function.c (free_after_compilation): Call insn_locators_free.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
75
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
85
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
100
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
105
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
110
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
116
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
119
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
123
124 /* The currently compiled function. */
125 struct function *cfun = 0;
126
127 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
128 static VEC(int,heap) *prologue;
129 static VEC(int,heap) *epilogue;
130
131 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
132 in this function. */
133 static VEC(int,heap) *sibcall_epilogue;
134 \f
135 /* In order to evaluate some expressions, such as function calls returning
136 structures in memory, we need to temporarily allocate stack locations.
137 We record each allocated temporary in the following structure.
138
139 Associated with each temporary slot is a nesting level. When we pop up
140 one level, all temporaries associated with the previous level are freed.
141 Normally, all temporaries are freed after the execution of the statement
142 in which they were created. However, if we are inside a ({...}) grouping,
143 the result may be in a temporary and hence must be preserved. If the
144 result could be in a temporary, we preserve it if we can determine which
145 one it is in. If we cannot determine which temporary may contain the
146 result, all temporaries are preserved. A temporary is preserved by
147 pretending it was allocated at the previous nesting level.
148
149 Automatic variables are also assigned temporary slots, at the nesting
150 level where they are defined. They are marked a "kept" so that
151 free_temp_slots will not free them. */
152
153 struct temp_slot GTY(())
154 {
155 /* Points to next temporary slot. */
156 struct temp_slot *next;
157 /* Points to previous temporary slot. */
158 struct temp_slot *prev;
159
160 /* The rtx to used to reference the slot. */
161 rtx slot;
162 /* The rtx used to represent the address if not the address of the
163 slot above. May be an EXPR_LIST if multiple addresses exist. */
164 rtx address;
165 /* The alignment (in bits) of the slot. */
166 unsigned int align;
167 /* The size, in units, of the slot. */
168 HOST_WIDE_INT size;
169 /* The type of the object in the slot, or zero if it doesn't correspond
170 to a type. We use this to determine whether a slot can be reused.
171 It can be reused if objects of the type of the new slot will always
172 conflict with objects of the type of the old slot. */
173 tree type;
174 /* Nonzero if this temporary is currently in use. */
175 char in_use;
176 /* Nonzero if this temporary has its address taken. */
177 char addr_taken;
178 /* Nesting level at which this slot is being used. */
179 int level;
180 /* Nonzero if this should survive a call to free_temp_slots. */
181 int keep;
182 /* The offset of the slot from the frame_pointer, including extra space
183 for alignment. This info is for combine_temp_slots. */
184 HOST_WIDE_INT base_offset;
185 /* The size of the slot, including extra space for alignment. This
186 info is for combine_temp_slots. */
187 HOST_WIDE_INT full_size;
188 };
189 \f
190 /* Forward declarations. */
191
192 static struct temp_slot *find_temp_slot_from_address (rtx);
193 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
194 static void pad_below (struct args_size *, enum machine_mode, tree);
195 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
196 static int all_blocks (tree, tree *);
197 static tree *get_block_vector (tree, int *);
198 extern tree debug_find_var_in_block_tree (tree, tree);
199 /* We always define `record_insns' even if it's not used so that we
200 can always export `prologue_epilogue_contains'. */
201 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
202 static int contains (const_rtx, VEC(int,heap) **);
203 #ifdef HAVE_return
204 static void emit_return_into_block (basic_block);
205 #endif
206 static void prepare_function_start (void);
207 static void do_clobber_return_reg (rtx, void *);
208 static void do_use_return_reg (rtx, void *);
209 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
210 \f
211 /* Pointer to chain of `struct function' for containing functions. */
212 struct function *outer_function_chain;
213
214 /* Given a function decl for a containing function,
215 return the `struct function' for it. */
216
217 struct function *
218 find_function_data (tree decl)
219 {
220 struct function *p;
221
222 for (p = outer_function_chain; p; p = p->outer)
223 if (p->decl == decl)
224 return p;
225
226 gcc_unreachable ();
227 }
228
229 /* Save the current context for compilation of a nested function.
230 This is called from language-specific code. */
231
232 void
233 push_function_context (void)
234 {
235 if (cfun == 0)
236 allocate_struct_function (NULL, false);
237
238 cfun->outer = outer_function_chain;
239 outer_function_chain = cfun;
240 set_cfun (NULL);
241 }
242
243 /* Restore the last saved context, at the end of a nested function.
244 This function is called from language-specific code. */
245
246 void
247 pop_function_context (void)
248 {
249 struct function *p = outer_function_chain;
250
251 set_cfun (p);
252 outer_function_chain = p->outer;
253 current_function_decl = p->decl;
254
255 /* Reset variables that have known state during rtx generation. */
256 virtuals_instantiated = 0;
257 generating_concat_p = 1;
258 }
259
260 /* Clear out all parts of the state in F that can safely be discarded
261 after the function has been parsed, but not compiled, to let
262 garbage collection reclaim the memory. */
263
264 void
265 free_after_parsing (struct function *f)
266 {
267 f->language = 0;
268 }
269
270 /* Clear out all parts of the state in F that can safely be discarded
271 after the function has been compiled, to let garbage collection
272 reclaim the memory. */
273
274 void
275 free_after_compilation (struct function *f)
276 {
277 VEC_free (int, heap, prologue);
278 VEC_free (int, heap, epilogue);
279 VEC_free (int, heap, sibcall_epilogue);
280 if (crtl->emit.regno_pointer_align)
281 free (crtl->emit.regno_pointer_align);
282
283 memset (crtl, 0, sizeof (struct rtl_data));
284 f->eh = NULL;
285 f->machine = NULL;
286 f->cfg = NULL;
287
288 regno_reg_rtx = NULL;
289 insn_locators_free ();
290 }
291 \f
292 /* Return size needed for stack frame based on slots so far allocated.
293 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
294 the caller may have to do that. */
295
296 HOST_WIDE_INT
297 get_frame_size (void)
298 {
299 if (FRAME_GROWS_DOWNWARD)
300 return -frame_offset;
301 else
302 return frame_offset;
303 }
304
305 /* Issue an error message and return TRUE if frame OFFSET overflows in
306 the signed target pointer arithmetics for function FUNC. Otherwise
307 return FALSE. */
308
309 bool
310 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
311 {
312 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
313
314 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
315 /* Leave room for the fixed part of the frame. */
316 - 64 * UNITS_PER_WORD)
317 {
318 error ("%Jtotal size of local objects too large", func);
319 return TRUE;
320 }
321
322 return FALSE;
323 }
324
325 /* Return stack slot alignment in bits for TYPE and MODE. */
326
327 static unsigned int
328 get_stack_local_alignment (tree type, enum machine_mode mode)
329 {
330 unsigned int alignment;
331
332 if (mode == BLKmode)
333 alignment = BIGGEST_ALIGNMENT;
334 else
335 alignment = GET_MODE_ALIGNMENT (mode);
336
337 /* Allow the frond-end to (possibly) increase the alignment of this
338 stack slot. */
339 if (! type)
340 type = lang_hooks.types.type_for_mode (mode, 0);
341
342 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
343 }
344
345 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
346 with machine mode MODE.
347
348 ALIGN controls the amount of alignment for the address of the slot:
349 0 means according to MODE,
350 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
351 -2 means use BITS_PER_UNIT,
352 positive specifies alignment boundary in bits.
353
354 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
355
356 We do not round to stack_boundary here. */
357
358 rtx
359 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
360 int align,
361 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
362 {
363 rtx x, addr;
364 int bigend_correction = 0;
365 unsigned int alignment, alignment_in_bits;
366 int frame_off, frame_alignment, frame_phase;
367
368 if (align == 0)
369 {
370 alignment = get_stack_local_alignment (NULL, mode);
371 alignment /= BITS_PER_UNIT;
372 }
373 else if (align == -1)
374 {
375 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
376 size = CEIL_ROUND (size, alignment);
377 }
378 else if (align == -2)
379 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
380 else
381 alignment = align / BITS_PER_UNIT;
382
383 alignment_in_bits = alignment * BITS_PER_UNIT;
384
385 if (FRAME_GROWS_DOWNWARD)
386 frame_offset -= size;
387
388 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
389 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
390 {
391 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
392 alignment = alignment_in_bits / BITS_PER_UNIT;
393 }
394
395 if (SUPPORTS_STACK_ALIGNMENT)
396 {
397 if (crtl->stack_alignment_estimated < alignment_in_bits)
398 {
399 if (!crtl->stack_realign_processed)
400 crtl->stack_alignment_estimated = alignment_in_bits;
401 else
402 {
403 /* If stack is realigned and stack alignment value
404 hasn't been finalized, it is OK not to increase
405 stack_alignment_estimated. The bigger alignment
406 requirement is recorded in stack_alignment_needed
407 below. */
408 gcc_assert (!crtl->stack_realign_finalized);
409 if (!crtl->stack_realign_needed)
410 {
411 /* It is OK to reduce the alignment as long as the
412 requested size is 0 or the estimated stack
413 alignment >= mode alignment. */
414 gcc_assert (reduce_alignment_ok
415 || size == 0
416 || (crtl->stack_alignment_estimated
417 >= GET_MODE_ALIGNMENT (mode)));
418 alignment_in_bits = crtl->stack_alignment_estimated;
419 alignment = alignment_in_bits / BITS_PER_UNIT;
420 }
421 }
422 }
423 }
424
425 if (crtl->stack_alignment_needed < alignment_in_bits)
426 crtl->stack_alignment_needed = alignment_in_bits;
427 if (crtl->max_used_stack_slot_alignment < crtl->stack_alignment_needed)
428 crtl->max_used_stack_slot_alignment = crtl->stack_alignment_needed;
429
430 /* Calculate how many bytes the start of local variables is off from
431 stack alignment. */
432 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
433 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
434 frame_phase = frame_off ? frame_alignment - frame_off : 0;
435
436 /* Round the frame offset to the specified alignment. The default is
437 to always honor requests to align the stack but a port may choose to
438 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
439 if (STACK_ALIGNMENT_NEEDED
440 || mode != BLKmode
441 || size != 0)
442 {
443 /* We must be careful here, since FRAME_OFFSET might be negative and
444 division with a negative dividend isn't as well defined as we might
445 like. So we instead assume that ALIGNMENT is a power of two and
446 use logical operations which are unambiguous. */
447 if (FRAME_GROWS_DOWNWARD)
448 frame_offset
449 = (FLOOR_ROUND (frame_offset - frame_phase,
450 (unsigned HOST_WIDE_INT) alignment)
451 + frame_phase);
452 else
453 frame_offset
454 = (CEIL_ROUND (frame_offset - frame_phase,
455 (unsigned HOST_WIDE_INT) alignment)
456 + frame_phase);
457 }
458
459 /* On a big-endian machine, if we are allocating more space than we will use,
460 use the least significant bytes of those that are allocated. */
461 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
462 bigend_correction = size - GET_MODE_SIZE (mode);
463
464 /* If we have already instantiated virtual registers, return the actual
465 address relative to the frame pointer. */
466 if (virtuals_instantiated)
467 addr = plus_constant (frame_pointer_rtx,
468 trunc_int_for_mode
469 (frame_offset + bigend_correction
470 + STARTING_FRAME_OFFSET, Pmode));
471 else
472 addr = plus_constant (virtual_stack_vars_rtx,
473 trunc_int_for_mode
474 (frame_offset + bigend_correction,
475 Pmode));
476
477 if (!FRAME_GROWS_DOWNWARD)
478 frame_offset += size;
479
480 x = gen_rtx_MEM (mode, addr);
481 set_mem_align (x, alignment_in_bits);
482 MEM_NOTRAP_P (x) = 1;
483
484 stack_slot_list
485 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
486
487 if (frame_offset_overflow (frame_offset, current_function_decl))
488 frame_offset = 0;
489
490 return x;
491 }
492
493 /* Wrap up assign_stack_local_1 with last parameter as false. */
494
495 rtx
496 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
497 {
498 return assign_stack_local_1 (mode, size, align, false);
499 }
500 \f
501 /* Removes temporary slot TEMP from LIST. */
502
503 static void
504 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
505 {
506 if (temp->next)
507 temp->next->prev = temp->prev;
508 if (temp->prev)
509 temp->prev->next = temp->next;
510 else
511 *list = temp->next;
512
513 temp->prev = temp->next = NULL;
514 }
515
516 /* Inserts temporary slot TEMP to LIST. */
517
518 static void
519 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
520 {
521 temp->next = *list;
522 if (*list)
523 (*list)->prev = temp;
524 temp->prev = NULL;
525 *list = temp;
526 }
527
528 /* Returns the list of used temp slots at LEVEL. */
529
530 static struct temp_slot **
531 temp_slots_at_level (int level)
532 {
533 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
534 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
535
536 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
537 }
538
539 /* Returns the maximal temporary slot level. */
540
541 static int
542 max_slot_level (void)
543 {
544 if (!used_temp_slots)
545 return -1;
546
547 return VEC_length (temp_slot_p, used_temp_slots) - 1;
548 }
549
550 /* Moves temporary slot TEMP to LEVEL. */
551
552 static void
553 move_slot_to_level (struct temp_slot *temp, int level)
554 {
555 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
556 insert_slot_to_list (temp, temp_slots_at_level (level));
557 temp->level = level;
558 }
559
560 /* Make temporary slot TEMP available. */
561
562 static void
563 make_slot_available (struct temp_slot *temp)
564 {
565 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
566 insert_slot_to_list (temp, &avail_temp_slots);
567 temp->in_use = 0;
568 temp->level = -1;
569 }
570 \f
571 /* Allocate a temporary stack slot and record it for possible later
572 reuse.
573
574 MODE is the machine mode to be given to the returned rtx.
575
576 SIZE is the size in units of the space required. We do no rounding here
577 since assign_stack_local will do any required rounding.
578
579 KEEP is 1 if this slot is to be retained after a call to
580 free_temp_slots. Automatic variables for a block are allocated
581 with this flag. KEEP values of 2 or 3 were needed respectively
582 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
583 or for SAVE_EXPRs, but they are now unused.
584
585 TYPE is the type that will be used for the stack slot. */
586
587 rtx
588 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
589 int keep, tree type)
590 {
591 unsigned int align;
592 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
593 rtx slot;
594
595 /* If SIZE is -1 it means that somebody tried to allocate a temporary
596 of a variable size. */
597 gcc_assert (size != -1);
598
599 /* These are now unused. */
600 gcc_assert (keep <= 1);
601
602 align = get_stack_local_alignment (type, mode);
603
604 /* Try to find an available, already-allocated temporary of the proper
605 mode which meets the size and alignment requirements. Choose the
606 smallest one with the closest alignment.
607
608 If assign_stack_temp is called outside of the tree->rtl expansion,
609 we cannot reuse the stack slots (that may still refer to
610 VIRTUAL_STACK_VARS_REGNUM). */
611 if (!virtuals_instantiated)
612 {
613 for (p = avail_temp_slots; p; p = p->next)
614 {
615 if (p->align >= align && p->size >= size
616 && GET_MODE (p->slot) == mode
617 && objects_must_conflict_p (p->type, type)
618 && (best_p == 0 || best_p->size > p->size
619 || (best_p->size == p->size && best_p->align > p->align)))
620 {
621 if (p->align == align && p->size == size)
622 {
623 selected = p;
624 cut_slot_from_list (selected, &avail_temp_slots);
625 best_p = 0;
626 break;
627 }
628 best_p = p;
629 }
630 }
631 }
632
633 /* Make our best, if any, the one to use. */
634 if (best_p)
635 {
636 selected = best_p;
637 cut_slot_from_list (selected, &avail_temp_slots);
638
639 /* If there are enough aligned bytes left over, make them into a new
640 temp_slot so that the extra bytes don't get wasted. Do this only
641 for BLKmode slots, so that we can be sure of the alignment. */
642 if (GET_MODE (best_p->slot) == BLKmode)
643 {
644 int alignment = best_p->align / BITS_PER_UNIT;
645 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
646
647 if (best_p->size - rounded_size >= alignment)
648 {
649 p = GGC_NEW (struct temp_slot);
650 p->in_use = p->addr_taken = 0;
651 p->size = best_p->size - rounded_size;
652 p->base_offset = best_p->base_offset + rounded_size;
653 p->full_size = best_p->full_size - rounded_size;
654 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
655 p->align = best_p->align;
656 p->address = 0;
657 p->type = best_p->type;
658 insert_slot_to_list (p, &avail_temp_slots);
659
660 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
661 stack_slot_list);
662
663 best_p->size = rounded_size;
664 best_p->full_size = rounded_size;
665 }
666 }
667 }
668
669 /* If we still didn't find one, make a new temporary. */
670 if (selected == 0)
671 {
672 HOST_WIDE_INT frame_offset_old = frame_offset;
673
674 p = GGC_NEW (struct temp_slot);
675
676 /* We are passing an explicit alignment request to assign_stack_local.
677 One side effect of that is assign_stack_local will not round SIZE
678 to ensure the frame offset remains suitably aligned.
679
680 So for requests which depended on the rounding of SIZE, we go ahead
681 and round it now. We also make sure ALIGNMENT is at least
682 BIGGEST_ALIGNMENT. */
683 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
684 p->slot = assign_stack_local (mode,
685 (mode == BLKmode
686 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
687 : size),
688 align);
689
690 p->align = align;
691
692 /* The following slot size computation is necessary because we don't
693 know the actual size of the temporary slot until assign_stack_local
694 has performed all the frame alignment and size rounding for the
695 requested temporary. Note that extra space added for alignment
696 can be either above or below this stack slot depending on which
697 way the frame grows. We include the extra space if and only if it
698 is above this slot. */
699 if (FRAME_GROWS_DOWNWARD)
700 p->size = frame_offset_old - frame_offset;
701 else
702 p->size = size;
703
704 /* Now define the fields used by combine_temp_slots. */
705 if (FRAME_GROWS_DOWNWARD)
706 {
707 p->base_offset = frame_offset;
708 p->full_size = frame_offset_old - frame_offset;
709 }
710 else
711 {
712 p->base_offset = frame_offset_old;
713 p->full_size = frame_offset - frame_offset_old;
714 }
715 p->address = 0;
716
717 selected = p;
718 }
719
720 p = selected;
721 p->in_use = 1;
722 p->addr_taken = 0;
723 p->type = type;
724 p->level = temp_slot_level;
725 p->keep = keep;
726
727 pp = temp_slots_at_level (p->level);
728 insert_slot_to_list (p, pp);
729
730 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
731 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
732 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
733
734 /* If we know the alias set for the memory that will be used, use
735 it. If there's no TYPE, then we don't know anything about the
736 alias set for the memory. */
737 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
738 set_mem_align (slot, align);
739
740 /* If a type is specified, set the relevant flags. */
741 if (type != 0)
742 {
743 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
744 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
745 || TREE_CODE (type) == COMPLEX_TYPE));
746 }
747 MEM_NOTRAP_P (slot) = 1;
748
749 return slot;
750 }
751
752 /* Allocate a temporary stack slot and record it for possible later
753 reuse. First three arguments are same as in preceding function. */
754
755 rtx
756 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
757 {
758 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
759 }
760 \f
761 /* Assign a temporary.
762 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
763 and so that should be used in error messages. In either case, we
764 allocate of the given type.
765 KEEP is as for assign_stack_temp.
766 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
767 it is 0 if a register is OK.
768 DONT_PROMOTE is 1 if we should not promote values in register
769 to wider modes. */
770
771 rtx
772 assign_temp (tree type_or_decl, int keep, int memory_required,
773 int dont_promote ATTRIBUTE_UNUSED)
774 {
775 tree type, decl;
776 enum machine_mode mode;
777 #ifdef PROMOTE_MODE
778 int unsignedp;
779 #endif
780
781 if (DECL_P (type_or_decl))
782 decl = type_or_decl, type = TREE_TYPE (decl);
783 else
784 decl = NULL, type = type_or_decl;
785
786 mode = TYPE_MODE (type);
787 #ifdef PROMOTE_MODE
788 unsignedp = TYPE_UNSIGNED (type);
789 #endif
790
791 if (mode == BLKmode || memory_required)
792 {
793 HOST_WIDE_INT size = int_size_in_bytes (type);
794 rtx tmp;
795
796 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
797 problems with allocating the stack space. */
798 if (size == 0)
799 size = 1;
800
801 /* Unfortunately, we don't yet know how to allocate variable-sized
802 temporaries. However, sometimes we can find a fixed upper limit on
803 the size, so try that instead. */
804 else if (size == -1)
805 size = max_int_size_in_bytes (type);
806
807 /* The size of the temporary may be too large to fit into an integer. */
808 /* ??? Not sure this should happen except for user silliness, so limit
809 this to things that aren't compiler-generated temporaries. The
810 rest of the time we'll die in assign_stack_temp_for_type. */
811 if (decl && size == -1
812 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
813 {
814 error ("size of variable %q+D is too large", decl);
815 size = 1;
816 }
817
818 tmp = assign_stack_temp_for_type (mode, size, keep, type);
819 return tmp;
820 }
821
822 #ifdef PROMOTE_MODE
823 if (! dont_promote)
824 mode = promote_mode (type, mode, &unsignedp, 0);
825 #endif
826
827 return gen_reg_rtx (mode);
828 }
829 \f
830 /* Combine temporary stack slots which are adjacent on the stack.
831
832 This allows for better use of already allocated stack space. This is only
833 done for BLKmode slots because we can be sure that we won't have alignment
834 problems in this case. */
835
836 static void
837 combine_temp_slots (void)
838 {
839 struct temp_slot *p, *q, *next, *next_q;
840 int num_slots;
841
842 /* We can't combine slots, because the information about which slot
843 is in which alias set will be lost. */
844 if (flag_strict_aliasing)
845 return;
846
847 /* If there are a lot of temp slots, don't do anything unless
848 high levels of optimization. */
849 if (! flag_expensive_optimizations)
850 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
851 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
852 return;
853
854 for (p = avail_temp_slots; p; p = next)
855 {
856 int delete_p = 0;
857
858 next = p->next;
859
860 if (GET_MODE (p->slot) != BLKmode)
861 continue;
862
863 for (q = p->next; q; q = next_q)
864 {
865 int delete_q = 0;
866
867 next_q = q->next;
868
869 if (GET_MODE (q->slot) != BLKmode)
870 continue;
871
872 if (p->base_offset + p->full_size == q->base_offset)
873 {
874 /* Q comes after P; combine Q into P. */
875 p->size += q->size;
876 p->full_size += q->full_size;
877 delete_q = 1;
878 }
879 else if (q->base_offset + q->full_size == p->base_offset)
880 {
881 /* P comes after Q; combine P into Q. */
882 q->size += p->size;
883 q->full_size += p->full_size;
884 delete_p = 1;
885 break;
886 }
887 if (delete_q)
888 cut_slot_from_list (q, &avail_temp_slots);
889 }
890
891 /* Either delete P or advance past it. */
892 if (delete_p)
893 cut_slot_from_list (p, &avail_temp_slots);
894 }
895 }
896 \f
897 /* Find the temp slot corresponding to the object at address X. */
898
899 static struct temp_slot *
900 find_temp_slot_from_address (rtx x)
901 {
902 struct temp_slot *p;
903 rtx next;
904 int i;
905
906 for (i = max_slot_level (); i >= 0; i--)
907 for (p = *temp_slots_at_level (i); p; p = p->next)
908 {
909 if (XEXP (p->slot, 0) == x
910 || p->address == x
911 || (GET_CODE (x) == PLUS
912 && XEXP (x, 0) == virtual_stack_vars_rtx
913 && GET_CODE (XEXP (x, 1)) == CONST_INT
914 && INTVAL (XEXP (x, 1)) >= p->base_offset
915 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
916 return p;
917
918 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
919 for (next = p->address; next; next = XEXP (next, 1))
920 if (XEXP (next, 0) == x)
921 return p;
922 }
923
924 /* If we have a sum involving a register, see if it points to a temp
925 slot. */
926 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
927 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
928 return p;
929 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
930 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
931 return p;
932
933 return 0;
934 }
935
936 /* Indicate that NEW_RTX is an alternate way of referring to the temp
937 slot that previously was known by OLD_RTX. */
938
939 void
940 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
941 {
942 struct temp_slot *p;
943
944 if (rtx_equal_p (old_rtx, new_rtx))
945 return;
946
947 p = find_temp_slot_from_address (old_rtx);
948
949 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
950 NEW_RTX is a register, see if one operand of the PLUS is a
951 temporary location. If so, NEW_RTX points into it. Otherwise,
952 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
953 in common between them. If so, try a recursive call on those
954 values. */
955 if (p == 0)
956 {
957 if (GET_CODE (old_rtx) != PLUS)
958 return;
959
960 if (REG_P (new_rtx))
961 {
962 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
963 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
964 return;
965 }
966 else if (GET_CODE (new_rtx) != PLUS)
967 return;
968
969 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
970 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
971 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
972 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
973 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
974 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
975 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
976 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
977
978 return;
979 }
980
981 /* Otherwise add an alias for the temp's address. */
982 else if (p->address == 0)
983 p->address = new_rtx;
984 else
985 {
986 if (GET_CODE (p->address) != EXPR_LIST)
987 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
988
989 p->address = gen_rtx_EXPR_LIST (VOIDmode, new_rtx, p->address);
990 }
991 }
992
993 /* If X could be a reference to a temporary slot, mark the fact that its
994 address was taken. */
995
996 void
997 mark_temp_addr_taken (rtx x)
998 {
999 struct temp_slot *p;
1000
1001 if (x == 0)
1002 return;
1003
1004 /* If X is not in memory or is at a constant address, it cannot be in
1005 a temporary slot. */
1006 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1007 return;
1008
1009 p = find_temp_slot_from_address (XEXP (x, 0));
1010 if (p != 0)
1011 p->addr_taken = 1;
1012 }
1013
1014 /* If X could be a reference to a temporary slot, mark that slot as
1015 belonging to the to one level higher than the current level. If X
1016 matched one of our slots, just mark that one. Otherwise, we can't
1017 easily predict which it is, so upgrade all of them. Kept slots
1018 need not be touched.
1019
1020 This is called when an ({...}) construct occurs and a statement
1021 returns a value in memory. */
1022
1023 void
1024 preserve_temp_slots (rtx x)
1025 {
1026 struct temp_slot *p = 0, *next;
1027
1028 /* If there is no result, we still might have some objects whose address
1029 were taken, so we need to make sure they stay around. */
1030 if (x == 0)
1031 {
1032 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1033 {
1034 next = p->next;
1035
1036 if (p->addr_taken)
1037 move_slot_to_level (p, temp_slot_level - 1);
1038 }
1039
1040 return;
1041 }
1042
1043 /* If X is a register that is being used as a pointer, see if we have
1044 a temporary slot we know it points to. To be consistent with
1045 the code below, we really should preserve all non-kept slots
1046 if we can't find a match, but that seems to be much too costly. */
1047 if (REG_P (x) && REG_POINTER (x))
1048 p = find_temp_slot_from_address (x);
1049
1050 /* If X is not in memory or is at a constant address, it cannot be in
1051 a temporary slot, but it can contain something whose address was
1052 taken. */
1053 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1054 {
1055 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1056 {
1057 next = p->next;
1058
1059 if (p->addr_taken)
1060 move_slot_to_level (p, temp_slot_level - 1);
1061 }
1062
1063 return;
1064 }
1065
1066 /* First see if we can find a match. */
1067 if (p == 0)
1068 p = find_temp_slot_from_address (XEXP (x, 0));
1069
1070 if (p != 0)
1071 {
1072 /* Move everything at our level whose address was taken to our new
1073 level in case we used its address. */
1074 struct temp_slot *q;
1075
1076 if (p->level == temp_slot_level)
1077 {
1078 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1079 {
1080 next = q->next;
1081
1082 if (p != q && q->addr_taken)
1083 move_slot_to_level (q, temp_slot_level - 1);
1084 }
1085
1086 move_slot_to_level (p, temp_slot_level - 1);
1087 p->addr_taken = 0;
1088 }
1089 return;
1090 }
1091
1092 /* Otherwise, preserve all non-kept slots at this level. */
1093 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1094 {
1095 next = p->next;
1096
1097 if (!p->keep)
1098 move_slot_to_level (p, temp_slot_level - 1);
1099 }
1100 }
1101
1102 /* Free all temporaries used so far. This is normally called at the
1103 end of generating code for a statement. */
1104
1105 void
1106 free_temp_slots (void)
1107 {
1108 struct temp_slot *p, *next;
1109
1110 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1111 {
1112 next = p->next;
1113
1114 if (!p->keep)
1115 make_slot_available (p);
1116 }
1117
1118 combine_temp_slots ();
1119 }
1120
1121 /* Push deeper into the nesting level for stack temporaries. */
1122
1123 void
1124 push_temp_slots (void)
1125 {
1126 temp_slot_level++;
1127 }
1128
1129 /* Pop a temporary nesting level. All slots in use in the current level
1130 are freed. */
1131
1132 void
1133 pop_temp_slots (void)
1134 {
1135 struct temp_slot *p, *next;
1136
1137 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1138 {
1139 next = p->next;
1140 make_slot_available (p);
1141 }
1142
1143 combine_temp_slots ();
1144
1145 temp_slot_level--;
1146 }
1147
1148 /* Initialize temporary slots. */
1149
1150 void
1151 init_temp_slots (void)
1152 {
1153 /* We have not allocated any temporaries yet. */
1154 avail_temp_slots = 0;
1155 used_temp_slots = 0;
1156 temp_slot_level = 0;
1157 }
1158 \f
1159 /* These routines are responsible for converting virtual register references
1160 to the actual hard register references once RTL generation is complete.
1161
1162 The following four variables are used for communication between the
1163 routines. They contain the offsets of the virtual registers from their
1164 respective hard registers. */
1165
1166 static int in_arg_offset;
1167 static int var_offset;
1168 static int dynamic_offset;
1169 static int out_arg_offset;
1170 static int cfa_offset;
1171
1172 /* In most machines, the stack pointer register is equivalent to the bottom
1173 of the stack. */
1174
1175 #ifndef STACK_POINTER_OFFSET
1176 #define STACK_POINTER_OFFSET 0
1177 #endif
1178
1179 /* If not defined, pick an appropriate default for the offset of dynamically
1180 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1181 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1182
1183 #ifndef STACK_DYNAMIC_OFFSET
1184
1185 /* The bottom of the stack points to the actual arguments. If
1186 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1187 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1188 stack space for register parameters is not pushed by the caller, but
1189 rather part of the fixed stack areas and hence not included in
1190 `crtl->outgoing_args_size'. Nevertheless, we must allow
1191 for it when allocating stack dynamic objects. */
1192
1193 #if defined(REG_PARM_STACK_SPACE)
1194 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1195 ((ACCUMULATE_OUTGOING_ARGS \
1196 ? (crtl->outgoing_args_size \
1197 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1198 : REG_PARM_STACK_SPACE (FNDECL))) \
1199 : 0) + (STACK_POINTER_OFFSET))
1200 #else
1201 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1202 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1203 + (STACK_POINTER_OFFSET))
1204 #endif
1205 #endif
1206
1207 \f
1208 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1209 is a virtual register, return the equivalent hard register and set the
1210 offset indirectly through the pointer. Otherwise, return 0. */
1211
1212 static rtx
1213 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1214 {
1215 rtx new_rtx;
1216 HOST_WIDE_INT offset;
1217
1218 if (x == virtual_incoming_args_rtx)
1219 {
1220 if (stack_realign_drap)
1221 {
1222 /* Replace virtual_incoming_args_rtx with internal arg
1223 pointer if DRAP is used to realign stack. */
1224 new_rtx = crtl->args.internal_arg_pointer;
1225 offset = 0;
1226 }
1227 else
1228 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1229 }
1230 else if (x == virtual_stack_vars_rtx)
1231 new_rtx = frame_pointer_rtx, offset = var_offset;
1232 else if (x == virtual_stack_dynamic_rtx)
1233 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1234 else if (x == virtual_outgoing_args_rtx)
1235 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1236 else if (x == virtual_cfa_rtx)
1237 {
1238 #ifdef FRAME_POINTER_CFA_OFFSET
1239 new_rtx = frame_pointer_rtx;
1240 #else
1241 new_rtx = arg_pointer_rtx;
1242 #endif
1243 offset = cfa_offset;
1244 }
1245 else
1246 return NULL_RTX;
1247
1248 *poffset = offset;
1249 return new_rtx;
1250 }
1251
1252 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1253 Instantiate any virtual registers present inside of *LOC. The expression
1254 is simplified, as much as possible, but is not to be considered "valid"
1255 in any sense implied by the target. If any change is made, set CHANGED
1256 to true. */
1257
1258 static int
1259 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1260 {
1261 HOST_WIDE_INT offset;
1262 bool *changed = (bool *) data;
1263 rtx x, new_rtx;
1264
1265 x = *loc;
1266 if (x == 0)
1267 return 0;
1268
1269 switch (GET_CODE (x))
1270 {
1271 case REG:
1272 new_rtx = instantiate_new_reg (x, &offset);
1273 if (new_rtx)
1274 {
1275 *loc = plus_constant (new_rtx, offset);
1276 if (changed)
1277 *changed = true;
1278 }
1279 return -1;
1280
1281 case PLUS:
1282 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1283 if (new_rtx)
1284 {
1285 new_rtx = plus_constant (new_rtx, offset);
1286 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1287 if (changed)
1288 *changed = true;
1289 return -1;
1290 }
1291
1292 /* FIXME -- from old code */
1293 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1294 we can commute the PLUS and SUBREG because pointers into the
1295 frame are well-behaved. */
1296 break;
1297
1298 default:
1299 break;
1300 }
1301
1302 return 0;
1303 }
1304
1305 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1306 matches the predicate for insn CODE operand OPERAND. */
1307
1308 static int
1309 safe_insn_predicate (int code, int operand, rtx x)
1310 {
1311 const struct insn_operand_data *op_data;
1312
1313 if (code < 0)
1314 return true;
1315
1316 op_data = &insn_data[code].operand[operand];
1317 if (op_data->predicate == NULL)
1318 return true;
1319
1320 return op_data->predicate (x, op_data->mode);
1321 }
1322
1323 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1324 registers present inside of insn. The result will be a valid insn. */
1325
1326 static void
1327 instantiate_virtual_regs_in_insn (rtx insn)
1328 {
1329 HOST_WIDE_INT offset;
1330 int insn_code, i;
1331 bool any_change = false;
1332 rtx set, new_rtx, x, seq;
1333
1334 /* There are some special cases to be handled first. */
1335 set = single_set (insn);
1336 if (set)
1337 {
1338 /* We're allowed to assign to a virtual register. This is interpreted
1339 to mean that the underlying register gets assigned the inverse
1340 transformation. This is used, for example, in the handling of
1341 non-local gotos. */
1342 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1343 if (new_rtx)
1344 {
1345 start_sequence ();
1346
1347 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1348 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1349 GEN_INT (-offset));
1350 x = force_operand (x, new_rtx);
1351 if (x != new_rtx)
1352 emit_move_insn (new_rtx, x);
1353
1354 seq = get_insns ();
1355 end_sequence ();
1356
1357 emit_insn_before (seq, insn);
1358 delete_insn (insn);
1359 return;
1360 }
1361
1362 /* Handle a straight copy from a virtual register by generating a
1363 new add insn. The difference between this and falling through
1364 to the generic case is avoiding a new pseudo and eliminating a
1365 move insn in the initial rtl stream. */
1366 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1367 if (new_rtx && offset != 0
1368 && REG_P (SET_DEST (set))
1369 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1370 {
1371 start_sequence ();
1372
1373 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1374 new_rtx, GEN_INT (offset), SET_DEST (set),
1375 1, OPTAB_LIB_WIDEN);
1376 if (x != SET_DEST (set))
1377 emit_move_insn (SET_DEST (set), x);
1378
1379 seq = get_insns ();
1380 end_sequence ();
1381
1382 emit_insn_before (seq, insn);
1383 delete_insn (insn);
1384 return;
1385 }
1386
1387 extract_insn (insn);
1388 insn_code = INSN_CODE (insn);
1389
1390 /* Handle a plus involving a virtual register by determining if the
1391 operands remain valid if they're modified in place. */
1392 if (GET_CODE (SET_SRC (set)) == PLUS
1393 && recog_data.n_operands >= 3
1394 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1395 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1396 && GET_CODE (recog_data.operand[2]) == CONST_INT
1397 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1398 {
1399 offset += INTVAL (recog_data.operand[2]);
1400
1401 /* If the sum is zero, then replace with a plain move. */
1402 if (offset == 0
1403 && REG_P (SET_DEST (set))
1404 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1405 {
1406 start_sequence ();
1407 emit_move_insn (SET_DEST (set), new_rtx);
1408 seq = get_insns ();
1409 end_sequence ();
1410
1411 emit_insn_before (seq, insn);
1412 delete_insn (insn);
1413 return;
1414 }
1415
1416 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1417
1418 /* Using validate_change and apply_change_group here leaves
1419 recog_data in an invalid state. Since we know exactly what
1420 we want to check, do those two by hand. */
1421 if (safe_insn_predicate (insn_code, 1, new_rtx)
1422 && safe_insn_predicate (insn_code, 2, x))
1423 {
1424 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1425 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1426 any_change = true;
1427
1428 /* Fall through into the regular operand fixup loop in
1429 order to take care of operands other than 1 and 2. */
1430 }
1431 }
1432 }
1433 else
1434 {
1435 extract_insn (insn);
1436 insn_code = INSN_CODE (insn);
1437 }
1438
1439 /* In the general case, we expect virtual registers to appear only in
1440 operands, and then only as either bare registers or inside memories. */
1441 for (i = 0; i < recog_data.n_operands; ++i)
1442 {
1443 x = recog_data.operand[i];
1444 switch (GET_CODE (x))
1445 {
1446 case MEM:
1447 {
1448 rtx addr = XEXP (x, 0);
1449 bool changed = false;
1450
1451 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1452 if (!changed)
1453 continue;
1454
1455 start_sequence ();
1456 x = replace_equiv_address (x, addr);
1457 /* It may happen that the address with the virtual reg
1458 was valid (e.g. based on the virtual stack reg, which might
1459 be acceptable to the predicates with all offsets), whereas
1460 the address now isn't anymore, for instance when the address
1461 is still offsetted, but the base reg isn't virtual-stack-reg
1462 anymore. Below we would do a force_reg on the whole operand,
1463 but this insn might actually only accept memory. Hence,
1464 before doing that last resort, try to reload the address into
1465 a register, so this operand stays a MEM. */
1466 if (!safe_insn_predicate (insn_code, i, x))
1467 {
1468 addr = force_reg (GET_MODE (addr), addr);
1469 x = replace_equiv_address (x, addr);
1470 }
1471 seq = get_insns ();
1472 end_sequence ();
1473 if (seq)
1474 emit_insn_before (seq, insn);
1475 }
1476 break;
1477
1478 case REG:
1479 new_rtx = instantiate_new_reg (x, &offset);
1480 if (new_rtx == NULL)
1481 continue;
1482 if (offset == 0)
1483 x = new_rtx;
1484 else
1485 {
1486 start_sequence ();
1487
1488 /* Careful, special mode predicates may have stuff in
1489 insn_data[insn_code].operand[i].mode that isn't useful
1490 to us for computing a new value. */
1491 /* ??? Recognize address_operand and/or "p" constraints
1492 to see if (plus new offset) is a valid before we put
1493 this through expand_simple_binop. */
1494 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1495 GEN_INT (offset), NULL_RTX,
1496 1, OPTAB_LIB_WIDEN);
1497 seq = get_insns ();
1498 end_sequence ();
1499 emit_insn_before (seq, insn);
1500 }
1501 break;
1502
1503 case SUBREG:
1504 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1505 if (new_rtx == NULL)
1506 continue;
1507 if (offset != 0)
1508 {
1509 start_sequence ();
1510 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1511 GEN_INT (offset), NULL_RTX,
1512 1, OPTAB_LIB_WIDEN);
1513 seq = get_insns ();
1514 end_sequence ();
1515 emit_insn_before (seq, insn);
1516 }
1517 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1518 GET_MODE (new_rtx), SUBREG_BYTE (x));
1519 gcc_assert (x);
1520 break;
1521
1522 default:
1523 continue;
1524 }
1525
1526 /* At this point, X contains the new value for the operand.
1527 Validate the new value vs the insn predicate. Note that
1528 asm insns will have insn_code -1 here. */
1529 if (!safe_insn_predicate (insn_code, i, x))
1530 {
1531 start_sequence ();
1532 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1533 seq = get_insns ();
1534 end_sequence ();
1535 if (seq)
1536 emit_insn_before (seq, insn);
1537 }
1538
1539 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1540 any_change = true;
1541 }
1542
1543 if (any_change)
1544 {
1545 /* Propagate operand changes into the duplicates. */
1546 for (i = 0; i < recog_data.n_dups; ++i)
1547 *recog_data.dup_loc[i]
1548 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1549
1550 /* Force re-recognition of the instruction for validation. */
1551 INSN_CODE (insn) = -1;
1552 }
1553
1554 if (asm_noperands (PATTERN (insn)) >= 0)
1555 {
1556 if (!check_asm_operands (PATTERN (insn)))
1557 {
1558 error_for_asm (insn, "impossible constraint in %<asm%>");
1559 delete_insn (insn);
1560 }
1561 }
1562 else
1563 {
1564 if (recog_memoized (insn) < 0)
1565 fatal_insn_not_found (insn);
1566 }
1567 }
1568
1569 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1570 do any instantiation required. */
1571
1572 void
1573 instantiate_decl_rtl (rtx x)
1574 {
1575 rtx addr;
1576
1577 if (x == 0)
1578 return;
1579
1580 /* If this is a CONCAT, recurse for the pieces. */
1581 if (GET_CODE (x) == CONCAT)
1582 {
1583 instantiate_decl_rtl (XEXP (x, 0));
1584 instantiate_decl_rtl (XEXP (x, 1));
1585 return;
1586 }
1587
1588 /* If this is not a MEM, no need to do anything. Similarly if the
1589 address is a constant or a register that is not a virtual register. */
1590 if (!MEM_P (x))
1591 return;
1592
1593 addr = XEXP (x, 0);
1594 if (CONSTANT_P (addr)
1595 || (REG_P (addr)
1596 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1597 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1598 return;
1599
1600 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1601 }
1602
1603 /* Helper for instantiate_decls called via walk_tree: Process all decls
1604 in the given DECL_VALUE_EXPR. */
1605
1606 static tree
1607 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1608 {
1609 tree t = *tp;
1610 if (! EXPR_P (t))
1611 {
1612 *walk_subtrees = 0;
1613 if (DECL_P (t) && DECL_RTL_SET_P (t))
1614 instantiate_decl_rtl (DECL_RTL (t));
1615 }
1616 return NULL;
1617 }
1618
1619 /* Subroutine of instantiate_decls: Process all decls in the given
1620 BLOCK node and all its subblocks. */
1621
1622 static void
1623 instantiate_decls_1 (tree let)
1624 {
1625 tree t;
1626
1627 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1628 {
1629 if (DECL_RTL_SET_P (t))
1630 instantiate_decl_rtl (DECL_RTL (t));
1631 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1632 {
1633 tree v = DECL_VALUE_EXPR (t);
1634 walk_tree (&v, instantiate_expr, NULL, NULL);
1635 }
1636 }
1637
1638 /* Process all subblocks. */
1639 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1640 instantiate_decls_1 (t);
1641 }
1642
1643 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1644 all virtual registers in their DECL_RTL's. */
1645
1646 static void
1647 instantiate_decls (tree fndecl)
1648 {
1649 tree decl;
1650
1651 /* Process all parameters of the function. */
1652 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1653 {
1654 instantiate_decl_rtl (DECL_RTL (decl));
1655 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1656 if (DECL_HAS_VALUE_EXPR_P (decl))
1657 {
1658 tree v = DECL_VALUE_EXPR (decl);
1659 walk_tree (&v, instantiate_expr, NULL, NULL);
1660 }
1661 }
1662
1663 /* Now process all variables defined in the function or its subblocks. */
1664 instantiate_decls_1 (DECL_INITIAL (fndecl));
1665 }
1666
1667 /* Pass through the INSNS of function FNDECL and convert virtual register
1668 references to hard register references. */
1669
1670 static unsigned int
1671 instantiate_virtual_regs (void)
1672 {
1673 rtx insn;
1674
1675 /* Compute the offsets to use for this function. */
1676 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1677 var_offset = STARTING_FRAME_OFFSET;
1678 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1679 out_arg_offset = STACK_POINTER_OFFSET;
1680 #ifdef FRAME_POINTER_CFA_OFFSET
1681 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1682 #else
1683 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1684 #endif
1685
1686 /* Initialize recognition, indicating that volatile is OK. */
1687 init_recog ();
1688
1689 /* Scan through all the insns, instantiating every virtual register still
1690 present. */
1691 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1692 if (INSN_P (insn))
1693 {
1694 /* These patterns in the instruction stream can never be recognized.
1695 Fortunately, they shouldn't contain virtual registers either. */
1696 if (GET_CODE (PATTERN (insn)) == USE
1697 || GET_CODE (PATTERN (insn)) == CLOBBER
1698 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1699 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1700 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1701 continue;
1702
1703 instantiate_virtual_regs_in_insn (insn);
1704
1705 if (INSN_DELETED_P (insn))
1706 continue;
1707
1708 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1709
1710 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1711 if (GET_CODE (insn) == CALL_INSN)
1712 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1713 instantiate_virtual_regs_in_rtx, NULL);
1714 }
1715
1716 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1717 instantiate_decls (current_function_decl);
1718
1719 targetm.instantiate_decls ();
1720
1721 /* Indicate that, from now on, assign_stack_local should use
1722 frame_pointer_rtx. */
1723 virtuals_instantiated = 1;
1724 return 0;
1725 }
1726
1727 struct rtl_opt_pass pass_instantiate_virtual_regs =
1728 {
1729 {
1730 RTL_PASS,
1731 "vregs", /* name */
1732 NULL, /* gate */
1733 instantiate_virtual_regs, /* execute */
1734 NULL, /* sub */
1735 NULL, /* next */
1736 0, /* static_pass_number */
1737 0, /* tv_id */
1738 0, /* properties_required */
1739 0, /* properties_provided */
1740 0, /* properties_destroyed */
1741 0, /* todo_flags_start */
1742 TODO_dump_func /* todo_flags_finish */
1743 }
1744 };
1745
1746 \f
1747 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1748 This means a type for which function calls must pass an address to the
1749 function or get an address back from the function.
1750 EXP may be a type node or an expression (whose type is tested). */
1751
1752 int
1753 aggregate_value_p (const_tree exp, const_tree fntype)
1754 {
1755 int i, regno, nregs;
1756 rtx reg;
1757
1758 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1759
1760 /* DECL node associated with FNTYPE when relevant, which we might need to
1761 check for by-invisible-reference returns, typically for CALL_EXPR input
1762 EXPressions. */
1763 const_tree fndecl = NULL_TREE;
1764
1765 if (fntype)
1766 switch (TREE_CODE (fntype))
1767 {
1768 case CALL_EXPR:
1769 fndecl = get_callee_fndecl (fntype);
1770 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1771 break;
1772 case FUNCTION_DECL:
1773 fndecl = fntype;
1774 fntype = TREE_TYPE (fndecl);
1775 break;
1776 case FUNCTION_TYPE:
1777 case METHOD_TYPE:
1778 break;
1779 case IDENTIFIER_NODE:
1780 fntype = 0;
1781 break;
1782 default:
1783 /* We don't expect other rtl types here. */
1784 gcc_unreachable ();
1785 }
1786
1787 if (TREE_CODE (type) == VOID_TYPE)
1788 return 0;
1789
1790 /* If the front end has decided that this needs to be passed by
1791 reference, do so. */
1792 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1793 && DECL_BY_REFERENCE (exp))
1794 return 1;
1795
1796 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1797 called function RESULT_DECL, meaning the function returns in memory by
1798 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1799 on the function type, which used to be the way to request such a return
1800 mechanism but might now be causing troubles at gimplification time if
1801 temporaries with the function type need to be created. */
1802 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1803 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1804 return 1;
1805
1806 if (targetm.calls.return_in_memory (type, fntype))
1807 return 1;
1808 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1809 and thus can't be returned in registers. */
1810 if (TREE_ADDRESSABLE (type))
1811 return 1;
1812 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1813 return 1;
1814 /* Make sure we have suitable call-clobbered regs to return
1815 the value in; if not, we must return it in memory. */
1816 reg = hard_function_value (type, 0, fntype, 0);
1817
1818 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1819 it is OK. */
1820 if (!REG_P (reg))
1821 return 0;
1822
1823 regno = REGNO (reg);
1824 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1825 for (i = 0; i < nregs; i++)
1826 if (! call_used_regs[regno + i])
1827 return 1;
1828 return 0;
1829 }
1830 \f
1831 /* Return true if we should assign DECL a pseudo register; false if it
1832 should live on the local stack. */
1833
1834 bool
1835 use_register_for_decl (const_tree decl)
1836 {
1837 if (!targetm.calls.allocate_stack_slots_for_args())
1838 return true;
1839
1840 /* Honor volatile. */
1841 if (TREE_SIDE_EFFECTS (decl))
1842 return false;
1843
1844 /* Honor addressability. */
1845 if (TREE_ADDRESSABLE (decl))
1846 return false;
1847
1848 /* Only register-like things go in registers. */
1849 if (DECL_MODE (decl) == BLKmode)
1850 return false;
1851
1852 /* If -ffloat-store specified, don't put explicit float variables
1853 into registers. */
1854 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1855 propagates values across these stores, and it probably shouldn't. */
1856 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1857 return false;
1858
1859 /* If we're not interested in tracking debugging information for
1860 this decl, then we can certainly put it in a register. */
1861 if (DECL_IGNORED_P (decl))
1862 return true;
1863
1864 return (optimize || DECL_REGISTER (decl));
1865 }
1866
1867 /* Return true if TYPE should be passed by invisible reference. */
1868
1869 bool
1870 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1871 tree type, bool named_arg)
1872 {
1873 if (type)
1874 {
1875 /* If this type contains non-trivial constructors, then it is
1876 forbidden for the middle-end to create any new copies. */
1877 if (TREE_ADDRESSABLE (type))
1878 return true;
1879
1880 /* GCC post 3.4 passes *all* variable sized types by reference. */
1881 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1882 return true;
1883 }
1884
1885 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1886 }
1887
1888 /* Return true if TYPE, which is passed by reference, should be callee
1889 copied instead of caller copied. */
1890
1891 bool
1892 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1893 tree type, bool named_arg)
1894 {
1895 if (type && TREE_ADDRESSABLE (type))
1896 return false;
1897 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1898 }
1899
1900 /* Structures to communicate between the subroutines of assign_parms.
1901 The first holds data persistent across all parameters, the second
1902 is cleared out for each parameter. */
1903
1904 struct assign_parm_data_all
1905 {
1906 CUMULATIVE_ARGS args_so_far;
1907 struct args_size stack_args_size;
1908 tree function_result_decl;
1909 tree orig_fnargs;
1910 rtx first_conversion_insn;
1911 rtx last_conversion_insn;
1912 HOST_WIDE_INT pretend_args_size;
1913 HOST_WIDE_INT extra_pretend_bytes;
1914 int reg_parm_stack_space;
1915 };
1916
1917 struct assign_parm_data_one
1918 {
1919 tree nominal_type;
1920 tree passed_type;
1921 rtx entry_parm;
1922 rtx stack_parm;
1923 enum machine_mode nominal_mode;
1924 enum machine_mode passed_mode;
1925 enum machine_mode promoted_mode;
1926 struct locate_and_pad_arg_data locate;
1927 int partial;
1928 BOOL_BITFIELD named_arg : 1;
1929 BOOL_BITFIELD passed_pointer : 1;
1930 BOOL_BITFIELD on_stack : 1;
1931 BOOL_BITFIELD loaded_in_reg : 1;
1932 };
1933
1934 /* A subroutine of assign_parms. Initialize ALL. */
1935
1936 static void
1937 assign_parms_initialize_all (struct assign_parm_data_all *all)
1938 {
1939 tree fntype;
1940
1941 memset (all, 0, sizeof (*all));
1942
1943 fntype = TREE_TYPE (current_function_decl);
1944
1945 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1946 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1947 #else
1948 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1949 current_function_decl, -1);
1950 #endif
1951
1952 #ifdef REG_PARM_STACK_SPACE
1953 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1954 #endif
1955 }
1956
1957 /* If ARGS contains entries with complex types, split the entry into two
1958 entries of the component type. Return a new list of substitutions are
1959 needed, else the old list. */
1960
1961 static tree
1962 split_complex_args (tree args)
1963 {
1964 tree p;
1965
1966 /* Before allocating memory, check for the common case of no complex. */
1967 for (p = args; p; p = TREE_CHAIN (p))
1968 {
1969 tree type = TREE_TYPE (p);
1970 if (TREE_CODE (type) == COMPLEX_TYPE
1971 && targetm.calls.split_complex_arg (type))
1972 goto found;
1973 }
1974 return args;
1975
1976 found:
1977 args = copy_list (args);
1978
1979 for (p = args; p; p = TREE_CHAIN (p))
1980 {
1981 tree type = TREE_TYPE (p);
1982 if (TREE_CODE (type) == COMPLEX_TYPE
1983 && targetm.calls.split_complex_arg (type))
1984 {
1985 tree decl;
1986 tree subtype = TREE_TYPE (type);
1987 bool addressable = TREE_ADDRESSABLE (p);
1988
1989 /* Rewrite the PARM_DECL's type with its component. */
1990 TREE_TYPE (p) = subtype;
1991 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1992 DECL_MODE (p) = VOIDmode;
1993 DECL_SIZE (p) = NULL;
1994 DECL_SIZE_UNIT (p) = NULL;
1995 /* If this arg must go in memory, put it in a pseudo here.
1996 We can't allow it to go in memory as per normal parms,
1997 because the usual place might not have the imag part
1998 adjacent to the real part. */
1999 DECL_ARTIFICIAL (p) = addressable;
2000 DECL_IGNORED_P (p) = addressable;
2001 TREE_ADDRESSABLE (p) = 0;
2002 layout_decl (p, 0);
2003
2004 /* Build a second synthetic decl. */
2005 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2006 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2007 DECL_ARTIFICIAL (decl) = addressable;
2008 DECL_IGNORED_P (decl) = addressable;
2009 layout_decl (decl, 0);
2010
2011 /* Splice it in; skip the new decl. */
2012 TREE_CHAIN (decl) = TREE_CHAIN (p);
2013 TREE_CHAIN (p) = decl;
2014 p = decl;
2015 }
2016 }
2017
2018 return args;
2019 }
2020
2021 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2022 the hidden struct return argument, and (abi willing) complex args.
2023 Return the new parameter list. */
2024
2025 static tree
2026 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2027 {
2028 tree fndecl = current_function_decl;
2029 tree fntype = TREE_TYPE (fndecl);
2030 tree fnargs = DECL_ARGUMENTS (fndecl);
2031
2032 /* If struct value address is treated as the first argument, make it so. */
2033 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2034 && ! cfun->returns_pcc_struct
2035 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2036 {
2037 tree type = build_pointer_type (TREE_TYPE (fntype));
2038 tree decl;
2039
2040 decl = build_decl (PARM_DECL, NULL_TREE, type);
2041 DECL_ARG_TYPE (decl) = type;
2042 DECL_ARTIFICIAL (decl) = 1;
2043 DECL_IGNORED_P (decl) = 1;
2044
2045 TREE_CHAIN (decl) = fnargs;
2046 fnargs = decl;
2047 all->function_result_decl = decl;
2048 }
2049
2050 all->orig_fnargs = fnargs;
2051
2052 /* If the target wants to split complex arguments into scalars, do so. */
2053 if (targetm.calls.split_complex_arg)
2054 fnargs = split_complex_args (fnargs);
2055
2056 return fnargs;
2057 }
2058
2059 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2060 data for the parameter. Incorporate ABI specifics such as pass-by-
2061 reference and type promotion. */
2062
2063 static void
2064 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2065 struct assign_parm_data_one *data)
2066 {
2067 tree nominal_type, passed_type;
2068 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2069
2070 memset (data, 0, sizeof (*data));
2071
2072 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2073 if (!cfun->stdarg)
2074 data->named_arg = 1; /* No variadic parms. */
2075 else if (TREE_CHAIN (parm))
2076 data->named_arg = 1; /* Not the last non-variadic parm. */
2077 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2078 data->named_arg = 1; /* Only variadic ones are unnamed. */
2079 else
2080 data->named_arg = 0; /* Treat as variadic. */
2081
2082 nominal_type = TREE_TYPE (parm);
2083 passed_type = DECL_ARG_TYPE (parm);
2084
2085 /* Look out for errors propagating this far. Also, if the parameter's
2086 type is void then its value doesn't matter. */
2087 if (TREE_TYPE (parm) == error_mark_node
2088 /* This can happen after weird syntax errors
2089 or if an enum type is defined among the parms. */
2090 || TREE_CODE (parm) != PARM_DECL
2091 || passed_type == NULL
2092 || VOID_TYPE_P (nominal_type))
2093 {
2094 nominal_type = passed_type = void_type_node;
2095 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2096 goto egress;
2097 }
2098
2099 /* Find mode of arg as it is passed, and mode of arg as it should be
2100 during execution of this function. */
2101 passed_mode = TYPE_MODE (passed_type);
2102 nominal_mode = TYPE_MODE (nominal_type);
2103
2104 /* If the parm is to be passed as a transparent union, use the type of
2105 the first field for the tests below. We have already verified that
2106 the modes are the same. */
2107 if (TREE_CODE (passed_type) == UNION_TYPE
2108 && TYPE_TRANSPARENT_UNION (passed_type))
2109 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2110
2111 /* See if this arg was passed by invisible reference. */
2112 if (pass_by_reference (&all->args_so_far, passed_mode,
2113 passed_type, data->named_arg))
2114 {
2115 passed_type = nominal_type = build_pointer_type (passed_type);
2116 data->passed_pointer = true;
2117 passed_mode = nominal_mode = Pmode;
2118 }
2119
2120 /* Find mode as it is passed by the ABI. */
2121 promoted_mode = passed_mode;
2122 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2123 {
2124 int unsignedp = TYPE_UNSIGNED (passed_type);
2125 promoted_mode = promote_mode (passed_type, promoted_mode,
2126 &unsignedp, 1);
2127 }
2128
2129 egress:
2130 data->nominal_type = nominal_type;
2131 data->passed_type = passed_type;
2132 data->nominal_mode = nominal_mode;
2133 data->passed_mode = passed_mode;
2134 data->promoted_mode = promoted_mode;
2135 }
2136
2137 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2138
2139 static void
2140 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2141 struct assign_parm_data_one *data, bool no_rtl)
2142 {
2143 int varargs_pretend_bytes = 0;
2144
2145 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2146 data->promoted_mode,
2147 data->passed_type,
2148 &varargs_pretend_bytes, no_rtl);
2149
2150 /* If the back-end has requested extra stack space, record how much is
2151 needed. Do not change pretend_args_size otherwise since it may be
2152 nonzero from an earlier partial argument. */
2153 if (varargs_pretend_bytes > 0)
2154 all->pretend_args_size = varargs_pretend_bytes;
2155 }
2156
2157 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2158 the incoming location of the current parameter. */
2159
2160 static void
2161 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2162 struct assign_parm_data_one *data)
2163 {
2164 HOST_WIDE_INT pretend_bytes = 0;
2165 rtx entry_parm;
2166 bool in_regs;
2167
2168 if (data->promoted_mode == VOIDmode)
2169 {
2170 data->entry_parm = data->stack_parm = const0_rtx;
2171 return;
2172 }
2173
2174 #ifdef FUNCTION_INCOMING_ARG
2175 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2176 data->passed_type, data->named_arg);
2177 #else
2178 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2179 data->passed_type, data->named_arg);
2180 #endif
2181
2182 if (entry_parm == 0)
2183 data->promoted_mode = data->passed_mode;
2184
2185 /* Determine parm's home in the stack, in case it arrives in the stack
2186 or we should pretend it did. Compute the stack position and rtx where
2187 the argument arrives and its size.
2188
2189 There is one complexity here: If this was a parameter that would
2190 have been passed in registers, but wasn't only because it is
2191 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2192 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2193 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2194 as it was the previous time. */
2195 in_regs = entry_parm != 0;
2196 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2197 in_regs = true;
2198 #endif
2199 if (!in_regs && !data->named_arg)
2200 {
2201 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2202 {
2203 rtx tem;
2204 #ifdef FUNCTION_INCOMING_ARG
2205 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2206 data->passed_type, true);
2207 #else
2208 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2209 data->passed_type, true);
2210 #endif
2211 in_regs = tem != NULL;
2212 }
2213 }
2214
2215 /* If this parameter was passed both in registers and in the stack, use
2216 the copy on the stack. */
2217 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2218 data->passed_type))
2219 entry_parm = 0;
2220
2221 if (entry_parm)
2222 {
2223 int partial;
2224
2225 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2226 data->promoted_mode,
2227 data->passed_type,
2228 data->named_arg);
2229 data->partial = partial;
2230
2231 /* The caller might already have allocated stack space for the
2232 register parameters. */
2233 if (partial != 0 && all->reg_parm_stack_space == 0)
2234 {
2235 /* Part of this argument is passed in registers and part
2236 is passed on the stack. Ask the prologue code to extend
2237 the stack part so that we can recreate the full value.
2238
2239 PRETEND_BYTES is the size of the registers we need to store.
2240 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2241 stack space that the prologue should allocate.
2242
2243 Internally, gcc assumes that the argument pointer is aligned
2244 to STACK_BOUNDARY bits. This is used both for alignment
2245 optimizations (see init_emit) and to locate arguments that are
2246 aligned to more than PARM_BOUNDARY bits. We must preserve this
2247 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2248 a stack boundary. */
2249
2250 /* We assume at most one partial arg, and it must be the first
2251 argument on the stack. */
2252 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2253
2254 pretend_bytes = partial;
2255 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2256
2257 /* We want to align relative to the actual stack pointer, so
2258 don't include this in the stack size until later. */
2259 all->extra_pretend_bytes = all->pretend_args_size;
2260 }
2261 }
2262
2263 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2264 entry_parm ? data->partial : 0, current_function_decl,
2265 &all->stack_args_size, &data->locate);
2266
2267 /* Update parm_stack_boundary if this parameter is passed in the
2268 stack. */
2269 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2270 crtl->parm_stack_boundary = data->locate.boundary;
2271
2272 /* Adjust offsets to include the pretend args. */
2273 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2274 data->locate.slot_offset.constant += pretend_bytes;
2275 data->locate.offset.constant += pretend_bytes;
2276
2277 data->entry_parm = entry_parm;
2278 }
2279
2280 /* A subroutine of assign_parms. If there is actually space on the stack
2281 for this parm, count it in stack_args_size and return true. */
2282
2283 static bool
2284 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2285 struct assign_parm_data_one *data)
2286 {
2287 /* Trivially true if we've no incoming register. */
2288 if (data->entry_parm == NULL)
2289 ;
2290 /* Also true if we're partially in registers and partially not,
2291 since we've arranged to drop the entire argument on the stack. */
2292 else if (data->partial != 0)
2293 ;
2294 /* Also true if the target says that it's passed in both registers
2295 and on the stack. */
2296 else if (GET_CODE (data->entry_parm) == PARALLEL
2297 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2298 ;
2299 /* Also true if the target says that there's stack allocated for
2300 all register parameters. */
2301 else if (all->reg_parm_stack_space > 0)
2302 ;
2303 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2304 else
2305 return false;
2306
2307 all->stack_args_size.constant += data->locate.size.constant;
2308 if (data->locate.size.var)
2309 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2310
2311 return true;
2312 }
2313
2314 /* A subroutine of assign_parms. Given that this parameter is allocated
2315 stack space by the ABI, find it. */
2316
2317 static void
2318 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2319 {
2320 rtx offset_rtx, stack_parm;
2321 unsigned int align, boundary;
2322
2323 /* If we're passing this arg using a reg, make its stack home the
2324 aligned stack slot. */
2325 if (data->entry_parm)
2326 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2327 else
2328 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2329
2330 stack_parm = crtl->args.internal_arg_pointer;
2331 if (offset_rtx != const0_rtx)
2332 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2333 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2334
2335 set_mem_attributes (stack_parm, parm, 1);
2336 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2337 while promoted mode's size is needed. */
2338 if (data->promoted_mode != BLKmode
2339 && data->promoted_mode != DECL_MODE (parm))
2340 set_mem_size (stack_parm, GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2341
2342 boundary = data->locate.boundary;
2343 align = BITS_PER_UNIT;
2344
2345 /* If we're padding upward, we know that the alignment of the slot
2346 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2347 intentionally forcing upward padding. Otherwise we have to come
2348 up with a guess at the alignment based on OFFSET_RTX. */
2349 if (data->locate.where_pad != downward || data->entry_parm)
2350 align = boundary;
2351 else if (GET_CODE (offset_rtx) == CONST_INT)
2352 {
2353 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2354 align = align & -align;
2355 }
2356 set_mem_align (stack_parm, align);
2357
2358 if (data->entry_parm)
2359 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2360
2361 data->stack_parm = stack_parm;
2362 }
2363
2364 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2365 always valid and contiguous. */
2366
2367 static void
2368 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2369 {
2370 rtx entry_parm = data->entry_parm;
2371 rtx stack_parm = data->stack_parm;
2372
2373 /* If this parm was passed part in regs and part in memory, pretend it
2374 arrived entirely in memory by pushing the register-part onto the stack.
2375 In the special case of a DImode or DFmode that is split, we could put
2376 it together in a pseudoreg directly, but for now that's not worth
2377 bothering with. */
2378 if (data->partial != 0)
2379 {
2380 /* Handle calls that pass values in multiple non-contiguous
2381 locations. The Irix 6 ABI has examples of this. */
2382 if (GET_CODE (entry_parm) == PARALLEL)
2383 emit_group_store (validize_mem (stack_parm), entry_parm,
2384 data->passed_type,
2385 int_size_in_bytes (data->passed_type));
2386 else
2387 {
2388 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2389 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2390 data->partial / UNITS_PER_WORD);
2391 }
2392
2393 entry_parm = stack_parm;
2394 }
2395
2396 /* If we didn't decide this parm came in a register, by default it came
2397 on the stack. */
2398 else if (entry_parm == NULL)
2399 entry_parm = stack_parm;
2400
2401 /* When an argument is passed in multiple locations, we can't make use
2402 of this information, but we can save some copying if the whole argument
2403 is passed in a single register. */
2404 else if (GET_CODE (entry_parm) == PARALLEL
2405 && data->nominal_mode != BLKmode
2406 && data->passed_mode != BLKmode)
2407 {
2408 size_t i, len = XVECLEN (entry_parm, 0);
2409
2410 for (i = 0; i < len; i++)
2411 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2412 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2413 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2414 == data->passed_mode)
2415 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2416 {
2417 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2418 break;
2419 }
2420 }
2421
2422 data->entry_parm = entry_parm;
2423 }
2424
2425 /* A subroutine of assign_parms. Reconstitute any values which were
2426 passed in multiple registers and would fit in a single register. */
2427
2428 static void
2429 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2430 {
2431 rtx entry_parm = data->entry_parm;
2432
2433 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2434 This can be done with register operations rather than on the
2435 stack, even if we will store the reconstituted parameter on the
2436 stack later. */
2437 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2438 {
2439 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2440 emit_group_store (parmreg, entry_parm, NULL_TREE,
2441 GET_MODE_SIZE (GET_MODE (entry_parm)));
2442 entry_parm = parmreg;
2443 }
2444
2445 data->entry_parm = entry_parm;
2446 }
2447
2448 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2449 always valid and properly aligned. */
2450
2451 static void
2452 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2453 {
2454 rtx stack_parm = data->stack_parm;
2455
2456 /* If we can't trust the parm stack slot to be aligned enough for its
2457 ultimate type, don't use that slot after entry. We'll make another
2458 stack slot, if we need one. */
2459 if (stack_parm
2460 && ((STRICT_ALIGNMENT
2461 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2462 || (data->nominal_type
2463 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2464 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2465 stack_parm = NULL;
2466
2467 /* If parm was passed in memory, and we need to convert it on entry,
2468 don't store it back in that same slot. */
2469 else if (data->entry_parm == stack_parm
2470 && data->nominal_mode != BLKmode
2471 && data->nominal_mode != data->passed_mode)
2472 stack_parm = NULL;
2473
2474 /* If stack protection is in effect for this function, don't leave any
2475 pointers in their passed stack slots. */
2476 else if (crtl->stack_protect_guard
2477 && (flag_stack_protect == 2
2478 || data->passed_pointer
2479 || POINTER_TYPE_P (data->nominal_type)))
2480 stack_parm = NULL;
2481
2482 data->stack_parm = stack_parm;
2483 }
2484
2485 /* A subroutine of assign_parms. Return true if the current parameter
2486 should be stored as a BLKmode in the current frame. */
2487
2488 static bool
2489 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2490 {
2491 if (data->nominal_mode == BLKmode)
2492 return true;
2493 if (GET_MODE (data->entry_parm) == BLKmode)
2494 return true;
2495
2496 #ifdef BLOCK_REG_PADDING
2497 /* Only assign_parm_setup_block knows how to deal with register arguments
2498 that are padded at the least significant end. */
2499 if (REG_P (data->entry_parm)
2500 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2501 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2502 == (BYTES_BIG_ENDIAN ? upward : downward)))
2503 return true;
2504 #endif
2505
2506 return false;
2507 }
2508
2509 /* A subroutine of assign_parms. Arrange for the parameter to be
2510 present and valid in DATA->STACK_RTL. */
2511
2512 static void
2513 assign_parm_setup_block (struct assign_parm_data_all *all,
2514 tree parm, struct assign_parm_data_one *data)
2515 {
2516 rtx entry_parm = data->entry_parm;
2517 rtx stack_parm = data->stack_parm;
2518 HOST_WIDE_INT size;
2519 HOST_WIDE_INT size_stored;
2520
2521 if (GET_CODE (entry_parm) == PARALLEL)
2522 entry_parm = emit_group_move_into_temps (entry_parm);
2523
2524 size = int_size_in_bytes (data->passed_type);
2525 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2526 if (stack_parm == 0)
2527 {
2528 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2529 stack_parm = assign_stack_local (BLKmode, size_stored,
2530 DECL_ALIGN (parm));
2531 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2532 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2533 set_mem_attributes (stack_parm, parm, 1);
2534 }
2535
2536 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2537 calls that pass values in multiple non-contiguous locations. */
2538 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2539 {
2540 rtx mem;
2541
2542 /* Note that we will be storing an integral number of words.
2543 So we have to be careful to ensure that we allocate an
2544 integral number of words. We do this above when we call
2545 assign_stack_local if space was not allocated in the argument
2546 list. If it was, this will not work if PARM_BOUNDARY is not
2547 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2548 if it becomes a problem. Exception is when BLKmode arrives
2549 with arguments not conforming to word_mode. */
2550
2551 if (data->stack_parm == 0)
2552 ;
2553 else if (GET_CODE (entry_parm) == PARALLEL)
2554 ;
2555 else
2556 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2557
2558 mem = validize_mem (stack_parm);
2559
2560 /* Handle values in multiple non-contiguous locations. */
2561 if (GET_CODE (entry_parm) == PARALLEL)
2562 {
2563 push_to_sequence2 (all->first_conversion_insn,
2564 all->last_conversion_insn);
2565 emit_group_store (mem, entry_parm, data->passed_type, size);
2566 all->first_conversion_insn = get_insns ();
2567 all->last_conversion_insn = get_last_insn ();
2568 end_sequence ();
2569 }
2570
2571 else if (size == 0)
2572 ;
2573
2574 /* If SIZE is that of a mode no bigger than a word, just use
2575 that mode's store operation. */
2576 else if (size <= UNITS_PER_WORD)
2577 {
2578 enum machine_mode mode
2579 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2580
2581 if (mode != BLKmode
2582 #ifdef BLOCK_REG_PADDING
2583 && (size == UNITS_PER_WORD
2584 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2585 != (BYTES_BIG_ENDIAN ? upward : downward)))
2586 #endif
2587 )
2588 {
2589 rtx reg;
2590
2591 /* We are really truncating a word_mode value containing
2592 SIZE bytes into a value of mode MODE. If such an
2593 operation requires no actual instructions, we can refer
2594 to the value directly in mode MODE, otherwise we must
2595 start with the register in word_mode and explicitly
2596 convert it. */
2597 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2598 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2599 else
2600 {
2601 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2602 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2603 }
2604 emit_move_insn (change_address (mem, mode, 0), reg);
2605 }
2606
2607 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2608 machine must be aligned to the left before storing
2609 to memory. Note that the previous test doesn't
2610 handle all cases (e.g. SIZE == 3). */
2611 else if (size != UNITS_PER_WORD
2612 #ifdef BLOCK_REG_PADDING
2613 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2614 == downward)
2615 #else
2616 && BYTES_BIG_ENDIAN
2617 #endif
2618 )
2619 {
2620 rtx tem, x;
2621 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2622 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2623
2624 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2625 build_int_cst (NULL_TREE, by),
2626 NULL_RTX, 1);
2627 tem = change_address (mem, word_mode, 0);
2628 emit_move_insn (tem, x);
2629 }
2630 else
2631 move_block_from_reg (REGNO (entry_parm), mem,
2632 size_stored / UNITS_PER_WORD);
2633 }
2634 else
2635 move_block_from_reg (REGNO (entry_parm), mem,
2636 size_stored / UNITS_PER_WORD);
2637 }
2638 else if (data->stack_parm == 0)
2639 {
2640 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2641 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2642 BLOCK_OP_NORMAL);
2643 all->first_conversion_insn = get_insns ();
2644 all->last_conversion_insn = get_last_insn ();
2645 end_sequence ();
2646 }
2647
2648 data->stack_parm = stack_parm;
2649 SET_DECL_RTL (parm, stack_parm);
2650 }
2651
2652 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2653 parameter. Get it there. Perform all ABI specified conversions. */
2654
2655 static void
2656 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2657 struct assign_parm_data_one *data)
2658 {
2659 rtx parmreg;
2660 enum machine_mode promoted_nominal_mode;
2661 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2662 bool did_conversion = false;
2663
2664 /* Store the parm in a pseudoregister during the function, but we may
2665 need to do it in a wider mode. */
2666
2667 /* This is not really promoting for a call. However we need to be
2668 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2669 promoted_nominal_mode
2670 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2671
2672 parmreg = gen_reg_rtx (promoted_nominal_mode);
2673
2674 if (!DECL_ARTIFICIAL (parm))
2675 mark_user_reg (parmreg);
2676
2677 /* If this was an item that we received a pointer to,
2678 set DECL_RTL appropriately. */
2679 if (data->passed_pointer)
2680 {
2681 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2682 set_mem_attributes (x, parm, 1);
2683 SET_DECL_RTL (parm, x);
2684 }
2685 else
2686 SET_DECL_RTL (parm, parmreg);
2687
2688 assign_parm_remove_parallels (data);
2689
2690 /* Copy the value into the register. */
2691 if (data->nominal_mode != data->passed_mode
2692 || promoted_nominal_mode != data->promoted_mode)
2693 {
2694 int save_tree_used;
2695
2696 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2697 mode, by the caller. We now have to convert it to
2698 NOMINAL_MODE, if different. However, PARMREG may be in
2699 a different mode than NOMINAL_MODE if it is being stored
2700 promoted.
2701
2702 If ENTRY_PARM is a hard register, it might be in a register
2703 not valid for operating in its mode (e.g., an odd-numbered
2704 register for a DFmode). In that case, moves are the only
2705 thing valid, so we can't do a convert from there. This
2706 occurs when the calling sequence allow such misaligned
2707 usages.
2708
2709 In addition, the conversion may involve a call, which could
2710 clobber parameters which haven't been copied to pseudo
2711 registers yet. Therefore, we must first copy the parm to
2712 a pseudo reg here, and save the conversion until after all
2713 parameters have been moved. */
2714
2715 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2716
2717 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2718
2719 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2720 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2721
2722 if (GET_CODE (tempreg) == SUBREG
2723 && GET_MODE (tempreg) == data->nominal_mode
2724 && REG_P (SUBREG_REG (tempreg))
2725 && data->nominal_mode == data->passed_mode
2726 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2727 && GET_MODE_SIZE (GET_MODE (tempreg))
2728 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2729 {
2730 /* The argument is already sign/zero extended, so note it
2731 into the subreg. */
2732 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2733 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2734 }
2735
2736 /* TREE_USED gets set erroneously during expand_assignment. */
2737 save_tree_used = TREE_USED (parm);
2738 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2739 TREE_USED (parm) = save_tree_used;
2740 all->first_conversion_insn = get_insns ();
2741 all->last_conversion_insn = get_last_insn ();
2742 end_sequence ();
2743
2744 did_conversion = true;
2745 }
2746 else
2747 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2748
2749 /* If we were passed a pointer but the actual value can safely live
2750 in a register, put it in one. */
2751 if (data->passed_pointer
2752 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2753 /* If by-reference argument was promoted, demote it. */
2754 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2755 || use_register_for_decl (parm)))
2756 {
2757 /* We can't use nominal_mode, because it will have been set to
2758 Pmode above. We must use the actual mode of the parm. */
2759 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2760 mark_user_reg (parmreg);
2761
2762 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2763 {
2764 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2765 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2766
2767 push_to_sequence2 (all->first_conversion_insn,
2768 all->last_conversion_insn);
2769 emit_move_insn (tempreg, DECL_RTL (parm));
2770 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2771 emit_move_insn (parmreg, tempreg);
2772 all->first_conversion_insn = get_insns ();
2773 all->last_conversion_insn = get_last_insn ();
2774 end_sequence ();
2775
2776 did_conversion = true;
2777 }
2778 else
2779 emit_move_insn (parmreg, DECL_RTL (parm));
2780
2781 SET_DECL_RTL (parm, parmreg);
2782
2783 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2784 now the parm. */
2785 data->stack_parm = NULL;
2786 }
2787
2788 /* Mark the register as eliminable if we did no conversion and it was
2789 copied from memory at a fixed offset, and the arg pointer was not
2790 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2791 offset formed an invalid address, such memory-equivalences as we
2792 make here would screw up life analysis for it. */
2793 if (data->nominal_mode == data->passed_mode
2794 && !did_conversion
2795 && data->stack_parm != 0
2796 && MEM_P (data->stack_parm)
2797 && data->locate.offset.var == 0
2798 && reg_mentioned_p (virtual_incoming_args_rtx,
2799 XEXP (data->stack_parm, 0)))
2800 {
2801 rtx linsn = get_last_insn ();
2802 rtx sinsn, set;
2803
2804 /* Mark complex types separately. */
2805 if (GET_CODE (parmreg) == CONCAT)
2806 {
2807 enum machine_mode submode
2808 = GET_MODE_INNER (GET_MODE (parmreg));
2809 int regnor = REGNO (XEXP (parmreg, 0));
2810 int regnoi = REGNO (XEXP (parmreg, 1));
2811 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2812 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2813 GET_MODE_SIZE (submode));
2814
2815 /* Scan backwards for the set of the real and
2816 imaginary parts. */
2817 for (sinsn = linsn; sinsn != 0;
2818 sinsn = prev_nonnote_insn (sinsn))
2819 {
2820 set = single_set (sinsn);
2821 if (set == 0)
2822 continue;
2823
2824 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2825 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2826 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2827 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2828 }
2829 }
2830 else if ((set = single_set (linsn)) != 0
2831 && SET_DEST (set) == parmreg)
2832 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2833 }
2834
2835 /* For pointer data type, suggest pointer register. */
2836 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2837 mark_reg_pointer (parmreg,
2838 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2839 }
2840
2841 /* A subroutine of assign_parms. Allocate stack space to hold the current
2842 parameter. Get it there. Perform all ABI specified conversions. */
2843
2844 static void
2845 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2846 struct assign_parm_data_one *data)
2847 {
2848 /* Value must be stored in the stack slot STACK_PARM during function
2849 execution. */
2850 bool to_conversion = false;
2851
2852 assign_parm_remove_parallels (data);
2853
2854 if (data->promoted_mode != data->nominal_mode)
2855 {
2856 /* Conversion is required. */
2857 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2858
2859 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2860
2861 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2862 to_conversion = true;
2863
2864 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2865 TYPE_UNSIGNED (TREE_TYPE (parm)));
2866
2867 if (data->stack_parm)
2868 /* ??? This may need a big-endian conversion on sparc64. */
2869 data->stack_parm
2870 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2871 }
2872
2873 if (data->entry_parm != data->stack_parm)
2874 {
2875 rtx src, dest;
2876
2877 if (data->stack_parm == 0)
2878 {
2879 data->stack_parm
2880 = assign_stack_local (GET_MODE (data->entry_parm),
2881 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2882 TYPE_ALIGN (data->passed_type));
2883 set_mem_attributes (data->stack_parm, parm, 1);
2884 }
2885
2886 dest = validize_mem (data->stack_parm);
2887 src = validize_mem (data->entry_parm);
2888
2889 if (MEM_P (src))
2890 {
2891 /* Use a block move to handle potentially misaligned entry_parm. */
2892 if (!to_conversion)
2893 push_to_sequence2 (all->first_conversion_insn,
2894 all->last_conversion_insn);
2895 to_conversion = true;
2896
2897 emit_block_move (dest, src,
2898 GEN_INT (int_size_in_bytes (data->passed_type)),
2899 BLOCK_OP_NORMAL);
2900 }
2901 else
2902 emit_move_insn (dest, src);
2903 }
2904
2905 if (to_conversion)
2906 {
2907 all->first_conversion_insn = get_insns ();
2908 all->last_conversion_insn = get_last_insn ();
2909 end_sequence ();
2910 }
2911
2912 SET_DECL_RTL (parm, data->stack_parm);
2913 }
2914
2915 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2916 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2917
2918 static void
2919 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2920 {
2921 tree parm;
2922 tree orig_fnargs = all->orig_fnargs;
2923
2924 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2925 {
2926 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2927 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2928 {
2929 rtx tmp, real, imag;
2930 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2931
2932 real = DECL_RTL (fnargs);
2933 imag = DECL_RTL (TREE_CHAIN (fnargs));
2934 if (inner != GET_MODE (real))
2935 {
2936 real = gen_lowpart_SUBREG (inner, real);
2937 imag = gen_lowpart_SUBREG (inner, imag);
2938 }
2939
2940 if (TREE_ADDRESSABLE (parm))
2941 {
2942 rtx rmem, imem;
2943 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2944
2945 /* split_complex_arg put the real and imag parts in
2946 pseudos. Move them to memory. */
2947 tmp = assign_stack_local (DECL_MODE (parm), size,
2948 TYPE_ALIGN (TREE_TYPE (parm)));
2949 set_mem_attributes (tmp, parm, 1);
2950 rmem = adjust_address_nv (tmp, inner, 0);
2951 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2952 push_to_sequence2 (all->first_conversion_insn,
2953 all->last_conversion_insn);
2954 emit_move_insn (rmem, real);
2955 emit_move_insn (imem, imag);
2956 all->first_conversion_insn = get_insns ();
2957 all->last_conversion_insn = get_last_insn ();
2958 end_sequence ();
2959 }
2960 else
2961 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2962 SET_DECL_RTL (parm, tmp);
2963
2964 real = DECL_INCOMING_RTL (fnargs);
2965 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2966 if (inner != GET_MODE (real))
2967 {
2968 real = gen_lowpart_SUBREG (inner, real);
2969 imag = gen_lowpart_SUBREG (inner, imag);
2970 }
2971 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2972 set_decl_incoming_rtl (parm, tmp, false);
2973 fnargs = TREE_CHAIN (fnargs);
2974 }
2975 else
2976 {
2977 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2978 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
2979
2980 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2981 instead of the copy of decl, i.e. FNARGS. */
2982 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2983 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2984 }
2985
2986 fnargs = TREE_CHAIN (fnargs);
2987 }
2988 }
2989
2990 /* Assign RTL expressions to the function's parameters. This may involve
2991 copying them into registers and using those registers as the DECL_RTL. */
2992
2993 static void
2994 assign_parms (tree fndecl)
2995 {
2996 struct assign_parm_data_all all;
2997 tree fnargs, parm;
2998
2999 crtl->args.internal_arg_pointer
3000 = targetm.calls.internal_arg_pointer ();
3001
3002 assign_parms_initialize_all (&all);
3003 fnargs = assign_parms_augmented_arg_list (&all);
3004
3005 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3006 {
3007 struct assign_parm_data_one data;
3008
3009 /* Extract the type of PARM; adjust it according to ABI. */
3010 assign_parm_find_data_types (&all, parm, &data);
3011
3012 /* Early out for errors and void parameters. */
3013 if (data.passed_mode == VOIDmode)
3014 {
3015 SET_DECL_RTL (parm, const0_rtx);
3016 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3017 continue;
3018 }
3019
3020 /* Estimate stack alignment from parameter alignment. */
3021 if (SUPPORTS_STACK_ALIGNMENT)
3022 {
3023 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3024 data.passed_type);
3025 if (TYPE_ALIGN (data.nominal_type) > align)
3026 align = TYPE_ALIGN (data.passed_type);
3027 if (crtl->stack_alignment_estimated < align)
3028 {
3029 gcc_assert (!crtl->stack_realign_processed);
3030 crtl->stack_alignment_estimated = align;
3031 }
3032 }
3033
3034 if (cfun->stdarg && !TREE_CHAIN (parm))
3035 assign_parms_setup_varargs (&all, &data, false);
3036
3037 /* Find out where the parameter arrives in this function. */
3038 assign_parm_find_entry_rtl (&all, &data);
3039
3040 /* Find out where stack space for this parameter might be. */
3041 if (assign_parm_is_stack_parm (&all, &data))
3042 {
3043 assign_parm_find_stack_rtl (parm, &data);
3044 assign_parm_adjust_entry_rtl (&data);
3045 }
3046
3047 /* Record permanently how this parm was passed. */
3048 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3049
3050 /* Update info on where next arg arrives in registers. */
3051 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3052 data.passed_type, data.named_arg);
3053
3054 assign_parm_adjust_stack_rtl (&data);
3055
3056 if (assign_parm_setup_block_p (&data))
3057 assign_parm_setup_block (&all, parm, &data);
3058 else if (data.passed_pointer || use_register_for_decl (parm))
3059 assign_parm_setup_reg (&all, parm, &data);
3060 else
3061 assign_parm_setup_stack (&all, parm, &data);
3062 }
3063
3064 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3065 assign_parms_unsplit_complex (&all, fnargs);
3066
3067 /* Output all parameter conversion instructions (possibly including calls)
3068 now that all parameters have been copied out of hard registers. */
3069 emit_insn (all.first_conversion_insn);
3070
3071 /* Estimate reload stack alignment from scalar return mode. */
3072 if (SUPPORTS_STACK_ALIGNMENT)
3073 {
3074 if (DECL_RESULT (fndecl))
3075 {
3076 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3077 enum machine_mode mode = TYPE_MODE (type);
3078
3079 if (mode != BLKmode
3080 && mode != VOIDmode
3081 && !AGGREGATE_TYPE_P (type))
3082 {
3083 unsigned int align = GET_MODE_ALIGNMENT (mode);
3084 if (crtl->stack_alignment_estimated < align)
3085 {
3086 gcc_assert (!crtl->stack_realign_processed);
3087 crtl->stack_alignment_estimated = align;
3088 }
3089 }
3090 }
3091 }
3092
3093 /* If we are receiving a struct value address as the first argument, set up
3094 the RTL for the function result. As this might require code to convert
3095 the transmitted address to Pmode, we do this here to ensure that possible
3096 preliminary conversions of the address have been emitted already. */
3097 if (all.function_result_decl)
3098 {
3099 tree result = DECL_RESULT (current_function_decl);
3100 rtx addr = DECL_RTL (all.function_result_decl);
3101 rtx x;
3102
3103 if (DECL_BY_REFERENCE (result))
3104 x = addr;
3105 else
3106 {
3107 addr = convert_memory_address (Pmode, addr);
3108 x = gen_rtx_MEM (DECL_MODE (result), addr);
3109 set_mem_attributes (x, result, 1);
3110 }
3111 SET_DECL_RTL (result, x);
3112 }
3113
3114 /* We have aligned all the args, so add space for the pretend args. */
3115 crtl->args.pretend_args_size = all.pretend_args_size;
3116 all.stack_args_size.constant += all.extra_pretend_bytes;
3117 crtl->args.size = all.stack_args_size.constant;
3118
3119 /* Adjust function incoming argument size for alignment and
3120 minimum length. */
3121
3122 #ifdef REG_PARM_STACK_SPACE
3123 crtl->args.size = MAX (crtl->args.size,
3124 REG_PARM_STACK_SPACE (fndecl));
3125 #endif
3126
3127 crtl->args.size = CEIL_ROUND (crtl->args.size,
3128 PARM_BOUNDARY / BITS_PER_UNIT);
3129
3130 #ifdef ARGS_GROW_DOWNWARD
3131 crtl->args.arg_offset_rtx
3132 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3133 : expand_expr (size_diffop (all.stack_args_size.var,
3134 size_int (-all.stack_args_size.constant)),
3135 NULL_RTX, VOIDmode, 0));
3136 #else
3137 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3138 #endif
3139
3140 /* See how many bytes, if any, of its args a function should try to pop
3141 on return. */
3142
3143 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3144 crtl->args.size);
3145
3146 /* For stdarg.h function, save info about
3147 regs and stack space used by the named args. */
3148
3149 crtl->args.info = all.args_so_far;
3150
3151 /* Set the rtx used for the function return value. Put this in its
3152 own variable so any optimizers that need this information don't have
3153 to include tree.h. Do this here so it gets done when an inlined
3154 function gets output. */
3155
3156 crtl->return_rtx
3157 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3158 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3159
3160 /* If scalar return value was computed in a pseudo-reg, or was a named
3161 return value that got dumped to the stack, copy that to the hard
3162 return register. */
3163 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3164 {
3165 tree decl_result = DECL_RESULT (fndecl);
3166 rtx decl_rtl = DECL_RTL (decl_result);
3167
3168 if (REG_P (decl_rtl)
3169 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3170 : DECL_REGISTER (decl_result))
3171 {
3172 rtx real_decl_rtl;
3173
3174 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3175 fndecl, true);
3176 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3177 /* The delay slot scheduler assumes that crtl->return_rtx
3178 holds the hard register containing the return value, not a
3179 temporary pseudo. */
3180 crtl->return_rtx = real_decl_rtl;
3181 }
3182 }
3183 }
3184
3185 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3186 For all seen types, gimplify their sizes. */
3187
3188 static tree
3189 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3190 {
3191 tree t = *tp;
3192
3193 *walk_subtrees = 0;
3194 if (TYPE_P (t))
3195 {
3196 if (POINTER_TYPE_P (t))
3197 *walk_subtrees = 1;
3198 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3199 && !TYPE_SIZES_GIMPLIFIED (t))
3200 {
3201 gimplify_type_sizes (t, (gimple_seq *) data);
3202 *walk_subtrees = 1;
3203 }
3204 }
3205
3206 return NULL;
3207 }
3208
3209 /* Gimplify the parameter list for current_function_decl. This involves
3210 evaluating SAVE_EXPRs of variable sized parameters and generating code
3211 to implement callee-copies reference parameters. Returns a sequence of
3212 statements to add to the beginning of the function. */
3213
3214 gimple_seq
3215 gimplify_parameters (void)
3216 {
3217 struct assign_parm_data_all all;
3218 tree fnargs, parm;
3219 gimple_seq stmts = NULL;
3220
3221 assign_parms_initialize_all (&all);
3222 fnargs = assign_parms_augmented_arg_list (&all);
3223
3224 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3225 {
3226 struct assign_parm_data_one data;
3227
3228 /* Extract the type of PARM; adjust it according to ABI. */
3229 assign_parm_find_data_types (&all, parm, &data);
3230
3231 /* Early out for errors and void parameters. */
3232 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3233 continue;
3234
3235 /* Update info on where next arg arrives in registers. */
3236 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3237 data.passed_type, data.named_arg);
3238
3239 /* ??? Once upon a time variable_size stuffed parameter list
3240 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3241 turned out to be less than manageable in the gimple world.
3242 Now we have to hunt them down ourselves. */
3243 walk_tree_without_duplicates (&data.passed_type,
3244 gimplify_parm_type, &stmts);
3245
3246 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3247 {
3248 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3249 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3250 }
3251
3252 if (data.passed_pointer)
3253 {
3254 tree type = TREE_TYPE (data.passed_type);
3255 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3256 type, data.named_arg))
3257 {
3258 tree local, t;
3259
3260 /* For constant-sized objects, this is trivial; for
3261 variable-sized objects, we have to play games. */
3262 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3263 && !(flag_stack_check == GENERIC_STACK_CHECK
3264 && compare_tree_int (DECL_SIZE_UNIT (parm),
3265 STACK_CHECK_MAX_VAR_SIZE) > 0))
3266 {
3267 local = create_tmp_var (type, get_name (parm));
3268 DECL_IGNORED_P (local) = 0;
3269 }
3270 else
3271 {
3272 tree ptr_type, addr;
3273
3274 ptr_type = build_pointer_type (type);
3275 addr = create_tmp_var (ptr_type, get_name (parm));
3276 DECL_IGNORED_P (addr) = 0;
3277 local = build_fold_indirect_ref (addr);
3278
3279 t = built_in_decls[BUILT_IN_ALLOCA];
3280 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3281 t = fold_convert (ptr_type, t);
3282 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3283 gimplify_and_add (t, &stmts);
3284 }
3285
3286 gimplify_assign (local, parm, &stmts);
3287
3288 SET_DECL_VALUE_EXPR (parm, local);
3289 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3290 }
3291 }
3292 }
3293
3294 return stmts;
3295 }
3296 \f
3297 /* Compute the size and offset from the start of the stacked arguments for a
3298 parm passed in mode PASSED_MODE and with type TYPE.
3299
3300 INITIAL_OFFSET_PTR points to the current offset into the stacked
3301 arguments.
3302
3303 The starting offset and size for this parm are returned in
3304 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3305 nonzero, the offset is that of stack slot, which is returned in
3306 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3307 padding required from the initial offset ptr to the stack slot.
3308
3309 IN_REGS is nonzero if the argument will be passed in registers. It will
3310 never be set if REG_PARM_STACK_SPACE is not defined.
3311
3312 FNDECL is the function in which the argument was defined.
3313
3314 There are two types of rounding that are done. The first, controlled by
3315 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3316 list to be aligned to the specific boundary (in bits). This rounding
3317 affects the initial and starting offsets, but not the argument size.
3318
3319 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3320 optionally rounds the size of the parm to PARM_BOUNDARY. The
3321 initial offset is not affected by this rounding, while the size always
3322 is and the starting offset may be. */
3323
3324 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3325 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3326 callers pass in the total size of args so far as
3327 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3328
3329 void
3330 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3331 int partial, tree fndecl ATTRIBUTE_UNUSED,
3332 struct args_size *initial_offset_ptr,
3333 struct locate_and_pad_arg_data *locate)
3334 {
3335 tree sizetree;
3336 enum direction where_pad;
3337 unsigned int boundary;
3338 int reg_parm_stack_space = 0;
3339 int part_size_in_regs;
3340
3341 #ifdef REG_PARM_STACK_SPACE
3342 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3343
3344 /* If we have found a stack parm before we reach the end of the
3345 area reserved for registers, skip that area. */
3346 if (! in_regs)
3347 {
3348 if (reg_parm_stack_space > 0)
3349 {
3350 if (initial_offset_ptr->var)
3351 {
3352 initial_offset_ptr->var
3353 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3354 ssize_int (reg_parm_stack_space));
3355 initial_offset_ptr->constant = 0;
3356 }
3357 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3358 initial_offset_ptr->constant = reg_parm_stack_space;
3359 }
3360 }
3361 #endif /* REG_PARM_STACK_SPACE */
3362
3363 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3364
3365 sizetree
3366 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3367 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3368 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3369 locate->where_pad = where_pad;
3370
3371 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3372 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3373 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3374
3375 locate->boundary = boundary;
3376
3377 if (SUPPORTS_STACK_ALIGNMENT)
3378 {
3379 /* stack_alignment_estimated can't change after stack has been
3380 realigned. */
3381 if (crtl->stack_alignment_estimated < boundary)
3382 {
3383 if (!crtl->stack_realign_processed)
3384 crtl->stack_alignment_estimated = boundary;
3385 else
3386 {
3387 /* If stack is realigned and stack alignment value
3388 hasn't been finalized, it is OK not to increase
3389 stack_alignment_estimated. The bigger alignment
3390 requirement is recorded in stack_alignment_needed
3391 below. */
3392 gcc_assert (!crtl->stack_realign_finalized
3393 && crtl->stack_realign_needed);
3394 }
3395 }
3396 }
3397
3398 /* Remember if the outgoing parameter requires extra alignment on the
3399 calling function side. */
3400 if (crtl->stack_alignment_needed < boundary)
3401 crtl->stack_alignment_needed = boundary;
3402 if (crtl->max_used_stack_slot_alignment < crtl->stack_alignment_needed)
3403 crtl->max_used_stack_slot_alignment = crtl->stack_alignment_needed;
3404 if (crtl->preferred_stack_boundary < boundary)
3405 crtl->preferred_stack_boundary = boundary;
3406
3407 #ifdef ARGS_GROW_DOWNWARD
3408 locate->slot_offset.constant = -initial_offset_ptr->constant;
3409 if (initial_offset_ptr->var)
3410 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3411 initial_offset_ptr->var);
3412
3413 {
3414 tree s2 = sizetree;
3415 if (where_pad != none
3416 && (!host_integerp (sizetree, 1)
3417 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3418 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3419 SUB_PARM_SIZE (locate->slot_offset, s2);
3420 }
3421
3422 locate->slot_offset.constant += part_size_in_regs;
3423
3424 if (!in_regs
3425 #ifdef REG_PARM_STACK_SPACE
3426 || REG_PARM_STACK_SPACE (fndecl) > 0
3427 #endif
3428 )
3429 pad_to_arg_alignment (&locate->slot_offset, boundary,
3430 &locate->alignment_pad);
3431
3432 locate->size.constant = (-initial_offset_ptr->constant
3433 - locate->slot_offset.constant);
3434 if (initial_offset_ptr->var)
3435 locate->size.var = size_binop (MINUS_EXPR,
3436 size_binop (MINUS_EXPR,
3437 ssize_int (0),
3438 initial_offset_ptr->var),
3439 locate->slot_offset.var);
3440
3441 /* Pad_below needs the pre-rounded size to know how much to pad
3442 below. */
3443 locate->offset = locate->slot_offset;
3444 if (where_pad == downward)
3445 pad_below (&locate->offset, passed_mode, sizetree);
3446
3447 #else /* !ARGS_GROW_DOWNWARD */
3448 if (!in_regs
3449 #ifdef REG_PARM_STACK_SPACE
3450 || REG_PARM_STACK_SPACE (fndecl) > 0
3451 #endif
3452 )
3453 pad_to_arg_alignment (initial_offset_ptr, boundary,
3454 &locate->alignment_pad);
3455 locate->slot_offset = *initial_offset_ptr;
3456
3457 #ifdef PUSH_ROUNDING
3458 if (passed_mode != BLKmode)
3459 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3460 #endif
3461
3462 /* Pad_below needs the pre-rounded size to know how much to pad below
3463 so this must be done before rounding up. */
3464 locate->offset = locate->slot_offset;
3465 if (where_pad == downward)
3466 pad_below (&locate->offset, passed_mode, sizetree);
3467
3468 if (where_pad != none
3469 && (!host_integerp (sizetree, 1)
3470 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3471 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3472
3473 ADD_PARM_SIZE (locate->size, sizetree);
3474
3475 locate->size.constant -= part_size_in_regs;
3476 #endif /* ARGS_GROW_DOWNWARD */
3477 }
3478
3479 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3480 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3481
3482 static void
3483 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3484 struct args_size *alignment_pad)
3485 {
3486 tree save_var = NULL_TREE;
3487 HOST_WIDE_INT save_constant = 0;
3488 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3489 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3490
3491 #ifdef SPARC_STACK_BOUNDARY_HACK
3492 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3493 the real alignment of %sp. However, when it does this, the
3494 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3495 if (SPARC_STACK_BOUNDARY_HACK)
3496 sp_offset = 0;
3497 #endif
3498
3499 if (boundary > PARM_BOUNDARY)
3500 {
3501 save_var = offset_ptr->var;
3502 save_constant = offset_ptr->constant;
3503 }
3504
3505 alignment_pad->var = NULL_TREE;
3506 alignment_pad->constant = 0;
3507
3508 if (boundary > BITS_PER_UNIT)
3509 {
3510 if (offset_ptr->var)
3511 {
3512 tree sp_offset_tree = ssize_int (sp_offset);
3513 tree offset = size_binop (PLUS_EXPR,
3514 ARGS_SIZE_TREE (*offset_ptr),
3515 sp_offset_tree);
3516 #ifdef ARGS_GROW_DOWNWARD
3517 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3518 #else
3519 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3520 #endif
3521
3522 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3523 /* ARGS_SIZE_TREE includes constant term. */
3524 offset_ptr->constant = 0;
3525 if (boundary > PARM_BOUNDARY)
3526 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3527 save_var);
3528 }
3529 else
3530 {
3531 offset_ptr->constant = -sp_offset +
3532 #ifdef ARGS_GROW_DOWNWARD
3533 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3534 #else
3535 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3536 #endif
3537 if (boundary > PARM_BOUNDARY)
3538 alignment_pad->constant = offset_ptr->constant - save_constant;
3539 }
3540 }
3541 }
3542
3543 static void
3544 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3545 {
3546 if (passed_mode != BLKmode)
3547 {
3548 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3549 offset_ptr->constant
3550 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3551 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3552 - GET_MODE_SIZE (passed_mode));
3553 }
3554 else
3555 {
3556 if (TREE_CODE (sizetree) != INTEGER_CST
3557 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3558 {
3559 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3560 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3561 /* Add it in. */
3562 ADD_PARM_SIZE (*offset_ptr, s2);
3563 SUB_PARM_SIZE (*offset_ptr, sizetree);
3564 }
3565 }
3566 }
3567 \f
3568
3569 /* True if register REGNO was alive at a place where `setjmp' was
3570 called and was set more than once or is an argument. Such regs may
3571 be clobbered by `longjmp'. */
3572
3573 static bool
3574 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3575 {
3576 /* There appear to be cases where some local vars never reach the
3577 backend but have bogus regnos. */
3578 if (regno >= max_reg_num ())
3579 return false;
3580
3581 return ((REG_N_SETS (regno) > 1
3582 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3583 && REGNO_REG_SET_P (setjmp_crosses, regno));
3584 }
3585
3586 /* Walk the tree of blocks describing the binding levels within a
3587 function and warn about variables the might be killed by setjmp or
3588 vfork. This is done after calling flow_analysis before register
3589 allocation since that will clobber the pseudo-regs to hard
3590 regs. */
3591
3592 static void
3593 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3594 {
3595 tree decl, sub;
3596
3597 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3598 {
3599 if (TREE_CODE (decl) == VAR_DECL
3600 && DECL_RTL_SET_P (decl)
3601 && REG_P (DECL_RTL (decl))
3602 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3603 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3604 " %<longjmp%> or %<vfork%>", decl);
3605 }
3606
3607 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3608 setjmp_vars_warning (setjmp_crosses, sub);
3609 }
3610
3611 /* Do the appropriate part of setjmp_vars_warning
3612 but for arguments instead of local variables. */
3613
3614 static void
3615 setjmp_args_warning (bitmap setjmp_crosses)
3616 {
3617 tree decl;
3618 for (decl = DECL_ARGUMENTS (current_function_decl);
3619 decl; decl = TREE_CHAIN (decl))
3620 if (DECL_RTL (decl) != 0
3621 && REG_P (DECL_RTL (decl))
3622 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3623 warning (OPT_Wclobbered,
3624 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3625 decl);
3626 }
3627
3628 /* Generate warning messages for variables live across setjmp. */
3629
3630 void
3631 generate_setjmp_warnings (void)
3632 {
3633 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3634
3635 if (n_basic_blocks == NUM_FIXED_BLOCKS
3636 || bitmap_empty_p (setjmp_crosses))
3637 return;
3638
3639 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3640 setjmp_args_warning (setjmp_crosses);
3641 }
3642
3643 \f
3644 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3645 and create duplicate blocks. */
3646 /* ??? Need an option to either create block fragments or to create
3647 abstract origin duplicates of a source block. It really depends
3648 on what optimization has been performed. */
3649
3650 void
3651 reorder_blocks (void)
3652 {
3653 tree block = DECL_INITIAL (current_function_decl);
3654 VEC(tree,heap) *block_stack;
3655
3656 if (block == NULL_TREE)
3657 return;
3658
3659 block_stack = VEC_alloc (tree, heap, 10);
3660
3661 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3662 clear_block_marks (block);
3663
3664 /* Prune the old trees away, so that they don't get in the way. */
3665 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3666 BLOCK_CHAIN (block) = NULL_TREE;
3667
3668 /* Recreate the block tree from the note nesting. */
3669 reorder_blocks_1 (get_insns (), block, &block_stack);
3670 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3671
3672 VEC_free (tree, heap, block_stack);
3673 }
3674
3675 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3676
3677 void
3678 clear_block_marks (tree block)
3679 {
3680 while (block)
3681 {
3682 TREE_ASM_WRITTEN (block) = 0;
3683 clear_block_marks (BLOCK_SUBBLOCKS (block));
3684 block = BLOCK_CHAIN (block);
3685 }
3686 }
3687
3688 static void
3689 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3690 {
3691 rtx insn;
3692
3693 for (insn = insns; insn; insn = NEXT_INSN (insn))
3694 {
3695 if (NOTE_P (insn))
3696 {
3697 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3698 {
3699 tree block = NOTE_BLOCK (insn);
3700 tree origin;
3701
3702 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3703 ? BLOCK_FRAGMENT_ORIGIN (block)
3704 : block);
3705
3706 /* If we have seen this block before, that means it now
3707 spans multiple address regions. Create a new fragment. */
3708 if (TREE_ASM_WRITTEN (block))
3709 {
3710 tree new_block = copy_node (block);
3711
3712 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3713 BLOCK_FRAGMENT_CHAIN (new_block)
3714 = BLOCK_FRAGMENT_CHAIN (origin);
3715 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3716
3717 NOTE_BLOCK (insn) = new_block;
3718 block = new_block;
3719 }
3720
3721 BLOCK_SUBBLOCKS (block) = 0;
3722 TREE_ASM_WRITTEN (block) = 1;
3723 /* When there's only one block for the entire function,
3724 current_block == block and we mustn't do this, it
3725 will cause infinite recursion. */
3726 if (block != current_block)
3727 {
3728 if (block != origin)
3729 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3730
3731 BLOCK_SUPERCONTEXT (block) = current_block;
3732 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3733 BLOCK_SUBBLOCKS (current_block) = block;
3734 current_block = origin;
3735 }
3736 VEC_safe_push (tree, heap, *p_block_stack, block);
3737 }
3738 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3739 {
3740 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3741 BLOCK_SUBBLOCKS (current_block)
3742 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3743 current_block = BLOCK_SUPERCONTEXT (current_block);
3744 }
3745 }
3746 }
3747 }
3748
3749 /* Reverse the order of elements in the chain T of blocks,
3750 and return the new head of the chain (old last element). */
3751
3752 tree
3753 blocks_nreverse (tree t)
3754 {
3755 tree prev = 0, decl, next;
3756 for (decl = t; decl; decl = next)
3757 {
3758 next = BLOCK_CHAIN (decl);
3759 BLOCK_CHAIN (decl) = prev;
3760 prev = decl;
3761 }
3762 return prev;
3763 }
3764
3765 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3766 non-NULL, list them all into VECTOR, in a depth-first preorder
3767 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3768 blocks. */
3769
3770 static int
3771 all_blocks (tree block, tree *vector)
3772 {
3773 int n_blocks = 0;
3774
3775 while (block)
3776 {
3777 TREE_ASM_WRITTEN (block) = 0;
3778
3779 /* Record this block. */
3780 if (vector)
3781 vector[n_blocks] = block;
3782
3783 ++n_blocks;
3784
3785 /* Record the subblocks, and their subblocks... */
3786 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3787 vector ? vector + n_blocks : 0);
3788 block = BLOCK_CHAIN (block);
3789 }
3790
3791 return n_blocks;
3792 }
3793
3794 /* Return a vector containing all the blocks rooted at BLOCK. The
3795 number of elements in the vector is stored in N_BLOCKS_P. The
3796 vector is dynamically allocated; it is the caller's responsibility
3797 to call `free' on the pointer returned. */
3798
3799 static tree *
3800 get_block_vector (tree block, int *n_blocks_p)
3801 {
3802 tree *block_vector;
3803
3804 *n_blocks_p = all_blocks (block, NULL);
3805 block_vector = XNEWVEC (tree, *n_blocks_p);
3806 all_blocks (block, block_vector);
3807
3808 return block_vector;
3809 }
3810
3811 static GTY(()) int next_block_index = 2;
3812
3813 /* Set BLOCK_NUMBER for all the blocks in FN. */
3814
3815 void
3816 number_blocks (tree fn)
3817 {
3818 int i;
3819 int n_blocks;
3820 tree *block_vector;
3821
3822 /* For SDB and XCOFF debugging output, we start numbering the blocks
3823 from 1 within each function, rather than keeping a running
3824 count. */
3825 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3826 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3827 next_block_index = 1;
3828 #endif
3829
3830 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3831
3832 /* The top-level BLOCK isn't numbered at all. */
3833 for (i = 1; i < n_blocks; ++i)
3834 /* We number the blocks from two. */
3835 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3836
3837 free (block_vector);
3838
3839 return;
3840 }
3841
3842 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3843
3844 tree
3845 debug_find_var_in_block_tree (tree var, tree block)
3846 {
3847 tree t;
3848
3849 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3850 if (t == var)
3851 return block;
3852
3853 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3854 {
3855 tree ret = debug_find_var_in_block_tree (var, t);
3856 if (ret)
3857 return ret;
3858 }
3859
3860 return NULL_TREE;
3861 }
3862 \f
3863 /* Keep track of whether we're in a dummy function context. If we are,
3864 we don't want to invoke the set_current_function hook, because we'll
3865 get into trouble if the hook calls target_reinit () recursively or
3866 when the initial initialization is not yet complete. */
3867
3868 static bool in_dummy_function;
3869
3870 /* Invoke the target hook when setting cfun. Update the optimization options
3871 if the function uses different options than the default. */
3872
3873 static void
3874 invoke_set_current_function_hook (tree fndecl)
3875 {
3876 if (!in_dummy_function)
3877 {
3878 tree opts = ((fndecl)
3879 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
3880 : optimization_default_node);
3881
3882 if (!opts)
3883 opts = optimization_default_node;
3884
3885 /* Change optimization options if needed. */
3886 if (optimization_current_node != opts)
3887 {
3888 optimization_current_node = opts;
3889 cl_optimization_restore (TREE_OPTIMIZATION (opts));
3890 }
3891
3892 targetm.set_current_function (fndecl);
3893 }
3894 }
3895
3896 /* cfun should never be set directly; use this function. */
3897
3898 void
3899 set_cfun (struct function *new_cfun)
3900 {
3901 if (cfun != new_cfun)
3902 {
3903 cfun = new_cfun;
3904 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
3905 }
3906 }
3907
3908 /* Keep track of the cfun stack. */
3909
3910 typedef struct function *function_p;
3911
3912 DEF_VEC_P(function_p);
3913 DEF_VEC_ALLOC_P(function_p,heap);
3914
3915 /* Initialized with NOGC, making this poisonous to the garbage collector. */
3916
3917 static VEC(function_p,heap) *cfun_stack;
3918
3919 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
3920
3921 void
3922 push_cfun (struct function *new_cfun)
3923 {
3924 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3925 set_cfun (new_cfun);
3926 }
3927
3928 /* Pop cfun from the stack. */
3929
3930 void
3931 pop_cfun (void)
3932 {
3933 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
3934 set_cfun (new_cfun);
3935 }
3936
3937 /* Return value of funcdef and increase it. */
3938 int
3939 get_next_funcdef_no (void)
3940 {
3941 return funcdef_no++;
3942 }
3943
3944 /* Allocate a function structure for FNDECL and set its contents
3945 to the defaults. Set cfun to the newly-allocated object.
3946 Some of the helper functions invoked during initialization assume
3947 that cfun has already been set. Therefore, assign the new object
3948 directly into cfun and invoke the back end hook explicitly at the
3949 very end, rather than initializing a temporary and calling set_cfun
3950 on it.
3951
3952 ABSTRACT_P is true if this is a function that will never be seen by
3953 the middle-end. Such functions are front-end concepts (like C++
3954 function templates) that do not correspond directly to functions
3955 placed in object files. */
3956
3957 void
3958 allocate_struct_function (tree fndecl, bool abstract_p)
3959 {
3960 tree result;
3961 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3962
3963 cfun = GGC_CNEW (struct function);
3964
3965 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3966
3967 init_eh_for_function ();
3968
3969 if (init_machine_status)
3970 cfun->machine = (*init_machine_status) ();
3971
3972 #ifdef OVERRIDE_ABI_FORMAT
3973 OVERRIDE_ABI_FORMAT (fndecl);
3974 #endif
3975
3976 if (fndecl != NULL_TREE)
3977 {
3978 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3979 cfun->decl = fndecl;
3980 current_function_funcdef_no = get_next_funcdef_no ();
3981
3982 result = DECL_RESULT (fndecl);
3983 if (!abstract_p && aggregate_value_p (result, fndecl))
3984 {
3985 #ifdef PCC_STATIC_STRUCT_RETURN
3986 cfun->returns_pcc_struct = 1;
3987 #endif
3988 cfun->returns_struct = 1;
3989 }
3990
3991 cfun->stdarg
3992 = (fntype
3993 && TYPE_ARG_TYPES (fntype) != 0
3994 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3995 != void_type_node));
3996
3997 /* Assume all registers in stdarg functions need to be saved. */
3998 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3999 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4000 }
4001
4002 invoke_set_current_function_hook (fndecl);
4003 }
4004
4005 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4006 instead of just setting it. */
4007
4008 void
4009 push_struct_function (tree fndecl)
4010 {
4011 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4012 allocate_struct_function (fndecl, false);
4013 }
4014
4015 /* Reset cfun, and other non-struct-function variables to defaults as
4016 appropriate for emitting rtl at the start of a function. */
4017
4018 static void
4019 prepare_function_start (void)
4020 {
4021 gcc_assert (!crtl->emit.x_last_insn);
4022 init_emit ();
4023 init_varasm_status ();
4024 init_expr ();
4025 default_rtl_profile ();
4026
4027 cse_not_expected = ! optimize;
4028
4029 /* Caller save not needed yet. */
4030 caller_save_needed = 0;
4031
4032 /* We haven't done register allocation yet. */
4033 reg_renumber = 0;
4034
4035 /* Indicate that we have not instantiated virtual registers yet. */
4036 virtuals_instantiated = 0;
4037
4038 /* Indicate that we want CONCATs now. */
4039 generating_concat_p = 1;
4040
4041 /* Indicate we have no need of a frame pointer yet. */
4042 frame_pointer_needed = 0;
4043 }
4044
4045 /* Initialize the rtl expansion mechanism so that we can do simple things
4046 like generate sequences. This is used to provide a context during global
4047 initialization of some passes. You must call expand_dummy_function_end
4048 to exit this context. */
4049
4050 void
4051 init_dummy_function_start (void)
4052 {
4053 gcc_assert (!in_dummy_function);
4054 in_dummy_function = true;
4055 push_struct_function (NULL_TREE);
4056 prepare_function_start ();
4057 }
4058
4059 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4060 and initialize static variables for generating RTL for the statements
4061 of the function. */
4062
4063 void
4064 init_function_start (tree subr)
4065 {
4066 if (subr && DECL_STRUCT_FUNCTION (subr))
4067 set_cfun (DECL_STRUCT_FUNCTION (subr));
4068 else
4069 allocate_struct_function (subr, false);
4070 prepare_function_start ();
4071
4072 /* Warn if this value is an aggregate type,
4073 regardless of which calling convention we are using for it. */
4074 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4075 warning (OPT_Waggregate_return, "function returns an aggregate");
4076 }
4077
4078 /* Make sure all values used by the optimization passes have sane
4079 defaults. */
4080 unsigned int
4081 init_function_for_compilation (void)
4082 {
4083 reg_renumber = 0;
4084
4085 /* No prologue/epilogue insns yet. Make sure that these vectors are
4086 empty. */
4087 gcc_assert (VEC_length (int, prologue) == 0);
4088 gcc_assert (VEC_length (int, epilogue) == 0);
4089 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
4090 return 0;
4091 }
4092
4093 struct rtl_opt_pass pass_init_function =
4094 {
4095 {
4096 RTL_PASS,
4097 NULL, /* name */
4098 NULL, /* gate */
4099 init_function_for_compilation, /* execute */
4100 NULL, /* sub */
4101 NULL, /* next */
4102 0, /* static_pass_number */
4103 0, /* tv_id */
4104 0, /* properties_required */
4105 0, /* properties_provided */
4106 0, /* properties_destroyed */
4107 0, /* todo_flags_start */
4108 0 /* todo_flags_finish */
4109 }
4110 };
4111
4112
4113 void
4114 expand_main_function (void)
4115 {
4116 #if (defined(INVOKE__main) \
4117 || (!defined(HAS_INIT_SECTION) \
4118 && !defined(INIT_SECTION_ASM_OP) \
4119 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4120 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4121 #endif
4122 }
4123 \f
4124 /* Expand code to initialize the stack_protect_guard. This is invoked at
4125 the beginning of a function to be protected. */
4126
4127 #ifndef HAVE_stack_protect_set
4128 # define HAVE_stack_protect_set 0
4129 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4130 #endif
4131
4132 void
4133 stack_protect_prologue (void)
4134 {
4135 tree guard_decl = targetm.stack_protect_guard ();
4136 rtx x, y;
4137
4138 /* Avoid expand_expr here, because we don't want guard_decl pulled
4139 into registers unless absolutely necessary. And we know that
4140 crtl->stack_protect_guard is a local stack slot, so this skips
4141 all the fluff. */
4142 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4143 y = validize_mem (DECL_RTL (guard_decl));
4144
4145 /* Allow the target to copy from Y to X without leaking Y into a
4146 register. */
4147 if (HAVE_stack_protect_set)
4148 {
4149 rtx insn = gen_stack_protect_set (x, y);
4150 if (insn)
4151 {
4152 emit_insn (insn);
4153 return;
4154 }
4155 }
4156
4157 /* Otherwise do a straight move. */
4158 emit_move_insn (x, y);
4159 }
4160
4161 /* Expand code to verify the stack_protect_guard. This is invoked at
4162 the end of a function to be protected. */
4163
4164 #ifndef HAVE_stack_protect_test
4165 # define HAVE_stack_protect_test 0
4166 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4167 #endif
4168
4169 void
4170 stack_protect_epilogue (void)
4171 {
4172 tree guard_decl = targetm.stack_protect_guard ();
4173 rtx label = gen_label_rtx ();
4174 rtx x, y, tmp;
4175
4176 /* Avoid expand_expr here, because we don't want guard_decl pulled
4177 into registers unless absolutely necessary. And we know that
4178 crtl->stack_protect_guard is a local stack slot, so this skips
4179 all the fluff. */
4180 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4181 y = validize_mem (DECL_RTL (guard_decl));
4182
4183 /* Allow the target to compare Y with X without leaking either into
4184 a register. */
4185 switch (HAVE_stack_protect_test != 0)
4186 {
4187 case 1:
4188 tmp = gen_stack_protect_test (x, y, label);
4189 if (tmp)
4190 {
4191 emit_insn (tmp);
4192 break;
4193 }
4194 /* FALLTHRU */
4195
4196 default:
4197 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4198 break;
4199 }
4200
4201 /* The noreturn predictor has been moved to the tree level. The rtl-level
4202 predictors estimate this branch about 20%, which isn't enough to get
4203 things moved out of line. Since this is the only extant case of adding
4204 a noreturn function at the rtl level, it doesn't seem worth doing ought
4205 except adding the prediction by hand. */
4206 tmp = get_last_insn ();
4207 if (JUMP_P (tmp))
4208 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4209
4210 expand_expr_stmt (targetm.stack_protect_fail ());
4211 emit_label (label);
4212 }
4213 \f
4214 /* Start the RTL for a new function, and set variables used for
4215 emitting RTL.
4216 SUBR is the FUNCTION_DECL node.
4217 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4218 the function's parameters, which must be run at any return statement. */
4219
4220 void
4221 expand_function_start (tree subr)
4222 {
4223 /* Make sure volatile mem refs aren't considered
4224 valid operands of arithmetic insns. */
4225 init_recog_no_volatile ();
4226
4227 crtl->profile
4228 = (profile_flag
4229 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4230
4231 crtl->limit_stack
4232 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4233
4234 /* Make the label for return statements to jump to. Do not special
4235 case machines with special return instructions -- they will be
4236 handled later during jump, ifcvt, or epilogue creation. */
4237 return_label = gen_label_rtx ();
4238
4239 /* Initialize rtx used to return the value. */
4240 /* Do this before assign_parms so that we copy the struct value address
4241 before any library calls that assign parms might generate. */
4242
4243 /* Decide whether to return the value in memory or in a register. */
4244 if (aggregate_value_p (DECL_RESULT (subr), subr))
4245 {
4246 /* Returning something that won't go in a register. */
4247 rtx value_address = 0;
4248
4249 #ifdef PCC_STATIC_STRUCT_RETURN
4250 if (cfun->returns_pcc_struct)
4251 {
4252 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4253 value_address = assemble_static_space (size);
4254 }
4255 else
4256 #endif
4257 {
4258 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4259 /* Expect to be passed the address of a place to store the value.
4260 If it is passed as an argument, assign_parms will take care of
4261 it. */
4262 if (sv)
4263 {
4264 value_address = gen_reg_rtx (Pmode);
4265 emit_move_insn (value_address, sv);
4266 }
4267 }
4268 if (value_address)
4269 {
4270 rtx x = value_address;
4271 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4272 {
4273 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4274 set_mem_attributes (x, DECL_RESULT (subr), 1);
4275 }
4276 SET_DECL_RTL (DECL_RESULT (subr), x);
4277 }
4278 }
4279 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4280 /* If return mode is void, this decl rtl should not be used. */
4281 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4282 else
4283 {
4284 /* Compute the return values into a pseudo reg, which we will copy
4285 into the true return register after the cleanups are done. */
4286 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4287 if (TYPE_MODE (return_type) != BLKmode
4288 && targetm.calls.return_in_msb (return_type))
4289 /* expand_function_end will insert the appropriate padding in
4290 this case. Use the return value's natural (unpadded) mode
4291 within the function proper. */
4292 SET_DECL_RTL (DECL_RESULT (subr),
4293 gen_reg_rtx (TYPE_MODE (return_type)));
4294 else
4295 {
4296 /* In order to figure out what mode to use for the pseudo, we
4297 figure out what the mode of the eventual return register will
4298 actually be, and use that. */
4299 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4300
4301 /* Structures that are returned in registers are not
4302 aggregate_value_p, so we may see a PARALLEL or a REG. */
4303 if (REG_P (hard_reg))
4304 SET_DECL_RTL (DECL_RESULT (subr),
4305 gen_reg_rtx (GET_MODE (hard_reg)));
4306 else
4307 {
4308 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4309 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4310 }
4311 }
4312
4313 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4314 result to the real return register(s). */
4315 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4316 }
4317
4318 /* Initialize rtx for parameters and local variables.
4319 In some cases this requires emitting insns. */
4320 assign_parms (subr);
4321
4322 /* If function gets a static chain arg, store it. */
4323 if (cfun->static_chain_decl)
4324 {
4325 tree parm = cfun->static_chain_decl;
4326 rtx local = gen_reg_rtx (Pmode);
4327
4328 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4329 SET_DECL_RTL (parm, local);
4330 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4331
4332 emit_move_insn (local, static_chain_incoming_rtx);
4333 }
4334
4335 /* If the function receives a non-local goto, then store the
4336 bits we need to restore the frame pointer. */
4337 if (cfun->nonlocal_goto_save_area)
4338 {
4339 tree t_save;
4340 rtx r_save;
4341
4342 /* ??? We need to do this save early. Unfortunately here is
4343 before the frame variable gets declared. Help out... */
4344 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4345 if (!DECL_RTL_SET_P (var))
4346 expand_decl (var);
4347
4348 t_save = build4 (ARRAY_REF, ptr_type_node,
4349 cfun->nonlocal_goto_save_area,
4350 integer_zero_node, NULL_TREE, NULL_TREE);
4351 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4352 r_save = convert_memory_address (Pmode, r_save);
4353
4354 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4355 update_nonlocal_goto_save_area ();
4356 }
4357
4358 /* The following was moved from init_function_start.
4359 The move is supposed to make sdb output more accurate. */
4360 /* Indicate the beginning of the function body,
4361 as opposed to parm setup. */
4362 emit_note (NOTE_INSN_FUNCTION_BEG);
4363
4364 gcc_assert (NOTE_P (get_last_insn ()));
4365
4366 parm_birth_insn = get_last_insn ();
4367
4368 if (crtl->profile)
4369 {
4370 #ifdef PROFILE_HOOK
4371 PROFILE_HOOK (current_function_funcdef_no);
4372 #endif
4373 }
4374
4375 /* After the display initializations is where the stack checking
4376 probe should go. */
4377 if(flag_stack_check)
4378 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4379
4380 /* Make sure there is a line number after the function entry setup code. */
4381 force_next_line_note ();
4382 }
4383 \f
4384 /* Undo the effects of init_dummy_function_start. */
4385 void
4386 expand_dummy_function_end (void)
4387 {
4388 gcc_assert (in_dummy_function);
4389
4390 /* End any sequences that failed to be closed due to syntax errors. */
4391 while (in_sequence_p ())
4392 end_sequence ();
4393
4394 /* Outside function body, can't compute type's actual size
4395 until next function's body starts. */
4396
4397 free_after_parsing (cfun);
4398 free_after_compilation (cfun);
4399 pop_cfun ();
4400 in_dummy_function = false;
4401 }
4402
4403 /* Call DOIT for each hard register used as a return value from
4404 the current function. */
4405
4406 void
4407 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4408 {
4409 rtx outgoing = crtl->return_rtx;
4410
4411 if (! outgoing)
4412 return;
4413
4414 if (REG_P (outgoing))
4415 (*doit) (outgoing, arg);
4416 else if (GET_CODE (outgoing) == PARALLEL)
4417 {
4418 int i;
4419
4420 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4421 {
4422 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4423
4424 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4425 (*doit) (x, arg);
4426 }
4427 }
4428 }
4429
4430 static void
4431 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4432 {
4433 emit_clobber (reg);
4434 }
4435
4436 void
4437 clobber_return_register (void)
4438 {
4439 diddle_return_value (do_clobber_return_reg, NULL);
4440
4441 /* In case we do use pseudo to return value, clobber it too. */
4442 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4443 {
4444 tree decl_result = DECL_RESULT (current_function_decl);
4445 rtx decl_rtl = DECL_RTL (decl_result);
4446 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4447 {
4448 do_clobber_return_reg (decl_rtl, NULL);
4449 }
4450 }
4451 }
4452
4453 static void
4454 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4455 {
4456 emit_use (reg);
4457 }
4458
4459 static void
4460 use_return_register (void)
4461 {
4462 diddle_return_value (do_use_return_reg, NULL);
4463 }
4464
4465 /* Possibly warn about unused parameters. */
4466 void
4467 do_warn_unused_parameter (tree fn)
4468 {
4469 tree decl;
4470
4471 for (decl = DECL_ARGUMENTS (fn);
4472 decl; decl = TREE_CHAIN (decl))
4473 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4474 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4475 && !TREE_NO_WARNING (decl))
4476 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4477 }
4478
4479 static GTY(()) rtx initial_trampoline;
4480
4481 /* Generate RTL for the end of the current function. */
4482
4483 void
4484 expand_function_end (void)
4485 {
4486 rtx clobber_after;
4487
4488 /* If arg_pointer_save_area was referenced only from a nested
4489 function, we will not have initialized it yet. Do that now. */
4490 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4491 get_arg_pointer_save_area ();
4492
4493 /* If we are doing generic stack checking and this function makes calls,
4494 do a stack probe at the start of the function to ensure we have enough
4495 space for another stack frame. */
4496 if (flag_stack_check == GENERIC_STACK_CHECK)
4497 {
4498 rtx insn, seq;
4499
4500 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4501 if (CALL_P (insn))
4502 {
4503 start_sequence ();
4504 probe_stack_range (STACK_OLD_CHECK_PROTECT,
4505 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4506 seq = get_insns ();
4507 end_sequence ();
4508 emit_insn_before (seq, stack_check_probe_note);
4509 break;
4510 }
4511 }
4512
4513 /* End any sequences that failed to be closed due to syntax errors. */
4514 while (in_sequence_p ())
4515 end_sequence ();
4516
4517 clear_pending_stack_adjust ();
4518 do_pending_stack_adjust ();
4519
4520 /* Output a linenumber for the end of the function.
4521 SDB depends on this. */
4522 force_next_line_note ();
4523 set_curr_insn_source_location (input_location);
4524
4525 /* Before the return label (if any), clobber the return
4526 registers so that they are not propagated live to the rest of
4527 the function. This can only happen with functions that drop
4528 through; if there had been a return statement, there would
4529 have either been a return rtx, or a jump to the return label.
4530
4531 We delay actual code generation after the current_function_value_rtx
4532 is computed. */
4533 clobber_after = get_last_insn ();
4534
4535 /* Output the label for the actual return from the function. */
4536 emit_label (return_label);
4537
4538 if (USING_SJLJ_EXCEPTIONS)
4539 {
4540 /* Let except.c know where it should emit the call to unregister
4541 the function context for sjlj exceptions. */
4542 if (flag_exceptions)
4543 sjlj_emit_function_exit_after (get_last_insn ());
4544 }
4545 else
4546 {
4547 /* We want to ensure that instructions that may trap are not
4548 moved into the epilogue by scheduling, because we don't
4549 always emit unwind information for the epilogue. */
4550 if (flag_non_call_exceptions)
4551 emit_insn (gen_blockage ());
4552 }
4553
4554 /* If this is an implementation of throw, do what's necessary to
4555 communicate between __builtin_eh_return and the epilogue. */
4556 expand_eh_return ();
4557
4558 /* If scalar return value was computed in a pseudo-reg, or was a named
4559 return value that got dumped to the stack, copy that to the hard
4560 return register. */
4561 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4562 {
4563 tree decl_result = DECL_RESULT (current_function_decl);
4564 rtx decl_rtl = DECL_RTL (decl_result);
4565
4566 if (REG_P (decl_rtl)
4567 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4568 : DECL_REGISTER (decl_result))
4569 {
4570 rtx real_decl_rtl = crtl->return_rtx;
4571
4572 /* This should be set in assign_parms. */
4573 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4574
4575 /* If this is a BLKmode structure being returned in registers,
4576 then use the mode computed in expand_return. Note that if
4577 decl_rtl is memory, then its mode may have been changed,
4578 but that crtl->return_rtx has not. */
4579 if (GET_MODE (real_decl_rtl) == BLKmode)
4580 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4581
4582 /* If a non-BLKmode return value should be padded at the least
4583 significant end of the register, shift it left by the appropriate
4584 amount. BLKmode results are handled using the group load/store
4585 machinery. */
4586 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4587 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4588 {
4589 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4590 REGNO (real_decl_rtl)),
4591 decl_rtl);
4592 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4593 }
4594 /* If a named return value dumped decl_return to memory, then
4595 we may need to re-do the PROMOTE_MODE signed/unsigned
4596 extension. */
4597 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4598 {
4599 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4600
4601 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4602 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4603 &unsignedp, 1);
4604
4605 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4606 }
4607 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4608 {
4609 /* If expand_function_start has created a PARALLEL for decl_rtl,
4610 move the result to the real return registers. Otherwise, do
4611 a group load from decl_rtl for a named return. */
4612 if (GET_CODE (decl_rtl) == PARALLEL)
4613 emit_group_move (real_decl_rtl, decl_rtl);
4614 else
4615 emit_group_load (real_decl_rtl, decl_rtl,
4616 TREE_TYPE (decl_result),
4617 int_size_in_bytes (TREE_TYPE (decl_result)));
4618 }
4619 /* In the case of complex integer modes smaller than a word, we'll
4620 need to generate some non-trivial bitfield insertions. Do that
4621 on a pseudo and not the hard register. */
4622 else if (GET_CODE (decl_rtl) == CONCAT
4623 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4624 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4625 {
4626 int old_generating_concat_p;
4627 rtx tmp;
4628
4629 old_generating_concat_p = generating_concat_p;
4630 generating_concat_p = 0;
4631 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4632 generating_concat_p = old_generating_concat_p;
4633
4634 emit_move_insn (tmp, decl_rtl);
4635 emit_move_insn (real_decl_rtl, tmp);
4636 }
4637 else
4638 emit_move_insn (real_decl_rtl, decl_rtl);
4639 }
4640 }
4641
4642 /* If returning a structure, arrange to return the address of the value
4643 in a place where debuggers expect to find it.
4644
4645 If returning a structure PCC style,
4646 the caller also depends on this value.
4647 And cfun->returns_pcc_struct is not necessarily set. */
4648 if (cfun->returns_struct
4649 || cfun->returns_pcc_struct)
4650 {
4651 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4652 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4653 rtx outgoing;
4654
4655 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4656 type = TREE_TYPE (type);
4657 else
4658 value_address = XEXP (value_address, 0);
4659
4660 outgoing = targetm.calls.function_value (build_pointer_type (type),
4661 current_function_decl, true);
4662
4663 /* Mark this as a function return value so integrate will delete the
4664 assignment and USE below when inlining this function. */
4665 REG_FUNCTION_VALUE_P (outgoing) = 1;
4666
4667 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4668 value_address = convert_memory_address (GET_MODE (outgoing),
4669 value_address);
4670
4671 emit_move_insn (outgoing, value_address);
4672
4673 /* Show return register used to hold result (in this case the address
4674 of the result. */
4675 crtl->return_rtx = outgoing;
4676 }
4677
4678 /* Emit the actual code to clobber return register. */
4679 {
4680 rtx seq;
4681
4682 start_sequence ();
4683 clobber_return_register ();
4684 expand_naked_return ();
4685 seq = get_insns ();
4686 end_sequence ();
4687
4688 emit_insn_after (seq, clobber_after);
4689 }
4690
4691 /* Output the label for the naked return from the function. */
4692 emit_label (naked_return_label);
4693
4694 /* @@@ This is a kludge. We want to ensure that instructions that
4695 may trap are not moved into the epilogue by scheduling, because
4696 we don't always emit unwind information for the epilogue. */
4697 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4698 emit_insn (gen_blockage ());
4699
4700 /* If stack protection is enabled for this function, check the guard. */
4701 if (crtl->stack_protect_guard)
4702 stack_protect_epilogue ();
4703
4704 /* If we had calls to alloca, and this machine needs
4705 an accurate stack pointer to exit the function,
4706 insert some code to save and restore the stack pointer. */
4707 if (! EXIT_IGNORE_STACK
4708 && cfun->calls_alloca)
4709 {
4710 rtx tem = 0;
4711
4712 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4713 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4714 }
4715
4716 /* ??? This should no longer be necessary since stupid is no longer with
4717 us, but there are some parts of the compiler (eg reload_combine, and
4718 sh mach_dep_reorg) that still try and compute their own lifetime info
4719 instead of using the general framework. */
4720 use_return_register ();
4721 }
4722
4723 rtx
4724 get_arg_pointer_save_area (void)
4725 {
4726 rtx ret = arg_pointer_save_area;
4727
4728 if (! ret)
4729 {
4730 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4731 arg_pointer_save_area = ret;
4732 }
4733
4734 if (! crtl->arg_pointer_save_area_init)
4735 {
4736 rtx seq;
4737
4738 /* Save the arg pointer at the beginning of the function. The
4739 generated stack slot may not be a valid memory address, so we
4740 have to check it and fix it if necessary. */
4741 start_sequence ();
4742 emit_move_insn (validize_mem (ret),
4743 crtl->args.internal_arg_pointer);
4744 seq = get_insns ();
4745 end_sequence ();
4746
4747 push_topmost_sequence ();
4748 emit_insn_after (seq, entry_of_function ());
4749 pop_topmost_sequence ();
4750 }
4751
4752 return ret;
4753 }
4754 \f
4755 /* Extend a vector that records the INSN_UIDs of INSNS
4756 (a list of one or more insns). */
4757
4758 static void
4759 record_insns (rtx insns, VEC(int,heap) **vecp)
4760 {
4761 rtx tmp;
4762
4763 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4764 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4765 }
4766
4767 /* Set the locator of the insn chain starting at INSN to LOC. */
4768 static void
4769 set_insn_locators (rtx insn, int loc)
4770 {
4771 while (insn != NULL_RTX)
4772 {
4773 if (INSN_P (insn))
4774 INSN_LOCATOR (insn) = loc;
4775 insn = NEXT_INSN (insn);
4776 }
4777 }
4778
4779 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4780 be running after reorg, SEQUENCE rtl is possible. */
4781
4782 static int
4783 contains (const_rtx insn, VEC(int,heap) **vec)
4784 {
4785 int i, j;
4786
4787 if (NONJUMP_INSN_P (insn)
4788 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4789 {
4790 int count = 0;
4791 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4792 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4793 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4794 == VEC_index (int, *vec, j))
4795 count++;
4796 return count;
4797 }
4798 else
4799 {
4800 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4801 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4802 return 1;
4803 }
4804 return 0;
4805 }
4806
4807 int
4808 prologue_epilogue_contains (const_rtx insn)
4809 {
4810 if (contains (insn, &prologue))
4811 return 1;
4812 if (contains (insn, &epilogue))
4813 return 1;
4814 return 0;
4815 }
4816
4817 int
4818 sibcall_epilogue_contains (const_rtx insn)
4819 {
4820 if (sibcall_epilogue)
4821 return contains (insn, &sibcall_epilogue);
4822 return 0;
4823 }
4824
4825 #ifdef HAVE_return
4826 /* Insert gen_return at the end of block BB. This also means updating
4827 block_for_insn appropriately. */
4828
4829 static void
4830 emit_return_into_block (basic_block bb)
4831 {
4832 emit_jump_insn_after (gen_return (), BB_END (bb));
4833 }
4834 #endif /* HAVE_return */
4835
4836 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4837 this into place with notes indicating where the prologue ends and where
4838 the epilogue begins. Update the basic block information when possible. */
4839
4840 static void
4841 thread_prologue_and_epilogue_insns (void)
4842 {
4843 int inserted = 0;
4844 edge e;
4845 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4846 rtx seq;
4847 #endif
4848 #if defined (HAVE_epilogue) || defined(HAVE_return)
4849 rtx epilogue_end = NULL_RTX;
4850 #endif
4851 edge_iterator ei;
4852
4853 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
4854 #ifdef HAVE_prologue
4855 if (HAVE_prologue)
4856 {
4857 start_sequence ();
4858 seq = gen_prologue ();
4859 emit_insn (seq);
4860
4861 /* Insert an explicit USE for the frame pointer
4862 if the profiling is on and the frame pointer is required. */
4863 if (crtl->profile && frame_pointer_needed)
4864 emit_use (hard_frame_pointer_rtx);
4865
4866 /* Retain a map of the prologue insns. */
4867 record_insns (seq, &prologue);
4868 emit_note (NOTE_INSN_PROLOGUE_END);
4869
4870 #ifndef PROFILE_BEFORE_PROLOGUE
4871 /* Ensure that instructions are not moved into the prologue when
4872 profiling is on. The call to the profiling routine can be
4873 emitted within the live range of a call-clobbered register. */
4874 if (crtl->profile)
4875 emit_insn (gen_blockage ());
4876 #endif
4877
4878 seq = get_insns ();
4879 end_sequence ();
4880 set_insn_locators (seq, prologue_locator);
4881
4882 /* Can't deal with multiple successors of the entry block
4883 at the moment. Function should always have at least one
4884 entry point. */
4885 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
4886
4887 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
4888 inserted = 1;
4889 }
4890 #endif
4891
4892 /* If the exit block has no non-fake predecessors, we don't need
4893 an epilogue. */
4894 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4895 if ((e->flags & EDGE_FAKE) == 0)
4896 break;
4897 if (e == NULL)
4898 goto epilogue_done;
4899
4900 rtl_profile_for_bb (EXIT_BLOCK_PTR);
4901 #ifdef HAVE_return
4902 if (optimize && HAVE_return)
4903 {
4904 /* If we're allowed to generate a simple return instruction,
4905 then by definition we don't need a full epilogue. Examine
4906 the block that falls through to EXIT. If it does not
4907 contain any code, examine its predecessors and try to
4908 emit (conditional) return instructions. */
4909
4910 basic_block last;
4911 rtx label;
4912
4913 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4914 if (e->flags & EDGE_FALLTHRU)
4915 break;
4916 if (e == NULL)
4917 goto epilogue_done;
4918 last = e->src;
4919
4920 /* Verify that there are no active instructions in the last block. */
4921 label = BB_END (last);
4922 while (label && !LABEL_P (label))
4923 {
4924 if (active_insn_p (label))
4925 break;
4926 label = PREV_INSN (label);
4927 }
4928
4929 if (BB_HEAD (last) == label && LABEL_P (label))
4930 {
4931 edge_iterator ei2;
4932
4933 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
4934 {
4935 basic_block bb = e->src;
4936 rtx jump;
4937
4938 if (bb == ENTRY_BLOCK_PTR)
4939 {
4940 ei_next (&ei2);
4941 continue;
4942 }
4943
4944 jump = BB_END (bb);
4945 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
4946 {
4947 ei_next (&ei2);
4948 continue;
4949 }
4950
4951 /* If we have an unconditional jump, we can replace that
4952 with a simple return instruction. */
4953 if (simplejump_p (jump))
4954 {
4955 emit_return_into_block (bb);
4956 delete_insn (jump);
4957 }
4958
4959 /* If we have a conditional jump, we can try to replace
4960 that with a conditional return instruction. */
4961 else if (condjump_p (jump))
4962 {
4963 if (! redirect_jump (jump, 0, 0))
4964 {
4965 ei_next (&ei2);
4966 continue;
4967 }
4968
4969 /* If this block has only one successor, it both jumps
4970 and falls through to the fallthru block, so we can't
4971 delete the edge. */
4972 if (single_succ_p (bb))
4973 {
4974 ei_next (&ei2);
4975 continue;
4976 }
4977 }
4978 else
4979 {
4980 ei_next (&ei2);
4981 continue;
4982 }
4983
4984 /* Fix up the CFG for the successful change we just made. */
4985 redirect_edge_succ (e, EXIT_BLOCK_PTR);
4986 }
4987
4988 /* Emit a return insn for the exit fallthru block. Whether
4989 this is still reachable will be determined later. */
4990
4991 emit_barrier_after (BB_END (last));
4992 emit_return_into_block (last);
4993 epilogue_end = BB_END (last);
4994 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
4995 goto epilogue_done;
4996 }
4997 }
4998 #endif
4999 /* Find the edge that falls through to EXIT. Other edges may exist
5000 due to RETURN instructions, but those don't need epilogues.
5001 There really shouldn't be a mixture -- either all should have
5002 been converted or none, however... */
5003
5004 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5005 if (e->flags & EDGE_FALLTHRU)
5006 break;
5007 if (e == NULL)
5008 goto epilogue_done;
5009
5010 #ifdef HAVE_epilogue
5011 if (HAVE_epilogue)
5012 {
5013 start_sequence ();
5014 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5015 seq = gen_epilogue ();
5016 emit_jump_insn (seq);
5017
5018 /* Retain a map of the epilogue insns. */
5019 record_insns (seq, &epilogue);
5020 set_insn_locators (seq, epilogue_locator);
5021
5022 seq = get_insns ();
5023 end_sequence ();
5024
5025 insert_insn_on_edge (seq, e);
5026 inserted = 1;
5027 }
5028 else
5029 #endif
5030 {
5031 basic_block cur_bb;
5032
5033 if (! next_active_insn (BB_END (e->src)))
5034 goto epilogue_done;
5035 /* We have a fall-through edge to the exit block, the source is not
5036 at the end of the function, and there will be an assembler epilogue
5037 at the end of the function.
5038 We can't use force_nonfallthru here, because that would try to
5039 use return. Inserting a jump 'by hand' is extremely messy, so
5040 we take advantage of cfg_layout_finalize using
5041 fixup_fallthru_exit_predecessor. */
5042 cfg_layout_initialize (0);
5043 FOR_EACH_BB (cur_bb)
5044 if (cur_bb->index >= NUM_FIXED_BLOCKS
5045 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5046 cur_bb->aux = cur_bb->next_bb;
5047 cfg_layout_finalize ();
5048 }
5049 epilogue_done:
5050 default_rtl_profile ();
5051
5052 if (inserted)
5053 {
5054 commit_edge_insertions ();
5055
5056 /* The epilogue insns we inserted may cause the exit edge to no longer
5057 be fallthru. */
5058 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5059 {
5060 if (((e->flags & EDGE_FALLTHRU) != 0)
5061 && returnjump_p (BB_END (e->src)))
5062 e->flags &= ~EDGE_FALLTHRU;
5063 }
5064 }
5065
5066 #ifdef HAVE_sibcall_epilogue
5067 /* Emit sibling epilogues before any sibling call sites. */
5068 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5069 {
5070 basic_block bb = e->src;
5071 rtx insn = BB_END (bb);
5072
5073 if (!CALL_P (insn)
5074 || ! SIBLING_CALL_P (insn))
5075 {
5076 ei_next (&ei);
5077 continue;
5078 }
5079
5080 start_sequence ();
5081 emit_insn (gen_sibcall_epilogue ());
5082 seq = get_insns ();
5083 end_sequence ();
5084
5085 /* Retain a map of the epilogue insns. Used in life analysis to
5086 avoid getting rid of sibcall epilogue insns. Do this before we
5087 actually emit the sequence. */
5088 record_insns (seq, &sibcall_epilogue);
5089 set_insn_locators (seq, epilogue_locator);
5090
5091 emit_insn_before (seq, insn);
5092 ei_next (&ei);
5093 }
5094 #endif
5095
5096 #ifdef HAVE_epilogue
5097 if (epilogue_end)
5098 {
5099 rtx insn, next;
5100
5101 /* Similarly, move any line notes that appear after the epilogue.
5102 There is no need, however, to be quite so anal about the existence
5103 of such a note. Also possibly move
5104 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5105 info generation. */
5106 for (insn = epilogue_end; insn; insn = next)
5107 {
5108 next = NEXT_INSN (insn);
5109 if (NOTE_P (insn)
5110 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5111 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5112 }
5113 }
5114 #endif
5115
5116 /* Threading the prologue and epilogue changes the artificial refs
5117 in the entry and exit blocks. */
5118 epilogue_completed = 1;
5119 df_update_entry_exit_and_calls ();
5120 }
5121
5122 /* Reposition the prologue-end and epilogue-begin notes after instruction
5123 scheduling and delayed branch scheduling. */
5124
5125 void
5126 reposition_prologue_and_epilogue_notes (void)
5127 {
5128 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5129 rtx insn, last, note;
5130 int len;
5131
5132 if ((len = VEC_length (int, prologue)) > 0)
5133 {
5134 last = 0, note = 0;
5135
5136 /* Scan from the beginning until we reach the last prologue insn.
5137 We apparently can't depend on basic_block_{head,end} after
5138 reorg has run. */
5139 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5140 {
5141 if (NOTE_P (insn))
5142 {
5143 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5144 note = insn;
5145 }
5146 else if (contains (insn, &prologue))
5147 {
5148 last = insn;
5149 if (--len == 0)
5150 break;
5151 }
5152 }
5153
5154 if (last)
5155 {
5156 /* Find the prologue-end note if we haven't already, and
5157 move it to just after the last prologue insn. */
5158 if (note == 0)
5159 {
5160 for (note = last; (note = NEXT_INSN (note));)
5161 if (NOTE_P (note)
5162 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5163 break;
5164 }
5165
5166 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5167 if (LABEL_P (last))
5168 last = NEXT_INSN (last);
5169 reorder_insns (note, note, last);
5170 }
5171 }
5172
5173 if ((len = VEC_length (int, epilogue)) > 0)
5174 {
5175 last = 0, note = 0;
5176
5177 /* Scan from the end until we reach the first epilogue insn.
5178 We apparently can't depend on basic_block_{head,end} after
5179 reorg has run. */
5180 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5181 {
5182 if (NOTE_P (insn))
5183 {
5184 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5185 note = insn;
5186 }
5187 else if (contains (insn, &epilogue))
5188 {
5189 last = insn;
5190 if (--len == 0)
5191 break;
5192 }
5193 }
5194
5195 if (last)
5196 {
5197 /* Find the epilogue-begin note if we haven't already, and
5198 move it to just before the first epilogue insn. */
5199 if (note == 0)
5200 {
5201 for (note = insn; (note = PREV_INSN (note));)
5202 if (NOTE_P (note)
5203 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5204 break;
5205 }
5206
5207 if (PREV_INSN (last) != note)
5208 reorder_insns (note, note, PREV_INSN (last));
5209 }
5210 }
5211 #endif /* HAVE_prologue or HAVE_epilogue */
5212 }
5213
5214 /* Returns the name of the current function. */
5215 const char *
5216 current_function_name (void)
5217 {
5218 return lang_hooks.decl_printable_name (cfun->decl, 2);
5219 }
5220
5221 /* Returns the raw (mangled) name of the current function. */
5222 const char *
5223 current_function_assembler_name (void)
5224 {
5225 return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
5226 }
5227 \f
5228
5229 static unsigned int
5230 rest_of_handle_check_leaf_regs (void)
5231 {
5232 #ifdef LEAF_REGISTERS
5233 current_function_uses_only_leaf_regs
5234 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5235 #endif
5236 return 0;
5237 }
5238
5239 /* Insert a TYPE into the used types hash table of CFUN. */
5240 static void
5241 used_types_insert_helper (tree type, struct function *func)
5242 {
5243 if (type != NULL && func != NULL)
5244 {
5245 void **slot;
5246
5247 if (func->used_types_hash == NULL)
5248 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5249 htab_eq_pointer, NULL);
5250 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5251 if (*slot == NULL)
5252 *slot = type;
5253 }
5254 }
5255
5256 /* Given a type, insert it into the used hash table in cfun. */
5257 void
5258 used_types_insert (tree t)
5259 {
5260 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5261 t = TREE_TYPE (t);
5262 t = TYPE_MAIN_VARIANT (t);
5263 if (debug_info_level > DINFO_LEVEL_NONE)
5264 used_types_insert_helper (t, cfun);
5265 }
5266
5267 struct rtl_opt_pass pass_leaf_regs =
5268 {
5269 {
5270 RTL_PASS,
5271 NULL, /* name */
5272 NULL, /* gate */
5273 rest_of_handle_check_leaf_regs, /* execute */
5274 NULL, /* sub */
5275 NULL, /* next */
5276 0, /* static_pass_number */
5277 0, /* tv_id */
5278 0, /* properties_required */
5279 0, /* properties_provided */
5280 0, /* properties_destroyed */
5281 0, /* todo_flags_start */
5282 0 /* todo_flags_finish */
5283 }
5284 };
5285
5286 static unsigned int
5287 rest_of_handle_thread_prologue_and_epilogue (void)
5288 {
5289 if (optimize)
5290 cleanup_cfg (CLEANUP_EXPENSIVE);
5291 /* On some machines, the prologue and epilogue code, or parts thereof,
5292 can be represented as RTL. Doing so lets us schedule insns between
5293 it and the rest of the code and also allows delayed branch
5294 scheduling to operate in the epilogue. */
5295
5296 thread_prologue_and_epilogue_insns ();
5297 return 0;
5298 }
5299
5300 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5301 {
5302 {
5303 RTL_PASS,
5304 "pro_and_epilogue", /* name */
5305 NULL, /* gate */
5306 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5307 NULL, /* sub */
5308 NULL, /* next */
5309 0, /* static_pass_number */
5310 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5311 0, /* properties_required */
5312 0, /* properties_provided */
5313 0, /* properties_destroyed */
5314 TODO_verify_flow, /* todo_flags_start */
5315 TODO_dump_func |
5316 TODO_df_verify |
5317 TODO_df_finish | TODO_verify_rtl_sharing |
5318 TODO_ggc_collect /* todo_flags_finish */
5319 }
5320 };
5321 \f
5322
5323 /* This mini-pass fixes fall-out from SSA in asm statements that have
5324 in-out constraints. Say you start with
5325
5326 orig = inout;
5327 asm ("": "+mr" (inout));
5328 use (orig);
5329
5330 which is transformed very early to use explicit output and match operands:
5331
5332 orig = inout;
5333 asm ("": "=mr" (inout) : "0" (inout));
5334 use (orig);
5335
5336 Or, after SSA and copyprop,
5337
5338 asm ("": "=mr" (inout_2) : "0" (inout_1));
5339 use (inout_1);
5340
5341 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5342 they represent two separate values, so they will get different pseudo
5343 registers during expansion. Then, since the two operands need to match
5344 per the constraints, but use different pseudo registers, reload can
5345 only register a reload for these operands. But reloads can only be
5346 satisfied by hardregs, not by memory, so we need a register for this
5347 reload, just because we are presented with non-matching operands.
5348 So, even though we allow memory for this operand, no memory can be
5349 used for it, just because the two operands don't match. This can
5350 cause reload failures on register-starved targets.
5351
5352 So it's a symptom of reload not being able to use memory for reloads
5353 or, alternatively it's also a symptom of both operands not coming into
5354 reload as matching (in which case the pseudo could go to memory just
5355 fine, as the alternative allows it, and no reload would be necessary).
5356 We fix the latter problem here, by transforming
5357
5358 asm ("": "=mr" (inout_2) : "0" (inout_1));
5359
5360 back to
5361
5362 inout_2 = inout_1;
5363 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5364
5365 static void
5366 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5367 {
5368 int i;
5369 bool changed = false;
5370 rtx op = SET_SRC (p_sets[0]);
5371 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5372 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5373 bool *output_matched = XALLOCAVEC (bool, noutputs);
5374
5375 memset (output_matched, 0, noutputs * sizeof (bool));
5376 for (i = 0; i < ninputs; i++)
5377 {
5378 rtx input, output, insns;
5379 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5380 char *end;
5381 int match, j;
5382
5383 match = strtoul (constraint, &end, 10);
5384 if (end == constraint)
5385 continue;
5386
5387 gcc_assert (match < noutputs);
5388 output = SET_DEST (p_sets[match]);
5389 input = RTVEC_ELT (inputs, i);
5390 /* Only do the transformation for pseudos. */
5391 if (! REG_P (output)
5392 || rtx_equal_p (output, input)
5393 || (GET_MODE (input) != VOIDmode
5394 && GET_MODE (input) != GET_MODE (output)))
5395 continue;
5396
5397 /* We can't do anything if the output is also used as input,
5398 as we're going to overwrite it. */
5399 for (j = 0; j < ninputs; j++)
5400 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5401 break;
5402 if (j != ninputs)
5403 continue;
5404
5405 /* Avoid changing the same input several times. For
5406 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5407 only change in once (to out1), rather than changing it
5408 first to out1 and afterwards to out2. */
5409 if (i > 0)
5410 {
5411 for (j = 0; j < noutputs; j++)
5412 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5413 break;
5414 if (j != noutputs)
5415 continue;
5416 }
5417 output_matched[match] = true;
5418
5419 start_sequence ();
5420 emit_move_insn (output, input);
5421 insns = get_insns ();
5422 end_sequence ();
5423 emit_insn_before (insns, insn);
5424
5425 /* Now replace all mentions of the input with output. We can't
5426 just replace the occurrence in inputs[i], as the register might
5427 also be used in some other input (or even in an address of an
5428 output), which would mean possibly increasing the number of
5429 inputs by one (namely 'output' in addition), which might pose
5430 a too complicated problem for reload to solve. E.g. this situation:
5431
5432 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5433
5434 Here 'input' is used in two occurrences as input (once for the
5435 input operand, once for the address in the second output operand).
5436 If we would replace only the occurrence of the input operand (to
5437 make the matching) we would be left with this:
5438
5439 output = input
5440 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5441
5442 Now we suddenly have two different input values (containing the same
5443 value, but different pseudos) where we formerly had only one.
5444 With more complicated asms this might lead to reload failures
5445 which wouldn't have happen without this pass. So, iterate over
5446 all operands and replace all occurrences of the register used. */
5447 for (j = 0; j < noutputs; j++)
5448 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5449 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5450 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5451 input, output);
5452 for (j = 0; j < ninputs; j++)
5453 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5454 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5455 input, output);
5456
5457 changed = true;
5458 }
5459
5460 if (changed)
5461 df_insn_rescan (insn);
5462 }
5463
5464 static unsigned
5465 rest_of_match_asm_constraints (void)
5466 {
5467 basic_block bb;
5468 rtx insn, pat, *p_sets;
5469 int noutputs;
5470
5471 if (!crtl->has_asm_statement)
5472 return 0;
5473
5474 df_set_flags (DF_DEFER_INSN_RESCAN);
5475 FOR_EACH_BB (bb)
5476 {
5477 FOR_BB_INSNS (bb, insn)
5478 {
5479 if (!INSN_P (insn))
5480 continue;
5481
5482 pat = PATTERN (insn);
5483 if (GET_CODE (pat) == PARALLEL)
5484 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5485 else if (GET_CODE (pat) == SET)
5486 p_sets = &PATTERN (insn), noutputs = 1;
5487 else
5488 continue;
5489
5490 if (GET_CODE (*p_sets) == SET
5491 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5492 match_asm_constraints_1 (insn, p_sets, noutputs);
5493 }
5494 }
5495
5496 return TODO_df_finish;
5497 }
5498
5499 struct rtl_opt_pass pass_match_asm_constraints =
5500 {
5501 {
5502 RTL_PASS,
5503 "asmcons", /* name */
5504 NULL, /* gate */
5505 rest_of_match_asm_constraints, /* execute */
5506 NULL, /* sub */
5507 NULL, /* next */
5508 0, /* static_pass_number */
5509 0, /* tv_id */
5510 0, /* properties_required */
5511 0, /* properties_provided */
5512 0, /* properties_destroyed */
5513 0, /* todo_flags_start */
5514 TODO_dump_func /* todo_flags_finish */
5515 }
5516 };
5517
5518
5519 #include "gt-function.h"