function.c (assign_parm_remove_parallels): Check mode of entry_parm.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "tree-gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
75
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
85
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
100
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
105
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
110
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
116
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
119
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
123
124 /* The currently compiled function. */
125 struct function *cfun = 0;
126
127 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
128 static VEC(int,heap) *prologue;
129 static VEC(int,heap) *epilogue;
130
131 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
132 in this function. */
133 static VEC(int,heap) *sibcall_epilogue;
134 \f
135 /* In order to evaluate some expressions, such as function calls returning
136 structures in memory, we need to temporarily allocate stack locations.
137 We record each allocated temporary in the following structure.
138
139 Associated with each temporary slot is a nesting level. When we pop up
140 one level, all temporaries associated with the previous level are freed.
141 Normally, all temporaries are freed after the execution of the statement
142 in which they were created. However, if we are inside a ({...}) grouping,
143 the result may be in a temporary and hence must be preserved. If the
144 result could be in a temporary, we preserve it if we can determine which
145 one it is in. If we cannot determine which temporary may contain the
146 result, all temporaries are preserved. A temporary is preserved by
147 pretending it was allocated at the previous nesting level.
148
149 Automatic variables are also assigned temporary slots, at the nesting
150 level where they are defined. They are marked a "kept" so that
151 free_temp_slots will not free them. */
152
153 struct temp_slot GTY(())
154 {
155 /* Points to next temporary slot. */
156 struct temp_slot *next;
157 /* Points to previous temporary slot. */
158 struct temp_slot *prev;
159
160 /* The rtx to used to reference the slot. */
161 rtx slot;
162 /* The rtx used to represent the address if not the address of the
163 slot above. May be an EXPR_LIST if multiple addresses exist. */
164 rtx address;
165 /* The alignment (in bits) of the slot. */
166 unsigned int align;
167 /* The size, in units, of the slot. */
168 HOST_WIDE_INT size;
169 /* The type of the object in the slot, or zero if it doesn't correspond
170 to a type. We use this to determine whether a slot can be reused.
171 It can be reused if objects of the type of the new slot will always
172 conflict with objects of the type of the old slot. */
173 tree type;
174 /* Nonzero if this temporary is currently in use. */
175 char in_use;
176 /* Nonzero if this temporary has its address taken. */
177 char addr_taken;
178 /* Nesting level at which this slot is being used. */
179 int level;
180 /* Nonzero if this should survive a call to free_temp_slots. */
181 int keep;
182 /* The offset of the slot from the frame_pointer, including extra space
183 for alignment. This info is for combine_temp_slots. */
184 HOST_WIDE_INT base_offset;
185 /* The size of the slot, including extra space for alignment. This
186 info is for combine_temp_slots. */
187 HOST_WIDE_INT full_size;
188 };
189 \f
190 /* Forward declarations. */
191
192 static struct temp_slot *find_temp_slot_from_address (rtx);
193 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
194 static void pad_below (struct args_size *, enum machine_mode, tree);
195 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
196 static int all_blocks (tree, tree *);
197 static tree *get_block_vector (tree, int *);
198 extern tree debug_find_var_in_block_tree (tree, tree);
199 /* We always define `record_insns' even if it's not used so that we
200 can always export `prologue_epilogue_contains'. */
201 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
202 static int contains (const_rtx, VEC(int,heap) **);
203 #ifdef HAVE_return
204 static void emit_return_into_block (basic_block);
205 #endif
206 static void prepare_function_start (void);
207 static void do_clobber_return_reg (rtx, void *);
208 static void do_use_return_reg (rtx, void *);
209 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
210 \f
211 /* Pointer to chain of `struct function' for containing functions. */
212 struct function *outer_function_chain;
213
214 /* Given a function decl for a containing function,
215 return the `struct function' for it. */
216
217 struct function *
218 find_function_data (tree decl)
219 {
220 struct function *p;
221
222 for (p = outer_function_chain; p; p = p->outer)
223 if (p->decl == decl)
224 return p;
225
226 gcc_unreachable ();
227 }
228
229 /* Save the current context for compilation of a nested function.
230 This is called from language-specific code. */
231
232 void
233 push_function_context (void)
234 {
235 if (cfun == 0)
236 allocate_struct_function (NULL, false);
237
238 cfun->outer = outer_function_chain;
239 outer_function_chain = cfun;
240 set_cfun (NULL);
241 }
242
243 /* Restore the last saved context, at the end of a nested function.
244 This function is called from language-specific code. */
245
246 void
247 pop_function_context (void)
248 {
249 struct function *p = outer_function_chain;
250
251 set_cfun (p);
252 outer_function_chain = p->outer;
253 current_function_decl = p->decl;
254
255 /* Reset variables that have known state during rtx generation. */
256 virtuals_instantiated = 0;
257 generating_concat_p = 1;
258 }
259
260 /* Clear out all parts of the state in F that can safely be discarded
261 after the function has been parsed, but not compiled, to let
262 garbage collection reclaim the memory. */
263
264 void
265 free_after_parsing (struct function *f)
266 {
267 f->language = 0;
268 }
269
270 /* Clear out all parts of the state in F that can safely be discarded
271 after the function has been compiled, to let garbage collection
272 reclaim the memory. */
273
274 void
275 free_after_compilation (struct function *f)
276 {
277 VEC_free (int, heap, prologue);
278 VEC_free (int, heap, epilogue);
279 VEC_free (int, heap, sibcall_epilogue);
280 if (crtl->emit.regno_pointer_align)
281 free (crtl->emit.regno_pointer_align);
282
283 memset (crtl, 0, sizeof (struct rtl_data));
284 f->eh = NULL;
285 f->machine = NULL;
286 f->cfg = NULL;
287
288 regno_reg_rtx = NULL;
289 }
290 \f
291 /* Return size needed for stack frame based on slots so far allocated.
292 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
293 the caller may have to do that. */
294
295 HOST_WIDE_INT
296 get_frame_size (void)
297 {
298 if (FRAME_GROWS_DOWNWARD)
299 return -frame_offset;
300 else
301 return frame_offset;
302 }
303
304 /* Issue an error message and return TRUE if frame OFFSET overflows in
305 the signed target pointer arithmetics for function FUNC. Otherwise
306 return FALSE. */
307
308 bool
309 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
310 {
311 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
312
313 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
314 /* Leave room for the fixed part of the frame. */
315 - 64 * UNITS_PER_WORD)
316 {
317 error ("%Jtotal size of local objects too large", func);
318 return TRUE;
319 }
320
321 return FALSE;
322 }
323
324 /* Return stack slot alignment in bits for TYPE and MODE. */
325
326 static unsigned int
327 get_stack_local_alignment (tree type, enum machine_mode mode)
328 {
329 unsigned int alignment;
330
331 if (mode == BLKmode)
332 alignment = BIGGEST_ALIGNMENT;
333 else
334 alignment = GET_MODE_ALIGNMENT (mode);
335
336 /* Allow the frond-end to (possibly) increase the alignment of this
337 stack slot. */
338 if (! type)
339 type = lang_hooks.types.type_for_mode (mode, 0);
340
341 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
342 }
343
344 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
345 with machine mode MODE.
346
347 ALIGN controls the amount of alignment for the address of the slot:
348 0 means according to MODE,
349 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
350 -2 means use BITS_PER_UNIT,
351 positive specifies alignment boundary in bits.
352
353 We do not round to stack_boundary here. */
354
355 rtx
356 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
357 {
358 rtx x, addr;
359 int bigend_correction = 0;
360 unsigned int alignment, alignment_in_bits;
361 int frame_off, frame_alignment, frame_phase;
362
363 if (align == 0)
364 {
365 alignment = get_stack_local_alignment (NULL, mode);
366 alignment /= BITS_PER_UNIT;
367 }
368 else if (align == -1)
369 {
370 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
371 size = CEIL_ROUND (size, alignment);
372 }
373 else if (align == -2)
374 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
375 else
376 alignment = align / BITS_PER_UNIT;
377
378 if (FRAME_GROWS_DOWNWARD)
379 frame_offset -= size;
380
381 /* Ignore alignment we can't do with expected alignment of the boundary. */
382 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
383 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
384
385 alignment_in_bits = alignment * BITS_PER_UNIT;
386
387 if (crtl->stack_alignment_needed < alignment_in_bits)
388 crtl->stack_alignment_needed = alignment_in_bits;
389
390 /* Calculate how many bytes the start of local variables is off from
391 stack alignment. */
392 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
393 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
394 frame_phase = frame_off ? frame_alignment - frame_off : 0;
395
396 /* Round the frame offset to the specified alignment. The default is
397 to always honor requests to align the stack but a port may choose to
398 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
399 if (STACK_ALIGNMENT_NEEDED
400 || mode != BLKmode
401 || size != 0)
402 {
403 /* We must be careful here, since FRAME_OFFSET might be negative and
404 division with a negative dividend isn't as well defined as we might
405 like. So we instead assume that ALIGNMENT is a power of two and
406 use logical operations which are unambiguous. */
407 if (FRAME_GROWS_DOWNWARD)
408 frame_offset
409 = (FLOOR_ROUND (frame_offset - frame_phase,
410 (unsigned HOST_WIDE_INT) alignment)
411 + frame_phase);
412 else
413 frame_offset
414 = (CEIL_ROUND (frame_offset - frame_phase,
415 (unsigned HOST_WIDE_INT) alignment)
416 + frame_phase);
417 }
418
419 /* On a big-endian machine, if we are allocating more space than we will use,
420 use the least significant bytes of those that are allocated. */
421 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
422 bigend_correction = size - GET_MODE_SIZE (mode);
423
424 /* If we have already instantiated virtual registers, return the actual
425 address relative to the frame pointer. */
426 if (virtuals_instantiated)
427 addr = plus_constant (frame_pointer_rtx,
428 trunc_int_for_mode
429 (frame_offset + bigend_correction
430 + STARTING_FRAME_OFFSET, Pmode));
431 else
432 addr = plus_constant (virtual_stack_vars_rtx,
433 trunc_int_for_mode
434 (frame_offset + bigend_correction,
435 Pmode));
436
437 if (!FRAME_GROWS_DOWNWARD)
438 frame_offset += size;
439
440 x = gen_rtx_MEM (mode, addr);
441 set_mem_align (x, alignment_in_bits);
442 MEM_NOTRAP_P (x) = 1;
443
444 stack_slot_list
445 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
446
447 if (frame_offset_overflow (frame_offset, current_function_decl))
448 frame_offset = 0;
449
450 return x;
451 }
452 \f
453 /* Removes temporary slot TEMP from LIST. */
454
455 static void
456 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
457 {
458 if (temp->next)
459 temp->next->prev = temp->prev;
460 if (temp->prev)
461 temp->prev->next = temp->next;
462 else
463 *list = temp->next;
464
465 temp->prev = temp->next = NULL;
466 }
467
468 /* Inserts temporary slot TEMP to LIST. */
469
470 static void
471 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
472 {
473 temp->next = *list;
474 if (*list)
475 (*list)->prev = temp;
476 temp->prev = NULL;
477 *list = temp;
478 }
479
480 /* Returns the list of used temp slots at LEVEL. */
481
482 static struct temp_slot **
483 temp_slots_at_level (int level)
484 {
485 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
486 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
487
488 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
489 }
490
491 /* Returns the maximal temporary slot level. */
492
493 static int
494 max_slot_level (void)
495 {
496 if (!used_temp_slots)
497 return -1;
498
499 return VEC_length (temp_slot_p, used_temp_slots) - 1;
500 }
501
502 /* Moves temporary slot TEMP to LEVEL. */
503
504 static void
505 move_slot_to_level (struct temp_slot *temp, int level)
506 {
507 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
508 insert_slot_to_list (temp, temp_slots_at_level (level));
509 temp->level = level;
510 }
511
512 /* Make temporary slot TEMP available. */
513
514 static void
515 make_slot_available (struct temp_slot *temp)
516 {
517 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
518 insert_slot_to_list (temp, &avail_temp_slots);
519 temp->in_use = 0;
520 temp->level = -1;
521 }
522 \f
523 /* Allocate a temporary stack slot and record it for possible later
524 reuse.
525
526 MODE is the machine mode to be given to the returned rtx.
527
528 SIZE is the size in units of the space required. We do no rounding here
529 since assign_stack_local will do any required rounding.
530
531 KEEP is 1 if this slot is to be retained after a call to
532 free_temp_slots. Automatic variables for a block are allocated
533 with this flag. KEEP values of 2 or 3 were needed respectively
534 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
535 or for SAVE_EXPRs, but they are now unused.
536
537 TYPE is the type that will be used for the stack slot. */
538
539 rtx
540 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
541 int keep, tree type)
542 {
543 unsigned int align;
544 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
545 rtx slot;
546
547 /* If SIZE is -1 it means that somebody tried to allocate a temporary
548 of a variable size. */
549 gcc_assert (size != -1);
550
551 /* These are now unused. */
552 gcc_assert (keep <= 1);
553
554 align = get_stack_local_alignment (type, mode);
555
556 /* Try to find an available, already-allocated temporary of the proper
557 mode which meets the size and alignment requirements. Choose the
558 smallest one with the closest alignment.
559
560 If assign_stack_temp is called outside of the tree->rtl expansion,
561 we cannot reuse the stack slots (that may still refer to
562 VIRTUAL_STACK_VARS_REGNUM). */
563 if (!virtuals_instantiated)
564 {
565 for (p = avail_temp_slots; p; p = p->next)
566 {
567 if (p->align >= align && p->size >= size
568 && GET_MODE (p->slot) == mode
569 && objects_must_conflict_p (p->type, type)
570 && (best_p == 0 || best_p->size > p->size
571 || (best_p->size == p->size && best_p->align > p->align)))
572 {
573 if (p->align == align && p->size == size)
574 {
575 selected = p;
576 cut_slot_from_list (selected, &avail_temp_slots);
577 best_p = 0;
578 break;
579 }
580 best_p = p;
581 }
582 }
583 }
584
585 /* Make our best, if any, the one to use. */
586 if (best_p)
587 {
588 selected = best_p;
589 cut_slot_from_list (selected, &avail_temp_slots);
590
591 /* If there are enough aligned bytes left over, make them into a new
592 temp_slot so that the extra bytes don't get wasted. Do this only
593 for BLKmode slots, so that we can be sure of the alignment. */
594 if (GET_MODE (best_p->slot) == BLKmode)
595 {
596 int alignment = best_p->align / BITS_PER_UNIT;
597 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
598
599 if (best_p->size - rounded_size >= alignment)
600 {
601 p = GGC_NEW (struct temp_slot);
602 p->in_use = p->addr_taken = 0;
603 p->size = best_p->size - rounded_size;
604 p->base_offset = best_p->base_offset + rounded_size;
605 p->full_size = best_p->full_size - rounded_size;
606 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
607 p->align = best_p->align;
608 p->address = 0;
609 p->type = best_p->type;
610 insert_slot_to_list (p, &avail_temp_slots);
611
612 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
613 stack_slot_list);
614
615 best_p->size = rounded_size;
616 best_p->full_size = rounded_size;
617 }
618 }
619 }
620
621 /* If we still didn't find one, make a new temporary. */
622 if (selected == 0)
623 {
624 HOST_WIDE_INT frame_offset_old = frame_offset;
625
626 p = GGC_NEW (struct temp_slot);
627
628 /* We are passing an explicit alignment request to assign_stack_local.
629 One side effect of that is assign_stack_local will not round SIZE
630 to ensure the frame offset remains suitably aligned.
631
632 So for requests which depended on the rounding of SIZE, we go ahead
633 and round it now. We also make sure ALIGNMENT is at least
634 BIGGEST_ALIGNMENT. */
635 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
636 p->slot = assign_stack_local (mode,
637 (mode == BLKmode
638 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
639 : size),
640 align);
641
642 p->align = align;
643
644 /* The following slot size computation is necessary because we don't
645 know the actual size of the temporary slot until assign_stack_local
646 has performed all the frame alignment and size rounding for the
647 requested temporary. Note that extra space added for alignment
648 can be either above or below this stack slot depending on which
649 way the frame grows. We include the extra space if and only if it
650 is above this slot. */
651 if (FRAME_GROWS_DOWNWARD)
652 p->size = frame_offset_old - frame_offset;
653 else
654 p->size = size;
655
656 /* Now define the fields used by combine_temp_slots. */
657 if (FRAME_GROWS_DOWNWARD)
658 {
659 p->base_offset = frame_offset;
660 p->full_size = frame_offset_old - frame_offset;
661 }
662 else
663 {
664 p->base_offset = frame_offset_old;
665 p->full_size = frame_offset - frame_offset_old;
666 }
667 p->address = 0;
668
669 selected = p;
670 }
671
672 p = selected;
673 p->in_use = 1;
674 p->addr_taken = 0;
675 p->type = type;
676 p->level = temp_slot_level;
677 p->keep = keep;
678
679 pp = temp_slots_at_level (p->level);
680 insert_slot_to_list (p, pp);
681
682 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
683 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
684 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
685
686 /* If we know the alias set for the memory that will be used, use
687 it. If there's no TYPE, then we don't know anything about the
688 alias set for the memory. */
689 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
690 set_mem_align (slot, align);
691
692 /* If a type is specified, set the relevant flags. */
693 if (type != 0)
694 {
695 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
696 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
697 || TREE_CODE (type) == COMPLEX_TYPE));
698 }
699 MEM_NOTRAP_P (slot) = 1;
700
701 return slot;
702 }
703
704 /* Allocate a temporary stack slot and record it for possible later
705 reuse. First three arguments are same as in preceding function. */
706
707 rtx
708 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
709 {
710 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
711 }
712 \f
713 /* Assign a temporary.
714 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
715 and so that should be used in error messages. In either case, we
716 allocate of the given type.
717 KEEP is as for assign_stack_temp.
718 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
719 it is 0 if a register is OK.
720 DONT_PROMOTE is 1 if we should not promote values in register
721 to wider modes. */
722
723 rtx
724 assign_temp (tree type_or_decl, int keep, int memory_required,
725 int dont_promote ATTRIBUTE_UNUSED)
726 {
727 tree type, decl;
728 enum machine_mode mode;
729 #ifdef PROMOTE_MODE
730 int unsignedp;
731 #endif
732
733 if (DECL_P (type_or_decl))
734 decl = type_or_decl, type = TREE_TYPE (decl);
735 else
736 decl = NULL, type = type_or_decl;
737
738 mode = TYPE_MODE (type);
739 #ifdef PROMOTE_MODE
740 unsignedp = TYPE_UNSIGNED (type);
741 #endif
742
743 if (mode == BLKmode || memory_required)
744 {
745 HOST_WIDE_INT size = int_size_in_bytes (type);
746 rtx tmp;
747
748 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
749 problems with allocating the stack space. */
750 if (size == 0)
751 size = 1;
752
753 /* Unfortunately, we don't yet know how to allocate variable-sized
754 temporaries. However, sometimes we can find a fixed upper limit on
755 the size, so try that instead. */
756 else if (size == -1)
757 size = max_int_size_in_bytes (type);
758
759 /* The size of the temporary may be too large to fit into an integer. */
760 /* ??? Not sure this should happen except for user silliness, so limit
761 this to things that aren't compiler-generated temporaries. The
762 rest of the time we'll die in assign_stack_temp_for_type. */
763 if (decl && size == -1
764 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
765 {
766 error ("size of variable %q+D is too large", decl);
767 size = 1;
768 }
769
770 tmp = assign_stack_temp_for_type (mode, size, keep, type);
771 return tmp;
772 }
773
774 #ifdef PROMOTE_MODE
775 if (! dont_promote)
776 mode = promote_mode (type, mode, &unsignedp, 0);
777 #endif
778
779 return gen_reg_rtx (mode);
780 }
781 \f
782 /* Combine temporary stack slots which are adjacent on the stack.
783
784 This allows for better use of already allocated stack space. This is only
785 done for BLKmode slots because we can be sure that we won't have alignment
786 problems in this case. */
787
788 static void
789 combine_temp_slots (void)
790 {
791 struct temp_slot *p, *q, *next, *next_q;
792 int num_slots;
793
794 /* We can't combine slots, because the information about which slot
795 is in which alias set will be lost. */
796 if (flag_strict_aliasing)
797 return;
798
799 /* If there are a lot of temp slots, don't do anything unless
800 high levels of optimization. */
801 if (! flag_expensive_optimizations)
802 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
803 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
804 return;
805
806 for (p = avail_temp_slots; p; p = next)
807 {
808 int delete_p = 0;
809
810 next = p->next;
811
812 if (GET_MODE (p->slot) != BLKmode)
813 continue;
814
815 for (q = p->next; q; q = next_q)
816 {
817 int delete_q = 0;
818
819 next_q = q->next;
820
821 if (GET_MODE (q->slot) != BLKmode)
822 continue;
823
824 if (p->base_offset + p->full_size == q->base_offset)
825 {
826 /* Q comes after P; combine Q into P. */
827 p->size += q->size;
828 p->full_size += q->full_size;
829 delete_q = 1;
830 }
831 else if (q->base_offset + q->full_size == p->base_offset)
832 {
833 /* P comes after Q; combine P into Q. */
834 q->size += p->size;
835 q->full_size += p->full_size;
836 delete_p = 1;
837 break;
838 }
839 if (delete_q)
840 cut_slot_from_list (q, &avail_temp_slots);
841 }
842
843 /* Either delete P or advance past it. */
844 if (delete_p)
845 cut_slot_from_list (p, &avail_temp_slots);
846 }
847 }
848 \f
849 /* Find the temp slot corresponding to the object at address X. */
850
851 static struct temp_slot *
852 find_temp_slot_from_address (rtx x)
853 {
854 struct temp_slot *p;
855 rtx next;
856 int i;
857
858 for (i = max_slot_level (); i >= 0; i--)
859 for (p = *temp_slots_at_level (i); p; p = p->next)
860 {
861 if (XEXP (p->slot, 0) == x
862 || p->address == x
863 || (GET_CODE (x) == PLUS
864 && XEXP (x, 0) == virtual_stack_vars_rtx
865 && GET_CODE (XEXP (x, 1)) == CONST_INT
866 && INTVAL (XEXP (x, 1)) >= p->base_offset
867 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
868 return p;
869
870 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
871 for (next = p->address; next; next = XEXP (next, 1))
872 if (XEXP (next, 0) == x)
873 return p;
874 }
875
876 /* If we have a sum involving a register, see if it points to a temp
877 slot. */
878 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
879 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
880 return p;
881 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
882 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
883 return p;
884
885 return 0;
886 }
887
888 /* Indicate that NEW is an alternate way of referring to the temp slot
889 that previously was known by OLD. */
890
891 void
892 update_temp_slot_address (rtx old, rtx new)
893 {
894 struct temp_slot *p;
895
896 if (rtx_equal_p (old, new))
897 return;
898
899 p = find_temp_slot_from_address (old);
900
901 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
902 is a register, see if one operand of the PLUS is a temporary
903 location. If so, NEW points into it. Otherwise, if both OLD and
904 NEW are a PLUS and if there is a register in common between them.
905 If so, try a recursive call on those values. */
906 if (p == 0)
907 {
908 if (GET_CODE (old) != PLUS)
909 return;
910
911 if (REG_P (new))
912 {
913 update_temp_slot_address (XEXP (old, 0), new);
914 update_temp_slot_address (XEXP (old, 1), new);
915 return;
916 }
917 else if (GET_CODE (new) != PLUS)
918 return;
919
920 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
921 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
922 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
923 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
924 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
925 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
926 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
927 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
928
929 return;
930 }
931
932 /* Otherwise add an alias for the temp's address. */
933 else if (p->address == 0)
934 p->address = new;
935 else
936 {
937 if (GET_CODE (p->address) != EXPR_LIST)
938 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
939
940 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
941 }
942 }
943
944 /* If X could be a reference to a temporary slot, mark the fact that its
945 address was taken. */
946
947 void
948 mark_temp_addr_taken (rtx x)
949 {
950 struct temp_slot *p;
951
952 if (x == 0)
953 return;
954
955 /* If X is not in memory or is at a constant address, it cannot be in
956 a temporary slot. */
957 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
958 return;
959
960 p = find_temp_slot_from_address (XEXP (x, 0));
961 if (p != 0)
962 p->addr_taken = 1;
963 }
964
965 /* If X could be a reference to a temporary slot, mark that slot as
966 belonging to the to one level higher than the current level. If X
967 matched one of our slots, just mark that one. Otherwise, we can't
968 easily predict which it is, so upgrade all of them. Kept slots
969 need not be touched.
970
971 This is called when an ({...}) construct occurs and a statement
972 returns a value in memory. */
973
974 void
975 preserve_temp_slots (rtx x)
976 {
977 struct temp_slot *p = 0, *next;
978
979 /* If there is no result, we still might have some objects whose address
980 were taken, so we need to make sure they stay around. */
981 if (x == 0)
982 {
983 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
984 {
985 next = p->next;
986
987 if (p->addr_taken)
988 move_slot_to_level (p, temp_slot_level - 1);
989 }
990
991 return;
992 }
993
994 /* If X is a register that is being used as a pointer, see if we have
995 a temporary slot we know it points to. To be consistent with
996 the code below, we really should preserve all non-kept slots
997 if we can't find a match, but that seems to be much too costly. */
998 if (REG_P (x) && REG_POINTER (x))
999 p = find_temp_slot_from_address (x);
1000
1001 /* If X is not in memory or is at a constant address, it cannot be in
1002 a temporary slot, but it can contain something whose address was
1003 taken. */
1004 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1005 {
1006 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1007 {
1008 next = p->next;
1009
1010 if (p->addr_taken)
1011 move_slot_to_level (p, temp_slot_level - 1);
1012 }
1013
1014 return;
1015 }
1016
1017 /* First see if we can find a match. */
1018 if (p == 0)
1019 p = find_temp_slot_from_address (XEXP (x, 0));
1020
1021 if (p != 0)
1022 {
1023 /* Move everything at our level whose address was taken to our new
1024 level in case we used its address. */
1025 struct temp_slot *q;
1026
1027 if (p->level == temp_slot_level)
1028 {
1029 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1030 {
1031 next = q->next;
1032
1033 if (p != q && q->addr_taken)
1034 move_slot_to_level (q, temp_slot_level - 1);
1035 }
1036
1037 move_slot_to_level (p, temp_slot_level - 1);
1038 p->addr_taken = 0;
1039 }
1040 return;
1041 }
1042
1043 /* Otherwise, preserve all non-kept slots at this level. */
1044 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1045 {
1046 next = p->next;
1047
1048 if (!p->keep)
1049 move_slot_to_level (p, temp_slot_level - 1);
1050 }
1051 }
1052
1053 /* Free all temporaries used so far. This is normally called at the
1054 end of generating code for a statement. */
1055
1056 void
1057 free_temp_slots (void)
1058 {
1059 struct temp_slot *p, *next;
1060
1061 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1062 {
1063 next = p->next;
1064
1065 if (!p->keep)
1066 make_slot_available (p);
1067 }
1068
1069 combine_temp_slots ();
1070 }
1071
1072 /* Push deeper into the nesting level for stack temporaries. */
1073
1074 void
1075 push_temp_slots (void)
1076 {
1077 temp_slot_level++;
1078 }
1079
1080 /* Pop a temporary nesting level. All slots in use in the current level
1081 are freed. */
1082
1083 void
1084 pop_temp_slots (void)
1085 {
1086 struct temp_slot *p, *next;
1087
1088 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1089 {
1090 next = p->next;
1091 make_slot_available (p);
1092 }
1093
1094 combine_temp_slots ();
1095
1096 temp_slot_level--;
1097 }
1098
1099 /* Initialize temporary slots. */
1100
1101 void
1102 init_temp_slots (void)
1103 {
1104 /* We have not allocated any temporaries yet. */
1105 avail_temp_slots = 0;
1106 used_temp_slots = 0;
1107 temp_slot_level = 0;
1108 }
1109 \f
1110 /* These routines are responsible for converting virtual register references
1111 to the actual hard register references once RTL generation is complete.
1112
1113 The following four variables are used for communication between the
1114 routines. They contain the offsets of the virtual registers from their
1115 respective hard registers. */
1116
1117 static int in_arg_offset;
1118 static int var_offset;
1119 static int dynamic_offset;
1120 static int out_arg_offset;
1121 static int cfa_offset;
1122
1123 /* In most machines, the stack pointer register is equivalent to the bottom
1124 of the stack. */
1125
1126 #ifndef STACK_POINTER_OFFSET
1127 #define STACK_POINTER_OFFSET 0
1128 #endif
1129
1130 /* If not defined, pick an appropriate default for the offset of dynamically
1131 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1132 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1133
1134 #ifndef STACK_DYNAMIC_OFFSET
1135
1136 /* The bottom of the stack points to the actual arguments. If
1137 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1138 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1139 stack space for register parameters is not pushed by the caller, but
1140 rather part of the fixed stack areas and hence not included in
1141 `crtl->outgoing_args_size'. Nevertheless, we must allow
1142 for it when allocating stack dynamic objects. */
1143
1144 #if defined(REG_PARM_STACK_SPACE)
1145 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1146 ((ACCUMULATE_OUTGOING_ARGS \
1147 ? (crtl->outgoing_args_size \
1148 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1149 : REG_PARM_STACK_SPACE (FNDECL))) \
1150 : 0) + (STACK_POINTER_OFFSET))
1151 #else
1152 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1153 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1154 + (STACK_POINTER_OFFSET))
1155 #endif
1156 #endif
1157
1158 \f
1159 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1160 is a virtual register, return the equivalent hard register and set the
1161 offset indirectly through the pointer. Otherwise, return 0. */
1162
1163 static rtx
1164 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1165 {
1166 rtx new;
1167 HOST_WIDE_INT offset;
1168
1169 if (x == virtual_incoming_args_rtx)
1170 new = arg_pointer_rtx, offset = in_arg_offset;
1171 else if (x == virtual_stack_vars_rtx)
1172 new = frame_pointer_rtx, offset = var_offset;
1173 else if (x == virtual_stack_dynamic_rtx)
1174 new = stack_pointer_rtx, offset = dynamic_offset;
1175 else if (x == virtual_outgoing_args_rtx)
1176 new = stack_pointer_rtx, offset = out_arg_offset;
1177 else if (x == virtual_cfa_rtx)
1178 {
1179 #ifdef FRAME_POINTER_CFA_OFFSET
1180 new = frame_pointer_rtx;
1181 #else
1182 new = arg_pointer_rtx;
1183 #endif
1184 offset = cfa_offset;
1185 }
1186 else
1187 return NULL_RTX;
1188
1189 *poffset = offset;
1190 return new;
1191 }
1192
1193 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1194 Instantiate any virtual registers present inside of *LOC. The expression
1195 is simplified, as much as possible, but is not to be considered "valid"
1196 in any sense implied by the target. If any change is made, set CHANGED
1197 to true. */
1198
1199 static int
1200 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1201 {
1202 HOST_WIDE_INT offset;
1203 bool *changed = (bool *) data;
1204 rtx x, new;
1205
1206 x = *loc;
1207 if (x == 0)
1208 return 0;
1209
1210 switch (GET_CODE (x))
1211 {
1212 case REG:
1213 new = instantiate_new_reg (x, &offset);
1214 if (new)
1215 {
1216 *loc = plus_constant (new, offset);
1217 if (changed)
1218 *changed = true;
1219 }
1220 return -1;
1221
1222 case PLUS:
1223 new = instantiate_new_reg (XEXP (x, 0), &offset);
1224 if (new)
1225 {
1226 new = plus_constant (new, offset);
1227 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1228 if (changed)
1229 *changed = true;
1230 return -1;
1231 }
1232
1233 /* FIXME -- from old code */
1234 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1235 we can commute the PLUS and SUBREG because pointers into the
1236 frame are well-behaved. */
1237 break;
1238
1239 default:
1240 break;
1241 }
1242
1243 return 0;
1244 }
1245
1246 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1247 matches the predicate for insn CODE operand OPERAND. */
1248
1249 static int
1250 safe_insn_predicate (int code, int operand, rtx x)
1251 {
1252 const struct insn_operand_data *op_data;
1253
1254 if (code < 0)
1255 return true;
1256
1257 op_data = &insn_data[code].operand[operand];
1258 if (op_data->predicate == NULL)
1259 return true;
1260
1261 return op_data->predicate (x, op_data->mode);
1262 }
1263
1264 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1265 registers present inside of insn. The result will be a valid insn. */
1266
1267 static void
1268 instantiate_virtual_regs_in_insn (rtx insn)
1269 {
1270 HOST_WIDE_INT offset;
1271 int insn_code, i;
1272 bool any_change = false;
1273 rtx set, new, x, seq;
1274
1275 /* There are some special cases to be handled first. */
1276 set = single_set (insn);
1277 if (set)
1278 {
1279 /* We're allowed to assign to a virtual register. This is interpreted
1280 to mean that the underlying register gets assigned the inverse
1281 transformation. This is used, for example, in the handling of
1282 non-local gotos. */
1283 new = instantiate_new_reg (SET_DEST (set), &offset);
1284 if (new)
1285 {
1286 start_sequence ();
1287
1288 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1289 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1290 GEN_INT (-offset));
1291 x = force_operand (x, new);
1292 if (x != new)
1293 emit_move_insn (new, x);
1294
1295 seq = get_insns ();
1296 end_sequence ();
1297
1298 emit_insn_before (seq, insn);
1299 delete_insn (insn);
1300 return;
1301 }
1302
1303 /* Handle a straight copy from a virtual register by generating a
1304 new add insn. The difference between this and falling through
1305 to the generic case is avoiding a new pseudo and eliminating a
1306 move insn in the initial rtl stream. */
1307 new = instantiate_new_reg (SET_SRC (set), &offset);
1308 if (new && offset != 0
1309 && REG_P (SET_DEST (set))
1310 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1311 {
1312 start_sequence ();
1313
1314 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1315 new, GEN_INT (offset), SET_DEST (set),
1316 1, OPTAB_LIB_WIDEN);
1317 if (x != SET_DEST (set))
1318 emit_move_insn (SET_DEST (set), x);
1319
1320 seq = get_insns ();
1321 end_sequence ();
1322
1323 emit_insn_before (seq, insn);
1324 delete_insn (insn);
1325 return;
1326 }
1327
1328 extract_insn (insn);
1329 insn_code = INSN_CODE (insn);
1330
1331 /* Handle a plus involving a virtual register by determining if the
1332 operands remain valid if they're modified in place. */
1333 if (GET_CODE (SET_SRC (set)) == PLUS
1334 && recog_data.n_operands >= 3
1335 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1336 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1337 && GET_CODE (recog_data.operand[2]) == CONST_INT
1338 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1339 {
1340 offset += INTVAL (recog_data.operand[2]);
1341
1342 /* If the sum is zero, then replace with a plain move. */
1343 if (offset == 0
1344 && REG_P (SET_DEST (set))
1345 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1346 {
1347 start_sequence ();
1348 emit_move_insn (SET_DEST (set), new);
1349 seq = get_insns ();
1350 end_sequence ();
1351
1352 emit_insn_before (seq, insn);
1353 delete_insn (insn);
1354 return;
1355 }
1356
1357 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1358
1359 /* Using validate_change and apply_change_group here leaves
1360 recog_data in an invalid state. Since we know exactly what
1361 we want to check, do those two by hand. */
1362 if (safe_insn_predicate (insn_code, 1, new)
1363 && safe_insn_predicate (insn_code, 2, x))
1364 {
1365 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1366 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1367 any_change = true;
1368
1369 /* Fall through into the regular operand fixup loop in
1370 order to take care of operands other than 1 and 2. */
1371 }
1372 }
1373 }
1374 else
1375 {
1376 extract_insn (insn);
1377 insn_code = INSN_CODE (insn);
1378 }
1379
1380 /* In the general case, we expect virtual registers to appear only in
1381 operands, and then only as either bare registers or inside memories. */
1382 for (i = 0; i < recog_data.n_operands; ++i)
1383 {
1384 x = recog_data.operand[i];
1385 switch (GET_CODE (x))
1386 {
1387 case MEM:
1388 {
1389 rtx addr = XEXP (x, 0);
1390 bool changed = false;
1391
1392 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1393 if (!changed)
1394 continue;
1395
1396 start_sequence ();
1397 x = replace_equiv_address (x, addr);
1398 /* It may happen that the address with the virtual reg
1399 was valid (e.g. based on the virtual stack reg, which might
1400 be acceptable to the predicates with all offsets), whereas
1401 the address now isn't anymore, for instance when the address
1402 is still offsetted, but the base reg isn't virtual-stack-reg
1403 anymore. Below we would do a force_reg on the whole operand,
1404 but this insn might actually only accept memory. Hence,
1405 before doing that last resort, try to reload the address into
1406 a register, so this operand stays a MEM. */
1407 if (!safe_insn_predicate (insn_code, i, x))
1408 {
1409 addr = force_reg (GET_MODE (addr), addr);
1410 x = replace_equiv_address (x, addr);
1411 }
1412 seq = get_insns ();
1413 end_sequence ();
1414 if (seq)
1415 emit_insn_before (seq, insn);
1416 }
1417 break;
1418
1419 case REG:
1420 new = instantiate_new_reg (x, &offset);
1421 if (new == NULL)
1422 continue;
1423 if (offset == 0)
1424 x = new;
1425 else
1426 {
1427 start_sequence ();
1428
1429 /* Careful, special mode predicates may have stuff in
1430 insn_data[insn_code].operand[i].mode that isn't useful
1431 to us for computing a new value. */
1432 /* ??? Recognize address_operand and/or "p" constraints
1433 to see if (plus new offset) is a valid before we put
1434 this through expand_simple_binop. */
1435 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1436 GEN_INT (offset), NULL_RTX,
1437 1, OPTAB_LIB_WIDEN);
1438 seq = get_insns ();
1439 end_sequence ();
1440 emit_insn_before (seq, insn);
1441 }
1442 break;
1443
1444 case SUBREG:
1445 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1446 if (new == NULL)
1447 continue;
1448 if (offset != 0)
1449 {
1450 start_sequence ();
1451 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1452 GEN_INT (offset), NULL_RTX,
1453 1, OPTAB_LIB_WIDEN);
1454 seq = get_insns ();
1455 end_sequence ();
1456 emit_insn_before (seq, insn);
1457 }
1458 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1459 GET_MODE (new), SUBREG_BYTE (x));
1460 break;
1461
1462 default:
1463 continue;
1464 }
1465
1466 /* At this point, X contains the new value for the operand.
1467 Validate the new value vs the insn predicate. Note that
1468 asm insns will have insn_code -1 here. */
1469 if (!safe_insn_predicate (insn_code, i, x))
1470 {
1471 start_sequence ();
1472 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1473 seq = get_insns ();
1474 end_sequence ();
1475 if (seq)
1476 emit_insn_before (seq, insn);
1477 }
1478
1479 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1480 any_change = true;
1481 }
1482
1483 if (any_change)
1484 {
1485 /* Propagate operand changes into the duplicates. */
1486 for (i = 0; i < recog_data.n_dups; ++i)
1487 *recog_data.dup_loc[i]
1488 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1489
1490 /* Force re-recognition of the instruction for validation. */
1491 INSN_CODE (insn) = -1;
1492 }
1493
1494 if (asm_noperands (PATTERN (insn)) >= 0)
1495 {
1496 if (!check_asm_operands (PATTERN (insn)))
1497 {
1498 error_for_asm (insn, "impossible constraint in %<asm%>");
1499 delete_insn (insn);
1500 }
1501 }
1502 else
1503 {
1504 if (recog_memoized (insn) < 0)
1505 fatal_insn_not_found (insn);
1506 }
1507 }
1508
1509 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1510 do any instantiation required. */
1511
1512 void
1513 instantiate_decl_rtl (rtx x)
1514 {
1515 rtx addr;
1516
1517 if (x == 0)
1518 return;
1519
1520 /* If this is a CONCAT, recurse for the pieces. */
1521 if (GET_CODE (x) == CONCAT)
1522 {
1523 instantiate_decl_rtl (XEXP (x, 0));
1524 instantiate_decl_rtl (XEXP (x, 1));
1525 return;
1526 }
1527
1528 /* If this is not a MEM, no need to do anything. Similarly if the
1529 address is a constant or a register that is not a virtual register. */
1530 if (!MEM_P (x))
1531 return;
1532
1533 addr = XEXP (x, 0);
1534 if (CONSTANT_P (addr)
1535 || (REG_P (addr)
1536 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1537 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1538 return;
1539
1540 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1541 }
1542
1543 /* Helper for instantiate_decls called via walk_tree: Process all decls
1544 in the given DECL_VALUE_EXPR. */
1545
1546 static tree
1547 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1548 {
1549 tree t = *tp;
1550 if (! EXPR_P (t) && ! GIMPLE_STMT_P (t))
1551 {
1552 *walk_subtrees = 0;
1553 if (DECL_P (t) && DECL_RTL_SET_P (t))
1554 instantiate_decl_rtl (DECL_RTL (t));
1555 }
1556 return NULL;
1557 }
1558
1559 /* Subroutine of instantiate_decls: Process all decls in the given
1560 BLOCK node and all its subblocks. */
1561
1562 static void
1563 instantiate_decls_1 (tree let)
1564 {
1565 tree t;
1566
1567 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1568 {
1569 if (DECL_RTL_SET_P (t))
1570 instantiate_decl_rtl (DECL_RTL (t));
1571 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1572 {
1573 tree v = DECL_VALUE_EXPR (t);
1574 walk_tree (&v, instantiate_expr, NULL, NULL);
1575 }
1576 }
1577
1578 /* Process all subblocks. */
1579 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1580 instantiate_decls_1 (t);
1581 }
1582
1583 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1584 all virtual registers in their DECL_RTL's. */
1585
1586 static void
1587 instantiate_decls (tree fndecl)
1588 {
1589 tree decl;
1590
1591 /* Process all parameters of the function. */
1592 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1593 {
1594 instantiate_decl_rtl (DECL_RTL (decl));
1595 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1596 if (DECL_HAS_VALUE_EXPR_P (decl))
1597 {
1598 tree v = DECL_VALUE_EXPR (decl);
1599 walk_tree (&v, instantiate_expr, NULL, NULL);
1600 }
1601 }
1602
1603 /* Now process all variables defined in the function or its subblocks. */
1604 instantiate_decls_1 (DECL_INITIAL (fndecl));
1605 }
1606
1607 /* Pass through the INSNS of function FNDECL and convert virtual register
1608 references to hard register references. */
1609
1610 static unsigned int
1611 instantiate_virtual_regs (void)
1612 {
1613 rtx insn;
1614
1615 /* Compute the offsets to use for this function. */
1616 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1617 var_offset = STARTING_FRAME_OFFSET;
1618 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1619 out_arg_offset = STACK_POINTER_OFFSET;
1620 #ifdef FRAME_POINTER_CFA_OFFSET
1621 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1622 #else
1623 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1624 #endif
1625
1626 /* Initialize recognition, indicating that volatile is OK. */
1627 init_recog ();
1628
1629 /* Scan through all the insns, instantiating every virtual register still
1630 present. */
1631 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1632 if (INSN_P (insn))
1633 {
1634 /* These patterns in the instruction stream can never be recognized.
1635 Fortunately, they shouldn't contain virtual registers either. */
1636 if (GET_CODE (PATTERN (insn)) == USE
1637 || GET_CODE (PATTERN (insn)) == CLOBBER
1638 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1639 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1640 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1641 continue;
1642
1643 instantiate_virtual_regs_in_insn (insn);
1644
1645 if (INSN_DELETED_P (insn))
1646 continue;
1647
1648 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1649
1650 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1651 if (GET_CODE (insn) == CALL_INSN)
1652 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1653 instantiate_virtual_regs_in_rtx, NULL);
1654 }
1655
1656 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1657 instantiate_decls (current_function_decl);
1658
1659 targetm.instantiate_decls ();
1660
1661 /* Indicate that, from now on, assign_stack_local should use
1662 frame_pointer_rtx. */
1663 virtuals_instantiated = 1;
1664 return 0;
1665 }
1666
1667 struct rtl_opt_pass pass_instantiate_virtual_regs =
1668 {
1669 {
1670 RTL_PASS,
1671 "vregs", /* name */
1672 NULL, /* gate */
1673 instantiate_virtual_regs, /* execute */
1674 NULL, /* sub */
1675 NULL, /* next */
1676 0, /* static_pass_number */
1677 0, /* tv_id */
1678 0, /* properties_required */
1679 0, /* properties_provided */
1680 0, /* properties_destroyed */
1681 0, /* todo_flags_start */
1682 TODO_dump_func /* todo_flags_finish */
1683 }
1684 };
1685
1686 \f
1687 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1688 This means a type for which function calls must pass an address to the
1689 function or get an address back from the function.
1690 EXP may be a type node or an expression (whose type is tested). */
1691
1692 int
1693 aggregate_value_p (const_tree exp, const_tree fntype)
1694 {
1695 int i, regno, nregs;
1696 rtx reg;
1697
1698 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1699
1700 /* DECL node associated with FNTYPE when relevant, which we might need to
1701 check for by-invisible-reference returns, typically for CALL_EXPR input
1702 EXPressions. */
1703 const_tree fndecl = NULL_TREE;
1704
1705 if (fntype)
1706 switch (TREE_CODE (fntype))
1707 {
1708 case CALL_EXPR:
1709 fndecl = get_callee_fndecl (fntype);
1710 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1711 break;
1712 case FUNCTION_DECL:
1713 fndecl = fntype;
1714 fntype = TREE_TYPE (fndecl);
1715 break;
1716 case FUNCTION_TYPE:
1717 case METHOD_TYPE:
1718 break;
1719 case IDENTIFIER_NODE:
1720 fntype = 0;
1721 break;
1722 default:
1723 /* We don't expect other rtl types here. */
1724 gcc_unreachable ();
1725 }
1726
1727 if (TREE_CODE (type) == VOID_TYPE)
1728 return 0;
1729
1730 /* If the front end has decided that this needs to be passed by
1731 reference, do so. */
1732 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1733 && DECL_BY_REFERENCE (exp))
1734 return 1;
1735
1736 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1737 called function RESULT_DECL, meaning the function returns in memory by
1738 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1739 on the function type, which used to be the way to request such a return
1740 mechanism but might now be causing troubles at gimplification time if
1741 temporaries with the function type need to be created. */
1742 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1743 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1744 return 1;
1745
1746 if (targetm.calls.return_in_memory (type, fntype))
1747 return 1;
1748 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1749 and thus can't be returned in registers. */
1750 if (TREE_ADDRESSABLE (type))
1751 return 1;
1752 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1753 return 1;
1754 /* Make sure we have suitable call-clobbered regs to return
1755 the value in; if not, we must return it in memory. */
1756 reg = hard_function_value (type, 0, fntype, 0);
1757
1758 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1759 it is OK. */
1760 if (!REG_P (reg))
1761 return 0;
1762
1763 regno = REGNO (reg);
1764 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1765 for (i = 0; i < nregs; i++)
1766 if (! call_used_regs[regno + i])
1767 return 1;
1768 return 0;
1769 }
1770 \f
1771 /* Return true if we should assign DECL a pseudo register; false if it
1772 should live on the local stack. */
1773
1774 bool
1775 use_register_for_decl (const_tree decl)
1776 {
1777 if (!targetm.calls.allocate_stack_slots_for_args())
1778 return true;
1779
1780 /* Honor volatile. */
1781 if (TREE_SIDE_EFFECTS (decl))
1782 return false;
1783
1784 /* Honor addressability. */
1785 if (TREE_ADDRESSABLE (decl))
1786 return false;
1787
1788 /* Only register-like things go in registers. */
1789 if (DECL_MODE (decl) == BLKmode)
1790 return false;
1791
1792 /* If -ffloat-store specified, don't put explicit float variables
1793 into registers. */
1794 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1795 propagates values across these stores, and it probably shouldn't. */
1796 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1797 return false;
1798
1799 /* If we're not interested in tracking debugging information for
1800 this decl, then we can certainly put it in a register. */
1801 if (DECL_IGNORED_P (decl))
1802 return true;
1803
1804 return (optimize || DECL_REGISTER (decl));
1805 }
1806
1807 /* Return true if TYPE should be passed by invisible reference. */
1808
1809 bool
1810 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1811 tree type, bool named_arg)
1812 {
1813 if (type)
1814 {
1815 /* If this type contains non-trivial constructors, then it is
1816 forbidden for the middle-end to create any new copies. */
1817 if (TREE_ADDRESSABLE (type))
1818 return true;
1819
1820 /* GCC post 3.4 passes *all* variable sized types by reference. */
1821 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1822 return true;
1823 }
1824
1825 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1826 }
1827
1828 /* Return true if TYPE, which is passed by reference, should be callee
1829 copied instead of caller copied. */
1830
1831 bool
1832 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1833 tree type, bool named_arg)
1834 {
1835 if (type && TREE_ADDRESSABLE (type))
1836 return false;
1837 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1838 }
1839
1840 /* Structures to communicate between the subroutines of assign_parms.
1841 The first holds data persistent across all parameters, the second
1842 is cleared out for each parameter. */
1843
1844 struct assign_parm_data_all
1845 {
1846 CUMULATIVE_ARGS args_so_far;
1847 struct args_size stack_args_size;
1848 tree function_result_decl;
1849 tree orig_fnargs;
1850 rtx first_conversion_insn;
1851 rtx last_conversion_insn;
1852 HOST_WIDE_INT pretend_args_size;
1853 HOST_WIDE_INT extra_pretend_bytes;
1854 int reg_parm_stack_space;
1855 };
1856
1857 struct assign_parm_data_one
1858 {
1859 tree nominal_type;
1860 tree passed_type;
1861 rtx entry_parm;
1862 rtx stack_parm;
1863 enum machine_mode nominal_mode;
1864 enum machine_mode passed_mode;
1865 enum machine_mode promoted_mode;
1866 struct locate_and_pad_arg_data locate;
1867 int partial;
1868 BOOL_BITFIELD named_arg : 1;
1869 BOOL_BITFIELD passed_pointer : 1;
1870 BOOL_BITFIELD on_stack : 1;
1871 BOOL_BITFIELD loaded_in_reg : 1;
1872 };
1873
1874 /* A subroutine of assign_parms. Initialize ALL. */
1875
1876 static void
1877 assign_parms_initialize_all (struct assign_parm_data_all *all)
1878 {
1879 tree fntype;
1880
1881 memset (all, 0, sizeof (*all));
1882
1883 fntype = TREE_TYPE (current_function_decl);
1884
1885 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1886 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1887 #else
1888 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1889 current_function_decl, -1);
1890 #endif
1891
1892 #ifdef REG_PARM_STACK_SPACE
1893 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1894 #endif
1895 }
1896
1897 /* If ARGS contains entries with complex types, split the entry into two
1898 entries of the component type. Return a new list of substitutions are
1899 needed, else the old list. */
1900
1901 static tree
1902 split_complex_args (tree args)
1903 {
1904 tree p;
1905
1906 /* Before allocating memory, check for the common case of no complex. */
1907 for (p = args; p; p = TREE_CHAIN (p))
1908 {
1909 tree type = TREE_TYPE (p);
1910 if (TREE_CODE (type) == COMPLEX_TYPE
1911 && targetm.calls.split_complex_arg (type))
1912 goto found;
1913 }
1914 return args;
1915
1916 found:
1917 args = copy_list (args);
1918
1919 for (p = args; p; p = TREE_CHAIN (p))
1920 {
1921 tree type = TREE_TYPE (p);
1922 if (TREE_CODE (type) == COMPLEX_TYPE
1923 && targetm.calls.split_complex_arg (type))
1924 {
1925 tree decl;
1926 tree subtype = TREE_TYPE (type);
1927 bool addressable = TREE_ADDRESSABLE (p);
1928
1929 /* Rewrite the PARM_DECL's type with its component. */
1930 TREE_TYPE (p) = subtype;
1931 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1932 DECL_MODE (p) = VOIDmode;
1933 DECL_SIZE (p) = NULL;
1934 DECL_SIZE_UNIT (p) = NULL;
1935 /* If this arg must go in memory, put it in a pseudo here.
1936 We can't allow it to go in memory as per normal parms,
1937 because the usual place might not have the imag part
1938 adjacent to the real part. */
1939 DECL_ARTIFICIAL (p) = addressable;
1940 DECL_IGNORED_P (p) = addressable;
1941 TREE_ADDRESSABLE (p) = 0;
1942 layout_decl (p, 0);
1943
1944 /* Build a second synthetic decl. */
1945 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1946 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1947 DECL_ARTIFICIAL (decl) = addressable;
1948 DECL_IGNORED_P (decl) = addressable;
1949 layout_decl (decl, 0);
1950
1951 /* Splice it in; skip the new decl. */
1952 TREE_CHAIN (decl) = TREE_CHAIN (p);
1953 TREE_CHAIN (p) = decl;
1954 p = decl;
1955 }
1956 }
1957
1958 return args;
1959 }
1960
1961 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1962 the hidden struct return argument, and (abi willing) complex args.
1963 Return the new parameter list. */
1964
1965 static tree
1966 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1967 {
1968 tree fndecl = current_function_decl;
1969 tree fntype = TREE_TYPE (fndecl);
1970 tree fnargs = DECL_ARGUMENTS (fndecl);
1971
1972 /* If struct value address is treated as the first argument, make it so. */
1973 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1974 && ! cfun->returns_pcc_struct
1975 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
1976 {
1977 tree type = build_pointer_type (TREE_TYPE (fntype));
1978 tree decl;
1979
1980 decl = build_decl (PARM_DECL, NULL_TREE, type);
1981 DECL_ARG_TYPE (decl) = type;
1982 DECL_ARTIFICIAL (decl) = 1;
1983 DECL_IGNORED_P (decl) = 1;
1984
1985 TREE_CHAIN (decl) = fnargs;
1986 fnargs = decl;
1987 all->function_result_decl = decl;
1988 }
1989
1990 all->orig_fnargs = fnargs;
1991
1992 /* If the target wants to split complex arguments into scalars, do so. */
1993 if (targetm.calls.split_complex_arg)
1994 fnargs = split_complex_args (fnargs);
1995
1996 return fnargs;
1997 }
1998
1999 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2000 data for the parameter. Incorporate ABI specifics such as pass-by-
2001 reference and type promotion. */
2002
2003 static void
2004 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2005 struct assign_parm_data_one *data)
2006 {
2007 tree nominal_type, passed_type;
2008 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2009
2010 memset (data, 0, sizeof (*data));
2011
2012 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2013 if (!cfun->stdarg)
2014 data->named_arg = 1; /* No variadic parms. */
2015 else if (TREE_CHAIN (parm))
2016 data->named_arg = 1; /* Not the last non-variadic parm. */
2017 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2018 data->named_arg = 1; /* Only variadic ones are unnamed. */
2019 else
2020 data->named_arg = 0; /* Treat as variadic. */
2021
2022 nominal_type = TREE_TYPE (parm);
2023 passed_type = DECL_ARG_TYPE (parm);
2024
2025 /* Look out for errors propagating this far. Also, if the parameter's
2026 type is void then its value doesn't matter. */
2027 if (TREE_TYPE (parm) == error_mark_node
2028 /* This can happen after weird syntax errors
2029 or if an enum type is defined among the parms. */
2030 || TREE_CODE (parm) != PARM_DECL
2031 || passed_type == NULL
2032 || VOID_TYPE_P (nominal_type))
2033 {
2034 nominal_type = passed_type = void_type_node;
2035 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2036 goto egress;
2037 }
2038
2039 /* Find mode of arg as it is passed, and mode of arg as it should be
2040 during execution of this function. */
2041 passed_mode = TYPE_MODE (passed_type);
2042 nominal_mode = TYPE_MODE (nominal_type);
2043
2044 /* If the parm is to be passed as a transparent union, use the type of
2045 the first field for the tests below. We have already verified that
2046 the modes are the same. */
2047 if (TREE_CODE (passed_type) == UNION_TYPE
2048 && TYPE_TRANSPARENT_UNION (passed_type))
2049 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2050
2051 /* See if this arg was passed by invisible reference. */
2052 if (pass_by_reference (&all->args_so_far, passed_mode,
2053 passed_type, data->named_arg))
2054 {
2055 passed_type = nominal_type = build_pointer_type (passed_type);
2056 data->passed_pointer = true;
2057 passed_mode = nominal_mode = Pmode;
2058 }
2059
2060 /* Find mode as it is passed by the ABI. */
2061 promoted_mode = passed_mode;
2062 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2063 {
2064 int unsignedp = TYPE_UNSIGNED (passed_type);
2065 promoted_mode = promote_mode (passed_type, promoted_mode,
2066 &unsignedp, 1);
2067 }
2068
2069 egress:
2070 data->nominal_type = nominal_type;
2071 data->passed_type = passed_type;
2072 data->nominal_mode = nominal_mode;
2073 data->passed_mode = passed_mode;
2074 data->promoted_mode = promoted_mode;
2075 }
2076
2077 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2078
2079 static void
2080 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2081 struct assign_parm_data_one *data, bool no_rtl)
2082 {
2083 int varargs_pretend_bytes = 0;
2084
2085 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2086 data->promoted_mode,
2087 data->passed_type,
2088 &varargs_pretend_bytes, no_rtl);
2089
2090 /* If the back-end has requested extra stack space, record how much is
2091 needed. Do not change pretend_args_size otherwise since it may be
2092 nonzero from an earlier partial argument. */
2093 if (varargs_pretend_bytes > 0)
2094 all->pretend_args_size = varargs_pretend_bytes;
2095 }
2096
2097 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2098 the incoming location of the current parameter. */
2099
2100 static void
2101 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2102 struct assign_parm_data_one *data)
2103 {
2104 HOST_WIDE_INT pretend_bytes = 0;
2105 rtx entry_parm;
2106 bool in_regs;
2107
2108 if (data->promoted_mode == VOIDmode)
2109 {
2110 data->entry_parm = data->stack_parm = const0_rtx;
2111 return;
2112 }
2113
2114 #ifdef FUNCTION_INCOMING_ARG
2115 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2116 data->passed_type, data->named_arg);
2117 #else
2118 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2119 data->passed_type, data->named_arg);
2120 #endif
2121
2122 if (entry_parm == 0)
2123 data->promoted_mode = data->passed_mode;
2124
2125 /* Determine parm's home in the stack, in case it arrives in the stack
2126 or we should pretend it did. Compute the stack position and rtx where
2127 the argument arrives and its size.
2128
2129 There is one complexity here: If this was a parameter that would
2130 have been passed in registers, but wasn't only because it is
2131 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2132 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2133 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2134 as it was the previous time. */
2135 in_regs = entry_parm != 0;
2136 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2137 in_regs = true;
2138 #endif
2139 if (!in_regs && !data->named_arg)
2140 {
2141 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2142 {
2143 rtx tem;
2144 #ifdef FUNCTION_INCOMING_ARG
2145 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2146 data->passed_type, true);
2147 #else
2148 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2149 data->passed_type, true);
2150 #endif
2151 in_regs = tem != NULL;
2152 }
2153 }
2154
2155 /* If this parameter was passed both in registers and in the stack, use
2156 the copy on the stack. */
2157 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2158 data->passed_type))
2159 entry_parm = 0;
2160
2161 if (entry_parm)
2162 {
2163 int partial;
2164
2165 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2166 data->promoted_mode,
2167 data->passed_type,
2168 data->named_arg);
2169 data->partial = partial;
2170
2171 /* The caller might already have allocated stack space for the
2172 register parameters. */
2173 if (partial != 0 && all->reg_parm_stack_space == 0)
2174 {
2175 /* Part of this argument is passed in registers and part
2176 is passed on the stack. Ask the prologue code to extend
2177 the stack part so that we can recreate the full value.
2178
2179 PRETEND_BYTES is the size of the registers we need to store.
2180 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2181 stack space that the prologue should allocate.
2182
2183 Internally, gcc assumes that the argument pointer is aligned
2184 to STACK_BOUNDARY bits. This is used both for alignment
2185 optimizations (see init_emit) and to locate arguments that are
2186 aligned to more than PARM_BOUNDARY bits. We must preserve this
2187 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2188 a stack boundary. */
2189
2190 /* We assume at most one partial arg, and it must be the first
2191 argument on the stack. */
2192 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2193
2194 pretend_bytes = partial;
2195 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2196
2197 /* We want to align relative to the actual stack pointer, so
2198 don't include this in the stack size until later. */
2199 all->extra_pretend_bytes = all->pretend_args_size;
2200 }
2201 }
2202
2203 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2204 entry_parm ? data->partial : 0, current_function_decl,
2205 &all->stack_args_size, &data->locate);
2206
2207 /* Adjust offsets to include the pretend args. */
2208 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2209 data->locate.slot_offset.constant += pretend_bytes;
2210 data->locate.offset.constant += pretend_bytes;
2211
2212 data->entry_parm = entry_parm;
2213 }
2214
2215 /* A subroutine of assign_parms. If there is actually space on the stack
2216 for this parm, count it in stack_args_size and return true. */
2217
2218 static bool
2219 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2220 struct assign_parm_data_one *data)
2221 {
2222 /* Trivially true if we've no incoming register. */
2223 if (data->entry_parm == NULL)
2224 ;
2225 /* Also true if we're partially in registers and partially not,
2226 since we've arranged to drop the entire argument on the stack. */
2227 else if (data->partial != 0)
2228 ;
2229 /* Also true if the target says that it's passed in both registers
2230 and on the stack. */
2231 else if (GET_CODE (data->entry_parm) == PARALLEL
2232 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2233 ;
2234 /* Also true if the target says that there's stack allocated for
2235 all register parameters. */
2236 else if (all->reg_parm_stack_space > 0)
2237 ;
2238 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2239 else
2240 return false;
2241
2242 all->stack_args_size.constant += data->locate.size.constant;
2243 if (data->locate.size.var)
2244 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2245
2246 return true;
2247 }
2248
2249 /* A subroutine of assign_parms. Given that this parameter is allocated
2250 stack space by the ABI, find it. */
2251
2252 static void
2253 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2254 {
2255 rtx offset_rtx, stack_parm;
2256 unsigned int align, boundary;
2257
2258 /* If we're passing this arg using a reg, make its stack home the
2259 aligned stack slot. */
2260 if (data->entry_parm)
2261 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2262 else
2263 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2264
2265 stack_parm = crtl->args.internal_arg_pointer;
2266 if (offset_rtx != const0_rtx)
2267 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2268 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2269
2270 set_mem_attributes (stack_parm, parm, 1);
2271
2272 boundary = data->locate.boundary;
2273 align = BITS_PER_UNIT;
2274
2275 /* If we're padding upward, we know that the alignment of the slot
2276 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2277 intentionally forcing upward padding. Otherwise we have to come
2278 up with a guess at the alignment based on OFFSET_RTX. */
2279 if (data->locate.where_pad != downward || data->entry_parm)
2280 align = boundary;
2281 else if (GET_CODE (offset_rtx) == CONST_INT)
2282 {
2283 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2284 align = align & -align;
2285 }
2286 set_mem_align (stack_parm, align);
2287
2288 if (data->entry_parm)
2289 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2290
2291 data->stack_parm = stack_parm;
2292 }
2293
2294 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2295 always valid and contiguous. */
2296
2297 static void
2298 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2299 {
2300 rtx entry_parm = data->entry_parm;
2301 rtx stack_parm = data->stack_parm;
2302
2303 /* If this parm was passed part in regs and part in memory, pretend it
2304 arrived entirely in memory by pushing the register-part onto the stack.
2305 In the special case of a DImode or DFmode that is split, we could put
2306 it together in a pseudoreg directly, but for now that's not worth
2307 bothering with. */
2308 if (data->partial != 0)
2309 {
2310 /* Handle calls that pass values in multiple non-contiguous
2311 locations. The Irix 6 ABI has examples of this. */
2312 if (GET_CODE (entry_parm) == PARALLEL)
2313 emit_group_store (validize_mem (stack_parm), entry_parm,
2314 data->passed_type,
2315 int_size_in_bytes (data->passed_type));
2316 else
2317 {
2318 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2319 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2320 data->partial / UNITS_PER_WORD);
2321 }
2322
2323 entry_parm = stack_parm;
2324 }
2325
2326 /* If we didn't decide this parm came in a register, by default it came
2327 on the stack. */
2328 else if (entry_parm == NULL)
2329 entry_parm = stack_parm;
2330
2331 /* When an argument is passed in multiple locations, we can't make use
2332 of this information, but we can save some copying if the whole argument
2333 is passed in a single register. */
2334 else if (GET_CODE (entry_parm) == PARALLEL
2335 && data->nominal_mode != BLKmode
2336 && data->passed_mode != BLKmode)
2337 {
2338 size_t i, len = XVECLEN (entry_parm, 0);
2339
2340 for (i = 0; i < len; i++)
2341 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2342 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2343 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2344 == data->passed_mode)
2345 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2346 {
2347 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2348 break;
2349 }
2350 }
2351
2352 data->entry_parm = entry_parm;
2353 }
2354
2355 /* A subroutine of assign_parms. Reconstitute any values which were
2356 passed in multiple registers and would fit in a single register. */
2357
2358 static void
2359 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2360 {
2361 rtx entry_parm = data->entry_parm;
2362
2363 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2364 This can be done with register operations rather than on the
2365 stack, even if we will store the reconstituted parameter on the
2366 stack later. */
2367 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2368 {
2369 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2370 emit_group_store (parmreg, entry_parm, NULL_TREE,
2371 GET_MODE_SIZE (GET_MODE (entry_parm)));
2372 entry_parm = parmreg;
2373 }
2374
2375 data->entry_parm = entry_parm;
2376 }
2377
2378 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2379 always valid and properly aligned. */
2380
2381 static void
2382 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2383 {
2384 rtx stack_parm = data->stack_parm;
2385
2386 /* If we can't trust the parm stack slot to be aligned enough for its
2387 ultimate type, don't use that slot after entry. We'll make another
2388 stack slot, if we need one. */
2389 if (stack_parm
2390 && ((STRICT_ALIGNMENT
2391 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2392 || (data->nominal_type
2393 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2394 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2395 stack_parm = NULL;
2396
2397 /* If parm was passed in memory, and we need to convert it on entry,
2398 don't store it back in that same slot. */
2399 else if (data->entry_parm == stack_parm
2400 && data->nominal_mode != BLKmode
2401 && data->nominal_mode != data->passed_mode)
2402 stack_parm = NULL;
2403
2404 /* If stack protection is in effect for this function, don't leave any
2405 pointers in their passed stack slots. */
2406 else if (crtl->stack_protect_guard
2407 && (flag_stack_protect == 2
2408 || data->passed_pointer
2409 || POINTER_TYPE_P (data->nominal_type)))
2410 stack_parm = NULL;
2411
2412 data->stack_parm = stack_parm;
2413 }
2414
2415 /* A subroutine of assign_parms. Return true if the current parameter
2416 should be stored as a BLKmode in the current frame. */
2417
2418 static bool
2419 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2420 {
2421 if (data->nominal_mode == BLKmode)
2422 return true;
2423 if (GET_MODE (data->entry_parm) == BLKmode)
2424 return true;
2425
2426 #ifdef BLOCK_REG_PADDING
2427 /* Only assign_parm_setup_block knows how to deal with register arguments
2428 that are padded at the least significant end. */
2429 if (REG_P (data->entry_parm)
2430 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2431 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2432 == (BYTES_BIG_ENDIAN ? upward : downward)))
2433 return true;
2434 #endif
2435
2436 return false;
2437 }
2438
2439 /* A subroutine of assign_parms. Arrange for the parameter to be
2440 present and valid in DATA->STACK_RTL. */
2441
2442 static void
2443 assign_parm_setup_block (struct assign_parm_data_all *all,
2444 tree parm, struct assign_parm_data_one *data)
2445 {
2446 rtx entry_parm = data->entry_parm;
2447 rtx stack_parm = data->stack_parm;
2448 HOST_WIDE_INT size;
2449 HOST_WIDE_INT size_stored;
2450
2451 if (GET_CODE (entry_parm) == PARALLEL)
2452 entry_parm = emit_group_move_into_temps (entry_parm);
2453
2454 size = int_size_in_bytes (data->passed_type);
2455 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2456 if (stack_parm == 0)
2457 {
2458 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2459 stack_parm = assign_stack_local (BLKmode, size_stored,
2460 DECL_ALIGN (parm));
2461 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2462 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2463 set_mem_attributes (stack_parm, parm, 1);
2464 }
2465
2466 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2467 calls that pass values in multiple non-contiguous locations. */
2468 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2469 {
2470 rtx mem;
2471
2472 /* Note that we will be storing an integral number of words.
2473 So we have to be careful to ensure that we allocate an
2474 integral number of words. We do this above when we call
2475 assign_stack_local if space was not allocated in the argument
2476 list. If it was, this will not work if PARM_BOUNDARY is not
2477 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2478 if it becomes a problem. Exception is when BLKmode arrives
2479 with arguments not conforming to word_mode. */
2480
2481 if (data->stack_parm == 0)
2482 ;
2483 else if (GET_CODE (entry_parm) == PARALLEL)
2484 ;
2485 else
2486 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2487
2488 mem = validize_mem (stack_parm);
2489
2490 /* Handle values in multiple non-contiguous locations. */
2491 if (GET_CODE (entry_parm) == PARALLEL)
2492 {
2493 push_to_sequence2 (all->first_conversion_insn,
2494 all->last_conversion_insn);
2495 emit_group_store (mem, entry_parm, data->passed_type, size);
2496 all->first_conversion_insn = get_insns ();
2497 all->last_conversion_insn = get_last_insn ();
2498 end_sequence ();
2499 }
2500
2501 else if (size == 0)
2502 ;
2503
2504 /* If SIZE is that of a mode no bigger than a word, just use
2505 that mode's store operation. */
2506 else if (size <= UNITS_PER_WORD)
2507 {
2508 enum machine_mode mode
2509 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2510
2511 if (mode != BLKmode
2512 #ifdef BLOCK_REG_PADDING
2513 && (size == UNITS_PER_WORD
2514 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2515 != (BYTES_BIG_ENDIAN ? upward : downward)))
2516 #endif
2517 )
2518 {
2519 rtx reg;
2520
2521 /* We are really truncating a word_mode value containing
2522 SIZE bytes into a value of mode MODE. If such an
2523 operation requires no actual instructions, we can refer
2524 to the value directly in mode MODE, otherwise we must
2525 start with the register in word_mode and explicitly
2526 convert it. */
2527 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2528 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2529 else
2530 {
2531 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2532 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2533 }
2534 emit_move_insn (change_address (mem, mode, 0), reg);
2535 }
2536
2537 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2538 machine must be aligned to the left before storing
2539 to memory. Note that the previous test doesn't
2540 handle all cases (e.g. SIZE == 3). */
2541 else if (size != UNITS_PER_WORD
2542 #ifdef BLOCK_REG_PADDING
2543 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2544 == downward)
2545 #else
2546 && BYTES_BIG_ENDIAN
2547 #endif
2548 )
2549 {
2550 rtx tem, x;
2551 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2552 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2553
2554 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2555 build_int_cst (NULL_TREE, by),
2556 NULL_RTX, 1);
2557 tem = change_address (mem, word_mode, 0);
2558 emit_move_insn (tem, x);
2559 }
2560 else
2561 move_block_from_reg (REGNO (entry_parm), mem,
2562 size_stored / UNITS_PER_WORD);
2563 }
2564 else
2565 move_block_from_reg (REGNO (entry_parm), mem,
2566 size_stored / UNITS_PER_WORD);
2567 }
2568 else if (data->stack_parm == 0)
2569 {
2570 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2571 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2572 BLOCK_OP_NORMAL);
2573 all->first_conversion_insn = get_insns ();
2574 all->last_conversion_insn = get_last_insn ();
2575 end_sequence ();
2576 }
2577
2578 data->stack_parm = stack_parm;
2579 SET_DECL_RTL (parm, stack_parm);
2580 }
2581
2582 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2583 parameter. Get it there. Perform all ABI specified conversions. */
2584
2585 static void
2586 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2587 struct assign_parm_data_one *data)
2588 {
2589 rtx parmreg;
2590 enum machine_mode promoted_nominal_mode;
2591 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2592 bool did_conversion = false;
2593
2594 /* Store the parm in a pseudoregister during the function, but we may
2595 need to do it in a wider mode. */
2596
2597 /* This is not really promoting for a call. However we need to be
2598 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2599 promoted_nominal_mode
2600 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2601
2602 parmreg = gen_reg_rtx (promoted_nominal_mode);
2603
2604 if (!DECL_ARTIFICIAL (parm))
2605 mark_user_reg (parmreg);
2606
2607 /* If this was an item that we received a pointer to,
2608 set DECL_RTL appropriately. */
2609 if (data->passed_pointer)
2610 {
2611 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2612 set_mem_attributes (x, parm, 1);
2613 SET_DECL_RTL (parm, x);
2614 }
2615 else
2616 SET_DECL_RTL (parm, parmreg);
2617
2618 assign_parm_remove_parallels (data);
2619
2620 /* Copy the value into the register. */
2621 if (data->nominal_mode != data->passed_mode
2622 || promoted_nominal_mode != data->promoted_mode)
2623 {
2624 int save_tree_used;
2625
2626 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2627 mode, by the caller. We now have to convert it to
2628 NOMINAL_MODE, if different. However, PARMREG may be in
2629 a different mode than NOMINAL_MODE if it is being stored
2630 promoted.
2631
2632 If ENTRY_PARM is a hard register, it might be in a register
2633 not valid for operating in its mode (e.g., an odd-numbered
2634 register for a DFmode). In that case, moves are the only
2635 thing valid, so we can't do a convert from there. This
2636 occurs when the calling sequence allow such misaligned
2637 usages.
2638
2639 In addition, the conversion may involve a call, which could
2640 clobber parameters which haven't been copied to pseudo
2641 registers yet. Therefore, we must first copy the parm to
2642 a pseudo reg here, and save the conversion until after all
2643 parameters have been moved. */
2644
2645 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2646
2647 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2648
2649 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2650 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2651
2652 if (GET_CODE (tempreg) == SUBREG
2653 && GET_MODE (tempreg) == data->nominal_mode
2654 && REG_P (SUBREG_REG (tempreg))
2655 && data->nominal_mode == data->passed_mode
2656 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2657 && GET_MODE_SIZE (GET_MODE (tempreg))
2658 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2659 {
2660 /* The argument is already sign/zero extended, so note it
2661 into the subreg. */
2662 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2663 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2664 }
2665
2666 /* TREE_USED gets set erroneously during expand_assignment. */
2667 save_tree_used = TREE_USED (parm);
2668 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2669 TREE_USED (parm) = save_tree_used;
2670 all->first_conversion_insn = get_insns ();
2671 all->last_conversion_insn = get_last_insn ();
2672 end_sequence ();
2673
2674 did_conversion = true;
2675 }
2676 else
2677 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2678
2679 /* If we were passed a pointer but the actual value can safely live
2680 in a register, put it in one. */
2681 if (data->passed_pointer
2682 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2683 /* If by-reference argument was promoted, demote it. */
2684 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2685 || use_register_for_decl (parm)))
2686 {
2687 /* We can't use nominal_mode, because it will have been set to
2688 Pmode above. We must use the actual mode of the parm. */
2689 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2690 mark_user_reg (parmreg);
2691
2692 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2693 {
2694 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2695 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2696
2697 push_to_sequence2 (all->first_conversion_insn,
2698 all->last_conversion_insn);
2699 emit_move_insn (tempreg, DECL_RTL (parm));
2700 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2701 emit_move_insn (parmreg, tempreg);
2702 all->first_conversion_insn = get_insns ();
2703 all->last_conversion_insn = get_last_insn ();
2704 end_sequence ();
2705
2706 did_conversion = true;
2707 }
2708 else
2709 emit_move_insn (parmreg, DECL_RTL (parm));
2710
2711 SET_DECL_RTL (parm, parmreg);
2712
2713 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2714 now the parm. */
2715 data->stack_parm = NULL;
2716 }
2717
2718 /* Mark the register as eliminable if we did no conversion and it was
2719 copied from memory at a fixed offset, and the arg pointer was not
2720 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2721 offset formed an invalid address, such memory-equivalences as we
2722 make here would screw up life analysis for it. */
2723 if (data->nominal_mode == data->passed_mode
2724 && !did_conversion
2725 && data->stack_parm != 0
2726 && MEM_P (data->stack_parm)
2727 && data->locate.offset.var == 0
2728 && reg_mentioned_p (virtual_incoming_args_rtx,
2729 XEXP (data->stack_parm, 0)))
2730 {
2731 rtx linsn = get_last_insn ();
2732 rtx sinsn, set;
2733
2734 /* Mark complex types separately. */
2735 if (GET_CODE (parmreg) == CONCAT)
2736 {
2737 enum machine_mode submode
2738 = GET_MODE_INNER (GET_MODE (parmreg));
2739 int regnor = REGNO (XEXP (parmreg, 0));
2740 int regnoi = REGNO (XEXP (parmreg, 1));
2741 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2742 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2743 GET_MODE_SIZE (submode));
2744
2745 /* Scan backwards for the set of the real and
2746 imaginary parts. */
2747 for (sinsn = linsn; sinsn != 0;
2748 sinsn = prev_nonnote_insn (sinsn))
2749 {
2750 set = single_set (sinsn);
2751 if (set == 0)
2752 continue;
2753
2754 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2755 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2756 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2757 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2758 }
2759 }
2760 else if ((set = single_set (linsn)) != 0
2761 && SET_DEST (set) == parmreg)
2762 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2763 }
2764
2765 /* For pointer data type, suggest pointer register. */
2766 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2767 mark_reg_pointer (parmreg,
2768 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2769 }
2770
2771 /* A subroutine of assign_parms. Allocate stack space to hold the current
2772 parameter. Get it there. Perform all ABI specified conversions. */
2773
2774 static void
2775 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2776 struct assign_parm_data_one *data)
2777 {
2778 /* Value must be stored in the stack slot STACK_PARM during function
2779 execution. */
2780 bool to_conversion = false;
2781
2782 assign_parm_remove_parallels (data);
2783
2784 if (data->promoted_mode != data->nominal_mode)
2785 {
2786 /* Conversion is required. */
2787 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2788
2789 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2790
2791 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2792 to_conversion = true;
2793
2794 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2795 TYPE_UNSIGNED (TREE_TYPE (parm)));
2796
2797 if (data->stack_parm)
2798 /* ??? This may need a big-endian conversion on sparc64. */
2799 data->stack_parm
2800 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2801 }
2802
2803 if (data->entry_parm != data->stack_parm)
2804 {
2805 rtx src, dest;
2806
2807 if (data->stack_parm == 0)
2808 {
2809 data->stack_parm
2810 = assign_stack_local (GET_MODE (data->entry_parm),
2811 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2812 TYPE_ALIGN (data->passed_type));
2813 set_mem_attributes (data->stack_parm, parm, 1);
2814 }
2815
2816 dest = validize_mem (data->stack_parm);
2817 src = validize_mem (data->entry_parm);
2818
2819 if (MEM_P (src))
2820 {
2821 /* Use a block move to handle potentially misaligned entry_parm. */
2822 if (!to_conversion)
2823 push_to_sequence2 (all->first_conversion_insn,
2824 all->last_conversion_insn);
2825 to_conversion = true;
2826
2827 emit_block_move (dest, src,
2828 GEN_INT (int_size_in_bytes (data->passed_type)),
2829 BLOCK_OP_NORMAL);
2830 }
2831 else
2832 emit_move_insn (dest, src);
2833 }
2834
2835 if (to_conversion)
2836 {
2837 all->first_conversion_insn = get_insns ();
2838 all->last_conversion_insn = get_last_insn ();
2839 end_sequence ();
2840 }
2841
2842 SET_DECL_RTL (parm, data->stack_parm);
2843 }
2844
2845 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2846 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2847
2848 static void
2849 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2850 {
2851 tree parm;
2852 tree orig_fnargs = all->orig_fnargs;
2853
2854 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2855 {
2856 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2857 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2858 {
2859 rtx tmp, real, imag;
2860 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2861
2862 real = DECL_RTL (fnargs);
2863 imag = DECL_RTL (TREE_CHAIN (fnargs));
2864 if (inner != GET_MODE (real))
2865 {
2866 real = gen_lowpart_SUBREG (inner, real);
2867 imag = gen_lowpart_SUBREG (inner, imag);
2868 }
2869
2870 if (TREE_ADDRESSABLE (parm))
2871 {
2872 rtx rmem, imem;
2873 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2874
2875 /* split_complex_arg put the real and imag parts in
2876 pseudos. Move them to memory. */
2877 tmp = assign_stack_local (DECL_MODE (parm), size,
2878 TYPE_ALIGN (TREE_TYPE (parm)));
2879 set_mem_attributes (tmp, parm, 1);
2880 rmem = adjust_address_nv (tmp, inner, 0);
2881 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2882 push_to_sequence2 (all->first_conversion_insn,
2883 all->last_conversion_insn);
2884 emit_move_insn (rmem, real);
2885 emit_move_insn (imem, imag);
2886 all->first_conversion_insn = get_insns ();
2887 all->last_conversion_insn = get_last_insn ();
2888 end_sequence ();
2889 }
2890 else
2891 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2892 SET_DECL_RTL (parm, tmp);
2893
2894 real = DECL_INCOMING_RTL (fnargs);
2895 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2896 if (inner != GET_MODE (real))
2897 {
2898 real = gen_lowpart_SUBREG (inner, real);
2899 imag = gen_lowpart_SUBREG (inner, imag);
2900 }
2901 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2902 set_decl_incoming_rtl (parm, tmp, false);
2903 fnargs = TREE_CHAIN (fnargs);
2904 }
2905 else
2906 {
2907 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2908 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
2909
2910 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2911 instead of the copy of decl, i.e. FNARGS. */
2912 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2913 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2914 }
2915
2916 fnargs = TREE_CHAIN (fnargs);
2917 }
2918 }
2919
2920 /* Assign RTL expressions to the function's parameters. This may involve
2921 copying them into registers and using those registers as the DECL_RTL. */
2922
2923 static void
2924 assign_parms (tree fndecl)
2925 {
2926 struct assign_parm_data_all all;
2927 tree fnargs, parm;
2928
2929 crtl->args.internal_arg_pointer
2930 = targetm.calls.internal_arg_pointer ();
2931
2932 assign_parms_initialize_all (&all);
2933 fnargs = assign_parms_augmented_arg_list (&all);
2934
2935 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2936 {
2937 struct assign_parm_data_one data;
2938
2939 /* Extract the type of PARM; adjust it according to ABI. */
2940 assign_parm_find_data_types (&all, parm, &data);
2941
2942 /* Early out for errors and void parameters. */
2943 if (data.passed_mode == VOIDmode)
2944 {
2945 SET_DECL_RTL (parm, const0_rtx);
2946 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2947 continue;
2948 }
2949
2950 if (cfun->stdarg && !TREE_CHAIN (parm))
2951 assign_parms_setup_varargs (&all, &data, false);
2952
2953 /* Find out where the parameter arrives in this function. */
2954 assign_parm_find_entry_rtl (&all, &data);
2955
2956 /* Find out where stack space for this parameter might be. */
2957 if (assign_parm_is_stack_parm (&all, &data))
2958 {
2959 assign_parm_find_stack_rtl (parm, &data);
2960 assign_parm_adjust_entry_rtl (&data);
2961 }
2962
2963 /* Record permanently how this parm was passed. */
2964 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
2965
2966 /* Update info on where next arg arrives in registers. */
2967 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2968 data.passed_type, data.named_arg);
2969
2970 assign_parm_adjust_stack_rtl (&data);
2971
2972 if (assign_parm_setup_block_p (&data))
2973 assign_parm_setup_block (&all, parm, &data);
2974 else if (data.passed_pointer || use_register_for_decl (parm))
2975 assign_parm_setup_reg (&all, parm, &data);
2976 else
2977 assign_parm_setup_stack (&all, parm, &data);
2978 }
2979
2980 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
2981 assign_parms_unsplit_complex (&all, fnargs);
2982
2983 /* Output all parameter conversion instructions (possibly including calls)
2984 now that all parameters have been copied out of hard registers. */
2985 emit_insn (all.first_conversion_insn);
2986
2987 /* If we are receiving a struct value address as the first argument, set up
2988 the RTL for the function result. As this might require code to convert
2989 the transmitted address to Pmode, we do this here to ensure that possible
2990 preliminary conversions of the address have been emitted already. */
2991 if (all.function_result_decl)
2992 {
2993 tree result = DECL_RESULT (current_function_decl);
2994 rtx addr = DECL_RTL (all.function_result_decl);
2995 rtx x;
2996
2997 if (DECL_BY_REFERENCE (result))
2998 x = addr;
2999 else
3000 {
3001 addr = convert_memory_address (Pmode, addr);
3002 x = gen_rtx_MEM (DECL_MODE (result), addr);
3003 set_mem_attributes (x, result, 1);
3004 }
3005 SET_DECL_RTL (result, x);
3006 }
3007
3008 /* We have aligned all the args, so add space for the pretend args. */
3009 crtl->args.pretend_args_size = all.pretend_args_size;
3010 all.stack_args_size.constant += all.extra_pretend_bytes;
3011 crtl->args.size = all.stack_args_size.constant;
3012
3013 /* Adjust function incoming argument size for alignment and
3014 minimum length. */
3015
3016 #ifdef REG_PARM_STACK_SPACE
3017 crtl->args.size = MAX (crtl->args.size,
3018 REG_PARM_STACK_SPACE (fndecl));
3019 #endif
3020
3021 crtl->args.size = CEIL_ROUND (crtl->args.size,
3022 PARM_BOUNDARY / BITS_PER_UNIT);
3023
3024 #ifdef ARGS_GROW_DOWNWARD
3025 crtl->args.arg_offset_rtx
3026 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3027 : expand_expr (size_diffop (all.stack_args_size.var,
3028 size_int (-all.stack_args_size.constant)),
3029 NULL_RTX, VOIDmode, 0));
3030 #else
3031 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3032 #endif
3033
3034 /* See how many bytes, if any, of its args a function should try to pop
3035 on return. */
3036
3037 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3038 crtl->args.size);
3039
3040 /* For stdarg.h function, save info about
3041 regs and stack space used by the named args. */
3042
3043 crtl->args.info = all.args_so_far;
3044
3045 /* Set the rtx used for the function return value. Put this in its
3046 own variable so any optimizers that need this information don't have
3047 to include tree.h. Do this here so it gets done when an inlined
3048 function gets output. */
3049
3050 crtl->return_rtx
3051 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3052 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3053
3054 /* If scalar return value was computed in a pseudo-reg, or was a named
3055 return value that got dumped to the stack, copy that to the hard
3056 return register. */
3057 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3058 {
3059 tree decl_result = DECL_RESULT (fndecl);
3060 rtx decl_rtl = DECL_RTL (decl_result);
3061
3062 if (REG_P (decl_rtl)
3063 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3064 : DECL_REGISTER (decl_result))
3065 {
3066 rtx real_decl_rtl;
3067
3068 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3069 fndecl, true);
3070 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3071 /* The delay slot scheduler assumes that crtl->return_rtx
3072 holds the hard register containing the return value, not a
3073 temporary pseudo. */
3074 crtl->return_rtx = real_decl_rtl;
3075 }
3076 }
3077 }
3078
3079 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3080 For all seen types, gimplify their sizes. */
3081
3082 static tree
3083 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3084 {
3085 tree t = *tp;
3086
3087 *walk_subtrees = 0;
3088 if (TYPE_P (t))
3089 {
3090 if (POINTER_TYPE_P (t))
3091 *walk_subtrees = 1;
3092 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3093 && !TYPE_SIZES_GIMPLIFIED (t))
3094 {
3095 gimplify_type_sizes (t, (tree *) data);
3096 *walk_subtrees = 1;
3097 }
3098 }
3099
3100 return NULL;
3101 }
3102
3103 /* Gimplify the parameter list for current_function_decl. This involves
3104 evaluating SAVE_EXPRs of variable sized parameters and generating code
3105 to implement callee-copies reference parameters. Returns a list of
3106 statements to add to the beginning of the function, or NULL if nothing
3107 to do. */
3108
3109 tree
3110 gimplify_parameters (void)
3111 {
3112 struct assign_parm_data_all all;
3113 tree fnargs, parm, stmts = NULL;
3114
3115 assign_parms_initialize_all (&all);
3116 fnargs = assign_parms_augmented_arg_list (&all);
3117
3118 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3119 {
3120 struct assign_parm_data_one data;
3121
3122 /* Extract the type of PARM; adjust it according to ABI. */
3123 assign_parm_find_data_types (&all, parm, &data);
3124
3125 /* Early out for errors and void parameters. */
3126 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3127 continue;
3128
3129 /* Update info on where next arg arrives in registers. */
3130 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3131 data.passed_type, data.named_arg);
3132
3133 /* ??? Once upon a time variable_size stuffed parameter list
3134 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3135 turned out to be less than manageable in the gimple world.
3136 Now we have to hunt them down ourselves. */
3137 walk_tree_without_duplicates (&data.passed_type,
3138 gimplify_parm_type, &stmts);
3139
3140 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3141 {
3142 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3143 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3144 }
3145
3146 if (data.passed_pointer)
3147 {
3148 tree type = TREE_TYPE (data.passed_type);
3149 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3150 type, data.named_arg))
3151 {
3152 tree local, t;
3153
3154 /* For constant sized objects, this is trivial; for
3155 variable-sized objects, we have to play games. */
3156 if (TREE_CONSTANT (DECL_SIZE (parm)))
3157 {
3158 local = create_tmp_var (type, get_name (parm));
3159 DECL_IGNORED_P (local) = 0;
3160 }
3161 else
3162 {
3163 tree ptr_type, addr;
3164
3165 ptr_type = build_pointer_type (type);
3166 addr = create_tmp_var (ptr_type, get_name (parm));
3167 DECL_IGNORED_P (addr) = 0;
3168 local = build_fold_indirect_ref (addr);
3169
3170 t = built_in_decls[BUILT_IN_ALLOCA];
3171 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3172 t = fold_convert (ptr_type, t);
3173 t = build_gimple_modify_stmt (addr, t);
3174 gimplify_and_add (t, &stmts);
3175 }
3176
3177 t = build_gimple_modify_stmt (local, parm);
3178 gimplify_and_add (t, &stmts);
3179
3180 SET_DECL_VALUE_EXPR (parm, local);
3181 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3182 }
3183 }
3184 }
3185
3186 return stmts;
3187 }
3188 \f
3189 /* Compute the size and offset from the start of the stacked arguments for a
3190 parm passed in mode PASSED_MODE and with type TYPE.
3191
3192 INITIAL_OFFSET_PTR points to the current offset into the stacked
3193 arguments.
3194
3195 The starting offset and size for this parm are returned in
3196 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3197 nonzero, the offset is that of stack slot, which is returned in
3198 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3199 padding required from the initial offset ptr to the stack slot.
3200
3201 IN_REGS is nonzero if the argument will be passed in registers. It will
3202 never be set if REG_PARM_STACK_SPACE is not defined.
3203
3204 FNDECL is the function in which the argument was defined.
3205
3206 There are two types of rounding that are done. The first, controlled by
3207 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3208 list to be aligned to the specific boundary (in bits). This rounding
3209 affects the initial and starting offsets, but not the argument size.
3210
3211 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3212 optionally rounds the size of the parm to PARM_BOUNDARY. The
3213 initial offset is not affected by this rounding, while the size always
3214 is and the starting offset may be. */
3215
3216 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3217 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3218 callers pass in the total size of args so far as
3219 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3220
3221 void
3222 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3223 int partial, tree fndecl ATTRIBUTE_UNUSED,
3224 struct args_size *initial_offset_ptr,
3225 struct locate_and_pad_arg_data *locate)
3226 {
3227 tree sizetree;
3228 enum direction where_pad;
3229 unsigned int boundary;
3230 int reg_parm_stack_space = 0;
3231 int part_size_in_regs;
3232
3233 #ifdef REG_PARM_STACK_SPACE
3234 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3235
3236 /* If we have found a stack parm before we reach the end of the
3237 area reserved for registers, skip that area. */
3238 if (! in_regs)
3239 {
3240 if (reg_parm_stack_space > 0)
3241 {
3242 if (initial_offset_ptr->var)
3243 {
3244 initial_offset_ptr->var
3245 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3246 ssize_int (reg_parm_stack_space));
3247 initial_offset_ptr->constant = 0;
3248 }
3249 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3250 initial_offset_ptr->constant = reg_parm_stack_space;
3251 }
3252 }
3253 #endif /* REG_PARM_STACK_SPACE */
3254
3255 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3256
3257 sizetree
3258 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3259 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3260 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3261 locate->where_pad = where_pad;
3262 locate->boundary = boundary;
3263
3264 /* Remember if the outgoing parameter requires extra alignment on the
3265 calling function side. */
3266 if (boundary > PREFERRED_STACK_BOUNDARY)
3267 boundary = PREFERRED_STACK_BOUNDARY;
3268 if (crtl->stack_alignment_needed < boundary)
3269 crtl->stack_alignment_needed = boundary;
3270
3271 #ifdef ARGS_GROW_DOWNWARD
3272 locate->slot_offset.constant = -initial_offset_ptr->constant;
3273 if (initial_offset_ptr->var)
3274 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3275 initial_offset_ptr->var);
3276
3277 {
3278 tree s2 = sizetree;
3279 if (where_pad != none
3280 && (!host_integerp (sizetree, 1)
3281 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3282 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3283 SUB_PARM_SIZE (locate->slot_offset, s2);
3284 }
3285
3286 locate->slot_offset.constant += part_size_in_regs;
3287
3288 if (!in_regs
3289 #ifdef REG_PARM_STACK_SPACE
3290 || REG_PARM_STACK_SPACE (fndecl) > 0
3291 #endif
3292 )
3293 pad_to_arg_alignment (&locate->slot_offset, boundary,
3294 &locate->alignment_pad);
3295
3296 locate->size.constant = (-initial_offset_ptr->constant
3297 - locate->slot_offset.constant);
3298 if (initial_offset_ptr->var)
3299 locate->size.var = size_binop (MINUS_EXPR,
3300 size_binop (MINUS_EXPR,
3301 ssize_int (0),
3302 initial_offset_ptr->var),
3303 locate->slot_offset.var);
3304
3305 /* Pad_below needs the pre-rounded size to know how much to pad
3306 below. */
3307 locate->offset = locate->slot_offset;
3308 if (where_pad == downward)
3309 pad_below (&locate->offset, passed_mode, sizetree);
3310
3311 #else /* !ARGS_GROW_DOWNWARD */
3312 if (!in_regs
3313 #ifdef REG_PARM_STACK_SPACE
3314 || REG_PARM_STACK_SPACE (fndecl) > 0
3315 #endif
3316 )
3317 pad_to_arg_alignment (initial_offset_ptr, boundary,
3318 &locate->alignment_pad);
3319 locate->slot_offset = *initial_offset_ptr;
3320
3321 #ifdef PUSH_ROUNDING
3322 if (passed_mode != BLKmode)
3323 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3324 #endif
3325
3326 /* Pad_below needs the pre-rounded size to know how much to pad below
3327 so this must be done before rounding up. */
3328 locate->offset = locate->slot_offset;
3329 if (where_pad == downward)
3330 pad_below (&locate->offset, passed_mode, sizetree);
3331
3332 if (where_pad != none
3333 && (!host_integerp (sizetree, 1)
3334 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3335 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3336
3337 ADD_PARM_SIZE (locate->size, sizetree);
3338
3339 locate->size.constant -= part_size_in_regs;
3340 #endif /* ARGS_GROW_DOWNWARD */
3341 }
3342
3343 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3344 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3345
3346 static void
3347 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3348 struct args_size *alignment_pad)
3349 {
3350 tree save_var = NULL_TREE;
3351 HOST_WIDE_INT save_constant = 0;
3352 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3353 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3354
3355 #ifdef SPARC_STACK_BOUNDARY_HACK
3356 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3357 the real alignment of %sp. However, when it does this, the
3358 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3359 if (SPARC_STACK_BOUNDARY_HACK)
3360 sp_offset = 0;
3361 #endif
3362
3363 if (boundary > PARM_BOUNDARY)
3364 {
3365 save_var = offset_ptr->var;
3366 save_constant = offset_ptr->constant;
3367 }
3368
3369 alignment_pad->var = NULL_TREE;
3370 alignment_pad->constant = 0;
3371
3372 if (boundary > BITS_PER_UNIT)
3373 {
3374 if (offset_ptr->var)
3375 {
3376 tree sp_offset_tree = ssize_int (sp_offset);
3377 tree offset = size_binop (PLUS_EXPR,
3378 ARGS_SIZE_TREE (*offset_ptr),
3379 sp_offset_tree);
3380 #ifdef ARGS_GROW_DOWNWARD
3381 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3382 #else
3383 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3384 #endif
3385
3386 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3387 /* ARGS_SIZE_TREE includes constant term. */
3388 offset_ptr->constant = 0;
3389 if (boundary > PARM_BOUNDARY)
3390 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3391 save_var);
3392 }
3393 else
3394 {
3395 offset_ptr->constant = -sp_offset +
3396 #ifdef ARGS_GROW_DOWNWARD
3397 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3398 #else
3399 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3400 #endif
3401 if (boundary > PARM_BOUNDARY)
3402 alignment_pad->constant = offset_ptr->constant - save_constant;
3403 }
3404 }
3405 }
3406
3407 static void
3408 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3409 {
3410 if (passed_mode != BLKmode)
3411 {
3412 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3413 offset_ptr->constant
3414 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3415 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3416 - GET_MODE_SIZE (passed_mode));
3417 }
3418 else
3419 {
3420 if (TREE_CODE (sizetree) != INTEGER_CST
3421 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3422 {
3423 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3424 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3425 /* Add it in. */
3426 ADD_PARM_SIZE (*offset_ptr, s2);
3427 SUB_PARM_SIZE (*offset_ptr, sizetree);
3428 }
3429 }
3430 }
3431 \f
3432
3433 /* True if register REGNO was alive at a place where `setjmp' was
3434 called and was set more than once or is an argument. Such regs may
3435 be clobbered by `longjmp'. */
3436
3437 static bool
3438 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3439 {
3440 /* There appear to be cases where some local vars never reach the
3441 backend but have bogus regnos. */
3442 if (regno >= max_reg_num ())
3443 return false;
3444
3445 return ((REG_N_SETS (regno) > 1
3446 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3447 && REGNO_REG_SET_P (setjmp_crosses, regno));
3448 }
3449
3450 /* Walk the tree of blocks describing the binding levels within a
3451 function and warn about variables the might be killed by setjmp or
3452 vfork. This is done after calling flow_analysis before register
3453 allocation since that will clobber the pseudo-regs to hard
3454 regs. */
3455
3456 static void
3457 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3458 {
3459 tree decl, sub;
3460
3461 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3462 {
3463 if (TREE_CODE (decl) == VAR_DECL
3464 && DECL_RTL_SET_P (decl)
3465 && REG_P (DECL_RTL (decl))
3466 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3467 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3468 " %<longjmp%> or %<vfork%>", decl);
3469 }
3470
3471 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3472 setjmp_vars_warning (setjmp_crosses, sub);
3473 }
3474
3475 /* Do the appropriate part of setjmp_vars_warning
3476 but for arguments instead of local variables. */
3477
3478 static void
3479 setjmp_args_warning (bitmap setjmp_crosses)
3480 {
3481 tree decl;
3482 for (decl = DECL_ARGUMENTS (current_function_decl);
3483 decl; decl = TREE_CHAIN (decl))
3484 if (DECL_RTL (decl) != 0
3485 && REG_P (DECL_RTL (decl))
3486 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3487 warning (OPT_Wclobbered,
3488 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3489 decl);
3490 }
3491
3492 /* Generate warning messages for variables live across setjmp. */
3493
3494 void
3495 generate_setjmp_warnings (void)
3496 {
3497 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3498
3499 if (n_basic_blocks == NUM_FIXED_BLOCKS
3500 || bitmap_empty_p (setjmp_crosses))
3501 return;
3502
3503 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3504 setjmp_args_warning (setjmp_crosses);
3505 }
3506
3507 \f
3508 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3509 and create duplicate blocks. */
3510 /* ??? Need an option to either create block fragments or to create
3511 abstract origin duplicates of a source block. It really depends
3512 on what optimization has been performed. */
3513
3514 void
3515 reorder_blocks (void)
3516 {
3517 tree block = DECL_INITIAL (current_function_decl);
3518 VEC(tree,heap) *block_stack;
3519
3520 if (block == NULL_TREE)
3521 return;
3522
3523 block_stack = VEC_alloc (tree, heap, 10);
3524
3525 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3526 clear_block_marks (block);
3527
3528 /* Prune the old trees away, so that they don't get in the way. */
3529 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3530 BLOCK_CHAIN (block) = NULL_TREE;
3531
3532 /* Recreate the block tree from the note nesting. */
3533 reorder_blocks_1 (get_insns (), block, &block_stack);
3534 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3535
3536 VEC_free (tree, heap, block_stack);
3537 }
3538
3539 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3540
3541 void
3542 clear_block_marks (tree block)
3543 {
3544 while (block)
3545 {
3546 TREE_ASM_WRITTEN (block) = 0;
3547 clear_block_marks (BLOCK_SUBBLOCKS (block));
3548 block = BLOCK_CHAIN (block);
3549 }
3550 }
3551
3552 static void
3553 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3554 {
3555 rtx insn;
3556
3557 for (insn = insns; insn; insn = NEXT_INSN (insn))
3558 {
3559 if (NOTE_P (insn))
3560 {
3561 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3562 {
3563 tree block = NOTE_BLOCK (insn);
3564 tree origin;
3565
3566 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3567 ? BLOCK_FRAGMENT_ORIGIN (block)
3568 : block);
3569
3570 /* If we have seen this block before, that means it now
3571 spans multiple address regions. Create a new fragment. */
3572 if (TREE_ASM_WRITTEN (block))
3573 {
3574 tree new_block = copy_node (block);
3575
3576 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3577 BLOCK_FRAGMENT_CHAIN (new_block)
3578 = BLOCK_FRAGMENT_CHAIN (origin);
3579 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3580
3581 NOTE_BLOCK (insn) = new_block;
3582 block = new_block;
3583 }
3584
3585 BLOCK_SUBBLOCKS (block) = 0;
3586 TREE_ASM_WRITTEN (block) = 1;
3587 /* When there's only one block for the entire function,
3588 current_block == block and we mustn't do this, it
3589 will cause infinite recursion. */
3590 if (block != current_block)
3591 {
3592 if (block != origin)
3593 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3594
3595 BLOCK_SUPERCONTEXT (block) = current_block;
3596 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3597 BLOCK_SUBBLOCKS (current_block) = block;
3598 current_block = origin;
3599 }
3600 VEC_safe_push (tree, heap, *p_block_stack, block);
3601 }
3602 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3603 {
3604 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3605 BLOCK_SUBBLOCKS (current_block)
3606 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3607 current_block = BLOCK_SUPERCONTEXT (current_block);
3608 }
3609 }
3610 }
3611 }
3612
3613 /* Reverse the order of elements in the chain T of blocks,
3614 and return the new head of the chain (old last element). */
3615
3616 tree
3617 blocks_nreverse (tree t)
3618 {
3619 tree prev = 0, decl, next;
3620 for (decl = t; decl; decl = next)
3621 {
3622 next = BLOCK_CHAIN (decl);
3623 BLOCK_CHAIN (decl) = prev;
3624 prev = decl;
3625 }
3626 return prev;
3627 }
3628
3629 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3630 non-NULL, list them all into VECTOR, in a depth-first preorder
3631 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3632 blocks. */
3633
3634 static int
3635 all_blocks (tree block, tree *vector)
3636 {
3637 int n_blocks = 0;
3638
3639 while (block)
3640 {
3641 TREE_ASM_WRITTEN (block) = 0;
3642
3643 /* Record this block. */
3644 if (vector)
3645 vector[n_blocks] = block;
3646
3647 ++n_blocks;
3648
3649 /* Record the subblocks, and their subblocks... */
3650 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3651 vector ? vector + n_blocks : 0);
3652 block = BLOCK_CHAIN (block);
3653 }
3654
3655 return n_blocks;
3656 }
3657
3658 /* Return a vector containing all the blocks rooted at BLOCK. The
3659 number of elements in the vector is stored in N_BLOCKS_P. The
3660 vector is dynamically allocated; it is the caller's responsibility
3661 to call `free' on the pointer returned. */
3662
3663 static tree *
3664 get_block_vector (tree block, int *n_blocks_p)
3665 {
3666 tree *block_vector;
3667
3668 *n_blocks_p = all_blocks (block, NULL);
3669 block_vector = XNEWVEC (tree, *n_blocks_p);
3670 all_blocks (block, block_vector);
3671
3672 return block_vector;
3673 }
3674
3675 static GTY(()) int next_block_index = 2;
3676
3677 /* Set BLOCK_NUMBER for all the blocks in FN. */
3678
3679 void
3680 number_blocks (tree fn)
3681 {
3682 int i;
3683 int n_blocks;
3684 tree *block_vector;
3685
3686 /* For SDB and XCOFF debugging output, we start numbering the blocks
3687 from 1 within each function, rather than keeping a running
3688 count. */
3689 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3690 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3691 next_block_index = 1;
3692 #endif
3693
3694 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3695
3696 /* The top-level BLOCK isn't numbered at all. */
3697 for (i = 1; i < n_blocks; ++i)
3698 /* We number the blocks from two. */
3699 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3700
3701 free (block_vector);
3702
3703 return;
3704 }
3705
3706 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3707
3708 tree
3709 debug_find_var_in_block_tree (tree var, tree block)
3710 {
3711 tree t;
3712
3713 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3714 if (t == var)
3715 return block;
3716
3717 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3718 {
3719 tree ret = debug_find_var_in_block_tree (var, t);
3720 if (ret)
3721 return ret;
3722 }
3723
3724 return NULL_TREE;
3725 }
3726 \f
3727 /* Keep track of whether we're in a dummy function context. If we are,
3728 we don't want to invoke the set_current_function hook, because we'll
3729 get into trouble if the hook calls target_reinit () recursively or
3730 when the initial initialization is not yet complete. */
3731
3732 static bool in_dummy_function;
3733
3734 /* Invoke the target hook when setting cfun. */
3735
3736 static void
3737 invoke_set_current_function_hook (tree fndecl)
3738 {
3739 if (!in_dummy_function)
3740 targetm.set_current_function (fndecl);
3741 }
3742
3743 /* cfun should never be set directly; use this function. */
3744
3745 void
3746 set_cfun (struct function *new_cfun)
3747 {
3748 if (cfun != new_cfun)
3749 {
3750 cfun = new_cfun;
3751 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
3752 }
3753 }
3754
3755 /* Keep track of the cfun stack. */
3756
3757 typedef struct function *function_p;
3758
3759 DEF_VEC_P(function_p);
3760 DEF_VEC_ALLOC_P(function_p,heap);
3761
3762 /* Initialized with NOGC, making this poisonous to the garbage collector. */
3763
3764 static VEC(function_p,heap) *cfun_stack;
3765
3766 /* We save the value of in_system_header here when pushing the first
3767 function on the cfun stack, and we restore it from here when
3768 popping the last function. */
3769
3770 static bool saved_in_system_header;
3771
3772 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
3773
3774 void
3775 push_cfun (struct function *new_cfun)
3776 {
3777 if (cfun == NULL)
3778 saved_in_system_header = in_system_header;
3779 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3780 if (new_cfun)
3781 in_system_header = DECL_IN_SYSTEM_HEADER (new_cfun->decl);
3782 set_cfun (new_cfun);
3783 }
3784
3785 /* Pop cfun from the stack. */
3786
3787 void
3788 pop_cfun (void)
3789 {
3790 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
3791 in_system_header = ((new_cfun == NULL) ? saved_in_system_header
3792 : DECL_IN_SYSTEM_HEADER (new_cfun->decl));
3793 set_cfun (new_cfun);
3794 }
3795
3796 /* Return value of funcdef and increase it. */
3797 int
3798 get_next_funcdef_no (void)
3799 {
3800 return funcdef_no++;
3801 }
3802
3803 /* Allocate a function structure for FNDECL and set its contents
3804 to the defaults. Set cfun to the newly-allocated object.
3805 Some of the helper functions invoked during initialization assume
3806 that cfun has already been set. Therefore, assign the new object
3807 directly into cfun and invoke the back end hook explicitly at the
3808 very end, rather than initializing a temporary and calling set_cfun
3809 on it.
3810
3811 ABSTRACT_P is true if this is a function that will never be seen by
3812 the middle-end. Such functions are front-end concepts (like C++
3813 function templates) that do not correspond directly to functions
3814 placed in object files. */
3815
3816 void
3817 allocate_struct_function (tree fndecl, bool abstract_p)
3818 {
3819 tree result;
3820 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3821
3822 cfun = GGC_CNEW (struct function);
3823
3824 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3825
3826 init_eh_for_function ();
3827
3828 if (init_machine_status)
3829 cfun->machine = (*init_machine_status) ();
3830
3831 #ifdef OVERRIDE_ABI_FORMAT
3832 OVERRIDE_ABI_FORMAT (fndecl);
3833 #endif
3834
3835 if (fndecl != NULL_TREE)
3836 {
3837 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3838 cfun->decl = fndecl;
3839 current_function_funcdef_no = get_next_funcdef_no ();
3840
3841 result = DECL_RESULT (fndecl);
3842 if (!abstract_p && aggregate_value_p (result, fndecl))
3843 {
3844 #ifdef PCC_STATIC_STRUCT_RETURN
3845 cfun->returns_pcc_struct = 1;
3846 #endif
3847 cfun->returns_struct = 1;
3848 }
3849
3850 cfun->stdarg
3851 = (fntype
3852 && TYPE_ARG_TYPES (fntype) != 0
3853 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3854 != void_type_node));
3855
3856 /* Assume all registers in stdarg functions need to be saved. */
3857 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3858 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3859 }
3860
3861 invoke_set_current_function_hook (fndecl);
3862 }
3863
3864 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
3865 instead of just setting it. */
3866
3867 void
3868 push_struct_function (tree fndecl)
3869 {
3870 if (cfun == NULL)
3871 saved_in_system_header = in_system_header;
3872 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3873 if (fndecl)
3874 in_system_header = DECL_IN_SYSTEM_HEADER (fndecl);
3875 allocate_struct_function (fndecl, false);
3876 }
3877
3878 /* Reset cfun, and other non-struct-function variables to defaults as
3879 appropriate for emitting rtl at the start of a function. */
3880
3881 static void
3882 prepare_function_start (void)
3883 {
3884 gcc_assert (!crtl->emit.x_last_insn);
3885 init_emit ();
3886 init_varasm_status ();
3887 init_expr ();
3888
3889 cse_not_expected = ! optimize;
3890
3891 /* Caller save not needed yet. */
3892 caller_save_needed = 0;
3893
3894 /* We haven't done register allocation yet. */
3895 reg_renumber = 0;
3896
3897 /* Indicate that we have not instantiated virtual registers yet. */
3898 virtuals_instantiated = 0;
3899
3900 /* Indicate that we want CONCATs now. */
3901 generating_concat_p = 1;
3902
3903 /* Indicate we have no need of a frame pointer yet. */
3904 frame_pointer_needed = 0;
3905 }
3906
3907 /* Initialize the rtl expansion mechanism so that we can do simple things
3908 like generate sequences. This is used to provide a context during global
3909 initialization of some passes. You must call expand_dummy_function_end
3910 to exit this context. */
3911
3912 void
3913 init_dummy_function_start (void)
3914 {
3915 gcc_assert (!in_dummy_function);
3916 in_dummy_function = true;
3917 push_struct_function (NULL_TREE);
3918 prepare_function_start ();
3919 }
3920
3921 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3922 and initialize static variables for generating RTL for the statements
3923 of the function. */
3924
3925 void
3926 init_function_start (tree subr)
3927 {
3928 if (subr && DECL_STRUCT_FUNCTION (subr))
3929 set_cfun (DECL_STRUCT_FUNCTION (subr));
3930 else
3931 allocate_struct_function (subr, false);
3932 prepare_function_start ();
3933
3934 /* Warn if this value is an aggregate type,
3935 regardless of which calling convention we are using for it. */
3936 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3937 warning (OPT_Waggregate_return, "function returns an aggregate");
3938 }
3939
3940 /* Make sure all values used by the optimization passes have sane
3941 defaults. */
3942 unsigned int
3943 init_function_for_compilation (void)
3944 {
3945 reg_renumber = 0;
3946
3947 /* No prologue/epilogue insns yet. Make sure that these vectors are
3948 empty. */
3949 gcc_assert (VEC_length (int, prologue) == 0);
3950 gcc_assert (VEC_length (int, epilogue) == 0);
3951 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3952 return 0;
3953 }
3954
3955 struct rtl_opt_pass pass_init_function =
3956 {
3957 {
3958 RTL_PASS,
3959 NULL, /* name */
3960 NULL, /* gate */
3961 init_function_for_compilation, /* execute */
3962 NULL, /* sub */
3963 NULL, /* next */
3964 0, /* static_pass_number */
3965 0, /* tv_id */
3966 0, /* properties_required */
3967 0, /* properties_provided */
3968 0, /* properties_destroyed */
3969 0, /* todo_flags_start */
3970 0 /* todo_flags_finish */
3971 }
3972 };
3973
3974
3975 void
3976 expand_main_function (void)
3977 {
3978 #if (defined(INVOKE__main) \
3979 || (!defined(HAS_INIT_SECTION) \
3980 && !defined(INIT_SECTION_ASM_OP) \
3981 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3982 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3983 #endif
3984 }
3985 \f
3986 /* Expand code to initialize the stack_protect_guard. This is invoked at
3987 the beginning of a function to be protected. */
3988
3989 #ifndef HAVE_stack_protect_set
3990 # define HAVE_stack_protect_set 0
3991 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3992 #endif
3993
3994 void
3995 stack_protect_prologue (void)
3996 {
3997 tree guard_decl = targetm.stack_protect_guard ();
3998 rtx x, y;
3999
4000 /* Avoid expand_expr here, because we don't want guard_decl pulled
4001 into registers unless absolutely necessary. And we know that
4002 crtl->stack_protect_guard is a local stack slot, so this skips
4003 all the fluff. */
4004 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4005 y = validize_mem (DECL_RTL (guard_decl));
4006
4007 /* Allow the target to copy from Y to X without leaking Y into a
4008 register. */
4009 if (HAVE_stack_protect_set)
4010 {
4011 rtx insn = gen_stack_protect_set (x, y);
4012 if (insn)
4013 {
4014 emit_insn (insn);
4015 return;
4016 }
4017 }
4018
4019 /* Otherwise do a straight move. */
4020 emit_move_insn (x, y);
4021 }
4022
4023 /* Expand code to verify the stack_protect_guard. This is invoked at
4024 the end of a function to be protected. */
4025
4026 #ifndef HAVE_stack_protect_test
4027 # define HAVE_stack_protect_test 0
4028 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4029 #endif
4030
4031 void
4032 stack_protect_epilogue (void)
4033 {
4034 tree guard_decl = targetm.stack_protect_guard ();
4035 rtx label = gen_label_rtx ();
4036 rtx x, y, tmp;
4037
4038 /* Avoid expand_expr here, because we don't want guard_decl pulled
4039 into registers unless absolutely necessary. And we know that
4040 crtl->stack_protect_guard is a local stack slot, so this skips
4041 all the fluff. */
4042 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4043 y = validize_mem (DECL_RTL (guard_decl));
4044
4045 /* Allow the target to compare Y with X without leaking either into
4046 a register. */
4047 switch (HAVE_stack_protect_test != 0)
4048 {
4049 case 1:
4050 tmp = gen_stack_protect_test (x, y, label);
4051 if (tmp)
4052 {
4053 emit_insn (tmp);
4054 break;
4055 }
4056 /* FALLTHRU */
4057
4058 default:
4059 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4060 break;
4061 }
4062
4063 /* The noreturn predictor has been moved to the tree level. The rtl-level
4064 predictors estimate this branch about 20%, which isn't enough to get
4065 things moved out of line. Since this is the only extant case of adding
4066 a noreturn function at the rtl level, it doesn't seem worth doing ought
4067 except adding the prediction by hand. */
4068 tmp = get_last_insn ();
4069 if (JUMP_P (tmp))
4070 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4071
4072 expand_expr_stmt (targetm.stack_protect_fail ());
4073 emit_label (label);
4074 }
4075 \f
4076 /* Start the RTL for a new function, and set variables used for
4077 emitting RTL.
4078 SUBR is the FUNCTION_DECL node.
4079 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4080 the function's parameters, which must be run at any return statement. */
4081
4082 void
4083 expand_function_start (tree subr)
4084 {
4085 /* Make sure volatile mem refs aren't considered
4086 valid operands of arithmetic insns. */
4087 init_recog_no_volatile ();
4088
4089 crtl->profile
4090 = (profile_flag
4091 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4092
4093 crtl->limit_stack
4094 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4095
4096 /* Make the label for return statements to jump to. Do not special
4097 case machines with special return instructions -- they will be
4098 handled later during jump, ifcvt, or epilogue creation. */
4099 return_label = gen_label_rtx ();
4100
4101 /* Initialize rtx used to return the value. */
4102 /* Do this before assign_parms so that we copy the struct value address
4103 before any library calls that assign parms might generate. */
4104
4105 /* Decide whether to return the value in memory or in a register. */
4106 if (aggregate_value_p (DECL_RESULT (subr), subr))
4107 {
4108 /* Returning something that won't go in a register. */
4109 rtx value_address = 0;
4110
4111 #ifdef PCC_STATIC_STRUCT_RETURN
4112 if (cfun->returns_pcc_struct)
4113 {
4114 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4115 value_address = assemble_static_space (size);
4116 }
4117 else
4118 #endif
4119 {
4120 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4121 /* Expect to be passed the address of a place to store the value.
4122 If it is passed as an argument, assign_parms will take care of
4123 it. */
4124 if (sv)
4125 {
4126 value_address = gen_reg_rtx (Pmode);
4127 emit_move_insn (value_address, sv);
4128 }
4129 }
4130 if (value_address)
4131 {
4132 rtx x = value_address;
4133 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4134 {
4135 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4136 set_mem_attributes (x, DECL_RESULT (subr), 1);
4137 }
4138 SET_DECL_RTL (DECL_RESULT (subr), x);
4139 }
4140 }
4141 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4142 /* If return mode is void, this decl rtl should not be used. */
4143 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4144 else
4145 {
4146 /* Compute the return values into a pseudo reg, which we will copy
4147 into the true return register after the cleanups are done. */
4148 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4149 if (TYPE_MODE (return_type) != BLKmode
4150 && targetm.calls.return_in_msb (return_type))
4151 /* expand_function_end will insert the appropriate padding in
4152 this case. Use the return value's natural (unpadded) mode
4153 within the function proper. */
4154 SET_DECL_RTL (DECL_RESULT (subr),
4155 gen_reg_rtx (TYPE_MODE (return_type)));
4156 else
4157 {
4158 /* In order to figure out what mode to use for the pseudo, we
4159 figure out what the mode of the eventual return register will
4160 actually be, and use that. */
4161 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4162
4163 /* Structures that are returned in registers are not
4164 aggregate_value_p, so we may see a PARALLEL or a REG. */
4165 if (REG_P (hard_reg))
4166 SET_DECL_RTL (DECL_RESULT (subr),
4167 gen_reg_rtx (GET_MODE (hard_reg)));
4168 else
4169 {
4170 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4171 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4172 }
4173 }
4174
4175 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4176 result to the real return register(s). */
4177 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4178 }
4179
4180 /* Initialize rtx for parameters and local variables.
4181 In some cases this requires emitting insns. */
4182 assign_parms (subr);
4183
4184 /* If function gets a static chain arg, store it. */
4185 if (cfun->static_chain_decl)
4186 {
4187 tree parm = cfun->static_chain_decl;
4188 rtx local = gen_reg_rtx (Pmode);
4189
4190 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4191 SET_DECL_RTL (parm, local);
4192 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4193
4194 emit_move_insn (local, static_chain_incoming_rtx);
4195 }
4196
4197 /* If the function receives a non-local goto, then store the
4198 bits we need to restore the frame pointer. */
4199 if (cfun->nonlocal_goto_save_area)
4200 {
4201 tree t_save;
4202 rtx r_save;
4203
4204 /* ??? We need to do this save early. Unfortunately here is
4205 before the frame variable gets declared. Help out... */
4206 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4207 if (!DECL_RTL_SET_P (var))
4208 expand_decl (var);
4209
4210 t_save = build4 (ARRAY_REF, ptr_type_node,
4211 cfun->nonlocal_goto_save_area,
4212 integer_zero_node, NULL_TREE, NULL_TREE);
4213 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4214 r_save = convert_memory_address (Pmode, r_save);
4215
4216 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4217 update_nonlocal_goto_save_area ();
4218 }
4219
4220 /* The following was moved from init_function_start.
4221 The move is supposed to make sdb output more accurate. */
4222 /* Indicate the beginning of the function body,
4223 as opposed to parm setup. */
4224 emit_note (NOTE_INSN_FUNCTION_BEG);
4225
4226 gcc_assert (NOTE_P (get_last_insn ()));
4227
4228 parm_birth_insn = get_last_insn ();
4229
4230 if (crtl->profile)
4231 {
4232 #ifdef PROFILE_HOOK
4233 PROFILE_HOOK (current_function_funcdef_no);
4234 #endif
4235 }
4236
4237 /* After the display initializations is where the stack checking
4238 probe should go. */
4239 if(flag_stack_check)
4240 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4241
4242 /* Make sure there is a line number after the function entry setup code. */
4243 force_next_line_note ();
4244 }
4245 \f
4246 /* Undo the effects of init_dummy_function_start. */
4247 void
4248 expand_dummy_function_end (void)
4249 {
4250 gcc_assert (in_dummy_function);
4251
4252 /* End any sequences that failed to be closed due to syntax errors. */
4253 while (in_sequence_p ())
4254 end_sequence ();
4255
4256 /* Outside function body, can't compute type's actual size
4257 until next function's body starts. */
4258
4259 free_after_parsing (cfun);
4260 free_after_compilation (cfun);
4261 pop_cfun ();
4262 in_dummy_function = false;
4263 }
4264
4265 /* Call DOIT for each hard register used as a return value from
4266 the current function. */
4267
4268 void
4269 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4270 {
4271 rtx outgoing = crtl->return_rtx;
4272
4273 if (! outgoing)
4274 return;
4275
4276 if (REG_P (outgoing))
4277 (*doit) (outgoing, arg);
4278 else if (GET_CODE (outgoing) == PARALLEL)
4279 {
4280 int i;
4281
4282 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4283 {
4284 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4285
4286 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4287 (*doit) (x, arg);
4288 }
4289 }
4290 }
4291
4292 static void
4293 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4294 {
4295 emit_clobber (reg);
4296 }
4297
4298 void
4299 clobber_return_register (void)
4300 {
4301 diddle_return_value (do_clobber_return_reg, NULL);
4302
4303 /* In case we do use pseudo to return value, clobber it too. */
4304 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4305 {
4306 tree decl_result = DECL_RESULT (current_function_decl);
4307 rtx decl_rtl = DECL_RTL (decl_result);
4308 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4309 {
4310 do_clobber_return_reg (decl_rtl, NULL);
4311 }
4312 }
4313 }
4314
4315 static void
4316 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4317 {
4318 emit_use (reg);
4319 }
4320
4321 static void
4322 use_return_register (void)
4323 {
4324 diddle_return_value (do_use_return_reg, NULL);
4325 }
4326
4327 /* Possibly warn about unused parameters. */
4328 void
4329 do_warn_unused_parameter (tree fn)
4330 {
4331 tree decl;
4332
4333 for (decl = DECL_ARGUMENTS (fn);
4334 decl; decl = TREE_CHAIN (decl))
4335 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4336 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4337 && !TREE_NO_WARNING (decl))
4338 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4339 }
4340
4341 static GTY(()) rtx initial_trampoline;
4342
4343 /* Generate RTL for the end of the current function. */
4344
4345 void
4346 expand_function_end (void)
4347 {
4348 rtx clobber_after;
4349
4350 /* If arg_pointer_save_area was referenced only from a nested
4351 function, we will not have initialized it yet. Do that now. */
4352 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4353 get_arg_pointer_save_area ();
4354
4355 /* If we are doing stack checking and this function makes calls,
4356 do a stack probe at the start of the function to ensure we have enough
4357 space for another stack frame. */
4358 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4359 {
4360 rtx insn, seq;
4361
4362 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4363 if (CALL_P (insn))
4364 {
4365 start_sequence ();
4366 probe_stack_range (STACK_CHECK_PROTECT,
4367 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4368 seq = get_insns ();
4369 end_sequence ();
4370 emit_insn_before (seq, stack_check_probe_note);
4371 break;
4372 }
4373 }
4374
4375 /* End any sequences that failed to be closed due to syntax errors. */
4376 while (in_sequence_p ())
4377 end_sequence ();
4378
4379 clear_pending_stack_adjust ();
4380 do_pending_stack_adjust ();
4381
4382 /* Output a linenumber for the end of the function.
4383 SDB depends on this. */
4384 force_next_line_note ();
4385 set_curr_insn_source_location (input_location);
4386
4387 /* Before the return label (if any), clobber the return
4388 registers so that they are not propagated live to the rest of
4389 the function. This can only happen with functions that drop
4390 through; if there had been a return statement, there would
4391 have either been a return rtx, or a jump to the return label.
4392
4393 We delay actual code generation after the current_function_value_rtx
4394 is computed. */
4395 clobber_after = get_last_insn ();
4396
4397 /* Output the label for the actual return from the function. */
4398 emit_label (return_label);
4399
4400 if (USING_SJLJ_EXCEPTIONS)
4401 {
4402 /* Let except.c know where it should emit the call to unregister
4403 the function context for sjlj exceptions. */
4404 if (flag_exceptions)
4405 sjlj_emit_function_exit_after (get_last_insn ());
4406 }
4407 else
4408 {
4409 /* We want to ensure that instructions that may trap are not
4410 moved into the epilogue by scheduling, because we don't
4411 always emit unwind information for the epilogue. */
4412 if (flag_non_call_exceptions)
4413 emit_insn (gen_blockage ());
4414 }
4415
4416 /* If this is an implementation of throw, do what's necessary to
4417 communicate between __builtin_eh_return and the epilogue. */
4418 expand_eh_return ();
4419
4420 /* If scalar return value was computed in a pseudo-reg, or was a named
4421 return value that got dumped to the stack, copy that to the hard
4422 return register. */
4423 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4424 {
4425 tree decl_result = DECL_RESULT (current_function_decl);
4426 rtx decl_rtl = DECL_RTL (decl_result);
4427
4428 if (REG_P (decl_rtl)
4429 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4430 : DECL_REGISTER (decl_result))
4431 {
4432 rtx real_decl_rtl = crtl->return_rtx;
4433
4434 /* This should be set in assign_parms. */
4435 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4436
4437 /* If this is a BLKmode structure being returned in registers,
4438 then use the mode computed in expand_return. Note that if
4439 decl_rtl is memory, then its mode may have been changed,
4440 but that crtl->return_rtx has not. */
4441 if (GET_MODE (real_decl_rtl) == BLKmode)
4442 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4443
4444 /* If a non-BLKmode return value should be padded at the least
4445 significant end of the register, shift it left by the appropriate
4446 amount. BLKmode results are handled using the group load/store
4447 machinery. */
4448 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4449 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4450 {
4451 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4452 REGNO (real_decl_rtl)),
4453 decl_rtl);
4454 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4455 }
4456 /* If a named return value dumped decl_return to memory, then
4457 we may need to re-do the PROMOTE_MODE signed/unsigned
4458 extension. */
4459 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4460 {
4461 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4462
4463 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4464 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4465 &unsignedp, 1);
4466
4467 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4468 }
4469 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4470 {
4471 /* If expand_function_start has created a PARALLEL for decl_rtl,
4472 move the result to the real return registers. Otherwise, do
4473 a group load from decl_rtl for a named return. */
4474 if (GET_CODE (decl_rtl) == PARALLEL)
4475 emit_group_move (real_decl_rtl, decl_rtl);
4476 else
4477 emit_group_load (real_decl_rtl, decl_rtl,
4478 TREE_TYPE (decl_result),
4479 int_size_in_bytes (TREE_TYPE (decl_result)));
4480 }
4481 /* In the case of complex integer modes smaller than a word, we'll
4482 need to generate some non-trivial bitfield insertions. Do that
4483 on a pseudo and not the hard register. */
4484 else if (GET_CODE (decl_rtl) == CONCAT
4485 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4486 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4487 {
4488 int old_generating_concat_p;
4489 rtx tmp;
4490
4491 old_generating_concat_p = generating_concat_p;
4492 generating_concat_p = 0;
4493 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4494 generating_concat_p = old_generating_concat_p;
4495
4496 emit_move_insn (tmp, decl_rtl);
4497 emit_move_insn (real_decl_rtl, tmp);
4498 }
4499 else
4500 emit_move_insn (real_decl_rtl, decl_rtl);
4501 }
4502 }
4503
4504 /* If returning a structure, arrange to return the address of the value
4505 in a place where debuggers expect to find it.
4506
4507 If returning a structure PCC style,
4508 the caller also depends on this value.
4509 And cfun->returns_pcc_struct is not necessarily set. */
4510 if (cfun->returns_struct
4511 || cfun->returns_pcc_struct)
4512 {
4513 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4514 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4515 rtx outgoing;
4516
4517 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4518 type = TREE_TYPE (type);
4519 else
4520 value_address = XEXP (value_address, 0);
4521
4522 outgoing = targetm.calls.function_value (build_pointer_type (type),
4523 current_function_decl, true);
4524
4525 /* Mark this as a function return value so integrate will delete the
4526 assignment and USE below when inlining this function. */
4527 REG_FUNCTION_VALUE_P (outgoing) = 1;
4528
4529 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4530 value_address = convert_memory_address (GET_MODE (outgoing),
4531 value_address);
4532
4533 emit_move_insn (outgoing, value_address);
4534
4535 /* Show return register used to hold result (in this case the address
4536 of the result. */
4537 crtl->return_rtx = outgoing;
4538 }
4539
4540 /* Emit the actual code to clobber return register. */
4541 {
4542 rtx seq;
4543
4544 start_sequence ();
4545 clobber_return_register ();
4546 expand_naked_return ();
4547 seq = get_insns ();
4548 end_sequence ();
4549
4550 emit_insn_after (seq, clobber_after);
4551 }
4552
4553 /* Output the label for the naked return from the function. */
4554 emit_label (naked_return_label);
4555
4556 /* @@@ This is a kludge. We want to ensure that instructions that
4557 may trap are not moved into the epilogue by scheduling, because
4558 we don't always emit unwind information for the epilogue. */
4559 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4560 emit_insn (gen_blockage ());
4561
4562 /* If stack protection is enabled for this function, check the guard. */
4563 if (crtl->stack_protect_guard)
4564 stack_protect_epilogue ();
4565
4566 /* If we had calls to alloca, and this machine needs
4567 an accurate stack pointer to exit the function,
4568 insert some code to save and restore the stack pointer. */
4569 if (! EXIT_IGNORE_STACK
4570 && cfun->calls_alloca)
4571 {
4572 rtx tem = 0;
4573
4574 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4575 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4576 }
4577
4578 /* ??? This should no longer be necessary since stupid is no longer with
4579 us, but there are some parts of the compiler (eg reload_combine, and
4580 sh mach_dep_reorg) that still try and compute their own lifetime info
4581 instead of using the general framework. */
4582 use_return_register ();
4583 }
4584
4585 rtx
4586 get_arg_pointer_save_area (void)
4587 {
4588 rtx ret = arg_pointer_save_area;
4589
4590 if (! ret)
4591 {
4592 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4593 arg_pointer_save_area = ret;
4594 }
4595
4596 if (! crtl->arg_pointer_save_area_init)
4597 {
4598 rtx seq;
4599
4600 /* Save the arg pointer at the beginning of the function. The
4601 generated stack slot may not be a valid memory address, so we
4602 have to check it and fix it if necessary. */
4603 start_sequence ();
4604 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4605 seq = get_insns ();
4606 end_sequence ();
4607
4608 push_topmost_sequence ();
4609 emit_insn_after (seq, entry_of_function ());
4610 pop_topmost_sequence ();
4611 }
4612
4613 return ret;
4614 }
4615 \f
4616 /* Extend a vector that records the INSN_UIDs of INSNS
4617 (a list of one or more insns). */
4618
4619 static void
4620 record_insns (rtx insns, VEC(int,heap) **vecp)
4621 {
4622 rtx tmp;
4623
4624 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4625 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4626 }
4627
4628 /* Set the locator of the insn chain starting at INSN to LOC. */
4629 static void
4630 set_insn_locators (rtx insn, int loc)
4631 {
4632 while (insn != NULL_RTX)
4633 {
4634 if (INSN_P (insn))
4635 INSN_LOCATOR (insn) = loc;
4636 insn = NEXT_INSN (insn);
4637 }
4638 }
4639
4640 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4641 be running after reorg, SEQUENCE rtl is possible. */
4642
4643 static int
4644 contains (const_rtx insn, VEC(int,heap) **vec)
4645 {
4646 int i, j;
4647
4648 if (NONJUMP_INSN_P (insn)
4649 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4650 {
4651 int count = 0;
4652 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4653 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4654 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4655 == VEC_index (int, *vec, j))
4656 count++;
4657 return count;
4658 }
4659 else
4660 {
4661 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4662 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4663 return 1;
4664 }
4665 return 0;
4666 }
4667
4668 int
4669 prologue_epilogue_contains (const_rtx insn)
4670 {
4671 if (contains (insn, &prologue))
4672 return 1;
4673 if (contains (insn, &epilogue))
4674 return 1;
4675 return 0;
4676 }
4677
4678 int
4679 sibcall_epilogue_contains (const_rtx insn)
4680 {
4681 if (sibcall_epilogue)
4682 return contains (insn, &sibcall_epilogue);
4683 return 0;
4684 }
4685
4686 #ifdef HAVE_return
4687 /* Insert gen_return at the end of block BB. This also means updating
4688 block_for_insn appropriately. */
4689
4690 static void
4691 emit_return_into_block (basic_block bb)
4692 {
4693 emit_jump_insn_after (gen_return (), BB_END (bb));
4694 }
4695 #endif /* HAVE_return */
4696
4697 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4698 this into place with notes indicating where the prologue ends and where
4699 the epilogue begins. Update the basic block information when possible. */
4700
4701 static void
4702 thread_prologue_and_epilogue_insns (void)
4703 {
4704 int inserted = 0;
4705 edge e;
4706 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4707 rtx seq;
4708 #endif
4709 #if defined (HAVE_epilogue) || defined(HAVE_return)
4710 rtx epilogue_end = NULL_RTX;
4711 #endif
4712 edge_iterator ei;
4713
4714 #ifdef HAVE_prologue
4715 if (HAVE_prologue)
4716 {
4717 start_sequence ();
4718 seq = gen_prologue ();
4719 emit_insn (seq);
4720
4721 /* Insert an explicit USE for the frame pointer
4722 if the profiling is on and the frame pointer is required. */
4723 if (crtl->profile && frame_pointer_needed)
4724 emit_use (hard_frame_pointer_rtx);
4725
4726 /* Retain a map of the prologue insns. */
4727 record_insns (seq, &prologue);
4728 emit_note (NOTE_INSN_PROLOGUE_END);
4729
4730 #ifndef PROFILE_BEFORE_PROLOGUE
4731 /* Ensure that instructions are not moved into the prologue when
4732 profiling is on. The call to the profiling routine can be
4733 emitted within the live range of a call-clobbered register. */
4734 if (crtl->profile)
4735 emit_insn (gen_blockage ());
4736 #endif
4737
4738 seq = get_insns ();
4739 end_sequence ();
4740 set_insn_locators (seq, prologue_locator);
4741
4742 /* Can't deal with multiple successors of the entry block
4743 at the moment. Function should always have at least one
4744 entry point. */
4745 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
4746
4747 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
4748 inserted = 1;
4749 }
4750 #endif
4751
4752 /* If the exit block has no non-fake predecessors, we don't need
4753 an epilogue. */
4754 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4755 if ((e->flags & EDGE_FAKE) == 0)
4756 break;
4757 if (e == NULL)
4758 goto epilogue_done;
4759
4760 #ifdef HAVE_return
4761 if (optimize && HAVE_return)
4762 {
4763 /* If we're allowed to generate a simple return instruction,
4764 then by definition we don't need a full epilogue. Examine
4765 the block that falls through to EXIT. If it does not
4766 contain any code, examine its predecessors and try to
4767 emit (conditional) return instructions. */
4768
4769 basic_block last;
4770 rtx label;
4771
4772 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4773 if (e->flags & EDGE_FALLTHRU)
4774 break;
4775 if (e == NULL)
4776 goto epilogue_done;
4777 last = e->src;
4778
4779 /* Verify that there are no active instructions in the last block. */
4780 label = BB_END (last);
4781 while (label && !LABEL_P (label))
4782 {
4783 if (active_insn_p (label))
4784 break;
4785 label = PREV_INSN (label);
4786 }
4787
4788 if (BB_HEAD (last) == label && LABEL_P (label))
4789 {
4790 edge_iterator ei2;
4791
4792 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
4793 {
4794 basic_block bb = e->src;
4795 rtx jump;
4796
4797 if (bb == ENTRY_BLOCK_PTR)
4798 {
4799 ei_next (&ei2);
4800 continue;
4801 }
4802
4803 jump = BB_END (bb);
4804 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
4805 {
4806 ei_next (&ei2);
4807 continue;
4808 }
4809
4810 /* If we have an unconditional jump, we can replace that
4811 with a simple return instruction. */
4812 if (simplejump_p (jump))
4813 {
4814 emit_return_into_block (bb);
4815 delete_insn (jump);
4816 }
4817
4818 /* If we have a conditional jump, we can try to replace
4819 that with a conditional return instruction. */
4820 else if (condjump_p (jump))
4821 {
4822 if (! redirect_jump (jump, 0, 0))
4823 {
4824 ei_next (&ei2);
4825 continue;
4826 }
4827
4828 /* If this block has only one successor, it both jumps
4829 and falls through to the fallthru block, so we can't
4830 delete the edge. */
4831 if (single_succ_p (bb))
4832 {
4833 ei_next (&ei2);
4834 continue;
4835 }
4836 }
4837 else
4838 {
4839 ei_next (&ei2);
4840 continue;
4841 }
4842
4843 /* Fix up the CFG for the successful change we just made. */
4844 redirect_edge_succ (e, EXIT_BLOCK_PTR);
4845 }
4846
4847 /* Emit a return insn for the exit fallthru block. Whether
4848 this is still reachable will be determined later. */
4849
4850 emit_barrier_after (BB_END (last));
4851 emit_return_into_block (last);
4852 epilogue_end = BB_END (last);
4853 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
4854 goto epilogue_done;
4855 }
4856 }
4857 #endif
4858 /* Find the edge that falls through to EXIT. Other edges may exist
4859 due to RETURN instructions, but those don't need epilogues.
4860 There really shouldn't be a mixture -- either all should have
4861 been converted or none, however... */
4862
4863 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4864 if (e->flags & EDGE_FALLTHRU)
4865 break;
4866 if (e == NULL)
4867 goto epilogue_done;
4868
4869 #ifdef HAVE_epilogue
4870 if (HAVE_epilogue)
4871 {
4872 start_sequence ();
4873 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
4874 seq = gen_epilogue ();
4875 emit_jump_insn (seq);
4876
4877 /* Retain a map of the epilogue insns. */
4878 record_insns (seq, &epilogue);
4879 set_insn_locators (seq, epilogue_locator);
4880
4881 seq = get_insns ();
4882 end_sequence ();
4883
4884 insert_insn_on_edge (seq, e);
4885 inserted = 1;
4886 }
4887 else
4888 #endif
4889 {
4890 basic_block cur_bb;
4891
4892 if (! next_active_insn (BB_END (e->src)))
4893 goto epilogue_done;
4894 /* We have a fall-through edge to the exit block, the source is not
4895 at the end of the function, and there will be an assembler epilogue
4896 at the end of the function.
4897 We can't use force_nonfallthru here, because that would try to
4898 use return. Inserting a jump 'by hand' is extremely messy, so
4899 we take advantage of cfg_layout_finalize using
4900 fixup_fallthru_exit_predecessor. */
4901 cfg_layout_initialize (0);
4902 FOR_EACH_BB (cur_bb)
4903 if (cur_bb->index >= NUM_FIXED_BLOCKS
4904 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
4905 cur_bb->aux = cur_bb->next_bb;
4906 cfg_layout_finalize ();
4907 }
4908 epilogue_done:
4909
4910 if (inserted)
4911 {
4912 commit_edge_insertions ();
4913
4914 /* The epilogue insns we inserted may cause the exit edge to no longer
4915 be fallthru. */
4916 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4917 {
4918 if (((e->flags & EDGE_FALLTHRU) != 0)
4919 && returnjump_p (BB_END (e->src)))
4920 e->flags &= ~EDGE_FALLTHRU;
4921 }
4922 }
4923
4924 #ifdef HAVE_sibcall_epilogue
4925 /* Emit sibling epilogues before any sibling call sites. */
4926 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
4927 {
4928 basic_block bb = e->src;
4929 rtx insn = BB_END (bb);
4930
4931 if (!CALL_P (insn)
4932 || ! SIBLING_CALL_P (insn))
4933 {
4934 ei_next (&ei);
4935 continue;
4936 }
4937
4938 start_sequence ();
4939 emit_insn (gen_sibcall_epilogue ());
4940 seq = get_insns ();
4941 end_sequence ();
4942
4943 /* Retain a map of the epilogue insns. Used in life analysis to
4944 avoid getting rid of sibcall epilogue insns. Do this before we
4945 actually emit the sequence. */
4946 record_insns (seq, &sibcall_epilogue);
4947 set_insn_locators (seq, epilogue_locator);
4948
4949 emit_insn_before (seq, insn);
4950 ei_next (&ei);
4951 }
4952 #endif
4953
4954 #ifdef HAVE_epilogue
4955 if (epilogue_end)
4956 {
4957 rtx insn, next;
4958
4959 /* Similarly, move any line notes that appear after the epilogue.
4960 There is no need, however, to be quite so anal about the existence
4961 of such a note. Also possibly move
4962 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
4963 info generation. */
4964 for (insn = epilogue_end; insn; insn = next)
4965 {
4966 next = NEXT_INSN (insn);
4967 if (NOTE_P (insn)
4968 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
4969 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
4970 }
4971 }
4972 #endif
4973
4974 /* Threading the prologue and epilogue changes the artificial refs
4975 in the entry and exit blocks. */
4976 epilogue_completed = 1;
4977 df_update_entry_exit_and_calls ();
4978 }
4979
4980 /* Reposition the prologue-end and epilogue-begin notes after instruction
4981 scheduling and delayed branch scheduling. */
4982
4983 void
4984 reposition_prologue_and_epilogue_notes (void)
4985 {
4986 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
4987 rtx insn, last, note;
4988 int len;
4989
4990 if ((len = VEC_length (int, prologue)) > 0)
4991 {
4992 last = 0, note = 0;
4993
4994 /* Scan from the beginning until we reach the last prologue insn.
4995 We apparently can't depend on basic_block_{head,end} after
4996 reorg has run. */
4997 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4998 {
4999 if (NOTE_P (insn))
5000 {
5001 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5002 note = insn;
5003 }
5004 else if (contains (insn, &prologue))
5005 {
5006 last = insn;
5007 if (--len == 0)
5008 break;
5009 }
5010 }
5011
5012 if (last)
5013 {
5014 /* Find the prologue-end note if we haven't already, and
5015 move it to just after the last prologue insn. */
5016 if (note == 0)
5017 {
5018 for (note = last; (note = NEXT_INSN (note));)
5019 if (NOTE_P (note)
5020 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5021 break;
5022 }
5023
5024 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5025 if (LABEL_P (last))
5026 last = NEXT_INSN (last);
5027 reorder_insns (note, note, last);
5028 }
5029 }
5030
5031 if ((len = VEC_length (int, epilogue)) > 0)
5032 {
5033 last = 0, note = 0;
5034
5035 /* Scan from the end until we reach the first epilogue insn.
5036 We apparently can't depend on basic_block_{head,end} after
5037 reorg has run. */
5038 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5039 {
5040 if (NOTE_P (insn))
5041 {
5042 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5043 note = insn;
5044 }
5045 else if (contains (insn, &epilogue))
5046 {
5047 last = insn;
5048 if (--len == 0)
5049 break;
5050 }
5051 }
5052
5053 if (last)
5054 {
5055 /* Find the epilogue-begin note if we haven't already, and
5056 move it to just before the first epilogue insn. */
5057 if (note == 0)
5058 {
5059 for (note = insn; (note = PREV_INSN (note));)
5060 if (NOTE_P (note)
5061 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5062 break;
5063 }
5064
5065 if (PREV_INSN (last) != note)
5066 reorder_insns (note, note, PREV_INSN (last));
5067 }
5068 }
5069 #endif /* HAVE_prologue or HAVE_epilogue */
5070 }
5071
5072 /* Returns the name of the current function. */
5073 const char *
5074 current_function_name (void)
5075 {
5076 return lang_hooks.decl_printable_name (cfun->decl, 2);
5077 }
5078
5079 /* Returns the raw (mangled) name of the current function. */
5080 const char *
5081 current_function_assembler_name (void)
5082 {
5083 return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
5084 }
5085 \f
5086
5087 static unsigned int
5088 rest_of_handle_check_leaf_regs (void)
5089 {
5090 #ifdef LEAF_REGISTERS
5091 current_function_uses_only_leaf_regs
5092 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5093 #endif
5094 return 0;
5095 }
5096
5097 /* Insert a TYPE into the used types hash table of CFUN. */
5098 static void
5099 used_types_insert_helper (tree type, struct function *func)
5100 {
5101 if (type != NULL && func != NULL)
5102 {
5103 void **slot;
5104
5105 if (func->used_types_hash == NULL)
5106 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5107 htab_eq_pointer, NULL);
5108 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5109 if (*slot == NULL)
5110 *slot = type;
5111 }
5112 }
5113
5114 /* Given a type, insert it into the used hash table in cfun. */
5115 void
5116 used_types_insert (tree t)
5117 {
5118 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5119 t = TREE_TYPE (t);
5120 t = TYPE_MAIN_VARIANT (t);
5121 if (debug_info_level > DINFO_LEVEL_NONE)
5122 used_types_insert_helper (t, cfun);
5123 }
5124
5125 struct rtl_opt_pass pass_leaf_regs =
5126 {
5127 {
5128 RTL_PASS,
5129 NULL, /* name */
5130 NULL, /* gate */
5131 rest_of_handle_check_leaf_regs, /* execute */
5132 NULL, /* sub */
5133 NULL, /* next */
5134 0, /* static_pass_number */
5135 0, /* tv_id */
5136 0, /* properties_required */
5137 0, /* properties_provided */
5138 0, /* properties_destroyed */
5139 0, /* todo_flags_start */
5140 0 /* todo_flags_finish */
5141 }
5142 };
5143
5144 static unsigned int
5145 rest_of_handle_thread_prologue_and_epilogue (void)
5146 {
5147 if (optimize)
5148 cleanup_cfg (CLEANUP_EXPENSIVE);
5149 /* On some machines, the prologue and epilogue code, or parts thereof,
5150 can be represented as RTL. Doing so lets us schedule insns between
5151 it and the rest of the code and also allows delayed branch
5152 scheduling to operate in the epilogue. */
5153
5154 thread_prologue_and_epilogue_insns ();
5155 return 0;
5156 }
5157
5158 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5159 {
5160 {
5161 RTL_PASS,
5162 "pro_and_epilogue", /* name */
5163 NULL, /* gate */
5164 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5165 NULL, /* sub */
5166 NULL, /* next */
5167 0, /* static_pass_number */
5168 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5169 0, /* properties_required */
5170 0, /* properties_provided */
5171 0, /* properties_destroyed */
5172 TODO_verify_flow, /* todo_flags_start */
5173 TODO_dump_func |
5174 TODO_df_verify |
5175 TODO_df_finish | TODO_verify_rtl_sharing |
5176 TODO_ggc_collect /* todo_flags_finish */
5177 }
5178 };
5179 \f
5180
5181 /* This mini-pass fixes fall-out from SSA in asm statements that have
5182 in-out constraints. Say you start with
5183
5184 orig = inout;
5185 asm ("": "+mr" (inout));
5186 use (orig);
5187
5188 which is transformed very early to use explicit output and match operands:
5189
5190 orig = inout;
5191 asm ("": "=mr" (inout) : "0" (inout));
5192 use (orig);
5193
5194 Or, after SSA and copyprop,
5195
5196 asm ("": "=mr" (inout_2) : "0" (inout_1));
5197 use (inout_1);
5198
5199 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5200 they represent two separate values, so they will get different pseudo
5201 registers during expansion. Then, since the two operands need to match
5202 per the constraints, but use different pseudo registers, reload can
5203 only register a reload for these operands. But reloads can only be
5204 satisfied by hardregs, not by memory, so we need a register for this
5205 reload, just because we are presented with non-matching operands.
5206 So, even though we allow memory for this operand, no memory can be
5207 used for it, just because the two operands don't match. This can
5208 cause reload failures on register-starved targets.
5209
5210 So it's a symptom of reload not being able to use memory for reloads
5211 or, alternatively it's also a symptom of both operands not coming into
5212 reload as matching (in which case the pseudo could go to memory just
5213 fine, as the alternative allows it, and no reload would be necessary).
5214 We fix the latter problem here, by transforming
5215
5216 asm ("": "=mr" (inout_2) : "0" (inout_1));
5217
5218 back to
5219
5220 inout_2 = inout_1;
5221 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5222
5223 static void
5224 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5225 {
5226 int i;
5227 bool changed = false;
5228 rtx op = SET_SRC (p_sets[0]);
5229 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5230 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5231 bool *output_matched = XALLOCAVEC (bool, noutputs);
5232
5233 memset (output_matched, 0, noutputs * sizeof (bool));
5234 for (i = 0; i < ninputs; i++)
5235 {
5236 rtx input, output, insns;
5237 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5238 char *end;
5239 int match, j;
5240
5241 match = strtoul (constraint, &end, 10);
5242 if (end == constraint)
5243 continue;
5244
5245 gcc_assert (match < noutputs);
5246 output = SET_DEST (p_sets[match]);
5247 input = RTVEC_ELT (inputs, i);
5248 /* Only do the transformation for pseudos. */
5249 if (! REG_P (output)
5250 || rtx_equal_p (output, input)
5251 || (GET_MODE (input) != VOIDmode
5252 && GET_MODE (input) != GET_MODE (output)))
5253 continue;
5254
5255 /* We can't do anything if the output is also used as input,
5256 as we're going to overwrite it. */
5257 for (j = 0; j < ninputs; j++)
5258 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5259 break;
5260 if (j != ninputs)
5261 continue;
5262
5263 /* Avoid changing the same input several times. For
5264 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5265 only change in once (to out1), rather than changing it
5266 first to out1 and afterwards to out2. */
5267 if (i > 0)
5268 {
5269 for (j = 0; j < noutputs; j++)
5270 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5271 break;
5272 if (j != noutputs)
5273 continue;
5274 }
5275 output_matched[match] = true;
5276
5277 start_sequence ();
5278 emit_move_insn (output, input);
5279 insns = get_insns ();
5280 end_sequence ();
5281 emit_insn_before (insns, insn);
5282
5283 /* Now replace all mentions of the input with output. We can't
5284 just replace the occurrence in inputs[i], as the register might
5285 also be used in some other input (or even in an address of an
5286 output), which would mean possibly increasing the number of
5287 inputs by one (namely 'output' in addition), which might pose
5288 a too complicated problem for reload to solve. E.g. this situation:
5289
5290 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5291
5292 Here 'input' is used in two occurrences as input (once for the
5293 input operand, once for the address in the second output operand).
5294 If we would replace only the occurrence of the input operand (to
5295 make the matching) we would be left with this:
5296
5297 output = input
5298 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5299
5300 Now we suddenly have two different input values (containing the same
5301 value, but different pseudos) where we formerly had only one.
5302 With more complicated asms this might lead to reload failures
5303 which wouldn't have happen without this pass. So, iterate over
5304 all operands and replace all occurrences of the register used. */
5305 for (j = 0; j < noutputs; j++)
5306 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5307 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5308 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5309 input, output);
5310 for (j = 0; j < ninputs; j++)
5311 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5312 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5313 input, output);
5314
5315 changed = true;
5316 }
5317
5318 if (changed)
5319 df_insn_rescan (insn);
5320 }
5321
5322 static unsigned
5323 rest_of_match_asm_constraints (void)
5324 {
5325 basic_block bb;
5326 rtx insn, pat, *p_sets;
5327 int noutputs;
5328
5329 if (!crtl->has_asm_statement)
5330 return 0;
5331
5332 df_set_flags (DF_DEFER_INSN_RESCAN);
5333 FOR_EACH_BB (bb)
5334 {
5335 FOR_BB_INSNS (bb, insn)
5336 {
5337 if (!INSN_P (insn))
5338 continue;
5339
5340 pat = PATTERN (insn);
5341 if (GET_CODE (pat) == PARALLEL)
5342 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5343 else if (GET_CODE (pat) == SET)
5344 p_sets = &PATTERN (insn), noutputs = 1;
5345 else
5346 continue;
5347
5348 if (GET_CODE (*p_sets) == SET
5349 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5350 match_asm_constraints_1 (insn, p_sets, noutputs);
5351 }
5352 }
5353
5354 return TODO_df_finish;
5355 }
5356
5357 struct rtl_opt_pass pass_match_asm_constraints =
5358 {
5359 {
5360 RTL_PASS,
5361 "asmcons", /* name */
5362 NULL, /* gate */
5363 rest_of_match_asm_constraints, /* execute */
5364 NULL, /* sub */
5365 NULL, /* next */
5366 0, /* static_pass_number */
5367 0, /* tv_id */
5368 0, /* properties_required */
5369 0, /* properties_provided */
5370 0, /* properties_destroyed */
5371 0, /* todo_flags_start */
5372 TODO_dump_func /* todo_flags_finish */
5373 }
5374 };
5375
5376
5377 #include "gt-function.h"