coretypes.h: Include input.h and as-a.h.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "alias.h"
40 #include "symtab.h"
41 #include "tree.h"
42 #include "fold-const.h"
43 #include "stor-layout.h"
44 #include "varasm.h"
45 #include "stringpool.h"
46 #include "flags.h"
47 #include "except.h"
48 #include "hard-reg-set.h"
49 #include "function.h"
50 #include "rtl.h"
51 #include "insn-config.h"
52 #include "expmed.h"
53 #include "dojump.h"
54 #include "explow.h"
55 #include "calls.h"
56 #include "emit-rtl.h"
57 #include "stmt.h"
58 #include "expr.h"
59 #include "insn-codes.h"
60 #include "optabs.h"
61 #include "libfuncs.h"
62 #include "regs.h"
63 #include "recog.h"
64 #include "output.h"
65 #include "tm_p.h"
66 #include "langhooks.h"
67 #include "target.h"
68 #include "common/common-target.h"
69 #include "gimple-expr.h"
70 #include "gimplify.h"
71 #include "tree-pass.h"
72 #include "predict.h"
73 #include "dominance.h"
74 #include "cfg.h"
75 #include "cfgrtl.h"
76 #include "cfganal.h"
77 #include "cfgbuild.h"
78 #include "cfgcleanup.h"
79 #include "basic-block.h"
80 #include "df.h"
81 #include "params.h"
82 #include "bb-reorder.h"
83 #include "shrink-wrap.h"
84 #include "toplev.h"
85 #include "rtl-iter.h"
86 #include "tree-chkp.h"
87 #include "rtl-chkp.h"
88
89 /* So we can assign to cfun in this file. */
90 #undef cfun
91
92 #ifndef STACK_ALIGNMENT_NEEDED
93 #define STACK_ALIGNMENT_NEEDED 1
94 #endif
95
96 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
97
98 /* Round a value to the lowest integer less than it that is a multiple of
99 the required alignment. Avoid using division in case the value is
100 negative. Assume the alignment is a power of two. */
101 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
102
103 /* Similar, but round to the next highest integer that meets the
104 alignment. */
105 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
106
107 /* Nonzero once virtual register instantiation has been done.
108 assign_stack_local uses frame_pointer_rtx when this is nonzero.
109 calls.c:emit_library_call_value_1 uses it to set up
110 post-instantiation libcalls. */
111 int virtuals_instantiated;
112
113 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
114 static GTY(()) int funcdef_no;
115
116 /* These variables hold pointers to functions to create and destroy
117 target specific, per-function data structures. */
118 struct machine_function * (*init_machine_status) (void);
119
120 /* The currently compiled function. */
121 struct function *cfun = 0;
122
123 /* These hashes record the prologue and epilogue insns. */
124
125 struct insn_cache_hasher : ggc_cache_hasher<rtx>
126 {
127 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
128 static bool equal (rtx a, rtx b) { return a == b; }
129 };
130
131 static GTY((cache))
132 hash_table<insn_cache_hasher> *prologue_insn_hash;
133 static GTY((cache))
134 hash_table<insn_cache_hasher> *epilogue_insn_hash;
135 \f
136
137 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
138 vec<tree, va_gc> *types_used_by_cur_var_decl;
139
140 /* Forward declarations. */
141
142 static struct temp_slot *find_temp_slot_from_address (rtx);
143 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
144 static void pad_below (struct args_size *, machine_mode, tree);
145 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
146 static int all_blocks (tree, tree *);
147 static tree *get_block_vector (tree, int *);
148 extern tree debug_find_var_in_block_tree (tree, tree);
149 /* We always define `record_insns' even if it's not used so that we
150 can always export `prologue_epilogue_contains'. */
151 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
152 ATTRIBUTE_UNUSED;
153 static bool contains (const_rtx, hash_table<insn_cache_hasher> *);
154 static void prepare_function_start (void);
155 static void do_clobber_return_reg (rtx, void *);
156 static void do_use_return_reg (rtx, void *);
157 \f
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
160
161 typedef struct function *function_p;
162
163 static vec<function_p> function_context_stack;
164
165 /* Save the current context for compilation of a nested function.
166 This is called from language-specific code. */
167
168 void
169 push_function_context (void)
170 {
171 if (cfun == 0)
172 allocate_struct_function (NULL, false);
173
174 function_context_stack.safe_push (cfun);
175 set_cfun (NULL);
176 }
177
178 /* Restore the last saved context, at the end of a nested function.
179 This function is called from language-specific code. */
180
181 void
182 pop_function_context (void)
183 {
184 struct function *p = function_context_stack.pop ();
185 set_cfun (p);
186 current_function_decl = p->decl;
187
188 /* Reset variables that have known state during rtx generation. */
189 virtuals_instantiated = 0;
190 generating_concat_p = 1;
191 }
192
193 /* Clear out all parts of the state in F that can safely be discarded
194 after the function has been parsed, but not compiled, to let
195 garbage collection reclaim the memory. */
196
197 void
198 free_after_parsing (struct function *f)
199 {
200 f->language = 0;
201 }
202
203 /* Clear out all parts of the state in F that can safely be discarded
204 after the function has been compiled, to let garbage collection
205 reclaim the memory. */
206
207 void
208 free_after_compilation (struct function *f)
209 {
210 prologue_insn_hash = NULL;
211 epilogue_insn_hash = NULL;
212
213 free (crtl->emit.regno_pointer_align);
214
215 memset (crtl, 0, sizeof (struct rtl_data));
216 f->eh = NULL;
217 f->machine = NULL;
218 f->cfg = NULL;
219
220 regno_reg_rtx = NULL;
221 }
222 \f
223 /* Return size needed for stack frame based on slots so far allocated.
224 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
225 the caller may have to do that. */
226
227 HOST_WIDE_INT
228 get_frame_size (void)
229 {
230 if (FRAME_GROWS_DOWNWARD)
231 return -frame_offset;
232 else
233 return frame_offset;
234 }
235
236 /* Issue an error message and return TRUE if frame OFFSET overflows in
237 the signed target pointer arithmetics for function FUNC. Otherwise
238 return FALSE. */
239
240 bool
241 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
242 {
243 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
244
245 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
246 /* Leave room for the fixed part of the frame. */
247 - 64 * UNITS_PER_WORD)
248 {
249 error_at (DECL_SOURCE_LOCATION (func),
250 "total size of local objects too large");
251 return TRUE;
252 }
253
254 return FALSE;
255 }
256
257 /* Return stack slot alignment in bits for TYPE and MODE. */
258
259 static unsigned int
260 get_stack_local_alignment (tree type, machine_mode mode)
261 {
262 unsigned int alignment;
263
264 if (mode == BLKmode)
265 alignment = BIGGEST_ALIGNMENT;
266 else
267 alignment = GET_MODE_ALIGNMENT (mode);
268
269 /* Allow the frond-end to (possibly) increase the alignment of this
270 stack slot. */
271 if (! type)
272 type = lang_hooks.types.type_for_mode (mode, 0);
273
274 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
275 }
276
277 /* Determine whether it is possible to fit a stack slot of size SIZE and
278 alignment ALIGNMENT into an area in the stack frame that starts at
279 frame offset START and has a length of LENGTH. If so, store the frame
280 offset to be used for the stack slot in *POFFSET and return true;
281 return false otherwise. This function will extend the frame size when
282 given a start/length pair that lies at the end of the frame. */
283
284 static bool
285 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
286 HOST_WIDE_INT size, unsigned int alignment,
287 HOST_WIDE_INT *poffset)
288 {
289 HOST_WIDE_INT this_frame_offset;
290 int frame_off, frame_alignment, frame_phase;
291
292 /* Calculate how many bytes the start of local variables is off from
293 stack alignment. */
294 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
295 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
296 frame_phase = frame_off ? frame_alignment - frame_off : 0;
297
298 /* Round the frame offset to the specified alignment. */
299
300 /* We must be careful here, since FRAME_OFFSET might be negative and
301 division with a negative dividend isn't as well defined as we might
302 like. So we instead assume that ALIGNMENT is a power of two and
303 use logical operations which are unambiguous. */
304 if (FRAME_GROWS_DOWNWARD)
305 this_frame_offset
306 = (FLOOR_ROUND (start + length - size - frame_phase,
307 (unsigned HOST_WIDE_INT) alignment)
308 + frame_phase);
309 else
310 this_frame_offset
311 = (CEIL_ROUND (start - frame_phase,
312 (unsigned HOST_WIDE_INT) alignment)
313 + frame_phase);
314
315 /* See if it fits. If this space is at the edge of the frame,
316 consider extending the frame to make it fit. Our caller relies on
317 this when allocating a new slot. */
318 if (frame_offset == start && this_frame_offset < frame_offset)
319 frame_offset = this_frame_offset;
320 else if (this_frame_offset < start)
321 return false;
322 else if (start + length == frame_offset
323 && this_frame_offset + size > start + length)
324 frame_offset = this_frame_offset + size;
325 else if (this_frame_offset + size > start + length)
326 return false;
327
328 *poffset = this_frame_offset;
329 return true;
330 }
331
332 /* Create a new frame_space structure describing free space in the stack
333 frame beginning at START and ending at END, and chain it into the
334 function's frame_space_list. */
335
336 static void
337 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
338 {
339 struct frame_space *space = ggc_alloc<frame_space> ();
340 space->next = crtl->frame_space_list;
341 crtl->frame_space_list = space;
342 space->start = start;
343 space->length = end - start;
344 }
345
346 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
347 with machine mode MODE.
348
349 ALIGN controls the amount of alignment for the address of the slot:
350 0 means according to MODE,
351 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
352 -2 means use BITS_PER_UNIT,
353 positive specifies alignment boundary in bits.
354
355 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
356 alignment and ASLK_RECORD_PAD bit set if we should remember
357 extra space we allocated for alignment purposes. When we are
358 called from assign_stack_temp_for_type, it is not set so we don't
359 track the same stack slot in two independent lists.
360
361 We do not round to stack_boundary here. */
362
363 rtx
364 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
365 int align, int kind)
366 {
367 rtx x, addr;
368 int bigend_correction = 0;
369 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
370 unsigned int alignment, alignment_in_bits;
371
372 if (align == 0)
373 {
374 alignment = get_stack_local_alignment (NULL, mode);
375 alignment /= BITS_PER_UNIT;
376 }
377 else if (align == -1)
378 {
379 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
380 size = CEIL_ROUND (size, alignment);
381 }
382 else if (align == -2)
383 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
384 else
385 alignment = align / BITS_PER_UNIT;
386
387 alignment_in_bits = alignment * BITS_PER_UNIT;
388
389 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
390 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
391 {
392 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
393 alignment = alignment_in_bits / BITS_PER_UNIT;
394 }
395
396 if (SUPPORTS_STACK_ALIGNMENT)
397 {
398 if (crtl->stack_alignment_estimated < alignment_in_bits)
399 {
400 if (!crtl->stack_realign_processed)
401 crtl->stack_alignment_estimated = alignment_in_bits;
402 else
403 {
404 /* If stack is realigned and stack alignment value
405 hasn't been finalized, it is OK not to increase
406 stack_alignment_estimated. The bigger alignment
407 requirement is recorded in stack_alignment_needed
408 below. */
409 gcc_assert (!crtl->stack_realign_finalized);
410 if (!crtl->stack_realign_needed)
411 {
412 /* It is OK to reduce the alignment as long as the
413 requested size is 0 or the estimated stack
414 alignment >= mode alignment. */
415 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
416 || size == 0
417 || (crtl->stack_alignment_estimated
418 >= GET_MODE_ALIGNMENT (mode)));
419 alignment_in_bits = crtl->stack_alignment_estimated;
420 alignment = alignment_in_bits / BITS_PER_UNIT;
421 }
422 }
423 }
424 }
425
426 if (crtl->stack_alignment_needed < alignment_in_bits)
427 crtl->stack_alignment_needed = alignment_in_bits;
428 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
429 crtl->max_used_stack_slot_alignment = alignment_in_bits;
430
431 if (mode != BLKmode || size != 0)
432 {
433 if (kind & ASLK_RECORD_PAD)
434 {
435 struct frame_space **psp;
436
437 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
438 {
439 struct frame_space *space = *psp;
440 if (!try_fit_stack_local (space->start, space->length, size,
441 alignment, &slot_offset))
442 continue;
443 *psp = space->next;
444 if (slot_offset > space->start)
445 add_frame_space (space->start, slot_offset);
446 if (slot_offset + size < space->start + space->length)
447 add_frame_space (slot_offset + size,
448 space->start + space->length);
449 goto found_space;
450 }
451 }
452 }
453 else if (!STACK_ALIGNMENT_NEEDED)
454 {
455 slot_offset = frame_offset;
456 goto found_space;
457 }
458
459 old_frame_offset = frame_offset;
460
461 if (FRAME_GROWS_DOWNWARD)
462 {
463 frame_offset -= size;
464 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
465
466 if (kind & ASLK_RECORD_PAD)
467 {
468 if (slot_offset > frame_offset)
469 add_frame_space (frame_offset, slot_offset);
470 if (slot_offset + size < old_frame_offset)
471 add_frame_space (slot_offset + size, old_frame_offset);
472 }
473 }
474 else
475 {
476 frame_offset += size;
477 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
478
479 if (kind & ASLK_RECORD_PAD)
480 {
481 if (slot_offset > old_frame_offset)
482 add_frame_space (old_frame_offset, slot_offset);
483 if (slot_offset + size < frame_offset)
484 add_frame_space (slot_offset + size, frame_offset);
485 }
486 }
487
488 found_space:
489 /* On a big-endian machine, if we are allocating more space than we will use,
490 use the least significant bytes of those that are allocated. */
491 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
492 bigend_correction = size - GET_MODE_SIZE (mode);
493
494 /* If we have already instantiated virtual registers, return the actual
495 address relative to the frame pointer. */
496 if (virtuals_instantiated)
497 addr = plus_constant (Pmode, frame_pointer_rtx,
498 trunc_int_for_mode
499 (slot_offset + bigend_correction
500 + STARTING_FRAME_OFFSET, Pmode));
501 else
502 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
503 trunc_int_for_mode
504 (slot_offset + bigend_correction,
505 Pmode));
506
507 x = gen_rtx_MEM (mode, addr);
508 set_mem_align (x, alignment_in_bits);
509 MEM_NOTRAP_P (x) = 1;
510
511 stack_slot_list
512 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
513
514 if (frame_offset_overflow (frame_offset, current_function_decl))
515 frame_offset = 0;
516
517 return x;
518 }
519
520 /* Wrap up assign_stack_local_1 with last parameter as false. */
521
522 rtx
523 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
524 {
525 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
526 }
527 \f
528 /* In order to evaluate some expressions, such as function calls returning
529 structures in memory, we need to temporarily allocate stack locations.
530 We record each allocated temporary in the following structure.
531
532 Associated with each temporary slot is a nesting level. When we pop up
533 one level, all temporaries associated with the previous level are freed.
534 Normally, all temporaries are freed after the execution of the statement
535 in which they were created. However, if we are inside a ({...}) grouping,
536 the result may be in a temporary and hence must be preserved. If the
537 result could be in a temporary, we preserve it if we can determine which
538 one it is in. If we cannot determine which temporary may contain the
539 result, all temporaries are preserved. A temporary is preserved by
540 pretending it was allocated at the previous nesting level. */
541
542 struct GTY(()) temp_slot {
543 /* Points to next temporary slot. */
544 struct temp_slot *next;
545 /* Points to previous temporary slot. */
546 struct temp_slot *prev;
547 /* The rtx to used to reference the slot. */
548 rtx slot;
549 /* The size, in units, of the slot. */
550 HOST_WIDE_INT size;
551 /* The type of the object in the slot, or zero if it doesn't correspond
552 to a type. We use this to determine whether a slot can be reused.
553 It can be reused if objects of the type of the new slot will always
554 conflict with objects of the type of the old slot. */
555 tree type;
556 /* The alignment (in bits) of the slot. */
557 unsigned int align;
558 /* Nonzero if this temporary is currently in use. */
559 char in_use;
560 /* Nesting level at which this slot is being used. */
561 int level;
562 /* The offset of the slot from the frame_pointer, including extra space
563 for alignment. This info is for combine_temp_slots. */
564 HOST_WIDE_INT base_offset;
565 /* The size of the slot, including extra space for alignment. This
566 info is for combine_temp_slots. */
567 HOST_WIDE_INT full_size;
568 };
569
570 /* Entry for the below hash table. */
571 struct GTY((for_user)) temp_slot_address_entry {
572 hashval_t hash;
573 rtx address;
574 struct temp_slot *temp_slot;
575 };
576
577 struct temp_address_hasher : ggc_hasher<temp_slot_address_entry *>
578 {
579 static hashval_t hash (temp_slot_address_entry *);
580 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
581 };
582
583 /* A table of addresses that represent a stack slot. The table is a mapping
584 from address RTXen to a temp slot. */
585 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
586 static size_t n_temp_slots_in_use;
587
588 /* Removes temporary slot TEMP from LIST. */
589
590 static void
591 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
592 {
593 if (temp->next)
594 temp->next->prev = temp->prev;
595 if (temp->prev)
596 temp->prev->next = temp->next;
597 else
598 *list = temp->next;
599
600 temp->prev = temp->next = NULL;
601 }
602
603 /* Inserts temporary slot TEMP to LIST. */
604
605 static void
606 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
607 {
608 temp->next = *list;
609 if (*list)
610 (*list)->prev = temp;
611 temp->prev = NULL;
612 *list = temp;
613 }
614
615 /* Returns the list of used temp slots at LEVEL. */
616
617 static struct temp_slot **
618 temp_slots_at_level (int level)
619 {
620 if (level >= (int) vec_safe_length (used_temp_slots))
621 vec_safe_grow_cleared (used_temp_slots, level + 1);
622
623 return &(*used_temp_slots)[level];
624 }
625
626 /* Returns the maximal temporary slot level. */
627
628 static int
629 max_slot_level (void)
630 {
631 if (!used_temp_slots)
632 return -1;
633
634 return used_temp_slots->length () - 1;
635 }
636
637 /* Moves temporary slot TEMP to LEVEL. */
638
639 static void
640 move_slot_to_level (struct temp_slot *temp, int level)
641 {
642 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
643 insert_slot_to_list (temp, temp_slots_at_level (level));
644 temp->level = level;
645 }
646
647 /* Make temporary slot TEMP available. */
648
649 static void
650 make_slot_available (struct temp_slot *temp)
651 {
652 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
653 insert_slot_to_list (temp, &avail_temp_slots);
654 temp->in_use = 0;
655 temp->level = -1;
656 n_temp_slots_in_use--;
657 }
658
659 /* Compute the hash value for an address -> temp slot mapping.
660 The value is cached on the mapping entry. */
661 static hashval_t
662 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
663 {
664 int do_not_record = 0;
665 return hash_rtx (t->address, GET_MODE (t->address),
666 &do_not_record, NULL, false);
667 }
668
669 /* Return the hash value for an address -> temp slot mapping. */
670 hashval_t
671 temp_address_hasher::hash (temp_slot_address_entry *t)
672 {
673 return t->hash;
674 }
675
676 /* Compare two address -> temp slot mapping entries. */
677 bool
678 temp_address_hasher::equal (temp_slot_address_entry *t1,
679 temp_slot_address_entry *t2)
680 {
681 return exp_equiv_p (t1->address, t2->address, 0, true);
682 }
683
684 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
685 static void
686 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
687 {
688 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
689 t->address = address;
690 t->temp_slot = temp_slot;
691 t->hash = temp_slot_address_compute_hash (t);
692 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
693 }
694
695 /* Remove an address -> temp slot mapping entry if the temp slot is
696 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
697 int
698 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
699 {
700 const struct temp_slot_address_entry *t = *slot;
701 if (! t->temp_slot->in_use)
702 temp_slot_address_table->clear_slot (slot);
703 return 1;
704 }
705
706 /* Remove all mappings of addresses to unused temp slots. */
707 static void
708 remove_unused_temp_slot_addresses (void)
709 {
710 /* Use quicker clearing if there aren't any active temp slots. */
711 if (n_temp_slots_in_use)
712 temp_slot_address_table->traverse
713 <void *, remove_unused_temp_slot_addresses_1> (NULL);
714 else
715 temp_slot_address_table->empty ();
716 }
717
718 /* Find the temp slot corresponding to the object at address X. */
719
720 static struct temp_slot *
721 find_temp_slot_from_address (rtx x)
722 {
723 struct temp_slot *p;
724 struct temp_slot_address_entry tmp, *t;
725
726 /* First try the easy way:
727 See if X exists in the address -> temp slot mapping. */
728 tmp.address = x;
729 tmp.temp_slot = NULL;
730 tmp.hash = temp_slot_address_compute_hash (&tmp);
731 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
732 if (t)
733 return t->temp_slot;
734
735 /* If we have a sum involving a register, see if it points to a temp
736 slot. */
737 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
738 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
739 return p;
740 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
741 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
742 return p;
743
744 /* Last resort: Address is a virtual stack var address. */
745 if (GET_CODE (x) == PLUS
746 && XEXP (x, 0) == virtual_stack_vars_rtx
747 && CONST_INT_P (XEXP (x, 1)))
748 {
749 int i;
750 for (i = max_slot_level (); i >= 0; i--)
751 for (p = *temp_slots_at_level (i); p; p = p->next)
752 {
753 if (INTVAL (XEXP (x, 1)) >= p->base_offset
754 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
755 return p;
756 }
757 }
758
759 return NULL;
760 }
761 \f
762 /* Allocate a temporary stack slot and record it for possible later
763 reuse.
764
765 MODE is the machine mode to be given to the returned rtx.
766
767 SIZE is the size in units of the space required. We do no rounding here
768 since assign_stack_local will do any required rounding.
769
770 TYPE is the type that will be used for the stack slot. */
771
772 rtx
773 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
774 tree type)
775 {
776 unsigned int align;
777 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
778 rtx slot;
779
780 /* If SIZE is -1 it means that somebody tried to allocate a temporary
781 of a variable size. */
782 gcc_assert (size != -1);
783
784 align = get_stack_local_alignment (type, mode);
785
786 /* Try to find an available, already-allocated temporary of the proper
787 mode which meets the size and alignment requirements. Choose the
788 smallest one with the closest alignment.
789
790 If assign_stack_temp is called outside of the tree->rtl expansion,
791 we cannot reuse the stack slots (that may still refer to
792 VIRTUAL_STACK_VARS_REGNUM). */
793 if (!virtuals_instantiated)
794 {
795 for (p = avail_temp_slots; p; p = p->next)
796 {
797 if (p->align >= align && p->size >= size
798 && GET_MODE (p->slot) == mode
799 && objects_must_conflict_p (p->type, type)
800 && (best_p == 0 || best_p->size > p->size
801 || (best_p->size == p->size && best_p->align > p->align)))
802 {
803 if (p->align == align && p->size == size)
804 {
805 selected = p;
806 cut_slot_from_list (selected, &avail_temp_slots);
807 best_p = 0;
808 break;
809 }
810 best_p = p;
811 }
812 }
813 }
814
815 /* Make our best, if any, the one to use. */
816 if (best_p)
817 {
818 selected = best_p;
819 cut_slot_from_list (selected, &avail_temp_slots);
820
821 /* If there are enough aligned bytes left over, make them into a new
822 temp_slot so that the extra bytes don't get wasted. Do this only
823 for BLKmode slots, so that we can be sure of the alignment. */
824 if (GET_MODE (best_p->slot) == BLKmode)
825 {
826 int alignment = best_p->align / BITS_PER_UNIT;
827 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
828
829 if (best_p->size - rounded_size >= alignment)
830 {
831 p = ggc_alloc<temp_slot> ();
832 p->in_use = 0;
833 p->size = best_p->size - rounded_size;
834 p->base_offset = best_p->base_offset + rounded_size;
835 p->full_size = best_p->full_size - rounded_size;
836 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
837 p->align = best_p->align;
838 p->type = best_p->type;
839 insert_slot_to_list (p, &avail_temp_slots);
840
841 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
842 stack_slot_list);
843
844 best_p->size = rounded_size;
845 best_p->full_size = rounded_size;
846 }
847 }
848 }
849
850 /* If we still didn't find one, make a new temporary. */
851 if (selected == 0)
852 {
853 HOST_WIDE_INT frame_offset_old = frame_offset;
854
855 p = ggc_alloc<temp_slot> ();
856
857 /* We are passing an explicit alignment request to assign_stack_local.
858 One side effect of that is assign_stack_local will not round SIZE
859 to ensure the frame offset remains suitably aligned.
860
861 So for requests which depended on the rounding of SIZE, we go ahead
862 and round it now. We also make sure ALIGNMENT is at least
863 BIGGEST_ALIGNMENT. */
864 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
865 p->slot = assign_stack_local_1 (mode,
866 (mode == BLKmode
867 ? CEIL_ROUND (size,
868 (int) align
869 / BITS_PER_UNIT)
870 : size),
871 align, 0);
872
873 p->align = align;
874
875 /* The following slot size computation is necessary because we don't
876 know the actual size of the temporary slot until assign_stack_local
877 has performed all the frame alignment and size rounding for the
878 requested temporary. Note that extra space added for alignment
879 can be either above or below this stack slot depending on which
880 way the frame grows. We include the extra space if and only if it
881 is above this slot. */
882 if (FRAME_GROWS_DOWNWARD)
883 p->size = frame_offset_old - frame_offset;
884 else
885 p->size = size;
886
887 /* Now define the fields used by combine_temp_slots. */
888 if (FRAME_GROWS_DOWNWARD)
889 {
890 p->base_offset = frame_offset;
891 p->full_size = frame_offset_old - frame_offset;
892 }
893 else
894 {
895 p->base_offset = frame_offset_old;
896 p->full_size = frame_offset - frame_offset_old;
897 }
898
899 selected = p;
900 }
901
902 p = selected;
903 p->in_use = 1;
904 p->type = type;
905 p->level = temp_slot_level;
906 n_temp_slots_in_use++;
907
908 pp = temp_slots_at_level (p->level);
909 insert_slot_to_list (p, pp);
910 insert_temp_slot_address (XEXP (p->slot, 0), p);
911
912 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
913 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
914 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
915
916 /* If we know the alias set for the memory that will be used, use
917 it. If there's no TYPE, then we don't know anything about the
918 alias set for the memory. */
919 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
920 set_mem_align (slot, align);
921
922 /* If a type is specified, set the relevant flags. */
923 if (type != 0)
924 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
925 MEM_NOTRAP_P (slot) = 1;
926
927 return slot;
928 }
929
930 /* Allocate a temporary stack slot and record it for possible later
931 reuse. First two arguments are same as in preceding function. */
932
933 rtx
934 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
935 {
936 return assign_stack_temp_for_type (mode, size, NULL_TREE);
937 }
938 \f
939 /* Assign a temporary.
940 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
941 and so that should be used in error messages. In either case, we
942 allocate of the given type.
943 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
944 it is 0 if a register is OK.
945 DONT_PROMOTE is 1 if we should not promote values in register
946 to wider modes. */
947
948 rtx
949 assign_temp (tree type_or_decl, int memory_required,
950 int dont_promote ATTRIBUTE_UNUSED)
951 {
952 tree type, decl;
953 machine_mode mode;
954 #ifdef PROMOTE_MODE
955 int unsignedp;
956 #endif
957
958 if (DECL_P (type_or_decl))
959 decl = type_or_decl, type = TREE_TYPE (decl);
960 else
961 decl = NULL, type = type_or_decl;
962
963 mode = TYPE_MODE (type);
964 #ifdef PROMOTE_MODE
965 unsignedp = TYPE_UNSIGNED (type);
966 #endif
967
968 if (mode == BLKmode || memory_required)
969 {
970 HOST_WIDE_INT size = int_size_in_bytes (type);
971 rtx tmp;
972
973 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
974 problems with allocating the stack space. */
975 if (size == 0)
976 size = 1;
977
978 /* Unfortunately, we don't yet know how to allocate variable-sized
979 temporaries. However, sometimes we can find a fixed upper limit on
980 the size, so try that instead. */
981 else if (size == -1)
982 size = max_int_size_in_bytes (type);
983
984 /* The size of the temporary may be too large to fit into an integer. */
985 /* ??? Not sure this should happen except for user silliness, so limit
986 this to things that aren't compiler-generated temporaries. The
987 rest of the time we'll die in assign_stack_temp_for_type. */
988 if (decl && size == -1
989 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
990 {
991 error ("size of variable %q+D is too large", decl);
992 size = 1;
993 }
994
995 tmp = assign_stack_temp_for_type (mode, size, type);
996 return tmp;
997 }
998
999 #ifdef PROMOTE_MODE
1000 if (! dont_promote)
1001 mode = promote_mode (type, mode, &unsignedp);
1002 #endif
1003
1004 return gen_reg_rtx (mode);
1005 }
1006 \f
1007 /* Combine temporary stack slots which are adjacent on the stack.
1008
1009 This allows for better use of already allocated stack space. This is only
1010 done for BLKmode slots because we can be sure that we won't have alignment
1011 problems in this case. */
1012
1013 static void
1014 combine_temp_slots (void)
1015 {
1016 struct temp_slot *p, *q, *next, *next_q;
1017 int num_slots;
1018
1019 /* We can't combine slots, because the information about which slot
1020 is in which alias set will be lost. */
1021 if (flag_strict_aliasing)
1022 return;
1023
1024 /* If there are a lot of temp slots, don't do anything unless
1025 high levels of optimization. */
1026 if (! flag_expensive_optimizations)
1027 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1028 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1029 return;
1030
1031 for (p = avail_temp_slots; p; p = next)
1032 {
1033 int delete_p = 0;
1034
1035 next = p->next;
1036
1037 if (GET_MODE (p->slot) != BLKmode)
1038 continue;
1039
1040 for (q = p->next; q; q = next_q)
1041 {
1042 int delete_q = 0;
1043
1044 next_q = q->next;
1045
1046 if (GET_MODE (q->slot) != BLKmode)
1047 continue;
1048
1049 if (p->base_offset + p->full_size == q->base_offset)
1050 {
1051 /* Q comes after P; combine Q into P. */
1052 p->size += q->size;
1053 p->full_size += q->full_size;
1054 delete_q = 1;
1055 }
1056 else if (q->base_offset + q->full_size == p->base_offset)
1057 {
1058 /* P comes after Q; combine P into Q. */
1059 q->size += p->size;
1060 q->full_size += p->full_size;
1061 delete_p = 1;
1062 break;
1063 }
1064 if (delete_q)
1065 cut_slot_from_list (q, &avail_temp_slots);
1066 }
1067
1068 /* Either delete P or advance past it. */
1069 if (delete_p)
1070 cut_slot_from_list (p, &avail_temp_slots);
1071 }
1072 }
1073 \f
1074 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1075 slot that previously was known by OLD_RTX. */
1076
1077 void
1078 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1079 {
1080 struct temp_slot *p;
1081
1082 if (rtx_equal_p (old_rtx, new_rtx))
1083 return;
1084
1085 p = find_temp_slot_from_address (old_rtx);
1086
1087 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1088 NEW_RTX is a register, see if one operand of the PLUS is a
1089 temporary location. If so, NEW_RTX points into it. Otherwise,
1090 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1091 in common between them. If so, try a recursive call on those
1092 values. */
1093 if (p == 0)
1094 {
1095 if (GET_CODE (old_rtx) != PLUS)
1096 return;
1097
1098 if (REG_P (new_rtx))
1099 {
1100 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1101 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1102 return;
1103 }
1104 else if (GET_CODE (new_rtx) != PLUS)
1105 return;
1106
1107 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1108 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1109 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1110 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1111 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1112 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1113 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1114 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1115
1116 return;
1117 }
1118
1119 /* Otherwise add an alias for the temp's address. */
1120 insert_temp_slot_address (new_rtx, p);
1121 }
1122
1123 /* If X could be a reference to a temporary slot, mark that slot as
1124 belonging to the to one level higher than the current level. If X
1125 matched one of our slots, just mark that one. Otherwise, we can't
1126 easily predict which it is, so upgrade all of them.
1127
1128 This is called when an ({...}) construct occurs and a statement
1129 returns a value in memory. */
1130
1131 void
1132 preserve_temp_slots (rtx x)
1133 {
1134 struct temp_slot *p = 0, *next;
1135
1136 if (x == 0)
1137 return;
1138
1139 /* If X is a register that is being used as a pointer, see if we have
1140 a temporary slot we know it points to. */
1141 if (REG_P (x) && REG_POINTER (x))
1142 p = find_temp_slot_from_address (x);
1143
1144 /* If X is not in memory or is at a constant address, it cannot be in
1145 a temporary slot. */
1146 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1147 return;
1148
1149 /* First see if we can find a match. */
1150 if (p == 0)
1151 p = find_temp_slot_from_address (XEXP (x, 0));
1152
1153 if (p != 0)
1154 {
1155 if (p->level == temp_slot_level)
1156 move_slot_to_level (p, temp_slot_level - 1);
1157 return;
1158 }
1159
1160 /* Otherwise, preserve all non-kept slots at this level. */
1161 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1162 {
1163 next = p->next;
1164 move_slot_to_level (p, temp_slot_level - 1);
1165 }
1166 }
1167
1168 /* Free all temporaries used so far. This is normally called at the
1169 end of generating code for a statement. */
1170
1171 void
1172 free_temp_slots (void)
1173 {
1174 struct temp_slot *p, *next;
1175 bool some_available = false;
1176
1177 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1178 {
1179 next = p->next;
1180 make_slot_available (p);
1181 some_available = true;
1182 }
1183
1184 if (some_available)
1185 {
1186 remove_unused_temp_slot_addresses ();
1187 combine_temp_slots ();
1188 }
1189 }
1190
1191 /* Push deeper into the nesting level for stack temporaries. */
1192
1193 void
1194 push_temp_slots (void)
1195 {
1196 temp_slot_level++;
1197 }
1198
1199 /* Pop a temporary nesting level. All slots in use in the current level
1200 are freed. */
1201
1202 void
1203 pop_temp_slots (void)
1204 {
1205 free_temp_slots ();
1206 temp_slot_level--;
1207 }
1208
1209 /* Initialize temporary slots. */
1210
1211 void
1212 init_temp_slots (void)
1213 {
1214 /* We have not allocated any temporaries yet. */
1215 avail_temp_slots = 0;
1216 vec_alloc (used_temp_slots, 0);
1217 temp_slot_level = 0;
1218 n_temp_slots_in_use = 0;
1219
1220 /* Set up the table to map addresses to temp slots. */
1221 if (! temp_slot_address_table)
1222 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1223 else
1224 temp_slot_address_table->empty ();
1225 }
1226 \f
1227 /* Functions and data structures to keep track of the values hard regs
1228 had at the start of the function. */
1229
1230 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1231 and has_hard_reg_initial_val.. */
1232 typedef struct GTY(()) initial_value_pair {
1233 rtx hard_reg;
1234 rtx pseudo;
1235 } initial_value_pair;
1236 /* ??? This could be a VEC but there is currently no way to define an
1237 opaque VEC type. This could be worked around by defining struct
1238 initial_value_pair in function.h. */
1239 typedef struct GTY(()) initial_value_struct {
1240 int num_entries;
1241 int max_entries;
1242 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1243 } initial_value_struct;
1244
1245 /* If a pseudo represents an initial hard reg (or expression), return
1246 it, else return NULL_RTX. */
1247
1248 rtx
1249 get_hard_reg_initial_reg (rtx reg)
1250 {
1251 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1252 int i;
1253
1254 if (ivs == 0)
1255 return NULL_RTX;
1256
1257 for (i = 0; i < ivs->num_entries; i++)
1258 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1259 return ivs->entries[i].hard_reg;
1260
1261 return NULL_RTX;
1262 }
1263
1264 /* Make sure that there's a pseudo register of mode MODE that stores the
1265 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1266
1267 rtx
1268 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1269 {
1270 struct initial_value_struct *ivs;
1271 rtx rv;
1272
1273 rv = has_hard_reg_initial_val (mode, regno);
1274 if (rv)
1275 return rv;
1276
1277 ivs = crtl->hard_reg_initial_vals;
1278 if (ivs == 0)
1279 {
1280 ivs = ggc_alloc<initial_value_struct> ();
1281 ivs->num_entries = 0;
1282 ivs->max_entries = 5;
1283 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1284 crtl->hard_reg_initial_vals = ivs;
1285 }
1286
1287 if (ivs->num_entries >= ivs->max_entries)
1288 {
1289 ivs->max_entries += 5;
1290 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1291 ivs->max_entries);
1292 }
1293
1294 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1295 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1296
1297 return ivs->entries[ivs->num_entries++].pseudo;
1298 }
1299
1300 /* See if get_hard_reg_initial_val has been used to create a pseudo
1301 for the initial value of hard register REGNO in mode MODE. Return
1302 the associated pseudo if so, otherwise return NULL. */
1303
1304 rtx
1305 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1306 {
1307 struct initial_value_struct *ivs;
1308 int i;
1309
1310 ivs = crtl->hard_reg_initial_vals;
1311 if (ivs != 0)
1312 for (i = 0; i < ivs->num_entries; i++)
1313 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1314 && REGNO (ivs->entries[i].hard_reg) == regno)
1315 return ivs->entries[i].pseudo;
1316
1317 return NULL_RTX;
1318 }
1319
1320 unsigned int
1321 emit_initial_value_sets (void)
1322 {
1323 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1324 int i;
1325 rtx_insn *seq;
1326
1327 if (ivs == 0)
1328 return 0;
1329
1330 start_sequence ();
1331 for (i = 0; i < ivs->num_entries; i++)
1332 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1333 seq = get_insns ();
1334 end_sequence ();
1335
1336 emit_insn_at_entry (seq);
1337 return 0;
1338 }
1339
1340 /* Return the hardreg-pseudoreg initial values pair entry I and
1341 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1342 bool
1343 initial_value_entry (int i, rtx *hreg, rtx *preg)
1344 {
1345 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1346 if (!ivs || i >= ivs->num_entries)
1347 return false;
1348
1349 *hreg = ivs->entries[i].hard_reg;
1350 *preg = ivs->entries[i].pseudo;
1351 return true;
1352 }
1353 \f
1354 /* These routines are responsible for converting virtual register references
1355 to the actual hard register references once RTL generation is complete.
1356
1357 The following four variables are used for communication between the
1358 routines. They contain the offsets of the virtual registers from their
1359 respective hard registers. */
1360
1361 static int in_arg_offset;
1362 static int var_offset;
1363 static int dynamic_offset;
1364 static int out_arg_offset;
1365 static int cfa_offset;
1366
1367 /* In most machines, the stack pointer register is equivalent to the bottom
1368 of the stack. */
1369
1370 #ifndef STACK_POINTER_OFFSET
1371 #define STACK_POINTER_OFFSET 0
1372 #endif
1373
1374 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1375 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1376 #endif
1377
1378 /* If not defined, pick an appropriate default for the offset of dynamically
1379 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1380 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1381
1382 #ifndef STACK_DYNAMIC_OFFSET
1383
1384 /* The bottom of the stack points to the actual arguments. If
1385 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1386 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1387 stack space for register parameters is not pushed by the caller, but
1388 rather part of the fixed stack areas and hence not included in
1389 `crtl->outgoing_args_size'. Nevertheless, we must allow
1390 for it when allocating stack dynamic objects. */
1391
1392 #ifdef INCOMING_REG_PARM_STACK_SPACE
1393 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1394 ((ACCUMULATE_OUTGOING_ARGS \
1395 ? (crtl->outgoing_args_size \
1396 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1397 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1398 : 0) + (STACK_POINTER_OFFSET))
1399 #else
1400 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1401 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1402 + (STACK_POINTER_OFFSET))
1403 #endif
1404 #endif
1405
1406 \f
1407 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1408 is a virtual register, return the equivalent hard register and set the
1409 offset indirectly through the pointer. Otherwise, return 0. */
1410
1411 static rtx
1412 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1413 {
1414 rtx new_rtx;
1415 HOST_WIDE_INT offset;
1416
1417 if (x == virtual_incoming_args_rtx)
1418 {
1419 if (stack_realign_drap)
1420 {
1421 /* Replace virtual_incoming_args_rtx with internal arg
1422 pointer if DRAP is used to realign stack. */
1423 new_rtx = crtl->args.internal_arg_pointer;
1424 offset = 0;
1425 }
1426 else
1427 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1428 }
1429 else if (x == virtual_stack_vars_rtx)
1430 new_rtx = frame_pointer_rtx, offset = var_offset;
1431 else if (x == virtual_stack_dynamic_rtx)
1432 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1433 else if (x == virtual_outgoing_args_rtx)
1434 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1435 else if (x == virtual_cfa_rtx)
1436 {
1437 #ifdef FRAME_POINTER_CFA_OFFSET
1438 new_rtx = frame_pointer_rtx;
1439 #else
1440 new_rtx = arg_pointer_rtx;
1441 #endif
1442 offset = cfa_offset;
1443 }
1444 else if (x == virtual_preferred_stack_boundary_rtx)
1445 {
1446 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1447 offset = 0;
1448 }
1449 else
1450 return NULL_RTX;
1451
1452 *poffset = offset;
1453 return new_rtx;
1454 }
1455
1456 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1457 registers present inside of *LOC. The expression is simplified,
1458 as much as possible, but is not to be considered "valid" in any sense
1459 implied by the target. Return true if any change is made. */
1460
1461 static bool
1462 instantiate_virtual_regs_in_rtx (rtx *loc)
1463 {
1464 if (!*loc)
1465 return false;
1466 bool changed = false;
1467 subrtx_ptr_iterator::array_type array;
1468 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1469 {
1470 rtx *loc = *iter;
1471 if (rtx x = *loc)
1472 {
1473 rtx new_rtx;
1474 HOST_WIDE_INT offset;
1475 switch (GET_CODE (x))
1476 {
1477 case REG:
1478 new_rtx = instantiate_new_reg (x, &offset);
1479 if (new_rtx)
1480 {
1481 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1482 changed = true;
1483 }
1484 iter.skip_subrtxes ();
1485 break;
1486
1487 case PLUS:
1488 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1489 if (new_rtx)
1490 {
1491 XEXP (x, 0) = new_rtx;
1492 *loc = plus_constant (GET_MODE (x), x, offset, true);
1493 changed = true;
1494 iter.skip_subrtxes ();
1495 break;
1496 }
1497
1498 /* FIXME -- from old code */
1499 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1500 we can commute the PLUS and SUBREG because pointers into the
1501 frame are well-behaved. */
1502 break;
1503
1504 default:
1505 break;
1506 }
1507 }
1508 }
1509 return changed;
1510 }
1511
1512 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1513 matches the predicate for insn CODE operand OPERAND. */
1514
1515 static int
1516 safe_insn_predicate (int code, int operand, rtx x)
1517 {
1518 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1519 }
1520
1521 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1522 registers present inside of insn. The result will be a valid insn. */
1523
1524 static void
1525 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1526 {
1527 HOST_WIDE_INT offset;
1528 int insn_code, i;
1529 bool any_change = false;
1530 rtx set, new_rtx, x;
1531 rtx_insn *seq;
1532
1533 /* There are some special cases to be handled first. */
1534 set = single_set (insn);
1535 if (set)
1536 {
1537 /* We're allowed to assign to a virtual register. This is interpreted
1538 to mean that the underlying register gets assigned the inverse
1539 transformation. This is used, for example, in the handling of
1540 non-local gotos. */
1541 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1542 if (new_rtx)
1543 {
1544 start_sequence ();
1545
1546 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1547 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1548 gen_int_mode (-offset, GET_MODE (new_rtx)));
1549 x = force_operand (x, new_rtx);
1550 if (x != new_rtx)
1551 emit_move_insn (new_rtx, x);
1552
1553 seq = get_insns ();
1554 end_sequence ();
1555
1556 emit_insn_before (seq, insn);
1557 delete_insn (insn);
1558 return;
1559 }
1560
1561 /* Handle a straight copy from a virtual register by generating a
1562 new add insn. The difference between this and falling through
1563 to the generic case is avoiding a new pseudo and eliminating a
1564 move insn in the initial rtl stream. */
1565 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1566 if (new_rtx && offset != 0
1567 && REG_P (SET_DEST (set))
1568 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1569 {
1570 start_sequence ();
1571
1572 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1573 gen_int_mode (offset,
1574 GET_MODE (SET_DEST (set))),
1575 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1576 if (x != SET_DEST (set))
1577 emit_move_insn (SET_DEST (set), x);
1578
1579 seq = get_insns ();
1580 end_sequence ();
1581
1582 emit_insn_before (seq, insn);
1583 delete_insn (insn);
1584 return;
1585 }
1586
1587 extract_insn (insn);
1588 insn_code = INSN_CODE (insn);
1589
1590 /* Handle a plus involving a virtual register by determining if the
1591 operands remain valid if they're modified in place. */
1592 if (GET_CODE (SET_SRC (set)) == PLUS
1593 && recog_data.n_operands >= 3
1594 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1595 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1596 && CONST_INT_P (recog_data.operand[2])
1597 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1598 {
1599 offset += INTVAL (recog_data.operand[2]);
1600
1601 /* If the sum is zero, then replace with a plain move. */
1602 if (offset == 0
1603 && REG_P (SET_DEST (set))
1604 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1605 {
1606 start_sequence ();
1607 emit_move_insn (SET_DEST (set), new_rtx);
1608 seq = get_insns ();
1609 end_sequence ();
1610
1611 emit_insn_before (seq, insn);
1612 delete_insn (insn);
1613 return;
1614 }
1615
1616 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1617
1618 /* Using validate_change and apply_change_group here leaves
1619 recog_data in an invalid state. Since we know exactly what
1620 we want to check, do those two by hand. */
1621 if (safe_insn_predicate (insn_code, 1, new_rtx)
1622 && safe_insn_predicate (insn_code, 2, x))
1623 {
1624 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1625 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1626 any_change = true;
1627
1628 /* Fall through into the regular operand fixup loop in
1629 order to take care of operands other than 1 and 2. */
1630 }
1631 }
1632 }
1633 else
1634 {
1635 extract_insn (insn);
1636 insn_code = INSN_CODE (insn);
1637 }
1638
1639 /* In the general case, we expect virtual registers to appear only in
1640 operands, and then only as either bare registers or inside memories. */
1641 for (i = 0; i < recog_data.n_operands; ++i)
1642 {
1643 x = recog_data.operand[i];
1644 switch (GET_CODE (x))
1645 {
1646 case MEM:
1647 {
1648 rtx addr = XEXP (x, 0);
1649
1650 if (!instantiate_virtual_regs_in_rtx (&addr))
1651 continue;
1652
1653 start_sequence ();
1654 x = replace_equiv_address (x, addr, true);
1655 /* It may happen that the address with the virtual reg
1656 was valid (e.g. based on the virtual stack reg, which might
1657 be acceptable to the predicates with all offsets), whereas
1658 the address now isn't anymore, for instance when the address
1659 is still offsetted, but the base reg isn't virtual-stack-reg
1660 anymore. Below we would do a force_reg on the whole operand,
1661 but this insn might actually only accept memory. Hence,
1662 before doing that last resort, try to reload the address into
1663 a register, so this operand stays a MEM. */
1664 if (!safe_insn_predicate (insn_code, i, x))
1665 {
1666 addr = force_reg (GET_MODE (addr), addr);
1667 x = replace_equiv_address (x, addr, true);
1668 }
1669 seq = get_insns ();
1670 end_sequence ();
1671 if (seq)
1672 emit_insn_before (seq, insn);
1673 }
1674 break;
1675
1676 case REG:
1677 new_rtx = instantiate_new_reg (x, &offset);
1678 if (new_rtx == NULL)
1679 continue;
1680 if (offset == 0)
1681 x = new_rtx;
1682 else
1683 {
1684 start_sequence ();
1685
1686 /* Careful, special mode predicates may have stuff in
1687 insn_data[insn_code].operand[i].mode that isn't useful
1688 to us for computing a new value. */
1689 /* ??? Recognize address_operand and/or "p" constraints
1690 to see if (plus new offset) is a valid before we put
1691 this through expand_simple_binop. */
1692 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1693 gen_int_mode (offset, GET_MODE (x)),
1694 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1695 seq = get_insns ();
1696 end_sequence ();
1697 emit_insn_before (seq, insn);
1698 }
1699 break;
1700
1701 case SUBREG:
1702 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1703 if (new_rtx == NULL)
1704 continue;
1705 if (offset != 0)
1706 {
1707 start_sequence ();
1708 new_rtx = expand_simple_binop
1709 (GET_MODE (new_rtx), PLUS, new_rtx,
1710 gen_int_mode (offset, GET_MODE (new_rtx)),
1711 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1712 seq = get_insns ();
1713 end_sequence ();
1714 emit_insn_before (seq, insn);
1715 }
1716 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1717 GET_MODE (new_rtx), SUBREG_BYTE (x));
1718 gcc_assert (x);
1719 break;
1720
1721 default:
1722 continue;
1723 }
1724
1725 /* At this point, X contains the new value for the operand.
1726 Validate the new value vs the insn predicate. Note that
1727 asm insns will have insn_code -1 here. */
1728 if (!safe_insn_predicate (insn_code, i, x))
1729 {
1730 start_sequence ();
1731 if (REG_P (x))
1732 {
1733 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1734 x = copy_to_reg (x);
1735 }
1736 else
1737 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1738 seq = get_insns ();
1739 end_sequence ();
1740 if (seq)
1741 emit_insn_before (seq, insn);
1742 }
1743
1744 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1745 any_change = true;
1746 }
1747
1748 if (any_change)
1749 {
1750 /* Propagate operand changes into the duplicates. */
1751 for (i = 0; i < recog_data.n_dups; ++i)
1752 *recog_data.dup_loc[i]
1753 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1754
1755 /* Force re-recognition of the instruction for validation. */
1756 INSN_CODE (insn) = -1;
1757 }
1758
1759 if (asm_noperands (PATTERN (insn)) >= 0)
1760 {
1761 if (!check_asm_operands (PATTERN (insn)))
1762 {
1763 error_for_asm (insn, "impossible constraint in %<asm%>");
1764 /* For asm goto, instead of fixing up all the edges
1765 just clear the template and clear input operands
1766 (asm goto doesn't have any output operands). */
1767 if (JUMP_P (insn))
1768 {
1769 rtx asm_op = extract_asm_operands (PATTERN (insn));
1770 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1771 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1772 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1773 }
1774 else
1775 delete_insn (insn);
1776 }
1777 }
1778 else
1779 {
1780 if (recog_memoized (insn) < 0)
1781 fatal_insn_not_found (insn);
1782 }
1783 }
1784
1785 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1786 do any instantiation required. */
1787
1788 void
1789 instantiate_decl_rtl (rtx x)
1790 {
1791 rtx addr;
1792
1793 if (x == 0)
1794 return;
1795
1796 /* If this is a CONCAT, recurse for the pieces. */
1797 if (GET_CODE (x) == CONCAT)
1798 {
1799 instantiate_decl_rtl (XEXP (x, 0));
1800 instantiate_decl_rtl (XEXP (x, 1));
1801 return;
1802 }
1803
1804 /* If this is not a MEM, no need to do anything. Similarly if the
1805 address is a constant or a register that is not a virtual register. */
1806 if (!MEM_P (x))
1807 return;
1808
1809 addr = XEXP (x, 0);
1810 if (CONSTANT_P (addr)
1811 || (REG_P (addr)
1812 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1813 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1814 return;
1815
1816 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1817 }
1818
1819 /* Helper for instantiate_decls called via walk_tree: Process all decls
1820 in the given DECL_VALUE_EXPR. */
1821
1822 static tree
1823 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1824 {
1825 tree t = *tp;
1826 if (! EXPR_P (t))
1827 {
1828 *walk_subtrees = 0;
1829 if (DECL_P (t))
1830 {
1831 if (DECL_RTL_SET_P (t))
1832 instantiate_decl_rtl (DECL_RTL (t));
1833 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1834 && DECL_INCOMING_RTL (t))
1835 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1836 if ((TREE_CODE (t) == VAR_DECL
1837 || TREE_CODE (t) == RESULT_DECL)
1838 && DECL_HAS_VALUE_EXPR_P (t))
1839 {
1840 tree v = DECL_VALUE_EXPR (t);
1841 walk_tree (&v, instantiate_expr, NULL, NULL);
1842 }
1843 }
1844 }
1845 return NULL;
1846 }
1847
1848 /* Subroutine of instantiate_decls: Process all decls in the given
1849 BLOCK node and all its subblocks. */
1850
1851 static void
1852 instantiate_decls_1 (tree let)
1853 {
1854 tree t;
1855
1856 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1857 {
1858 if (DECL_RTL_SET_P (t))
1859 instantiate_decl_rtl (DECL_RTL (t));
1860 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1861 {
1862 tree v = DECL_VALUE_EXPR (t);
1863 walk_tree (&v, instantiate_expr, NULL, NULL);
1864 }
1865 }
1866
1867 /* Process all subblocks. */
1868 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1869 instantiate_decls_1 (t);
1870 }
1871
1872 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1873 all virtual registers in their DECL_RTL's. */
1874
1875 static void
1876 instantiate_decls (tree fndecl)
1877 {
1878 tree decl;
1879 unsigned ix;
1880
1881 /* Process all parameters of the function. */
1882 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1883 {
1884 instantiate_decl_rtl (DECL_RTL (decl));
1885 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1886 if (DECL_HAS_VALUE_EXPR_P (decl))
1887 {
1888 tree v = DECL_VALUE_EXPR (decl);
1889 walk_tree (&v, instantiate_expr, NULL, NULL);
1890 }
1891 }
1892
1893 if ((decl = DECL_RESULT (fndecl))
1894 && TREE_CODE (decl) == RESULT_DECL)
1895 {
1896 if (DECL_RTL_SET_P (decl))
1897 instantiate_decl_rtl (DECL_RTL (decl));
1898 if (DECL_HAS_VALUE_EXPR_P (decl))
1899 {
1900 tree v = DECL_VALUE_EXPR (decl);
1901 walk_tree (&v, instantiate_expr, NULL, NULL);
1902 }
1903 }
1904
1905 /* Process the saved static chain if it exists. */
1906 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1907 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1908 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1909
1910 /* Now process all variables defined in the function or its subblocks. */
1911 instantiate_decls_1 (DECL_INITIAL (fndecl));
1912
1913 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1914 if (DECL_RTL_SET_P (decl))
1915 instantiate_decl_rtl (DECL_RTL (decl));
1916 vec_free (cfun->local_decls);
1917 }
1918
1919 /* Pass through the INSNS of function FNDECL and convert virtual register
1920 references to hard register references. */
1921
1922 static unsigned int
1923 instantiate_virtual_regs (void)
1924 {
1925 rtx_insn *insn;
1926
1927 /* Compute the offsets to use for this function. */
1928 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1929 var_offset = STARTING_FRAME_OFFSET;
1930 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1931 out_arg_offset = STACK_POINTER_OFFSET;
1932 #ifdef FRAME_POINTER_CFA_OFFSET
1933 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1934 #else
1935 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1936 #endif
1937
1938 /* Initialize recognition, indicating that volatile is OK. */
1939 init_recog ();
1940
1941 /* Scan through all the insns, instantiating every virtual register still
1942 present. */
1943 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1944 if (INSN_P (insn))
1945 {
1946 /* These patterns in the instruction stream can never be recognized.
1947 Fortunately, they shouldn't contain virtual registers either. */
1948 if (GET_CODE (PATTERN (insn)) == USE
1949 || GET_CODE (PATTERN (insn)) == CLOBBER
1950 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1951 continue;
1952 else if (DEBUG_INSN_P (insn))
1953 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1954 else
1955 instantiate_virtual_regs_in_insn (insn);
1956
1957 if (insn->deleted ())
1958 continue;
1959
1960 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1961
1962 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1963 if (CALL_P (insn))
1964 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1965 }
1966
1967 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1968 instantiate_decls (current_function_decl);
1969
1970 targetm.instantiate_decls ();
1971
1972 /* Indicate that, from now on, assign_stack_local should use
1973 frame_pointer_rtx. */
1974 virtuals_instantiated = 1;
1975
1976 return 0;
1977 }
1978
1979 namespace {
1980
1981 const pass_data pass_data_instantiate_virtual_regs =
1982 {
1983 RTL_PASS, /* type */
1984 "vregs", /* name */
1985 OPTGROUP_NONE, /* optinfo_flags */
1986 TV_NONE, /* tv_id */
1987 0, /* properties_required */
1988 0, /* properties_provided */
1989 0, /* properties_destroyed */
1990 0, /* todo_flags_start */
1991 0, /* todo_flags_finish */
1992 };
1993
1994 class pass_instantiate_virtual_regs : public rtl_opt_pass
1995 {
1996 public:
1997 pass_instantiate_virtual_regs (gcc::context *ctxt)
1998 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1999 {}
2000
2001 /* opt_pass methods: */
2002 virtual unsigned int execute (function *)
2003 {
2004 return instantiate_virtual_regs ();
2005 }
2006
2007 }; // class pass_instantiate_virtual_regs
2008
2009 } // anon namespace
2010
2011 rtl_opt_pass *
2012 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2013 {
2014 return new pass_instantiate_virtual_regs (ctxt);
2015 }
2016
2017 \f
2018 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2019 This means a type for which function calls must pass an address to the
2020 function or get an address back from the function.
2021 EXP may be a type node or an expression (whose type is tested). */
2022
2023 int
2024 aggregate_value_p (const_tree exp, const_tree fntype)
2025 {
2026 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2027 int i, regno, nregs;
2028 rtx reg;
2029
2030 if (fntype)
2031 switch (TREE_CODE (fntype))
2032 {
2033 case CALL_EXPR:
2034 {
2035 tree fndecl = get_callee_fndecl (fntype);
2036 if (fndecl)
2037 fntype = TREE_TYPE (fndecl);
2038 else if (CALL_EXPR_FN (fntype))
2039 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2040 else
2041 /* For internal functions, assume nothing needs to be
2042 returned in memory. */
2043 return 0;
2044 }
2045 break;
2046 case FUNCTION_DECL:
2047 fntype = TREE_TYPE (fntype);
2048 break;
2049 case FUNCTION_TYPE:
2050 case METHOD_TYPE:
2051 break;
2052 case IDENTIFIER_NODE:
2053 fntype = NULL_TREE;
2054 break;
2055 default:
2056 /* We don't expect other tree types here. */
2057 gcc_unreachable ();
2058 }
2059
2060 if (VOID_TYPE_P (type))
2061 return 0;
2062
2063 /* If a record should be passed the same as its first (and only) member
2064 don't pass it as an aggregate. */
2065 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2066 return aggregate_value_p (first_field (type), fntype);
2067
2068 /* If the front end has decided that this needs to be passed by
2069 reference, do so. */
2070 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2071 && DECL_BY_REFERENCE (exp))
2072 return 1;
2073
2074 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2075 if (fntype && TREE_ADDRESSABLE (fntype))
2076 return 1;
2077
2078 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2079 and thus can't be returned in registers. */
2080 if (TREE_ADDRESSABLE (type))
2081 return 1;
2082
2083 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2084 return 1;
2085
2086 if (targetm.calls.return_in_memory (type, fntype))
2087 return 1;
2088
2089 /* Make sure we have suitable call-clobbered regs to return
2090 the value in; if not, we must return it in memory. */
2091 reg = hard_function_value (type, 0, fntype, 0);
2092
2093 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2094 it is OK. */
2095 if (!REG_P (reg))
2096 return 0;
2097
2098 regno = REGNO (reg);
2099 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2100 for (i = 0; i < nregs; i++)
2101 if (! call_used_regs[regno + i])
2102 return 1;
2103
2104 return 0;
2105 }
2106 \f
2107 /* Return true if we should assign DECL a pseudo register; false if it
2108 should live on the local stack. */
2109
2110 bool
2111 use_register_for_decl (const_tree decl)
2112 {
2113 if (!targetm.calls.allocate_stack_slots_for_args ())
2114 return true;
2115
2116 /* Honor volatile. */
2117 if (TREE_SIDE_EFFECTS (decl))
2118 return false;
2119
2120 /* Honor addressability. */
2121 if (TREE_ADDRESSABLE (decl))
2122 return false;
2123
2124 /* Decl is implicitly addressible by bound stores and loads
2125 if it is an aggregate holding bounds. */
2126 if (chkp_function_instrumented_p (current_function_decl)
2127 && TREE_TYPE (decl)
2128 && !BOUNDED_P (decl)
2129 && chkp_type_has_pointer (TREE_TYPE (decl)))
2130 return false;
2131
2132 /* Only register-like things go in registers. */
2133 if (DECL_MODE (decl) == BLKmode)
2134 return false;
2135
2136 /* If -ffloat-store specified, don't put explicit float variables
2137 into registers. */
2138 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2139 propagates values across these stores, and it probably shouldn't. */
2140 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2141 return false;
2142
2143 /* If we're not interested in tracking debugging information for
2144 this decl, then we can certainly put it in a register. */
2145 if (DECL_IGNORED_P (decl))
2146 return true;
2147
2148 if (optimize)
2149 return true;
2150
2151 if (!DECL_REGISTER (decl))
2152 return false;
2153
2154 switch (TREE_CODE (TREE_TYPE (decl)))
2155 {
2156 case RECORD_TYPE:
2157 case UNION_TYPE:
2158 case QUAL_UNION_TYPE:
2159 /* When not optimizing, disregard register keyword for variables with
2160 types containing methods, otherwise the methods won't be callable
2161 from the debugger. */
2162 if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl))))
2163 return false;
2164 break;
2165 default:
2166 break;
2167 }
2168
2169 return true;
2170 }
2171
2172 /* Return true if TYPE should be passed by invisible reference. */
2173
2174 bool
2175 pass_by_reference (CUMULATIVE_ARGS *ca, machine_mode mode,
2176 tree type, bool named_arg)
2177 {
2178 if (type)
2179 {
2180 /* If this type contains non-trivial constructors, then it is
2181 forbidden for the middle-end to create any new copies. */
2182 if (TREE_ADDRESSABLE (type))
2183 return true;
2184
2185 /* GCC post 3.4 passes *all* variable sized types by reference. */
2186 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2187 return true;
2188
2189 /* If a record type should be passed the same as its first (and only)
2190 member, use the type and mode of that member. */
2191 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2192 {
2193 type = TREE_TYPE (first_field (type));
2194 mode = TYPE_MODE (type);
2195 }
2196 }
2197
2198 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2199 type, named_arg);
2200 }
2201
2202 /* Return true if TYPE, which is passed by reference, should be callee
2203 copied instead of caller copied. */
2204
2205 bool
2206 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
2207 tree type, bool named_arg)
2208 {
2209 if (type && TREE_ADDRESSABLE (type))
2210 return false;
2211 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2212 named_arg);
2213 }
2214
2215 /* Structures to communicate between the subroutines of assign_parms.
2216 The first holds data persistent across all parameters, the second
2217 is cleared out for each parameter. */
2218
2219 struct assign_parm_data_all
2220 {
2221 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2222 should become a job of the target or otherwise encapsulated. */
2223 CUMULATIVE_ARGS args_so_far_v;
2224 cumulative_args_t args_so_far;
2225 struct args_size stack_args_size;
2226 tree function_result_decl;
2227 tree orig_fnargs;
2228 rtx_insn *first_conversion_insn;
2229 rtx_insn *last_conversion_insn;
2230 HOST_WIDE_INT pretend_args_size;
2231 HOST_WIDE_INT extra_pretend_bytes;
2232 int reg_parm_stack_space;
2233 };
2234
2235 struct assign_parm_data_one
2236 {
2237 tree nominal_type;
2238 tree passed_type;
2239 rtx entry_parm;
2240 rtx stack_parm;
2241 machine_mode nominal_mode;
2242 machine_mode passed_mode;
2243 machine_mode promoted_mode;
2244 struct locate_and_pad_arg_data locate;
2245 int partial;
2246 BOOL_BITFIELD named_arg : 1;
2247 BOOL_BITFIELD passed_pointer : 1;
2248 BOOL_BITFIELD on_stack : 1;
2249 BOOL_BITFIELD loaded_in_reg : 1;
2250 };
2251
2252 struct bounds_parm_data
2253 {
2254 assign_parm_data_one parm_data;
2255 tree bounds_parm;
2256 tree ptr_parm;
2257 rtx ptr_entry;
2258 int bound_no;
2259 };
2260
2261 /* A subroutine of assign_parms. Initialize ALL. */
2262
2263 static void
2264 assign_parms_initialize_all (struct assign_parm_data_all *all)
2265 {
2266 tree fntype ATTRIBUTE_UNUSED;
2267
2268 memset (all, 0, sizeof (*all));
2269
2270 fntype = TREE_TYPE (current_function_decl);
2271
2272 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2273 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2274 #else
2275 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2276 current_function_decl, -1);
2277 #endif
2278 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2279
2280 #ifdef INCOMING_REG_PARM_STACK_SPACE
2281 all->reg_parm_stack_space
2282 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2283 #endif
2284 }
2285
2286 /* If ARGS contains entries with complex types, split the entry into two
2287 entries of the component type. Return a new list of substitutions are
2288 needed, else the old list. */
2289
2290 static void
2291 split_complex_args (vec<tree> *args)
2292 {
2293 unsigned i;
2294 tree p;
2295
2296 FOR_EACH_VEC_ELT (*args, i, p)
2297 {
2298 tree type = TREE_TYPE (p);
2299 if (TREE_CODE (type) == COMPLEX_TYPE
2300 && targetm.calls.split_complex_arg (type))
2301 {
2302 tree decl;
2303 tree subtype = TREE_TYPE (type);
2304 bool addressable = TREE_ADDRESSABLE (p);
2305
2306 /* Rewrite the PARM_DECL's type with its component. */
2307 p = copy_node (p);
2308 TREE_TYPE (p) = subtype;
2309 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2310 DECL_MODE (p) = VOIDmode;
2311 DECL_SIZE (p) = NULL;
2312 DECL_SIZE_UNIT (p) = NULL;
2313 /* If this arg must go in memory, put it in a pseudo here.
2314 We can't allow it to go in memory as per normal parms,
2315 because the usual place might not have the imag part
2316 adjacent to the real part. */
2317 DECL_ARTIFICIAL (p) = addressable;
2318 DECL_IGNORED_P (p) = addressable;
2319 TREE_ADDRESSABLE (p) = 0;
2320 layout_decl (p, 0);
2321 (*args)[i] = p;
2322
2323 /* Build a second synthetic decl. */
2324 decl = build_decl (EXPR_LOCATION (p),
2325 PARM_DECL, NULL_TREE, subtype);
2326 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2327 DECL_ARTIFICIAL (decl) = addressable;
2328 DECL_IGNORED_P (decl) = addressable;
2329 layout_decl (decl, 0);
2330 args->safe_insert (++i, decl);
2331 }
2332 }
2333 }
2334
2335 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2336 the hidden struct return argument, and (abi willing) complex args.
2337 Return the new parameter list. */
2338
2339 static vec<tree>
2340 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2341 {
2342 tree fndecl = current_function_decl;
2343 tree fntype = TREE_TYPE (fndecl);
2344 vec<tree> fnargs = vNULL;
2345 tree arg;
2346
2347 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2348 fnargs.safe_push (arg);
2349
2350 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2351
2352 /* If struct value address is treated as the first argument, make it so. */
2353 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2354 && ! cfun->returns_pcc_struct
2355 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2356 {
2357 tree type = build_pointer_type (TREE_TYPE (fntype));
2358 tree decl;
2359
2360 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2361 PARM_DECL, get_identifier (".result_ptr"), type);
2362 DECL_ARG_TYPE (decl) = type;
2363 DECL_ARTIFICIAL (decl) = 1;
2364 DECL_NAMELESS (decl) = 1;
2365 TREE_CONSTANT (decl) = 1;
2366
2367 DECL_CHAIN (decl) = all->orig_fnargs;
2368 all->orig_fnargs = decl;
2369 fnargs.safe_insert (0, decl);
2370
2371 all->function_result_decl = decl;
2372
2373 /* If function is instrumented then bounds of the
2374 passed structure address is the second argument. */
2375 if (chkp_function_instrumented_p (fndecl))
2376 {
2377 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2378 PARM_DECL, get_identifier (".result_bnd"),
2379 pointer_bounds_type_node);
2380 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2381 DECL_ARTIFICIAL (decl) = 1;
2382 DECL_NAMELESS (decl) = 1;
2383 TREE_CONSTANT (decl) = 1;
2384
2385 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2386 DECL_CHAIN (all->orig_fnargs) = decl;
2387 fnargs.safe_insert (1, decl);
2388 }
2389 }
2390
2391 /* If the target wants to split complex arguments into scalars, do so. */
2392 if (targetm.calls.split_complex_arg)
2393 split_complex_args (&fnargs);
2394
2395 return fnargs;
2396 }
2397
2398 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2399 data for the parameter. Incorporate ABI specifics such as pass-by-
2400 reference and type promotion. */
2401
2402 static void
2403 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2404 struct assign_parm_data_one *data)
2405 {
2406 tree nominal_type, passed_type;
2407 machine_mode nominal_mode, passed_mode, promoted_mode;
2408 int unsignedp;
2409
2410 memset (data, 0, sizeof (*data));
2411
2412 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2413 if (!cfun->stdarg)
2414 data->named_arg = 1; /* No variadic parms. */
2415 else if (DECL_CHAIN (parm))
2416 data->named_arg = 1; /* Not the last non-variadic parm. */
2417 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2418 data->named_arg = 1; /* Only variadic ones are unnamed. */
2419 else
2420 data->named_arg = 0; /* Treat as variadic. */
2421
2422 nominal_type = TREE_TYPE (parm);
2423 passed_type = DECL_ARG_TYPE (parm);
2424
2425 /* Look out for errors propagating this far. Also, if the parameter's
2426 type is void then its value doesn't matter. */
2427 if (TREE_TYPE (parm) == error_mark_node
2428 /* This can happen after weird syntax errors
2429 or if an enum type is defined among the parms. */
2430 || TREE_CODE (parm) != PARM_DECL
2431 || passed_type == NULL
2432 || VOID_TYPE_P (nominal_type))
2433 {
2434 nominal_type = passed_type = void_type_node;
2435 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2436 goto egress;
2437 }
2438
2439 /* Find mode of arg as it is passed, and mode of arg as it should be
2440 during execution of this function. */
2441 passed_mode = TYPE_MODE (passed_type);
2442 nominal_mode = TYPE_MODE (nominal_type);
2443
2444 /* If the parm is to be passed as a transparent union or record, use the
2445 type of the first field for the tests below. We have already verified
2446 that the modes are the same. */
2447 if ((TREE_CODE (passed_type) == UNION_TYPE
2448 || TREE_CODE (passed_type) == RECORD_TYPE)
2449 && TYPE_TRANSPARENT_AGGR (passed_type))
2450 passed_type = TREE_TYPE (first_field (passed_type));
2451
2452 /* See if this arg was passed by invisible reference. */
2453 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2454 passed_type, data->named_arg))
2455 {
2456 passed_type = nominal_type = build_pointer_type (passed_type);
2457 data->passed_pointer = true;
2458 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2459 }
2460
2461 /* Find mode as it is passed by the ABI. */
2462 unsignedp = TYPE_UNSIGNED (passed_type);
2463 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2464 TREE_TYPE (current_function_decl), 0);
2465
2466 egress:
2467 data->nominal_type = nominal_type;
2468 data->passed_type = passed_type;
2469 data->nominal_mode = nominal_mode;
2470 data->passed_mode = passed_mode;
2471 data->promoted_mode = promoted_mode;
2472 }
2473
2474 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2475
2476 static void
2477 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2478 struct assign_parm_data_one *data, bool no_rtl)
2479 {
2480 int varargs_pretend_bytes = 0;
2481
2482 targetm.calls.setup_incoming_varargs (all->args_so_far,
2483 data->promoted_mode,
2484 data->passed_type,
2485 &varargs_pretend_bytes, no_rtl);
2486
2487 /* If the back-end has requested extra stack space, record how much is
2488 needed. Do not change pretend_args_size otherwise since it may be
2489 nonzero from an earlier partial argument. */
2490 if (varargs_pretend_bytes > 0)
2491 all->pretend_args_size = varargs_pretend_bytes;
2492 }
2493
2494 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2495 the incoming location of the current parameter. */
2496
2497 static void
2498 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2499 struct assign_parm_data_one *data)
2500 {
2501 HOST_WIDE_INT pretend_bytes = 0;
2502 rtx entry_parm;
2503 bool in_regs;
2504
2505 if (data->promoted_mode == VOIDmode)
2506 {
2507 data->entry_parm = data->stack_parm = const0_rtx;
2508 return;
2509 }
2510
2511 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2512 data->promoted_mode,
2513 data->passed_type,
2514 data->named_arg);
2515
2516 if (entry_parm == 0)
2517 data->promoted_mode = data->passed_mode;
2518
2519 /* Determine parm's home in the stack, in case it arrives in the stack
2520 or we should pretend it did. Compute the stack position and rtx where
2521 the argument arrives and its size.
2522
2523 There is one complexity here: If this was a parameter that would
2524 have been passed in registers, but wasn't only because it is
2525 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2526 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2527 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2528 as it was the previous time. */
2529 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2530 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2531 in_regs = true;
2532 #endif
2533 if (!in_regs && !data->named_arg)
2534 {
2535 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2536 {
2537 rtx tem;
2538 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2539 data->promoted_mode,
2540 data->passed_type, true);
2541 in_regs = tem != NULL;
2542 }
2543 }
2544
2545 /* If this parameter was passed both in registers and in the stack, use
2546 the copy on the stack. */
2547 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2548 data->passed_type))
2549 entry_parm = 0;
2550
2551 if (entry_parm)
2552 {
2553 int partial;
2554
2555 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2556 data->promoted_mode,
2557 data->passed_type,
2558 data->named_arg);
2559 data->partial = partial;
2560
2561 /* The caller might already have allocated stack space for the
2562 register parameters. */
2563 if (partial != 0 && all->reg_parm_stack_space == 0)
2564 {
2565 /* Part of this argument is passed in registers and part
2566 is passed on the stack. Ask the prologue code to extend
2567 the stack part so that we can recreate the full value.
2568
2569 PRETEND_BYTES is the size of the registers we need to store.
2570 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2571 stack space that the prologue should allocate.
2572
2573 Internally, gcc assumes that the argument pointer is aligned
2574 to STACK_BOUNDARY bits. This is used both for alignment
2575 optimizations (see init_emit) and to locate arguments that are
2576 aligned to more than PARM_BOUNDARY bits. We must preserve this
2577 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2578 a stack boundary. */
2579
2580 /* We assume at most one partial arg, and it must be the first
2581 argument on the stack. */
2582 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2583
2584 pretend_bytes = partial;
2585 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2586
2587 /* We want to align relative to the actual stack pointer, so
2588 don't include this in the stack size until later. */
2589 all->extra_pretend_bytes = all->pretend_args_size;
2590 }
2591 }
2592
2593 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2594 all->reg_parm_stack_space,
2595 entry_parm ? data->partial : 0, current_function_decl,
2596 &all->stack_args_size, &data->locate);
2597
2598 /* Update parm_stack_boundary if this parameter is passed in the
2599 stack. */
2600 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2601 crtl->parm_stack_boundary = data->locate.boundary;
2602
2603 /* Adjust offsets to include the pretend args. */
2604 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2605 data->locate.slot_offset.constant += pretend_bytes;
2606 data->locate.offset.constant += pretend_bytes;
2607
2608 data->entry_parm = entry_parm;
2609 }
2610
2611 /* A subroutine of assign_parms. If there is actually space on the stack
2612 for this parm, count it in stack_args_size and return true. */
2613
2614 static bool
2615 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2616 struct assign_parm_data_one *data)
2617 {
2618 /* Bounds are never passed on the stack to keep compatibility
2619 with not instrumented code. */
2620 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2621 return false;
2622 /* Trivially true if we've no incoming register. */
2623 else if (data->entry_parm == NULL)
2624 ;
2625 /* Also true if we're partially in registers and partially not,
2626 since we've arranged to drop the entire argument on the stack. */
2627 else if (data->partial != 0)
2628 ;
2629 /* Also true if the target says that it's passed in both registers
2630 and on the stack. */
2631 else if (GET_CODE (data->entry_parm) == PARALLEL
2632 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2633 ;
2634 /* Also true if the target says that there's stack allocated for
2635 all register parameters. */
2636 else if (all->reg_parm_stack_space > 0)
2637 ;
2638 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2639 else
2640 return false;
2641
2642 all->stack_args_size.constant += data->locate.size.constant;
2643 if (data->locate.size.var)
2644 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2645
2646 return true;
2647 }
2648
2649 /* A subroutine of assign_parms. Given that this parameter is allocated
2650 stack space by the ABI, find it. */
2651
2652 static void
2653 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2654 {
2655 rtx offset_rtx, stack_parm;
2656 unsigned int align, boundary;
2657
2658 /* If we're passing this arg using a reg, make its stack home the
2659 aligned stack slot. */
2660 if (data->entry_parm)
2661 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2662 else
2663 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2664
2665 stack_parm = crtl->args.internal_arg_pointer;
2666 if (offset_rtx != const0_rtx)
2667 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2668 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2669
2670 if (!data->passed_pointer)
2671 {
2672 set_mem_attributes (stack_parm, parm, 1);
2673 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2674 while promoted mode's size is needed. */
2675 if (data->promoted_mode != BLKmode
2676 && data->promoted_mode != DECL_MODE (parm))
2677 {
2678 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2679 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2680 {
2681 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2682 data->promoted_mode);
2683 if (offset)
2684 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2685 }
2686 }
2687 }
2688
2689 boundary = data->locate.boundary;
2690 align = BITS_PER_UNIT;
2691
2692 /* If we're padding upward, we know that the alignment of the slot
2693 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2694 intentionally forcing upward padding. Otherwise we have to come
2695 up with a guess at the alignment based on OFFSET_RTX. */
2696 if (data->locate.where_pad != downward || data->entry_parm)
2697 align = boundary;
2698 else if (CONST_INT_P (offset_rtx))
2699 {
2700 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2701 align = align & -align;
2702 }
2703 set_mem_align (stack_parm, align);
2704
2705 if (data->entry_parm)
2706 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2707
2708 data->stack_parm = stack_parm;
2709 }
2710
2711 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2712 always valid and contiguous. */
2713
2714 static void
2715 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2716 {
2717 rtx entry_parm = data->entry_parm;
2718 rtx stack_parm = data->stack_parm;
2719
2720 /* If this parm was passed part in regs and part in memory, pretend it
2721 arrived entirely in memory by pushing the register-part onto the stack.
2722 In the special case of a DImode or DFmode that is split, we could put
2723 it together in a pseudoreg directly, but for now that's not worth
2724 bothering with. */
2725 if (data->partial != 0)
2726 {
2727 /* Handle calls that pass values in multiple non-contiguous
2728 locations. The Irix 6 ABI has examples of this. */
2729 if (GET_CODE (entry_parm) == PARALLEL)
2730 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2731 data->passed_type,
2732 int_size_in_bytes (data->passed_type));
2733 else
2734 {
2735 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2736 move_block_from_reg (REGNO (entry_parm),
2737 validize_mem (copy_rtx (stack_parm)),
2738 data->partial / UNITS_PER_WORD);
2739 }
2740
2741 entry_parm = stack_parm;
2742 }
2743
2744 /* If we didn't decide this parm came in a register, by default it came
2745 on the stack. */
2746 else if (entry_parm == NULL)
2747 entry_parm = stack_parm;
2748
2749 /* When an argument is passed in multiple locations, we can't make use
2750 of this information, but we can save some copying if the whole argument
2751 is passed in a single register. */
2752 else if (GET_CODE (entry_parm) == PARALLEL
2753 && data->nominal_mode != BLKmode
2754 && data->passed_mode != BLKmode)
2755 {
2756 size_t i, len = XVECLEN (entry_parm, 0);
2757
2758 for (i = 0; i < len; i++)
2759 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2760 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2761 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2762 == data->passed_mode)
2763 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2764 {
2765 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2766 break;
2767 }
2768 }
2769
2770 data->entry_parm = entry_parm;
2771 }
2772
2773 /* A subroutine of assign_parms. Reconstitute any values which were
2774 passed in multiple registers and would fit in a single register. */
2775
2776 static void
2777 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2778 {
2779 rtx entry_parm = data->entry_parm;
2780
2781 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2782 This can be done with register operations rather than on the
2783 stack, even if we will store the reconstituted parameter on the
2784 stack later. */
2785 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2786 {
2787 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2788 emit_group_store (parmreg, entry_parm, data->passed_type,
2789 GET_MODE_SIZE (GET_MODE (entry_parm)));
2790 entry_parm = parmreg;
2791 }
2792
2793 data->entry_parm = entry_parm;
2794 }
2795
2796 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2797 always valid and properly aligned. */
2798
2799 static void
2800 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2801 {
2802 rtx stack_parm = data->stack_parm;
2803
2804 /* If we can't trust the parm stack slot to be aligned enough for its
2805 ultimate type, don't use that slot after entry. We'll make another
2806 stack slot, if we need one. */
2807 if (stack_parm
2808 && ((STRICT_ALIGNMENT
2809 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2810 || (data->nominal_type
2811 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2812 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2813 stack_parm = NULL;
2814
2815 /* If parm was passed in memory, and we need to convert it on entry,
2816 don't store it back in that same slot. */
2817 else if (data->entry_parm == stack_parm
2818 && data->nominal_mode != BLKmode
2819 && data->nominal_mode != data->passed_mode)
2820 stack_parm = NULL;
2821
2822 /* If stack protection is in effect for this function, don't leave any
2823 pointers in their passed stack slots. */
2824 else if (crtl->stack_protect_guard
2825 && (flag_stack_protect == 2
2826 || data->passed_pointer
2827 || POINTER_TYPE_P (data->nominal_type)))
2828 stack_parm = NULL;
2829
2830 data->stack_parm = stack_parm;
2831 }
2832
2833 /* A subroutine of assign_parms. Return true if the current parameter
2834 should be stored as a BLKmode in the current frame. */
2835
2836 static bool
2837 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2838 {
2839 if (data->nominal_mode == BLKmode)
2840 return true;
2841 if (GET_MODE (data->entry_parm) == BLKmode)
2842 return true;
2843
2844 #ifdef BLOCK_REG_PADDING
2845 /* Only assign_parm_setup_block knows how to deal with register arguments
2846 that are padded at the least significant end. */
2847 if (REG_P (data->entry_parm)
2848 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2849 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2850 == (BYTES_BIG_ENDIAN ? upward : downward)))
2851 return true;
2852 #endif
2853
2854 return false;
2855 }
2856
2857 /* A subroutine of assign_parms. Arrange for the parameter to be
2858 present and valid in DATA->STACK_RTL. */
2859
2860 static void
2861 assign_parm_setup_block (struct assign_parm_data_all *all,
2862 tree parm, struct assign_parm_data_one *data)
2863 {
2864 rtx entry_parm = data->entry_parm;
2865 rtx stack_parm = data->stack_parm;
2866 HOST_WIDE_INT size;
2867 HOST_WIDE_INT size_stored;
2868
2869 if (GET_CODE (entry_parm) == PARALLEL)
2870 entry_parm = emit_group_move_into_temps (entry_parm);
2871
2872 size = int_size_in_bytes (data->passed_type);
2873 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2874 if (stack_parm == 0)
2875 {
2876 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2877 stack_parm = assign_stack_local (BLKmode, size_stored,
2878 DECL_ALIGN (parm));
2879 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2880 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2881 set_mem_attributes (stack_parm, parm, 1);
2882 }
2883
2884 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2885 calls that pass values in multiple non-contiguous locations. */
2886 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2887 {
2888 rtx mem;
2889
2890 /* Note that we will be storing an integral number of words.
2891 So we have to be careful to ensure that we allocate an
2892 integral number of words. We do this above when we call
2893 assign_stack_local if space was not allocated in the argument
2894 list. If it was, this will not work if PARM_BOUNDARY is not
2895 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2896 if it becomes a problem. Exception is when BLKmode arrives
2897 with arguments not conforming to word_mode. */
2898
2899 if (data->stack_parm == 0)
2900 ;
2901 else if (GET_CODE (entry_parm) == PARALLEL)
2902 ;
2903 else
2904 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2905
2906 mem = validize_mem (copy_rtx (stack_parm));
2907
2908 /* Handle values in multiple non-contiguous locations. */
2909 if (GET_CODE (entry_parm) == PARALLEL)
2910 {
2911 push_to_sequence2 (all->first_conversion_insn,
2912 all->last_conversion_insn);
2913 emit_group_store (mem, entry_parm, data->passed_type, size);
2914 all->first_conversion_insn = get_insns ();
2915 all->last_conversion_insn = get_last_insn ();
2916 end_sequence ();
2917 }
2918
2919 else if (size == 0)
2920 ;
2921
2922 /* If SIZE is that of a mode no bigger than a word, just use
2923 that mode's store operation. */
2924 else if (size <= UNITS_PER_WORD)
2925 {
2926 machine_mode mode
2927 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2928
2929 if (mode != BLKmode
2930 #ifdef BLOCK_REG_PADDING
2931 && (size == UNITS_PER_WORD
2932 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2933 != (BYTES_BIG_ENDIAN ? upward : downward)))
2934 #endif
2935 )
2936 {
2937 rtx reg;
2938
2939 /* We are really truncating a word_mode value containing
2940 SIZE bytes into a value of mode MODE. If such an
2941 operation requires no actual instructions, we can refer
2942 to the value directly in mode MODE, otherwise we must
2943 start with the register in word_mode and explicitly
2944 convert it. */
2945 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2946 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2947 else
2948 {
2949 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2950 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2951 }
2952 emit_move_insn (change_address (mem, mode, 0), reg);
2953 }
2954
2955 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2956 machine must be aligned to the left before storing
2957 to memory. Note that the previous test doesn't
2958 handle all cases (e.g. SIZE == 3). */
2959 else if (size != UNITS_PER_WORD
2960 #ifdef BLOCK_REG_PADDING
2961 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2962 == downward)
2963 #else
2964 && BYTES_BIG_ENDIAN
2965 #endif
2966 )
2967 {
2968 rtx tem, x;
2969 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2970 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2971
2972 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2973 tem = change_address (mem, word_mode, 0);
2974 emit_move_insn (tem, x);
2975 }
2976 else
2977 move_block_from_reg (REGNO (entry_parm), mem,
2978 size_stored / UNITS_PER_WORD);
2979 }
2980 else
2981 move_block_from_reg (REGNO (entry_parm), mem,
2982 size_stored / UNITS_PER_WORD);
2983 }
2984 else if (data->stack_parm == 0)
2985 {
2986 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2987 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2988 BLOCK_OP_NORMAL);
2989 all->first_conversion_insn = get_insns ();
2990 all->last_conversion_insn = get_last_insn ();
2991 end_sequence ();
2992 }
2993
2994 data->stack_parm = stack_parm;
2995 SET_DECL_RTL (parm, stack_parm);
2996 }
2997
2998 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2999 parameter. Get it there. Perform all ABI specified conversions. */
3000
3001 static void
3002 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3003 struct assign_parm_data_one *data)
3004 {
3005 rtx parmreg, validated_mem;
3006 rtx equiv_stack_parm;
3007 machine_mode promoted_nominal_mode;
3008 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3009 bool did_conversion = false;
3010 bool need_conversion, moved;
3011
3012 /* Store the parm in a pseudoregister during the function, but we may
3013 need to do it in a wider mode. Using 2 here makes the result
3014 consistent with promote_decl_mode and thus expand_expr_real_1. */
3015 promoted_nominal_mode
3016 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3017 TREE_TYPE (current_function_decl), 2);
3018
3019 parmreg = gen_reg_rtx (promoted_nominal_mode);
3020
3021 if (!DECL_ARTIFICIAL (parm))
3022 mark_user_reg (parmreg);
3023
3024 /* If this was an item that we received a pointer to,
3025 set DECL_RTL appropriately. */
3026 if (data->passed_pointer)
3027 {
3028 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3029 set_mem_attributes (x, parm, 1);
3030 SET_DECL_RTL (parm, x);
3031 }
3032 else
3033 SET_DECL_RTL (parm, parmreg);
3034
3035 assign_parm_remove_parallels (data);
3036
3037 /* Copy the value into the register, thus bridging between
3038 assign_parm_find_data_types and expand_expr_real_1. */
3039
3040 equiv_stack_parm = data->stack_parm;
3041 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3042
3043 need_conversion = (data->nominal_mode != data->passed_mode
3044 || promoted_nominal_mode != data->promoted_mode);
3045 moved = false;
3046
3047 if (need_conversion
3048 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3049 && data->nominal_mode == data->passed_mode
3050 && data->nominal_mode == GET_MODE (data->entry_parm))
3051 {
3052 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3053 mode, by the caller. We now have to convert it to
3054 NOMINAL_MODE, if different. However, PARMREG may be in
3055 a different mode than NOMINAL_MODE if it is being stored
3056 promoted.
3057
3058 If ENTRY_PARM is a hard register, it might be in a register
3059 not valid for operating in its mode (e.g., an odd-numbered
3060 register for a DFmode). In that case, moves are the only
3061 thing valid, so we can't do a convert from there. This
3062 occurs when the calling sequence allow such misaligned
3063 usages.
3064
3065 In addition, the conversion may involve a call, which could
3066 clobber parameters which haven't been copied to pseudo
3067 registers yet.
3068
3069 First, we try to emit an insn which performs the necessary
3070 conversion. We verify that this insn does not clobber any
3071 hard registers. */
3072
3073 enum insn_code icode;
3074 rtx op0, op1;
3075
3076 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3077 unsignedp);
3078
3079 op0 = parmreg;
3080 op1 = validated_mem;
3081 if (icode != CODE_FOR_nothing
3082 && insn_operand_matches (icode, 0, op0)
3083 && insn_operand_matches (icode, 1, op1))
3084 {
3085 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3086 rtx_insn *insn, *insns;
3087 rtx t = op1;
3088 HARD_REG_SET hardregs;
3089
3090 start_sequence ();
3091 /* If op1 is a hard register that is likely spilled, first
3092 force it into a pseudo, otherwise combiner might extend
3093 its lifetime too much. */
3094 if (GET_CODE (t) == SUBREG)
3095 t = SUBREG_REG (t);
3096 if (REG_P (t)
3097 && HARD_REGISTER_P (t)
3098 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3099 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3100 {
3101 t = gen_reg_rtx (GET_MODE (op1));
3102 emit_move_insn (t, op1);
3103 }
3104 else
3105 t = op1;
3106 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3107 data->passed_mode, unsignedp);
3108 emit_insn (pat);
3109 insns = get_insns ();
3110
3111 moved = true;
3112 CLEAR_HARD_REG_SET (hardregs);
3113 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3114 {
3115 if (INSN_P (insn))
3116 note_stores (PATTERN (insn), record_hard_reg_sets,
3117 &hardregs);
3118 if (!hard_reg_set_empty_p (hardregs))
3119 moved = false;
3120 }
3121
3122 end_sequence ();
3123
3124 if (moved)
3125 {
3126 emit_insn (insns);
3127 if (equiv_stack_parm != NULL_RTX)
3128 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3129 equiv_stack_parm);
3130 }
3131 }
3132 }
3133
3134 if (moved)
3135 /* Nothing to do. */
3136 ;
3137 else if (need_conversion)
3138 {
3139 /* We did not have an insn to convert directly, or the sequence
3140 generated appeared unsafe. We must first copy the parm to a
3141 pseudo reg, and save the conversion until after all
3142 parameters have been moved. */
3143
3144 int save_tree_used;
3145 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3146
3147 emit_move_insn (tempreg, validated_mem);
3148
3149 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3150 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3151
3152 if (GET_CODE (tempreg) == SUBREG
3153 && GET_MODE (tempreg) == data->nominal_mode
3154 && REG_P (SUBREG_REG (tempreg))
3155 && data->nominal_mode == data->passed_mode
3156 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3157 && GET_MODE_SIZE (GET_MODE (tempreg))
3158 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3159 {
3160 /* The argument is already sign/zero extended, so note it
3161 into the subreg. */
3162 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3163 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3164 }
3165
3166 /* TREE_USED gets set erroneously during expand_assignment. */
3167 save_tree_used = TREE_USED (parm);
3168 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3169 TREE_USED (parm) = save_tree_used;
3170 all->first_conversion_insn = get_insns ();
3171 all->last_conversion_insn = get_last_insn ();
3172 end_sequence ();
3173
3174 did_conversion = true;
3175 }
3176 else
3177 emit_move_insn (parmreg, validated_mem);
3178
3179 /* If we were passed a pointer but the actual value can safely live
3180 in a register, retrieve it and use it directly. */
3181 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3182 {
3183 /* We can't use nominal_mode, because it will have been set to
3184 Pmode above. We must use the actual mode of the parm. */
3185 if (use_register_for_decl (parm))
3186 {
3187 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3188 mark_user_reg (parmreg);
3189 }
3190 else
3191 {
3192 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3193 TYPE_MODE (TREE_TYPE (parm)),
3194 TYPE_ALIGN (TREE_TYPE (parm)));
3195 parmreg
3196 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3197 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3198 align);
3199 set_mem_attributes (parmreg, parm, 1);
3200 }
3201
3202 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3203 {
3204 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3205 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3206
3207 push_to_sequence2 (all->first_conversion_insn,
3208 all->last_conversion_insn);
3209 emit_move_insn (tempreg, DECL_RTL (parm));
3210 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3211 emit_move_insn (parmreg, tempreg);
3212 all->first_conversion_insn = get_insns ();
3213 all->last_conversion_insn = get_last_insn ();
3214 end_sequence ();
3215
3216 did_conversion = true;
3217 }
3218 else
3219 emit_move_insn (parmreg, DECL_RTL (parm));
3220
3221 SET_DECL_RTL (parm, parmreg);
3222
3223 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3224 now the parm. */
3225 data->stack_parm = NULL;
3226 }
3227
3228 /* Mark the register as eliminable if we did no conversion and it was
3229 copied from memory at a fixed offset, and the arg pointer was not
3230 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3231 offset formed an invalid address, such memory-equivalences as we
3232 make here would screw up life analysis for it. */
3233 if (data->nominal_mode == data->passed_mode
3234 && !did_conversion
3235 && data->stack_parm != 0
3236 && MEM_P (data->stack_parm)
3237 && data->locate.offset.var == 0
3238 && reg_mentioned_p (virtual_incoming_args_rtx,
3239 XEXP (data->stack_parm, 0)))
3240 {
3241 rtx_insn *linsn = get_last_insn ();
3242 rtx_insn *sinsn;
3243 rtx set;
3244
3245 /* Mark complex types separately. */
3246 if (GET_CODE (parmreg) == CONCAT)
3247 {
3248 machine_mode submode
3249 = GET_MODE_INNER (GET_MODE (parmreg));
3250 int regnor = REGNO (XEXP (parmreg, 0));
3251 int regnoi = REGNO (XEXP (parmreg, 1));
3252 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3253 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3254 GET_MODE_SIZE (submode));
3255
3256 /* Scan backwards for the set of the real and
3257 imaginary parts. */
3258 for (sinsn = linsn; sinsn != 0;
3259 sinsn = prev_nonnote_insn (sinsn))
3260 {
3261 set = single_set (sinsn);
3262 if (set == 0)
3263 continue;
3264
3265 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3266 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3267 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3268 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3269 }
3270 }
3271 else
3272 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3273 }
3274
3275 /* For pointer data type, suggest pointer register. */
3276 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3277 mark_reg_pointer (parmreg,
3278 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3279 }
3280
3281 /* A subroutine of assign_parms. Allocate stack space to hold the current
3282 parameter. Get it there. Perform all ABI specified conversions. */
3283
3284 static void
3285 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3286 struct assign_parm_data_one *data)
3287 {
3288 /* Value must be stored in the stack slot STACK_PARM during function
3289 execution. */
3290 bool to_conversion = false;
3291
3292 assign_parm_remove_parallels (data);
3293
3294 if (data->promoted_mode != data->nominal_mode)
3295 {
3296 /* Conversion is required. */
3297 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3298
3299 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3300
3301 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3302 to_conversion = true;
3303
3304 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3305 TYPE_UNSIGNED (TREE_TYPE (parm)));
3306
3307 if (data->stack_parm)
3308 {
3309 int offset = subreg_lowpart_offset (data->nominal_mode,
3310 GET_MODE (data->stack_parm));
3311 /* ??? This may need a big-endian conversion on sparc64. */
3312 data->stack_parm
3313 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3314 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3315 set_mem_offset (data->stack_parm,
3316 MEM_OFFSET (data->stack_parm) + offset);
3317 }
3318 }
3319
3320 if (data->entry_parm != data->stack_parm)
3321 {
3322 rtx src, dest;
3323
3324 if (data->stack_parm == 0)
3325 {
3326 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3327 GET_MODE (data->entry_parm),
3328 TYPE_ALIGN (data->passed_type));
3329 data->stack_parm
3330 = assign_stack_local (GET_MODE (data->entry_parm),
3331 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3332 align);
3333 set_mem_attributes (data->stack_parm, parm, 1);
3334 }
3335
3336 dest = validize_mem (copy_rtx (data->stack_parm));
3337 src = validize_mem (copy_rtx (data->entry_parm));
3338
3339 if (MEM_P (src))
3340 {
3341 /* Use a block move to handle potentially misaligned entry_parm. */
3342 if (!to_conversion)
3343 push_to_sequence2 (all->first_conversion_insn,
3344 all->last_conversion_insn);
3345 to_conversion = true;
3346
3347 emit_block_move (dest, src,
3348 GEN_INT (int_size_in_bytes (data->passed_type)),
3349 BLOCK_OP_NORMAL);
3350 }
3351 else
3352 emit_move_insn (dest, src);
3353 }
3354
3355 if (to_conversion)
3356 {
3357 all->first_conversion_insn = get_insns ();
3358 all->last_conversion_insn = get_last_insn ();
3359 end_sequence ();
3360 }
3361
3362 SET_DECL_RTL (parm, data->stack_parm);
3363 }
3364
3365 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3366 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3367
3368 static void
3369 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3370 vec<tree> fnargs)
3371 {
3372 tree parm;
3373 tree orig_fnargs = all->orig_fnargs;
3374 unsigned i = 0;
3375
3376 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3377 {
3378 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3379 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3380 {
3381 rtx tmp, real, imag;
3382 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3383
3384 real = DECL_RTL (fnargs[i]);
3385 imag = DECL_RTL (fnargs[i + 1]);
3386 if (inner != GET_MODE (real))
3387 {
3388 real = gen_lowpart_SUBREG (inner, real);
3389 imag = gen_lowpart_SUBREG (inner, imag);
3390 }
3391
3392 if (TREE_ADDRESSABLE (parm))
3393 {
3394 rtx rmem, imem;
3395 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3396 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3397 DECL_MODE (parm),
3398 TYPE_ALIGN (TREE_TYPE (parm)));
3399
3400 /* split_complex_arg put the real and imag parts in
3401 pseudos. Move them to memory. */
3402 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3403 set_mem_attributes (tmp, parm, 1);
3404 rmem = adjust_address_nv (tmp, inner, 0);
3405 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3406 push_to_sequence2 (all->first_conversion_insn,
3407 all->last_conversion_insn);
3408 emit_move_insn (rmem, real);
3409 emit_move_insn (imem, imag);
3410 all->first_conversion_insn = get_insns ();
3411 all->last_conversion_insn = get_last_insn ();
3412 end_sequence ();
3413 }
3414 else
3415 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3416 SET_DECL_RTL (parm, tmp);
3417
3418 real = DECL_INCOMING_RTL (fnargs[i]);
3419 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3420 if (inner != GET_MODE (real))
3421 {
3422 real = gen_lowpart_SUBREG (inner, real);
3423 imag = gen_lowpart_SUBREG (inner, imag);
3424 }
3425 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3426 set_decl_incoming_rtl (parm, tmp, false);
3427 i++;
3428 }
3429 }
3430 }
3431
3432 /* Load bounds of PARM from bounds table. */
3433 static void
3434 assign_parm_load_bounds (struct assign_parm_data_one *data,
3435 tree parm,
3436 rtx entry,
3437 unsigned bound_no)
3438 {
3439 bitmap_iterator bi;
3440 unsigned i, offs = 0;
3441 int bnd_no = -1;
3442 rtx slot = NULL, ptr = NULL;
3443
3444 if (parm)
3445 {
3446 bitmap slots;
3447 bitmap_obstack_initialize (NULL);
3448 slots = BITMAP_ALLOC (NULL);
3449 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3450 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3451 {
3452 if (bound_no)
3453 bound_no--;
3454 else
3455 {
3456 bnd_no = i;
3457 break;
3458 }
3459 }
3460 BITMAP_FREE (slots);
3461 bitmap_obstack_release (NULL);
3462 }
3463
3464 /* We may have bounds not associated with any pointer. */
3465 if (bnd_no != -1)
3466 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3467
3468 /* Find associated pointer. */
3469 if (bnd_no == -1)
3470 {
3471 /* If bounds are not associated with any bounds,
3472 then it is passed in a register or special slot. */
3473 gcc_assert (data->entry_parm);
3474 ptr = const0_rtx;
3475 }
3476 else if (MEM_P (entry))
3477 slot = adjust_address (entry, Pmode, offs);
3478 else if (REG_P (entry))
3479 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3480 else if (GET_CODE (entry) == PARALLEL)
3481 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3482 else
3483 gcc_unreachable ();
3484 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3485 data->entry_parm);
3486 }
3487
3488 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3489
3490 static void
3491 assign_bounds (vec<bounds_parm_data> &bndargs,
3492 struct assign_parm_data_all &all)
3493 {
3494 unsigned i, pass, handled = 0;
3495 bounds_parm_data *pbdata;
3496
3497 if (!bndargs.exists ())
3498 return;
3499
3500 /* We make few passes to store input bounds. Firstly handle bounds
3501 passed in registers. After that we load bounds passed in special
3502 slots. Finally we load bounds from Bounds Table. */
3503 for (pass = 0; pass < 3; pass++)
3504 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3505 {
3506 /* Pass 0 => regs only. */
3507 if (pass == 0
3508 && (!pbdata->parm_data.entry_parm
3509 || GET_CODE (pbdata->parm_data.entry_parm) != REG))
3510 continue;
3511 /* Pass 1 => slots only. */
3512 else if (pass == 1
3513 && (!pbdata->parm_data.entry_parm
3514 || GET_CODE (pbdata->parm_data.entry_parm) == REG))
3515 continue;
3516 /* Pass 2 => BT only. */
3517 else if (pass == 2
3518 && pbdata->parm_data.entry_parm)
3519 continue;
3520
3521 if (!pbdata->parm_data.entry_parm
3522 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3523 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3524 pbdata->ptr_entry, pbdata->bound_no);
3525
3526 set_decl_incoming_rtl (pbdata->bounds_parm,
3527 pbdata->parm_data.entry_parm, false);
3528
3529 if (assign_parm_setup_block_p (&pbdata->parm_data))
3530 assign_parm_setup_block (&all, pbdata->bounds_parm,
3531 &pbdata->parm_data);
3532 else if (pbdata->parm_data.passed_pointer
3533 || use_register_for_decl (pbdata->bounds_parm))
3534 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3535 &pbdata->parm_data);
3536 else
3537 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3538 &pbdata->parm_data);
3539
3540 /* Count handled bounds to make sure we miss nothing. */
3541 handled++;
3542 }
3543
3544 gcc_assert (handled == bndargs.length ());
3545
3546 bndargs.release ();
3547 }
3548
3549 /* Assign RTL expressions to the function's parameters. This may involve
3550 copying them into registers and using those registers as the DECL_RTL. */
3551
3552 static void
3553 assign_parms (tree fndecl)
3554 {
3555 struct assign_parm_data_all all;
3556 tree parm;
3557 vec<tree> fnargs;
3558 unsigned i, bound_no = 0;
3559 tree last_arg = NULL;
3560 rtx last_arg_entry = NULL;
3561 vec<bounds_parm_data> bndargs = vNULL;
3562 bounds_parm_data bdata;
3563
3564 crtl->args.internal_arg_pointer
3565 = targetm.calls.internal_arg_pointer ();
3566
3567 assign_parms_initialize_all (&all);
3568 fnargs = assign_parms_augmented_arg_list (&all);
3569
3570 FOR_EACH_VEC_ELT (fnargs, i, parm)
3571 {
3572 struct assign_parm_data_one data;
3573
3574 /* Extract the type of PARM; adjust it according to ABI. */
3575 assign_parm_find_data_types (&all, parm, &data);
3576
3577 /* Early out for errors and void parameters. */
3578 if (data.passed_mode == VOIDmode)
3579 {
3580 SET_DECL_RTL (parm, const0_rtx);
3581 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3582 continue;
3583 }
3584
3585 /* Estimate stack alignment from parameter alignment. */
3586 if (SUPPORTS_STACK_ALIGNMENT)
3587 {
3588 unsigned int align
3589 = targetm.calls.function_arg_boundary (data.promoted_mode,
3590 data.passed_type);
3591 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3592 align);
3593 if (TYPE_ALIGN (data.nominal_type) > align)
3594 align = MINIMUM_ALIGNMENT (data.nominal_type,
3595 TYPE_MODE (data.nominal_type),
3596 TYPE_ALIGN (data.nominal_type));
3597 if (crtl->stack_alignment_estimated < align)
3598 {
3599 gcc_assert (!crtl->stack_realign_processed);
3600 crtl->stack_alignment_estimated = align;
3601 }
3602 }
3603
3604 /* Find out where the parameter arrives in this function. */
3605 assign_parm_find_entry_rtl (&all, &data);
3606
3607 /* Find out where stack space for this parameter might be. */
3608 if (assign_parm_is_stack_parm (&all, &data))
3609 {
3610 assign_parm_find_stack_rtl (parm, &data);
3611 assign_parm_adjust_entry_rtl (&data);
3612 }
3613 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3614 {
3615 /* Remember where last non bounds arg was passed in case
3616 we have to load associated bounds for it from Bounds
3617 Table. */
3618 last_arg = parm;
3619 last_arg_entry = data.entry_parm;
3620 bound_no = 0;
3621 }
3622 /* Record permanently how this parm was passed. */
3623 if (data.passed_pointer)
3624 {
3625 rtx incoming_rtl
3626 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3627 data.entry_parm);
3628 set_decl_incoming_rtl (parm, incoming_rtl, true);
3629 }
3630 else
3631 set_decl_incoming_rtl (parm, data.entry_parm, false);
3632
3633 /* Boudns should be loaded in the particular order to
3634 have registers allocated correctly. Collect info about
3635 input bounds and load them later. */
3636 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3637 {
3638 /* Expect bounds in instrumented functions only. */
3639 gcc_assert (chkp_function_instrumented_p (fndecl));
3640
3641 bdata.parm_data = data;
3642 bdata.bounds_parm = parm;
3643 bdata.ptr_parm = last_arg;
3644 bdata.ptr_entry = last_arg_entry;
3645 bdata.bound_no = bound_no;
3646 bndargs.safe_push (bdata);
3647 }
3648 else
3649 {
3650 assign_parm_adjust_stack_rtl (&data);
3651
3652 if (assign_parm_setup_block_p (&data))
3653 assign_parm_setup_block (&all, parm, &data);
3654 else if (data.passed_pointer || use_register_for_decl (parm))
3655 assign_parm_setup_reg (&all, parm, &data);
3656 else
3657 assign_parm_setup_stack (&all, parm, &data);
3658 }
3659
3660 if (cfun->stdarg && !DECL_CHAIN (parm))
3661 {
3662 int pretend_bytes = 0;
3663
3664 assign_parms_setup_varargs (&all, &data, false);
3665
3666 if (chkp_function_instrumented_p (fndecl))
3667 {
3668 /* We expect this is the last parm. Otherwise it is wrong
3669 to assign bounds right now. */
3670 gcc_assert (i == (fnargs.length () - 1));
3671 assign_bounds (bndargs, all);
3672 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3673 data.promoted_mode,
3674 data.passed_type,
3675 &pretend_bytes,
3676 false);
3677 }
3678 }
3679
3680 /* Update info on where next arg arrives in registers. */
3681 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3682 data.passed_type, data.named_arg);
3683
3684 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3685 bound_no++;
3686 }
3687
3688 assign_bounds (bndargs, all);
3689
3690 if (targetm.calls.split_complex_arg)
3691 assign_parms_unsplit_complex (&all, fnargs);
3692
3693 fnargs.release ();
3694
3695 /* Output all parameter conversion instructions (possibly including calls)
3696 now that all parameters have been copied out of hard registers. */
3697 emit_insn (all.first_conversion_insn);
3698
3699 /* Estimate reload stack alignment from scalar return mode. */
3700 if (SUPPORTS_STACK_ALIGNMENT)
3701 {
3702 if (DECL_RESULT (fndecl))
3703 {
3704 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3705 machine_mode mode = TYPE_MODE (type);
3706
3707 if (mode != BLKmode
3708 && mode != VOIDmode
3709 && !AGGREGATE_TYPE_P (type))
3710 {
3711 unsigned int align = GET_MODE_ALIGNMENT (mode);
3712 if (crtl->stack_alignment_estimated < align)
3713 {
3714 gcc_assert (!crtl->stack_realign_processed);
3715 crtl->stack_alignment_estimated = align;
3716 }
3717 }
3718 }
3719 }
3720
3721 /* If we are receiving a struct value address as the first argument, set up
3722 the RTL for the function result. As this might require code to convert
3723 the transmitted address to Pmode, we do this here to ensure that possible
3724 preliminary conversions of the address have been emitted already. */
3725 if (all.function_result_decl)
3726 {
3727 tree result = DECL_RESULT (current_function_decl);
3728 rtx addr = DECL_RTL (all.function_result_decl);
3729 rtx x;
3730
3731 if (DECL_BY_REFERENCE (result))
3732 {
3733 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3734 x = addr;
3735 }
3736 else
3737 {
3738 SET_DECL_VALUE_EXPR (result,
3739 build1 (INDIRECT_REF, TREE_TYPE (result),
3740 all.function_result_decl));
3741 addr = convert_memory_address (Pmode, addr);
3742 x = gen_rtx_MEM (DECL_MODE (result), addr);
3743 set_mem_attributes (x, result, 1);
3744 }
3745
3746 DECL_HAS_VALUE_EXPR_P (result) = 1;
3747
3748 SET_DECL_RTL (result, x);
3749 }
3750
3751 /* We have aligned all the args, so add space for the pretend args. */
3752 crtl->args.pretend_args_size = all.pretend_args_size;
3753 all.stack_args_size.constant += all.extra_pretend_bytes;
3754 crtl->args.size = all.stack_args_size.constant;
3755
3756 /* Adjust function incoming argument size for alignment and
3757 minimum length. */
3758
3759 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3760 crtl->args.size = CEIL_ROUND (crtl->args.size,
3761 PARM_BOUNDARY / BITS_PER_UNIT);
3762
3763 if (ARGS_GROW_DOWNWARD)
3764 {
3765 crtl->args.arg_offset_rtx
3766 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3767 : expand_expr (size_diffop (all.stack_args_size.var,
3768 size_int (-all.stack_args_size.constant)),
3769 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3770 }
3771 else
3772 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3773
3774 /* See how many bytes, if any, of its args a function should try to pop
3775 on return. */
3776
3777 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3778 TREE_TYPE (fndecl),
3779 crtl->args.size);
3780
3781 /* For stdarg.h function, save info about
3782 regs and stack space used by the named args. */
3783
3784 crtl->args.info = all.args_so_far_v;
3785
3786 /* Set the rtx used for the function return value. Put this in its
3787 own variable so any optimizers that need this information don't have
3788 to include tree.h. Do this here so it gets done when an inlined
3789 function gets output. */
3790
3791 crtl->return_rtx
3792 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3793 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3794
3795 /* If scalar return value was computed in a pseudo-reg, or was a named
3796 return value that got dumped to the stack, copy that to the hard
3797 return register. */
3798 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3799 {
3800 tree decl_result = DECL_RESULT (fndecl);
3801 rtx decl_rtl = DECL_RTL (decl_result);
3802
3803 if (REG_P (decl_rtl)
3804 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3805 : DECL_REGISTER (decl_result))
3806 {
3807 rtx real_decl_rtl;
3808
3809 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3810 fndecl, true);
3811 if (chkp_function_instrumented_p (fndecl))
3812 crtl->return_bnd
3813 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3814 fndecl, true);
3815 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3816 /* The delay slot scheduler assumes that crtl->return_rtx
3817 holds the hard register containing the return value, not a
3818 temporary pseudo. */
3819 crtl->return_rtx = real_decl_rtl;
3820 }
3821 }
3822 }
3823
3824 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3825 For all seen types, gimplify their sizes. */
3826
3827 static tree
3828 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3829 {
3830 tree t = *tp;
3831
3832 *walk_subtrees = 0;
3833 if (TYPE_P (t))
3834 {
3835 if (POINTER_TYPE_P (t))
3836 *walk_subtrees = 1;
3837 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3838 && !TYPE_SIZES_GIMPLIFIED (t))
3839 {
3840 gimplify_type_sizes (t, (gimple_seq *) data);
3841 *walk_subtrees = 1;
3842 }
3843 }
3844
3845 return NULL;
3846 }
3847
3848 /* Gimplify the parameter list for current_function_decl. This involves
3849 evaluating SAVE_EXPRs of variable sized parameters and generating code
3850 to implement callee-copies reference parameters. Returns a sequence of
3851 statements to add to the beginning of the function. */
3852
3853 gimple_seq
3854 gimplify_parameters (void)
3855 {
3856 struct assign_parm_data_all all;
3857 tree parm;
3858 gimple_seq stmts = NULL;
3859 vec<tree> fnargs;
3860 unsigned i;
3861
3862 assign_parms_initialize_all (&all);
3863 fnargs = assign_parms_augmented_arg_list (&all);
3864
3865 FOR_EACH_VEC_ELT (fnargs, i, parm)
3866 {
3867 struct assign_parm_data_one data;
3868
3869 /* Extract the type of PARM; adjust it according to ABI. */
3870 assign_parm_find_data_types (&all, parm, &data);
3871
3872 /* Early out for errors and void parameters. */
3873 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3874 continue;
3875
3876 /* Update info on where next arg arrives in registers. */
3877 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3878 data.passed_type, data.named_arg);
3879
3880 /* ??? Once upon a time variable_size stuffed parameter list
3881 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3882 turned out to be less than manageable in the gimple world.
3883 Now we have to hunt them down ourselves. */
3884 walk_tree_without_duplicates (&data.passed_type,
3885 gimplify_parm_type, &stmts);
3886
3887 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3888 {
3889 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3890 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3891 }
3892
3893 if (data.passed_pointer)
3894 {
3895 tree type = TREE_TYPE (data.passed_type);
3896 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3897 type, data.named_arg))
3898 {
3899 tree local, t;
3900
3901 /* For constant-sized objects, this is trivial; for
3902 variable-sized objects, we have to play games. */
3903 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3904 && !(flag_stack_check == GENERIC_STACK_CHECK
3905 && compare_tree_int (DECL_SIZE_UNIT (parm),
3906 STACK_CHECK_MAX_VAR_SIZE) > 0))
3907 {
3908 local = create_tmp_var (type, get_name (parm));
3909 DECL_IGNORED_P (local) = 0;
3910 /* If PARM was addressable, move that flag over
3911 to the local copy, as its address will be taken,
3912 not the PARMs. Keep the parms address taken
3913 as we'll query that flag during gimplification. */
3914 if (TREE_ADDRESSABLE (parm))
3915 TREE_ADDRESSABLE (local) = 1;
3916 else if (TREE_CODE (type) == COMPLEX_TYPE
3917 || TREE_CODE (type) == VECTOR_TYPE)
3918 DECL_GIMPLE_REG_P (local) = 1;
3919 }
3920 else
3921 {
3922 tree ptr_type, addr;
3923
3924 ptr_type = build_pointer_type (type);
3925 addr = create_tmp_reg (ptr_type, get_name (parm));
3926 DECL_IGNORED_P (addr) = 0;
3927 local = build_fold_indirect_ref (addr);
3928
3929 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3930 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3931 size_int (DECL_ALIGN (parm)));
3932
3933 /* The call has been built for a variable-sized object. */
3934 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3935 t = fold_convert (ptr_type, t);
3936 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3937 gimplify_and_add (t, &stmts);
3938 }
3939
3940 gimplify_assign (local, parm, &stmts);
3941
3942 SET_DECL_VALUE_EXPR (parm, local);
3943 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3944 }
3945 }
3946 }
3947
3948 fnargs.release ();
3949
3950 return stmts;
3951 }
3952 \f
3953 /* Compute the size and offset from the start of the stacked arguments for a
3954 parm passed in mode PASSED_MODE and with type TYPE.
3955
3956 INITIAL_OFFSET_PTR points to the current offset into the stacked
3957 arguments.
3958
3959 The starting offset and size for this parm are returned in
3960 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3961 nonzero, the offset is that of stack slot, which is returned in
3962 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3963 padding required from the initial offset ptr to the stack slot.
3964
3965 IN_REGS is nonzero if the argument will be passed in registers. It will
3966 never be set if REG_PARM_STACK_SPACE is not defined.
3967
3968 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3969 for arguments which are passed in registers.
3970
3971 FNDECL is the function in which the argument was defined.
3972
3973 There are two types of rounding that are done. The first, controlled by
3974 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3975 argument list to be aligned to the specific boundary (in bits). This
3976 rounding affects the initial and starting offsets, but not the argument
3977 size.
3978
3979 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3980 optionally rounds the size of the parm to PARM_BOUNDARY. The
3981 initial offset is not affected by this rounding, while the size always
3982 is and the starting offset may be. */
3983
3984 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3985 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3986 callers pass in the total size of args so far as
3987 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3988
3989 void
3990 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
3991 int reg_parm_stack_space, int partial,
3992 tree fndecl ATTRIBUTE_UNUSED,
3993 struct args_size *initial_offset_ptr,
3994 struct locate_and_pad_arg_data *locate)
3995 {
3996 tree sizetree;
3997 enum direction where_pad;
3998 unsigned int boundary, round_boundary;
3999 int part_size_in_regs;
4000
4001 /* If we have found a stack parm before we reach the end of the
4002 area reserved for registers, skip that area. */
4003 if (! in_regs)
4004 {
4005 if (reg_parm_stack_space > 0)
4006 {
4007 if (initial_offset_ptr->var)
4008 {
4009 initial_offset_ptr->var
4010 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4011 ssize_int (reg_parm_stack_space));
4012 initial_offset_ptr->constant = 0;
4013 }
4014 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4015 initial_offset_ptr->constant = reg_parm_stack_space;
4016 }
4017 }
4018
4019 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4020
4021 sizetree
4022 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4023 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4024 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4025 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4026 type);
4027 locate->where_pad = where_pad;
4028
4029 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4030 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4031 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4032
4033 locate->boundary = boundary;
4034
4035 if (SUPPORTS_STACK_ALIGNMENT)
4036 {
4037 /* stack_alignment_estimated can't change after stack has been
4038 realigned. */
4039 if (crtl->stack_alignment_estimated < boundary)
4040 {
4041 if (!crtl->stack_realign_processed)
4042 crtl->stack_alignment_estimated = boundary;
4043 else
4044 {
4045 /* If stack is realigned and stack alignment value
4046 hasn't been finalized, it is OK not to increase
4047 stack_alignment_estimated. The bigger alignment
4048 requirement is recorded in stack_alignment_needed
4049 below. */
4050 gcc_assert (!crtl->stack_realign_finalized
4051 && crtl->stack_realign_needed);
4052 }
4053 }
4054 }
4055
4056 /* Remember if the outgoing parameter requires extra alignment on the
4057 calling function side. */
4058 if (crtl->stack_alignment_needed < boundary)
4059 crtl->stack_alignment_needed = boundary;
4060 if (crtl->preferred_stack_boundary < boundary)
4061 crtl->preferred_stack_boundary = boundary;
4062
4063 if (ARGS_GROW_DOWNWARD)
4064 {
4065 locate->slot_offset.constant = -initial_offset_ptr->constant;
4066 if (initial_offset_ptr->var)
4067 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4068 initial_offset_ptr->var);
4069
4070 {
4071 tree s2 = sizetree;
4072 if (where_pad != none
4073 && (!tree_fits_uhwi_p (sizetree)
4074 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4075 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4076 SUB_PARM_SIZE (locate->slot_offset, s2);
4077 }
4078
4079 locate->slot_offset.constant += part_size_in_regs;
4080
4081 if (!in_regs || reg_parm_stack_space > 0)
4082 pad_to_arg_alignment (&locate->slot_offset, boundary,
4083 &locate->alignment_pad);
4084
4085 locate->size.constant = (-initial_offset_ptr->constant
4086 - locate->slot_offset.constant);
4087 if (initial_offset_ptr->var)
4088 locate->size.var = size_binop (MINUS_EXPR,
4089 size_binop (MINUS_EXPR,
4090 ssize_int (0),
4091 initial_offset_ptr->var),
4092 locate->slot_offset.var);
4093
4094 /* Pad_below needs the pre-rounded size to know how much to pad
4095 below. */
4096 locate->offset = locate->slot_offset;
4097 if (where_pad == downward)
4098 pad_below (&locate->offset, passed_mode, sizetree);
4099
4100 }
4101 else
4102 {
4103 if (!in_regs || reg_parm_stack_space > 0)
4104 pad_to_arg_alignment (initial_offset_ptr, boundary,
4105 &locate->alignment_pad);
4106 locate->slot_offset = *initial_offset_ptr;
4107
4108 #ifdef PUSH_ROUNDING
4109 if (passed_mode != BLKmode)
4110 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4111 #endif
4112
4113 /* Pad_below needs the pre-rounded size to know how much to pad below
4114 so this must be done before rounding up. */
4115 locate->offset = locate->slot_offset;
4116 if (where_pad == downward)
4117 pad_below (&locate->offset, passed_mode, sizetree);
4118
4119 if (where_pad != none
4120 && (!tree_fits_uhwi_p (sizetree)
4121 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4122 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4123
4124 ADD_PARM_SIZE (locate->size, sizetree);
4125
4126 locate->size.constant -= part_size_in_regs;
4127 }
4128
4129 #ifdef FUNCTION_ARG_OFFSET
4130 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
4131 #endif
4132 }
4133
4134 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4135 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4136
4137 static void
4138 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4139 struct args_size *alignment_pad)
4140 {
4141 tree save_var = NULL_TREE;
4142 HOST_WIDE_INT save_constant = 0;
4143 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4144 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
4145
4146 #ifdef SPARC_STACK_BOUNDARY_HACK
4147 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4148 the real alignment of %sp. However, when it does this, the
4149 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4150 if (SPARC_STACK_BOUNDARY_HACK)
4151 sp_offset = 0;
4152 #endif
4153
4154 if (boundary > PARM_BOUNDARY)
4155 {
4156 save_var = offset_ptr->var;
4157 save_constant = offset_ptr->constant;
4158 }
4159
4160 alignment_pad->var = NULL_TREE;
4161 alignment_pad->constant = 0;
4162
4163 if (boundary > BITS_PER_UNIT)
4164 {
4165 if (offset_ptr->var)
4166 {
4167 tree sp_offset_tree = ssize_int (sp_offset);
4168 tree offset = size_binop (PLUS_EXPR,
4169 ARGS_SIZE_TREE (*offset_ptr),
4170 sp_offset_tree);
4171 tree rounded;
4172 if (ARGS_GROW_DOWNWARD)
4173 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4174 else
4175 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4176
4177 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4178 /* ARGS_SIZE_TREE includes constant term. */
4179 offset_ptr->constant = 0;
4180 if (boundary > PARM_BOUNDARY)
4181 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4182 save_var);
4183 }
4184 else
4185 {
4186 offset_ptr->constant = -sp_offset +
4187 (ARGS_GROW_DOWNWARD
4188 ? FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes)
4189 : CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes));
4190
4191 if (boundary > PARM_BOUNDARY)
4192 alignment_pad->constant = offset_ptr->constant - save_constant;
4193 }
4194 }
4195 }
4196
4197 static void
4198 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4199 {
4200 if (passed_mode != BLKmode)
4201 {
4202 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4203 offset_ptr->constant
4204 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4205 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4206 - GET_MODE_SIZE (passed_mode));
4207 }
4208 else
4209 {
4210 if (TREE_CODE (sizetree) != INTEGER_CST
4211 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4212 {
4213 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4214 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4215 /* Add it in. */
4216 ADD_PARM_SIZE (*offset_ptr, s2);
4217 SUB_PARM_SIZE (*offset_ptr, sizetree);
4218 }
4219 }
4220 }
4221 \f
4222
4223 /* True if register REGNO was alive at a place where `setjmp' was
4224 called and was set more than once or is an argument. Such regs may
4225 be clobbered by `longjmp'. */
4226
4227 static bool
4228 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4229 {
4230 /* There appear to be cases where some local vars never reach the
4231 backend but have bogus regnos. */
4232 if (regno >= max_reg_num ())
4233 return false;
4234
4235 return ((REG_N_SETS (regno) > 1
4236 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4237 regno))
4238 && REGNO_REG_SET_P (setjmp_crosses, regno));
4239 }
4240
4241 /* Walk the tree of blocks describing the binding levels within a
4242 function and warn about variables the might be killed by setjmp or
4243 vfork. This is done after calling flow_analysis before register
4244 allocation since that will clobber the pseudo-regs to hard
4245 regs. */
4246
4247 static void
4248 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4249 {
4250 tree decl, sub;
4251
4252 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4253 {
4254 if (TREE_CODE (decl) == VAR_DECL
4255 && DECL_RTL_SET_P (decl)
4256 && REG_P (DECL_RTL (decl))
4257 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4258 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4259 " %<longjmp%> or %<vfork%>", decl);
4260 }
4261
4262 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4263 setjmp_vars_warning (setjmp_crosses, sub);
4264 }
4265
4266 /* Do the appropriate part of setjmp_vars_warning
4267 but for arguments instead of local variables. */
4268
4269 static void
4270 setjmp_args_warning (bitmap setjmp_crosses)
4271 {
4272 tree decl;
4273 for (decl = DECL_ARGUMENTS (current_function_decl);
4274 decl; decl = DECL_CHAIN (decl))
4275 if (DECL_RTL (decl) != 0
4276 && REG_P (DECL_RTL (decl))
4277 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4278 warning (OPT_Wclobbered,
4279 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4280 decl);
4281 }
4282
4283 /* Generate warning messages for variables live across setjmp. */
4284
4285 void
4286 generate_setjmp_warnings (void)
4287 {
4288 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4289
4290 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4291 || bitmap_empty_p (setjmp_crosses))
4292 return;
4293
4294 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4295 setjmp_args_warning (setjmp_crosses);
4296 }
4297
4298 \f
4299 /* Reverse the order of elements in the fragment chain T of blocks,
4300 and return the new head of the chain (old last element).
4301 In addition to that clear BLOCK_SAME_RANGE flags when needed
4302 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4303 its super fragment origin. */
4304
4305 static tree
4306 block_fragments_nreverse (tree t)
4307 {
4308 tree prev = 0, block, next, prev_super = 0;
4309 tree super = BLOCK_SUPERCONTEXT (t);
4310 if (BLOCK_FRAGMENT_ORIGIN (super))
4311 super = BLOCK_FRAGMENT_ORIGIN (super);
4312 for (block = t; block; block = next)
4313 {
4314 next = BLOCK_FRAGMENT_CHAIN (block);
4315 BLOCK_FRAGMENT_CHAIN (block) = prev;
4316 if ((prev && !BLOCK_SAME_RANGE (prev))
4317 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4318 != prev_super))
4319 BLOCK_SAME_RANGE (block) = 0;
4320 prev_super = BLOCK_SUPERCONTEXT (block);
4321 BLOCK_SUPERCONTEXT (block) = super;
4322 prev = block;
4323 }
4324 t = BLOCK_FRAGMENT_ORIGIN (t);
4325 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4326 != prev_super)
4327 BLOCK_SAME_RANGE (t) = 0;
4328 BLOCK_SUPERCONTEXT (t) = super;
4329 return prev;
4330 }
4331
4332 /* Reverse the order of elements in the chain T of blocks,
4333 and return the new head of the chain (old last element).
4334 Also do the same on subblocks and reverse the order of elements
4335 in BLOCK_FRAGMENT_CHAIN as well. */
4336
4337 static tree
4338 blocks_nreverse_all (tree t)
4339 {
4340 tree prev = 0, block, next;
4341 for (block = t; block; block = next)
4342 {
4343 next = BLOCK_CHAIN (block);
4344 BLOCK_CHAIN (block) = prev;
4345 if (BLOCK_FRAGMENT_CHAIN (block)
4346 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4347 {
4348 BLOCK_FRAGMENT_CHAIN (block)
4349 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4350 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4351 BLOCK_SAME_RANGE (block) = 0;
4352 }
4353 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4354 prev = block;
4355 }
4356 return prev;
4357 }
4358
4359
4360 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4361 and create duplicate blocks. */
4362 /* ??? Need an option to either create block fragments or to create
4363 abstract origin duplicates of a source block. It really depends
4364 on what optimization has been performed. */
4365
4366 void
4367 reorder_blocks (void)
4368 {
4369 tree block = DECL_INITIAL (current_function_decl);
4370
4371 if (block == NULL_TREE)
4372 return;
4373
4374 auto_vec<tree, 10> block_stack;
4375
4376 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4377 clear_block_marks (block);
4378
4379 /* Prune the old trees away, so that they don't get in the way. */
4380 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4381 BLOCK_CHAIN (block) = NULL_TREE;
4382
4383 /* Recreate the block tree from the note nesting. */
4384 reorder_blocks_1 (get_insns (), block, &block_stack);
4385 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4386 }
4387
4388 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4389
4390 void
4391 clear_block_marks (tree block)
4392 {
4393 while (block)
4394 {
4395 TREE_ASM_WRITTEN (block) = 0;
4396 clear_block_marks (BLOCK_SUBBLOCKS (block));
4397 block = BLOCK_CHAIN (block);
4398 }
4399 }
4400
4401 static void
4402 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4403 vec<tree> *p_block_stack)
4404 {
4405 rtx_insn *insn;
4406 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4407
4408 for (insn = insns; insn; insn = NEXT_INSN (insn))
4409 {
4410 if (NOTE_P (insn))
4411 {
4412 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4413 {
4414 tree block = NOTE_BLOCK (insn);
4415 tree origin;
4416
4417 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4418 origin = block;
4419
4420 if (prev_end)
4421 BLOCK_SAME_RANGE (prev_end) = 0;
4422 prev_end = NULL_TREE;
4423
4424 /* If we have seen this block before, that means it now
4425 spans multiple address regions. Create a new fragment. */
4426 if (TREE_ASM_WRITTEN (block))
4427 {
4428 tree new_block = copy_node (block);
4429
4430 BLOCK_SAME_RANGE (new_block) = 0;
4431 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4432 BLOCK_FRAGMENT_CHAIN (new_block)
4433 = BLOCK_FRAGMENT_CHAIN (origin);
4434 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4435
4436 NOTE_BLOCK (insn) = new_block;
4437 block = new_block;
4438 }
4439
4440 if (prev_beg == current_block && prev_beg)
4441 BLOCK_SAME_RANGE (block) = 1;
4442
4443 prev_beg = origin;
4444
4445 BLOCK_SUBBLOCKS (block) = 0;
4446 TREE_ASM_WRITTEN (block) = 1;
4447 /* When there's only one block for the entire function,
4448 current_block == block and we mustn't do this, it
4449 will cause infinite recursion. */
4450 if (block != current_block)
4451 {
4452 tree super;
4453 if (block != origin)
4454 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4455 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4456 (origin))
4457 == current_block);
4458 if (p_block_stack->is_empty ())
4459 super = current_block;
4460 else
4461 {
4462 super = p_block_stack->last ();
4463 gcc_assert (super == current_block
4464 || BLOCK_FRAGMENT_ORIGIN (super)
4465 == current_block);
4466 }
4467 BLOCK_SUPERCONTEXT (block) = super;
4468 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4469 BLOCK_SUBBLOCKS (current_block) = block;
4470 current_block = origin;
4471 }
4472 p_block_stack->safe_push (block);
4473 }
4474 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4475 {
4476 NOTE_BLOCK (insn) = p_block_stack->pop ();
4477 current_block = BLOCK_SUPERCONTEXT (current_block);
4478 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4479 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4480 prev_beg = NULL_TREE;
4481 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4482 ? NOTE_BLOCK (insn) : NULL_TREE;
4483 }
4484 }
4485 else
4486 {
4487 prev_beg = NULL_TREE;
4488 if (prev_end)
4489 BLOCK_SAME_RANGE (prev_end) = 0;
4490 prev_end = NULL_TREE;
4491 }
4492 }
4493 }
4494
4495 /* Reverse the order of elements in the chain T of blocks,
4496 and return the new head of the chain (old last element). */
4497
4498 tree
4499 blocks_nreverse (tree t)
4500 {
4501 tree prev = 0, block, next;
4502 for (block = t; block; block = next)
4503 {
4504 next = BLOCK_CHAIN (block);
4505 BLOCK_CHAIN (block) = prev;
4506 prev = block;
4507 }
4508 return prev;
4509 }
4510
4511 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4512 by modifying the last node in chain 1 to point to chain 2. */
4513
4514 tree
4515 block_chainon (tree op1, tree op2)
4516 {
4517 tree t1;
4518
4519 if (!op1)
4520 return op2;
4521 if (!op2)
4522 return op1;
4523
4524 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4525 continue;
4526 BLOCK_CHAIN (t1) = op2;
4527
4528 #ifdef ENABLE_TREE_CHECKING
4529 {
4530 tree t2;
4531 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4532 gcc_assert (t2 != t1);
4533 }
4534 #endif
4535
4536 return op1;
4537 }
4538
4539 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4540 non-NULL, list them all into VECTOR, in a depth-first preorder
4541 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4542 blocks. */
4543
4544 static int
4545 all_blocks (tree block, tree *vector)
4546 {
4547 int n_blocks = 0;
4548
4549 while (block)
4550 {
4551 TREE_ASM_WRITTEN (block) = 0;
4552
4553 /* Record this block. */
4554 if (vector)
4555 vector[n_blocks] = block;
4556
4557 ++n_blocks;
4558
4559 /* Record the subblocks, and their subblocks... */
4560 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4561 vector ? vector + n_blocks : 0);
4562 block = BLOCK_CHAIN (block);
4563 }
4564
4565 return n_blocks;
4566 }
4567
4568 /* Return a vector containing all the blocks rooted at BLOCK. The
4569 number of elements in the vector is stored in N_BLOCKS_P. The
4570 vector is dynamically allocated; it is the caller's responsibility
4571 to call `free' on the pointer returned. */
4572
4573 static tree *
4574 get_block_vector (tree block, int *n_blocks_p)
4575 {
4576 tree *block_vector;
4577
4578 *n_blocks_p = all_blocks (block, NULL);
4579 block_vector = XNEWVEC (tree, *n_blocks_p);
4580 all_blocks (block, block_vector);
4581
4582 return block_vector;
4583 }
4584
4585 static GTY(()) int next_block_index = 2;
4586
4587 /* Set BLOCK_NUMBER for all the blocks in FN. */
4588
4589 void
4590 number_blocks (tree fn)
4591 {
4592 int i;
4593 int n_blocks;
4594 tree *block_vector;
4595
4596 /* For SDB and XCOFF debugging output, we start numbering the blocks
4597 from 1 within each function, rather than keeping a running
4598 count. */
4599 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4600 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4601 next_block_index = 1;
4602 #endif
4603
4604 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4605
4606 /* The top-level BLOCK isn't numbered at all. */
4607 for (i = 1; i < n_blocks; ++i)
4608 /* We number the blocks from two. */
4609 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4610
4611 free (block_vector);
4612
4613 return;
4614 }
4615
4616 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4617
4618 DEBUG_FUNCTION tree
4619 debug_find_var_in_block_tree (tree var, tree block)
4620 {
4621 tree t;
4622
4623 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4624 if (t == var)
4625 return block;
4626
4627 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4628 {
4629 tree ret = debug_find_var_in_block_tree (var, t);
4630 if (ret)
4631 return ret;
4632 }
4633
4634 return NULL_TREE;
4635 }
4636 \f
4637 /* Keep track of whether we're in a dummy function context. If we are,
4638 we don't want to invoke the set_current_function hook, because we'll
4639 get into trouble if the hook calls target_reinit () recursively or
4640 when the initial initialization is not yet complete. */
4641
4642 static bool in_dummy_function;
4643
4644 /* Invoke the target hook when setting cfun. Update the optimization options
4645 if the function uses different options than the default. */
4646
4647 static void
4648 invoke_set_current_function_hook (tree fndecl)
4649 {
4650 if (!in_dummy_function)
4651 {
4652 tree opts = ((fndecl)
4653 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4654 : optimization_default_node);
4655
4656 if (!opts)
4657 opts = optimization_default_node;
4658
4659 /* Change optimization options if needed. */
4660 if (optimization_current_node != opts)
4661 {
4662 optimization_current_node = opts;
4663 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4664 }
4665
4666 targetm.set_current_function (fndecl);
4667 this_fn_optabs = this_target_optabs;
4668
4669 if (opts != optimization_default_node)
4670 {
4671 init_tree_optimization_optabs (opts);
4672 if (TREE_OPTIMIZATION_OPTABS (opts))
4673 this_fn_optabs = (struct target_optabs *)
4674 TREE_OPTIMIZATION_OPTABS (opts);
4675 }
4676 }
4677 }
4678
4679 /* cfun should never be set directly; use this function. */
4680
4681 void
4682 set_cfun (struct function *new_cfun)
4683 {
4684 if (cfun != new_cfun)
4685 {
4686 cfun = new_cfun;
4687 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4688 }
4689 }
4690
4691 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4692
4693 static vec<function_p> cfun_stack;
4694
4695 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4696 current_function_decl accordingly. */
4697
4698 void
4699 push_cfun (struct function *new_cfun)
4700 {
4701 gcc_assert ((!cfun && !current_function_decl)
4702 || (cfun && current_function_decl == cfun->decl));
4703 cfun_stack.safe_push (cfun);
4704 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4705 set_cfun (new_cfun);
4706 }
4707
4708 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4709
4710 void
4711 pop_cfun (void)
4712 {
4713 struct function *new_cfun = cfun_stack.pop ();
4714 /* When in_dummy_function, we do have a cfun but current_function_decl is
4715 NULL. We also allow pushing NULL cfun and subsequently changing
4716 current_function_decl to something else and have both restored by
4717 pop_cfun. */
4718 gcc_checking_assert (in_dummy_function
4719 || !cfun
4720 || current_function_decl == cfun->decl);
4721 set_cfun (new_cfun);
4722 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4723 }
4724
4725 /* Return value of funcdef and increase it. */
4726 int
4727 get_next_funcdef_no (void)
4728 {
4729 return funcdef_no++;
4730 }
4731
4732 /* Return value of funcdef. */
4733 int
4734 get_last_funcdef_no (void)
4735 {
4736 return funcdef_no;
4737 }
4738
4739 /* Allocate a function structure for FNDECL and set its contents
4740 to the defaults. Set cfun to the newly-allocated object.
4741 Some of the helper functions invoked during initialization assume
4742 that cfun has already been set. Therefore, assign the new object
4743 directly into cfun and invoke the back end hook explicitly at the
4744 very end, rather than initializing a temporary and calling set_cfun
4745 on it.
4746
4747 ABSTRACT_P is true if this is a function that will never be seen by
4748 the middle-end. Such functions are front-end concepts (like C++
4749 function templates) that do not correspond directly to functions
4750 placed in object files. */
4751
4752 void
4753 allocate_struct_function (tree fndecl, bool abstract_p)
4754 {
4755 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4756
4757 cfun = ggc_cleared_alloc<function> ();
4758
4759 init_eh_for_function ();
4760
4761 if (init_machine_status)
4762 cfun->machine = (*init_machine_status) ();
4763
4764 #ifdef OVERRIDE_ABI_FORMAT
4765 OVERRIDE_ABI_FORMAT (fndecl);
4766 #endif
4767
4768 if (fndecl != NULL_TREE)
4769 {
4770 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4771 cfun->decl = fndecl;
4772 current_function_funcdef_no = get_next_funcdef_no ();
4773 }
4774
4775 invoke_set_current_function_hook (fndecl);
4776
4777 if (fndecl != NULL_TREE)
4778 {
4779 tree result = DECL_RESULT (fndecl);
4780 if (!abstract_p && aggregate_value_p (result, fndecl))
4781 {
4782 #ifdef PCC_STATIC_STRUCT_RETURN
4783 cfun->returns_pcc_struct = 1;
4784 #endif
4785 cfun->returns_struct = 1;
4786 }
4787
4788 cfun->stdarg = stdarg_p (fntype);
4789
4790 /* Assume all registers in stdarg functions need to be saved. */
4791 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4792 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4793
4794 /* ??? This could be set on a per-function basis by the front-end
4795 but is this worth the hassle? */
4796 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4797 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4798
4799 if (!profile_flag && !flag_instrument_function_entry_exit)
4800 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4801 }
4802 }
4803
4804 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4805 instead of just setting it. */
4806
4807 void
4808 push_struct_function (tree fndecl)
4809 {
4810 /* When in_dummy_function we might be in the middle of a pop_cfun and
4811 current_function_decl and cfun may not match. */
4812 gcc_assert (in_dummy_function
4813 || (!cfun && !current_function_decl)
4814 || (cfun && current_function_decl == cfun->decl));
4815 cfun_stack.safe_push (cfun);
4816 current_function_decl = fndecl;
4817 allocate_struct_function (fndecl, false);
4818 }
4819
4820 /* Reset crtl and other non-struct-function variables to defaults as
4821 appropriate for emitting rtl at the start of a function. */
4822
4823 static void
4824 prepare_function_start (void)
4825 {
4826 gcc_assert (!get_last_insn ());
4827 init_temp_slots ();
4828 init_emit ();
4829 init_varasm_status ();
4830 init_expr ();
4831 default_rtl_profile ();
4832
4833 if (flag_stack_usage_info)
4834 {
4835 cfun->su = ggc_cleared_alloc<stack_usage> ();
4836 cfun->su->static_stack_size = -1;
4837 }
4838
4839 cse_not_expected = ! optimize;
4840
4841 /* Caller save not needed yet. */
4842 caller_save_needed = 0;
4843
4844 /* We haven't done register allocation yet. */
4845 reg_renumber = 0;
4846
4847 /* Indicate that we have not instantiated virtual registers yet. */
4848 virtuals_instantiated = 0;
4849
4850 /* Indicate that we want CONCATs now. */
4851 generating_concat_p = 1;
4852
4853 /* Indicate we have no need of a frame pointer yet. */
4854 frame_pointer_needed = 0;
4855 }
4856
4857 void
4858 push_dummy_function (bool with_decl)
4859 {
4860 tree fn_decl, fn_type, fn_result_decl;
4861
4862 gcc_assert (!in_dummy_function);
4863 in_dummy_function = true;
4864
4865 if (with_decl)
4866 {
4867 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4868 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4869 fn_type);
4870 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4871 NULL_TREE, void_type_node);
4872 DECL_RESULT (fn_decl) = fn_result_decl;
4873 }
4874 else
4875 fn_decl = NULL_TREE;
4876
4877 push_struct_function (fn_decl);
4878 }
4879
4880 /* Initialize the rtl expansion mechanism so that we can do simple things
4881 like generate sequences. This is used to provide a context during global
4882 initialization of some passes. You must call expand_dummy_function_end
4883 to exit this context. */
4884
4885 void
4886 init_dummy_function_start (void)
4887 {
4888 push_dummy_function (false);
4889 prepare_function_start ();
4890 }
4891
4892 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4893 and initialize static variables for generating RTL for the statements
4894 of the function. */
4895
4896 void
4897 init_function_start (tree subr)
4898 {
4899 if (subr && DECL_STRUCT_FUNCTION (subr))
4900 set_cfun (DECL_STRUCT_FUNCTION (subr));
4901 else
4902 allocate_struct_function (subr, false);
4903
4904 /* Initialize backend, if needed. */
4905 initialize_rtl ();
4906
4907 prepare_function_start ();
4908 decide_function_section (subr);
4909
4910 /* Warn if this value is an aggregate type,
4911 regardless of which calling convention we are using for it. */
4912 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4913 warning (OPT_Waggregate_return, "function returns an aggregate");
4914 }
4915
4916 /* Expand code to verify the stack_protect_guard. This is invoked at
4917 the end of a function to be protected. */
4918
4919 #ifndef HAVE_stack_protect_test
4920 # define HAVE_stack_protect_test 0
4921 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4922 #endif
4923
4924 void
4925 stack_protect_epilogue (void)
4926 {
4927 tree guard_decl = targetm.stack_protect_guard ();
4928 rtx_code_label *label = gen_label_rtx ();
4929 rtx x, y, tmp;
4930
4931 x = expand_normal (crtl->stack_protect_guard);
4932 y = expand_normal (guard_decl);
4933
4934 /* Allow the target to compare Y with X without leaking either into
4935 a register. */
4936 switch ((int) (HAVE_stack_protect_test != 0))
4937 {
4938 case 1:
4939 tmp = gen_stack_protect_test (x, y, label);
4940 if (tmp)
4941 {
4942 emit_insn (tmp);
4943 break;
4944 }
4945 /* FALLTHRU */
4946
4947 default:
4948 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4949 break;
4950 }
4951
4952 /* The noreturn predictor has been moved to the tree level. The rtl-level
4953 predictors estimate this branch about 20%, which isn't enough to get
4954 things moved out of line. Since this is the only extant case of adding
4955 a noreturn function at the rtl level, it doesn't seem worth doing ought
4956 except adding the prediction by hand. */
4957 tmp = get_last_insn ();
4958 if (JUMP_P (tmp))
4959 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4960
4961 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4962 free_temp_slots ();
4963 emit_label (label);
4964 }
4965 \f
4966 /* Start the RTL for a new function, and set variables used for
4967 emitting RTL.
4968 SUBR is the FUNCTION_DECL node.
4969 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4970 the function's parameters, which must be run at any return statement. */
4971
4972 void
4973 expand_function_start (tree subr)
4974 {
4975 /* Make sure volatile mem refs aren't considered
4976 valid operands of arithmetic insns. */
4977 init_recog_no_volatile ();
4978
4979 crtl->profile
4980 = (profile_flag
4981 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4982
4983 crtl->limit_stack
4984 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4985
4986 /* Make the label for return statements to jump to. Do not special
4987 case machines with special return instructions -- they will be
4988 handled later during jump, ifcvt, or epilogue creation. */
4989 return_label = gen_label_rtx ();
4990
4991 /* Initialize rtx used to return the value. */
4992 /* Do this before assign_parms so that we copy the struct value address
4993 before any library calls that assign parms might generate. */
4994
4995 /* Decide whether to return the value in memory or in a register. */
4996 if (aggregate_value_p (DECL_RESULT (subr), subr))
4997 {
4998 /* Returning something that won't go in a register. */
4999 rtx value_address = 0;
5000
5001 #ifdef PCC_STATIC_STRUCT_RETURN
5002 if (cfun->returns_pcc_struct)
5003 {
5004 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
5005 value_address = assemble_static_space (size);
5006 }
5007 else
5008 #endif
5009 {
5010 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5011 /* Expect to be passed the address of a place to store the value.
5012 If it is passed as an argument, assign_parms will take care of
5013 it. */
5014 if (sv)
5015 {
5016 value_address = gen_reg_rtx (Pmode);
5017 emit_move_insn (value_address, sv);
5018 }
5019 }
5020 if (value_address)
5021 {
5022 rtx x = value_address;
5023 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
5024 {
5025 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
5026 set_mem_attributes (x, DECL_RESULT (subr), 1);
5027 }
5028 SET_DECL_RTL (DECL_RESULT (subr), x);
5029 }
5030 }
5031 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
5032 /* If return mode is void, this decl rtl should not be used. */
5033 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
5034 else
5035 {
5036 /* Compute the return values into a pseudo reg, which we will copy
5037 into the true return register after the cleanups are done. */
5038 tree return_type = TREE_TYPE (DECL_RESULT (subr));
5039 if (TYPE_MODE (return_type) != BLKmode
5040 && targetm.calls.return_in_msb (return_type))
5041 /* expand_function_end will insert the appropriate padding in
5042 this case. Use the return value's natural (unpadded) mode
5043 within the function proper. */
5044 SET_DECL_RTL (DECL_RESULT (subr),
5045 gen_reg_rtx (TYPE_MODE (return_type)));
5046 else
5047 {
5048 /* In order to figure out what mode to use for the pseudo, we
5049 figure out what the mode of the eventual return register will
5050 actually be, and use that. */
5051 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5052
5053 /* Structures that are returned in registers are not
5054 aggregate_value_p, so we may see a PARALLEL or a REG. */
5055 if (REG_P (hard_reg))
5056 SET_DECL_RTL (DECL_RESULT (subr),
5057 gen_reg_rtx (GET_MODE (hard_reg)));
5058 else
5059 {
5060 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5061 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
5062 }
5063 }
5064
5065 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5066 result to the real return register(s). */
5067 DECL_REGISTER (DECL_RESULT (subr)) = 1;
5068
5069 if (chkp_function_instrumented_p (current_function_decl))
5070 {
5071 tree return_type = TREE_TYPE (DECL_RESULT (subr));
5072 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5073 subr, 1);
5074 SET_DECL_BOUNDS_RTL (DECL_RESULT (subr), bounds);
5075 }
5076 }
5077
5078 /* Initialize rtx for parameters and local variables.
5079 In some cases this requires emitting insns. */
5080 assign_parms (subr);
5081
5082 /* If function gets a static chain arg, store it. */
5083 if (cfun->static_chain_decl)
5084 {
5085 tree parm = cfun->static_chain_decl;
5086 rtx local, chain;
5087 rtx_insn *insn;
5088
5089 local = gen_reg_rtx (Pmode);
5090 chain = targetm.calls.static_chain (current_function_decl, true);
5091
5092 set_decl_incoming_rtl (parm, chain, false);
5093 SET_DECL_RTL (parm, local);
5094 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5095
5096 insn = emit_move_insn (local, chain);
5097
5098 /* Mark the register as eliminable, similar to parameters. */
5099 if (MEM_P (chain)
5100 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5101 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5102
5103 /* If we aren't optimizing, save the static chain onto the stack. */
5104 if (!optimize)
5105 {
5106 tree saved_static_chain_decl
5107 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5108 DECL_NAME (parm), TREE_TYPE (parm));
5109 rtx saved_static_chain_rtx
5110 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5111 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5112 emit_move_insn (saved_static_chain_rtx, chain);
5113 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5114 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5115 }
5116 }
5117
5118 /* If the function receives a non-local goto, then store the
5119 bits we need to restore the frame pointer. */
5120 if (cfun->nonlocal_goto_save_area)
5121 {
5122 tree t_save;
5123 rtx r_save;
5124
5125 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5126 gcc_assert (DECL_RTL_SET_P (var));
5127
5128 t_save = build4 (ARRAY_REF,
5129 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5130 cfun->nonlocal_goto_save_area,
5131 integer_zero_node, NULL_TREE, NULL_TREE);
5132 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5133 gcc_assert (GET_MODE (r_save) == Pmode);
5134
5135 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5136 update_nonlocal_goto_save_area ();
5137 }
5138
5139 /* The following was moved from init_function_start.
5140 The move is supposed to make sdb output more accurate. */
5141 /* Indicate the beginning of the function body,
5142 as opposed to parm setup. */
5143 emit_note (NOTE_INSN_FUNCTION_BEG);
5144
5145 gcc_assert (NOTE_P (get_last_insn ()));
5146
5147 parm_birth_insn = get_last_insn ();
5148
5149 if (crtl->profile)
5150 {
5151 #ifdef PROFILE_HOOK
5152 PROFILE_HOOK (current_function_funcdef_no);
5153 #endif
5154 }
5155
5156 /* If we are doing generic stack checking, the probe should go here. */
5157 if (flag_stack_check == GENERIC_STACK_CHECK)
5158 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5159 }
5160 \f
5161 void
5162 pop_dummy_function (void)
5163 {
5164 pop_cfun ();
5165 in_dummy_function = false;
5166 }
5167
5168 /* Undo the effects of init_dummy_function_start. */
5169 void
5170 expand_dummy_function_end (void)
5171 {
5172 gcc_assert (in_dummy_function);
5173
5174 /* End any sequences that failed to be closed due to syntax errors. */
5175 while (in_sequence_p ())
5176 end_sequence ();
5177
5178 /* Outside function body, can't compute type's actual size
5179 until next function's body starts. */
5180
5181 free_after_parsing (cfun);
5182 free_after_compilation (cfun);
5183 pop_dummy_function ();
5184 }
5185
5186 /* Helper for diddle_return_value. */
5187
5188 void
5189 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5190 {
5191 if (! outgoing)
5192 return;
5193
5194 if (REG_P (outgoing))
5195 (*doit) (outgoing, arg);
5196 else if (GET_CODE (outgoing) == PARALLEL)
5197 {
5198 int i;
5199
5200 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5201 {
5202 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5203
5204 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5205 (*doit) (x, arg);
5206 }
5207 }
5208 }
5209
5210 /* Call DOIT for each hard register used as a return value from
5211 the current function. */
5212
5213 void
5214 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5215 {
5216 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5217 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5218 }
5219
5220 static void
5221 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5222 {
5223 emit_clobber (reg);
5224 }
5225
5226 void
5227 clobber_return_register (void)
5228 {
5229 diddle_return_value (do_clobber_return_reg, NULL);
5230
5231 /* In case we do use pseudo to return value, clobber it too. */
5232 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5233 {
5234 tree decl_result = DECL_RESULT (current_function_decl);
5235 rtx decl_rtl = DECL_RTL (decl_result);
5236 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5237 {
5238 do_clobber_return_reg (decl_rtl, NULL);
5239 }
5240 }
5241 }
5242
5243 static void
5244 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5245 {
5246 emit_use (reg);
5247 }
5248
5249 static void
5250 use_return_register (void)
5251 {
5252 diddle_return_value (do_use_return_reg, NULL);
5253 }
5254
5255 /* Possibly warn about unused parameters. */
5256 void
5257 do_warn_unused_parameter (tree fn)
5258 {
5259 tree decl;
5260
5261 for (decl = DECL_ARGUMENTS (fn);
5262 decl; decl = DECL_CHAIN (decl))
5263 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5264 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
5265 && !TREE_NO_WARNING (decl))
5266 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
5267 }
5268
5269 /* Set the location of the insn chain starting at INSN to LOC. */
5270
5271 static void
5272 set_insn_locations (rtx_insn *insn, int loc)
5273 {
5274 while (insn != NULL)
5275 {
5276 if (INSN_P (insn))
5277 INSN_LOCATION (insn) = loc;
5278 insn = NEXT_INSN (insn);
5279 }
5280 }
5281
5282 /* Generate RTL for the end of the current function. */
5283
5284 void
5285 expand_function_end (void)
5286 {
5287 /* If arg_pointer_save_area was referenced only from a nested
5288 function, we will not have initialized it yet. Do that now. */
5289 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5290 get_arg_pointer_save_area ();
5291
5292 /* If we are doing generic stack checking and this function makes calls,
5293 do a stack probe at the start of the function to ensure we have enough
5294 space for another stack frame. */
5295 if (flag_stack_check == GENERIC_STACK_CHECK)
5296 {
5297 rtx_insn *insn, *seq;
5298
5299 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5300 if (CALL_P (insn))
5301 {
5302 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5303 start_sequence ();
5304 if (STACK_CHECK_MOVING_SP)
5305 anti_adjust_stack_and_probe (max_frame_size, true);
5306 else
5307 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5308 seq = get_insns ();
5309 end_sequence ();
5310 set_insn_locations (seq, prologue_location);
5311 emit_insn_before (seq, stack_check_probe_note);
5312 break;
5313 }
5314 }
5315
5316 /* End any sequences that failed to be closed due to syntax errors. */
5317 while (in_sequence_p ())
5318 end_sequence ();
5319
5320 clear_pending_stack_adjust ();
5321 do_pending_stack_adjust ();
5322
5323 /* Output a linenumber for the end of the function.
5324 SDB depends on this. */
5325 set_curr_insn_location (input_location);
5326
5327 /* Before the return label (if any), clobber the return
5328 registers so that they are not propagated live to the rest of
5329 the function. This can only happen with functions that drop
5330 through; if there had been a return statement, there would
5331 have either been a return rtx, or a jump to the return label.
5332
5333 We delay actual code generation after the current_function_value_rtx
5334 is computed. */
5335 rtx_insn *clobber_after = get_last_insn ();
5336
5337 /* Output the label for the actual return from the function. */
5338 emit_label (return_label);
5339
5340 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5341 {
5342 /* Let except.c know where it should emit the call to unregister
5343 the function context for sjlj exceptions. */
5344 if (flag_exceptions)
5345 sjlj_emit_function_exit_after (get_last_insn ());
5346 }
5347 else
5348 {
5349 /* We want to ensure that instructions that may trap are not
5350 moved into the epilogue by scheduling, because we don't
5351 always emit unwind information for the epilogue. */
5352 if (cfun->can_throw_non_call_exceptions)
5353 emit_insn (gen_blockage ());
5354 }
5355
5356 /* If this is an implementation of throw, do what's necessary to
5357 communicate between __builtin_eh_return and the epilogue. */
5358 expand_eh_return ();
5359
5360 /* If scalar return value was computed in a pseudo-reg, or was a named
5361 return value that got dumped to the stack, copy that to the hard
5362 return register. */
5363 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5364 {
5365 tree decl_result = DECL_RESULT (current_function_decl);
5366 rtx decl_rtl = DECL_RTL (decl_result);
5367
5368 if (REG_P (decl_rtl)
5369 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5370 : DECL_REGISTER (decl_result))
5371 {
5372 rtx real_decl_rtl = crtl->return_rtx;
5373
5374 /* This should be set in assign_parms. */
5375 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5376
5377 /* If this is a BLKmode structure being returned in registers,
5378 then use the mode computed in expand_return. Note that if
5379 decl_rtl is memory, then its mode may have been changed,
5380 but that crtl->return_rtx has not. */
5381 if (GET_MODE (real_decl_rtl) == BLKmode)
5382 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5383
5384 /* If a non-BLKmode return value should be padded at the least
5385 significant end of the register, shift it left by the appropriate
5386 amount. BLKmode results are handled using the group load/store
5387 machinery. */
5388 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5389 && REG_P (real_decl_rtl)
5390 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5391 {
5392 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5393 REGNO (real_decl_rtl)),
5394 decl_rtl);
5395 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5396 }
5397 /* If a named return value dumped decl_return to memory, then
5398 we may need to re-do the PROMOTE_MODE signed/unsigned
5399 extension. */
5400 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5401 {
5402 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5403 promote_function_mode (TREE_TYPE (decl_result),
5404 GET_MODE (decl_rtl), &unsignedp,
5405 TREE_TYPE (current_function_decl), 1);
5406
5407 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5408 }
5409 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5410 {
5411 /* If expand_function_start has created a PARALLEL for decl_rtl,
5412 move the result to the real return registers. Otherwise, do
5413 a group load from decl_rtl for a named return. */
5414 if (GET_CODE (decl_rtl) == PARALLEL)
5415 emit_group_move (real_decl_rtl, decl_rtl);
5416 else
5417 emit_group_load (real_decl_rtl, decl_rtl,
5418 TREE_TYPE (decl_result),
5419 int_size_in_bytes (TREE_TYPE (decl_result)));
5420 }
5421 /* In the case of complex integer modes smaller than a word, we'll
5422 need to generate some non-trivial bitfield insertions. Do that
5423 on a pseudo and not the hard register. */
5424 else if (GET_CODE (decl_rtl) == CONCAT
5425 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5426 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5427 {
5428 int old_generating_concat_p;
5429 rtx tmp;
5430
5431 old_generating_concat_p = generating_concat_p;
5432 generating_concat_p = 0;
5433 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5434 generating_concat_p = old_generating_concat_p;
5435
5436 emit_move_insn (tmp, decl_rtl);
5437 emit_move_insn (real_decl_rtl, tmp);
5438 }
5439 else
5440 emit_move_insn (real_decl_rtl, decl_rtl);
5441 }
5442 }
5443
5444 /* If returning a structure, arrange to return the address of the value
5445 in a place where debuggers expect to find it.
5446
5447 If returning a structure PCC style,
5448 the caller also depends on this value.
5449 And cfun->returns_pcc_struct is not necessarily set. */
5450 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5451 && !targetm.calls.omit_struct_return_reg)
5452 {
5453 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5454 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5455 rtx outgoing;
5456
5457 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5458 type = TREE_TYPE (type);
5459 else
5460 value_address = XEXP (value_address, 0);
5461
5462 outgoing = targetm.calls.function_value (build_pointer_type (type),
5463 current_function_decl, true);
5464
5465 /* Mark this as a function return value so integrate will delete the
5466 assignment and USE below when inlining this function. */
5467 REG_FUNCTION_VALUE_P (outgoing) = 1;
5468
5469 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5470 value_address = convert_memory_address (GET_MODE (outgoing),
5471 value_address);
5472
5473 emit_move_insn (outgoing, value_address);
5474
5475 /* Show return register used to hold result (in this case the address
5476 of the result. */
5477 crtl->return_rtx = outgoing;
5478 }
5479
5480 /* Emit the actual code to clobber return register. Don't emit
5481 it if clobber_after is a barrier, then the previous basic block
5482 certainly doesn't fall thru into the exit block. */
5483 if (!BARRIER_P (clobber_after))
5484 {
5485 start_sequence ();
5486 clobber_return_register ();
5487 rtx_insn *seq = get_insns ();
5488 end_sequence ();
5489
5490 emit_insn_after (seq, clobber_after);
5491 }
5492
5493 /* Output the label for the naked return from the function. */
5494 if (naked_return_label)
5495 emit_label (naked_return_label);
5496
5497 /* @@@ This is a kludge. We want to ensure that instructions that
5498 may trap are not moved into the epilogue by scheduling, because
5499 we don't always emit unwind information for the epilogue. */
5500 if (cfun->can_throw_non_call_exceptions
5501 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5502 emit_insn (gen_blockage ());
5503
5504 /* If stack protection is enabled for this function, check the guard. */
5505 if (crtl->stack_protect_guard)
5506 stack_protect_epilogue ();
5507
5508 /* If we had calls to alloca, and this machine needs
5509 an accurate stack pointer to exit the function,
5510 insert some code to save and restore the stack pointer. */
5511 if (! EXIT_IGNORE_STACK
5512 && cfun->calls_alloca)
5513 {
5514 rtx tem = 0;
5515
5516 start_sequence ();
5517 emit_stack_save (SAVE_FUNCTION, &tem);
5518 rtx_insn *seq = get_insns ();
5519 end_sequence ();
5520 emit_insn_before (seq, parm_birth_insn);
5521
5522 emit_stack_restore (SAVE_FUNCTION, tem);
5523 }
5524
5525 /* ??? This should no longer be necessary since stupid is no longer with
5526 us, but there are some parts of the compiler (eg reload_combine, and
5527 sh mach_dep_reorg) that still try and compute their own lifetime info
5528 instead of using the general framework. */
5529 use_return_register ();
5530 }
5531
5532 rtx
5533 get_arg_pointer_save_area (void)
5534 {
5535 rtx ret = arg_pointer_save_area;
5536
5537 if (! ret)
5538 {
5539 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5540 arg_pointer_save_area = ret;
5541 }
5542
5543 if (! crtl->arg_pointer_save_area_init)
5544 {
5545 /* Save the arg pointer at the beginning of the function. The
5546 generated stack slot may not be a valid memory address, so we
5547 have to check it and fix it if necessary. */
5548 start_sequence ();
5549 emit_move_insn (validize_mem (copy_rtx (ret)),
5550 crtl->args.internal_arg_pointer);
5551 rtx_insn *seq = get_insns ();
5552 end_sequence ();
5553
5554 push_topmost_sequence ();
5555 emit_insn_after (seq, entry_of_function ());
5556 pop_topmost_sequence ();
5557
5558 crtl->arg_pointer_save_area_init = true;
5559 }
5560
5561 return ret;
5562 }
5563 \f
5564 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5565 for the first time. */
5566
5567 static void
5568 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5569 {
5570 rtx_insn *tmp;
5571 hash_table<insn_cache_hasher> *hash = *hashp;
5572
5573 if (hash == NULL)
5574 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5575
5576 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5577 {
5578 rtx *slot = hash->find_slot (tmp, INSERT);
5579 gcc_assert (*slot == NULL);
5580 *slot = tmp;
5581 }
5582 }
5583
5584 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5585 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5586 insn, then record COPY as well. */
5587
5588 void
5589 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5590 {
5591 hash_table<insn_cache_hasher> *hash;
5592 rtx *slot;
5593
5594 hash = epilogue_insn_hash;
5595 if (!hash || !hash->find (insn))
5596 {
5597 hash = prologue_insn_hash;
5598 if (!hash || !hash->find (insn))
5599 return;
5600 }
5601
5602 slot = hash->find_slot (copy, INSERT);
5603 gcc_assert (*slot == NULL);
5604 *slot = copy;
5605 }
5606
5607 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5608 we can be running after reorg, SEQUENCE rtl is possible. */
5609
5610 static bool
5611 contains (const_rtx insn, hash_table<insn_cache_hasher> *hash)
5612 {
5613 if (hash == NULL)
5614 return false;
5615
5616 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5617 {
5618 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5619 int i;
5620 for (i = seq->len () - 1; i >= 0; i--)
5621 if (hash->find (seq->element (i)))
5622 return true;
5623 return false;
5624 }
5625
5626 return hash->find (const_cast<rtx> (insn)) != NULL;
5627 }
5628
5629 int
5630 prologue_epilogue_contains (const_rtx insn)
5631 {
5632 if (contains (insn, prologue_insn_hash))
5633 return 1;
5634 if (contains (insn, epilogue_insn_hash))
5635 return 1;
5636 return 0;
5637 }
5638
5639 /* Insert use of return register before the end of BB. */
5640
5641 static void
5642 emit_use_return_register_into_block (basic_block bb)
5643 {
5644 start_sequence ();
5645 use_return_register ();
5646 rtx_insn *seq = get_insns ();
5647 end_sequence ();
5648 rtx_insn *insn = BB_END (bb);
5649 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5650 insn = prev_cc0_setter (insn);
5651
5652 emit_insn_before (seq, insn);
5653 }
5654
5655
5656 /* Create a return pattern, either simple_return or return, depending on
5657 simple_p. */
5658
5659 static rtx
5660 gen_return_pattern (bool simple_p)
5661 {
5662 if (!HAVE_simple_return)
5663 gcc_assert (!simple_p);
5664
5665 return simple_p ? gen_simple_return () : gen_return ();
5666 }
5667
5668 /* Insert an appropriate return pattern at the end of block BB. This
5669 also means updating block_for_insn appropriately. SIMPLE_P is
5670 the same as in gen_return_pattern and passed to it. */
5671
5672 void
5673 emit_return_into_block (bool simple_p, basic_block bb)
5674 {
5675 rtx_jump_insn *jump = emit_jump_insn_after (gen_return_pattern (simple_p),
5676 BB_END (bb));
5677 rtx pat = PATTERN (jump);
5678 if (GET_CODE (pat) == PARALLEL)
5679 pat = XVECEXP (pat, 0, 0);
5680 gcc_assert (ANY_RETURN_P (pat));
5681 JUMP_LABEL (jump) = pat;
5682 }
5683
5684 /* Set JUMP_LABEL for a return insn. */
5685
5686 void
5687 set_return_jump_label (rtx_insn *returnjump)
5688 {
5689 rtx pat = PATTERN (returnjump);
5690 if (GET_CODE (pat) == PARALLEL)
5691 pat = XVECEXP (pat, 0, 0);
5692 if (ANY_RETURN_P (pat))
5693 JUMP_LABEL (returnjump) = pat;
5694 else
5695 JUMP_LABEL (returnjump) = ret_rtx;
5696 }
5697
5698 /* Return true if there are any active insns between HEAD and TAIL. */
5699 bool
5700 active_insn_between (rtx_insn *head, rtx_insn *tail)
5701 {
5702 while (tail)
5703 {
5704 if (active_insn_p (tail))
5705 return true;
5706 if (tail == head)
5707 return false;
5708 tail = PREV_INSN (tail);
5709 }
5710 return false;
5711 }
5712
5713 /* LAST_BB is a block that exits, and empty of active instructions.
5714 Examine its predecessors for jumps that can be converted to
5715 (conditional) returns. */
5716 vec<edge>
5717 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5718 vec<edge> unconverted ATTRIBUTE_UNUSED)
5719 {
5720 int i;
5721 basic_block bb;
5722 edge_iterator ei;
5723 edge e;
5724 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5725
5726 FOR_EACH_EDGE (e, ei, last_bb->preds)
5727 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5728 src_bbs.quick_push (e->src);
5729
5730 rtx_insn *label = BB_HEAD (last_bb);
5731
5732 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5733 {
5734 rtx_insn *jump = BB_END (bb);
5735
5736 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5737 continue;
5738
5739 e = find_edge (bb, last_bb);
5740
5741 /* If we have an unconditional jump, we can replace that
5742 with a simple return instruction. */
5743 if (simplejump_p (jump))
5744 {
5745 /* The use of the return register might be present in the exit
5746 fallthru block. Either:
5747 - removing the use is safe, and we should remove the use in
5748 the exit fallthru block, or
5749 - removing the use is not safe, and we should add it here.
5750 For now, we conservatively choose the latter. Either of the
5751 2 helps in crossjumping. */
5752 emit_use_return_register_into_block (bb);
5753
5754 emit_return_into_block (simple_p, bb);
5755 delete_insn (jump);
5756 }
5757
5758 /* If we have a conditional jump branching to the last
5759 block, we can try to replace that with a conditional
5760 return instruction. */
5761 else if (condjump_p (jump))
5762 {
5763 rtx dest;
5764
5765 if (simple_p)
5766 dest = simple_return_rtx;
5767 else
5768 dest = ret_rtx;
5769 if (!redirect_jump (as_a <rtx_jump_insn *> (jump), dest, 0))
5770 {
5771 if (HAVE_simple_return && simple_p)
5772 {
5773 if (dump_file)
5774 fprintf (dump_file,
5775 "Failed to redirect bb %d branch.\n", bb->index);
5776 unconverted.safe_push (e);
5777 }
5778 continue;
5779 }
5780
5781 /* See comment in simplejump_p case above. */
5782 emit_use_return_register_into_block (bb);
5783
5784 /* If this block has only one successor, it both jumps
5785 and falls through to the fallthru block, so we can't
5786 delete the edge. */
5787 if (single_succ_p (bb))
5788 continue;
5789 }
5790 else
5791 {
5792 if (HAVE_simple_return && simple_p)
5793 {
5794 if (dump_file)
5795 fprintf (dump_file,
5796 "Failed to redirect bb %d branch.\n", bb->index);
5797 unconverted.safe_push (e);
5798 }
5799 continue;
5800 }
5801
5802 /* Fix up the CFG for the successful change we just made. */
5803 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5804 e->flags &= ~EDGE_CROSSING;
5805 }
5806 src_bbs.release ();
5807 return unconverted;
5808 }
5809
5810 /* Emit a return insn for the exit fallthru block. */
5811 basic_block
5812 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5813 {
5814 basic_block last_bb = exit_fallthru_edge->src;
5815
5816 if (JUMP_P (BB_END (last_bb)))
5817 {
5818 last_bb = split_edge (exit_fallthru_edge);
5819 exit_fallthru_edge = single_succ_edge (last_bb);
5820 }
5821 emit_barrier_after (BB_END (last_bb));
5822 emit_return_into_block (simple_p, last_bb);
5823 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5824 return last_bb;
5825 }
5826
5827
5828 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5829 this into place with notes indicating where the prologue ends and where
5830 the epilogue begins. Update the basic block information when possible.
5831
5832 Notes on epilogue placement:
5833 There are several kinds of edges to the exit block:
5834 * a single fallthru edge from LAST_BB
5835 * possibly, edges from blocks containing sibcalls
5836 * possibly, fake edges from infinite loops
5837
5838 The epilogue is always emitted on the fallthru edge from the last basic
5839 block in the function, LAST_BB, into the exit block.
5840
5841 If LAST_BB is empty except for a label, it is the target of every
5842 other basic block in the function that ends in a return. If a
5843 target has a return or simple_return pattern (possibly with
5844 conditional variants), these basic blocks can be changed so that a
5845 return insn is emitted into them, and their target is adjusted to
5846 the real exit block.
5847
5848 Notes on shrink wrapping: We implement a fairly conservative
5849 version of shrink-wrapping rather than the textbook one. We only
5850 generate a single prologue and a single epilogue. This is
5851 sufficient to catch a number of interesting cases involving early
5852 exits.
5853
5854 First, we identify the blocks that require the prologue to occur before
5855 them. These are the ones that modify a call-saved register, or reference
5856 any of the stack or frame pointer registers. To simplify things, we then
5857 mark everything reachable from these blocks as also requiring a prologue.
5858 This takes care of loops automatically, and avoids the need to examine
5859 whether MEMs reference the frame, since it is sufficient to check for
5860 occurrences of the stack or frame pointer.
5861
5862 We then compute the set of blocks for which the need for a prologue
5863 is anticipatable (borrowing terminology from the shrink-wrapping
5864 description in Muchnick's book). These are the blocks which either
5865 require a prologue themselves, or those that have only successors
5866 where the prologue is anticipatable. The prologue needs to be
5867 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5868 is not. For the moment, we ensure that only one such edge exists.
5869
5870 The epilogue is placed as described above, but we make a
5871 distinction between inserting return and simple_return patterns
5872 when modifying other blocks that end in a return. Blocks that end
5873 in a sibcall omit the sibcall_epilogue if the block is not in
5874 ANTIC. */
5875
5876 void
5877 thread_prologue_and_epilogue_insns (void)
5878 {
5879 bool inserted;
5880 vec<edge> unconverted_simple_returns = vNULL;
5881 bitmap_head bb_flags;
5882 rtx_insn *returnjump;
5883 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5884 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5885 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5886 edge_iterator ei;
5887
5888 df_analyze ();
5889
5890 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5891
5892 inserted = false;
5893 epilogue_end = NULL;
5894 returnjump = NULL;
5895
5896 /* Can't deal with multiple successors of the entry block at the
5897 moment. Function should always have at least one entry
5898 point. */
5899 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5900 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5901 orig_entry_edge = entry_edge;
5902
5903 split_prologue_seq = NULL;
5904 if (flag_split_stack
5905 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5906 == NULL))
5907 {
5908 #ifndef HAVE_split_stack_prologue
5909 gcc_unreachable ();
5910 #else
5911 gcc_assert (HAVE_split_stack_prologue);
5912
5913 start_sequence ();
5914 emit_insn (gen_split_stack_prologue ());
5915 split_prologue_seq = get_insns ();
5916 end_sequence ();
5917
5918 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5919 set_insn_locations (split_prologue_seq, prologue_location);
5920 #endif
5921 }
5922
5923 prologue_seq = NULL;
5924 #ifdef HAVE_prologue
5925 if (HAVE_prologue)
5926 {
5927 start_sequence ();
5928 rtx_insn *seq = safe_as_a <rtx_insn *> (gen_prologue ());
5929 emit_insn (seq);
5930
5931 /* Insert an explicit USE for the frame pointer
5932 if the profiling is on and the frame pointer is required. */
5933 if (crtl->profile && frame_pointer_needed)
5934 emit_use (hard_frame_pointer_rtx);
5935
5936 /* Retain a map of the prologue insns. */
5937 record_insns (seq, NULL, &prologue_insn_hash);
5938 emit_note (NOTE_INSN_PROLOGUE_END);
5939
5940 /* Ensure that instructions are not moved into the prologue when
5941 profiling is on. The call to the profiling routine can be
5942 emitted within the live range of a call-clobbered register. */
5943 if (!targetm.profile_before_prologue () && crtl->profile)
5944 emit_insn (gen_blockage ());
5945
5946 prologue_seq = get_insns ();
5947 end_sequence ();
5948 set_insn_locations (prologue_seq, prologue_location);
5949 }
5950 #endif
5951
5952 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5953
5954 /* Try to perform a kind of shrink-wrapping, making sure the
5955 prologue/epilogue is emitted only around those parts of the
5956 function that require it. */
5957
5958 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5959
5960 if (split_prologue_seq != NULL_RTX)
5961 {
5962 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5963 inserted = true;
5964 }
5965 if (prologue_seq != NULL_RTX)
5966 {
5967 insert_insn_on_edge (prologue_seq, entry_edge);
5968 inserted = true;
5969 }
5970
5971 /* If the exit block has no non-fake predecessors, we don't need
5972 an epilogue. */
5973 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5974 if ((e->flags & EDGE_FAKE) == 0)
5975 break;
5976 if (e == NULL)
5977 goto epilogue_done;
5978
5979 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5980
5981 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5982
5983 if (HAVE_simple_return && entry_edge != orig_entry_edge)
5984 exit_fallthru_edge
5985 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5986 &unconverted_simple_returns,
5987 &returnjump);
5988 if (HAVE_return)
5989 {
5990 if (exit_fallthru_edge == NULL)
5991 goto epilogue_done;
5992
5993 if (optimize)
5994 {
5995 basic_block last_bb = exit_fallthru_edge->src;
5996
5997 if (LABEL_P (BB_HEAD (last_bb))
5998 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
5999 convert_jumps_to_returns (last_bb, false, vNULL);
6000
6001 if (EDGE_COUNT (last_bb->preds) != 0
6002 && single_succ_p (last_bb))
6003 {
6004 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6005 epilogue_end = returnjump = BB_END (last_bb);
6006
6007 /* Emitting the return may add a basic block.
6008 Fix bb_flags for the added block. */
6009 if (HAVE_simple_return && last_bb != exit_fallthru_edge->src)
6010 bitmap_set_bit (&bb_flags, last_bb->index);
6011
6012 goto epilogue_done;
6013 }
6014 }
6015 }
6016
6017 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6018 this marker for the splits of EH_RETURN patterns, and nothing else
6019 uses the flag in the meantime. */
6020 epilogue_completed = 1;
6021
6022 #ifdef HAVE_eh_return
6023 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6024 some targets, these get split to a special version of the epilogue
6025 code. In order to be able to properly annotate these with unwind
6026 info, try to split them now. If we get a valid split, drop an
6027 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6028 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6029 {
6030 rtx_insn *prev, *last, *trial;
6031
6032 if (e->flags & EDGE_FALLTHRU)
6033 continue;
6034 last = BB_END (e->src);
6035 if (!eh_returnjump_p (last))
6036 continue;
6037
6038 prev = PREV_INSN (last);
6039 trial = try_split (PATTERN (last), last, 1);
6040 if (trial == last)
6041 continue;
6042
6043 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6044 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6045 }
6046 #endif
6047
6048 /* If nothing falls through into the exit block, we don't need an
6049 epilogue. */
6050
6051 if (exit_fallthru_edge == NULL)
6052 goto epilogue_done;
6053
6054 if (HAVE_epilogue)
6055 {
6056 start_sequence ();
6057 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6058 rtx_insn *seq = as_a <rtx_insn *> (gen_epilogue ());
6059 if (seq)
6060 emit_jump_insn (seq);
6061
6062 /* Retain a map of the epilogue insns. */
6063 record_insns (seq, NULL, &epilogue_insn_hash);
6064 set_insn_locations (seq, epilogue_location);
6065
6066 seq = get_insns ();
6067 returnjump = get_last_insn ();
6068 end_sequence ();
6069
6070 insert_insn_on_edge (seq, exit_fallthru_edge);
6071 inserted = true;
6072
6073 if (JUMP_P (returnjump))
6074 set_return_jump_label (returnjump);
6075 }
6076 else
6077 {
6078 basic_block cur_bb;
6079
6080 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6081 goto epilogue_done;
6082 /* We have a fall-through edge to the exit block, the source is not
6083 at the end of the function, and there will be an assembler epilogue
6084 at the end of the function.
6085 We can't use force_nonfallthru here, because that would try to
6086 use return. Inserting a jump 'by hand' is extremely messy, so
6087 we take advantage of cfg_layout_finalize using
6088 fixup_fallthru_exit_predecessor. */
6089 cfg_layout_initialize (0);
6090 FOR_EACH_BB_FN (cur_bb, cfun)
6091 if (cur_bb->index >= NUM_FIXED_BLOCKS
6092 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6093 cur_bb->aux = cur_bb->next_bb;
6094 cfg_layout_finalize ();
6095 }
6096
6097 epilogue_done:
6098
6099 default_rtl_profile ();
6100
6101 if (inserted)
6102 {
6103 sbitmap blocks;
6104
6105 commit_edge_insertions ();
6106
6107 /* Look for basic blocks within the prologue insns. */
6108 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6109 bitmap_clear (blocks);
6110 bitmap_set_bit (blocks, entry_edge->dest->index);
6111 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6112 find_many_sub_basic_blocks (blocks);
6113 sbitmap_free (blocks);
6114
6115 /* The epilogue insns we inserted may cause the exit edge to no longer
6116 be fallthru. */
6117 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6118 {
6119 if (((e->flags & EDGE_FALLTHRU) != 0)
6120 && returnjump_p (BB_END (e->src)))
6121 e->flags &= ~EDGE_FALLTHRU;
6122 }
6123 }
6124
6125 if (HAVE_simple_return)
6126 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags,
6127 returnjump, unconverted_simple_returns);
6128
6129 #ifdef HAVE_sibcall_epilogue
6130 /* Emit sibling epilogues before any sibling call sites. */
6131 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6132 ei_safe_edge (ei));
6133 )
6134 {
6135 basic_block bb = e->src;
6136 rtx_insn *insn = BB_END (bb);
6137 rtx ep_seq;
6138
6139 if (!CALL_P (insn)
6140 || ! SIBLING_CALL_P (insn)
6141 || (HAVE_simple_return && (entry_edge != orig_entry_edge
6142 && !bitmap_bit_p (&bb_flags, bb->index))))
6143 {
6144 ei_next (&ei);
6145 continue;
6146 }
6147
6148 ep_seq = gen_sibcall_epilogue ();
6149 if (ep_seq)
6150 {
6151 start_sequence ();
6152 emit_note (NOTE_INSN_EPILOGUE_BEG);
6153 emit_insn (ep_seq);
6154 rtx_insn *seq = get_insns ();
6155 end_sequence ();
6156
6157 /* Retain a map of the epilogue insns. Used in life analysis to
6158 avoid getting rid of sibcall epilogue insns. Do this before we
6159 actually emit the sequence. */
6160 record_insns (seq, NULL, &epilogue_insn_hash);
6161 set_insn_locations (seq, epilogue_location);
6162
6163 emit_insn_before (seq, insn);
6164 }
6165 ei_next (&ei);
6166 }
6167 #endif
6168
6169 if (epilogue_end)
6170 {
6171 rtx_insn *insn, *next;
6172
6173 /* Similarly, move any line notes that appear after the epilogue.
6174 There is no need, however, to be quite so anal about the existence
6175 of such a note. Also possibly move
6176 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6177 info generation. */
6178 for (insn = epilogue_end; insn; insn = next)
6179 {
6180 next = NEXT_INSN (insn);
6181 if (NOTE_P (insn)
6182 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6183 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6184 }
6185 }
6186
6187 bitmap_clear (&bb_flags);
6188
6189 /* Threading the prologue and epilogue changes the artificial refs
6190 in the entry and exit blocks. */
6191 epilogue_completed = 1;
6192 df_update_entry_exit_and_calls ();
6193 }
6194
6195 /* Reposition the prologue-end and epilogue-begin notes after
6196 instruction scheduling. */
6197
6198 void
6199 reposition_prologue_and_epilogue_notes (void)
6200 {
6201 #if ! defined (HAVE_prologue) && ! defined (HAVE_sibcall_epilogue)
6202 if (!HAVE_epilogue)
6203 return;
6204 #endif
6205
6206 /* Since the hash table is created on demand, the fact that it is
6207 non-null is a signal that it is non-empty. */
6208 if (prologue_insn_hash != NULL)
6209 {
6210 size_t len = prologue_insn_hash->elements ();
6211 rtx_insn *insn, *last = NULL, *note = NULL;
6212
6213 /* Scan from the beginning until we reach the last prologue insn. */
6214 /* ??? While we do have the CFG intact, there are two problems:
6215 (1) The prologue can contain loops (typically probing the stack),
6216 which means that the end of the prologue isn't in the first bb.
6217 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6218 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6219 {
6220 if (NOTE_P (insn))
6221 {
6222 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6223 note = insn;
6224 }
6225 else if (contains (insn, prologue_insn_hash))
6226 {
6227 last = insn;
6228 if (--len == 0)
6229 break;
6230 }
6231 }
6232
6233 if (last)
6234 {
6235 if (note == NULL)
6236 {
6237 /* Scan forward looking for the PROLOGUE_END note. It should
6238 be right at the beginning of the block, possibly with other
6239 insn notes that got moved there. */
6240 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6241 {
6242 if (NOTE_P (note)
6243 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6244 break;
6245 }
6246 }
6247
6248 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6249 if (LABEL_P (last))
6250 last = NEXT_INSN (last);
6251 reorder_insns (note, note, last);
6252 }
6253 }
6254
6255 if (epilogue_insn_hash != NULL)
6256 {
6257 edge_iterator ei;
6258 edge e;
6259
6260 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6261 {
6262 rtx_insn *insn, *first = NULL, *note = NULL;
6263 basic_block bb = e->src;
6264
6265 /* Scan from the beginning until we reach the first epilogue insn. */
6266 FOR_BB_INSNS (bb, insn)
6267 {
6268 if (NOTE_P (insn))
6269 {
6270 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6271 {
6272 note = insn;
6273 if (first != NULL)
6274 break;
6275 }
6276 }
6277 else if (first == NULL && contains (insn, epilogue_insn_hash))
6278 {
6279 first = insn;
6280 if (note != NULL)
6281 break;
6282 }
6283 }
6284
6285 if (note)
6286 {
6287 /* If the function has a single basic block, and no real
6288 epilogue insns (e.g. sibcall with no cleanup), the
6289 epilogue note can get scheduled before the prologue
6290 note. If we have frame related prologue insns, having
6291 them scanned during the epilogue will result in a crash.
6292 In this case re-order the epilogue note to just before
6293 the last insn in the block. */
6294 if (first == NULL)
6295 first = BB_END (bb);
6296
6297 if (PREV_INSN (first) != note)
6298 reorder_insns (note, note, PREV_INSN (first));
6299 }
6300 }
6301 }
6302 }
6303
6304 /* Returns the name of function declared by FNDECL. */
6305 const char *
6306 fndecl_name (tree fndecl)
6307 {
6308 if (fndecl == NULL)
6309 return "(nofn)";
6310 return lang_hooks.decl_printable_name (fndecl, 2);
6311 }
6312
6313 /* Returns the name of function FN. */
6314 const char *
6315 function_name (struct function *fn)
6316 {
6317 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6318 return fndecl_name (fndecl);
6319 }
6320
6321 /* Returns the name of the current function. */
6322 const char *
6323 current_function_name (void)
6324 {
6325 return function_name (cfun);
6326 }
6327 \f
6328
6329 static unsigned int
6330 rest_of_handle_check_leaf_regs (void)
6331 {
6332 #ifdef LEAF_REGISTERS
6333 crtl->uses_only_leaf_regs
6334 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6335 #endif
6336 return 0;
6337 }
6338
6339 /* Insert a TYPE into the used types hash table of CFUN. */
6340
6341 static void
6342 used_types_insert_helper (tree type, struct function *func)
6343 {
6344 if (type != NULL && func != NULL)
6345 {
6346 if (func->used_types_hash == NULL)
6347 func->used_types_hash = hash_set<tree>::create_ggc (37);
6348
6349 func->used_types_hash->add (type);
6350 }
6351 }
6352
6353 /* Given a type, insert it into the used hash table in cfun. */
6354 void
6355 used_types_insert (tree t)
6356 {
6357 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6358 if (TYPE_NAME (t))
6359 break;
6360 else
6361 t = TREE_TYPE (t);
6362 if (TREE_CODE (t) == ERROR_MARK)
6363 return;
6364 if (TYPE_NAME (t) == NULL_TREE
6365 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6366 t = TYPE_MAIN_VARIANT (t);
6367 if (debug_info_level > DINFO_LEVEL_NONE)
6368 {
6369 if (cfun)
6370 used_types_insert_helper (t, cfun);
6371 else
6372 {
6373 /* So this might be a type referenced by a global variable.
6374 Record that type so that we can later decide to emit its
6375 debug information. */
6376 vec_safe_push (types_used_by_cur_var_decl, t);
6377 }
6378 }
6379 }
6380
6381 /* Helper to Hash a struct types_used_by_vars_entry. */
6382
6383 static hashval_t
6384 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6385 {
6386 gcc_assert (entry && entry->var_decl && entry->type);
6387
6388 return iterative_hash_object (entry->type,
6389 iterative_hash_object (entry->var_decl, 0));
6390 }
6391
6392 /* Hash function of the types_used_by_vars_entry hash table. */
6393
6394 hashval_t
6395 used_type_hasher::hash (types_used_by_vars_entry *entry)
6396 {
6397 return hash_types_used_by_vars_entry (entry);
6398 }
6399
6400 /*Equality function of the types_used_by_vars_entry hash table. */
6401
6402 bool
6403 used_type_hasher::equal (types_used_by_vars_entry *e1,
6404 types_used_by_vars_entry *e2)
6405 {
6406 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6407 }
6408
6409 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6410
6411 void
6412 types_used_by_var_decl_insert (tree type, tree var_decl)
6413 {
6414 if (type != NULL && var_decl != NULL)
6415 {
6416 types_used_by_vars_entry **slot;
6417 struct types_used_by_vars_entry e;
6418 e.var_decl = var_decl;
6419 e.type = type;
6420 if (types_used_by_vars_hash == NULL)
6421 types_used_by_vars_hash
6422 = hash_table<used_type_hasher>::create_ggc (37);
6423
6424 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6425 if (*slot == NULL)
6426 {
6427 struct types_used_by_vars_entry *entry;
6428 entry = ggc_alloc<types_used_by_vars_entry> ();
6429 entry->type = type;
6430 entry->var_decl = var_decl;
6431 *slot = entry;
6432 }
6433 }
6434 }
6435
6436 namespace {
6437
6438 const pass_data pass_data_leaf_regs =
6439 {
6440 RTL_PASS, /* type */
6441 "*leaf_regs", /* name */
6442 OPTGROUP_NONE, /* optinfo_flags */
6443 TV_NONE, /* tv_id */
6444 0, /* properties_required */
6445 0, /* properties_provided */
6446 0, /* properties_destroyed */
6447 0, /* todo_flags_start */
6448 0, /* todo_flags_finish */
6449 };
6450
6451 class pass_leaf_regs : public rtl_opt_pass
6452 {
6453 public:
6454 pass_leaf_regs (gcc::context *ctxt)
6455 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6456 {}
6457
6458 /* opt_pass methods: */
6459 virtual unsigned int execute (function *)
6460 {
6461 return rest_of_handle_check_leaf_regs ();
6462 }
6463
6464 }; // class pass_leaf_regs
6465
6466 } // anon namespace
6467
6468 rtl_opt_pass *
6469 make_pass_leaf_regs (gcc::context *ctxt)
6470 {
6471 return new pass_leaf_regs (ctxt);
6472 }
6473
6474 static unsigned int
6475 rest_of_handle_thread_prologue_and_epilogue (void)
6476 {
6477 if (optimize)
6478 cleanup_cfg (CLEANUP_EXPENSIVE);
6479
6480 /* On some machines, the prologue and epilogue code, or parts thereof,
6481 can be represented as RTL. Doing so lets us schedule insns between
6482 it and the rest of the code and also allows delayed branch
6483 scheduling to operate in the epilogue. */
6484 thread_prologue_and_epilogue_insns ();
6485
6486 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6487 see PR57320. */
6488 cleanup_cfg (0);
6489
6490 /* The stack usage info is finalized during prologue expansion. */
6491 if (flag_stack_usage_info)
6492 output_stack_usage ();
6493
6494 return 0;
6495 }
6496
6497 namespace {
6498
6499 const pass_data pass_data_thread_prologue_and_epilogue =
6500 {
6501 RTL_PASS, /* type */
6502 "pro_and_epilogue", /* name */
6503 OPTGROUP_NONE, /* optinfo_flags */
6504 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6505 0, /* properties_required */
6506 0, /* properties_provided */
6507 0, /* properties_destroyed */
6508 0, /* todo_flags_start */
6509 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6510 };
6511
6512 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6513 {
6514 public:
6515 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6516 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6517 {}
6518
6519 /* opt_pass methods: */
6520 virtual unsigned int execute (function *)
6521 {
6522 return rest_of_handle_thread_prologue_and_epilogue ();
6523 }
6524
6525 }; // class pass_thread_prologue_and_epilogue
6526
6527 } // anon namespace
6528
6529 rtl_opt_pass *
6530 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6531 {
6532 return new pass_thread_prologue_and_epilogue (ctxt);
6533 }
6534 \f
6535
6536 /* This mini-pass fixes fall-out from SSA in asm statements that have
6537 in-out constraints. Say you start with
6538
6539 orig = inout;
6540 asm ("": "+mr" (inout));
6541 use (orig);
6542
6543 which is transformed very early to use explicit output and match operands:
6544
6545 orig = inout;
6546 asm ("": "=mr" (inout) : "0" (inout));
6547 use (orig);
6548
6549 Or, after SSA and copyprop,
6550
6551 asm ("": "=mr" (inout_2) : "0" (inout_1));
6552 use (inout_1);
6553
6554 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6555 they represent two separate values, so they will get different pseudo
6556 registers during expansion. Then, since the two operands need to match
6557 per the constraints, but use different pseudo registers, reload can
6558 only register a reload for these operands. But reloads can only be
6559 satisfied by hardregs, not by memory, so we need a register for this
6560 reload, just because we are presented with non-matching operands.
6561 So, even though we allow memory for this operand, no memory can be
6562 used for it, just because the two operands don't match. This can
6563 cause reload failures on register-starved targets.
6564
6565 So it's a symptom of reload not being able to use memory for reloads
6566 or, alternatively it's also a symptom of both operands not coming into
6567 reload as matching (in which case the pseudo could go to memory just
6568 fine, as the alternative allows it, and no reload would be necessary).
6569 We fix the latter problem here, by transforming
6570
6571 asm ("": "=mr" (inout_2) : "0" (inout_1));
6572
6573 back to
6574
6575 inout_2 = inout_1;
6576 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6577
6578 static void
6579 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6580 {
6581 int i;
6582 bool changed = false;
6583 rtx op = SET_SRC (p_sets[0]);
6584 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6585 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6586 bool *output_matched = XALLOCAVEC (bool, noutputs);
6587
6588 memset (output_matched, 0, noutputs * sizeof (bool));
6589 for (i = 0; i < ninputs; i++)
6590 {
6591 rtx input, output;
6592 rtx_insn *insns;
6593 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6594 char *end;
6595 int match, j;
6596
6597 if (*constraint == '%')
6598 constraint++;
6599
6600 match = strtoul (constraint, &end, 10);
6601 if (end == constraint)
6602 continue;
6603
6604 gcc_assert (match < noutputs);
6605 output = SET_DEST (p_sets[match]);
6606 input = RTVEC_ELT (inputs, i);
6607 /* Only do the transformation for pseudos. */
6608 if (! REG_P (output)
6609 || rtx_equal_p (output, input)
6610 || (GET_MODE (input) != VOIDmode
6611 && GET_MODE (input) != GET_MODE (output)))
6612 continue;
6613
6614 /* We can't do anything if the output is also used as input,
6615 as we're going to overwrite it. */
6616 for (j = 0; j < ninputs; j++)
6617 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6618 break;
6619 if (j != ninputs)
6620 continue;
6621
6622 /* Avoid changing the same input several times. For
6623 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6624 only change in once (to out1), rather than changing it
6625 first to out1 and afterwards to out2. */
6626 if (i > 0)
6627 {
6628 for (j = 0; j < noutputs; j++)
6629 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6630 break;
6631 if (j != noutputs)
6632 continue;
6633 }
6634 output_matched[match] = true;
6635
6636 start_sequence ();
6637 emit_move_insn (output, input);
6638 insns = get_insns ();
6639 end_sequence ();
6640 emit_insn_before (insns, insn);
6641
6642 /* Now replace all mentions of the input with output. We can't
6643 just replace the occurrence in inputs[i], as the register might
6644 also be used in some other input (or even in an address of an
6645 output), which would mean possibly increasing the number of
6646 inputs by one (namely 'output' in addition), which might pose
6647 a too complicated problem for reload to solve. E.g. this situation:
6648
6649 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6650
6651 Here 'input' is used in two occurrences as input (once for the
6652 input operand, once for the address in the second output operand).
6653 If we would replace only the occurrence of the input operand (to
6654 make the matching) we would be left with this:
6655
6656 output = input
6657 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6658
6659 Now we suddenly have two different input values (containing the same
6660 value, but different pseudos) where we formerly had only one.
6661 With more complicated asms this might lead to reload failures
6662 which wouldn't have happen without this pass. So, iterate over
6663 all operands and replace all occurrences of the register used. */
6664 for (j = 0; j < noutputs; j++)
6665 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6666 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6667 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6668 input, output);
6669 for (j = 0; j < ninputs; j++)
6670 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6671 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6672 input, output);
6673
6674 changed = true;
6675 }
6676
6677 if (changed)
6678 df_insn_rescan (insn);
6679 }
6680
6681 /* Add the decl D to the local_decls list of FUN. */
6682
6683 void
6684 add_local_decl (struct function *fun, tree d)
6685 {
6686 gcc_assert (TREE_CODE (d) == VAR_DECL);
6687 vec_safe_push (fun->local_decls, d);
6688 }
6689
6690 namespace {
6691
6692 const pass_data pass_data_match_asm_constraints =
6693 {
6694 RTL_PASS, /* type */
6695 "asmcons", /* name */
6696 OPTGROUP_NONE, /* optinfo_flags */
6697 TV_NONE, /* tv_id */
6698 0, /* properties_required */
6699 0, /* properties_provided */
6700 0, /* properties_destroyed */
6701 0, /* todo_flags_start */
6702 0, /* todo_flags_finish */
6703 };
6704
6705 class pass_match_asm_constraints : public rtl_opt_pass
6706 {
6707 public:
6708 pass_match_asm_constraints (gcc::context *ctxt)
6709 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6710 {}
6711
6712 /* opt_pass methods: */
6713 virtual unsigned int execute (function *);
6714
6715 }; // class pass_match_asm_constraints
6716
6717 unsigned
6718 pass_match_asm_constraints::execute (function *fun)
6719 {
6720 basic_block bb;
6721 rtx_insn *insn;
6722 rtx pat, *p_sets;
6723 int noutputs;
6724
6725 if (!crtl->has_asm_statement)
6726 return 0;
6727
6728 df_set_flags (DF_DEFER_INSN_RESCAN);
6729 FOR_EACH_BB_FN (bb, fun)
6730 {
6731 FOR_BB_INSNS (bb, insn)
6732 {
6733 if (!INSN_P (insn))
6734 continue;
6735
6736 pat = PATTERN (insn);
6737 if (GET_CODE (pat) == PARALLEL)
6738 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6739 else if (GET_CODE (pat) == SET)
6740 p_sets = &PATTERN (insn), noutputs = 1;
6741 else
6742 continue;
6743
6744 if (GET_CODE (*p_sets) == SET
6745 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6746 match_asm_constraints_1 (insn, p_sets, noutputs);
6747 }
6748 }
6749
6750 return TODO_df_finish;
6751 }
6752
6753 } // anon namespace
6754
6755 rtl_opt_pass *
6756 make_pass_match_asm_constraints (gcc::context *ctxt)
6757 {
6758 return new pass_match_asm_constraints (ctxt);
6759 }
6760
6761
6762 #include "gt-function.h"