re PR debug/41065 (DW_TAG_enumeration_type+DW_TAG_enumerator is sometimes missing)
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
75
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
85
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
100
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
105
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
110
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
116
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
119
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
123
124 /* The currently compiled function. */
125 struct function *cfun = 0;
126
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
132 \f
133
134 htab_t types_used_by_vars_hash = NULL;
135 tree types_used_by_cur_var_decl = NULL;
136
137 /* Forward declarations. */
138
139 static struct temp_slot *find_temp_slot_from_address (rtx);
140 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
141 static void pad_below (struct args_size *, enum machine_mode, tree);
142 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
143 static int all_blocks (tree, tree *);
144 static tree *get_block_vector (tree, int *);
145 extern tree debug_find_var_in_block_tree (tree, tree);
146 /* We always define `record_insns' even if it's not used so that we
147 can always export `prologue_epilogue_contains'. */
148 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
149 static bool contains (const_rtx, htab_t);
150 #ifdef HAVE_return
151 static void emit_return_into_block (basic_block);
152 #endif
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
156 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
157 \f
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
160
161 typedef struct function *function_p;
162
163 DEF_VEC_P(function_p);
164 DEF_VEC_ALLOC_P(function_p,heap);
165 static VEC(function_p,heap) *function_context_stack;
166
167 /* Save the current context for compilation of a nested function.
168 This is called from language-specific code. */
169
170 void
171 push_function_context (void)
172 {
173 if (cfun == 0)
174 allocate_struct_function (NULL, false);
175
176 VEC_safe_push (function_p, heap, function_context_stack, cfun);
177 set_cfun (NULL);
178 }
179
180 /* Restore the last saved context, at the end of a nested function.
181 This function is called from language-specific code. */
182
183 void
184 pop_function_context (void)
185 {
186 struct function *p = VEC_pop (function_p, function_context_stack);
187 set_cfun (p);
188 current_function_decl = p->decl;
189
190 /* Reset variables that have known state during rtx generation. */
191 virtuals_instantiated = 0;
192 generating_concat_p = 1;
193 }
194
195 /* Clear out all parts of the state in F that can safely be discarded
196 after the function has been parsed, but not compiled, to let
197 garbage collection reclaim the memory. */
198
199 void
200 free_after_parsing (struct function *f)
201 {
202 f->language = 0;
203 }
204
205 /* Clear out all parts of the state in F that can safely be discarded
206 after the function has been compiled, to let garbage collection
207 reclaim the memory. */
208
209 void
210 free_after_compilation (struct function *f)
211 {
212 prologue_insn_hash = NULL;
213 epilogue_insn_hash = NULL;
214
215 if (crtl->emit.regno_pointer_align)
216 free (crtl->emit.regno_pointer_align);
217
218 memset (crtl, 0, sizeof (struct rtl_data));
219 f->eh = NULL;
220 f->machine = NULL;
221 f->cfg = NULL;
222
223 regno_reg_rtx = NULL;
224 insn_locators_free ();
225 }
226 \f
227 /* Return size needed for stack frame based on slots so far allocated.
228 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
229 the caller may have to do that. */
230
231 HOST_WIDE_INT
232 get_frame_size (void)
233 {
234 if (FRAME_GROWS_DOWNWARD)
235 return -frame_offset;
236 else
237 return frame_offset;
238 }
239
240 /* Issue an error message and return TRUE if frame OFFSET overflows in
241 the signed target pointer arithmetics for function FUNC. Otherwise
242 return FALSE. */
243
244 bool
245 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
246 {
247 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
248
249 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
250 /* Leave room for the fixed part of the frame. */
251 - 64 * UNITS_PER_WORD)
252 {
253 error_at (DECL_SOURCE_LOCATION (func),
254 "total size of local objects too large");
255 return TRUE;
256 }
257
258 return FALSE;
259 }
260
261 /* Return stack slot alignment in bits for TYPE and MODE. */
262
263 static unsigned int
264 get_stack_local_alignment (tree type, enum machine_mode mode)
265 {
266 unsigned int alignment;
267
268 if (mode == BLKmode)
269 alignment = BIGGEST_ALIGNMENT;
270 else
271 alignment = GET_MODE_ALIGNMENT (mode);
272
273 /* Allow the frond-end to (possibly) increase the alignment of this
274 stack slot. */
275 if (! type)
276 type = lang_hooks.types.type_for_mode (mode, 0);
277
278 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
279 }
280
281 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
282 with machine mode MODE.
283
284 ALIGN controls the amount of alignment for the address of the slot:
285 0 means according to MODE,
286 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
287 -2 means use BITS_PER_UNIT,
288 positive specifies alignment boundary in bits.
289
290 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
291
292 We do not round to stack_boundary here. */
293
294 rtx
295 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
296 int align,
297 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
298 {
299 rtx x, addr;
300 int bigend_correction = 0;
301 unsigned int alignment, alignment_in_bits;
302 int frame_off, frame_alignment, frame_phase;
303
304 if (align == 0)
305 {
306 alignment = get_stack_local_alignment (NULL, mode);
307 alignment /= BITS_PER_UNIT;
308 }
309 else if (align == -1)
310 {
311 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
312 size = CEIL_ROUND (size, alignment);
313 }
314 else if (align == -2)
315 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
316 else
317 alignment = align / BITS_PER_UNIT;
318
319 alignment_in_bits = alignment * BITS_PER_UNIT;
320
321 if (FRAME_GROWS_DOWNWARD)
322 frame_offset -= size;
323
324 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
325 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
326 {
327 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
328 alignment = alignment_in_bits / BITS_PER_UNIT;
329 }
330
331 if (SUPPORTS_STACK_ALIGNMENT)
332 {
333 if (crtl->stack_alignment_estimated < alignment_in_bits)
334 {
335 if (!crtl->stack_realign_processed)
336 crtl->stack_alignment_estimated = alignment_in_bits;
337 else
338 {
339 /* If stack is realigned and stack alignment value
340 hasn't been finalized, it is OK not to increase
341 stack_alignment_estimated. The bigger alignment
342 requirement is recorded in stack_alignment_needed
343 below. */
344 gcc_assert (!crtl->stack_realign_finalized);
345 if (!crtl->stack_realign_needed)
346 {
347 /* It is OK to reduce the alignment as long as the
348 requested size is 0 or the estimated stack
349 alignment >= mode alignment. */
350 gcc_assert (reduce_alignment_ok
351 || size == 0
352 || (crtl->stack_alignment_estimated
353 >= GET_MODE_ALIGNMENT (mode)));
354 alignment_in_bits = crtl->stack_alignment_estimated;
355 alignment = alignment_in_bits / BITS_PER_UNIT;
356 }
357 }
358 }
359 }
360
361 if (crtl->stack_alignment_needed < alignment_in_bits)
362 crtl->stack_alignment_needed = alignment_in_bits;
363 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
364 crtl->max_used_stack_slot_alignment = alignment_in_bits;
365
366 /* Calculate how many bytes the start of local variables is off from
367 stack alignment. */
368 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
369 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
370 frame_phase = frame_off ? frame_alignment - frame_off : 0;
371
372 /* Round the frame offset to the specified alignment. The default is
373 to always honor requests to align the stack but a port may choose to
374 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
375 if (STACK_ALIGNMENT_NEEDED
376 || mode != BLKmode
377 || size != 0)
378 {
379 /* We must be careful here, since FRAME_OFFSET might be negative and
380 division with a negative dividend isn't as well defined as we might
381 like. So we instead assume that ALIGNMENT is a power of two and
382 use logical operations which are unambiguous. */
383 if (FRAME_GROWS_DOWNWARD)
384 frame_offset
385 = (FLOOR_ROUND (frame_offset - frame_phase,
386 (unsigned HOST_WIDE_INT) alignment)
387 + frame_phase);
388 else
389 frame_offset
390 = (CEIL_ROUND (frame_offset - frame_phase,
391 (unsigned HOST_WIDE_INT) alignment)
392 + frame_phase);
393 }
394
395 /* On a big-endian machine, if we are allocating more space than we will use,
396 use the least significant bytes of those that are allocated. */
397 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
398 bigend_correction = size - GET_MODE_SIZE (mode);
399
400 /* If we have already instantiated virtual registers, return the actual
401 address relative to the frame pointer. */
402 if (virtuals_instantiated)
403 addr = plus_constant (frame_pointer_rtx,
404 trunc_int_for_mode
405 (frame_offset + bigend_correction
406 + STARTING_FRAME_OFFSET, Pmode));
407 else
408 addr = plus_constant (virtual_stack_vars_rtx,
409 trunc_int_for_mode
410 (frame_offset + bigend_correction,
411 Pmode));
412
413 if (!FRAME_GROWS_DOWNWARD)
414 frame_offset += size;
415
416 x = gen_rtx_MEM (mode, addr);
417 set_mem_align (x, alignment_in_bits);
418 MEM_NOTRAP_P (x) = 1;
419
420 stack_slot_list
421 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
422
423 if (frame_offset_overflow (frame_offset, current_function_decl))
424 frame_offset = 0;
425
426 return x;
427 }
428
429 /* Wrap up assign_stack_local_1 with last parameter as false. */
430
431 rtx
432 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
433 {
434 return assign_stack_local_1 (mode, size, align, false);
435 }
436 \f
437 \f
438 /* In order to evaluate some expressions, such as function calls returning
439 structures in memory, we need to temporarily allocate stack locations.
440 We record each allocated temporary in the following structure.
441
442 Associated with each temporary slot is a nesting level. When we pop up
443 one level, all temporaries associated with the previous level are freed.
444 Normally, all temporaries are freed after the execution of the statement
445 in which they were created. However, if we are inside a ({...}) grouping,
446 the result may be in a temporary and hence must be preserved. If the
447 result could be in a temporary, we preserve it if we can determine which
448 one it is in. If we cannot determine which temporary may contain the
449 result, all temporaries are preserved. A temporary is preserved by
450 pretending it was allocated at the previous nesting level.
451
452 Automatic variables are also assigned temporary slots, at the nesting
453 level where they are defined. They are marked a "kept" so that
454 free_temp_slots will not free them. */
455
456 struct GTY(()) temp_slot {
457 /* Points to next temporary slot. */
458 struct temp_slot *next;
459 /* Points to previous temporary slot. */
460 struct temp_slot *prev;
461 /* The rtx to used to reference the slot. */
462 rtx slot;
463 /* The size, in units, of the slot. */
464 HOST_WIDE_INT size;
465 /* The type of the object in the slot, or zero if it doesn't correspond
466 to a type. We use this to determine whether a slot can be reused.
467 It can be reused if objects of the type of the new slot will always
468 conflict with objects of the type of the old slot. */
469 tree type;
470 /* The alignment (in bits) of the slot. */
471 unsigned int align;
472 /* Nonzero if this temporary is currently in use. */
473 char in_use;
474 /* Nonzero if this temporary has its address taken. */
475 char addr_taken;
476 /* Nesting level at which this slot is being used. */
477 int level;
478 /* Nonzero if this should survive a call to free_temp_slots. */
479 int keep;
480 /* The offset of the slot from the frame_pointer, including extra space
481 for alignment. This info is for combine_temp_slots. */
482 HOST_WIDE_INT base_offset;
483 /* The size of the slot, including extra space for alignment. This
484 info is for combine_temp_slots. */
485 HOST_WIDE_INT full_size;
486 };
487
488 /* A table of addresses that represent a stack slot. The table is a mapping
489 from address RTXen to a temp slot. */
490 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
491
492 /* Entry for the above hash table. */
493 struct GTY(()) temp_slot_address_entry {
494 hashval_t hash;
495 rtx address;
496 struct temp_slot *temp_slot;
497 };
498
499 /* Removes temporary slot TEMP from LIST. */
500
501 static void
502 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
503 {
504 if (temp->next)
505 temp->next->prev = temp->prev;
506 if (temp->prev)
507 temp->prev->next = temp->next;
508 else
509 *list = temp->next;
510
511 temp->prev = temp->next = NULL;
512 }
513
514 /* Inserts temporary slot TEMP to LIST. */
515
516 static void
517 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
518 {
519 temp->next = *list;
520 if (*list)
521 (*list)->prev = temp;
522 temp->prev = NULL;
523 *list = temp;
524 }
525
526 /* Returns the list of used temp slots at LEVEL. */
527
528 static struct temp_slot **
529 temp_slots_at_level (int level)
530 {
531 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
532 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
533
534 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
535 }
536
537 /* Returns the maximal temporary slot level. */
538
539 static int
540 max_slot_level (void)
541 {
542 if (!used_temp_slots)
543 return -1;
544
545 return VEC_length (temp_slot_p, used_temp_slots) - 1;
546 }
547
548 /* Moves temporary slot TEMP to LEVEL. */
549
550 static void
551 move_slot_to_level (struct temp_slot *temp, int level)
552 {
553 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
554 insert_slot_to_list (temp, temp_slots_at_level (level));
555 temp->level = level;
556 }
557
558 /* Make temporary slot TEMP available. */
559
560 static void
561 make_slot_available (struct temp_slot *temp)
562 {
563 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
564 insert_slot_to_list (temp, &avail_temp_slots);
565 temp->in_use = 0;
566 temp->level = -1;
567 }
568
569 /* Compute the hash value for an address -> temp slot mapping.
570 The value is cached on the mapping entry. */
571 static hashval_t
572 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
573 {
574 int do_not_record = 0;
575 return hash_rtx (t->address, GET_MODE (t->address),
576 &do_not_record, NULL, false);
577 }
578
579 /* Return the hash value for an address -> temp slot mapping. */
580 static hashval_t
581 temp_slot_address_hash (const void *p)
582 {
583 const struct temp_slot_address_entry *t;
584 t = (const struct temp_slot_address_entry *) p;
585 return t->hash;
586 }
587
588 /* Compare two address -> temp slot mapping entries. */
589 static int
590 temp_slot_address_eq (const void *p1, const void *p2)
591 {
592 const struct temp_slot_address_entry *t1, *t2;
593 t1 = (const struct temp_slot_address_entry *) p1;
594 t2 = (const struct temp_slot_address_entry *) p2;
595 return exp_equiv_p (t1->address, t2->address, 0, true);
596 }
597
598 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
599 static void
600 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
601 {
602 void **slot;
603 struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
604 t->address = address;
605 t->temp_slot = temp_slot;
606 t->hash = temp_slot_address_compute_hash (t);
607 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
608 *slot = t;
609 }
610
611 /* Remove an address -> temp slot mapping entry if the temp slot is
612 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
613 static int
614 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
615 {
616 const struct temp_slot_address_entry *t;
617 t = (const struct temp_slot_address_entry *) *slot;
618 if (! t->temp_slot->in_use)
619 *slot = NULL;
620 return 1;
621 }
622
623 /* Remove all mappings of addresses to unused temp slots. */
624 static void
625 remove_unused_temp_slot_addresses (void)
626 {
627 htab_traverse (temp_slot_address_table,
628 remove_unused_temp_slot_addresses_1,
629 NULL);
630 }
631
632 /* Find the temp slot corresponding to the object at address X. */
633
634 static struct temp_slot *
635 find_temp_slot_from_address (rtx x)
636 {
637 struct temp_slot *p;
638 struct temp_slot_address_entry tmp, *t;
639
640 /* First try the easy way:
641 See if X exists in the address -> temp slot mapping. */
642 tmp.address = x;
643 tmp.temp_slot = NULL;
644 tmp.hash = temp_slot_address_compute_hash (&tmp);
645 t = (struct temp_slot_address_entry *)
646 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
647 if (t)
648 return t->temp_slot;
649
650 /* If we have a sum involving a register, see if it points to a temp
651 slot. */
652 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
653 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
654 return p;
655 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
656 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
657 return p;
658
659 /* Last resort: Address is a virtual stack var address. */
660 if (GET_CODE (x) == PLUS
661 && XEXP (x, 0) == virtual_stack_vars_rtx
662 && CONST_INT_P (XEXP (x, 1)))
663 {
664 int i;
665 for (i = max_slot_level (); i >= 0; i--)
666 for (p = *temp_slots_at_level (i); p; p = p->next)
667 {
668 if (INTVAL (XEXP (x, 1)) >= p->base_offset
669 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
670 return p;
671 }
672 }
673
674 return NULL;
675 }
676 \f
677 /* Allocate a temporary stack slot and record it for possible later
678 reuse.
679
680 MODE is the machine mode to be given to the returned rtx.
681
682 SIZE is the size in units of the space required. We do no rounding here
683 since assign_stack_local will do any required rounding.
684
685 KEEP is 1 if this slot is to be retained after a call to
686 free_temp_slots. Automatic variables for a block are allocated
687 with this flag. KEEP values of 2 or 3 were needed respectively
688 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
689 or for SAVE_EXPRs, but they are now unused.
690
691 TYPE is the type that will be used for the stack slot. */
692
693 rtx
694 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
695 int keep, tree type)
696 {
697 unsigned int align;
698 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
699 rtx slot;
700
701 /* If SIZE is -1 it means that somebody tried to allocate a temporary
702 of a variable size. */
703 gcc_assert (size != -1);
704
705 /* These are now unused. */
706 gcc_assert (keep <= 1);
707
708 align = get_stack_local_alignment (type, mode);
709
710 /* Try to find an available, already-allocated temporary of the proper
711 mode which meets the size and alignment requirements. Choose the
712 smallest one with the closest alignment.
713
714 If assign_stack_temp is called outside of the tree->rtl expansion,
715 we cannot reuse the stack slots (that may still refer to
716 VIRTUAL_STACK_VARS_REGNUM). */
717 if (!virtuals_instantiated)
718 {
719 for (p = avail_temp_slots; p; p = p->next)
720 {
721 if (p->align >= align && p->size >= size
722 && GET_MODE (p->slot) == mode
723 && objects_must_conflict_p (p->type, type)
724 && (best_p == 0 || best_p->size > p->size
725 || (best_p->size == p->size && best_p->align > p->align)))
726 {
727 if (p->align == align && p->size == size)
728 {
729 selected = p;
730 cut_slot_from_list (selected, &avail_temp_slots);
731 best_p = 0;
732 break;
733 }
734 best_p = p;
735 }
736 }
737 }
738
739 /* Make our best, if any, the one to use. */
740 if (best_p)
741 {
742 selected = best_p;
743 cut_slot_from_list (selected, &avail_temp_slots);
744
745 /* If there are enough aligned bytes left over, make them into a new
746 temp_slot so that the extra bytes don't get wasted. Do this only
747 for BLKmode slots, so that we can be sure of the alignment. */
748 if (GET_MODE (best_p->slot) == BLKmode)
749 {
750 int alignment = best_p->align / BITS_PER_UNIT;
751 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
752
753 if (best_p->size - rounded_size >= alignment)
754 {
755 p = GGC_NEW (struct temp_slot);
756 p->in_use = p->addr_taken = 0;
757 p->size = best_p->size - rounded_size;
758 p->base_offset = best_p->base_offset + rounded_size;
759 p->full_size = best_p->full_size - rounded_size;
760 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
761 p->align = best_p->align;
762 p->type = best_p->type;
763 insert_slot_to_list (p, &avail_temp_slots);
764
765 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
766 stack_slot_list);
767
768 best_p->size = rounded_size;
769 best_p->full_size = rounded_size;
770 }
771 }
772 }
773
774 /* If we still didn't find one, make a new temporary. */
775 if (selected == 0)
776 {
777 HOST_WIDE_INT frame_offset_old = frame_offset;
778
779 p = GGC_NEW (struct temp_slot);
780
781 /* We are passing an explicit alignment request to assign_stack_local.
782 One side effect of that is assign_stack_local will not round SIZE
783 to ensure the frame offset remains suitably aligned.
784
785 So for requests which depended on the rounding of SIZE, we go ahead
786 and round it now. We also make sure ALIGNMENT is at least
787 BIGGEST_ALIGNMENT. */
788 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
789 p->slot = assign_stack_local (mode,
790 (mode == BLKmode
791 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
792 : size),
793 align);
794
795 p->align = align;
796
797 /* The following slot size computation is necessary because we don't
798 know the actual size of the temporary slot until assign_stack_local
799 has performed all the frame alignment and size rounding for the
800 requested temporary. Note that extra space added for alignment
801 can be either above or below this stack slot depending on which
802 way the frame grows. We include the extra space if and only if it
803 is above this slot. */
804 if (FRAME_GROWS_DOWNWARD)
805 p->size = frame_offset_old - frame_offset;
806 else
807 p->size = size;
808
809 /* Now define the fields used by combine_temp_slots. */
810 if (FRAME_GROWS_DOWNWARD)
811 {
812 p->base_offset = frame_offset;
813 p->full_size = frame_offset_old - frame_offset;
814 }
815 else
816 {
817 p->base_offset = frame_offset_old;
818 p->full_size = frame_offset - frame_offset_old;
819 }
820
821 selected = p;
822 }
823
824 p = selected;
825 p->in_use = 1;
826 p->addr_taken = 0;
827 p->type = type;
828 p->level = temp_slot_level;
829 p->keep = keep;
830
831 pp = temp_slots_at_level (p->level);
832 insert_slot_to_list (p, pp);
833 insert_temp_slot_address (XEXP (p->slot, 0), p);
834
835 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
836 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
837 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
838
839 /* If we know the alias set for the memory that will be used, use
840 it. If there's no TYPE, then we don't know anything about the
841 alias set for the memory. */
842 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
843 set_mem_align (slot, align);
844
845 /* If a type is specified, set the relevant flags. */
846 if (type != 0)
847 {
848 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
849 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
850 || TREE_CODE (type) == COMPLEX_TYPE));
851 }
852 MEM_NOTRAP_P (slot) = 1;
853
854 return slot;
855 }
856
857 /* Allocate a temporary stack slot and record it for possible later
858 reuse. First three arguments are same as in preceding function. */
859
860 rtx
861 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
862 {
863 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
864 }
865 \f
866 /* Assign a temporary.
867 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
868 and so that should be used in error messages. In either case, we
869 allocate of the given type.
870 KEEP is as for assign_stack_temp.
871 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
872 it is 0 if a register is OK.
873 DONT_PROMOTE is 1 if we should not promote values in register
874 to wider modes. */
875
876 rtx
877 assign_temp (tree type_or_decl, int keep, int memory_required,
878 int dont_promote ATTRIBUTE_UNUSED)
879 {
880 tree type, decl;
881 enum machine_mode mode;
882 #ifdef PROMOTE_MODE
883 int unsignedp;
884 #endif
885
886 if (DECL_P (type_or_decl))
887 decl = type_or_decl, type = TREE_TYPE (decl);
888 else
889 decl = NULL, type = type_or_decl;
890
891 mode = TYPE_MODE (type);
892 #ifdef PROMOTE_MODE
893 unsignedp = TYPE_UNSIGNED (type);
894 #endif
895
896 if (mode == BLKmode || memory_required)
897 {
898 HOST_WIDE_INT size = int_size_in_bytes (type);
899 rtx tmp;
900
901 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
902 problems with allocating the stack space. */
903 if (size == 0)
904 size = 1;
905
906 /* Unfortunately, we don't yet know how to allocate variable-sized
907 temporaries. However, sometimes we can find a fixed upper limit on
908 the size, so try that instead. */
909 else if (size == -1)
910 size = max_int_size_in_bytes (type);
911
912 /* The size of the temporary may be too large to fit into an integer. */
913 /* ??? Not sure this should happen except for user silliness, so limit
914 this to things that aren't compiler-generated temporaries. The
915 rest of the time we'll die in assign_stack_temp_for_type. */
916 if (decl && size == -1
917 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
918 {
919 error ("size of variable %q+D is too large", decl);
920 size = 1;
921 }
922
923 tmp = assign_stack_temp_for_type (mode, size, keep, type);
924 return tmp;
925 }
926
927 #ifdef PROMOTE_MODE
928 if (! dont_promote)
929 mode = promote_mode (type, mode, &unsignedp);
930 #endif
931
932 return gen_reg_rtx (mode);
933 }
934 \f
935 /* Combine temporary stack slots which are adjacent on the stack.
936
937 This allows for better use of already allocated stack space. This is only
938 done for BLKmode slots because we can be sure that we won't have alignment
939 problems in this case. */
940
941 static void
942 combine_temp_slots (void)
943 {
944 struct temp_slot *p, *q, *next, *next_q;
945 int num_slots;
946
947 /* We can't combine slots, because the information about which slot
948 is in which alias set will be lost. */
949 if (flag_strict_aliasing)
950 return;
951
952 /* If there are a lot of temp slots, don't do anything unless
953 high levels of optimization. */
954 if (! flag_expensive_optimizations)
955 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
956 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
957 return;
958
959 for (p = avail_temp_slots; p; p = next)
960 {
961 int delete_p = 0;
962
963 next = p->next;
964
965 if (GET_MODE (p->slot) != BLKmode)
966 continue;
967
968 for (q = p->next; q; q = next_q)
969 {
970 int delete_q = 0;
971
972 next_q = q->next;
973
974 if (GET_MODE (q->slot) != BLKmode)
975 continue;
976
977 if (p->base_offset + p->full_size == q->base_offset)
978 {
979 /* Q comes after P; combine Q into P. */
980 p->size += q->size;
981 p->full_size += q->full_size;
982 delete_q = 1;
983 }
984 else if (q->base_offset + q->full_size == p->base_offset)
985 {
986 /* P comes after Q; combine P into Q. */
987 q->size += p->size;
988 q->full_size += p->full_size;
989 delete_p = 1;
990 break;
991 }
992 if (delete_q)
993 cut_slot_from_list (q, &avail_temp_slots);
994 }
995
996 /* Either delete P or advance past it. */
997 if (delete_p)
998 cut_slot_from_list (p, &avail_temp_slots);
999 }
1000 }
1001 \f
1002 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1003 slot that previously was known by OLD_RTX. */
1004
1005 void
1006 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1007 {
1008 struct temp_slot *p;
1009
1010 if (rtx_equal_p (old_rtx, new_rtx))
1011 return;
1012
1013 p = find_temp_slot_from_address (old_rtx);
1014
1015 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1016 NEW_RTX is a register, see if one operand of the PLUS is a
1017 temporary location. If so, NEW_RTX points into it. Otherwise,
1018 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1019 in common between them. If so, try a recursive call on those
1020 values. */
1021 if (p == 0)
1022 {
1023 if (GET_CODE (old_rtx) != PLUS)
1024 return;
1025
1026 if (REG_P (new_rtx))
1027 {
1028 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1029 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1030 return;
1031 }
1032 else if (GET_CODE (new_rtx) != PLUS)
1033 return;
1034
1035 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1036 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1037 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1038 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1039 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1040 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1041 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1042 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1043
1044 return;
1045 }
1046
1047 /* Otherwise add an alias for the temp's address. */
1048 insert_temp_slot_address (new_rtx, p);
1049 }
1050
1051 /* If X could be a reference to a temporary slot, mark the fact that its
1052 address was taken. */
1053
1054 void
1055 mark_temp_addr_taken (rtx x)
1056 {
1057 struct temp_slot *p;
1058
1059 if (x == 0)
1060 return;
1061
1062 /* If X is not in memory or is at a constant address, it cannot be in
1063 a temporary slot. */
1064 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1065 return;
1066
1067 p = find_temp_slot_from_address (XEXP (x, 0));
1068 if (p != 0)
1069 p->addr_taken = 1;
1070 }
1071
1072 /* If X could be a reference to a temporary slot, mark that slot as
1073 belonging to the to one level higher than the current level. If X
1074 matched one of our slots, just mark that one. Otherwise, we can't
1075 easily predict which it is, so upgrade all of them. Kept slots
1076 need not be touched.
1077
1078 This is called when an ({...}) construct occurs and a statement
1079 returns a value in memory. */
1080
1081 void
1082 preserve_temp_slots (rtx x)
1083 {
1084 struct temp_slot *p = 0, *next;
1085
1086 /* If there is no result, we still might have some objects whose address
1087 were taken, so we need to make sure they stay around. */
1088 if (x == 0)
1089 {
1090 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1091 {
1092 next = p->next;
1093
1094 if (p->addr_taken)
1095 move_slot_to_level (p, temp_slot_level - 1);
1096 }
1097
1098 return;
1099 }
1100
1101 /* If X is a register that is being used as a pointer, see if we have
1102 a temporary slot we know it points to. To be consistent with
1103 the code below, we really should preserve all non-kept slots
1104 if we can't find a match, but that seems to be much too costly. */
1105 if (REG_P (x) && REG_POINTER (x))
1106 p = find_temp_slot_from_address (x);
1107
1108 /* If X is not in memory or is at a constant address, it cannot be in
1109 a temporary slot, but it can contain something whose address was
1110 taken. */
1111 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1112 {
1113 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1114 {
1115 next = p->next;
1116
1117 if (p->addr_taken)
1118 move_slot_to_level (p, temp_slot_level - 1);
1119 }
1120
1121 return;
1122 }
1123
1124 /* First see if we can find a match. */
1125 if (p == 0)
1126 p = find_temp_slot_from_address (XEXP (x, 0));
1127
1128 if (p != 0)
1129 {
1130 /* Move everything at our level whose address was taken to our new
1131 level in case we used its address. */
1132 struct temp_slot *q;
1133
1134 if (p->level == temp_slot_level)
1135 {
1136 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1137 {
1138 next = q->next;
1139
1140 if (p != q && q->addr_taken)
1141 move_slot_to_level (q, temp_slot_level - 1);
1142 }
1143
1144 move_slot_to_level (p, temp_slot_level - 1);
1145 p->addr_taken = 0;
1146 }
1147 return;
1148 }
1149
1150 /* Otherwise, preserve all non-kept slots at this level. */
1151 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1152 {
1153 next = p->next;
1154
1155 if (!p->keep)
1156 move_slot_to_level (p, temp_slot_level - 1);
1157 }
1158 }
1159
1160 /* Free all temporaries used so far. This is normally called at the
1161 end of generating code for a statement. */
1162
1163 void
1164 free_temp_slots (void)
1165 {
1166 struct temp_slot *p, *next;
1167
1168 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1169 {
1170 next = p->next;
1171
1172 if (!p->keep)
1173 make_slot_available (p);
1174 }
1175
1176 remove_unused_temp_slot_addresses ();
1177 combine_temp_slots ();
1178 }
1179
1180 /* Push deeper into the nesting level for stack temporaries. */
1181
1182 void
1183 push_temp_slots (void)
1184 {
1185 temp_slot_level++;
1186 }
1187
1188 /* Pop a temporary nesting level. All slots in use in the current level
1189 are freed. */
1190
1191 void
1192 pop_temp_slots (void)
1193 {
1194 struct temp_slot *p, *next;
1195
1196 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1197 {
1198 next = p->next;
1199 make_slot_available (p);
1200 }
1201
1202 remove_unused_temp_slot_addresses ();
1203 combine_temp_slots ();
1204
1205 temp_slot_level--;
1206 }
1207
1208 /* Initialize temporary slots. */
1209
1210 void
1211 init_temp_slots (void)
1212 {
1213 /* We have not allocated any temporaries yet. */
1214 avail_temp_slots = 0;
1215 used_temp_slots = 0;
1216 temp_slot_level = 0;
1217
1218 /* Set up the table to map addresses to temp slots. */
1219 if (! temp_slot_address_table)
1220 temp_slot_address_table = htab_create_ggc (32,
1221 temp_slot_address_hash,
1222 temp_slot_address_eq,
1223 NULL);
1224 else
1225 htab_empty (temp_slot_address_table);
1226 }
1227 \f
1228 /* These routines are responsible for converting virtual register references
1229 to the actual hard register references once RTL generation is complete.
1230
1231 The following four variables are used for communication between the
1232 routines. They contain the offsets of the virtual registers from their
1233 respective hard registers. */
1234
1235 static int in_arg_offset;
1236 static int var_offset;
1237 static int dynamic_offset;
1238 static int out_arg_offset;
1239 static int cfa_offset;
1240
1241 /* In most machines, the stack pointer register is equivalent to the bottom
1242 of the stack. */
1243
1244 #ifndef STACK_POINTER_OFFSET
1245 #define STACK_POINTER_OFFSET 0
1246 #endif
1247
1248 /* If not defined, pick an appropriate default for the offset of dynamically
1249 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1250 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1251
1252 #ifndef STACK_DYNAMIC_OFFSET
1253
1254 /* The bottom of the stack points to the actual arguments. If
1255 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1256 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1257 stack space for register parameters is not pushed by the caller, but
1258 rather part of the fixed stack areas and hence not included in
1259 `crtl->outgoing_args_size'. Nevertheless, we must allow
1260 for it when allocating stack dynamic objects. */
1261
1262 #if defined(REG_PARM_STACK_SPACE)
1263 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1264 ((ACCUMULATE_OUTGOING_ARGS \
1265 ? (crtl->outgoing_args_size \
1266 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1267 : REG_PARM_STACK_SPACE (FNDECL))) \
1268 : 0) + (STACK_POINTER_OFFSET))
1269 #else
1270 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1271 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1272 + (STACK_POINTER_OFFSET))
1273 #endif
1274 #endif
1275
1276 \f
1277 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1278 is a virtual register, return the equivalent hard register and set the
1279 offset indirectly through the pointer. Otherwise, return 0. */
1280
1281 static rtx
1282 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1283 {
1284 rtx new_rtx;
1285 HOST_WIDE_INT offset;
1286
1287 if (x == virtual_incoming_args_rtx)
1288 {
1289 if (stack_realign_drap)
1290 {
1291 /* Replace virtual_incoming_args_rtx with internal arg
1292 pointer if DRAP is used to realign stack. */
1293 new_rtx = crtl->args.internal_arg_pointer;
1294 offset = 0;
1295 }
1296 else
1297 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1298 }
1299 else if (x == virtual_stack_vars_rtx)
1300 new_rtx = frame_pointer_rtx, offset = var_offset;
1301 else if (x == virtual_stack_dynamic_rtx)
1302 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1303 else if (x == virtual_outgoing_args_rtx)
1304 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1305 else if (x == virtual_cfa_rtx)
1306 {
1307 #ifdef FRAME_POINTER_CFA_OFFSET
1308 new_rtx = frame_pointer_rtx;
1309 #else
1310 new_rtx = arg_pointer_rtx;
1311 #endif
1312 offset = cfa_offset;
1313 }
1314 else
1315 return NULL_RTX;
1316
1317 *poffset = offset;
1318 return new_rtx;
1319 }
1320
1321 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1322 Instantiate any virtual registers present inside of *LOC. The expression
1323 is simplified, as much as possible, but is not to be considered "valid"
1324 in any sense implied by the target. If any change is made, set CHANGED
1325 to true. */
1326
1327 static int
1328 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1329 {
1330 HOST_WIDE_INT offset;
1331 bool *changed = (bool *) data;
1332 rtx x, new_rtx;
1333
1334 x = *loc;
1335 if (x == 0)
1336 return 0;
1337
1338 switch (GET_CODE (x))
1339 {
1340 case REG:
1341 new_rtx = instantiate_new_reg (x, &offset);
1342 if (new_rtx)
1343 {
1344 *loc = plus_constant (new_rtx, offset);
1345 if (changed)
1346 *changed = true;
1347 }
1348 return -1;
1349
1350 case PLUS:
1351 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1352 if (new_rtx)
1353 {
1354 new_rtx = plus_constant (new_rtx, offset);
1355 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1356 if (changed)
1357 *changed = true;
1358 return -1;
1359 }
1360
1361 /* FIXME -- from old code */
1362 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1363 we can commute the PLUS and SUBREG because pointers into the
1364 frame are well-behaved. */
1365 break;
1366
1367 default:
1368 break;
1369 }
1370
1371 return 0;
1372 }
1373
1374 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1375 matches the predicate for insn CODE operand OPERAND. */
1376
1377 static int
1378 safe_insn_predicate (int code, int operand, rtx x)
1379 {
1380 const struct insn_operand_data *op_data;
1381
1382 if (code < 0)
1383 return true;
1384
1385 op_data = &insn_data[code].operand[operand];
1386 if (op_data->predicate == NULL)
1387 return true;
1388
1389 return op_data->predicate (x, op_data->mode);
1390 }
1391
1392 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1393 registers present inside of insn. The result will be a valid insn. */
1394
1395 static void
1396 instantiate_virtual_regs_in_insn (rtx insn)
1397 {
1398 HOST_WIDE_INT offset;
1399 int insn_code, i;
1400 bool any_change = false;
1401 rtx set, new_rtx, x, seq;
1402
1403 /* There are some special cases to be handled first. */
1404 set = single_set (insn);
1405 if (set)
1406 {
1407 /* We're allowed to assign to a virtual register. This is interpreted
1408 to mean that the underlying register gets assigned the inverse
1409 transformation. This is used, for example, in the handling of
1410 non-local gotos. */
1411 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1412 if (new_rtx)
1413 {
1414 start_sequence ();
1415
1416 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1417 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1418 GEN_INT (-offset));
1419 x = force_operand (x, new_rtx);
1420 if (x != new_rtx)
1421 emit_move_insn (new_rtx, x);
1422
1423 seq = get_insns ();
1424 end_sequence ();
1425
1426 emit_insn_before (seq, insn);
1427 delete_insn (insn);
1428 return;
1429 }
1430
1431 /* Handle a straight copy from a virtual register by generating a
1432 new add insn. The difference between this and falling through
1433 to the generic case is avoiding a new pseudo and eliminating a
1434 move insn in the initial rtl stream. */
1435 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1436 if (new_rtx && offset != 0
1437 && REG_P (SET_DEST (set))
1438 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1439 {
1440 start_sequence ();
1441
1442 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1443 new_rtx, GEN_INT (offset), SET_DEST (set),
1444 1, OPTAB_LIB_WIDEN);
1445 if (x != SET_DEST (set))
1446 emit_move_insn (SET_DEST (set), x);
1447
1448 seq = get_insns ();
1449 end_sequence ();
1450
1451 emit_insn_before (seq, insn);
1452 delete_insn (insn);
1453 return;
1454 }
1455
1456 extract_insn (insn);
1457 insn_code = INSN_CODE (insn);
1458
1459 /* Handle a plus involving a virtual register by determining if the
1460 operands remain valid if they're modified in place. */
1461 if (GET_CODE (SET_SRC (set)) == PLUS
1462 && recog_data.n_operands >= 3
1463 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1464 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1465 && CONST_INT_P (recog_data.operand[2])
1466 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1467 {
1468 offset += INTVAL (recog_data.operand[2]);
1469
1470 /* If the sum is zero, then replace with a plain move. */
1471 if (offset == 0
1472 && REG_P (SET_DEST (set))
1473 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1474 {
1475 start_sequence ();
1476 emit_move_insn (SET_DEST (set), new_rtx);
1477 seq = get_insns ();
1478 end_sequence ();
1479
1480 emit_insn_before (seq, insn);
1481 delete_insn (insn);
1482 return;
1483 }
1484
1485 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1486
1487 /* Using validate_change and apply_change_group here leaves
1488 recog_data in an invalid state. Since we know exactly what
1489 we want to check, do those two by hand. */
1490 if (safe_insn_predicate (insn_code, 1, new_rtx)
1491 && safe_insn_predicate (insn_code, 2, x))
1492 {
1493 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1494 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1495 any_change = true;
1496
1497 /* Fall through into the regular operand fixup loop in
1498 order to take care of operands other than 1 and 2. */
1499 }
1500 }
1501 }
1502 else
1503 {
1504 extract_insn (insn);
1505 insn_code = INSN_CODE (insn);
1506 }
1507
1508 /* In the general case, we expect virtual registers to appear only in
1509 operands, and then only as either bare registers or inside memories. */
1510 for (i = 0; i < recog_data.n_operands; ++i)
1511 {
1512 x = recog_data.operand[i];
1513 switch (GET_CODE (x))
1514 {
1515 case MEM:
1516 {
1517 rtx addr = XEXP (x, 0);
1518 bool changed = false;
1519
1520 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1521 if (!changed)
1522 continue;
1523
1524 start_sequence ();
1525 x = replace_equiv_address (x, addr);
1526 /* It may happen that the address with the virtual reg
1527 was valid (e.g. based on the virtual stack reg, which might
1528 be acceptable to the predicates with all offsets), whereas
1529 the address now isn't anymore, for instance when the address
1530 is still offsetted, but the base reg isn't virtual-stack-reg
1531 anymore. Below we would do a force_reg on the whole operand,
1532 but this insn might actually only accept memory. Hence,
1533 before doing that last resort, try to reload the address into
1534 a register, so this operand stays a MEM. */
1535 if (!safe_insn_predicate (insn_code, i, x))
1536 {
1537 addr = force_reg (GET_MODE (addr), addr);
1538 x = replace_equiv_address (x, addr);
1539 }
1540 seq = get_insns ();
1541 end_sequence ();
1542 if (seq)
1543 emit_insn_before (seq, insn);
1544 }
1545 break;
1546
1547 case REG:
1548 new_rtx = instantiate_new_reg (x, &offset);
1549 if (new_rtx == NULL)
1550 continue;
1551 if (offset == 0)
1552 x = new_rtx;
1553 else
1554 {
1555 start_sequence ();
1556
1557 /* Careful, special mode predicates may have stuff in
1558 insn_data[insn_code].operand[i].mode that isn't useful
1559 to us for computing a new value. */
1560 /* ??? Recognize address_operand and/or "p" constraints
1561 to see if (plus new offset) is a valid before we put
1562 this through expand_simple_binop. */
1563 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1564 GEN_INT (offset), NULL_RTX,
1565 1, OPTAB_LIB_WIDEN);
1566 seq = get_insns ();
1567 end_sequence ();
1568 emit_insn_before (seq, insn);
1569 }
1570 break;
1571
1572 case SUBREG:
1573 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1574 if (new_rtx == NULL)
1575 continue;
1576 if (offset != 0)
1577 {
1578 start_sequence ();
1579 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1580 GEN_INT (offset), NULL_RTX,
1581 1, OPTAB_LIB_WIDEN);
1582 seq = get_insns ();
1583 end_sequence ();
1584 emit_insn_before (seq, insn);
1585 }
1586 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1587 GET_MODE (new_rtx), SUBREG_BYTE (x));
1588 gcc_assert (x);
1589 break;
1590
1591 default:
1592 continue;
1593 }
1594
1595 /* At this point, X contains the new value for the operand.
1596 Validate the new value vs the insn predicate. Note that
1597 asm insns will have insn_code -1 here. */
1598 if (!safe_insn_predicate (insn_code, i, x))
1599 {
1600 start_sequence ();
1601 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1602 seq = get_insns ();
1603 end_sequence ();
1604 if (seq)
1605 emit_insn_before (seq, insn);
1606 }
1607
1608 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1609 any_change = true;
1610 }
1611
1612 if (any_change)
1613 {
1614 /* Propagate operand changes into the duplicates. */
1615 for (i = 0; i < recog_data.n_dups; ++i)
1616 *recog_data.dup_loc[i]
1617 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1618
1619 /* Force re-recognition of the instruction for validation. */
1620 INSN_CODE (insn) = -1;
1621 }
1622
1623 if (asm_noperands (PATTERN (insn)) >= 0)
1624 {
1625 if (!check_asm_operands (PATTERN (insn)))
1626 {
1627 error_for_asm (insn, "impossible constraint in %<asm%>");
1628 delete_insn (insn);
1629 }
1630 }
1631 else
1632 {
1633 if (recog_memoized (insn) < 0)
1634 fatal_insn_not_found (insn);
1635 }
1636 }
1637
1638 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1639 do any instantiation required. */
1640
1641 void
1642 instantiate_decl_rtl (rtx x)
1643 {
1644 rtx addr;
1645
1646 if (x == 0)
1647 return;
1648
1649 /* If this is a CONCAT, recurse for the pieces. */
1650 if (GET_CODE (x) == CONCAT)
1651 {
1652 instantiate_decl_rtl (XEXP (x, 0));
1653 instantiate_decl_rtl (XEXP (x, 1));
1654 return;
1655 }
1656
1657 /* If this is not a MEM, no need to do anything. Similarly if the
1658 address is a constant or a register that is not a virtual register. */
1659 if (!MEM_P (x))
1660 return;
1661
1662 addr = XEXP (x, 0);
1663 if (CONSTANT_P (addr)
1664 || (REG_P (addr)
1665 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1666 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1667 return;
1668
1669 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1670 }
1671
1672 /* Helper for instantiate_decls called via walk_tree: Process all decls
1673 in the given DECL_VALUE_EXPR. */
1674
1675 static tree
1676 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1677 {
1678 tree t = *tp;
1679 if (! EXPR_P (t))
1680 {
1681 *walk_subtrees = 0;
1682 if (DECL_P (t) && DECL_RTL_SET_P (t))
1683 instantiate_decl_rtl (DECL_RTL (t));
1684 }
1685 return NULL;
1686 }
1687
1688 /* Subroutine of instantiate_decls: Process all decls in the given
1689 BLOCK node and all its subblocks. */
1690
1691 static void
1692 instantiate_decls_1 (tree let)
1693 {
1694 tree t;
1695
1696 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1697 {
1698 if (DECL_RTL_SET_P (t))
1699 instantiate_decl_rtl (DECL_RTL (t));
1700 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1701 {
1702 tree v = DECL_VALUE_EXPR (t);
1703 walk_tree (&v, instantiate_expr, NULL, NULL);
1704 }
1705 }
1706
1707 /* Process all subblocks. */
1708 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1709 instantiate_decls_1 (t);
1710 }
1711
1712 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1713 all virtual registers in their DECL_RTL's. */
1714
1715 static void
1716 instantiate_decls (tree fndecl)
1717 {
1718 tree decl, t, next;
1719
1720 /* Process all parameters of the function. */
1721 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1722 {
1723 instantiate_decl_rtl (DECL_RTL (decl));
1724 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1725 if (DECL_HAS_VALUE_EXPR_P (decl))
1726 {
1727 tree v = DECL_VALUE_EXPR (decl);
1728 walk_tree (&v, instantiate_expr, NULL, NULL);
1729 }
1730 }
1731
1732 /* Now process all variables defined in the function or its subblocks. */
1733 instantiate_decls_1 (DECL_INITIAL (fndecl));
1734
1735 t = cfun->local_decls;
1736 cfun->local_decls = NULL_TREE;
1737 for (; t; t = next)
1738 {
1739 next = TREE_CHAIN (t);
1740 decl = TREE_VALUE (t);
1741 if (DECL_RTL_SET_P (decl))
1742 instantiate_decl_rtl (DECL_RTL (decl));
1743 ggc_free (t);
1744 }
1745 }
1746
1747 /* Pass through the INSNS of function FNDECL and convert virtual register
1748 references to hard register references. */
1749
1750 static unsigned int
1751 instantiate_virtual_regs (void)
1752 {
1753 rtx insn;
1754
1755 /* Compute the offsets to use for this function. */
1756 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1757 var_offset = STARTING_FRAME_OFFSET;
1758 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1759 out_arg_offset = STACK_POINTER_OFFSET;
1760 #ifdef FRAME_POINTER_CFA_OFFSET
1761 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1762 #else
1763 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1764 #endif
1765
1766 /* Initialize recognition, indicating that volatile is OK. */
1767 init_recog ();
1768
1769 /* Scan through all the insns, instantiating every virtual register still
1770 present. */
1771 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1772 if (INSN_P (insn))
1773 {
1774 /* These patterns in the instruction stream can never be recognized.
1775 Fortunately, they shouldn't contain virtual registers either. */
1776 if (GET_CODE (PATTERN (insn)) == USE
1777 || GET_CODE (PATTERN (insn)) == CLOBBER
1778 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1779 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1780 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1781 continue;
1782 else if (DEBUG_INSN_P (insn))
1783 for_each_rtx (&INSN_VAR_LOCATION (insn),
1784 instantiate_virtual_regs_in_rtx, NULL);
1785 else
1786 instantiate_virtual_regs_in_insn (insn);
1787
1788 if (INSN_DELETED_P (insn))
1789 continue;
1790
1791 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1792
1793 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1794 if (CALL_P (insn))
1795 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1796 instantiate_virtual_regs_in_rtx, NULL);
1797 }
1798
1799 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1800 instantiate_decls (current_function_decl);
1801
1802 targetm.instantiate_decls ();
1803
1804 /* Indicate that, from now on, assign_stack_local should use
1805 frame_pointer_rtx. */
1806 virtuals_instantiated = 1;
1807 return 0;
1808 }
1809
1810 struct rtl_opt_pass pass_instantiate_virtual_regs =
1811 {
1812 {
1813 RTL_PASS,
1814 "vregs", /* name */
1815 NULL, /* gate */
1816 instantiate_virtual_regs, /* execute */
1817 NULL, /* sub */
1818 NULL, /* next */
1819 0, /* static_pass_number */
1820 TV_NONE, /* tv_id */
1821 0, /* properties_required */
1822 0, /* properties_provided */
1823 0, /* properties_destroyed */
1824 0, /* todo_flags_start */
1825 TODO_dump_func /* todo_flags_finish */
1826 }
1827 };
1828
1829 \f
1830 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1831 This means a type for which function calls must pass an address to the
1832 function or get an address back from the function.
1833 EXP may be a type node or an expression (whose type is tested). */
1834
1835 int
1836 aggregate_value_p (const_tree exp, const_tree fntype)
1837 {
1838 int i, regno, nregs;
1839 rtx reg;
1840
1841 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1842
1843 /* DECL node associated with FNTYPE when relevant, which we might need to
1844 check for by-invisible-reference returns, typically for CALL_EXPR input
1845 EXPressions. */
1846 const_tree fndecl = NULL_TREE;
1847
1848 if (fntype)
1849 switch (TREE_CODE (fntype))
1850 {
1851 case CALL_EXPR:
1852 fndecl = get_callee_fndecl (fntype);
1853 fntype = (fndecl
1854 ? TREE_TYPE (fndecl)
1855 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1856 break;
1857 case FUNCTION_DECL:
1858 fndecl = fntype;
1859 fntype = TREE_TYPE (fndecl);
1860 break;
1861 case FUNCTION_TYPE:
1862 case METHOD_TYPE:
1863 break;
1864 case IDENTIFIER_NODE:
1865 fntype = 0;
1866 break;
1867 default:
1868 /* We don't expect other rtl types here. */
1869 gcc_unreachable ();
1870 }
1871
1872 if (TREE_CODE (type) == VOID_TYPE)
1873 return 0;
1874
1875 /* If the front end has decided that this needs to be passed by
1876 reference, do so. */
1877 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1878 && DECL_BY_REFERENCE (exp))
1879 return 1;
1880
1881 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1882 called function RESULT_DECL, meaning the function returns in memory by
1883 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1884 on the function type, which used to be the way to request such a return
1885 mechanism but might now be causing troubles at gimplification time if
1886 temporaries with the function type need to be created. */
1887 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1888 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1889 return 1;
1890
1891 if (targetm.calls.return_in_memory (type, fntype))
1892 return 1;
1893 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1894 and thus can't be returned in registers. */
1895 if (TREE_ADDRESSABLE (type))
1896 return 1;
1897 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1898 return 1;
1899 /* Make sure we have suitable call-clobbered regs to return
1900 the value in; if not, we must return it in memory. */
1901 reg = hard_function_value (type, 0, fntype, 0);
1902
1903 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1904 it is OK. */
1905 if (!REG_P (reg))
1906 return 0;
1907
1908 regno = REGNO (reg);
1909 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1910 for (i = 0; i < nregs; i++)
1911 if (! call_used_regs[regno + i])
1912 return 1;
1913 return 0;
1914 }
1915 \f
1916 /* Return true if we should assign DECL a pseudo register; false if it
1917 should live on the local stack. */
1918
1919 bool
1920 use_register_for_decl (const_tree decl)
1921 {
1922 if (!targetm.calls.allocate_stack_slots_for_args())
1923 return true;
1924
1925 /* Honor volatile. */
1926 if (TREE_SIDE_EFFECTS (decl))
1927 return false;
1928
1929 /* Honor addressability. */
1930 if (TREE_ADDRESSABLE (decl))
1931 return false;
1932
1933 /* Only register-like things go in registers. */
1934 if (DECL_MODE (decl) == BLKmode)
1935 return false;
1936
1937 /* If -ffloat-store specified, don't put explicit float variables
1938 into registers. */
1939 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1940 propagates values across these stores, and it probably shouldn't. */
1941 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1942 return false;
1943
1944 /* If we're not interested in tracking debugging information for
1945 this decl, then we can certainly put it in a register. */
1946 if (DECL_IGNORED_P (decl))
1947 return true;
1948
1949 if (optimize)
1950 return true;
1951
1952 if (!DECL_REGISTER (decl))
1953 return false;
1954
1955 switch (TREE_CODE (TREE_TYPE (decl)))
1956 {
1957 case RECORD_TYPE:
1958 case UNION_TYPE:
1959 case QUAL_UNION_TYPE:
1960 /* When not optimizing, disregard register keyword for variables with
1961 types containing methods, otherwise the methods won't be callable
1962 from the debugger. */
1963 if (TYPE_METHODS (TREE_TYPE (decl)))
1964 return false;
1965 break;
1966 default:
1967 break;
1968 }
1969
1970 return true;
1971 }
1972
1973 /* Return true if TYPE should be passed by invisible reference. */
1974
1975 bool
1976 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1977 tree type, bool named_arg)
1978 {
1979 if (type)
1980 {
1981 /* If this type contains non-trivial constructors, then it is
1982 forbidden for the middle-end to create any new copies. */
1983 if (TREE_ADDRESSABLE (type))
1984 return true;
1985
1986 /* GCC post 3.4 passes *all* variable sized types by reference. */
1987 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1988 return true;
1989 }
1990
1991 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1992 }
1993
1994 /* Return true if TYPE, which is passed by reference, should be callee
1995 copied instead of caller copied. */
1996
1997 bool
1998 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1999 tree type, bool named_arg)
2000 {
2001 if (type && TREE_ADDRESSABLE (type))
2002 return false;
2003 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2004 }
2005
2006 /* Structures to communicate between the subroutines of assign_parms.
2007 The first holds data persistent across all parameters, the second
2008 is cleared out for each parameter. */
2009
2010 struct assign_parm_data_all
2011 {
2012 CUMULATIVE_ARGS args_so_far;
2013 struct args_size stack_args_size;
2014 tree function_result_decl;
2015 tree orig_fnargs;
2016 rtx first_conversion_insn;
2017 rtx last_conversion_insn;
2018 HOST_WIDE_INT pretend_args_size;
2019 HOST_WIDE_INT extra_pretend_bytes;
2020 int reg_parm_stack_space;
2021 };
2022
2023 struct assign_parm_data_one
2024 {
2025 tree nominal_type;
2026 tree passed_type;
2027 rtx entry_parm;
2028 rtx stack_parm;
2029 enum machine_mode nominal_mode;
2030 enum machine_mode passed_mode;
2031 enum machine_mode promoted_mode;
2032 struct locate_and_pad_arg_data locate;
2033 int partial;
2034 BOOL_BITFIELD named_arg : 1;
2035 BOOL_BITFIELD passed_pointer : 1;
2036 BOOL_BITFIELD on_stack : 1;
2037 BOOL_BITFIELD loaded_in_reg : 1;
2038 };
2039
2040 /* A subroutine of assign_parms. Initialize ALL. */
2041
2042 static void
2043 assign_parms_initialize_all (struct assign_parm_data_all *all)
2044 {
2045 tree fntype;
2046
2047 memset (all, 0, sizeof (*all));
2048
2049 fntype = TREE_TYPE (current_function_decl);
2050
2051 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2052 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2053 #else
2054 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2055 current_function_decl, -1);
2056 #endif
2057
2058 #ifdef REG_PARM_STACK_SPACE
2059 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2060 #endif
2061 }
2062
2063 /* If ARGS contains entries with complex types, split the entry into two
2064 entries of the component type. Return a new list of substitutions are
2065 needed, else the old list. */
2066
2067 static tree
2068 split_complex_args (tree args)
2069 {
2070 tree p;
2071
2072 /* Before allocating memory, check for the common case of no complex. */
2073 for (p = args; p; p = TREE_CHAIN (p))
2074 {
2075 tree type = TREE_TYPE (p);
2076 if (TREE_CODE (type) == COMPLEX_TYPE
2077 && targetm.calls.split_complex_arg (type))
2078 goto found;
2079 }
2080 return args;
2081
2082 found:
2083 args = copy_list (args);
2084
2085 for (p = args; p; p = TREE_CHAIN (p))
2086 {
2087 tree type = TREE_TYPE (p);
2088 if (TREE_CODE (type) == COMPLEX_TYPE
2089 && targetm.calls.split_complex_arg (type))
2090 {
2091 tree decl;
2092 tree subtype = TREE_TYPE (type);
2093 bool addressable = TREE_ADDRESSABLE (p);
2094
2095 /* Rewrite the PARM_DECL's type with its component. */
2096 TREE_TYPE (p) = subtype;
2097 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2098 DECL_MODE (p) = VOIDmode;
2099 DECL_SIZE (p) = NULL;
2100 DECL_SIZE_UNIT (p) = NULL;
2101 /* If this arg must go in memory, put it in a pseudo here.
2102 We can't allow it to go in memory as per normal parms,
2103 because the usual place might not have the imag part
2104 adjacent to the real part. */
2105 DECL_ARTIFICIAL (p) = addressable;
2106 DECL_IGNORED_P (p) = addressable;
2107 TREE_ADDRESSABLE (p) = 0;
2108 layout_decl (p, 0);
2109
2110 /* Build a second synthetic decl. */
2111 decl = build_decl (EXPR_LOCATION (p),
2112 PARM_DECL, NULL_TREE, subtype);
2113 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2114 DECL_ARTIFICIAL (decl) = addressable;
2115 DECL_IGNORED_P (decl) = addressable;
2116 layout_decl (decl, 0);
2117
2118 /* Splice it in; skip the new decl. */
2119 TREE_CHAIN (decl) = TREE_CHAIN (p);
2120 TREE_CHAIN (p) = decl;
2121 p = decl;
2122 }
2123 }
2124
2125 return args;
2126 }
2127
2128 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2129 the hidden struct return argument, and (abi willing) complex args.
2130 Return the new parameter list. */
2131
2132 static tree
2133 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2134 {
2135 tree fndecl = current_function_decl;
2136 tree fntype = TREE_TYPE (fndecl);
2137 tree fnargs = DECL_ARGUMENTS (fndecl);
2138
2139 /* If struct value address is treated as the first argument, make it so. */
2140 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2141 && ! cfun->returns_pcc_struct
2142 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2143 {
2144 tree type = build_pointer_type (TREE_TYPE (fntype));
2145 tree decl;
2146
2147 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2148 PARM_DECL, NULL_TREE, type);
2149 DECL_ARG_TYPE (decl) = type;
2150 DECL_ARTIFICIAL (decl) = 1;
2151 DECL_IGNORED_P (decl) = 1;
2152
2153 TREE_CHAIN (decl) = fnargs;
2154 fnargs = decl;
2155 all->function_result_decl = decl;
2156 }
2157
2158 all->orig_fnargs = fnargs;
2159
2160 /* If the target wants to split complex arguments into scalars, do so. */
2161 if (targetm.calls.split_complex_arg)
2162 fnargs = split_complex_args (fnargs);
2163
2164 return fnargs;
2165 }
2166
2167 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2168 data for the parameter. Incorporate ABI specifics such as pass-by-
2169 reference and type promotion. */
2170
2171 static void
2172 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2173 struct assign_parm_data_one *data)
2174 {
2175 tree nominal_type, passed_type;
2176 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2177 int unsignedp;
2178
2179 memset (data, 0, sizeof (*data));
2180
2181 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2182 if (!cfun->stdarg)
2183 data->named_arg = 1; /* No variadic parms. */
2184 else if (TREE_CHAIN (parm))
2185 data->named_arg = 1; /* Not the last non-variadic parm. */
2186 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2187 data->named_arg = 1; /* Only variadic ones are unnamed. */
2188 else
2189 data->named_arg = 0; /* Treat as variadic. */
2190
2191 nominal_type = TREE_TYPE (parm);
2192 passed_type = DECL_ARG_TYPE (parm);
2193
2194 /* Look out for errors propagating this far. Also, if the parameter's
2195 type is void then its value doesn't matter. */
2196 if (TREE_TYPE (parm) == error_mark_node
2197 /* This can happen after weird syntax errors
2198 or if an enum type is defined among the parms. */
2199 || TREE_CODE (parm) != PARM_DECL
2200 || passed_type == NULL
2201 || VOID_TYPE_P (nominal_type))
2202 {
2203 nominal_type = passed_type = void_type_node;
2204 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2205 goto egress;
2206 }
2207
2208 /* Find mode of arg as it is passed, and mode of arg as it should be
2209 during execution of this function. */
2210 passed_mode = TYPE_MODE (passed_type);
2211 nominal_mode = TYPE_MODE (nominal_type);
2212
2213 /* If the parm is to be passed as a transparent union, use the type of
2214 the first field for the tests below. We have already verified that
2215 the modes are the same. */
2216 if (TREE_CODE (passed_type) == UNION_TYPE
2217 && TYPE_TRANSPARENT_UNION (passed_type))
2218 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2219
2220 /* See if this arg was passed by invisible reference. */
2221 if (pass_by_reference (&all->args_so_far, passed_mode,
2222 passed_type, data->named_arg))
2223 {
2224 passed_type = nominal_type = build_pointer_type (passed_type);
2225 data->passed_pointer = true;
2226 passed_mode = nominal_mode = Pmode;
2227 }
2228
2229 /* Find mode as it is passed by the ABI. */
2230 unsignedp = TYPE_UNSIGNED (passed_type);
2231 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2232 TREE_TYPE (current_function_decl), 0);
2233
2234 egress:
2235 data->nominal_type = nominal_type;
2236 data->passed_type = passed_type;
2237 data->nominal_mode = nominal_mode;
2238 data->passed_mode = passed_mode;
2239 data->promoted_mode = promoted_mode;
2240 }
2241
2242 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2243
2244 static void
2245 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2246 struct assign_parm_data_one *data, bool no_rtl)
2247 {
2248 int varargs_pretend_bytes = 0;
2249
2250 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2251 data->promoted_mode,
2252 data->passed_type,
2253 &varargs_pretend_bytes, no_rtl);
2254
2255 /* If the back-end has requested extra stack space, record how much is
2256 needed. Do not change pretend_args_size otherwise since it may be
2257 nonzero from an earlier partial argument. */
2258 if (varargs_pretend_bytes > 0)
2259 all->pretend_args_size = varargs_pretend_bytes;
2260 }
2261
2262 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2263 the incoming location of the current parameter. */
2264
2265 static void
2266 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2267 struct assign_parm_data_one *data)
2268 {
2269 HOST_WIDE_INT pretend_bytes = 0;
2270 rtx entry_parm;
2271 bool in_regs;
2272
2273 if (data->promoted_mode == VOIDmode)
2274 {
2275 data->entry_parm = data->stack_parm = const0_rtx;
2276 return;
2277 }
2278
2279 #ifdef FUNCTION_INCOMING_ARG
2280 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2281 data->passed_type, data->named_arg);
2282 #else
2283 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2284 data->passed_type, data->named_arg);
2285 #endif
2286
2287 if (entry_parm == 0)
2288 data->promoted_mode = data->passed_mode;
2289
2290 /* Determine parm's home in the stack, in case it arrives in the stack
2291 or we should pretend it did. Compute the stack position and rtx where
2292 the argument arrives and its size.
2293
2294 There is one complexity here: If this was a parameter that would
2295 have been passed in registers, but wasn't only because it is
2296 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2297 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2298 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2299 as it was the previous time. */
2300 in_regs = entry_parm != 0;
2301 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2302 in_regs = true;
2303 #endif
2304 if (!in_regs && !data->named_arg)
2305 {
2306 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2307 {
2308 rtx tem;
2309 #ifdef FUNCTION_INCOMING_ARG
2310 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2311 data->passed_type, true);
2312 #else
2313 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2314 data->passed_type, true);
2315 #endif
2316 in_regs = tem != NULL;
2317 }
2318 }
2319
2320 /* If this parameter was passed both in registers and in the stack, use
2321 the copy on the stack. */
2322 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2323 data->passed_type))
2324 entry_parm = 0;
2325
2326 if (entry_parm)
2327 {
2328 int partial;
2329
2330 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2331 data->promoted_mode,
2332 data->passed_type,
2333 data->named_arg);
2334 data->partial = partial;
2335
2336 /* The caller might already have allocated stack space for the
2337 register parameters. */
2338 if (partial != 0 && all->reg_parm_stack_space == 0)
2339 {
2340 /* Part of this argument is passed in registers and part
2341 is passed on the stack. Ask the prologue code to extend
2342 the stack part so that we can recreate the full value.
2343
2344 PRETEND_BYTES is the size of the registers we need to store.
2345 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2346 stack space that the prologue should allocate.
2347
2348 Internally, gcc assumes that the argument pointer is aligned
2349 to STACK_BOUNDARY bits. This is used both for alignment
2350 optimizations (see init_emit) and to locate arguments that are
2351 aligned to more than PARM_BOUNDARY bits. We must preserve this
2352 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2353 a stack boundary. */
2354
2355 /* We assume at most one partial arg, and it must be the first
2356 argument on the stack. */
2357 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2358
2359 pretend_bytes = partial;
2360 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2361
2362 /* We want to align relative to the actual stack pointer, so
2363 don't include this in the stack size until later. */
2364 all->extra_pretend_bytes = all->pretend_args_size;
2365 }
2366 }
2367
2368 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2369 entry_parm ? data->partial : 0, current_function_decl,
2370 &all->stack_args_size, &data->locate);
2371
2372 /* Update parm_stack_boundary if this parameter is passed in the
2373 stack. */
2374 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2375 crtl->parm_stack_boundary = data->locate.boundary;
2376
2377 /* Adjust offsets to include the pretend args. */
2378 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2379 data->locate.slot_offset.constant += pretend_bytes;
2380 data->locate.offset.constant += pretend_bytes;
2381
2382 data->entry_parm = entry_parm;
2383 }
2384
2385 /* A subroutine of assign_parms. If there is actually space on the stack
2386 for this parm, count it in stack_args_size and return true. */
2387
2388 static bool
2389 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2390 struct assign_parm_data_one *data)
2391 {
2392 /* Trivially true if we've no incoming register. */
2393 if (data->entry_parm == NULL)
2394 ;
2395 /* Also true if we're partially in registers and partially not,
2396 since we've arranged to drop the entire argument on the stack. */
2397 else if (data->partial != 0)
2398 ;
2399 /* Also true if the target says that it's passed in both registers
2400 and on the stack. */
2401 else if (GET_CODE (data->entry_parm) == PARALLEL
2402 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2403 ;
2404 /* Also true if the target says that there's stack allocated for
2405 all register parameters. */
2406 else if (all->reg_parm_stack_space > 0)
2407 ;
2408 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2409 else
2410 return false;
2411
2412 all->stack_args_size.constant += data->locate.size.constant;
2413 if (data->locate.size.var)
2414 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2415
2416 return true;
2417 }
2418
2419 /* A subroutine of assign_parms. Given that this parameter is allocated
2420 stack space by the ABI, find it. */
2421
2422 static void
2423 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2424 {
2425 rtx offset_rtx, stack_parm;
2426 unsigned int align, boundary;
2427
2428 /* If we're passing this arg using a reg, make its stack home the
2429 aligned stack slot. */
2430 if (data->entry_parm)
2431 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2432 else
2433 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2434
2435 stack_parm = crtl->args.internal_arg_pointer;
2436 if (offset_rtx != const0_rtx)
2437 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2438 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2439
2440 if (!data->passed_pointer)
2441 {
2442 set_mem_attributes (stack_parm, parm, 1);
2443 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2444 while promoted mode's size is needed. */
2445 if (data->promoted_mode != BLKmode
2446 && data->promoted_mode != DECL_MODE (parm))
2447 {
2448 set_mem_size (stack_parm,
2449 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2450 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2451 {
2452 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2453 data->promoted_mode);
2454 if (offset)
2455 set_mem_offset (stack_parm,
2456 plus_constant (MEM_OFFSET (stack_parm),
2457 -offset));
2458 }
2459 }
2460 }
2461
2462 boundary = data->locate.boundary;
2463 align = BITS_PER_UNIT;
2464
2465 /* If we're padding upward, we know that the alignment of the slot
2466 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2467 intentionally forcing upward padding. Otherwise we have to come
2468 up with a guess at the alignment based on OFFSET_RTX. */
2469 if (data->locate.where_pad != downward || data->entry_parm)
2470 align = boundary;
2471 else if (CONST_INT_P (offset_rtx))
2472 {
2473 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2474 align = align & -align;
2475 }
2476 set_mem_align (stack_parm, align);
2477
2478 if (data->entry_parm)
2479 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2480
2481 data->stack_parm = stack_parm;
2482 }
2483
2484 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2485 always valid and contiguous. */
2486
2487 static void
2488 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2489 {
2490 rtx entry_parm = data->entry_parm;
2491 rtx stack_parm = data->stack_parm;
2492
2493 /* If this parm was passed part in regs and part in memory, pretend it
2494 arrived entirely in memory by pushing the register-part onto the stack.
2495 In the special case of a DImode or DFmode that is split, we could put
2496 it together in a pseudoreg directly, but for now that's not worth
2497 bothering with. */
2498 if (data->partial != 0)
2499 {
2500 /* Handle calls that pass values in multiple non-contiguous
2501 locations. The Irix 6 ABI has examples of this. */
2502 if (GET_CODE (entry_parm) == PARALLEL)
2503 emit_group_store (validize_mem (stack_parm), entry_parm,
2504 data->passed_type,
2505 int_size_in_bytes (data->passed_type));
2506 else
2507 {
2508 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2509 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2510 data->partial / UNITS_PER_WORD);
2511 }
2512
2513 entry_parm = stack_parm;
2514 }
2515
2516 /* If we didn't decide this parm came in a register, by default it came
2517 on the stack. */
2518 else if (entry_parm == NULL)
2519 entry_parm = stack_parm;
2520
2521 /* When an argument is passed in multiple locations, we can't make use
2522 of this information, but we can save some copying if the whole argument
2523 is passed in a single register. */
2524 else if (GET_CODE (entry_parm) == PARALLEL
2525 && data->nominal_mode != BLKmode
2526 && data->passed_mode != BLKmode)
2527 {
2528 size_t i, len = XVECLEN (entry_parm, 0);
2529
2530 for (i = 0; i < len; i++)
2531 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2532 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2533 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2534 == data->passed_mode)
2535 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2536 {
2537 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2538 break;
2539 }
2540 }
2541
2542 data->entry_parm = entry_parm;
2543 }
2544
2545 /* A subroutine of assign_parms. Reconstitute any values which were
2546 passed in multiple registers and would fit in a single register. */
2547
2548 static void
2549 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2550 {
2551 rtx entry_parm = data->entry_parm;
2552
2553 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2554 This can be done with register operations rather than on the
2555 stack, even if we will store the reconstituted parameter on the
2556 stack later. */
2557 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2558 {
2559 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2560 emit_group_store (parmreg, entry_parm, data->passed_type,
2561 GET_MODE_SIZE (GET_MODE (entry_parm)));
2562 entry_parm = parmreg;
2563 }
2564
2565 data->entry_parm = entry_parm;
2566 }
2567
2568 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2569 always valid and properly aligned. */
2570
2571 static void
2572 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2573 {
2574 rtx stack_parm = data->stack_parm;
2575
2576 /* If we can't trust the parm stack slot to be aligned enough for its
2577 ultimate type, don't use that slot after entry. We'll make another
2578 stack slot, if we need one. */
2579 if (stack_parm
2580 && ((STRICT_ALIGNMENT
2581 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2582 || (data->nominal_type
2583 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2584 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2585 stack_parm = NULL;
2586
2587 /* If parm was passed in memory, and we need to convert it on entry,
2588 don't store it back in that same slot. */
2589 else if (data->entry_parm == stack_parm
2590 && data->nominal_mode != BLKmode
2591 && data->nominal_mode != data->passed_mode)
2592 stack_parm = NULL;
2593
2594 /* If stack protection is in effect for this function, don't leave any
2595 pointers in their passed stack slots. */
2596 else if (crtl->stack_protect_guard
2597 && (flag_stack_protect == 2
2598 || data->passed_pointer
2599 || POINTER_TYPE_P (data->nominal_type)))
2600 stack_parm = NULL;
2601
2602 data->stack_parm = stack_parm;
2603 }
2604
2605 /* A subroutine of assign_parms. Return true if the current parameter
2606 should be stored as a BLKmode in the current frame. */
2607
2608 static bool
2609 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2610 {
2611 if (data->nominal_mode == BLKmode)
2612 return true;
2613 if (GET_MODE (data->entry_parm) == BLKmode)
2614 return true;
2615
2616 #ifdef BLOCK_REG_PADDING
2617 /* Only assign_parm_setup_block knows how to deal with register arguments
2618 that are padded at the least significant end. */
2619 if (REG_P (data->entry_parm)
2620 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2621 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2622 == (BYTES_BIG_ENDIAN ? upward : downward)))
2623 return true;
2624 #endif
2625
2626 return false;
2627 }
2628
2629 /* A subroutine of assign_parms. Arrange for the parameter to be
2630 present and valid in DATA->STACK_RTL. */
2631
2632 static void
2633 assign_parm_setup_block (struct assign_parm_data_all *all,
2634 tree parm, struct assign_parm_data_one *data)
2635 {
2636 rtx entry_parm = data->entry_parm;
2637 rtx stack_parm = data->stack_parm;
2638 HOST_WIDE_INT size;
2639 HOST_WIDE_INT size_stored;
2640
2641 if (GET_CODE (entry_parm) == PARALLEL)
2642 entry_parm = emit_group_move_into_temps (entry_parm);
2643
2644 size = int_size_in_bytes (data->passed_type);
2645 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2646 if (stack_parm == 0)
2647 {
2648 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2649 stack_parm = assign_stack_local (BLKmode, size_stored,
2650 DECL_ALIGN (parm));
2651 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2652 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2653 set_mem_attributes (stack_parm, parm, 1);
2654 }
2655
2656 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2657 calls that pass values in multiple non-contiguous locations. */
2658 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2659 {
2660 rtx mem;
2661
2662 /* Note that we will be storing an integral number of words.
2663 So we have to be careful to ensure that we allocate an
2664 integral number of words. We do this above when we call
2665 assign_stack_local if space was not allocated in the argument
2666 list. If it was, this will not work if PARM_BOUNDARY is not
2667 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2668 if it becomes a problem. Exception is when BLKmode arrives
2669 with arguments not conforming to word_mode. */
2670
2671 if (data->stack_parm == 0)
2672 ;
2673 else if (GET_CODE (entry_parm) == PARALLEL)
2674 ;
2675 else
2676 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2677
2678 mem = validize_mem (stack_parm);
2679
2680 /* Handle values in multiple non-contiguous locations. */
2681 if (GET_CODE (entry_parm) == PARALLEL)
2682 {
2683 push_to_sequence2 (all->first_conversion_insn,
2684 all->last_conversion_insn);
2685 emit_group_store (mem, entry_parm, data->passed_type, size);
2686 all->first_conversion_insn = get_insns ();
2687 all->last_conversion_insn = get_last_insn ();
2688 end_sequence ();
2689 }
2690
2691 else if (size == 0)
2692 ;
2693
2694 /* If SIZE is that of a mode no bigger than a word, just use
2695 that mode's store operation. */
2696 else if (size <= UNITS_PER_WORD)
2697 {
2698 enum machine_mode mode
2699 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2700
2701 if (mode != BLKmode
2702 #ifdef BLOCK_REG_PADDING
2703 && (size == UNITS_PER_WORD
2704 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2705 != (BYTES_BIG_ENDIAN ? upward : downward)))
2706 #endif
2707 )
2708 {
2709 rtx reg;
2710
2711 /* We are really truncating a word_mode value containing
2712 SIZE bytes into a value of mode MODE. If such an
2713 operation requires no actual instructions, we can refer
2714 to the value directly in mode MODE, otherwise we must
2715 start with the register in word_mode and explicitly
2716 convert it. */
2717 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2718 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2719 else
2720 {
2721 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2722 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2723 }
2724 emit_move_insn (change_address (mem, mode, 0), reg);
2725 }
2726
2727 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2728 machine must be aligned to the left before storing
2729 to memory. Note that the previous test doesn't
2730 handle all cases (e.g. SIZE == 3). */
2731 else if (size != UNITS_PER_WORD
2732 #ifdef BLOCK_REG_PADDING
2733 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2734 == downward)
2735 #else
2736 && BYTES_BIG_ENDIAN
2737 #endif
2738 )
2739 {
2740 rtx tem, x;
2741 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2742 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2743
2744 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2745 build_int_cst (NULL_TREE, by),
2746 NULL_RTX, 1);
2747 tem = change_address (mem, word_mode, 0);
2748 emit_move_insn (tem, x);
2749 }
2750 else
2751 move_block_from_reg (REGNO (entry_parm), mem,
2752 size_stored / UNITS_PER_WORD);
2753 }
2754 else
2755 move_block_from_reg (REGNO (entry_parm), mem,
2756 size_stored / UNITS_PER_WORD);
2757 }
2758 else if (data->stack_parm == 0)
2759 {
2760 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2761 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2762 BLOCK_OP_NORMAL);
2763 all->first_conversion_insn = get_insns ();
2764 all->last_conversion_insn = get_last_insn ();
2765 end_sequence ();
2766 }
2767
2768 data->stack_parm = stack_parm;
2769 SET_DECL_RTL (parm, stack_parm);
2770 }
2771
2772 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2773 parameter. Get it there. Perform all ABI specified conversions. */
2774
2775 static void
2776 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2777 struct assign_parm_data_one *data)
2778 {
2779 rtx parmreg;
2780 enum machine_mode promoted_nominal_mode;
2781 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2782 bool did_conversion = false;
2783
2784 /* Store the parm in a pseudoregister during the function, but we may
2785 need to do it in a wider mode. Using 2 here makes the result
2786 consistent with promote_decl_mode and thus expand_expr_real_1. */
2787 promoted_nominal_mode
2788 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2789 TREE_TYPE (current_function_decl), 2);
2790
2791 parmreg = gen_reg_rtx (promoted_nominal_mode);
2792
2793 if (!DECL_ARTIFICIAL (parm))
2794 mark_user_reg (parmreg);
2795
2796 /* If this was an item that we received a pointer to,
2797 set DECL_RTL appropriately. */
2798 if (data->passed_pointer)
2799 {
2800 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2801 set_mem_attributes (x, parm, 1);
2802 SET_DECL_RTL (parm, x);
2803 }
2804 else
2805 SET_DECL_RTL (parm, parmreg);
2806
2807 assign_parm_remove_parallels (data);
2808
2809 /* Copy the value into the register, thus bridging between
2810 assign_parm_find_data_types and expand_expr_real_1. */
2811 if (data->nominal_mode != data->passed_mode
2812 || promoted_nominal_mode != data->promoted_mode)
2813 {
2814 int save_tree_used;
2815
2816 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2817 mode, by the caller. We now have to convert it to
2818 NOMINAL_MODE, if different. However, PARMREG may be in
2819 a different mode than NOMINAL_MODE if it is being stored
2820 promoted.
2821
2822 If ENTRY_PARM is a hard register, it might be in a register
2823 not valid for operating in its mode (e.g., an odd-numbered
2824 register for a DFmode). In that case, moves are the only
2825 thing valid, so we can't do a convert from there. This
2826 occurs when the calling sequence allow such misaligned
2827 usages.
2828
2829 In addition, the conversion may involve a call, which could
2830 clobber parameters which haven't been copied to pseudo
2831 registers yet. Therefore, we must first copy the parm to
2832 a pseudo reg here, and save the conversion until after all
2833 parameters have been moved. */
2834
2835 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2836
2837 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2838
2839 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2840 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2841
2842 if (GET_CODE (tempreg) == SUBREG
2843 && GET_MODE (tempreg) == data->nominal_mode
2844 && REG_P (SUBREG_REG (tempreg))
2845 && data->nominal_mode == data->passed_mode
2846 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2847 && GET_MODE_SIZE (GET_MODE (tempreg))
2848 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2849 {
2850 /* The argument is already sign/zero extended, so note it
2851 into the subreg. */
2852 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2853 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2854 }
2855
2856 /* TREE_USED gets set erroneously during expand_assignment. */
2857 save_tree_used = TREE_USED (parm);
2858 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2859 TREE_USED (parm) = save_tree_used;
2860 all->first_conversion_insn = get_insns ();
2861 all->last_conversion_insn = get_last_insn ();
2862 end_sequence ();
2863
2864 did_conversion = true;
2865 }
2866 else
2867 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2868
2869 /* If we were passed a pointer but the actual value can safely live
2870 in a register, put it in one. */
2871 if (data->passed_pointer
2872 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2873 /* If by-reference argument was promoted, demote it. */
2874 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2875 || use_register_for_decl (parm)))
2876 {
2877 /* We can't use nominal_mode, because it will have been set to
2878 Pmode above. We must use the actual mode of the parm. */
2879 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2880 mark_user_reg (parmreg);
2881
2882 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2883 {
2884 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2885 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2886
2887 push_to_sequence2 (all->first_conversion_insn,
2888 all->last_conversion_insn);
2889 emit_move_insn (tempreg, DECL_RTL (parm));
2890 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2891 emit_move_insn (parmreg, tempreg);
2892 all->first_conversion_insn = get_insns ();
2893 all->last_conversion_insn = get_last_insn ();
2894 end_sequence ();
2895
2896 did_conversion = true;
2897 }
2898 else
2899 emit_move_insn (parmreg, DECL_RTL (parm));
2900
2901 SET_DECL_RTL (parm, parmreg);
2902
2903 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2904 now the parm. */
2905 data->stack_parm = NULL;
2906 }
2907
2908 /* Mark the register as eliminable if we did no conversion and it was
2909 copied from memory at a fixed offset, and the arg pointer was not
2910 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2911 offset formed an invalid address, such memory-equivalences as we
2912 make here would screw up life analysis for it. */
2913 if (data->nominal_mode == data->passed_mode
2914 && !did_conversion
2915 && data->stack_parm != 0
2916 && MEM_P (data->stack_parm)
2917 && data->locate.offset.var == 0
2918 && reg_mentioned_p (virtual_incoming_args_rtx,
2919 XEXP (data->stack_parm, 0)))
2920 {
2921 rtx linsn = get_last_insn ();
2922 rtx sinsn, set;
2923
2924 /* Mark complex types separately. */
2925 if (GET_CODE (parmreg) == CONCAT)
2926 {
2927 enum machine_mode submode
2928 = GET_MODE_INNER (GET_MODE (parmreg));
2929 int regnor = REGNO (XEXP (parmreg, 0));
2930 int regnoi = REGNO (XEXP (parmreg, 1));
2931 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2932 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2933 GET_MODE_SIZE (submode));
2934
2935 /* Scan backwards for the set of the real and
2936 imaginary parts. */
2937 for (sinsn = linsn; sinsn != 0;
2938 sinsn = prev_nonnote_insn (sinsn))
2939 {
2940 set = single_set (sinsn);
2941 if (set == 0)
2942 continue;
2943
2944 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2945 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2946 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2947 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2948 }
2949 }
2950 else if ((set = single_set (linsn)) != 0
2951 && SET_DEST (set) == parmreg)
2952 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2953 }
2954
2955 /* For pointer data type, suggest pointer register. */
2956 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2957 mark_reg_pointer (parmreg,
2958 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2959 }
2960
2961 /* A subroutine of assign_parms. Allocate stack space to hold the current
2962 parameter. Get it there. Perform all ABI specified conversions. */
2963
2964 static void
2965 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2966 struct assign_parm_data_one *data)
2967 {
2968 /* Value must be stored in the stack slot STACK_PARM during function
2969 execution. */
2970 bool to_conversion = false;
2971
2972 assign_parm_remove_parallels (data);
2973
2974 if (data->promoted_mode != data->nominal_mode)
2975 {
2976 /* Conversion is required. */
2977 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2978
2979 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2980
2981 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2982 to_conversion = true;
2983
2984 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2985 TYPE_UNSIGNED (TREE_TYPE (parm)));
2986
2987 if (data->stack_parm)
2988 {
2989 int offset = subreg_lowpart_offset (data->nominal_mode,
2990 GET_MODE (data->stack_parm));
2991 /* ??? This may need a big-endian conversion on sparc64. */
2992 data->stack_parm
2993 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2994 if (offset && MEM_OFFSET (data->stack_parm))
2995 set_mem_offset (data->stack_parm,
2996 plus_constant (MEM_OFFSET (data->stack_parm),
2997 offset));
2998 }
2999 }
3000
3001 if (data->entry_parm != data->stack_parm)
3002 {
3003 rtx src, dest;
3004
3005 if (data->stack_parm == 0)
3006 {
3007 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3008 GET_MODE (data->entry_parm),
3009 TYPE_ALIGN (data->passed_type));
3010 data->stack_parm
3011 = assign_stack_local (GET_MODE (data->entry_parm),
3012 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3013 align);
3014 set_mem_attributes (data->stack_parm, parm, 1);
3015 }
3016
3017 dest = validize_mem (data->stack_parm);
3018 src = validize_mem (data->entry_parm);
3019
3020 if (MEM_P (src))
3021 {
3022 /* Use a block move to handle potentially misaligned entry_parm. */
3023 if (!to_conversion)
3024 push_to_sequence2 (all->first_conversion_insn,
3025 all->last_conversion_insn);
3026 to_conversion = true;
3027
3028 emit_block_move (dest, src,
3029 GEN_INT (int_size_in_bytes (data->passed_type)),
3030 BLOCK_OP_NORMAL);
3031 }
3032 else
3033 emit_move_insn (dest, src);
3034 }
3035
3036 if (to_conversion)
3037 {
3038 all->first_conversion_insn = get_insns ();
3039 all->last_conversion_insn = get_last_insn ();
3040 end_sequence ();
3041 }
3042
3043 SET_DECL_RTL (parm, data->stack_parm);
3044 }
3045
3046 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3047 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3048
3049 static void
3050 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
3051 {
3052 tree parm;
3053 tree orig_fnargs = all->orig_fnargs;
3054
3055 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
3056 {
3057 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3058 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3059 {
3060 rtx tmp, real, imag;
3061 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3062
3063 real = DECL_RTL (fnargs);
3064 imag = DECL_RTL (TREE_CHAIN (fnargs));
3065 if (inner != GET_MODE (real))
3066 {
3067 real = gen_lowpart_SUBREG (inner, real);
3068 imag = gen_lowpart_SUBREG (inner, imag);
3069 }
3070
3071 if (TREE_ADDRESSABLE (parm))
3072 {
3073 rtx rmem, imem;
3074 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3075 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3076 DECL_MODE (parm),
3077 TYPE_ALIGN (TREE_TYPE (parm)));
3078
3079 /* split_complex_arg put the real and imag parts in
3080 pseudos. Move them to memory. */
3081 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3082 set_mem_attributes (tmp, parm, 1);
3083 rmem = adjust_address_nv (tmp, inner, 0);
3084 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3085 push_to_sequence2 (all->first_conversion_insn,
3086 all->last_conversion_insn);
3087 emit_move_insn (rmem, real);
3088 emit_move_insn (imem, imag);
3089 all->first_conversion_insn = get_insns ();
3090 all->last_conversion_insn = get_last_insn ();
3091 end_sequence ();
3092 }
3093 else
3094 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3095 SET_DECL_RTL (parm, tmp);
3096
3097 real = DECL_INCOMING_RTL (fnargs);
3098 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3099 if (inner != GET_MODE (real))
3100 {
3101 real = gen_lowpart_SUBREG (inner, real);
3102 imag = gen_lowpart_SUBREG (inner, imag);
3103 }
3104 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3105 set_decl_incoming_rtl (parm, tmp, false);
3106 fnargs = TREE_CHAIN (fnargs);
3107 }
3108 else
3109 {
3110 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3111 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
3112
3113 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3114 instead of the copy of decl, i.e. FNARGS. */
3115 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3116 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3117 }
3118
3119 fnargs = TREE_CHAIN (fnargs);
3120 }
3121 }
3122
3123 /* Assign RTL expressions to the function's parameters. This may involve
3124 copying them into registers and using those registers as the DECL_RTL. */
3125
3126 static void
3127 assign_parms (tree fndecl)
3128 {
3129 struct assign_parm_data_all all;
3130 tree fnargs, parm;
3131
3132 crtl->args.internal_arg_pointer
3133 = targetm.calls.internal_arg_pointer ();
3134
3135 assign_parms_initialize_all (&all);
3136 fnargs = assign_parms_augmented_arg_list (&all);
3137
3138 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3139 {
3140 struct assign_parm_data_one data;
3141
3142 /* Extract the type of PARM; adjust it according to ABI. */
3143 assign_parm_find_data_types (&all, parm, &data);
3144
3145 /* Early out for errors and void parameters. */
3146 if (data.passed_mode == VOIDmode)
3147 {
3148 SET_DECL_RTL (parm, const0_rtx);
3149 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3150 continue;
3151 }
3152
3153 /* Estimate stack alignment from parameter alignment. */
3154 if (SUPPORTS_STACK_ALIGNMENT)
3155 {
3156 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3157 data.passed_type);
3158 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3159 align);
3160 if (TYPE_ALIGN (data.nominal_type) > align)
3161 align = MINIMUM_ALIGNMENT (data.nominal_type,
3162 TYPE_MODE (data.nominal_type),
3163 TYPE_ALIGN (data.nominal_type));
3164 if (crtl->stack_alignment_estimated < align)
3165 {
3166 gcc_assert (!crtl->stack_realign_processed);
3167 crtl->stack_alignment_estimated = align;
3168 }
3169 }
3170
3171 if (cfun->stdarg && !TREE_CHAIN (parm))
3172 assign_parms_setup_varargs (&all, &data, false);
3173
3174 /* Find out where the parameter arrives in this function. */
3175 assign_parm_find_entry_rtl (&all, &data);
3176
3177 /* Find out where stack space for this parameter might be. */
3178 if (assign_parm_is_stack_parm (&all, &data))
3179 {
3180 assign_parm_find_stack_rtl (parm, &data);
3181 assign_parm_adjust_entry_rtl (&data);
3182 }
3183
3184 /* Record permanently how this parm was passed. */
3185 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3186
3187 /* Update info on where next arg arrives in registers. */
3188 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3189 data.passed_type, data.named_arg);
3190
3191 assign_parm_adjust_stack_rtl (&data);
3192
3193 if (assign_parm_setup_block_p (&data))
3194 assign_parm_setup_block (&all, parm, &data);
3195 else if (data.passed_pointer || use_register_for_decl (parm))
3196 assign_parm_setup_reg (&all, parm, &data);
3197 else
3198 assign_parm_setup_stack (&all, parm, &data);
3199 }
3200
3201 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3202 assign_parms_unsplit_complex (&all, fnargs);
3203
3204 /* Output all parameter conversion instructions (possibly including calls)
3205 now that all parameters have been copied out of hard registers. */
3206 emit_insn (all.first_conversion_insn);
3207
3208 /* Estimate reload stack alignment from scalar return mode. */
3209 if (SUPPORTS_STACK_ALIGNMENT)
3210 {
3211 if (DECL_RESULT (fndecl))
3212 {
3213 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3214 enum machine_mode mode = TYPE_MODE (type);
3215
3216 if (mode != BLKmode
3217 && mode != VOIDmode
3218 && !AGGREGATE_TYPE_P (type))
3219 {
3220 unsigned int align = GET_MODE_ALIGNMENT (mode);
3221 if (crtl->stack_alignment_estimated < align)
3222 {
3223 gcc_assert (!crtl->stack_realign_processed);
3224 crtl->stack_alignment_estimated = align;
3225 }
3226 }
3227 }
3228 }
3229
3230 /* If we are receiving a struct value address as the first argument, set up
3231 the RTL for the function result. As this might require code to convert
3232 the transmitted address to Pmode, we do this here to ensure that possible
3233 preliminary conversions of the address have been emitted already. */
3234 if (all.function_result_decl)
3235 {
3236 tree result = DECL_RESULT (current_function_decl);
3237 rtx addr = DECL_RTL (all.function_result_decl);
3238 rtx x;
3239
3240 if (DECL_BY_REFERENCE (result))
3241 x = addr;
3242 else
3243 {
3244 addr = convert_memory_address (Pmode, addr);
3245 x = gen_rtx_MEM (DECL_MODE (result), addr);
3246 set_mem_attributes (x, result, 1);
3247 }
3248 SET_DECL_RTL (result, x);
3249 }
3250
3251 /* We have aligned all the args, so add space for the pretend args. */
3252 crtl->args.pretend_args_size = all.pretend_args_size;
3253 all.stack_args_size.constant += all.extra_pretend_bytes;
3254 crtl->args.size = all.stack_args_size.constant;
3255
3256 /* Adjust function incoming argument size for alignment and
3257 minimum length. */
3258
3259 #ifdef REG_PARM_STACK_SPACE
3260 crtl->args.size = MAX (crtl->args.size,
3261 REG_PARM_STACK_SPACE (fndecl));
3262 #endif
3263
3264 crtl->args.size = CEIL_ROUND (crtl->args.size,
3265 PARM_BOUNDARY / BITS_PER_UNIT);
3266
3267 #ifdef ARGS_GROW_DOWNWARD
3268 crtl->args.arg_offset_rtx
3269 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3270 : expand_expr (size_diffop (all.stack_args_size.var,
3271 size_int (-all.stack_args_size.constant)),
3272 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3273 #else
3274 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3275 #endif
3276
3277 /* See how many bytes, if any, of its args a function should try to pop
3278 on return. */
3279
3280 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3281 crtl->args.size);
3282
3283 /* For stdarg.h function, save info about
3284 regs and stack space used by the named args. */
3285
3286 crtl->args.info = all.args_so_far;
3287
3288 /* Set the rtx used for the function return value. Put this in its
3289 own variable so any optimizers that need this information don't have
3290 to include tree.h. Do this here so it gets done when an inlined
3291 function gets output. */
3292
3293 crtl->return_rtx
3294 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3295 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3296
3297 /* If scalar return value was computed in a pseudo-reg, or was a named
3298 return value that got dumped to the stack, copy that to the hard
3299 return register. */
3300 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3301 {
3302 tree decl_result = DECL_RESULT (fndecl);
3303 rtx decl_rtl = DECL_RTL (decl_result);
3304
3305 if (REG_P (decl_rtl)
3306 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3307 : DECL_REGISTER (decl_result))
3308 {
3309 rtx real_decl_rtl;
3310
3311 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3312 fndecl, true);
3313 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3314 /* The delay slot scheduler assumes that crtl->return_rtx
3315 holds the hard register containing the return value, not a
3316 temporary pseudo. */
3317 crtl->return_rtx = real_decl_rtl;
3318 }
3319 }
3320 }
3321
3322 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3323 For all seen types, gimplify their sizes. */
3324
3325 static tree
3326 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3327 {
3328 tree t = *tp;
3329
3330 *walk_subtrees = 0;
3331 if (TYPE_P (t))
3332 {
3333 if (POINTER_TYPE_P (t))
3334 *walk_subtrees = 1;
3335 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3336 && !TYPE_SIZES_GIMPLIFIED (t))
3337 {
3338 gimplify_type_sizes (t, (gimple_seq *) data);
3339 *walk_subtrees = 1;
3340 }
3341 }
3342
3343 return NULL;
3344 }
3345
3346 /* Gimplify the parameter list for current_function_decl. This involves
3347 evaluating SAVE_EXPRs of variable sized parameters and generating code
3348 to implement callee-copies reference parameters. Returns a sequence of
3349 statements to add to the beginning of the function. */
3350
3351 gimple_seq
3352 gimplify_parameters (void)
3353 {
3354 struct assign_parm_data_all all;
3355 tree fnargs, parm;
3356 gimple_seq stmts = NULL;
3357
3358 assign_parms_initialize_all (&all);
3359 fnargs = assign_parms_augmented_arg_list (&all);
3360
3361 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3362 {
3363 struct assign_parm_data_one data;
3364
3365 /* Extract the type of PARM; adjust it according to ABI. */
3366 assign_parm_find_data_types (&all, parm, &data);
3367
3368 /* Early out for errors and void parameters. */
3369 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3370 continue;
3371
3372 /* Update info on where next arg arrives in registers. */
3373 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3374 data.passed_type, data.named_arg);
3375
3376 /* ??? Once upon a time variable_size stuffed parameter list
3377 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3378 turned out to be less than manageable in the gimple world.
3379 Now we have to hunt them down ourselves. */
3380 walk_tree_without_duplicates (&data.passed_type,
3381 gimplify_parm_type, &stmts);
3382
3383 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3384 {
3385 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3386 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3387 }
3388
3389 if (data.passed_pointer)
3390 {
3391 tree type = TREE_TYPE (data.passed_type);
3392 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3393 type, data.named_arg))
3394 {
3395 tree local, t;
3396
3397 /* For constant-sized objects, this is trivial; for
3398 variable-sized objects, we have to play games. */
3399 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3400 && !(flag_stack_check == GENERIC_STACK_CHECK
3401 && compare_tree_int (DECL_SIZE_UNIT (parm),
3402 STACK_CHECK_MAX_VAR_SIZE) > 0))
3403 {
3404 local = create_tmp_var (type, get_name (parm));
3405 DECL_IGNORED_P (local) = 0;
3406 /* If PARM was addressable, move that flag over
3407 to the local copy, as its address will be taken,
3408 not the PARMs. */
3409 if (TREE_ADDRESSABLE (parm))
3410 {
3411 TREE_ADDRESSABLE (parm) = 0;
3412 TREE_ADDRESSABLE (local) = 1;
3413 }
3414 }
3415 else
3416 {
3417 tree ptr_type, addr;
3418
3419 ptr_type = build_pointer_type (type);
3420 addr = create_tmp_var (ptr_type, get_name (parm));
3421 DECL_IGNORED_P (addr) = 0;
3422 local = build_fold_indirect_ref (addr);
3423
3424 t = built_in_decls[BUILT_IN_ALLOCA];
3425 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3426 t = fold_convert (ptr_type, t);
3427 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3428 gimplify_and_add (t, &stmts);
3429 }
3430
3431 gimplify_assign (local, parm, &stmts);
3432
3433 SET_DECL_VALUE_EXPR (parm, local);
3434 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3435 }
3436 }
3437 }
3438
3439 return stmts;
3440 }
3441 \f
3442 /* Compute the size and offset from the start of the stacked arguments for a
3443 parm passed in mode PASSED_MODE and with type TYPE.
3444
3445 INITIAL_OFFSET_PTR points to the current offset into the stacked
3446 arguments.
3447
3448 The starting offset and size for this parm are returned in
3449 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3450 nonzero, the offset is that of stack slot, which is returned in
3451 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3452 padding required from the initial offset ptr to the stack slot.
3453
3454 IN_REGS is nonzero if the argument will be passed in registers. It will
3455 never be set if REG_PARM_STACK_SPACE is not defined.
3456
3457 FNDECL is the function in which the argument was defined.
3458
3459 There are two types of rounding that are done. The first, controlled by
3460 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3461 list to be aligned to the specific boundary (in bits). This rounding
3462 affects the initial and starting offsets, but not the argument size.
3463
3464 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3465 optionally rounds the size of the parm to PARM_BOUNDARY. The
3466 initial offset is not affected by this rounding, while the size always
3467 is and the starting offset may be. */
3468
3469 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3470 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3471 callers pass in the total size of args so far as
3472 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3473
3474 void
3475 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3476 int partial, tree fndecl ATTRIBUTE_UNUSED,
3477 struct args_size *initial_offset_ptr,
3478 struct locate_and_pad_arg_data *locate)
3479 {
3480 tree sizetree;
3481 enum direction where_pad;
3482 unsigned int boundary;
3483 int reg_parm_stack_space = 0;
3484 int part_size_in_regs;
3485
3486 #ifdef REG_PARM_STACK_SPACE
3487 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3488
3489 /* If we have found a stack parm before we reach the end of the
3490 area reserved for registers, skip that area. */
3491 if (! in_regs)
3492 {
3493 if (reg_parm_stack_space > 0)
3494 {
3495 if (initial_offset_ptr->var)
3496 {
3497 initial_offset_ptr->var
3498 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3499 ssize_int (reg_parm_stack_space));
3500 initial_offset_ptr->constant = 0;
3501 }
3502 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3503 initial_offset_ptr->constant = reg_parm_stack_space;
3504 }
3505 }
3506 #endif /* REG_PARM_STACK_SPACE */
3507
3508 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3509
3510 sizetree
3511 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3512 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3513 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3514 locate->where_pad = where_pad;
3515
3516 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3517 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3518 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3519
3520 locate->boundary = boundary;
3521
3522 if (SUPPORTS_STACK_ALIGNMENT)
3523 {
3524 /* stack_alignment_estimated can't change after stack has been
3525 realigned. */
3526 if (crtl->stack_alignment_estimated < boundary)
3527 {
3528 if (!crtl->stack_realign_processed)
3529 crtl->stack_alignment_estimated = boundary;
3530 else
3531 {
3532 /* If stack is realigned and stack alignment value
3533 hasn't been finalized, it is OK not to increase
3534 stack_alignment_estimated. The bigger alignment
3535 requirement is recorded in stack_alignment_needed
3536 below. */
3537 gcc_assert (!crtl->stack_realign_finalized
3538 && crtl->stack_realign_needed);
3539 }
3540 }
3541 }
3542
3543 /* Remember if the outgoing parameter requires extra alignment on the
3544 calling function side. */
3545 if (crtl->stack_alignment_needed < boundary)
3546 crtl->stack_alignment_needed = boundary;
3547 if (crtl->preferred_stack_boundary < boundary)
3548 crtl->preferred_stack_boundary = boundary;
3549
3550 #ifdef ARGS_GROW_DOWNWARD
3551 locate->slot_offset.constant = -initial_offset_ptr->constant;
3552 if (initial_offset_ptr->var)
3553 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3554 initial_offset_ptr->var);
3555
3556 {
3557 tree s2 = sizetree;
3558 if (where_pad != none
3559 && (!host_integerp (sizetree, 1)
3560 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3561 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3562 SUB_PARM_SIZE (locate->slot_offset, s2);
3563 }
3564
3565 locate->slot_offset.constant += part_size_in_regs;
3566
3567 if (!in_regs
3568 #ifdef REG_PARM_STACK_SPACE
3569 || REG_PARM_STACK_SPACE (fndecl) > 0
3570 #endif
3571 )
3572 pad_to_arg_alignment (&locate->slot_offset, boundary,
3573 &locate->alignment_pad);
3574
3575 locate->size.constant = (-initial_offset_ptr->constant
3576 - locate->slot_offset.constant);
3577 if (initial_offset_ptr->var)
3578 locate->size.var = size_binop (MINUS_EXPR,
3579 size_binop (MINUS_EXPR,
3580 ssize_int (0),
3581 initial_offset_ptr->var),
3582 locate->slot_offset.var);
3583
3584 /* Pad_below needs the pre-rounded size to know how much to pad
3585 below. */
3586 locate->offset = locate->slot_offset;
3587 if (where_pad == downward)
3588 pad_below (&locate->offset, passed_mode, sizetree);
3589
3590 #else /* !ARGS_GROW_DOWNWARD */
3591 if (!in_regs
3592 #ifdef REG_PARM_STACK_SPACE
3593 || REG_PARM_STACK_SPACE (fndecl) > 0
3594 #endif
3595 )
3596 pad_to_arg_alignment (initial_offset_ptr, boundary,
3597 &locate->alignment_pad);
3598 locate->slot_offset = *initial_offset_ptr;
3599
3600 #ifdef PUSH_ROUNDING
3601 if (passed_mode != BLKmode)
3602 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3603 #endif
3604
3605 /* Pad_below needs the pre-rounded size to know how much to pad below
3606 so this must be done before rounding up. */
3607 locate->offset = locate->slot_offset;
3608 if (where_pad == downward)
3609 pad_below (&locate->offset, passed_mode, sizetree);
3610
3611 if (where_pad != none
3612 && (!host_integerp (sizetree, 1)
3613 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3614 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3615
3616 ADD_PARM_SIZE (locate->size, sizetree);
3617
3618 locate->size.constant -= part_size_in_regs;
3619 #endif /* ARGS_GROW_DOWNWARD */
3620
3621 #ifdef FUNCTION_ARG_OFFSET
3622 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3623 #endif
3624 }
3625
3626 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3627 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3628
3629 static void
3630 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3631 struct args_size *alignment_pad)
3632 {
3633 tree save_var = NULL_TREE;
3634 HOST_WIDE_INT save_constant = 0;
3635 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3636 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3637
3638 #ifdef SPARC_STACK_BOUNDARY_HACK
3639 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3640 the real alignment of %sp. However, when it does this, the
3641 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3642 if (SPARC_STACK_BOUNDARY_HACK)
3643 sp_offset = 0;
3644 #endif
3645
3646 if (boundary > PARM_BOUNDARY)
3647 {
3648 save_var = offset_ptr->var;
3649 save_constant = offset_ptr->constant;
3650 }
3651
3652 alignment_pad->var = NULL_TREE;
3653 alignment_pad->constant = 0;
3654
3655 if (boundary > BITS_PER_UNIT)
3656 {
3657 if (offset_ptr->var)
3658 {
3659 tree sp_offset_tree = ssize_int (sp_offset);
3660 tree offset = size_binop (PLUS_EXPR,
3661 ARGS_SIZE_TREE (*offset_ptr),
3662 sp_offset_tree);
3663 #ifdef ARGS_GROW_DOWNWARD
3664 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3665 #else
3666 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3667 #endif
3668
3669 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3670 /* ARGS_SIZE_TREE includes constant term. */
3671 offset_ptr->constant = 0;
3672 if (boundary > PARM_BOUNDARY)
3673 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3674 save_var);
3675 }
3676 else
3677 {
3678 offset_ptr->constant = -sp_offset +
3679 #ifdef ARGS_GROW_DOWNWARD
3680 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3681 #else
3682 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3683 #endif
3684 if (boundary > PARM_BOUNDARY)
3685 alignment_pad->constant = offset_ptr->constant - save_constant;
3686 }
3687 }
3688 }
3689
3690 static void
3691 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3692 {
3693 if (passed_mode != BLKmode)
3694 {
3695 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3696 offset_ptr->constant
3697 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3698 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3699 - GET_MODE_SIZE (passed_mode));
3700 }
3701 else
3702 {
3703 if (TREE_CODE (sizetree) != INTEGER_CST
3704 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3705 {
3706 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3707 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3708 /* Add it in. */
3709 ADD_PARM_SIZE (*offset_ptr, s2);
3710 SUB_PARM_SIZE (*offset_ptr, sizetree);
3711 }
3712 }
3713 }
3714 \f
3715
3716 /* True if register REGNO was alive at a place where `setjmp' was
3717 called and was set more than once or is an argument. Such regs may
3718 be clobbered by `longjmp'. */
3719
3720 static bool
3721 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3722 {
3723 /* There appear to be cases where some local vars never reach the
3724 backend but have bogus regnos. */
3725 if (regno >= max_reg_num ())
3726 return false;
3727
3728 return ((REG_N_SETS (regno) > 1
3729 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3730 && REGNO_REG_SET_P (setjmp_crosses, regno));
3731 }
3732
3733 /* Walk the tree of blocks describing the binding levels within a
3734 function and warn about variables the might be killed by setjmp or
3735 vfork. This is done after calling flow_analysis before register
3736 allocation since that will clobber the pseudo-regs to hard
3737 regs. */
3738
3739 static void
3740 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3741 {
3742 tree decl, sub;
3743
3744 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3745 {
3746 if (TREE_CODE (decl) == VAR_DECL
3747 && DECL_RTL_SET_P (decl)
3748 && REG_P (DECL_RTL (decl))
3749 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3750 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3751 " %<longjmp%> or %<vfork%>", decl);
3752 }
3753
3754 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3755 setjmp_vars_warning (setjmp_crosses, sub);
3756 }
3757
3758 /* Do the appropriate part of setjmp_vars_warning
3759 but for arguments instead of local variables. */
3760
3761 static void
3762 setjmp_args_warning (bitmap setjmp_crosses)
3763 {
3764 tree decl;
3765 for (decl = DECL_ARGUMENTS (current_function_decl);
3766 decl; decl = TREE_CHAIN (decl))
3767 if (DECL_RTL (decl) != 0
3768 && REG_P (DECL_RTL (decl))
3769 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3770 warning (OPT_Wclobbered,
3771 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3772 decl);
3773 }
3774
3775 /* Generate warning messages for variables live across setjmp. */
3776
3777 void
3778 generate_setjmp_warnings (void)
3779 {
3780 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3781
3782 if (n_basic_blocks == NUM_FIXED_BLOCKS
3783 || bitmap_empty_p (setjmp_crosses))
3784 return;
3785
3786 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3787 setjmp_args_warning (setjmp_crosses);
3788 }
3789
3790 \f
3791 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3792 and create duplicate blocks. */
3793 /* ??? Need an option to either create block fragments or to create
3794 abstract origin duplicates of a source block. It really depends
3795 on what optimization has been performed. */
3796
3797 void
3798 reorder_blocks (void)
3799 {
3800 tree block = DECL_INITIAL (current_function_decl);
3801 VEC(tree,heap) *block_stack;
3802
3803 if (block == NULL_TREE)
3804 return;
3805
3806 block_stack = VEC_alloc (tree, heap, 10);
3807
3808 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3809 clear_block_marks (block);
3810
3811 /* Prune the old trees away, so that they don't get in the way. */
3812 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3813 BLOCK_CHAIN (block) = NULL_TREE;
3814
3815 /* Recreate the block tree from the note nesting. */
3816 reorder_blocks_1 (get_insns (), block, &block_stack);
3817 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3818
3819 VEC_free (tree, heap, block_stack);
3820 }
3821
3822 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3823
3824 void
3825 clear_block_marks (tree block)
3826 {
3827 while (block)
3828 {
3829 TREE_ASM_WRITTEN (block) = 0;
3830 clear_block_marks (BLOCK_SUBBLOCKS (block));
3831 block = BLOCK_CHAIN (block);
3832 }
3833 }
3834
3835 static void
3836 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3837 {
3838 rtx insn;
3839
3840 for (insn = insns; insn; insn = NEXT_INSN (insn))
3841 {
3842 if (NOTE_P (insn))
3843 {
3844 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3845 {
3846 tree block = NOTE_BLOCK (insn);
3847 tree origin;
3848
3849 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3850 ? BLOCK_FRAGMENT_ORIGIN (block)
3851 : block);
3852
3853 /* If we have seen this block before, that means it now
3854 spans multiple address regions. Create a new fragment. */
3855 if (TREE_ASM_WRITTEN (block))
3856 {
3857 tree new_block = copy_node (block);
3858
3859 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3860 BLOCK_FRAGMENT_CHAIN (new_block)
3861 = BLOCK_FRAGMENT_CHAIN (origin);
3862 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3863
3864 NOTE_BLOCK (insn) = new_block;
3865 block = new_block;
3866 }
3867
3868 BLOCK_SUBBLOCKS (block) = 0;
3869 TREE_ASM_WRITTEN (block) = 1;
3870 /* When there's only one block for the entire function,
3871 current_block == block and we mustn't do this, it
3872 will cause infinite recursion. */
3873 if (block != current_block)
3874 {
3875 if (block != origin)
3876 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3877
3878 BLOCK_SUPERCONTEXT (block) = current_block;
3879 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3880 BLOCK_SUBBLOCKS (current_block) = block;
3881 current_block = origin;
3882 }
3883 VEC_safe_push (tree, heap, *p_block_stack, block);
3884 }
3885 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3886 {
3887 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3888 BLOCK_SUBBLOCKS (current_block)
3889 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3890 current_block = BLOCK_SUPERCONTEXT (current_block);
3891 }
3892 }
3893 }
3894 }
3895
3896 /* Reverse the order of elements in the chain T of blocks,
3897 and return the new head of the chain (old last element). */
3898
3899 tree
3900 blocks_nreverse (tree t)
3901 {
3902 tree prev = 0, decl, next;
3903 for (decl = t; decl; decl = next)
3904 {
3905 next = BLOCK_CHAIN (decl);
3906 BLOCK_CHAIN (decl) = prev;
3907 prev = decl;
3908 }
3909 return prev;
3910 }
3911
3912 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3913 non-NULL, list them all into VECTOR, in a depth-first preorder
3914 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3915 blocks. */
3916
3917 static int
3918 all_blocks (tree block, tree *vector)
3919 {
3920 int n_blocks = 0;
3921
3922 while (block)
3923 {
3924 TREE_ASM_WRITTEN (block) = 0;
3925
3926 /* Record this block. */
3927 if (vector)
3928 vector[n_blocks] = block;
3929
3930 ++n_blocks;
3931
3932 /* Record the subblocks, and their subblocks... */
3933 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3934 vector ? vector + n_blocks : 0);
3935 block = BLOCK_CHAIN (block);
3936 }
3937
3938 return n_blocks;
3939 }
3940
3941 /* Return a vector containing all the blocks rooted at BLOCK. The
3942 number of elements in the vector is stored in N_BLOCKS_P. The
3943 vector is dynamically allocated; it is the caller's responsibility
3944 to call `free' on the pointer returned. */
3945
3946 static tree *
3947 get_block_vector (tree block, int *n_blocks_p)
3948 {
3949 tree *block_vector;
3950
3951 *n_blocks_p = all_blocks (block, NULL);
3952 block_vector = XNEWVEC (tree, *n_blocks_p);
3953 all_blocks (block, block_vector);
3954
3955 return block_vector;
3956 }
3957
3958 static GTY(()) int next_block_index = 2;
3959
3960 /* Set BLOCK_NUMBER for all the blocks in FN. */
3961
3962 void
3963 number_blocks (tree fn)
3964 {
3965 int i;
3966 int n_blocks;
3967 tree *block_vector;
3968
3969 /* For SDB and XCOFF debugging output, we start numbering the blocks
3970 from 1 within each function, rather than keeping a running
3971 count. */
3972 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3973 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3974 next_block_index = 1;
3975 #endif
3976
3977 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3978
3979 /* The top-level BLOCK isn't numbered at all. */
3980 for (i = 1; i < n_blocks; ++i)
3981 /* We number the blocks from two. */
3982 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3983
3984 free (block_vector);
3985
3986 return;
3987 }
3988
3989 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3990
3991 tree
3992 debug_find_var_in_block_tree (tree var, tree block)
3993 {
3994 tree t;
3995
3996 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3997 if (t == var)
3998 return block;
3999
4000 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4001 {
4002 tree ret = debug_find_var_in_block_tree (var, t);
4003 if (ret)
4004 return ret;
4005 }
4006
4007 return NULL_TREE;
4008 }
4009 \f
4010 /* Keep track of whether we're in a dummy function context. If we are,
4011 we don't want to invoke the set_current_function hook, because we'll
4012 get into trouble if the hook calls target_reinit () recursively or
4013 when the initial initialization is not yet complete. */
4014
4015 static bool in_dummy_function;
4016
4017 /* Invoke the target hook when setting cfun. Update the optimization options
4018 if the function uses different options than the default. */
4019
4020 static void
4021 invoke_set_current_function_hook (tree fndecl)
4022 {
4023 if (!in_dummy_function)
4024 {
4025 tree opts = ((fndecl)
4026 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4027 : optimization_default_node);
4028
4029 if (!opts)
4030 opts = optimization_default_node;
4031
4032 /* Change optimization options if needed. */
4033 if (optimization_current_node != opts)
4034 {
4035 optimization_current_node = opts;
4036 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4037 }
4038
4039 targetm.set_current_function (fndecl);
4040 }
4041 }
4042
4043 /* cfun should never be set directly; use this function. */
4044
4045 void
4046 set_cfun (struct function *new_cfun)
4047 {
4048 if (cfun != new_cfun)
4049 {
4050 cfun = new_cfun;
4051 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4052 }
4053 }
4054
4055 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4056
4057 static VEC(function_p,heap) *cfun_stack;
4058
4059 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4060
4061 void
4062 push_cfun (struct function *new_cfun)
4063 {
4064 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4065 set_cfun (new_cfun);
4066 }
4067
4068 /* Pop cfun from the stack. */
4069
4070 void
4071 pop_cfun (void)
4072 {
4073 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4074 set_cfun (new_cfun);
4075 }
4076
4077 /* Return value of funcdef and increase it. */
4078 int
4079 get_next_funcdef_no (void)
4080 {
4081 return funcdef_no++;
4082 }
4083
4084 /* Allocate a function structure for FNDECL and set its contents
4085 to the defaults. Set cfun to the newly-allocated object.
4086 Some of the helper functions invoked during initialization assume
4087 that cfun has already been set. Therefore, assign the new object
4088 directly into cfun and invoke the back end hook explicitly at the
4089 very end, rather than initializing a temporary and calling set_cfun
4090 on it.
4091
4092 ABSTRACT_P is true if this is a function that will never be seen by
4093 the middle-end. Such functions are front-end concepts (like C++
4094 function templates) that do not correspond directly to functions
4095 placed in object files. */
4096
4097 void
4098 allocate_struct_function (tree fndecl, bool abstract_p)
4099 {
4100 tree result;
4101 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4102
4103 cfun = GGC_CNEW (struct function);
4104
4105 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
4106
4107 init_eh_for_function ();
4108
4109 if (init_machine_status)
4110 cfun->machine = (*init_machine_status) ();
4111
4112 #ifdef OVERRIDE_ABI_FORMAT
4113 OVERRIDE_ABI_FORMAT (fndecl);
4114 #endif
4115
4116 invoke_set_current_function_hook (fndecl);
4117
4118 if (fndecl != NULL_TREE)
4119 {
4120 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4121 cfun->decl = fndecl;
4122 current_function_funcdef_no = get_next_funcdef_no ();
4123
4124 result = DECL_RESULT (fndecl);
4125 if (!abstract_p && aggregate_value_p (result, fndecl))
4126 {
4127 #ifdef PCC_STATIC_STRUCT_RETURN
4128 cfun->returns_pcc_struct = 1;
4129 #endif
4130 cfun->returns_struct = 1;
4131 }
4132
4133 cfun->stdarg
4134 = (fntype
4135 && TYPE_ARG_TYPES (fntype) != 0
4136 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4137 != void_type_node));
4138
4139 /* Assume all registers in stdarg functions need to be saved. */
4140 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4141 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4142 }
4143 }
4144
4145 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4146 instead of just setting it. */
4147
4148 void
4149 push_struct_function (tree fndecl)
4150 {
4151 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4152 allocate_struct_function (fndecl, false);
4153 }
4154
4155 /* Reset cfun, and other non-struct-function variables to defaults as
4156 appropriate for emitting rtl at the start of a function. */
4157
4158 static void
4159 prepare_function_start (void)
4160 {
4161 gcc_assert (!crtl->emit.x_last_insn);
4162 init_temp_slots ();
4163 init_emit ();
4164 init_varasm_status ();
4165 init_expr ();
4166 default_rtl_profile ();
4167
4168 cse_not_expected = ! optimize;
4169
4170 /* Caller save not needed yet. */
4171 caller_save_needed = 0;
4172
4173 /* We haven't done register allocation yet. */
4174 reg_renumber = 0;
4175
4176 /* Indicate that we have not instantiated virtual registers yet. */
4177 virtuals_instantiated = 0;
4178
4179 /* Indicate that we want CONCATs now. */
4180 generating_concat_p = 1;
4181
4182 /* Indicate we have no need of a frame pointer yet. */
4183 frame_pointer_needed = 0;
4184 }
4185
4186 /* Initialize the rtl expansion mechanism so that we can do simple things
4187 like generate sequences. This is used to provide a context during global
4188 initialization of some passes. You must call expand_dummy_function_end
4189 to exit this context. */
4190
4191 void
4192 init_dummy_function_start (void)
4193 {
4194 gcc_assert (!in_dummy_function);
4195 in_dummy_function = true;
4196 push_struct_function (NULL_TREE);
4197 prepare_function_start ();
4198 }
4199
4200 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4201 and initialize static variables for generating RTL for the statements
4202 of the function. */
4203
4204 void
4205 init_function_start (tree subr)
4206 {
4207 if (subr && DECL_STRUCT_FUNCTION (subr))
4208 set_cfun (DECL_STRUCT_FUNCTION (subr));
4209 else
4210 allocate_struct_function (subr, false);
4211 prepare_function_start ();
4212
4213 /* Warn if this value is an aggregate type,
4214 regardless of which calling convention we are using for it. */
4215 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4216 warning (OPT_Waggregate_return, "function returns an aggregate");
4217 }
4218
4219 /* Make sure all values used by the optimization passes have sane defaults. */
4220 unsigned int
4221 init_function_for_compilation (void)
4222 {
4223 reg_renumber = 0;
4224 return 0;
4225 }
4226
4227 struct rtl_opt_pass pass_init_function =
4228 {
4229 {
4230 RTL_PASS,
4231 NULL, /* name */
4232 NULL, /* gate */
4233 init_function_for_compilation, /* execute */
4234 NULL, /* sub */
4235 NULL, /* next */
4236 0, /* static_pass_number */
4237 TV_NONE, /* tv_id */
4238 0, /* properties_required */
4239 0, /* properties_provided */
4240 0, /* properties_destroyed */
4241 0, /* todo_flags_start */
4242 0 /* todo_flags_finish */
4243 }
4244 };
4245
4246
4247 void
4248 expand_main_function (void)
4249 {
4250 #if (defined(INVOKE__main) \
4251 || (!defined(HAS_INIT_SECTION) \
4252 && !defined(INIT_SECTION_ASM_OP) \
4253 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4254 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4255 #endif
4256 }
4257 \f
4258 /* Expand code to initialize the stack_protect_guard. This is invoked at
4259 the beginning of a function to be protected. */
4260
4261 #ifndef HAVE_stack_protect_set
4262 # define HAVE_stack_protect_set 0
4263 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4264 #endif
4265
4266 void
4267 stack_protect_prologue (void)
4268 {
4269 tree guard_decl = targetm.stack_protect_guard ();
4270 rtx x, y;
4271
4272 /* Avoid expand_expr here, because we don't want guard_decl pulled
4273 into registers unless absolutely necessary. And we know that
4274 crtl->stack_protect_guard is a local stack slot, so this skips
4275 all the fluff. */
4276 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4277 y = validize_mem (DECL_RTL (guard_decl));
4278
4279 /* Allow the target to copy from Y to X without leaking Y into a
4280 register. */
4281 if (HAVE_stack_protect_set)
4282 {
4283 rtx insn = gen_stack_protect_set (x, y);
4284 if (insn)
4285 {
4286 emit_insn (insn);
4287 return;
4288 }
4289 }
4290
4291 /* Otherwise do a straight move. */
4292 emit_move_insn (x, y);
4293 }
4294
4295 /* Expand code to verify the stack_protect_guard. This is invoked at
4296 the end of a function to be protected. */
4297
4298 #ifndef HAVE_stack_protect_test
4299 # define HAVE_stack_protect_test 0
4300 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4301 #endif
4302
4303 void
4304 stack_protect_epilogue (void)
4305 {
4306 tree guard_decl = targetm.stack_protect_guard ();
4307 rtx label = gen_label_rtx ();
4308 rtx x, y, tmp;
4309
4310 /* Avoid expand_expr here, because we don't want guard_decl pulled
4311 into registers unless absolutely necessary. And we know that
4312 crtl->stack_protect_guard is a local stack slot, so this skips
4313 all the fluff. */
4314 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4315 y = validize_mem (DECL_RTL (guard_decl));
4316
4317 /* Allow the target to compare Y with X without leaking either into
4318 a register. */
4319 switch (HAVE_stack_protect_test != 0)
4320 {
4321 case 1:
4322 tmp = gen_stack_protect_test (x, y, label);
4323 if (tmp)
4324 {
4325 emit_insn (tmp);
4326 break;
4327 }
4328 /* FALLTHRU */
4329
4330 default:
4331 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4332 break;
4333 }
4334
4335 /* The noreturn predictor has been moved to the tree level. The rtl-level
4336 predictors estimate this branch about 20%, which isn't enough to get
4337 things moved out of line. Since this is the only extant case of adding
4338 a noreturn function at the rtl level, it doesn't seem worth doing ought
4339 except adding the prediction by hand. */
4340 tmp = get_last_insn ();
4341 if (JUMP_P (tmp))
4342 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4343
4344 expand_expr_stmt (targetm.stack_protect_fail ());
4345 emit_label (label);
4346 }
4347 \f
4348 /* Start the RTL for a new function, and set variables used for
4349 emitting RTL.
4350 SUBR is the FUNCTION_DECL node.
4351 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4352 the function's parameters, which must be run at any return statement. */
4353
4354 void
4355 expand_function_start (tree subr)
4356 {
4357 /* Make sure volatile mem refs aren't considered
4358 valid operands of arithmetic insns. */
4359 init_recog_no_volatile ();
4360
4361 crtl->profile
4362 = (profile_flag
4363 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4364
4365 crtl->limit_stack
4366 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4367
4368 /* Make the label for return statements to jump to. Do not special
4369 case machines with special return instructions -- they will be
4370 handled later during jump, ifcvt, or epilogue creation. */
4371 return_label = gen_label_rtx ();
4372
4373 /* Initialize rtx used to return the value. */
4374 /* Do this before assign_parms so that we copy the struct value address
4375 before any library calls that assign parms might generate. */
4376
4377 /* Decide whether to return the value in memory or in a register. */
4378 if (aggregate_value_p (DECL_RESULT (subr), subr))
4379 {
4380 /* Returning something that won't go in a register. */
4381 rtx value_address = 0;
4382
4383 #ifdef PCC_STATIC_STRUCT_RETURN
4384 if (cfun->returns_pcc_struct)
4385 {
4386 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4387 value_address = assemble_static_space (size);
4388 }
4389 else
4390 #endif
4391 {
4392 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4393 /* Expect to be passed the address of a place to store the value.
4394 If it is passed as an argument, assign_parms will take care of
4395 it. */
4396 if (sv)
4397 {
4398 value_address = gen_reg_rtx (Pmode);
4399 emit_move_insn (value_address, sv);
4400 }
4401 }
4402 if (value_address)
4403 {
4404 rtx x = value_address;
4405 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4406 {
4407 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4408 set_mem_attributes (x, DECL_RESULT (subr), 1);
4409 }
4410 SET_DECL_RTL (DECL_RESULT (subr), x);
4411 }
4412 }
4413 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4414 /* If return mode is void, this decl rtl should not be used. */
4415 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4416 else
4417 {
4418 /* Compute the return values into a pseudo reg, which we will copy
4419 into the true return register after the cleanups are done. */
4420 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4421 if (TYPE_MODE (return_type) != BLKmode
4422 && targetm.calls.return_in_msb (return_type))
4423 /* expand_function_end will insert the appropriate padding in
4424 this case. Use the return value's natural (unpadded) mode
4425 within the function proper. */
4426 SET_DECL_RTL (DECL_RESULT (subr),
4427 gen_reg_rtx (TYPE_MODE (return_type)));
4428 else
4429 {
4430 /* In order to figure out what mode to use for the pseudo, we
4431 figure out what the mode of the eventual return register will
4432 actually be, and use that. */
4433 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4434
4435 /* Structures that are returned in registers are not
4436 aggregate_value_p, so we may see a PARALLEL or a REG. */
4437 if (REG_P (hard_reg))
4438 SET_DECL_RTL (DECL_RESULT (subr),
4439 gen_reg_rtx (GET_MODE (hard_reg)));
4440 else
4441 {
4442 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4443 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4444 }
4445 }
4446
4447 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4448 result to the real return register(s). */
4449 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4450 }
4451
4452 /* Initialize rtx for parameters and local variables.
4453 In some cases this requires emitting insns. */
4454 assign_parms (subr);
4455
4456 /* If function gets a static chain arg, store it. */
4457 if (cfun->static_chain_decl)
4458 {
4459 tree parm = cfun->static_chain_decl;
4460 rtx local, chain, insn;
4461
4462 local = gen_reg_rtx (Pmode);
4463 chain = targetm.calls.static_chain (current_function_decl, true);
4464
4465 set_decl_incoming_rtl (parm, chain, false);
4466 SET_DECL_RTL (parm, local);
4467 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4468
4469 insn = emit_move_insn (local, chain);
4470
4471 /* Mark the register as eliminable, similar to parameters. */
4472 if (MEM_P (chain)
4473 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4474 set_unique_reg_note (insn, REG_EQUIV, chain);
4475 }
4476
4477 /* If the function receives a non-local goto, then store the
4478 bits we need to restore the frame pointer. */
4479 if (cfun->nonlocal_goto_save_area)
4480 {
4481 tree t_save;
4482 rtx r_save;
4483
4484 /* ??? We need to do this save early. Unfortunately here is
4485 before the frame variable gets declared. Help out... */
4486 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4487 if (!DECL_RTL_SET_P (var))
4488 expand_decl (var);
4489
4490 t_save = build4 (ARRAY_REF, ptr_type_node,
4491 cfun->nonlocal_goto_save_area,
4492 integer_zero_node, NULL_TREE, NULL_TREE);
4493 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4494 r_save = convert_memory_address (Pmode, r_save);
4495
4496 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4497 update_nonlocal_goto_save_area ();
4498 }
4499
4500 /* The following was moved from init_function_start.
4501 The move is supposed to make sdb output more accurate. */
4502 /* Indicate the beginning of the function body,
4503 as opposed to parm setup. */
4504 emit_note (NOTE_INSN_FUNCTION_BEG);
4505
4506 gcc_assert (NOTE_P (get_last_insn ()));
4507
4508 parm_birth_insn = get_last_insn ();
4509
4510 if (crtl->profile)
4511 {
4512 #ifdef PROFILE_HOOK
4513 PROFILE_HOOK (current_function_funcdef_no);
4514 #endif
4515 }
4516
4517 /* After the display initializations is where the stack checking
4518 probe should go. */
4519 if(flag_stack_check)
4520 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4521
4522 /* Make sure there is a line number after the function entry setup code. */
4523 force_next_line_note ();
4524 }
4525 \f
4526 /* Undo the effects of init_dummy_function_start. */
4527 void
4528 expand_dummy_function_end (void)
4529 {
4530 gcc_assert (in_dummy_function);
4531
4532 /* End any sequences that failed to be closed due to syntax errors. */
4533 while (in_sequence_p ())
4534 end_sequence ();
4535
4536 /* Outside function body, can't compute type's actual size
4537 until next function's body starts. */
4538
4539 free_after_parsing (cfun);
4540 free_after_compilation (cfun);
4541 pop_cfun ();
4542 in_dummy_function = false;
4543 }
4544
4545 /* Call DOIT for each hard register used as a return value from
4546 the current function. */
4547
4548 void
4549 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4550 {
4551 rtx outgoing = crtl->return_rtx;
4552
4553 if (! outgoing)
4554 return;
4555
4556 if (REG_P (outgoing))
4557 (*doit) (outgoing, arg);
4558 else if (GET_CODE (outgoing) == PARALLEL)
4559 {
4560 int i;
4561
4562 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4563 {
4564 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4565
4566 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4567 (*doit) (x, arg);
4568 }
4569 }
4570 }
4571
4572 static void
4573 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4574 {
4575 emit_clobber (reg);
4576 }
4577
4578 void
4579 clobber_return_register (void)
4580 {
4581 diddle_return_value (do_clobber_return_reg, NULL);
4582
4583 /* In case we do use pseudo to return value, clobber it too. */
4584 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4585 {
4586 tree decl_result = DECL_RESULT (current_function_decl);
4587 rtx decl_rtl = DECL_RTL (decl_result);
4588 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4589 {
4590 do_clobber_return_reg (decl_rtl, NULL);
4591 }
4592 }
4593 }
4594
4595 static void
4596 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4597 {
4598 emit_use (reg);
4599 }
4600
4601 static void
4602 use_return_register (void)
4603 {
4604 diddle_return_value (do_use_return_reg, NULL);
4605 }
4606
4607 /* Possibly warn about unused parameters. */
4608 void
4609 do_warn_unused_parameter (tree fn)
4610 {
4611 tree decl;
4612
4613 for (decl = DECL_ARGUMENTS (fn);
4614 decl; decl = TREE_CHAIN (decl))
4615 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4616 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4617 && !TREE_NO_WARNING (decl))
4618 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4619 }
4620
4621 static GTY(()) rtx initial_trampoline;
4622
4623 /* Generate RTL for the end of the current function. */
4624
4625 void
4626 expand_function_end (void)
4627 {
4628 rtx clobber_after;
4629
4630 /* If arg_pointer_save_area was referenced only from a nested
4631 function, we will not have initialized it yet. Do that now. */
4632 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4633 get_arg_pointer_save_area ();
4634
4635 /* If we are doing generic stack checking and this function makes calls,
4636 do a stack probe at the start of the function to ensure we have enough
4637 space for another stack frame. */
4638 if (flag_stack_check == GENERIC_STACK_CHECK)
4639 {
4640 rtx insn, seq;
4641
4642 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4643 if (CALL_P (insn))
4644 {
4645 start_sequence ();
4646 probe_stack_range (STACK_OLD_CHECK_PROTECT,
4647 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4648 seq = get_insns ();
4649 end_sequence ();
4650 emit_insn_before (seq, stack_check_probe_note);
4651 break;
4652 }
4653 }
4654
4655 /* End any sequences that failed to be closed due to syntax errors. */
4656 while (in_sequence_p ())
4657 end_sequence ();
4658
4659 clear_pending_stack_adjust ();
4660 do_pending_stack_adjust ();
4661
4662 /* Output a linenumber for the end of the function.
4663 SDB depends on this. */
4664 force_next_line_note ();
4665 set_curr_insn_source_location (input_location);
4666
4667 /* Before the return label (if any), clobber the return
4668 registers so that they are not propagated live to the rest of
4669 the function. This can only happen with functions that drop
4670 through; if there had been a return statement, there would
4671 have either been a return rtx, or a jump to the return label.
4672
4673 We delay actual code generation after the current_function_value_rtx
4674 is computed. */
4675 clobber_after = get_last_insn ();
4676
4677 /* Output the label for the actual return from the function. */
4678 emit_label (return_label);
4679
4680 if (USING_SJLJ_EXCEPTIONS)
4681 {
4682 /* Let except.c know where it should emit the call to unregister
4683 the function context for sjlj exceptions. */
4684 if (flag_exceptions)
4685 sjlj_emit_function_exit_after (get_last_insn ());
4686 }
4687 else
4688 {
4689 /* We want to ensure that instructions that may trap are not
4690 moved into the epilogue by scheduling, because we don't
4691 always emit unwind information for the epilogue. */
4692 if (flag_non_call_exceptions)
4693 emit_insn (gen_blockage ());
4694 }
4695
4696 /* If this is an implementation of throw, do what's necessary to
4697 communicate between __builtin_eh_return and the epilogue. */
4698 expand_eh_return ();
4699
4700 /* If scalar return value was computed in a pseudo-reg, or was a named
4701 return value that got dumped to the stack, copy that to the hard
4702 return register. */
4703 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4704 {
4705 tree decl_result = DECL_RESULT (current_function_decl);
4706 rtx decl_rtl = DECL_RTL (decl_result);
4707
4708 if (REG_P (decl_rtl)
4709 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4710 : DECL_REGISTER (decl_result))
4711 {
4712 rtx real_decl_rtl = crtl->return_rtx;
4713
4714 /* This should be set in assign_parms. */
4715 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4716
4717 /* If this is a BLKmode structure being returned in registers,
4718 then use the mode computed in expand_return. Note that if
4719 decl_rtl is memory, then its mode may have been changed,
4720 but that crtl->return_rtx has not. */
4721 if (GET_MODE (real_decl_rtl) == BLKmode)
4722 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4723
4724 /* If a non-BLKmode return value should be padded at the least
4725 significant end of the register, shift it left by the appropriate
4726 amount. BLKmode results are handled using the group load/store
4727 machinery. */
4728 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4729 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4730 {
4731 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4732 REGNO (real_decl_rtl)),
4733 decl_rtl);
4734 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4735 }
4736 /* If a named return value dumped decl_return to memory, then
4737 we may need to re-do the PROMOTE_MODE signed/unsigned
4738 extension. */
4739 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4740 {
4741 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4742 promote_function_mode (TREE_TYPE (decl_result),
4743 GET_MODE (decl_rtl), &unsignedp,
4744 TREE_TYPE (current_function_decl), 1);
4745
4746 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4747 }
4748 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4749 {
4750 /* If expand_function_start has created a PARALLEL for decl_rtl,
4751 move the result to the real return registers. Otherwise, do
4752 a group load from decl_rtl for a named return. */
4753 if (GET_CODE (decl_rtl) == PARALLEL)
4754 emit_group_move (real_decl_rtl, decl_rtl);
4755 else
4756 emit_group_load (real_decl_rtl, decl_rtl,
4757 TREE_TYPE (decl_result),
4758 int_size_in_bytes (TREE_TYPE (decl_result)));
4759 }
4760 /* In the case of complex integer modes smaller than a word, we'll
4761 need to generate some non-trivial bitfield insertions. Do that
4762 on a pseudo and not the hard register. */
4763 else if (GET_CODE (decl_rtl) == CONCAT
4764 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4765 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4766 {
4767 int old_generating_concat_p;
4768 rtx tmp;
4769
4770 old_generating_concat_p = generating_concat_p;
4771 generating_concat_p = 0;
4772 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4773 generating_concat_p = old_generating_concat_p;
4774
4775 emit_move_insn (tmp, decl_rtl);
4776 emit_move_insn (real_decl_rtl, tmp);
4777 }
4778 else
4779 emit_move_insn (real_decl_rtl, decl_rtl);
4780 }
4781 }
4782
4783 /* If returning a structure, arrange to return the address of the value
4784 in a place where debuggers expect to find it.
4785
4786 If returning a structure PCC style,
4787 the caller also depends on this value.
4788 And cfun->returns_pcc_struct is not necessarily set. */
4789 if (cfun->returns_struct
4790 || cfun->returns_pcc_struct)
4791 {
4792 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4793 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4794 rtx outgoing;
4795
4796 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4797 type = TREE_TYPE (type);
4798 else
4799 value_address = XEXP (value_address, 0);
4800
4801 outgoing = targetm.calls.function_value (build_pointer_type (type),
4802 current_function_decl, true);
4803
4804 /* Mark this as a function return value so integrate will delete the
4805 assignment and USE below when inlining this function. */
4806 REG_FUNCTION_VALUE_P (outgoing) = 1;
4807
4808 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4809 value_address = convert_memory_address (GET_MODE (outgoing),
4810 value_address);
4811
4812 emit_move_insn (outgoing, value_address);
4813
4814 /* Show return register used to hold result (in this case the address
4815 of the result. */
4816 crtl->return_rtx = outgoing;
4817 }
4818
4819 /* Emit the actual code to clobber return register. */
4820 {
4821 rtx seq;
4822
4823 start_sequence ();
4824 clobber_return_register ();
4825 seq = get_insns ();
4826 end_sequence ();
4827
4828 emit_insn_after (seq, clobber_after);
4829 }
4830
4831 /* Output the label for the naked return from the function. */
4832 if (naked_return_label)
4833 emit_label (naked_return_label);
4834
4835 /* @@@ This is a kludge. We want to ensure that instructions that
4836 may trap are not moved into the epilogue by scheduling, because
4837 we don't always emit unwind information for the epilogue. */
4838 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4839 emit_insn (gen_blockage ());
4840
4841 /* If stack protection is enabled for this function, check the guard. */
4842 if (crtl->stack_protect_guard)
4843 stack_protect_epilogue ();
4844
4845 /* If we had calls to alloca, and this machine needs
4846 an accurate stack pointer to exit the function,
4847 insert some code to save and restore the stack pointer. */
4848 if (! EXIT_IGNORE_STACK
4849 && cfun->calls_alloca)
4850 {
4851 rtx tem = 0;
4852
4853 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4854 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4855 }
4856
4857 /* ??? This should no longer be necessary since stupid is no longer with
4858 us, but there are some parts of the compiler (eg reload_combine, and
4859 sh mach_dep_reorg) that still try and compute their own lifetime info
4860 instead of using the general framework. */
4861 use_return_register ();
4862 }
4863
4864 rtx
4865 get_arg_pointer_save_area (void)
4866 {
4867 rtx ret = arg_pointer_save_area;
4868
4869 if (! ret)
4870 {
4871 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4872 arg_pointer_save_area = ret;
4873 }
4874
4875 if (! crtl->arg_pointer_save_area_init)
4876 {
4877 rtx seq;
4878
4879 /* Save the arg pointer at the beginning of the function. The
4880 generated stack slot may not be a valid memory address, so we
4881 have to check it and fix it if necessary. */
4882 start_sequence ();
4883 emit_move_insn (validize_mem (ret),
4884 crtl->args.internal_arg_pointer);
4885 seq = get_insns ();
4886 end_sequence ();
4887
4888 push_topmost_sequence ();
4889 emit_insn_after (seq, entry_of_function ());
4890 pop_topmost_sequence ();
4891 }
4892
4893 return ret;
4894 }
4895 \f
4896 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4897 for the first time. */
4898
4899 static void
4900 record_insns (rtx insns, rtx end, htab_t *hashp)
4901 {
4902 rtx tmp;
4903 htab_t hash = *hashp;
4904
4905 if (hash == NULL)
4906 *hashp = hash
4907 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
4908
4909 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
4910 {
4911 void **slot = htab_find_slot (hash, tmp, INSERT);
4912 gcc_assert (*slot == NULL);
4913 *slot = tmp;
4914 }
4915 }
4916
4917 /* INSN has been duplicated as COPY, as part of duping a basic block.
4918 If INSN is an epilogue insn, then record COPY as epilogue as well. */
4919
4920 void
4921 maybe_copy_epilogue_insn (rtx insn, rtx copy)
4922 {
4923 void **slot;
4924
4925 if (epilogue_insn_hash == NULL
4926 || htab_find (epilogue_insn_hash, insn) == NULL)
4927 return;
4928
4929 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
4930 gcc_assert (*slot == NULL);
4931 *slot = copy;
4932 }
4933
4934 /* Set the locator of the insn chain starting at INSN to LOC. */
4935 static void
4936 set_insn_locators (rtx insn, int loc)
4937 {
4938 while (insn != NULL_RTX)
4939 {
4940 if (INSN_P (insn))
4941 INSN_LOCATOR (insn) = loc;
4942 insn = NEXT_INSN (insn);
4943 }
4944 }
4945
4946 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
4947 we can be running after reorg, SEQUENCE rtl is possible. */
4948
4949 static bool
4950 contains (const_rtx insn, htab_t hash)
4951 {
4952 if (hash == NULL)
4953 return false;
4954
4955 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4956 {
4957 int i;
4958 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4959 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
4960 return true;
4961 return false;
4962 }
4963
4964 return htab_find (hash, insn) != NULL;
4965 }
4966
4967 int
4968 prologue_epilogue_contains (const_rtx insn)
4969 {
4970 if (contains (insn, prologue_insn_hash))
4971 return 1;
4972 if (contains (insn, epilogue_insn_hash))
4973 return 1;
4974 return 0;
4975 }
4976
4977 #ifdef HAVE_return
4978 /* Insert gen_return at the end of block BB. This also means updating
4979 block_for_insn appropriately. */
4980
4981 static void
4982 emit_return_into_block (basic_block bb)
4983 {
4984 emit_jump_insn_after (gen_return (), BB_END (bb));
4985 }
4986 #endif /* HAVE_return */
4987
4988 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4989 this into place with notes indicating where the prologue ends and where
4990 the epilogue begins. Update the basic block information when possible. */
4991
4992 static void
4993 thread_prologue_and_epilogue_insns (void)
4994 {
4995 int inserted = 0;
4996 edge e;
4997 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4998 rtx seq;
4999 #endif
5000 #if defined (HAVE_epilogue) || defined(HAVE_return)
5001 rtx epilogue_end = NULL_RTX;
5002 #endif
5003 edge_iterator ei;
5004
5005 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5006 #ifdef HAVE_prologue
5007 if (HAVE_prologue)
5008 {
5009 start_sequence ();
5010 seq = gen_prologue ();
5011 emit_insn (seq);
5012
5013 /* Insert an explicit USE for the frame pointer
5014 if the profiling is on and the frame pointer is required. */
5015 if (crtl->profile && frame_pointer_needed)
5016 emit_use (hard_frame_pointer_rtx);
5017
5018 /* Retain a map of the prologue insns. */
5019 record_insns (seq, NULL, &prologue_insn_hash);
5020 emit_note (NOTE_INSN_PROLOGUE_END);
5021
5022 #ifndef PROFILE_BEFORE_PROLOGUE
5023 /* Ensure that instructions are not moved into the prologue when
5024 profiling is on. The call to the profiling routine can be
5025 emitted within the live range of a call-clobbered register. */
5026 if (crtl->profile)
5027 emit_insn (gen_blockage ());
5028 #endif
5029
5030 seq = get_insns ();
5031 end_sequence ();
5032 set_insn_locators (seq, prologue_locator);
5033
5034 /* Can't deal with multiple successors of the entry block
5035 at the moment. Function should always have at least one
5036 entry point. */
5037 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5038
5039 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5040 inserted = 1;
5041 }
5042 #endif
5043
5044 /* If the exit block has no non-fake predecessors, we don't need
5045 an epilogue. */
5046 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5047 if ((e->flags & EDGE_FAKE) == 0)
5048 break;
5049 if (e == NULL)
5050 goto epilogue_done;
5051
5052 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5053 #ifdef HAVE_return
5054 if (optimize && HAVE_return)
5055 {
5056 /* If we're allowed to generate a simple return instruction,
5057 then by definition we don't need a full epilogue. Examine
5058 the block that falls through to EXIT. If it does not
5059 contain any code, examine its predecessors and try to
5060 emit (conditional) return instructions. */
5061
5062 basic_block last;
5063 rtx label;
5064
5065 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5066 if (e->flags & EDGE_FALLTHRU)
5067 break;
5068 if (e == NULL)
5069 goto epilogue_done;
5070 last = e->src;
5071
5072 /* Verify that there are no active instructions in the last block. */
5073 label = BB_END (last);
5074 while (label && !LABEL_P (label))
5075 {
5076 if (active_insn_p (label))
5077 break;
5078 label = PREV_INSN (label);
5079 }
5080
5081 if (BB_HEAD (last) == label && LABEL_P (label))
5082 {
5083 edge_iterator ei2;
5084
5085 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5086 {
5087 basic_block bb = e->src;
5088 rtx jump;
5089
5090 if (bb == ENTRY_BLOCK_PTR)
5091 {
5092 ei_next (&ei2);
5093 continue;
5094 }
5095
5096 jump = BB_END (bb);
5097 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5098 {
5099 ei_next (&ei2);
5100 continue;
5101 }
5102
5103 /* If we have an unconditional jump, we can replace that
5104 with a simple return instruction. */
5105 if (simplejump_p (jump))
5106 {
5107 emit_return_into_block (bb);
5108 delete_insn (jump);
5109 }
5110
5111 /* If we have a conditional jump, we can try to replace
5112 that with a conditional return instruction. */
5113 else if (condjump_p (jump))
5114 {
5115 if (! redirect_jump (jump, 0, 0))
5116 {
5117 ei_next (&ei2);
5118 continue;
5119 }
5120
5121 /* If this block has only one successor, it both jumps
5122 and falls through to the fallthru block, so we can't
5123 delete the edge. */
5124 if (single_succ_p (bb))
5125 {
5126 ei_next (&ei2);
5127 continue;
5128 }
5129 }
5130 else
5131 {
5132 ei_next (&ei2);
5133 continue;
5134 }
5135
5136 /* Fix up the CFG for the successful change we just made. */
5137 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5138 }
5139
5140 /* Emit a return insn for the exit fallthru block. Whether
5141 this is still reachable will be determined later. */
5142
5143 emit_barrier_after (BB_END (last));
5144 emit_return_into_block (last);
5145 epilogue_end = BB_END (last);
5146 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5147 goto epilogue_done;
5148 }
5149 }
5150 #endif
5151
5152 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5153 this marker for the splits of EH_RETURN patterns, and nothing else
5154 uses the flag in the meantime. */
5155 epilogue_completed = 1;
5156
5157 #ifdef HAVE_eh_return
5158 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5159 some targets, these get split to a special version of the epilogue
5160 code. In order to be able to properly annotate these with unwind
5161 info, try to split them now. If we get a valid split, drop an
5162 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5163 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5164 {
5165 rtx prev, last, trial;
5166
5167 if (e->flags & EDGE_FALLTHRU)
5168 continue;
5169 last = BB_END (e->src);
5170 if (!eh_returnjump_p (last))
5171 continue;
5172
5173 prev = PREV_INSN (last);
5174 trial = try_split (PATTERN (last), last, 1);
5175 if (trial == last)
5176 continue;
5177
5178 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5179 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5180 }
5181 #endif
5182
5183 /* Find the edge that falls through to EXIT. Other edges may exist
5184 due to RETURN instructions, but those don't need epilogues.
5185 There really shouldn't be a mixture -- either all should have
5186 been converted or none, however... */
5187
5188 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5189 if (e->flags & EDGE_FALLTHRU)
5190 break;
5191 if (e == NULL)
5192 goto epilogue_done;
5193
5194 #ifdef HAVE_epilogue
5195 if (HAVE_epilogue)
5196 {
5197 start_sequence ();
5198 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5199 seq = gen_epilogue ();
5200 emit_jump_insn (seq);
5201
5202 /* Retain a map of the epilogue insns. */
5203 record_insns (seq, NULL, &epilogue_insn_hash);
5204 set_insn_locators (seq, epilogue_locator);
5205
5206 seq = get_insns ();
5207 end_sequence ();
5208
5209 insert_insn_on_edge (seq, e);
5210 inserted = 1;
5211 }
5212 else
5213 #endif
5214 {
5215 basic_block cur_bb;
5216
5217 if (! next_active_insn (BB_END (e->src)))
5218 goto epilogue_done;
5219 /* We have a fall-through edge to the exit block, the source is not
5220 at the end of the function, and there will be an assembler epilogue
5221 at the end of the function.
5222 We can't use force_nonfallthru here, because that would try to
5223 use return. Inserting a jump 'by hand' is extremely messy, so
5224 we take advantage of cfg_layout_finalize using
5225 fixup_fallthru_exit_predecessor. */
5226 cfg_layout_initialize (0);
5227 FOR_EACH_BB (cur_bb)
5228 if (cur_bb->index >= NUM_FIXED_BLOCKS
5229 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5230 cur_bb->aux = cur_bb->next_bb;
5231 cfg_layout_finalize ();
5232 }
5233 epilogue_done:
5234 default_rtl_profile ();
5235
5236 if (inserted)
5237 {
5238 commit_edge_insertions ();
5239
5240 /* The epilogue insns we inserted may cause the exit edge to no longer
5241 be fallthru. */
5242 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5243 {
5244 if (((e->flags & EDGE_FALLTHRU) != 0)
5245 && returnjump_p (BB_END (e->src)))
5246 e->flags &= ~EDGE_FALLTHRU;
5247 }
5248 }
5249
5250 #ifdef HAVE_sibcall_epilogue
5251 /* Emit sibling epilogues before any sibling call sites. */
5252 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5253 {
5254 basic_block bb = e->src;
5255 rtx insn = BB_END (bb);
5256
5257 if (!CALL_P (insn)
5258 || ! SIBLING_CALL_P (insn))
5259 {
5260 ei_next (&ei);
5261 continue;
5262 }
5263
5264 start_sequence ();
5265 emit_note (NOTE_INSN_EPILOGUE_BEG);
5266 emit_insn (gen_sibcall_epilogue ());
5267 seq = get_insns ();
5268 end_sequence ();
5269
5270 /* Retain a map of the epilogue insns. Used in life analysis to
5271 avoid getting rid of sibcall epilogue insns. Do this before we
5272 actually emit the sequence. */
5273 record_insns (seq, NULL, &epilogue_insn_hash);
5274 set_insn_locators (seq, epilogue_locator);
5275
5276 emit_insn_before (seq, insn);
5277 ei_next (&ei);
5278 }
5279 #endif
5280
5281 #ifdef HAVE_epilogue
5282 if (epilogue_end)
5283 {
5284 rtx insn, next;
5285
5286 /* Similarly, move any line notes that appear after the epilogue.
5287 There is no need, however, to be quite so anal about the existence
5288 of such a note. Also possibly move
5289 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5290 info generation. */
5291 for (insn = epilogue_end; insn; insn = next)
5292 {
5293 next = NEXT_INSN (insn);
5294 if (NOTE_P (insn)
5295 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5296 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5297 }
5298 }
5299 #endif
5300
5301 /* Threading the prologue and epilogue changes the artificial refs
5302 in the entry and exit blocks. */
5303 epilogue_completed = 1;
5304 df_update_entry_exit_and_calls ();
5305 }
5306
5307 /* Reposition the prologue-end and epilogue-begin notes after
5308 instruction scheduling. */
5309
5310 void
5311 reposition_prologue_and_epilogue_notes (void)
5312 {
5313 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5314 || defined (HAVE_sibcall_epilogue)
5315 /* Since the hash table is created on demand, the fact that it is
5316 non-null is a signal that it is non-empty. */
5317 if (prologue_insn_hash != NULL)
5318 {
5319 size_t len = htab_elements (prologue_insn_hash);
5320 rtx insn, last = NULL, note = NULL;
5321
5322 /* Scan from the beginning until we reach the last prologue insn. */
5323 /* ??? While we do have the CFG intact, there are two problems:
5324 (1) The prologue can contain loops (typically probing the stack),
5325 which means that the end of the prologue isn't in the first bb.
5326 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5327 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5328 {
5329 if (NOTE_P (insn))
5330 {
5331 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5332 note = insn;
5333 }
5334 else if (contains (insn, prologue_insn_hash))
5335 {
5336 last = insn;
5337 if (--len == 0)
5338 break;
5339 }
5340 }
5341
5342 if (last)
5343 {
5344 if (note == NULL)
5345 {
5346 /* Scan forward looking for the PROLOGUE_END note. It should
5347 be right at the beginning of the block, possibly with other
5348 insn notes that got moved there. */
5349 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5350 {
5351 if (NOTE_P (note)
5352 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5353 break;
5354 }
5355 }
5356
5357 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5358 if (LABEL_P (last))
5359 last = NEXT_INSN (last);
5360 reorder_insns (note, note, last);
5361 }
5362 }
5363
5364 if (epilogue_insn_hash != NULL)
5365 {
5366 edge_iterator ei;
5367 edge e;
5368
5369 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5370 {
5371 rtx insn, first = NULL, note = NULL;
5372 basic_block bb = e->src;
5373
5374 /* Scan from the beginning until we reach the first epilogue insn. */
5375 FOR_BB_INSNS (bb, insn)
5376 {
5377 if (NOTE_P (insn))
5378 {
5379 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5380 {
5381 note = insn;
5382 if (first != NULL)
5383 break;
5384 }
5385 }
5386 else if (first == NULL && contains (insn, epilogue_insn_hash))
5387 {
5388 first = insn;
5389 if (note != NULL)
5390 break;
5391 }
5392 }
5393
5394 if (note)
5395 {
5396 /* If the function has a single basic block, and no real
5397 epilogue insns (e.g. sibcall with no cleanup), the
5398 epilogue note can get scheduled before the prologue
5399 note. If we have frame related prologue insns, having
5400 them scanned during the epilogue will result in a crash.
5401 In this case re-order the epilogue note to just before
5402 the last insn in the block. */
5403 if (first == NULL)
5404 first = BB_END (bb);
5405
5406 if (PREV_INSN (first) != note)
5407 reorder_insns (note, note, PREV_INSN (first));
5408 }
5409 }
5410 }
5411 #endif /* HAVE_prologue or HAVE_epilogue */
5412 }
5413
5414 /* Returns the name of the current function. */
5415 const char *
5416 current_function_name (void)
5417 {
5418 return lang_hooks.decl_printable_name (cfun->decl, 2);
5419 }
5420 \f
5421
5422 static unsigned int
5423 rest_of_handle_check_leaf_regs (void)
5424 {
5425 #ifdef LEAF_REGISTERS
5426 current_function_uses_only_leaf_regs
5427 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5428 #endif
5429 return 0;
5430 }
5431
5432 /* Insert a TYPE into the used types hash table of CFUN. */
5433
5434 static void
5435 used_types_insert_helper (tree type, struct function *func)
5436 {
5437 if (type != NULL && func != NULL)
5438 {
5439 void **slot;
5440
5441 if (func->used_types_hash == NULL)
5442 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5443 htab_eq_pointer, NULL);
5444 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5445 if (*slot == NULL)
5446 *slot = type;
5447 }
5448 }
5449
5450 /* Given a type, insert it into the used hash table in cfun. */
5451 void
5452 used_types_insert (tree t)
5453 {
5454 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5455 t = TREE_TYPE (t);
5456 t = TYPE_MAIN_VARIANT (t);
5457 if (debug_info_level > DINFO_LEVEL_NONE)
5458 {
5459 if (cfun)
5460 used_types_insert_helper (t, cfun);
5461 else
5462 /* So this might be a type referenced by a global variable.
5463 Record that type so that we can later decide to emit its debug
5464 information. */
5465 types_used_by_cur_var_decl =
5466 tree_cons (t, NULL, types_used_by_cur_var_decl);
5467
5468 }
5469 }
5470
5471 /* Helper to Hash a struct types_used_by_vars_entry. */
5472
5473 static hashval_t
5474 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5475 {
5476 gcc_assert (entry && entry->var_decl && entry->type);
5477
5478 return iterative_hash_object (entry->type,
5479 iterative_hash_object (entry->var_decl, 0));
5480 }
5481
5482 /* Hash function of the types_used_by_vars_entry hash table. */
5483
5484 hashval_t
5485 types_used_by_vars_do_hash (const void *x)
5486 {
5487 const struct types_used_by_vars_entry *entry =
5488 (const struct types_used_by_vars_entry *) x;
5489
5490 return hash_types_used_by_vars_entry (entry);
5491 }
5492
5493 /*Equality function of the types_used_by_vars_entry hash table. */
5494
5495 int
5496 types_used_by_vars_eq (const void *x1, const void *x2)
5497 {
5498 const struct types_used_by_vars_entry *e1 =
5499 (const struct types_used_by_vars_entry *) x1;
5500 const struct types_used_by_vars_entry *e2 =
5501 (const struct types_used_by_vars_entry *)x2;
5502
5503 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5504 }
5505
5506 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5507
5508 void
5509 types_used_by_var_decl_insert (tree type, tree var_decl)
5510 {
5511 if (type != NULL && var_decl != NULL)
5512 {
5513 void **slot;
5514 struct types_used_by_vars_entry e;
5515 e.var_decl = var_decl;
5516 e.type = type;
5517 if (types_used_by_vars_hash == NULL)
5518 types_used_by_vars_hash =
5519 htab_create_ggc (37, types_used_by_vars_do_hash,
5520 types_used_by_vars_eq, NULL);
5521 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5522 hash_types_used_by_vars_entry (&e), INSERT);
5523 if (*slot == NULL)
5524 {
5525 struct types_used_by_vars_entry *entry;
5526 entry = (struct types_used_by_vars_entry*) ggc_alloc
5527 (sizeof (struct types_used_by_vars_entry));
5528 entry->type = type;
5529 entry->var_decl = var_decl;
5530 *slot = entry;
5531 }
5532 }
5533 }
5534
5535 struct rtl_opt_pass pass_leaf_regs =
5536 {
5537 {
5538 RTL_PASS,
5539 NULL, /* name */
5540 NULL, /* gate */
5541 rest_of_handle_check_leaf_regs, /* execute */
5542 NULL, /* sub */
5543 NULL, /* next */
5544 0, /* static_pass_number */
5545 TV_NONE, /* tv_id */
5546 0, /* properties_required */
5547 0, /* properties_provided */
5548 0, /* properties_destroyed */
5549 0, /* todo_flags_start */
5550 0 /* todo_flags_finish */
5551 }
5552 };
5553
5554 static unsigned int
5555 rest_of_handle_thread_prologue_and_epilogue (void)
5556 {
5557 if (optimize)
5558 cleanup_cfg (CLEANUP_EXPENSIVE);
5559 /* On some machines, the prologue and epilogue code, or parts thereof,
5560 can be represented as RTL. Doing so lets us schedule insns between
5561 it and the rest of the code and also allows delayed branch
5562 scheduling to operate in the epilogue. */
5563
5564 thread_prologue_and_epilogue_insns ();
5565 return 0;
5566 }
5567
5568 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5569 {
5570 {
5571 RTL_PASS,
5572 "pro_and_epilogue", /* name */
5573 NULL, /* gate */
5574 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5575 NULL, /* sub */
5576 NULL, /* next */
5577 0, /* static_pass_number */
5578 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5579 0, /* properties_required */
5580 0, /* properties_provided */
5581 0, /* properties_destroyed */
5582 TODO_verify_flow, /* todo_flags_start */
5583 TODO_dump_func |
5584 TODO_df_verify |
5585 TODO_df_finish | TODO_verify_rtl_sharing |
5586 TODO_ggc_collect /* todo_flags_finish */
5587 }
5588 };
5589 \f
5590
5591 /* This mini-pass fixes fall-out from SSA in asm statements that have
5592 in-out constraints. Say you start with
5593
5594 orig = inout;
5595 asm ("": "+mr" (inout));
5596 use (orig);
5597
5598 which is transformed very early to use explicit output and match operands:
5599
5600 orig = inout;
5601 asm ("": "=mr" (inout) : "0" (inout));
5602 use (orig);
5603
5604 Or, after SSA and copyprop,
5605
5606 asm ("": "=mr" (inout_2) : "0" (inout_1));
5607 use (inout_1);
5608
5609 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5610 they represent two separate values, so they will get different pseudo
5611 registers during expansion. Then, since the two operands need to match
5612 per the constraints, but use different pseudo registers, reload can
5613 only register a reload for these operands. But reloads can only be
5614 satisfied by hardregs, not by memory, so we need a register for this
5615 reload, just because we are presented with non-matching operands.
5616 So, even though we allow memory for this operand, no memory can be
5617 used for it, just because the two operands don't match. This can
5618 cause reload failures on register-starved targets.
5619
5620 So it's a symptom of reload not being able to use memory for reloads
5621 or, alternatively it's also a symptom of both operands not coming into
5622 reload as matching (in which case the pseudo could go to memory just
5623 fine, as the alternative allows it, and no reload would be necessary).
5624 We fix the latter problem here, by transforming
5625
5626 asm ("": "=mr" (inout_2) : "0" (inout_1));
5627
5628 back to
5629
5630 inout_2 = inout_1;
5631 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5632
5633 static void
5634 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5635 {
5636 int i;
5637 bool changed = false;
5638 rtx op = SET_SRC (p_sets[0]);
5639 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5640 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5641 bool *output_matched = XALLOCAVEC (bool, noutputs);
5642
5643 memset (output_matched, 0, noutputs * sizeof (bool));
5644 for (i = 0; i < ninputs; i++)
5645 {
5646 rtx input, output, insns;
5647 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5648 char *end;
5649 int match, j;
5650
5651 if (*constraint == '%')
5652 constraint++;
5653
5654 match = strtoul (constraint, &end, 10);
5655 if (end == constraint)
5656 continue;
5657
5658 gcc_assert (match < noutputs);
5659 output = SET_DEST (p_sets[match]);
5660 input = RTVEC_ELT (inputs, i);
5661 /* Only do the transformation for pseudos. */
5662 if (! REG_P (output)
5663 || rtx_equal_p (output, input)
5664 || (GET_MODE (input) != VOIDmode
5665 && GET_MODE (input) != GET_MODE (output)))
5666 continue;
5667
5668 /* We can't do anything if the output is also used as input,
5669 as we're going to overwrite it. */
5670 for (j = 0; j < ninputs; j++)
5671 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5672 break;
5673 if (j != ninputs)
5674 continue;
5675
5676 /* Avoid changing the same input several times. For
5677 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5678 only change in once (to out1), rather than changing it
5679 first to out1 and afterwards to out2. */
5680 if (i > 0)
5681 {
5682 for (j = 0; j < noutputs; j++)
5683 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5684 break;
5685 if (j != noutputs)
5686 continue;
5687 }
5688 output_matched[match] = true;
5689
5690 start_sequence ();
5691 emit_move_insn (output, input);
5692 insns = get_insns ();
5693 end_sequence ();
5694 emit_insn_before (insns, insn);
5695
5696 /* Now replace all mentions of the input with output. We can't
5697 just replace the occurrence in inputs[i], as the register might
5698 also be used in some other input (or even in an address of an
5699 output), which would mean possibly increasing the number of
5700 inputs by one (namely 'output' in addition), which might pose
5701 a too complicated problem for reload to solve. E.g. this situation:
5702
5703 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5704
5705 Here 'input' is used in two occurrences as input (once for the
5706 input operand, once for the address in the second output operand).
5707 If we would replace only the occurrence of the input operand (to
5708 make the matching) we would be left with this:
5709
5710 output = input
5711 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5712
5713 Now we suddenly have two different input values (containing the same
5714 value, but different pseudos) where we formerly had only one.
5715 With more complicated asms this might lead to reload failures
5716 which wouldn't have happen without this pass. So, iterate over
5717 all operands and replace all occurrences of the register used. */
5718 for (j = 0; j < noutputs; j++)
5719 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5720 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5721 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5722 input, output);
5723 for (j = 0; j < ninputs; j++)
5724 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5725 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5726 input, output);
5727
5728 changed = true;
5729 }
5730
5731 if (changed)
5732 df_insn_rescan (insn);
5733 }
5734
5735 static unsigned
5736 rest_of_match_asm_constraints (void)
5737 {
5738 basic_block bb;
5739 rtx insn, pat, *p_sets;
5740 int noutputs;
5741
5742 if (!crtl->has_asm_statement)
5743 return 0;
5744
5745 df_set_flags (DF_DEFER_INSN_RESCAN);
5746 FOR_EACH_BB (bb)
5747 {
5748 FOR_BB_INSNS (bb, insn)
5749 {
5750 if (!INSN_P (insn))
5751 continue;
5752
5753 pat = PATTERN (insn);
5754 if (GET_CODE (pat) == PARALLEL)
5755 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5756 else if (GET_CODE (pat) == SET)
5757 p_sets = &PATTERN (insn), noutputs = 1;
5758 else
5759 continue;
5760
5761 if (GET_CODE (*p_sets) == SET
5762 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5763 match_asm_constraints_1 (insn, p_sets, noutputs);
5764 }
5765 }
5766
5767 return TODO_df_finish;
5768 }
5769
5770 struct rtl_opt_pass pass_match_asm_constraints =
5771 {
5772 {
5773 RTL_PASS,
5774 "asmcons", /* name */
5775 NULL, /* gate */
5776 rest_of_match_asm_constraints, /* execute */
5777 NULL, /* sub */
5778 NULL, /* next */
5779 0, /* static_pass_number */
5780 TV_NONE, /* tv_id */
5781 0, /* properties_required */
5782 0, /* properties_provided */
5783 0, /* properties_destroyed */
5784 0, /* todo_flags_start */
5785 TODO_dump_func /* todo_flags_finish */
5786 }
5787 };
5788
5789
5790 #include "gt-function.h"