474 allocation since that will clobber the pseudo-regs to hard
3475 regs. */
3476
3477 static void
3478 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3479 {
3480 tree decl, sub;
3481
3482 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3483 {
3484 if (TREE_CODE (decl) == VAR_DECL
3485 && DECL_RTL_SET_P (decl)
3486 && REG_P (DECL_RTL (decl))
3487 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3488 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3489 " %<longjmp%> or %<vfork%>", decl);
3490 }
3491
3492 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3493 setjmp_vars_warning (setjmp_crosses, sub);
3494 }
3495
3496 /* Do the appropriate part of setjmp_vars_warning
3497 but for arguments instead of local variables. */
3498
3499 static void
3500 setjmp_args_warning (bitmap setjmp_crosses)
3501 {
3502 tree decl;
3503 for (decl = DECL_ARGUMENTS (current_function_decl);
3504 decl; decl = TREE_CHAIN (decl))
3505 if (DECL_RTL (decl) != 0
3506 && REG_P (DECL_RTL (decl))
3507 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3508 warning (OPT_Wclobbered,
3509 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3510 decl);
3511 }
3512
3513 /* Generate warning messages for variables live across setjmp. */
3514
3515 void
3516 generate_setjmp_warnings (void)
3517 {
3518 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3519
3520 if (n_basic_blocks == NUM_FIXED_BLOCKS
3521 || bitmap_empty_p (setjmp_crosses))
3522 return;
3523
3524 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3525 setjmp_args_warning (setjmp_crosses);
3526 }
3527
3528 \f
3529 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3530 and create duplicate blocks. */
3531 /* ??? Need an option to either create block fragments or to create
3532 abstract origin duplicates of a source block. It really depends
3533 on what optimization has been performed. */
3534
3535 void
3536 reorder_blocks (void)
3537 {
3538 tree block = DECL_INITIAL (current_function_decl);
3539 VEC(tree,heap) *block_stack;
3540
3541 if (block == NULL_TREE)
3542 return;
3543
3544 block_stack = VEC_alloc (tree, heap, 10);
3545
3546 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3547 clear_block_marks (block);
3548
3549 /* Prune the old trees away, so that they don't get in the way. */
3550 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3551 BLOCK_CHAIN (block) = NULL_TREE;
3552
3553 /* Recreate the block tree from the note nesting. */
3554 reorder_blocks_1 (get_insns (), block, &block_stack);
3555 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3556
3557 VEC_free (tree, heap, block_stack);
3558 }
3559
3560 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3561
3562 void
3563 clear_block_marks (tree block)
3564 {
3565 while (block)
3566 {
3567 TREE_ASM_WRITTEN (block) = 0;
3568 clear_block_marks (BLOCK_SUBBLOCKS (block));
3569 block = BLOCK_CHAIN (block);
3570 }
3571 }
3572
3573 static void
3574 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3575 {
3576 rtx insn;
3577
3578 for (insn = insns; insn; insn = NEXT_INSN (insn))
3579 {
3580 if (NOTE_P (insn))
3581 {
3582 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3583 {
3584 tree block = NOTE_BLOCK (insn);
3585 tree origin;
3586
3587 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3588 ? BLOCK_FRAGMENT_ORIGIN (block)
3589 : block);
3590
3591 /* If we have seen this block before, that means it now
3592 spans multiple address regions. Create a new fragment. */
3593 if (TREE_ASM_WRITTEN (block))
3594 {
3595 tree new_block = copy_node (block);
3596
3597 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3598 BLOCK_FRAGMENT_CHAIN (new_block)
3599 = BLOCK_FRAGMENT_CHAIN (origin);
3600 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3601
3602 NOTE_BLOCK (insn) = new_block;
3603 block = new_block;
3604 }
3605
3606 BLOCK_SUBBLOCKS (block) = 0;
3607 TREE_ASM_WRITTEN (block) = 1;
3608 /* When there's only one block for the entire function,
3609 current_block == block and we mustn't do this, it
3610 will cause infinite recursion. */
3611 if (block != current_block)
3612 {
3613 if (block != origin)
3614 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3615
3616 BLOCK_SUPERCONTEXT (block) = current_block;
3617 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3618 BLOCK_SUBBLOCKS (current_block) = block;
3619 current_block = origin;
3620 }
3621 VEC_safe_push (tree, heap, *p_block_stack, block);
3622 }
3623 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3624 {
3625 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3626 BLOCK_SUBBLOCKS (current_block)
3627 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3628 current_block = BLOCK_SUPERCONTEXT (current_block);
3629 }
3630 }
3631 }
3632 }
3633
3634 /* Reverse the order of elements in the chain T of blocks,
3635 and return the new head of the chain (old last element). */
3636
3637 tree
3638 blocks_nreverse (tree t)
3639 {
3640 tree prev = 0, decl, next;
3641 for (decl = t; decl; decl = next)
3642 {
3643 next = BLOCK_CHAIN (decl);
3644 BLOCK_CHAIN (decl) = prev;
3645 prev = decl;
3646 }
3647 return prev;
3648 }
3649
3650 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3651 non-NULL, list them all into VECTOR, in a depth-first preorder
3652 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3653 blocks. */
3654
3655 static int
3656 all_blocks (tree block, tree *vector)
3657 {
3658 int n_blocks = 0;
3659
3660 while (block)
3661 {
3662 TREE_ASM_WRITTEN (block) = 0;
3663
3664 /* Record this block. */
3665 if (vector)
3666 vector[n_blocks] = block;
3667
3668 ++n_blocks;
3669
3670 /* Record the subblocks, and their subblocks... */
3671 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3672 vector ? vector + n_blocks : 0);
3673 block = BLOCK_CHAIN (block);
3674 }
3675
3676 return n_blocks;
3677 }
3678
3679 /* Return a vector containing all the blocks rooted at BLOCK. The
3680 number of elements in the vector is stored in N_BLOCKS_P. The
3681 vector is dynamically allocated; it is the caller's responsibility
3682 to call `free' on the pointer returned. */
3683
3684 static tree *
3685 get_block_vector (tree block, int *n_blocks_p)
3686 {
3687 tree *block_vector;
3688
3689 *n_blocks_p = all_blocks (block, NULL);
3690 block_vector = XNEWVEC (tree, *n_blocks_p);
3691 all_blocks (block, block_vector);
3692
3693 return block_vector;
3694 }
3695
3696 static GTY(()) int next_block_index = 2;
3697
3698 /* Set BLOCK_NUMBER for all the blocks in FN. */
3699
3700 void
3701 number_blocks (tree fn)
3702 {
3703 int i;
3704 int n_blocks;
3705 tree *block_vector;
3706
3707 /* For SDB and XCOFF debugging output, we start numbering the blocks
3708 from 1 within each function, rather than keeping a running
3709 count. */
3710 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3711 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3712 next_block_index = 1;
3713 #endif
3714
3715 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3716
3717 /* The top-level BLOCK isn't numbered at all. */
3718 for (i = 1; i < n_blocks; ++i)
3719 /* We number the blocks from two. */
3720 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3721
3722 free (block_vector);
3723
3724 return;
3725 }
3726
3727 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3728
3729 tree
3730 debug_find_var_in_block_tree (tree var, tree block)
3731 {
3732 tree t;
3733
3734 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3735 if (t == var)
3736 return block;
3737
3738 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3739 {
3740 tree ret = debug_find_var_in_block_tree (var, t);
3741 if (ret)
3742 return ret;
3743 }
3744
3745 return NULL_TREE;
3746 }
3747 \f
3748 /* Keep track of whether we're in a dummy function context. If we are,
3749 we don't want to invoke the set_current_function hook, because we'll
3750 get into trouble if the hook calls target_reinit () recursively or
3751 when the initial initialization is not yet complete. */
3752
3753 static bool in_dummy_function;
3754
3755 /* Invoke the target hook when setting cfun. */
3756
3757 static void
3758 invoke_set_current_function_hook (tree fndecl)
3759 {
3760 if (!in_dummy_function)
3761 targetm.set_current_function (fndecl);
3762 }
3763
3764 /* cfun should never be set directly; use this function. */
3765
3766 void
3767 set_cfun (struct function *new_cfun)
3768 {
3769 if (cfun != new_cfun)
3770 {
3771 cfun = new_cfun;
3772 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
3773 }
3774 }
3775
3776 /* Keep track of the cfun stack. */
3777
3778 typedef struct function *function_p;
3779
3780 DEF_VEC_P(function_p);
3781 DEF_VEC_ALLOC_P(function_p,heap);
3782
3783 /* Initialized with NOGC, making this poisonous to the garbage collector. */
3784
3785 static VEC(function_p,heap) *cfun_stack;
3786
3787 /* We save the value of in_system_header here when pushing the first
3788 function on the cfun stack, and we restore it from here when
3789 popping the last function. */
3790
3791 static bool saved_in_system_header;
3792
3793 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
3794
3795 void
3796 push_cfun (struct function *new_cfun)
3797 {
3798 if (cfun == NULL)
3799 saved_in_system_header = in_system_header;
3800 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3801 if (new_cfun)
3802 in_system_header = DECL_IN_SYSTEM_HEADER (new_cfun->decl);
3803 set_cfun (new_cfun);
3804 }
3805
3806 /* Pop cfun from the stack. */
3807
3808 void
3809 pop_cfun (void)
3810 {
3811 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
3812 in_system_header = ((new_cfun == NULL) ? saved_in_system_header
3813 : DECL_IN_SYSTEM_HEADER (new_cfun->decl));
3814 set_cfun (new_cfun);
3815 }
3816
3817 /* Return value of funcdef and increase it. */
3818 int
3819 get_next_funcdef_no (void)
3820 {
3821 return funcdef_no++;
3822 }
3823
3824 /* Allocate a function structure for FNDECL and set its contents
3825 to the defaults. Set cfun to the newly-allocated object.
3826 Some of the helper functions invoked during initialization assume
3827 that cfun has already been set. Therefore, assign the new object
3828 directly into cfun and invoke the back end hook explicitly at the
3829 very end, rather than initializing a temporary and calling set_cfun
3830 on it.
3831
3832 ABSTRACT_P is true if this is a function that will never be seen by
3833 the middle-end. Such functions are front-end concepts (like C++
3834 function templates) that do not correspond directly to functions
3835 placed in object files. */
3836
3837 void
3838 allocate_struct_function (tree fndecl, bool abstract_p)
3839 {
3840 tree result;
3841 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3842
3843 cfun = ggc_alloc_cleared (sizeof (struct function));
3844
3845 current_function_funcdef_no = get_next_funcdef_no ();
3846
3847 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3848
3849 init_eh_for_function ();
3850
3851 if (init_machine_status)
3852 cfun->machine = (*init_machine_status) ();
3853
3854 if (fndecl != NULL_TREE)
3855 {
3856 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3857 cfun->decl = fndecl;
3858
3859 result = DECL_RESULT (fndecl);
3860 if (!abstract_p && aggregate_value_p (result, fndecl))
3861 {
3862 #ifdef PCC_STATIC_STRUCT_RETURN
3863 cfun->returns_pcc_struct = 1;
3864 #endif
3865 cfun->returns_struct = 1;
3866 }
3867
3868 cfun->stdarg
3869 = (fntype
3870 && TYPE_ARG_TYPES (fntype) != 0
3871 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3872 != void_type_node));
3873
3874 /* Assume all registers in stdarg functions need to be saved. */
3875 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3876 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3877 }
3878
3879 invoke_set_current_function_hook (fndecl);
3880 }
3881
3882 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
3883 instead of just setting it. */
3884
3885 void
3886 push_struct_function (tree fndecl)
3887 {
3888 if (cfun == NULL)
3889 saved_in_system_header = in_system_header;
3890 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3891 if (fndecl)
3892 in_system_header = DECL_IN_SYSTEM_HEADER (fndecl);
3893 allocate_struct_function (fndecl, false);
3894 }
3895
3896 /* Reset cfun, and other non-struct-function variables to defaults as
3897 appropriate for emitting rtl at the start of a function. */
3898
3899 static void
3900 prepare_function_start (void)
3901 {
3902 gcc_assert (!crtl->emit.x_last_insn);
3903 init_emit ();
3904 init_varasm_status ();
3905 init_expr ();
3906
3907 cse_not_expected = ! optimize;
3908
3909 /* Caller save not needed yet. */
3910 caller_save_needed = 0;
3911
3912 /* We haven't done register allocation yet. */
3913 reg_renumber = 0;
3914
3915 /* Indicate that we have not instantiated virtual registers yet. */
3916 virtuals_instantiated = 0;
3917
3918 /* Indicate that we want CONCATs now. */
3919 generating_concat_p = 1;
3920
3921 /* Indicate we have no need of a frame pointer yet. */
3922 frame_pointer_needed = 0;
3923 }
3924
3925 /* Initialize the rtl expansion mechanism so that we can do simple things
3926 like generate sequences. This is used to provide a context during global
3927 initialization of some passes. You must call expand_dummy_function_end
3928 to exit this context. */
3929
3930 void
3931 init_dummy_function_start (void)
3932 {
3933 gcc_assert (!in_dummy_function);
3934 in_dummy_function = true;
3935 push_struct_function (NULL_TREE);
3936 prepare_function_start ();
3937 }
3938
3939 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3940 and initialize static variables for generating RTL for the statements
3941 of the function. */
3942
3943 void
3944 init_function_start (tree subr)
3945 {
3946 if (subr && DECL_STRUCT_FUNCTION (subr))
3947 set_cfun (DECL_STRUCT_FUNCTION (subr));
3948 else
3949 allocate_struct_function (subr, false);
3950 prepare_function_start ();
3951
3952 /* Warn if this value is an aggregate type,
3953 regardless of which calling convention we are using for it. */
3954 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3955 warning (OPT_Waggregate_return, "function returns an aggregate");
3956 }
3957
3958 /* Make sure all values used by the optimization passes have sane
3959 defaults. */
3960 unsigned int
3961 init_function_for_compilation (void)
3962 {
3963 reg_renumber = 0;
3964
3965 /* No prologue/epilogue insns yet. Make sure that these vectors are
3966 empty. */
3967 gcc_assert (VEC_length (int, prologue) == 0);
3968 gcc_assert (VEC_length (int, epilogue) == 0);
3969 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3970 return 0;
3971 }
3972
3973 struct rtl_opt_pass pass_init_function =
3974 {
3975 {
3976 RTL_PASS,
3977 NULL, /* name */
3978 NULL, /* gate */
3979 init_function_for_compilation, /* execute */
3980 NULL, /* sub */
3981 NULL, /* next */
3982 0, /* static_pass_number */
3983 0, /* tv_id */
3984 0, /* properties_required */
3985 0, /* properties_provided */
3986 0, /* properties_destroyed */
3987 0, /* todo_flags_start */
3988 0 /* todo_flags_finish */
3989 }
3990 };
3991
3992
3993 void
3994 expand_main_function (void)
3995 {
3996 #if (defined(INVOKE__main) \
3997 || (!defined(HAS_INIT_SECTION) \
3998 && !defined(INIT_SECTION_ASM_OP) \
3999 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4000 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4001 #endif
4002 }
4003 \f
4004 /* Expand code to initialize the stack_protect_guard. This is invoked at
4005 the beginning of a function to be protected. */
4006
4007 #ifndef HAVE_stack_protect_set
4008 # define HAVE_stack_protect_set 0
4009 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4010 #endif
4011
4012 void
4013 stack_protect_prologue (void)
4014 {
4015 tree guard_decl = targetm.stack_protect_guard ();
4016 rtx x, y;
4017
4018 /* Avoid expand_expr here, because we don't want guard_decl pulled
4019 into registers unless absolutely necessary. And we know that
4020 crtl->stack_protect_guard is a local stack slot, so this skips
4021 all the fluff. */
4022 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4023 y = validize_mem (DECL_RTL (guard_decl));
4024
4025 /* Allow the target to copy from Y to X without leaking Y into a
4026 register. */
4027 if (HAVE_stack_protect_set)
4028 {
4029 rtx insn = gen_stack_protect_set (x, y);
4030 if (insn)
4031 {
4032 emit_insn (insn);
4033 return;
4034 }
4035 }
4036
4037 /* Otherwise do a straight move. */
4038 emit_move_insn (x, y);
4039 }
4040
4041 /* Expand code to verify the stack_protect_guard. This is invoked at
4042 the end of a function to be protected. */
4043
4044 #ifndef HAVE_stack_protect_test
4045 # define HAVE_stack_protect_test 0
4046 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4047 #endif
4048
4049 void
4050 stack_protect_epilogue (void)
4051 {
4052 tree guard_decl = targetm.stack_protect_guard ();
4053 rtx label = gen_label_rtx ();
4054 rtx x, y, tmp;
4055
4056 /* Avoid expand_expr here, because we don't want guard_decl pulled
4057 into registers unless absolutely necessary. And we know that
4058 crtl->stack_protect_guard is a local stack slot, so this skips
4059 all the fluff. */
4060 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4061 y = validize_mem (DECL_RTL (guard_decl));
4062
4063 /* Allow the target to compare Y with X without leaking either into
4064 a register. */
4065 switch (HAVE_stack_protect_test != 0)
4066 {
4067 case 1:
4068 tmp = gen_stack_protect_test (x, y, label);
4069 if (tmp)
4070 {
4071 emit_insn (tmp);
4072 break;
4073 }
4074 /* FALLTHRU */
4075
4076 default:
4077 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4078 break;
4079 }
4080
4081 /* The noreturn predictor has been moved to the tree level. The rtl-level
4082 predictors estimate this branch about 20%, which isn't enough to get
4083 things moved out of line. Since this is the only extant case of adding
4084 a noreturn function at the rtl level, it doesn't seem worth doing ought
4085 except adding the prediction by hand. */
4086 tmp = get_last_insn ();
4087 if (JUMP_P (tmp))
4088 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4089
4090 expand_expr_stmt (targetm.stack_protect_fail ());
4091 emit_label (label);
4092 }
4093 \f
4094 /* Start the RTL for a new function, and set variables used for
4095 emitting RTL.
4096 SUBR is the FUNCTION_DECL node.
4097 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4098 the function's parameters, which must be run at any return statement. */
4099
4100 void
4101 expand_function_start (tree subr)
4102 {
4103 /* Make sure volatile mem refs aren't considered
4104 valid operands of arithmetic insns. */
4105 init_recog_no_volatile ();
4106
4107 crtl->profile
4108 = (profile_flag
4109 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4110
4111 crtl->limit_stack
4112 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4113
4114 /* Make the label for return statements to jump to. Do not special
4115 case machines with special return instructions -- they will be
4116 handled later during jump, ifcvt, or epilogue creation. */
4117 return_label = gen_label_rtx ();
4118
4119 /* Initialize rtx used to return the value. */
4120 /* Do this before assign_parms so that we copy the struct value address
4121 before any library calls that assign parms might generate. */
4122
4123 /* Decide whether to return the value in memory or in a register. */
4124 if (aggregate_value_p (DECL_RESULT (subr), subr))
4125 {
4126 /* Returning something that won't go in a register. */
4127 rtx value_address = 0;
4128
4129 #ifdef PCC_STATIC_STRUCT_RETURN
4130 if (cfun->returns_pcc_struct)
4131 {
4132 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4133 value_address = assemble_static_space (size);
4134 }
4135 else
4136 #endif
4137 {
4138 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4139 /* Expect to be passed the address of a place to store the value.
4140 If it is passed as an argument, assign_parms will take care of
4141 it. */
4142 if (sv)
4143 {
4144 value_address = gen_reg_rtx (Pmode);
4145 emit_move_insn (value_address, sv);
4146 }
4147 }
4148 if (value_address)
4149 {
4150 rtx x = value_address;
4151 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4152 {
4153 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4154 set_mem_attributes (x, DECL_RESULT (subr), 1);
4155 }
4156 SET_DECL_RTL (DECL_RESULT (subr), x);
4157 }
4158 }
4159 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4160 /* If return mode is void, this decl rtl should not be used. */
4161 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4162 else
4163 {
4164 /* Compute the return values into a pseudo reg, which we will copy
4165 into the true return register after the cleanups are done. */
4166 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4167 if (TYPE_MODE (return_type) != BLKmode
4168 && targetm.calls.return_in_msb (return_type))
4169 /* expand_function_end will insert the appropriate padding in
4170 this case. Use the return value's natural (unpadded) mode
4171 within the function proper. */
4172 SET_DECL_RTL (DECL_RESULT (subr),
4173 gen_reg_rtx (TYPE_MODE (return_type)));
4174 else
4175 {
4176 /* In order to figure out what mode to use for the pseudo, we
4177 figure out what the mode of the eventual return register will
4178 actually be, and use that. */
4179 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4180
4181 /* Structures that are returned in registers are not
4182 aggregate_value_p, so we may see a PARALLEL or a REG. */
4183 if (REG_P (hard_reg))
4184 SET_DECL_RTL (DECL_RESULT (subr),
4185 gen_reg_rtx (GET_MODE (hard_reg)));
4186 else
4187 {
4188 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4189 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4190 }
4191 }
4192
4193 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4194 result to the real return register(s). */
4195 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4196 }
4197
4198 /* Initialize rtx for parameters and local variables.
4199 In some cases this requires emitting insns. */
4200 assign_parms (subr);
4201
4202 /* If function gets a static chain arg, store it. */
4203 if (cfun->static_chain_decl)
4204 {
4205 tree parm = cfun->static_chain_decl;
4206 rtx local = gen_reg_rtx (Pmode);
4207
4208 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4209 SET_DECL_RTL (parm, local);
4210 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4211
4212 emit_move_insn (local, static_chain_incoming_rtx);
4213 }
4214
4215 /* If the function receives a non-local goto, then store the
4216 bits we need to restore the frame pointer. */
4217 if (cfun->nonlocal_goto_save_area)
4218 {
4219 tree t_save;
4220 rtx r_save;
4221
4222 /* ??? We need to do this save early. Unfortunately here is
4223 before the frame variable gets declared. Help out... */
4224 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4225 if (!DECL_RTL_SET_P (var))
4226 expand_decl (var);
4227
4228 t_save = build4 (ARRAY_REF, ptr_type_node,
4229 cfun->nonlocal_goto_save_area,
4230 integer_zero_node, NULL_TREE, NULL_TREE);
4231 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4232 r_save = convert_memory_address (Pmode, r_save);
4233
4234 emit_move_insn (r_save, virtual_stack_vars_rtx);
4235 update_nonlocal_goto_save_area ();
4236 }
4237
4238 /* The following was moved from init_function_start.
4239 The move is supposed to make sdb output more accurate. */
4240 /* Indicate the beginning of the function body,
4241 as opposed to parm setup. */
4242 emit_note (NOTE_INSN_FUNCTION_BEG);
4243
4244 gcc_assert (NOTE_P (get_last_insn ()));
4245
4246 parm_birth_insn = get_last_insn ();
4247
4248 if (crtl->profile)
4249 {
4250 #ifdef PROFILE_HOOK
4251 PROFILE_HOOK (current_function_funcdef_no);
4252 #endif
4253 }
4254
4255 /* After the display initializations is where the stack checking
4256 probe should go. */
4257 if(flag_stack_check)
4258 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4259
4260 /* Make sure there is a line number after the function entry setup code. */
4261 force_next_line_note ();
4262 }
4263 \f
4264 /* Undo the effects of init_dummy_function_start. */
4265 void
4266 expand_dummy_function_end (void)
4267 {
4268 gcc_assert (in_dummy_function);
4269
4270 /* End any sequences that failed to be closed due to syntax errors. */
4271 while (in_sequence_p ())
4272 end_sequence ();
4273
4274 /* Outside function body, can't compute type's actual size
4275 until next function's body starts. */
4276
4277 free_after_parsing (cfun);
4278 free_after_compilation (cfun);
4279 pop_cfun ();
4280 in_dummy_function = false;
4281 }
4282
4283 /* Call DOIT for each hard register used as a return value from
4284 the current function. */
4285
4286 void
4287 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4288 {
4289 rtx outgoing = crtl->return_rtx;
4290
4291 if (! outgoing)
4292 return;
4293
4294 if (REG_P (outgoing))
4295 (*doit) (outgoing, arg);
4296 else if (GET_CODE (outgoing) == PARALLEL)
4297 {
4298 int i;
4299
4300 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4301 {
4302 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4303
4304 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4305 (*doit) (x, arg);
4306 }
4307 }
4308 }
4309
4310 static void
4311 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4312 {
4313 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4314 }
4315
4316 void
4317 clobber_return_register (void)
4318 {
4319 diddle_return_value (do_clobber_return_reg, NULL);
4320
4321 /* In case we do use pseudo to return value, clobber it too. */
4322 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4323 {
4324 tree decl_result = DECL_RESULT (current_function_decl);
4325 rtx decl_rtl = DECL_RTL (decl_result);
4326 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4327 {
4328 do_clobber_return_reg (decl_rtl, NULL);
4329 }
4330 }
4331 }
4332
4333 static void
4334 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4335 {
4336 emit_insn (gen_rtx_USE (VOIDmode, reg));
4337 }
4338
4339 static void
4340 use_return_register (void)
4341 {
4342 diddle_return_value (do_use_return_reg, NULL);
4343 }
4344
4345 /* Possibly warn about unused parameters. */
4346 void
4347 do_warn_unused_parameter (tree fn)
4348 {
4349 tree decl;
4350
4351 for (decl = DECL_ARGUMENTS (fn);
4352 decl; decl = TREE_CHAIN (decl))
4353 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4354 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4355 && !TREE_NO_WARNING (decl))
4356 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4357 }
4358
4359 static GTY(()) rtx initial_trampoline;
4360
4361 /* Generate RTL for the end of the current function. */
4362
4363 void
4364 expand_function_end (void)
4365 {
4366 rtx clobber_after;
4367
4368 /* If arg_pointer_save_area was referenced only from a nested
4369 function, we will not have initialized it yet. Do that now. */
4370 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4371 get_arg_pointer_save_area ();
4372
4373 /* If we are doing stack checking and this function makes calls,
4374 do a stack probe at the start of the function to ensure we have enough
4375 space for another stack frame. */
4376 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4377 {
4378 rtx insn, seq;
4379
4380 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4381 if (CALL_P (insn))
4382 {
4383 start_sequence ();
4384 probe_stack_range (STACK_CHECK_PROTECT,
4385 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4386 seq = get_insns ();
4387 end_sequence ();
4388 emit_insn_before (seq, stack_check_probe_note);
4389 break;
4390 }
4391 }
4392
4393 /* End any sequences that failed to be closed due to syntax errors. */
4394 while (in_sequence_p ())
4395 end_sequence ();
4396
4397 clear_pending_stack_adjust ();
4398 do_pending_stack_adjust ();
4399
4400 /* Output a linenumber for the end of the function.
4401 SDB depends on this. */
4402 force_next_line_note ();
4403 set_curr_insn_source_location (input_location);
4404
4405 /* Before the return label (if any), clobber the return
4406 registers so that they are not propagated live to the rest of
4407 the function. This can only happen with functions that drop
4408 through; if there had been a return statement, there would
4409 have either been a return rtx, or a jump to the return label.
4410
4411 We delay actual code generation after the current_function_value_rtx
4412 is computed. */
4413 clobber_after = get_last_insn ();
4414
4415 /* Output the label for the actual return from the function. */
4416 emit_label (return_label);
4417
4418 if (USING_SJLJ_EXCEPTIONS)
4419 {
4420 /* Let except.c know where it should emit the call to unregister
4421 the function context for sjlj exceptions. */
4422 if (flag_exceptions)
4423 sjlj_emit_function_exit_after (get_last_insn ());
4424 }
4425 else
4426 {
4427 /* We want to ensure that instructions that may trap are not
4428 moved into the epilogue by scheduling, because we don't
4429 always emit unwind information for the epilogue. */
4430 if (flag_non_call_exceptions)
4431 emit_insn (gen_blockage ());
4432 }
4433
4434 /* If this is an implementation of throw, do what's necessary to
4435 communicate between __builtin_eh_return and the epilogue. */
4436 expand_eh_return ();
4437
4438 /* If scalar return value was computed in a pseudo-reg, or was a named
4439 return value that got dumped to the stack, copy that to the hard
4440 return register. */
4441 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4442 {
4443 tree decl_result = DECL_RESULT (current_function_decl);
4444 rtx decl_rtl = DECL_RTL (decl_result);
4445
4446 if (REG_P (decl_rtl)
4447 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4448 : DECL_REGISTER (decl_result))
4449 {
4450 rtx real_decl_rtl = crtl->return_rtx;
4451
4452 /* This should be set in assign_parms. */
4453 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4454
4455 /* If this is a BLKmode structure being returned in registers,
4456 then use the mode computed in expand_return. Note that if
4457 decl_rtl is memory, then its mode may have been changed,
4458 but that crtl->return_rtx has not. */
4459 if (GET_MODE (real_decl_rtl) == BLKmode)
4460 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4461
4462 /* If a non-BLKmode return value should be padded at the least
4463 significant end of the register, shift it left by the appropriate
4464 amount. BLKmode results are handled using the group load/store
4465 machinery. */
4466 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4467 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4468 {
4469 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4470 REGNO (real_decl_rtl)),
4471 decl_rtl);
4472 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4473 }
4474 /* If a named return value dumped decl_return to memory, then
4475 we may need to re-do the PROMOTE_MODE signed/unsigned
4476 extension. */
4477 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4478 {
4479 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4480
4481 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4482 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4483 &unsignedp, 1);
4484
4485 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4486 }
4487 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4488 {
4489 /* If expand_function_start has created a PARALLEL for decl_rtl,
4490 move the result to the real return registers. Otherwise, do
4491 a group load from decl_rtl for a named return. */
4492 if (GET_CODE (decl_rtl) == PARALLEL)
4493 emit_group_move (real_decl_rtl, decl_rtl);
4494 else
4495 emit_group_load (real_decl_rtl, decl_rtl,
4496 TREE_TYPE (decl_result),
4497 int_size_in_bytes (TREE_TYPE (decl_result)));
4498 }
4499 /* In the case of complex integer modes smaller than a word, we'll
4500 need to generate some non-trivial bitfield insertions. Do that
4501 on a pseudo and not the hard register. */
4502 else if (GET_CODE (decl_rtl) == CONCAT
4503 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4504 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4505 {
4506 int old_generating_concat_p;
4507 rtx tmp;
4508
4509 old_generating_concat_p = generating_concat_p;
4510 generating_concat_p = 0;
4511 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4512 generating_concat_p = old_generating_concat_p;
4513
4514 emit_move_insn (tmp, decl_rtl);
4515 emit_move_insn (real_decl_rtl, tmp);
4516 }
4517 else
4518 emit_move_insn (real_decl_rtl, decl_rtl);
4519 }
4520 }
4521
4522 /* If returning a structure, arrange to return the address of the value
4523 in a place where debuggers expect to find it.
4524
4525 If returning a structure PCC style,
4526 the caller also depends on this value.
4527 And cfun->returns_pcc_struct is not necessarily set. */
4528 if (cfun->returns_struct
4529 || cfun->returns_pcc_struct)
4530 {
4531 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4532 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4533 rtx outgoing;
4534
4535 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4536 type = TREE_TYPE (type);
4537 else
4538 value_address = XEXP (value_address, 0);
4539
4540 outgoing = targetm.calls.function_value (build_pointer_type (type),
4541 current_function_decl, true);
4542
4543 /* Mark this as a function return value so integrate will delete the
4544 assignment and USE below when inlining this function. */
4545 REG_FUNCTION_VALUE_P (outgoing) = 1;
4546
4547 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4548 value_address = convert_memory_address (GET_MODE (outgoing),
4549 value_address);
4550
4551 emit_move_insn (outgoing, value_address);
4552
4553 /* Show return register used to hold result (in this case the address
4554 of the result. */
4555 crtl->return_rtx = outgoing;
4556 }
4557
4558 /* Emit the actual code to clobber return register. */
4559 {
4560 rtx seq;
4561
4562 start_sequence ();
4563 clobber_return_register ();
4564 expand_naked_return ();
4565 seq = get_insns ();
4566 end_sequence ();
4567
4568 emit_insn_after (seq, clobber_after);
4569 }
4570
4571 /* Output the label for the naked return from the function. */
4572 emit_label (naked_return_label);
4573
4574 /* @@@ This is a kludge. We want to ensure that instructions that
4575 may trap are not moved into the epilogue by scheduling, because
4576 we don't always emit unwind information for the epilogue. */
4577 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4578 emit_insn (gen_blockage ());
4579
4580 /* If stack protection is enabled for this function, check the guard. */
4581 if (crtl->stack_protect_guard)
4582 stack_protect_epilogue ();
4583
4584 /* If we had calls to alloca, and this machine needs
4585 an accurate stack pointer to exit the function,
4586 insert some code to save and restore the stack pointer. */
4587 if (! EXIT_IGNORE_STACK
4588 && cfun->calls_alloca)
4589 {
4590 rtx tem = 0;
4591
4592 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4593 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4594 }
4595
4596 /* ??? This should no longer be necessary since stupid is no longer with
4597 us, but there are some parts of the compiler (eg reload_combine, and
4598 sh mach_dep_reorg) that still try and compute their own lifetime info
4599 instead of using the general framework. */
4600 use_return_register ();
4601 }
4602
4603 rtx
4604 get_arg_pointer_save_area (void)
4605 {
4606 rtx ret = arg_pointer_save_area;
4607
4608 if (! ret)
4609 {
4610 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4611 arg_pointer_save_area = ret;
4612 }
4613
4614 if (! crtl->arg_pointer_save_area_init)
4615 {
4616 rtx seq;
4617
4618 /* Save the arg pointer at the beginning of the function. The
4619 generated stack slot may not be a valid memory address, so we
4620 have to check it and fix it if necessary. */
4621 start_sequence ();
4622 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4623 seq = get_insns ();
4624 end_sequence ();
4625
4626 push_topmost_sequence ();
4627 emit_insn_after (seq, entry_of_function ());
4628 pop_topmost_sequence ();
4629 }
4630
4631 return ret;
4632 }
4633 \f
4634 /* Extend a vector that records the INSN_UIDs of INSNS
4635 (a list of one or more insns). */
4636
4637 static void
4638 record_insns (rtx insns, VEC(int,heap) **vecp)
4639 {
4640 rtx tmp;
4641
4642 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4643 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4644 }
4645
4646 /* Set the locator of the insn chain starting at INSN to LOC. */
4647 static void
4648 set_insn_locators (rtx insn, int loc)
4649 {
4650 while (insn != NULL_RTX)
4651 {
4652 if (INSN_P (insn))
4653 INSN_LOCATOR (insn) = loc;
4654 insn = NEXT_INSN (insn);
4655 }
4656 }
4657
4658 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4659 be running after reorg, SEQUENCE rtl is possible. */
4660
4661 static int
4662 contains (const_rtx insn, VEC(int,heap) **vec)
4663 {
4664 int i, j;
4665
4666 if (NONJUMP_INSN_P (insn)
4667 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4668 {
4669 int count = 0;
4670 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4671 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4672 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4673 == VEC_index (int, *vec, j))
4674 count++;
4675 return count;
4676 }
4677 else
4678 {
4679 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4680 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4681 return 1;
4682 }
4683 return 0;
4684 }
4685
4686 int
4687 prologue_epilogue_contains (const_rtx insn)
4688 {
4689 if (contains (insn, &prologue))
4690 return 1;
4691 if (contains (insn, &epilogue))
4692 return 1;
4693 return 0;
4694 }
4695
4696 int
4697 sibcall_epilogue_contains (const_rtx insn)
4698 {
4699 if (sibcall_epilogue)
4700 return contains (insn, &sibcall_epilogue);
4701 return 0;
4702 }
4703
4704 #ifdef HAVE_return
4705 /* Insert gen_return at the end of block BB. This also means updating
4706 block_for_insn appropriately. */
4707
4708 static void
4709 emit_return_into_block (basic_block bb)
4710 {
4711 emit_jump_insn_after (gen_return (), BB_END (bb));
4712 }
4713 #endif /* HAVE_return */
4714
4715 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4716 this into place with notes indicating where the prologue ends and where
4717 the epilogue begins. Update the basic block information when possible. */
4718
4719 static void
4720 thread_prologue_and_epilogue_insns (void)
4721 {
4722 int inserted = 0;
4723 edge e;
4724 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4725 rtx seq;
4726 #endif
4727 #if defined (HAVE_epilogue) || defined(HAVE_return)
4728 rtx epilogue_end = NULL_RTX;
4729 #endif
4730 edge_iterator ei;
4731
4732 #ifdef HAVE_prologue
4733 if (HAVE_prologue)
4734 {
4735 start_sequence ();
4736 seq = gen_prologue ();
4737 emit_insn (seq);
4738
4739 /* Insert an explicit USE for the frame pointer
4740 if the profiling is on and the frame pointer is required. */
4741 if (crtl->profile && frame_pointer_needed)
4742 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
4743
4744 /* Retain a map of the prologue insns. */
4745 record_insns (seq, &prologue);
4746 emit_note (NOTE_INSN_PROLOGUE_END);
4747
4748 #ifndef PROFILE_BEFORE_PROLOGUE
4749 /* Ensure that instructions are not moved into the prologue when
4750 profiling is on. The call to the profiling routine can be
4751 emitted within the live range of a call-clobbered register. */
4752 if (crtl->profile)
4753 emit_insn (gen_blockage ());
4754 #endif
4755
4756 seq = get_insns ();
4757 end_sequence ();
4758 set_insn_locators (seq, prologue_locator);
4759
4760 /* Can't deal with multiple successors of the entry block
4761 at the moment. Function should always have at least one
4762 entry point. */
4763 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
4764
4765 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
4766 inserted = 1;
4767 }
4768 #endif
4769
4770 /* If the exit block has no non-fake predecessors, we don't need
4771 an epilogue. */
4772 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4773 if ((e->flags & EDGE_FAKE) == 0)
4774 break;
4775 if (e == NULL)
4776 goto epilogue_done;
4777
4778 #ifdef HAVE_return
4779 if (optimize && HAVE_return)
4780 {
4781 /* If we're allowed to generate a simple return instruction,
4782 then by definition we don't need a full epilogue. Examine
4783 the block that falls through to EXIT. If it does not
4784 contain any code, examine its predecessors and try to
4785 emit (conditional) return instructions. */
4786
4787 basic_block last;
4788 rtx label;
4789
4790 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4791 if (e->flags & EDGE_FALLTHRU)
4792 break;
4793 if (e == NULL)
4794 goto epilogue_done;
4795 last = e->src;
4796
4797 /* Verify that there are no active instructions in the last block. */
4798 label = BB_END (last);
4799 while (label && !LABEL_P (label))
4800 {
4801 if (active_insn_p (label))
4802 break;
4803 label = PREV_INSN (label);
4804 }
4805
4806 if (BB_HEAD (last) == label && LABEL_P (label))
4807 {
4808 edge_iterator ei2;
4809
4810 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
4811 {
4812 basic_block bb = e->src;
4813 rtx jump;
4814
4815 if (bb == ENTRY_BLOCK_PTR)
4816 {
4817 ei_next (&ei2);
4818 continue;
4819 }
4820
4821 jump = BB_END (bb);
4822 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
4823 {
4824 ei_next (&ei2);
4825 continue;
4826 }
4827
4828 /* If we have an unconditional jump, we can replace that
4829 with a simple return instruction. */
4830 if (simplejump_p (jump))
4831 {
4832 emit_return_into_block (bb);
4833 delete_insn (jump);
4834 }
4835
4836 /* If we have a conditional jump, we can try to replace
4837 that with a conditional return instruction. */
4838 else if (condjump_p (jump))
4839 {
4840 if (! redirect_jump (jump, 0, 0))
4841 {
4842 ei_next (&ei2);
4843 continue;
4844 }
4845
4846 /* If this block has only one successor, it both jumps
4847 and falls through to the fallthru block, so we can't
4848 delete the edge. */
4849 if (single_succ_p (bb))
4850 {
4851 ei_next (&ei2);
4852 continue;
4853 }
4854 }
4855 else
4856 {
4857 ei_next (&ei2);
4858 continue;
4859 }
4860
4861 /* Fix up the CFG for the successful change we just made. */
4862 redirect_edge_succ (e, EXIT_BLOCK_PTR);
4863 }
4864
4865 /* Emit a return insn for the exit fallthru block. Whether
4866 this is still reachable will be determined later. */
4867
4868 emit_barrier_after (BB_END (last));
4869 emit_return_into_block (last);
4870 epilogue_end = BB_END (last);
4871 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
4872 goto epilogue_done;
4873 }
4874 }
4875 #endif
4876 /* Find the edge that falls through to EXIT. Other edges may exist
4877 due to RETURN instructions, but those don't need epilogues.
4878 There really shouldn't be a mixture -- either all should have
4879 been converted or none, however... */
4880
4881 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4882 if (e->flags & EDGE_FALLTHRU)
4883 break;
4884 if (e == NULL)
4885 goto epilogue_done;
4886
4887 #ifdef HAVE_epilogue
4888 if (HAVE_epilogue)
4889 {
4890 start_sequence ();
4891 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
4892 seq = gen_epilogue ();
4893 emit_jump_insn (seq);
4894
4895 /* Retain a map of the epilogue insns. */
4896 record_insns (seq, &epilogue);
4897 set_insn_locators (seq, epilogue_locator);
4898
4899 seq = get_insns ();
4900 end_sequence ();
4901
4902 insert_insn_on_edge (seq, e);
4903 inserted = 1;
4904 }
4905 else
4906 #endif
4907 {
4908 basic_block cur_bb;
4909
4910 if (! next_active_insn (BB_END (e->src)))
4911 goto epilogue_done;
4912 /* We have a fall-through edge to the exit block, the source is not
4913 at the end of the function, and there will be an assembler epilogue
4914 at the end of the function.
4915 We can't use force_nonfallthru here, because that would try to
4916 use return. Inserting a jump 'by hand' is extremely messy, so
4917 we take advantage of cfg_layout_finalize using
4918 fixup_fallthru_exit_predecessor. */
4919 cfg_layout_initialize (0);
4920 FOR_EACH_BB (cur_bb)
4921 if (cur_bb->index >= NUM_FIXED_BLOCKS
4922 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
4923 cur_bb->aux = cur_bb->next_bb;
4924 cfg_layout_finalize ();
4925 }
4926 epilogue_done:
4927
4928 if (inserted)
4929 {
4930 commit_edge_insertions ();
4931
4932 /* The epilogue insns we inserted may cause the exit edge to no longer
4933 be fallthru. */
4934 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4935 {
4936 if (((e->flags & EDGE_FALLTHRU) != 0)
4937 && returnjump_p (BB_END (e->src)))
4938 e->flags &= ~EDGE_FALLTHRU;
4939 }
4940 }
4941
4942 #ifdef HAVE_sibcall_epilogue
4943 /* Emit sibling epilogues before any sibling call sites. */
4944 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
4945 {
4946 basic_block bb = e->src;
4947 rtx insn = BB_END (bb);
4948
4949 if (!CALL_P (insn)
4950 || ! SIBLING_CALL_P (insn))
4951 {
4952 ei_next (&ei);
4953 continue;
4954 }
4955
4956 start_sequence ();
4957 emit_insn (gen_sibcall_epilogue ());
4958 seq = get_insns ();
4959 end_sequence ();
4960
4961 /* Retain a map of the epilogue insns. Used in life analysis to
4962 avoid getting rid of sibcall epilogue insns. Do this before we
4963 actually emit the sequence. */
4964 record_insns (seq, &sibcall_epilogue);
4965 set_insn_locators (seq, epilogue_locator);
4966
4967 emit_insn_before (seq, insn);
4968 ei_next (&ei);
4969 }
4970 #endif
4971
4972 #ifdef HAVE_epilogue
4973 if (epilogue_end)
4974 {
4975 rtx insn, next;
4976
4977 /* Similarly, move any line notes that appear after the epilogue.
4978 There is no need, however, to be quite so anal about the existence
4979 of such a note. Also possibly move
4980 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
4981 info generation. */
4982 for (insn = epilogue_end; insn; insn = next)
4983 {
4984 next = NEXT_INSN (insn);
4985 if (NOTE_P (insn)
4986 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
4987 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
4988 }
4989 }
4990 #endif
4991
4992 /* Threading the prologue and epilogue changes the artificial refs
4993 in the entry and exit blocks. */
4994 epilogue_completed = 1;
4995 df_update_entry_exit_and_calls ();
4996 }
4997
4998 /* Reposition the prologue-end and epilogue-begin notes after instruction
4999 scheduling and delayed branch scheduling. */
5000
5001 void
5002 reposition_prologue_and_epilogue_notes (void)
5003 {
5004 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5005 rtx insn, last, note;
5006 int len;
5007
5008 if ((len = VEC_length (int, prologue)) > 0)
5009 {
5010 last = 0, note = 0;
5011
5012 /* Scan from the beginning until we reach the last prologue insn.
5013 We apparently can't depend on basic_block_{head,end} after
5014 reorg has run. */
5015 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5016 {
5017 if (NOTE_P (insn))
5018 {
5019 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5020 note = insn;
5021 }
5022 else if (contains (insn, &prologue))
5023 {
5024 last = insn;
5025 if (--len == 0)
5026 break;
5027 }
5028 }
5029
5030 if (last)
5031 {
5032 /* Find the prologue-end note if we haven't already, and
5033 move it to just after the last prologue insn. */
5034 if (note == 0)
5035 {
5036 for (note = last; (note = NEXT_INSN (note));)
5037 if (NOTE_P (note)
5038 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5039 break;
5040 }
5041
5042 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5043 if (LABEL_P (last))
5044 last = NEXT_INSN (last);
5045 reorder_insns (note, note, last);
5046 }
5047 }
5048
5049 if ((len = VEC_length (int, epilogue)) > 0)
5050 {
5051 last = 0, note = 0;
5052
5053 /* Scan from the end until we reach the first epilogue insn.
5054 We apparently can't depend on basic_block_{head,end} after
5055 reorg has run. */
5056 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5057 {
5058 if (NOTE_P (insn))
5059 {
5060 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5061 note = insn;
5062 }
5063 else if (contains (insn, &epilogue))
5064 {
5065 last = insn;
5066 if (--len == 0)
5067 break;
5068 }
5069 }
5070
5071 if (last)
5072 {
5073 /* Find the epilogue-begin note if we haven't already, and
5074 move it to just before the first epilogue insn. */
5075 if (note == 0)
5076 {
5077 for (note = insn; (note = PREV_INSN (note));)
5078 if (NOTE_P (note)
5079 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5080 break;
5081 }
5082
5083 if (PREV_INSN (last) != note)
5084 reorder_insns (note, note, PREV_INSN (last));
5085 }
5086 }
5087 #endif /* HAVE_prologue or HAVE_epilogue */
5088 }
5089
5090 /* Returns the name of the current function. */
5091 const char *
5092 current_function_name (void)
5093 {
5094 return lang_hooks.decl_printable_name (cfun->decl, 2);
5095 }
5096
5097 /* Returns the raw (mangled) name of the current function. */
5098 const char *
5099 current_function_assembler_name (void)
5100 {
5101 return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
5102 }
5103 \f
5104
5105 static unsigned int
5106 rest_of_handle_check_leaf_regs (void)
5107 {
5108 #ifdef LEAF_REGISTERS
5109 current_function_uses_only_leaf_regs
5110 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5111 #endif
5112 return 0;
5113 }
5114
5115 /* Insert a TYPE into the used types hash table of CFUN. */
5116 static void
5117 used_types_insert_helper (tree type, struct function *func)
5118 {
5119 if (type != NULL && func != NULL)
5120 {
5121 void **slot;
5122
5123 if (func->used_types_hash == NULL)
5124 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5125 htab_eq_pointer, NULL);
5126 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5127 if (*slot == NULL)
5128 *slot = type;
5129 }
5130 }
5131
5132 /* Given a type, insert it into the used hash table in cfun. */
5133 void
5134 used_types_insert (tree t)
5135 {
5136 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5137 t = TREE_TYPE (t);
5138 t = TYPE_MAIN_VARIANT (t);
5139 if (debug_info_level > DINFO_LEVEL_NONE)
5140 used_types_insert_helper (t, cfun);
5141 }
5142
5143 struct rtl_opt_pass pass_leaf_regs =
5144 {
5145 {
5146 RTL_PASS,
5147 NULL, /* name */
5148 NULL, /* gate */
5149 rest_of_handle_check_leaf_regs, /* execute */
5150 NULL, /* sub */
5151 NULL, /* next */
5152 0, /* static_pass_number */
5153 0, /* tv_id */
5154 0, /* properties_required */
5155 0, /* properties_provided */
5156 0, /* properties_destroyed */
5157 0, /* todo_flags_start */
5158 0 /* todo_flags_finish */
5159 }
5160 };
5161
5162 static unsigned int
5163 rest_of_handle_thread_prologue_and_epilogue (void)
5164 {
5165 if (optimize)
5166 cleanup_cfg (CLEANUP_EXPENSIVE);
5167 /* On some machines, the prologue and epilogue code, or parts thereof,
5168 can be represented as RTL. Doing so lets us schedule insns between
5169 it and the rest of the code and also allows delayed branch
5170 scheduling to operate in the epilogue. */
5171
5172 thread_prologue_and_epilogue_insns ();
5173 return 0;
5174 }
5175
5176 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5177 {
5178 {
5179 RTL_PASS,
5180 "pro_and_epilogue", /* name */
5181 NULL, /* gate */
5182 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5183 NULL, /* sub */
5184 NULL, /* next */
5185 0, /* static_pass_number */
5186 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5187 0, /* properties_required */
5188 0, /* properties_provided */
5189 0, /* properties_destroyed */
5190 TODO_verify_flow, /* todo_flags_start */
5191 TODO_dump_func |
5192 TODO_df_verify |
5193 TODO_df_finish | TODO_verify_rtl_sharing |
5194 TODO_ggc_collect /* todo_flags_finish */
5195 }
5196 };
5197 \f
5198
5199 /* This mini-pass fixes fall-out from SSA in asm statements that have
5200 in-out constraints. Say you start with
5201
5202 orig = inout;
5203 asm ("": "+mr" (inout));
5204 use (orig);
5205
5206 which is transformed very early to use explicit output and match operands:
5207
5208 orig = inout;
5209 asm ("": "=mr" (inout) : "0" (inout));
5210 use (orig);
5211
5212 Or, after SSA and copyprop,
5213
5214 asm ("": "=mr" (inout_2) : "0" (inout_1));
5215 use (inout_1);
5216
5217 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5218 they represent two separate values, so they will get different pseudo
5219 registers during expansion. Then, since the two operands need to match
5220 per the constraints, but use different pseudo registers, reload can
5221 only register a reload for these operands. But reloads can only be
5222 satisfied by hardregs, not by memory, so we need a register for this
5223 reload, just because we are presented with non-matching operands.
5224 So, even though we allow memory for this operand, no memory can be
5225 used for it, just because the two operands don't match. This can
5226 cause reload failures on register-starved targets.
5227
5228 So it's a symptom of reload not being able to use memory for reloads
5229 or, alternatively it's also a symptom of both operands not coming into
5230 reload as matching (in which case the pseudo could go to memory just
5231 fine, as the alternative allows it, and no reload would be necessary).
5232 We fix the latter problem here, by transforming
5233
5234 asm ("": "=mr" (inout_2) : "0" (inout_1));
5235
5236 back to
5237
5238 inout_2 = inout_1;
5239 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5240
5241 static void
5242 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5243 {
5244 int i;
5245 bool changed = false;
5246 rtx op = SET_SRC (p_sets[0]);
5247 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5248 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5249 bool *output_matched = alloca (noutputs * sizeof (bool));
5250
5251 memset (output_matched, 0, noutputs * sizeof (bool));
5252 for (i = 0; i < ninputs; i++)
5253 {
5254 rtx input, output, insns;
5255 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5256 char *end;
5257 int match, j;
5258
5259 match = strtoul (constraint, &end, 10);
5260 if (end == constraint)
5261 continue;
5262
5263 gcc_assert (match < noutputs);
5264 output = SET_DEST (p_sets[match]);
5265 input = RTVEC_ELT (inputs, i);
5266 /* Only do the transformation for pseudos. */
5267 if (! REG_P (output)
5268 || rtx_equal_p (output, input)
5269 || (GET_MODE (input) != VOIDmode
5270 && GET_MODE (input) != GET_MODE (output)))
5271 continue;
5272
5273 /* We can't do anything if the output is also used as input,
5274 as we're going to overwrite it. */
5275 for (j = 0; j < ninputs; j++)
5276 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5277 break;
5278 if (j != ninputs)
5279 continue;
5280
5281 /* Avoid changing the same input several times. For
5282 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5283 only change in once (to out1), rather than changing it
5284 first to out1 and afterwards to out2. */
5285 if (i > 0)
5286 {
5287 for (j = 0; j < noutputs; j++)
5288 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5289 break;
5290 if (j != noutputs)
5291 continue;
5292 }
5293 output_matched[match] = true;
5294
5295 start_sequence ();
5296 emit_move_insn (output, input);
5297 insns = get_insns ();
5298 end_sequence ();
5299 emit_insn_before (insns, insn);
5300
5301 /* Now replace all mentions of the input with output. We can't
5302 just replace the occurence in inputs[i], as the register might
5303 also be used in some other input (or even in an address of an
5304 output), which would mean possibly increasing the number of
5305 inputs by one (namely 'output' in addition), which might pose
5306 a too complicated problem for reload to solve. E.g. this situation:
5307
5308 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5309
5310 Here 'input' is used in two occurrences as input (once for the
5311 input operand, once for the address in the second output operand).
5312 If we would replace only the occurence of the input operand (to
5313 make the matching) we would be left with this:
5314
5315 output = input
5316 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5317
5318 Now we suddenly have two different input values (containing the same
5319 value, but different pseudos) where we formerly had only one.
5320 With more complicated asms this might lead to reload failures
5321 which wouldn't have happen without this pass. So, iterate over
5322 all operands and replace all occurrences of the register used. */
5323 for (j = 0; j < noutputs; j++)
5324 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5325 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5326 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5327 input, output);
5328 for (j = 0; j < ninputs; j++)
5329 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5330 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5331 input, output);
5332
5333 changed = true;
5334 }
5335
5336 if (changed)
5337 df_insn_rescan (insn);
5338 }
5339
5340 static unsigned
5341 rest_of_match_asm_constraints (void)
5342 {
5343 basic_block bb;
5344 rtx insn, pat, *p_sets;
5345 int noutputs;
5346
5347 if (!crtl->has_asm_statement)
5348 return 0;
5349
5350 df_set_flags (DF_DEFER_INSN_RESCAN);
5351 FOR_EACH_BB (bb)
5352 {
5353 FOR_BB_INSNS (bb, insn)
5354 {
5355 if (!INSN_P (insn))
5356 continue;
5357
5358 pat = PATTERN (insn);
5359 if (GET_CODE (pat) == PARALLEL)
5360 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5361 else if (GET_CODE (pat) == SET)
5362 p_sets = &PATTERN (insn), noutputs = 1;
5363 else
5364 continue;
5365
5366 if (GET_CODE (*p_sets) == SET
5367 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5368 match_asm_constraints_1 (insn, p_sets, noutputs);
5369 }
5370 }
5371
5372 return TODO_df_finish;
5373 }
5374
5375 struct rtl_opt_pass pass_match_asm_constraints =
5376 {
5377 {
5378 RTL_PASS,
5379 "asmcons", /* name */
5380 NULL, /* gate */
5381 rest_of_match_asm_constraints, /* execute */
5382 NULL, /* sub */
5383 NULL, /* next */
5384 0, /* static_pass_number */
5385 0, /* tv_id */
5386 0, /* properties_required */
5387 0, /* properties_provided */
5388 0, /* properties_destroyed */
5389 0, /* todo_flags_start */
5390 TODO_dump_func /* todo_flags_finish */
5391 }
5392 };
5393
5394
5395 #include "gt-function.h"