revert: regrename.c (copyprop_hardreg_forward_1): New variable next.
[gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "tree-gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68
69 #ifndef LOCAL_ALIGNMENT
70 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
71 #endif
72
73 #ifndef STACK_ALIGNMENT_NEEDED
74 #define STACK_ALIGNMENT_NEEDED 1
75 #endif
76
77 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78
79 /* Some systems use __main in a way incompatible with its use in gcc, in these
80 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
81 give the same symbol without quotes for an alternative entry point. You
82 must define both, or neither. */
83 #ifndef NAME__MAIN
84 #define NAME__MAIN "__main"
85 #endif
86
87 /* Round a value to the lowest integer less than it that is a multiple of
88 the required alignment. Avoid using division in case the value is
89 negative. Assume the alignment is a power of two. */
90 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91
92 /* Similar, but round to the next highest integer that meets the
93 alignment. */
94 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95
96 /* Nonzero if function being compiled doesn't contain any calls
97 (ignoring the prologue and epilogue). This is set prior to
98 local register allocation and is valid for the remaining
99 compiler passes. */
100 int current_function_is_leaf;
101
102 /* Nonzero if function being compiled doesn't modify the stack pointer
103 (ignoring the prologue and epilogue). This is only valid after
104 pass_stack_ptr_mod has run. */
105 int current_function_sp_is_unchanging;
106
107 /* Nonzero if the function being compiled is a leaf function which only
108 uses leaf registers. This is valid after reload (specifically after
109 sched2) and is useful only if the port defines LEAF_REGISTERS. */
110 int current_function_uses_only_leaf_regs;
111
112 /* Nonzero once virtual register instantiation has been done.
113 assign_stack_local uses frame_pointer_rtx when this is nonzero.
114 calls.c:emit_library_call_value_1 uses it to set up
115 post-instantiation libcalls. */
116 int virtuals_instantiated;
117
118 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
119 static GTY(()) int funcdef_no;
120
121 /* These variables hold pointers to functions to create and destroy
122 target specific, per-function data structures. */
123 struct machine_function * (*init_machine_status) (void);
124
125 /* The currently compiled function. */
126 struct function *cfun = 0;
127
128 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
129 static VEC(int,heap) *prologue;
130 static VEC(int,heap) *epilogue;
131
132 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
133 in this function. */
134 static VEC(int,heap) *sibcall_epilogue;
135 \f
136 /* In order to evaluate some expressions, such as function calls returning
137 structures in memory, we need to temporarily allocate stack locations.
138 We record each allocated temporary in the following structure.
139
140 Associated with each temporary slot is a nesting level. When we pop up
141 one level, all temporaries associated with the previous level are freed.
142 Normally, all temporaries are freed after the execution of the statement
143 in which they were created. However, if we are inside a ({...}) grouping,
144 the result may be in a temporary and hence must be preserved. If the
145 result could be in a temporary, we preserve it if we can determine which
146 one it is in. If we cannot determine which temporary may contain the
147 result, all temporaries are preserved. A temporary is preserved by
148 pretending it was allocated at the previous nesting level.
149
150 Automatic variables are also assigned temporary slots, at the nesting
151 level where they are defined. They are marked a "kept" so that
152 free_temp_slots will not free them. */
153
154 struct temp_slot GTY(())
155 {
156 /* Points to next temporary slot. */
157 struct temp_slot *next;
158 /* Points to previous temporary slot. */
159 struct temp_slot *prev;
160
161 /* The rtx to used to reference the slot. */
162 rtx slot;
163 /* The rtx used to represent the address if not the address of the
164 slot above. May be an EXPR_LIST if multiple addresses exist. */
165 rtx address;
166 /* The alignment (in bits) of the slot. */
167 unsigned int align;
168 /* The size, in units, of the slot. */
169 HOST_WIDE_INT size;
170 /* The type of the object in the slot, or zero if it doesn't correspond
171 to a type. We use this to determine whether a slot can be reused.
172 It can be reused if objects of the type of the new slot will always
173 conflict with objects of the type of the old slot. */
174 tree type;
175 /* Nonzero if this temporary is currently in use. */
176 char in_use;
177 /* Nonzero if this temporary has its address taken. */
178 char addr_taken;
179 /* Nesting level at which this slot is being used. */
180 int level;
181 /* Nonzero if this should survive a call to free_temp_slots. */
182 int keep;
183 /* The offset of the slot from the frame_pointer, including extra space
184 for alignment. This info is for combine_temp_slots. */
185 HOST_WIDE_INT base_offset;
186 /* The size of the slot, including extra space for alignment. This
187 info is for combine_temp_slots. */
188 HOST_WIDE_INT full_size;
189 };
190 \f
191 /* Forward declarations. */
192
193 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
194 struct function *);
195 static struct temp_slot *find_temp_slot_from_address (rtx);
196 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
197 static void pad_below (struct args_size *, enum machine_mode, tree);
198 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
199 static int all_blocks (tree, tree *);
200 static tree *get_block_vector (tree, int *);
201 extern tree debug_find_var_in_block_tree (tree, tree);
202 /* We always define `record_insns' even if it's not used so that we
203 can always export `prologue_epilogue_contains'. */
204 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
205 static int contains (const_rtx, VEC(int,heap) **);
206 #ifdef HAVE_return
207 static void emit_return_into_block (basic_block);
208 #endif
209 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
210 static rtx keep_stack_depressed (rtx);
211 #endif
212 static void prepare_function_start (void);
213 static void do_clobber_return_reg (rtx, void *);
214 static void do_use_return_reg (rtx, void *);
215 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
216 \f
217 /* Pointer to chain of `struct function' for containing functions. */
218 struct function *outer_function_chain;
219
220 /* Given a function decl for a containing function,
221 return the `struct function' for it. */
222
223 struct function *
224 find_function_data (tree decl)
225 {
226 struct function *p;
227
228 for (p = outer_function_chain; p; p = p->outer)
229 if (p->decl == decl)
230 return p;
231
232 gcc_unreachable ();
233 }
234
235 /* Save the current context for compilation of a nested function.
236 This is called from language-specific code. The caller should use
237 the enter_nested langhook to save any language-specific state,
238 since this function knows only about language-independent
239 variables. */
240
241 void
242 push_function_context_to (tree context ATTRIBUTE_UNUSED)
243 {
244 struct function *p;
245
246 if (cfun == 0)
247 allocate_struct_function (NULL);
248 p = cfun;
249
250 p->outer = outer_function_chain;
251 outer_function_chain = p;
252
253 lang_hooks.function.enter_nested (p);
254
255 set_cfun (NULL);
256 }
257
258 void
259 push_function_context (void)
260 {
261 push_function_context_to (current_function_decl);
262 }
263
264 /* Restore the last saved context, at the end of a nested function.
265 This function is called from language-specific code. */
266
267 void
268 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
269 {
270 struct function *p = outer_function_chain;
271
272 set_cfun (p);
273 outer_function_chain = p->outer;
274
275 current_function_decl = p->decl;
276
277 lang_hooks.function.leave_nested (p);
278
279 /* Reset variables that have known state during rtx generation. */
280 virtuals_instantiated = 0;
281 generating_concat_p = 1;
282 }
283
284 void
285 pop_function_context (void)
286 {
287 pop_function_context_from (current_function_decl);
288 }
289
290 /* Clear out all parts of the state in F that can safely be discarded
291 after the function has been parsed, but not compiled, to let
292 garbage collection reclaim the memory. */
293
294 void
295 free_after_parsing (struct function *f)
296 {
297 /* f->expr->forced_labels is used by code generation. */
298 /* f->emit->regno_reg_rtx is used by code generation. */
299 /* f->varasm is used by code generation. */
300 /* f->eh->eh_return_stub_label is used by code generation. */
301
302 lang_hooks.function.final (f);
303 }
304
305 /* Clear out all parts of the state in F that can safely be discarded
306 after the function has been compiled, to let garbage collection
307 reclaim the memory. */
308
309 void
310 free_after_compilation (struct function *f)
311 {
312 VEC_free (int, heap, prologue);
313 VEC_free (int, heap, epilogue);
314 VEC_free (int, heap, sibcall_epilogue);
315
316 f->eh = NULL;
317 f->expr = NULL;
318 f->emit = NULL;
319 f->varasm = NULL;
320 f->machine = NULL;
321 f->cfg = NULL;
322
323 f->x_avail_temp_slots = NULL;
324 f->x_used_temp_slots = NULL;
325 f->arg_offset_rtx = NULL;
326 f->return_rtx = NULL;
327 f->internal_arg_pointer = NULL;
328 f->x_nonlocal_goto_handler_labels = NULL;
329 f->x_return_label = NULL;
330 f->x_naked_return_label = NULL;
331 f->x_stack_slot_list = NULL;
332 f->x_stack_check_probe_note = NULL;
333 f->x_arg_pointer_save_area = NULL;
334 f->x_parm_birth_insn = NULL;
335 f->epilogue_delay_list = NULL;
336 }
337 \f
338 /* Allocate fixed slots in the stack frame of the current function. */
339
340 /* Return size needed for stack frame based on slots so far allocated in
341 function F.
342 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
343 the caller may have to do that. */
344
345 static HOST_WIDE_INT
346 get_func_frame_size (struct function *f)
347 {
348 if (FRAME_GROWS_DOWNWARD)
349 return -f->x_frame_offset;
350 else
351 return f->x_frame_offset;
352 }
353
354 /* Return size needed for stack frame based on slots so far allocated.
355 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
356 the caller may have to do that. */
357
358 HOST_WIDE_INT
359 get_frame_size (void)
360 {
361 return get_func_frame_size (cfun);
362 }
363
364 /* Issue an error message and return TRUE if frame OFFSET overflows in
365 the signed target pointer arithmetics for function FUNC. Otherwise
366 return FALSE. */
367
368 bool
369 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
370 {
371 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
372
373 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
374 /* Leave room for the fixed part of the frame. */
375 - 64 * UNITS_PER_WORD)
376 {
377 error ("%Jtotal size of local objects too large", func);
378 return TRUE;
379 }
380
381 return FALSE;
382 }
383
384 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
385 with machine mode MODE.
386
387 ALIGN controls the amount of alignment for the address of the slot:
388 0 means according to MODE,
389 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
390 -2 means use BITS_PER_UNIT,
391 positive specifies alignment boundary in bits.
392
393 We do not round to stack_boundary here.
394
395 FUNCTION specifies the function to allocate in. */
396
397 static rtx
398 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
399 struct function *function)
400 {
401 rtx x, addr;
402 int bigend_correction = 0;
403 unsigned int alignment;
404 int frame_off, frame_alignment, frame_phase;
405
406 if (align == 0)
407 {
408 tree type;
409
410 if (mode == BLKmode)
411 alignment = BIGGEST_ALIGNMENT;
412 else
413 alignment = GET_MODE_ALIGNMENT (mode);
414
415 /* Allow the target to (possibly) increase the alignment of this
416 stack slot. */
417 type = lang_hooks.types.type_for_mode (mode, 0);
418 if (type)
419 alignment = LOCAL_ALIGNMENT (type, alignment);
420
421 alignment /= BITS_PER_UNIT;
422 }
423 else if (align == -1)
424 {
425 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
426 size = CEIL_ROUND (size, alignment);
427 }
428 else if (align == -2)
429 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
430 else
431 alignment = align / BITS_PER_UNIT;
432
433 if (FRAME_GROWS_DOWNWARD)
434 function->x_frame_offset -= size;
435
436 /* Ignore alignment we can't do with expected alignment of the boundary. */
437 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
438 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
439
440 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
441 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
442
443 /* Calculate how many bytes the start of local variables is off from
444 stack alignment. */
445 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
446 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
447 frame_phase = frame_off ? frame_alignment - frame_off : 0;
448
449 /* Round the frame offset to the specified alignment. The default is
450 to always honor requests to align the stack but a port may choose to
451 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
452 if (STACK_ALIGNMENT_NEEDED
453 || mode != BLKmode
454 || size != 0)
455 {
456 /* We must be careful here, since FRAME_OFFSET might be negative and
457 division with a negative dividend isn't as well defined as we might
458 like. So we instead assume that ALIGNMENT is a power of two and
459 use logical operations which are unambiguous. */
460 if (FRAME_GROWS_DOWNWARD)
461 function->x_frame_offset
462 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
463 (unsigned HOST_WIDE_INT) alignment)
464 + frame_phase);
465 else
466 function->x_frame_offset
467 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
468 (unsigned HOST_WIDE_INT) alignment)
469 + frame_phase);
470 }
471
472 /* On a big-endian machine, if we are allocating more space than we will use,
473 use the least significant bytes of those that are allocated. */
474 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
475 bigend_correction = size - GET_MODE_SIZE (mode);
476
477 /* If we have already instantiated virtual registers, return the actual
478 address relative to the frame pointer. */
479 if (function == cfun && virtuals_instantiated)
480 addr = plus_constant (frame_pointer_rtx,
481 trunc_int_for_mode
482 (frame_offset + bigend_correction
483 + STARTING_FRAME_OFFSET, Pmode));
484 else
485 addr = plus_constant (virtual_stack_vars_rtx,
486 trunc_int_for_mode
487 (function->x_frame_offset + bigend_correction,
488 Pmode));
489
490 if (!FRAME_GROWS_DOWNWARD)
491 function->x_frame_offset += size;
492
493 x = gen_rtx_MEM (mode, addr);
494 MEM_NOTRAP_P (x) = 1;
495
496 function->x_stack_slot_list
497 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
498
499 if (frame_offset_overflow (function->x_frame_offset, function->decl))
500 function->x_frame_offset = 0;
501
502 return x;
503 }
504
505 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
506 current function. */
507
508 rtx
509 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
510 {
511 return assign_stack_local_1 (mode, size, align, cfun);
512 }
513
514 \f
515 /* Removes temporary slot TEMP from LIST. */
516
517 static void
518 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
519 {
520 if (temp->next)
521 temp->next->prev = temp->prev;
522 if (temp->prev)
523 temp->prev->next = temp->next;
524 else
525 *list = temp->next;
526
527 temp->prev = temp->next = NULL;
528 }
529
530 /* Inserts temporary slot TEMP to LIST. */
531
532 static void
533 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
534 {
535 temp->next = *list;
536 if (*list)
537 (*list)->prev = temp;
538 temp->prev = NULL;
539 *list = temp;
540 }
541
542 /* Returns the list of used temp slots at LEVEL. */
543
544 static struct temp_slot **
545 temp_slots_at_level (int level)
546 {
547 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
548 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
549
550 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
551 }
552
553 /* Returns the maximal temporary slot level. */
554
555 static int
556 max_slot_level (void)
557 {
558 if (!used_temp_slots)
559 return -1;
560
561 return VEC_length (temp_slot_p, used_temp_slots) - 1;
562 }
563
564 /* Moves temporary slot TEMP to LEVEL. */
565
566 static void
567 move_slot_to_level (struct temp_slot *temp, int level)
568 {
569 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
570 insert_slot_to_list (temp, temp_slots_at_level (level));
571 temp->level = level;
572 }
573
574 /* Make temporary slot TEMP available. */
575
576 static void
577 make_slot_available (struct temp_slot *temp)
578 {
579 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
580 insert_slot_to_list (temp, &avail_temp_slots);
581 temp->in_use = 0;
582 temp->level = -1;
583 }
584 \f
585 /* Allocate a temporary stack slot and record it for possible later
586 reuse.
587
588 MODE is the machine mode to be given to the returned rtx.
589
590 SIZE is the size in units of the space required. We do no rounding here
591 since assign_stack_local will do any required rounding.
592
593 KEEP is 1 if this slot is to be retained after a call to
594 free_temp_slots. Automatic variables for a block are allocated
595 with this flag. KEEP values of 2 or 3 were needed respectively
596 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
597 or for SAVE_EXPRs, but they are now unused.
598
599 TYPE is the type that will be used for the stack slot. */
600
601 rtx
602 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
603 int keep, tree type)
604 {
605 unsigned int align;
606 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
607 rtx slot;
608
609 /* If SIZE is -1 it means that somebody tried to allocate a temporary
610 of a variable size. */
611 gcc_assert (size != -1);
612
613 /* These are now unused. */
614 gcc_assert (keep <= 1);
615
616 if (mode == BLKmode)
617 align = BIGGEST_ALIGNMENT;
618 else
619 align = GET_MODE_ALIGNMENT (mode);
620
621 if (! type)
622 type = lang_hooks.types.type_for_mode (mode, 0);
623
624 if (type)
625 align = LOCAL_ALIGNMENT (type, align);
626
627 /* Try to find an available, already-allocated temporary of the proper
628 mode which meets the size and alignment requirements. Choose the
629 smallest one with the closest alignment.
630
631 If assign_stack_temp is called outside of the tree->rtl expansion,
632 we cannot reuse the stack slots (that may still refer to
633 VIRTUAL_STACK_VARS_REGNUM). */
634 if (!virtuals_instantiated)
635 {
636 for (p = avail_temp_slots; p; p = p->next)
637 {
638 if (p->align >= align && p->size >= size
639 && GET_MODE (p->slot) == mode
640 && objects_must_conflict_p (p->type, type)
641 && (best_p == 0 || best_p->size > p->size
642 || (best_p->size == p->size && best_p->align > p->align)))
643 {
644 if (p->align == align && p->size == size)
645 {
646 selected = p;
647 cut_slot_from_list (selected, &avail_temp_slots);
648 best_p = 0;
649 break;
650 }
651 best_p = p;
652 }
653 }
654 }
655
656 /* Make our best, if any, the one to use. */
657 if (best_p)
658 {
659 selected = best_p;
660 cut_slot_from_list (selected, &avail_temp_slots);
661
662 /* If there are enough aligned bytes left over, make them into a new
663 temp_slot so that the extra bytes don't get wasted. Do this only
664 for BLKmode slots, so that we can be sure of the alignment. */
665 if (GET_MODE (best_p->slot) == BLKmode)
666 {
667 int alignment = best_p->align / BITS_PER_UNIT;
668 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
669
670 if (best_p->size - rounded_size >= alignment)
671 {
672 p = ggc_alloc (sizeof (struct temp_slot));
673 p->in_use = p->addr_taken = 0;
674 p->size = best_p->size - rounded_size;
675 p->base_offset = best_p->base_offset + rounded_size;
676 p->full_size = best_p->full_size - rounded_size;
677 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
678 p->align = best_p->align;
679 p->address = 0;
680 p->type = best_p->type;
681 insert_slot_to_list (p, &avail_temp_slots);
682
683 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
684 stack_slot_list);
685
686 best_p->size = rounded_size;
687 best_p->full_size = rounded_size;
688 }
689 }
690 }
691
692 /* If we still didn't find one, make a new temporary. */
693 if (selected == 0)
694 {
695 HOST_WIDE_INT frame_offset_old = frame_offset;
696
697 p = ggc_alloc (sizeof (struct temp_slot));
698
699 /* We are passing an explicit alignment request to assign_stack_local.
700 One side effect of that is assign_stack_local will not round SIZE
701 to ensure the frame offset remains suitably aligned.
702
703 So for requests which depended on the rounding of SIZE, we go ahead
704 and round it now. We also make sure ALIGNMENT is at least
705 BIGGEST_ALIGNMENT. */
706 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
707 p->slot = assign_stack_local (mode,
708 (mode == BLKmode
709 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
710 : size),
711 align);
712
713 p->align = align;
714
715 /* The following slot size computation is necessary because we don't
716 know the actual size of the temporary slot until assign_stack_local
717 has performed all the frame alignment and size rounding for the
718 requested temporary. Note that extra space added for alignment
719 can be either above or below this stack slot depending on which
720 way the frame grows. We include the extra space if and only if it
721 is above this slot. */
722 if (FRAME_GROWS_DOWNWARD)
723 p->size = frame_offset_old - frame_offset;
724 else
725 p->size = size;
726
727 /* Now define the fields used by combine_temp_slots. */
728 if (FRAME_GROWS_DOWNWARD)
729 {
730 p->base_offset = frame_offset;
731 p->full_size = frame_offset_old - frame_offset;
732 }
733 else
734 {
735 p->base_offset = frame_offset_old;
736 p->full_size = frame_offset - frame_offset_old;
737 }
738 p->address = 0;
739
740 selected = p;
741 }
742
743 p = selected;
744 p->in_use = 1;
745 p->addr_taken = 0;
746 p->type = type;
747 p->level = temp_slot_level;
748 p->keep = keep;
749
750 pp = temp_slots_at_level (p->level);
751 insert_slot_to_list (p, pp);
752
753 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
754 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
755 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
756
757 /* If we know the alias set for the memory that will be used, use
758 it. If there's no TYPE, then we don't know anything about the
759 alias set for the memory. */
760 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
761 set_mem_align (slot, align);
762
763 /* If a type is specified, set the relevant flags. */
764 if (type != 0)
765 {
766 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
767 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
768 || TREE_CODE (type) == COMPLEX_TYPE));
769 }
770 MEM_NOTRAP_P (slot) = 1;
771
772 return slot;
773 }
774
775 /* Allocate a temporary stack slot and record it for possible later
776 reuse. First three arguments are same as in preceding function. */
777
778 rtx
779 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
780 {
781 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
782 }
783 \f
784 /* Assign a temporary.
785 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
786 and so that should be used in error messages. In either case, we
787 allocate of the given type.
788 KEEP is as for assign_stack_temp.
789 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
790 it is 0 if a register is OK.
791 DONT_PROMOTE is 1 if we should not promote values in register
792 to wider modes. */
793
794 rtx
795 assign_temp (tree type_or_decl, int keep, int memory_required,
796 int dont_promote ATTRIBUTE_UNUSED)
797 {
798 tree type, decl;
799 enum machine_mode mode;
800 #ifdef PROMOTE_MODE
801 int unsignedp;
802 #endif
803
804 if (DECL_P (type_or_decl))
805 decl = type_or_decl, type = TREE_TYPE (decl);
806 else
807 decl = NULL, type = type_or_decl;
808
809 mode = TYPE_MODE (type);
810 #ifdef PROMOTE_MODE
811 unsignedp = TYPE_UNSIGNED (type);
812 #endif
813
814 if (mode == BLKmode || memory_required)
815 {
816 HOST_WIDE_INT size = int_size_in_bytes (type);
817 rtx tmp;
818
819 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
820 problems with allocating the stack space. */
821 if (size == 0)
822 size = 1;
823
824 /* Unfortunately, we don't yet know how to allocate variable-sized
825 temporaries. However, sometimes we can find a fixed upper limit on
826 the size, so try that instead. */
827 else if (size == -1)
828 size = max_int_size_in_bytes (type);
829
830 /* The size of the temporary may be too large to fit into an integer. */
831 /* ??? Not sure this should happen except for user silliness, so limit
832 this to things that aren't compiler-generated temporaries. The
833 rest of the time we'll die in assign_stack_temp_for_type. */
834 if (decl && size == -1
835 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
836 {
837 error ("size of variable %q+D is too large", decl);
838 size = 1;
839 }
840
841 tmp = assign_stack_temp_for_type (mode, size, keep, type);
842 return tmp;
843 }
844
845 #ifdef PROMOTE_MODE
846 if (! dont_promote)
847 mode = promote_mode (type, mode, &unsignedp, 0);
848 #endif
849
850 return gen_reg_rtx (mode);
851 }
852 \f
853 /* Combine temporary stack slots which are adjacent on the stack.
854
855 This allows for better use of already allocated stack space. This is only
856 done for BLKmode slots because we can be sure that we won't have alignment
857 problems in this case. */
858
859 static void
860 combine_temp_slots (void)
861 {
862 struct temp_slot *p, *q, *next, *next_q;
863 int num_slots;
864
865 /* We can't combine slots, because the information about which slot
866 is in which alias set will be lost. */
867 if (flag_strict_aliasing)
868 return;
869
870 /* If there are a lot of temp slots, don't do anything unless
871 high levels of optimization. */
872 if (! flag_expensive_optimizations)
873 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
874 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
875 return;
876
877 for (p = avail_temp_slots; p; p = next)
878 {
879 int delete_p = 0;
880
881 next = p->next;
882
883 if (GET_MODE (p->slot) != BLKmode)
884 continue;
885
886 for (q = p->next; q; q = next_q)
887 {
888 int delete_q = 0;
889
890 next_q = q->next;
891
892 if (GET_MODE (q->slot) != BLKmode)
893 continue;
894
895 if (p->base_offset + p->full_size == q->base_offset)
896 {
897 /* Q comes after P; combine Q into P. */
898 p->size += q->size;
899 p->full_size += q->full_size;
900 delete_q = 1;
901 }
902 else if (q->base_offset + q->full_size == p->base_offset)
903 {
904 /* P comes after Q; combine P into Q. */
905 q->size += p->size;
906 q->full_size += p->full_size;
907 delete_p = 1;
908 break;
909 }
910 if (delete_q)
911 cut_slot_from_list (q, &avail_temp_slots);
912 }
913
914 /* Either delete P or advance past it. */
915 if (delete_p)
916 cut_slot_from_list (p, &avail_temp_slots);
917 }
918 }
919 \f
920 /* Find the temp slot corresponding to the object at address X. */
921
922 static struct temp_slot *
923 find_temp_slot_from_address (rtx x)
924 {
925 struct temp_slot *p;
926 rtx next;
927 int i;
928
929 for (i = max_slot_level (); i >= 0; i--)
930 for (p = *temp_slots_at_level (i); p; p = p->next)
931 {
932 if (XEXP (p->slot, 0) == x
933 || p->address == x
934 || (GET_CODE (x) == PLUS
935 && XEXP (x, 0) == virtual_stack_vars_rtx
936 && GET_CODE (XEXP (x, 1)) == CONST_INT
937 && INTVAL (XEXP (x, 1)) >= p->base_offset
938 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
939 return p;
940
941 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
942 for (next = p->address; next; next = XEXP (next, 1))
943 if (XEXP (next, 0) == x)
944 return p;
945 }
946
947 /* If we have a sum involving a register, see if it points to a temp
948 slot. */
949 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
950 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
951 return p;
952 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
953 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
954 return p;
955
956 return 0;
957 }
958
959 /* Indicate that NEW is an alternate way of referring to the temp slot
960 that previously was known by OLD. */
961
962 void
963 update_temp_slot_address (rtx old, rtx new)
964 {
965 struct temp_slot *p;
966
967 if (rtx_equal_p (old, new))
968 return;
969
970 p = find_temp_slot_from_address (old);
971
972 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
973 is a register, see if one operand of the PLUS is a temporary
974 location. If so, NEW points into it. Otherwise, if both OLD and
975 NEW are a PLUS and if there is a register in common between them.
976 If so, try a recursive call on those values. */
977 if (p == 0)
978 {
979 if (GET_CODE (old) != PLUS)
980 return;
981
982 if (REG_P (new))
983 {
984 update_temp_slot_address (XEXP (old, 0), new);
985 update_temp_slot_address (XEXP (old, 1), new);
986 return;
987 }
988 else if (GET_CODE (new) != PLUS)
989 return;
990
991 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
992 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
993 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
994 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
995 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
996 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
997 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
998 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
999
1000 return;
1001 }
1002
1003 /* Otherwise add an alias for the temp's address. */
1004 else if (p->address == 0)
1005 p->address = new;
1006 else
1007 {
1008 if (GET_CODE (p->address) != EXPR_LIST)
1009 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1010
1011 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1012 }
1013 }
1014
1015 /* If X could be a reference to a temporary slot, mark the fact that its
1016 address was taken. */
1017
1018 void
1019 mark_temp_addr_taken (rtx x)
1020 {
1021 struct temp_slot *p;
1022
1023 if (x == 0)
1024 return;
1025
1026 /* If X is not in memory or is at a constant address, it cannot be in
1027 a temporary slot. */
1028 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1029 return;
1030
1031 p = find_temp_slot_from_address (XEXP (x, 0));
1032 if (p != 0)
1033 p->addr_taken = 1;
1034 }
1035
1036 /* If X could be a reference to a temporary slot, mark that slot as
1037 belonging to the to one level higher than the current level. If X
1038 matched one of our slots, just mark that one. Otherwise, we can't
1039 easily predict which it is, so upgrade all of them. Kept slots
1040 need not be touched.
1041
1042 This is called when an ({...}) construct occurs and a statement
1043 returns a value in memory. */
1044
1045 void
1046 preserve_temp_slots (rtx x)
1047 {
1048 struct temp_slot *p = 0, *next;
1049
1050 /* If there is no result, we still might have some objects whose address
1051 were taken, so we need to make sure they stay around. */
1052 if (x == 0)
1053 {
1054 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1055 {
1056 next = p->next;
1057
1058 if (p->addr_taken)
1059 move_slot_to_level (p, temp_slot_level - 1);
1060 }
1061
1062 return;
1063 }
1064
1065 /* If X is a register that is being used as a pointer, see if we have
1066 a temporary slot we know it points to. To be consistent with
1067 the code below, we really should preserve all non-kept slots
1068 if we can't find a match, but that seems to be much too costly. */
1069 if (REG_P (x) && REG_POINTER (x))
1070 p = find_temp_slot_from_address (x);
1071
1072 /* If X is not in memory or is at a constant address, it cannot be in
1073 a temporary slot, but it can contain something whose address was
1074 taken. */
1075 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1076 {
1077 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1078 {
1079 next = p->next;
1080
1081 if (p->addr_taken)
1082 move_slot_to_level (p, temp_slot_level - 1);
1083 }
1084
1085 return;
1086 }
1087
1088 /* First see if we can find a match. */
1089 if (p == 0)
1090 p = find_temp_slot_from_address (XEXP (x, 0));
1091
1092 if (p != 0)
1093 {
1094 /* Move everything at our level whose address was taken to our new
1095 level in case we used its address. */
1096 struct temp_slot *q;
1097
1098 if (p->level == temp_slot_level)
1099 {
1100 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1101 {
1102 next = q->next;
1103
1104 if (p != q && q->addr_taken)
1105 move_slot_to_level (q, temp_slot_level - 1);
1106 }
1107
1108 move_slot_to_level (p, temp_slot_level - 1);
1109 p->addr_taken = 0;
1110 }
1111 return;
1112 }
1113
1114 /* Otherwise, preserve all non-kept slots at this level. */
1115 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1116 {
1117 next = p->next;
1118
1119 if (!p->keep)
1120 move_slot_to_level (p, temp_slot_level - 1);
1121 }
1122 }
1123
1124 /* Free all temporaries used so far. This is normally called at the
1125 end of generating code for a statement. */
1126
1127 void
1128 free_temp_slots (void)
1129 {
1130 struct temp_slot *p, *next;
1131
1132 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1133 {
1134 next = p->next;
1135
1136 if (!p->keep)
1137 make_slot_available (p);
1138 }
1139
1140 combine_temp_slots ();
1141 }
1142
1143 /* Push deeper into the nesting level for stack temporaries. */
1144
1145 void
1146 push_temp_slots (void)
1147 {
1148 temp_slot_level++;
1149 }
1150
1151 /* Pop a temporary nesting level. All slots in use in the current level
1152 are freed. */
1153
1154 void
1155 pop_temp_slots (void)
1156 {
1157 struct temp_slot *p, *next;
1158
1159 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1160 {
1161 next = p->next;
1162 make_slot_available (p);
1163 }
1164
1165 combine_temp_slots ();
1166
1167 temp_slot_level--;
1168 }
1169
1170 /* Initialize temporary slots. */
1171
1172 void
1173 init_temp_slots (void)
1174 {
1175 /* We have not allocated any temporaries yet. */
1176 avail_temp_slots = 0;
1177 used_temp_slots = 0;
1178 temp_slot_level = 0;
1179 }
1180 \f
1181 /* These routines are responsible for converting virtual register references
1182 to the actual hard register references once RTL generation is complete.
1183
1184 The following four variables are used for communication between the
1185 routines. They contain the offsets of the virtual registers from their
1186 respective hard registers. */
1187
1188 static int in_arg_offset;
1189 static int var_offset;
1190 static int dynamic_offset;
1191 static int out_arg_offset;
1192 static int cfa_offset;
1193
1194 /* In most machines, the stack pointer register is equivalent to the bottom
1195 of the stack. */
1196
1197 #ifndef STACK_POINTER_OFFSET
1198 #define STACK_POINTER_OFFSET 0
1199 #endif
1200
1201 /* If not defined, pick an appropriate default for the offset of dynamically
1202 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1203 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1204
1205 #ifndef STACK_DYNAMIC_OFFSET
1206
1207 /* The bottom of the stack points to the actual arguments. If
1208 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1209 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1210 stack space for register parameters is not pushed by the caller, but
1211 rather part of the fixed stack areas and hence not included in
1212 `current_function_outgoing_args_size'. Nevertheless, we must allow
1213 for it when allocating stack dynamic objects. */
1214
1215 #if defined(REG_PARM_STACK_SPACE)
1216 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1217 ((ACCUMULATE_OUTGOING_ARGS \
1218 ? (current_function_outgoing_args_size \
1219 + (OUTGOING_REG_PARM_STACK_SPACE ? 0 : REG_PARM_STACK_SPACE (FNDECL))) \
1220 : 0) + (STACK_POINTER_OFFSET))
1221 #else
1222 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1223 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1224 + (STACK_POINTER_OFFSET))
1225 #endif
1226 #endif
1227
1228 \f
1229 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1230 is a virtual register, return the equivalent hard register and set the
1231 offset indirectly through the pointer. Otherwise, return 0. */
1232
1233 static rtx
1234 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1235 {
1236 rtx new;
1237 HOST_WIDE_INT offset;
1238
1239 if (x == virtual_incoming_args_rtx)
1240 new = arg_pointer_rtx, offset = in_arg_offset;
1241 else if (x == virtual_stack_vars_rtx)
1242 new = frame_pointer_rtx, offset = var_offset;
1243 else if (x == virtual_stack_dynamic_rtx)
1244 new = stack_pointer_rtx, offset = dynamic_offset;
1245 else if (x == virtual_outgoing_args_rtx)
1246 new = stack_pointer_rtx, offset = out_arg_offset;
1247 else if (x == virtual_cfa_rtx)
1248 {
1249 #ifdef FRAME_POINTER_CFA_OFFSET
1250 new = frame_pointer_rtx;
1251 #else
1252 new = arg_pointer_rtx;
1253 #endif
1254 offset = cfa_offset;
1255 }
1256 else
1257 return NULL_RTX;
1258
1259 *poffset = offset;
1260 return new;
1261 }
1262
1263 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1264 Instantiate any virtual registers present inside of *LOC. The expression
1265 is simplified, as much as possible, but is not to be considered "valid"
1266 in any sense implied by the target. If any change is made, set CHANGED
1267 to true. */
1268
1269 static int
1270 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1271 {
1272 HOST_WIDE_INT offset;
1273 bool *changed = (bool *) data;
1274 rtx x, new;
1275
1276 x = *loc;
1277 if (x == 0)
1278 return 0;
1279
1280 switch (GET_CODE (x))
1281 {
1282 case REG:
1283 new = instantiate_new_reg (x, &offset);
1284 if (new)
1285 {
1286 *loc = plus_constant (new, offset);
1287 if (changed)
1288 *changed = true;
1289 }
1290 return -1;
1291
1292 case PLUS:
1293 new = instantiate_new_reg (XEXP (x, 0), &offset);
1294 if (new)
1295 {
1296 new = plus_constant (new, offset);
1297 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1298 if (changed)
1299 *changed = true;
1300 return -1;
1301 }
1302
1303 /* FIXME -- from old code */
1304 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1305 we can commute the PLUS and SUBREG because pointers into the
1306 frame are well-behaved. */
1307 break;
1308
1309 default:
1310 break;
1311 }
1312
1313 return 0;
1314 }
1315
1316 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1317 matches the predicate for insn CODE operand OPERAND. */
1318
1319 static int
1320 safe_insn_predicate (int code, int operand, rtx x)
1321 {
1322 const struct insn_operand_data *op_data;
1323
1324 if (code < 0)
1325 return true;
1326
1327 op_data = &insn_data[code].operand[operand];
1328 if (op_data->predicate == NULL)
1329 return true;
1330
1331 return op_data->predicate (x, op_data->mode);
1332 }
1333
1334 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1335 registers present inside of insn. The result will be a valid insn. */
1336
1337 static void
1338 instantiate_virtual_regs_in_insn (rtx insn)
1339 {
1340 HOST_WIDE_INT offset;
1341 int insn_code, i;
1342 bool any_change = false;
1343 rtx set, new, x, seq;
1344
1345 /* There are some special cases to be handled first. */
1346 set = single_set (insn);
1347 if (set)
1348 {
1349 /* We're allowed to assign to a virtual register. This is interpreted
1350 to mean that the underlying register gets assigned the inverse
1351 transformation. This is used, for example, in the handling of
1352 non-local gotos. */
1353 new = instantiate_new_reg (SET_DEST (set), &offset);
1354 if (new)
1355 {
1356 start_sequence ();
1357
1358 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1359 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1360 GEN_INT (-offset));
1361 x = force_operand (x, new);
1362 if (x != new)
1363 emit_move_insn (new, x);
1364
1365 seq = get_insns ();
1366 end_sequence ();
1367
1368 emit_insn_before (seq, insn);
1369 delete_insn (insn);
1370 return;
1371 }
1372
1373 /* Handle a straight copy from a virtual register by generating a
1374 new add insn. The difference between this and falling through
1375 to the generic case is avoiding a new pseudo and eliminating a
1376 move insn in the initial rtl stream. */
1377 new = instantiate_new_reg (SET_SRC (set), &offset);
1378 if (new && offset != 0
1379 && REG_P (SET_DEST (set))
1380 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1381 {
1382 start_sequence ();
1383
1384 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1385 new, GEN_INT (offset), SET_DEST (set),
1386 1, OPTAB_LIB_WIDEN);
1387 if (x != SET_DEST (set))
1388 emit_move_insn (SET_DEST (set), x);
1389
1390 seq = get_insns ();
1391 end_sequence ();
1392
1393 emit_insn_before (seq, insn);
1394 delete_insn (insn);
1395 return;
1396 }
1397
1398 extract_insn (insn);
1399 insn_code = INSN_CODE (insn);
1400
1401 /* Handle a plus involving a virtual register by determining if the
1402 operands remain valid if they're modified in place. */
1403 if (GET_CODE (SET_SRC (set)) == PLUS
1404 && recog_data.n_operands >= 3
1405 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1406 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1407 && GET_CODE (recog_data.operand[2]) == CONST_INT
1408 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1409 {
1410 offset += INTVAL (recog_data.operand[2]);
1411
1412 /* If the sum is zero, then replace with a plain move. */
1413 if (offset == 0
1414 && REG_P (SET_DEST (set))
1415 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1416 {
1417 start_sequence ();
1418 emit_move_insn (SET_DEST (set), new);
1419 seq = get_insns ();
1420 end_sequence ();
1421
1422 emit_insn_before (seq, insn);
1423 delete_insn (insn);
1424 return;
1425 }
1426
1427 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1428
1429 /* Using validate_change and apply_change_group here leaves
1430 recog_data in an invalid state. Since we know exactly what
1431 we want to check, do those two by hand. */
1432 if (safe_insn_predicate (insn_code, 1, new)
1433 && safe_insn_predicate (insn_code, 2, x))
1434 {
1435 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1436 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1437 any_change = true;
1438
1439 /* Fall through into the regular operand fixup loop in
1440 order to take care of operands other than 1 and 2. */
1441 }
1442 }
1443 }
1444 else
1445 {
1446 extract_insn (insn);
1447 insn_code = INSN_CODE (insn);
1448 }
1449
1450 /* In the general case, we expect virtual registers to appear only in
1451 operands, and then only as either bare registers or inside memories. */
1452 for (i = 0; i < recog_data.n_operands; ++i)
1453 {
1454 x = recog_data.operand[i];
1455 switch (GET_CODE (x))
1456 {
1457 case MEM:
1458 {
1459 rtx addr = XEXP (x, 0);
1460 bool changed = false;
1461
1462 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1463 if (!changed)
1464 continue;
1465
1466 start_sequence ();
1467 x = replace_equiv_address (x, addr);
1468 seq = get_insns ();
1469 end_sequence ();
1470 if (seq)
1471 emit_insn_before (seq, insn);
1472 }
1473 break;
1474
1475 case REG:
1476 new = instantiate_new_reg (x, &offset);
1477 if (new == NULL)
1478 continue;
1479 if (offset == 0)
1480 x = new;
1481 else
1482 {
1483 start_sequence ();
1484
1485 /* Careful, special mode predicates may have stuff in
1486 insn_data[insn_code].operand[i].mode that isn't useful
1487 to us for computing a new value. */
1488 /* ??? Recognize address_operand and/or "p" constraints
1489 to see if (plus new offset) is a valid before we put
1490 this through expand_simple_binop. */
1491 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1492 GEN_INT (offset), NULL_RTX,
1493 1, OPTAB_LIB_WIDEN);
1494 seq = get_insns ();
1495 end_sequence ();
1496 emit_insn_before (seq, insn);
1497 }
1498 break;
1499
1500 case SUBREG:
1501 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1502 if (new == NULL)
1503 continue;
1504 if (offset != 0)
1505 {
1506 start_sequence ();
1507 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1508 GEN_INT (offset), NULL_RTX,
1509 1, OPTAB_LIB_WIDEN);
1510 seq = get_insns ();
1511 end_sequence ();
1512 emit_insn_before (seq, insn);
1513 }
1514 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1515 GET_MODE (new), SUBREG_BYTE (x));
1516 break;
1517
1518 default:
1519 continue;
1520 }
1521
1522 /* At this point, X contains the new value for the operand.
1523 Validate the new value vs the insn predicate. Note that
1524 asm insns will have insn_code -1 here. */
1525 if (!safe_insn_predicate (insn_code, i, x))
1526 {
1527 start_sequence ();
1528 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1529 seq = get_insns ();
1530 end_sequence ();
1531 if (seq)
1532 emit_insn_before (seq, insn);
1533 }
1534
1535 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1536 any_change = true;
1537 }
1538
1539 if (any_change)
1540 {
1541 /* Propagate operand changes into the duplicates. */
1542 for (i = 0; i < recog_data.n_dups; ++i)
1543 *recog_data.dup_loc[i]
1544 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1545
1546 /* Force re-recognition of the instruction for validation. */
1547 INSN_CODE (insn) = -1;
1548 }
1549
1550 if (asm_noperands (PATTERN (insn)) >= 0)
1551 {
1552 if (!check_asm_operands (PATTERN (insn)))
1553 {
1554 error_for_asm (insn, "impossible constraint in %<asm%>");
1555 delete_insn (insn);
1556 }
1557 }
1558 else
1559 {
1560 if (recog_memoized (insn) < 0)
1561 fatal_insn_not_found (insn);
1562 }
1563 }
1564
1565 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1566 do any instantiation required. */
1567
1568 static void
1569 instantiate_decl (rtx x)
1570 {
1571 rtx addr;
1572
1573 if (x == 0)
1574 return;
1575
1576 /* If this is a CONCAT, recurse for the pieces. */
1577 if (GET_CODE (x) == CONCAT)
1578 {
1579 instantiate_decl (XEXP (x, 0));
1580 instantiate_decl (XEXP (x, 1));
1581 return;
1582 }
1583
1584 /* If this is not a MEM, no need to do anything. Similarly if the
1585 address is a constant or a register that is not a virtual register. */
1586 if (!MEM_P (x))
1587 return;
1588
1589 addr = XEXP (x, 0);
1590 if (CONSTANT_P (addr)
1591 || (REG_P (addr)
1592 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1593 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1594 return;
1595
1596 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1597 }
1598
1599 /* Helper for instantiate_decls called via walk_tree: Process all decls
1600 in the given DECL_VALUE_EXPR. */
1601
1602 static tree
1603 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1604 {
1605 tree t = *tp;
1606 if (! EXPR_P (t) && ! GIMPLE_STMT_P (t))
1607 {
1608 *walk_subtrees = 0;
1609 if (DECL_P (t) && DECL_RTL_SET_P (t))
1610 instantiate_decl (DECL_RTL (t));
1611 }
1612 return NULL;
1613 }
1614
1615 /* Subroutine of instantiate_decls: Process all decls in the given
1616 BLOCK node and all its subblocks. */
1617
1618 static void
1619 instantiate_decls_1 (tree let)
1620 {
1621 tree t;
1622
1623 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1624 {
1625 if (DECL_RTL_SET_P (t))
1626 instantiate_decl (DECL_RTL (t));
1627 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1628 {
1629 tree v = DECL_VALUE_EXPR (t);
1630 walk_tree (&v, instantiate_expr, NULL, NULL);
1631 }
1632 }
1633
1634 /* Process all subblocks. */
1635 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1636 instantiate_decls_1 (t);
1637 }
1638
1639 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1640 all virtual registers in their DECL_RTL's. */
1641
1642 static void
1643 instantiate_decls (tree fndecl)
1644 {
1645 tree decl;
1646
1647 /* Process all parameters of the function. */
1648 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1649 {
1650 instantiate_decl (DECL_RTL (decl));
1651 instantiate_decl (DECL_INCOMING_RTL (decl));
1652 if (DECL_HAS_VALUE_EXPR_P (decl))
1653 {
1654 tree v = DECL_VALUE_EXPR (decl);
1655 walk_tree (&v, instantiate_expr, NULL, NULL);
1656 }
1657 }
1658
1659 /* Now process all variables defined in the function or its subblocks. */
1660 instantiate_decls_1 (DECL_INITIAL (fndecl));
1661 }
1662
1663 /* Pass through the INSNS of function FNDECL and convert virtual register
1664 references to hard register references. */
1665
1666 static unsigned int
1667 instantiate_virtual_regs (void)
1668 {
1669 rtx insn;
1670
1671 /* Compute the offsets to use for this function. */
1672 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1673 var_offset = STARTING_FRAME_OFFSET;
1674 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1675 out_arg_offset = STACK_POINTER_OFFSET;
1676 #ifdef FRAME_POINTER_CFA_OFFSET
1677 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1678 #else
1679 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1680 #endif
1681
1682 /* Initialize recognition, indicating that volatile is OK. */
1683 init_recog ();
1684
1685 /* Scan through all the insns, instantiating every virtual register still
1686 present. */
1687 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1688 if (INSN_P (insn))
1689 {
1690 /* These patterns in the instruction stream can never be recognized.
1691 Fortunately, they shouldn't contain virtual registers either. */
1692 if (GET_CODE (PATTERN (insn)) == USE
1693 || GET_CODE (PATTERN (insn)) == CLOBBER
1694 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1695 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1696 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1697 continue;
1698
1699 instantiate_virtual_regs_in_insn (insn);
1700
1701 if (INSN_DELETED_P (insn))
1702 continue;
1703
1704 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1705
1706 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1707 if (GET_CODE (insn) == CALL_INSN)
1708 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1709 instantiate_virtual_regs_in_rtx, NULL);
1710 }
1711
1712 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1713 instantiate_decls (current_function_decl);
1714
1715 /* Indicate that, from now on, assign_stack_local should use
1716 frame_pointer_rtx. */
1717 virtuals_instantiated = 1;
1718 return 0;
1719 }
1720
1721 struct tree_opt_pass pass_instantiate_virtual_regs =
1722 {
1723 "vregs", /* name */
1724 NULL, /* gate */
1725 instantiate_virtual_regs, /* execute */
1726 NULL, /* sub */
1727 NULL, /* next */
1728 0, /* static_pass_number */
1729 0, /* tv_id */
1730 0, /* properties_required */
1731 0, /* properties_provided */
1732 0, /* properties_destroyed */
1733 0, /* todo_flags_start */
1734 TODO_dump_func, /* todo_flags_finish */
1735 0 /* letter */
1736 };
1737
1738 \f
1739 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1740 This means a type for which function calls must pass an address to the
1741 function or get an address back from the function.
1742 EXP may be a type node or an expression (whose type is tested). */
1743
1744 int
1745 aggregate_value_p (const_tree exp, const_tree fntype)
1746 {
1747 int i, regno, nregs;
1748 rtx reg;
1749
1750 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1751
1752 /* DECL node associated with FNTYPE when relevant, which we might need to
1753 check for by-invisible-reference returns, typically for CALL_EXPR input
1754 EXPressions. */
1755 const_tree fndecl = NULL_TREE;
1756
1757 if (fntype)
1758 switch (TREE_CODE (fntype))
1759 {
1760 case CALL_EXPR:
1761 fndecl = get_callee_fndecl (fntype);
1762 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1763 break;
1764 case FUNCTION_DECL:
1765 fndecl = fntype;
1766 fntype = TREE_TYPE (fndecl);
1767 break;
1768 case FUNCTION_TYPE:
1769 case METHOD_TYPE:
1770 break;
1771 case IDENTIFIER_NODE:
1772 fntype = 0;
1773 break;
1774 default:
1775 /* We don't expect other rtl types here. */
1776 gcc_unreachable ();
1777 }
1778
1779 if (TREE_CODE (type) == VOID_TYPE)
1780 return 0;
1781
1782 /* If the front end has decided that this needs to be passed by
1783 reference, do so. */
1784 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1785 && DECL_BY_REFERENCE (exp))
1786 return 1;
1787
1788 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1789 called function RESULT_DECL, meaning the function returns in memory by
1790 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1791 on the function type, which used to be the way to request such a return
1792 mechanism but might now be causing troubles at gimplification time if
1793 temporaries with the function type need to be created. */
1794 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1795 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1796 return 1;
1797
1798 if (targetm.calls.return_in_memory (type, fntype))
1799 return 1;
1800 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1801 and thus can't be returned in registers. */
1802 if (TREE_ADDRESSABLE (type))
1803 return 1;
1804 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1805 return 1;
1806 /* Make sure we have suitable call-clobbered regs to return
1807 the value in; if not, we must return it in memory. */
1808 reg = hard_function_value (type, 0, fntype, 0);
1809
1810 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1811 it is OK. */
1812 if (!REG_P (reg))
1813 return 0;
1814
1815 regno = REGNO (reg);
1816 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1817 for (i = 0; i < nregs; i++)
1818 if (! call_used_regs[regno + i])
1819 return 1;
1820 return 0;
1821 }
1822 \f
1823 /* Return true if we should assign DECL a pseudo register; false if it
1824 should live on the local stack. */
1825
1826 bool
1827 use_register_for_decl (const_tree decl)
1828 {
1829 /* Honor volatile. */
1830 if (TREE_SIDE_EFFECTS (decl))
1831 return false;
1832
1833 /* Honor addressability. */
1834 if (TREE_ADDRESSABLE (decl))
1835 return false;
1836
1837 /* Only register-like things go in registers. */
1838 if (DECL_MODE (decl) == BLKmode)
1839 return false;
1840
1841 /* If -ffloat-store specified, don't put explicit float variables
1842 into registers. */
1843 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1844 propagates values across these stores, and it probably shouldn't. */
1845 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1846 return false;
1847
1848 /* If we're not interested in tracking debugging information for
1849 this decl, then we can certainly put it in a register. */
1850 if (DECL_IGNORED_P (decl))
1851 return true;
1852
1853 return (optimize || DECL_REGISTER (decl));
1854 }
1855
1856 /* Return true if TYPE should be passed by invisible reference. */
1857
1858 bool
1859 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1860 tree type, bool named_arg)
1861 {
1862 if (type)
1863 {
1864 /* If this type contains non-trivial constructors, then it is
1865 forbidden for the middle-end to create any new copies. */
1866 if (TREE_ADDRESSABLE (type))
1867 return true;
1868
1869 /* GCC post 3.4 passes *all* variable sized types by reference. */
1870 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1871 return true;
1872 }
1873
1874 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1875 }
1876
1877 /* Return true if TYPE, which is passed by reference, should be callee
1878 copied instead of caller copied. */
1879
1880 bool
1881 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1882 tree type, bool named_arg)
1883 {
1884 if (type && TREE_ADDRESSABLE (type))
1885 return false;
1886 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1887 }
1888
1889 /* Structures to communicate between the subroutines of assign_parms.
1890 The first holds data persistent across all parameters, the second
1891 is cleared out for each parameter. */
1892
1893 struct assign_parm_data_all
1894 {
1895 CUMULATIVE_ARGS args_so_far;
1896 struct args_size stack_args_size;
1897 tree function_result_decl;
1898 tree orig_fnargs;
1899 rtx first_conversion_insn;
1900 rtx last_conversion_insn;
1901 HOST_WIDE_INT pretend_args_size;
1902 HOST_WIDE_INT extra_pretend_bytes;
1903 int reg_parm_stack_space;
1904 };
1905
1906 struct assign_parm_data_one
1907 {
1908 tree nominal_type;
1909 tree passed_type;
1910 rtx entry_parm;
1911 rtx stack_parm;
1912 enum machine_mode nominal_mode;
1913 enum machine_mode passed_mode;
1914 enum machine_mode promoted_mode;
1915 struct locate_and_pad_arg_data locate;
1916 int partial;
1917 BOOL_BITFIELD named_arg : 1;
1918 BOOL_BITFIELD passed_pointer : 1;
1919 BOOL_BITFIELD on_stack : 1;
1920 BOOL_BITFIELD loaded_in_reg : 1;
1921 };
1922
1923 /* A subroutine of assign_parms. Initialize ALL. */
1924
1925 static void
1926 assign_parms_initialize_all (struct assign_parm_data_all *all)
1927 {
1928 tree fntype;
1929
1930 memset (all, 0, sizeof (*all));
1931
1932 fntype = TREE_TYPE (current_function_decl);
1933
1934 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1935 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1936 #else
1937 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1938 current_function_decl, -1);
1939 #endif
1940
1941 #ifdef REG_PARM_STACK_SPACE
1942 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1943 #endif
1944 }
1945
1946 /* If ARGS contains entries with complex types, split the entry into two
1947 entries of the component type. Return a new list of substitutions are
1948 needed, else the old list. */
1949
1950 static tree
1951 split_complex_args (tree args)
1952 {
1953 tree p;
1954
1955 /* Before allocating memory, check for the common case of no complex. */
1956 for (p = args; p; p = TREE_CHAIN (p))
1957 {
1958 tree type = TREE_TYPE (p);
1959 if (TREE_CODE (type) == COMPLEX_TYPE
1960 && targetm.calls.split_complex_arg (type))
1961 goto found;
1962 }
1963 return args;
1964
1965 found:
1966 args = copy_list (args);
1967
1968 for (p = args; p; p = TREE_CHAIN (p))
1969 {
1970 tree type = TREE_TYPE (p);
1971 if (TREE_CODE (type) == COMPLEX_TYPE
1972 && targetm.calls.split_complex_arg (type))
1973 {
1974 tree decl;
1975 tree subtype = TREE_TYPE (type);
1976 bool addressable = TREE_ADDRESSABLE (p);
1977
1978 /* Rewrite the PARM_DECL's type with its component. */
1979 TREE_TYPE (p) = subtype;
1980 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1981 DECL_MODE (p) = VOIDmode;
1982 DECL_SIZE (p) = NULL;
1983 DECL_SIZE_UNIT (p) = NULL;
1984 /* If this arg must go in memory, put it in a pseudo here.
1985 We can't allow it to go in memory as per normal parms,
1986 because the usual place might not have the imag part
1987 adjacent to the real part. */
1988 DECL_ARTIFICIAL (p) = addressable;
1989 DECL_IGNORED_P (p) = addressable;
1990 TREE_ADDRESSABLE (p) = 0;
1991 layout_decl (p, 0);
1992
1993 /* Build a second synthetic decl. */
1994 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1995 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1996 DECL_ARTIFICIAL (decl) = addressable;
1997 DECL_IGNORED_P (decl) = addressable;
1998 layout_decl (decl, 0);
1999
2000 /* Splice it in; skip the new decl. */
2001 TREE_CHAIN (decl) = TREE_CHAIN (p);
2002 TREE_CHAIN (p) = decl;
2003 p = decl;
2004 }
2005 }
2006
2007 return args;
2008 }
2009
2010 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2011 the hidden struct return argument, and (abi willing) complex args.
2012 Return the new parameter list. */
2013
2014 static tree
2015 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2016 {
2017 tree fndecl = current_function_decl;
2018 tree fntype = TREE_TYPE (fndecl);
2019 tree fnargs = DECL_ARGUMENTS (fndecl);
2020
2021 /* If struct value address is treated as the first argument, make it so. */
2022 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2023 && ! current_function_returns_pcc_struct
2024 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2025 {
2026 tree type = build_pointer_type (TREE_TYPE (fntype));
2027 tree decl;
2028
2029 decl = build_decl (PARM_DECL, NULL_TREE, type);
2030 DECL_ARG_TYPE (decl) = type;
2031 DECL_ARTIFICIAL (decl) = 1;
2032 DECL_IGNORED_P (decl) = 1;
2033
2034 TREE_CHAIN (decl) = fnargs;
2035 fnargs = decl;
2036 all->function_result_decl = decl;
2037 }
2038
2039 all->orig_fnargs = fnargs;
2040
2041 /* If the target wants to split complex arguments into scalars, do so. */
2042 if (targetm.calls.split_complex_arg)
2043 fnargs = split_complex_args (fnargs);
2044
2045 return fnargs;
2046 }
2047
2048 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2049 data for the parameter. Incorporate ABI specifics such as pass-by-
2050 reference and type promotion. */
2051
2052 static void
2053 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2054 struct assign_parm_data_one *data)
2055 {
2056 tree nominal_type, passed_type;
2057 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2058
2059 memset (data, 0, sizeof (*data));
2060
2061 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2062 if (!current_function_stdarg)
2063 data->named_arg = 1; /* No varadic parms. */
2064 else if (TREE_CHAIN (parm))
2065 data->named_arg = 1; /* Not the last non-varadic parm. */
2066 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2067 data->named_arg = 1; /* Only varadic ones are unnamed. */
2068 else
2069 data->named_arg = 0; /* Treat as varadic. */
2070
2071 nominal_type = TREE_TYPE (parm);
2072 passed_type = DECL_ARG_TYPE (parm);
2073
2074 /* Look out for errors propagating this far. Also, if the parameter's
2075 type is void then its value doesn't matter. */
2076 if (TREE_TYPE (parm) == error_mark_node
2077 /* This can happen after weird syntax errors
2078 or if an enum type is defined among the parms. */
2079 || TREE_CODE (parm) != PARM_DECL
2080 || passed_type == NULL
2081 || VOID_TYPE_P (nominal_type))
2082 {
2083 nominal_type = passed_type = void_type_node;
2084 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2085 goto egress;
2086 }
2087
2088 /* Find mode of arg as it is passed, and mode of arg as it should be
2089 during execution of this function. */
2090 passed_mode = TYPE_MODE (passed_type);
2091 nominal_mode = TYPE_MODE (nominal_type);
2092
2093 /* If the parm is to be passed as a transparent union, use the type of
2094 the first field for the tests below. We have already verified that
2095 the modes are the same. */
2096 if (TREE_CODE (passed_type) == UNION_TYPE
2097 && TYPE_TRANSPARENT_UNION (passed_type))
2098 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2099
2100 /* See if this arg was passed by invisible reference. */
2101 if (pass_by_reference (&all->args_so_far, passed_mode,
2102 passed_type, data->named_arg))
2103 {
2104 passed_type = nominal_type = build_pointer_type (passed_type);
2105 data->passed_pointer = true;
2106 passed_mode = nominal_mode = Pmode;
2107 }
2108
2109 /* Find mode as it is passed by the ABI. */
2110 promoted_mode = passed_mode;
2111 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2112 {
2113 int unsignedp = TYPE_UNSIGNED (passed_type);
2114 promoted_mode = promote_mode (passed_type, promoted_mode,
2115 &unsignedp, 1);
2116 }
2117
2118 egress:
2119 data->nominal_type = nominal_type;
2120 data->passed_type = passed_type;
2121 data->nominal_mode = nominal_mode;
2122 data->passed_mode = passed_mode;
2123 data->promoted_mode = promoted_mode;
2124 }
2125
2126 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2127
2128 static void
2129 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2130 struct assign_parm_data_one *data, bool no_rtl)
2131 {
2132 int varargs_pretend_bytes = 0;
2133
2134 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2135 data->promoted_mode,
2136 data->passed_type,
2137 &varargs_pretend_bytes, no_rtl);
2138
2139 /* If the back-end has requested extra stack space, record how much is
2140 needed. Do not change pretend_args_size otherwise since it may be
2141 nonzero from an earlier partial argument. */
2142 if (varargs_pretend_bytes > 0)
2143 all->pretend_args_size = varargs_pretend_bytes;
2144 }
2145
2146 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2147 the incoming location of the current parameter. */
2148
2149 static void
2150 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2151 struct assign_parm_data_one *data)
2152 {
2153 HOST_WIDE_INT pretend_bytes = 0;
2154 rtx entry_parm;
2155 bool in_regs;
2156
2157 if (data->promoted_mode == VOIDmode)
2158 {
2159 data->entry_parm = data->stack_parm = const0_rtx;
2160 return;
2161 }
2162
2163 #ifdef FUNCTION_INCOMING_ARG
2164 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2165 data->passed_type, data->named_arg);
2166 #else
2167 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2168 data->passed_type, data->named_arg);
2169 #endif
2170
2171 if (entry_parm == 0)
2172 data->promoted_mode = data->passed_mode;
2173
2174 /* Determine parm's home in the stack, in case it arrives in the stack
2175 or we should pretend it did. Compute the stack position and rtx where
2176 the argument arrives and its size.
2177
2178 There is one complexity here: If this was a parameter that would
2179 have been passed in registers, but wasn't only because it is
2180 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2181 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2182 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2183 as it was the previous time. */
2184 in_regs = entry_parm != 0;
2185 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2186 in_regs = true;
2187 #endif
2188 if (!in_regs && !data->named_arg)
2189 {
2190 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2191 {
2192 rtx tem;
2193 #ifdef FUNCTION_INCOMING_ARG
2194 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2195 data->passed_type, true);
2196 #else
2197 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2198 data->passed_type, true);
2199 #endif
2200 in_regs = tem != NULL;
2201 }
2202 }
2203
2204 /* If this parameter was passed both in registers and in the stack, use
2205 the copy on the stack. */
2206 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2207 data->passed_type))
2208 entry_parm = 0;
2209
2210 if (entry_parm)
2211 {
2212 int partial;
2213
2214 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2215 data->promoted_mode,
2216 data->passed_type,
2217 data->named_arg);
2218 data->partial = partial;
2219
2220 /* The caller might already have allocated stack space for the
2221 register parameters. */
2222 if (partial != 0 && all->reg_parm_stack_space == 0)
2223 {
2224 /* Part of this argument is passed in registers and part
2225 is passed on the stack. Ask the prologue code to extend
2226 the stack part so that we can recreate the full value.
2227
2228 PRETEND_BYTES is the size of the registers we need to store.
2229 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2230 stack space that the prologue should allocate.
2231
2232 Internally, gcc assumes that the argument pointer is aligned
2233 to STACK_BOUNDARY bits. This is used both for alignment
2234 optimizations (see init_emit) and to locate arguments that are
2235 aligned to more than PARM_BOUNDARY bits. We must preserve this
2236 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2237 a stack boundary. */
2238
2239 /* We assume at most one partial arg, and it must be the first
2240 argument on the stack. */
2241 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2242
2243 pretend_bytes = partial;
2244 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2245
2246 /* We want to align relative to the actual stack pointer, so
2247 don't include this in the stack size until later. */
2248 all->extra_pretend_bytes = all->pretend_args_size;
2249 }
2250 }
2251
2252 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2253 entry_parm ? data->partial : 0, current_function_decl,
2254 &all->stack_args_size, &data->locate);
2255
2256 /* Adjust offsets to include the pretend args. */
2257 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2258 data->locate.slot_offset.constant += pretend_bytes;
2259 data->locate.offset.constant += pretend_bytes;
2260
2261 data->entry_parm = entry_parm;
2262 }
2263
2264 /* A subroutine of assign_parms. If there is actually space on the stack
2265 for this parm, count it in stack_args_size and return true. */
2266
2267 static bool
2268 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2269 struct assign_parm_data_one *data)
2270 {
2271 /* Trivially true if we've no incoming register. */
2272 if (data->entry_parm == NULL)
2273 ;
2274 /* Also true if we're partially in registers and partially not,
2275 since we've arranged to drop the entire argument on the stack. */
2276 else if (data->partial != 0)
2277 ;
2278 /* Also true if the target says that it's passed in both registers
2279 and on the stack. */
2280 else if (GET_CODE (data->entry_parm) == PARALLEL
2281 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2282 ;
2283 /* Also true if the target says that there's stack allocated for
2284 all register parameters. */
2285 else if (all->reg_parm_stack_space > 0)
2286 ;
2287 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2288 else
2289 return false;
2290
2291 all->stack_args_size.constant += data->locate.size.constant;
2292 if (data->locate.size.var)
2293 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2294
2295 return true;
2296 }
2297
2298 /* A subroutine of assign_parms. Given that this parameter is allocated
2299 stack space by the ABI, find it. */
2300
2301 static void
2302 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2303 {
2304 rtx offset_rtx, stack_parm;
2305 unsigned int align, boundary;
2306
2307 /* If we're passing this arg using a reg, make its stack home the
2308 aligned stack slot. */
2309 if (data->entry_parm)
2310 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2311 else
2312 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2313
2314 stack_parm = current_function_internal_arg_pointer;
2315 if (offset_rtx != const0_rtx)
2316 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2317 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2318
2319 set_mem_attributes (stack_parm, parm, 1);
2320
2321 boundary = data->locate.boundary;
2322 align = BITS_PER_UNIT;
2323
2324 /* If we're padding upward, we know that the alignment of the slot
2325 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2326 intentionally forcing upward padding. Otherwise we have to come
2327 up with a guess at the alignment based on OFFSET_RTX. */
2328 if (data->locate.where_pad != downward || data->entry_parm)
2329 align = boundary;
2330 else if (GET_CODE (offset_rtx) == CONST_INT)
2331 {
2332 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2333 align = align & -align;
2334 }
2335 set_mem_align (stack_parm, align);
2336
2337 if (data->entry_parm)
2338 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2339
2340 data->stack_parm = stack_parm;
2341 }
2342
2343 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2344 always valid and contiguous. */
2345
2346 static void
2347 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2348 {
2349 rtx entry_parm = data->entry_parm;
2350 rtx stack_parm = data->stack_parm;
2351
2352 /* If this parm was passed part in regs and part in memory, pretend it
2353 arrived entirely in memory by pushing the register-part onto the stack.
2354 In the special case of a DImode or DFmode that is split, we could put
2355 it together in a pseudoreg directly, but for now that's not worth
2356 bothering with. */
2357 if (data->partial != 0)
2358 {
2359 /* Handle calls that pass values in multiple non-contiguous
2360 locations. The Irix 6 ABI has examples of this. */
2361 if (GET_CODE (entry_parm) == PARALLEL)
2362 emit_group_store (validize_mem (stack_parm), entry_parm,
2363 data->passed_type,
2364 int_size_in_bytes (data->passed_type));
2365 else
2366 {
2367 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2368 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2369 data->partial / UNITS_PER_WORD);
2370 }
2371
2372 entry_parm = stack_parm;
2373 }
2374
2375 /* If we didn't decide this parm came in a register, by default it came
2376 on the stack. */
2377 else if (entry_parm == NULL)
2378 entry_parm = stack_parm;
2379
2380 /* When an argument is passed in multiple locations, we can't make use
2381 of this information, but we can save some copying if the whole argument
2382 is passed in a single register. */
2383 else if (GET_CODE (entry_parm) == PARALLEL
2384 && data->nominal_mode != BLKmode
2385 && data->passed_mode != BLKmode)
2386 {
2387 size_t i, len = XVECLEN (entry_parm, 0);
2388
2389 for (i = 0; i < len; i++)
2390 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2391 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2392 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2393 == data->passed_mode)
2394 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2395 {
2396 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2397 break;
2398 }
2399 }
2400
2401 data->entry_parm = entry_parm;
2402 }
2403
2404 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2405 always valid and properly aligned. */
2406
2407 static void
2408 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2409 {
2410 rtx stack_parm = data->stack_parm;
2411
2412 /* If we can't trust the parm stack slot to be aligned enough for its
2413 ultimate type, don't use that slot after entry. We'll make another
2414 stack slot, if we need one. */
2415 if (stack_parm
2416 && ((STRICT_ALIGNMENT
2417 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2418 || (data->nominal_type
2419 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2420 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2421 stack_parm = NULL;
2422
2423 /* If parm was passed in memory, and we need to convert it on entry,
2424 don't store it back in that same slot. */
2425 else if (data->entry_parm == stack_parm
2426 && data->nominal_mode != BLKmode
2427 && data->nominal_mode != data->passed_mode)
2428 stack_parm = NULL;
2429
2430 /* If stack protection is in effect for this function, don't leave any
2431 pointers in their passed stack slots. */
2432 else if (cfun->stack_protect_guard
2433 && (flag_stack_protect == 2
2434 || data->passed_pointer
2435 || POINTER_TYPE_P (data->nominal_type)))
2436 stack_parm = NULL;
2437
2438 data->stack_parm = stack_parm;
2439 }
2440
2441 /* A subroutine of assign_parms. Return true if the current parameter
2442 should be stored as a BLKmode in the current frame. */
2443
2444 static bool
2445 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2446 {
2447 if (data->nominal_mode == BLKmode)
2448 return true;
2449 if (GET_CODE (data->entry_parm) == PARALLEL)
2450 return true;
2451
2452 #ifdef BLOCK_REG_PADDING
2453 /* Only assign_parm_setup_block knows how to deal with register arguments
2454 that are padded at the least significant end. */
2455 if (REG_P (data->entry_parm)
2456 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2457 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2458 == (BYTES_BIG_ENDIAN ? upward : downward)))
2459 return true;
2460 #endif
2461
2462 return false;
2463 }
2464
2465 /* A subroutine of assign_parms. Arrange for the parameter to be
2466 present and valid in DATA->STACK_RTL. */
2467
2468 static void
2469 assign_parm_setup_block (struct assign_parm_data_all *all,
2470 tree parm, struct assign_parm_data_one *data)
2471 {
2472 rtx entry_parm = data->entry_parm;
2473 rtx stack_parm = data->stack_parm;
2474 HOST_WIDE_INT size;
2475 HOST_WIDE_INT size_stored;
2476 rtx orig_entry_parm = entry_parm;
2477
2478 if (GET_CODE (entry_parm) == PARALLEL)
2479 entry_parm = emit_group_move_into_temps (entry_parm);
2480
2481 /* If we've a non-block object that's nevertheless passed in parts,
2482 reconstitute it in register operations rather than on the stack. */
2483 if (GET_CODE (entry_parm) == PARALLEL
2484 && data->nominal_mode != BLKmode)
2485 {
2486 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2487
2488 if ((XVECLEN (entry_parm, 0) > 1
2489 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2490 && use_register_for_decl (parm))
2491 {
2492 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2493
2494 push_to_sequence2 (all->first_conversion_insn,
2495 all->last_conversion_insn);
2496
2497 /* For values returned in multiple registers, handle possible
2498 incompatible calls to emit_group_store.
2499
2500 For example, the following would be invalid, and would have to
2501 be fixed by the conditional below:
2502
2503 emit_group_store ((reg:SF), (parallel:DF))
2504 emit_group_store ((reg:SI), (parallel:DI))
2505
2506 An example of this are doubles in e500 v2:
2507 (parallel:DF (expr_list (reg:SI) (const_int 0))
2508 (expr_list (reg:SI) (const_int 4))). */
2509 if (data->nominal_mode != data->passed_mode)
2510 {
2511 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2512 emit_group_store (t, entry_parm, NULL_TREE,
2513 GET_MODE_SIZE (GET_MODE (entry_parm)));
2514 convert_move (parmreg, t, 0);
2515 }
2516 else
2517 emit_group_store (parmreg, entry_parm, data->nominal_type,
2518 int_size_in_bytes (data->nominal_type));
2519
2520 all->first_conversion_insn = get_insns ();
2521 all->last_conversion_insn = get_last_insn ();
2522 end_sequence ();
2523
2524 SET_DECL_RTL (parm, parmreg);
2525 return;
2526 }
2527 }
2528
2529 size = int_size_in_bytes (data->passed_type);
2530 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2531 if (stack_parm == 0)
2532 {
2533 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2534 stack_parm = assign_stack_local (BLKmode, size_stored,
2535 DECL_ALIGN (parm));
2536 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2537 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2538 set_mem_attributes (stack_parm, parm, 1);
2539 }
2540
2541 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2542 calls that pass values in multiple non-contiguous locations. */
2543 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2544 {
2545 rtx mem;
2546
2547 /* Note that we will be storing an integral number of words.
2548 So we have to be careful to ensure that we allocate an
2549 integral number of words. We do this above when we call
2550 assign_stack_local if space was not allocated in the argument
2551 list. If it was, this will not work if PARM_BOUNDARY is not
2552 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2553 if it becomes a problem. Exception is when BLKmode arrives
2554 with arguments not conforming to word_mode. */
2555
2556 if (data->stack_parm == 0)
2557 ;
2558 else if (GET_CODE (entry_parm) == PARALLEL)
2559 ;
2560 else
2561 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2562
2563 mem = validize_mem (stack_parm);
2564
2565 /* Handle values in multiple non-contiguous locations. */
2566 if (GET_CODE (entry_parm) == PARALLEL)
2567 {
2568 push_to_sequence2 (all->first_conversion_insn,
2569 all->last_conversion_insn);
2570 emit_group_store (mem, entry_parm, data->passed_type, size);
2571 all->first_conversion_insn = get_insns ();
2572 all->last_conversion_insn = get_last_insn ();
2573 end_sequence ();
2574 }
2575
2576 else if (size == 0)
2577 ;
2578
2579 /* If SIZE is that of a mode no bigger than a word, just use
2580 that mode's store operation. */
2581 else if (size <= UNITS_PER_WORD)
2582 {
2583 enum machine_mode mode
2584 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2585
2586 if (mode != BLKmode
2587 #ifdef BLOCK_REG_PADDING
2588 && (size == UNITS_PER_WORD
2589 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2590 != (BYTES_BIG_ENDIAN ? upward : downward)))
2591 #endif
2592 )
2593 {
2594 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2595 emit_move_insn (change_address (mem, mode, 0), reg);
2596 }
2597
2598 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2599 machine must be aligned to the left before storing
2600 to memory. Note that the previous test doesn't
2601 handle all cases (e.g. SIZE == 3). */
2602 else if (size != UNITS_PER_WORD
2603 #ifdef BLOCK_REG_PADDING
2604 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2605 == downward)
2606 #else
2607 && BYTES_BIG_ENDIAN
2608 #endif
2609 )
2610 {
2611 rtx tem, x;
2612 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2613 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2614
2615 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2616 build_int_cst (NULL_TREE, by),
2617 NULL_RTX, 1);
2618 tem = change_address (mem, word_mode, 0);
2619 emit_move_insn (tem, x);
2620 }
2621 else
2622 move_block_from_reg (REGNO (entry_parm), mem,
2623 size_stored / UNITS_PER_WORD);
2624 }
2625 else
2626 move_block_from_reg (REGNO (entry_parm), mem,
2627 size_stored / UNITS_PER_WORD);
2628 }
2629 else if (data->stack_parm == 0)
2630 {
2631 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2632 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2633 BLOCK_OP_NORMAL);
2634 all->first_conversion_insn = get_insns ();
2635 all->last_conversion_insn = get_last_insn ();
2636 end_sequence ();
2637 }
2638
2639 data->stack_parm = stack_parm;
2640 SET_DECL_RTL (parm, stack_parm);
2641 }
2642
2643 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2644 parameter. Get it there. Perform all ABI specified conversions. */
2645
2646 static void
2647 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2648 struct assign_parm_data_one *data)
2649 {
2650 rtx parmreg;
2651 enum machine_mode promoted_nominal_mode;
2652 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2653 bool did_conversion = false;
2654
2655 /* Store the parm in a pseudoregister during the function, but we may
2656 need to do it in a wider mode. */
2657
2658 /* This is not really promoting for a call. However we need to be
2659 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2660 promoted_nominal_mode
2661 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2662
2663 parmreg = gen_reg_rtx (promoted_nominal_mode);
2664
2665 if (!DECL_ARTIFICIAL (parm))
2666 mark_user_reg (parmreg);
2667
2668 /* If this was an item that we received a pointer to,
2669 set DECL_RTL appropriately. */
2670 if (data->passed_pointer)
2671 {
2672 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2673 set_mem_attributes (x, parm, 1);
2674 SET_DECL_RTL (parm, x);
2675 }
2676 else
2677 SET_DECL_RTL (parm, parmreg);
2678
2679 /* Copy the value into the register. */
2680 if (data->nominal_mode != data->passed_mode
2681 || promoted_nominal_mode != data->promoted_mode)
2682 {
2683 int save_tree_used;
2684
2685 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2686 mode, by the caller. We now have to convert it to
2687 NOMINAL_MODE, if different. However, PARMREG may be in
2688 a different mode than NOMINAL_MODE if it is being stored
2689 promoted.
2690
2691 If ENTRY_PARM is a hard register, it might be in a register
2692 not valid for operating in its mode (e.g., an odd-numbered
2693 register for a DFmode). In that case, moves are the only
2694 thing valid, so we can't do a convert from there. This
2695 occurs when the calling sequence allow such misaligned
2696 usages.
2697
2698 In addition, the conversion may involve a call, which could
2699 clobber parameters which haven't been copied to pseudo
2700 registers yet. Therefore, we must first copy the parm to
2701 a pseudo reg here, and save the conversion until after all
2702 parameters have been moved. */
2703
2704 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2705
2706 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2707
2708 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2709 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2710
2711 if (GET_CODE (tempreg) == SUBREG
2712 && GET_MODE (tempreg) == data->nominal_mode
2713 && REG_P (SUBREG_REG (tempreg))
2714 && data->nominal_mode == data->passed_mode
2715 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2716 && GET_MODE_SIZE (GET_MODE (tempreg))
2717 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2718 {
2719 /* The argument is already sign/zero extended, so note it
2720 into the subreg. */
2721 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2722 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2723 }
2724
2725 /* TREE_USED gets set erroneously during expand_assignment. */
2726 save_tree_used = TREE_USED (parm);
2727 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2728 TREE_USED (parm) = save_tree_used;
2729 all->first_conversion_insn = get_insns ();
2730 all->last_conversion_insn = get_last_insn ();
2731 end_sequence ();
2732
2733 did_conversion = true;
2734 }
2735 else
2736 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2737
2738 /* If we were passed a pointer but the actual value can safely live
2739 in a register, put it in one. */
2740 if (data->passed_pointer
2741 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2742 /* If by-reference argument was promoted, demote it. */
2743 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2744 || use_register_for_decl (parm)))
2745 {
2746 /* We can't use nominal_mode, because it will have been set to
2747 Pmode above. We must use the actual mode of the parm. */
2748 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2749 mark_user_reg (parmreg);
2750
2751 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2752 {
2753 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2754 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2755
2756 push_to_sequence2 (all->first_conversion_insn,
2757 all->last_conversion_insn);
2758 emit_move_insn (tempreg, DECL_RTL (parm));
2759 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2760 emit_move_insn (parmreg, tempreg);
2761 all->first_conversion_insn = get_insns ();
2762 all->last_conversion_insn = get_last_insn ();
2763 end_sequence ();
2764
2765 did_conversion = true;
2766 }
2767 else
2768 emit_move_insn (parmreg, DECL_RTL (parm));
2769
2770 SET_DECL_RTL (parm, parmreg);
2771
2772 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2773 now the parm. */
2774 data->stack_parm = NULL;
2775 }
2776
2777 /* Mark the register as eliminable if we did no conversion and it was
2778 copied from memory at a fixed offset, and the arg pointer was not
2779 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2780 offset formed an invalid address, such memory-equivalences as we
2781 make here would screw up life analysis for it. */
2782 if (data->nominal_mode == data->passed_mode
2783 && !did_conversion
2784 && data->stack_parm != 0
2785 && MEM_P (data->stack_parm)
2786 && data->locate.offset.var == 0
2787 && reg_mentioned_p (virtual_incoming_args_rtx,
2788 XEXP (data->stack_parm, 0)))
2789 {
2790 rtx linsn = get_last_insn ();
2791 rtx sinsn, set;
2792
2793 /* Mark complex types separately. */
2794 if (GET_CODE (parmreg) == CONCAT)
2795 {
2796 enum machine_mode submode
2797 = GET_MODE_INNER (GET_MODE (parmreg));
2798 int regnor = REGNO (XEXP (parmreg, 0));
2799 int regnoi = REGNO (XEXP (parmreg, 1));
2800 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2801 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2802 GET_MODE_SIZE (submode));
2803
2804 /* Scan backwards for the set of the real and
2805 imaginary parts. */
2806 for (sinsn = linsn; sinsn != 0;
2807 sinsn = prev_nonnote_insn (sinsn))
2808 {
2809 set = single_set (sinsn);
2810 if (set == 0)
2811 continue;
2812
2813 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2814 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2815 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2816 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2817 }
2818 }
2819 else if ((set = single_set (linsn)) != 0
2820 && SET_DEST (set) == parmreg)
2821 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2822 }
2823
2824 /* For pointer data type, suggest pointer register. */
2825 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2826 mark_reg_pointer (parmreg,
2827 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2828 }
2829
2830 /* A subroutine of assign_parms. Allocate stack space to hold the current
2831 parameter. Get it there. Perform all ABI specified conversions. */
2832
2833 static void
2834 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2835 struct assign_parm_data_one *data)
2836 {
2837 /* Value must be stored in the stack slot STACK_PARM during function
2838 execution. */
2839 bool to_conversion = false;
2840
2841 if (data->promoted_mode != data->nominal_mode)
2842 {
2843 /* Conversion is required. */
2844 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2845
2846 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2847
2848 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2849 to_conversion = true;
2850
2851 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2852 TYPE_UNSIGNED (TREE_TYPE (parm)));
2853
2854 if (data->stack_parm)
2855 /* ??? This may need a big-endian conversion on sparc64. */
2856 data->stack_parm
2857 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2858 }
2859
2860 if (data->entry_parm != data->stack_parm)
2861 {
2862 rtx src, dest;
2863
2864 if (data->stack_parm == 0)
2865 {
2866 data->stack_parm
2867 = assign_stack_local (GET_MODE (data->entry_parm),
2868 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2869 TYPE_ALIGN (data->passed_type));
2870 set_mem_attributes (data->stack_parm, parm, 1);
2871 }
2872
2873 dest = validize_mem (data->stack_parm);
2874 src = validize_mem (data->entry_parm);
2875
2876 if (MEM_P (src))
2877 {
2878 /* Use a block move to handle potentially misaligned entry_parm. */
2879 if (!to_conversion)
2880 push_to_sequence2 (all->first_conversion_insn,
2881 all->last_conversion_insn);
2882 to_conversion = true;
2883
2884 emit_block_move (dest, src,
2885 GEN_INT (int_size_in_bytes (data->passed_type)),
2886 BLOCK_OP_NORMAL);
2887 }
2888 else
2889 emit_move_insn (dest, src);
2890 }
2891
2892 if (to_conversion)
2893 {
2894 all->first_conversion_insn = get_insns ();
2895 all->last_conversion_insn = get_last_insn ();
2896 end_sequence ();
2897 }
2898
2899 SET_DECL_RTL (parm, data->stack_parm);
2900 }
2901
2902 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2903 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2904
2905 static void
2906 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2907 {
2908 tree parm;
2909 tree orig_fnargs = all->orig_fnargs;
2910
2911 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2912 {
2913 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2914 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2915 {
2916 rtx tmp, real, imag;
2917 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2918
2919 real = DECL_RTL (fnargs);
2920 imag = DECL_RTL (TREE_CHAIN (fnargs));
2921 if (inner != GET_MODE (real))
2922 {
2923 real = gen_lowpart_SUBREG (inner, real);
2924 imag = gen_lowpart_SUBREG (inner, imag);
2925 }
2926
2927 if (TREE_ADDRESSABLE (parm))
2928 {
2929 rtx rmem, imem;
2930 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2931
2932 /* split_complex_arg put the real and imag parts in
2933 pseudos. Move them to memory. */
2934 tmp = assign_stack_local (DECL_MODE (parm), size,
2935 TYPE_ALIGN (TREE_TYPE (parm)));
2936 set_mem_attributes (tmp, parm, 1);
2937 rmem = adjust_address_nv (tmp, inner, 0);
2938 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2939 push_to_sequence2 (all->first_conversion_insn,
2940 all->last_conversion_insn);
2941 emit_move_insn (rmem, real);
2942 emit_move_insn (imem, imag);
2943 all->first_conversion_insn = get_insns ();
2944 all->last_conversion_insn = get_last_insn ();
2945 end_sequence ();
2946 }
2947 else
2948 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2949 SET_DECL_RTL (parm, tmp);
2950
2951 real = DECL_INCOMING_RTL (fnargs);
2952 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2953 if (inner != GET_MODE (real))
2954 {
2955 real = gen_lowpart_SUBREG (inner, real);
2956 imag = gen_lowpart_SUBREG (inner, imag);
2957 }
2958 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2959 set_decl_incoming_rtl (parm, tmp);
2960 fnargs = TREE_CHAIN (fnargs);
2961 }
2962 else
2963 {
2964 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2965 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2966
2967 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2968 instead of the copy of decl, i.e. FNARGS. */
2969 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2970 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2971 }
2972
2973 fnargs = TREE_CHAIN (fnargs);
2974 }
2975 }
2976
2977 /* Assign RTL expressions to the function's parameters. This may involve
2978 copying them into registers and using those registers as the DECL_RTL. */
2979
2980 static void
2981 assign_parms (tree fndecl)
2982 {
2983 struct assign_parm_data_all all;
2984 tree fnargs, parm;
2985
2986 current_function_internal_arg_pointer
2987 = targetm.calls.internal_arg_pointer ();
2988
2989 assign_parms_initialize_all (&all);
2990 fnargs = assign_parms_augmented_arg_list (&all);
2991
2992 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2993 {
2994 struct assign_parm_data_one data;
2995
2996 /* Extract the type of PARM; adjust it according to ABI. */
2997 assign_parm_find_data_types (&all, parm, &data);
2998
2999 /* Early out for errors and void parameters. */
3000 if (data.passed_mode == VOIDmode)
3001 {
3002 SET_DECL_RTL (parm, const0_rtx);
3003 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3004 continue;
3005 }
3006
3007 if (current_function_stdarg && !TREE_CHAIN (parm))
3008 assign_parms_setup_varargs (&all, &data, false);
3009
3010 /* Find out where the parameter arrives in this function. */
3011 assign_parm_find_entry_rtl (&all, &data);
3012
3013 /* Find out where stack space for this parameter might be. */
3014 if (assign_parm_is_stack_parm (&all, &data))
3015 {
3016 assign_parm_find_stack_rtl (parm, &data);
3017 assign_parm_adjust_entry_rtl (&data);
3018 }
3019
3020 /* Record permanently how this parm was passed. */
3021 set_decl_incoming_rtl (parm, data.entry_parm);
3022
3023 /* Update info on where next arg arrives in registers. */
3024 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3025 data.passed_type, data.named_arg);
3026
3027 assign_parm_adjust_stack_rtl (&data);
3028
3029 if (assign_parm_setup_block_p (&data))
3030 assign_parm_setup_block (&all, parm, &data);
3031 else if (data.passed_pointer || use_register_for_decl (parm))
3032 assign_parm_setup_reg (&all, parm, &data);
3033 else
3034 assign_parm_setup_stack (&all, parm, &data);
3035 }
3036
3037 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3038 assign_parms_unsplit_complex (&all, fnargs);
3039
3040 /* Output all parameter conversion instructions (possibly including calls)
3041 now that all parameters have been copied out of hard registers. */
3042 emit_insn (all.first_conversion_insn);
3043
3044 /* If we are receiving a struct value address as the first argument, set up
3045 the RTL for the function result. As this might require code to convert
3046 the transmitted address to Pmode, we do this here to ensure that possible
3047 preliminary conversions of the address have been emitted already. */
3048 if (all.function_result_decl)
3049 {
3050 tree result = DECL_RESULT (current_function_decl);
3051 rtx addr = DECL_RTL (all.function_result_decl);
3052 rtx x;
3053
3054 if (DECL_BY_REFERENCE (result))
3055 x = addr;
3056 else
3057 {
3058 addr = convert_memory_address (Pmode, addr);
3059 x = gen_rtx_MEM (DECL_MODE (result), addr);
3060 set_mem_attributes (x, result, 1);
3061 }
3062 SET_DECL_RTL (result, x);
3063 }
3064
3065 /* We have aligned all the args, so add space for the pretend args. */
3066 current_function_pretend_args_size = all.pretend_args_size;
3067 all.stack_args_size.constant += all.extra_pretend_bytes;
3068 current_function_args_size = all.stack_args_size.constant;
3069
3070 /* Adjust function incoming argument size for alignment and
3071 minimum length. */
3072
3073 #ifdef REG_PARM_STACK_SPACE
3074 current_function_args_size = MAX (current_function_args_size,
3075 REG_PARM_STACK_SPACE (fndecl));
3076 #endif
3077
3078 current_function_args_size = CEIL_ROUND (current_function_args_size,
3079 PARM_BOUNDARY / BITS_PER_UNIT);
3080
3081 #ifdef ARGS_GROW_DOWNWARD
3082 current_function_arg_offset_rtx
3083 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3084 : expand_expr (size_diffop (all.stack_args_size.var,
3085 size_int (-all.stack_args_size.constant)),
3086 NULL_RTX, VOIDmode, 0));
3087 #else
3088 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3089 #endif
3090
3091 /* See how many bytes, if any, of its args a function should try to pop
3092 on return. */
3093
3094 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3095 current_function_args_size);
3096
3097 /* For stdarg.h function, save info about
3098 regs and stack space used by the named args. */
3099
3100 current_function_args_info = all.args_so_far;
3101
3102 /* Set the rtx used for the function return value. Put this in its
3103 own variable so any optimizers that need this information don't have
3104 to include tree.h. Do this here so it gets done when an inlined
3105 function gets output. */
3106
3107 current_function_return_rtx
3108 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3109 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3110
3111 /* If scalar return value was computed in a pseudo-reg, or was a named
3112 return value that got dumped to the stack, copy that to the hard
3113 return register. */
3114 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3115 {
3116 tree decl_result = DECL_RESULT (fndecl);
3117 rtx decl_rtl = DECL_RTL (decl_result);
3118
3119 if (REG_P (decl_rtl)
3120 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3121 : DECL_REGISTER (decl_result))
3122 {
3123 rtx real_decl_rtl;
3124
3125 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3126 fndecl, true);
3127 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3128 /* The delay slot scheduler assumes that current_function_return_rtx
3129 holds the hard register containing the return value, not a
3130 temporary pseudo. */
3131 current_function_return_rtx = real_decl_rtl;
3132 }
3133 }
3134 }
3135
3136 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3137 For all seen types, gimplify their sizes. */
3138
3139 static tree
3140 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3141 {
3142 tree t = *tp;
3143
3144 *walk_subtrees = 0;
3145 if (TYPE_P (t))
3146 {
3147 if (POINTER_TYPE_P (t))
3148 *walk_subtrees = 1;
3149 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3150 && !TYPE_SIZES_GIMPLIFIED (t))
3151 {
3152 gimplify_type_sizes (t, (tree *) data);
3153 *walk_subtrees = 1;
3154 }
3155 }
3156
3157 return NULL;
3158 }
3159
3160 /* Gimplify the parameter list for current_function_decl. This involves
3161 evaluating SAVE_EXPRs of variable sized parameters and generating code
3162 to implement callee-copies reference parameters. Returns a list of
3163 statements to add to the beginning of the function, or NULL if nothing
3164 to do. */
3165
3166 tree
3167 gimplify_parameters (void)
3168 {
3169 struct assign_parm_data_all all;
3170 tree fnargs, parm, stmts = NULL;
3171
3172 assign_parms_initialize_all (&all);
3173 fnargs = assign_parms_augmented_arg_list (&all);
3174
3175 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3176 {
3177 struct assign_parm_data_one data;
3178
3179 /* Extract the type of PARM; adjust it according to ABI. */
3180 assign_parm_find_data_types (&all, parm, &data);
3181
3182 /* Early out for errors and void parameters. */
3183 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3184 continue;
3185
3186 /* Update info on where next arg arrives in registers. */
3187 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3188 data.passed_type, data.named_arg);
3189
3190 /* ??? Once upon a time variable_size stuffed parameter list
3191 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3192 turned out to be less than manageable in the gimple world.
3193 Now we have to hunt them down ourselves. */
3194 walk_tree_without_duplicates (&data.passed_type,
3195 gimplify_parm_type, &stmts);
3196
3197 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3198 {
3199 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3200 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3201 }
3202
3203 if (data.passed_pointer)
3204 {
3205 tree type = TREE_TYPE (data.passed_type);
3206 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3207 type, data.named_arg))
3208 {
3209 tree local, t;
3210
3211 /* For constant sized objects, this is trivial; for
3212 variable-sized objects, we have to play games. */
3213 if (TREE_CONSTANT (DECL_SIZE (parm)))
3214 {
3215 local = create_tmp_var (type, get_name (parm));
3216 DECL_IGNORED_P (local) = 0;
3217 }
3218 else
3219 {
3220 tree ptr_type, addr;
3221
3222 ptr_type = build_pointer_type (type);
3223 addr = create_tmp_var (ptr_type, get_name (parm));
3224 DECL_IGNORED_P (addr) = 0;
3225 local = build_fold_indirect_ref (addr);
3226
3227 t = built_in_decls[BUILT_IN_ALLOCA];
3228 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3229 t = fold_convert (ptr_type, t);
3230 t = build_gimple_modify_stmt (addr, t);
3231 gimplify_and_add (t, &stmts);
3232 }
3233
3234 t = build_gimple_modify_stmt (local, parm);
3235 gimplify_and_add (t, &stmts);
3236
3237 SET_DECL_VALUE_EXPR (parm, local);
3238 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3239 }
3240 }
3241 }
3242
3243 return stmts;
3244 }
3245 \f
3246 /* Compute the size and offset from the start of the stacked arguments for a
3247 parm passed in mode PASSED_MODE and with type TYPE.
3248
3249 INITIAL_OFFSET_PTR points to the current offset into the stacked
3250 arguments.
3251
3252 The starting offset and size for this parm are returned in
3253 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3254 nonzero, the offset is that of stack slot, which is returned in
3255 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3256 padding required from the initial offset ptr to the stack slot.
3257
3258 IN_REGS is nonzero if the argument will be passed in registers. It will
3259 never be set if REG_PARM_STACK_SPACE is not defined.
3260
3261 FNDECL is the function in which the argument was defined.
3262
3263 There are two types of rounding that are done. The first, controlled by
3264 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3265 list to be aligned to the specific boundary (in bits). This rounding
3266 affects the initial and starting offsets, but not the argument size.
3267
3268 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3269 optionally rounds the size of the parm to PARM_BOUNDARY. The
3270 initial offset is not affected by this rounding, while the size always
3271 is and the starting offset may be. */
3272
3273 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3274 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3275 callers pass in the total size of args so far as
3276 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3277
3278 void
3279 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3280 int partial, tree fndecl ATTRIBUTE_UNUSED,
3281 struct args_size *initial_offset_ptr,
3282 struct locate_and_pad_arg_data *locate)
3283 {
3284 tree sizetree;
3285 enum direction where_pad;
3286 unsigned int boundary;
3287 int reg_parm_stack_space = 0;
3288 int part_size_in_regs;
3289
3290 #ifdef REG_PARM_STACK_SPACE
3291 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3292
3293 /* If we have found a stack parm before we reach the end of the
3294 area reserved for registers, skip that area. */
3295 if (! in_regs)
3296 {
3297 if (reg_parm_stack_space > 0)
3298 {
3299 if (initial_offset_ptr->var)
3300 {
3301 initial_offset_ptr->var
3302 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3303 ssize_int (reg_parm_stack_space));
3304 initial_offset_ptr->constant = 0;
3305 }
3306 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3307 initial_offset_ptr->constant = reg_parm_stack_space;
3308 }
3309 }
3310 #endif /* REG_PARM_STACK_SPACE */
3311
3312 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3313
3314 sizetree
3315 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3316 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3317 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3318 locate->where_pad = where_pad;
3319 locate->boundary = boundary;
3320
3321 /* Remember if the outgoing parameter requires extra alignment on the
3322 calling function side. */
3323 if (boundary > PREFERRED_STACK_BOUNDARY)
3324 boundary = PREFERRED_STACK_BOUNDARY;
3325 if (cfun->stack_alignment_needed < boundary)
3326 cfun->stack_alignment_needed = boundary;
3327
3328 #ifdef ARGS_GROW_DOWNWARD
3329 locate->slot_offset.constant = -initial_offset_ptr->constant;
3330 if (initial_offset_ptr->var)
3331 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3332 initial_offset_ptr->var);
3333
3334 {
3335 tree s2 = sizetree;
3336 if (where_pad != none
3337 && (!host_integerp (sizetree, 1)
3338 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3339 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3340 SUB_PARM_SIZE (locate->slot_offset, s2);
3341 }
3342
3343 locate->slot_offset.constant += part_size_in_regs;
3344
3345 if (!in_regs
3346 #ifdef REG_PARM_STACK_SPACE
3347 || REG_PARM_STACK_SPACE (fndecl) > 0
3348 #endif
3349 )
3350 pad_to_arg_alignment (&locate->slot_offset, boundary,
3351 &locate->alignment_pad);
3352
3353 locate->size.constant = (-initial_offset_ptr->constant
3354 - locate->slot_offset.constant);
3355 if (initial_offset_ptr->var)
3356 locate->size.var = size_binop (MINUS_EXPR,
3357 size_binop (MINUS_EXPR,
3358 ssize_int (0),
3359 initial_offset_ptr->var),
3360 locate->slot_offset.var);
3361
3362 /* Pad_below needs the pre-rounded size to know how much to pad
3363 below. */
3364 locate->offset = locate->slot_offset;
3365 if (where_pad == downward)
3366 pad_below (&locate->offset, passed_mode, sizetree);
3367
3368 #else /* !ARGS_GROW_DOWNWARD */
3369 if (!in_regs
3370 #ifdef REG_PARM_STACK_SPACE
3371 || REG_PARM_STACK_SPACE (fndecl) > 0
3372 #endif
3373 )
3374 pad_to_arg_alignment (initial_offset_ptr, boundary,
3375 &locate->alignment_pad);
3376 locate->slot_offset = *initial_offset_ptr;
3377
3378 #ifdef PUSH_ROUNDING
3379 if (passed_mode != BLKmode)
3380 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3381 #endif
3382
3383 /* Pad_below needs the pre-rounded size to know how much to pad below
3384 so this must be done before rounding up. */
3385 locate->offset = locate->slot_offset;
3386 if (where_pad == downward)
3387 pad_below (&locate->offset, passed_mode, sizetree);
3388
3389 if (where_pad != none
3390 && (!host_integerp (sizetree, 1)
3391 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3392 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3393
3394 ADD_PARM_SIZE (locate->size, sizetree);
3395
3396 locate->size.constant -= part_size_in_regs;
3397 #endif /* ARGS_GROW_DOWNWARD */
3398 }
3399
3400 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3401 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3402
3403 static void
3404 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3405 struct args_size *alignment_pad)
3406 {
3407 tree save_var = NULL_TREE;
3408 HOST_WIDE_INT save_constant = 0;
3409 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3410 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3411
3412 #ifdef SPARC_STACK_BOUNDARY_HACK
3413 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3414 the real alignment of %sp. However, when it does this, the
3415 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3416 if (SPARC_STACK_BOUNDARY_HACK)
3417 sp_offset = 0;
3418 #endif
3419
3420 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3421 {
3422 save_var = offset_ptr->var;
3423 save_constant = offset_ptr->constant;
3424 }
3425
3426 alignment_pad->var = NULL_TREE;
3427 alignment_pad->constant = 0;
3428
3429 if (boundary > BITS_PER_UNIT)
3430 {
3431 if (offset_ptr->var)
3432 {
3433 tree sp_offset_tree = ssize_int (sp_offset);
3434 tree offset = size_binop (PLUS_EXPR,
3435 ARGS_SIZE_TREE (*offset_ptr),
3436 sp_offset_tree);
3437 #ifdef ARGS_GROW_DOWNWARD
3438 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3439 #else
3440 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3441 #endif
3442
3443 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3444 /* ARGS_SIZE_TREE includes constant term. */
3445 offset_ptr->constant = 0;
3446 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3447 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3448 save_var);
3449 }
3450 else
3451 {
3452 offset_ptr->constant = -sp_offset +
3453 #ifdef ARGS_GROW_DOWNWARD
3454 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3455 #else
3456 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3457 #endif
3458 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3459 alignment_pad->constant = offset_ptr->constant - save_constant;
3460 }
3461 }
3462 }
3463
3464 static void
3465 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3466 {
3467 if (passed_mode != BLKmode)
3468 {
3469 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3470 offset_ptr->constant
3471 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3472 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3473 - GET_MODE_SIZE (passed_mode));
3474 }
3475 else
3476 {
3477 if (TREE_CODE (sizetree) != INTEGER_CST
3478 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3479 {
3480 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3481 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3482 /* Add it in. */
3483 ADD_PARM_SIZE (*offset_ptr, s2);
3484 SUB_PARM_SIZE (*offset_ptr, sizetree);
3485 }
3486 }
3487 }
3488 \f
3489
3490 /* True if register REGNO was alive at a place where `setjmp' was
3491 called and was set more than once or is an argument. Such regs may
3492 be clobbered by `longjmp'. */
3493
3494 static bool
3495 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3496 {
3497 /* There appear to be cases where some local vars never reach the
3498 backend but have bogus regnos. */
3499 if (regno >= max_reg_num ())
3500 return false;
3501
3502 return ((REG_N_SETS (regno) > 1
3503 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3504 && REGNO_REG_SET_P (setjmp_crosses, regno));
3505 }
3506
3507 /* Walk the tree of blocks describing the binding levels within a
3508 function and warn about variables the might be killed by setjmp or
3509 vfork. This is done after calling flow_analysis before register
3510 allocation since that will clobber the pseudo-regs to hard
3511 regs. */
3512
3513 static void
3514 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3515 {
3516 tree decl, sub;
3517
3518 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3519 {
3520 if (TREE_CODE (decl) == VAR_DECL
3521 && DECL_RTL_SET_P (decl)
3522 && REG_P (DECL_RTL (decl))
3523 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3524 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3525 " %<longjmp%> or %<vfork%>", decl);
3526 }
3527
3528 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3529 setjmp_vars_warning (setjmp_crosses, sub);
3530 }
3531
3532 /* Do the appropriate part of setjmp_vars_warning
3533 but for arguments instead of local variables. */
3534
3535 static void
3536 setjmp_args_warning (bitmap setjmp_crosses)
3537 {
3538 tree decl;
3539 for (decl = DECL_ARGUMENTS (current_function_decl);
3540 decl; decl = TREE_CHAIN (decl))
3541 if (DECL_RTL (decl) != 0
3542 && REG_P (DECL_RTL (decl))
3543 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3544 warning (OPT_Wclobbered,
3545 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3546 decl);
3547 }
3548
3549 /* Generate warning messages for variables live across setjmp. */
3550
3551 void
3552 generate_setjmp_warnings (void)
3553 {
3554 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3555
3556 if (n_basic_blocks == NUM_FIXED_BLOCKS
3557 || bitmap_empty_p (setjmp_crosses))
3558 return;
3559
3560 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3561 setjmp_args_warning (setjmp_crosses);
3562 }
3563
3564 \f
3565 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3566 and create duplicate blocks. */
3567 /* ??? Need an option to either create block fragments or to create
3568 abstract origin duplicates of a source block. It really depends
3569 on what optimization has been performed. */
3570
3571 void
3572 reorder_blocks (void)
3573 {
3574 tree block = DECL_INITIAL (current_function_decl);
3575 VEC(tree,heap) *block_stack;
3576
3577 if (block == NULL_TREE)
3578 return;
3579
3580 block_stack = VEC_alloc (tree, heap, 10);
3581
3582 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3583 clear_block_marks (block);
3584
3585 /* Prune the old trees away, so that they don't get in the way. */
3586 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3587 BLOCK_CHAIN (block) = NULL_TREE;
3588
3589 /* Recreate the block tree from the note nesting. */
3590 reorder_blocks_1 (get_insns (), block, &block_stack);
3591 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3592
3593 VEC_free (tree, heap, block_stack);
3594 }
3595
3596 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3597
3598 void
3599 clear_block_marks (tree block)
3600 {
3601 while (block)
3602 {
3603 TREE_ASM_WRITTEN (block) = 0;
3604 clear_block_marks (BLOCK_SUBBLOCKS (block));
3605 block = BLOCK_CHAIN (block);
3606 }
3607 }
3608
3609 static void
3610 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3611 {
3612 rtx insn;
3613
3614 for (insn = insns; insn; insn = NEXT_INSN (insn))
3615 {
3616 if (NOTE_P (insn))
3617 {
3618 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3619 {
3620 tree block = NOTE_BLOCK (insn);
3621 tree origin;
3622
3623 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3624 ? BLOCK_FRAGMENT_ORIGIN (block)
3625 : block);
3626
3627 /* If we have seen this block before, that means it now
3628 spans multiple address regions. Create a new fragment. */
3629 if (TREE_ASM_WRITTEN (block))
3630 {
3631 tree new_block = copy_node (block);
3632
3633 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3634 BLOCK_FRAGMENT_CHAIN (new_block)
3635 = BLOCK_FRAGMENT_CHAIN (origin);
3636 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3637
3638 NOTE_BLOCK (insn) = new_block;
3639 block = new_block;
3640 }
3641
3642 BLOCK_SUBBLOCKS (block) = 0;
3643 TREE_ASM_WRITTEN (block) = 1;
3644 /* When there's only one block for the entire function,
3645 current_block == block and we mustn't do this, it
3646 will cause infinite recursion. */
3647 if (block != current_block)
3648 {
3649 if (block != origin)
3650 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3651
3652 BLOCK_SUPERCONTEXT (block) = current_block;
3653 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3654 BLOCK_SUBBLOCKS (current_block) = block;
3655 current_block = origin;
3656 }
3657 VEC_safe_push (tree, heap, *p_block_stack, block);
3658 }
3659 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3660 {
3661 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3662 BLOCK_SUBBLOCKS (current_block)
3663 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3664 current_block = BLOCK_SUPERCONTEXT (current_block);
3665 }
3666 }
3667 }
3668 }
3669
3670 /* Reverse the order of elements in the chain T of blocks,
3671 and return the new head of the chain (old last element). */
3672
3673 tree
3674 blocks_nreverse (tree t)
3675 {
3676 tree prev = 0, decl, next;
3677 for (decl = t; decl; decl = next)
3678 {
3679 next = BLOCK_CHAIN (decl);
3680 BLOCK_CHAIN (decl) = prev;
3681 prev = decl;
3682 }
3683 return prev;
3684 }
3685
3686 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3687 non-NULL, list them all into VECTOR, in a depth-first preorder
3688 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3689 blocks. */
3690
3691 static int
3692 all_blocks (tree block, tree *vector)
3693 {
3694 int n_blocks = 0;
3695
3696 while (block)
3697 {
3698 TREE_ASM_WRITTEN (block) = 0;
3699
3700 /* Record this block. */
3701 if (vector)
3702 vector[n_blocks] = block;
3703
3704 ++n_blocks;
3705
3706 /* Record the subblocks, and their subblocks... */
3707 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3708 vector ? vector + n_blocks : 0);
3709 block = BLOCK_CHAIN (block);
3710 }
3711
3712 return n_blocks;
3713 }
3714
3715 /* Return a vector containing all the blocks rooted at BLOCK. The
3716 number of elements in the vector is stored in N_BLOCKS_P. The
3717 vector is dynamically allocated; it is the caller's responsibility
3718 to call `free' on the pointer returned. */
3719
3720 static tree *
3721 get_block_vector (tree block, int *n_blocks_p)
3722 {
3723 tree *block_vector;
3724
3725 *n_blocks_p = all_blocks (block, NULL);
3726 block_vector = XNEWVEC (tree, *n_blocks_p);
3727 all_blocks (block, block_vector);
3728
3729 return block_vector;
3730 }
3731
3732 static GTY(()) int next_block_index = 2;
3733
3734 /* Set BLOCK_NUMBER for all the blocks in FN. */
3735
3736 void
3737 number_blocks (tree fn)
3738 {
3739 int i;
3740 int n_blocks;
3741 tree *block_vector;
3742
3743 /* For SDB and XCOFF debugging output, we start numbering the blocks
3744 from 1 within each function, rather than keeping a running
3745 count. */
3746 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3747 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3748 next_block_index = 1;
3749 #endif
3750
3751 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3752
3753 /* The top-level BLOCK isn't numbered at all. */
3754 for (i = 1; i < n_blocks; ++i)
3755 /* We number the blocks from two. */
3756 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3757
3758 free (block_vector);
3759
3760 return;
3761 }
3762
3763 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3764
3765 tree
3766 debug_find_var_in_block_tree (tree var, tree block)
3767 {
3768 tree t;
3769
3770 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3771 if (t == var)
3772 return block;
3773
3774 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3775 {
3776 tree ret = debug_find_var_in_block_tree (var, t);
3777 if (ret)
3778 return ret;
3779 }
3780
3781 return NULL_TREE;
3782 }
3783 \f
3784 /* Keep track of whether we're in a dummy function context. If we are,
3785 we don't want to invoke the set_current_function hook, because we'll
3786 get into trouble if the hook calls target_reinit () recursively or
3787 when the initial initialization is not yet complete. */
3788
3789 static bool in_dummy_function;
3790
3791 /* Invoke the target hook when setting cfun. */
3792
3793 static void
3794 invoke_set_current_function_hook (tree fndecl)
3795 {
3796 if (!in_dummy_function)
3797 targetm.set_current_function (fndecl);
3798 }
3799
3800 /* cfun should never be set directly; use this function. */
3801
3802 void
3803 set_cfun (struct function *new_cfun)
3804 {
3805 if (cfun != new_cfun)
3806 {
3807 cfun = new_cfun;
3808 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
3809 }
3810 }
3811
3812 /* Keep track of the cfun stack. */
3813
3814 typedef struct function *function_p;
3815
3816 DEF_VEC_P(function_p);
3817 DEF_VEC_ALLOC_P(function_p,heap);
3818
3819 /* Initialized with NOGC, making this poisonous to the garbage collector. */
3820
3821 static VEC(function_p,heap) *cfun_stack;
3822
3823 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
3824
3825 void
3826 push_cfun (struct function *new_cfun)
3827 {
3828 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3829 set_cfun (new_cfun);
3830 }
3831
3832 /* Pop cfun from the stack. */
3833
3834 void
3835 pop_cfun (void)
3836 {
3837 set_cfun (VEC_pop (function_p, cfun_stack));
3838 }
3839
3840 /* Return value of funcdef and increase it. */
3841 int
3842 get_next_funcdef_no (void)
3843 {
3844 return funcdef_no++;
3845 }
3846
3847 /* Allocate a function structure for FNDECL and set its contents
3848 to the defaults. Set cfun to the newly-allocated object.
3849 Some of the helper functions invoked during initialization assume
3850 that cfun has already been set. Therefore, assign the new object
3851 directly into cfun and invoke the back end hook explicitly at the
3852 very end, rather than initializing a temporary and calling set_cfun
3853 on it.
3854 */
3855
3856 void
3857 allocate_struct_function (tree fndecl)
3858 {
3859 tree result;
3860 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3861
3862 cfun = ggc_alloc_cleared (sizeof (struct function));
3863
3864 cfun->stack_alignment_needed = STACK_BOUNDARY;
3865 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3866
3867 current_function_funcdef_no = get_next_funcdef_no ();
3868
3869 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3870
3871 init_eh_for_function ();
3872
3873 lang_hooks.function.init (cfun);
3874 if (init_machine_status)
3875 cfun->machine = (*init_machine_status) ();
3876
3877 if (fndecl != NULL)
3878 {
3879 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3880 cfun->decl = fndecl;
3881
3882 result = DECL_RESULT (fndecl);
3883 if (aggregate_value_p (result, fndecl))
3884 {
3885 #ifdef PCC_STATIC_STRUCT_RETURN
3886 current_function_returns_pcc_struct = 1;
3887 #endif
3888 current_function_returns_struct = 1;
3889 }
3890
3891 current_function_stdarg
3892 = (fntype
3893 && TYPE_ARG_TYPES (fntype) != 0
3894 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3895 != void_type_node));
3896
3897 /* Assume all registers in stdarg functions need to be saved. */
3898 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3899 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3900 }
3901
3902 invoke_set_current_function_hook (fndecl);
3903 }
3904
3905 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
3906 instead of just setting it. */
3907
3908 void
3909 push_struct_function (tree fndecl)
3910 {
3911 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3912 allocate_struct_function (fndecl);
3913 }
3914
3915 /* Reset cfun, and other non-struct-function variables to defaults as
3916 appropriate for emitting rtl at the start of a function. */
3917
3918 static void
3919 prepare_function_start (void)
3920 {
3921 init_emit ();
3922 init_varasm_status (cfun);
3923 init_expr ();
3924
3925 cse_not_expected = ! optimize;
3926
3927 /* Caller save not needed yet. */
3928 caller_save_needed = 0;
3929
3930 /* We haven't done register allocation yet. */
3931 reg_renumber = 0;
3932
3933 /* Indicate that we have not instantiated virtual registers yet. */
3934 virtuals_instantiated = 0;
3935
3936 /* Indicate that we want CONCATs now. */
3937 generating_concat_p = 1;
3938
3939 /* Indicate we have no need of a frame pointer yet. */
3940 frame_pointer_needed = 0;
3941 }
3942
3943 /* Initialize the rtl expansion mechanism so that we can do simple things
3944 like generate sequences. This is used to provide a context during global
3945 initialization of some passes. You must call expand_dummy_function_end
3946 to exit this context. */
3947
3948 void
3949 init_dummy_function_start (void)
3950 {
3951 gcc_assert (!in_dummy_function);
3952 in_dummy_function = true;
3953 push_struct_function (NULL_TREE);
3954 prepare_function_start ();
3955 }
3956
3957 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3958 and initialize static variables for generating RTL for the statements
3959 of the function. */
3960
3961 void
3962 init_function_start (tree subr)
3963 {
3964 if (subr && DECL_STRUCT_FUNCTION (subr))
3965 set_cfun (DECL_STRUCT_FUNCTION (subr));
3966 else
3967 allocate_struct_function (subr);
3968 prepare_function_start ();
3969
3970 /* Warn if this value is an aggregate type,
3971 regardless of which calling convention we are using for it. */
3972 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3973 warning (OPT_Waggregate_return, "function returns an aggregate");
3974 }
3975
3976 /* Make sure all values used by the optimization passes have sane
3977 defaults. */
3978 unsigned int
3979 init_function_for_compilation (void)
3980 {
3981 reg_renumber = 0;
3982
3983 /* No prologue/epilogue insns yet. Make sure that these vectors are
3984 empty. */
3985 gcc_assert (VEC_length (int, prologue) == 0);
3986 gcc_assert (VEC_length (int, epilogue) == 0);
3987 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3988 return 0;
3989 }
3990
3991 struct tree_opt_pass pass_init_function =
3992 {
3993 NULL, /* name */
3994 NULL, /* gate */
3995 init_function_for_compilation, /* execute */
3996 NULL, /* sub */
3997 NULL, /* next */
3998 0, /* static_pass_number */
3999 0, /* tv_id */
4000 0, /* properties_required */
4001 0, /* properties_provided */
4002 0, /* properties_destroyed */
4003 0, /* todo_flags_start */
4004 0, /* todo_flags_finish */
4005 0 /* letter */
4006 };
4007
4008
4009 void
4010 expand_main_function (void)
4011 {
4012 #if (defined(INVOKE__main) \
4013 || (!defined(HAS_INIT_SECTION) \
4014 && !defined(INIT_SECTION_ASM_OP) \
4015 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4016 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4017 #endif
4018 }
4019 \f
4020 /* Expand code to initialize the stack_protect_guard. This is invoked at
4021 the beginning of a function to be protected. */
4022
4023 #ifndef HAVE_stack_protect_set
4024 # define HAVE_stack_protect_set 0
4025 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4026 #endif
4027
4028 void
4029 stack_protect_prologue (void)
4030 {
4031 tree guard_decl = targetm.stack_protect_guard ();
4032 rtx x, y;
4033
4034 /* Avoid expand_expr here, because we don't want guard_decl pulled
4035 into registers unless absolutely necessary. And we know that
4036 cfun->stack_protect_guard is a local stack slot, so this skips
4037 all the fluff. */
4038 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4039 y = validize_mem (DECL_RTL (guard_decl));
4040
4041 /* Allow the target to copy from Y to X without leaking Y into a
4042 register. */
4043 if (HAVE_stack_protect_set)
4044 {
4045 rtx insn = gen_stack_protect_set (x, y);
4046 if (insn)
4047 {
4048 emit_insn (insn);
4049 return;
4050 }
4051 }
4052
4053 /* Otherwise do a straight move. */
4054 emit_move_insn (x, y);
4055 }
4056
4057 /* Expand code to verify the stack_protect_guard. This is invoked at
4058 the end of a function to be protected. */
4059
4060 #ifndef HAVE_stack_protect_test
4061 # define HAVE_stack_protect_test 0
4062 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4063 #endif
4064
4065 void
4066 stack_protect_epilogue (void)
4067 {
4068 tree guard_decl = targetm.stack_protect_guard ();
4069 rtx label = gen_label_rtx ();
4070 rtx x, y, tmp;
4071
4072 /* Avoid expand_expr here, because we don't want guard_decl pulled
4073 into registers unless absolutely necessary. And we know that
4074 cfun->stack_protect_guard is a local stack slot, so this skips
4075 all the fluff. */
4076 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4077 y = validize_mem (DECL_RTL (guard_decl));
4078
4079 /* Allow the target to compare Y with X without leaking either into
4080 a register. */
4081 switch (HAVE_stack_protect_test != 0)
4082 {
4083 case 1:
4084 tmp = gen_stack_protect_test (x, y, label);
4085 if (tmp)
4086 {
4087 emit_insn (tmp);
4088 break;
4089 }
4090 /* FALLTHRU */
4091
4092 default:
4093 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4094 break;
4095 }
4096
4097 /* The noreturn predictor has been moved to the tree level. The rtl-level
4098 predictors estimate this branch about 20%, which isn't enough to get
4099 things moved out of line. Since this is the only extant case of adding
4100 a noreturn function at the rtl level, it doesn't seem worth doing ought
4101 except adding the prediction by hand. */
4102 tmp = get_last_insn ();
4103 if (JUMP_P (tmp))
4104 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4105
4106 expand_expr_stmt (targetm.stack_protect_fail ());
4107 emit_label (label);
4108 }
4109 \f
4110 /* Start the RTL for a new function, and set variables used for
4111 emitting RTL.
4112 SUBR is the FUNCTION_DECL node.
4113 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4114 the function's parameters, which must be run at any return statement. */
4115
4116 void
4117 expand_function_start (tree subr)
4118 {
4119 /* Make sure volatile mem refs aren't considered
4120 valid operands of arithmetic insns. */
4121 init_recog_no_volatile ();
4122
4123 current_function_profile
4124 = (profile_flag
4125 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4126
4127 current_function_limit_stack
4128 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4129
4130 /* Make the label for return statements to jump to. Do not special
4131 case machines with special return instructions -- they will be
4132 handled later during jump, ifcvt, or epilogue creation. */
4133 return_label = gen_label_rtx ();
4134
4135 /* Initialize rtx used to return the value. */
4136 /* Do this before assign_parms so that we copy the struct value address
4137 before any library calls that assign parms might generate. */
4138
4139 /* Decide whether to return the value in memory or in a register. */
4140 if (aggregate_value_p (DECL_RESULT (subr), subr))
4141 {
4142 /* Returning something that won't go in a register. */
4143 rtx value_address = 0;
4144
4145 #ifdef PCC_STATIC_STRUCT_RETURN
4146 if (current_function_returns_pcc_struct)
4147 {
4148 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4149 value_address = assemble_static_space (size);
4150 }
4151 else
4152 #endif
4153 {
4154 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4155 /* Expect to be passed the address of a place to store the value.
4156 If it is passed as an argument, assign_parms will take care of
4157 it. */
4158 if (sv)
4159 {
4160 value_address = gen_reg_rtx (Pmode);
4161 emit_move_insn (value_address, sv);
4162 }
4163 }
4164 if (value_address)
4165 {
4166 rtx x = value_address;
4167 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4168 {
4169 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4170 set_mem_attributes (x, DECL_RESULT (subr), 1);
4171 }
4172 SET_DECL_RTL (DECL_RESULT (subr), x);
4173 }
4174 }
4175 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4176 /* If return mode is void, this decl rtl should not be used. */
4177 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4178 else
4179 {
4180 /* Compute the return values into a pseudo reg, which we will copy
4181 into the true return register after the cleanups are done. */
4182 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4183 if (TYPE_MODE (return_type) != BLKmode
4184 && targetm.calls.return_in_msb (return_type))
4185 /* expand_function_end will insert the appropriate padding in
4186 this case. Use the return value's natural (unpadded) mode
4187 within the function proper. */
4188 SET_DECL_RTL (DECL_RESULT (subr),
4189 gen_reg_rtx (TYPE_MODE (return_type)));
4190 else
4191 {
4192 /* In order to figure out what mode to use for the pseudo, we
4193 figure out what the mode of the eventual return register will
4194 actually be, and use that. */
4195 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4196
4197 /* Structures that are returned in registers are not
4198 aggregate_value_p, so we may see a PARALLEL or a REG. */
4199 if (REG_P (hard_reg))
4200 SET_DECL_RTL (DECL_RESULT (subr),
4201 gen_reg_rtx (GET_MODE (hard_reg)));
4202 else
4203 {
4204 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4205 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4206 }
4207 }
4208
4209 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4210 result to the real return register(s). */
4211 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4212 }
4213
4214 /* Initialize rtx for parameters and local variables.
4215 In some cases this requires emitting insns. */
4216 assign_parms (subr);
4217
4218 /* If function gets a static chain arg, store it. */
4219 if (cfun->static_chain_decl)
4220 {
4221 tree parm = cfun->static_chain_decl;
4222 rtx local = gen_reg_rtx (Pmode);
4223
4224 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4225 SET_DECL_RTL (parm, local);
4226 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4227
4228 emit_move_insn (local, static_chain_incoming_rtx);
4229 }
4230
4231 /* If the function receives a non-local goto, then store the
4232 bits we need to restore the frame pointer. */
4233 if (cfun->nonlocal_goto_save_area)
4234 {
4235 tree t_save;
4236 rtx r_save;
4237
4238 /* ??? We need to do this save early. Unfortunately here is
4239 before the frame variable gets declared. Help out... */
4240 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4241
4242 t_save = build4 (ARRAY_REF, ptr_type_node,
4243 cfun->nonlocal_goto_save_area,
4244 integer_zero_node, NULL_TREE, NULL_TREE);
4245 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4246 r_save = convert_memory_address (Pmode, r_save);
4247
4248 emit_move_insn (r_save, virtual_stack_vars_rtx);
4249 update_nonlocal_goto_save_area ();
4250 }
4251
4252 /* The following was moved from init_function_start.
4253 The move is supposed to make sdb output more accurate. */
4254 /* Indicate the beginning of the function body,
4255 as opposed to parm setup. */
4256 emit_note (NOTE_INSN_FUNCTION_BEG);
4257
4258 gcc_assert (NOTE_P (get_last_insn ()));
4259
4260 parm_birth_insn = get_last_insn ();
4261
4262 if (current_function_profile)
4263 {
4264 #ifdef PROFILE_HOOK
4265 PROFILE_HOOK (current_function_funcdef_no);
4266 #endif
4267 }
4268
4269 /* After the display initializations is where the stack checking
4270 probe should go. */
4271 if(flag_stack_check)
4272 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4273
4274 /* Make sure there is a line number after the function entry setup code. */
4275 force_next_line_note ();
4276 }
4277 \f
4278 /* Undo the effects of init_dummy_function_start. */
4279 void
4280 expand_dummy_function_end (void)
4281 {
4282 gcc_assert (in_dummy_function);
4283
4284 /* End any sequences that failed to be closed due to syntax errors. */
4285 while (in_sequence_p ())
4286 end_sequence ();
4287
4288 /* Outside function body, can't compute type's actual size
4289 until next function's body starts. */
4290
4291 free_after_parsing (cfun);
4292 free_after_compilation (cfun);
4293 pop_cfun ();
4294 in_dummy_function = false;
4295 }
4296
4297 /* Call DOIT for each hard register used as a return value from
4298 the current function. */
4299
4300 void
4301 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4302 {
4303 rtx outgoing = current_function_return_rtx;
4304
4305 if (! outgoing)
4306 return;
4307
4308 if (REG_P (outgoing))
4309 (*doit) (outgoing, arg);
4310 else if (GET_CODE (outgoing) == PARALLEL)
4311 {
4312 int i;
4313
4314 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4315 {
4316 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4317
4318 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4319 (*doit) (x, arg);
4320 }
4321 }
4322 }
4323
4324 static void
4325 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4326 {
4327 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4328 }
4329
4330 void
4331 clobber_return_register (void)
4332 {
4333 diddle_return_value (do_clobber_return_reg, NULL);
4334
4335 /* In case we do use pseudo to return value, clobber it too. */
4336 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4337 {
4338 tree decl_result = DECL_RESULT (current_function_decl);
4339 rtx decl_rtl = DECL_RTL (decl_result);
4340 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4341 {
4342 do_clobber_return_reg (decl_rtl, NULL);
4343 }
4344 }
4345 }
4346
4347 static void
4348 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4349 {
4350 emit_insn (gen_rtx_USE (VOIDmode, reg));
4351 }
4352
4353 static void
4354 use_return_register (void)
4355 {
4356 diddle_return_value (do_use_return_reg, NULL);
4357 }
4358
4359 /* Possibly warn about unused parameters. */
4360 void
4361 do_warn_unused_parameter (tree fn)
4362 {
4363 tree decl;
4364
4365 for (decl = DECL_ARGUMENTS (fn);
4366 decl; decl = TREE_CHAIN (decl))
4367 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4368 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4369 && !TREE_NO_WARNING (decl))
4370 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4371 }
4372
4373 static GTY(()) rtx initial_trampoline;
4374
4375 /* Generate RTL for the end of the current function. */
4376
4377 void
4378 expand_function_end (void)
4379 {
4380 rtx clobber_after;
4381
4382 /* If arg_pointer_save_area was referenced only from a nested
4383 function, we will not have initialized it yet. Do that now. */
4384 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4385 get_arg_pointer_save_area (cfun);
4386
4387 /* If we are doing stack checking and this function makes calls,
4388 do a stack probe at the start of the function to ensure we have enough
4389 space for another stack frame. */
4390 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4391 {
4392 rtx insn, seq;
4393
4394 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4395 if (CALL_P (insn))
4396 {
4397 start_sequence ();
4398 probe_stack_range (STACK_CHECK_PROTECT,
4399 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4400 seq = get_insns ();
4401 end_sequence ();
4402 emit_insn_before (seq, stack_check_probe_note);
4403 break;
4404 }
4405 }
4406
4407 /* Possibly warn about unused parameters.
4408 When frontend does unit-at-a-time, the warning is already
4409 issued at finalization time. */
4410 if (warn_unused_parameter
4411 && !lang_hooks.callgraph.expand_function)
4412 do_warn_unused_parameter (current_function_decl);
4413
4414 /* End any sequences that failed to be closed due to syntax errors. */
4415 while (in_sequence_p ())
4416 end_sequence ();
4417
4418 clear_pending_stack_adjust ();
4419 do_pending_stack_adjust ();
4420
4421 /* Output a linenumber for the end of the function.
4422 SDB depends on this. */
4423 force_next_line_note ();
4424 set_curr_insn_source_location (input_location);
4425
4426 /* Before the return label (if any), clobber the return
4427 registers so that they are not propagated live to the rest of
4428 the function. This can only happen with functions that drop
4429 through; if there had been a return statement, there would
4430 have either been a return rtx, or a jump to the return label.
4431
4432 We delay actual code generation after the current_function_value_rtx
4433 is computed. */
4434 clobber_after = get_last_insn ();
4435
4436 /* Output the label for the actual return from the function. */
4437 emit_label (return_label);
4438
4439 if (USING_SJLJ_EXCEPTIONS)
4440 {
4441 /* Let except.c know where it should emit the call to unregister
4442 the function context for sjlj exceptions. */
4443 if (flag_exceptions)
4444 sjlj_emit_function_exit_after (get_last_insn ());
4445 }
4446 else
4447 {
4448 /* We want to ensure that instructions that may trap are not
4449 moved into the epilogue by scheduling, because we don't
4450 always emit unwind information for the epilogue. */
4451 if (flag_non_call_exceptions)
4452 emit_insn (gen_blockage ());
4453 }
4454
4455 /* If this is an implementation of throw, do what's necessary to
4456 communicate between __builtin_eh_return and the epilogue. */
4457 expand_eh_return ();
4458
4459 /* If scalar return value was computed in a pseudo-reg, or was a named
4460 return value that got dumped to the stack, copy that to the hard
4461 return register. */
4462 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4463 {
4464 tree decl_result = DECL_RESULT (current_function_decl);
4465 rtx decl_rtl = DECL_RTL (decl_result);
4466
4467 if (REG_P (decl_rtl)
4468 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4469 : DECL_REGISTER (decl_result))
4470 {
4471 rtx real_decl_rtl = current_function_return_rtx;
4472
4473 /* This should be set in assign_parms. */
4474 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4475
4476 /* If this is a BLKmode structure being returned in registers,
4477 then use the mode computed in expand_return. Note that if
4478 decl_rtl is memory, then its mode may have been changed,
4479 but that current_function_return_rtx has not. */
4480 if (GET_MODE (real_decl_rtl) == BLKmode)
4481 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4482
4483 /* If a non-BLKmode return value should be padded at the least
4484 significant end of the register, shift it left by the appropriate
4485 amount. BLKmode results are handled using the group load/store
4486 machinery. */
4487 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4488 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4489 {
4490 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4491 REGNO (real_decl_rtl)),
4492 decl_rtl);
4493 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4494 }
4495 /* If a named return value dumped decl_return to memory, then
4496 we may need to re-do the PROMOTE_MODE signed/unsigned
4497 extension. */
4498 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4499 {
4500 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4501
4502 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4503 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4504 &unsignedp, 1);
4505
4506 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4507 }
4508 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4509 {
4510 /* If expand_function_start has created a PARALLEL for decl_rtl,
4511 move the result to the real return registers. Otherwise, do
4512 a group load from decl_rtl for a named return. */
4513 if (GET_CODE (decl_rtl) == PARALLEL)
4514 emit_group_move (real_decl_rtl, decl_rtl);
4515 else
4516 emit_group_load (real_decl_rtl, decl_rtl,
4517 TREE_TYPE (decl_result),
4518 int_size_in_bytes (TREE_TYPE (decl_result)));
4519 }
4520 /* In the case of complex integer modes smaller than a word, we'll
4521 need to generate some non-trivial bitfield insertions. Do that
4522 on a pseudo and not the hard register. */
4523 else if (GET_CODE (decl_rtl) == CONCAT
4524 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4525 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4526 {
4527 int old_generating_concat_p;
4528 rtx tmp;
4529
4530 old_generating_concat_p = generating_concat_p;
4531 generating_concat_p = 0;
4532 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4533 generating_concat_p = old_generating_concat_p;
4534
4535 emit_move_insn (tmp, decl_rtl);
4536 emit_move_insn (real_decl_rtl, tmp);
4537 }
4538 else
4539 emit_move_insn (real_decl_rtl, decl_rtl);
4540 }
4541 }
4542
4543 /* If returning a structure, arrange to return the address of the value
4544 in a place where debuggers expect to find it.
4545
4546 If returning a structure PCC style,
4547 the caller also depends on this value.
4548 And current_function_returns_pcc_struct is not necessarily set. */
4549 if (current_function_returns_struct
4550 || current_function_returns_pcc_struct)
4551 {
4552 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4553 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4554 rtx outgoing;
4555
4556 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4557 type = TREE_TYPE (type);
4558 else
4559 value_address = XEXP (value_address, 0);
4560
4561 outgoing = targetm.calls.function_value (build_pointer_type (type),
4562 current_function_decl, true);
4563
4564 /* Mark this as a function return value so integrate will delete the
4565 assignment and USE below when inlining this function. */
4566 REG_FUNCTION_VALUE_P (outgoing) = 1;
4567
4568 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4569 value_address = convert_memory_address (GET_MODE (outgoing),
4570 value_address);
4571
4572 emit_move_insn (outgoing, value_address);
4573
4574 /* Show return register used to hold result (in this case the address
4575 of the result. */
4576 current_function_return_rtx = outgoing;
4577 }
4578
4579 /* Emit the actual code to clobber return register. */
4580 {
4581 rtx seq;
4582
4583 start_sequence ();
4584 clobber_return_register ();
4585 expand_naked_return ();
4586 seq = get_insns ();
4587 end_sequence ();
4588
4589 emit_insn_after (seq, clobber_after);
4590 }
4591
4592 /* Output the label for the naked return from the function. */
4593 emit_label (naked_return_label);
4594
4595 /* @@@ This is a kludge. We want to ensure that instructions that
4596 may trap are not moved into the epilogue by scheduling, because
4597 we don't always emit unwind information for the epilogue. */
4598 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4599 emit_insn (gen_blockage ());
4600
4601 /* If stack protection is enabled for this function, check the guard. */
4602 if (cfun->stack_protect_guard)
4603 stack_protect_epilogue ();
4604
4605 /* If we had calls to alloca, and this machine needs
4606 an accurate stack pointer to exit the function,
4607 insert some code to save and restore the stack pointer. */
4608 if (! EXIT_IGNORE_STACK
4609 && current_function_calls_alloca)
4610 {
4611 rtx tem = 0;
4612
4613 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4614 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4615 }
4616
4617 /* ??? This should no longer be necessary since stupid is no longer with
4618 us, but there are some parts of the compiler (eg reload_combine, and
4619 sh mach_dep_reorg) that still try and compute their own lifetime info
4620 instead of using the general framework. */
4621 use_return_register ();
4622 }
4623
4624 rtx
4625 get_arg_pointer_save_area (struct function *f)
4626 {
4627 rtx ret = f->x_arg_pointer_save_area;
4628
4629 if (! ret)
4630 {
4631 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4632 f->x_arg_pointer_save_area = ret;
4633 }
4634
4635 if (f == cfun && ! f->arg_pointer_save_area_init)
4636 {
4637 rtx seq;
4638
4639 /* Save the arg pointer at the beginning of the function. The
4640 generated stack slot may not be a valid memory address, so we
4641 have to check it and fix it if necessary. */
4642 start_sequence ();
4643 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4644 seq = get_insns ();
4645 end_sequence ();
4646
4647 push_topmost_sequence ();
4648 emit_insn_after (seq, entry_of_function ());
4649 pop_topmost_sequence ();
4650 }
4651
4652 return ret;
4653 }
4654 \f
4655 /* Extend a vector that records the INSN_UIDs of INSNS
4656 (a list of one or more insns). */
4657
4658 static void
4659 record_insns (rtx insns, VEC(int,heap) **vecp)
4660 {
4661 rtx tmp;
4662
4663 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4664 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4665 }
4666
4667 /* Set the locator of the insn chain starting at INSN to LOC. */
4668 static void
4669 set_insn_locators (rtx insn, int loc)
4670 {
4671 while (insn != NULL_RTX)
4672 {
4673 if (INSN_P (insn))
4674 INSN_LOCATOR (insn) = loc;
4675 insn = NEXT_INSN (insn);
4676 }
4677 }
4678
4679 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4680 be running after reorg, SEQUENCE rtl is possible. */
4681
4682 static int
4683 contains (const_rtx insn, VEC(int,heap) **vec)
4684 {
4685 int i, j;
4686
4687 if (NONJUMP_INSN_P (insn)
4688 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4689 {
4690 int count = 0;
4691 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4692 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4693 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4694 == VEC_index (int, *vec, j))
4695 count++;
4696 return count;
4697 }
4698 else
4699 {
4700 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4701 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4702 return 1;
4703 }
4704 return 0;
4705 }
4706
4707 int
4708 prologue_epilogue_contains (const_rtx insn)
4709 {
4710 if (contains (insn, &prologue))
4711 return 1;
4712 if (contains (insn, &epilogue))
4713 return 1;
4714 return 0;
4715 }
4716
4717 int
4718 sibcall_epilogue_contains (const_rtx insn)
4719 {
4720 if (sibcall_epilogue)
4721 return contains (insn, &sibcall_epilogue);
4722 return 0;
4723 }
4724
4725 #ifdef HAVE_return
4726 /* Insert gen_return at the end of block BB. This also means updating
4727 block_for_insn appropriately. */
4728
4729 static void
4730 emit_return_into_block (basic_block bb)
4731 {
4732 emit_jump_insn_after (gen_return (), BB_END (bb));
4733 }
4734 #endif /* HAVE_return */
4735
4736 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4737
4738 /* These functions convert the epilogue into a variant that does not
4739 modify the stack pointer. This is used in cases where a function
4740 returns an object whose size is not known until it is computed.
4741 The called function leaves the object on the stack, leaves the
4742 stack depressed, and returns a pointer to the object.
4743
4744 What we need to do is track all modifications and references to the
4745 stack pointer, deleting the modifications and changing the
4746 references to point to the location the stack pointer would have
4747 pointed to had the modifications taken place.
4748
4749 These functions need to be portable so we need to make as few
4750 assumptions about the epilogue as we can. However, the epilogue
4751 basically contains three things: instructions to reset the stack
4752 pointer, instructions to reload registers, possibly including the
4753 frame pointer, and an instruction to return to the caller.
4754
4755 We must be sure of what a relevant epilogue insn is doing. We also
4756 make no attempt to validate the insns we make since if they are
4757 invalid, we probably can't do anything valid. The intent is that
4758 these routines get "smarter" as more and more machines start to use
4759 them and they try operating on different epilogues.
4760
4761 We use the following structure to track what the part of the
4762 epilogue that we've already processed has done. We keep two copies
4763 of the SP equivalence, one for use during the insn we are
4764 processing and one for use in the next insn. The difference is
4765 because one part of a PARALLEL may adjust SP and the other may use
4766 it. */
4767
4768 struct epi_info
4769 {
4770 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4771 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4772 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4773 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4774 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4775 should be set to once we no longer need
4776 its value. */
4777 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4778 for registers. */
4779 };
4780
4781 static void handle_epilogue_set (rtx, struct epi_info *);
4782 static void update_epilogue_consts (rtx, const_rtx, void *);
4783 static void emit_equiv_load (struct epi_info *);
4784
4785 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4786 no modifications to the stack pointer. Return the new list of insns. */
4787
4788 static rtx
4789 keep_stack_depressed (rtx insns)
4790 {
4791 int j;
4792 struct epi_info info;
4793 rtx insn, next;
4794
4795 /* If the epilogue is just a single instruction, it must be OK as is. */
4796 if (NEXT_INSN (insns) == NULL_RTX)
4797 return insns;
4798
4799 /* Otherwise, start a sequence, initialize the information we have, and
4800 process all the insns we were given. */
4801 start_sequence ();
4802
4803 info.sp_equiv_reg = stack_pointer_rtx;
4804 info.sp_offset = 0;
4805 info.equiv_reg_src = 0;
4806
4807 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4808 info.const_equiv[j] = 0;
4809
4810 insn = insns;
4811 next = NULL_RTX;
4812 while (insn != NULL_RTX)
4813 {
4814 next = NEXT_INSN (insn);
4815
4816 if (!INSN_P (insn))
4817 {
4818 add_insn (insn);
4819 insn = next;
4820 continue;
4821 }
4822
4823 /* If this insn references the register that SP is equivalent to and
4824 we have a pending load to that register, we must force out the load
4825 first and then indicate we no longer know what SP's equivalent is. */
4826 if (info.equiv_reg_src != 0
4827 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4828 {
4829 emit_equiv_load (&info);
4830 info.sp_equiv_reg = 0;
4831 }
4832
4833 info.new_sp_equiv_reg = info.sp_equiv_reg;
4834 info.new_sp_offset = info.sp_offset;
4835
4836 /* If this is a (RETURN) and the return address is on the stack,
4837 update the address and change to an indirect jump. */
4838 if (GET_CODE (PATTERN (insn)) == RETURN
4839 || (GET_CODE (PATTERN (insn)) == PARALLEL
4840 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4841 {
4842 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4843 rtx base = 0;
4844 HOST_WIDE_INT offset = 0;
4845 rtx jump_insn, jump_set;
4846
4847 /* If the return address is in a register, we can emit the insn
4848 unchanged. Otherwise, it must be a MEM and we see what the
4849 base register and offset are. In any case, we have to emit any
4850 pending load to the equivalent reg of SP, if any. */
4851 if (REG_P (retaddr))
4852 {
4853 emit_equiv_load (&info);
4854 add_insn (insn);
4855 insn = next;
4856 continue;
4857 }
4858 else
4859 {
4860 rtx ret_ptr;
4861 gcc_assert (MEM_P (retaddr));
4862
4863 ret_ptr = XEXP (retaddr, 0);
4864
4865 if (REG_P (ret_ptr))
4866 {
4867 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4868 offset = 0;
4869 }
4870 else
4871 {
4872 gcc_assert (GET_CODE (ret_ptr) == PLUS
4873 && REG_P (XEXP (ret_ptr, 0))
4874 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4875 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4876 offset = INTVAL (XEXP (ret_ptr, 1));
4877 }
4878 }
4879
4880 /* If the base of the location containing the return pointer
4881 is SP, we must update it with the replacement address. Otherwise,
4882 just build the necessary MEM. */
4883 retaddr = plus_constant (base, offset);
4884 if (base == stack_pointer_rtx)
4885 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4886 plus_constant (info.sp_equiv_reg,
4887 info.sp_offset));
4888
4889 retaddr = gen_rtx_MEM (Pmode, retaddr);
4890 MEM_NOTRAP_P (retaddr) = 1;
4891
4892 /* If there is a pending load to the equivalent register for SP
4893 and we reference that register, we must load our address into
4894 a scratch register and then do that load. */
4895 if (info.equiv_reg_src
4896 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4897 {
4898 unsigned int regno;
4899 rtx reg;
4900
4901 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4902 if (HARD_REGNO_MODE_OK (regno, Pmode)
4903 && !fixed_regs[regno]
4904 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4905 && !REGNO_REG_SET_P
4906 (DF_LR_IN (EXIT_BLOCK_PTR), regno)
4907 && !refers_to_regno_p (regno,
4908 end_hard_regno (Pmode, regno),
4909 info.equiv_reg_src, NULL)
4910 && info.const_equiv[regno] == 0)
4911 break;
4912
4913 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4914
4915 reg = gen_rtx_REG (Pmode, regno);
4916 emit_move_insn (reg, retaddr);
4917 retaddr = reg;
4918 }
4919
4920 emit_equiv_load (&info);
4921 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4922
4923 /* Show the SET in the above insn is a RETURN. */
4924 jump_set = single_set (jump_insn);
4925 gcc_assert (jump_set);
4926 SET_IS_RETURN_P (jump_set) = 1;
4927 }
4928
4929 /* If SP is not mentioned in the pattern and its equivalent register, if
4930 any, is not modified, just emit it. Otherwise, if neither is set,
4931 replace the reference to SP and emit the insn. If none of those are
4932 true, handle each SET individually. */
4933 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4934 && (info.sp_equiv_reg == stack_pointer_rtx
4935 || !reg_set_p (info.sp_equiv_reg, insn)))
4936 add_insn (insn);
4937 else if (! reg_set_p (stack_pointer_rtx, insn)
4938 && (info.sp_equiv_reg == stack_pointer_rtx
4939 || !reg_set_p (info.sp_equiv_reg, insn)))
4940 {
4941 int changed;
4942
4943 changed = validate_replace_rtx (stack_pointer_rtx,
4944 plus_constant (info.sp_equiv_reg,
4945 info.sp_offset),
4946 insn);
4947 gcc_assert (changed);
4948
4949 add_insn (insn);
4950 }
4951 else if (GET_CODE (PATTERN (insn)) == SET)
4952 handle_epilogue_set (PATTERN (insn), &info);
4953 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4954 {
4955 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4956 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4957 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4958 }
4959 else
4960 add_insn (insn);
4961
4962 info.sp_equiv_reg = info.new_sp_equiv_reg;
4963 info.sp_offset = info.new_sp_offset;
4964
4965 /* Now update any constants this insn sets. */
4966 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4967 insn = next;
4968 }
4969
4970 insns = get_insns ();
4971 end_sequence ();
4972 return insns;
4973 }
4974
4975 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4976 structure that contains information about what we've seen so far. We
4977 process this SET by either updating that data or by emitting one or
4978 more insns. */
4979
4980 static void
4981 handle_epilogue_set (rtx set, struct epi_info *p)
4982 {
4983 /* First handle the case where we are setting SP. Record what it is being
4984 set from, which we must be able to determine */
4985 if (reg_set_p (stack_pointer_rtx, set))
4986 {
4987 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4988
4989 if (GET_CODE (SET_SRC (set)) == PLUS)
4990 {
4991 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4992 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4993 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4994 else
4995 {
4996 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4997 && (REGNO (XEXP (SET_SRC (set), 1))
4998 < FIRST_PSEUDO_REGISTER)
4999 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
5000 p->new_sp_offset
5001 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
5002 }
5003 }
5004 else
5005 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
5006
5007 /* If we are adjusting SP, we adjust from the old data. */
5008 if (p->new_sp_equiv_reg == stack_pointer_rtx)
5009 {
5010 p->new_sp_equiv_reg = p->sp_equiv_reg;
5011 p->new_sp_offset += p->sp_offset;
5012 }
5013
5014 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
5015
5016 return;
5017 }
5018
5019 /* Next handle the case where we are setting SP's equivalent
5020 register. We must not already have a value to set it to. We
5021 could update, but there seems little point in handling that case.
5022 Note that we have to allow for the case where we are setting the
5023 register set in the previous part of a PARALLEL inside a single
5024 insn. But use the old offset for any updates within this insn.
5025 We must allow for the case where the register is being set in a
5026 different (usually wider) mode than Pmode). */
5027 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
5028 {
5029 gcc_assert (!p->equiv_reg_src
5030 && REG_P (p->new_sp_equiv_reg)
5031 && REG_P (SET_DEST (set))
5032 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
5033 <= BITS_PER_WORD)
5034 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
5035 p->equiv_reg_src
5036 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5037 plus_constant (p->sp_equiv_reg,
5038 p->sp_offset));
5039 }
5040
5041 /* Otherwise, replace any references to SP in the insn to its new value
5042 and emit the insn. */
5043 else
5044 {
5045 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5046 plus_constant (p->sp_equiv_reg,
5047 p->sp_offset));
5048 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5049 plus_constant (p->sp_equiv_reg,
5050 p->sp_offset));
5051 emit_insn (set);
5052 }
5053 }
5054
5055 /* Update the tracking information for registers set to constants. */
5056
5057 static void
5058 update_epilogue_consts (rtx dest, const_rtx x, void *data)
5059 {
5060 struct epi_info *p = (struct epi_info *) data;
5061 rtx new;
5062
5063 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5064 return;
5065
5066 /* If we are either clobbering a register or doing a partial set,
5067 show we don't know the value. */
5068 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5069 p->const_equiv[REGNO (dest)] = 0;
5070
5071 /* If we are setting it to a constant, record that constant. */
5072 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5073 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5074
5075 /* If this is a binary operation between a register we have been tracking
5076 and a constant, see if we can compute a new constant value. */
5077 else if (ARITHMETIC_P (SET_SRC (x))
5078 && REG_P (XEXP (SET_SRC (x), 0))
5079 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5080 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5081 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5082 && 0 != (new = simplify_binary_operation
5083 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5084 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5085 XEXP (SET_SRC (x), 1)))
5086 && GET_CODE (new) == CONST_INT)
5087 p->const_equiv[REGNO (dest)] = new;
5088
5089 /* Otherwise, we can't do anything with this value. */
5090 else
5091 p->const_equiv[REGNO (dest)] = 0;
5092 }
5093
5094 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5095
5096 static void
5097 emit_equiv_load (struct epi_info *p)
5098 {
5099 if (p->equiv_reg_src != 0)
5100 {
5101 rtx dest = p->sp_equiv_reg;
5102
5103 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5104 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5105 REGNO (p->sp_equiv_reg));
5106
5107 emit_move_insn (dest, p->equiv_reg_src);
5108 p->equiv_reg_src = 0;
5109 }
5110 }
5111 #endif
5112
5113 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5114 this into place with notes indicating where the prologue ends and where
5115 the epilogue begins. Update the basic block information when possible. */
5116
5117 static void
5118 thread_prologue_and_epilogue_insns (void)
5119 {
5120 int inserted = 0;
5121 edge e;
5122 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5123 rtx seq;
5124 #endif
5125 #if defined (HAVE_epilogue) || defined(HAVE_return)
5126 rtx epilogue_end = NULL_RTX;
5127 #endif
5128 edge_iterator ei;
5129
5130 #ifdef HAVE_prologue
5131 if (HAVE_prologue)
5132 {
5133 start_sequence ();
5134 seq = gen_prologue ();
5135 emit_insn (seq);
5136
5137 /* Insert an explicit USE for the frame pointer
5138 if the profiling is on and the frame pointer is required. */
5139 if (current_function_profile && frame_pointer_needed)
5140 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
5141
5142 /* Retain a map of the prologue insns. */
5143 record_insns (seq, &prologue);
5144 emit_note (NOTE_INSN_PROLOGUE_END);
5145
5146 #ifndef PROFILE_BEFORE_PROLOGUE
5147 /* Ensure that instructions are not moved into the prologue when
5148 profiling is on. The call to the profiling routine can be
5149 emitted within the live range of a call-clobbered register. */
5150 if (current_function_profile)
5151 emit_insn (gen_blockage ());
5152 #endif
5153
5154 seq = get_insns ();
5155 end_sequence ();
5156 set_insn_locators (seq, prologue_locator);
5157
5158 /* Can't deal with multiple successors of the entry block
5159 at the moment. Function should always have at least one
5160 entry point. */
5161 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5162
5163 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5164 inserted = 1;
5165 }
5166 #endif
5167
5168 /* If the exit block has no non-fake predecessors, we don't need
5169 an epilogue. */
5170 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5171 if ((e->flags & EDGE_FAKE) == 0)
5172 break;
5173 if (e == NULL)
5174 goto epilogue_done;
5175
5176 #ifdef HAVE_return
5177 if (optimize && HAVE_return)
5178 {
5179 /* If we're allowed to generate a simple return instruction,
5180 then by definition we don't need a full epilogue. Examine
5181 the block that falls through to EXIT. If it does not
5182 contain any code, examine its predecessors and try to
5183 emit (conditional) return instructions. */
5184
5185 basic_block last;
5186 rtx label;
5187
5188 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5189 if (e->flags & EDGE_FALLTHRU)
5190 break;
5191 if (e == NULL)
5192 goto epilogue_done;
5193 last = e->src;
5194
5195 /* Verify that there are no active instructions in the last block. */
5196 label = BB_END (last);
5197 while (label && !LABEL_P (label))
5198 {
5199 if (active_insn_p (label))
5200 break;
5201 label = PREV_INSN (label);
5202 }
5203
5204 if (BB_HEAD (last) == label && LABEL_P (label))
5205 {
5206 edge_iterator ei2;
5207
5208 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5209 {
5210 basic_block bb = e->src;
5211 rtx jump;
5212
5213 if (bb == ENTRY_BLOCK_PTR)
5214 {
5215 ei_next (&ei2);
5216 continue;
5217 }
5218
5219 jump = BB_END (bb);
5220 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5221 {
5222 ei_next (&ei2);
5223 continue;
5224 }
5225
5226 /* If we have an unconditional jump, we can replace that
5227 with a simple return instruction. */
5228 if (simplejump_p (jump))
5229 {
5230 emit_return_into_block (bb);
5231 delete_insn (jump);
5232 }
5233
5234 /* If we have a conditional jump, we can try to replace
5235 that with a conditional return instruction. */
5236 else if (condjump_p (jump))
5237 {
5238 if (! redirect_jump (jump, 0, 0))
5239 {
5240 ei_next (&ei2);
5241 continue;
5242 }
5243
5244 /* If this block has only one successor, it both jumps
5245 and falls through to the fallthru block, so we can't
5246 delete the edge. */
5247 if (single_succ_p (bb))
5248 {
5249 ei_next (&ei2);
5250 continue;
5251 }
5252 }
5253 else
5254 {
5255 ei_next (&ei2);
5256 continue;
5257 }
5258
5259 /* Fix up the CFG for the successful change we just made. */
5260 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5261 }
5262
5263 /* Emit a return insn for the exit fallthru block. Whether
5264 this is still reachable will be determined later. */
5265
5266 emit_barrier_after (BB_END (last));
5267 emit_return_into_block (last);
5268 epilogue_end = BB_END (last);
5269 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5270 goto epilogue_done;
5271 }
5272 }
5273 #endif
5274 /* Find the edge that falls through to EXIT. Other edges may exist
5275 due to RETURN instructions, but those don't need epilogues.
5276 There really shouldn't be a mixture -- either all should have
5277 been converted or none, however... */
5278
5279 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5280 if (e->flags & EDGE_FALLTHRU)
5281 break;
5282 if (e == NULL)
5283 goto epilogue_done;
5284
5285 #ifdef HAVE_epilogue
5286 if (HAVE_epilogue)
5287 {
5288 start_sequence ();
5289 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5290
5291 seq = gen_epilogue ();
5292
5293 #ifdef INCOMING_RETURN_ADDR_RTX
5294 /* If this function returns with the stack depressed and we can support
5295 it, massage the epilogue to actually do that. */
5296 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5297 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5298 seq = keep_stack_depressed (seq);
5299 #endif
5300
5301 emit_jump_insn (seq);
5302
5303 /* Retain a map of the epilogue insns. */
5304 record_insns (seq, &epilogue);
5305 set_insn_locators (seq, epilogue_locator);
5306
5307 seq = get_insns ();
5308 end_sequence ();
5309
5310 insert_insn_on_edge (seq, e);
5311 inserted = 1;
5312 }
5313 else
5314 #endif
5315 {
5316 basic_block cur_bb;
5317
5318 if (! next_active_insn (BB_END (e->src)))
5319 goto epilogue_done;
5320 /* We have a fall-through edge to the exit block, the source is not
5321 at the end of the function, and there will be an assembler epilogue
5322 at the end of the function.
5323 We can't use force_nonfallthru here, because that would try to
5324 use return. Inserting a jump 'by hand' is extremely messy, so
5325 we take advantage of cfg_layout_finalize using
5326 fixup_fallthru_exit_predecessor. */
5327 cfg_layout_initialize (0);
5328 FOR_EACH_BB (cur_bb)
5329 if (cur_bb->index >= NUM_FIXED_BLOCKS
5330 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5331 cur_bb->aux = cur_bb->next_bb;
5332 cfg_layout_finalize ();
5333 }
5334 epilogue_done:
5335
5336 if (inserted)
5337 {
5338 commit_edge_insertions ();
5339
5340 /* The epilogue insns we inserted may cause the exit edge to no longer
5341 be fallthru. */
5342 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5343 {
5344 if (((e->flags & EDGE_FALLTHRU) != 0)
5345 && returnjump_p (BB_END (e->src)))
5346 e->flags &= ~EDGE_FALLTHRU;
5347 }
5348 }
5349
5350 #ifdef HAVE_sibcall_epilogue
5351 /* Emit sibling epilogues before any sibling call sites. */
5352 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5353 {
5354 basic_block bb = e->src;
5355 rtx insn = BB_END (bb);
5356
5357 if (!CALL_P (insn)
5358 || ! SIBLING_CALL_P (insn))
5359 {
5360 ei_next (&ei);
5361 continue;
5362 }
5363
5364 start_sequence ();
5365 emit_insn (gen_sibcall_epilogue ());
5366 seq = get_insns ();
5367 end_sequence ();
5368
5369 /* Retain a map of the epilogue insns. Used in life analysis to
5370 avoid getting rid of sibcall epilogue insns. Do this before we
5371 actually emit the sequence. */
5372 record_insns (seq, &sibcall_epilogue);
5373 set_insn_locators (seq, epilogue_locator);
5374
5375 emit_insn_before (seq, insn);
5376 ei_next (&ei);
5377 }
5378 #endif
5379
5380 #ifdef HAVE_epilogue
5381 if (epilogue_end)
5382 {
5383 rtx insn, next;
5384
5385 /* Similarly, move any line notes that appear after the epilogue.
5386 There is no need, however, to be quite so anal about the existence
5387 of such a note. Also possibly move
5388 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5389 info generation. */
5390 for (insn = epilogue_end; insn; insn = next)
5391 {
5392 next = NEXT_INSN (insn);
5393 if (NOTE_P (insn)
5394 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5395 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5396 }
5397 }
5398 #endif
5399
5400 /* Threading the prologue and epilogue changes the artificial refs
5401 in the entry and exit blocks. */
5402 epilogue_completed = 1;
5403 df_update_entry_exit_and_calls ();
5404 }
5405
5406 /* Reposition the prologue-end and epilogue-begin notes after instruction
5407 scheduling and delayed branch scheduling. */
5408
5409 void
5410 reposition_prologue_and_epilogue_notes (void)
5411 {
5412 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5413 rtx insn, last, note;
5414 int len;
5415
5416 if ((len = VEC_length (int, prologue)) > 0)
5417 {
5418 last = 0, note = 0;
5419
5420 /* Scan from the beginning until we reach the last prologue insn.
5421 We apparently can't depend on basic_block_{head,end} after
5422 reorg has run. */
5423 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5424 {
5425 if (NOTE_P (insn))
5426 {
5427 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5428 note = insn;
5429 }
5430 else if (contains (insn, &prologue))
5431 {
5432 last = insn;
5433 if (--len == 0)
5434 break;
5435 }
5436 }
5437
5438 if (last)
5439 {
5440 /* Find the prologue-end note if we haven't already, and
5441 move it to just after the last prologue insn. */
5442 if (note == 0)
5443 {
5444 for (note = last; (note = NEXT_INSN (note));)
5445 if (NOTE_P (note)
5446 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5447 break;
5448 }
5449
5450 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5451 if (LABEL_P (last))
5452 last = NEXT_INSN (last);
5453 reorder_insns (note, note, last);
5454 }
5455 }
5456
5457 if ((len = VEC_length (int, epilogue)) > 0)
5458 {
5459 last = 0, note = 0;
5460
5461 /* Scan from the end until we reach the first epilogue insn.
5462 We apparently can't depend on basic_block_{head,end} after
5463 reorg has run. */
5464 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5465 {
5466 if (NOTE_P (insn))
5467 {
5468 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5469 note = insn;
5470 }
5471 else if (contains (insn, &epilogue))
5472 {
5473 last = insn;
5474 if (--len == 0)
5475 break;
5476 }
5477 }
5478
5479 if (last)
5480 {
5481 /* Find the epilogue-begin note if we haven't already, and
5482 move it to just before the first epilogue insn. */
5483 if (note == 0)
5484 {
5485 for (note = insn; (note = PREV_INSN (note));)
5486 if (NOTE_P (note)
5487 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5488 break;
5489 }
5490
5491 if (PREV_INSN (last) != note)
5492 reorder_insns (note, note, PREV_INSN (last));
5493 }
5494 }
5495 #endif /* HAVE_prologue or HAVE_epilogue */
5496 }
5497
5498 /* Returns the name of the current function. */
5499 const char *
5500 current_function_name (void)
5501 {
5502 return lang_hooks.decl_printable_name (cfun->decl, 2);
5503 }
5504
5505 /* Returns the raw (mangled) name of the current function. */
5506 const char *
5507 current_function_assembler_name (void)
5508 {
5509 return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
5510 }
5511 \f
5512
5513 static unsigned int
5514 rest_of_handle_check_leaf_regs (void)
5515 {
5516 #ifdef LEAF_REGISTERS
5517 current_function_uses_only_leaf_regs
5518 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5519 #endif
5520 return 0;
5521 }
5522
5523 /* Insert a TYPE into the used types hash table of CFUN. */
5524 static void
5525 used_types_insert_helper (tree type, struct function *func)
5526 {
5527 if (type != NULL && func != NULL)
5528 {
5529 void **slot;
5530
5531 if (func->used_types_hash == NULL)
5532 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5533 htab_eq_pointer, NULL);
5534 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5535 if (*slot == NULL)
5536 *slot = type;
5537 }
5538 }
5539
5540 /* Given a type, insert it into the used hash table in cfun. */
5541 void
5542 used_types_insert (tree t)
5543 {
5544 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5545 t = TREE_TYPE (t);
5546 t = TYPE_MAIN_VARIANT (t);
5547 if (debug_info_level > DINFO_LEVEL_NONE)
5548 used_types_insert_helper (t, cfun);
5549 }
5550
5551 struct tree_opt_pass pass_leaf_regs =
5552 {
5553 NULL, /* name */
5554 NULL, /* gate */
5555 rest_of_handle_check_leaf_regs, /* execute */
5556 NULL, /* sub */
5557 NULL, /* next */
5558 0, /* static_pass_number */
5559 0, /* tv_id */
5560 0, /* properties_required */
5561 0, /* properties_provided */
5562 0, /* properties_destroyed */
5563 0, /* todo_flags_start */
5564 0, /* todo_flags_finish */
5565 0 /* letter */
5566 };
5567
5568 static unsigned int
5569 rest_of_handle_thread_prologue_and_epilogue (void)
5570 {
5571 if (optimize)
5572 cleanup_cfg (CLEANUP_EXPENSIVE);
5573 /* On some machines, the prologue and epilogue code, or parts thereof,
5574 can be represented as RTL. Doing so lets us schedule insns between
5575 it and the rest of the code and also allows delayed branch
5576 scheduling to operate in the epilogue. */
5577
5578 thread_prologue_and_epilogue_insns ();
5579 return 0;
5580 }
5581
5582 struct tree_opt_pass pass_thread_prologue_and_epilogue =
5583 {
5584 "pro_and_epilogue", /* name */
5585 NULL, /* gate */
5586 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5587 NULL, /* sub */
5588 NULL, /* next */
5589 0, /* static_pass_number */
5590 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5591 0, /* properties_required */
5592 0, /* properties_provided */
5593 0, /* properties_destroyed */
5594 TODO_verify_flow, /* todo_flags_start */
5595 TODO_dump_func |
5596 TODO_df_verify |
5597 TODO_df_finish | TODO_verify_rtl_sharing |
5598 TODO_ggc_collect, /* todo_flags_finish */
5599 'w' /* letter */
5600 };
5601 \f
5602
5603 /* This mini-pass fixes fall-out from SSA in asm statements that have
5604 in-out constraints. Say you start with
5605
5606 orig = inout;
5607 asm ("": "+mr" (inout));
5608 use (orig);
5609
5610 which is transformed very early to use explicit output and match operands:
5611
5612 orig = inout;
5613 asm ("": "=mr" (inout) : "0" (inout));
5614 use (orig);
5615
5616 Or, after SSA and copyprop,
5617
5618 asm ("": "=mr" (inout_2) : "0" (inout_1));
5619 use (inout_1);
5620
5621 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5622 they represent two separate values, so they will get different pseudo
5623 registers during expansion. Then, since the two operands need to match
5624 per the constraints, but use different pseudo registers, reload can
5625 only register a reload for these operands. But reloads can only be
5626 satisfied by hardregs, not by memory, so we need a register for this
5627 reload, just because we are presented with non-matching operands.
5628 So, even though we allow memory for this operand, no memory can be
5629 used for it, just because the two operands don't match. This can
5630 cause reload failures on register-starved targets.
5631
5632 So it's a symptom of reload not being able to use memory for reloads
5633 or, alternatively it's also a symptom of both operands not coming into
5634 reload as matching (in which case the pseudo could go to memory just
5635 fine, as the alternative allows it, and no reload would be necessary).
5636 We fix the latter problem here, by transforming
5637
5638 asm ("": "=mr" (inout_2) : "0" (inout_1));
5639
5640 back to
5641
5642 inout_2 = inout_1;
5643 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5644
5645 static void
5646 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5647 {
5648 int i;
5649 bool changed = false;
5650 rtx op = SET_SRC (p_sets[0]);
5651 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5652 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5653
5654 for (i = 0; i < ninputs; i++)
5655 {
5656 rtx input, output, insns;
5657 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5658 char *end;
5659 int match;
5660
5661 match = strtoul (constraint, &end, 10);
5662 if (end == constraint)
5663 continue;
5664
5665 gcc_assert (match < noutputs);
5666 output = SET_DEST (p_sets[match]);
5667 input = RTVEC_ELT (inputs, i);
5668 if (rtx_equal_p (output, input)
5669 || (GET_MODE (input) != VOIDmode
5670 && GET_MODE (input) != GET_MODE (output)))
5671 continue;
5672
5673 start_sequence ();
5674 emit_move_insn (copy_rtx (output), input);
5675 RTVEC_ELT (inputs, i) = copy_rtx (output);
5676 insns = get_insns ();
5677 end_sequence ();
5678
5679 emit_insn_before (insns, insn);
5680 changed = true;
5681 }
5682
5683 if (changed)
5684 df_insn_rescan (insn);
5685 }
5686
5687 static unsigned
5688 rest_of_match_asm_constraints (void)
5689 {
5690 basic_block bb;
5691 rtx insn, pat, *p_sets;
5692 int noutputs;
5693
5694 if (!cfun->has_asm_statement)
5695 return 0;
5696
5697 df_set_flags (DF_DEFER_INSN_RESCAN);
5698 FOR_EACH_BB (bb)
5699 {
5700 FOR_BB_INSNS (bb, insn)
5701 {
5702 if (!INSN_P (insn))
5703 continue;
5704
5705 pat = PATTERN (insn);
5706 if (GET_CODE (pat) == PARALLEL)
5707 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5708 else if (GET_CODE (pat) == SET)
5709 p_sets = &PATTERN (insn), noutputs = 1;
5710 else
5711 continue;
5712
5713 if (GET_CODE (*p_sets) == SET
5714 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5715 match_asm_constraints_1 (insn, p_sets, noutputs);
5716 }
5717 }
5718
5719 return TODO_df_finish;
5720 }
5721
5722 struct tree_opt_pass pass_match_asm_constraints =
5723 {
5724 "asmcons", /* name */
5725 NULL, /* gate */
5726 rest_of_match_asm_constraints, /* execute */
5727 NULL, /* sub */
5728 NULL, /* next */
5729 0, /* static_pass_number */
5730 0, /* tv_id */
5731 0, /* properties_required */
5732 0, /* properties_provided */
5733 0, /* properties_destroyed */
5734 0, /* todo_flags_start */
5735 TODO_dump_func, /* todo_flags_finish */
5736 0 /* letter */
5737 };
5738
5739
5740 #include "gt-function.h"